WorldWideScience

Sample records for ptr-ms emission ratios

  1. Determination of material emission signatures by PTR-MS and their correlations with odor assessments by human subjects

    DEFF Research Database (Denmark)

    K H, Han; J S, Zhang; Wargocki, Pawel;

    2010-01-01

    with the PTR-MS emission signatures. The data on the acceptability of air quality assessed by human subjects were obtained from a previous experimental study in which the emissions from the same batch of materials were determined under the same area-specific ventilation rates as in the case of the measurements...... with PTR-MS. Results show that PTR-MS can be an effective tool for establishing VOC emission signatures of material types and that there were reasonable correlations between the PTR-MS measurements and the acceptability of air quality for the nine materials tested when the sum of selected major individual...

  2. The Tropical Forest and Fire Emissions Experiment: method evaluation of volatile organic compound emissions measured by PTR-MS, FTIR, and GC from tropical biomass burning

    Directory of Open Access Journals (Sweden)

    T. G. Karl

    2007-11-01

    Full Text Available Volatile Organic Compound (VOC emissions from fires in tropical forest fuels were quantified using Proton-Transfer-Reaction Mass Spectrometry (PTRMS, Fourier Transform Infrared Spectroscopy (FTIR and gas chromatography (GC coupled to PTRMS (GC-PTR-MS. We investigated VOC emissions from 19 controlled laboratory fires at the USFS (United States Forest Service Fire Sciences Laboratory and 16 fires during an intensive airborne field campaign during the peak of the burning season in Brazil in 2004. The VOC emissions were dominated by oxygenated VOCs (OVOC (OVOC/NMHC ~4:1, NMHC: non-methane hydrocarbons The specificity of the PTR-MS instrument, which measures the mass to charge ratio of VOCs ionized by H3O+ ions, was validated by gas chromatography and by intercomparing in-situ measurements with those obtained from an open path FTIR instrument. Emission ratios for methyl vinyl ketone, methacrolein, crotonaldehyde, acrylonitrile and pyrrole were measured in the field for the first time. Our measurements show a higher contribution of OVOCs than previously assumed for modeling purposes. Comparison of fresh (<15 min and aged (>1 h–1 d smoke suggests altered emission ratios due to gas phase chemistry for acetone but not for acetaldehyde and methanol. Emission ratios for numerous, important, reactive VOCs with respect to acetonitrile (a biomass burning tracer are presented.

  3. Comprehensive Laboratory Measurements of the Emissions From Fires in Indonesian and African Fuels Measured by FTIR, PTR-MS, and GC

    Science.gov (United States)

    Christian, T. J.; Yokelson, R. J.; Holzinger, R.; Kleiss, B.; Crutzen, P. J.; Hao, W. M.

    2002-12-01

    In large-scale laboratory experiments at the USFS Fire Sciences Laboratory we captured and measured the emissions produced by 46 separate burns of 16 fuel types from Indonesia, southern Africa, Canada, the U.S., and Germany. Five of the most significant Indonesian fuel types (rice straw, peat, grass, litter, brush) and two of the most significant African savanna fuel types (miombo, dambo) are represented here by 32 experimental fires. We deployed both a closed cell and open-path FTIR to quantify CO2, CO, VOC, NOx, HCN, and NH3, and a proton transfer reaction mass spectrometer (PTR-MS) to measure VOC. We included dedicated instruments to measure CO2 and CO and filled numerous canisters for analysis by GC-FID for CO2, CO, and hydrocarbons. PTR-MS can quantify VOC emissions at pptv levels and can detect compounds with a wide range of molecular weights. Drawbacks to using PTR-MS include molecular mass signals complicated by more than one compound, insensitivity to compounds with proton affinities near or below that of water, and reduced signal for compounds that may stick to sample lines. FTIR is capable of positive identification based on many spectral features for each compound. Open-path FTIR is not subject to sampling artifacts. Drawbacks include lower sensitivity which limits the range of expected analytes, dependence on absorption cross-section, which is low for certain trace gases, and complicated spectra that require de-convolution. The combination of these two techniques, however, provides a very powerful analytical tool. The trace gases emitted from Indonesian biomass burning have never been fully characterized. This study provides initial emission ratios and emission factors for five important Indonesian fuel types for 20 compounds, half of which are OVOC. Results from the African fuels are being carefully interwoven into our recent field results to supplement a list of the top trace gas emissions from African savanna fires. These results constitute the most

  4. Emissions and ambient distributions of Biogenic Volatile Organic Compounds (BVOC in a ponderosa pine ecosystem: interpretation of PTR-MS mass spectra

    Directory of Open Access Journals (Sweden)

    S. Kim

    2010-02-01

    Full Text Available Two proton-transfer-reaction mass spectrometry systems were deployed at the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen-Southern Rocky Mountain 2008 field campaign (BEACHON-SRM08; July to September, 2008 at the Manitou Forest Observatory in a ponderosa pine woodland near Woodland Park, Colorado USA. The two PTR-MS systems simultaneously measured BVOC emissions and ambient distributions of their oxidation products. Here, we present mass spectral analysis in a wide range of masses (m/z 40+ to 210+ to assess our understanding of BVOC emissions and their photochemical processing inside of the forest canopy. The biogenic terpenoids, 2-methyl-3-butene-2-ol (MBO, 50.2% and several monoterpenes (MT, 33.5% were identified as the dominant BVOC emissions from a transmission corrected mass spectrum (PTR-MS, averaged over the daytime (11 a.m. to 3 p.m., local time of three days. To assess contributions of oxidation products of local BVOC, we calculate an oxidation product spectrum with the OH- and ozone-initiated oxidation product distribution mass spectra of two major BVOC emissions at the ecosystem (MBO and β-pinene that were observed from laboratory oxidation experiments. The majority (~76% of the total signal in the transmission corrected PTR-MS spectra could be explained by identified compounds. The remainder are attributed to oxidation products of BVOC emitted from nearby ecosystems and transported to the site, and oxidation products of unidentified BVOC emitted from the ponderosa pine ecosystem.

  5. Comprehensive Laboratory Measurements of the Emissions From Fires in African and Other Globally Significant Fuels Measured by FTIR, PTR-MS, and GC

    Science.gov (United States)

    Christian, T.; Yokelson, R. J.; Bertschi, I.; Holzinger, R.; Kleiss, B.; Crutzen, P. J.; Ward, D. E.; Hao, W. M.

    2001-12-01

    Biomass burning is one of the most important influences on the global atmosphere. Field experiments have yielded much useful knowledge about fires, but are often limited by lower S/N, lack of fuels data, and the challenges imposed by operating in remote tropical locations. In large-scale laboratory experiments at the U. S. Forest Service (USFS) Fire Sciences Laboratory we captured and measured all the emissions produced by 54 separate fires in 16 fuel types from southern Africa, Indonesia, Canada, the U. S., and Germany. Fuels included Dambo grass, Miombo litter, and Indonesian rice straw and peat. The fires were carefully simulated to match (as closely as possible) actual fires observed primarily during SAFARI-2000 and in Indonesia. Fuel C:H:N content was measured and fuel mass loss was continuously monitored. Total pressure, temperature, and flow of trace gases was monitored at the sampling platform in the stack above the fires. Trace gases were speciated by an impressive array of instrumentation. Both a closed cell and open-path FTIR were deployed by the UM group to quantify CO2, CO, CH4, NMHCs, oxygenated VOCs, NOx, HCN, and NH3 above ppb levels yielding a broad overview of the major smoke constituents. A proton-transfer reaction mass spectrometer (PTR-MS) from MPI was used to measure VOCs at ppt levels. NDIR instruments independently measured CO2 and CO. Canister sampling with GC analysis by MPI, USFS, and UC Irvine also measured CO2 and CO as well as hydrocarbons and halogenated hydrocarbons. Particles were sampled on quartz and Teflon filters to measure the emission factors for PM2.5 and elemental and organic carbon. These results constitute the most comprehensive measurements of fire emissions to date and also the first intercomparison between FTIR and PTR-MS. PTR-MS can quantify the total VOC (with proton affinity higher than water) present at each mass up to 200 a.m.u. at ppt levels. At ppb levels most molecules have multiple IR peaks so FTIR is ideally

  6. An intercomparison of GC-FID and PTR-MS toluene measurements in ambient air under conditions of enhanced monoterpene loading

    Directory of Open Access Journals (Sweden)

    J. L. Ambrose

    2010-01-01

    Full Text Available Toluene was measured using both a gas chromatographic system (GC, with a flame ionization detector (FID, and a proton transfer reaction-mass spectrometer (PTR-MS at the AIRMAP atmospheric monitoring station Thompson Farm (THF in rural Durham, NH during the summer of 2004. Simultaneous measurements of monoterpenes, including α- and β-pinene, camphene, Δ3-carene, and d-limonene, by GC-FID demonstrated large enhancements in monoterpene mixing ratios relative to toluene, with median and maximum enhancement ratios of ~2 and ~30, respectively. A detailed intercomparison among the GC-FID and PTR-MS toluene measurements was conducted to test the specificity of PTR-MS for atmospheric toluene measurements under conditions often dominated by biogenic emissions. We derived quantitative estimates of potential interferences in the PTR-MS toluene measurements related to sampling and analysis of monoterpenes, including fragmentation of the monoterpenes and some of their primary carbonyl oxidation products via reactions with H3O+, O2+ and NO+ in the PTR-MS drift tube. The PTR-MS and GC-FID toluene measurements were in good quantitative agreement and the two systems tracked one another well from the instrumental limits of detection to maximum mixing ratios of ~0.5 ppbv. Discrepancies in the measured mixing ratios were not well correlated with enhancements in the monoterpenes. Better quantitative agreement between the two systems was obtained by correcting the PTR-MS measurements for contributions from monoterpene fragmentation in the PTR-MS drift tube; however, the improvement was minor. Interferences in the PTR-MS measurements from fragmentation of the monoterpene oxidation products pinonaldehyde, caronaldehyde and α-pinene oxide were also likely negligible. The results from THF suggest that toluene can be reliably quantified by PTR-MS using our operating conditions under the ambient

  7. A comparison of GC-FID and PTR-MS toluene measurements in ambient air under conditions of enhanced monoterpene loading

    Directory of Open Access Journals (Sweden)

    J. L. Ambrose

    2010-07-01

    Full Text Available Toluene was measured using both a gas chromatographic system (GC, with a flame ionization detector (FID, and a proton transfer reaction-mass spectrometer (PTR-MS at the AIRMAP atmospheric monitoring station Thompson Farm (THF in rural Durham, NH during the summer of 2004. Simultaneous measurements of monoterpenes, including α- and β-pinene, camphene, Δ 3-carene, and d-limonene, by GC-FID demonstrated large enhancements in monoterpene mixing ratios relative to toluene, with median and maximum enhancement ratios of ~2 and ~30, respectively. A detailed comparison between the GC-FID and PTR-MS toluene measurements was conducted to test the specificity of PTR-MS for atmospheric toluene measurements under conditions often dominated by biogenic emissions. We derived quantitative estimates of potential interferences in the PTR-MS toluene measurements related to sampling and analysis of monoterpenes, including fragmentation of the monoterpenes and some of their primary carbonyl oxidation products via reactions with H3O+, O2+ and NO+ in the PTR-MS drift tube. The PTR-MS and GC-FID toluene measurements were in good quantitative agreement and the two systems tracked one another well from the instrumental limits of detection to maximum mixing ratios of ~0.5 ppbv. A correlation plot of the PTR-MS versus GC-FID toluene measurements was described by the least squares regression equation y=(1.13± 0.02x−(0.008±0.003 ppbv, suggesting a small ~13% positive bias in the PTR-MS measurements. The bias corresponded with a ~0.055 ppbv difference at the highest measured toluene level. The two systems agreed quantitatively within the combined 1σ measurement precisions for 60% of the measurements. Discrepancies in the measured mixing ratios were not well correlated with enhancements in the monoterpenes. Better quantitative agreement between the two systems was obtained by

  8. Measurement of atmospheric sesquiterpenes by proton transfer reaction-mass spectrometry (PTR-MS

    Directory of Open Access Journals (Sweden)

    A. Guenther

    2009-04-01

    Full Text Available The ability to measure sesquiterpenes (SQT; C15H24 by a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS was investigated. SQT calibration standards were prepared by a capillary diffusion method and the PTR-MS-estimated mixing ratios were derived from the counts of product ions and proton transfer reaction constants. These values were compared with mixing ratios determined by a calibrated Gas Chromatograph (GC coupled to a Flame Ionization Detector (GC-FID. Product ion distributions from soft-ionization occurring in a selected ion drift tube via proton transfer were measured as a function of collision energies. Results after the consideration of the mass discrimination of the PTR-MS system suggest that quantitative SQT measurements within 20% accuracy can be achieved with PTR-MS if two major product ions (m/z 149+ and 205+, out of seven major product ions (m/z 81+, 95+, 109+, 123+, 135+, 149+ and 205+, are accounted for. Considerable fragmentation of bicyclic sesquiterpenes, i.e. β-caryophyllene and α-humulene, cause the accuracy to be reduced to 50% if only the parent ion (m/z 205+ is considered. These findings were applied to a field dataset collected above a deciduous forest at the PROPHET (Program for Research on Oxidants: Photochemistry, Emissions, and Transport research station in 2005. Inferred average daytime ecosystem scale mixing ratios (fluxes of isoprene, sum of monoterpenes (MT, and sum of SQT exhibited values of 15 μg m−3 (4.5 mg m−2 h−1, 1.2 μg m−3 (0.21 mg m−2 h−1, and 0.0016 μg m−3 (0.10 mg m−2 h−1, respectively. A range of MT and SQT reactivities with respect to the OH radical was calculated and compared to an earlier study inferring significantly

  9. Detection of Ketones by a Novel Technology: Dipolar Proton Transfer Reaction Mass Spectrometry (DP-PTR-MS)

    Science.gov (United States)

    Pan, Yue; Zhang, Qiangling; Zhou, Wenzhao; Zou, Xue; Wang, Hongmei; Huang, Chaoqun; Shen, Chengyin; Chu, Yannan

    2017-05-01

    Proton transfer reaction mass spectrometry (PTR-MS) has played an important role in the field of real-time monitoring of trace volatile organic compounds (VOCs) due to its advantages such as low limit of detection (LOD) and fast time response. Recently, a new technology of proton extraction reaction mass spectrometry (PER-MS) with negative ions OH- as the reagent ions has also been presented, which can be applied to the detection of VOCs and even inorganic compounds. In this work, we combined the functions of PTR-MS and PER-MS in one instrument, thereby developing a novel technology called dipolar proton transfer reaction mass spectrometry (DP-PTR-MS). The selection of PTR-MS mode and PER-MS mode was achieved in DP-PTR-MS using only water vapor in the ion source and switching the polarity. In this experiment, ketones (denoted by M) were selected as analytes. The ketone (molecular weight denoted by m) was ionized as protonated ketone [M + H]+ [mass-to-charge ratio ( m/z) m + 1] in PTR-MS mode and deprotonated ketone [M - H]- ( m/z m - 1) in PER-MS mode. By comparing the m/z value of the product ions in the two modes, the molecular weight of the ketone can be positively identified as m. Results showed that whether it is a single ketone sample or a mixed sample of eight kinds of ketones, the molecular weights can be detected with DP-PTR-MS. The newly developed DP-PTR-MS not only maintains the original advantages of PTR-MS and PER-MS in sensitive and rapid detection of ketones, but also can estimate molecular weight of ketones.

  10. Detection of Ketones by a Novel Technology: Dipolar Proton Transfer Reaction Mass Spectrometry (DP-PTR-MS).

    Science.gov (United States)

    Pan, Yue; Zhang, Qiangling; Zhou, Wenzhao; Zou, Xue; Wang, Hongmei; Huang, Chaoqun; Shen, Chengyin; Chu, Yannan

    2017-05-01

    Proton transfer reaction mass spectrometry (PTR-MS) has played an important role in the field of real-time monitoring of trace volatile organic compounds (VOCs) due to its advantages such as low limit of detection (LOD) and fast time response. Recently, a new technology of proton extraction reaction mass spectrometry (PER-MS) with negative ions OH(-) as the reagent ions has also been presented, which can be applied to the detection of VOCs and even inorganic compounds. In this work, we combined the functions of PTR-MS and PER-MS in one instrument, thereby developing a novel technology called dipolar proton transfer reaction mass spectrometry (DP-PTR-MS). The selection of PTR-MS mode and PER-MS mode was achieved in DP-PTR-MS using only water vapor in the ion source and switching the polarity. In this experiment, ketones (denoted by M) were selected as analytes. The ketone (molecular weight denoted by m) was ionized as protonated ketone [M + H](+) [mass-to-charge ratio (m/z) m + 1] in PTR-MS mode and deprotonated ketone [M - H](-) (m/z m - 1) in PER-MS mode. By comparing the m/z value of the product ions in the two modes, the molecular weight of the ketone can be positively identified as m. Results showed that whether it is a single ketone sample or a mixed sample of eight kinds of ketones, the molecular weights can be detected with DP-PTR-MS. The newly developed DP-PTR-MS not only maintains the original advantages of PTR-MS and PER-MS in sensitive and rapid detection of ketones, but also can estimate molecular weight of ketones. Graphical Abstract ᅟ.

  11. Measurement of atmospheric sesquiterpenes by proton transfer reaction-mass spectrometry (PTR-MS

    Directory of Open Access Journals (Sweden)

    S. Kim

    2008-12-01

    Full Text Available The ability to measure sesquiterpenes (SQT; C15H24 by a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS was investigated with SQT standards, prepared by a capillary diffusion method, and the estimated mixing ratios, derived from the counts of product ions and proton transfer reaction constants were intercompared with measured mixing ratios, measured by a complementary Gas Chromatograph (GC coupled to a Flame Ionization Detector (GC-FID. Product ion distributions due to soft-ionization occurring in a selected ion drift tube via proton transfer were measured as a function of collision energies. Results after the consideration of the mass discrimination of the PTR-MS system suggest that quantitative SQT measurements within 20% accuracy can be achieved with PTR-MS if two major product ions (m/z 149+ and 205+ out of seven major product ions (m/z 81+, 95+, 109+, 123+, 135+, 149+ and 205+ are accounted for. Bicyclic sesquiterpenes, i.e. β-caryophyllene and α-humulene, showed considerable fragmentation causing the accuracy of their analysis to be reduced to 50% if only the parent ion (m/z 205 is considered. These findings were applied to a field dataset collected above a deciduous forest at the PROPHET (Program for Research on Oxidants: Photochemistry, Emissions, and Transport research station in 2005. Inferred Average daytime ecosystem scale mixing ratios (fluxes of isoprene, sum of monoterpenes (MT, and sum of SQT exhibited values of 15 μg m−3 (4.5 mg m−2 h−1, 1.2 μg m−3 (0.21 mg m−2 h−1 and 0.0016 μg m−3 (0.10 mgm−2 h−1 respectively. A range of MT and SQT reactivities with respect to the OH radical was calculated and compared to an earlier study inferring significantly underestimated OH

  12. Emissions and ambient distributions of Biogenic Volatile Organic Compounds (BVOC in a Ponderosa pine ecosystem: interpretation of PTR-MS mass spectra

    Directory of Open Access Journals (Sweden)

    S. Kim

    2009-10-01

    Full Text Available Two proton-transfer-reaction mass spectrometry systems were deployed at the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen-Southern Rocky Mountain 2008 field campaign (BEACHON-SRM08; July to September 2008 at the Manitou Forest observatory in a Ponderosa pine woodland near Woodland Park, Colorado USA to simultaneously measure BVOC emissions and ambient distributions of their oxidation products. Here, we present mass spectral analysis in a wide range of masses (m/z=40+ to 210+ to assess our understanding of BVOC emissions and their photochemical process inside of the forest canopy. The biogenic terpenoids, 2-methyl-3-butene-2-ol (MBO, 50.2% and several monoterpenes (MT, 33.5% were identified as the dominant BVOC emissions from a transmission corrected mass spectrum, averaged over the daytime (11 am to 3 p.m., local time of three days. To assess contributions of oxidation products of local BVOC, we calculate a oxidation product spectrum with the OH- and ozone-initiated oxidation product distribution mass spectra of two major BVOC at the ecosystem (MBO and β-pinene that were observed from laboratory oxidation experiments. A majority (~73% of the total signal could be explained by known compounds. The remainder are attributed to oxidation products of BVOC, emitted from nearby ecosystems and transported to the site, and oxidation products of unidentified BVOC emitted from the Ponderosa pine ecosystem.

  13. PTR-MS measurements of non-methane volatile organic compounds during an intensive field campaign at the summit of Mount Tai, China, in June 2006

    Science.gov (United States)

    Inomata, S.; Tanimoto, H.; Kato, S.; Suthawaree, J.; Kanaya, Y.; Pochanart, P.; Liu, Y.; Wang, Z.

    2010-08-01

    Owing to recent industrialization, Central East China has become a significant source of air pollutants. To examine the processes controlling the chemistry and transport of tropospheric ozone, we performed on-line measurements of non-methane volatile organic compounds (NMVOCs) as part of an intensive field campaign at Mount Tai, China, in June 2006 (MTX2006), using proton transfer reaction mass spectrometry (PTR-MS). Temporal variations of NMVOCs were recorded in mass-scan mode from m/z17 to m/z 300 during 12-30 June 2006. More than thirty kinds of NMVOCs were detected up to m/z 160, including alkenes, aromatics, alcohols, aldehydes, and ketones. In combination with non-methane hydrocarbon data obtained by a gas chromatography with flame ionization detection, it was found that oxygenated VOCs were the predominant NMVOCs. Diurnal variations depending mainly on local photochemistry were observed during 24-28 June. During the night of 12 June, we observed an episode of high NMVOCs concentrations attributed to the burning of agricultural biomass. The ΔNMVOCs/ΔCO ratios derived by PTR-MS measurements for this episode (with biomass burning (BB) plume) and during 16-23 June (without BB plume) are compared to emission ratios from various types of biomass burning as reviewed by Andreae and Merlet (2001) and to ratios recently measured by PTR-MS in tropical forests (Karl et al., 2007) and at urban sites (Warneke et al., 2007).

  14. Rapid tomato volatile profiling by using proton-transfer reaction mass spectrometry (PTR-MS).

    Science.gov (United States)

    Farneti, Brian; Cristescu, Simona M; Costa, Guglielmo; Harren, Frans J M; Woltering, Ernst J

    2012-05-01

    The availability of rapid and accurate methods to assess fruit flavor is of utmost importance to support quality control especially in the breeding phase. Breeders need more information and analytical tools to facilitate selection for complex multigenic traits such as flavor quality. In this study, it is shown that proton-transfer reaction mass spectrometry (PTR-MS) is a suitable method to monitor at high sensitivity the emission of volatiles determining the tomato aromatic profile such as hexanal, hexenals, methanol, ethanol, and acetaldehyde. The volatiles emitted by 14 tomato varieties (at red stage) were analyzed by 2 solvent-free headspace methods: solid-phase microextraction/gas chromatography MS and PTR-MS. Multivariate statistics (principal component analysis and cluster analysis) of the PTR-MS results allow an unambiguous separation between varieties, especially with a clear fingerprinting separation between the different tomato types: round truss, cocktail, and cherry tomatoes. PTR-MS was also successfully used to monitor the changes in volatile profiles during postharvest ripening and storage.

  15. PTR-MS and GC-MS Analyses of Sesquiterpenes

    Science.gov (United States)

    Rasmussen, R. A.; Geron, C.; Goldstein, A. H.; Holzinger, R.; Lee, A.

    2003-12-01

    Terpene hydrocarbons are ubiquitous compounds in the atmosphere. Frits Went, in 1960 suggested that the volatile organic emissions from plants especially the monoterpenes were responsible for the formation of the atmosphere's `blue haze'. Surveys of plant emissions using a Proton Transfer Reaction - Mass Spectrometer (PTR-MS) have shown that many species emit sesquiterpenes (Ssqt's) independent of emitting monoterpenes or isoprene. It is possible they are a comparable source of the organic micro-aerosols responsible for scattering the blue end of the spectrum, i.e. `blue haze' in addition to the monoterpenes as they have more rapid and complete reactions with ozone resulting in particles. Ambient concentrations of the terpenic hydrocarbons are site dependent, but are typically very low from a few to 1000 pptCv, except for isoprene which has summer mid-day median levels of 3 to 6 ppbCv. The sesquiterpenes are very difficult to measure in the atmosphere by conventional means but cubebene, copaene, bourbonene and alpha- and beta-caryophyllene are common foliage emissions. Direct measurements of isoprene, monoterpenes and sesquiterpenes over plant foliages with a PTR-MS were compared with captive samples of the air from the same plant foliages collected in Summa canisters. None of the biogenic organic emissions stored in the Summa canisters showed any significant losses due to wall effects. Neither did we observe that any of the processing steps were responsible for losses or internal molecular rearrangements. The reason for the stability and 100% recovery of these C5 to C15 olefinic compounds at room temperature is believed to be due to the water layer formed on the electropolished stainless steel walls of the canister under pressure at 30 psig. Ozone added to the test systems was observed to have an immediate effect on the sesquiterpenes at ambient levels. Measurements made this past summer at the Duke and Blodgett Research Forests again confirm that the ambient

  16. Geographical origin classification of olive oils by PTR-MS

    NARCIS (Netherlands)

    Araghipour, N.; Colineau, J.; Koot, A.H.; Akkermans, W.; Rojas, J.M.M.; Beauchamp, J.; Wisthaler, A.; Märk, T.D.; Downey, G.; Guillou, C.; Mannina, L.; Ruth, van S.M.

    2008-01-01

    The volatile compositions of 192 olive oil samples from five different European countries were investigated by PTR-MS sample headspace analysis. The mass spectra of all samples showed many masses with high abundances, indicating the complex VOC composition of olive oil. Three different PLS-DA models

  17. Butter and butter oil classification by PTR-MS

    NARCIS (Netherlands)

    Ruth, van S.M.; Koot, A.H.; Akkermans, W.; Araghipour, N.; Rozijn, M.; Baltussen, M.A.H.; Wisthaler, A.; Mark, T.D.; Frankhuizen, R.

    2008-01-01

    The potential of proton transfer reaction mass spectrometry (PTR-MS) as a tool for classification of milk fats was evaluated in relation to quality and authentication issues. Butters and butter oils were subjected to heat and off-flavouring treatments in order to create sensorially defective samples

  18. Lag time determination in DEC measurements with PTR-MS

    Directory of Open Access Journals (Sweden)

    R. Taipale

    2010-02-01

    Full Text Available The disjunct eddy covariance (DEC method has emerged as a popular technique for micrometeorological flux measurements of volatile organic compounds (VOCs. It has usually been combined with proton transfer reaction mass spectrometry (PTR-MS, an online technique for VOC concentration measurements. However, the determination of the lag time between wind and concentration measurements has remained an important challenge. To address this conundrum, we studied the effect of different lag time methods on DEC fluxes. The analysis was based on both actual DEC measurements with PTR-MS and simulated DEC data derived from high frequency H2O measurements with an infrared gas analyzer. Conventional eddy covariance fluxes of H2O served as a reference in the DEC simulation. The individual flux measurements with PTR-MS were rather sensitive to the lag time methods, but typically this effect averaged out when the median fluxes were considered. The DEC simulation revealed that the maximum covariance method was prone to overestimation of the absolute values of fluxes. The constant lag time methods, one resting on a value calculated from the sampling flow and the sampling line dimensions and the other on a typical daytime value, had a tendency to underestimate. The visual assessment method and our new averaging approach based on running averaged covariance functions did not yield statistically significant errors and thus fared better than the habitual choice, the maximum covariance method. Given this feature and the potential for automatic flux calculation, we recommend using the averaging approach in DEC measurements with PTR-MS.

  19. Lag time determination in DEC measurements with PTR-MS

    Directory of Open Access Journals (Sweden)

    R. Taipale

    2010-07-01

    Full Text Available The disjunct eddy covariance (DEC method has emerged as a popular technique for micrometeorological flux measurements of volatile organic compounds (VOCs. It has usually been combined with proton transfer reaction mass spectrometry (PTR-MS, an online technique for VOC concentration measurements. However, the determination of the lag time between wind and concentration measurements has remained an important challenge. To address this issue, we studied the effect of different lag time methods on DEC fluxes. The analysis was based on both actual DEC measurements with PTR-MS and simulated DEC data derived from high frequency H2O measurements with an infrared gas analyzer. Conventional eddy covariance fluxes of H2O served as a reference in the DEC simulation. The individual flux measurements with PTR-MS were rather sensitive to the lag time methods, but typically this effect averaged out when the median fluxes were considered. The DEC simulation revealed that the maximum covariance method was prone to overestimation of the absolute values of fluxes. The constant lag time methods, one based on a value calculated from the sampling flow and the sampling line dimensions and the other on a typical daytime value, had a tendency to underestimate. The visual assessment method and our new averaging approach utilizing running averaged covariance functions did not yield statistically significant errors and thus fared better than the habitual choice, the maximum covariance method. Given this feature and the potential for automatic flux calculation, we recommend using the averaging approach in DEC measurements with PTR-MS. It also seems well suited to conventional eddy covariance applications when measuring fluxes near the detection limit.

  20. Calibration and intercomparison of acetic acid measurements using proton transfer reaction mass spectrometry (PTR-MS)

    Science.gov (United States)

    Haase, K.B.; Keene, W.C.; Pszenny, A.A.P.; Mayne, H.R.; Talbot, R.W.; Sive, B.C.

    2012-01-01

    Acetic acid is one of the most abundant organic acids in the ambient atmosphere, with maximum mixing ratios reaching into the tens of parts per billion by volume (ppbv) range. The identities and associated magnitudes of the major sources and sinks for acetic acid are poorly characterized, due in part to the limitation in available measurement techniques. This paper demonstrates that Proton Transfer Reaction Mass Spectrometry (PTR-MS) can reliably quantify acetic acid vapor in ambient air. Three different PTR-MS configurations were calibrated at low ppbv mixing ratios using permeation tubes, which yielded calibration factors between 7.0 and 10.9 normalized counts per second per ppbv (ncps ppbv−1) at a drift tube field strength of 132 townsend (Td). Detection limits ranged from 0.06 to 0.32 ppbv with dwell times of 5 s. These calibration factors showed negligible humidity dependence. Using the experimentally determined calibration factors, PTR-MS measurements of acetic acid during the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) campaign were validated against results obtained using Mist Chambers coupled with Ion Chromatography (MC/IC). An orthogonal least squares linear regression of paired data yielded a slope of 1.14 ± 0.06 (2σ), an intercept of 0.049 ± 20 (2σ) ppbv, and an R2 of 0.78. The median mixing ratio of acetic acid on Appledore Island, ME during the ICARTT campaign was 0.530 ± 0.025 ppbv with a minimum of 0.075 ± 0.004 ppbv, and a maximum of 3.555 ± 0.171 ppbv.

  1. Calibration and intercomparison of acetic acid measurements using proton transfer reaction mass spectrometry (PTR-MS

    Directory of Open Access Journals (Sweden)

    K. B. Haase

    2012-07-01

    Full Text Available Acetic acid is one of the most abundant organic acids in the ambient atmosphere, with maximum mixing ratios reaching into the tens of parts per billion by volume (ppbv range. The identities and associated magnitudes of the major sources and sinks for acetic acid are poorly characterized, due in part to the limitation in available measurement techniques. This paper demonstrates that Proton Transfer Reaction Mass Spectrometry (PTR-MS can reliably quantify acetic acid vapor in ambient air. Three different PTR-MS configurations were calibrated at low ppbv mixing ratios using permeation tubes, which yielded calibration factors between 7.0 and 10.9 normalized counts per second per ppbv (ncps ppbv−1 at a drift tube field strength of 132 townsend (Td. Detection limits ranged from 0.06 to 0.32 ppbv with dwell times of 5 s. These calibration factors showed negligible humidity dependence. Using the experimentally determined calibration factors, PTR-MS measurements of acetic acid during the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT campaign were validated against results obtained using Mist Chambers coupled with Ion Chromatography (MC/IC. An orthogonal least squares linear regression of paired data yielded a slope of 1.14 ± 0.06 (2σ, an intercept of 0.049 ± 20 (2σ ppbv, and an R2 of 0.78. The median mixing ratio of acetic acid on Appledore Island, ME during the ICARTT campaign was 0.530 ± 0.025 ppbv with a minimum of 0.075 ± 0.004 ppbv, and a maximum of 3.555 ± 0.171 ppbv.

  2. Simultaneous factor analysis of organic particle and gas mass spectra: AMS and PTR-MS measurements at an urban site

    Directory of Open Access Journals (Sweden)

    J. G. Slowik

    2009-03-01

    Full Text Available During the winter component of the SPORT (Seasonal Particle Observations in the Region of Toronto field campaign, particulate non-refractory chemical composition and concentration of selected volatile organic compounds (VOCs were measured by an Aerodyne time-of-flight aerosol mass spectrometer (AMS and a proton transfer reaction-mass spectrometer (PTR-MS, respectively. Sampling was performed in downtown Toronto ~15 m from a major road. The mass spectra from the AMS and PTR-MS were combined into a unified dataset, which was analyzed using positive matrix factorization (PMF. The two instruments were given equal weight in the PMF analysis by application of a scaling factor to the uncertainties of each instrument. A residual based metric, Δesc, was used to evaluate the relative weight. The PMF analysis yielded a 5-factor solution that included factors characteristic of regional transport, local traffic emissions, charbroiling, and oxidative processing. The unified dataset provides information on particle and VOC sources and atmospheric processing that cannot be obtained from the datasets of the individual instruments, such as apportionment of oxygenated VOCs to direct emission sources vs. secondary reaction products, improved correlation of oxygenated aerosol factors with photochemical age, and increased detail regarding the composition of oxygenated organic aerosol factors. This analysis represents the first application of PMF to a unified AMS/PTR-MS dataset.

  3. Measuring OVOCs and VOCs by PTR-MS in an urban roadside microenvironment of Hong Kong: relative humidity and temperature dependence, and field intercomparisons

    Science.gov (United States)

    Cui, Long; Zhang, Zhou; Huang, Yu; Lee, Shun Cheng; Blake, Donald Ray; Ho, Kin Fai; Wang, Bei; Gao, Yuan; Wang, Xin Ming; Kwok Keung Louie, Peter

    2016-12-01

    Volatile organic compound (VOC) control is an important issue of air quality management in Hong Kong because ozone formation is generally VOC limited. Several oxygenated volatile organic compound (OVOC) and VOC measurement techniques - namely, (1) offline 2,4-dinitrophenylhydrazine (DNPH) cartridge sampling followed by high-performance liquid chromatography (HPLC) analysis; (2) online gas chromatography (GC) with flame ionization detection (FID); and (3) offline canister sampling followed by GC with mass spectrometer detection (MSD), FID, and electron capture detection (ECD) - were applied during this study. For the first time, the proton transfer reaction-mass spectrometry (PTR-MS) technique was also introduced to measured OVOCs and VOCs in an urban roadside area of Hong Kong. The integrated effect of ambient relative humidity (RH) and temperature (T) on formaldehyde measurements by PTR-MS was explored in this study. A Poly 2-D regression was found to be the best nonlinear surface simulation (r = 0.97) of the experimental reaction rate coefficient ratio, ambient RH, and T for formaldehyde measurement. This correction method was found to be better than correcting formaldehyde concentrations directly via the absolute humidity of inlet sample, based on a 2-year field sampling campaign at Mong Kok (MK) in Hong Kong. For OVOC species, formaldehyde, acetaldehyde, acetone, and MEK showed good agreements between PTR-MS and DNPH-HPLC with slopes of 1.00, 1.10, 0.76, and 0.88, respectively, and correlation coefficients of 0.79, 0.75, 0.60, and 0.93, respectively. Overall, fair agreements were found between PTR-MS and online GC-FID for benzene (slope = 1.23, r = 0.95), toluene (slope = 1.01, r = 0.96) and C2-benzenes (slope = 1.02, r = 0.96) after correcting benzene and C2-benzenes levels which could be affected by fragments formed from ethylbenzene. For the intercomparisons between PTR-MS and offline canister measurements by GC-MSD/FID/ECD, benzene showed good agreement

  4. Airborne measurements of reactive organic trace gases in the atmosphere - with a focus on PTR-MS measurements onboard NASA's flying laboratories

    Science.gov (United States)

    Wisthaler, Armin; Mikoviny, Tomas; Müller, Markus; Schiller, Sven Arne; Feil, Stefan; Hanel, Gernot; Jordan, Alfons; Mutschlechner, Paul; Crawford, James H.; Singh, Hanwant B.; Millet, Dylan

    2017-04-01

    Reactive organic gases (ROGs) play an important role in atmospheric chemistry as they affect the rates of ozone production, particle formation and growth, and oxidant consumption. Measurements of ROGs are analytically challenging because of their large variety and low concentrations in the Earth's atmosphere, and because they are easily affected by measurement artefacts. On aircraft, ROGs are typically measured by canister sampling followed by off-line analysis in the laboratory, fast online gas chromatography or online chemical ionization mass spectrometry. In this work, we will briefly sum up the state-of-the-art in this field before focusing on proton-transfer-reaction mass spectrometry (PTR-MS) and its deployment onboard NASA's airborne science laboratories. We will show how airborne PTR-MS was successfully used in NASA missions for characterizing emissions of ROGs from point sources, for following the photochemical evolution of ROGs in a biomass burning plume, for determining biosphere-atmosphere fluxes of selected ROGs and for validating satellite data. We will also present the airborne PTR-MS instrument in its most recent evolution which includes a radiofrequency ion funnel and ion guide combined with a compact time-of-flight mass spectrometer and discuss its superior performance characteristics. The development of the airborne PTR-MS instrument was supported by the Austrian Federal Ministry for Transport, Innovation and Technology (bmvit) through the Austrian Space Applications Programme (ASAP) of the Austrian Research Promotion Agency (FFG) (grants #833451, #847967). This work was also partly supported by NASA under grant #NNX14AP89G.

  5. Comparison of aromatic hydrocarbon measurements made by PTR-MS, DOAS and GC-FID during the MCMA 2003 Field Experiment

    Directory of Open Access Journals (Sweden)

    B. T. Jobson

    2010-02-01

    Full Text Available A comparison of aromatic hydrocarbon measurements is reported for the CENICA supersite in the district of Iztapalapa during the Mexico City Metropolitan Area field experiment in April 2003 (MCMA 2003. Data from three different measurement methods were compared: a Proton Transfer Reaction Mass Spectrometer (PTR-MS, long path measurements using a UV Differential Optical Absorption Spectrometer (DOAS, and Gas Chromatography-Flame Ionization analysis (GC-FID of canister samples. The principle focus was on the comparison between PTR-MS and DOAS data. Lab tests established that the PTR-MS and DOAS calibrations were consistent for a suite of aromatic compounds including benzene, toluene, p-xylene, ethylbenzene, 1,2,4-trimethylbenzene, phenol and styrene. The point sampling measurements by the PTR-MS and GC-FID showed good correlations (r=0.6, and were in reasonable agreement for toluene, C2-alkylbenzenes and C3-alkylbenzenes. The PTR-MS benzene data were consistently high, indicating interference from ethylbenzene fragmentation for the 145 Td drift field intensity used in the experiment. Correlations between the open-path data measured at 16-m height over a 860-m path length (retroreflector in 430 m distance, and the point measurements collected at 37-m sampling height were best for benzene (r=0.61, and reasonably good for toluene, C2-alkylbenzenes, naphthalene, styrene, cresols and phenol (r>0.5. There was good agreement between DOAS and PTR-MS measurements of benzene after correction for the PTR-MS ethylbenzene interference. Mixing ratios measured by DOAS were on average a factor of 1.7 times greater than the PTR-MS data for toluene, C2-alkylbenzenes, naphthalene and styrene. The level of agreement for the toluene data displayed a modest dependence on wind direction, establishing that spatial gradients – horizontal, vertical, or both – in toluene mixing ratios were significant, and

  6. Applicability of PTR-MS in the quality control of saffron

    NARCIS (Netherlands)

    Nenadis, Nikolaos; Heenan, Samuel; Tsimidou, Maria Z.; Ruth, Van Saskia

    2016-01-01

    The applicability of the emerging non-destructive technique, proton transfer reaction mass spectrometry (PTR-MS), was explored for the first time in the quality control of saffron. Monitoring of volatile organic compounds (VOCs) was achieved using a minute sample (35 mg). Fresh saffron was stored

  7. Discrimination of Polish unifloral honeys using overall PTR-MS and HPLC fingerprints combined with chemometrics

    NARCIS (Netherlands)

    Kus, P.M.; Ruth, van S.M.

    2015-01-01

    A total of 62 honey samples of six floral origins (rapeseed, lime, heather, cornflower, buckwheat and black locust) were analysed by means of proton transfer reaction mass spectrometry (PTR-MS) and HPLC-DAD. The data were evaluated by principal component analysis and k-nearest neighbours classificat

  8. Applicability of PTR-MS in the quality control of saffron

    NARCIS (Netherlands)

    Nenadis, Nikolaos; Heenan, Samuel; Tsimidou, Maria Z.; Ruth, Van Saskia

    2016-01-01

    The applicability of the emerging non-destructive technique, proton transfer reaction mass spectrometry (PTR-MS), was explored for the first time in the quality control of saffron. Monitoring of volatile organic compounds (VOCs) was achieved using a minute sample (35 mg). Fresh saffron was stored

  9. Ambient measurements of aromatic and oxidized VOCs by PTR-MS and GC-MS: intercomparison between four instruments in a boreal forest in Finland

    Directory of Open Access Journals (Sweden)

    M. K. Kajos

    2015-04-01

    Full Text Available Proton transfer reaction mass spectrometry (PTR-MS and gas chromatography mass spectrometry GC-MS allow real-time measurements of various atmospheric volatile organic compounds (VOC. By taking parallel measurements in ambient conditions, two PTR-MSs and two GC-MSs were studied for their ability to measure methanol, acetaldehyde, acetone, benzene and toluene. The measurements were conducted at a rural boreal forest site in southern Finland between 13 April and 14 May 2012. This paper presents correlations and possible biases between the concentrations measured using the four instruments. This paper presents correlations and possible biases between the concentrations measured using the four instruments. A very good correlation was found for benzene and acetone measurements between all instruments (the mean R value was 0.88 for both compounds, while for acetaldehyde and toluene the correlation was weaker (with a mean R value of 0.50 and 0.62, respectively. For some compounds, notably for methane, there were considerable systematic differences in the mixing ratios measured by the different instruments, despite the very good correlation between the instruments (mean R = 0.90. The systematic difference arises as a difference in the linear regression slope between measurements conducted between instruments, rather than as an offset. This mismatch indicates that the systematic uncertainty in the sensitivity of a given instrument can lead to an uncertainty of 50–100% in the methanol emissions measured by commonly used methods.

  10. VOC identification and inter-comparison from laboratory biomass burning using PTR-MS and PIT-MS

    Science.gov (United States)

    C. Warneke; J. M. Roberts; P. Veres; J. Gilman; W. C. Kuster; I. Burling; R. Yokelson; J. A. de Gouw

    2011-01-01

    Volatile organic compounds (VOCs) emitted from fires of biomass commonly found in the southeast and southwest U.S. were investigated with PTR-MS and PIT-MS, which are capable of fast measurements of a large number of VOCs. Both instruments were calibrated with gas standards and mass dependent calibration curves are determined. The sensitivity of the PIT-MS linearly...

  11. Quality changes during storage of cooked and sliced meat products measured with PTR-MS and HS-GC-MS.

    Science.gov (United States)

    Holm, E S; Adamsen, A P S; Feilberg, A; Schäfer, A; Løkke, M M; Petersen, M A

    2013-10-01

    The changes in the VOC composition of industrially produced saveloy were measured with Proton-Transfer-Reaction Mass-Spectrometry (PTR-MS) and HeadSpace Gas chromatography-mass spectrometry (HS-GC-MS) during a six weeks storage period. A decrease in the volatile organic compounds contributing to the fresh aroma of saveloy was the main change observed with both PTR-MS and HS-GC-MS. Samples of four other types of cooked and sliced meat product were measured with PTR-MS in the middle and at the end of the four week shelf-life period. These measurements showed an increase in m/z 69, 71, 87 and 89 for the pork loin and in m/z 61 for the herbal saveloy samples. These ions were assigned to the microbial spoilage markers: acetic acid, 2- and 3-methylbutanol, 2- and 3-methylbutanal, diacetyl and acetoin. Overall, this study shows that PTR-MS has potential for quality control of cooked and sliced meat products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Online breath gas analysis in unrestrained mice by hs-PTR-MS.

    Science.gov (United States)

    Szymczak, Wilfried; Rozman, Jan; Höllriegl, Vera; Kistler, Martin; Keller, Stefan; Peters, Dominika; Kneipp, Moritz; Schulz, Holger; Hoeschen, Christoph; Klingenspor, Martin; de Angelis, Martin Hrabě

    2014-04-01

    The phenotyping of genetic mouse models for human disorders may greatly benefit from breath gas analysis as a noninvasive tool to identify metabolic alterations in mice. Phenotyping screens such as the German Mouse Clinic demand investigations in unrestrained mice. Therefore, we adapted a breath screen in which exhaled volatile organic compounds (VOCs) were online monitored by proton transfer reaction mass spectrometry (hs-PTR-MS). The source strength of VOCs was derived from the dynamics in the accumulation profile of exhaled VOCs of a single mouse in a respirometry chamber. A careful survey of the accumulation revealed alterations in the source strength due to confounders, e.g., urine and feces. Moreover changes in the source strength of humidity were triggered by changes in locomotor behavior as mice showed a typical behavioral pattern from activity to settling down in the course of subsequent accumulation profiles. We demonstrated that metabolic changes caused by a dietary intervention, e.g., after feeding a high-fat diet (HFD) a sample of 14 male mice, still resulted in a statistically significant shift in the source strength of exhaled VOCs. Applying a normalization which was derived from the distribution of the source strength of humidity and accounted for varying locomotor behaviors improved the shift. Hence, breath gas analysis may provide a noninvasive, fast access to monitor the metabolic adaptation of a mouse to alterations in energy balance due to overfeeding or fasting and dietary macronutrient composition as well as a high potential for systemic phenotyping of mouse mutants, intervention studies, and drug testing in mice.

  13. Rapid and facile detection of four date rape drugs in different beverages utilizing proton transfer reaction mass spectrometry (PTR-MS).

    Science.gov (United States)

    Jürschik, Simone; Agarwal, Bishu; Kassebacher, Thomas; Sulzer, Philipp; Mayhew, Christopher A; Märk, Tilmann D

    2012-09-01

    In this work, we illustrate the application of proton transfer reaction mass spectrometry (PTR-MS) in the field of food and drink safety. We present proof-of-principle measurements of four different drinks (water, tea, red wine and white wine) each spiked separately with four different date rape drugs (chloral hydrate, tricholorethanol, γ-butyrolactone and butanediol). At first, the ideal PTR-MS operating conditions (reduced electric field strength and monitoring the most abundant [fragment] ion) for detection of the drugs were determined utilizing a time-of-flight-based PTR-MS instrument. We then dissolved small quantities of the drugs (below the activation threshold for effects on humans) into the various types of drinks and detected them using a quadrupole-based PTR-MS instrument via two different sampling methods: (1) dynamic headspace sampling and (2) direct liquid injection. Both methods have their advantages and drawbacks. Only with dynamic headspace sampling can rape drug contaminations be detected within a timeframe of seconds, and therefore, this method is the most promising use of PTR-MS as a fast, sensitive and selective monitor for the detection of food and drink contamination.

  14. Development and characterization of a High-Temperature Proton-Transfer-Reaction Mass Spectrometer (HT-PTR-MS

    Directory of Open Access Journals (Sweden)

    T. Mikoviny

    2010-01-01

    Full Text Available We have developed a High-Temperature Proton-Transfer-Reaction Mass Spectrometer (HT-PTR-MS in which both the ion source and the ion drift tube can be continuously operated at temperatures up to 250 °C. The instrument was characterized in a high E/N-mode (130 Td and in a low E/N-mode (87 Td at an operating temperature of 200 °C. Instrumental sensitivities and 2σ-detection limits were on the order of 50–110 cps/ppb and 100 ppt (1 s signal integration time, respectively. The HT-PTR-MS is primarily intended for measuring "sticky" or semi-volatile trace gases. Alternatively, it may be coupled to a particle collection/thermal desorption apparatus to measure particle-bound organics in near real-time. In view of these applications, we have measured instrumental response times for a series of reference compounds. 1/e2-response times for dimethyl sulfoxide, ammonia and monoethanolamine were in the sub-second to second regime. 1/e2-response times for levoglucosan, oxalic acid and cis-pinonic acid ranged from 8 to 370 s.

  15. PTR-MS in Italy: A Multipurpose Sensor with Applications in Environmental, Agri-Food and Health Science

    Directory of Open Access Journals (Sweden)

    Franco Biasioli

    2013-09-01

    Full Text Available Proton Transfer Reaction Mass Spectrometry (PTR-MS has evolved in the last decade as a fast and high sensitivity sensor for the real-time monitoring of volatile compounds. Its applications range from environmental sciences to medical sciences, from food technology to bioprocess monitoring. Italian scientists and institutions participated from the very beginning in fundamental and applied research aiming at exploiting the potentialities of this technique and providing relevant methodological advances and new fundamental indications. In this review we describe this activity on the basis of the available literature. The Italian scientific community has been active mostly in food science and technology, plant physiology and environmental studies and also pioneered the applications of the recently released PTR-ToF-MS (Proton Transfer Reaction-Time of Flight-Mass Spectrometry in food science and in plant physiology. In the very last years new results related to bioprocess monitoring and health science have been published as well. PTR-MS data analysis, particularly in the case of the ToF based version, and the application of advanced chemometrics and data mining are also aspects characterising the activity of the Italian community.

  16. Primary Ion Depletion Kinetics (PIDK Studies as a New Tool for Investigating Chemical Ionization Fragmentation Reactions with PTR-MS.

    Directory of Open Access Journals (Sweden)

    Erna Schuhfried

    Full Text Available We report on a new approach for studying fragmentation channels in Proton Transfer Reaction-Mass Spectrometry (PTR-MS, which we name primary ion depletion kinetics (PIDK. PTR-MS is a chemical ionization mass spectrometric (CIMS technique deploying hydronium ions for the chemical ionization. Induced by extremely high concentrations of analyte M, depletion of the primary ions in the drift tube occurs. This is observed as quasi zero concentration of the primary ion H3O(+, and constant MH(+. Under these non-standard conditions, we find an overall changed fragmentation. We offer two explanations. Either the changed fragmentation pattern is the result of secondary proton transfer reactions. Or, alternatively, the fast depletion of H3O(+ leads to reduced heating of H3O(+ in the drift field, and consequently changed fragmentation following protonation of the analyte M. In any case, we use the observed changes in fragmentation as a successful new approach to fragmentation studies, and term it primary ion depletion kinetics, PIDK. PIDK easily yields an abundance of continuous data points with little deviation, because they are obtained in one experimental run, even for low abundant fragments. This is an advantage over traditional internal kinetic energy variation studies (electric field per number density (E/N variation studies. Also, some interpretation on the underlying fragmentation reaction mechanisms can be gleamed. We measure low occurring fragmentation (<2% of MH(+ of the compounds dimethyl sulfide, DMS, a compound that reportedly does not fragment, diethyl sulfide DES, and dipropyl sulfide DPS. And we confirm and complement the results with traditional E/N studies. Summing up, the new approach of primary ion depletion kinetics allows for the identification of dehydrogenation [MH(+ -H2] and adduct formation (RMH(+ as low abundant fragmentation channels in monosulfides.

  17. PTR-MS measurements and analysis of models for the calculation of Henry's law constants of monosulfides and disulfides.

    Science.gov (United States)

    Schuhfried, Erna; Biasioli, Franco; Aprea, Eugenio; Cappellin, Luca; Soukoulis, Christos; Ferrigno, Antonella; Märk, Tilmann D; Gasperi, Flavia

    2011-04-01

    Sulfides are known for their strong odor impact even at very low concentrations. Here, we report Henry's law constants (HLCs) measured at the nanomolar concentration range in water for monosulfides (dimethylsulfide, ethylmethylsulfide, diethylsulfide, allylmethylsulfide) and disulfides (dimethyldisulfide, diethylsulfide, dipropylsulfide) using a dynamic stripping technique coupled to Proton Transfer Reaction-Mass Spectrometry (PTR-MS). The experimental data were compared with literature values and to vapor/solubility calculations and their consistency was confirmed employing the extra-thermodynamic enthalpy-entropy compensation effect. Our experimental data are compatible with reported literature values, and they are typically lower than averaged experimental literature values by about 10%. Critical comparison with other freely available models (modeled vapor/solubility; group and bond additivity methods; Linear Solvation Energy Relationship; SPARC) was performed to validate their applicability to monosulfides and disulfides. Evaluation of theoretical models reveals a large deviation from our measured values by up to four times (in units of Matm(-1)). Two group contribution models were adjusted in view of the new data, and HLCs for a list of sulfur compounds were calculated. Based on our findings we recommend the evaluation and adaption of theoretical models for monosulfides and disulfides to lower values of solubility and higher values of fugacity.

  18. Real-time profiling of organic trace gases in the planetary boundary layer by PTR-MS using a tethered balloon

    Directory of Open Access Journals (Sweden)

    R. Schnitzhofer

    2009-12-01

    Full Text Available A method for real-time profiling of volatile organic compounds (VOCs was developed combining the advantages of a tethered balloon as a research platform and of proton transfer reaction mass spectrometry (PTR-MS as an analytical technique for fast and highly sensitive VOC measurements. A 200 m Teflon tube was used to draw sampling air from a tethered aerodynamic balloon to the PTR-MS instrument. Positive and negative artefacts (i.e. formation and loss of VOCs in the tube were characterised in the laboratory and in the field by a set of 11 atmospherically relevant VOCs including both pure and oxygenated hydrocarbons. The only two compounds that increased or decreased when sampled through the tube were acetone (+7% and xylene (-6%. The method was successfully deployed during a winter field campaign to determine the small scale spatial and temporal patterns of air pollutants under winter inversion conditions.

  19. Canopy-scale flux measurements and bottom-up emission estimates of volatile organic compounds from a mixed oak and hornbeam forest in northern Italy

    Directory of Open Access Journals (Sweden)

    W. J. F. Acton

    2015-10-01

    Full Text Available This paper reports the fluxes and mixing ratios of biogenically emitted volatile organic compounds (BVOCs 4 m above a mixed oak and hornbeam forest in northern Italy. Fluxes of methanol, acetaldehyde, isoprene, methyl vinyl ketone + methacrolein, methyl ethyl ketone and monoterpenes were obtained using both a proton transfer reaction-mass spectrometer (PTR-MS and a proton transfer reaction-time of flight-mass spectrometer (PTR-ToF-MS together with the methods of virtual disjunct eddy covariance (PTR-MS and eddy covariance (PTR-ToF-MS. Isoprene was the dominant emitted compound with a mean day-time flux of 1.9 mg m-2 h-1. Mixing ratios, recorded 4 m above the canopy, were dominated by methanol with a mean value of 6.2 ppbv over the 28 day measurement period. Comparison of isoprene fluxes calculated using the PTR-MS and PTR-ToF-MS showed very good agreement while comparison of the monoterpene fluxes suggested a slight over estimation of the flux by the PTR-MS. A basal isoprene emission rate for the forest of 1.7 mg m-2 h-1 was calculated using the MEGAN isoprene emissions algorithms (Guenther et al., 2006. A detailed tree species distribution map for the site enabled the leaf-level emissions of isoprene and monoterpenes recorded using GC-MS to be scaled up to produce a "bottom-up" canopy-scale flux. This was compared with the "top-down" canopy-scale flux obtained by measurements. For monoterpenes, the two estimates were closely correlated and this correlation improved when the plant species composition in the individual flux footprint was taken into account. However, the bottom-up approach significantly underestimated the isoprene flux, compared with the top-down measurements, suggesting that the leaf-level measurements were not representative of actual emission rates.

  20. Hyphenation of Proton Transfer Reaction Mass Spectrometry with Thermal Analysis (TG/PTR-MS) for Monitoring the Thermal Degradation of Retinyl Acetate.

    Science.gov (United States)

    Peinado, Irene; Mason, Marco; Biasioli, Franco; Scampicchio, Matteo

    2017-09-14

    The processing of retinyl acetate, a vitamin and biomarker, at high temperatures causes significant decomposition of the compound and thus loss of its activity. The rate of mass loss can be conveniently studied by thermogravimetry (TG). However, this technique generally fails to reveal which compounds have been evolved from the compound. In this work we propose a new hyphenation approach to continuously monitor the thermal decomposition of retinyl acetate and follow the evolution of specific volatile organic compounds (VOCs). Thermal degradation of retinyl acetate was followed by TG coupled to a direct injection mass spectrometer based on proton transfer mass spectrometry (PTR-MS) to follow continuously the thermal decomposition of retinyl acetate. The results were also compared with those obtained by a second evolved gas analysis system based on the coupling of TG with FTIR. The TG results showed two main mass losses, at 180°C and 350°C. When the PTR-MS instrument was connected to the outlet of the TG instrument, specific fragment ions (m/z 43, 61, 75, 85 and 97) showed characteristic evolution profiles. The first mass loss was mainly associated with the release of acetic acid (m/z 43 and 61), whereas the second mass loss was connected with the degradation of the molecule backbone (m/z 43, 61, 75, 85 and 97). These results were substantially correlated with those achieved by TG coupled with FTIR, although PTR-MS showed superior performance in terms of the qualitative identification of specific fragments and better sensitivity toward complex organic VOCs. The proposed TG-PTR-MS technique shows a great potential for following in real time the thermal degradation of ingredients such as retinyl acetate and identifying compounds evolved at specific temperatures. This article is protected by copyright. All rights reserved.

  1. Measurement of Secondary Products During Oxidation Reactions of Terpenes and Ozone Based on the PTR-MS Analysis: Effects of Coexistent Carbonyl Compounds

    Science.gov (United States)

    Ishizuka, Yusuke; Tokumura, Masahiro; Mizukoshi, Atsushi; Noguchi, Miyuki; Yanagisawa, Yukio

    2010-01-01

    Continuous measurements using proton transfer reaction mass spectrometry (PTR-MS) can be used to describe the production processes of secondary products during ozone induced oxidation of terpenes. Terpenes are emitted from woody building materials, and ozone is generated from ozone air purifiers and copy machines in indoor environments. Carbonyl compounds (CCs) are emitted by human activities such as smoking and drinking alcohol. Moreover, CCs are generated during ozone oxidation of terpenes. Therefore, coexistent CCs should affect the ozone oxidation. This study has focused on the measurement of secondary products during the ozone oxidation of terpenes based on the use of PTR-MS analysis and effects of coexistent CCs on oxidized products. Experiments were performed in a fluoroplastic bag containing α-pinene or limonene as terpenes, ozone and acetaldehyde or formaldehyde as coexistent CCs adjusted to predetermined concentrations. Continuous measurements by PTR-MS were conducted after mixing of terpenes, ozone and CCs, and time changes of volatile organic compounds (VOCs) concentrations were monitored. Results showed that, high-molecular weight intermediates disappeared gradually with elapsed time, though the production of high-molecular weight intermediates was observed at the beginning. This phenomenon suggested that the ozone oxidation of terpenes generated ultrafine particles. Coexistent CCs affected the ozone oxidation of α-pinene more than limonene. PMID:21139865

  2. Measurement of secondary products during oxidation reactions of terpenes and ozone based on the PTR-MS analysis: effects of coexistent carbonyl compounds.

    Science.gov (United States)

    Ishizuka, Yusuke; Tokumura, Masahiro; Mizukoshi, Atsushi; Noguchi, Miyuki; Yanagisawa, Yukio

    2010-11-01

    Continuous measurements using proton transfer reaction mass spectrometry (PTR-MS) can be used to describe the production processes of secondary products during ozone induced oxidation of terpenes. Terpenes are emitted from woody building materials, and ozone is generated from ozone air purifiers and copy machines in indoor environments. Carbonyl compounds (CCs) are emitted by human activities such as smoking and drinking alcohol. Moreover, CCs are generated during ozone oxidation of terpenes. Therefore, coexistent CCs should affect the ozone oxidation. This study has focused on the measurement of secondary products during the ozone oxidation of terpenes based on the use of PTR-MS analysis and effects of coexistent CCs on oxidized products. Experiments were performed in a fluoroplastic bag containing α-pinene or limonene as terpenes, ozone and acetaldehyde or formaldehyde as coexistent CCs adjusted to predetermined concentrations. Continuous measurements by PTR-MS were conducted after mixing of terpenes, ozone and CCs, and time changes of volatile organic compounds (VOCs) concentrations were monitored. Results showed that, high-molecular weight intermediates disappeared gradually with elapsed time, though the production of high-molecular weight intermediates was observed at the beginning. This phenomenon suggested that the ozone oxidation of terpenes generated ultrafine particles. Coexistent CCs affected the ozone oxidation of α-pinene more than limonene.

  3. Investigation of Volatiles Emitted from Freshly Cut Onions (Allium cepa L. by Real Time Proton-Transfer Reaction-Mass Spectrometry (PTR-MS

    Directory of Open Access Journals (Sweden)

    Mette Marie Løkke

    2012-11-01

    Full Text Available Volatile organic compounds (VOCs in cut onions (Allium cepa L. were continuously measured by PTR-MS during the first 120 min after cutting. The headspace composition changed rapidly due to the very reactive volatile sulfurous compounds emitted from onion tissue after cell disruption. Mass spectral signals corresponding to propanethial S-oxide (the lachrymatory factor and breakdown products of this compound dominated 0–10 min after cutting. Subsequently, propanethiol and dipropyl disulfide predominantly appeared, together with traces of thiosulfinates. The concentrations of these compounds reached a maximum at 60 min after cutting. Propanethiol was present in highest concentrations and had an odor activity value 20 times higher than dipropyl disulfide. Thus, propanethiol is suggested to be the main source of the characteristic onion odor. Monitoring the rapid changes of VOCs in the headspace of cut onion necessitates a high time resolution, and PTR-MS is demonstrated to be a very suitable method for monitoring the headspace of freshly cut onions directly after cutting without extraction or pre-concentration.

  4. Measurements of volatile organic compounds at a suburban ground site (T1 in Mexico City during the MILAGRO 2006 campaign: measurement comparison, emission ratios, and source attribution

    Directory of Open Access Journals (Sweden)

    D. M. Bon

    2010-10-01

    Full Text Available Volatile organic compound (VOC mixing ratios were measured with two different instruments at the T1 ground site in Mexico City during the Megacity Initiative: Local and Global Research Observations (MILAGRO campaign in March of 2006. A gas chromatograph with flame ionization detector (GC-FID quantified 18 light alkanes, alkenes and acetylene while a proton-transfer-reaction ion-trap mass spectrometer (PIT-MS quantified 12 VOC species including oxygenated VOCs (OVOCs and aromatics. A GC separation system was used in conjunction with the PIT-MS (GC-PIT-MS to evaluate PIT-MS measurements and to aid in the identification of unknown VOCs. The VOC measurements are also compared to simultaneous canister samples and to two independent proton-transfer-reaction mass spectrometers (PTR-MS deployed on a mobile and an airborne platform during MILAGRO. VOC diurnal cycles demonstrate the large influence of vehicle traffic and liquid propane gas (LPG emissions during the night and photochemical processing during the afternoon. Emission ratios for VOCs and OVOCs are determined from early-morning enhancement ratios and compared to emission ratios calculated from the PMF results. Average emission ratios for non-oxygenated species relative to CO are on average a factor of 2 higher than measured for US cities. Emission ratios for OVOCs are estimated and compared to literature values the northeastern US and to tunnel studies in California. Positive matrix factorization analysis (PMF is used to provide insight into VOC sources and processing and to estimate OVOC emission ratios. Three PMF factors were distinguished by the analysis including the emissions from vehicles, the use of liquid propane gas and the production of secondary VOCs + long-lived species. The total PIT-MS signal was summed to estimate the fraction of identified vs. unidentified VOC species.

  5. Measurements of volatile organic compounds at a suburban ground site (T1 in Mexico City during the MILAGRO 2006 campaign: measurement comparison, emission ratios, and source attribution

    Directory of Open Access Journals (Sweden)

    D. M. Bon

    2011-03-01

    Full Text Available Volatile organic compound (VOC mixing ratios were measured with two different instruments at the T1 ground site in Mexico City during the Megacity Initiative: Local and Global Research Observations (MILAGRO campaign in March of 2006. A gas chromatograph with flame ionization detector (GC-FID quantified 18 light alkanes, alkenes and acetylene while a proton-transfer-reaction ion-trap mass spectrometer (PIT-MS quantified 12 VOC species including oxygenated VOCs (OVOCs and aromatics. A GC separation system was used in conjunction with the PIT-MS (GC-PIT-MS to evaluate PIT-MS measurements and to aid in the identification of unknown VOCs. The VOC measurements are also compared to simultaneous canister samples and to two independent proton-transfer-reaction mass spectrometers (PTR-MS deployed on a mobile and an airborne platform during MILAGRO. VOC diurnal cycles demonstrate the large influence of vehicle traffic and liquid propane gas (LPG emissions during the night and photochemical processing during the afternoon. Emission ratios for VOCs and OVOCs relative to CO are derived from early-morning measurements. Average emission ratios for non-oxygenated species relative to CO are on average a factor of ~2 higher than measured for US cities. Emission ratios for OVOCs are estimated and compared to literature values the northeastern US and to tunnel studies in California. Positive matrix factorization analysis (PMF is used to provide insight into VOC sources and processing. Three PMF factors were distinguished by the analysis including the emissions from vehicles, the use of liquid propane gas and the production of secondary VOCs + long-lived species. Emission ratios to CO calculated from the results of PMF analysis are compared to emission ratios calculated directly from measurements. The total PIT-MS signal is summed to estimate the fraction of identified versus unidentified VOC species.

  6. Analysis of the chemical composition of organic aerosol at the Mt. Sonnblick observatory using a novel high mass resolution thermal-desorption proton-transfer-reaction mass-spectrometer (hr-TD-PTR-MS)

    NARCIS (Netherlands)

    Holzinger, R.|info:eu-repo/dai/nl/337989338; Kasper-Giebl, A.; Staudinger, M.; Schauer, G.; Roeckmann, T.|info:eu-repo/dai/nl/304838233

    2010-01-01

    For the first time a high mass resolution thermal desorption proton transfer reaction mass spectrometer (hr-TD-PTR-MS) was deployed in the field to analyze the composition of the organic fraction of aerosols. We report on measurements from the remote Mt. Sonnblick observatory in the Austrian alps

  7. Isoprene and Monoterpene Emissions from Duke Forest: A Comparison of Ambient and Elevated CO2 Environments

    Science.gov (United States)

    Sive, B. C.; Varner, R. K.; Neilsen, C.; Russo, R. S.; Zhou, Y.; White, M. L.; Csakai, A.; Beckman, P.; Ambrose, J.; Wingenter, O. W.; Mao, H.; Talbot, R. W.

    2005-12-01

    A three week field campaign was conducted at the Duke Forest FACTS-1 Research Facility in Chapel Hill, NC, from September 8 through 28, 2004. A suite of volatile organic compounds (VOCs), oxygenated VOCs (OVOCs), organic and inorganic aerosols, CO2, O3, and NO were measured above the forest canopy under two different CO2 scenarios: (1) present day (Ring 1, 370 ppmv) and (2) elevated conditions (Ring 2, 570 ppmv). This study was conducted in order to determine how biogenic emissions may change in an elevated CO2 environment and what impact this will have on future air quality predictions. Approximately 700, 2-liter electropolished stainless steel canisters (University of California, Irvine) were filled hourly at both ambient CO2 (Ring 1) and elevated CO2 (Ring 2) of the FACTS-1 Research Facility. Two Proton Transfer Reaction Mass Spectrometer (PTR-MS) systems were also deployed at Duke Forest for on-line monitoring of VOCs, one was located at the Ameriflux tower (Ring 1) while the other was at the Ring 2 tower. Both PTR-MS systems continuously stepped through a series of 30 masses for VOC measurements. Each PTR-MS measured a suite of VOCs from two sampling heights (16 m and 20 m) at each ring. Both the canister samples and PTR-MS measurements revealed that isoprene levels were generally higher in Ring 2 than in Ring 1, and typically ranged from ~0-2 ppbv. On September 22 in Ring 2, levels of isoprene above the canopy from the PTR-MS measurements showed a maximum of ~6.3 ppbv. Isoprene mixing ratios in Ring 1 ranged from ~0.003 to 4.9 ppbv with mean and median values of 0.395 and 0.280 ppbv, respectively, while they varied over a wider range of 0.004-6.3 ppbv in Ring 2 with mean and median values of 0.459 and 0.287 pptv. Daily peaks appeared between 1500-2300 UT (11 AM - 7 PM LT) when the temperature and solar radiation intensity were highest. The daily maximum levels in Ring 2 were generally higher than in Ring 1, indicating enhanced isoprene emissions at the

  8. Ethylene glycol emissions from on-road vehicles.

    Science.gov (United States)

    Wood, Ezra C; Knighton, W Berk; Fortner, Ed C; Herndon, Scott C; Onasch, Timothy B; Franklin, Jonathan P; Worsnop, Douglas R; Dallmann, Timothy R; Gentner, Drew R; Goldstein, Allen H; Harley, Robert A

    2015-03-17

    Ethylene glycol (HOCH2CH2OH), used as engine coolant for most on-road vehicles, is an intermediate volatility organic compound (IVOC) with a high Henry's law coefficient. We present measurements of ethylene glycol (EG) vapor in the Caldecott Tunnel near San Francisco, using a proton transfer reaction mass spectrometer (PTR-MS). Ethylene glycol was detected at mass-to-charge ratio 45, usually interpreted as solely coming from acetaldehyde. EG concentrations in bore 1 of the Caldecott Tunnel, which has a 4% uphill grade, were characterized by infrequent (approximately once per day) events with concentrations exceeding 10 times the average concentration, likely from vehicles with malfunctioning engine coolant systems. Limited measurements in tunnels near Houston and Boston are not conclusive regarding the presence of EG in sampled air. Previous PTR-MS measurements in urban areas may have overestimated acetaldehyde concentrations at times due to this interference by ethylene glycol. Estimates of EG emission rates from the Caldecott Tunnel data are unrealistically high, suggesting that the Caldecott data are not representative of emissions on a national or global scale. EG emissions are potentially important because they can lead to the formation of secondary organic aerosol following oxidation in the atmospheric aqueous phase.

  9. Canopy-scale flux measurements and bottom-up emission estimates of volatile organic compounds from a mixed oak and hornbeam forest in northern Italy

    Science.gov (United States)

    Acton, W. Joe F.; Schallhart, Simon; Langford, Ben; Valach, Amy; Rantala, Pekka; Fares, Silvano; Carriero, Giulia; Tillmann, Ralf; Tomlinson, Sam J.; Dragosits, Ulrike; Gianelle, Damiano; Hewitt, C. Nicholas; Nemitz, Eiko

    2016-06-01

    This paper reports the fluxes and mixing ratios of biogenically emitted volatile organic compounds (BVOCs) 4 m above a mixed oak and hornbeam forest in northern Italy. Fluxes of methanol, acetaldehyde, isoprene, methyl vinyl ketone + methacrolein, methyl ethyl ketone and monoterpenes were obtained using both a proton-transfer-reaction mass spectrometer (PTR-MS) and a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) together with the methods of virtual disjunct eddy covariance (using PTR-MS) and eddy covariance (using PTR-ToF-MS). Isoprene was the dominant emitted compound with a mean daytime flux of 1.9 mg m-2 h-1. Mixing ratios, recorded 4 m above the canopy, were dominated by methanol with a mean value of 6.2 ppbv over the 28-day measurement period. Comparison of isoprene fluxes calculated using the PTR-MS and PTR-ToF-MS showed very good agreement while comparison of the monoterpene fluxes suggested a slight over estimation of the flux by the PTR-MS. A basal isoprene emission rate for the forest of 1.7 mg m-2 h-1 was calculated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN) isoprene emission algorithms (Guenther et al., 2006). A detailed tree-species distribution map for the site enabled the leaf-level emission of isoprene and monoterpenes recorded using gas-chromatography mass spectrometry (GC-MS) to be scaled up to produce a bottom-up canopy-scale flux. This was compared with the top-down canopy-scale flux obtained by measurements. For monoterpenes, the two estimates were closely correlated and this correlation improved when the plant-species composition in the individual flux footprint was taken into account. However, the bottom-up approach significantly underestimated the isoprene flux, compared with the top-down measurements, suggesting that the leaf-level measurements were not representative of actual emission rates.

  10. From emissions to ambient mixing ratios: on-line seasonal field measurements of volatile organic compounds over a Norway spruce dominated forest in central Germany

    Science.gov (United States)

    Bourtsoukidis, E.; Williams, J.; Kesselmeier, J.; Jacobi, S.; Bonn, B.

    2013-11-01

    Biogenic volatile organic compounds (BVOC) are substantial contributors to atmospheric chemistry and physics and demonstrate the close relationship between biosphere and atmosphere. Their emission rates are highly sensitive to meteorological and environmental changes with concomitant impacts on atmospheric chemistry. We have investigated seasonal isoprenoid and oxygenated VOC (oxVOC) fluxes from a Norway spruce (Picea abies) tree in Central Germany and explored the emission responses under various atmospheric conditions. Emission rates were quantified by using dynamic branch enclosure and Proton Transfer Reaction-Mass Spectrometry (PTR-MS) techniques. Additionally, ambient mixing ratios were derived through application of a new box model treatment on the dynamic chamber measurements. These are compared in terms of abundance and origin with the corresponding emissions. Isoprenoids govern the BVOC emissions from Norway spruce, with monoterpenes and sesquiterpenes accounting for 50.8 ± 7.2% and 19.8 ± 8.1% respectively of the total emissions. Normalizing the VOC emission rates, we have observed a trend of reduction of carbon containing emissions from April to November, with an enhancement of oxVOC. Highest emission rates were observed in June for all measured species, with the exception of sesquiterpenes that were emitted most strongly in April. We exploit the wide range of conditions experienced at the site to filter the dataset with a combination of temperature, ozone and absolute humidity values in order to derive the emission potential and temperature dependency development for the major chemical species investigated. A profound reduction of monoterpene emission potential (E30) and temperature dependency (β) was found under low temperature regimes, combined with low ozone levels (E30MT, LTLO3=56 ± 9.1 ng g(dw)-1 h-1, βMT,LTLO3=0.03±0.01 K-1) while a combination of both stresses was found to alter their emissions responses with respect to temperature

  11. Breath acetone-aspects of normal physiology related to age and gender as determined in a PTR-MS study.

    Science.gov (United States)

    Schwarz, K; Pizzini, A; Arendacká, B; Zerlauth, K; Filipiak, W; Schmid, A; Dzien, A; Neuner, S; Lechleitner, M; Scholl-Bürgi, S; Miekisch, W; Schubert, J; Unterkofler, K; Witkovský, V; Gastl, G; Amann, A

    2009-06-01

    The present study was performed to determine the variations of breath acetone concentrations with age, gender and body-mass index (BMI). Previous investigations were based on a relatively small cohort of subjects (see Turner et al 2006 Physiol. Meas. 27 321-37). Since exhaled breath analysis is affected by considerable variation, larger studies are needed to get reliable information about the correlation of concentrations of volatiles in breath when compared with age, gender and BMI. Mixed expiratory exhaled breath was sampled using Tedlar bags. The concentrations of a mass-to-charge ratio (m/z) of 59, attributed to acetone, were then determined using proton transfer reaction-mass spectrometry. Our cohort, consisting of 243 adult volunteers not suffering from diabetes, was divided into two groups: one that fasted overnight prior to sampling (215 volunteers) and the other without a dietary control (28 volunteers). In addition, we considered a group of 44 healthy children (5-11 years old).The fasted subjects' concentrations of acetone ranged from 177 ppb to 2441 ppb, with an overall geometric mean (GM) of 628 ppb; in the group without a dietary control, the subjects' concentrations ranged from 281 ppb to 1246 ppb with an overall GM of 544 ppb. We found no statistically significant shift between the distributions of acetone levels in the breath of males and females in the fasted group (the Wilcoxon-Mann-Whitney test yielded p = 0.0923, the medians being 652 ppb and 587 ppb). Similarly, there did not seem to be a difference between the acetone levels of males and females in the group without a dietary control. Aging was associated with a slight increase of acetone in the fasted females; in males the increase was not statistically significant. Compared with the adults (a merged group), our group of children (5-11 years old) showed lower concentrations of acetone (p ppb. No correlation was found between the acetone levels and BMI in adults. Our results extend those of

  12. Spectral ratio method for measuring emissivity

    Science.gov (United States)

    Watson, K.

    1992-01-01

    The spectral ratio method is based on the concept that although the spectral radiances are very sensitive to small changes in temperature the ratios are not. Only an approximate estimate of temperature is required thus, for example, we can determine the emissivity ratio to an accuracy of 1% with a temperature estimate that is only accurate to 12.5 K. Selecting the maximum value of the channel brightness temperatures is an unbiased estimate. Laboratory and field spectral data are easily converted into spectral ratio plots. The ratio method is limited by system signal:noise and spectral band-width. The images can appear quite noisy because ratios enhance high frequencies and may require spatial filtering. Atmospheric effects tend to rescale the ratios and require using an atmospheric model or a calibration site. ?? 1992.

  13. NERO-The Neutron Emission Ratio Observer

    Science.gov (United States)

    Lorusso, Giuseppe; Pereira, Jorque; Hosmer, Paul; Kratz, Karl Ludvig; Montes, Fernando; Reeder, Paul; Santi, Peter; Schatz, Hendrik

    2007-10-01

    The Neutron Emission Ratio Observer (NERO), has been constructed for the use at the National Superconducting Cyclotron Laboratory to work in conjunction with the NSCL Beta Counting System in order to detect β-delayed neutrons. The design of the detector provides high and flat efficiency for a wide range of neutron energies, as well as a low neutron background.

  14. Emissions of volatile organic compounds inferred from airborne flux measurements over a megacity

    Science.gov (United States)

    Karl, T.; Apel, E.; Hodzic, A.; Riemer, D. D.; Blake, D. R.; Wiedinmyer, C.

    2009-01-01

    Toluene and benzene are used for assessing the ability to measure disjunct eddy covariance (DEC) fluxes of Volatile Organic Compounds (VOC) using Proton Transfer Reaction Mass Spectrometry (PTR-MS) on aircraft. Statistically significant correlation between vertical wind speed and mixing ratios suggests that airborne VOC eddy covariance (EC) flux measurements using PTR-MS are feasible. City-median midday toluene and benzene fluxes are calculated to be on the order of 14.1±4.0 mg/m2/h and 4.7±2.3 mg/m2/h, respectively. For comparison the adjusted CAM2004 emission inventory estimates toluene fluxes of 10 mg/m2/h along the footprint of the flight-track. Wavelet analysis of instantaneous toluene and benzene measurements during city overpasses is tested as a tool to assess surface emission heterogeneity. High toluene to benzene flux ratios above an industrial district (e.g. 10-15 g/g) including the International airport (e.g. 3-5 g/g) and a mean flux (concentration) ratio of 3.2±0.5 g/g (3.9±0.3 g/g) across Mexico City indicate that evaporative fuel and industrial emissions play an important role for the prevalence of aromatic compounds. Based on a tracer model, which was constrained by BTEX (BTEX- Benzene/Toluene/Ethylbenzene/m, p, o-Xylenes) compound concentration ratios, the fuel marker methyl-tertiary-butyl-ether (MTBE) and the biomass burning marker acetonitrile (CH3CN), we show that a combination of industrial, evaporative fuel, and exhaust emissions account for >87% of all BTEX sources. Our observations suggest that biomass burning emissions play a minor role for the abundance of BTEX compounds in the MCMA (2-13%).

  15. Emissions of volatile organic compounds inferred from airborne flux measurements over a megacity

    Directory of Open Access Journals (Sweden)

    T. Karl

    2008-07-01

    Full Text Available Toluene and benzene are used for assessing the ability to measure disjunct eddy covariance (DEC fluxes of Volatile Organic Compounds (VOC using Proton Transfer Reaction Mass Spectrometry (PTR-MS on aircraft. Statistically significant correlation between vertical wind speed and mixing ratios suggests that airborne VOC eddy covariance (EC flux measurements using PTR-MS are feasible. City-average midday toluene and benzene fluxes are calculated to be on the order of 15.5±4.0 mg/m2/h and 4.7±2.3 mg/m2/h respectively. These values argue for an underestimation of toluene and benzene emissions in current inventories used for the Mexico City Metropolitan Area (MCMA. Wavelet analysis of instantaneous toluene and benzene measurements during city overpasses is tested as a tool to assess surface emission heterogeneity. High toluene to benzene flux ratios above an industrial district (e.g. 10–15 including the International airport (e.g. 3–5 and a mean flux (concentration ratio of 3.2±0.5 (3.9±0.3 across Mexico City indicate that evaporative fuel and industrial emissions play an important role for the prevalence of aromatic compounds. Based on a tracer model, which was constrained by BTEX (Benzene/Toluene/Ethylbenzene/m,p,o-Xylenes compound concentration ratios, the fuel marker methyl-tertiary-butyl-ether (MTBE and the biomass burning marker acetonitrile (CH3CN, we show that a combination of industrial, evaporative fuel, and exhaust emissions account for >90% of all BTEX sources. Our observations suggest that biomass burning emissions play a minor role for the abundance of BTEX compounds (0–10% in the MCMA.

  16. Emissions of volatile organic compounds inferred from airborne flux measurements over a megacity

    Directory of Open Access Journals (Sweden)

    T. Karl

    2009-01-01

    Full Text Available Toluene and benzene are used for assessing the ability to measure disjunct eddy covariance (DEC fluxes of Volatile Organic Compounds (VOC using Proton Transfer Reaction Mass Spectrometry (PTR-MS on aircraft. Statistically significant correlation between vertical wind speed and mixing ratios suggests that airborne VOC eddy covariance (EC flux measurements using PTR-MS are feasible. City-median midday toluene and benzene fluxes are calculated to be on the order of 14.1±4.0 mg/m2/h and 4.7±2.3 mg/m2/h, respectively. For comparison the adjusted CAM2004 emission inventory estimates toluene fluxes of 10 mg/m2/h along the footprint of the flight-track. Wavelet analysis of instantaneous toluene and benzene measurements during city overpasses is tested as a tool to assess surface emission heterogeneity. High toluene to benzene flux ratios above an industrial district (e.g. 10–15 g/g including the International airport (e.g. 3–5 g/g and a mean flux (concentration ratio of 3.2±0.5 g/g (3.9±0.3 g/g across Mexico City indicate that evaporative fuel and industrial emissions play an important role for the prevalence of aromatic compounds. Based on a tracer model, which was constrained by BTEX (BTEX– Benzene/Toluene/Ethylbenzene/m, p, o-Xylenes compound concentration ratios, the fuel marker methyl-tertiary-butyl-ether (MTBE and the biomass burning marker acetonitrile (CH3CN, we show that a combination of industrial, evaporative fuel, and exhaust emissions account for >87% of all BTEX sources. Our observations suggest that biomass burning emissions play a minor role for the abundance of BTEX compounds in the MCMA (2–13%.

  17. The tropical forest and fire emissions experiment: laboratory fire measurements and synthesis of campaign data

    Science.gov (United States)

    Yokelson, R. J.; Christian, T. J.; Karl, T. G.; Guenther, A.

    2008-07-01

    As part of the Tropical Forest and Fire Emissions Experiment (TROFFEE), tropical forest fuels were burned in a large, biomass-fire simulation facility and the smoke was characterized with open-path Fourier transform infrared spectroscopy (FTIR), proton-transfer reaction mass spectrometry (PTR-MS), gas chromatography (GC), GC/PTR-MS, and filter sampling of the particles. In most cases, about one-third of the fuel chlorine ended up in the particles and about one-half remained in the ash. About 50% of the mass of non-methane organic compounds (NMOC) emitted by these fires could be identified with the available instrumentation. The lab fire emission factors (EF, g compound emitted per kg dry fuel burned) were coupled with EF obtained during the TROFFEE airborne and ground-based field campaigns. This revealed several types of EF dependence on parameters such as the ratio of flaming to smoldering combustion and fuel characteristics. The synthesis of data from the different TROFFEE platforms was also used to derive EF for all the measured species for both primary deforestation fires and pasture maintenance fires the two main types of biomass burning in the Amazon. Many of the EF are larger than those in widely-used earlier work. This is mostly due to the inclusion of newly-available, large EF for the initially-unlofted smoldering emissions from residual logs in pastures and the assumption that these emissions make a significant contribution (~40%) to the total emissions from pasture fires. The TROFFEE EF for particles with aerodynamic diameter sugar cane burning, which may help estimate the air quality impacts of burning this major crop, which is often grown in densely populated areas.

  18. Emissions of selected VOC from forests: First results on measurements needed for improvement and validation of emission models

    Science.gov (United States)

    Steigner, D.; Steinbrecher, R.; Rappenglück, B.; Gasche, R.; Hansel, A.; Graus, M.; Lindinger, Ch.

    2003-04-01

    Biogenic volatile organic compounds (BVOCs) play a crucial role in the formation of photo-oxidants and particles through the diverse BVOC degradation pathways. Yet, current estimations about temporal and spatial BVOC emissions, including the specific BVOC mix are rather vague. This project addresses this issue by: the determination of (a) BVOC net emission rates and (b) primary emissions of BVOCs from the trees and soils. Measurement campaigns were carried out at the Waldstein site in the Fichtelgebirge in 2001 and 2002. Primary emissions of isoprenoids from the soil and from twigs of Norway spruce (Picea abies [L.] Karst.) and stand fluxes of isoprenoids were quantified by means of REA-technique with in situ GC-FID analysis and GC-MS analysis in the laboratory. Moreover, REA-samples obtained by the system were analysed by a PTR-MS. A critical value when using the REA approach is the Businger-Oncley parameter b. For this canopy type a b value of 0.39 (threshold velocity w_o = 0.6) was determined. The PTR-MS data show clear diurnal variations of ambient air mixing ratios of VOC such as isoprene and monoterpenes, but also of oxygenated VOCs such as carbonyls and alcohols and methylvinylketone (MVK) and methacrolein (MAK), products from isoprene degradation. Four selected trees (Picea abies [L.] Karst.) were intensively screened for primary BVOC emission rates. Most abundant species are b-pinene/sabinene and camphene. They show typical diurnal patterns with high emissions during daytime. Soil emissions of NO reached 250 nmol N m-2 s-1 at soil temperatures (in 3 cm depth) of 13^oC and at a relative air humidity of 60%. Ambient air mixing ratios near the soil surface of NO reached values of up to 0.7 ppb. NO_2 and ozone mixing ratios varied between 0.1 to 1.5 ppb and 10 to 37 ppb, respectively. As expected nitrogen oxide emissions rates tend to increase with increasing surface temperature. Isoprenoid emission from the soil was low and in general near the detection limit

  19. Total OH reactivity emissions from Norway spruce

    Science.gov (United States)

    Nölscher, Anke; Bourtsoukidis, Efstratios; Bonn, Boris; Kesselmeier, Jürgen; Lelieveld, Jos; Williams, Jonathan

    2013-04-01

    Forest emissions represent a strong potential sink for the main tropospheric oxidant, the hydroxyl radical (OH). In forested environments, the comparison of the directly determined overall sink of OH radicals, the total OH reactivity, and the individually measured OH sink compounds often exposes a significant gap. This "missing" OH reactivity can be high and influenced by both direct biogenic emissions and secondary photo-oxidation products. To investigate the source of the missing OH sinks in forests, total OH reactivity emission rates were determined for the first time from a Norway spruce (Picea abies) throughout spring, summer and autumn 2011. The total OH reactivity was measured inside a branch enclosure using the Comparative Reactivity Method (CRM) with a Proton Transfer Reaction-Mass Spectrometer (PTR-MS) as the detector. In parallel, separate volatile organic compounds (VOC) emission rates were monitored by a second PTR-MS, including the signal of isoprene, acetaldehyde, total monoterpenes and total sesquiterpenes. The comparison of known and PTR-MS detected OH sink compounds and the directly measured total OH reactivity emitted from Norway spruce revealed unmeasured and possibly unknown primary biogenic emissions. These were found to be highest in late summer during daytime coincident with highest temperatures and ozone levels.

  20. Vehicular emissions of organic particulate matter in Sao Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    B. S. Oyama

    2015-12-01

    Full Text Available Vehicular emissions have a strong impact on air pollution in big cities. Many factors affect these emissions: type of vehicle, type of fuel, cruising velocity, and brake use. This study focused on emissions of organic compounds by Light (LDV and Heavy (HDV duty vehicle exhaust. The study was performed in the city of Sao Paulo, Brazil, where vehicles run on different fuels: gasoline with 25 % ethanol (called gasohol, hydrated ethanol, and diesel (with 5 % of biodiesel. The vehicular emissions are an important source of pollutants and the principal contribution to fine particulate matter (smaller than 2.5 μm, PM2.5 in Sao Paulo. The experiments were performed in two tunnels: Janio Quadros (TJQ where 99 % of the vehicles are LDV, and Rodoanel Mario Covas (TRA where up to 30 % of the fleet was HDV. The PM2.5 samples were collected on quartz filters in May and July 2011 at TJQ and TRA, respectively, using two samplers operating in parallel. The samples were analyzed by Thermal-Desorption Proton-Transfer-Reaction Mass-Spectrometry (TD-PTR-MS, and by Thermal-Optical Transmittance (TOT. The organic aerosol (OA desorbed at TD-PTR-MS represented around 30 % of the OA estimated by the TOT method, mainly due to the different desorption temperatures, with a maximum of 870 and 350 °C for TOT and TD-PTR-MS, respectively. Average emission factors (EF organic aerosol (OA and organic carbon (OC were calculated for HDV and LDV fleet. We found that HDV emitted more OA and OC than LDV, and that OC emissions represented 36 and 43 % of total PM2.5 emissions from LDV and HDV, respectively. More than 700 ions were identified by TD-PTR-MS and the EF profiles obtained from HDV and LDV exhibited distinct features. Nitrogen-containing compounds measured in the desorbed material up to 350 °C contributed around 20 % to the EF values for both types of vehicles, possibly associated with incomplete fuel burning. Additionally, 70 % of the organic compounds measured from the

  1. Vehicular emissions of organic particulate matter in Sao Paulo, Brazil

    Science.gov (United States)

    Oyama, B. S.; Andrade, M. F.; Herckes, P.; Dusek, U.; Röckmann, T.; Holzinger, R.

    2015-12-01

    Vehicular emissions have a strong impact on air pollution in big cities. Many factors affect these emissions: type of vehicle, type of fuel, cruising velocity, and brake use. This study focused on emissions of organic compounds by Light (LDV) and Heavy (HDV) duty vehicle exhaust. The study was performed in the city of Sao Paulo, Brazil, where vehicles run on different fuels: gasoline with 25 % ethanol (called gasohol), hydrated ethanol, and diesel (with 5 % of biodiesel). The vehicular emissions are an important source of pollutants and the principal contribution to fine particulate matter (smaller than 2.5 μm, PM2.5) in Sao Paulo. The experiments were performed in two tunnels: Janio Quadros (TJQ) where 99 % of the vehicles are LDV, and Rodoanel Mario Covas (TRA) where up to 30 % of the fleet was HDV. The PM2.5 samples were collected on quartz filters in May and July 2011 at TJQ and TRA, respectively, using two samplers operating in parallel. The samples were analyzed by Thermal-Desorption Proton-Transfer-Reaction Mass-Spectrometry (TD-PTR-MS), and by Thermal-Optical Transmittance (TOT). The organic aerosol (OA) desorbed at TD-PTR-MS represented around 30 % of the OA estimated by the TOT method, mainly due to the different desorption temperatures, with a maximum of 870 and 350 °C for TOT and TD-PTR-MS, respectively. Average emission factors (EF) organic aerosol (OA) and organic carbon (OC) were calculated for HDV and LDV fleet. We found that HDV emitted more OA and OC than LDV, and that OC emissions represented 36 and 43 % of total PM2.5 emissions from LDV and HDV, respectively. More than 700 ions were identified by TD-PTR-MS and the EF profiles obtained from HDV and LDV exhibited distinct features. Nitrogen-containing compounds measured in the desorbed material up to 350 °C contributed around 20 % to the EF values for both types of vehicles, possibly associated with incomplete fuel burning. Additionally, 70 % of the organic compounds measured from the aerosol

  2. Atmospheric mixing ratios of methyl ethyl ketone (2-butanone) in tropical, boreal, temperate and marine environments

    Science.gov (United States)

    Yáñez-Serrano, A. M.; Nölscher, A. C.; Bourtsoukidis, E.; Derstroff, B.; Zannoni, N.; Gros, V.; Lanza, M.; Brito, J.; Noe, S. M.; House, E.; Hewitt, C. N.; Langford, B.; Nemitz, E.; Behrendt, T.; Williams, J.; Artaxo, P.; Andreae, M. O.; Kesselmeier, J.

    2016-09-01

    Methyl ethyl ketone (MEK) enters the atmosphere following direct emission from vegetation and anthropogenic activities, as well as being produced by the gas-phase oxidation of volatile organic compounds (VOCs) such as n-butane. This study presents the first overview of ambient MEK measurements at six different locations, characteristic of forested, urban and marine environments. In order to understand better the occurrence and behaviour of MEK in the atmosphere, we analyse diel cycles of MEK mixing ratios, vertical profiles, ecosystem flux data, and HYSPLIT back trajectories, and compare with co-measured VOCs. MEK measurements were primarily conducted with proton-transfer-reaction mass spectrometer (PTR-MS) instruments. Results from the sites under biogenic influence demonstrate that vegetation is an important source of MEK. The diel cycle of MEK follows that of ambient temperature and the forest structure plays an important role in air mixing. At such sites, a high correlation of MEK with acetone was observed (e.g. r2 = 0.96 for the SMEAR Estonia site in a remote hemiboreal forest in Tartumaa, Estonia, and r2 = 0.89 at the ATTO pristine tropical rainforest site in central Amazonia). Under polluted conditions, we observed strongly enhanced MEK mixing ratios. Overall, the MEK mixing ratios and flux data presented here indicate that both biogenic and anthropogenic sources contribute to its occurrence in the global atmosphere.

  3. Source Attribution of Methane Emissions in Northeastern Colorado Using Ammonia to Methane Emission Ratios

    Science.gov (United States)

    Eilerman, S. J.; Neuman, J. A.; Peischl, J.; Aikin, K. C.; Ryerson, T. B.; Perring, A. E.; Robinson, E. S.; Holloway, M.; Trainer, M.

    2015-12-01

    Due to recent advances in extraction technology, oil and natural gas extraction and processing in the Denver-Julesburg basin has increased substantially in the past decade. Northeastern Colorado is also home to over 250 concentrated animal feeding operations (CAFOs), capable of hosting over 2 million head of ruminant livestock (cattle and sheep). Because of methane's high Global Warming Potential, quantification and attribution of methane emissions from oil and gas development and agricultural activity are important for guiding greenhouse gas emission policy. However, due to the co-location of these different sources, top-down measurements of methane are often unable to attribute emissions to a specific source or sector. In this work, we evaluate the ammonia:methane emission ratio directly downwind of CAFOs using a mobile laboratory. Several CAFOs were chosen for periodic study over a 12-month period to identify diurnal and seasonal variation in the emission ratio as well as differences due to livestock type. Using this knowledge of the agricultural ammonia:methane emission ratio, aircraft measurements of ammonia and methane over oil and gas basins in the western US during the Shale Oil and Natural Gas Nexus (SONGNEX) field campaign in March and April 2015 can be used for source attribution of methane emissions.

  4. On-Road Measurement of Vehichle VOC Emission Measurements During the 2003 Mexico City Metropolitan Area Field Campaign

    Science.gov (United States)

    Knighton, W. B.; Rogers, T.; Grimsrud, E.; Herndon, S.; Allwine, E.; Lamb, B.; Velasco, E.; Westberg, H.

    2004-12-01

    In the spring of 2003 (April 1-May 5), a multinational team of experts conducted an intensive, five-week field campaign in the Mexico City Metropolitan Area (MCMA). The overall goal of this effort was to contribute to the understanding of the air quality problem in megacities. As part of the campaign the Aerodyne Mobile Laboratory was equipped with state-of-the-art analytical instruments and deployed for measuring a variety of vehicle emissions in real time including CO2, NO2, NH3, HCHO, VOC's and volatile (at 600 °C) aerosol. The on-road measurement of vehicle VOC emissions were performed using a commercial version of the IONICON PTR-MS modified to operate onboard the mobile lab platform. A summary of the PTR-MS results from these and supporting laboratory experiments will be presented and discussed. In particular, selected chase events will be presented to illustrate the utility of the PTR-MS technique for characterizing vehicle VOC emission profiles in real time. VOC emission profiles for different vehicle engine types which include gasoline, diesel and compressed natural gas will be discussed and compared to the measurements from other high time response instruments deployed on the Aerodyne mobile van.

  5. Volatile organic compound emissions from Miscanthus and short rotation coppice willow bioenergy crops

    Science.gov (United States)

    Copeland, Nichola; Cape, J. Neil; Heal, Mathew R.

    2012-12-01

    Miscanthus × giganteus and short rotation coppice (SRC) willow (Salix spp.) are increasingly important bioenergy crops. Above-canopy fluxes and mixing ratios of volatile organic compounds (VOCs) were measured in summer for the two crops at a site near Lincoln, UK, by proton transfer reaction mass spectrometry (PTR-MS) and virtual disjunct eddy covariance. The isoprene emission rate above willow peaked around midday at ˜1 mg m-2 h-1, equivalent to 20 μg gdw-1 h-1 normalised to 30 °C and 1000 μmol m-2 s-1 PAR, much greater than for conventional arable crops. Average midday peak isoprene mixing ratio was ˜1.4 ppbv. Acetone and acetic acid also showed small positive daytime fluxes. No measurable fluxes of VOCs were detected above the Miscanthus canopy. Differing isoprene emission rates between different bioenergy crops, and the crops or vegetation cover they may replace, means the impact on regional air quality should be taken into consideration in bioenergy crop selection.

  6. Galaxy emission line classification using 3D line ratio diagrams

    CERN Document Server

    Vogt, Frédéric P A; Kewley, Lisa J; Sutherland, Ralph S; Scharwaechter, Julia; Basurah, Hassan M; Ali, Alaa; Amer, Morsi A

    2014-01-01

    Two-dimensional (2D) line ratio diagnostic diagrams have become a key tool in understanding the excitation mechanisms of galaxies. The curves used to separate the different regions - HII-like or else excited by an active galactic nucleus (AGN) - have been refined over time but the core technique has not evolved significantly. However, the classification of galaxies based on their emission line ratios really is a multi-dimensional problem. Here we exploit recent software developments to explore the potential of three-dimensional (3D) line ratio diagnostic diagrams. We introduce a specific set of 3D diagrams, the ZQE diagrams, which separate the oxygen abundance and the ionisation parameter of HII region-like spectra, and which also enable us to probe the excitation mechanism of the gas. By examining these new 3D spaces interactively, we define a new set of 2D diagnostics, the ZE diagnostics, which can provide the metallicity of objects excited by hot young stars, and which cleanly separate HII region-like obje...

  7. Detection of marine methane emissions with AVIRIS band ratios

    Science.gov (United States)

    Bradley, Eliza S.; Leifer, Ira; Roberts, Dar A.; Dennison, Philip E.; Washburn, Libe

    2011-05-01

    The relative source contributions of methane (CH4) have high uncertainty, creating a need for local-scale characterization in concert with global satellite measurements. However, efforts towards methane plume imaging have yet to provide convincing results for concentrated sources. Although atmospheric CH4 mapping did not motivate the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) design, recent studies suggest its potential for studying concentrated CH4 sources such as the Coal Oil Point (COP) seep field (˜0.015 Tg CH4 yr-1) offshore Santa Barbara, California. In this study, we developed a band ratio approach on high glint COP AVIRIS data and demonstrate the first successful local-scale remote sensing mapping of natural atmospheric CH4 plumes. Plume origins closely matched surface and sonar-derived seepage distributions, with plume characteristics consistent with wind advection. Imaging spectrometer data may also be useful for high spatial-resolution characterization of concentrated, globally-significant CH4 emissions from offshore platforms and cattle feedlots.

  8. Methyl chavicol: characterization of its biogenic emission rate, abundance, and oxidation products in the atmosphere

    Directory of Open Access Journals (Sweden)

    N. C. Bouvier-Brown

    2009-03-01

    Full Text Available We report measurements of ambient atmospheric mixing ratios for methyl chavicol and determine its biogenic emission rate. Methyl chavicol, a biogenic oxygenated aromatic compound, is abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol was detected simultaneously by three in-situ instruments – a gas chromatograph with mass spectrometer detector (GC-MS, a proton transfer reaction mass spectrometer (PTR-MS, and a thermal desorption aerosol GC-MS (TAG – and found to be abundant within and above Blodgett Forest. Methyl chavicol atmospheric mixing ratios are strongly correlated with 2-methyl-3-buten-2-ol (MBO, a light- and temperature-dependent biogenic emission from the ponderosa pine trees at Blodgett Forest. Scaling from this correlation, methyl chavicol emissions account for 4–68% of the carbon mass emitted as MBO in the daytime, depending on the season. From this relationship, we estimate a daytime basal emission rate of 0.72–10.2 μgCg−1 h−1, depending on needle age and seasonality. We also present the first observations of its oxidation products (4-methoxybenzaldehyde and 4-methyoxy benzene acetaldehyde in the ambient atmosphere. Methyl chavicol is a major essential oil component of many plant species. This work suggests that methyl chavicol plays a significant role in the atmospheric chemistry of Blodgett Forest, and potentially other sites, and should be included explicitly in both biogenic volatile organic carbon emission and atmospheric chemistry models.

  9. Methyl chavicol: characterization of its biogenic emission rate, abundance, and oxidation products in the atmosphere

    Directory of Open Access Journals (Sweden)

    N. C. Bouvier-Brown

    2008-11-01

    Full Text Available We report measurements of ambient atmospheric mixing ratios for methyl chavicol and determine its biogenic emission rate. Methyl chavicol, a biogenic oxygenated aromatic compound, is abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol was detected simultaneously by three in-situ instruments – a gas chromatograph with mass spectrometer detector (GC-MS, a proton transfer reaction mass spectrometer (PTR-MS, and a thermal desorption aerosol GC-MS (TAG – and found to be abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol atmospheric mixing ratios are strongly correlated with 2-methyl-3-buten-2-ol (MBO, a light- and temperature-dependent biogenic emission from the ponderosa pine trees at Blodgett Forest. Scaling from this correlation, methyl chavicol emissions account for 4–68% of the carbon mass emitted as MBO in the daytime, depending on the season. From this relationship, we estimate a daytime basal emission rate of 0.72–10.2 μgCg−1h−1, depending on needle age and seasonality. We also present the first observations of its oxidation products (4-methoxybenzaldehyde and 4-methyoxy benzene acetaldehyde in the ambient atmosphere. Methyl chavicol is a major essential oil component of many plant species. This work suggests that methyl chavicol plays a significant role in the atmospheric chemistry of Blodgett Forest, and potentially other sites, and should be included explicitly in both biogenic volatile organic carbon emission and atmospheric chemistry models.

  10. Analysis of Air Toxics From NOAA WP-3 Aircraft Measurements During the TexAQS 2006 Campaign: Comparison With Emission Inventories and Additive Inhalation Risk Factors

    Science.gov (United States)

    Del Negro, L. A.; Warneke, C.; de Gouw, J. A.; Atlas, E.; Lueb, R.; Zhu, X.; Pope, L.; Schauffler, S.; Hendershot, R.; Washenfelder, R.; Fried, A.; Richter, D.; Walega, J. G.; Weibring, P.

    2007-12-01

    Benzene and nine other air toxics classified as human carcinogens by the International Agency for Research on Cancer (IARC) were measured from the NOAA WP-3 aircraft during the TexAQS 2006 campaign. In-situ measurements of benzene, measured with a PTR-MS instrument, are used to estimate emission fluxes for comparison with point source emission inventories developed by the Texas Commission on Environmental Quality. Mean and median mixing ratios for benzene, acetaldehyde, formaldehyde, 1,3-butadiene, carbon tetrachloride, chloroform, 1,2-dichloroethane, dibromoethane, dichloromethane, and vinyl chloride, encountered over the city of Houston during the campaign, are combined with inhalation unit risk factor values developed by the California Environmental Protection Agency and the United States Environmental Protection Agency to estimate the additive inhalation risk factor. This additive risk factor represents the risk associated with lifetime (70 year) exposure at the levels measured and should not be used as an absolute indicator of risk to individuals. However, the results are useful for assessments of changing relative risk over time, and for identifying dominant contributions to the overall air toxic risk.

  11. On-road measurements of vehicle NO2/NOx emission ratios in Denver, Colorado, USA

    Science.gov (United States)

    Wild, Robert J.; Dubé, William P.; Aikin, Kenneth C.; Eilerman, Scott J.; Neuman, J. Andrew; Peischl, Jeff; Ryerson, Thomas B.; Brown, Steven S.

    2017-01-01

    Nitrogen oxides (NOx = NO + NO2) emitted by on-road combustion engines are important contributors to tropospheric ozone production. The NOx fraction emitted as nitrogen dioxide (NO2) is usually presumed to be small but can affect ozone production and distribution, and this fraction is generally not reported in emissions inventories. We have developed an accurate method for determination of this primary NO2 emission and demonstrated it during measurement of on-road vehicle emission plumes from a mobile laboratory during July and August 2014 in the region between Denver and Greeley in Colorado. During a total of approximately 90 h of sampling from an instrumented mobile laboratory, we identified 1867 vehicle emission plumes, which were extracted using an algorithm that looks for rapid and large increases in measured NOx. We find a distribution of NO2/NOx emissions similar to a log-normal profile, with an average emission ratio of 0.053 ± 0.002 per sampled NOx plume. The average is not weighted by the total NOx emissions from sampled vehicles, which is not measured here, and so may not represent the NO2/NOx ratio of the total NOx emission if this ratio is a function of NOx itself. Although our current data set does not distinguish between different engine types (e.g., gasoline, light duty diesel and heavy duty diesel), the ratio is on the low end of recent reports of vehicle fleet NO2 to NOx emission ratios in Europe.

  12. The tropical forest and fire emissions experiment: laboratory fire measurements and synthesis of campaign data

    Directory of Open Access Journals (Sweden)

    R. J. Yokelson

    2008-03-01

    Full Text Available As part of the Tropical Forest and Fire Emissions Experiment (TROFFEE, tropical forest fuels were burned in a large, biomass-fire simulation facility and the smoke was characterized with open-path Fourier transform infrared spectroscopy (FTIR, proton-transfer reaction mass spectrometry (PTR-MS, gas chromatography (GC, GC/PTR-MS, and filter sampling of the particles. In most cases, about one-third of the fuel chlorine ended up in the particles and about one-half remained in the ash. About 50% of the mass of non-methane organic compounds (NMOC emitted by these fires could be identified with the available instrumentation. The lab fire emission factors (EF, g compound emitted per kg fuel burned were coupled with EF obtained during the TROFFEE airborne and ground-based field campaigns. This revealed several types of EF dependence on parameters such as the ratio of flaming to smoldering combustion and fuel characteristics. The synthesis of data from the different TROFFEE platforms was also used to derive EF for all the measured species for both primary deforestation fires and pasture maintenance fires – the two main types of biomass burning in the Amazon. Many of the EF are larger than those in widely-used earlier work. This is mostly due to the inclusion of newly-available, large EF for the initially-unlofted smoldering emissions and the assumption that these emissions make a significant contribution (~40% to the total emissions from pasture fires. The TROFFEE EF for particles with aerodynamic diameter <2.5 microns (EFPM2.5 is 14.8 g/kg for primary deforestation fires and 18.7 g/kg for pasture maintenance fires. These EFPM2.5 are significantly larger than a previous recommendation (9.1 g/kg and lead to an estimated pyrogenic primary PM2.5 source for the Amazon that is 84% larger. Regional through global budgets for biogenic and pyrogenic emissions were roughly estimated. Coupled with previous measurements of

  13. The tropical forest and fire emissions experiment: laboratory fire measurements and synthesis of campaign data

    Directory of Open Access Journals (Sweden)

    R. J. Yokelson

    2008-07-01

    Full Text Available As part of the Tropical Forest and Fire Emissions Experiment (TROFFEE, tropical forest fuels were burned in a large, biomass-fire simulation facility and the smoke was characterized with open-path Fourier transform infrared spectroscopy (FTIR, proton-transfer reaction mass spectrometry (PTR-MS, gas chromatography (GC, GC/PTR-MS, and filter sampling of the particles. In most cases, about one-third of the fuel chlorine ended up in the particles and about one-half remained in the ash. About 50% of the mass of non-methane organic compounds (NMOC emitted by these fires could be identified with the available instrumentation. The lab fire emission factors (EF, g compound emitted per kg dry fuel burned were coupled with EF obtained during the TROFFEE airborne and ground-based field campaigns. This revealed several types of EF dependence on parameters such as the ratio of flaming to smoldering combustion and fuel characteristics. The synthesis of data from the different TROFFEE platforms was also used to derive EF for all the measured species for both primary deforestation fires and pasture maintenance fires – the two main types of biomass burning in the Amazon. Many of the EF are larger than those in widely-used earlier work. This is mostly due to the inclusion of newly-available, large EF for the initially-unlofted smoldering emissions from residual logs in pastures and the assumption that these emissions make a significant contribution (~40% to the total emissions from pasture fires. The TROFFEE EF for particles with aerodynamic diameter <2.5 microns (EFPM2.5 is 14.8 g/kg for primary deforestation fires and 18.7 g/kg for pasture maintenance fires. These EFPM2.5 are significantly larger than a previous recommendation (9.1 g/kg and lead to an estimated pyrogenic primary PM2.5 source for the Amazon that is 84% larger. New regional budgets for biogenic and pyrogenic emissions were roughly estimated. Coupled with an

  14. MEMS acoustic emission transducers designed with high aspect ratio geometry

    Science.gov (United States)

    Saboonchi, H.; Ozevin, D.

    2013-09-01

    In this paper, micro-electro-mechanic systems (MEMS) acoustic emission (AE) transducers are manufactured using an electroplating technique. The transducers use a capacitance change as their transduction principle, and are tuned to the range 50-200 kHz. Through the electroplating technique, a thick metal layer (20 μm nickel + 0.5 μm gold) is used to form a freely moving microstructure layer. The presence of the gold layer reduces the potential corrosion of the nickel layer. A dielectric layer is deposited between the two electrodes, thus preventing the stiction phenomenon. The transducers have a measured quality factor in the range 15-30 at atmospheric pressure and are functional without vacuum packaging. The transducers are characterized using electrical and mechanical tests to identify the capacitance, resonance frequency and damping. Ultrasonic wave generation using a Q-switched laser shows the directivity of the transducer sensitivity. The comparison of the MEMS transducers with similar frequency piezoelectric transducers shows that the MEMS AE transducers have better response characteristics and sensitivity at the resonance frequency and well-defined waveform signatures (rise time and decay time) due to pure resonance behavior in the out-of-plane direction. The transducers are sensitive to a unique wave direction, which can be utilized to increase the accuracy of source localization by selecting the correct wave velocity at the structures.

  15. Evaluating the effectiveness of joint emission control policies on the reduction of ambient VOCs: Implications from observation during the 2014 APEC summit in suburban Beijing

    Science.gov (United States)

    Li, Kun; Li, Junling; Wang, Weigang; Tong, Shengrui; Liggio, John; Ge, Maofa

    2017-09-01

    Ambient volatile organic compounds (VOCs) at a suburban Beijing site were on-line detected using proton transfer reaction-mass spectrometry (PTR-MS) during autumn of 2014, near the location of the Asia-Pacific Economic Cooperation (APEC) summit. During the APEC summit, the Chinese government enacted strict emission control policies. It was found that VOC concentrations only slightly decreased during the first emission control period (EC I), when control policies were performed in Beijing and 5 cities along the Tai-hang Mountains. However, most of the VOCs (10 out of 12 non-biogenic species) significantly decreased (more than 40%) during the second emission control period (EC II), when control policies were carried out in 16 cities including Beijing, Tianjin, 8 cities of Hebei province and 6 cities of Shandong province. Also the ratio of toluene and benzene decreased during EC II, likely because the emission control policies changed the proportions of different anthropogenic sources. Using the positive matrix factorization (PMF) source apportionment method, five factors are analyzed: (1) vehicle + fuel, (2) solvent, (3) biomass burning, (4) secondary, and (5) background + long-lived. Among them, vehicle + fuel, solvent and biomass burning contribute most of the VOCs concentrations (60%-80%) during the polluted periods and are affected most by emission control policies. During EC II, the reductions of vehicle + fuel, solvent, biomass burning and secondary species were all no less than 50%. Overall, when emission control policies were carried out in many North China Plain (NCP) cities (i.e. EC II), the VOC concentrations of suburban Beijing markedly decreased. This indicates the cross-regional joint-control policies have a large influence on reductions of organic gas species. The findings of this study have vital implications for helping formulate effective emission control policies in China and other countries.

  16. VOC emissions, evolutions and contributions to SOA formation at a receptor site in Eastern China

    Directory of Open Access Journals (Sweden)

    B. Yuan

    2013-03-01

    Full Text Available Volatile organic compounds (VOCs were measured by two online instruments (GC-FID/MS and PTR-MS at a receptor site on Changdao Island (37.99° N, 120.70° E in eastern China. Reaction with OH radical dominated the chemical loss of most VOC species during the Changdao campaign. A photochemical age based parameterization method is used to calculate VOC emission ratios and to quantify the evolution of ambient VOCs. The calculated emission ratios of most hydrocarbons agree well with those obtained from emission inventory, but the emission ratios of oxygenated VOCs (OVOCs are significantly lower than those from emission inventory. The photochemical age based parameterization method is also used to investigate primary emissions and secondary formation of organic aerosol. The primary emission ratio of OA to CO are determined to be 14.9 μg m−3 ppm−1 and SOA are produced at an enhancement ratio of 18.8 μg m−3 ppm−1 to CO after 50 h of photochemical processing in the atmosphere. SOA formation is significantly higher than the level determined from VOC oxidation under both high-NOx (2.0 μg m−3 ppm−1 CO and low-NOx condition (6.5 μg m−3 ppm−1 CO. Polycyclic aromatic hydrocarbons (PAHs and higher alkanes (>C10 account for as high as 17.4% of SOA formation, which suggests semi-volatile organic compounds (SVOCs may be a large contributor to SOA formation during the Changdao campaign. SOA formation potential of primary VOC emissions determined from both field campaigns and emission inventory in China are lower than the measured SOA levels reported in Beijing and Pearl River Delta (PRD, indicating SOA formation cannot be explained by VOC oxidation in this regions. SOA budget in China is estimated to be 5.0–13.7 Tg yr−1, with a fraction of at least 2.7 Tg yr−1 from anthropogenic emissions, which are much higher than the previous estimates from regional models.

  17. BAT AGN Spectroscopic Survey - III. An observed link between AGN Eddington ratio and narrow-emission-line ratios

    Science.gov (United States)

    Oh, Kyuseok; Schawinski, Kevin; Koss, Michael; Trakhtenbrot, Benny; Lamperti, Isabella; Ricci, Claudio; Mushotzky, Richard; Veilleux, Sylvain; Berney, Simon; Crenshaw, D. Michael; Gehrels, Neil; Harrison, Fiona; Masetti, Nicola; Soto, Kurt T.; Stern, Daniel; Treister, Ezequiel; Ueda, Yoshihiro

    2017-01-01

    We investigate the observed relationship between black hole mass (MBH), bolometric luminosity (Lbol) and Eddington ratio (λEdd) with optical emission-line ratios ([N II] λ6583/Hα, [S II] λλ6716, 6731/Hα, [O I] λ6300/Hα, [O III] λ5007/Hβ, [Ne III] λ3869/Hβ and He II λ4686/Hβ) of hard X-ray-selected active galactic nuclei (AGN) from the BAT AGN Spectroscopic Survey. We show that the [N II] λ6583/Hα ratio exhibits a significant correlation with λEdd (RPear = -0.44, p-value = 3 × 10-13, σ = 0.28 dex), and the correlation is not solely driven by MBH or Lbol. The observed correlation between [N II] λ6583/Hα ratio and MBH is stronger than the correlation with Lbol, but both are weaker than the λEdd correlation. This implies that the large-scale narrow lines of AGN host galaxies carry information about the accretion state of the AGN central engine. We propose that [N II] λ6583/Hα is a useful indicator of Eddington ratio with 0.6 dex of rms scatter, and that it can be used to measure λEdd and thus MBH from the measured Lbol, even for high-redshift obscured AGN. We briefly discuss possible physical mechanisms behind this correlation, such as the mass-metallicity relation, X-ray heating, and radiatively driven outflows.

  18. BAT AGN Spectroscopic Survey-III. An observed link between AGN Eddington ratio and narrow emission line ratios

    CERN Document Server

    Oh, Kyuseok; Koss, Michael; Trakhtenbrot, Benny; Lamperti, Isabella; Ricci, Claudio; Mushotzky, Richard; Veilleux, Sylvain; Berney, Simon; Crenshaw, D Michael; Gehrels, Neil; Harrison, Fiona; Masetti, Nicola; Soto, Kurt T; Stern, Daniel; Treister, Ezequiel; Ueda, Yoshihiro

    2016-01-01

    We investigate the observed relationship between black hole mass ($M_{\\rm BH}$), bolometric luminosity ($L_{\\rm bol}$), and Eddington ratio (${\\lambda}_{\\rm Edd}$) with optical emission line ratios ([NII] {\\lambda}6583/H{\\alpha}, [SII] {\\lambda}{\\lambda}6716,6731/H{\\alpha}, [OI] {\\lambda}6300/H{\\alpha}, [OIII] {\\lambda}5007/H{\\beta}, [NeIII] {\\lambda}3869/H{\\beta}, and HeII {\\lambda}4686/H{\\beta}) of hard X-ray-selected AGN from the BAT AGN Spectroscopic Survey (BASS). We show that the [NII] {\\lambda}6583/H{\\alpha} ratio exhibits a significant correlation with ${\\lambda}_{\\rm Edd}$ ($R_{\\rm Pear}$ = -0.44, $p$-value=$3\\times10^{-13}$, {\\sigma} = 0.28 dex), and the correlation is not solely driven by $M_{\\rm BH}$ or $L_{\\rm bol}$. The observed correlation between [NII] {\\lambda}6583/H{\\alpha} ratio and $M_{\\rm BH}$ is stronger than the correlation with $L_{\\rm bol}$, but both are weaker than the ${\\lambda}_{\\rm Edd}$ correlation. This implies that the large-scale narrow lines of AGN host galaxies carry informa...

  19. Ratio of the Core to the Extended Emissions in the Comoving Frame for Blazars

    Indian Academy of Sciences (India)

    Yun-Tian Li; Shao-Yu Fu; Huan-Jian Feng; Si-Le He; Chao Lin; Jun-Hui Fan; Denise Costantin; Yu-Tao Zhang

    2017-06-01

    In a two-component jet model, the emissions are the sum of the core and extended emissions: $S^{\\mathrm{ob}}=S_{\\mathrm{core}}^{\\mathrm{ob}}+S_{\\mathrm{ext}}^{\\mathrm{ob}}$, with the core emissions, $S_{\\mathrm{core}}^{\\mathrm{ob}}= f S_{\\mathrm{ext}}^{\\mathrm{ob}}\\delta ^{q}$ being a function of the Doppler factor $\\delta$, the extended emission $S_{\\mathrm{ext}}^{\\mathrm{ob}}$, the jet type dependent factor q, and the ratio of the core to the extended emissions in the comoving frame, f. The f is an unobservable but important parameter. Following our previous work, we collect 65 blazars with available Doppler factor $\\delta$, superluminal velocity $\\beta _{\\mathrm{app}}$, and core-dominance parameter, R, and calculated the ratio, f, and performed statistical analyses. We found that the ratio, f, in BL Lacs is on average larger than that in FSRQs. We suggest that the difference of the ratio f between FSRQs and BL Lacs is one of the possible reasons that cause the difference of other observed properties between them. We also find some significant correlations between $\\log f$ and other parameters, including intrinsic (de-beamed) peak frequency, $\\log \

  20. Brick Kiln Emissions Quantified with the Aerodyne Mobile Laboratory During the Short Lived Climate Forcing (SLCF) 2013 Campaign in Guanajuato Mexico

    Science.gov (United States)

    Fortner, E.; Knighton, W. B.; Herndon, S.; Roscioli, J. R.; Zavala, M.; Onasch, T. B.; Jayne, J. T.; Worsnop, D. R.; Kolb, C. E.; Molina, L. T.

    2013-12-01

    Brick kiln emissions are suspected to be a major source of atmospheric black carbon (BC) in developing countries; and black carbon's role as a short lived climate forcing (SLCF) pollutant is widely recognized. The SLCF-Mexico brick kiln study was conducted from 12-17 March 2013 in Mexico's Guanajuato state. Three different types of brick kilns were investigated (MK2, traditional, and traditional three tier) providing data on the effects of different kiln designs on particle and gas phase emissions. The BC and gaseous combustion emissions from these kilns were measured during both the fire stage and the subsequent smoldering stage with real-time instruments deployed on the Aerodyne Mobile Laboratory, and quantified utilizing flux tracer gases released adjacent to the brick kiln. This method allows examination of the brick kiln plume's evolution as it transits downwind from the source. Particulate measurements conducted by the mobile laboratory included the multi angle absorption photometer (MAAP) to measure black carbon mass, cavity attenuated phase shift (CAPSext) monitor to measure extinction and soot particle aerosol mass spectrometer (SP-AMS) measurements of black carbon. The SP-AMS instrument combines the ability to measure black carbon with the ability to determine the chemical composition of the other particulate matter (PM) components associated with black carbon particles. The variance of PM chemical composition will be examined as a function of burning stage and kiln type and compared to other black carbon PM sources. Gas phase exhaust species measured included CO, CO2, NOx, SO2, CH4, C2H6, as well as a variety of VOCs (acetonitrile, benzene etc.) measured with a PTR-MS instrument. All of these measurements will be examined to construct emission ratios evaluating how these vary with different kiln types and different firing conditions. The evolution of particulate matter and gas phase species as they transit away from the source will also be examined.

  1. Effects of different mixing ratios on emissions from passenger cars fueled with methanol/gasoline blends.

    Science.gov (United States)

    Zhao, Hong; Ge, Yunshan; Tan, Jianwei; Yin, Hang; Guo, Jiadong; Zhao, Wei; Dai, Peipei

    2011-01-01

    Regulated and unregulated emissions from four passenger cars fueled with methanol/gasoline blends at different mixing ratios (M15, M20, M30, M50, M85 and M100) were tested over the New European Driving Cycle (NEDC). Volatile organic compounds (VOCs) were sampled by Tenax TA and analyzed by thermal desorption-gas chromatograph/mass spectrometer (TD-GC/MS). Carbonyls were trapped on dinitrophenylhydrazine (DNPH) cartridges and analyzed by high performance liquid chromatography (HPLC). The results showed that total emissions of VOCs and BTEX (benzene, toluene, ethylbenzene, p, m, o-xylene) from all vehicles fueled with methanol/gasoline blends were lower than those from vehicles fueled with only gasoline. Compared to the baseline, the use of M85 decreased BTEX emissions by 97.4%, while the use of M15 decreased it by 19.7%. At low-to-middle mixing ratios (M15, M20, M30 and M50), formaldehyde emissions showed a slight increase while those of high mixing ratios (M85 and M100) were three times compared with the baseline gasoline only. When the vehicles were retrofitted with new three-way catalytic converters (TWC), emissions of carbon monoxide (CO), total hydrocarbon (THC), and nitrogen oxides (NO(x)) were decreased by 24%-50%, 10%-35%, and 24%-58% respectively, compared with the cars using the original equipment manufacture (OEM) TWC. Using the new TWC, emissions of formaldehyde and BTEX were decreased, while those of other carbonyl increased. It is necessary that vehicles fueled with methanol/gasoline blends be retrofitted with a new TWC. In addition, the specific reactivity of emissions of vehicles fueled with M15 and retrofitted with the new TWC was reduced from 4.51 to 4.08 compared to the baseline vehicle. This indicates that the use of methanol/gasoline blend at a low mixing ratio may have lower effect on environment than gasoline.

  2. Volatile Organic Compound (VOC) Emissions from Dairy Cows and Their Waste

    Science.gov (United States)

    Shaw, S.; Holzinger, R.; Mitloehner, F.; Goldstein, A.

    2005-12-01

    Biogenic VOCs are typically defined as those directly emitted from plants, but approximately 6% of global net primary production is consumed by cattle that carry out enteric fermentation and then emit VOCs that could also be considered biogenic. Current regulatory estimates suggest that dairy cattle in central California emit VOCs at rates comparable to those from passenger vehicles in the region, and thus contribute significantly to the extreme non-attainment of ozone standards there. We report PTR-MS measurements of ammonia and VOCs, and cavity-enhanced-absorption gas analyzer (Los Gatos Research, Inc.) measurements of CH4, emitted from dairy cattle in various stages of pregnancy/lactation and their waste. Experiments were conducted in chambers at UC Davis that simulate freestall cow housing conditions. CH4 fluxes ranged from 125-374 lb/cow/year. The compounds with the highest fluxes from '3 cows+waste' treatments were: ammonia (1-18), methanol (0-2.3), acetone+propanal (0.2-0.7), dimethylsulfide (0-0.4), and mass 109 (likely ID = p-cresol; 0-0.3) in lb/cow/year. Mass 60 (likely ID = trimethylamine) and acetic acid were also abundant. There were 10s of additional compounds with detectable, but small, emissions. A few compounds that were likely emitted (i.e. ethanol, formaldehyde, and dimethylamine) were not quantified by the PTR-MS. The total flux for all measured organic gases (TOG = CH4 + PTR-MS VOCs(including acetone+propanal)) averaged 246±45 lb/cow/year for '3 cows+waste' treatments, and was dominated by methane (>98%). TOG flux for 'waste only' treatments averaged 1.1±0.1 lb/cow/year, and was instead dominated by VOC (>84%). The PTR-MS VOCs as a percent of TOG (0.6±0.2%) emitted from '3 cows+waste' treatments in chamber conditions was a factor of 10 smaller than that currently estimated by the California Air Resources Board. In addition, the ozone forming potentials of the most abundant VOCs are only about 10% those of typical combustion or plant

  3. The extended narrow line region of NGC 4151. I. Emission line ratios and their implications

    OpenAIRE

    Penston, M. V.; Robinson, A.; Alloin, D.; Appenzeller, I.; Aretxaga, I.; Axon, D.J.; Baribaud, T.; Barthel, P.; Baum, S. A.; Boisson, C.; de Bruyn, A. G.; Clavel, J.; Colina, L.; Dennefeld, M.; Angeles I. Díaz

    1990-01-01

    This is an electronic version of an article published in Astronomy and Astrophysics. Penston, M.V. et al. The extended narrow line region of NGC 4151. I. Emission line ratios and their implications. Astronomy and Astrophysics 236 (1990): 53-62

  4. Enhanced formation of secondary air pollutants and aggravation of urban smog due to crop residue burning emissions in North India

    Science.gov (United States)

    Sarkar, Chinmoy; Kumar, Vinod; Sinha, Vinayak

    2013-04-01

    Biomass burning causes intense perturbations to regional atmospheric chemistry and air quality and is a significant global source of reactive pollutants to the atmosphere (Andreae and Merlet, 2001). In November 2012, large areas in North India including New Delhi experienced several weeks of aggravated smog and poor air quality due to the impact of crop residue burning, which is a biannual post harvest activity that occurs during Oct-Nov and April-May every year in the agricultural belts of North western India. In-situ high temporal resolution (1 measurement every minute) measurements of a suite of volatile organic compounds measured using proton transfer reaction mass spectrometry (PTR-MS) such as acetonitrile (biomass burning tracer) and aromatic hydrocarbons were performed simultaneously with carbon monoxide, nitrogen oxides, ozone and aerosol mass concentrations (PM 2.5 and PM 10) at a suburban site (30.667°N, 76.729°E and 310 m asl), impacted by air masses that had passed over the burning fields less than 72 hours ago. By using data from the same season but before the post harvest crop residue burning activity had commenced, we were able to quantify enhancements in ambient levels of the measured species due to the crop residue burning activity. When air masses influenced by the fire emissions reached the measurement site, peak values of about 8 ppbV acetonitrile, 4 ppmV CO, 100 ppbV NOx , 30 ppbV toluene and 15 ppbV benzene were observed which represented a factor of 2-5 increase over their ambient levels in the non-fire influenced period. Emission ratios of aromatic hydrocarbons/CO also showed a marked increase. Non fire event (N.F. E.) influenced and fire event (F.E.) influenced air masses had the following emission ratio enhancements: benzene/CO (N.F.E = 3; F.E. = 5), toluene/CO (N.F.E = 4; F.E. = 8.7) and sum of C8 aromatics/CO (N.F.E = 4; F.E. = 7.3) and sum of C9 aromatics/CO (N.F.E = 2.6; F.E. = 3.4). The OH reactivity of air masses which has strong

  5. Theoretical quasar emission-line ratios. VII - Energy-balance models for finite hydrogen slabs

    Science.gov (United States)

    Hubbard, E. N.; Puetter, R. C.

    1985-01-01

    The present energy balance calculations for finite, isobaric, hydrogen-slab quasar emission line clouds incorporate probabilistic radiative transfer (RT) in all lines and bound-free continua of a five-level continuum model hydrogen atom. Attention is given to the line ratios, line formation regions, level populations and model applicability results obtained. H lines and a variety of other considerations suggest the possibility of emission line cloud densities in excess of 10 to the 10th/cu cm. Lyman-beta/Lyman-alpha line ratios that are in agreement with observed values are obtained by the models. The observed Lyman/Balmer ratios can be achieved with clouds whose column depths are about 10 to the 22nd/sq cm.

  6. The Impact of Diffuse Ionized Gas on Emission-line Ratios and Gas Metallicity Measurements

    Science.gov (United States)

    Zhang, Kai; Yan, Renbin; MaNGA Team

    2016-01-01

    Diffuse Ionized Gas (DIG) is prevalent in star-forming galaxies. Using a sample of galaxies observed by MaNGA, we demonstrate how DIG in star-forming galaxies impact the measurements of emission line ratios, hence the gas-phase metallicity measurements and the interpretation of diagnostic diagrams. We demonstrate that emission line surface brightness (SB) is a reasonably good proxy to separate HII regions from regions dominated by diffuse ionized gas. For spatially-adjacent regions or regions at the same radius, many line ratios change systematically with emission line surface brightness, reflecting a gradual increase of dominance by DIG towards low SB. DIG could significantly bias the measurement of gas metallicity and metallicity gradient. Because DIG tend to have a higher temperature than HII regions, at fixed metallicity DIG displays lower [NII]/[OII] ratios. DIG also show lower [OIII]/[OII] ratios than HII regions, due to extended partially-ionized regions that enhance all low-ionization lines ([NII], [SII], [OII], [OI]). The contamination by DIG is responsible for a substantial portion of the scatter in metallicity measurements. At different surface brightness, line ratios and line ratio gradients can differ systematically. As DIG fraction could change with radius, it can affect the metallicity gradient measurements in systematic ways. The three commonly used strong-line metallicity indicators, R23, [NII]/[OII], O3N2, are all affected in different ways. To make robust metallicity gradient measurements, one has to properly isolate HII regions and correct for DIG contamination. In line ratio diagnostic diagrams, contamination by DIG moves HII regions towards composite or LINER-like regions.

  7. Observations of volatile organic compounds during ARCTAS – Part 1: Biomass burning emissions and plume enhancements

    Directory of Open Access Journals (Sweden)

    A. Hills

    2011-05-01

    Full Text Available Mixing ratios of a large number of volatile organic compounds (VOCs were observed by the Trace Organic Gas Analyzer (TOGA on board the NASA DC-8 as part of the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS field campaign. Many of these VOCs were observed concurrently by one or both of two other VOC measurement techniques on board the DC-8: proton-transfer-reaction mass spectrometry (PTR-MS and whole air canister sampling (WAS. A comparison of these measurements to the data from TOGA indicates good agreement for the majority of co-measured VOCs. The ARCTAS study, which included both spring and summer deployments, provided opportunities to sample a large number of biomass burning (BB plumes with origins in Asia, California and Central Canada, ranging from very recent emissions to plumes aged one week or more. For this analysis, identified BB plumes were grouped by flight, source region and, in some cases, time of day, generating 40 individual plume groups, each consisting of one or more BB plume interceptions. Normalized excess mixing ratios (EMRs to CO were determined for each of the 40 plume groups for up to 19 different VOCs or VOC groups, many of which show significant variability, even within relatively fresh plumes. This variability demonstrates the importance of assessing BB plumes both regionally and temporally, as emissions can vary from region to region, and even within a fire over time. Comparisons with literature confirm that variability of EMRs to CO over an order of magnitude for many VOCs is consistent with previous observations. However, this variability is often diluted in the literature when individual observations are averaged to generate an overall regional EMR from a particular study. Previous studies give the impression that emission ratios are generally consistent within a given region, and this is not necessarily the case, as our results show. For some VOCs, earlier assumptions

  8. Relating urban airborne particle concentrations to shipping using carbon based elemental emission ratios

    Science.gov (United States)

    Johnson, Graham R.; Juwono, Alamsyah M.; Friend, Adrian J.; Cheung, Hing-Cho; Stelcer, Eduard; Cohen, David; Ayoko, Godwin A.; Morawska, Lidia

    2014-10-01

    This study demonstrates a novel method for testing the hypothesis that variations in primary and secondary particle number concentration (PNC) in urban air are related to residual fuel oil combustion at a coastal port lying 30 km upwind, by examining the correlation between PNC and airborne particle composition signatures chosen for their sensitivity to the elemental contaminants present in residual fuel oil. Residual fuel oil combustion indicators were chosen by comparing the sensitivity of a range of concentration ratios to airborne emissions originating from the port. The most responsive were combinations of vanadium and sulphur concentration ([S], [V]) expressed as ratios with respect to black carbon concentration ([BC]). These correlated significantly with ship activity at the port and with the fraction of time during which the wind blew from the port. The average [V] when the wind was predominantly from the port was 0.52 ng m-3 (87%) higher than the average for all wind directions and 0.83 ng m-3 (280%) higher than that for the lowest vanadium yielding wind direction considered to approximate the natural background. Shipping was found to be the main source of V impacting urban air quality in Brisbane. However, contrary to the stated hypothesis, increases in PNC related measures did not correlate with ship emission indicators or ship traffic. Hence at this site ship emissions were not found to be a major contributor to PNC compared to other fossil fuel combustion sources such as road traffic, airport and refinery emissions.

  9. Line Emission from Radiation-Pressurized HII Regions I: Internal Structure and Line Ratios

    CERN Document Server

    Yeh, Sherry C C; Krumholz, Mark R; Matzner, Christopher D; Tielens, Alexander G G M

    2013-01-01

    The emission line ratios [OIII]5007/H-beta and [NII]6584/H-alpha have been adopted as an empirical way to distinguish between the fundamentally different mechanisms of ionization in emission-line galaxies. However, detailed interpretation of these diagnostics requires calculations of the internal structure of the emitting HII regions, and these calculations depend on the assumptions one makes about the relative importance of radiation pressure and stellar winds. In this paper we construct a grid of quasi-static HII region models to explore how choices about these parameters alter HII regions' emission line ratios. We find that, when radiation pressure is included in our models, HII regions reach a saturation point beyond which further increases in the luminosity of the driving stars does not produce any further increase in effective ionization parameter, and thus does not yield any further alteration in an HII region's line ratio. We also show that, if stellar winds are assumed to be strong, the maximum possi...

  10. Comparison of emission ratios from on-road sources using a mobile laboratory under various driving and operational sampling modes

    Directory of Open Access Journals (Sweden)

    M. Zavala

    2008-04-01

    Full Text Available Mobile sources produce a significant fraction of the total anthropogenic emissions burden in large cities and have harmful effects on air quality at multiple spatial scales. Mobile emissions are intrinsically difficult to estimate due to the large number of parameters affecting the emissions variability within and across vehicles types. The MCMA-2003 Campaign in Mexico City has showed the utility of using a mobile laboratory to sample and characterize specific classes of motor vehicles to better quantify their emissions characteristics as a function of their driving cycles. The technique clearly identifies "high emitter" vehicles via individual exhaust plumes, and also provides fleet average emission rates. We have applied this technique to Mexicali during the Border Ozone Reduction and Air Quality Improvement Program for the Mexicali-Imperial Valley in 2005. In this paper we analyze the variability of measured emission ratios for emitted NOx, CO, specific VOCs, NH3, and some primary fine particle components and properties obtained during the Border Ozone Reduction and Air Quality Improvement Program for the Mexicali-Imperial Valley in 2005 by deploying a mobile laboratory in roadside stationary sampling, chase and fleet average operational sampling modes. The measurements reflect various driving modes characteristic of the urban fleets. The observed variability for all measured gases and particle emission ratios is greater for the chase and roadside stationary sampling than for fleet average measurements. The fleet average sampling mode captured the effects of traffic conditions on the measured on-road emission ratios, allowing the use of fuel-based emission ratios to assess the validity of traditional "bottom-up" emissions inventories. Using the measured on-road emission ratios, we estimate CO and NOx mobile emissions of 175±62 and 10.4±1.3 metric tons/day, respectively, for the gasoline vehicle fleet in

  11. Real time measurement of transient event emissions of air toxics by tomographic remote sensing in tandem with mobile monitoring

    Science.gov (United States)

    Olaguer, Eduardo P.; Stutz, Jochen; Erickson, Matthew H.; Hurlock, Stephen C.; Cheung, Ross; Tsai, Catalina; Colosimo, Santo F.; Festa, James; Wijesinghe, Asanga; Neish, Bradley S.

    2017-02-01

    During the Benzene and other Toxics Exposure (BEE-TEX) study, a remote sensing network based on long path Differential Optical Absorption Spectroscopy (DOAS) was set up in the Manchester neighborhood beside the Ship Channel of Houston, Texas in order to perform Computer Aided Tomography (CAT) scans of hazardous air pollutants. On 18-19 February 2015, the CAT scan network detected large nocturnal plumes of toluene and xylenes most likely associated with railcar loading and unloading operations at Ship Channel petrochemical facilities. The presence of such plumes during railcar operations was confirmed by a mobile laboratory equipped with a Proton Transfer Reaction-Mass Spectrometer (PTR-MS), which measured transient peaks of toluene and C2-benzenes of 50 ppb and 57 ppb respectively around 4 a.m. LST on 19 February 2015. Plume reconstruction and source attribution were performed using the 4D variational data assimilation technique and a 3D micro-scale forward and adjoint air quality model based on both tomographic and PTR-MS data. Inverse model estimates of fugitive emissions associated with railcar transfer emissions ranged from 2.0 to 8.2 kg/hr for toluene and from 2.2 to 3.5 kg/hr for xylenes in the early morning of 19 February 2015.

  12. Hydroxyl (6−2 airglow emission intensity ratios for rotational temperature determination

    Directory of Open Access Journals (Sweden)

    R. P. Lowe

    Full Text Available OH(6–2 Q1/P1 and R1/P1 airglow emission intensity ratios, for rotational states up to j' = 4.5, are measured to be lower than implied by transition probabilities published by various authors including Mies, Langhoff et al. and Turnbull and Lowe. Experimentally determined relative values of j' transitions yield OH(6–2 rotational temperatures 2 K lower than Langhoff et al., 7 K lower than Mies and 13 K lower than Turnbull and Lowe.Key words: Atmospheric composition and structure (airglow and aurora; pressure, density and temperature

  13. The Neutron Emission Ratio Observer NERO at the National Superconducting Cyclotron Laboratory

    Science.gov (United States)

    Pereira, Jorge; Hosmer, Paul; Lorusso, Giuseppe; Santi, Peter; Del Santo, Marcelo; Herlitzius, Clemens; Kratz, Karl-Ludwig; Montes, Fernando; Schatz, Hendrik; Schertz, Florian; Schnorrenberger, Linda; Smith, Karl; Wiescher, Michael

    2009-10-01

    The new neutron counter NERO (Neutron Emission Ratio Observer) was built at the National Superconducting Cyclotron Laboratory (NSCL) for measuring Pn values of neutron-rich nuclei produced as fast fragmentation beams. The design was motivated by the requirement of being coupled to the NSCL beta counting system, so that β-decay particles and neutrons emitted from implanted nuclei can be measured simultaneously, while keeping a high efficiency. The detector's performance and main features will be discussed, as well as recent measurements done at NSCL for astrophysical studies of the r-process.

  14. FeII/MgII Emission Line Ratio in High Redshift Quasars

    DEFF Research Database (Denmark)

    Dietrich, M.; Hamann, F.; Appenzeller, I.

    2003-01-01

    We present results of the analysis of near infrared spectroscopic observations of 6 high-redshift quasars (z > 4), emphasizing the measurement of the ultraviolet FeII/MgII emission line strength in order to estimate the beginning of intense star formation in the early universe. To investigate...... the evolution of the FeII/MgII ratio over a wider range in cosmic time, we measured this ratio for composite quasar spectra which cover a redshift range of 0 4 quasars must have started already at an epoch corresponding to z_f = 6 to 9, when the age of the universe was ~0.5 Gyr (H_o = 72 km/s/Mpc, Omega_M = 0...

  15. Distortion product otoacoustic emission generation mechanisms and their dependence on stimulus level and primary frequency ratio.

    Science.gov (United States)

    Botti, Teresa; Sisto, Renata; Sanjust, Filippo; Moleti, Arturo; D'Amato, Luisa

    2016-02-01

    In this study, a systematic analysis of the dependence on stimulus level and primary frequency ratio r of the different components of human distortion product otoacoustic emissions has been performed, to check the validity of theoretical models of their generation, as regards the localization of the sources and the relative weight of distortion and reflection generation mechanisms. 2f1 - f2 and 2f2 - f1 distortion product otoacoustic emissions of 12 normal hearing ears from six human subjects have been measured at four different levels, in the range [35, 65] dB sound pressure level, at eight different ratios, in the range [1.1, 1.45]. Time-frequency filtering was used to separate distortion and reflection components. Numerical simulations have also been performed using an active nonlinear cochlear model. Both in the experiment and in the simulations, the behavior of the 2f1 - f2 distortion and reflection components was in agreement with previous measurements and with the predictions of the two-source model. The 2f2 - f1 response showed a rotating-phase component only, whose behavior was in general agreement with that predicted for a component generated and reflected within a region basal to the characteristic place of frequency 2f2 - f1, although alternative interpretations, which are also discussed, cannot be ruled out.

  16. Preliminary insights into the chemical composition and emissions of urban VOCs in the East Mediterranean

    Science.gov (United States)

    Sauvage, S.; Borbon, A.; Afif, C.; Bechara, J.; Leonardis, T.; Fronval, I.; Waked, A.; Brioude, J.; Locoge, N.

    2011-12-01

    The Mediterranean region is an area where polluted air masses coming from Eastern and Central Europe increase air pollution, particularly during stagnation periods, together with intense solar radiation. It was demonstrated that the eastern coast of the Mediterranean Sea suffers from this kind of phenomena. Favorable weather conditions, remote sources, high urban and biogenic emissions lead to the formation of secondary pollutants (ozone and secondary organic aerosols, SOA), which may have significant impacts on health and climate. However, data are sparse in this region. The ECOCEM (Emission and Chemistry of Organic Carbon in the East Mediterranean - Beirut) project aims to improve our understanding of air pollution in this area by studying the composition of the gaseous and particulate phases in Beirut (Lebanon). Beirut is located on the eastern border of the Mediterranean basin. The goal of the project, which is taking place over two intensive field campaigns (July 2011 and February 2012), is to provide valuable observations on the composition and the temporal evolution of organics (summer versus winter),to identify and quantify the relative importance of sources of volatile organic compounds (VOCs) and aerosols (SOA) and to study the role of VOCs in the first oxidation steps of SOA formation. For that purpose, a large suite of primary and secondary VOCs (>60) were measured during the summertime campaign (July 2nd to July 17th 2011) at one suburban site in Beirut. Techniques encompass off-line sampling on carbonaceous sorbent tubes (2-hour time resolution) and liquid coil scrubbing (1-hour time resolution), an on-line GCFID (1-hour time resolution) and a PTR-MS (4-min time resolution). We will discuss here the atmospheric composition of VOCs in relation with their emissions. In particular, these data provide useful constraints to evaluate the first temporally and spatially resolved national emission inventory that was built for the year 2010. Preliminary results

  17. Influence of Compression Ratio on the Performance and Emission Characteristics of Annona Methyl Ester Operated DI Diesel Engine

    Directory of Open Access Journals (Sweden)

    Senthil Ramalingam

    2014-09-01

    Full Text Available This study aims to find the optimum performance and emission characteristics of single cylinder variable compression ratio (VCR engine with different blends of Annona methyl ester (AME as fuel. The performance parameters such as specific fuel consumption (SFC, brake thermal efficiency (BTE, and emission levels of HC, CO, Smoke, and NOx were compared with the diesel fuel. It is found that, at compression ratio of 17: 1 for A20 blended fuel (20% AME + 80% Diesel shows better performance and lower emission level which is very close to neat diesel fuel. The engine was operated with different values of compression ratio (15, 16, and 17 to find out best possible combination for operating engine with blends of AME. It is also found that the increase of compression ratio increases the BTE and reduces SFC and has lower emission without any engine in design modifications.

  18. Effect of compression ratio on the performance, combustion and emission from a diesel engine using palm biodiesel

    Science.gov (United States)

    Datta, Ambarish; Mandal, Bijan Kumar

    2016-07-01

    The authors have simulated a single cylinder diesel engine using Diesel-RK software to investigate the performance, emission and combustion characteristics of the engine using palm biodiesel and petro-diesel. The simulation has been carried out for three compression ratios of 16, 17 and 18 at constant speed of 1500 rpm. The analysis of simulation results show that brake thermal efficiency decreases and brake specific fuel consumption increases with the use of palm biodiesel instead of diesel. The thermal efficiency increases and the brake specific fuel consumption decreases with the increase of compression ratio. The higher compression ratio results in higher in-cylinder pressure and higher heat release rate as well as lower ignition delay. The NOx and CO2 emissions increase at higher compression ratio due to the higher pressure and temperature. On the other hand, the specific PM emission and smoke opacity are less at higher compression ratio.

  19. Multi-images deconvolution improves signal-to-noise ratio on gated stimulated emission depletion microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Castello, Marco [Nanobiophotonics, Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, Genoa, 16163 (Italy); DIBRIS, University of Genoa, Via Opera Pia 13, Genoa 16145 (Italy); Diaspro, Alberto [Nanobiophotonics, Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, Genoa, 16163 (Italy); Nikon Imaging Center, Via Morego 30, Genoa 16163 (Italy); Vicidomini, Giuseppe, E-mail: giuseppe.vicidomini@iit.it [Nanobiophotonics, Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, Genoa, 16163 (Italy)

    2014-12-08

    Time-gated detection, namely, only collecting the fluorescence photons after a time-delay from the excitation events, reduces complexity, cost, and illumination intensity of a stimulated emission depletion (STED) microscope. In the gated continuous-wave- (CW-) STED implementation, the spatial resolution improves with increased time-delay, but the signal-to-noise ratio (SNR) reduces. Thus, in sub-optimal conditions, such as a low photon-budget regime, the SNR reduction can cancel-out the expected gain in resolution. Here, we propose a method which does not discard photons, but instead collects all the photons in different time-gates and recombines them through a multi-image deconvolution. Our results, obtained on simulated and experimental data, show that the SNR of the restored image improves relative to the gated image, thereby improving the effective resolution.

  20. Estimate of anthropogenic halocarbon emission based on measured ratio relative to CO in the Pearl River Delta region, China

    Science.gov (United States)

    Shao, M.; Huang, D.; Gu, D.; Lu, S.; Chang, C.; Wang, J.

    2011-05-01

    Using a GC/FID/MS system, we analyzed the mixing ratio of 16 halocarbon species in more than 100 air samples collected in 2004 from the Pearl River Delta (PRD) region of southern China. The results revealed that there are elevated mixing ratios for most of halocarbons, especially for HClC = CCl2 (trichloroethylene, TCE), CH2Cl2 (dichloromethane, DCM), CH3 Br (bromomethane), HCFC-22, CHCl3 (trichloromethane), CCl4 (tetrachloromethane), Cl2C = CCl2 (perchloroethylene, PCE), CH3CCl3 (methyl chloroform, MCF), and CFC-12. Comparisons were done with the data from TRACE-P and ALE/GAGE/AGAGE experiments, we found that the large variability in mixing ratios (relative standard deviation ranged from 9.31 % to 96.55 %) of the halocarbons suggested substantial local emissions from the PRD region in 2004. Correlations between the mixing ratio of each species and carbon monoxide (CO) was examined, and then the emission of each halocarbon was quantified based on scaling the optimized CO emission inventory with the slope of the regression line fitted to each species relative to CO. The calculated results revealed that mass of CH2Cl2 (7.0 Gg), CH3CCl3 (6.7 Gg), and Cl2C = CCl2 (2.3 Gg) accounted for about 62.9 % of total halocarbon emissions, it suggested a significant contribution from solvent use in the PRD region. Emissions of HCFC-22 (3.5 Gg), an alternative refrigerant to chlorofluorocarbons (CFCs), were about 2.3 times greater than those of CFC-12 (1.6 Gg). CFC-12 and HCFC-22 accounted for 21.5 % of total emissions of halocarbons, so that the refrigerant would be the second largest source of halocarbons. However, the ratio approach found only minor emissions of CFCs, such as CFC-11, and the emission of CFC-114 and CFC-113 were close to zero. Emissions of other anthropogenic halocarbons, such as CCl4, CHCl3, CH3Br, and CH3Cl, were also estimated. Where possible, the emissions estimated from the measured ratios were compared with results from source inventory techniques, we

  1. Monoterpene emissions from boreal tree species: Determination of de novo and pool emissions

    Science.gov (United States)

    Ghirardo, Andrea; Koch, Kristine; Taipale, Risto; Zimmer, Ina; Schnitzler, Joerg-Peter; Rinne, Janne

    2010-05-01

    Boreal forests emit a large amount of monoterpenes into the atmosphere. Traditionally these emissions are assumed to originate as evaporation from large storage pools. Thus their diurnal cycle would depend mostly on temperature. However, there is indication that a significant part of the monoterpene emission would originate directly from de novo synthesis. By applying 13CO2 fumigation and analyzing the isotope fractions with proton transfer reaction mass spectrometry (PTR-MS) and classical GC-MS we studied the origin of monoterpene emissions from some major Eurasian boreal and alpine tree species. We determined the fractions originating from de novo biosynthesis and from large internal monoterpene storages for three coniferous tree species with specialized monoterpene storage structures and one dicotyledon species without such structures. The emission from dicotyledon species Betula pendula originated solely from the de novo synthesis. The origin of the emissions from coniferous species was mixed with varying fraction originating from de novo synthesis (Pinus sylvestris 58 %, Picea abies 33.5 %, Larix decidua 9.8 %) and the rest from large internal monoterpene storage pools. We have also measured the ecosystem scale monoterpene emission fluxes from a boreal Pinus sylvestris forest by disjunct eddy covariance technique. Application of the observed fraction of emission originating from de novo synthesis and large storage pools in a hybrid emission algorithm resulted in a better description of ecosystem scale monoterpene emissions, as compared to the measured fluxes.

  2. Estimates of anthropogenic halocarbon emissions based on its measured ratios relative to CO in the Pearl River Delta

    Science.gov (United States)

    Shao, M.; Huang, D. K.; Gu, D. S.; Lu, S. H.; Chang, C. C.; Wang, J.-L.

    2011-01-01

    Using a GC/FID/MS system, we analyzed the mixing ratio levels of 16 halocarbon species in more than 100 air samples collected in 2004 from the Pearl River Delta (PRD) region of southern China. The results revealed elevated regional mixing ratios for most halocarbons, especially for HClC = CCl2 (trichloroethylene, TCE), CH2Cl2 (dichloromethane, DCM), CH3Br (bromomethane), HCFC-22, CHCl3 (trichloromethane), CCl4 (tetrachloromethane), Cl2C = CCl2 (perchloroethylene, PCE), CH3CCl3 (methyl chloroform, MCF), and CFC-12. Comparisons were done with the data from TRACE-P and ALE/GAGE/AGAGE experiments, we found that the large variability in concentrations (relative standard deviation ranged from 9.31% to 96.55%) of the halocarbons suggested substantial local emissions from the PRD region in 2004. Correlations between the mixing ratio of each species and carbon monoxide (CO) were examined, and then each emission of halocarbon was quantified based on scaling the optimized CO emission inventory with the slope of the regression line fitted to each species relative to CO. The calculated results revealed that mass of CH2Cl2 (7.0 Gg), CH3CCl3 (6.7 Gg), and Cl2C = CCl2 (2.3 Gg) accounted for about 62.9% of total emissions, suggesting a significant contribution to halocarbon emissions from solvent use in the PRD region. Emissions of HCFC-22 (3.5 Gg), an alternative refrigerant to chlorofluorocarbons (CFCs), were about 2.3 times greater than those of CFC-12 (1.6 Gg). CFC-12 and HCFC-22 accounted for 21.5% of total emissions of halocarbons, so that the refrigerant would be the second largest source of halocarbons. However, the ratio approach found only minor emissions of other CFCs, such as CFC-11, and levels of CFC-114 and CFC-113 were close to zero. Emissions of other anthropogenic halocarbons, such as CCl4, CHCl3, CH3Br, and CH3Cl, were also estimated. Where possible, the emissions estimated from the measured ratios were compared with results from source inventory techniques, we

  3. EFFECT OF COMPRESSION RATIO ON ENERGY AND EMISSION OF VCR DIESEL ENGINE FUELLED WITH DUAL BLENDS OF BIODIESEL

    Directory of Open Access Journals (Sweden)

    R. D. EKNATH

    2014-10-01

    Full Text Available In recent 10 years biodiesel fuel was studied extensively as an alternative fuel. Most of researchers reported performance and emission of biodiesel and their blends with constant compression ratio. Also all the research was conducted with use of single biodiesel and its blend. Few reports are observed with the use of variable compression ratio and blends of more than one biodiesel. Main aim of the present study is to analyse the effect of compression ratio on the performance and emission of dual blends of biodiesel. In the present study Blends of Jatropha and Karanja with Diesel fuel was tested on single cylinder VCR DI diesel engine for compression ratio 16 and 18. High density of biodiesel fuel causes longer delay period for Jatropha fuel was observed compare with Karanja fuel. However blending of two biodiesel K20J40D results in to low mean gas temperature which is the main reason for low NOx emission.

  4. Methanol and other VOC fluxes from a Danish beech forest during late springtime

    DEFF Research Database (Denmark)

    Schade, Gunnar W.; Solomon, Sheena J.; Dellwik, Ebba;

    2011-01-01

    In-canopy mixing ratio gradients and above-canopy fluxes of several volatile organic compounds (VOCs) were measured using a commercial proton transfer reaction mass spectrometer (PTR-MS) in a European beech (Fagus sylvatica) forest in Denmark. Fluxes of methanol were bidirectional: Emission...

  5. Characterization of polycyclic aromatic hydrocarbon emissions in the particulate phase from burning incenses with various atomic hydrogen/carbon ratios

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tzu-Ting, E-mail: d89844001@ntu.edu.tw [Department of Environmental Engineering and Health, Yuanpei University, No. 306, Yuanpei St., Hsin Chu, 300, Taiwan (China); Lin, Shaw-Tao [Department of Applied Chemistry, Providence University, 200 Chung-Chi Rd., Salu Dist., Taichung City 43301, Taiwan (China); Lin, Tser-Sheng [Department of Safety, Health, and Environmental Engineering, National United University, 2 Lien Da, Maioli, 360, Taiwan (China); Hong, Wei-Lun [Department of Environmental Engineering and Health, Yuanpei University, No. 306, Yuanpei St., Hsin Chu, 300, Taiwan (China)

    2012-01-01

    Polycyclic aromatic hydrocarbons in the particulate phase generated from burning various incense was investigated by a gas chromatography/mass spectrometry. Among the used incenses, the atomic H/C ratio ranged from 0.51 to 1.69, yielding the emission factor ranges for total particulate mass and PAHs of 4.19-82.16 mg/g and 1.20-9.50 {mu}g/g, respectively. The atomic H/C ratio of the incense was the key factor affecting particulate mass and the PAHs emission factors. Both the maximum emission factor and the slowest burning rate appear at the H/C ratio of 1.57. The concentrations of the four-ring PAHs predominated and the major species among the 16 PAHs were fluoranthene, phenanthrene, pyrene, and chrysene for most incense types. The benzo[a]pyrene, benzo[a]anthracene, benzo[b]fluoranthene, and dibenzo[a,h]anthracene accounted for 87.08-93.47% of the total toxic equivalency emission factor. - Highlights: Black-Right-Pointing-Pointer The atomic H/C ratio of incense was the key factor affecting PAHs emission factors. Black-Right-Pointing-Pointer Burning incense with lower atomic H/C ratio minimized the production of total PAHs. Black-Right-Pointing-Pointer The BaP, BaA, BbF, and DBA accounted for 87.08-93.47% of the TEQ emission factor. Black-Right-Pointing-Pointer Special PAH ratios were regarded as characteristic ratios for burning incense.

  6. Similarity ratio analysis for early stage fault detection with optical emission spectrometer in plasma etching process.

    Science.gov (United States)

    Yang, Jie; McArdle, Conor; Daniels, Stephen

    2014-01-01

    A Similarity Ratio Analysis (SRA) method is proposed for early-stage Fault Detection (FD) in plasma etching processes using real-time Optical Emission Spectrometer (OES) data as input. The SRA method can help to realise a highly precise control system by detecting abnormal etch-rate faults in real-time during an etching process. The method processes spectrum scans at successive time points and uses a windowing mechanism over the time series to alleviate problems with timing uncertainties due to process shift from one process run to another. A SRA library is first built to capture features of a healthy etching process. By comparing with the SRA library, a Similarity Ratio (SR) statistic is then calculated for each spectrum scan as the monitored process progresses. A fault detection mechanism, named 3-Warning-1-Alarm (3W1A), takes the SR values as inputs and triggers a system alarm when certain conditions are satisfied. This design reduces the chance of false alarm, and provides a reliable fault reporting service. The SRA method is demonstrated on a real semiconductor manufacturing dataset. The effectiveness of SRA-based fault detection is evaluated using a time-series SR test and also using a post-process SR test. The time-series SR provides an early-stage fault detection service, so less energy and materials will be wasted by faulty processing. The post-process SR provides a fault detection service with higher reliability than the time-series SR, but with fault testing conducted only after each process run completes.

  7. Similarity ratio analysis for early stage fault detection with optical emission spectrometer in plasma etching process.

    Directory of Open Access Journals (Sweden)

    Jie Yang

    Full Text Available A Similarity Ratio Analysis (SRA method is proposed for early-stage Fault Detection (FD in plasma etching processes using real-time Optical Emission Spectrometer (OES data as input. The SRA method can help to realise a highly precise control system by detecting abnormal etch-rate faults in real-time during an etching process. The method processes spectrum scans at successive time points and uses a windowing mechanism over the time series to alleviate problems with timing uncertainties due to process shift from one process run to another. A SRA library is first built to capture features of a healthy etching process. By comparing with the SRA library, a Similarity Ratio (SR statistic is then calculated for each spectrum scan as the monitored process progresses. A fault detection mechanism, named 3-Warning-1-Alarm (3W1A, takes the SR values as inputs and triggers a system alarm when certain conditions are satisfied. This design reduces the chance of false alarm, and provides a reliable fault reporting service. The SRA method is demonstrated on a real semiconductor manufacturing dataset. The effectiveness of SRA-based fault detection is evaluated using a time-series SR test and also using a post-process SR test. The time-series SR provides an early-stage fault detection service, so less energy and materials will be wasted by faulty processing. The post-process SR provides a fault detection service with higher reliability than the time-series SR, but with fault testing conducted only after each process run completes.

  8. Development of net energy ratio and emission factor for biohydrogen production pathways.

    Science.gov (United States)

    Kabir, Md Ruhul; Kumar, Amit

    2011-10-01

    This study investigates the energy and environmental aspects of producing biohydrogen for bitumen upgrading from a life cycle perspective. Three technologies are studied for biohydrogen production; these include the Battelle Columbus Laboratory (BCL) gasifier, the Gas Technology Institute (GTI) gasifier, and fast pyrolysis. Three different biomass feedstocks are considered including forest residue (FR), whole forest (WF), and agricultural residue (AR). The fast pyrolysis pathway includes two cases: truck transport of bio-oil and pipeline transport of bio-oil. The net energy ratios (NERs) for nine biohydrogen pathways lie in the range of 1.3-9.3. The maximum NER (9.3) is for the FR-based pathway using GTI technology. The GHG emissions lie in the range of 1.20-8.1 kg CO₂ eq/kg H₂. The lowest limit corresponds to the FR-based biohydrogen production pathway using GTI technology. This study also analyzes the intensities for acid rain precursor and ground level ozone precursor.

  9. Emission Ratios of the Tropospheric Ozone Precursors Nitrogen Dioxide and Formaldehyde from Australia’s Black Saturday Fires

    Directory of Open Access Journals (Sweden)

    Clare Paton-Walsh

    2011-10-01

    Full Text Available The ‘Black Saturday’ fires were a series of devastating forest fires that burned across Victoria, Australia, during February and March of 2009. In this study we have used satellite data made publically available by NASA from the Ozone Monitoring Instrument (OMI and the Atmospheric InfraRed Sounder (AIRS to track the smoke plume from the Black Saturday firestorm and explore the chemical aging of the smoke plume in the first days after emission. We also determined emission ratios for formaldehyde and nitrogen dioxide within smoke from fires actively burning across Victoria between 7 and 17 February 2009. The mean emission ratios with respect to carbon monoxide derived for these two tropospheric ozone precursors are (0.016 ± 0.004 mol.mol−1 for formaldehyde and (0.005 ± 0.002 mol.mol−1 for nitrogen dioxide. The mean emission ratio for formaldehyde with respect to CO is in broad agreement with values previously quoted in the literature for temperate forest fires. However, to our knowledge there are no previous measurements of emission ratios for nitrogen dioxide from Australian temperate forest fires.

  10. Performance and exhaust emission characteristics of variable compression ratio diesel engine fuelled with esters of crude rice bran oil.

    Science.gov (United States)

    Vasudeva, Mohit; Sharma, Sumeet; Mohapatra, S K; Kundu, Krishnendu

    2016-01-01

    As a substitute to petroleum-derived diesel, biodiesel has high potential as a renewable and environment friendly energy source. For petroleum importing countries the choice of feedstock for biodiesel production within the geographical region is a major influential factor. Crude rice bran oil is found to be good and viable feedstock for biodiesel production. A two step esterification is carried out for higher free fatty acid crude rice bran oil. Blends of 10, 20 and 40 % by vol. crude rice bran biodiesel are tested in a variable compression ratio diesel engine at compression ratio 15, 16, 17 and 18. Engine performance and exhaust emission parameters are examined. Cylinder pressure-crank angle variation is also plotted. The increase in compression ratio from 15 to 18 resulted in 18.6 % decrease in brake specific fuel consumption and 14.66 % increase in brake thermal efficiency on an average. Cylinder pressure increases by 15 % when compression ratio is increased. Carbon monoxide emission decreased by 22.27 %, hydrocarbon decreased by 38.4 %, carbon dioxide increased by 17.43 % and oxides of nitrogen as NOx emission increased by 22.76 % on an average when compression ratio is increased from 15 to 18. The blends of crude rice bran biodiesel show better results than diesel with increase in compression ratio.

  11. Estimate of anthropogenic halocarbon emission based on measured ratio relative to CO in the Pearl River Delta region, China

    Directory of Open Access Journals (Sweden)

    M. Shao

    2011-05-01

    Full Text Available Using a GC/FID/MS system, we analyzed the mixing ratio of 16 halocarbon species in more than 100 air samples collected in 2004 from the Pearl River Delta (PRD region of southern China. The results revealed that there are elevated mixing ratios for most of halocarbons, especially for HClC = CCl2 (trichloroethylene, TCE, CH2Cl2 (dichloromethane, DCM, CH3 Br (bromomethane, HCFC-22, CHCl3 (trichloromethane, CCl4 (tetrachloromethane, Cl2C = CCl2 (perchloroethylene, PCE, CH3CCl3 (methyl chloroform, MCF, and CFC-12. Comparisons were done with the data from TRACE-P and ALE/GAGE/AGAGE experiments, we found that the large variability in mixing ratios (relative standard deviation ranged from 9.31 % to 96.55 % of the halocarbons suggested substantial local emissions from the PRD region in 2004. Correlations between the mixing ratio of each species and carbon monoxide (CO was examined, and then the emission of each halocarbon was quantified based on scaling the optimized CO emission inventory with the slope of the regression line fitted to each species relative to CO. The calculated results revealed that mass of CH2Cl2 (7.0 Gg, CH3CCl3 (6.7 Gg, and Cl2C = CCl2 (2.3 Gg accounted for about 62.9 % of total halocarbon emissions, it suggested a significant contribution from solvent use in the PRD region. Emissions of HCFC-22 (3.5 Gg, an alternative refrigerant to chlorofluorocarbons (CFCs, were about 2.3 times greater than those of CFC-12 (1.6 Gg. CFC-12 and HCFC-22 accounted for 21.5 % of total emissions of halocarbons, so that the refrigerant would be the second largest source of halocarbons. However, the ratio approach found only minor emissions of CFCs, such as CFC-11, and the emission of CFC-114 and CFC-113 were close to zero. Emissions of other anthropogenic halocarbons, such as CCl

  12. A comparison of new measurements of total monoterpene flux with improved measurements of speciated monoterpene flux

    Directory of Open Access Journals (Sweden)

    A. Lee

    2005-01-01

    Full Text Available Many monoterpenes have been identified in forest emissions using gas chromatography (GC. Until now, it has been impossible to determine whether all monoterpenes are appropriately measured using GC techniques. We used a proton transfer reaction mass spectrometer (PTR-MS coupled with the eddy covariance (EC technique to measure mixing ratios and fluxes of total monoterpenes above a ponderosa pine plantation. We compared PTR-MS-EC results with simultaneous measurements of eight speciated monoterpenes, β-pinene, α-pinene, 3-carene, d-limonene, β-phellandrene, α-terpinene, camphene, and terpinolene, made with an automated, in situ gas chromatograph with flame ionization detectors (GC-FID, coupled to a relaxed eddy accumulation system (REA. Monoterpene mixing ratios and fluxes measured by PTR-MS averaged 30±2.3% and 31±9.2% larger than by GC-FID, with larger mixing ratio discrepancies between the two techniques at night than during the day. Two unidentified peaks that correlated with β-pinene were resolved in the chromatograms and completely accounted for the daytime difference and reduced the nighttime mixing ratio difference to 20±2.9%. Measurements of total monoterpenes by PTR-MS-EC indicated that GC-FID-REA measured the common, longer-lived monoterpenes well, but that additional terpenes were emitted from the ecosystem that represented an important contribution to the total mixing ratio above the forest at night.

  13. Estimates of anthropogenic halocarbon emissions based on its measured ratios relative to CO in the Pearl River Delta

    Directory of Open Access Journals (Sweden)

    M. Shao

    2011-01-01

    Full Text Available Using a GC/FID/MS system, we analyzed the mixing ratio levels of 16 halocarbon species in more than 100 air samples collected in 2004 from the Pearl River Delta (PRD region of southern China. The results revealed elevated regional mixing ratios for most halocarbons, especially for HClC = CCl2 (trichloroethylene, TCE, CH2Cl2 (dichloromethane, DCM, CH3Br (bromomethane, HCFC-22, CHCl3 (trichloromethane, CCl4 (tetrachloromethane, Cl2C = CCl2 (perchloroethylene, PCE, CH3CCl3 (methyl chloroform, MCF, and CFC-12. Comparisons were done with the data from TRACE-P and ALE/GAGE/AGAGE experiments, we found that the large variability in concentrations (relative standard deviation ranged from 9.31% to 96.55% of the halocarbons suggested substantial local emissions from the PRD region in 2004. Correlations between the mixing ratio of each species and carbon monoxide (CO were examined, and then each emission of halocarbon was quantified based on scaling the optimized CO emission inventory with the slope of the regression line fitted to each species relative to CO. The calculated results revealed that mass of CH2Cl2 (7.0 Gg, CH3CCl3 (6.7 Gg, and Cl2C = CCl2 (2.3 Gg accounted for about 62.9% of total emissions, suggesting a significant contribution to halocarbon emissions from solvent use in the PRD region. Emissions of HCFC-22 (3.5 Gg, an alternative refrigerant to chlorofluorocarbons (CFCs, were about 2.3 times greater than those of CFC-12 (1.6 Gg. CFC-12 and HCFC-22 accounted for 21.5% of total emissions of halocarbons, so that the refrigerant would be the second largest source of halocarbons. However, the ratio approach found only minor emissions of other CFCs, such as CFC-11, and levels of CFC-114 and CFC-113 were close to zero. Emissions of other anthropogenic halocarbons, such as CCl

  14. Primary VOC emissions from Commercial Aircraft Jet Engines

    Science.gov (United States)

    Kilic, Dogushan; Huang, Rujin; Slowik, Jay; Brem, Benjamin; Durdina, Lukas; Rindlisbacher, Theo; Baltensperger, Urs; Prevot, Andre

    2014-05-01

    Air traffic is growing continuously [1]. The increasing number of airplanes leads to an increase of aviation emissions giving rise to environmental concerns globally by high altitude emissions and, locally on air quality at the ground level [2]. The overall impact of aviation emissions on the environment is likely to increase when the growing air transportation trend [2] is considered. The Aviation Particle Regulatory Instrumentation Demonstration Experiment (APRIDE)-5 campaign took place at Zurich Airport in 2013. In this campaign, aircraft exhaust is sampled during engine acceptance tests after engine overhaul at the facilities of SR Technics. Direct sampling from the engine core is made possible due to the unique fixed installation of a retractable sampling probe and the use of a standardized sampling system designed for the new particulate matter regulation in development for aircraft engines. Many of the gas-phase aircraft emissions, e.g. CO2, NOX, CO, SO2, hydrocarbons, and volatile organic compounds (VOC) were detected by the instruments in use. This study, part of the APRIDE-5 campaign, focuses on the primary VOC emissions in order to produce emission factors of VOC species for varying engine operating conditions which are the surrogates for the flight cycles. Previously, aircraft plumes were sampled in order to quantify VOCs by a proton transfer reaction quadrupole mass spectrometer (PTR-MS) [3]. This earlier study provided a preliminary knowledge on the emission of species such as methanol, acetaldehyde, acetone, benzene and toluene by varying engine thrust levels. The new setup was (i) designed to sample from the diluted engine exhaust and the new tool and (ii) used a high resolution time of flight PTR-MS with higher accuracy for many new species, therefore providing a more detailed and accurate inventory. We will present the emission factors for species that were quantified previously, as well as for many additional VOCs detected during the campaign

  15. Emission Ratios for Ammonia and Formic Acid and Observations of Peroxy Acetyl Nitrate (PAN and Ethylene in Biomass Burning Smoke as Seen by the Tropospheric Emission Spectrometer (TES

    Directory of Open Access Journals (Sweden)

    Vivienne H. Payne

    2011-11-01

    Full Text Available We use the Tropospheric Emission Spectrometer (TES aboard the NASA Aura satellite to determine the concentrations of the trace gases ammonia (NH3 and formic acid (HCOOH within boreal biomass burning plumes, and present the first detection of peroxy acetyl nitrate (PAN and ethylene (C2H4 by TES. We focus on two fresh Canadian plumes observed by TES in the summer of 2008 as part of the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS-B campaign. We use TES retrievals of NH3 and HCOOH within the smoke plumes to calculate their emission ratios (1.0% ± 0.5% and 0.31% ± 0.21%, respectively relative to CO for these Canadian fires. The TES derived emission ratios for these gases agree well with previous aircraft and satellite estimates, and can complement ground-based studies that have greater surface sensitivity. We find that TES observes PAN mixing ratios of ~2 ppb within these mid-tropospheric boreal biomass burning plumes when the average cloud optical depth is low ( < 0.1 and that TES can detect C2H4 mixing ratios of ~2 ppb in fresh biomass burning smoke plumes.

  16. Origin of monoterpene emissions from boreal tree species: Determination of de novo and pool emissions by 13CO2 labeling

    Science.gov (United States)

    Rinne, J.; Ghirardo, A.; Koch, K.; Taipale, R.; Zimmer, I.; Schnitzler, J.

    2009-12-01

    Boreal forests emit a large amount of monoterpenes into the atmosphere. Traditionally these emissions are assumed to originate as evaporation from large storage pools. Thus their diurnal cycle would depend mostly on temperature. However, there is indication that a significant part of the monoterpene emission would originate directly from de novo synthesis. By applying 13CO2 fumigation and analyzing the isotope fractions with proton transfer reaction mass spectrometry (PTR-MS) and classical GC-MS we studied the origin of monoterpene emissions from some major Eurasian boreal and alpine tree species. We determined the fractions originating from de novo biosynthesis and from large internal monoterpene storages for three coniferous tree species with specialized monoterpene storage structures and one dicotyledon species without such structures. The emission from dicotyledon species Betula pendula originated solely from the de novo synthesis. The origin of the emissions from coniferous species was mixed with varying fraction originating from de novo synthesis (Pinus sylvestris 58%, Picea abies 33.5%, Larix decidua 9.8%) and the rest from large internal monoterpene storage pools. Application of the observed fractions of emission originating from de novo synthesis and large storage pools in a hybrid emission algorithm resulted in a better description of ecosystem scale monoterpene emissions from a boreal Scots pine forest stand.

  17. Increased ratio of electron transport to net assimilation rate supports elevated isoprenoid emission rate in eucalypts under drought.

    Science.gov (United States)

    Dani, Kaidala Ganesha Srikanta; Jamie, Ian McLeod; Prentice, Iain Colin; Atwell, Brian James

    2014-10-01

    Plants undergoing heat and low-CO2 stresses emit large amounts of volatile isoprenoids compared with those in stress-free conditions. One hypothesis posits that the balance between reducing power availability and its use in carbon assimilation determines constitutive isoprenoid emission rates in plants and potentially even their maximum emission capacity under brief periods of stress. To test this, we used abiotic stresses to manipulate the availability of reducing power. Specifically, we examined the effects of mild to severe drought on photosynthetic electron transport rate (ETR) and net carbon assimilation rate (NAR) and the relationship between estimated energy pools and constitutive volatile isoprenoid emission rates in two species of eucalypts: Eucalyptus occidentalis (drought tolerant) and Eucalyptus camaldulensis (drought sensitive). Isoprenoid emission rates were insensitive to mild drought, and the rates increased when the decline in NAR reached a certain species-specific threshold. ETR was sustained under drought and the ETR-NAR ratio increased, driving constitutive isoprenoid emission until severe drought caused carbon limitation of the methylerythritol phosphate pathway. The estimated residual reducing power unused for carbon assimilation, based on the energetic status model, significantly correlated with constitutive isoprenoid emission rates across gradients of drought (r(2) > 0.8) and photorespiratory stress (r(2) > 0.9). Carbon availability could critically limit emission rates under severe drought and photorespiratory stresses. Under most instances of moderate abiotic stress levels, increased isoprenoid emission rates compete with photorespiration for the residual reducing power not invested in carbon assimilation. A similar mechanism also explains the individual positive effects of low-CO2, heat, and drought stresses on isoprenoid emission.

  18. Evaluation of formaldehyde emission from particleboard using the large chamber and desiccator method at various loading ratios

    Institute of Scientific and Technical Information of China (English)

    QUE Ze-li; WANG Fei-bin; MA Ling-fei; Furuno Takeshi

    2013-01-01

    We studied formaldehyde emission from uncoated particleboard with 16-mm thickness using the large chamber and the desiccator method.A chamber of 28.4 m3 was installed to simulate a mobile home.The formaldehyde off-gassing properties of particleboard were evaluated using the chamber.The relationship between the concentration obtained by the chamber and the values by the desiccator test was discussed in this study under different conditions of conditioning day,air exchange,and loading ratio.These two methods were compared and discussed regarding the formaldehyde emission level.Three loading ratios,0.429 m2/m3,0.264 m2/m3,and 0.132 m2/m3,were chosen to represent different applications of particleboard products.There was strong correlation between emissions and air exchange rates at equal product-loading ratios in the large chamber,the related coefficient R2 exceeded 0.90.There was also an indication of a generic correlation between the large chamber and the two-hour desiccator test with a single product designated loading ratio,air exchange rate,and climatic conditions.

  19. A comparison of new measurements of total monoterpene flux with improved measurements of speciated monoterpene flux

    Directory of Open Access Journals (Sweden)

    A. Lee

    2004-12-01

    Full Text Available Many monoterpenes have been identified in forest emissions using gas chromatography (GC. Until now, it has been impossible to determine whether all monoterpenes are appropriately measured using GC techniques. We used a proton transfer reaction mass spectrometer (PTR-MS coupled with the eddy covariance (EC technique to measure mixing ratios and fluxes of total monoterpenes above a ponderosa pine plantation. We compared PTR-MS-EC results with simultaneous measurements of eight speciated monoterpenes, β-pinene, α-pinene, 3-carene, d-limonene, β-phellandrene, α-terpinene, camphene, and terpinolene, made with an automated, in situ gas chromatograph with flame ionization detectors (GC-FID, coupled to a relaxed eddy accumulation system (REA. Monoterpene mixing ratios and fluxes measured by PTR-MS averaged 30±2.3% and 31±9.2% larger than by GC-FID, with larger differences at night than during the day. Four unidentified peaks that correlated with β-pinene were resolved in the chromatograms and completely accounted for the daytime difference and reduced the nighttime difference to 19±3.4%. Measurements of total monoterpenes by PTR-MS-EC indicated that GC-FID-REA measured the common, longer-lived monoterpenes well, but that additional monoterpenes were emitted from the ecosystem that represented an important contribution to the total mixing ratio above the forest at night, and that must have been oxidized during the day before they escaped the forest canopy.

  20. Study on the Environmental Quality Guarantee Ratio on the Basis of Total Air Pollutant Emission Amount Control

    Institute of Scientific and Technical Information of China (English)

    徐芙蓉; 施介宽

    2004-01-01

    The hourly and daily air quality concentration in the total air pollutant emission amount control zone is not sure to be continuously up to national ambient air quality standard,even though the total annual air pollutant emission is permitted under the total air pollutant emission amount control (TAPEAC) on the basis of A-value method. So the concept of the environmental quality guarantee ratio (EQGR) for TAPEAC is advanced in this paper and its quantitative formula is figured out for both hourly and daily EQGR. It is concluded that the EQGR is related with the yearly arrangement of A-value besides the pollutant type.According to the meteorological data in a lower area along Yangtze River in 2000, the yearly A-value trend is analyzed. Based on the data, the hourly EQGR of SO2 and NO2 is respectively 97.4% and 90.2%, and daily EQGR respectively 90.2% and 79.5%.

  1. The field emission properties of high aspect ratio diamond nanocone arrays fabricated by focused ion beam milling

    Directory of Open Access Journals (Sweden)

    Z.L. Wang, Q. Wang, H.J. Li, J.J. Li, P. Xu, Q. Luo, A.Z. Jin, H.F. Yang and C.Z. Gu

    2005-01-01

    Full Text Available High aspect ratio diamond nanocone arrays are formed on freestanding diamond film by means of focused ion beam (FIB milling technology and hot-filament chemical vapor deposition (HFCVD method. The structure and phase purity of an individual diamond nanocone are characterized by scanning electron microscopy (SEM and micro-Raman spectroscopy. The result indicates that the diamond cones with high aspect ratio and small tip apex radius can be obtained by optimizing the parameters of FIB milling and diamond growth. The diamond nanocone arrays were also used to study the electron field emission properties and electric field shielding effect, finding high emission current density, low threshold and weak shielding effect, all attributable to the high field enhancement factor and suitable cone density of the diamond nanocone emitter

  2. Constant-Pressure Specific Heat to Hemispherical Total Emissivity Ratio for Undercooled Liquid Nickel, Zirconium, and Silicon

    Science.gov (United States)

    Rulison, Aaron J.; Rhim, Won-Kyu

    1995-01-01

    Radiative cooling curves of nickel, zirconium, and silicon melts that were obtained using the high-temperature, high-vacuum electrostatic levitator (HTHVESL) have been analyzed to determine the ratio between the constant-pressure specific heat and the hemispherical total emissivity, c(sub p)(T)epsilon(sub T)(T). This ratio determined over a wide liquid temperature range for each material allows us to determine c(sub p)(T) if epsilon(sub T)(T) is known or vice versa. Following the recipe, the hemi-spherical total emissivities for each sample at its melting temperature, epsilon(sub T)(T(sub M)), have been determined using c(sub p)(T(sub m)) values available in the literature. They are 0.15, 0.29, and 0.17, for Ni, Zr, and Si, respectively.

  3. Proton Transfer Reaction Mass Spectrometry detects rapid changes in volatile metabolite emission by Mycobacterium smegmatis after the addition of specific antimicrobial agents

    NARCIS (Netherlands)

    Crespo, E.; Cristescu, S. M.; de Ronde, H.; Kuijper, S.; Kolk, A.H.J.; Anthony, R.M.; Harren, F. J. M.

    2011-01-01

    The metabolic activity of plants, animals or microbes can be monitored by gas headspace analysis. This can be achieved using Proton Transfer Reaction Mass Spectrometry (PTR-MS), a highly sensitive detection method for trace gas analysis. PTR-MS is rapid and can detect metabolic responses on-line as

  4. Volcanic SO2 and SiF4 visualization and their ratio monitored using 2-D thermal emission spectroscopy

    Science.gov (United States)

    Stremme, W.; Krueger, A.; Harig, R.; Grutter, M.

    2011-09-01

    The composition and emission rates of volcanic gas plumes provide insight of the geologic internal activity, atmospheric chemistry, aerosol formation and radiative processes around it. Observations are necessary for public security and the aviation industry. Ground-based thermal emission infrared spectroscopy, which uses the radiation of the volcanic gas itself, allows for continuously monitoring during day and night from a save distance. We present measurements on Popocatépetl volcano based on thermal emission spectroscopy during different campaigns between 2006-2009 using a Scanning Infrared Gas Imaging System (SIGIS). The experimental set-up, measurement geometries and analytical algorithms are described. The equipment was operated from a safe distance of 12 km from the volcano at two different spectral resolutions: 0.5 and 4 cm-1. The 2-dimensional scanning capability of the instrument allows for an on-line visualization of the volcanic SO2 plume, animation and determination of its propagation speed. SiF4 was also identified in the infrared spectra recorded at both resolutions. The SiF4/SO2 molecular ratio can be calculated from each image and used as a highly useful parameter to follow changes in volcanic activity. A small Vulcanian eruption was monitored during the night of 16 to 17 November 2008 which was confirmed from the strong ash emission registered around 01:00 a.m. LST (Local Standard Time) and a pronounced SO2 cloud was registered. Enhanced SiF4/SO2 ratios were observed before and after the eruption. A validation of the results from thermal emission measurements with those from absorption spectra of the moon taken at the same time, as well as an error analysis, are presented. The inferred propagation speed from sequential imagees is used to calculate the emission rates at different distances from the crater.

  5. Combustion and Emission Characteristics of Variable Compression Ignition Engine Fueled with Jatropha curcas Ethyl Ester Blends at Different Compression Ratio

    Directory of Open Access Journals (Sweden)

    Rajneesh Kumar

    2014-01-01

    Full Text Available Engine performance and emission characteristics of unmodified biodiesel fueled diesel engines are highly influenced by their ignition and combustion behavior. In this study, emission and combustion characteristics were studied when the engine operated using the different blends (B10, B20, B30, and B40 and normal diesel fuel (B0 as well as when varying the compression ratio from 16.5 : 1 to 17.5 : 1 to 18.5 : 1. The change of compression ratio from 16.5 : 1 to 18.5 : 1 resulted in 27.1%, 27.29%, 26.38%, 28.48%, and 34.68% increase in cylinder pressure for the blends B0, B10, B20, B30, and B40, respectively, at 75% of rated load conditions. Higher peak heat release rate increased by 23.19%, 14.03%, 26.32%, 21.87%, and 25.53% for the blends B0, B10, B20, B30, and B40, respectively, at 75% of rated load conditions, when compression ratio was increased from16.5 : 1 to 18.5 : 1. The delay period decreased by 21.26%, CO emission reduced by 14.28%, and NOx emission increased by 22.84% for B40 blends at 75% of rated load conditions, when compression ratio was increased from 16.5 : 1 to 18.5 : 1. It is concluded that Jatropha oil ester can be used as fuel in diesel engine by blending it with diesel fuel.

  6. Stimulus Ratio and Level Dependence of Low- and Mid-Frequency Distortion-Product Otoacoustic Emissions

    DEFF Research Database (Denmark)

    Christensen, Anders Tornvig; Ordoñez, Rodrigo Pizarro; Hammershøi, Dorte

    2014-01-01

    Active amplifiers within the cochlea generate, as a by-product of their function, distortion-product otoacoustic emissions (DPOAEs) in response to carefully chosen two-tone stimuli. Focus has been on invoking emissions in a mid-frequency range from 500 to 4000 Hz. Below 500 Hz, physiological noise...... audiometrically normal hearing for inclusion in our experiment. DPOAEs were measured with pure-tone stimuli in four configurations: f2 fixed around a mid-frequency (2050-2180 Hz), f2 fixed around a low frequency (512-545 Hz), fdp fixed at a mid-frequency (1231 Hz) and fdp low frequency (246 Hz). Eight stimulus...

  7. Development of net energy ratio and emission factor for quad-generation pathways

    DEFF Research Database (Denmark)

    Rudra, Souman; Rosendahl, Lasse; Kumar, Amit

    2014-01-01

    of this study was to evaluate the energy performance, reduce GHG and acid rain precursor emission, and use of biomass for different outputs based on demand. Finally, a sensitivity analysis and a comparative study ar conducted for expected technological improvements and factors that could increase the energy...

  8. Biomass burning emissions of trace gases and particles in marine air at Cape Grim, Tasmania

    Science.gov (United States)

    Lawson, S. J.; Keywood, M. D.; Galbally, I. E.; Gras, J. L.; Cainey, J. M.; Cope, M. E.; Krummel, P. B.; Fraser, P. J.; Steele, L. P.; Bentley, S. T.; Meyer, C. P.; Ristovski, Z.; Goldstein, A. H.

    2015-12-01

    Biomass burning (BB) plumes were measured at the Cape Grim Baseline Air Pollution Station during the 2006 Precursors to Particles campaign, when emissions from a fire on nearby Robbins Island impacted the station. Measurements made included non-methane organic compounds (NMOCs) (PTR-MS), particle number size distribution, condensation nuclei (CN) > 3 nm, black carbon (BC) concentration, cloud condensation nuclei (CCN) number, ozone (O3), methane (CH4), carbon monoxide (CO), hydrogen (H2), carbon dioxide (CO2), nitrous oxide (N2O), halocarbons and meteorology. During the first plume strike event (BB1), a 4 h enhancement of CO (max ~ 2100 ppb), BC (~ 1400 ng m-3) and particles > 3 nm (~ 13 000 cm-3) with dominant particle mode of 120 nm were observed overnight. A wind direction change lead to a dramatic reduction in BB tracers and a drop in the dominant particle mode to 50 nm. The dominant mode increased in size to 80 nm over 5 h in calm sunny conditions, accompanied by an increase in ozone. Due to an enhancement in BC but not CO during particle growth, the presence of BB emissions during this period could not be confirmed. The ability of particles > 80 nm (CN80) to act as CCN at 0.5 % supersaturation was investigated. The ΔCCN / ΔCN80 ratio was lowest during the fresh BB plume (56 ± 8 %), higher during the particle growth period (77 ± 4 %) and higher still (104 ± 3 %) in background marine air. Particle size distributions indicate that changes to particle chemical composition, rather than particle size, are driving these changes. Hourly average CCN during both BB events were between 2000 and 5000 CCN cm-3, which were enhanced above typical background levels by a factor of 6-34, highlighting the dramatic impact BB plumes can have on CCN number in clean marine regions. During the 29 h of the second plume strike event (BB2) CO, BC and a range of NMOCs including acetonitrile and hydrogen cyanide (HCN) were clearly enhanced and some enhancements in O3 were observed

  9. Aspect ratio tuned red-shift of photoluminescence emission of PbSe nanorods investigated by electron holography.

    Science.gov (United States)

    Li, Ying; Du, Haifeng; Zhang, Jie; Liu, Zhengwang; Tian, Mingliang; Che, Renchao

    2017-05-01

    The physical properties of nanometer scale semiconductors are known to be sensitively influenced by their aspect ratios, but the intrinsic mechanisms still remain unclear. Shape-controlled anisotropic PbSe nanorods were obtained by means of the addition of MnCl2, and the aspect ratio of the nanorods can be continuously tuned from 1 to 10 by simply modulating the amount of chloride ions. It was demonstrated that an optimized concentration of Cl(-) anions is about 0.04mmol, which controls the competition between thermodynamics and kinetics mechanisms. The emission peaks of the infrared absorbance and photoluminescence spectra were significantly tuned from 1664nm to 1840nm and from 1459nm to 1938nm only by the aspect ratios, respectively. A strong electric dipole phenomenon localized onside the surface of PbSe nanorods terminated by Pb(2+) charge was found by using high-spatial-resolution off-axis electron holography, which was furthermore evidenced by the quantitative analysis of the mean inner potential and the surfaces charge. The charge intensity depended on the aspect ratio of PbSe nanorods. The results provide clear evidence that the energy gap interval reduces as a result of the increasing of conduction charge amounts. A novel strategy to facilely shift the peak position of absorbance and photoluminescence emission was therefore proposed. Copyright © 2017. Published by Elsevier Inc.

  10. Performance and emission of generator Diesel engine using methyl esters of palm oil and diesel blends at different compression ratio

    Science.gov (United States)

    Aldhaidhawi, M.; Chiriac, R.; Bădescu, V.; Pop, H.; Apostol, V.; Dobrovicescu, A.; Prisecaru, M.; Alfaryjat, A. A.; Ghilvacs, M.; Alexandru, A.

    2016-08-01

    This study proposes engine model to predicate the performance and exhaust gas emissions of a single cylinder four stroke direct injection engine which was fuelled with diesel and palm oil methyl ester of B7 (blends 7% palm oil methyl ester with 93% diesel by volume) and B10. The experiment was conducted at constant engine speed of 3000 rpm and different engine loads operations with compression ratios of 18:1, 20:1 and 22:1. The influence of the compression ratio and fuel typeson specific fuel consumption and brake thermal efficiency has been investigated and presented. The optimum compression ratio which yields better performance has been identified. The result from the present work confirms that biodiesel resulting from palm oil methyl ester could represent a superior alternative to diesel fuel when the engine operates with variable compression ratios. The blends, when used as fuel, result in a reduction of the brake specific fuel consumption and brake thermal efficiency, while NOx emissions was increased when the engine is operated with biodiesel blends.

  11. A Tight Relation Between N/O Ratio and Galaxy Stellar Mass Can Explain the Evolution of Strong Emission Line Ratios with Redshift

    CERN Document Server

    Masters, Daniel; Capak, Peter

    2016-01-01

    The offset of high redshift star-forming galaxies in the [OIII]/H$\\beta$ versus [NII]/H$\\alpha$ (O3N2) diagram in comparison with the local star-forming galaxy sequence is now well established. The physical origin of the shift is the subject of some debate, and has important implications for metallicity measurements based on strong lines at all redshifts. To investigate the origin of the O3N2 offset, we use a sample of ~100,000 star-forming galaxies from SDSS DR12 to probe the empirical correlations between emission line diagnostics and measurable galaxy physical properties. In particular, we examine how surface density of star formation, ionization parameter, nitrogen-to-oxygen (N/O) ratio, and stellar mass drive position in two key diagnostic diagrams: O3N2 and [OIII]/H$\\beta$ versus [SII]/H$\\alpha$ (O3S2). We show that, at fixed [OIII]/H$\\beta$, galaxies falling closer to the high-redshift locus in O3N2 have higher star formation density, stellar mass and N/O ratios. We also find a tight correspondence in ...

  12. Interplay of dust alignment, grain growth, and magnetic fields in polarization: lessons from the emission-to-extinction ratio

    Science.gov (United States)

    Fanciullo, L.; Guillet, V.; Boulanger, F.; Jones, A. P.

    2017-06-01

    Context. Polarized extinction and emission from dust in the interstellar medium (ISM) are hard to interpret, as their dependence on dust optical properties, grain alignment, and magnetic field orientation is complex. This is particularly true in molecular clouds. The aforementioned phenomena are usually considered independently in polarization studies, while it is likely that they all contribute and their effects have yet to be disentangled. Aims: The data available today are not yet used to their full potential. The combination of emission and extinction, in particular, provides information not available from either of them alone. We combine data from the scientific literature on polarized dust extinction with Planck data on polarized emission, and we use them to constrain the possible variations in dust and environmental conditions inside molecular clouds, and especially translucent lines of sight, taking the magnetic field orientation into account. Methods: We focused on the dependence between λmax (the wavelength of maximum polarization in extinction) and other observables such as the extinction polarization, the emission polarization, and the ratio between the two. We set out to reproduce these correlations using Monte Carlo simulations in which we varied the relevant quantities in a dust model, which are grain alignment, size distribution, and magnetic field orientation, to mimic the diverse conditions that are expected inside molecular clouds. Results: None of the quantities we chose can explain the observational data on their own: the best results are obtained when all quantities vary significantly across and within clouds. However, some of the data, most notably the stars with a low ratio of polarization in emission to polarization in extinction, are not reproduced by our simulation. Conclusions: Our results suggest not only that dust evolution is necessary to explain polarization in molecular clouds, but that a simple change in size distribution is not

  13. Ultra High Bypass Ratio Engine Research for Reducing Noise, Emissions, and Fuel Consumption

    Science.gov (United States)

    Hughes, Christopher E.; Schweitzer, Jeff

    2007-01-01

    A pictorial history of NASA development of advanced engine technologies for reducing environmental emissions and increasing performance from the 1970s to 2000s is presented. The goals of the Subsonic Fixed Wing Program portion of the NASA Fundamental Aeronautics Program are discussed, along with the areas of investigation currently being pursued by the Ultra High Bypass Partnership Element of the Subsonic Fixed Wing Program.

  14. The probability distribution functions of emission line flux measurements and their ratios

    CERN Document Server

    Wesson, R; Scicluna, P

    2016-01-01

    Many physical parameters in astrophysics are derived using the ratios of two observed quantities. If the relative uncertainties on measurements are small enough, uncertainties can be propagated analytically using simplifying assumptions, but for large normally distributed uncertainties, the probability distribution of the ratio become skewed, with a modal value offset from that expected in Gaussian uncertainty propagation. Furthermore, the most likely value of a ratio A/B is not equal to the reciprocal of the most likely value of B/A. The effect is most pronounced when the uncertainty on the denominator is larger than that on the numerator. We show that this effect is seen in an analysis of 12,126 spectra from the Sloan Digital Sky Survey. The intrinsically fixed ratio of the [O III] lines at 4959 and 5007 ${\\AA}$ is conventionally expressed as the ratio of the stronger line to the weaker line. Thus, the uncertainty on the denominator is larger, and non-Gaussian probability distributions result. By taking thi...

  15. Effects of feed restriction and forage:concentrate ratio on digestibility, methane emission, and energy utilization by goats

    Directory of Open Access Journals (Sweden)

    Ana Rebeca Castro Lima

    Full Text Available ABSTRACT This study was carried out to to evaluate how feed restriction and different forage:concentrate ratios affect digestibility, methane emission (using the SF6 technique, and energy utilization of Anglo-Nubian goats. Fifteen (15 dry and non-pregnant Anglo Nubian goats, averaging 30±2.9 kg body weight, were used. The experiment was divided into two trials, the first of which was designed to study the effects of feed restriction (0% or ad libitum; 15% of feed restriction or equivalent to 85% of ad libitum intake; and 40% of feed restriction or equivalent to 60% of ad libitum intake and the second, to study the effects of forage:concentrate (F:C ratios (75:25, 54:46, and 25:75 in the diet. The sulfur hexafluoride (SF6 tracer gas method was used to collect and estimate methane (CH4 emissions. Feed restriction level did not affect apparent total tract digestibility of dry matter (DM, organic matter, crude protein, and neutral detergent fiber. Methane emission (g d−1 decreased linearly as intake level decreased. However, energy loss in methane proportional to organic matter intake was similar among levels of feed restriction; consequently, dietary metabolizability did not differ among treatments. Methane gas (g d−1 as a function of F:C ratio revealed a quadratic response, showing the highest values when animals were fed the 46:54 F:C ratio diet (18.2 g d−1, suggesting that the decrease in absolute CH4 occurred when the level of concentrate inclusion in the diet surpassed approximately 50%. The results presented herein may be relevant for the ongoing and future efforts towards completion of an IPCC inventory regarding the contribution of goats to the greenhouse gas effects on the planet.

  16. Effect of digestibility of grass-clover silage and concentrate to forage ratio on methane emission from dairy cows

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Weisbjerg, Martin Riis

    and D, respectively. TMR forage DM consisted of 2/3 of one of the respective grass-clover silages and 1/3 maize silage, and concentrate (soya meal and wheat) proportion of DM was 20% (low) or 50% (high). Methane emissions from the cows were measured 20-22 hours in one of four chambers working after......That methane emission from dairy cows is affected by concentrate to forage ratio is well known, whereas the effect of the quality of grass-clover silage is not well described. Besides this the purpose of the present study also was to test our new facilities for measuring methane emission from dairy...... cows and the working routines. Twenty-four Holstein cows were allocated to eight different treatments and blocked according to parity. Treatments were in a 2x4 design, 2 concentrate to forage ratios and four different grass-clover silages. The grass-clover silages (A, B, C, D) were produced during...

  17. The extended narrow line region of NGC 4151. I - Emission line ratios and their implications

    Science.gov (United States)

    Penston, M. V.; Robinson, A.; Alloin, D.; Appenzeller, I.; Aretxaga, I.; Axon, D. J.; Baribaud, T.; Barthel, P.; Baum, S. A.; Boisson, C.; de Bruyn, A. G.; Clavel, J.; Colina, L.; Dennefeld, M.; Diaz, A.; Dietrich, M.; Durret, F.; Dyson, J. E.; Gondhalekar, P.; van Groningen, E.; Jablonka, P.; Jackson, N.; Kollatschny, W.; Laurikainen, E.; Lawrence, A.; Masegosa, J.; McHardy, I.; Meurs, E. J. A.; Miley, G.; Moles, M.; O'Brien, P.; O'Dea, C.; del Olmo, A.; Pedlar, A.; Perea, J.; Perez, E.; Perez-Fournon, I.; Perry, J.; Pilbratt, G.; Rees, M.; Robson, I.; Rodriguez-Pascual, P.; Rodriguez Espinosa, J. M.; Santos-Lleo, M.; Schilizzi, R.; Stasińska, G.; Stirpe, G. M.; Tadhunter, C.; Terlevich, E.; Terlevich, R.; Unger, S.; Vila-Vilaro, V.; Vilchez, J.; Wagner, S. J.; Ward, M. J.; Yates, G. J.

    1990-09-01

    The paper presents the first results from long-slit spectra of the Seyfert galaxy NGC 4151 which give average diagnostic ratios of weak lines in the Extended Narrow Line Region (ENLR) of the galaxy and the first direct density measurement in an ENLR. These data confirm that the ENLR is kinematically undisturbed gas in the disk of the galaxy which is illuminated by an ionizing continuum stronger by a factor of 13 than a power law interpolated between recently observed ultraviolet and X-ray fluxes. Explanations of this apparent excess include a hot thermal continuum, time variations, and an anisotropic rotation field.

  18. Branch-level measurement of total OH reactivity for constraining unknown BVOC emission during the CABINEX (Community Atmosphere-Biosphere INteractions Experiments-09 Field Campaign

    Directory of Open Access Journals (Sweden)

    S. Kim

    2011-03-01

    Full Text Available We present OH reactivity measurements using the comparative reactivity method with a branch enclosure technique for four different tree species (red oak, white pine, beech and red maple in the UMBS PROPHET tower footprint during the Community Atmosphere Biosphere INteraction EXperiment (CABINEX field campaign in July of 2009. Proton Transfer Reaction-Mass Spectrometry (PTR-MS was sequentially used as a detector for OH reactivity and BVOC including isoprene and monoterpenes (MT, in enclosure air, so that the measurement dataset contains both measured OH reactivity and calculated OH reactivity from well-known BVOC. The results indicate that isoprene and MT, and in one case a sesquiterpene, can account for the measured OH reactivity. Significant discrepancy between measured OH reactivity and calculated OH reactivity from isoprene and MT is found for the red maple enclosure dataset but it can be reconciled by adding reactivity from emission of a sesquiterpene, α-farnesene, detected by GC-MS. This leads us to conclude that no significant unknown BVOC emission contributed to ambient OH reactivity from these trees at least during the study period. This conclusion leads us to explore the contribution from unmeasured isoprene (the dominant OH sink in this ecosystem oxidation products such as hydroxyacetone, glyoxal, methylglyoxal and C4 and C5-hydroxycarbonyl using recently published isoprene oxidation mechanisms (Mainz Isoprene Mechanism II and Leuven Isoprene Mechanism. Evaluation of conventionally unmeasured first generation oxidation products of isoprene and their possible contribution to ambient missing OH reactivity indicates that the ratio of OH reactivity from unmeasured products over OH reactivity from MVK + MACR is strongly dependent on NO concentrations. The unmeasured oxidation products can contribute ~7.2% (8.8% from LIM and 5.6% by MIM 2 when NO = 100 pptv of the isoprene contribution towards total ambient OH reactivity. This amount can

  19. Shocked POststarbust Galaxy Survey I: Candidate Poststarbust Galaxies with Emission Line Ratios Consistent with Shocks

    CERN Document Server

    Alatalo, Katherine; Rich, Jeffrey A; Appleton, Philip N; Kewley, Lisa J; Lacy, Mark; Lanz, Lauranne; Medling, Anne M; Nyland, Kristina

    2016-01-01

    [Abridged] There are many mechanisms by which galaxies can transform from blue, star-forming spirals to red, quiescent early-type galaxies, but our current census of them does not form a complete picture. Recent studies of nearby case studies seem to have identified a population of galaxies that quench "quietly." Traditional poststarburst searches seem to catch galaxies only after they have quenched and transformed, and thus miss any objects with additional ionization mechanisms exciting the remaining gas. The Shocked POststarburst Galaxy Survey (SPOGS) aims to identify galaxies in an earlier phase of transformation, in which the nebular lines are excited via shocks instead of through star formation processes. Utilizing the OSSY measurements on the Sloan Digital Sky Survey Data Release 7 catalog, we applied Balmer absorption and shock boundary criteria to identify 1,067 SPOG candidates (SPOGs*) within z = 0.2. SPOGs* represent 0.7% of emission line galaxies (and 0.2% of OSSY). SPOGs* colors suggest that they ...

  20. Plant-specific volatile organic compound emission rates from young and mature leaves of Mediterranean vegetation

    Science.gov (United States)

    Bracho-Nunez, Araceli; Welter, Saskia; Staudt, Michael; Kesselmeier, Jürgen

    2011-08-01

    The seasonality of vegetation, i.e., developmental stages and phenological processes, affects the emission of volatile organic compounds (VOCs). Despite the potential significance, the contributions of seasonality to VOC emission quality and quantity are not well understood and are therefore often ignored in emission simulations. We investigated the VOC emission patterns of young and mature leaves of several Mediterranean plant species in relation to their physiological and developmental changes during the growing period and estimated Es. Foliar emissions of isoprenoids and oxygenated VOCs like methanol and acetone were measured online by means of a proton transfer reaction mass spectrometer (PTR-MS) and offline with gas chromatography coupled with a mass spectrometer and flame ionization detector. The results suggest that VOC emission is a developmentally regulated process and that quantitative and qualitative variability is plant species specific. Leaf ontogeny clearly influenced both the VOC Es and the relative importance of different VOCs. Methanol was the major compound contributing to the sum of target VOC emissions in young leaves (11.8 ± 10.4 μg g-1 h-1), while its contribution was minor in mature leaves (4.1 ± 4.1 μg g-1 h-1). Several plant species showed a decrease or complete subsidence of monoterpene, sesquiterpene, and acetone emissions upon maturity, perhaps indicating a potential response to the higher defense demands of young emerging leaves.

  1. Air-fuel ratio and speed control for low emission vehicles based on sliding mode techniques

    Energy Technology Data Exchange (ETDEWEB)

    Puleston, P.F. [UNLP, La Plata (Argentina). Departamento de Electrotecnia, CONICET and LEICI; Monsees, G. [Delft University of Technology (Netherlands). Faculty of Information, Technology and Systems, Control Laboratory; Spurgeon, S.K. [University of Leicester (United Kingdom). Department of Engineering, Control and Instrumentation Group

    2002-05-01

    This paper deals with the combined air-fuel ratio (AFR) and speed control of automotive engines. The robust controller is developed using dynamic sliding mode (SM) control design methods. The proposed controller set-up is tested under realistic operating conditions by means of computer simulation using a comprehensive non-linear model of a four-stroke engine, specifically provided by the automotive industry for these purposes. This accurate industrial model comprises extensive dynamics description and numerous look-up tables representing parameter characteristics obtained from experimental data. The SM controller set-up proves to be robust to model uncertainties and unknown disturbances, regulating effectively the engine speed for a wide range of set-points while maintaining the AFR at the stoichiometric value. (author)

  2. Volatile organic compound emissions from elephant grass and bamboo cultivars used as potential bioethanol crop

    Science.gov (United States)

    Crespo, E.; Graus, M.; Gilman, J. B.; Lerner, B. M.; Fall, R.; Harren, F. J. M.; Warneke, C.

    2013-02-01

    Volatile organic compound (VOC) emissions from elephant grass (Miscanthus gigantus) and black bamboo (Phyllostachys nigra) were measured online in semi-field chamber and plant enclosure experiments during growth and harvest using proton-transfer reaction mass spectrometry (PTR-MS), proton-transfer reaction ion-trap mass spectrometry (PIT-MS) and gas chromatography-mass spectrometry (GC-MS). Both cultivars are being considered for second-generation biofuel production. Before this study, no information was available on their yearly VOC emissions. This exploratory investigation shows that black bamboo is a strong isoprene emitter (daytime 28,516 ng gdwt-1 h-1) and has larger VOC emissions, especially for wound compounds from the hexanal and hexenal families, than elephant grass. Daytime emissions of methanol, acetaldehyde, acetone + propanal and acetic acid of black bamboo were 618, 249, 351, and 1034 ng gdwt-1 h-1, respectively. In addition, it is observed that elephant grass VOC emissions after harvesting strongly depend on the seasonal stage. Not taking VOC emission variations throughout the season for annual and perennial species into account, may lead to an overestimation of the impact on local air quality in dry periods. In addition, our data suggest that the use of perennial grasses for extensive growing for biofuel production have lower emissions than woody species, which might be important for regional atmospheric chemistry.

  3. Effect of Air Staging Ratios on the Burning Rate and Emissions in an Underfeed Fixed-Bed Biomass Combustor

    Directory of Open Access Journals (Sweden)

    Araceli Regueiro

    2016-11-01

    Full Text Available This experimental work studies a small-scale biomass combustor (5–12 kW with an underfed fixed bed using low air staging ratios (15%–30%. This document focuses on the influence of the operative parameters on the combustion process, so gaseous emissions and the distribution and concentration of particulate matter have also been recorded. The facility shows good stability and test repeatability. For the studied airflow ranges, the results show that increasing the total airflow rate does not increase the overall air excess ratio because the burning rate is proportionally enhanced (with some slight differences that depend on the air staging ratio. Consequently, the heterogeneous reactions at the bed remain in the so-called oxygen-limited region, and thus the entire bed operates under sub-stoichiometric conditions with regards of the char content of the biomass. In addition, tests using only primary air (no staging may increase the fuel consumption, but in a highly incomplete way, approaching a gasification regime. Some measured burning rates are almost 40% higher than previous results obtained in batch combustors due to the fixed position of the ignition front. The recorded concentration of particulate matter varies between 15 and 75 mg/Nm3, with a main characteristic diameter between 50 and 100 nm.

  4. Prospects for measuring the fuel ion ratio in burning ITER plasmas using a DT neutron emission spectrometer

    Science.gov (United States)

    Hellesen, C.; Skiba, M.; Dzysiuk, N.; Weiszflog, M.; Hjalmarsson, A.; Ericsson, G.; Conroy, S.; Andersson-Sundén, E.; Eriksson, J.; Binda, F.

    2014-11-01

    The fuel ion ratio nt/nd is an essential parameter for plasma control in fusion reactor relevant applications, since maximum fusion power is attained when equal amounts of tritium (T) and deuterium (D) are present in the plasma, i.e., nt/nd = 1.0. For neutral beam heated plasmas, this parameter can be measured using a single neutron spectrometer, as has been shown for tritium concentrations up to 90%, using data obtained with the MPR (Magnetic Proton Recoil) spectrometer during a DT experimental campaign at the Joint European Torus in 1997. In this paper, we evaluate the demands that a DT spectrometer has to fulfill to be able to determine nt/nd with a relative error below 20%, as is required for such measurements at ITER. The assessment shows that a back-scattering time-of-flight design is a promising concept for spectroscopy of 14 MeV DT emission neutrons.

  5. Biomass burning emissions of trace gases and particles in marine air at Cape Grim, Tasmania, 41° S

    Directory of Open Access Journals (Sweden)

    S. J. Lawson

    2015-07-01

    Full Text Available Biomass burning (BB plumes were measured at the Cape Grim Baseline Air Pollution Station during the 2006 Precursors to Particles campaign, when emissions from a fire on nearby Robbins Island impacted the station. Measurements made included non methane organic compounds (NMOCs (PTR-MS, particle number size distribution, condensation nuclei (CN > 3 nm, black carbon (BC concentration, cloud condensation nuclei (CCN number, ozone (O3, methane (CH4, carbon monixide (CO, hydrogen (H2, carbon dioxide (CO2, nitrous oxide (N2O, halocarbons and meteorology. During the first plume strike event (BB1, a four hour enhancement of CO (max ~ 2100 ppb, BC (~ 1400 ng m−3 and particles > 3 nm (~ 13 000 cm−3 with dominant particle mode of 120 nm were observed overnight. Dilution of the plume resulted in a drop in the dominant particle mode to 50 nm, and then growth to 80 nm over 5 h. This was accompanied by an increase in O3, suggesting that photochemical processing of air and condensation of low volatility oxidation products may be driving particle growth. The ability of particles > 80 nm (CN80 to act as CCN at 0.5 % supersaturation was investigated. The ΔCCN / ΔCN80 ratio was lowest during the fresh BB plume (56 %, higher during the particle growth event (77 % and higher still (104 % in background marine air. Particle size distributions indicate that changes to particle chemical composition, rather than particle size, are driving these changes. Hourly average CCN during both BB events were between 2000–5000 CCN cm−3, which were enhanced above typical background levels by a factor of 6–34, highlighting the dramatic impact BB plumes can have on CCN number in clean marine regions. During the 29 h of the second plume strike event (BB2 CO, BC and a range of NMOCs including acetonitrile and hydrogen cyanide (HCN were clearly enhanced and some enhancements in O3 were observed (ΔO3 / ΔCO 0.001–0.074. A shortlived increase in NMOCs by a factor of 10

  6. Biomass burning emissions of trace gases and particles in marine air at Cape Grim, Tasmania, 41° S

    Science.gov (United States)

    Lawson, S. J.; Keywood, M. D.; Galbally, I. E.; Gras, J. L.; Cainey, J. M.; Cope, M. E.; Krummel, P. B.; Fraser, P. J.; Steele, L. P.; Bentley, S. T.; Meyer, C. P.; Ristovski, Z.; Goldstein, A. H.

    2015-07-01

    Biomass burning (BB) plumes were measured at the Cape Grim Baseline Air Pollution Station during the 2006 Precursors to Particles campaign, when emissions from a fire on nearby Robbins Island impacted the station. Measurements made included non methane organic compounds (NMOCs) (PTR-MS), particle number size distribution, condensation nuclei (CN) > 3 nm, black carbon (BC) concentration, cloud condensation nuclei (CCN) number, ozone (O3), methane (CH4), carbon monixide (CO), hydrogen (H2), carbon dioxide (CO2), nitrous oxide (N2O), halocarbons and meteorology. During the first plume strike event (BB1), a four hour enhancement of CO (max ~ 2100 ppb), BC (~ 1400 ng m-3) and particles > 3 nm (~ 13 000 cm-3) with dominant particle mode of 120 nm were observed overnight. Dilution of the plume resulted in a drop in the dominant particle mode to 50 nm, and then growth to 80 nm over 5 h. This was accompanied by an increase in O3, suggesting that photochemical processing of air and condensation of low volatility oxidation products may be driving particle growth. The ability of particles > 80 nm (CN80) to act as CCN at 0.5 % supersaturation was investigated. The ΔCCN / ΔCN80 ratio was lowest during the fresh BB plume (56 %), higher during the particle growth event (77 %) and higher still (104 %) in background marine air. Particle size distributions indicate that changes to particle chemical composition, rather than particle size, are driving these changes. Hourly average CCN during both BB events were between 2000-5000 CCN cm-3, which were enhanced above typical background levels by a factor of 6-34, highlighting the dramatic impact BB plumes can have on CCN number in clean marine regions. During the 29 h of the second plume strike event (BB2) CO, BC and a range of NMOCs including acetonitrile and hydrogen cyanide (HCN) were clearly enhanced and some enhancements in O3 were observed (ΔO3 / ΔCO 0.001-0.074). A shortlived increase in NMOCs by a factor of 10 corresponded

  7. Influence of the Gas Mixture Ratio on the Correlations Between the Excimer XeCl* Emission and the Sealed Gas Temperature in Dielectric Barrier Discharge Lamps

    Institute of Scientific and Technical Information of China (English)

    徐金洲; 梁荣庆; 任兆杏

    2002-01-01

    For dielectric barrier discharge lamps filled with various gas mixture ratios, the correlations between the excimer XeCl* emission and the sealed gas temperature have been founded, and a qualitative explication is presented. For gas mixture with chlorine larger than 3%, the emission intensity increases with the sealed gas temperature, while with chlorine about 2%, the emission intensity decreases with the increase in the gas temperature, and could be improved by cooling water. However, if chlorine is less than 1.5%, the discharge appears to be a mixture mode with filaments distributed in a diffused glow-like discharge, and the UV emission is independent on the gas temperature.

  8. Modeling signal-to-noise ratio of otoacoustic emissions in workers exposed to different industrial noise levels

    Directory of Open Access Journals (Sweden)

    Parvin Nassiri

    2016-01-01

    Full Text Available Introduction: Noise is considered as the most common cause of harmful physical effects in the workplace. A sound that is generated from within the inner ear is known as an otoacoustic emission (OAE. Distortion-product otoacoustic emissions (DPOAEs assess evoked emission and hearing capacity. The aim of this study was to assess the signal-to-noise ratio in different frequencies and at different times of the shift work in workers exposed to various levels of noise. It was also aimed to provide a statistical model for signal-to-noise ratio (SNR of OAEs in different frequencies based on the two variables of sound pressure level (SPL and exposure time. Materials and Methods: This case–control study was conducted on 45 workers during autumn 2014. The workers were divided into three groups based on the level of noise exposure. The SNR was measured in frequencies of 1000, 2000, 3000, 4000, and 6000 Hz in both ears, and in three different time intervals during the shift work. According to the inclusion criterion, SNR of 6 dB or greater was included in the study. The analysis was performed using repeated measurements of analysis of variance, spearman correlation coefficient, and paired samples t-test. Results: The results showed that there was no statistically significant difference between the three exposed groups in terms of the mean values of SNR (P > 0.05. Only in signal pressure levels of 88 dBA with an interval time of 10:30–11:00 AM, there was a statistically significant difference between the right and left ears with the mean SNR values of 3000 frequency (P = 0.038. The SPL had a significant effect on the SNR in both the right and left ears (P = 0.023, P = 0.041. The effect of the duration of measurement on the SNR was statistically significant in both the right and left ears (P = 0.027, P < 0.001. Conclusion: The findings of this study demonstrated that after noise exposure during the shift, SNR of OAEs reduced from the

  9. Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): prospects for a feedback mechanism for surgical laser systems.

    Science.gov (United States)

    Kanawade, Rajesh; Mahari, Fanuel; Klämpfl, Florian; Rohde, Maximilian; Knipfer, Christian; Tangermann-Gerk, Katja; Adler, Werner; Schmidt, Michael; Stelzle, Florian

    2015-01-01

    The research work presented in this paper focuses on qualitative tissue differentiation by monitoring the intensity ratios of atomic emissions using 'Laser Induced Breakdown Spectroscopy' (LIBS) on the plasma plume created during laser tissue ablation. The background of this study is to establish a real time feedback control mechanism for clinical laser surgery systems during the laser ablation process. Ex-vivo domestic pig tissue samples (muscle, fat, nerve and skin) were used in this experiment. Atomic emission intensity ratios were analyzed to find a characteristic spectral line for each tissue. The results showed characteristic elemental emission intensity ratios for the respective tissues. The spectral lines and intensity ratios of these specific elements varied among the different tissue types. The main goal of this study is to qualitatively and precisely identify different tissue types for tissue specific laser surgery. © 2015 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag.

  10. Enhancement of red to orange emission ratio of YPO4:Eu3+,Ce3+ and its dependence on Ce3+ concentration

    Institute of Scientific and Technical Information of China (English)

    ZHAN Shiping; GAO Yongyi; LIU Yunxin; ZHONG Hui

    2012-01-01

    Eu3+ and Ce3+ co-doped YPO4 microspheres were synthesized by hydrothermal method without template.The emission spectra showed that the red emission centered at 618 nm could be readily increased relatively to the orange emission centered at 590 nm by controlling the doping concentration of Ce3+ ion.The investigation based on excitation spectra and decay curves demonstrated that the doped Ce3+ ions took two efficient energy transfers to Eu3+ ions and affected the lifetime of the emission states ofEu3+ ions so that the emission spectra of Eu3+ ion were accordingly tuned with the Ce3+ content increasing.This controllable red (5D0→7F2) to orange (5D0→7F1) emission ratio of YPO4:Eu3+,Ce3+ made it very promising for encoded anti-fake labels and bio-labels.

  11. Influence of fuel type, dilution and equivalence ratio on the emission reduction from the auto-ignition in an Homogeneous Charge Compression Ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim [UPMC Universite Paris 06, ENSCP, 11 rue de Pierre et Marie Curie, 75005 Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert, 4 place Jussieu, 75252 Paris cedex 05 (France); Universite Libre de Bruxelles, TIPs - Fluid Physics, CP165/67, 50 Avenue F.D. Roosevelt, 1050 Brussels (Belgium); Cavadias, Simeon [UPMC Universite Paris 06, ENSCP, 11 rue de Pierre et Marie Curie, 75005 Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert, 4 place Jussieu, 75252 Paris cedex 05 (France); Amouroux, Jacques [UPMC Universite Paris 06, ENSCP, 11 rue de Pierre et Marie Curie, 75005 Paris (France)

    2010-04-15

    One technology that seems to be promising for automobile pollution reduction is the Homogeneous Charge Compression Ignition (HCCI). This technology still faces auto-ignition and emission-control problems. This paper focuses on the emission problem, since it is incumbent to realize engines that pollute less. For this purpose, this paper presents results concerning the measurement of the emissions of CO, NO{sub x}, CO{sub 2}, O{sub 2} and hydrocarbons. HCCI conditions are used, with equivalence ratios between 0.26 and 0.54, inlet temperatures of 70 C and 120 C and compression ratios of 10.2 and 13.5, with different fuel types: gasoline, gasoline surrogate, diesel, diesel surrogate and mixtures of n-heptane/toluene. The effect of dilution is considered for gasoline, while the effect of the equivalence ratio is considered for all the fuels. No significant amount of NO{sub x} has been measured. It appeared that the CO, O{sub 2} and hydrocarbon emissions were reduced by decreasing the toluene content of the fuel and by decreasing the dilution. The opposite holds for CO{sub 2}. The reduction of the hydrocarbon emission appears to compete with the reduction of the CO{sub 2} emission. Diesel seemed to produce less CO and hydrocarbons than gasoline when auto-ignited. An example of emission reduction control is presented in this paper. (author)

  12. Emissions of isoprenoids and oxygenated biogenic volatile organic compounds from a New England mixed forest

    Directory of Open Access Journals (Sweden)

    K. A. McKinney

    2011-05-01

    Full Text Available Fluxes of biogenic volatile organic compounds, including isoprene, monoterpenes, and oxygenated VOCs measured above a mixed forest canopy in central Massachusetts during the 2005 and 2007 growing seasons are reported. Mixing ratios were measured using proton transfer reaction mass spectrometry (PTR-MS and fluxes computed by the disjunct eddy covariance technique. Isoprene was by far the predominant BVOC emitted at this site, with summer mid-day average fluxes of 5.3 and 4.4 mg m−2 hr−1 in 2005 and 2007, respectively. In comparison, mid-day average fluxes of monoterpenes were 0.21 and 0.15 mg m−2 hr−1 in each of these years. On short times scales (days, the diel pattern in emission rate compared well with a standard emission algorithm for isoprene. The general shape of the seasonal cycle and the observed decrease in isoprene emission rate in early September was, however, not well captured by the model. Monoterpene emission rates exhibited dependence on light as well as temperature, as determined from the improved fit to the observations obtained by including a light-dependent term in the model. The mid-day average flux of methanol from the canopy was 0.14 mg m−2 hr−1 in 2005 and 0.19 mg m−2 hr−1 in 2007, but the maximum flux was observed in spring (29 May 2007, when the flux reached 1.0 mg m−2 hr−1. This observation is consistent with enhanced methanol production during leaf expansion. Summer mid-day fluxes of acetone were 0.15 mg m−2 hr−1 during a short period in 2005, but only 0.03 mg m−2 h−1 averaged over 2007. Episodes of negative fluxes of oxygenated VOCs, particularly acetone, were observed periodically, especially in 2007. Thus, deposition within the canopy could help explain the low season-averaged flux of acetone in 2007. Fluxes of species of biogenic origin

  13. Constraining the dynamical importance of hot gas and radiation pressure in quasar outflows using emission line ratios

    CERN Document Server

    Stern, Jonathan; Zakamska, Nadia L; Hennawi, Joseph F

    2015-01-01

    Quasar feedback models often predict an expanding hot gas bubble which drives a galaxy-scale outflow. In many circumstances the hot gas is predicted to radiate inefficiently, making the hot bubble hard to observe directly. We present an indirect method to detect the presence of a hot bubble using hydrostatic photoionization models of the cold (10^4 K) line-emitting gas. These models assume that the cold gas is in pressure equilibrium with either the hot gas pressure or with the radiation pressure, whichever is larger. We compare our models with observations of the broad line region (BLR), the inner face of the dusty torus, the narrow line region (NLR), and the extended NLR, and thus constrain the hot gas pressure over a dynamical range of 10^5 in radius, from 0.1 pc to 10 kpc. We find that the emission line ratios observed in the average quasar spectrum are consistent with radiation-pressure-dominated models on all scales. On scales > L_AGN/c inferred for galaxy-scale outflows in luminous quasars. This appare...

  14. A High Fraction of Ly-alpha-Emitters Among Galaxies with Extreme Emission Line Ratios at z ~ 2

    CERN Document Server

    Erb, Dawn K; Steidel, Charles C; Strom, Allison L; Rudie, Gwen C; Trainor, Ryan F; Shapley, Alice E; Reddy, Naveen A

    2016-01-01

    Star-forming galaxies form a sequence in the [OIII]/H-beta vs. [NII]/H-alpha diagnostic diagram, with low metallicity, highly ionized galaxies falling in the upper left corner. Drawing from a large sample of UV-selected star-forming galaxies at z~2 with rest-frame optical nebular emission line measurements from Keck-MOSFIRE, we select the extreme ~5% of the galaxies lying in this upper left corner, requiring log([NII]/H-alpha) = 0.75. These cuts identify galaxies with 12 + log(O/H) 20 A. We compare the equivalent width distribution of a sample of 522 UV-selected galaxies at 2.0ratios; this sample has mean (median) Ly-alpha equivalent width -1 (-4) A, and only 9% of these galaxies qualify as LAEs. The extreme galaxies typically have lower attenuation at Ly-alpha than those in the comparison sample, and have ~50% lower median oxygen abundances. Both factors are likely to facilitate the escape of Ly-alpha: in less dusty galaxies Ly-alpha photons are l...

  15. Novel application of a combustion chamber for experimental assessment of biomass burning emission

    Science.gov (United States)

    Lusini, Ilaria; Pallozzi, E.; Corona, P.; Ciccioli, P.; Calfapietra, C.

    2014-09-01

    Biomass burning is an important ecological factor in the Mediterranean ecosystem and a significant source of several atmospheric gases and particles. This paper demonstrates the performance of a recently developed combustion chamber, showing its capability in estimating the emission from wildland fire through a case study with dried leaf litter of Quercus robur. The combustion chamber was equipped with a thermocouple, a high resolution balance, an epiradiometer, two different sampling lines to collect volatile organic compounds (VOCs) and particles, and a portable analyzer to measure carbon monoxide (CO) and carbon dioxide (CO2) emission. VOCs were determined by gas chromatography-mass spectrometry (GC-MS) after enrichment on adsorption traps, but also monitored on-line with a proton-transfer-reaction mass spectrometer (PTR-MS). Preliminary qualitative analyses of emissions from burning dried leaf litter of Q. robur found CO and CO2 as the main gaseous species emitted during the flaming and smoldering stages. Aromatic VOCs, such as benzene and toluene, were detected together with several oxygenated VOCs, like acetaldehyde and methanol. Moreover, a clear picture of the carbon balance during the biomass combustion was obtained with the chamber used. The combustion chamber will allow to distinguish the contribution of different plant tissues to the emissions occurring during different combustion phases.

  16. Emissions of isoprenoids and oxygenated biogenic volatile organic compounds from a New England mixed forest

    Directory of Open Access Journals (Sweden)

    K. A. McKinney

    2010-11-01

    Full Text Available Fluxes of biogenic volatile organic compounds, including isoprene, monoterpenes, and oxygenated VOCs measured above a mixed forest canopy in western Massachusetts during the 2005 and 2007 growing seasons are reported. Measurements were made using proton transfer reaction mass spectrometry (PTR-MS and converted to fluxes using the disjunct eddy covariance technique. Isoprene was by far the predominant BVOC emitted at this site, with summer mid-day average fluxes of 5.3 and 4.4 mg m−2 h−1 in 2005 and 2007, respectively. In comparison, mid-day average fluxes of monoterpenes were 0.21 and 0.15 mg m−2 h−1 in each of these years. On short times scales (days, the diel pattern in emission rate compared well with a standard emission algorithm for isoprene. The general shape of the seasonal cycle and the observed decrease in isoprene emission rate in early September was, however, not well captured by the model. Monoterpene emission rates exhibited dependence on light as well as temperature, as determined from the improved fit to the observations obtained by including a light-dependent term in the model. The mid-day average flux of methanol from the canopy was 0.14 mg m−2 h−1 in 2005 and 0.19 mg m−2 h−1 in 2007, but the maximum flux was observed in spring (29 May 2007, when the flux reached 1.0 mg m−2 h−1. This observation is consistent with enhanced methanol production during leaf expansion. Summer mid-day fluxes of acetone were 0.15 mg m−2 h−1 during a short period in 2005, but only 0.03 mg m−2 h−1 averaged over 2007. Episodes of negative fluxes of oxygenated VOCs, particularly acetone, were observed periodically, especially in 2007. Thus, deposition within the canopy could help explain the low season-averaged flux of acetone in 2007. Fluxes of species of biogenic origin at

  17. Effects of different influent C/N ratios on the performance of various earthworm eco-filter systems: nutrient removal and greenhouse gas emission.

    Science.gov (United States)

    Huang, Wei; Zhao, Yongjun; Wu, Jiangtao; Zhang, Jibiao; Zheng, Zheng

    2014-01-01

    In this study, we sought to identify influent carbon-to-nitrogen (C/N) ratios that yield relatively high nutrient removal efficiency with relatively low greenhouse gas (GHG) emissions. The earthworm eco-filter (EE) system, which is composed of earthworms and plants (EP group), was found to be optimal for maximizing nutrient removal while reducing GHG emissions. In this EE system, the optimal influent C/N ratio for nutrient removal and GHG emission under C2N treatment conditions. Nutrient removal efficiency under this condition was 85.19 ± 6.40% chemical oxygen demand, 71.99 ± 11.28% total nitrogen, and 77.91 ± 8.51% total phosphorus, while the CO2 emission rate was 678.89 ± 201.87 mg m(-2) h(-1). Moreover, the highest nutrient removal and GHG emission rates were both achieved in late summer (August). Thus, carbon variation, season, system variation, as well as synergistic interaction between system variations and seasons, significantly affect nutrient removal efficiencies and GHG emissions.

  18. Characterization of polycyclic aromatic hydrocarbon emissions in the particulate and gas phase from smoldering mosquito coils containing various atomic hydrogen/carbon ratios

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tzu-Ting, E-mail: d89844001@ntu.edu.tw [Department of Environmental Engineering and Health, Yuanpei University, No. 306, Yuanpei St., Hsin Chu 30015, Taiwan (China); Lin, Shaw-Tao [Department of Applied Chemistry, Providence University, No. 200 Chung-Chi Rd., Salu Dist., Taichung City 43301, Taiwan (China); Lin, Tser-Sheng [Department of Safety, Health, and Environmental Engineering, National United University, 2 Lien Da, Maioli 360, Taiwan (China); Chung, Hua-Yi [Department of Environmental Engineering and Health, Yuanpei University, No. 306, Yuanpei St., Hsin Chu 30015, Taiwan (China)

    2015-02-15

    The polycyclic aromatic hydrocarbon emissions in particulate and gas phases generated from smoldering mosquito coils containing various atomic H/C ratios were examined. Five types of mosquito coils were burned in a test chamber with a total airflow rate of 8.0 L/min at a constant relative humidity and temperature. The concentrations of individual PAHs were determined using the GC/MS technique. Among the used mosquito coils, the atomic H/C ratio ranged from 1.23 to 1.57, yielding total mass, gaseous, and particulate PAH emission factors of 28.17–78.72 mg/g, 26,139.80–35,932.98 and 5735.22–13,431.51 ng/g, respectively. The various partitions of PAHs in the gaseous and particulate phases were in the ranges, 70.26–83.70% and 16.30–29.74% for the utilized mosquito coils. The carcinogenic potency of PAH emissions in the particulate phase (203.82–797.76 ng/g) was approximately 6.92–25.08 times higher than that of the gaseous phase (26.27–36.07 ng/g). Based on the analyses of PAH emissions, mosquito coils containing the lowest H/C ratio, a low oxygen level, and additional additives (i.e., CaCO{sub 3}) are recommended for minimizing the production of total PAH emission factors and carcinogenic potency. - Highlights: • PAHs emissions are influenced by mosquito coils containing various atomic H/C ratios. • The PAHs generated by burning mosquito coils mainly occur in the gaseous phase. • Total TEQ emission factors of PAHs mainly consisted of the particulate phase (> 87%). • The BaP and BaA accounted for 71.13–77.28% of the total TEQ emission factors. • Special PAH ratios were regarded as characteristic ratios for burning mosquito coil.

  19. Influence of the overfire air ratio on the NO(x) emission and combustion characteristics of a down-fired 300-MW(e) utility boiler.

    Science.gov (United States)

    Ren, Feng; Li, Zhengqi; Chen, Zhichao; Fan, Subo; Liu, Guangkui

    2010-08-15

    Down-fired boilers used to burn low-volatile coals have high NO(x) emissions. To find a way of solving this problem, an overfire air (OFA) system was introduced on a 300 MW(e) down-fired boiler. Full-scale experiments were performed on this retrofitted boiler to explore the influence of the OFA ratio (the mass flux ratio of OFA to the total combustion air) on the combustion and NO(x) emission characteristics in the furnace. Measurements were taken of gas temperature distributions along the primary air and coal mixture flows, average gas temperatures along the furnace height, concentrations of gases such as O(2), CO, and NO(x) in the near-wall region and carbon content in the fly ash. Data were compared for five different OFA ratios. The results show that as the OFA ratio increases from 12% to 35%, the NO(x) emission decreases from 1308 to 966 mg/Nm(3) (at 6% O(2) dry) and the carbon content in the fly ash increases from 6.53% to 15.86%. Considering both the environmental and economic effect, 25% was chosen as the optimized OFA ratio.

  20. The molar H: Corg ratio of biochar is a key factor in mitigating N2O emissions from soil

    NARCIS (Netherlands)

    Cayuela, M.L.; Jeffery, S.L.; Zwieten, van L.

    2015-01-01

    A previously published meta-analysis of biochar impacts on soil N2O emissions by Cayuela et al. (2014) found a “grand mean” reduction in N2O emissions of 54 ± 6% following biochar application to soil. Here we update this analysis to include 26 additional manuscripts bringing the total to 56

  1. The molar H: Corg ratio of biochar is a key factor in mitigating N2O emissions from soil

    NARCIS (Netherlands)

    Cayuela, M.L.; Jeffery, S.L.; Zwieten, van L.

    2015-01-01

    A previously published meta-analysis of biochar impacts on soil N2O emissions by Cayuela et al. (2014) found a “grand mean” reduction in N2O emissions of 54 ± 6% following biochar application to soil. Here we update this analysis to include 26 additional manuscripts bringing the total to 56 articles

  2. Impact of diffuse light on isoprene and monoterpene emissions from a mixed temperate forest

    Science.gov (United States)

    Laffineur, Q.; Aubinet, M.; Schoon, N.; Amelynck, C.; Müller, J.-F.; Dewulf, J.; Steppe, K.; Heinesch, B.

    2013-08-01

    This study investigated the impact of diffuse light on canopy scale emission of isoprene and monoterpenes measured continuously above a mixed temperate forest, using the disjunct eddy-covariance by mass scanning technique with a proton transfer reaction-mass spectrometer (PTR-MS) instrument. To assess this impact, the relationship between emissions/radiation and emissions/gross primary production (GPP) under clear sky and cloudy conditions were analysed. Under cloudy conditions (high proportion of diffuse radiation), the isoprene and monoterpene fluxes were enhanced compared to clear sky conditions (low proportion of diffuse radiation) at equivalent temperature and above-canopy total radiation. The whole-canopy enzymatic activity of the metabolic isoprene production pathway, however, was suggested to be lower under cloudy conditions than under clear sky conditions at equivalent temperature. The mechanisms behind these observations are probably linked to the better penetration of diffuse radiation in the canopy. Shade leaves/needles receive more radiation in cloudy conditions than in clear sky conditions, thereby inducing the observed effects.

  3. Effects of forage-to-concentrate ratio and dietary fiber manipulation on gas emissions and olfactometry from manure of Holstein heifers.

    Science.gov (United States)

    Lascano, G J; Heinrichs, A J; Gary, R R; Topper, P A; Brandt, R C; Adviento-Borbe, A; Fabian, E E

    2015-03-01

    The objective of this experiment was to determine the effects of differing ratios of forage to concentrate (F:C) and fiber levels on odor and gas emissions from manure. Eight Holstein dairy heifers (362.45±4.53 d of age and 335.6±7.41 kg of body weight) were randomly assigned to a split-plot, 4×4 Latin square design (21-d periods) with F:C as the whole plot (20 or 80% forage) and fiber level as sub-plot (0, 20, 40, or 60% inclusion of corn stover). Gas concentration was determined using an infrared photoacoustic analyzer over a 24-h period using a steady-state flux chamber setup. Odorous air samples were collected from chamber headspace and evaluated by 6 human assessors using a forced-choice dynamic olfactometry technique. Emissions of CO2 were greater for the low than high concentrate diets, and no differences were observed for NH3 and CH4 emissions between F:C. Although F:C had no effect on NH3 emissions, as dietary fiber increased, a linear interaction with opposite effects was found for high and low concentrate diets. Nitrous oxide emissions were below minimum detectable levels. Neither F:C nor neutral detergent fiber level affected odor intensity. Odor emissions were successfully assessed, and manipulation of dietary fiber has the potential to influence CH4 and NH3 emissions.

  4. Quantification of emissions due to the natural gas storage well-casing blowout at Aliso Canyon/SS-25 using tracer flux ratio methods.

    Science.gov (United States)

    Herndon, S. C.; Daube, C.; Jervis, D.; Yacovitch, T. I.; Roscioli, J. R.; Curry, J.; Nelson, D. D.; Knighton, W. B.

    2016-12-01

    The methane emission rate from the well blowout at Aliso Canyon Natural Gas Storage Facility in Porter Ranch, California was quantified using the tracer flux ratio method (TFR). Over 400 tracer plume transects were collected, each lasting 15-300 seconds, using instrumentation aboard a mobile platform on 25 days between December 21, 2015 and March 9, 2016. The leak rate from October 23rd to February 11th has been estimated here using a combination of our leak rate measurements (TFR) and the flight mass balance (FMB) data [Conley et al., 2016]. The TFR approach employed here is assessing only the leaks due to the SS-25 well blowout and excludes other possible emissions at the facility. By "calibrating" the FMB dataset, the leak rate is integrated from Oct 23rd to December 21th. The sum of the inferred inferred and measured meissions suggests a total leak burden of 86,022 ± 8,393 metric tons of CH4. The primary uncertainty in this value is due to the uncertainty in the emission rate prior to the beginning of the TFR quantification. The ethane to methane enhancement ratio observed downwind of the leak site is consistent with the content of ethane in the natural gas at this site and provides definitive evidence that the methane emission rate quantified via tracer flux ratio is not due to a nearby landfill or other potential biogenic sources.

  5. The ultraviolet emission properties of five low-redshift active galactic nuclei at high signal-to-noise ratio and spectral resolution

    Science.gov (United States)

    Laor, Ari; Bahcall, John N.; Jannuzi, Buell T.; Schneider, Donald P.; Green, Richard F.; Hartig, George F.

    1994-01-01

    We analyze the ultraviolet (UV) emission line and continuum properties of five low-redshift active galactic nuclei (four luminous quasars: PKS 0405-123, H1821 + 643, PG 0953 + 414, and 3C 273, and one bright Seyfert 1 galaxy: Mrk 205). The HST spectra have higher signal-to-noise ratios (typically approximately 60 per resolution element) and spectral resolution (R = 1300) than all previously published UV spectra used to study the emission characteristics of active galactic nuclei. We include in the analysis ground-based optical spectra covering H beta and the narrow (O III) lambda lambda 4959, 5007 doublet. New results are obtained and presented.

  6. Summit CO2 emission rates by the CO2/SO2 ratio method at Kīlauea Volcano, Hawaiʻi, during a period of sustained inflation

    Science.gov (United States)

    Hager, S.A.; Gerlach, T.M.; Wallace, P.J.

    2008-01-01

    The emission rate of carbon dioxide escaping from the summit of Kīlauea Volcano, Hawaiʻi, proved highly variable, averaging 4900 ± 2000 metric tons per day (t/d) in June–July 2003 during a period of summit inflation. These results were obtained by combining over 90 measurements of COSPEC-derived SO2emission rates with synchronous CO2/SO2 ratios of the volcanic gas plume along the summit COSPEC traverse. The results are lower than the CO2 emission rate of 8500 ± 300 t/d measured by the same method in 1995–1999 during a period of long-term summit deflation [Gerlach, T.M., McGee, K.A., Elias, T., Sutton, A.J. and Doukas, M.P., 2002. Carbon dioxide emission rate of Kīlauea Volcano: Implications for primary magma and the summit reservoir. Journal of Geophysical Research-Solid Earth, 107(B9): art. no.-2189.]. Analysis of the data indicates that the emission rates of the present study likely reflect changes in the magma supply rate and residence time in the summit reservoir. It is also likely that emission rates during the inflation period were heavily influenced by SO2 pulses emitted adjacent to the COSPEC traverse, which biased CO2/SO2 ratios towards low values that may be unrepresentative of the global summit gas plume. We conclude that the SO2 pulses are consequences of summit re-inflation under way since 2003 and that CO2 emission rates remain comparable to, but more variable than, those measured prior to re-inflation.

  7. Effect of forage-to-concentrate ratio in dairy cow diets on emission of methane, carbon dioxide, and ammonia, lactation performance, and manure excretion.

    Science.gov (United States)

    Aguerre, M J; Wattiaux, M A; Powell, J M; Broderick, G A; Arndt, C

    2011-06-01

    Holstein cows housed in a modified tie-stall barn were used to determine the effect of feeding diets with different forage-to-concentrate ratios (F:C) on performance and emission of CH(4), CO(2) and manure NH(3)-N. Eight multiparous cows (means ± standard deviation): 620 ± 68 kg of body weight; 52 ± 34 d in milk and 8 primiparous cows (546 ± 38 kg of body weight; 93 ± 39 d in milk) were randomly assigned to 1 of 4 air-flow controlled chambers, constructed to fit 4 cows each. Chambers were assigned to dietary treatment sequences in a single 4 × 4 Latin square design. Dietary treatments, fed as 16.2% crude protein total mixed rations included the following F:C ratio: 47:53, 54:46, 61:39, and 68:32 [diet dry matter (DM) basis]. Forage consisted of alfalfa silage and corn silage in a 1:1 ratio. Cow performance and emission data were measured on the last 7 d and the last 4 d, respectively of each 21-d period. Air samples entering and exiting each chamber were analyzed with a photo-acoustic field gas monitor. In a companion study, fermentation pattern was studied in 8 rumen-cannulated cows. Increasing F:C ratio in the diet had no effect on DM intake (21.1 ± 1.5 kg/d), energy-corrected milk (ECM, 37.4 ± 2.2 kg/d), ECM/DM intake (1.81 ± 0.18), yield of milk fat, and manure excretion and composition; however, it increased milk fat content linearly by 7% and decreased linearly true protein, lactose, and solids-not-fat content (by 4, 1, and 2%, respectively) and yield (by 10, 6, and 6%, respectively), and milk N-to-N intake ratio. On average 93% of the N consumed by the cows in the chambers was accounted for as milk N, manure N, or emitted NH(3)-N. Increasing the F:C ratio also increased ruminal pH linearly and affected concentrations of butyrate and isovalerate quadratically. Increasing the F:C ratio from 47:53 to 68:32 increased CH(4) emission from 538 to 648 g/cow per day, but had no effect on manure NH(3)-N emission (14.1 ± 3.9 g/cow per day) and CO(2) emission

  8. Biogenic Emissions of Light Alkenes from a Coniferous Forest

    Science.gov (United States)

    Rhew, R. C.; Turnipseed, A. A.; Martinez, L.; Shen, S.; De Gouw, J. A.; Warneke, C.; Koss, A.; Lerner, B. M.; Miller, B. R.; Smith, J. N.; Guenther, A. B.

    2014-12-01

    Alkenes are reactive hydrocarbons that play important roles in the photochemical production of tropospheric ozone and in the formation of secondary organic aerosols. The light alkenes (C2-C4) originate from both biogenic and anthropogenic sources and include C2H4 (ethene), C3H6 (propene) and C4H8 (1-butene, 2-butene, 2-methylpropene). Light alkenes are used widely as chemical feedstocks because their double bond makes them versatile for industrial reactions. Their biogenic sources are poorly characterized, with most global emissions estimates relying on laboratory-based studies; net ecosystem emissions have been measured at only one site thus far. Here we report net ecosystem fluxes of light alkenes and isoprene from a semi-arid ponderosa pine forest in the Rocky Mountains of Colorado, USA. Canopy scale fluxes were measured using relaxed eddy accumulation (REA) techniques on the 28-meter NCAR tower in the Manitou Experimental Forest Observatory. Updrafts and downdrafts were determined by sonic anemometry and segregated into 'up' and 'down' reservoirs over the course of an hour. Samples were then measured on two separate automated gas chromatographs (GCs). The first GC measured light hydrocarbons (C2-C6 alkanes and C2-C5 alkenes) by flame ionization detection (FID). The second GC measured halocarbons (methyl chloride, CFC-12, and HCFC-22) by electron capture detection (ECD). Additional air measurements from the top of the tower included hydrocarbons and their oxidation products by Proton Transfer Reaction Mass Spectrometry (PTR-MS). Three field intensives were conducted during the summer of 2014. The REA flux measurements showed that ethene, propene and the butene emissions have significant diurnal cycles, with maximum emissions at midday. The light alkenes contribute significantly to the overall biogenic source of reactive hydrocarbons and have a temporal variability that may be associated with physical and biological parameters. These ecosystem scale measurements

  9. SOA Formation Potential of Emissions from Soil and Leaf Litter

    Science.gov (United States)

    Faiola, C. L.; Vanderschelden, G. S.; Wen, M.; Cobos, D. R.; Jobson, B. T.; VanReken, T. M.

    2013-12-01

    In the United States, emissions of volatile organic compounds (VOCs) from natural sources exceed all anthropogenic sources combined. VOCs participate in oxidative chemistry in the atmosphere and impact the concentrations of ozone and particulate material. The formation of secondary organic aerosol (SOA) is particularly complex and is frequently underestimated using state-of-the-art modeling techniques. We present findings that suggest emissions of important SOA precursors from soil and leaf litter are higher than current inventories would suggest, particularly under conditions typical of Fall and Spring. Soil and leaf litter samples were collected at Big Meadow Creek from the University of Idaho Experimental Forest. The dominant tree species in this area of the forest are ponderosa pine, Douglas-fir, and western larch. Samples were transported to the laboratory and housed within a 0.9 cubic meter Teflon dynamic chamber where VOC emissions were continuously monitored with a GC-FID-MS and PTR-MS. Aerosol was generated from soil and leaf litter emissions by pumping the emissions into a 7 cubic meter Teflon aerosol growth chamber where they were oxidized with ozone in the absence of light. The evolution of particle microphysical and chemical characteristics was monitored over the following eight hours. Particle size distribution and chemical composition were measured with a SMPS and HR-ToF-AMS respectively. Monoterpenes dominated the emission profile with emission rates up to 283 micrograms carbon per meter squared per hour. The dominant monoterpenes emitted were beta-pinene, alpha-pinene, and delta-3-carene in descending order. The composition of the SOA produced was similar to biogenic SOA formed from oxidation of ponderosa pine emissions and alpha-pinene. Measured soil/litter monoterpene emission rates were compared with modeled canopy emissions. Results suggest that during fall and spring when tree emissions are lower, monoterpene emissions within forests may be

  10. SDSS-IV MaNGA: the impact of diffuse ionized gas on emission-line ratios, interpretation of diagnostic diagrams and gas metallicity measurements

    Science.gov (United States)

    Zhang, Kai; Yan, Renbin; Bundy, Kevin; Bershady, Matthew; Haffner, L. Matthew; Walterbos, René; Maiolino, Roberto; Tremonti, Christy; Thomas, Daniel; Drory, Niv; Jones, Amy; Belfiore, Francesco; Sánchez, Sebastian F.; Diamond-Stanic, Aleksandar M.; Bizyaev, Dmitry; Nitschelm, Christian; Andrews, Brett; Brinkmann, Jon; Brownstein, Joel R.; Cheung, Edmond; Li, Cheng; Law, David R.; Roman Lopes, Alexandre; Oravetz, Daniel; Pan, Kaike; Storchi Bergmann, Thaisa; Simmons, Audrey

    2017-04-01

    Diffuse ionized gas (DIG) is prevalent in star-forming galaxies. Using a sample of 365 nearly face-on star-forming galaxies observed by Mapping Nearby Galaxies at APO, we demonstrate how DIG in star-forming galaxies impacts the measurements of emission-line ratios, hence the interpretation of diagnostic diagrams and gas-phase metallicity measurements. At fixed metallicity, DIG-dominated low ΣHα regions display enhanced [S II]/Hα, [N II]/Hα, [O II]/Hβ and [O I]/Hα. The gradients in these line ratios are determined by metallicity gradients and ΣHα. In line ratio diagnostic diagrams, contamination by DIG moves H II regions towards composite or low-ionization nuclear emission-line region (LI(N)ER)-like regions. A harder ionizing spectrum is needed to explain DIG line ratios. Leaky H II region models can only shift line ratios slightly relative to H II region models, and thus fail to explain the composite/LI(N)ER line ratios displayed by DIG. Our result favours ionization by evolved stars as a major ionization source for DIG with LI(N)ER-like emission. DIG can significantly bias the measurement of gas metallicity and metallicity gradients derived using strong-line methods. Metallicities derived using N2O2 are optimal because they exhibit the smallest bias and error. Using O3N2, R23, N2 = [N II]/Hα and N2S2Hα to derive metallicities introduces bias in the derived metallicity gradients as large as the gradient itself. The strong-line method of Blanc et al. (IZI hereafter) cannot be applied to DIG to get an accurate metallicity because it currently contains only H II region models that fail to describe the DIG.

  11. A Coherent Study of Emission Lines from Broad-Band Photometry: Specific Star-Formation Rates and [OIII]/H{\\beta} Ratio at 3 < z < 6

    CERN Document Server

    Faisst, A L; Hsieh, B C; Laigle, C; Salvato, M; Tasca, L; Cassata, P; Davidzon, I; Ilbert, O; Fevre, O Le; Masters, D; McCracken, H J; Steinhardt, C; Silverman, J D; De Barros, S; Hasinger, G; Scoville, N Z

    2016-01-01

    We measure the H{\\alpha} and [OIII] emission line properties as well as specific star-formation rates (sSFR) of spectroscopically confirmed 33 cannot be fully explained in a picture of cold accretion driven growth. We find a progressively increasing [OIII]{\\lambda}5007/H{\\beta} ratio out to z~6, consistent with the ratios in local galaxies selected by increasing H{\\alpha} EW (i.e., sSFR). This demonstrates the potential of using "local high-z analogs" to investigate the spectroscopic properties and relations of galaxies in the re-ionization epoch.

  12. Volcanic SO2 and SiF4 visualization using 2-D thermal emission spectroscopy – Part 1: Slant-columns and their ratios

    Directory of Open Access Journals (Sweden)

    M. Grutter

    2012-02-01

    Full Text Available The composition and emission rates of volcanic gas plumes provide insight of the geologic internal activity, atmospheric chemistry, aerosol formation and radiative processes around it. Observations are necessary for public security and the aviation industry. Ground-based thermal emission infrared spectroscopy, which uses the radiation of the volcanic gas itself, allows for continuously monitoring during day and night from a safe distance. We present measurements on Popocatépetl volcano based on thermal emission spectroscopy during different campaigns between 2006–2009 using a Scanning Infrared Gas Imaging System (SIGIS. The experimental set-up, measurement geometries and analytical algorithms are described. The equipment was operated from a safe distance of 12 km from the volcano at two different spectral resolutions: 0.5 and 4 cm−1. The 2-dimensional scanning capability of the instrument allows for an on-line visualization of the volcanic SO2 plume and its animation. SiF4 was also identified in the infrared spectra recorded at both resolutions. The SiF4/SO2 molecular ratio can be calculated from each image and used as a highly useful parameter to follow changes in volcanic activity. A small Vulcanian eruption was monitored during the night of 16 to 17 November 2008 and strong ash emission together with a pronounced SO2 cloud was registered around 01:00 a.m. LST (Local Standard Time. Enhanced SiF4/SO2 ratios were observed before and after the eruption. A validation of the results from thermal emission measurements with those from absorption spectra of the moon taken at the same time, as well as an error analysis, are presented. The inferred propagation speed from sequential images is used in a subsequent paper (Part 2 to calculate the emission rates at different distances from the crater.

  13. Volcanic SO2 and SiF4 visualization using 2-D thermal emission spectroscopy - Part 1: Slant-columns and their ratios

    Science.gov (United States)

    Stremme, W.; Krueger, A.; Harig, R.; Grutter, M.

    2012-02-01

    The composition and emission rates of volcanic gas plumes provide insight of the geologic internal activity, atmospheric chemistry, aerosol formation and radiative processes around it. Observations are necessary for public security and the aviation industry. Ground-based thermal emission infrared spectroscopy, which uses the radiation of the volcanic gas itself, allows for continuously monitoring during day and night from a safe distance. We present measurements on Popocatépetl volcano based on thermal emission spectroscopy during different campaigns between 2006-2009 using a Scanning Infrared Gas Imaging System (SIGIS). The experimental set-up, measurement geometries and analytical algorithms are described. The equipment was operated from a safe distance of 12 km from the volcano at two different spectral resolutions: 0.5 and 4 cm-1. The 2-dimensional scanning capability of the instrument allows for an on-line visualization of the volcanic SO2 plume and its animation. SiF4 was also identified in the infrared spectra recorded at both resolutions. The SiF4/SO2 molecular ratio can be calculated from each image and used as a highly useful parameter to follow changes in volcanic activity. A small Vulcanian eruption was monitored during the night of 16 to 17 November 2008 and strong ash emission together with a pronounced SO2 cloud was registered around 01:00 a.m. LST (Local Standard Time). Enhanced SiF4/SO2 ratios were observed before and after the eruption. A validation of the results from thermal emission measurements with those from absorption spectra of the moon taken at the same time, as well as an error analysis, are presented. The inferred propagation speed from sequential images is used in a subsequent paper (Part 2) to calculate the emission rates at different distances from the crater.

  14. Emissions of ammonia, nitrous oxide, methane, and carbon dioxide during storage of dairy cow manure as affected by dietary forage-to-concentrate ratio and crust formation.

    Science.gov (United States)

    Aguerre, M J; Wattiaux, M A; Powell, J M

    2012-12-01

    Sixteen 200-L barrels were used to determine the effects of dietary forage-to-concentrate (F:C) ratio on the rate of NH(3)-N, N(2)O, CH(4), and CO(2) emissions from dairy manure during a 77-d storage period. Manure was obtained from a companion study where cows were assigned to total mixed rations that included the following F:C ratio: 47:53, 54:46, 61:39, and 68:32 (diet dry matter basis) and housed in air-flow-controlled chambers constructed in a modified tiestall barn. On d 0 of this study, deposited manure and bedding from each emission chamber was thoroughly mixed, diluted with water (1.9 to 1 manure-to-water ratio) and loaded in barrels. In addition, on d 0, 7, 14, 28, 35, 49, 56, 63, 70, and 77 of storage, the rate of NH(3)-N, N(2)O, CH(4), and CO(2) emissions from each barrel were measured with a dynamic chamber and gas concentration measured with a photo-acoustic multi-gas monitor. Data were analyzed as a randomized complete block with 4 replications. Dietary F:C ratio had no effect on manure dry matter, total N and total ammoniacal-N (NH(3)-N + NH(4)(+)-N), or pH at the time of storage (mean ± SD: 10.6±0.6%, 3.0±0.2%, 93.1±18.1 mg/dL, and 7.8±0.5, respectively). No treatment differences were observed in the overall rate of manure NH(3)-N, N(2)O, CH(4), and CO(2) emissions (mean ± SD over the 77-d storage period; 117±25, 30±7, 299±62, and 15,396±753 mg/hr per m(2), respectively). The presence of straw bedding in manure promoted the formation of a surface crust that became air dried after about 1 mo of storage, and was associated with an altered pattern in NH(3)-N and N(2)O emissions in particular. Whereas NH(3)-N emission rate was highest on d 0 and gradually decreased until reaching negligible levels on d 35, N(2)O emission rate was almost zero the first 2 wk of storage, increased sharply to peak on d 35, and decreased subsequently. The emission rate of CH(4) and CO(2) peaked simultaneously on d 7, but decreased subsequently until the end of the

  15. Effect of digestibility of grass-clover silage and concentrate to forage ratio on methane emission from dairy cows

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Weisbjerg, Martin Riis

    and D, respectively. TMR forage DM consisted of 2/3 of one of the respective grass-clover silages and 1/3 maize silage, and concentrate (soya meal and wheat) proportion of DM was 20% (low) or 50% (high). Methane emissions from the cows were measured 20-22 hours in one of four chambers working after...

  16. Effect of digestibility of grass-clover silage and concentrate to forage ratio on methane emission from dairy cows

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Weisbjerg, Martin Riis

    and D, respectively. TMR forage DM consisted of 2/3 of one of the respective grass-clover silages and 1/3 maize silage, and concentrate (soya meal and wheat) proportion of DM was 20% (low) or 50% (high). Methane emissions from the cows were measured 20-22 hours in one of four chambers working after...

  17. Time delay and excitation mode induced tunable red/near-infrared to green emission ratio of Er doped BiOCl

    Science.gov (United States)

    Avram, Daniel; Florea, Mihaela; Tiseanu, Ion; Tiseanu, Carmen

    2015-09-01

    Herein, we report on the emission color tunability of Er doped BiOCl measured under up—conversion as well as x-ray excitation modes. The dependence of red (670 nm) to green emission (543 nm) ratio on Er concentration (1 and 5%), excitation wavelength into different (656.4, 802 and 976 nm) or across single Er absorption levels (965 ÷ 990 nm) and delay after the laser pulse (0.001 ÷ 1 ms) is discussed in terms of ground state absorption/excited state absorption and energy transfer up-conversion mechanisms. A first example of extended Er x-ray emission measured in the range of 500 to 1700 nm shows comparable emission intensities corresponding to 543 nm and 1500 nm based transitions. The present results together with our earlier report on the upconversion emission of Er doped BiOCl excited at 1500 nm, suggest that Er doped BiOCl may be considered an attractive system for optical and x-ray imaging applications.

  18. Contrasting winter and summer VOC mixing ratios at a forest site in the Western Mediterranean Basin: the effect of local biogenic emissions

    Science.gov (United States)

    Seco, R.; Peñuelas, J.; Filella, I.; Llusià, J.; Molowny-Horas, R.; Schallhart, S.; Metzger, A.; Müller, M.; Hansel, A.

    2011-12-01

    Atmospheric volatile organic compounds (VOCs) are involved in ozone and aerosol generation, thus having implications for air quality and climate. VOCs and their emissions by vegetation also have important ecological roles as they can protect plants from stresses and act as communication cues between plants and between plants and animals. In spite of these key environmental and biological roles, the reports on seasonal and daily VOC mixing ratios in the literature for Mediterranean natural environments are scarce. We conducted seasonal (winter and summer) measurements of VOC mixing ratios in an elevated (720 m a.s.l.) holm oak Mediterranean forest site near the metropolitan area of Barcelona (NE Iberian Peninsula). Methanol was the most abundant compound among all the VOCs measured in both seasons. While aromatic VOCs showed almost no seasonal variability, short-chain oxygenated VOCs presented higher mixing ratios in summer, presumably due to greater emission by vegetation and increased photochemistry, both enhanced by the high temperatures and solar radiation in summer. Isoprenoid VOCs showed the biggest seasonal change in mixing ratios: they increased by one order of magnitude in summer, as a result of the vegetation's greater physiological activity and emission rates. The maximum diurnal concentrations of ozone increased in summer too, most likely due to more intense photochemical activity and the higher levels of VOCs in the air. The daily variation of VOC mixing ratios was mainly governed by the wind regime of the mountain, as the majority of the VOC species analyzed followed a very similar diel cycle. Mountain and sea breezes that develop after sunrise advect polluted air masses to the mountain. These polluted air masses had previously passed over the urban and industrial areas surrounding the Barcelona metropolitan area, where they were enriched in NOx and in VOCs of biotic and abiotic origin. Moreover, these polluted air masses receive additional biogenic

  19. Contrasting winter and summer VOC mixing ratios at a forest site in the Western Mediterranean Basin: the effect of local biogenic emissions

    Directory of Open Access Journals (Sweden)

    R. Seco

    2011-12-01

    Full Text Available Atmospheric volatile organic compounds (VOCs are involved in ozone and aerosol generation, thus having implications for air quality and climate. VOCs and their emissions by vegetation also have important ecological roles as they can protect plants from stresses and act as communication cues between plants and between plants and animals. In spite of these key environmental and biological roles, the reports on seasonal and daily VOC mixing ratios in the literature for Mediterranean natural environments are scarce.

    We conducted seasonal (winter and summer measurements of VOC mixing ratios in an elevated (720 m a.s.l. holm oak Mediterranean forest site near the metropolitan area of Barcelona (NE Iberian Peninsula. Methanol was the most abundant compound among all the VOCs measured in both seasons. While aromatic VOCs showed almost no seasonal variability, short-chain oxygenated VOCs presented higher mixing ratios in summer, presumably due to greater emission by vegetation and increased photochemistry, both enhanced by the high temperatures and solar radiation in summer. Isoprenoid VOCs showed the biggest seasonal change in mixing ratios: they increased by one order of magnitude in summer, as a result of the vegetation's greater physiological activity and emission rates. The maximum diurnal concentrations of ozone increased in summer too, most likely due to more intense photochemical activity and the higher levels of VOCs in the air.

    The daily variation of VOC mixing ratios was mainly governed by the wind regime of the mountain, as the majority of the VOC species analyzed followed a very similar diel cycle. Mountain and sea breezes that develop after sunrise advect polluted air masses to the mountain. These polluted air masses had previously passed over the urban and industrial areas surrounding the Barcelona metropolitan area, where they were enriched in NOx and in VOCs of biotic and abiotic origin. Moreover, these

  20. Collaborative Research on the Ultra High Bypass Ratio Engine Cycle to Reduce Noise, Emissions and Fuel Consumption

    Science.gov (United States)

    Hughes, Christopher

    2008-01-01

    A pictorial history of NASA development of advanced engine technologies for reducing environmental emissions and increasing performance from the 1970s to present is presented. The goals of the Subsonic Fixed Wing Program portion of the NASA Fundamental Aeronautics Program are addressed, along with the areas of investigation currently being pursued by the Ultra High Bypass Partnership Element of the Subsonic Fixed Wing Program to meet the goals. Ultra High Bypass cycle research collaboration successes with Pratt & Whitney are presented.

  1. Comparison of the emissions and SFC for 10:1 and 12:1 compression ratio 1.8 litre SI engines using lean mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, G.; Osses, M.; Desai, M.; Haralambidis, E. [Leeds Univ. (United Kingdom); Ounzain, A.; Robertson, G. [Ford Motor Co. Ltd., Dagenham (United Kingdom)

    1996-12-31

    A standard 10:1 compression ratio Ford Zetec engine was modified to a 12:1 compression ratio and investigated over the lean combustion region with a comparison with the base 10:1 compression ratio engine. All the comparisons were carried out at the same power output as for stoichiometric operation, using throttle adjustments to achieve the increased power as the mixture was made leaner. The aim of the higher compression ratio was to increase the power in the lean combustion region and thus to extend the lean burning limit for the same power output. The lean limit was then set as the wide open throttle lean combustion for a desired power output. The power outputs studied were 10 and 15KW at 1500 r/min, which is typical of the low power urban drive cycle in the EC emissions test cycle. Additional reductions in NOx using spark timing control was also investigated for lean mixtures. The lean burning capability at different conditions was investigated at the minimum fuel consumption spark timing and at 5% above the minimum SFC, but still below the SFC for stoichiometric operation. The borderline detonation limit (BLDL) as detected using a cylinder pressure transducer and spark timing loops were limited by the BLDL timing. The higher compression ratio was shown to extend the lean burning limit from 22/1 to 26/1 at constant 10KW power output. This was accompanied by an increase by NOx, hydrocarbons and CO. The extended lean limit was not effectively useable at 10 KW power due to the large increase in hydrocarbons for mixtures leaner than 22/1. Thus the lower NOx emissions in this region could not be exploited and there was little advantage, from a lean combustion viewpoint, of operation at 12/1 compression ratio. However, at the 15KW power output condition there were clear SFC advantages and smaller NOx reductions for the higher CR lean burn engine. (author)

  2. The OIV 1407.3\\AA /1401.1\\AA\\ emission-line ratio in a plasma

    CERN Document Server

    Nessib, Nabil Ben; Qindeel, Rabia; Sahal-Bréchot, Sylvie; Dimitrijević, Milan S

    2013-01-01

    Line ratio of O IV 1407.3 \\AA/1401.1 \\AA\\- is calculated using mostly our own atomic and collisional data. Energy levels and oscillator strengths needed for this calculation have been calculated using a Hartree-Fock relativistic (HFR) approach. The electron collision strengths introduced in the statistic equilibrium equations are fitted by Line ratio of O IV 1407.3 \\AA/1401.1 \\AA\\- is calculated using mostly our own atomic and collisional data. Energy levels and oscillator strengths needed for this calculation have been calculated using a Hartree-Fock relativistic (HFR) approach. The electron collision strengths introduced in the statistic equilibrium equations are fitted by polynomials for different energies. Comparison has also been made with available theoretical results. The provided line ratio has been obtained for a set of electron densities from $10^{8}$ cm$^{-3}$ to $10^{13}$ cm$^{-3}$ and for a fixed temperature of 50 000 K.

  3. Rest-Frame Optical Emission Lines in z~3.5 Lyman Break selected Galaxies: The Ubiquity of Unusually High [OIII]/Hbeta Ratios at 2 Gyr

    CERN Document Server

    Holden, B P; Gonzalez, V G; Illingworth, G D; Labbe, I; Bouwens, R; Franx, M; van Dokkum, P; Spitler, L

    2014-01-01

    We present K-band spectra of rest-frame optical emission lines for 24 star-forming galaxies at z~3.2-3.7 using MOSFIRE on the Keck 1 telescope. Strong rest-frame optical [O III] and Hbeta emission lines were detected in 18 LBGs. The median flux ratio of [O III]5007 to Hbeta is 5.1+/-0.5, a factor of 5-10x higher than in local galaxies with similar stellar masses. The observed Hbeta luminosities are in good agreement with expectations from the estimated star-formation rates, and none of our sources are detected in deep X-ray stacks, ruling out significant contamination by active galactic nuclei. Combining our sample with a variety of LBGs from the literature, including 49 galaxies selected in a very similar manner, we find a high median ratio of [OIII]/Hbeta = 4.8+0.8-1.7. This high ratio seems to be an ubiquitous feature of z~3-4 LBGs, very different from typical local star-forming galaxies at similar stellar masses. The only comparable systems at z~0 are those with similarly high specific star-formation rate...

  4. NO and NO2 emission ratios measured from in-use commercial aircraft during taxi and takeoff.

    Science.gov (United States)

    Herndon, Scott C; Shorter, Joanne H; Zahniser, Mark S; Nelson, David D; Jayne, John; Brown, Robert C; Miake-Lye, Richard C; Waitz, Ian; Silva, Phillip; Lanni, Thomas; Demerjian, Ken; Kolb, Charles E

    2004-11-15

    In August 2001, the Aerodyne Mobile Laboratory simultaneously measured NO, NO2, and CO2 within 350 m of a taxiway and 550 m of a runway at John F. Kennedy Airport. The meteorological conditions were such that taxi and takeoff plumes from individual aircraft were clearly resolved against background levels. NO and NO2 concentrations were measured with 1 s time resolution using a dual tunable infrared laser differential absorption spectroscopy instrument, utilizing an astigmatic multipass Herriott cell. The CO2 measurements were also obtained at 1 s time resolution using a commercial non-dispersive infrared absorption instrument. Plumes were measured from over 30 individual planes, ranging from turbo props to jumbo jets. NOx emission indices were determined by examining the correlation between NOx (NO + NO2) and CO2 during the plume measurements. Several aircraft tail numbers were unambiguously identified, allowing those specific airframe/engine combinations to be determined. The resulting NOx emission indices from positively identified in-service operating airplanes are compared with the published International Civil Aviation Organization engine certification test database collected on new engines in certification test cells.

  5. The conversion probability and emission ratio of charged Sigma - hyperons following K/sup -/ meson capture at rest in carbon

    CERN Document Server

    Van der Velde-Wilquet, C; Sacton, J; Wickens, J H

    1975-01-01

    A study has been made of K/sup -/ meson interactions at rest in the CERN 1.1 m/sup 3/ heavy liquid bubble chamber filled with a mixture of hydrocarbons. The data are used to determine (i) the internal conversion probability, C( Sigma /sup -/), of Sigma /sup -/ hyperons produced in association with pi /sup +/ mesons by K/sup -/ meson interactions in carbon nuclei, (ii) the relative emission frequencies of ( Sigma /sup +/ pi /sup +/) and ( Sigma /sup -/ pi /sup +/) pairs, E( Sigma /sup +/ pi /sup +// Sigma /sup -/ pi /sup +/), and the emission frequency E( Sigma /sup +or-/ pi /sup -or+//K/sup -/), of ( Sigma /sup +or-/ pi /sup -or+/) pairs per K/sup -/ meson absorption in carbon, (iii) the branching fraction, P( Sigma /sup -/ pi /sup +//K /sup -/), for the primary process K/sup -/+p to Sigma /sup -/+ pi /sup +/ in carbon and (iv) the trapping probability, T( Lambda /sup 0/), for Lambda /sup 0/ hyperons produced by Sigma /sup -/ hyperon interactions in carbon nuclei. (26 refs).

  6. Emission characteristics of air pollutants from incense and candle burning in indoor atmospheres.

    Science.gov (United States)

    Manoukian, A; Quivet, E; Temime-Roussel, B; Nicolas, M; Maupetit, F; Wortham, H

    2013-07-01

    Volatile organic compounds (VOCs) and particles emitted by incense sticks and candles combustion in an experimental room have been monitored on-line and continuously with a high time resolution using a state-of-the-art high sensitivity-proton transfer reaction-mass spectrometer (HS-PTR-MS) and a condensation particle counter (CPC), respectively. The VOC concentration-time profiles, i.e., an increase up to a maximum concentration immediately after the burning period followed by a decrease which returns to the initial concentration levels, were strongly influenced by the ventilation and surface interactions. The obtained kinetic data set allows establishing a qualitative correlation between the elimination rate constants of VOCs and their physicochemical properties such as vapor pressure and molecular weight. The emission of particles increased dramatically during the combustion, up to 9.1(±0.2) × 10(4) and 22.0(±0.2) × 10(4) part cm(-3) for incenses and candles, respectively. The performed kinetic measurements highlight the temporal evolution of the exposure level and reveal the importance of ventilation and deposition to remove the particles in a few hours in indoor environments.

  7. The Helium Golden Ratios: triplet-singlet and G for He-like X-ray Emission

    Science.gov (United States)

    Stancil, Phillip C.; Miller, Ansley; Terry, Jason; Cumbee, Renata; Mullen, Patrick Dean; Schultz, David R.

    2017-06-01

    The existence of a mere two electrons manifests a multitude of interesting and diverse phenomena in the atomic structure of He-like ions including separate spin manifolds (singlets and triplets), unusual ordering of angular momentum states, and intercombination (i) and forbidden (f) radiative transitions. This rich behavior extends also to the dynamics involving He-like ions and various perturbers. While electrons have a propensity for exciting resonant (r) dipole-allowed transitions, heavy particles are far less selective. In this presentation, I'll illustrate how these properties play out in ion-neutral charge exchange (CX) processes which result in He-like product ions. The focus will be on the spin-multiplicity of the atomic ions and the quasi-molecular states involved in the interactions, how these affect the CX cross sections, and their impact on the resulting X-ray spectrum. In particular, the G-ratio, the ratio of Kα line intensities (f+i)/r, is very sensitive to the spin-dependent cross sections which in turn is dependent on the neutral target, whether open-shell like H (Nolte et al. 2012, 2017; Wu et al. 2012) or closed-shell like He or H2 (Cumbee et al. 2017; Mullen et al. 2016, 2017). Preliminary evidence also suggests that multielectron capture processes may influence the G-ratio when multielectron targets are involved.Cumbee R. S. et al. 2017, ApJ, submittedMullen, P. D. et al. 2016, ApJS, 224, 31Mullen, P. D. et al. 2017, ApJ, submittedNolte, J. et al. 2012, JPB, 45, 245202; 2017, to be submittedWu, Y. et al. 2012, JPB, 84, 022711This work was partially supported by NASA grants NNX09AC46G and NNG09WF24I.

  8. Shocked POststarbust Galaxy Survey. I. Candidate Post-starbust Galaxies with Emission Line Ratios Consistent with Shocks

    Science.gov (United States)

    Alatalo, Katherine; Cales, Sabrina L.; Rich, Jeffrey A.; Appleton, Philip N.; Kewley, Lisa J.; Lacy, Mark; Lanz, Lauranne; Medling, Anne M.; Nyland, Kristina

    2016-06-01

    There are many mechanisms by which galaxies can transform from blue, star-forming spirals, to red, quiescent early-type galaxies, but our current census of them does not form a complete picture. Recent observations of nearby case studies have identified a population of galaxies that quench “quietly.” Traditional poststarburst searches seem to catch galaxies only after they have quenched and transformed, and thus miss any objects with additional ionization mechanisms exciting the remaining gas. The Shocked POststarburst Galaxy Survey (SPOGS) aims to identify transforming galaxies, in which the nebular lines are excited via shocks instead of through star formation processes. Utilizing the Oh-Sarzi-Schawinski-Yi (OSSY) measurements on the Sloan Digital Sky Survey Data Release 7 catalog, we applied Balmer absorption and shock boundary criteria to identify 1067 SPOG candidates (SPOGs*) within z = 0.2. SPOGs* represent 0.2% of the OSSY sample galaxies that exceed the continuum signal-to-noise cut (and 0.7% of the emission line galaxy sample). SPOGs* colors suggest that they are in an earlier phase of transition than OSSY galaxies that meet an “E+A” selection. SPOGs* have a 13% 1.4 GHz detection rate from the Faint Images of the Radio Sky at Twenty Centimeters Survey, higher than most other subsamples, and comparable only to low-ionization nuclear emission line region hosts, suggestive of the presence of active galactic nuclei (AGNs). SPOGs* also have stronger Na i D absorption than predicted from the stellar population, suggestive of cool gas being driven out in galactic winds. It appears that SPOGs* represent an earlier phase in galaxy transformation than traditionally selected poststarburst galaxies, and that a large proportion of SPOGs* also have properties consistent with disruption of their interstellar media, a key component to galaxy transformation. It is likely that many of the known pathways to transformation undergo a SPOG phase. Studying this sample of

  9. Experimental evaluation of the effect of compression ratio on performance and emission of SI engine fuelled with gasoline and n-butanol blend at different loads

    Directory of Open Access Journals (Sweden)

    Rinu Thomas

    2016-09-01

    Full Text Available Never ending demand for efficient and less polluting engines have always inspired newer technologies. Extensive study has been done on variable compression ratio, a promising in-cylinder technology, in the recent past. The present work is an experimental investigation to examine the variation of different parameters such as brake thermal efficiency, exhaust gas temperature and emissions with respect to change in compression ratio in a single-cylinder carbureted SI engine at different loads with two different fuels. Experiments were conducted at three different compression ratios (CR = 7:1, 8.5:1 and 10:1. The fuels used in this study are pure gasoline and 20% n-butanol blend (B20 in gasoline. The results showed that brake thermal efficiency increases with CR at all loads. Further, the experimental results showed the scope of improving the part-load efficiency of SI engine by adopting the concept of variable compression ratio (VCR technology, especially when fuels with better anti-knock characteristics are used. The uncertainty analysis of the experiments based on the specifications of the equipment used is also tabulated.

  10. Effect of [Li]/[Nb] ratios on the absorption and up-conversion emission spectra in In:Yb:Ho:LiNbO{sub 3} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Li, E-mail: daili198108@126.com [Applied Science College, Harbin University of Science and Technology, Harbin 150080 (China); State Key Laboratory of Crystal Material, Shandong University, Jinan 250100 (China); Yan, Zhehua; Jiao, Shanshan [Applied Science College, Harbin University of Science and Technology, Harbin 150080 (China); Xu, Chao; Xu, Yuheng [Department of the Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)

    2015-09-25

    Highlights: • In:Yb:Ho:LiNbO{sub 3} crystals were grown with various [Li]/[Nb] ratios. • The influence of [Li]/[Nb] ratios on the UV–VIS–NIR is investigated. • This UC process is three-photon process. • In:Yb:Ho:LiNbO{sub 3} crystals (Li/Nb = 1.38) is a promising material for 2 μm wavelength radiation. - Abstract: In:Yb:Ho:LiNbO{sub 3} crystals with high optical quality were grown by the Czochralski method with various ratios of [Li]/[Nb], that is 0.94, 1.05, 1.20 and 1.38 in the melt. The UV–VIS–NIR absorption spectra of In:Yb:Ho:LiNbO{sub 3} crystals were measured. The transition intensity parameters Ω{sub t} (t = 2, 4 and 6), spectroscopic quality factor (X) and the lifetimes of Ho{sup 3+} in In:Yb:Ho:LiNbO{sub 3} crystals were all evaluated by the Judd–Ofelt theory. The spectroscopic quality factor Ω{sub 4}/Ω{sub 6} of In:Yb:Ho:LiNbO{sub 3} crystals with the [Li]/[Nb] ratio of 1.38 was found to be 1.69, which is comparable with those found in widely used Ho{sup 3+} doped crystals. Furthermore, up-conversion emission spectra were determined and analyzed under 980 nm LD excitation in the In:Yb:Ho:LiNbO{sub 3} crystals. The results revealed that In:Yb:Ho:LiNbO{sub 3} crystal with the [Li]/[Nb] ratio of 1.38 is a promising material for 2 μm wavelength radiation.

  11. X-ray to NIR emission from AA Tauri during the dim state - Occultation of the inner disk and gas-to-dust ratio of the absorber

    CERN Document Server

    Schneider, P C; Günther, H M; Herczeg, G J; Robrade, J; Bouvier, J; McJunkin, M; Schmitt, J H M M

    2015-01-01

    AA Tau is a well-studied, nearby classical T Tauri star, which is viewed almost edge-on. A warp in its inner disk periodically eclipses the central star, causing a clear modulation of its optical light curve. The system underwent a major dimming event beginning in 2011 caused by an extra absorber, which is most likely associated with additional disk material in the line of sight toward the central source. We present new XMM-Newton X-ray, Hubble Space Telescope FUV, and ground based optical and near-infrared data of the system obtained in 2013 during the long-lasting dim phase. The line width decrease of the fluorescent H$_2$ disk emission shows that the extra absorber is located at $r>1\\,$au. Comparison of X-ray absorption ($N_H$) with dust extinction ($A_V$), as derived from measurements obtained one inner disk orbit (eight days) after the X-ray measurement, indicates that the gas-to-dust ratio as probed by the $N_H$ to $A_V$ ratio of the extra absorber is compatible with the ISM ratio. Combining both result...

  12. PTR-MS Characterization of VOCs Associated with Commercial Aromatic Bakery Yeasts of Wine and Beer Origin

    Directory of Open Access Journals (Sweden)

    Vittorio Capozzi

    2016-04-01

    Full Text Available In light of the increasing attention towards “green” solutions to improve food quality, the use of aromatic-enhancing microorganisms offers the advantage to be a natural and sustainable solution that did not negatively influence the list of ingredients. In this study, we characterize, for the first time, volatile organic compounds (VOCs associated with aromatic bakery yeasts. Three commercial bakery starter cultures, respectively formulated with three Saccharomyces cerevisiae strains, isolated from white wine, red wine, and beer, were monitored by a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS, a direct injection analytical technique for detecting volatile organic compounds with high sensitivity (VOCs. Two ethanol-related peaks (m/z 65.059 and 75.080 described qualitative differences in fermentative performances. The release of compounds associated to the peaks at m/z 89.059, m/z 103.075, and m/z 117.093, tentatively identified as acetoin and esters, are coherent with claimed flavor properties of the investigated strains. We propose these mass peaks and their related fragments as biomarkers to optimize the aromatic performances of commercial preparations and for the rapid massive screening of yeast collections.

  13. Desiccant wheels as gas-phase absorption (GPA) air cleaners: evaluation by PTR-MS and sensory assessment

    DEFF Research Database (Denmark)

    Fang, Lei; Zhang, G.; Wisthaler, A.

    2008-01-01

    Two experiments were conducted to investigate the use of the co-sorption effect of a desiccant wheel for improving indoor air quality. One experiment was conducted in a climate chamber to investigate the co-sorption effect of a desiccant wheel on the chemical removal of indoor air pollutants......; another experiment was conducted in an office room to investigate the resulting effect on perceived air quality. A dehumidifier with a silica-gel desiccant wheel was installed in the ventilation system of the test chamber and office room to treat the recirculation airflow. Human subjects, flooring...

  14. New insights in the interpretation of tryptophan fluorescence : origin of the fluorescence lifetime and characterization of a new fluorescence parameter in proteins: the emission to excitation ratio.

    Science.gov (United States)

    Albani, J R

    2007-07-01

    Origin of tryptophan fluorescence is still up to these days a quiz which is not completely solved. Fluorescence emission properties of tryptophan within proteins are in general considered as the result of fluorophore interaction within its environment. For example, a low fluorescence quantum yield is supposed to be the consequence of an important fluorophore-environment interaction. However, are we sure that the fluorophore has been excited upon light absorption? What if fluorophore excitation did not occur as the result of internal conformation specific to the fluorophore environment? Are we sure that all absorbed energy is used for the excitation process? Fluorescence lifetimes of Trp residues are considered to originate from rotamers or conformers resulting from the rotation of the indole ring within the peptide bonds. However, how can we explain the fact that in most of the proteins, the two lifetimes 0.5 and 3 ns, attributed to the conformers, are also observed for free tryptophan in solution? The present work, performed on free tryptophan and tyrosine in solution and on different proteins, shows that absorption and excitation spectra overlap but their intensities at the different excitation wavelengths are not necessarily equal. Also, we found that fluorescence emission intensities recorded at different excitation wavelengths depend on the intensities at these excitation wavelengths and not on the optical densities. Thus, excitation is not equal to absorption. In our interpretation of the data, we consider that absorbed photons are not necessary used only for the excitation, part of them are used to reorganize fluorophore molecules in a new state (excited structure) and another part is used for the excitation process. A new parameter that characterizes the ratio of the number of emitted photons over the real number of photons used to excite the fluorophore can be defined. We call this parameter, the emission to excitation ratio. Since our results were

  15. Distribution, magnitudes, reactivities, ratios and diurnal patterns of volatile organic compounds in the Valley of Mexico during the MCMA 2002 & 2003 field campaigns

    Directory of Open Access Journals (Sweden)

    E. Velasco

    2007-01-01

    Full Text Available A wide array of volatile organic compound (VOC measurements was conducted in the Valley of Mexico during the MCMA-2002 and 2003 field campaigns. Study sites included locations in the urban core, in a heavily industrial area and at boundary sites in rural landscapes. In addition, a novel mobile-laboratory-based conditional sampling method was used to collect samples dominated by fresh on-road vehicle exhaust to identify those VOCs whose ambient concentrations were primarily due to vehicle emissions. Four distinct analytical techniques were used: whole air canister samples with Gas Chromatography/Flame Ionization Detection (GC-FID, on-line chemical ionization using a Proton Transfer Reaction Mass Spectrometer (PTR-MS, continuous real-time detection of olefins using a Fast Olefin Sensor (FOS, and long path measurements using UV Differential Optical Absorption Spectrometers (DOAS. The simultaneous use of these techniques provided a wide range of individual VOC measurements with different spatial and temporal scales. The VOC data were analyzed to understand concentration and spatial distributions, diurnal patterns, origin and reactivity in the atmosphere of Mexico City. The VOC burden (in ppbC was dominated by alkanes (60%, followed by aromatics (15% and olefins (5%. The remaining 20% was a mix of alkynes, halogenated hydrocarbons, oxygenated species (esters, ethers, etc. and other unidentified VOCs. However, in terms of ozone production, olefins were the most relevant hydrocarbons. Elevated levels of toxic hydrocarbons, such as 1,3-butadiene, benzene, toluene and xylenes, were also observed. Results from these various analytical techniques showed that vehicle exhaust is the main source of VOCs in Mexico City and that diurnal patterns depend on vehicular traffic in addition to meteorological processes. Finally, examination of the VOC data in terms of lumped modeling VOC classes and its comparison to the VOC lumped emissions reported in other

  16. Distribution, Magnitudes, Reactivities, Ratios and Diurnal Patterns of Volatile Organic Compounds in the Valley of Mexico During the MCMA 2002 & 2003 Field Campaigns

    Energy Technology Data Exchange (ETDEWEB)

    Velasco, E.; Lamb, Brian K.; Westberg, Halvor; Allwine, Eugene J.; Sosa, G.; Arriaga-Colina, J. L.; Jobson, B. T.; Alexander, M. Lizabeth; Prazeller, Peter; Knighton, Walter B.; Rogers, T.; Grutter, M.; Herndon, S.; Kolb, C. E.; Zavala, Mary A.; de Foy, B.; Volkamer, Rainer M.; Molina, Luisa; Molina, Mario J.

    2007-01-23

    A wide array of volatile organic compound (VOC) measurements was conducted in the Valley of Mexico during the MCMA-2002 and 2003 field campaigns. Study sites included locations in the urban core, in a heavily industrial area and at boundary sites in rural landscapes. In addition, a novel mobile-laboratory-based conditional sampling method was used to collect samples dominated by fresh on-road vehicle exhaust to identify those VOCs whose ambient concentrations were primarily due to vehicle emissions. Four distinct analytical techniques were used: whole air canister samples with Gas Chromatography/Flame Ionization Detection (GC-FID), on-line chemical ionization using a Proton Transfer Reaction Mass Spectrometer (PTR-MS), continuous real-time detection of olefins using a Fast Olefin Sensor (FOS), and long path measurements using UV Differential Optical Absorption Spectrometers (DOAS). The simultaneous use of these techniques provided a wide range of individual VOC measurements with different spatial and temporal scales. The VOC data were analyzed to understand concentration and spatial distributions, diurnal patterns, origin and reactivity in the atmosphere of Mexico City. The VOC burden (in ppbC) was dominated by alkanes (60%), followed by aromatics (15%) and olefins (5%). The remaining 20% was a mix of alkynes, halogenated hydrocarbons, oxygenated species (esters, ethers, etc.) and other unidentified VOCs. However, in terms of ozone production, olefins were the most relevant hydrocarbons. Elevated levels of toxic hydrocarbons, such as 1, 3-butadiene, benzene, toluene and xylenes, were also observed. Results from these various analytical techniques showed that vehicle exhaust is the main source of VOCs in Mexico City and that diurnal patterns depend on vehicular traffic in addition to meteorological processes. Finally, examination of the VOC data in terms of lumped modeling VOC classes and its comparison to the VOC lumped emissions reported in other photochemical air

  17. Distribution, magnitudes, reactivities, ratios and diurnal patterns of volatile organic compounds in the Valley of Mexico during the MCMA 2002 and 2003 field campaigns

    Science.gov (United States)

    Velasco, E.; Lamb, B.; Westberg, H.; Allwine, E.; Sosa, G.; Arriaga-Colina, J. L.; Jobson, B. T.; Alexander, M.; Prazeller, P.; Knighton, W. B.; Rogers, T. M.; Grutter, M.; Herndon, S. C.; Kolb, C. E.; Zavala, M.; de Foy, B.; Volkamer, R.; Molina, L. T.; Molina, M. J.

    2006-08-01

    A wide array of volatile organic compound (VOC) measurements was conducted in the Valley of Mexico during the MCMA-2002 and 2003 field campaigns. Study sites included locations in the urban core, in a heavily industrial area and at boundary sites in rural landscapes. In addition, a novel mobile-laboratory-based conditional sampling method was used to collect samples dominated by fresh on-road vehicle exhaust to identify those VOCs whose ambient concentrations were primarily due to vehicle emissions. Five distinct analytical techniques were used: whole air canister samples with Gas Chromatography/Flame Ionization Detection (GC-FID), on-line chemical ionization using a Proton Transfer Reaction Mass Spectrometer (PTR-MS), continuous real-time detection of olefins using a Fast Olefin Sensor (FOS), and long path measurements using UV Differential Optical Absorption Spectrometers (DOAS). The simultaneous use of these techniques provided a wide range of individual VOC measurements with different spatial and temporal scales. The VOC data were analyzed to understand concentration and spatial distributions, diurnal patterns, origin and reactivity in the atmosphere of Mexico City. The VOC burden (in ppbC) was dominated by alkanes (60%), followed by aromatics (15%) and olefins (5%). The remaining 20% was a mix of alkynes, halogenated hydrocarbons, oxygenated species (esters, ethers, etc.) and other unidentified VOCs. However, in terms of ozone production, olefins were the most relevant hydrocarbons. Elevated levels of toxic hydrocarbons, such as 1,3-butadiene, benzene, toluene and xylenes were also observed. Results from these various analytical techniques showed that vehicle exhaust is the main source of VOCs in Mexico City and that diurnal patterns depend on vehicular traffic. Finally, examination of the VOC data in terms of lumped modeling VOC classes and its comparison to the VOC lumped emissions reported in other photochemical air quality modeling studies suggests that

  18. Distribution, magnitudes, reactivities, ratios and diurnal patterns of volatile organic compounds in the Valley of Mexico during the MCMA 2002 & 2003 field campaigns

    Science.gov (United States)

    Velasco, E.; Lamb, B.; Westberg, H.; Allwine, E.; Sosa, G.; Arriaga-Colina, J. L.; Jobson, B. T.; Alexander, M. L.; Prazeller, P.; Knighton, W. B.; Rogers, T. M.; Grutter, M.; Herndon, S. C.; Kolb, C. E.; Zavala, M.; de Foy, B.; Volkamer, R.; Molina, L. T.; Molina, M. J.

    2007-01-01

    A wide array of volatile organic compound (VOC) measurements was conducted in the Valley of Mexico during the MCMA-2002 and 2003 field campaigns. Study sites included locations in the urban core, in a heavily industrial area and at boundary sites in rural landscapes. In addition, a novel mobile-laboratory-based conditional sampling method was used to collect samples dominated by fresh on-road vehicle exhaust to identify those VOCs whose ambient concentrations were primarily due to vehicle emissions. Four distinct analytical techniques were used: whole air canister samples with Gas Chromatography/Flame Ionization Detection (GC-FID), on-line chemical ionization using a Proton Transfer Reaction Mass Spectrometer (PTR-MS), continuous real-time detection of olefins using a Fast Olefin Sensor (FOS), and long path measurements using UV Differential Optical Absorption Spectrometers (DOAS). The simultaneous use of these techniques provided a wide range of individual VOC measurements with different spatial and temporal scales. The VOC data were analyzed to understand concentration and spatial distributions, diurnal patterns, origin and reactivity in the atmosphere of Mexico City. The VOC burden (in ppbC) was dominated by alkanes (60%), followed by aromatics (15%) and olefins (5%). The remaining 20% was a mix of alkynes, halogenated hydrocarbons, oxygenated species (esters, ethers, etc.) and other unidentified VOCs. However, in terms of ozone production, olefins were the most relevant hydrocarbons. Elevated levels of toxic hydrocarbons, such as 1,3-butadiene, benzene, toluene and xylenes, were also observed. Results from these various analytical techniques showed that vehicle exhaust is the main source of VOCs in Mexico City and that diurnal patterns depend on vehicular traffic in addition to meteorological processes. Finally, examination of the VOC data in terms of lumped modeling VOC classes and its comparison to the VOC lumped emissions reported in other photochemical air

  19. Field determination of biomass burning emission ratios and factors via open-path FTIR spectroscopy and fire radiative power assessment: headfire, backfire and residual smouldering combustion in African savannahs

    Directory of Open Access Journals (Sweden)

    M. J. Wooster

    2011-02-01

    Full Text Available Biomass burning emissions factors are vital to quantifying trace gases releases from vegetation fires. Here we evaluate emissions factors for a series of savannah fires in Kruger National Park (KNP, South Africa using ground-based open path Fourier transform infrared (FTIR spectroscopy and an infrared lamp separated by 150–250 m distance. Molecular abundances along the extended open path are retrieved using a spectral forward model coupled to a non-linear least squares fitting approach. We demonstrate derivation of trace gas column amounts for horizontal paths transecting the width of the advected plume, and find, for example, that CO mixing ratio changes of ~0.001 μmol mol−1 (~10 ppbv can be detected across the relatively long optical paths used here. We focus analysis on five key compounds whose production is preferential during the pyrolysis (CH2O, flaming (CO2 and smoldering (CO, CH4, NH3 fire phases. We demonstrate that well constrained emissions ratios for these gases to both CO2 and CO can be derived for the backfire, headfire and residual smouldering combustion stages of these savannah fires, from which stage-specific emission factors can then be calculated. Headfires and backfires in general show similar emission ratios and emission factors, but those of the residual smouldering combustion stage can differ substantially (e.g., ERCH4/CO2 up to ~7 times higher than for the flaming stages. The timing of each fire stage was identified via airborne optical and thermal IR imagery and ground-observer reports, with the airborne IR imagery also used to derive estimates of fire radiative energy, thus allowing the relative amount of fuel burned in each stage to be calculated and the "fire averaged" emission ratios and emission factors to be determined. The derived "fire averaged" emission ratios are dominated by the headfire contribution, since

  20. A High Fraction of Lyα Emitters among Galaxies with Extreme Emission Line Ratios at z ~2

    Science.gov (United States)

    Erb, Dawn K.; Pettini, Max; Steidel, Charles C.; Strom, Allison L.; Rudie, Gwen C.; Trainor, Ryan F.; Shapley, Alice E.; Reddy, Naveen A.

    2016-10-01

    Star-forming galaxies form a sequence in the [O iii] λ5007/{{H}}β versus [N ii] λ6584/{{H}}α diagnostic diagram, with low-metallicity, highly ionized galaxies falling in the upper left corner. Drawing from a large sample of UV-selected star-forming galaxies at z∼ 2 with rest-frame optical nebular emission line measurements from Keck-MOSFIRE, we select the extreme ∼5% of the galaxies lying in this upper left corner, requiring log([N ii]/{{H}}α ) ≤slant -1.1 and log([O iii]/{{H}}β ) ≥slant 0.75. These cuts identify galaxies with 12+{log}({{O/H}})≲ 8.0, when oxygen abundances are measured via the O3N2 diagnostic. We study the {Ly}α properties of the resulting sample of 14 galaxies. The mean (median) rest-frame {Ly}α equivalent width is 39 (36) Å, and 11 of the 14 objects (79%) are {Ly}α emitters (LAEs) with {W}{Lyα } \\gt 20 \\mathring{{A}} . We compare the equivalent width distribution of a sample of 522 UV-selected galaxies at 2.0\\lt z\\lt 2.6 identified without regard to their optical line ratios; this sample has mean (median) {Ly}α equivalent width ‑1 (‑4) Å, and only 9% of these galaxies qualify as LAEs. The extreme galaxies typically have lower attenuation at {Ly}α than those in the comparison sample and have ∼50% lower median oxygen abundances. Both factors are likely to facilitate the escape of {Ly}α : in less dusty galaxies {Ly}α photons are less likely to be absorbed during multiple scatterings, while the harder ionizing spectrum and higher ionization parameter associated with strong, low-metallicity star formation may reduce the covering fraction or column density of neutral hydrogen, further easing {Ly}α escape. The use of nebular emission line ratios may prove useful in the identification of galaxies with low opacity to {Ly}α photons across a range of redshifts. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University

  1. A comparative study of vertical flow and free-water surface constructed wetlands for low C/N ratio domestic wastewater treatment and its greenhouse gases emission

    Science.gov (United States)

    Xu, K.; Liu, C.; Ebie, Y.; Inamori, Y.

    2008-12-01

    Constructed wetland (CW) systems are reliable, flexible in design, and can be built, operated, and maintained at lower costs compared to conventional methods of chemical treatment. Therefore, CW systems are widely used for controlling water-body eutrophication as an ease-operation and cost-effective ecological technology in developing countries. However, growing attention has been directed to its greenhouse side-effect and global-warming potential in recent years. In this study, two typical constructed wetlands: Vertical flow (VF) and Free-water surface (FWS) constructed wetlands were used not only to compare the nutrients removal performance for treatment of low C/N ratio loading domestic wastewater, but also to investigate and compare their CH4 and N2O greenhouse gases emission characteristics. The results indicated that the VF CW showed a comparatively good performance for nitrogen and phosphorus removal than FWS constructed wetland, which was 98.5, 95.9, 93.2 and 90.7 percent for BOD5, SS, NH4-N and TP under 6 days HRT, respectively. It was found that the FWS CW had the higher tendency to emit CH4 than the VF CW during four seasons of one year.

  2. Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires

    Science.gov (United States)

    Yokelson, R. J.; Burling, I. R.; Gilman, J. B.; Warneke, C.; Stockwell, C. E.; de Gouw, J.; Akagi, S. K.; Urbanski, S. P.; Veres, P.; Roberts, J. M.; Kuster, W. C.; Reardon, J.; Griffith, D. W. T.; Johnson, T. J.; Hosseini, S.; Miller, J. W.; Cocker, D. R., III; Jung, H.; Weise, D. R.

    2013-01-01

    An extensive program of experiments focused on biomass burning emissions began with a laboratory phase in which vegetative fuels commonly consumed in prescribed fires were collected in the southeastern and southwestern US and burned in a series of 71 fires at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The particulate matter (PM2.5) emissions were measured by gravimetric filter sampling with subsequent analysis for elemental carbon (EC), organic carbon (OC), and 38 elements. The trace gas emissions were measured by an open-path Fourier transform infrared (OP-FTIR) spectrometer, proton-transfer-reaction mass spectrometry (PTR-MS), proton-transfer ion-trap mass spectrometry (PIT-MS), negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS), and gas chromatography with MS detection (GC-MS). 204 trace gas species (mostly non-methane organic compounds (NMOC)) were identified and quantified with the above instruments. Many of the 182 species quantified by the GC-MS have rarely, if ever, been measured in smoke before. An additional 153 significant peaks in the unit mass resolution mass spectra were quantified, but either could not be identified or most of the signal at that molecular mass was unaccounted for by identifiable species. In a second, "field" phase of this program, airborne and ground-based measurements were made of the emissions from prescribed fires that were mostly located in the same land management units where the fuels for the lab fires were collected. A broad variety, but smaller number of species (21 trace gas species and PM2.5) was measured on 14 fires in chaparral and oak savanna in the southwestern US, as well as pine forest understory in the southeastern US and Sierra Nevada mountains of California. The field measurements of emission factors (EF) are useful both for modeling and to examine the representativeness of our lab fire EF. The lab EF/field EF ratio for the pine understory fuels was not

  3. Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires

    Directory of Open Access Journals (Sweden)

    R. J. Yokelson

    2013-01-01

    Full Text Available An extensive program of experiments focused on biomass burning emissions began with a laboratory phase in which vegetative fuels commonly consumed in prescribed fires were collected in the southeastern and southwestern US and burned in a series of 71 fires at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The particulate matter (PM2.5 emissions were measured by gravimetric filter sampling with subsequent analysis for elemental carbon (EC, organic carbon (OC, and 38 elements. The trace gas emissions were measured by an open-path Fourier transform infrared (OP-FTIR spectrometer, proton-transfer-reaction mass spectrometry (PTR-MS, proton-transfer ion-trap mass spectrometry (PIT-MS, negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS, and gas chromatography with MS detection (GC-MS. 204 trace gas species (mostly non-methane organic compounds (NMOC were identified and quantified with the above instruments. Many of the 182 species quantified by the GC-MS have rarely, if ever, been measured in smoke before. An additional 153 significant peaks in the unit mass resolution mass spectra were quantified, but either could not be identified or most of the signal at that molecular mass was unaccounted for by identifiable species.

    In a second, "field" phase of this program, airborne and ground-based measurements were made of the emissions from prescribed fires that were mostly located in the same land management units where the fuels for the lab fires were collected. A broad variety, but smaller number of species (21 trace gas species and PM2.5 was measured on 14 fires in chaparral and oak savanna in the southwestern US, as well as pine forest understory in the southeastern US and Sierra Nevada mountains of California. The field measurements of emission factors (EF are useful both for modeling and to examine the representativeness of our lab fire EF. The lab EF/field EF ratio for

  4. Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires

    Directory of Open Access Journals (Sweden)

    R. J. Yokelson

    2012-08-01

    Full Text Available An extensive program of experiments focused on biomass burning emissions began with a laboratory phase in which vegetative fuels commonly consumed in prescribed fires were collected in the southeastern and southwestern US and burned in a series of 71 fires at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The particulate matter (PM2.5 emissions were measured by gravimetric filter sampling with subsequent analysis for elemental carbon (EC, organic carbon (OC, and 38 elements. The trace gas emissions were measured by an open-path Fourier transform infrared (OP-FTIR spectrometer, proton-transfer-reaction mass spectrometry (PTR-MS, proton-transfer ion-trap mass spectrometry (PIT-MS, negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS, and gas chromatography with MS detection (GC-MS. 204 trace gas species (mostly non-methane organic compounds – NMOC were identified and quantified with the above instruments. Many of the 182 species quantified by the GC-MS have rarely, if ever, been measured in smoke before. An additional 153 significant peaks in the unit mass resolution mass spectra were quantified, but either could not be identified or most of the signal at that molecular mass was unaccounted for by identifiable species.

    In a second, "field" phase of this program, airborne and ground-based measurements were made of the emissions from prescribed fires that were mostly located in the same land management units where the fuels for the lab fires were collected. A broad variety, but smaller number of species (21 trace gas species and PM2.5 was measured on 14 fires in chaparral and oak savanna in the southwestern US, as well as pine forest understory in the southeastern US and Sierra Nevada mountains of California. The field measurements of emission factors (EF are useful both for modeling and to examine the representativeness of our lab fire EF. The lab EF/field EF ratio for

  5. Root anoxia effects on physiology and emissions of volatile organic compounds (VOC) under short- and long-term inundation of trees from Amazonian floodplains.

    Science.gov (United States)

    Bracho-Nunez, Araceli; Knothe, Nina Maria; Costa, Wallace R; Maria Astrid, Liberato R; Kleiss, Betina; Rottenberger, Stefanie; Piedade, Maria Teresa Fernandez; Kesselmeier, Jürgen

    2012-01-01

    Volatile organic compound (VOC) emissions are affected by a variety of biotic and abiotic factors such as light intensity, temperature, CO2 and drought. Another stress factor, usually overlooked but very important for the Amazon region, is flooding. We studied the exchange of VOCs in relation to CO2 exchange and transpiration of 8 common tree species from the Amazonian floodplain forest grown up from seeds using a dynamic enclosure system. Analysis of volatile organics was performed by PTR-MS fast online measurements. Our study confirmed emissions of ethanol and acetaldehyde at the beginning of root anoxia after inundation, especially in less anoxia adapted species such as Vatairea guianensis, but not for Hevea spruceana probably due to a better adapted metabolism. In contrast to short-term inundation, long-term flooding of the root system did not result in any emission of ethanol or/and acetaldehyde. Emission of other VOCs, such as isoprenoids, acetone, and methanol exhibited distinct behavior related to the origin (igapó or várzea type of floodplain) of the tree species. Also physiological activities exhibited different response patterns for trees from igapó or várzea. In general, isoprenoid emissions increased within the course of some days of short-term flooding. After a long period of waterlogging, VOC emissions decreased considerably, along with photosynthesis, transpiration and stomatal conductance. However, even under long-term testing conditions, two tree species did not show any significant decrease or increase in photosynthesis. In order to understand ecophysiological advantages of the different responses we need field investigations with adult tree species.

  6. Field determination of biomass burning emission ratios and factors via open-path FTIR spectroscopy and fire radiative power assessment: headfire, backfire and residual smouldering combustion in African savannahs

    Science.gov (United States)

    Wooster, M. J.; Freeborn, P. H.; Archibald, S.; Oppenheimer, C.; Roberts, G. J.; Smith, T. E. L.; Govender, N.; Burton, M.; Palumbo, I.

    2011-11-01

    Biomass burning emissions factors are vital to quantifying trace gas release from vegetation fires. Here we evaluate emissions factors for a series of savannah fires in Kruger National Park (KNP), South Africa using ground-based open path Fourier transform infrared (FTIR) spectroscopy and an IR source separated by 150-250 m distance. Molecular abundances along the extended open path are retrieved using a spectral forward model coupled to a non-linear least squares fitting approach. We demonstrate derivation of trace gas column amounts for horizontal paths transecting the width of the advected plume, and find for example that CO mixing ratio changes of ~0.01 μmol mol-1 [10 ppbv] can be detected across the relatively long optical paths used here. Though FTIR spectroscopy can detect dozens of different chemical species present in vegetation fire smoke, we focus our analysis on five key combustion products released preferentially during the pyrolysis (CH2O), flaming (CO2) and smoldering (CO, CH4, NH3) processes. We demonstrate that well constrained emissions ratios for these gases to both CO2 and CO can be derived for the backfire, headfire and residual smouldering combustion (RSC) stages of these savannah fires, from which stage-specific emission factors can then be calculated. Headfires and backfires often show similar emission ratios and emission factors, but those of the RSC stage can differ substantially. The timing of each fire stage was identified via airborne optical and thermal IR imagery and ground-observer reports, with the airborne IR imagery also used to derive estimates of fire radiative energy (FRE), allowing the relative amount of fuel burned in each stage to be calculated and "fire averaged" emission ratios and emission factors to be determined. These "fire averaged" metrics are dominated by the headfire contribution, since the FRE data indicate that the vast majority of the fuel is burned in this stage. Our fire averaged emission ratios and factors

  7. Field determination of biomass burning emission ratios and factors via open-path FTIR spectroscopy and fire radiative power assessment: headfire, backfire and residual smouldering combustion in African savannahs

    Directory of Open Access Journals (Sweden)

    M. J. Wooster

    2011-11-01

    Full Text Available Biomass burning emissions factors are vital to quantifying trace gas release from vegetation fires. Here we evaluate emissions factors for a series of savannah fires in Kruger National Park (KNP, South Africa using ground-based open path Fourier transform infrared (FTIR spectroscopy and an IR source separated by 150–250 m distance. Molecular abundances along the extended open path are retrieved using a spectral forward model coupled to a non-linear least squares fitting approach. We demonstrate derivation of trace gas column amounts for horizontal paths transecting the width of the advected plume, and find for example that CO mixing ratio changes of ~0.01 μmol mol−1 [10 ppbv] can be detected across the relatively long optical paths used here. Though FTIR spectroscopy can detect dozens of different chemical species present in vegetation fire smoke, we focus our analysis on five key combustion products released preferentially during the pyrolysis (CH2O, flaming (CO2 and smoldering (CO, CH4, NH3 processes. We demonstrate that well constrained emissions ratios for these gases to both CO2 and CO can be derived for the backfire, headfire and residual smouldering combustion (RSC stages of these savannah fires, from which stage-specific emission factors can then be calculated. Headfires and backfires often show similar emission ratios and emission factors, but those of the RSC stage can differ substantially. The timing of each fire stage was identified via airborne optical and thermal IR imagery and ground-observer reports, with the airborne IR imagery also used to derive estimates of fire radiative energy (FRE, allowing the relative amount of fuel burned in each stage to be calculated and "fire averaged" emission ratios and emission factors to be determined. These "fire averaged" metrics are dominated by the headfire contribution, since the FRE data indicate that the vast majority

  8. The influence of grass silage-to-maize silage ratio and concentrate composition on methane emissions, performance and milk composition of dairy cows.

    Science.gov (United States)

    Hart, K J; Huntington, J A; Wilkinson, R G; Bartram, C G; Sinclair, L A

    2015-06-01

    It is well-established that altering the proportion of starch and fibre in ruminant diets can alter ruminal and post-ruminal digestion, although quantitative evidence that this reduces enteric methane (CH4) production in dairy cattle is lacking. The objective of this study was to examine the effect of varying grass-to-maize silage ratio (70 : 30 and 30 : 70 DM basis), offered ad libitum, with either a concentrate that was high in starch or fibre, on CH4 production, intake, performance and milk composition of dairy cows. A total of 20 cows were allocated to one of the four experimental diets in a two-by-two factorial design run as a Latin square with each period lasting 28 days. Measurements were conducted during the final 7 days of each period. Cows offered the high maize silage ration had a higher dry matter intake (DMI), milk yield, milk energy output and lower CH4 emissions when expressed per kg DMI and per unit of ingested gross energy, but there was no difference in total CH4 production. Several of the milk long-chain fatty acids (FA) were affected by forage treatment with the most notable being an increase in 18:0, 18:1 c9, 18:2 c9 c12 and total mono unsaturated FA, observed in cows offered the higher inclusion of maize silage, and an increase in 18:3 c9 c12 c15 when offered the higher grass silage ration. Varying the composition of the concentrate had no effect on DMI or milk production; however, when the high-starch concentrate was fed, milk protein concentration and milk FAs, 10:0, 14:1, 15:0, 16:1, increased and 18:0 decreased. Interactions were observed for milk fat concentration, being lower in cows offered high-grass silage and high-fibre concentrates compared with the high-starch concentrate, and FA 17:0, which was the highest in milk from cows fed the high-grass silage diet supplemented with the high-starch concentrate. In conclusion, increasing the proportion of maize silage in the diets of dairy cows increased intake and performance, and reduced CH

  9. Atmospheric CH4 and CO2 enhancements and biomass burning emission ratios derived from satellite observations of the 2015 Indonesian fire plumes

    Science.gov (United States)

    Parker, Robert J.; Boesch, Hartmut; Wooster, Martin J.; Moore, David P.; Webb, Alex J.; Gaveau, David; Murdiyarso, Daniel

    2016-08-01

    increases in regional greenhouse gas concentrations. CH4 is particularly enhanced, due to the dominance of smouldering combustion in peatland fires, with CH4 total column values typically exceeding 35 ppb above those of background "clean air" soundings. By examining the CH4 and CO2 excess concentrations in the fire-affected GOSAT observations, we determine the CH4 to CO2 (CH4 / CO2) fire emission ratio for the entire 2-month period of the most extreme burning (September-October 2015), and also for individual shorter periods where the fire activity temporarily peaks. We demonstrate that the overall CH4 to CO2 emission ratio (ER) for fires occurring in Indonesia over this time is 6.2 ppb ppm-1. This is higher than that found over both the Amazon (5.1 ppb ppm-1) and southern Africa (4.4 ppb ppm-1), consistent with the Indonesian fires being characterised by an increased amount of smouldering combustion due to the large amount of organic soil (peat) burning involved. We find the range of our satellite-derived Indonesian ERs (6.18-13.6 ppb ppm-1) to be relatively closely matched to that of a series of close-to-source, ground-based sampling measurements made on Kalimantan at the height of the fire event (7.53-19.67 ppb ppm-1), although typically the satellite-derived quantities are slightly lower on average. This seems likely because our field sampling mostly intersected smaller-scale peat-burning plumes, whereas the large-scale plumes intersected by the GOSAT Thermal And Near infrared Sensor for carbon Observation - Fourier Transform Spectrometer (TANSO-FTS) footprints would very likely come from burning that was occurring in a mixture of fuels that included peat, tropical forest and already-cleared areas of forest characterised by more fire-prone vegetation types than the natural rainforest biome (e.g. post-fire areas of ferns and scrubland, along with agricultural vegetation).The ability to determine large-scale ERs from satellite data allows the combustion behaviour of very

  10. Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires

    Energy Technology Data Exchange (ETDEWEB)

    Yokelson, R. J.; Burling, I. R.; Gilman, J. B.; Warneke, C.; Stockwell, C. E.; de Gouw, J.; Akagi, S. K.; Urbanski, S. P.; Veres, P.; Roberts, J. M.; Kuster, W. C.; Reardon, J.; Griffith, D. W. T.; Johnson, T. J.; Hosseini, S.; Miller, J. W.; Cocker III, D. R.; Jung, H.; Weise, D. R.

    2013-01-01

    Vegetative fuels commonly consumed in prescribed fires were collected from five locations in the southeastern and southwestern U.S. and burned in a series of 77 fires at the U.S. Forest Service Fire Sciences Laboratory in Missoula, Montana. The particulate matter (PM2.5) emissions were measured by gravimetric filter sampling with subsequent analysis for elemental carbon (EC), organic carbon (OC), and 38 elements. The trace gas emissions were measured with a large suite of state-of-the-art instrumentation including an open-path Fourier transform infrared (OP FTIR) spectrometer, proton-transfer-reaction mass spectrometry (PTR-MS), proton-transfer ion-trap mass spectrometry (PIT-MS), negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS), and gas chromatography with MS detection (GC-MS). 204 trace gas species (mostly non-methane organic compounds (NMOC)) were identified and quantified with the above instruments. An additional 152 significant peaks in the unit mass resolution mass spectra were quantified, but either could not be identified or most of the signal at that molecular mass was unaccounted for by identifiable species. As phase II of this study, we conducted airborne and ground-based sampling of the emissions from real prescribed fires mostly in the same land management units where the fuels for the lab fires were collected. A broad variety, but smaller number of species (21 trace gas species and PM2.5) was measured on 14 fires in chaparral and oak savanna in the southwestern US, as well as pine forest understory in the southeastern US and Sierra Nevada mountains of California. These extensive field measurements of emission factors (EF) for temperate biomass burning are useful both for modeling and to examine the representativeness of our lab fire EF. The lab/field EF ratio for the pine understory fuels was not statistically different from one, on average. However, our lab EF for “smoldering compounds” emitted by burning the semi

  11. VOC Composition of Air Masses Transported from Asia to the U.S. West Coast

    Science.gov (United States)

    de Gouw, J.; Warneke, C.; Kuster, B.; Parrish, D.; Holloway, J.; Huebler, G.; Fehsenfeld, F.

    2002-12-01

    Airborne measurements of volatile organic compounds (VOCs) were performed using a proton-transfer-reaction mass spectrometer (PTR-MS) operated onboard a NOAA WP-3 aircraft during the Intercontinental Transport and Chemical Transformation (ITCT) experiment in 2002. Enhancements of acetone (CH3COCH3), methanol (CH3OH), acetonitrile (CH3CN) and in some cases benzene were observed in air masses that were impacted by outflow from Asia. The enhancement ratios with respect to carbon monoxide are compared to emission factors for fossil fuel combustion and biomass burning, which gives some insight into the sources responsible for the pollution. The observed mixing ratios for acetone, methanol and in particular acetonitrile were generally reduced in the marine boundary layer, suggesting the presence of an ocean uptake sink. The ocean uptake of acetonitrile was found to be particularly efficient in a zone with upwelling water off of the U.S. west coast. Reduced mixing ratios of acetone and methanol were observed in a stratospheric intrusion. This observation gives some information about the lifetime of these VOCs in the stratosphere. Enhanced concentrations of aromatic hydrocarbons were observed in air masses that were impacted by urban sources in California. The ratio between the concentrations of benzene, toluene and higher aromatics indicated the degree of photochemical oxidation. PTR-MS only gives information about the mass of the ions produced by proton-transfer reactions between H3O+ and VOCs in the instrument. The identification of VOCs was confirmed by coupling a gas-chromatographic (GC) column to the instrument and post-flight GC-PTR-MS analyses of canister samples collected during the flights.

  12. Spontaneous Emission and Fundamental Limitations on the Signal-to-Noise Ratio in Deep-Subwavelength Plasmonic Waveguide Structures with Gain

    Science.gov (United States)

    Vyshnevyy, Andrey A.; Fedyanin, Dmitry Yu.

    2016-12-01

    Incorporation of gain media in plasmonic nanostructures can give the possibility to compensate for high Ohmic losses in the metal and design truly nanoscale optical components for diverse applications ranging from biosensing to on-chip data communication. However, the process of stimulated emission in the gain medium is inevitably accompanied by spontaneous emission. This spontaneous emission greatly impacts the performance characteristics of deep-subwavelength active plasmonic devices and casts doubt on their practical use. Here we develop a theoretical framework to evaluate the influence of spontaneous emission, which can be applied to waveguide structures of any shape and level of mode confinement. In contrast to the previously developed theories, we take into account that the spectrum of spontaneous emission can be very broad and nonuniform, which is typical for deep-subwavelength structures, where a high optical gain (approximately 1000 cm-1 ) in the active medium is required to compensate for strong absorption in the metal. We also present a detailed study of the spontaneous emission noise in metal-semiconductor active plasmonic nanowaveguides and demonstrate that by using both optical and electrical filtering techniques, it is possible to decrease the noise to a level sufficient for practical applications at telecom and midinfrared wavelengths.

  13. Biogenic volatile organic compound emissions during BEARPEX 2009 measured by eddy covariance and flux-gradient similarity methods

    Directory of Open Access Journals (Sweden)

    J.-H. Park

    2012-09-01

    Full Text Available The Biosphere Effects on AeRosols and Photochemistry EXperiment (BEARPEX took place in Blodgett Forest, a Ponderosa pine forest in the Sierra Nevada Mountains of California, during summer 2009. We deployed a Proton Transfer Reaction – Mass Spectrometer (PTR-MS to measure fluxes and concentrations of biogenic volatile organic compounds (BVOCs. Eighteen ion species including the major BVOC expected at the site were measured sequentially at 5 heights to observe their vertical gradient from the forest floor to above the canopy. Fluxes of the 3 dominant BVOCs methanol, 2-Methyl-3-butene-2-ol (MBO, and monoterpenes, were measured above the canopy by the eddy covariance method. Canopy scale fluxes were also determined by the flux-gradient similarity method (K-theory. A universal K (Kuniv was determined as the mean of individual K's calculated from the measured fluxes divided by vertical gradients for methanol, MBO, and monoterpenes. This Kuniv was then multiplied by the gradients of each observed ion species to compute their fluxes. The flux-gradient similarity method showed very good agreement with the Eddy Covariance method. Fluxes are presented for all measured species and compared to historical measurements from the same site, and used to test emission algorithms used to model fluxes at the regional scale. MBO was the dominant emission observed followed by methanol, monoterpenes, acetone, and acetaldehyde. The flux-gradient similarity method is shown to be a useful, and we recommend its use especially in experimental conditions when fast measurement of BVOC species is not available.

  14. Combination of the ionic-to-atomic line intensity ratios from two test elements for the diagnostic of plasma temperature and electron number density in Inductively Coupled Plasma Atomic Emission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tognoni, E. [Istituto per i Processi Chimico-Fisici, Area della Ricerca del Consiglio Nazionale delle Ricerche Via Moruzzi 1, 56124 Pisa (Italy)], E-mail: tognoni@ipcf.cnr.it; Hidalgo, M.; Canals, A. [Departamento de Quimica Analitica, Nutricion y Bromatologia. Universidad de Alicante. Apdo. 99, 03080, Alicante (Spain); Cristoforetti, G.; Legnaioli, S.; Salvetti, A.; Palleschi, V. [Istituto per i Processi Chimico-Fisici, Area della Ricerca del Consiglio Nazionale delle Ricerche Via Moruzzi 1, 56124 Pisa (Italy)

    2007-05-15

    In Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) spectrochemical analysis, the MgII(280.270 nm)/MgI(285.213 nm) ionic to atomic line intensity ratio is commonly used as a monitor of the robustness of operating conditions. This approach is based on the univocal relationship existing between intensity ratio and plasma temperature, for a pure argon atmospheric ICP in thermodynamic equilibrium. In a multi-elemental plasma in the lower temperature range, the measurement of the intensity ratio may not be sufficient to characterize temperature and electron density. In such a range, the correct relationship between intensity ratio and plasma temperature can be calculated only when the complete plasma composition is known. We propose the combination of the line intensity ratios of two test elements (double ratio) as an effective diagnostic tool for a multi-elemental low temperature LTE plasma of unknown composition. In particular, the variation of the double ratio allows us discriminating changes in the plasma temperature from changes in the electron density. Thus, the effects on plasma excitation and ionization possibly caused by introduction of different samples and matrices in non-robust conditions can be more accurately interpreted. The method is illustrated by the measurement of plasma temperature and electron density in a specific analytic case.

  15. X-ray emission line spectroscopy of cataclysmic variables. II. Temperatures and densities from line ratios in the Chandra HETG band

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, E. M.; Shipley, H. V. [Department of Physics and Astronomy, University of Texas-San Antonio, San Antonio, TX 78249 (United States); Rana, V. R. [Space Radiation Laboratory, Caltech, Pasadena, CA 91125 (United States); Barrett, P. E. [US Naval Observatory, Washington, DC 20392-5420 (United States); Singh, K. P., E-mail: eric.schlegel@utsa.edu, E-mail: vrana@srl.caltech.edu, E-mail: barrett.paul@usno.navy.mil, E-mail: singh@tifr.res.in [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai (India)

    2014-12-10

    We summarize the results of a line-by-line fitting analysis of the available spectra obtained using the Chandra High-Energy Transmission Grating. We confirm the existence of broad ionization and electron temperature ranges and high number densities in cataclysmic variables (CVs) of all subtypes. Temperatures range from ∼0.4 keV to ∼5-10 keV or more with a broad range detected in any given CV. In other words, single-temperature models do not describe the line emission. Number densities also cover a broad range, from 10{sup 12} to >10{sup 16} cm{sup –3}. We demonstrate that much of the plasma is in a nonequilibrium state; the Fe emission, however, may arise from plasma in the ionization equilibrium.

  16. Nebular Emission Line Ratios in z~2-3 Star-Forming Galaxies with KBSS-MOSFIRE: Exploring the Impact of Ionization, Excitation, and Nitrogen-to-Oxygen Ratio

    CERN Document Server

    Strom, Allison L; Rudie, Gwen C; Trainor, Ryan F; Pettini, Max; Reddy, Naveen A

    2016-01-01

    We present a detailed study of the rest-optical (3600-7000 Angstrom) nebular spectra of ~380 star-forming galaxies at z~2-3 obtained with Keck/MOSFIRE as part of the Keck Baryonic Structure Survey (KBSS). The KBSS-MOSFIRE sample is representative of star-forming galaxies at these redshifts, with stellar masses M*=10^9-10^11.5 M_sun and star formation rates SFR=3-1000 M_sun/yr. We focus on robust measurements of many strong diagnostic emission lines for individual galaxies: [O II]3727,3729, [Ne III]3869, H-beta, [O III]4960,5008, [N II]6549,6585, H-alpha, and [S II]6718,6732. Comparisons with observations of typical local galaxies from the Sloan Digital Sky Survey (SDSS) and between subsamples of KBSS-MOSFIRE show that high-redshift galaxies exhibit a number of significant differences in addition to the well-known offset in log([O III]/H-beta) and log([N II]/H-alpha). We argue that the primary difference between H II regions in z~2.3 galaxies and those at z~0 is an enhancement in the degree of nebular excitati...

  17. Effective tuning of the ratio of red to green emission of Ho{sup 3+} ions in single LiLuF{sub 4} microparticle via codoping Ce{sup 3+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wei, E-mail: gaowei@xupt.edu.cn; Dong, Jun; Liu, Jihong; Yan, Xuewen

    2016-09-15

    Yb{sup 3+}/Ho{sup 3+} codoped LiLuF{sub 4} microparticles have been successfully prepared via a facile hydrothermal method. The crystal phase and morphology of LiLuF{sub 4} microparticles were inspected by x-ray diffraction and scanning electron microscope, respectively. The upconversion emission of single LiLuF{sub 4}: Yb{sup 3+}/Ho{sup 3+} microparticle was carefully studied by a confocal microscopy setup under NIR 980 nm excitation. With the increase of Ce{sup 3+} ion concentrations of 12%, the ratio of red to green emission of the Ho{sup 3+} ions of single LiLuF{sub 4} microparticle was boosted about 17-fold, and the output colors were tuned from green to red, which is due to the two efficient cross-relaxation between Ho{sup 3+} and Ce{sup 3+} ions enhances the red and suppresses the green in the emission processes. To investigate the optical properties of the single microparticle or nanoparticle through the confocal microscopy setup can effectively avoid the influence of surrounding particle or environment, and could provide more precise information for better exploring the emission mechanisms of rare earth ions. The tunable upconversion emission of Ho{sup 3+} in single LiLuF{sub 4} microparticle in this work will have great potential applications in the micro optoelectronic devices and color display applications. - Highlights: • The optical properties of the single LiLuF4: Yb3+/Ho3+/Ce3+ microparticle were studied. • The output colors of single LiLuF4 microparticle were tuned from green to red. • The upconversion mechanisms between Ho3+ and Ce3+ ions were discussed based on emission spectrum.

  18. Quantifying impacts on air quality of vehicular emissions in Sao Paulo and Rio de Janeiro

    Science.gov (United States)

    Artaxo, Paulo; Ferreira de Brito, Joel; Godoy, José Marcus; Luiza Godoy, Maria; Junior, Djacinto

    2016-04-01

    Vehicular emissions in megacities such as Sao Paulo and Rio de Janeiro are increasingly becoming a global issue. The São Paulo Metropolitan Area (SPMA), located in Southeast of Brazil, is a megacity with a population of 18 million people, with 7 million cars and large-scale industrial emissions. Rio de Janeiro is also a large city with different meteorology than São Paulo. All cars in Brazil runs gasohol, with 23% ethanol in gasoline, and for the last 10 years, flex cars that can run on gasohol, ethanol or any mixture dominate the market. Overall ethanol accounts for about 30-40% of fuel burned in both cities. To improve the understanding of vehicular emission impacts on aerosol composition and life cycle in these two large megacities a source apportionment study, combining online and offline measurements, was performed. Aerosols were collected for one year to capture seasonal variability at 4 sites in each city, with inorganic and organic aerosol component being sampled. Organic and elemental carbon were measured using a Sunset Laboratory Dual Optics (transmission and reflectance) Carbon Analyzer and about 22 trace elements has been measured using polarized X-Ray Fluorescence (XRF). Aerosol mass and black carbon were also measured, as well as trace gases to help in aerosol source apportionment. In Sao Paulo, the average PM2.5 mass concentration obtained varied from 9.6 to 12.2 μg m-3 for the several sites, and similar concentrations were measured in Rio de Janeiro. At all sites, organic matter (OM) has dominated fine mode aerosol concentration with 42 to 60% of the aerosol mass. EC accounted for 21 to 31% of fine mode aerosol mass concentration. Sulfate accounted for 21 to 26% of PM2.5 for the sites. Aerosol source apportionment was done with receptor analysis and integration with online data such as PTR-MS, Aethalometers, Nephelometers and ACSM helped to apportion vehicular emissions. For the 8 sites operated in Sao Paulo and Rio de Janeiro, vehicular

  19. Atmospheric impacts of vehicular emissions in São Paulo, Brazil

    Science.gov (United States)

    Artaxo, P. P.; Brito, J. F.; Rizzo, L. V.; Godoy, J.; Godoy, M. L.; Alves, N. D.

    2013-12-01

    São Paulo is a large megacity (18 million people) with 7 million vehicles, with a peculiar vehicle fleet with significant ethanol emissions. A mixture of 24% of ethanol in the gasoline and a large fraction of vehicles running pure ethanol in flex fuel vehicles makes the city particularly interesting from the point of view of aerosol formation. A long term experiment was designed to analyze the physico-chemical properties of aerosols in São Paulo, as well as to apportion aerosol sources, with emphasis on vehicular emissions. Aerosol size distribution in the size range of 10 to 600 nm were measured with a Scanning Mobility Particle Sizer (SMPS). Optical properties are being measured with a TSI Nephelometer and a Thermo MAAP (Multi Angle Absorption Photometer). The composition of fine and coarse mode aerosols are being measured with XRF analysis and a Sunset instrument measure organic and elemental carbon in quartz filters. An Aerosol Chemical Speciation Monitor (ACSM) is used to characterize organic aerosols, in parallel with a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS) to determine VOC concentrations. The measured total particle concentration typically varies between 10,000 and 50,000 per cm-3 being the lowest late in the night and highest around noon after peak vehicle emissions. Clear diurnal patterns in aerosol optical properties were observed. Scattering and absorption coefficients typically range between 20 and 100 Mm-1 at 450 nm, and between 10 to 40 Mm-1 at 637 nm, respectively, both of them peaking at 7:00 local time, the morning rush hour. The corresponding single scattering albedo varies between 0.50 and 0.85, indicating a significant contribution of primary absorbing particles to the aerosol population. During the first month a total of seven new particle formation events were observed with growth rates ranging from 9 to 25 nm h-1. Interestingly enough there were also events where condensed vapors were evaporating from the condensed phase thus

  20. The Tropical Forest and Fire Emissions Experiment: overview and airborne fire emission factor measurements

    Directory of Open Access Journals (Sweden)

    R. J. Yokelson

    2007-10-01

    Full Text Available The Tropical Forest and Fire Emissions Experiment (TROFFEE used laboratory measurements followed by airborne and ground based field campaigns during the 2004 Amazon dry season to quantify the emissions from pristine tropical forest and several plantations as well as the emissions, fuel consumption, and fire ecology of tropical deforestation fires. The airborne campaign used an Embraer 110B aircraft outfitted with whole air sampling in canisters, mass-calibrated nephelometry, ozone by UV absorbance, Fourier transform infrared spectroscopy (FTIR, and proton-transfer mass spectrometry (PTR-MS to measure PM10, O3, CO2, CO, NO, NO2, HONO, HCN, NH3, OCS, DMS, CH4, and up to 48 non-methane organic compounds (NMOC. The Brazilian smoke/haze layers extended to 2–3 km altitude, which is much lower than the 5–6 km observed at the same latitude, time of year, and local time in Africa in 2000. Emission factors (EF were computed for the 19 tropical deforestation fires sampled and they largely compare well to previous work. However, the TROFFEE EF are mostly based on a much larger number of samples than previously available and they also include results for significant emissions not previously reported such as: nitrous acid, acrylonitrile, pyrrole, methylvinylketone, methacrolein, crotonaldehyde, methylethylketone, methylpropanal, "acetol plus methylacetate," furaldehydes, dimethylsulfide, and C1-C4 alkyl nitrates. Thus, we recommend these EF for all tropical deforestation fires. The NMOC emissions were ~80% reactive, oxygenated volatile organic compounds (OVOC. Our EF for PM10 (17.8±4 g/kg is ~25% higher than previously reported for tropical forest fires and may reflect a trend towards, and sampling of, larger fires than in earlier studies. A large fraction of the total burning for 2004 likely occurred during a two-week period of very low humidity. The

  1. The Tropical Forest and fire emissions experiment: overview and airborne fire emission factor measurements

    Directory of Open Access Journals (Sweden)

    R. J. Yokelson

    2007-05-01

    Full Text Available The Tropical Forest and Fire Emissions Experiment (TROFFEE used laboratory measurements followed by airborne and ground based field campaigns during the 2004 Amazon dry season to quantify the emissions from pristine tropical forest and several plantations as well as the emissions, fuel consumption, and fire ecology of tropical deforestation fires. The airborne campaign used an Embraer 110B aircraft outfitted with whole air sampling in canisters, mass-calibrated nephelometry, ozone by uv absorbance, Fourier transform infrared spectroscopy (FTIR, and proton-transfer mass spectrometry (PTR-MS to measure PM10, O3, CO2, CO, NO, NO2, HONO, HCN, NH3, OCS, DMS, CH4, and up to 48 non-methane organic compounds (NMOC. The Brazilian smoke/haze layers extended to 2–3 km altitude, which is much lower than the 5–6 km observed at the same latitude, time of year, and local time in Africa in 2000. Emission factors (EF were computed for the 19 tropical deforestation fires sampled and they largely compare well to previous work. However, the TROFFEE EF are mostly based on a much larger number of samples than previously available and they also include results for significant emissions not previously reported such as: nitrous acid, acrylonitrile, pyrrole, methylvinylketone, methacrolein, crotonaldehyde, methylethylketone, methylpropanal, "acetol plus methylacetate," furaldehydes, dimethylsulfide, and C1-C4 alkyl nitrates. Thus, we recommend these EF for all tropical deforestation fires. The NMOC emissions were ~80% reactive, oxygenated volatile organic compounds (OVOC. Our EF for PM10 (17.8±4 g/kg is ~25% higher than previously reported for tropical forest fires and may reflect a trend towards, and sampling of, larger fires than in earlier studies. A large fraction of the total burning for 2004 likely occurred during a two-week period of very low humidity. The combined output of these

  2. Nebular Emission Line Ratios in z ≃ 2–3 Star-forming Galaxies with KBSS-MOSFIRE: Exploring the Impact of Ionization, Excitation, and Nitrogen-to-Oxygen Ratio

    Science.gov (United States)

    Strom, Allison L.; Steidel, Charles C.; Rudie, Gwen C.; Trainor, Ryan F.; Pettini, Max; Reddy, Naveen A.

    2017-02-01

    We present a detailed study of the rest-optical (3600–7000 Å) nebular spectra of ∼380 star-forming galaxies at z≃ 2{--}3, obtained with Keck/Multi-object Spectrometer for Infrared Exploration (MOSFIRE) as part of the Keck Baryonic Structure Survey (KBSS). The KBSS-MOSFIRE sample is representative of star-forming galaxies at these redshifts, with stellar masses {M}* ={10}9{--}{10}11.5 {M}ȯ and star formation rates SFR = 3–1000 {M}ȯ yr‑1. We focus on robust measurements of many strong diagnostic emission lines for individual galaxies: [O ii]λλ3727, 3729, [Ne iii]λ3869, Hβ, [O iii]λ λ 4960, 5008, [N ii]λλ 6549, 6585, Hα, and [S ii]λλ6718, 6732. Comparisons with observations of typical local galaxies from the Sloan Digital Sky Survey and between subsamples of KBSS-MOSFIRE show that high-redshift galaxies exhibit a number of significant differences in addition to the well-known offset in log([O iii]λ 5008/Hβ) and log([N ii]λ 6585/Hα). We argue that the primary difference between H ii regions in z∼ 2.3 galaxies and those at z∼ 0 is an enhancement in the degree of nebular excitation, as measured by [O iii]/Hβ and {{R}}23\\equiv {log}[([O iii]λ λ 4960,5008+[O ii]λ λ 3727,3729)/Hβ]. At the same time, KBSS-MOSFIRE galaxies are ∼10 times more massive than z∼ 0 galaxies with similar ionizing spectra and have higher N/O (likely accompanied by higher O/H) at fixed excitation. These results indicate the presence of harder ionizing radiation fields at fixed N/O and O/H relative to typical z∼ 0 galaxies, consistent with Fe-poor stellar population models that include massive binaries, and highlight a population of massive, high-specific star formation rate galaxies at high redshift with systematically different star formation histories than galaxies of similar stellar mass today. The data presented in this paper were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of

  3. Temporal variability and sources of VOCs in urban areas of the eastern Mediterranean

    Science.gov (United States)

    Kaltsonoudis, Christos; Kostenidou, Evangelia; Florou, Kalliopi; Psichoudaki, Magda; Pandis, Spyros N.

    2016-11-01

    During the summer of 2012 volatile organic compounds (VOCs) were monitored by proton transfer reaction mass spectrometry (PTR-MS) in urban sites, in Athens and Patras, two of the largest cities in Greece. Also, during the winter of 2013, PTR-MS measurements were conducted in the center of the city of Athens. Positive matrix factorization (PMF) was applied to the VOC measurements to gain insights about their sources. In summer most of the measured VOCs were due to biogenic and traffic emissions. Isoprene, monoterpenes, and several oxygenated VOCs (oVOCs) originated mainly from vegetation either directly or as oxidation products. Isoprene average concentrations in Patras and Athens were 1 and 0.7 ppb respectively, while the monoterpene concentrations were 0.3 and 0.9 ppb respectively. Traffic was the main source of aromatic compounds during summer. For Patras and Athens the average concentrations of benzene were 0.1 and 0.2 ppb, of toluene 0.3 and 0.8 ppb, and of the xylenes 0.3 and 0.7 ppb respectively. Winter measurements in Athens revealed that biomass burning used for residential heating was a major VOC source contributing both aromatic VOCs and biogenic compounds such as monoterpenes. Several episodes related to biomass burning were identified and emission ratios (ERs) and emission factors (EFs) were estimated.

  4. Effect of influent C/N ratio on N2O emissions from anaerobic/anoxic/oxic biological nitrogen removal processes.

    Science.gov (United States)

    Yan, Xu; Zheng, Jiaxi; Han, Yunping; Liu, Jianwei; Sun, Jianhui

    2017-09-01

    The problem of producing strong greenhouse gas of nitrous oxide (N2O) from biological nitrogen removal (BNR) process in wastewater treatment plants (WWTP) has elicited great concern from various sectors. In this study, three laboratory-scale wastewater treatment systems, with influent C/N ratios of 3.4, 5.4, and 7.5, were set up to study the effect of influent C/N ratio on N2O generation in anaerobic/anoxic/oxic (A(2)O) process. Results showed, with the increased influent C/N ratio, N2O generation from both nitrification and denitrification process was decreased, and the N2O-N conversion ratio of the process was obviously reduced from 2.23 to 0.05%. Nitrification rate in oxic section was reduced, while denitrification rate in anaerobic and anoxic section was elevated and the removal efficiency of COD, NH4(+)-N, TN, and TP was enhanced in different extent. As the C/N ratio increased from 3.4 to 7.5, activities of three key denitrifying enzymes of nitrate reductase, nitrite reductase, and nitrous oxide reductase were increased. Moreover, microorganism analysis indicated that the relative abundance of ammonium-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were positively correlated with N2O generation, which was reduced from (8.42 ± 3.65) to (3.61 ± 1.66)% and (10.38 ± 4.12) to (4.67 ± 1.62)%, respectively. NosZ gene copy numbers of the A(2)O system were increased from (1.19 ± 0.49) × 10(7) to (2.84 ± 0.54) × 10(8) copies/g MLSS with the influent C/N ratio elevated from 3.4 to 7.5. Hence, appropriate influent C/N condition of A(2)O process could optimize the microbial community structure that simultaneously improve treatment efficiency and decrease the N2O generation.

  5. Linking annual N2O emission in organic soils to mineral nitrogen input as estimated by heterotrophic respiration and soil C/N ratio.

    Directory of Open Access Journals (Sweden)

    Zhijian Mu

    Full Text Available Organic soils are an important source of N2O, but global estimates of these fluxes remain uncertain because measurements are sparse. We tested the hypothesis that N2O fluxes can be predicted from estimates of mineral nitrogen input, calculated from readily-available measurements of CO2 flux and soil C/N ratio. From studies of organic soils throughout the world, we compiled a data set of annual CO2 and N2O fluxes which were measured concurrently. The input of soil mineral nitrogen in these studies was estimated from applied fertilizer nitrogen and organic nitrogen mineralization. The latter was calculated by dividing the rate of soil heterotrophic respiration by soil C/N ratio. This index of mineral nitrogen input explained up to 69% of the overall variability of N2O fluxes, whereas CO2 flux or soil C/N ratio alone explained only 49% and 36% of the variability, respectively. Including water table level in the model, along with mineral nitrogen input, further improved the model with the explanatory proportion of variability in N2O flux increasing to 75%. Unlike grassland or cropland soils, forest soils were evidently nitrogen-limited, so water table level had no significant effect on N2O flux. Our proposed approach, which uses the product of soil-derived CO2 flux and the inverse of soil C/N ratio as a proxy for nitrogen mineralization, shows promise for estimating regional or global N2O fluxes from organic soils, although some further enhancements may be warranted.

  6. Effect of the glassy carbon structure on the aspect ratio of micropoints of matrix field-emission cathodes prepared by thermochemical etching

    Science.gov (United States)

    Pleshkova, L. S.; Shesterkin, V. I.

    2016-11-01

    The application of thermochemical etching technology makes it possible to reveal and investigate the structure of SU-2000 glassy carbon using electron microscopy. The glassy carbon structure at the microscopic and nanoscopic levels is inhomogeneous and consists of pockets with an irregular cross section separated by partitions. This structure sets the limits on the aspect ratio of geometrical sizes and micropoint packing density in the matrix prepared by thermochemical etching.

  7. Rest-frame Optical Emission Lines in z ˜ 3.5 Lyman-break-selected Galaxies: The Ubiquity of Unusually High [OIII]/Hβ Ratios at 2 Gyr

    Science.gov (United States)

    Holden, B. P.; Oesch, P. A.; González, V. G.; Illingworth, G. D.; Labbé, I.; Bouwens, R.; Franx, M.; van Dokkum, P.; Spitler, L.

    2016-03-01

    We present K-band spectra of rest-frame optical emission lines for 24 star-forming galaxies at z ˜ 3.2-3.7 using MOSFIRE on the Keck I telescope. Strong rest-frame optical [O iii] and Hβ emission lines were detected in 18 Lyman break galaxies (LBGs). The median flux ratio of [O iii]λ5007 to Hβ is {5.1}-0.5+0.5. This is a factor of 5-10 times higher than in local galaxies with similar stellar masses. None of our sources are detected in deep X-ray stacks, ruling out significant contamination by active galactic nuclei. Combining our sample with a variety of LBGs from the literature, including 49 galaxies selected in a very similar manner, we find a high median ratio of [O iii]/Hβ = {4.8}-1.7+0.8. This high ratio seems to be a ubiquitous feature of z ˜ 3-4 LBGs, very different from typical local star-forming galaxies at similar stellar masses. The only comparable systems at z ˜ 0 are those with similarly high specific star formation rates (SSFRs), though ˜5 times lower stellar masses. High SSFRs may result in a higher ionization parameter, higher electron density, or harder ionizing radiation, which, combined different elemental abundances, result in a much higher [O iii]/Hβ line ratio. This implies a strong relation between a global property of a galaxy, the SSFR, and the local conditions of ISM in star-forming regions. Partially based on data obtained with the Hubble Space Telescope operated by AURA, Inc. for NASA under contract NAS5-26555. Partially based on observations with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407.

  8. Variability and reproducibility of hepatic FDG uptake measured as SUV as well as tissue-to-blood background ratio using positron emission tomography in healthy humans

    DEFF Research Database (Denmark)

    Kanstrup, Inge-Lis; Klausen, Thomas Levin; Bojsen-Møller, Jens

    2009-01-01

    -to-blood background ratio (T/B), or measured as standardized uptake value (SUV). Small regions of interest (ROIs) of 10 cm(3) in two different hepatic regions were analysed as well as the total liver. Mean SUV was 1.16 +/- 0.15 and mean T/B corrected values was 1.87 +/- 0.17. The maximal values were 2.70 (SUV) and 4.......67 (T/B). Reproducibility was 6.7% for the mean SUV and 0.2% for the max SUV values. The corresponding figures for the T/B corrected mean values were 6.4% and for the max T/B values 13.0%. In general, the small ROIs had a comparable or even lower CV% for SUV values, but a higher CV% for T/B corrected...

  9. Evidence of feasible hardness test on Mars using ratio of ionic/neutral emission intensities measured with laser-induced breakdown spectroscopy in low pressure CO{sub 2} ambient gas

    Energy Technology Data Exchange (ETDEWEB)

    Abdulmadjid, Syahrun Nur; Lahna, Kurnia; Idris, Nasrullah [Department of Physics, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, NAD (Indonesia); Pardede, Marincan [Department of Electrical Engineering, University of Pelita Harapan, 1100 M.H. Thamrin Boulevard, Lippo Village, Tangerang 15811 (Indonesia); Suyanto, Hery [Department of Physics, Faculty of Mathematics and Natural Sciences, Udayana University, Kampus Bukit Jimbaran, Denpasar 80361, Bali (Indonesia); Ramli, Muliadi [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, NAD (Indonesia); Marpaung, Alion Mangasi [Department of Physics, Faculty of Mathematics and Natural Sciences, Jakarta State University, 10 Rawamangun, Jakarta 13220 (Indonesia); Hedwig, Rinda [Department of Computer Engineering, Bina Nusantara University, 9 K.H. Syahdan, Jakarta 14810 (Indonesia); Lie, Zener Sukra [Department of Computer Engineering, Bina Nusantara University, 9 K.H. Syahdan, Jakarta 14810 (Indonesia); Research Center of Maju Makmur Mandiri Foundation, 40/80 Srengseng Raya, Jakarta 11630 (Indonesia); Kurniawan, Davy Putra; Kurniawan, Koo Hendrik, E-mail: kurnia18@cbn.net.id; Lie, Tjung Jie [Research Center of Maju Makmur Mandiri Foundation, 40/80 Srengseng Raya, Jakarta 11630 (Indonesia); Tjia, May On [Research Center of Maju Makmur Mandiri Foundation, 40/80 Srengseng Raya, Jakarta 11630 (Indonesia); Physics of Magnetism and Photonics Group, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, 10 Ganesha, Bandung 40132 (Indonesia); Kagawa, Kiichiro [Research Center of Maju Makmur Mandiri Foundation, 40/80 Srengseng Raya, Jakarta 11630 (Indonesia); Fukui Science Education Academy, Takagi Chuo 2 chome, Fukui 910-0804 (Japan)

    2016-04-28

    An experimental study is conducted on the possibility and viability of performing hardness measurement of the various stone and chert samples in low pressure (600 Pa) CO{sub 2} ambient gas, a condition that is encountered in the Mars atmosphere. For this study, a nanosecond Nd-YAG laser is employed to generate plasma emission from the samples with different degrees of hardness. This technique is developed in light of the role of the shock wave in the generation of a laser-induced plasma. It was previously shown that the speed of the shock front depends on the hardness of the sample, and a positive relationship was found between the speed of the shock front and the ionization rate of the ablated atoms. Hence, the ratio of the intensity between the Mg II 279.5 nm and Mg I 285.2 nm emission lines detected from the laser-induced plasma can be used to estimate the hardness of a material. In fact, it is shown that the ratio changes linearly with respect to changes of sample hardness. The result has thus demonstrated the feasibility and viability of using LIBS for non contact hardness measurement on Mars.

  10. Neutron capture and fission reactions on 235U: cross sections, α-ratios and prompt γ-ray emission from fission

    Directory of Open Access Journals (Sweden)

    González-Romero E.

    2013-03-01

    Full Text Available According to the international benchmarks, and as it is mentioned in the NEA High Priority Request List, the 235U(n,γ cross section is of utmost importance for the operation and design of current and advanced nuclear reactors. The required accuracy in this energy region (100 eV to 2.25 keV ranges between 5% and 7%, to be compared with the present differences of 20% between the α-ratios in different evaluations. At n_TOF we have measured this cross section during the summer of 2012 using a fission tagging capture set-up. This new set-up has been tested successfully in 2010 and combines the n_TOF 4π Total Absorption Calorimeter with a series of MicroMegas fission detectors. The experiment has provided as well very valuable information on the distribution of energies and multiplicities of the γ-rays emitted prompt after capture and fission reactions. The very fresh data from this experiment will be presented for the first time, and their quality and expected results will be discussed in detail

  11. Measurements of acetone and other gas phase product yields from the OH-initiated oxidation of terpenes by proton-transfer-reaction mass spectrometry (PTR-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Wisthaler, A.; Lindinger, W. [University of Innsbruck (Austria). Institut fuer Ionenphysik; Jensen, N.R.; Winterhalter, R.; Hjorth, J. [Joint Research Centre, European Commission, Environment Institute, Ispra (Italy)

    2001-07-01

    The atmospheric oxidation of several terpenes appears to be a potentially relevant source of acetone in the atmosphere. Proton-transfer-reaction mass spectrometry was used as an on-line analytical method in a chamber study to measure acetone and other gas phase products from the oxidation of {alpha}- and {beta}-pinene initiated by OH radicals in air and in the presence of NO{sub x}. Acetone may be formed promptly, following attack by the OH radical on the terpene, via a series of highly unstable radical intermediates. It can also be formed by slower processes, via degradation of stable non-radical intermediates such as pinonaldehyde and nopinone. Primary acetone and pinonaldehyde molar yields of 11{+-}2% (one {sigma}) and 34{+-}9% (one {sigma}), respectively, were found from the reaction between {alpha}-pinene and the OH radical. After all {alpha}-pinene had been consumed, an additional formation of acetone due to the degradation of stable non-radical intermediates was observed. The total amount of acetone formed was 15{+-}2% (one {sigma}) of the reacted {alpha}-pinene. An upper limit of 12{+-}3% (one {sigma}) for the acetone molar yield from the oxidation of pinonaldehyde was established. From the reaction between {beta}-pinene and the OH radicals, primary acetone and nopinone molar yields of 13{+-}2% (one {sigma}) and 25{+-}3% (one {sigma}), respectively, were observed. Additional amounts of acetone were formed by the further degradation of the primary product, such as the most abundant product nopinone. The total amount of acetone formed was 16{+-}2% (one {sigma}) of the reacted {beta}-pinene. An upper limit of 12{+-}2% (one {sigma}) for the acetone molar yield from the oxidation of nopinone was established. The observed product yields from {alpha}- and {beta}-pinene are in good agreement with other studies using mass-spectrometric and gas chromatographic analytical techniques, but differ significantly from previous studies using spectroscopic methods. Possible reasons for the discrepancies are discussed. (author)

  12. PTR-MS Assessment of Photocatalytic and Sorption-Based Purification of Recirculated Cabin Air during Simulated 7-h Flights with High Passenger Density

    DEFF Research Database (Denmark)

    Wisthaler, Armin; Strøm-Tejsen, Peter; Fang, Lei

    2007-01-01

    Four different air purification conditions were established in a simulated 3-row 21-seat section of an aircraft cabin: no air purifier; a photocatalytic oxidation unit with an adsorptive prefilter; a second photocatalytic unit with an adsorptive prefil-ter; and a two-stage sorptionbased air filter...... (gas-phase absorption and adsorption). The air purifiers placed in the cabin air recirculation system were commercial prototypes developed for use in aircraft cabin systems. The four conditions were established in balanced order on 4 successive days of each of 4 successive weeks during simulated 7-h...

  13. In vivo DMSP-biosynthesis measurements using stable-isotope incorporation and proton-transfer-reaction mass spectrometry (PTR-MS)

    NARCIS (Netherlands)

    Stefels, Jacqueline; Dacey, John W. H.; Elzenga, J. Theo M.

    2009-01-01

    Assessing turnover rates of dimethylsulfoniopropionate (DMSP), precursor of the climate-active gas dimethylsulfide (DMS), under different environmental conditions is fundamental to accurately modeling the marine sulfur cycle. Current gas chromatographic methods only provide net results of all proces

  14. New field-based agricultural biomass burning trace gas, PM2.5, and black carbon emission ratios and factors measured in situ at crop residue fires in Eastern China

    Science.gov (United States)

    Zhang, Tianran; Wooster, Martin J.; Green, David C.; Main, Bruce

    2015-11-01

    Despite policy attempts to limit or prevent agricultural burning, its use to remove crop residues either immediately after harvest (e.g. field burning of wheat stubble) or after subsequent crop processing (e.g. "bonfires" of rice straw and rapeseed residues) appears to remain widespread across parts of China. Emission factors for these types of small but highly numerous fire are therefore required to fully assess their impact on atmospheric composition and air pollution. Here we describe the design and deployment of a new smoke measurement system for the close-range sampling of key gases and particles within smoke from crop residue fires, using it to assess instantaneous mixing ratios of CO and CO2 and mass concentrations of black carbon (BC) and PM2.5 from wheat stubble, rice straw, and rapeseed residue fires. Using data of our new smoke sampling system, we find a strong linear correlation between the PM2.5 mass and BC, with very high PM2.5 to BC emission ratios found in the smouldering phase (up to 80.7 mg m-3.(mg m-3)-1) compared to the flaming phase (2.0 mg m-3.(mg m-3)-1). We conclude that the contribution of BC to PM2.5 mass was as high as 50% in the flaming phase of some burns, whilst during smouldering it sometimes decreased to little over one percent. A linear mixing model is used to quantify the relative contribution of each combustion phase to the overall measured smoke composition, and we find that flaming combustion dominated the total emission of most species assessed. Using time series of trace gas concentrations from different fire cases, we calculated 'fire integrated' trace gas emission factors (EFs) for wheat, rice and rapeseed residue burns as 1739 ± 19 g kg-1, 1761 ± 30 g kg-1and 1704 ± 27 g kg-1 respectively for CO2, and 60 ± 12 g kg-1, 47 ± 19 g kg-1 and 82 ± 17 g kg-1 respectively for CO. Where comparisons were possible, our EFs agreed well with those derived via a simultaneously-deployed open path Fourier transform infrared (OP

  15. Radiance line ratios Ly-β/Ly-α, Ly-γ/Ly-α, Ly-δ/Ly-α, and Ly-ε/Ly-α for soft X-ray emissions following charge exchange between C{sup 6+} and Kr

    Energy Technology Data Exchange (ETDEWEB)

    Andrianarijaona, V.M. [Department of Physics, Pacific Union College, Angwin, CA 94508 (United States); Wulf, D.; McCammon, D. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Seely, D.G. [Department of Physics, Albion College, Albion, MI 49224 (United States); Havener, C.C. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6372 (United States)

    2015-05-01

    The radiance line ratios Ly-β/Ly-α, Ly-γ/Ly-α, Ly-δ/Ly-α, and Ly-ε/Ly-α for soft X-ray emission following charge exchange (CX) between C{sup 6+} and Kr are reported for collision energies between approximately 320 and 46,000 eV/u. The corresponding collision velocities (250–3000 km/s) are characteristic of the solar wind. X-ray spectra were obtained at the Oak Ridge National Laboratory Multicharged Ion Research Facility using a microcalorimeter X-ray detector with a resolution on the order of 10 eV FWHM. The measured Ly-ε/Ly-α is zero for all considered energies and suggests that very little, if any, capture to 6p occurs. The measured Ly-β/Ly-α and Ly-γ/Ly-α ratios intersect and form a well resolved node around (950 ± 50) km/s, which could be used as an astrophysical velocity indicative tool. The results reported here are compared to calculations for C{sup 6+} + H since no published theory for C{sup 6+} + Kr is known to exist. Double-electron-capture (DEC) and other multi-electron processes are possible. True double capture is estimated to be only 10% of the single-electron-capture (SEC)

  16. Calculation of the Air-Fuel Ratio and Specific Gaseous Emissions from Gasoline Engines%汽油机空燃比及气体排放量计算方法浅析

    Institute of Scientific and Technical Information of China (English)

    程传辉; 周舟

    2013-01-01

    空燃比对发动机运行状况和排放特性具有重要意义,由发动机排气成分计算空燃比的方法被广泛应用.本文根据Spindt法和全气法,结合汽油机的燃烧特点,推导出更简便的空燃比计算方法-碳原子平衡法.以18个工况点的直采排放数据为例,对比分析三种方法的计算值.结果表示,与宽氧传感器的测量值相比,Spindt法计算值的误差范围为1.5%~2.5%,全气法和碳原子平衡法相差甚微,碳原子平衡法具有广泛的适用性.由于各种排放标准制定的环境和条件不同,本文对比了SAE J1088、GB17691、IS08178三种标准中关于气态污染物比排放量的计算公式,根据当前进行发动机试验的实际条件,以一组汽油机台架试验的直采测量结果为例,基于空燃比的计算提出了更合适的比排放量计算公式.%Air-fuel ratio has great significance on operating conditions and emission characteristics of the engine.The method to calculate air-fuel ratio through exhaust components has been widely used.Combined with the combustion characteristics of gasoline engine,the carbon balance method was deduced according to the principle of combustion,which is simpler than the Spindt and full gas methods.The calculated results of three methods on emissions data of 18 operating points were compared and analyzed.The results show that the calculated value of Spindt-law has difference from 1.5% to 2.5 %,full gas law and the carbon balance method differ little,compared with the measured value of a Bosch UEGO (Universal Exhaust Gas Oxygen) sensor.So carbon balance method has broad applicability.Meanwhile different environment and conditions of various emissions standards,the calculation formula on emission value of gaseous pollutants in standards SAE J1088,GB1791 and ISO8178 were compared.According to our conditions of engine test,more suitable calculation formula was selected based on the calculation of the air-fuel ratio.

  17. 高压缩比甲醇发动机的性能和排放研究%Performance and Emissions Research of the High Compression Ratio Methanol Engine

    Institute of Scientific and Technical Information of China (English)

    王晋; 朱建军; 王勇; 刘磊; 高聪慧

    2014-01-01

    用一辆农用拖拉机的柴油机进行台架试验。在一台1115单缸柴油机上,经过加装电热塞、增大压缩比和喷油泵直径的改装后燃用M100甲醇燃料,并对改装后的甲醇发动机与原柴油机进行对比试验。试验结果表明:甲醇发动机的动力性比原柴油机高,经济性得到改善;尾气排放中甲醇发动机 NOx平均降低45%,尽管 HC和CO的排放整体比柴油机高,但在大负荷时可以平均降低70%;并且在尾气进行三元催化处理后,可以使 HC和CO排放降低到与柴油机一样。通过试验对比,对甲醇替代柴油的可能提供了理论依据,对柴油机节能减排具有重大意义。%The experiment uses an farm tractor diesel engine to conduct an bench test .To make it burns M100 methanol fuel ,we add a glow plug , enlarge the compression ratio and the diameter of fuel injection pump on a 1115 single cylinder diesel engine , and combine the test research between the methanol engine and the original diesel engine .Results shows that the methanol engine can improve dynamic and economy;The methanol engine can reduce 45%averagely on NO x e-missions;Although HC and CO emissions are higher than the original diesel engine , but the methanol engine also can re-duce by 70%on average in high loads .emissions decreace the same as the original engine's after the tail gas is treated by three-way catalytic converter .According to the research , it provides a theoretical basis that methanol could replace diesel and makes great significance for energy save and emission reduction .

  18. Impact of target-to-background ratio, target size, emission scan duration, and activity on physical figures of merit for a 3D LSO-based whole body PET/CT scanner.

    Science.gov (United States)

    Brambilla, M; Matheoud, R; Secco, C; Sacchetti, G; Comi, S; Rudoni, M; Carriero, A; Inglese, E

    2007-10-01

    The aim of our work is to describe the way in which physical figures of merit such as contrast-to-noise ratio (CNR) behave when varying acquisition parameters such as emission scan duration (ESD) or activity at the start of acquisition (A(acq)) that in clinical practice can be selected by the user, or object properties such as target dimensions or target-to-background (T/B) ratio, which depend uniquely on the intrinsic characteristics of the object being imaged. Figures of merit, used to characterize image quality and quantitative accuracy for a 3D-LSO based PET/CT scanner, were studied as a function of ESD and A(acq) for different target sizes and T/B ratios using a multivariate approach in a wide range of conditions approaching the ones that can be encountered in clinical practice. An annular ring of water bags of 3 cm thickness was fitted over an IEC phantom in order to obtain counting rates similar to those found in average patients. The average scatter fraction (SF) of the modified IEC phantom was similar to the mean SF measured on patients with a similar scanner. A supplemental set of micro-hollow spheres was positioned inside the phantom. The NEMA NU 2-2001 scatter phantom was positioned at the end of the IEC phantom to approximate the clinical situation of having activity that extends beyond the scanner. The phantoms were filled with a solution of water and 18F (12 kBq/mL) and the spheres with various T/B ratios of 22.5, 10.3, and 3.6. Sequential imaging was performed to acquire PET images with varying background activity concentrations of about 12, 9, 6.4, 5.3, and 3.1 kBq/mL, positioned on the linear portion of the phantom's NECR curve, well below peak NECR of 61.2 kcps that is reached at 31.8 kBq/mL. The ESD was set to 1, 2, 3, and 4 min/bed. With T/B ratios of 3.6, 10.3, and 22.5, the 13.0, 8.1, and 6.5 mm spheres were detectable for the whole ranges of background activity concentration and ESD, respectively. The ESD resulted as the most significant

  19. Principal component analysis with pre-normalization improves the signal-to-noise ratio and image quality in positron emission tomography studies of amyloid deposits in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Razifar, Pasha [Molecular Imaging and CT Research, GE Healthcare, WI 53188, Waukesha (United States); Engler, Henry [Department of Medical Science, Uppsala University, SE-751 85 Uppsala (Sweden); Blomquist, Gunnar [Department of Oncology, Radiology and Clinical Immunology, Uppsala University, SE-751 85 Uppsala (Sweden); Ringheim, Anna; Estrada, Sergio [Uppsala Imanet AB, GE Healthcare, Box 967, SE-751 09, Uppsala (Sweden); Laangstroem, Bengt [Department of Biochemistry and Organic Chemistry, Uppsala University, SE-751 24 Uppsala (Sweden); Bergstroem, Mats [Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala (Sweden)

    2009-06-07

    This study introduces a new approach for the application of principal component analysis (PCA) with pre-normalization on dynamic positron emission tomography (PET) images. These images are generated using the amyloid imaging agent N-methyl [{sup 11}C]2-(4'-methylaminophenyl)-6-hydroxy-benzothiazole ([{sup 11}C]PIB) in patients with Alzheimer's disease (AD) and healthy volunteers (HVs). The aim was to introduce a method which, by using the whole dataset and without assuming a specific kinetic model, could generate images with improved signal-to-noise and detect, extract and illustrate changes in kinetic behavior between different regions in the brain. Eight AD patients and eight HVs from a previously published study with [{sup 11}C]PIB were used. The approach includes enhancement of brain regions where the kinetics of the radiotracer are different from what is seen in the reference region, pre-normalization for differences in noise levels and removal of negative values. This is followed by slice-wise application of PCA (SW-PCA) on the dynamic PET images. Results obtained using the new approach were compared with results obtained using reference Patlak and summed images. The new approach generated images with good quality in which cortical brain regions in AD patients showed high uptake, compared to cerebellum and white matter. Cortical structures in HVs showed low uptake as expected and in good agreement with data generated using kinetic modeling. The introduced approach generated images with enhanced contrast and improved signal-to-noise ratio (SNR) and discrimination power (DP) compared to summed images and parametric images. This method is expected to be an important clinical tool in the diagnosis and differential diagnosis of dementia.

  20. Characterization of vehicle emissions in São Paulo and the impacts on atmospheric chemistry and secondary aerosol formation

    Science.gov (United States)

    Ferreira De Brito, J.; Godoy, M.; Godoy, J.; Varanda Rizzo, L.; Artaxo, P.

    2012-12-01

    Megacities emissions are increasingly becoming a global issue, where emissions from the transportation sector play an important role. São Paulo, located in Southeast of Brazil, is a megacity with a population of 18 million people, 7 million cars and large-scale industrial emissions. As a result of the vehicular and industrial emissions, the air quality in São Paulo is considered one of the worst worldwide. Despite the large impact on human health and atmospheric chemistry/dynamics, many uncertainties are found on gas- and particulate matter vehicular emission factors and their following atmospheric processes, e.g. secondary organic aerosol formation. Due to the uniqueness of the vehicular fuel in Brazil, largely based on ethanol use, such characterization currently holds further uncertainties. To improve the understanding of the role of this unique emission pattern, we are running a source apportionment study in São Paulo. One of the goals of this study is a quantitative aerosol source apportionment focused on vehicular emissions, including ethanol and gasohol (both fuels used by light-duty vehicles) and diesel (heavy-duty vehicles). Whereas the latter shows usually much higher emission factors compared with ethanol or gasohol, heavy-duty vehicles have increasingly limited access within the São Paulo city limits, thus increasing the importance of light duty vehicles on air quality degradation. This study comprises four sampling sites, where trace elements and organic aerosol are being measured for PM2.5 and PM10 along with real-time NOx, ozone, PM10 and CO measurements. Aerosol optical properties and size distribution are being measured on a rotation basis between sampling stations. Furthermore, a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS) and an Aerosol Chemical Speciation Monitor (ACSM) are used to real-time VOC analysis and aerosol composition, respectively. Results show aerosol number concentrations ranging between 10^4 and 3.10^4 cm-3, mostly

  1. Biogenic volatile organic compound and respiratory CO2 emissions after 13C-labeling: online tracing of C translocation dynamics in poplar plants.

    Science.gov (United States)

    Ghirardo, Andrea; Gutknecht, Jessica; Zimmer, Ina; Brüggemann, Nicolas; Schnitzler, Jörg-Peter

    2011-02-28

    Globally plants are the primary sink of atmospheric CO(2), but are also the major contributor of a large spectrum of atmospheric reactive hydrocarbons such as terpenes (e.g. isoprene) and other biogenic volatile organic compounds (BVOC). The prediction of plant carbon (C) uptake and atmospheric oxidation capacity are crucial to define the trajectory and consequences of global environmental changes. To achieve this, the biosynthesis of BVOC and the dynamics of C allocation and translocation in both plants and ecosystems are important. We combined tunable diode laser absorption spectrometry (TDLAS) and proton transfer reaction mass spectrometry (PTR-MS) for studying isoprene biosynthesis and following C fluxes within grey poplar (Populus x canescens) saplings. This was achieved by feeding either (13)CO(2) to leaves or (13)C-glucose to shoots via xylem uptake. The translocation of (13)CO(2) from the source to other plant parts could be traced by (13)C-labeled isoprene and respiratory (13)CO(2) emission. In intact plants, assimilated (13)CO(2) was rapidly translocated via the phloem to the roots within 1 hour, with an average phloem transport velocity of 20.3±2.5 cm h(-1). (13)C label was stored in the roots and partially reallocated to the plants' apical part one day after labeling, particularly in the absence of photosynthesis. The daily C loss as BVOC ranged between 1.6% in mature leaves and 7.0% in young leaves. Non-isoprene BVOC accounted under light conditions for half of the BVOC C loss in young leaves and one-third in mature leaves. The C loss as isoprene originated mainly (76-78%) from recently fixed CO(2), to a minor extent from xylem-transported sugars (7-11%) and from photosynthetic intermediates with slower turnover rates (8-11%). We quantified the plants' C loss as respiratory CO(2) and BVOC emissions, allowing in tandem with metabolic analysis to deepen our understanding of ecosystem C flux.

  2. Biogenic volatile organic compound and respiratory CO2 emissions after 13C-labeling: online tracing of C translocation dynamics in poplar plants.

    Directory of Open Access Journals (Sweden)

    Andrea Ghirardo

    Full Text Available BACKGROUND: Globally plants are the primary sink of atmospheric CO(2, but are also the major contributor of a large spectrum of atmospheric reactive hydrocarbons such as terpenes (e.g. isoprene and other biogenic volatile organic compounds (BVOC. The prediction of plant carbon (C uptake and atmospheric oxidation capacity are crucial to define the trajectory and consequences of global environmental changes. To achieve this, the biosynthesis of BVOC and the dynamics of C allocation and translocation in both plants and ecosystems are important. METHODOLOGY: We combined tunable diode laser absorption spectrometry (TDLAS and proton transfer reaction mass spectrometry (PTR-MS for studying isoprene biosynthesis and following C fluxes within grey poplar (Populus x canescens saplings. This was achieved by feeding either (13CO(2 to leaves or (13C-glucose to shoots via xylem uptake. The translocation of (13CO(2 from the source to other plant parts could be traced by (13C-labeled isoprene and respiratory (13CO(2 emission. PRINCIPAL FINDING: In intact plants, assimilated (13CO(2 was rapidly translocated via the phloem to the roots within 1 hour, with an average phloem transport velocity of 20.3±2.5 cm h(-1. (13C label was stored in the roots and partially reallocated to the plants' apical part one day after labeling, particularly in the absence of photosynthesis. The daily C loss as BVOC ranged between 1.6% in mature leaves and 7.0% in young leaves. Non-isoprene BVOC accounted under light conditions for half of the BVOC C loss in young leaves and one-third in mature leaves. The C loss as isoprene originated mainly (76-78% from recently fixed CO(2, to a minor extent from xylem-transported sugars (7-11% and from photosynthetic intermediates with slower turnover rates (8-11%. CONCLUSION: We quantified the plants' C loss as respiratory CO(2 and BVOC emissions, allowing in tandem with metabolic analysis to deepen our understanding of ecosystem C flux.

  3. Eddy Covariance Flux Measurements of Pollutant Gases in the Mexico City Urban Area: a Useful Technique to Evaluate Emissions inventories

    Science.gov (United States)

    Velasco, E.; Grivicke, R.; Pressley, S.; Allwine, G.; Jobson, T.; Westberg, H.; Lamb, B.; Ramos, R.; Molina, L.

    2007-12-01

    Direct measurements of emissions of pollutant gases that include all major and minor emissions sources in urban areas are a missing requirement to improve and evaluate emissions inventories. The quality of an urban emissions inventory relies on the accuracy of the information of anthropogenic activities, which in many cases is not available, in particular in urban areas of developing countries. As part of the MCMA-2003 field campaign, we demonstrated the feasibility of using eddy covariance (EC) techniques coupled with fast-response sensors to measure fluxes of volatile organic compounds (VOCs) and CO2 from a residential district of Mexico City. Those flux measurements demonstrated to be also a valuable tool to evaluate the emissions inventory used for air quality modeling. With the objective to confirm the representativeness of the 2003 flux measurements in terms of magnitude, composition and diurnal distribution, as well to evaluate the most recent emissions inventory, a second flux system was deployed in a different district of Mexico City during the 2006 MILAGRO field campaign. This system was located in a busy district surrounded by congested avenues close to the center of the city. In 2003 and 2006 fluxes of olefins and CO2 were measured by the EC technique using a Fast Isoprene Sensor calibrated with a propylene standard and an open path Infrared Gas Analyzer (IRGA), respectively. Fluxes of aromatic and oxygenated VOCs were analyzed by Proton Transfer Reaction-Mass Spectroscopy (PTR-MS) and the disjunct eddy covariance (DEC) technique. In 2006 the number of VOCs was extended using a disjunct eddy accumulation (DEA) system. This system collected whole air samples as function of the direction of the vertical wind component, and the samples were analyzed on site by gas chromatography / flame ionization detection (GC-FID). In both studies we found that the urban surface is a net source of CO2 and VOCs. The diurnal patterns were similar, but the 2006 fluxes

  4. The brightness ratio of H Lyman‐α/H2 bands in FUV auroral emissions: A diagnosis for the energy of precipitating electrons and associated magnetospheric acceleration processes applied to Saturn

    National Research Council Canada - National Science Library

    Tao, Chihiro; Lamy, Laurent; Prangé, Renée

    2014-01-01

    We propose that the ratio of the auroral brightness of H Lyman‐ α to that of far ultraviolet H 2 and the absolute value of the H 2 brightness provide good indicators of the acceleration versus nonacceleration processes for field...

  5. Location and Mapping of an Ethyl Acetate Plume in Mexico City

    Science.gov (United States)

    Rogers, T.; Grimsrud, E.; Knighton, W.; Velasco, E.; Lamb, B.; Westberg, H.; Jobson, T.; Alexander, M.; Prazeller, P.; Herndon, S.; Kolb, C.

    2004-12-01

    A major goal of the 2003 Mexico City Metropolitan Area (MCMA) field campaign was to gain a better understanding of the dispersion and transport of volatile organic compounds (VOCs) in this urban airshed. Continuous monitoring of VOCs in the atmosphere and identification and quantification of their emission sources is complicated by two factors: first, there are hundreds of different VOC species released daily in the MCMA atmosphere, and second, few real time (1-10 second) measurement techniques have been available to provide the high resolution spatial and/or temporal data usually required to locate VOC emission sources and measure their flux strength. A relatively new technique, Proton Transfer Reaction Mass Spectometery (PTR-MS) provides this capability and was used to locate and quantify a significant source of ethyl acetate in the Iztapalapa region of Mexico City. Two PTR-MS systems were deployed during the 2003 MCMA campaign, the MSU PTR-MS was operated on-board the Aerodyne Mobile Laboratory while the PNNL instrument located on the roof at the National Center for Environmental Research and Training (Centro Nacional de Investigacion y Capacitacion Ambiental or CENICA). The uniqueness of the ethyl acetate signature allowed the MSU PTR-MS on-board the mobile lab to track the ethyl acetate plume back to its source. A short movie documenting the plume mapping and location of the source of the ethyl acetate emission will be shown. Knowing of the plume source location and the local meteorological conditions, the time resolved responses from the PNNL PTR-MS at the CENCIA location have been applied to a simple plume model to estimate the plume's emission flux strength.

  6. Computer Modeling of a CI Engine for Optimization of Operating Parameters Such as Compression Ratio, Injection Timing and Injection Pressure for Better Performance and Emission Using Diesel-Diesel Biodiesel Blends

    Directory of Open Access Journals (Sweden)

    M. Venkatraman

    2011-01-01

    Full Text Available Problem statement: The present work describes a theoretical investigation concerning the performance of a four strokes compression ignition engine, which is powered by alternative fuels in the form of diesel and diesel biodiesel blends. Approach: The developed simulation model used to estimate the cylinder pressure, heat release rate, brake thermal efficiency, brake specific fuel consumption and engine out emissions. The simulation model includes Honerberg’s equation heat transfer model, Zero dimensional combustion model for the prediction of combustion parameters. Results: Experiments were performed in a single cylinder DI diesel engine fuelled with a blend of pungam methyl ester for the proportion of PME10, PME20 and PME30 by volume with diesel fuel for validation of simulated results. Conclusion/Recommendations: It was observed that there is a good agreement between simulated and experimental results which reveals the fact that the simulation model developed predicts the performance and emission characteristics of any biodiesel and diesel fuel and engine specifications given as input.

  7. Climate response: Strong warming at high emissions

    Science.gov (United States)

    Frölicher, Thomas L.

    2016-09-01

    The ratio of global temperature change to cumulative emissions is relatively constant up to two trillion tonnes of carbon emissions. Now a new modelling study suggests that the concept of a constant ratio is even applicable to higher cumulative carbon emissions, with important implications for future warming.

  8. Emission Trading

    OpenAIRE

    2009-01-01

    The work concerns Emission Trading Scheme from perspektive of taxes and accounting. I should show problems with emission trading. The work concerns practical example of trading with emission allowance.

  9. Quantification of carbon sources for isoprene emission in poplar leaves

    Science.gov (United States)

    Kreutzwieseer, J.; Graus, M.; Schnitzler, J. P.; Heizmann, U.; Rennenberg, H.; Hansel, A.

    2003-12-01

    Isoprene is the most abundant volatile organic compound emitted by plants and in particular by trees. Current interest in understanding its biosynthesis in chloroplasts is forced by the important role isoprene plays in atmospheric chemistry. Leaf isoprene formation is closely linked to photosynthesis by a dynamic use of recently fixed photosynthetic precursors in the chloroplast. Under steady state conditions in [13C]CO2 atmosphere approximately 75 % of isoprene became labeled within minutes. The source of unlabeled C is suggested to be of extra-chloroplastidic and/or from starch degradation. In order to test whether these alternative carbon sources - leaf internal C-pools and xylem-transported carbohydrates, contribute to leaf isoprene formation in poplar (Populus tremula x P. alba) on-line proton-transfer-reaction-mass spectrometry (PTR-MS) was used to follow 13C-labeling kinetics.

  10. Emissions Trading

    NARCIS (Netherlands)

    Woerdman, Edwin; Backhaus, Juergen

    2014-01-01

    Emissions trading is a market-based instrument to achieve environmental targets in a cost-effective way by allowing legal entities to buy and sell emission rights. The current international dissemination and intended linking of emissions trading schemes underlines the growing relevance of this

  11. Emissions Trading

    NARCIS (Netherlands)

    Woerdman, Edwin; Backhaus, Juergen

    2014-01-01

    Emissions trading is a market-based instrument to achieve environmental targets in a cost-effective way by allowing legal entities to buy and sell emission rights. The current international dissemination and intended linking of emissions trading schemes underlines the growing relevance of this instr

  12. Financial Key Ratios

    Directory of Open Access Journals (Sweden)

    Tănase Alin-Eliodor

    2014-08-01

    Full Text Available This article focuses on computing techniques starting from trial balance data regarding financial key ratios. There are presented activity, liquidity, solvency and profitability financial key ratios. It is presented a computing methodology in three steps based on a trial balance.

  13. Offer/Acceptance Ratio.

    Science.gov (United States)

    Collins, Mimi

    1997-01-01

    Explores how human resource professionals, with above average offer/acceptance ratios, streamline their recruitment efforts. Profiles company strategies with internships, internal promotion, cooperative education programs, and how to get candidates to accept offers. Also discusses how to use the offer/acceptance ratio as a measure of program…

  14. Compression Ratio Adjuster

    Science.gov (United States)

    Akkerman, J. W.

    1982-01-01

    New mechanism alters compression ratio of internal-combustion engine according to load so that engine operates at top fuel efficiency. Ordinary gasoline, diesel and gas engines with their fixed compression ratios are inefficient at partial load and at low-speed full load. Mechanism ensures engines operate as efficiently under these conditions as they do at highload and high speed.

  15. On the Limitations of the Anomalous Microwave Emission Emissivity

    Directory of Open Access Journals (Sweden)

    Christopher T. Tibbs

    2012-01-01

    Full Text Available Many studies of anomalous microwave emission (AME have computed an AME emissivity to compare the strength of the AME detected in different regions. Such a value is usually defined as the ratio between the intensity of the AME at 1 cm and the thermal dust emission at 100 μm. However, as studies of Galactic dust emission have shown, the intensity of the thermal dust emission at 100 μm is strongly dependent on the dust temperature, which has severe implications for the AME emissivity defined in this way. In this work, we illustrate and quantify this effect and find that the AME emissivity decreases by a factor of 11.1 between dust temperatures of 20 and 30 K. We, therefore, conclude that computing the AME emissivity relative to the 100 μm emission does not allow for accurate comparisons between the AME observed in different environments. With this in mind, we investigate the use of other tracers of the dust emission with which to compute the AME emissivity and we ultimately conclude that, despite the difficulty in deriving its value, the column density of the dust would be the most suitable quantity with which to compute the AME emissivity.

  16. Specialized ratio analysis.

    Science.gov (United States)

    Wyer, J C; Salzinger, F H

    1983-01-01

    Many common management techniques have little use in managing a medical group practice. Ratio analysis, however, can easily be adapted to the group practice setting. Acting as broad-gauge indicators, financial ratios provide an early warning of potential problems and can be very useful in planning for future operations. The author has gathered a collection of financial ratios which were developed by participants at an education seminar presented for the Virginia Medical Group Management Association. Classified according to the human element, system component, and financial factor, the ratios provide a good sampling of measurements relevant to medical group practices and can serve as an example for custom-tailoring a ratio analysis system for your medical group.

  17. Emission Facilities - Air Emission Plants

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Represents the Primary Facility type Air Emission Plant (AEP) point features. Air Emissions Plant is a DEP primary facility type related to the Air Quality Program....

  18. Emission Facilities - Air Emission Plants

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Represents the Primary Facility type Air Emission Plant (AEP) point features. Air Emissions Plant is a DEP primary facility type related to the Air Quality Program....

  19. Emission inventory; Inventaire des emissions

    Energy Technology Data Exchange (ETDEWEB)

    Fontelle, J.P. [CITEPA, Centre Interprofessionnel Technique d`Etudes de la Pollution Atmospherique, 75 - Paris (France)

    1997-12-31

    Statistics on air pollutant (sulfur dioxide, nitrogen oxides and ammonium) emissions, acid equivalent emissions and their evolution since 1990 in the various countries of Europe and the USA, are presented. Emission data from the industrial, agricultural, transportation and power sectors are given, and comparisons are carried out between countries based on Gnp and population, pollution import/export fluxes and compliance to the previous emission reduction objectives

  20. Difference and ratio plots

    DEFF Research Database (Denmark)

    Svendsen, Anders Jørgen; Holmskov, U; Bro, Peter

    1995-01-01

    hitherto unnoted differences between controls and patients with either rheumatoid arthritis or systemic lupus erythematosus. For this we use simple, but unconventional, graphic representations of the data, based on difference plots and ratio plots. Differences between patients with Burkitt's lymphoma...... and systemic lupus erythematosus from another previously published study (Macanovic, M. and Lachmann, P.J. (1979) Clin. Exp. Immunol. 38, 274) are also represented using ratio plots. Our observations indicate that analysis by regression analysis may often be misleading....

  1. Ratios of Normal Variables

    Directory of Open Access Journals (Sweden)

    George Marsaglia

    2006-05-01

    Full Text Available This article extends and amplifies on results from a paper of over forty years ago. It provides software for evaluating the density and distribution functions of the ratio z/w for any two jointly normal variates z,w, and provides details on methods for transforming a general ratio z/w into a standard form, (a+x/(b+y , with x and y independent standard normal and a, b non-negative constants. It discusses handling general ratios when, in theory, none of the moments exist yet practical considerations suggest there should be approximations whose adequacy can be verified by means of the included software. These approximations show that many of the ratios of normal variates encountered in practice can themselves be taken as normally distributed. A practical rule is developed: If a < 2.256 and 4 < b then the ratio (a+x/(b+y is itself approximately normally distributed with mean μ = a/(1.01b − .2713 and variance 2 = (a2 + 1/(b2 + .108b − 3.795 − μ2.

  2. Ratios of Normal Variables

    Directory of Open Access Journals (Sweden)

    George Marsaglia

    2006-05-01

    Full Text Available This article extends and amplifies on results from a paper of over forty years ago. It provides software for evaluating the density and distribution functions of the ratio z/w for any two jointly normal variates z,w, and provides details on methods for transforming a general ratio z/w into a standard form, (a+x/(b+y , with x and y independent standard normal and a, b non-negative constants. It discusses handling general ratios when, in theory, none of the moments exist yet practical considerations suggest there should be approximations whose adequacy can be verified by means of the included software. These approximations show that many of the ratios of normal variates encountered in practice can themselves be taken as normally distributed. A practical rule is developed: If a < 2.256 and 4 < b then the ratio (a+x/(b+y is itself approximately normally distributed with mean μ = a/(1.01b - .2713 and variance σ2 = (a2 + 1/(b2 + .108b - 3.795 μ2.

  3. Potential support ratios

    DEFF Research Database (Denmark)

    Kjærgaard, Søren; Canudas-Romo, Vladimir

    2017-01-01

    , the prospective potential support ratio usually focuses on the current mortality schedule, or period life expectancy. Instead, in this paper we look at the actual mortality experienced by cohorts in a population, using cohort life tables. We analyse differences between the two perspectives using mortality models......, historical data, and forecasted data. Cohort life expectancy takes future mortality improvements into account, unlike period life expectancy, leading to a higher prospective potential support ratio. Our results indicate that using cohort instead of period life expectancy returns around 0.5 extra younger...

  4. Ammonia emissions from seabird colonies

    Science.gov (United States)

    Blackall, Trevor D.; Wilson, Linda J.; Theobald, Mark R.; Milford, Celia; Nemitz, Eiko; Bull, Jennifer; Bacon, Philip J.; Hamer, Keith C.; Wanless, Sarah; Sutton, Mark A.

    2007-05-01

    Ammonia emissions were measured from two entire seabird colonies with contrasting species assemblages, to ascertain the ammonia volatilisation potentials among seabird species in relation to their nesting behaviour. Emissions were calculated from downwind plume measurements of ammonia concentration using both inverse dispersion and tracer ratio methods. Measured colony emissions ranged 1-90 kg NH3 hour-1, and equated to 16 and 36% volatilization of excreted nitrogen for colonies dominated by ground/burrow nesting and bare rock nesting birds, respectively. The results were applied in a bioenergetics model with a global seabird database. Seabird colonies are found to represent the largest point sources of ammonia globally (up to ~6 Gg NH3 colony-1 year-1). Moreover the largest emissions occur mainly in remote environments with otherwise low NH3 emissions. These ammonia ``hot spots'' explain significant perturbations of the nitrogen cycle in these regions and add ~20% to oceanic ammonia emissions south of latitude 45°S.

  5. Model-basedapproachtoaccountforthevariationofprimaryVOCemissions over time in the identification of indoor VOC sources

    DEFF Research Database (Denmark)

    Han, KwangHoon; Zhang, Jensen S.; Wargocki, Pawel

    2012-01-01

    identification method since materials age over time in real indoor environments. The method is based on the mixed air sample measurements containing pollutants from multiple aged materials and theemission signatures ofindividual new materials determined by PTR-MS. Three emission decay source models were employed......The study objectives were to improve the understanding ofthe long-term variationofVOCemission chromatograms of building materials and to develop a method toaccountfor this variation in the identification of individual sources ofVOCemissions. This is of importance forthe application ofthe source...... exhaust air was sampled by PTR-MS to construct a temporal profile ofemission signature unique to individual product type. The similar process was taken to measure mixture emissions from multiple materials, which is for applying and validating the developed method for source identification enhancement...

  6. Gender Ratio in Dyslexia.

    Science.gov (United States)

    Miles, T. R.; Haslum, M. N.; Wheeler, T. J.

    1998-01-01

    A study involving 11,804 British children (age 10) found that when specified criteria for dyslexia were used, 269 children qualified as dyslexic. These included 223 boys and 46 girls, for a ratio of 4.51 to 1. Difficulties in interpreting these data are discussed and a defense of the criteria is provided. (Author/CR)

  7. The rectilinear Steiner ratio

    Directory of Open Access Journals (Sweden)

    PO de Wet

    2005-06-01

    Full Text Available The rectilinear Steiner ratio was shown to be 3/2 by Hwang [Hwang FK, 1976, On Steiner minimal trees with rectilinear distance, SIAM Journal on Applied Mathematics, 30, pp. 104– 114.]. We use continuity and introduce restricted point sets to obtain an alternative, short and self-contained proof of this result.

  8. Fluxes of Primary and Secondary Biogenic Volatile Organic Compounds (BVOC) During the BEWA Field Experiments

    Science.gov (United States)

    Steinbrecher, R.; Rappenglück, B.; Steigner, D.; Hansel, A.; Graus, M.; Lindinger, C.

    2003-12-01

    Biogenic volatile organic compounds (BVOCs) play a crucial role in the formation of photo-oxidants and particles through the diverse BVOC degradation pathways. Yet, current estimations about temporal and spatial BVOC emissions, including the specific BVOC mix are rather vague. This paper reports results from the determination of BVOC net emission rates that were obtained within the frame of the BEWA field experiments at the Waldstein site in the Fichtelgebirge in 2001 and 2002, an extended forest site that is largely dominated by Norway spruce (Picea abies [L.] Karst.). Stand fluxes of volatile organic compounds were determined with Proton Transfer Reaction Mass Spectrometry (PTR-MS) coupled to a Relaxed-Eddy-Accumulation (REA) system. The PTR-MS is capable to measure simultaneously a variety of organic trace gases, including oxygenated compounds. Air samples were taken at the top of a meteorological tower at the height of 32 m a.g.l. close to the Gill Sonic anemometer that controlled the REA-sampling. A critical value when using the REA approach is the Businger-Oncley parameter b. For this canopy type a b value of 0.39 (threshold velocity wo = 0.6) was determined. The PTR-MS data show clear diurnal variations of ambient air mixing ratios of isoprene and monoterpenes, but also of oxygenated VOC such as methanol, carbonyls, methylvinylketone (MVK) and methacrolein (MAC). Canopy fluxes of isoprene reached up to 7 nmol m-2 s-1 during daytime. The fluxes of the sum of monoterpenes were in the same range. MVK and MAC are products from isoprene oxidation. The BEWA data confirm this relationship and reveal a better correlation of MVK+MAC with isoprene (r2=0.78) than with the sum of monoterpenes (r2=0.30). In our study MVK+MAC fluxes were about 30% lower than isoprene fluxes. Both observations indicate active photochemical degradation of isoprene in this area. Actealdehyde and acetone are typical intermediate compounds in the photochemical degradation of both anthropogenic

  9. Tau hadronic branching ratios

    CERN Document Server

    Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, L M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    From 64492 selected \\tau-pair events, produced at the Z^0 resonance, the measurement of the tau decays into hadrons from a global analysis using 1991, 1992 and 1993 ALEPH data is presented. Special emphasis is given to the reconstruction of photons and \\pi^0's, and the removal of fake photons. A detailed study of the systematics entering the \\pi^0 reconstruction is also given. A complete and consistent set of tau hadronic branching ratios is presented for 18 exclusive modes. Most measurements are more precise than the present world average. The new level of precision reached allows a stringent test of \\tau-\\mu universality in hadronic decays, g_\\tau/g_\\mu \\ = \\ 1.0013 \\ \\pm \\ 0.0095, and the first measurement of the vector and axial-vector contributions to the non-strange hadronic \\tau decay width: R_{\\tau ,V} \\ = \\ 1.788 \\ \\pm \\ 0.025 and R_{\\tau ,A} \\ = \\ 1.694 \\ \\pm \\ 0.027. The ratio (R_{\\tau ,V} - R_{\\tau ,A}) / (R_{\\tau ,V} + R_{\\tau ,A}), equal to (2.7 \\pm 1.3) \\ \\%, is a measure of the importance of Q...

  10. Low Temperature Emissivity Measurement System

    Directory of Open Access Journals (Sweden)

    Jignesh A. Patel

    2014-05-01

    Full Text Available The emissivity of a material is the relative ability of its surface to emit energy by radiation. It is the ratio of energy radiated by a particular material to energy radiated by a black body at the same temperature. Knowledge about the low temperature emissivity of materials and coatings can be essential to the design of fusion cryoplants and in the thermal modeling for space satellite missions. The emittance of materials at cryogenics temperatures often cannot be predicted from room temperature data, but for computing radiative loads and infrared backgrounds this cryogenic data is often required. Measurement of the cryogenic emissivity of a highly reflective surface is a significant challenge: little thermal power is radiated from the sample, and the background radiation. However some researchers have measured emissivity at various low temperature ranges. Present work reports, the various emissivity measurement setup and their considerations.

  11. Infrared emission from interstellar PAHs

    Science.gov (United States)

    Allamandola, L. J.; Tielens, A. G. G. M.; Barker, J. R.

    1987-01-01

    The mid-IR absorption and Raman spectra of polycyclic aromatic hydrocarbons (PAHs) and the mechanisms determining them are reviewed, and the implications for observations of similar emission spectra in interstellar clouds are considered. Topics addressed include the relationship between PAHs and amorphous C, the vibrational spectroscopy of PAHs, the molecular emission process, molecular anharmonicity, and the vibrational quasi-continuum. Extensive graphs, diagrams, and sample spectra are provided, and the interstellar emission bands are attributed to PAHs with 20-30 C atoms on the basis of the observed 3.3/3.4-micron intensity ratios.

  12. Photochemical aging of volatile organic compounds associated with oil and natural gas extraction in the Uintah Basin, UT, during a wintertime ozone formation event

    Directory of Open Access Journals (Sweden)

    A. R. Koss

    2015-03-01

    Full Text Available High concentrations of volatile organic compounds (VOCs associated with oil and natural gas extraction were measured during a strong temperature inversion in winter of 2013 at a rural site in the Uintah Basin, Utah. During this period, photochemistry enhanced by the stagnant meteorological conditions and concentrated VOCs led to high ozone mixing ratios (150 ppbv. A simple analysis of aromatic VOCs measured by proton-transfer-reaction mass-spectrometry (PTR-MS is used to estimate (1 VOC emission ratios (the ratio of two VOCs at the time of emission relative to benzene, (2 aromatic VOC emission rates, and (3 ambient OH radical concentrations. These quantities are determined from a best fit to VOC : benzene ratios as a function of time. The main findings are that (1 emission ratios are consistent with contributions from both oil and gas producing wells, (2 the emission rate of methane (27-57 × 103 kg methane h−1, extrapolated from the emission rate of benzene (4.1 ± 0.4 × 105 molecules cm−3 s−1, agrees with an independent estimate of methane emissions from aircraft measurements in 2012, and (3 calculated daily OH concentrations are low, peaking at 1× 106 molecules cm−3, and are consistent with Master Chemical Mechanism (MCM modeling. The analysis is extended to photochemical production of oxygenated VOCs measured by PTRMS and is able to explain daytime variability of these species. It is not able to completely reproduce nighttime behavior, possibly due to surface deposition. Using results from this analysis, the carbon mass of secondary compounds expected to have formed by the sixth day of the stagnation event was calculated, then compared to the measured mass of primary and secondary compounds. Only 17% of the expected secondary carbon mass is accounted for by gas phase, aerosol, and snow organic carbon measurements. The disparity is likely due to substantial amounts of unquantified oxygenated products.

  13. On-board gaseous emissions of LPG taxis and estimation of taxi fleet emissions.

    Science.gov (United States)

    Lau, Jason; Hung, W T; Cheung, C S

    2011-11-15

    Instantaneous CO, NO, and HC emissions and exhaust flow rates from four LPG taxis, which adhered to Euro 2-4 emission standards, were measured using a sophisticated portable emission measurement system (PEMS). Instantaneous air/fuel ratios, emission rates, and emission factors at different operating modes were derived to explore the emission characteristics of these four taxis. Results show that gaseous emissions from these four taxis exceed emission standards, due to extended vehicle use and poor maintenance. NO emissions from newer taxis are lower whilst CO and HC emissions of the Euro 4 taxi are similar to those of Euro 2 taxis during idling and low speed travel. The taxis emit lower amounts of gaseous pollutants whilst idling and emit the highest amounts of CO and NO whilst accelerating. Large fluctuations in air/fuel ratios can be observed from the Euro 4 taxi during idling, indicating a malfunction of fuel supply control to the engine. Such fluctuations are not observed from the other taxis. This shows that a Euro 4 taxi is not necessarily cleaner than a Euro 3 taxi. Emission factors derived from on-board measurements are applied to estimate gaseous emissions from the taxi fleet; these results show that emissions are higher during peak hour traffic conditions. An estimate of the taxi fleet's emissions whilst the older taxis are replaced is also calculated. It can be seen that faster replacement of older taxis can lead to reductions in gaseous emissions from the taxi fleet. This study shows that the PEMS is an adequate tool for measuring emissions from LPG vehicles and that there is an urgent need to enforce emission standards on taxis. This study also shows that on-board measurements should be incorporated in the estimation of emissions from other vehicle types. This would result in better emission estimations under local traffic conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. High-Ratio Gear Train

    Science.gov (United States)

    Lefever, A. E.

    1982-01-01

    Proposed arrangement of two connected planetary differentials results in gear ratio many times that obtainable in conventional series gear assembly of comparable size. Ratios of several thousand would present no special problems. Selection of many different ratios is available with substantially similar gear diameters. Very high gear ratios would be obtained from small mechanism.

  15. Metal content ratio as a sensitive indicator of pulmonary edema

    Energy Technology Data Exchange (ETDEWEB)

    Maitani, T.; Suzuki, K.T.

    1981-11-01

    The sensitivity to detect edema fluid in the lungs of rats exposed to 4, 2, 0.8, and 0.4 ppm O3 was estimated using the metal content ratio (Ca/Mg) and wet/dry weight ratio methods. Metal content ratios were determined by inductively coupled plasma-atomic emission spectrometer (ICP-AES). The detection limits were 0.8 and 2.0 ppm for the former and latter methods, respectively. A transitory increase of edema fluid was observed at day 1 in 0.8 and 0.4 ppm experiments by the Ca/Mg ratio method.

  16. Intercomparison of ammonia measurement techniques at an intensively managed grassland site (Oensingen, Switzerland

    Directory of Open Access Journals (Sweden)

    M. Norman

    2009-04-01

    Full Text Available As part of a field campaign in the framework of the NitroEurope project, three different instruments for atmospheric ammonia (NH3 measurements were operated side-by-side on a managed grassland site in Switzerland: a modified Proton Transfer Reaction Mass Spectrometer (PTR-MS, a GRadient of AErosol and Gases Online Registrator (GRAEGOR, and an Automated Ammonia Analyzer (AiRRmonia. The modified PTR-MS approach is based on chemical ionization of NH3 using O2+ instead of H3O+ as ionizing agent, GRAEGOR and AiRRmonia measure NH4+ in liquids after absorption of gaseous NH3 in a rotating wet-annular denuder and through a gas permeable membrane, respectively. Bivariate regression slopes using uncorrected data from all three instruments ranged from 0.78 to 0.97 while measuring ambient NH3 levels between 2 and 25 ppbv during a 5 days intercomparison period. Correlation coefficients r2 were in the range of 0.79 to 0.94 for hourly average mixing ratios. Observed discrepancies could be partly attributed to temperature effects on the GRAEGOR calibration. Bivariate regression slopes using corrected data were >0.92 with offsets ranging from 0.22 to 0.58 ppbv. The intercomparison demonstrated the potential of PTR-MS to resolve short-time NH3 fluctuations which could not be measured by the two other slow-response instruments. During conditions favoring condensation in inlet lines, the PTR-MS underestimated NH3 mixing ratios, underlining the importance of careful inlet designs as an essential component for any inlet-based instrument.

  17. Stable carbon isotope ratios of ambient aromatic volatile organic compounds

    Science.gov (United States)

    Kornilova, Anna; Huang, Lin; Saccon, Marina; Rudolph, Jochen

    2016-09-01

    Measurements of mixing ratios and stable carbon isotope ratios of aromatic volatile organic compounds (VOC) in the atmosphere were made in Toronto (Canada) in 2009 and 2010. Consistent with the kinetic isotope effect for reactions of aromatic VOC with the OH radical the observed stable carbon isotope ratios are on average significantly heavier than the isotope ratios of their emissions. The change of carbon isotope ratio between emission and observation is used to determine the extent of photochemical processing (photochemical age, ∫ [OH]dt) of the different VOC. It is found that ∫ [OH]dt of different VOC depends strongly on the VOC reactivity. This demonstrates that for this set of observations the assumption of a uniform ∫ [OH]dt for VOC with different reactivity is not justified and that the observed values for ∫ [OH]dt are the result of mixing of VOC from air masses with different values for ∫ [OH]dt. Based on comparison between carbon isotope ratios and VOC concentration ratios it is also found that the varying influence of sources with different VOC emission ratios has a larger impact on VOC concentration ratios than photochemical processing. It is concluded that for this data set the use of VOC concentration ratios to determine ∫ [OH]dt would result in values for ∫ [OH]dt inconsistent with carbon isotope ratios and that the concept of a uniform ∫ [OH]dt for an air mass has to be replaced by the concept of individual values of an average ∫ [OH]dt for VOC with different reactivity.

  18. Measurements of volatile organic compounds in rural area of Yangtze River Delta region: Measurement comparison and source characterization

    Science.gov (United States)

    Kudo, S.; Saito, S.; Tanimoto, H.; Inomata, S.; Kanaya, Y.; Yamaji, K.; Xiaole, P.; Wang, Z.

    2012-12-01

    Concentrations of non-methane volatile organic compounds (NMVOCs) in ambient air were measured by three different methods in a city of Rudong in May and June 2010. Intercomparison of VOCs measurements was made among in-situ measurements and canister analyses with a gas chromatography/flame ionization detection/mass spectrometry (GC/FID/MS) and proton transfer reaction-mass spectrometry (PTR-MS). For 18 VOCs measured by GC/FID/MS, canister analyses and in-situ measurements were in reasonably good agreement (R2 > 0.90). However, alkenes and aromatics in canister samples were found to be lower than in-situ measurements likely due to adsorption of low volatile compounds onto the wall surface inside canisters. For comparison of GC/MS with PTR-MS, the correlations for isoprene, benzene, C8 aromatics, and C9 aromatics were highly significant (R2 ≥ 0.93) with each other. However, there were quantitative differences between GC/MS and PTR-MS. For example, isoprene measured by PTR-MS indicates existence of interferences from C5 alcohols, C5 aldehydes, and furan. During the latter part of the field campaign, elevated concentrations of VOCs and CO were observed when intensive burning of crop residues took place near the sampling site. The concentrations of ethane, propane, ethane, isoprene, acetone, acetaldehyde, and aromatics varied in the range between 0 and 30 ppbv. The observed VOCs concentrations are compared to model results by a regional chemistry-transport model for Asia. The modeled concentrations underestimated the observed concentrations by a factor of 10 for NMHCs, 100 for aromatics, 10 for oxygenated VOCs, implying that current emissions inventories miss a number of sources for these VOCs.

  19. Photon upconversion with directed emission

    Science.gov (United States)

    Börjesson, K.; Rudquist, P.; Gray, V.; Moth-Poulsen, K.

    2016-08-01

    Photon upconversion has the potential to increase the efficiency of single bandgap solar cells beyond the Shockley Queisser limit. Efficient light management is an important point in this context. Here we demonstrate that the direction of upconverted emission can be controlled in a reversible way, by embedding anthracene derivatives together with palladium porphyrin in a liquid crystalline matrix. The system is employed in a triplet-triplet annihilation photon upconversion scheme demonstrating controlled switching of directional anti Stokes emission. Using this approach an emission ratio of 0.37 between the axial and longitudinal emission directions and a directivity of 1.52 is achieved, reasonably close to the theoretical maximal value of 2 obtained from a perfectly oriented sample. The system can be switched for multiple cycles without any visible degradation and the speed of switching is only limited by the intrinsic rate of alignment of the liquid crystalline matrix.

  20. Trace gas detection from fermentation processes in apples; an intercomparison study between proton-transfer-reaction mass spectrometry and laser photoacoustics

    Science.gov (United States)

    Boamfa, E. I.; Steeghs, M. M. L.; Cristescu, S. M.; Harren, F. J. M.

    2004-12-01

    A custom-built proton-transfer-reaction mass spectrometry (PTR-MS) instrument was used to monitor the emission of various compounds (aldehydes, alcohols, acids, acetates and C-6 compounds) related to fermentation, aroma and flavour, released by four apple cultivars (Elstar, Jonaglod, Granny Smith and Pink Lady) under short anaerobic (24 h) and post-anaerobic conditions. The novel feature of our instrument is the new design of the collisional dissociation chamber, which separates the high pressure in the drift tube (2 mbar) from the high vacuum pressure in the detection region (10-6 mbar). The geometry of this chamber was changed and a second turbo pump was added to reduce the influence of collisional loss of ions, background signals and cluster ions, which facilitates the interpretation of the mass spectra and increases the signal intensity at the mass of the original protonated compound. With this system, detection limits of similar magnitude to the ones reported in literature are reached. An intercomparison study between PTR-MS and a CO laser-based photoacoustic trace gas detector is presented. The alcoholic fermentation products (acetaldehyde and ethanol) from young rice plants were simultaneously monitored by both methods. A very good agreement was observed for acetaldehyde production. The photoacoustic detector showed about two times lower ethanol concentration as compared to PTR-MS, caused by memory effects due to sticking of compounds to the walls of the nylon tube used to transport the trace gases to the detector.

  1. Deposition fluxes of terpenes over grassland

    Science.gov (United States)

    Bamberger, I.; HöRtnagl, L.; Ruuskanen, T. M.; Schnitzhofer, R.; Müller, M.; Graus, M.; Karl, T.; Wohlfahrt, G.; Hansel, A.

    2011-07-01

    Eddy covariance flux measurements were carried out for two subsequent vegetation periods above a temperate mountain grassland in an alpine valley using a proton-transfer-reaction-mass spectrometer (PTR-MS) and a PTR time-of-flight-mass spectrometer (PTR-TOF). In 2008 and during the first half of the vegetation period 2009 the volume mixing ratios (VMRs) for the sum of monoterpenes (MTs) were typically well below 1 ppbv and neither MT emission nor deposition was observed. After a hailstorm in July 2009 an order of magnitude higher amount of terpenes was transported to the site from nearby coniferous forests causing elevated VMRs. As a consequence, deposition fluxes of terpenes to the grassland, which continued over a time period of several weeks without significant reemission, were observed. For days without precipitation the deposition occurred at velocities close to the aerodynamic limit. In addition to monoterpene uptake, deposition fluxes of the sum of sesquiterpenes (SQTs) and the sum of oxygenated terpenes (OTs) were detected. Considering an entire growing season for the grassland (i.e., 1 April to 1 November 2009), the cumulative carbon deposition of monoterpenes reached 276 mg C m-2. This is comparable to the net carbon emission of methanol (329 mg C m-2), which is the dominant nonmethane volatile organic compound (VOC) emitted from this site, during the same time period. It is suggested that deposition of monoterpenes to terrestrial ecosystems could play a more significant role in the reactive carbon budget than previously assumed.

  2. Enteric methane emissions from German pigs

    DEFF Research Database (Denmark)

    Dämmgen, Ulrich; Schulz, Joachim; Klausing, Heinrich Kleine

    2012-01-01

    Methane emissions from enteric fermentation of pigs are object of emission reporting. Hitherto they were treated as part of the energy balance of pigs, in accordance with IPCC guidance documents. They were calculated from the gross energy intake rate and a constant methane conversion ratio....... Meanwhile numerous experimental data on methane emissions from enteric fermentation is available in Germany and abroad; the results are compiled in this work. These results also allow for a description of transformation processes in the hind gut and a subsequent establishment of models that relate emissions...... to feed and performance data. The model by Kirchgeßner et al. (1995) is based on German experimental data and reflects typical national diet compositions. It is used to quantify typical emissions and methane conversion ratios. The results agree with other experimental findings at home and abroad...

  3. Enteric methane emissions from German pigs

    DEFF Research Database (Denmark)

    Dämmgen, Ulrich; Schulz, Joachim; Klausing, Heinrich Kleine

    2012-01-01

    Methane emissions from enteric fermentation of pigs are object of emission reporting. Hitherto they were treated as part of the energy balance of pigs, in accordance with IPCC guidance documents. They were calculated from the gross energy intake rate and a constant methane conversion ratio....... Meanwhile numerous experimental data on methane emissions from enteric fermentation is available in Germany and abroad; the results are compiled in this work. These results also allow for a description of transformation processes in the hind gut and a subsequent establishment of models that relate emissions...... to feed and performance data. The model by Kirchgeßner et al. (1995) is based on German experimental data and reflects typical national diet compositions. It is used to quantify typical emissions and methane conversion ratios. The results agree with other experimental findings at home and abroad...

  4. FeII/MgII, [Fe/Mg] Ratios and High-z Quasars

    CERN Document Server

    Korista, K; Corbin, M R; Freudling, W; Korista, Kirk; Kodituwakku, Nalaka; Corbin, Michael; Freudling, Wolfram

    2003-01-01

    It has been suggested in the literature that the (Fe/alpha) abundance ratio may be used as a chronometer, due to a delay in this ratio reaching its solar value as predicted by galactic chemical evolution models. Using grids of photoionization models along a sequence of the (Fe/Mg) abundance ratio vs.\\ metallicity with time in a giant elliptical starburst scenario, we investigate the relationship between the (Fe/Mg) abundance ratio and the FeII/MgII emission line flux ratio under the assumption that these lines originate in photoionized clouds within the broad emission line regions of quasars.

  5. Sex Ratio Elasticity Influences the Selection of Sex Ratio Strategy

    Science.gov (United States)

    Wang, Yaqiang; Wang, Ruiwu; Li, Yaotang; (Sam) Ma, Zhanshan

    2016-01-01

    There are three sex ratio strategies (SRS) in nature—male-biased sex ratio, female-biased sex ratio and, equal sex ratio. It was R. A. Fisher who first explained why most species in nature display a sex ratio of ½. Consequent SRS theories such as Hamilton’s local mate competition (LMC) and Clark’s local resource competition (LRC) separately explained the observed deviations from the seemingly universal 1:1 ratio. However, to the best of our knowledge, there is not yet a unified theory that accounts for the mechanisms of the three SRS. Here, we introduce the price elasticity theory in economics to define sex ratio elasticity (SRE), and present an analytical model that derives three SRSs based on the following assumption: simultaneously existing competitions for both resources A and resources B influence the level of SRE in both sexes differently. Consequently, it is the difference (between two sexes) in the level of their sex ratio elasticity that leads to three different SRS. Our analytical results demonstrate that the elasticity-based model not only reveals a highly plausible mechanism that explains the evolution of SRS in nature, but also offers a novel framework for unifying two major classical theories (i.e., LMC & LRC) in the field of SRS research. PMID:28009000

  6. Sex Ratio Elasticity Influences the Selection of Sex Ratio Strategy

    Science.gov (United States)

    Wang, Yaqiang; Wang, Ruiwu; Li, Yaotang; (Sam) Ma, Zhanshan

    2016-12-01

    There are three sex ratio strategies (SRS) in nature—male-biased sex ratio, female-biased sex ratio and, equal sex ratio. It was R. A. Fisher who first explained why most species in nature display a sex ratio of ½. Consequent SRS theories such as Hamilton’s local mate competition (LMC) and Clark’s local resource competition (LRC) separately explained the observed deviations from the seemingly universal 1:1 ratio. However, to the best of our knowledge, there is not yet a unified theory that accounts for the mechanisms of the three SRS. Here, we introduce the price elasticity theory in economics to define sex ratio elasticity (SRE), and present an analytical model that derives three SRSs based on the following assumption: simultaneously existing competitions for both resources A and resources B influence the level of SRE in both sexes differently. Consequently, it is the difference (between two sexes) in the level of their sex ratio elasticity that leads to three different SRS. Our analytical results demonstrate that the elasticity-based model not only reveals a highly plausible mechanism that explains the evolution of SRS in nature, but also offers a novel framework for unifying two major classical theories (i.e., LMC & LRC) in the field of SRS research.

  7. HONO emissions from snow surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Beine, Harry; Colussi, AgustIn J; Hoffmann, Michael R [California Institute of Technology, Environmental Science and Engineering, Pasadena, CA (United States); Amoroso, Antonio; Esposito, Giulio; Montagnoli, Mauro [Consiglio Nazionale delle Ricerche-Istituto Inquinamento Atmosferico (CNR-IIA), Roma (Italy)], E-mail: hbeine@ucdavis.edu

    2008-10-15

    Photochemical production of NO{sub x} and HONO from surface snow can significantly impact the NO{sub x}, OH, and O{sub 3} budgets in the overlying atmosphere. NO{sub x} production is driven by the solar photolysis of NO{sub 3}{sup -} within or at the surface of snowpacks. HONO, however, is a secondary species that involves H-atom transfer between natural donors and photogenerated NO{sub 2}. Here we investigate the mechanism of HONO generation in snowpacks by exploring how its emissions respond to on-and-off illumination and temperature cycles, and to the addition of various snow dopants. The presence of humic substances within or at the surface of the snowpack significantly enhances, and may be an essential requisite for HONO production. Emission fluxes of NO, NO{sub 2}, and HONO from snow surfaces were measured under controlled temperature, ozone mixing ratio and actinic flux conditions. We used natural mid-latitude surface snow as the snow substrate. Their combined peak emission fluxes reached up to {approx}3 x 10{sup 10} molecules cm{sup -2} s{sup -1}, {approx}10{sup 3} times larger than typical emissions from polar snowpacks. Less than 1% of available N was released in these experiments. We report significant post-irradiation HONO emissions from the snow. Present results indicate a strong, direct correlation between HONO emissions and the HULIS (humic-like substances) content of the snow surface.

  8. Gas-phase products and secondary organic aerosol formation from the ozonolysis and photooxidation of myrcene

    Science.gov (United States)

    Böge, Olaf; Mutzel, Anke; Iinuma, Yoshiteru; Yli-Pirilä, Pasi; Kahnt, Ariane; Joutsensaari, Jorma; Herrmann, Hartmut

    2013-04-01

    Terrestrial vegetation releases a great variety of volatile organic compounds (VOC) into the atmosphere. Monoterpenes, like myrcene, contribute significantly to this global biogenic VOC emission. In the atmosphere, monoterpenes rapidly undergo oxidation reactions by OH radicals (mainly during the daytime), NO3 radicals (mainly during the nighttime) and O3 to form multifunctional oxidation products. The products of these reactions are likely to be of low volatility and hence might lead to secondary organic aerosol (SOA) formation. In the present study, we report results from a series of chamber experiments performed in the LEAK chamber at TROPOS in which the gas-phase products and SOA yields obtained from myrcene O3 reactions with and without an OH radical scavenger as well as from the myrcene OH radical reaction in the presence of NOx have been measured. During the experiments the consumption of myrcene as well as the formation of gas-phase products was monitored using a proton transfer reaction mass spectrometer (PTR-MS). Ozone concentration was measured by an O3 monitor and the mixing ratios of nitrogen oxides were measured by a NOx monitor. Particle size distributions between 3-900 nm were monitored every 11 min using a differential mobility particle sizer (DMPS) system. In addition to the products observed by means of the PTR-MS by their m/z values, an identification of carbonylic compounds by their DNPH derivatives was performed. Beside low molecular mass products the formation of 4-vinyl-4-pentenal with a yield of 55 % in myrcene ozonolysis has been observed. The further oxidation of this major first generation product lead to the formation of two dicarbonylic products with m/z 113 and to SOA formation. The influence of the continuing oxidation of 4-vinyl-4-pentenal on SOA formation will be discussed in detail. The emergence of the gas-phase product hydroxyacetone as direct result of the myrcene ozone reaction will be mooted, because hydroxyacetone seems to

  9. Exhaust emission control and diagnostics

    Science.gov (United States)

    Mazur, Christopher John; Upadhyay, Devesh

    2006-11-14

    A diesel engine emission control system uses an upstream oxidation catalyst and a downstream SCR catalyst to reduce NOx in a lean exhaust gas environment. The engine and upstream oxidation catalyst are configured to provide approximately a 1:1 ratio of NO to NO2 entering the downstream catalyst. In this way, the downstream catalyst is insensitive to sulfur contamination, and also has improved overall catalyst NOx conversion efficiency. Degradation of the system is determined when the ratio provided is no longer near the desired 1:1 ratio. This condition is detected using measurements of engine operating conditions such as from a NOx sensor located downstream of the catalysts. Finally, control action to adjust an injected amount of reductant in the exhaust gas based on the actual NO to NO2 ratio upstream of the SCR catalyst and downstream of the oxidation catalyst.

  10. Deriving aerosol scattering ratio using range-resolved lidar ratio

    Indian Academy of Sciences (India)

    Reji K Dhaman; V Krishnakumar; V P Mahadevan Pillai; M Satyanarayana; K Raghunath

    2014-02-01

    The study on the optical characteristics of aerosol is carried out using the dual polarization lidar observations from the tropical inland station Gadanki (13.5°N, 79.2°E) for the period of observation during the year 2010. The summer and monsoon observation days show high scattering ratio at the tropical tropopause layer (TTL) and at the lower stratosphere region. The depolarization ratio is also high at this altitude due to the transport of particulates to the TTL layer by the active convection prevailing at the period. The study reveals more dependable values of scattering ratio that are seasonal and range-dependent.

  11. Holes at High Blowing Ratios

    Directory of Open Access Journals (Sweden)

    Phillip M. Ligrani

    1996-01-01

    Full Text Available Experimental results are presented which describe the development and structure of flow downstream of a single row of holes with compound angle orientations producing film cooling at high blowing ratios. This film cooling configuration is important because similar arrangements are frequently employed on the first stage of rotating blades of operating gas turbine engines. With this configuration, holes are spaced 6d apart in the spanwise direction, with inclination angles of 24 degrees, and angles of orientation of 50.5 degrees. Blowing ratios range from 1.5 to 4.0 and the ratio of injectant to freestream density is near 1.0. Results show that spanwise averaged adiabatic effectiveness, spanwise-averaged iso-energetic Stanton number ratios, surveys of streamwise mean velocity, and surveys of injectant distributions change by important amounts as the blowing ratio increases. This is due to injectant lift-off from the test surface just downstream of the holes.

  12. Emission Inventory for Fugitive Emissions in Denmark

    DEFF Research Database (Denmark)

    Plejdrup, Marlene Schmidt; Nielsen, Ole-Kenneth; Nielsen, Malene

    This report presents the methodology and data used in the Danish inventory of fugitive emissions from fuels for the years until 2007. The inventory of fugitive emissions includes CO2, CH4, N2O, NOx, CO, NMVOC, SO2, dioxin, PAH and particulate matter. In 2007 the total Danish emission of greenhouse...

  13. Carbon Monoxide Mixing Ratio System

    Data.gov (United States)

    Oak Ridge National Laboratory — The Southern Great Plains (SGP) Carbon Monoxide (CO) system provides high-precision atmospheric concentration measurements of CO mixing ratio (ppbv dry air) every 10...

  14. Intensity ratio measurements for density sensitive lines of highly charged Fe ions

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Safdar, E-mail: safdaruetian@gmail.com; Shimizu, Erina [Institute for Laser Science, The University of Electro-Communications (Japan); Sakaue, Hiroyuki A.; Kato, Daiji; Murakami, Izumi [National Institute for Fusion Science (Japan); Yamamoto, Norimasa [Chubu University (Japan); Hara, Hirohisa; Watanabe, Tetsuya [The Graduate University of Advanced Studies (SOKENDAI) (Japan); Nakamura, Nobuyuki, E-mail: n-nakamu@ils.uec.ac.jp [Institute for Laser Science, The University of Electro-Communications (Japan)

    2015-11-15

    Intensity ratio of density sensitive emission lines emitted from Fe ions in the extreme ultraviolet region is important for astrophysics applications. We report high-resolution intensity ratio measurements for Fe ions performed at Tokyo EBIT laboratory by employing a flat-field grazing incidence spectrometer. The experimental intensity ratios of Fe X and Fe XII are plotted as a function of electron density for different electron beam currents. The experimental results are compared with the predicted intensity ratios from the model calculations.

  15. Pressure Ratio to Thermal Environments

    Science.gov (United States)

    Lopez, Pedro; Wang, Winston

    2012-01-01

    A pressure ratio to thermal environments (PRatTlE.pl) program is a Perl language code that estimates heating at requested body point locations by scaling the heating at a reference location times a pressure ratio factor. The pressure ratio factor is the ratio of the local pressure at the reference point and the requested point from CFD (computational fluid dynamics) solutions. This innovation provides pressure ratio-based thermal environments in an automated and traceable method. Previously, the pressure ratio methodology was implemented via a Microsoft Excel spreadsheet and macro scripts. PRatTlE is able to calculate heating environments for 150 body points in less than two minutes. PRatTlE is coded in Perl programming language, is command-line-driven, and has been successfully executed on both the HP and Linux platforms. It supports multiple concurrent runs. PRatTlE contains error trapping and input file format verification, which allows clear visibility into the input data structure and intermediate calculations.

  16. Vehicle emissions of greenhouse gases and related tracers from a tunnel study: : CO: CO2, N2O: CO2, CH4: CO2, O2: CO2 ratios, and the stable isotopes 13C and 18O in CO2 and CO

    NARCIS (Netherlands)

    Popa, Maria Elena; Vollmer, M. K.; Jordan, A.; Brand, W. A.; Pathirana, S. L.|info:eu-repo/dai/nl/330541242; Rothe, M.; Röckmann, T.|info:eu-repo/dai/nl/304838233

    2014-01-01

    Measurements of CO2, CO, N2O and CH4 mole fractions, O2/N2 ratios and the stable isotopes 13C and 18O in CO2 and CO have been performed in air samples from the Islisberg highway tunnel (Switzerland). The molar CO : CO2 ratios, with an average of (4.15 ± 0.34) ppb:ppm, are lower than reported in prev

  17. Vehicle emissions of greenhouse gases and related tracers from a tunnel study: : CO: CO2, N2O: CO2, CH4: CO2, O2: CO2 ratios, and the stable isotopes 13C and 18O in CO2 and CO

    NARCIS (Netherlands)

    Popa, Maria Elena; Vollmer, M. K.; Jordan, A.; Brand, W. A.; Pathirana, S. L.; Rothe, M.; Röckmann, T.

    2014-01-01

    Measurements of CO2, CO, N2O and CH4 mole fractions, O2/N2 ratios and the stable isotopes 13C and 18O in CO2 and CO have been performed in air samples from the Islisberg highway tunnel (Switzerland). The molar CO : CO2 ratios, with an average of (4.15 ± 0.34) ppb:ppm, are lower than reported in prev

  18. 40 CFR 98.63 - Calculating GHG emissions.

    Science.gov (United States)

    2010-07-01

    ... ton C/metric ton Al). 44/12 = Ratio of molecular weights, CO2 to carbon. (f) Use the following... (percent weight). 44/12 = Ratio of molecular weights, CO2 to carbon. (g) If process CO2 emissions from... (percent weight). Asha = Ash content in baked anode (percent weight). 44/12 = Ratio of molecular...

  19. Shunting ratios for MHD flows

    Energy Technology Data Exchange (ETDEWEB)

    Birzvalk, Yu.

    1978-01-01

    The shunting ratio and the local shunting ratio, pertaining to currents induced by a magnetic field in a flow channel, are properly defined and systematically reviewed on the basis of the Lagrange criterion. Their definition is based on the energy balance and related to dimensionless parameters characterizing an MHD flow, these parameters evolving from the Hartmann number and the hydrodynamic Reynolds number as well as the magnetic Reynolds number, and the Lundquist number. These shunting ratios, of current density in the core of a stream (uniform) or equivalent mean current density to the short-circuit (maximum) current density, are given here for a slot channel with nonconducting or conducting walls, for a conduction channel with heavy side rails, and for an MHD-flow around bodies. 5 references, 1 figure.

  20. Incentive Ratios of Fisher Markets

    DEFF Research Database (Denmark)

    Chen, Ning; Deng, Xuaitue; Zhang, Hongyang

    2012-01-01

    In a Fisher market, a market maker sells m items to n potential buyers. The buyers submit their utility functions and money endowments to the market maker, who, upon receiving submitted information, derives market equilibrium prices and allocations of its items. While agents may benefit...... by misreporting their private information, we show that the percentage of improvement by a unilateral strategic play, called incentive ratio, is rather limited—it is less than 2 for linear markets and at most $e^{1/e}\\thickapprox 1.445$ for Cobb-Douglas markets. We further prove that both ratios are tight....

  1. Ratio Bias and Policy Preferences

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Tue

    2016-01-01

    Numbers permeate modern political communication. While current scholarship on framing effects has focused on the persuasive effects of words and arguments, this article shows that framing of numbers can also substantially affect policy preferences. Such effects are caused by ratio bias, which...... is a general tendency to focus on numerators and pay insufficient attention to denominators in ratios. Using a population-based survey experiment, I demonstrate how differently framed but logically equivalent representations of the exact same numerical value can have large effects on citizens’ preferences...

  2. Fe/Ni ratio in the Ant Nebula Mz 3

    CERN Document Server

    Zhang, Y

    2006-01-01

    We have analyzed the [Fe II] and [Ni II] emission lines in the bipolar planetary nebula Mz~3. We find that the [Fe II] and [Ni II] lines arise exclusively from the central regions. Fluorescence excitation in the formation process of these lines is negligible for this low-excitation nebula. From the [Fe II]/[Ni II] ratio, we obtain a higher Fe/Ni abundance ratio with respect to the solar value. The current result provides further supporting evidence for Mz 3 as a symbiotic Mira.

  3. Ratio Bias and Policy Preferences

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Tue

    2016-01-01

    Numbers permeate modern political communication. While current scholarship on framing effects has focused on the persuasive effects of words and arguments, this article shows that framing of numbers can also substantially affect policy preferences. Such effects are caused by ratio bias, which is ...

  4. Gender Ratios for Reading Difficulties

    Science.gov (United States)

    Hawke, Jesse L.; Olson, Richard K.; Willcut, Erik G.; Wadsworth, Sally J.; DeFries, John C.

    2009-01-01

    The prevalence of reading difficulties is typically higher in males than females in both referred and research-identified samples, and the ratio of males to females is greater in more affected samples. To explore possible gender differences in reading performance, we analysed data from 1133 twin pairs in which at least one member of each pair had…

  5. Ion cyclotron emission by spontaneous emission

    Energy Technology Data Exchange (ETDEWEB)

    Da Costa, O. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Gresillon, D. [Ecole Polytechnique, 91 - Palaiseau (France). Lab. de Physique des Milieux Ionises

    1994-07-01

    The goal of the study is to examine whether the spontaneous emission can account for ICE (ion cyclotron emission) experimental results, or part of them. A straightforward approach to plasma emission is chosen, investigating the near equilibrium wave radiation by gyrating ions, and thus building from the majority and fast fusion ions the plasma fluctuations and emission on the fast magnetoacoustic or compressional Alfven wave mode in the IC frequency range. Similarities with the ICE experiments are shown: the emission temperature in the presence of fast ions (even in a very small amount), the strong fast ion emission increase with the harmonic, the fine double-line splitting of each peak, the linear but not proportional increase of the peak width with the harmonic. 3 refs., 2 figs.

  6. Vehicle emissions of greenhouse gases and related tracers from a tunnel study: : CO: CO2, N2O: CO2, CH4: CO2, O2: CO2 ratios, and the stable isotopes 13C and 18O in CO2 and CO

    National Research Council Canada - National Science Library

    Popa, Maria Elena; Vollmer, M. K; Jordan, A; Brand, W. A; Pathirana, S. L; Rothe, M; Röckmann, T

    2014-01-01

    Measurements of CO2, CO, N2O and CH4 mole fractions, O2/N2 ratios and the stable isotopes 13C and 18O in CO2 and CO have been performed in air samples from the Islisberg highway tunnel (Switzerland). The molar CO...

  7. Quantifying aluminum and semiconductor industry perfluorocarbon emissions from atmospheric measurements

    Science.gov (United States)

    Kim, Jooil; Fraser, Paul J.; Li, Shanlan; Mühle, Jens; Ganesan, Anita L.; Krummel, Paul B.; Steele, L. Paul; Park, Sunyoung; Kim, Seung-Kyu; Park, Mi-Kyung; Arnold, Tim; Harth, Christina M.; Salameh, Peter K.; Prinn, Ronald G.; Weiss, Ray F.; Kim, Kyung-Ryul

    2014-07-01

    The potent anthropogenic perfluorocarbon greenhouse gases tetrafluoromethane (CF4) and hexafluoroethane (C2F6) are emitted to the atmosphere mainly by the aluminum and semiconductor industries. Global emissions of these perfluorocarbons (PFCs) calculated from atmospheric measurements are significantly greater than expected from reported national and industry-based emission inventories. In this study, in situ measurements of the two PFCs in the Advanced Global Atmospheric Gases Experiment network are used to show that their emission ratio varies according to the relative regional presence of these two industries, providing an industry-specific emission "signature" to apportion the observed emissions. Our results suggest that underestimated emissions from the global semiconductor industry during 1990-2010, as well as from China's aluminum industry after 2002, account for the observed differences between emissions based on atmospheric measurements and on inventories. These differences are significant despite the large uncertainties in emissions based on the methodologies used by these industries.

  8. Effect of shipping emissions on European ground-level ozone

    Science.gov (United States)

    Stergiou, Ioannis; -Eleni Sotiropoulou, Rafaella; Tagaris, Efthimios

    2017-04-01

    Shipping emissions contribution to the global nitrogen oxides emissions is about 15%, affecting ozone formation and the chemical composition of the atmosphere. The objective of this study is to assess the impact of shipping emissions on ozone levels over Europe suggesting regions where air quality degradation due to shipping emissions dominates against the rest of the anthropogenic source emissions. Ranking the importance of the Standard Nomenclature for Air Pollution (SNAP) categories on ozone mixing ratio, road transport has the major impact followed by other mobile sources, power generation, and industrial combustion sectors. All other sectors have a minor impact, therefor, our analysis is focused on these four emission categories. Results suggest that shipping emissions seem to play an important role on ozone levels compared to road transport sector near the coastal zone, while they could partly offset the benefits from the emissions reduction of other mobile sources, power generation and industrial combustion sources, over a great part of the European land.

  9. DYNAMIC TEACHING RATIO PEDAGOGIC MODEL

    Directory of Open Access Journals (Sweden)

    Chen Jiaying

    2010-11-01

    Full Text Available This paper outlines an innovative pedagogic model, Dynamic Teaching Ratio (DTR Pedagogic Model, for learning design and teaching strategy aimed at the postsecondary technical education. The model draws on the theory of differential learning, which is widely recognized as an important tool for engaging students and addressing the individual needs of all students. The DTR model caters to the different abilities, interest or learning needs of students and provides different learning approaches based on a student’s learning ability. The model aims to improve students’ academic performance through increasing the lecturer-to-student ratio in the classroom setting. An experimental case study on the model was conducted and the outcome was favourable. Hence, a large-scale implementation was carried out upon the successful trial run. The paper discusses the methodology of the model and its application through the case study and the large-scale implementation.

  10. Ammonia emissions in Europe

    DEFF Research Database (Denmark)

    Jacobsen, Brian H.

    2012-01-01

    The NEC (National Emission Ceiling) directive has set targets for the 2010 ammonia emissions from a number of European countries. The target will be reached by most EU-countries and the total emission for EU-27 has been reduced by 22% from 1990 to 2007. Denmark is one of the countries with the la......The NEC (National Emission Ceiling) directive has set targets for the 2010 ammonia emissions from a number of European countries. The target will be reached by most EU-countries and the total emission for EU-27 has been reduced by 22% from 1990 to 2007. Denmark is one of the countries...

  11. Envera Variable Compression Ratio Engine

    Energy Technology Data Exchange (ETDEWEB)

    Charles Mendler

    2011-03-15

    Aggressive engine downsizing, variable compression ratio and use of the Atkinson cycle are being combined to improve fuel economy by up to 40 percent relative to port fuel injected gasoline engines, while maintaining full engine power. Approach Engine downsizing is viewed by US and foreign automobile manufacturers as one of the best options for improving fuel economy. While this strategy has already demonstrated a degree of success, downsizing and fuel economy gains are currently limited. With new variable compression ratio technology however, the degree of engine downsizing and fuel economy improvement can be greatly increased. A small variable compression ratio (VCR) engine has the potential to return significantly higher vehicle fuel economy while also providing high power. Affordability and potential for near term commercialization are key attributes of the Envera VCR engine. VCR Technology To meet torque and power requirements, a smaller engine needs to do more work per stroke. This is typically accomplished by boosting the incoming charge with either a turbo or supercharger so that more energy is present in the cylinder per stroke to do the work. With current production engines the degree of engine boosting (which correlates to downsizing) is limited by detonation (combustion knock) at high boost levels. Additionally, the turbo or supercharger needs to be responsive and efficient while providing the needed boost. VCR technology eliminates the limitation of engine knock at high load levels by reducing compression ratio to {approx}9:1 (or whatever level is appropriate) when high boost pressures are needed. By reducing the compression ratio during high load demand periods there is increased volume in the cylinder at top dead center (TDC) which allows more charge (or energy) to be present in the cylinder without increasing the peak pressure. Cylinder pressure is thus kept below the level at which the engine would begin to knock. When loads on the engine are low

  12. A Model of Technological Growth under Emission Constraints

    OpenAIRE

    Rovenskaya, E.

    2006-01-01

    We suggest and analyze a model of global technological growth under a prescribed constraint on the annual emission of greenhouse gases (GHG). The model assumes that industrial GHG emission is positively related to the world's production output driven by the development of the "production"technology stock. "Cleaning" technology is developed in parallel to keep the annual GHG emission within a "safety" zone. The ratio between annual investment in "cleaning" technology and annual investment in "...

  13. Odds ratios deconstructed: A new way to understand and explain odds ratios as conditional risk ratios.

    Science.gov (United States)

    Hoppe, Fred M; Hoppe, Daniel J; Walter, Stephen D

    2017-02-01

    The aim of this analysis was to provide an alternative derivation of the odds ratio (OR) to provide an intuitive meaning, freeing it from any mention of odds, which may make it a more useful concept for clinicians to use when describing treatment effect. By examining the four possible combinations of treatment/control and corresponding outcomes, we considered the conditional risk ratio (RR, also known as relative risk) of an event with the treatment compared with an event with the control for pairs of patients for whom treatment and control would yield different results. Both matched and unmatched studies are considered. We found that the OR could be derived as the RR of an outcome with treatment compared with an outcome with control conditional on the treatment and control resulting in different outcomes, thus providing a measure of the net benefit of treatment. It has been claimed that the OR comparing the effect of treatment vs. control does not have the same clinical interpretability as RR because it involves ratios of odds and so is difficult to explain in terms of patient numbers. This new derivation provides an interpretation of the OR as an RR but conditional on treatment and control resulting in different outcomes. This may help explain the reason ORs cause interpretation difficulties in practice. Moreover, the OR may be a more clinically useful parameter to patients because it deals with only those situations where the outcome differs between the two groups. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Emissions Modeling Clearinghouse

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Emissions Modeling Clearinghouse (EMCH) supports and promotes emissions modeling activities both internal and external to the EPA. Through this site, the EPA...

  15. Walkable dual emissions

    National Research Council Canada - National Science Library

    Xu, Hai-Bing; Jiao, Peng-Chong; Kang, Bin; Deng, Jian-Guo; Zhang, Yan

    2013-01-01

    Walkable dual emissions, in which the emission bands of the walker reversibly cross or leave those of the stationary ones depending on temperature and concentration, have been demonstrated in cyclic...

  16. National Emission Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Emission Inventory contains measured, modeled, and estimated data for emissions of all known source categories in the US (stationary sources, fires,...

  17. World Emission RETRO ANTHRO

    Data.gov (United States)

    Washington University St Louis — Anthropogenic and vegetation fire emissions data were generated monthly covering a period of 1960 to 2000. Anthropogenic emissions in the RETRO inventory are derived...

  18. Emissions & Measurements - Black Carbon

    Science.gov (United States)

    Emissions and Measurement (EM) research activities performed within the National Risk Management Research Lab NRMRL) of EPA's Office of Research and Development (ORD) support measurement and laboratory analysis approaches to accurately characterize source emissions, and near sour...

  19. What Is Emissions Trading?

    Science.gov (United States)

    Learn the basics about how emissions trading uses a market-based policy tool used to control large amounts of pollution emissions from a group of sources in order to protect human health and the environment.

  20. National Emission Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Emission Inventory contains measured, modeled, and estimated data for emissions of all known source categories in the US (stationary sources, fires,...

  1. Gender ratios for reading difficulties

    OpenAIRE

    Hawke, Jesse L.; Olson, Richard K.; Willcutt, Erik G.; Wadsworth, Sally J.; DeFries, John C.

    2009-01-01

    The prevalence of reading difficulties is typically higher in males than females in both referred and research-identified samples, and the ratio of males to females is greater in more affected samples. To explore possible gender differences in reading performance, we analyzed data from 1,133 twin pairs in which at least one member of each pair had a school-history of reading problems and from 684 twin pairs from a comparison sample with no reading difficulties. Although the difference between...

  2. GOLD and the fixed ratio

    Directory of Open Access Journals (Sweden)

    Vestbo J

    2012-09-01

    Full Text Available Jørgen VestboUniversity of Manchester, Manchester, UKI read with interest the paper entitled "Diagnosis of airway obstruction in the elderly: contribution of the SARA study" by Sorino et al in a recent issue of this journal.1 Being involved in the Global Initiative for Obstructive Lung Diseases (GOLD, it is nice to see the interest sparked by the GOLD strategy document. However, in the paper by Sorino et al, there are a few misunderstandings around GOLD and the fixed ratio (forced expiratory volume in 1 second/forced volume vital capacity < 0.70 that need clarification.View original paper by Sorino and colleagues.

  3. Economic growth and carbon emission control

    Science.gov (United States)

    Zhang, Zhenyu

    The question about whether environmental improvement is compatible with continued economic growth remains unclear and requires further study in a specific context. This study intends to provide insight on the potential for carbon emissions control in the absence of international agreement, and connect the empirical analysis with theoretical framework. The Chinese electricity generation sector is used as a case study to demonstrate the problem. Both social planner and private problems are examined to derive the conditions that define the optimal level of production and pollution. The private problem will be demonstrated under the emission regulation using an emission tax, an input tax and an abatement subsidy respectively. The social optimal emission flow is imposed into the private problem. To provide tractable analytical results, a Cobb-Douglas type production function is used to describe the joint production process of the desired output and undesired output (i.e., electricity and emissions). A modified Hamiltonian approach is employed to solve the system and the steady state solutions are examined for policy implications. The theoretical analysis suggests that the ratio of emissions to desired output (refer to 'emission factor'), is a function of productive capital and other parameters. The finding of non-constant emission factor shows that reducing emissions without further cutting back the production of desired outputs is feasible under some circumstances. Rather than an ad hoc specification, the optimal conditions derived from our theoretical framework are used to examine the relationship between desired output and emission level. Data comes from the China Statistical Yearbook and China Electric Power Yearbook and provincial information of electricity generation for the year of 1993-2003 are used to estimate the Cobb-Douglas type joint production by the full information maximum likelihood (FIML) method. The empirical analysis shed light on the optimal

  4. BENEFITS AND CHALLENGES OF VARIABLE COMPRESSION RATIO AT DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Radivoje B Pešić

    2010-01-01

    Full Text Available The compression ratio strongly affects the working process and provides an exceptional degree of control over engine performance. In conventional internal combustion engines, the compression ratio is fixed and their performance is therefore a compromise between conflicting requirements. One fundamental problem is that drive units in the vehicles must successfully operate at variable speeds and loads and in different ambient conditions. If a diesel engine has a fixed compression ratio, a minimal value must be chosen that can achieve a reliable self-ignition when starting the engine in cold start conditions. In diesel engines, variable compression ratio provides control of peak cylinder pressure, improves cold start ability and low load operation, enabling the multi-fuel capability, increase of fuel economy and reduction of emissions. This paper contains both theoretical and experimental investigation of the impact that automatic variable compression ratios has on working process parameters in experimental diesel engine. Alternative methods of implementing variable compression ratio are illustrated and critically examined.

  5. Local Group Galaxy Emission-line Survey

    Science.gov (United States)

    Blaha, Cindy; Baildon, Taylor; Mehta, Shail; Garcia, Edgar; Massey, Philip; Hodge, Paul W.

    2015-01-01

    We present the results of the Local Group Galaxy Emission-line Survey of Hα emission regions in M31, M33 and seven dwarf galaxies in (NGC6822, IC10, WLM, Sextans A and B, Phoenix and Pegasus). Using data from the Local Group Galaxy Survey (LGGS - see Massey et al, 2006), we used continuum-subtracted Ha emission line images to define emission regions with a faint flux limit of 10 -17 ergs-sec-1-cm-2above the background. We have obtained photometric measurements for roughly 7450 Hα emission regions in M31, M33 and five of the seven dwarf galaxies (no regions for Phoenix or Pegasus). Using these regions, with boundaries defined by Hα-emission flux limits, we also measured fluxes for the continuum-subtracted [OIII] and [SII] images and constructed a catalog of Hα fluxes, region sizes and [OIII]/ Hα and [SII]/ Hα line ratios. The HII region luminosity functions and size distributions for the spiral galaxies M31 and M33 are compared with those of the dwarf galaxies NGC 6822 and IC10. For M31 and M33, the average [SII]/ Hα and [OIII]/ Hα line ratios, plotted as a function of galactocentric radius, display a linear trend with shallow slopes consistent with other studies of metallicity gradients in these galaxies. The galaxy-wide averages of [SII]/ Hα line ratios correlate with the masses of the dwarf galaxies following the previously established dwarf galaxy mass-metallicity relationship. The slope of the luminosity functions for the dwarf galaxies varies with galaxy mass. The Carleton Catalog of this Local Group Emission-line Survey will be made available on-line.

  6. Estimation of Methane Emissions from Municipal Solid Waste Landfills in China Based on Point Emission Sources

    Institute of Scientific and Technical Information of China (English)

    CAI Bo-Feng; LIU Jian-Guo; GAO Qing-Xian; NIE Xiao-Qin; CAO Dong; LIU Lan-Cui; ZHOU Ying; ZHANG Zhan-Sheng

    2014-01-01

    The methane (CH4) emissions from municipal solid waste (MSW) landfills in China in 2007 were estimated based on database of the three-dimensional emission factors matrix and point sources, by an IPCC recommended FOD (first-order decay) model. The location, capacity and age of landfills constitute the three dimensions of the emission factors matrix, which were obtained by laboratory analysis and in situ investigation. Key parameters such as waste composition, degradable organic carbon ratio, CH4 correction factor, oxidation factor and recovery rate, were carefully analyzed in terms of these three dimensions. The point sources database consists of 2,107 MSW landfills in cities and towns of China in 2007. The results show that the CH4 emissions from MSW landfills were 1.186 Mt in 2007. Compared with the CH4 emissions of 2.20 Mt in 2005, the significant discrepancy mainly comes from statistical data of landfills, e.g., number of landfills and amount of waste disposed in landfills. CH4 emissions were lower than 700 t for most of the landfills, whereas there were 279 landfills with emissions larger than 1,000 t, and only 10 landfills with emissions larger than 10,000 t. Jiangsu province ranks the largest emitter with 98,700 t while Tibet is the smallest emitter with 2,100 t. In general, the emissions from eastern provinces, such as Jiangsu, Guangdong and Zhejiang, were larger than those from western provinces, such as Ningxia, Tibet and Qinghai.

  7. Nitrous oxide emission by aquatic macrofauna

    DEFF Research Database (Denmark)

    Stief, Peter; Poulsen, Morten; Nielsen, Lars Peter

    2009-01-01

      A large variety of aquatic animals was found to emit the potent greenhouse gas nitrous oxide when nitrate was present in the environment. The emission was ascribed to denitrification by ingested bacteria in the anoxic animal gut, and the exceptionally high N2O-to-N2 production ratio suggested...... delayed induction of the last step of denitrification. Filter- and deposit-feeding animal species showed the highest rates of nitrous oxide emission and predators the lowest, probably reflecting the different amounts of denitrifying bacteria in the diet. We estimate that nitrous oxide emission by aquatic...... animals is quantitatively important in nitraterich aquatic environments like freshwater, coastal marine, and deep-sea ecosystems. The contribution of this source to overall nitrous oxide emission from aquatic environments might further increase because of the projected increase of nitrate availability...

  8. Measurement of greenhouse gas emissions from composting

    Energy Technology Data Exchange (ETDEWEB)

    Teshima, M.A.; Leonard, J. [Alberta Univ., Edmonton, AB (Canada)

    2003-07-01

    In response to concerns regarding greenhouse gas (GHG) emissions, several industries are looking into new technologies to mitigate GHG production. This paper described the ongoing research regarding composting and its application to the waste management sector. Baseline data has been collected on emissions of carbon dioxide, methane and nitrous oxides, the primary greenhouse gases. Four test trials were performed at a composting facility which involved windrows with: high carbon to nitrogen ratio, turned; high carbon to nitrogen ratio, unturned; low carbon to nitrogen ratio, turned; and, low carbon to nitrogen ratio, unturned. The objective was to verify the hypothesis that high carbon to nitrogen ratio could suppress nitrous oxide emissions due to less available nitrogen for mineralization and subsequent denitrification. Another objective was to confirm if turning the compost promotes an aerobic environment in which methane production is decreased. Concurrent bench-scale composting experiments were conducted to measure and analyze off-gases to evaluate the feasibility of field-scale composting operations.

  9. Concentrations and fluxes of biogenic volatile organic compounds above a Mediterranean macchia ecosystem in Western Italy

    Directory of Open Access Journals (Sweden)

    B. Davison

    2009-02-01

    Full Text Available Emission rates and concentrations of biogenic volatile organic compounds (BVOCs were measured at a Mediterranean coastal site at Castelporziano, approximately 25 km south-west of Rome, between 7 May and 3 June 2007, as part of the ACCENT-VOCBAS field campaign on biosphere-atmosphere interactions. Concentrations and emission rates were measured using the disjunct eddy covariance method utilizing three different proton transfer reaction mass spectrometers (PTR-MS for BVOC mixing ratio measurements and sonic anemometers for three-dimensional high-frequency wind measurements. Depending on the measurement period and the instrument, the median volume mixing ratios were 1.6–3.5 ppbv for methanol, 0.4–1.5 ppbv for acetaldehyde, 1.0–2.5 ppbv for acetone, 0.10–0.17 ppbv for isoprene, and 0.18–0.30 ppbv for monoterpenes. A diurnal cycle in mixing ratios was apparent with daytime maxima for methanol, acetaldehyde, acetone, and isoprene. The median fluxes were 370–440 μg m−2 h−1 for methanol, 180–360 μg m−2 h−1 for acetaldehyde, 180–450 μg m−2 h−1 for acetone, 71–290 μg m−2 h−1 for isoprene, and 240–860 μg m−2 h−1 for monoterpenes.

  10. Quantitative structure activity relationships (QSAR) for binary mixtures at non-equitoxic ratios based on toxic ratios-effects curves.

    Science.gov (United States)

    Tian, Dayong; Lin, Zhifen; Yin, Daqiang

    2013-01-01

    The present study proposed a QSAR model to predict joint effects at non-equitoxic ratios for binary mixtures containing reactive toxicants, cyanogenic compounds and aldehydes. Toxicity of single and binary mixtures was measured by quantifying the decrease in light emission from the Photobacterium phosphoreum for 15 min. The joint effects of binary mixtures (TU sum) can thus be obtained. The results showed that the relationships between toxic ratios of the individual chemicals and their joint effects can be described by normal distribution function. Based on normal distribution equations, the joint effects of binary mixtures at non-equitoxic ratios ( [Formula: see text]) can be predicted quantitatively using the joint effects at equitoxic ratios ( [Formula: see text]). Combined with a QSAR model of [Formula: see text]in our previous work, a novel QSAR model can be proposed to predict the joint effects of mixtures at non-equitoxic ratios ( [Formula: see text]). The proposed model has been validated using additional mixtures other than the one used for the development of the model. Predicted and observed results were similar (p>0.05). This study provides an approach to the prediction of joint effects for binary mixtures at non-equitoxic ratios.

  11. Shipping emissions in ports

    OpenAIRE

    2014-01-01

    Shipping emissions in ports are substantial, accounting for 18 million tonnes of CO2 emissions, 0.4 million tonnes of NOx, 0.2 million of SOx and 0.03 million tonnes of PM10 in 2011. Around 85% of emissions come from containerships and tankers. Containerships have short port stays, but high emissions during these stays. Most of CO2 emissions in ports from shipping are in Asia and Europe (58%), but this share is low compared to their share of port calls (70%). European ports have much less emi...

  12. International emissions trading

    DEFF Research Database (Denmark)

    Boom, Jan Tjeerd

    This thesis discusses the design and political acceptability of international emissions trading. It is shown that there are several designs options for emissions trading at the national level that have a different impact on output and thereby related factors such as employment and consumer prices....... The differences in impact of the design make that governments may prefer different designs of emissions trading in different situations. The thesis furthermore establishes that international emissions trading may lead to higher overall emissions, which may make it a less attractive instrument....

  13. The contribution of aircraft emissions to the atmospheric sulfur budget

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, E. [Stockholm Univ. (Sweden). Dept. of Meteorology; Feichter, J. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Sausen, R.; Hein, R. [Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1998-01-01

    An atmospheric general circulation model including the atmospheric sulfur cycle has been used to investigate the impact of aircraft sulfur emissions on the global sulfur budget of the atmosphere. The relative contribution from aircraft sulfur to the atmospheric sulfate burden is larger than the ratio between aircraft emissions and surface emissions due to the calculated long turn-over time of aircraft sulfate (about 12 days). However, in terms of the sulfate mass balance, aircraft emissions are small, contributing about 1% of the total sulfate mass north of 40 deg C where the aircraft emissions are largest. Despite this small contribution to sulfate mass, the aircraft emissions could potentially significantly enhance the background number concentration of aerosol particles. Based on the model calculations the increased stratospheric background aerosol mass observed during the last decades can not be explained by increased aircraft sulfur emissions 50 refs, 9 figs, 4 tabs

  14. Weather-Corrected Performance Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Dierauf, T.; Growitz, A.; Kurtz, S.; Cruz, J. L. B.; Riley, E.; Hansen, C.

    2013-04-01

    Photovoltaic (PV) system performance depends on both the quality of the system and the weather. One simple way to communicate the system performance is to use the performance ratio (PR): the ratio of the electricity generated to the electricity that would have been generated if the plant consistently converted sunlight to electricity at the level expected from the DC nameplate rating. The annual system yield for flat-plate PV systems is estimated by the product of the annual insolation in the plane of the array, the nameplate rating of the system, and the PR, which provides an attractive way to estimate expected annual system yield. Unfortunately, the PR is, again, a function of both the PV system efficiency and the weather. If the PR is measured during the winter or during the summer, substantially different values may be obtained, making this metric insufficient to use as the basis for a performance guarantee when precise confidence intervals are required. This technical report defines a way to modify the PR calculation to neutralize biases that may be introduced by variations in the weather, while still reporting a PR that reflects the annual PR at that site given the project design and the project weather file. This resulting weather-corrected PR gives more consistent results throughout the year, enabling its use as a metric for performance guarantees while still retaining the familiarity this metric brings to the industry and the value of its use in predicting actual annual system yield. A testing protocol is also presented to illustrate the use of this new metric with the intent of providing a reference starting point for contractual content.

  15. Multiple THz pulse generation with variable energy ratio and delay

    Science.gov (United States)

    Ungureanu, R. G.; Grigore, O. V.; Dinca, M. P.; Cojocaru, G. V.; Ursescu, D.; Dascalu, T.

    2015-04-01

    Two methods for multiple high energetic THz pulse generation by two-color filamentation in air with controllable energy ratio and delay ranging from one to hundreds of ps were investigated. In the first method the laser pulse is split into two inside the optical stretcher of a CPA laser system, the resulting consecutive filaments occur in the same region and allows the study of the influence of the first plasma filament on the THz emission of the delayed filament. Based on a polarization sensitive thin film beam splitter placed in front of a 45° mirror, the second method produces multiple parallel consecutive filaments. Above a certain total pump level the THz energy delivered by multiple pulses exceeds the value given by a single filament for the same pump energy, thereby overcoming the THz emission saturation of the single filament.

  16. Revisiting global fossil fuel and biofuel emissions of ethane

    Science.gov (United States)

    Tzompa-Sosa, Z. A.; Mahieu, E.; Franco, B.; Keller, C. A.; Turner, A. J.; Helmig, D.; Fried, A.; Richter, D.; Weibring, P.; Walega, J.; Yacovitch, T. I.; Herndon, S. C.; Blake, D. R.; Hase, F.; Hannigan, J. W.; Conway, S.; Strong, K.; Schneider, M.; Fischer, E. V.

    2017-02-01

    Recent measurements over the Northern Hemisphere indicate that the long-term decline in the atmospheric burden of ethane (C2H6) has ended and the abundance increased dramatically between 2010 and 2014. The rise in C2H6 atmospheric abundances has been attributed to oil and natural gas extraction in North America. Existing global C2H6 emission inventories are based on outdated activity maps that do not account for current oil and natural gas exploitation regions. We present an updated global C2H6 emission inventory based on 2010 satellite-derived CH4 fluxes with adjusted C2H6 emissions over the U.S. from the National Emission Inventory (NEI 2011). We contrast our global 2010 C2H6 emission inventory with one developed for 2001. The C2H6 difference between global anthropogenic emissions is subtle (7.9 versus 7.2 Tg yr-1), but the spatial distribution of the emissions is distinct. In the 2010 C2H6 inventory, fossil fuel sources in the Northern Hemisphere represent half of global C2H6 emissions and 95% of global fossil fuel emissions. Over the U.S., unadjusted NEI 2011 C2H6 emissions produce mixing ratios that are 14-50% of those observed by aircraft observations (2008-2014). When the NEI 2011 C2H6 emission totals are scaled by a factor of 1.4, the Goddard Earth Observing System Chem model largely reproduces a regional suite of observations, with the exception of the central U.S., where it continues to underpredict observed mixing ratios in the lower troposphere. We estimate monthly mean contributions of fossil fuel C2H6 emissions to ozone and peroxyacetyl nitrate surface mixing ratios over North America of 1% and 8%, respectively.

  17. Interpreting high [O III]/Hbeta ratios with maturing starbursts

    CERN Document Server

    Stanway, E R; Greis, S M L; Davies, L J M; Wilkins, S M; Bremer, M N

    2014-01-01

    Star forming galaxies at high redshift show ubiquitously high ionization parameters, as measured by the ratio of optical emission lines. We demonstrate that local (z < 0.2) sources selected as Lyman break analogues also manifest high line ratios with a typical [O III]/H beta = 3.36(+0.14,-0.04) - comparable to all but the highest ratios seen in star forming galaxies at z ~ 2-4. We argue that the stellar population synthesis code BPASS can explain the high ionization parameters required through the ageing of rapidly formed star populations, without invoking any AGN contribution. Binary stellar evolution pathways prolong the age interval over which a starburst is likely to show elevated line ratios, relative to those predicted by single stellar evolution codes. As a result, model galaxies at near-Solar metallicities and with ages of up to ~100 Myr after a starburst typically have a line ratio [O III]/H beta~3, consistent with those seen in Lyman break galaxies and local sources with similar star formation de...

  18. Observed Versus Modeled O 1356 Å and N2 LBH Emissions from the Earth's Space Environment

    Science.gov (United States)

    Hays, J.; Eastes, R.

    2011-12-01

    The O/N2 ratio, which can be derived from the O 1356 Å to N2 LBH (Lyman-Birge-Hopfield) emission ratio, is frequently used to quantify changes in the state of Earth's space environment. The brightness of these emissions also provides important constraints on the state of the space environment and its drivers, e.g., the solar irradiance. In this work, the observed O 1356 Å and LBH emissions from the GUVI (Global Ultraviolet Imager) on the TIMED (Thermosphere Ionosphere Mesosphere Energetics and Dynamics) satellite is compared to the calculated O 1356 Å and LBH emissions from the GLOW model. These comparisons allow us to examine the agreement between the observed and calculated emissions as well as their dependence on the emission cross sections. GUVI observations from 2010-2011 and coincident with solar irradiance observations from the Solar Dynamics Observatory (SDO), both at 30 second cadence, are used in the analysis. In addition, recent experimental excitation cross-section data are used to determine the N2 LBH brightness and its ratio to O 1356 Å. The observed 1356/LBH emission ratio (which is proportional to the O/N2 ratio) is approximately half that calculated, while the calculated emissions are both brighter than those observed. While uncertainties in both the calibrations of the instruments and the neutral densities of the atmosphere may contribute to the lack of agreement, the differences in the emission ratios indicate a need for better O 1356 Å emission cross sections.

  19. Anomalous Microwave Emission

    CERN Document Server

    Kogut, A J

    1999-01-01

    Improved knowledge of diffuse Galactic emission is important to maximize the scientific return from scheduled CMB anisotropy missions. Cross-correlation of microwave maps with maps of the far-IR dust continuum show a ubiquitous microwave emission component whose spatial distribution is traced by far-IR dust emission. The spectral index of this emission, beta_{radio} = -2.2 (+0.5 -0.7) is suggestive of free-free emission but does not preclude other candidates. Comparison of H-alpha and microwave results show that both data sets have positive correlations with the far-IR dust emission. Microwave data, however, are consistently brighter than can be explained solely from free-free emission traced by H-alpha. This ``anomalous'' microwave emission can be explained as electric dipole radiation from small spinning dust grains. The anomalous component at 53 GHz is 2.5 times as bright as the free-free emission traced by H-alpha, providing an approximate normalization for models with significant spinning dust emission.

  20. Airborne characterization of smoke marker ratios from prescribed burning

    Directory of Open Access Journals (Sweden)

    A. P. Sullivan

    2014-05-01

    Full Text Available A Particle-into-Liquid Sampler – Total Organic Carbon and fraction collector system was flown aboard aTwin Otter aircraft sampling prescribed burning emissions in South Carolina in November2011 to obtain smoke marker measurements. The fraction collector provided 2 min time-integrated off-line samples for carbohydrate (i.e., smoke markers levoglucosan, mannosan, galactosan analysis by high-performance anion-exchange chromatography with pulsed amperometric detection. Each fire location appeared to have aunique Δ levoglucosan / Δ water-soluble organic carbon (WSOC ratio (RF01/RF02/RF03/RF05 = 0.163 ± 0.007 μg C μg C−1, RF08 = 0.115 ± 0.011 μg C μg C−1, RF09A = 0.072 ± 0.028 μg C μg C−1, RF09B = 0.042 ± 0.008 μg C μg C−1. These ratios were comparable to those obtained from controlled laboratory burns and suggested that the emissions sampled during RF01/RF02/RF03/RF05 were dominated by the burning of grasses, RF08 by leaves, RF09A by needles, and RF09B by marsh grasses. These findings were further supported by the Δ galactosan / Δ levoglucosan ratios (RF01/RF02/RF03/RF05 = 0.067 ± 0.004 μg μg−1, RF08 = 0.085 ± 0.009 μg μg−1, RF09A = 0.101 ± 0.029 μg μg−1 obtained as well as by the ground-based fuel and filter sample analyses during RF01/RF02/RF03/RF05. Differences between Δ potassium / Δ levoglucosan ratios obtained for these prescribed fires vs. laboratory-scale measurements suggest that some laboratory burns may not accurately represent potassium emissions from prescribed burns. The Δ levoglucosan / Δ WSOC ratio had no clear dependence on smoke age or fire dynamics suggesting that this ratio is more dependent on the type of fuel being burned. Levoglucosan was stable over a timescale of at least 1.5 h and could be useful to help estimate the air quality impacts of biomass burning.

  1. Airborne characterization of smoke marker ratios from prescribed burning

    Science.gov (United States)

    Sullivan, A. P.; May, A. A.; Lee, T.; McMeeking, G. R.; Kreidenweis, S. M.; Akagi, S. K.; Yokelson, R. J.; Urbanski, S. P.; Collett, J. L., Jr.

    2014-10-01

    A Particle-Into-Liquid Sampler - Total Organic Carbon (PILS-TOC) and fraction collector system was flown aboard a Twin Otter aircraft sampling prescribed burning emissions in South Carolina in November 2011 to obtain smoke marker measurements. The fraction collector provided 2 min time-integrated offline samples for carbohydrate (i.e., smoke markers levoglucosan, mannosan, and galactosan) analysis by high-performance anion-exchange chromatography with pulsed amperometric detection. Each fire location appeared to have a unique Δlevoglucosan/Δwater-soluble organic carbon (WSOC) ratio (RF01/RF02/RF03/RF05 = 0.163 ± 0.007 μg C μg-1 C, RF08 = 0.115 ± 0.011 μg C μg-1 C, RF09A = 0.072 ± 0.028 μg C μg-1 C, and RF09B = 0.042 ± 0.008 μg C μg-1 C, where RF means research flight). These ratios were comparable to those obtained from controlled laboratory burns and suggested that the emissions sampled during RF01/F02/RF03/RF05 were dominated by the burning of grasses, RF08 by leaves, RF09A by needles, and RF09B by marsh grasses. These findings were further supported by the Δgalactosan/Δlevoglucosan ratios (RF01/RF02/RF03/RF05 = 0.067 ± 0.004 μg μg-1, RF08 = 0.085 ± 0.009 μg μg-1, and RF09A = 0.101 ± 0.029 μg μg-1) obtained as well as by the ground-based fuel and filter sample analyses during RF01/RF02/RF03/RF05. Differences between Δpotassium/Δlevoglucosan ratios obtained for these prescribed fires vs. laboratory-scale measurements suggest that some laboratory burns may not accurately represent potassium emissions from prescribed burns. The Δlevoglucosan/ΔWSOC ratio had no clear dependence on smoke age or fire dynamics suggesting that this ratio is more dependent on the type of fuel being burned. Levoglucosan was stable over a timescale of at least 1.5 h and could be useful to help estimate the air quality impacts of biomass burning.

  2. The Emission Line Sequence of Normal Spiral Galaxies

    CERN Document Server

    Sodré, L; Stasinska, Grazyna

    1999-01-01

    We have analyzed the emission line properties in the integrated spectra of 15 normal spiral galaxies. We show that very clear trends appear when plotting relevant emission line ratios or equivalent widths as a function of galaxy spectral types, obtained with a Principal Component Analysis of the continua and absorption features of spectra. The equivalent widths of all the lines analyzed correlate extremely well with spectral types, implying that each of them can be considered a good indicator of the spectral type in normal galaxies. The position of most galaxies of our sample in classical emission line diagnostic diagrams follows that of individual giant HII regions in spiral galaxies, but for the earliest type galaxies, the emission line pattern resembles more that of LINERs. Therefore, the direct interpretation of equivalent widths in terms of star formation rates would be misleading in such cases. The observed trends in the emission line ratios as a function of galaxy spectral type suggest a decrease of O/...

  3. $H_{2}$ emission from CRL 618

    CERN Document Server

    Herpin, F; Heras, A

    2000-01-01

    We present a complete study of the H2 infrared emission, including the pure rotational lines, of the proto Planetary Nebulae CRL 618 with the ISO SWS. A large number of lines are detected. The analysis of our observations shows: (i) an OTP ratio very different from the classical value of 3, probably around 1.76-1.87; (ii) a stratification of the emitting region, and more precisely different regions of emission, plausibly located in the lobes, in an intermediate zone, and close to the torus; (iii) different excitation mechanisms, collisions and fluorescence.

  4. Biotic, abiotic, and management controls on methanol exchange above a temperate mountain grassland

    Science.gov (United States)

    HöRtnagl, Lukas; Bamberger, Ines; Graus, Martin; Ruuskanen, Taina M.; Schnitzhofer, Ralf; Müller, Markus; Hansel, Armin; Wohlfahrt, Georg

    2011-09-01

    Methanol (CH3OH) fluxes were quantified above a managed temperate mountain grassland in the Stubai Valley (Tyrol, Austria) during the growing seasons 2008 and 2009. Half-hourly methanol fluxes were calculated by means of the virtual disjunct eddy covariance (vDEC) method using three-dimensional wind data from a sonic anemometer and methanol volume mixing ratios measured with a proton transfer reaction mass spectrometer (PTR-MS). During (undisturbed) mature and growing phases, methanol fluxes exhibited a clear diurnal cycle with close-to-zero fluxes during nighttime and emissions, up to 10 nmol m-2 s-1, which followed the diurnal course of radiation and air temperature. Management events were found to represent the largest perturbations of methanol exchange at the studied grassland ecosystem: Peak emissions of 144.5 nmol m-2 s-1 were found during/after cutting of the meadow, reflecting the wounding of the plant material and subsequent depletion of the leaf internal aqueous methanol pools. After the application of organic fertilizer, elevated methanol emissions of up to 26.7 nmol m-2 s-1 were observed, likely reflecting enhanced microbial activity associated with the applied manure. Simple and multiple linear regression analyses revealed air temperature and radiation as the dominant abiotic controls, jointly explaining 47% and 70% of the variability in half-hourly and daily methanol fluxes. In contrast to published leaf-level laboratory studies, the surface conductance and the daily change in the amount of green plant area, used as ecosystem-scale proxies for stomatal conductance and growth, respectively, were found to exert only minor biotic controls on methanol exchange.

  5. Direct ecosystem fluxes of volatile organic compounds from oil palms in South-East Asia

    Directory of Open Access Journals (Sweden)

    P. K. Misztal

    2011-04-01

    Full Text Available This paper reports the first direct eddy covariance fluxes of reactive biogenic volatile organic compounds (BVOCs from oil palms to the atmosphere using proton-transfer-reaction mass spectrometry (PTR-MS, measured at a plantation in Malaysian Borneo. At midday, net isoprene flux constituted the largest fraction (84% of all emitted BVOCs measured, at up to 30 mg m−2 h−1 over 12 days. By contrast, the sum of its oxidation products methyl vinyl ketone (MVK and methacrolein (MACR exhibited clear deposition, with a small average canopy resistance of 230 s m−1. Approximately 15% of the resolved BVOC flux from oil palm trees could be attributed to floral emissions, which are thought to be the largest reported biogenic source of estragole and possibly also toluene. Although on average the midday volume mixing ratio of estragole exceeded that of toluene by almost a factor of two, the corresponding fluxes of these two compounds were nearly the same, amounting to 0.81 and 0.76 mg m−2 h−1, respectively. By fitting the canopy temperature and PAR response of the MEGAN emissions algorithm for isoprene and other emitted BVOCs a basal emission rate of isoprene of 7.8 mg m−2 h−1 was derived. We parameterise fluxes of depositing compounds using a resistance approach using direct canopy measurements of deposition. We propose that it is important to include deposition in flux models, especially for secondary oxidation products, in order to improve flux predictions.

  6. Analysis of local-scale background concentrations of methane and other gas-phase species in the Marcellus Shale

    Directory of Open Access Journals (Sweden)

    J. Douglas Goetz

    2017-02-01

    Full Text Available The Marcellus Shale is a rapidly developing unconventional natural gas resource found in part of the Appalachian region. Air quality and climate concerns have been raised regarding development of unconventional natural gas resources. Two ground-based mobile measurement campaigns were conducted to assess the impact of Marcellus Shale natural gas development on local scale atmospheric background concentrations of air pollution and climate relevant pollutants in Pennsylvania. The first campaign took place in Northeastern and Southwestern PA in the summer of 2012. Compounds monitored included methane (CH4, ethane, carbon monoxide (CO, nitrogen dioxide, and Proton Transfer Reaction Mass Spectrometer (PTR-MS measured volatile organic compounds (VOC including oxygenated and aromatic VOC. The second campaign took place in Northeastern PA in the summer of 2015. The mobile monitoring data were analyzed using interval percentile smoothing to remove bias from local unmixed emissions to isolate local-scale background concentrations. Comparisons were made to other ambient monitoring in the Marcellus region including a NOAA SENEX flight in 2013. Local background CH4 mole fractions were 140 ppbv greater in Southwestern PA compared to Northeastern PA in 2012 and background CH4 increased 100 ppbv from 2012 to 2015. CH4 local background mole fractions were not found to have a detectable relationship between well density or production rates in either region. In Northeastern PA, CO was observed to decrease 75 ppbv over the three year period. Toluene to benzene ratios in both study regions were found to be most similar to aged rural air masses indicating that the emission of aromatic VOC from Marcellus Shale activity may not be significantly impacting local background concentrations. In addition to understanding local background concentrations the ground-based mobile measurements were useful for investigating the composition of natural gas emissions in the region.

  7. Theory of antibunching of photon emission I.

    Science.gov (United States)

    Seki, Kazuhiko; Tachiya, M

    2009-01-14

    The photon emission statistics from a single molecule containing multichromophores under pulsed excitation is theoretically studied. Fast nonradiative pair annihilation of excitons efficiently produces a single exciton, which acts as a single photon emitter. By taking into account the discrete nature of exciton numbers and the competition among pair annihilation, and unimolecular radiative and nonradiative decay of excitons, we obtain analytical expressions of photon emission statistics, the average number of emitted photons, and the normalized photon pair correlation which represents the ratio of the number of photon pairs created by the same pulse to that created by different pulses. The normalized photon pair correlation is influenced by the ratio of the pair annihilation rate to the total unimolecular decay rate including both radiative and nonradiative processes but is not influenced by the ratio of the unimolecular radiative and nonradiative rates. On the other hand, the single photon emission intensity depends on the ratio of the unimolecular radiative and nonradiative rates from the exciton left alone after pair annihilation. The conclusion is consistent with recent experimental results on conjugated polymers with various sizes in different host materials.

  8. Carbon-to-nitrogen ratios in agricultural residues

    Energy Technology Data Exchange (ETDEWEB)

    Ilukor, J.O.; Oluka, S.O. [Department of Physics, Makerere University, Kampala (Uganda)

    1995-12-31

    Agronomic crop residues produce greenhouse gas emissions. Crops that produce residues at harvest and during processing may vary from country to country. These residues, which can be in the form of peels, husks, stalks, or straw, are generally considered to be waste products. The carbon (C) and nitrogen (N) content of 19 different agronomic and grass crops common in Uganda were determined using standard laboratory methods. The C and N content of the samples were calculated from two separate equations containing a moisture correction factor. The crop residue C/N ratios were similar to UNEP/OECD/IEA/IPCC values. 3 tabs., 7 refs.

  9. Global Seabird Ammonia Emissions

    Science.gov (United States)

    Riddick, S. N.; Blackall, T. D.; Dragosits, U.; Daunt, F. H.; Braban, C. F.; Tang, Y. S.; Trathan, P.; Wanless, S.; Sutton, M. A.

    2010-12-01

    Seabird colonies represent a major source of atmospheric ammonia (NH3) in remote coastal and marine systems in temperate, tropical and polar regions. Previous studies have shown that NH3 emissions from Scottish seabird colonies were substantial - of similar magnitude to the most intensive agricultural point source emissions. The UK data were used to model global seabird NH3 emissions and suggested that penguins are a major source of emissions on and around the Antarctic continent. The largest seabird colonies are in the order of millions of seabirds. Due to the isolation of these colonies from anthropogenic nitrogen sources, they may play a major role in the nitrogen cycle within these ecosystems. A global seabird database was constructed and used in conjunction with a species-specific seabird bioenergetics model to map the locations of NH3 emissions from seabird colonies. The accuracy of the modelled emissions was validated with field data of NH3 emissions measured at key seabird colonies in different climatic regions of the world: temperate (Isle of May, Scotland), tropical (Ascension Island) and polar (Signy Island, South Georgia). The field data indicated good agreement between modelled and measured NH3 emissions. The measured NH3 emissions also showed the variability of emission with climate. Climate dependence of seabird NH3 emissions may have further implications under a changing global climate. Seabird colonies represent NH3 emission ‘hotspots’, often far from anthropogenic sources, and are likely to be the major source of nitrogen input to these remote coastal ecosystems. The direct manuring by seabirds at colony locations may strongly influence species richness and biodiversity. The subsequent volatilisation and deposition of NH3 increases the spatial extent of seabird influence on nitrogen cycling in their local ecosystem. As many seabird populations are fluctuating due to changing food supply, climate change or anthropogenic pressures, these factors

  10. Carbon emissions Inventory Games

    OpenAIRE

    Al-Emadi, Eiman Ali

    2016-01-01

    Carbon emissions reduction has been the center of attention in many organizations during the past few decades. Many international entities developed rules and regulations to monitor and control carbon emissions especially under supply chain context. Furthermore, researchers investigated techniques and methods on how reduce carbon emissions under operational adjustment which can be done by cooperation or coordination. The main contribution of this thesis is to measure to what extend cooperatio...

  11. Development of air fuel ratio sensor; A/F sensor no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Sakawa, T.; Hori, M. [Denso Corp., Aichi (Japan); Nakamura, Y. [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    The Air Fuel Ratio Sensor (A/F sensor), which is applied to a 1997 model year Low Emission Vehicle (LEV) was developed. This sensor enables the detection of the exhaust gas air fuel ratio, both lean and rich of stoichiometric. It has an effective air fuel ratio range from 12 to 18 as required for LEV regulation. It has the fast light off, - within 20 seconds - to minimize exhaust hydrocarbon content. Further, it has fast response time, less than 200 msec, to improve the air fuel ratio controllability. 3 refs., 7 figs.

  12. Effects of stabilizer ratio on photoluminescence properties of sol-gel ZnO nano-structured thin films

    Energy Technology Data Exchange (ETDEWEB)

    Boudjouan, F. [Laboratoire de Génie de l' Environnement, Université de Bejaia, 06000 Bejaia (Algeria); Chelouche, A., E-mail: azeddinechelouche@gmail.com [Laboratoire de Génie de l' Environnement, Université de Bejaia, 06000 Bejaia (Algeria); Touam, T. [Laboratoire des Semi-conducteurs, Université Badji Mokhtar, BP 12, Annaba 23000 (Algeria); Djouadi, D. [Laboratoire de Génie de l' Environnement, Université de Bejaia, 06000 Bejaia (Algeria); Khodja, S. [Laboratoire des Semi-conducteurs, Université Badji Mokhtar, BP 12, Annaba 23000 (Algeria); Tazerout, M. [Laboratoire de Génie de l' Environnement, Université de Bejaia, 06000 Bejaia (Algeria); Ouerdane, Y. [Laboratoire Hubert Curien, Université Jean Monnet, 42 000 Saint-Etienne (France); Hadjoub, Z. [Laboratoire des Semi-conducteurs, Université Badji Mokhtar, BP 12, Annaba 23000 (Algeria)

    2015-02-15

    Nanostructured ZnO thin films with different molar ratios of MEA to zinc acetate (0.5, 1.0, 1.5 and 2.0) have been deposited on glass substrates by a sol–gel dip coating technique. X-ray diffraction, Scanning Electron Microscopy, UV–visible spectrophotometry and photoluminescence spectroscopy have been employed to investigate the effect of MEA stabilizer ratio on structural, morphological, absorbance and emission properties of the ZnO thin films. Diffraction patterns have shown that all the films are polycrystalline and exhibit a wurtzite hexagonal structure. The c axis orientation has been enhanced with increasing stabilizer ratio. SEM micrographs have revealed that the morphology of the ZnO films depend on stabilizer ratio. The UV–visible absorption spectra have demonstrated that the optical absorption is affected by stabilizer ratio. The photoluminescence spectra have indicated one ultraviolet and two visible emission bands (green and red), while band intensities are found to be dependent on stabilizer ratio. ZnO thin films deposited at MEA ratio of 1.0 show the highest UV emission while the minimum UV emission intensity is observed in thin films deposited at ratio of 0.5 and the maximum green has been recorded for films deposited at MEA ratio of 2.0. - Highlight: • c axis orientation increases with increasing MEA ratio. • The increase of MEA ration from 0.5 to 1.0 enhances greatly the UV emission. • The larger I{sub UV}/I{sub visible} is obtained for the MEA to Zn ratio of 1:1. • The MEA ratio of 0.5 favors the formation of large density of V{sub zn}. • The MEA ratio of 2.0 increases the V{sub o} density.

  13. Managing Refrigerant Emissions

    Science.gov (United States)

    Access information on EPA's efforts to address ozone layer depletion by reducing emissions of refrigerants from stationary refrigeration and air conditioning systems and motor vehicle air conditioning systems.

  14. VOC emissions chambers

    Data.gov (United States)

    Federal Laboratory Consortium — In order to support the development of test methods and reference materials for volatile organic compounds (VOC) emissions from building materials and furnishings,...

  15. Microgravity Emissions Laboratory (MEL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Microgravity Emissions Laboratory (MEL) utilizes a low-frequency acceleration measurement system for the characterization of rigid body inertial forces generated...

  16. Toluene emissions from plants

    Science.gov (United States)

    Heiden, A. C.; Kobel, K.; Komenda, M.; Koppmann, R.; Shao, M.; Wildt, J.

    The emission of toluene from different plants was observed in continuously stirred tank reactors and in field measurements. For plants growing without stress, emission rates were low and ranged from the detection limit up to 2·10-16 mol·cm-2·s-1. Under conditions of stress, the emission rates exceeded 10-14 mol·cm-2·s-1. Exposure of sunflower (Helianthus annuus L. cv. Gigantheus) to 13CO2 resulted in 13C-labeling of the emitted toluene on a time scale of hours. Although no biochemical pathway for the production of toluene is known, these results indicate that toluene is synthesized by the plants. The emission rates of toluene from sunflower are dependent on nutrient supply and wounding. Since α-pinene emission rates are also influenced by these factors, toluene and α-pinene emissions show a high correlation. During pathogen attack on Scots pines (Pinus sylvestris L.) significant toluene emissions were observed. In this case emissions of toluene and α-pinene also show a good correlation. Toluene emissions were also found in field experiments with pines using branch enclosures.

  17. Effect Of Compression Ratio On The Performance Of Diesel Engine At Different Loads.

    Directory of Open Access Journals (Sweden)

    Abhishek Reddy G

    2015-10-01

    Full Text Available Variable compression ratio (VCR technology has long been recognized as a method for improving the automobile engine performance, efficiency, fuel economy with reduced emission. The main feature of the VCR engine is to operate at different compression ratio, by changing the combustion chamber volume, depending on the vehicle performance needs .The need to improve the performance characteristics of the IC Engine has necessitated the present research. Increasing the compression ratio to improve on the performance is an option. The compression ratio is a factor that influences the performance characteristics of internal combustion engines. This work is an experimental investigation of the influence of the compression ratio on the brake power, brake thermal efficiency, brake mean effective pressure and specific fuel consumption of the Kirloskar variable compression ratio duel fuel engine. Compression Ratios of 14, 15, 16 and 18 and engine loads of 3kg to 12 kg, in increments of 3kg, were utilized for Diesel.

  18. The influence of emission changes on ozone concentrations and nitrogen deposition into the southern North Sea

    Directory of Open Access Journals (Sweden)

    Elke M.I. Meyer

    2011-02-01

    Full Text Available The impact of changes in amount of emission for NOx (Nitrogen monoxide NO + Nitrogen dioxide NO2 and NMVOC (Non Methane Volatile Organic Compounds on concentrations of ozone (O3, NOx, nitric acid (HNO3 and on nitrogen deposition in the area of the southern North Sea are investigated. One reference case for the period 16 June till 20 June, 1998 and six emission scenarios are calculated. Spatial and temporal emission patterns are kept and overall emission factors are used that correspond to years 1998 (reference, 1970 and 2010. Some more artificial emission scenarios are constructed to investigate the effect of a changed ratio of NOx to NMVOC emissions. The meteorology is unchanged for all scenarios. The studies are performed with the meteorology/chemistry model M-SYS (METRAS/MECTM including a simple aerosol chemistry and using a horizontal resolution of 8 km. Changes in emissions of NMVOC and NOx cause nonlinear changes in O3, NOx and HNO3 concentrations. The concentration changes depend on emission changes and on changes in the ratio of NMVOC to NOx emissions. The whole area, over land and water, turns out to be in the NMVOC limited regime. Ozone scenario concentrations linearly depend on the ratio of NMVOC to NOx emissions. NOx concentrations linearly depend on changes in the total emissions of NOx and NMVOC. They are inversely related to changes in the ratio of NMVOC to NOx emissions. HNO3 concentrations mainly depend on the total emission changes with NOx emission changes being of doubled relevance compared to NMVOC emission changes. The same relation is found for nitrogen deposition. Compared to mean ozone concentrations from the reference case, higher (lower NOx emissions reduce (increase ozone concentrations, while HNO3 concentrations are increased (reduced. In contrast, reduced (increased NMVOC emissions reduce (increase both, ozone and HNO3 concentrations and, in addition, the nitrogen deposition.

  19. Constraining CO emission estimates using atmospheric observations

    Science.gov (United States)

    Hooghiemstra, P. B.

    2012-06-01

    (mainly CO from oxidation of NMVOCs) that are 185 Tg CO/yr higher compared to the stations-only inversion. Second, MOPITT-only derived biomass burning emissions are reduced with respect to the prior which is in contrast to previous (inverse) modeling studies. Finally, MOPITT derived total emissions are significantly higher for South America and Africa compared to the stations-only inversion. This is likely due to a positive bias in the MOPITT V4 product. This bias is also apparent from validation with surface stations and ground-truth FTIR columns. In the final study we present the first inverse modeling study to estimate CO emissions constrained by both surface (NOAA) and satellite (MOPITT) observations using a bias correction scheme. This approach leads to the identification of a positive bias of maximum 5 ppb in MOPITT column-averaged CO mixing ratios in the remote Southern Hemisphere (SH). The 4D-Var system is used to estimate CO emissions over South America in the period 2006-2010 and to analyze the interannual variability (IAV) of these emissions. We infer robust, high spatial resolution CO emission estimates that show slightly smaller IAV due to fires compared to the Global Fire Emissions Database (GFED3) prior emissions. Moreover, CO emissions probably associated with pre-harvest burning of sugar cane plantations are underestimated in current inventories by 50-100%.

  20. Atmospheric Inverse Estimates of Methane Emissions from Central California

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chuanfeng; Andrews, Arlyn E.; Bianco, Laura; Eluszkiewicz, Janusz; Hirsch, Adam; MacDonald, Clinton; Nehrkorn, Thomas; Fischer, Marc L.

    2008-11-21

    Methane mixing ratios measured at a tall-tower are compared to model predictions to estimate surface emissions of CH{sub 4} in Central California for October-December 2007 using an inverse technique. Predicted CH{sub 4} mixing ratios are calculated based on spatially resolved a priori CH{sub 4} emissions and simulated atmospheric trajectories. The atmospheric trajectories, along with surface footprints, are computed using the Weather Research and Forecast (WRF) coupled to the Stochastic Time-Inverted Lagrangian Transport (STILT) model. An uncertainty analysis is performed to provide quantitative uncertainties in estimated CH{sub 4} emissions. Three inverse model estimates of CH{sub 4} emissions are reported. First, linear regressions of modeled and measured CH{sub 4} mixing ratios obtain slopes of 0.73 {+-} 0.11 and 1.09 {+-} 0.14 using California specific and Edgar 3.2 emission maps respectively, suggesting that actual CH{sub 4} emissions were about 37 {+-} 21% higher than California specific inventory estimates. Second, a Bayesian 'source' analysis suggests that livestock emissions are 63 {+-} 22% higher than the a priori estimates. Third, a Bayesian 'region' analysis is carried out for CH{sub 4} emissions from 13 sub-regions, which shows that inventory CH{sub 4} emissions from the Central Valley are underestimated and uncertainties in CH{sub 4} emissions are reduced for sub-regions near the tower site, yielding best estimates of flux from those regions consistent with 'source' analysis results. The uncertainty reductions for regions near the tower indicate that a regional network of measurements will be necessary to provide accurate estimates of surface CH{sub 4} emissions for multiple regions.

  1. Chemiluminescence-based multivariate sensing of local equivalence ratios in premixed atmospheric methane-air flames

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Markandey M.; Krishnan, Sundar R.; Srinivasan, Kalyan K.; Yueh, Fang-Yu; Singh, Jagdish P.

    2011-09-07

    Chemiluminescence emissions from OH*, CH*, C2, and CO2 formed within the reaction zone of premixed flames depend upon the fuel-air equivalence ratio in the burning mixture. In the present paper, a new partial least square regression (PLS-R) based multivariate sensing methodology is investigated and compared with an OH*/CH* intensity ratio-based calibration model for sensing equivalence ratio in atmospheric methane-air premixed flames. Five replications of spectral data at nine different equivalence ratios ranging from 0.73 to 1.48 were used in the calibration of both models. During model development, the PLS-R model was initially validated with the calibration data set using the leave-one-out cross validation technique. Since the PLS-R model used the entire raw spectral intensities, it did not need the nonlinear background subtraction of CO2 emission that is required for typical OH*/CH* intensity ratio calibrations. An unbiased spectral data set (not used in the PLS-R model development), for 28 different equivalence ratio conditions ranging from 0.71 to 1.67, was used to predict equivalence ratios using the PLS-R and the intensity ratio calibration models. It was found that the equivalence ratios predicted with the PLS-R based multivariate calibration model matched the experimentally measured equivalence ratios within 7%; whereas, the OH*/CH* intensity ratio calibration grossly underpredicted equivalence ratios in comparison to measured equivalence ratios, especially under rich conditions ( > 1.2). The practical implications of the chemiluminescence-based multivariate equivalence ratio sensing methodology are also discussed.

  2. Outsourcing CO2 Emissions

    Science.gov (United States)

    Davis, S. J.; Caldeira, K. G.

    2009-12-01

    CO2 emissions from the burning of fossil fuels are the primary cause of global warming. Much attention has been focused on the CO2 directly emitted by each country, but relatively little attention has been paid to the amount of emissions associated with consumption of goods and services in each country. This consumption-based emissions inventory differs from the production-based inventory because of imports and exports of goods and services that, either directly or indirectly, involved CO2 emissions. Using the latest available data and reasonable assumptions regarding trans-shipment of embodied carbon through third-party countries, we developed a global consumption-based CO2 emissions inventory and have calculated associated consumption-based energy and carbon intensities. We find that, in 2004, 24% of CO2 emissions are effectively outsourced to other countries, with much of the developed world outsourcing CO2 emissions to emerging markets, principally China. Some wealthy countries, including Switzerland and Sweden, outsource over half of their consumption-based emissions, with many northern Europeans outsourcing more than three tons of emissions per person per year. The United States is both a big importer and exporter of emissions embodied in trade, outsourcing >2.6 tons of CO2 per person and at the same time as >2.0 tons of CO2 per person are outsourced to the United States. These large flows indicate that CO2 emissions embodied in trade must be taken into consideration when considering responsibility for increasing atmospheric greenhouse gas concentrations.

  3. Measurement and prediction of enteric methane emission

    Science.gov (United States)

    Sejian, Veerasamy; Lal, Rattan; Lakritz, Jeffrey; Ezeji, Thaddeus

    2011-01-01

    The greenhouse gas (GHG) emissions from the agricultural sector account for about 25.5% of total global anthropogenic emission. While CO2 receives the most attention as a factor relative to global warming, CH4, N2O and chlorofluorocarbons (CFCs) also cause significant radiative forcing. With the relative global warming potential of 25 compared with CO2, CH4 is one of the most important GHGs. This article reviews the prediction models, estimation methodology and strategies for reducing enteric CH4 emissions. Emission of CH4 in ruminants differs among developed and developing countries, depending on factors like animal species, breed, pH of rumen fluid, ratio of acetate:propionate, methanogen population, composition of diet and amount of concentrate fed. Among the ruminant animals, cattle contribute the most towards the greenhouse effect through methane emission followed by sheep, goats and buffalos, respectively. The estimated CH4 emission rate per cattle, buffaloe, sheep and goat in developed countries are 150.7, 137, 21.9 and 13.7 (g/animal/day) respectively. However, the estimated rates in developing countries are significantly lower at 95.9 and 13.7 (g/animal/day) per cattle and sheep, respectively. There exists a strong interest in developing new and improving the existing CH4 prediction models to identify mitigation strategies for reducing the overall CH4 emissions. A synthesis of the available literature suggests that the mechanistic models are superior to empirical models in accurately predicting the CH4 emission from dairy farms. The latest development in prediction model is the integrated farm system model which is a process-based whole-farm simulation technique. Several techniques are used to quantify enteric CH4 emissions starting from whole animal chambers to sulfur hexafluoride (SF6) tracer techniques. The latest technology developed to estimate CH4 more accurately is the micrometeorological mass difference technique. Because the conditions under which

  4. Air Emission Inventory for the INEEL -- 1999 Emission Report

    Energy Technology Data Exchange (ETDEWEB)

    Zohner, Steven K

    2000-05-01

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  5. Recognizing blue emission in artificial aurora

    Science.gov (United States)

    Holma, H.; Kaila, K.; Jussila, J.; Kosch, M.; Rietveld, M.

    On 12th November 2001, during the EISCAT UK/GE artificial aurora campaign, the optical group of University of Oulu performed the optical measurements at the EISCAT site in Ramfjordmoen. That campaign was the first successful attempt of inducing blue emission in artificial aurora at high latitudes. Optical instruments were monitoring emis-sions and they included a photometer, a real speed TV camera and a digital camera. The emissions measured by the photometer are 557.7 nm (OI), 630.0 nm (OI) and 427.8 nm (N2+). The threshold energies for these emissions to arise are 2 eV, 4 eV and 19 eV, re-spectively. In the natural aurora the blue emission at around 427 nm is always highly dominated by N2+ 1NG (0,1) rotational band. However, there are two weak emissions lying under this strong emission. These bands are N2 VK(4,15) (threshold energy 6 eV) and N2 2P(1,5) (threshold 11 eV). These energies are remarkably lower and could obviously have stronger intensity in the spectrum of artificial aurora than in natural aurora that is domi-nated by harder electron bombardment. The auroral photometer of the university of Oulu has been designed for investigating natural aurora, which results some limitations regarding the artificial aurora, to the data that has been obtained. The photometer was equipped with two channels measuring two close wavelength bands around 427 nm. These channels were aimed to be used to de-termine rotational temperature from the ratio of the intensities through the channels. Now they will be used to estimate the intensities of the three overlapping emission bands instead.

  6. Database of emission lines

    Science.gov (United States)

    Binette, L.; Ortiz, P.; Joguet, B.; Rola, C.

    1998-11-01

    A widely accessible data bank (available through Netscape) and consiting of all (or most) of the emission lines reported in the litterature is being built. It will comprise objects as diverse as HII regions, PN, AGN, HHO. One of its use will be to define/refine existing diagnostic emission line diagrams.

  7. Uncertainties in emission inventories

    NARCIS (Netherlands)

    Aardenne, van J.A.

    2002-01-01

    Emission inventories provide information about the amount of a pollutant that is emitted to the atmosphere as a result of a specific anthropogenic or natural process at a given time or place. Emission inventories can be used for either policy or scientific purposes. For policy purpose

  8. TOWARD A UNIQUE NITROGEN ISOTOPIC RATIO IN COMETARY ICES

    Energy Technology Data Exchange (ETDEWEB)

    Rousselot, Philippe; Cordier, Daniel; Mousis, Olivier [Institut UTINAM-UMR CNRS 6213, Observatoire des Sciences de l' Univers THETA, University of Franche-Comté, BP 1615, F-25010 Besançon Cedex (France); Pirali, Olivier; Vervloet, Michel; Martin-Drumel, Marie-Aline; Gruet, Sébastien [Synchrotron SOLEIL, ligne AILES, UMR 8214 CNRS, L' orme des Merisiers, Saint-Aubin, F-91192 Gif-Sur-Yvette (France); Jehin, Emmanuël; Hutsemékers, Damien; Manfroid, Jean; Arpigny, Claude; Decock, Alice, E-mail: rousselot@obs-besancon.fr [Département d' Astrophysique, de Géophysique et d' Océanographie, Université de Liège, Allée du Six Août, B-4000 Liège (Belgium)

    2014-01-10

    Determination of the nitrogen isotopic ratios in different bodies of the solar system provides important information regarding the solar system's origin. We unambiguously identified emission lines in comets due to the {sup 15}NH{sub 2} radical produced by the photodissociation of {sup 15}NH{sub 3}. Analysis of our data has permitted us to measure the {sup 14}N/{sup 15}N isotopic ratio in comets for a molecule carrying the amine (-NH) functional group. This ratio, within the error, appears similar to that measured in comets in the HCN molecule and the CN radical, and lower than the protosolar value, suggesting that N{sub 2} and NH{sub 3} result from the separation of nitrogen into two distinct reservoirs in the solar nebula. This ratio also appears similar to that measured in Titan's atmospheric N{sub 2}, supporting the hypothesis that, if the latter is representative of its primordial value in NH{sub 3}, these bodies were assembled from building blocks sharing a common formation location.

  9. Toxic emissions from crematories: a review.

    Science.gov (United States)

    Mari, Montse; Domingo, José L

    2010-01-01

    In recent years, the cremation ratio of cadavers has increased dramatically in many countries. Crematories have been identified as sources of various environmental pollutants, being polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), and mercury those raising most concern. In contrast to other incineration processes for which the number of studies on their toxic emissions is considerable, references related to PCDD/F and mercury emissions from crematories and their health risks are very limited. In this paper, the scientific information concerning these issues, using the databases PubMed, Scopus and Scirus, is reviewed. Results show that in comparison with PCDD/F emissions from other sources, those corresponding to crematories are significantly lower, while those of mercury should not be underrated.

  10. PyNeb: Analysis of emission lines

    Science.gov (United States)

    Luridiana, V.; Morisset, C.; Shaw, R. A.

    2013-04-01

    PyNeb (previously PyNebular) is an update and expansion of the IRAF package NEBULAR; rewritten in Python, it is designed to be more user-friendly and powerful, increasing the speed, easiness of use, and graphic visualization of emission lines analysis. In PyNeb, the atom is represented as an n-level atom. For given density and temperature, PyNeb solves the equilibrium equations and determines the level populations. PyNeb can compute physical conditions from suitable diagnostic line ratios and level populations, critical densities and line emissivities, and can compute and display emissivity grids as a function of Te and Ne. It can also deredden line intensities, read and manage observational data, and plot and compare atomic data from different publications, and compute ionic abundances from line intensities and physical conditions and elemental abundances from ionic abundances and icfs.

  11. Estimation of carbon emissions from crown fires in Turkey

    Science.gov (United States)

    Kucuk, O.; Bilgili, E.

    2009-04-01

    Forest biomass consumption is an important index for carbon cycling. Forest fire represents one of the important sources of greenhouse gas (GHG) emissions due to biomass burning processes. Forest fire contribute to increasing atmospheric CO2 concentration therefore, role of forest fires in the global carbon cycle has received increasing interest. Various methods were used to estimation of carbon emission. IPCC methodology is commonly used for the calculation of GHG amounts released at forest fire in Europe especially on a national basis. Many European countries have done many studies relation to estimation of carbon emissions from forest fires. However, carbon emissions from forest fires were not estimated in Turkey. The objective of this paper was to estimate carbon emission from forest fires from 1997 to 2006 in three forest district directorate of Turkey. We have used IPCC methodology for estimation of carbon emission form forest fire in Turkey. The emission calculations associated with forest fires were carried out using the IPCC methodology for estimating emissions from biomass burning. According to IPCC methodology, the annual carbon release of gas is the product of parameters: Annual biomass loss by burning (kt), fraction of biomass oxidized on-site, carbon content (CC), emission ratio, N/C ratio. A set of forest fire data during 1997-2006 obtained from the Turkish Ministry of Environment and Forestry-General Directorate of Forestry Service. Fuel biomass and fuel consumption data were provided from experimental fires and biomass studies in Turkey. The highest carbon emission amount was CO2 gas. A wide range in carbon emissions of 0.37-94.85 Gg was caused by variability in pre-fire fuel characteristics (fuel size, distribution, fuel moisture and total load), fire type, fire season and fire weather, which affected fuel moisture and fire behavior. Keywords: Carbon emissions, Forest fire, Fuel consumption, IPCC, Turkey

  12. A Librarian's Primer on Financial Ratios.

    Science.gov (United States)

    Kerbel, Sandra Sandor

    1982-01-01

    Explains in simple terms the nature and function of a number of basic types of business and industrial financial ratios. An annotated list of five basic sources for ratios is included and a reference list and bibliography are attached. (JL)

  13. Pollutant emissions from flat-flame burners at high pressures

    Science.gov (United States)

    Maahs, H. G.; Miller, I. M.

    1980-01-01

    Maximum flame temperatures and pollutant emission measurements for NOx, CO, and UHC (unburned hydrocarbons) are reported for premixed methane air flat flames at constant total mass flow rate over the pressure range from 1.9 to 30 atm and for equivalence ratios from 0.84 to 1.12. For any given pressure, maxima typically occur in both the temperature and NOx emissions curves slightly to the lean side of stoichiometric conditions. The UHC emissions show minima at roughly the same equivalence ratios. The CO emissions, however, increase continually with increasing equivalence ratio. Flame temperature and NOx emissions decrease with increasing pressure, while the opposite is true for the CO and UHC emissions. The NOx data correlate reasonably well as a function of flame temperature only. Four flameholders, differing only slightly, were used. In general, the temperature and emissions data from these four flameholders are similar, but some differences also exist. These differences appear to be related to minor variations in the condition of the flameholder surfaces.

  14. Determining Extinction Ratio Of A Laser Diode

    Science.gov (United States)

    Unger, Glenn L.

    1992-01-01

    Improved technique to determine extinction ratio of pulsed laser diode based partly on definition of extinction ratio applicable to nonideal laser pulses. Heretofore, determinations involved assumption of ideal laser pulses, and neglected optical power from background light. Because power fluctuates during real pulse, more realistic to define extinction ratio in terms of energy obtained.

  15. Observations of Diffuse Ultraviolet Emission from Draco

    CERN Document Server

    Sujatha, N V; Suresh, Rahul; Henry, Richard Conn; Bianchi, Luciana

    2010-01-01

    We have studied small scale (2 arcmin) spatial variation of the diffuse UV radiation using a set of 11 GALEX deep observations in the constellation of Draco. We find a good correlation between the observed UV background and the IR 100 micron flux, indicating that the dominant contributor of the diffuse background in the field is the scattered starlight from the interstellar dust grains. We also find strong evidence of additional emission in the FUV band which is absent in the NUV band. This is most likely due to Lyman band emission from molecular hydrogen in a ridge of dust running through the field and to line emissions from species such as C IV (1550 A) and Si II (1533 A) in the rest of the field. A strong correlation exists between the FUV/NUV ratio and the FUV intensity in the excess emission regions in the FUV band irrespective of the optical depth of the region. The optical depth increases more rapidly in the UV than the IR and we find that the UV/IR ratio drops off exponentially with increasing IR due ...

  16. India Co2 Emissions

    Science.gov (United States)

    Sharan, S.; Diffenbaugh, N. S.

    2010-12-01

    Is there a way to find a balance between improving living conditions for the people on the margins and also reducing emissions while limiting our negative impacts on the climate? This is a critical question today because there are many arguments between developed and developing countries about who is responsible for global warming. Developed countries believe that it is the poor countries because they are not educated enough to know about how they are affecting the climate. While the developing countries hold wealthy nations responsible because they are using the most resources. However it is important to acknowledge the fact that if there was no gap in between the developed and developing countries our emissions total would be much higher. This “gap” has been a natural controlling factor in climate change. This is why I wanted to see if I could plot what it would look like if a developing country such as India were to produce emissions that the US or Switzerland or Norway are producing as developed countries. India has a population total of 1.1 billion compared to the US with only 298 million, Switzerland with 7.5 million, and Norway with 4.6 million people. When the population is compared to the emissions output in metric tons, per capita, India produced the least emissions out of these countries, 1.4 tons per person while having the second largest population in the world, while the US produced 19 tons per capita, Switzerland produced 5.6 and Norway produced 8.7 tons per capita in 2006. The emissions rate is growing every year and increases widely and globally. If India was producing emissions that equal Norway, Switzerland and the US the total emissions it would be producing annually would be 9 billion for Norway, 6 billion for Switzerland and 20 billion emissions for the US, all in the year 2006 alone. This shows how the balance between countries with huge populations and very little emission output and average population and high emission out put has

  17. Line Ratios for Solar Wind Charge Exchange with Comets

    Science.gov (United States)

    Mullen, P. D.; Cumbee, R. S.; Lyons, D.; Gu, L.; Kaastra, J.; Shelton, R. L.; Stancil, P. C.

    2017-07-01

    Charge exchange (CX) has emerged in X-ray emission modeling as a significant process that must be considered in many astrophysical environments—particularly comets. Comets host an interaction between solar wind ions and cometary neutrals to promote solar wind charge exchange (SWCX). X-ray observatories provide astronomers and astrophysicists with data for many X-ray emitting comets that are impossible to accurately model without reliable CX data. Here, we utilize a streamlined set of computer programs that incorporate the multi-channel Landau-Zener theory and a cascade model for X-ray emission to generate cross sections and X-ray line ratios for a variety of bare and non-bare ion single electron capture (SEC) collisions. Namely, we consider collisions between the solar wind constituent bare and H-like ions of C, N, O, Ne, Na, Mg, Al, and Si and the cometary neutrals H2O, CO, CO2, OH, and O. To exemplify the application of this data, we model the X-ray emission of Comet C/2000 WM1 (linear) using the CX package in SPEX and find excellent agreement with observations made with the XMM-Newton RGS detector. Our analyses show that the X-ray intensity is dominated by SWCX with H, while H2O plays a secondary role. This is the first time, to our knowledge, that CX cross sections have been implemented into a X-ray spectral fitting package to determine the H to H2O ratio in cometary atmospheres. The CX data sets are incorporated into the modeling packages SPEX and Kronos.

  18. Nebular Continuum and Line Emission in Stellar Population Synthesis Models

    Science.gov (United States)

    Byler, Nell; Dalcanton, Julianne J.; Conroy, Charlie; Johnson, Benjamin D.

    2017-05-01

    Accounting for nebular emission when modeling galaxy spectral energy distributions (SEDs) is important, as both line and continuum emissions can contribute significantly to the total observed flux. In this work, we present a new nebular emission model integrated within the Flexible Stellar Population Synthesis code that computes the line and continuum emission for complex stellar populations using the photoionization code Cloudy. The self-consistent coupling of the nebular emission to the matched ionizing spectrum produces emission line intensities that correctly scale with the stellar population as a function of age and metallicity. This more complete model of galaxy SEDs will improve estimates of global gas properties derived with diagnostic diagrams, star formation rates based on Hα, and physical properties derived from broadband photometry. Our models agree well with results from other photoionization models and are able to reproduce observed emission from H ii regions and star-forming galaxies. Our models show improved agreement with the observed H ii regions in the Ne iii/O ii plane and show satisfactory agreement with He ii emission from z = 2 galaxies, when including rotating stellar models. Models including post-asymptotic giant branch stars are able to reproduce line ratios consistent with low-ionization emission regions. The models are integrated into current versions of FSPS and include self-consistent nebular emission predictions for MIST and Padova+Geneva evolutionary tracks.

  19. Compilation and evaluation of a Paso del Norte emission inventory

    Energy Technology Data Exchange (ETDEWEB)

    Funk, T.H.; Chinkin, L.R.; Roberts, P.T. [Sonoma Technology, Inc., 1360 Redwood Way, Suite C, 94954-1169 Petaluma, CA (United States); Saeger, M.; Mulligan, S. [Pacific Environmental Services, 5001 S. Miami Blvd., Suite 300, 27709 Research Triangle Park, NC (United States); Paramo Figueroa, V.H. [Instituto Nacional de Ecologia, Avenue Revolucion 1425, Nivel 10, Col. Tlacopac San Angel, Delegacion Alvaro Obregon, C.P., 01040, D.F. Mexico (Mexico); Yarbrough, J. [US Environmental Protection Agency - Region 6, 1445 Ross Avenue, Suite 1200, 75202-2733 Dallas, TX (United States)

    2001-08-10

    Emission inventories of ozone precursors are routinely used as input to comprehensive photochemical air quality models. Photochemical model performance and the development of effective control strategies rely on the accuracy and representativeness of an underlying emission inventory. This paper describes the tasks undertaken to compile and evaluate an ozone precursor emission inventory for the El Paso/Ciudad Juarez/Southern Dona Ana region. Point, area and mobile source emission data were obtained from local government agencies and were spatially and temporally allocated to a gridded domain using region-specific demographic and land-cover information. The inventory was then processed using the US Environmental Protection Agency (EPA) recommended Emissions Preprocessor System 2.0 (UAM-EPS 2.0) which generates emissions files compatible with the Urban Airshed Model (UAM). A top-down evaluation of the emission inventory was performed to examine how well the inventory represented ambient pollutant compositions. The top-down evaluation methodology employed in this study compares emission inventory ratios of non-methane hydrocarbon (NMHC)/nitrogen oxide (NO{sub x}) and carbon monoxide (CO)/NO{sub x} ratios to corresponding ambient ratios. Detailed NMHC species comparisons were made in order to investigate the relative composition of individual hydrocarbon species in the emission inventory and in the ambient data. The emission inventory compiled during this effort has since been used to model ozone in the Paso del Norte airshed (Emery et al., CAMx modeling of ozone and carbon monoxide in the Paso del Norte airshed. In: Proc of Ninety-Third Annual Meeting of Air and Waste Management Association, 18-22 June 2000, Air and Waste Management Association, Pittsburgh, PA, 2000)

  20. OUTFLOW AND HOT DUST EMISSION IN HIGH-REDSHIFT QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huiyuan; Xing, Feijun; Wang, Tinggui; Zhou, Hongyan [Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China); Zhang, Kai [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Zhang, Shaohua, E-mail: whywang@mail.ustc.edu.cn [Polar Research Institute of China, Jinqiao Road 451, Shanghai 200136 (China)

    2013-10-10

    Correlations of hot dust emission with outflow properties are investigated, based on a large z ∼ 2 non-broad absorption line quasar sample built from the Wide-field Infrared Survey and the Sloan Digital Sky Survey data releases. We use the near-infrared slope and the infrared to UV luminosity ratio to indicate the hot dust emission relative to the emission from the accretion disk. In our luminous quasars, these hot dust emission indicators are almost independent of the fundamental parameters, such as luminosity, Eddington ratio and black hole mass, but moderately dependent on the blueshift and asymmetry index (BAI) and FWHM of C IV lines. Interestingly, the latter two correlations dramatically strengthen with increasing Eddington ratio. We suggest that, in high Eddington ratio quasars, C IV regions are dominated by outflows so the BAI and FWHM (C IV) can reliably reflect the general properties and velocity of outflows, respectively. In low Eddington ratio quasars, on the other hand, C IV lines are primarily emitted by virialized gas so the BAI and FWHM (C IV) become less sensitive to outflows. Therefore, the correlations for the highest Eddington ratio quasars are more likely to represent the true dependence of hot dust emission on outflows and the correlations for the entire sample are significantly diluted by the low Eddington ratio quasars. Our results show that an outflow with a large BAI or velocity can double the hot dust emission on average. We suggest that outflows either contain hot dust in themselves or interact with the dusty interstellar medium or torus.

  1. Greenhouse Gas Emissions From Cattle

    Directory of Open Access Journals (Sweden)

    Podkówka Zbigniew

    2015-03-01

    Full Text Available Cattle produce greenhouse gases (GHG which lead to changes in the chemical composition of the atmosphere. These gases which cause greenhouse effect include: methane (CH4, nitrous oxide (N2O, nitrogen oxides (NOx, sulphur dioxide (SO2, ammonia (NH3, dust particles and non-methane volatile organic compounds, commonly described as other than methane hydrocarbons. Fermentation processes taking place in the digestive tract produce ‘digestive gases’, distinguished from gases which are emitted during the decomposition of manure. Among these digestive gases methane and non-methane volatile organic compounds are of particular relevance importance. The amount of gases produced by cows can be reduced by choosing to rear animals with an improved genetically based performance. A dairy cow with higher production efficiency, producing milk with higher protein content and at the same time reduced fat content emits less GHG into the environment. Increasing the ratio of feed mixtures in a feed ration also reduces GHG emissions, especially of methane. By selection of dairy cows with higher production efficiency and appropriate nutrition, the farm's expected milk production target can be achieved while at the same time, the size of the herd is reduced, leading to a reduction of GHG emissions.

  2. Effect of fuel type on equivalence ratio measurements using chemiluminescence in premixed flames

    Science.gov (United States)

    Orain, Mikaël; Hardalupas, Yannis

    2010-05-01

    Local temporally-resolved measurements of chemiluminescent intensity from OH ∗, CH ∗ and C ∗2 radicals were obtained in premixed counterflow flames operating with propane and prevaporised fuels (isooctane, ethanol and methanol), for different equivalence ratios and strain rates. The results quantified independently the effects of fuel type, strain rate and equivalence ratio on chemiluminescent emissions from flames. The ability of chemiluminescent intensity from OH ∗, CH ∗ and C ∗2 radicals to indicate heat release rate depends strongly on fuel type. The intensity ratio OH ∗/CH ∗ has a monotonic decrease with equivalence ratio for all fuels and can be used to measure equivalence ratio of the reacting mixture. For propane and isooctane, the OH ∗/CH ∗ ratio remains independent of flame strain rate, whereas some dependence is observed for ethanol and methanol.

  3. National Greenhouse Gas Emission Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Greenhouse Gas Emission Inventory contains information on direct emissions of greenhouse gases as well as indirect or potential emissions of greenhouse...

  4. Emissivity of microstructured silicon.

    Science.gov (United States)

    Maloney, Patrick G; Smith, Peter; King, Vernon; Billman, Curtis; Winkler, Mark; Mazur, Eric

    2010-03-01

    Infrared transmittance and hemispherical-directional reflectance data from 2.5 to 25 microm on microstructured silicon surfaces have been measured, and spectral emissivity has been calculated for this wavelength range. Hemispherical-total emissivity is calculated for the samples and found to be 0.84 before a measurement-induced annealing and 0.65 after the measurement for the sulfur-doped sample. Secondary samples lack a measurement-induced anneal, and reasons for this discrepancy are presented. Emissivity numbers are plotted and compared with a silicon substrate, and Aeroglaze Z306 black paint. Use of microstructured silicon as a blackbody or microbolometer surface is modeled and presented, respectively.

  5. Application of Performance Ratios in Portfolio Optimization

    Directory of Open Access Journals (Sweden)

    Aleš Kresta

    2015-01-01

    Full Text Available The cornerstone of modern portfolio theory was established by pioneer work of Harry Markowitz. Based on his mean-variance framework, Sharpe formulated his well-known Sharpe ratio aiming to measure the performance of mutual funds. The contemporary development in computer’s computational power allowed to apply more complex performance ratios, which take into account also higher moments of return probability distribution. Although these ratios were proposed to help the investors to improve the results of portfolio optimization, we empirically demonstrated in our paper that this may not necessarily be true. On the historical dataset of DJIA components we empirically showed that both Sharpe ratio and MAD ratio outperformed Rachev ratio. However, for Rachev ratio we assumed only one level of parameters value. Different set-ups of parameters may provide different results and thus further analysis is certainly required.

  6. Impact of Various Compression Ratio on the Compression Ignition Engine with Diesel and Jatropha Biodiesel

    Science.gov (United States)

    Sivaganesan, S.; Chandrasekaran, M.; Ruban, M.

    2017-03-01

    The present experimental investigation evaluates the effects of using blends of diesel fuel with 20% concentration of Methyl Ester of Jatropha biodiesel blended with various compression ratio. Both the diesel and biodiesel fuel blend was injected at 23º BTDC to the combustion chamber. The experiment was carried out with three different compression ratio. Biodiesel was extracted from Jatropha oil, 20% (B20) concentration is found to be best blend ratio from the earlier experimental study. The engine was maintained at various compression ratio i.e., 17.5, 16.5 and 15.5 respectively. The main objective is to obtain minimum specific fuel consumption, better efficiency and lesser Emission with different compression ratio. The results concluded that full load show an increase in efficiency when compared with diesel, highest efficiency is obtained with B20MEOJBA with compression ratio 17.5. It is noted that there is an increase in thermal efficiency as the blend ratio increases. Biodiesel blend has performance closer to diesel, but emission is reduced in all blends of B20MEOJBA compared to diesel. Thus this work focuses on the best compression ratio and suitability of biodiesel blends in diesel engine as an alternate fuel.

  7. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-08-20

    The goal of this project was to quantify organic aerosol precursor concentrations in an urban environment and to measure suitable organic photoproduct species that can act as tracers of photochemical processing to identify the occurrence and rate of secondary organic aerosol formation. Field measurements were made as part of the ASR field program Carbonaceous Aerosols and Radiative Effects Study (CARES) in June 2010. What is new in our approach is the measurement for the total concentration of long chain alkanes (>C10) and heavier alkyl substituted aromatics associated with diesel exhaust gas phase organic compound emissions. A method to measure these so called intermediate volatility organic compounds (IVOCs) was developed by modifying a proton transfer reaction mass spectrometer instrument to perform both volatile organic compound (VOC) and IVOC analysis by thermal desorption from a Tenax adsorbent trap (TD-PTR-MS). Lab and field results show that the TD-PTR-MS technique can measure long chain alkanes associated with diesel engine emissions and thus provide a novel means to measure these compounds to better understand the impact of vehicle emissions on secondary organic aerosol formation.

  8. Methane Emissions from Point and Area Sources in California

    Science.gov (United States)

    Peischl, J.; Ryerson, T. B.; Frost, G. J.; Holloway, J. S.; McKeen, S. A.; Neuman, J.; Nowak, J. B.; Pollack, I. B.; Roberts, J. M.; Trainer, M.; Parrish, D. D.

    2010-12-01

    Airborne measurements of methane (CH4), carbon monoxide (CO), sulfur dioxide, ammonia, and nitric oxides were made aboard the NOAA WP-3D during May and June 2010, during the CalNex (Research at the Nexus of Air Quality and Climate Change) field campaign based out of Ontario, California. Emission ratios of CH4 to these other trace gas species are calculated from observations downwind of point sources and compared to national emissions inventories. Further, background urban ratios of CH4 to CO are established, and enhancements from known area CH4 sources, such as rice paddies and cattle ranches, are analyzed. Finally, significant methane emissions from point sources not in emissions inventories are examined.

  9. 2011 NATA - Emissions Sources

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset includes all emissions sources that were modeled in the 2011 National Air Toxics Assessment (NATA), inlcluding point, nonpoint, and mobile sources, and...

  10. Ammonia emissions in Europe

    DEFF Research Database (Denmark)

    Jacobsen, Brian H.

    2012-01-01

    measures might be cheaper in the Netherlands and Denmark than in the UK and the USA due to technology advances and stricter regulations in the past. The new Danish application procedure, when increasing the animal production, has tried to make the acceptance procedure quicker and dynamic ensuring that new......The NEC (National Emission Ceiling) directive has set targets for the 2010 ammonia emissions from a number of European countries. The target will be reached by most EU-countries and the total emission for EU-27 has been reduced by 22% from 1990 to 2007. Denmark is one of the countries...... technology is adopted quicker and that the farm has the right location. It is concluded that the new application process so far has not lived up to the high expectations at the outset. Despite this, the paper concludes that Denmark is likely to reduce emission by 50% from 1990 to 2020 and reach the likely...

  11. National Emission Inventory (NEI)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data exchange allows states to submit data to the US Environmental Protection Agency's National Emissions Inventory (NEI). NEI is a national database of air...

  12. Galactic Diffuse Polarized Emission

    Indian Academy of Sciences (India)

    Ettore Carretti

    2011-12-01

    Diffuse polarized emission by synchrotron is a key tool to investigate magnetic fields in the Milky Way, particularly the ordered component of the large scale structure. Key observables are the synchrotron emission itself and the RM is by Faraday rotation. In this paper the main properties of the radio polarized diffuse emission and its use to investigate magnetic fields will be reviewed along with our current understanding of the galactic magnetic field and the data sets available. We will then focus on the future perspective discussing RM-synthesis – the new powerful instrument devised to unlock the information encoded in such an emission – and the surveys currently in progress like S-PASS and GMIMS.

  13. Field emission electron source

    Science.gov (United States)

    Zettl, Alexander Karlwalter; Cohen, Marvin Lou

    2000-01-01

    A novel field emitter material, field emission electron source, and commercially feasible fabrication method is described. The inventive field emission electron source produces reliable electron currents of up to 400 mA/cm.sup.2 at 200 volts. The emitter is robust and the current it produces is not sensitive to variability of vacuum or the distance between the emitter tip and the cathode. The novel emitter has a sharp turn-on near 100 volts.

  14. Electron Emission Projection Imager

    CERN Document Server

    Baturin, Stanislav S

    2016-01-01

    A new projection type imaging system is presented. The system can directly image the field emission site distribution on a cathode surface by making use of anode screens in the standard parallel plate configuration. The lateral spatial resolution of the projector is on the order of 1 {\\mu}m. The imaging sensitivity to the field emission current can be better than the current sensitivity of a typical electrometer, i.e. less than 1 nA.

  15. Role of de novo biosynthesis in ecosystem scale monoterpene emissions from a boreal Scots pine forest

    Directory of Open Access Journals (Sweden)

    R. Taipale

    2011-08-01

    Full Text Available Monoterpene emissions from Scots pine have traditionally been assumed to originate as evaporation from specialized storage pools. More recently, the significance of de novo emissions, originating directly from monoterpene biosynthesis, has been recognized. To study the role of biosynthesis at the ecosystem scale, we measured monoterpene emissions from a Scots pine dominated forest in southern Finland using the disjunct eddy covariance method combined with proton transfer reaction mass spectrometry. The interpretation of the measurements was based on a correlation analysis and a hybrid emission algorithm describing both de novo and pool emissions. During the measurement period May–August 2007, the monthly medians of daytime emissions were 200, 290, 180, and 200 μg m−2 h−1. The emissions were partly light dependent, probably due to de novo biosynthesis. The emission potential for both de novo and pool emissions exhibited a decreasing summertime trend. The ratio of the de novo emission potential to the total emission potential varied between 30 % and 46 %. Although the monthly changes were not significant, the ratio always differed statistically from zero, suggesting that the role of de novo biosynthesis was observable. Given the uncertainties in this study, we conclude that more accurate estimates of the contribution of de novo emissions are required for improving monoterpene emission algorithms for Scots pine dominated forests.

  16. Emission of greenhouse gases from controlled incineration of cattle manure.

    Science.gov (United States)

    Oshita, Kazuyuki; Sun, Xiucui; Taniguchi, Miki; Takaoka, Masaki; Matsukawa, Kazutsugu; Fujiwara, Taku

    2012-01-01

    Greenhouse gas emission is a potential limiting factor in livestock farming development. While incineration is one approach to minimize livestock manure, there are concerns about significant levels of nitrogen and organic compounds in manure as potential sources of greenhouse gas emissions (N2O and CH4). In this study, the effects of various incineration conditions, such as the furnace temperature and air ratio on N2O and CH4 formation behaviour, of cattle manure (as a representative livestock manure) were investigated in a pilot rotary kiln furnace. The results revealed that N2O emissions decreased with increasing temperature and decreasing air ratio. In addition, CH4 emissions tended to be high above 800 degrees C at a low air ratio. The emission factors for N2O and CH4 under the general conditions (combustion temperature of 800-850 degrees C and air ratio of 1.4) were determined to be 1.9-6.0% g-N2O-N/g-N and 0.0046-0.26% g-CH4/g-burning object, respectively. The emission factor for CH4 differed slightly from the published values between 0.16 and 0.38% g-CH4/g-burning object. However, the emission factor for N2O was much higher than the currently accepted value of 0.7% g-N2O-N/g-N and, therefore, it is necessary to revise the N2O emission factor for the incineration of livestock manure.

  17. Studying the effect of compression ratio on an engine fueled with waste oil produced biodiesel/diesel fuel

    Directory of Open Access Journals (Sweden)

    Mohammed EL_Kassaby

    2013-03-01

    Full Text Available Wasted cooking oil from restaurants was used to produce neat (pure biodiesel through transesterification, and then used to prepare biodiesel/diesel blends. The effect of blending ratio and compression ratio on a diesel engine performance has been investigated. Emission and combustion characteristics was studded when the engine operated using the different blends (B10, B20, B30, and B50 and normal diesel fuel (B0 as well as when varying the compression ratio from 14 to 16 to 18. The result shows that the engine torque for all blends increases as the compression ratio increases. The bsfc for all blends decreases as the compression ratio increases and at all compression ratios bsfc remains higher for the higher blends as the biodiesel percent increase. The change of compression ratio from 14 to 18 resulted in, 18.39%, 27.48%, 18.5%, and 19.82% increase in brake thermal efficiency in case of B10, B20, B30, and B50 respectively. On an average, the CO2 emission increased by 14.28%, the HC emission reduced by 52%, CO emission reduced by 37.5% and NOx emission increased by 36.84% when compression ratio was increased from 14 to 18. In spite of the slightly higher viscosity and lower volatility of biodiesel, the ignition delay seems to be lower for biodiesel than for diesel. On average, the delay period decreased by 13.95% when compression ratio was increased from 14 to 18. From this study, increasing the compression ratio had more benefits with biodiesel than that with pure diesel.

  18. 47 CFR 78.103 - Emissions and emission limitations.

    Science.gov (United States)

    2010-10-01

    ... CABLE TELEVISION RELAY SERVICE Technical Regulations § 78.103 Emissions and emission limitations. (a) A... television signals. (b) Any emission appearing on a frequency outside of the channel authorized for a...: At least 25 decibels below the mean power of the emission; (ii) On any frequency above the...

  19. On the Australian Bank Financial Ratio Analysis

    Institute of Scientific and Technical Information of China (English)

    张丽娜

    2011-01-01

    Financial ratios,despite some criticisms,are still used as a basis to evaluate a firm's performance,to make credit risk assessment decisions and classify firms into bankrupt and non-bankrupt groups.There are a great number of financial ratios which can be used for the evaluation of banks performance.Golin (2001) provides a list of over 80 ratios covering the major categories of capital,asset quality,profitability & efficiency,and liquidity & funding provides.

  20. Application of Performance Ratios in Portfolio Optimization

    OpenAIRE

    Aleš Kresta

    2015-01-01

    The cornerstone of modern portfolio theory was established by pioneer work of Harry Markowitz. Based on his mean-variance framework, Sharpe formulated his well-known Sharpe ratio aiming to measure the performance of mutual funds. The contemporary development in computer’s computational power allowed to apply more complex performance ratios, which take into account also higher moments of return probability distribution. Although these ratios were proposed to help the investors to improve the r...

  1. AEGIS: Extinction and Star Formation Tracers from Line Emission

    CERN Document Server

    Weiner, B J; Bundy, K; Conselice, C J; Cooper, M C; Ellis, Richard S; Ivison, R J; Noeske, K G; Phillips, A C; Yan, R; Weiner, Benjamin J.; Papovich, Casey; Yan, Renbin

    2006-01-01

    Strong nebular emission lines are a sensitive probe of star formation and extinction in galaxies, and the [O II] line detects star forming populations out to z>1. However, star formation rates from emission lines depend on calibration of extinction and the [O II]/H-alpha line ratio, and separating star formation from AGN emission. We use calibrated line luminosities from the DEEP2 survey and Palomar K magnitudes to show that the behavior of emission line ratios depends on galaxy magnitude and color. For galaxies on the blue side of the color bimodality, the vast majority show emission signatures of star formation, and there are strong correlations of extinction and [O II]/H-alpha with restframe H magnitude. The conversion of [O II] to extinction-corrected H-alpha and thus to star formation rate has a significant slope with M_H, 0.23 dex/mag. Red galaxies with emission lines have a much higher scatter in their line ratios, and more than half show AGN signatures. We use 24 micron fluxes from Spitzer/MIPS to dem...

  2. Back Work Ratio of Brayton Cycle

    Directory of Open Access Journals (Sweden)

    Malaver de la Fuente M.

    2010-07-01

    Full Text Available This paper analizes the existing relation between temperatures, back work ratio and net work of Brayton cycle, a cycle that describes gas turbine engines performance. The application of computational soft ware helps to show the influence of back work ratio or coupling ratio, compressor and turbine in let temperatures in an ideal thermodynamical cycle. The results lead to deduce that the maximum value reached in back work ratio will depend on the ranges of maximum and minimal temperatures of Brayton cycle.

  3. A ratio model of perceptual transparency.

    Science.gov (United States)

    Tommasi, M

    1999-12-01

    A ratio model of the achromatic transparency of a phenomenal surface on a bipartite background is proposed. The model asserts that transparency corresponds to the evaluation of the ratio of the lightness difference inside the transparent surface to the difference in reference lightness inside the background. It applies to both balanced and unbalanced transparency. The ratio model was compared experimentally with the previous perceptual model of achromatic transparency proposed by Metelli. Each model was tested by comparing the rated with the predicted transparency. Analysis shows that the ratio model provides better predictions of transparency than those provided by Metelli's model.

  4. Force dynamics in fixed-ratio schedules.

    Science.gov (United States)

    Pinkston, Jonathan W; McBee, Lindsey N

    2014-03-01

    Fixed-ratio schedules are widely used in behavioral research. Although fixed-ratio schedules often conjure up relationships to work and effort, little is known about effort-related measures in these schedules. Early research had shown that force and effort of operant behavior vary systematically during the execution of ratio schedules, and the goal of the present study was to revisit early research on force dynamics in fixed-ratio schedules. Four rats earned sucrose by pressing an isometric force transducer. Presses produced sucrose after ten or twenty responses. In general, the force of responses increased then decreased systematically across the ratio. The possibility that decreases in force during ratio execution was due to a trade-off with the differential reinforcement of short inter-response times (IRT) was investigated in an additional condition where sucrose was made available according to a tandem fixed-ratio 19 inter-response (IRT)> t schedule. The tandem IRT requirement did not eliminate decreasing trends in force across the ratio; unexpectedly, the tandem requirement did eliminate increases in force early in the ratio, which may reflect sequence-level organization operating in the control of force dynamics.

  5. On the angular dependence of L X-ray intensity ratios for Au following photoionization

    Science.gov (United States)

    Wang, Xing; Xu, Zhongfeng; Zhang, Ying

    2017-04-01

    The typical L X-ray spectra for Au induced by 15.9 keV photons have been measured at emission angles ranging from 110° to 150° at intervals of 10°. The intensities of Lα, Lβ1, Lβ2 and Lγ1 X-rays are obtained and the angular dependence of L X-ray intensity ratios is determined experimentally. It is found that the Lβ1, Lβ2 and Lγ1 X-rays present isotropic emission, while the measured Lα X-rays show anisotropic distribution spatially. The unexpected isotropic emission of Lβ2 X-rays is explained with Coster-Kronig vacancy transfer process. Moreover, the anisotropy parameter for Lα X-ray emission is deduced.

  6. Hydrogen cyanide exhaust emissions from in-use motor vehicles.

    Science.gov (United States)

    Baum, Marc M; Moss, John A; Pastel, Stephen H; Poskrebyshev, Gregory A

    2007-02-01

    Motor vehicle exhaust emissions are known to contain hydrogen cyanide (HCN), but emission rate data are scarce and, in the case of idling vehicles, date back over 20 years. For the first time, vehicular HCN exhaust emissions from a modern, in-use fleet at idle have been measured. The 14 tested light duty motor vehicles were operating at idle as these conditions are associated with the highest risk exposure scenarios (i.e., enclosed spaces). Vehicular HCN was detected in 89% of the sampled exhaust streams and did not correlate with instantaneous air-fuel-ratio or with any single, coemitted pollutant. However, a moderate correlation between HCN emissions and the product of carbon monoxide and nitric oxide emissions was observed under cold-start conditions. Fleet average, cold-start, undiluted HCN emissions were 105 +/- 97 ppbV (maximum: 278 ppbV), whereas corresponding emissions from vehicles operating under stabilized conditions were 79 +/- 71 ppbV (maximum: 245 ppbV); mean idle fleet HCN emission rates were 39 +/- 35 and 21 +/- 18 microg-min(-1) for cold-start and stabilized vehicles, respectively. The significance of these results is discussed in terms of HCN emissions inventories in the South Coast Air Basin of California and of health risks due to exposure to vehicular HCN.

  7. Constraining Modern and Historic Mercury Emissions From Gold Mining

    Science.gov (United States)

    Strode, S. A.; Jaeglé, L.; Selin, N. E.; Sunderland, E.

    2007-12-01

    Mercury emissions from both historic gold and silver mining and modern small-scale gold mining are highly uncertain. Historic mercury emissions can affect the modern atmosphere through reemission from land and ocean, and quantifying mercury emissions from historic gold and silver mining can help constrain modern mining sources. While estimates of mercury emissions during historic gold rushes exceed modern anthropogenic mercury emissions in North America, sediment records in many regions do not show a strong gold rush signal. We use the GEOS-Chem chemical transport model to determine the spatial footprint of mercury emissions from mining and compare model runs from gold rush periods to sediment and ice core records of historic mercury deposition. Based on records of gold and silver production, we include mercury emissions from North and South American mining of 1900 Mg/year in 1880, compared to modern global anthropogenic emissions of 3400 Mg/year. Including this large mining source in GEOS-Chem leads to an overestimate of the modeled 1880 to preindustrial enhancement ratio compared to the sediment core record. We conduct sensitivity studies to constrain the level of mercury emissions from modern and historic mining that is consistent with the deposition records for different regions.

  8. High Turndown Ratio, High Delta-Emittance, Variable Emissivity Electrochromics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Variable-emittance materials are in high demand for applications ranging from manned and unmanned space platforms (e.g. in radiators at the Moon's poles where damage...

  9. High Turndown Ratio, High Delta-Emittance, Variable Emissivity Electrochromics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Among thermal control methods, variable-emittance materials remain the most promising for addressing deficiencies of current systems (mechanical louvers, loop heat...

  10. Millimeter-wave Line Ratios and Sub-beam Volume Density Distributions

    Science.gov (United States)

    Leroy, Adam K.; Usero, Antonio; Schruba, Andreas; Bigiel, Frank; Kruijssen, J. M. Diederik; Kepley, Amanda; Blanc, Guillermo A.; Bolatto, Alberto D.; Cormier, Diane; Gallagher, Molly; Hughes, Annie; Jiménez-Donaire, Maria J.; Rosolowsky, Erik; Schinnerer, Eva

    2017-02-01

    We explore the use of mm-wave emission line ratios to trace molecular gas density when observations integrate over a wide range of volume densities within a single telescope beam. For observations targeting external galaxies, this case is unavoidable. Using a framework similar to that of Krumholz & Thompson, we model emission for a set of common extragalactic lines from lognormal and power law density distributions. We consider the median density of gas that produces emission and the ability to predict density variations from observed line ratios. We emphasize line ratio variations because these do not require us to know the absolute abundance of our tracers. Patterns of line ratio variations have the potential to illuminate the high-end shape of the density distribution, and to capture changes in the dense gas fraction and median volume density. Our results with and without a high-density power law tail differ appreciably; we highlight better knowledge of the probability density function (PDF) shape as an important area. We also show the implications of sub-beam density distributions for isotopologue studies targeting dense gas tracers. Differential excitation often implies a significant correction to the naive case. We provide tabulated versions of many of our results, which can be used to interpret changes in mm-wave line ratios in terms of adjustments to the underlying density distributions.

  11. An experimental system for spectral line ratio measurements in the TJ-II stellarator.

    Science.gov (United States)

    Zurro, B; Baciero, A; Fontdecaba, J M; Peláez, R; Jiménez-Rey, D

    2008-10-01

    The chord-integrated emissions of spectral lines have been monitored in the TJ-II stellarator by using a spectral system with time and space scanning capabilities and relative calibration over the entire UV-visible spectral range. This system has been used to study the line ratio of lines of different ionization stages of carbon (C(5+) 5290 A and C(4+) 2271 A) for plasma diagnostic purposes. The local emissivity of these ions has been reconstructed, for quasistationary profiles, by means of the inversion Fisher method described previously. The experimental line ratio is being empirically studied and in parallel a simple spectroscopic model has been developed to account for that ratio. We are investigating whether the role played by charge exchange processes with neutrals and the existence of non-Maxwellian electrons, intrinsic to Electron Cyclotron Resonance Heating (ECRH) heating, leave any distinguishable mark on this diagnostic method.

  12. Emissions trading: principles and practice

    National Research Council Canada - National Science Library

    Tietenberg, T.H

    2006-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 The Evolution of Emissions Trading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 The Evolution of Design Features...

  13. THE EFFECT OF COMPRESSION RATIO VARIATIONS ON THE ENGINE PERFORMANCE PARAMETRES IN SPARK IGNITION ENGINES

    Directory of Open Access Journals (Sweden)

    Yakup SEKMEN

    2005-01-01

    Full Text Available Performance of the spark ignition engines may be increased by changing the geometrical compression ratio according to the amount of charging in cylinders. The designed geometrical compression ratio can be realized as an effective compression ratio under the full load and full open throttle conditions since the effective compression ratio changes with the amount of charging into the cylinder in spark ignition engines. So, this condition of the spark ignition engines forces designers to change their geometrical compression ratio according to the amount of charging into the cylinder for improvement of performance and fuel economy. In order to improve the combustion efficiency, fuel economy, power output, exhaust emissions at partial loads, compression ratio must be increased; but, under high load and low speed conditions to prevent probable knock and hard running the compression ratio must be decreased gradually. In this paper, relation of the performance parameters to compression ratio such as power, torque, specific fuel consumption, cylindir pressure, exhaust gas temperature, combustion chamber surface area/volume ratio, thermal efficiency, spark timing etc. in spark ignition engines have been investigated and using of engines with variable compression ratio is suggested to fuel economy and more clear environment.

  14. Airborne flux measurements of biogenic volatile organic compounds over California

    Science.gov (United States)

    Misztal, P. K.; Karl, T.; Weber, R.; Jonsson, H. H.; Guenther, A. B.; Goldstein, A. H.

    2014-03-01

    Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK + MAC, methanol, monoterpenes, and MBO over ∼10 000 km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z / zi). Fluxes were generally measured by flying consistently at 400 ± 50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and

  15. Virtual disjunct eddy covariance measurements of organic compound fluxes from a subalpine forest using proton transfer reaction mass spectrometry

    Directory of Open Access Journals (Sweden)

    T. G. Karl

    2002-07-01

    Full Text Available A `virtual' disjunct eddy covariance (vDEC device was tested with field measurements of biogenic VOC fluxes at a subalpine forest site in the Rocky Mountains of the U.S.A. A PTR-MS instrument was used as the VOC sensor. Daily peak emission fluxes of 2-methyl-3-buten-2-ol (MBO, methanol, acetone and acetaldehyde were around 1.5, 1, 0.8 and 0.4 mg m-2 h-1, respectively. High pass filtering due to long sampling lines was investigated in laboratory experiments, and suggested that VOC losses in PTFA lines are generally governed by diffusion laws. Memory effects and surface reactions did not seem to play a dominant role. Model estimates of MBO fluxes compared well with measured fluxes. The results also suggest that latent heat and sensible heat fluxes are reasonably well correlated with VOC fluxes and could be used to predict variations in VOC emissions. The release of MBO, methanol, acetone and acetaldehyde resulted in significant change of tropospheric oxidant levels and a 10--40% increase in ozone levels, as inferred from a photochemical box model. We conclude that vDEC with a PTR-MS instrument is a versatile tool for simultaneous field analysis of multiple VOC fluxes.

  16. N2O and NO2 Emissions from Heavy-Duty Diesel Trucks with Advanced Emission Controls

    Science.gov (United States)

    Preble, C.; Harley, R.; Kirchstetter, T.

    2014-12-01

    Diesel engines are the largest source of nitrogen oxides (NOx) emissions nationally, and also a major contributor to the black carbon (BC) fraction of fine particulate matter (PM). Recently, diesel particle filter (DPF) and selective catalytic reduction (SCR) emission control systems that target exhaust PM and NOx have become standard equipment on new heavy-duty diesel trucks. However, the deliberate catalytic oxidation of engine-out nitric oxide (NO) to nitrogen dioxide (NO2) in continuously regenerating DPFs leads to increased tailpipe emission of NO2. This is of potential concern due to the toxicity of NO2 and the resulting increases in atmospheric formation of other air pollutants such as ozone, nitric acid, and fine PM. While use of SCR reduces emissions of both NO and NO2, it may lead to increased emissions of nitrous oxide (N2O), a potent greenhouse gas. Here we report results from on-road measurements of heavy-duty diesel truck emissions conducted at the Port of Oakland and the Caldecott Tunnel in the San Francisco Bay Area. Emission factors (g pollutant per kg of diesel) were linked via recorded license plates to individual truck attributes, including engine model year and installed emission control equipment. Between 2009 and 2013, the fraction of DPF-equipped trucks at the Port of Oakland increased from 2 to 99%, and median engine age decreased from 11 to 6 years. Over the same period, fleet-average emission factors for black carbon and NOx decreased by 76 ± 22% and 53 ± 8%, respectively. However, direct emissions of NO2 increased, and consequently the NO2/NOx emission ratio increased from 0.03 ± 0.02 to 0.18 ± 0.03. Older trucks retrofitted with DPFs emitted approximately 3.5 times more NO2 than newer trucks equipped with both DPF and SCR. Preliminary data from summer 2014 measurements at the Caldecott Tunnel suggest that some older trucks have negative emission factors for N2O, and that for newer trucks, N2O emission factors have changed sign and

  17. Outflow and hot dust emission in high redshift quasars

    CERN Document Server

    Wang, Huiyuan; Zhang, Kai; Wang, Tinggui; Zhou, Hongyan; Zhang, Shaohua

    2013-01-01

    Correlations of hot dust emission with outflow properties are investigated, based on a large z~2 non-BAL quasar sample built from the Wide-field Infrared Survey and the Sloan Digital Sky Survey data releases. We use the near infrared (NIR) slope and the infrared to UV luminosity ratio to indicate the hot dust emission relative to the emission from accretion disk. In our luminous quasars, these hot dust emission indicators are almost independent of the fundamental parameters, such as luminosity, Eddington ratio and black hole mass, but moderately dependent on the blueshift and asymmetry index (BAI) and FWHM of CIV lines. Interestingly, the latter two correlations dramatically strengthen with increasing Eddington ratio. We suggest that, in high Eddington ratio quasars, CIV regions are dominated by outflows so BAI and FWHM(CIV) can reliably reflect the general property and velocity of outflows, respectively. While in low Eddington ratio quasars, CIV lines are primarily emitted by virialized gas so BAI and FWHM(C...

  18. Corporate prediction models, ratios or regression analysis?

    NARCIS (Netherlands)

    Bijnen, E.J.; Wijn, M.F.C.M.

    1994-01-01

    The models developed in the literature with respect to the prediction of a company s failure are based on ratios. It has been shown before that these models should be rejected on theoretical grounds. Our study of industrial companies in the Netherlands shows that the ratios which are used in

  19. CCSSM Challenge: Graphing Ratio and Proportion

    Science.gov (United States)

    Kastberg, Signe E.; D'Ambrosio, Beatriz S.; Lynch-Davis, Kathleen; Mintos, Alexia; Krawczyk, Kathryn

    2013-01-01

    A renewed emphasis was placed on ratio and proportional reasoning in the middle grades in the Common Core State Standards for Mathematics (CCSSM). The expectation for students includes the ability to not only compute and then compare and interpret the results of computations in context but also interpret ratios and proportions as they are…

  20. Osmosis and Surface Area to Volume Ratio.

    Science.gov (United States)

    Barrett, D. R. B.

    1984-01-01

    Describes an experiment designed to help students understand the concepts of osmosis and surface area to volume ratio (SA:VOL). The task for students is to compare water uptake in different sizes of potato cubes and relate differences to their SA:VOL ratios. (JN)

  1. Key financial ratios can foretell hospital closures.

    Science.gov (United States)

    Lynn, M L; Wertheim, P

    1993-11-01

    An analysis of various financial ratios sampled from open and closed hospitals shows that certain leverage, liquidity, capital efficiency, and resource availability ratios can predict hospital closure up to two years in advance of the closure with an accuracy of nearly 75 percent.

  2. How to use and interpret hormone ratios.

    Science.gov (United States)

    Sollberger, Silja; Ehlert, Ulrike

    2016-01-01

    Hormone ratios have become increasingly popular throughout the neuroendocrine literature since they offer a straightforward way to simultaneously analyze the effects of two interdependent hormones. However, the analysis of ratios is associated with statistical and interpretational concerns which have not been sufficiently considered in the context of endocrine research. The aim of this article, therefore, is to demonstrate and discuss these issues, and to suggest suitable ways to address them. In a first step, we use exemplary testosterone and cortisol data to illustrate that one major concern of ratios lies in their distribution and inherent asymmetry. As a consequence, results of parametric statistical analyses are affected by the ultimately arbitrary decision of which way around the ratio is computed (i.e., A/B or B/A). We suggest the use of non-parametric methods as well as the log-transformation of hormone ratios as appropriate methods to deal with these statistical problems. However, in a second step, we also discuss the complicated interpretation of ratios, and propose moderation analysis as an alternative and oftentimes more insightful approach to ratio analysis. In conclusion, we suggest that researchers carefully consider which statistical approach is best suited to investigate reciprocal hormone effects. With regard to the hormone ratio method, further research is needed to specify what exactly this index reflects on the biological level and in which cases it is a meaningful variable to analyze.

  3. The Divine Ratio and Golden Rectangles.

    Science.gov (United States)

    Cooper, Martin

    1982-01-01

    The material examines aspects of Fibonacci and Lucas sequences, the generation of the Divine Ratio, and the nature of this ratio in golden rectangles, triangles, and figures made up of golden triangles. It is noted Lucas sequence is formed like Fibonacci but has one and three as the first elements. (Author/MP)

  4. Comparison of emissions from on-road sources using a mobile laboratory under various driving and operational sampling modes

    Directory of Open Access Journals (Sweden)

    M. Zavala

    2009-01-01

    Full Text Available Mobile sources produce a significant fraction of the total anthropogenic emissions burden in large cities and have harmful effects on air quality at multiple spatial scales. Mobile emissions are intrinsically difficult to estimate due to the large number of parameters affecting the emissions variability within and across vehicles types. The MCMA-2003 Campaign in Mexico City has showed the utility of using a mobile laboratory to sample and characterize specific classes of motor vehicles to better quantify their emissions characteristics as a function of their driving cycles. The technique clearly identifies "high emitter" vehicles via individual exhaust plumes, and also provides fleet average emission rates. We have applied this technique to Mexicali during the Border Ozone Reduction and Air Quality Improvement Program (BORAQIP for the Mexicali-Imperial Valley in 2005. We analyze the variability of measured emission ratios for emitted NOx, CO, specific VOCs, NH3, and some primary fine particle components and properties by deploying a mobile laboratory in roadside stationary sampling, chase and fleet average operational sampling modes. The measurements reflect various driving modes characteristic of the urban fleets. The observed variability for all measured gases and particle emission ratios is greater for the chase and roadside stationary sampling than for fleet average measurements. The fleet average sampling mode captured the effects of traffic conditions on the measured on-road emission ratios, allowing the use of fuel-based emission ratios to assess the validity of traditional "bottom-up" emissions inventories. Using the measured on-road emission ratios, we estimate CO and NOx mobile emissions of 175±62 and 10.4±1.3 metric tons/day, respectively, for the gasoline vehicle fleet in Mexicali. Comparisons with similar on-road emissions data from Mexico City indicated that fleet average NO emission ratios were

  5. Duty ratio of cooperative molecular motors.

    Science.gov (United States)

    Dharan, Nadiv; Farago, Oded

    2012-02-01

    Molecular motors are found throughout the cells of the human body and have many different and important roles. These micromachines move along filament tracks and have the ability to convert chemical energy into mechanical work that powers cellular motility. Different types of motors are characterized by different duty ratios, which is the fraction of time that a motor is attached to its filament. In the case of myosin II (a nonprocessive molecular machine with a low duty ratio), cooperativity between several motors is essential to induce motion along its actin filament track. In this work we use statistical mechanical tools to calculate the duty ratio of cooperative molecular motors. The model suggests that the effective duty ratio of nonprocessive motors that work in cooperation is lower than the duty ratio of the individual motors. The origin of this effect is the elastic tension that develops in the filament which is relieved when motors detach from the track.

  6. Equity Theory Ratios as Causal Schemas

    Directory of Open Access Journals (Sweden)

    Alexios Arvanitis

    2016-08-01

    Full Text Available Equity theory approaches justice evaluations based on ratios of exchange inputs to exchange outcomes. Situations are evaluated as just if ratios are equal and unjust if unequal. We suggest that equity ratios serve a more fundamental cognitive function than the evaluation of justice. More particularly, we propose that they serve as causal schemas for exchange outcomes, that is, they assist in determining whether certain outcomes are caused by inputs of other people in the context of an exchange process. Equality or inequality of ratios in this sense points to an exchange process. Indeed, Study 1 shows that different exchange situations, such as disproportional or balanced proportional situations, create perceptions of give-and-take on the basis of equity ratios. Study 2 shows that perceptions of justice are based more on communicatively accepted rules of interaction than equity-based evaluations, thereby offering a distinction between an attribution and an evaluation cognitive process for exchange outcomes.

  7. Fluorescence emission of pyrene in surfactant solutions.

    Science.gov (United States)

    Piñeiro, Lucas; Novo, Mercedes; Al-Soufi, Wajih

    2015-01-01

    The systematic description of the complex photophysical behaviour of pyrene in surfactant solutions in combination with a quantitative model for the surfactant concentrations reproduces with high accuracy the steady-state and the time resolved fluorescence intensity of pyrene in surfactant solutions near the cmc, both in the monomer and in the excimer emission bands. We present concise model equations that can be used for the analysis of the pyrene fluorescence intensity in order to estimate fundamental parameters of the pyrene-surfactant system, such as the binding equilibrium constant K of pyrene to a given surfactant micelle, the rate constant of excimer formation in micelles, and the equilibrium constant of pyrene-surfactant quenching. The values of the binding equilibrium constant K(TX100)=3300·10³ M⁻¹ and K(SDS)=190·10³ M⁻¹ for Triton X-100 (TX100) and SDS micelles, respectively, show that the partition of pyrene between bulk water and micelles cannot be ignored, even at relatively high surfactant concentrations above the cmc. We apply the model to the determination of the cmc from the pyrene fluorescence intensity, especially from the intensity ratio at two vibronic bands in the monomer emission or from the ratio of excimer to monomer emission intensity. We relate the finite width of the transition region below and above the cmc with the observed changes in the pyrene fluorescence in this region.

  8. Studies of some isomeric yield ratios produced with bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Kolev, Dimitar

    1998-05-11

    The experimental isomeric ratios for {sup 52m,g}Mn, {sup 86m,g}Y, {sup 87m,g}Y, {sup 89m,g}Zr, {sup 110m,g}In, {sup 111m,g}In, {sup 112m,g}In, {sup 152m1,g}Pm, {sup 152m2,m1}Eu, {sup 162m,g}Ho, {sup 164m,g}Ho and {sup 178m,g}Lu measured by the activation technique from different targets in ({gamma}, xnp) reactions (x{<=}3) at the bremsstrahlung end-point energy of 43 MeV are presented. The predictions of calculations performed by means of compound nucleus particle evaporation and final {gamma}-deexcitation were critically discussed. The importance of inclusion in the calculations of nonequilibrium particle emission and an adequate {gamma}-decay mode of isomeric nuclei was considered for some of the reactions investigated.

  9. Emission control system

    Science.gov (United States)

    Parrish, Clyde F. (Inventor); Chung, J. Landy (Inventor)

    2009-01-01

    Methods and apparatus utilizing hydrogen peroxide are useful to reduce SOx and mercury (or other heavy metal) emissions from combustion flue gas streams. The methods and apparatus may further be modified to reduce NOx emissions. Continuous concentration of hydrogen peroxide to levels approaching or exceeding propellant-grade hydrogen peroxide facilitates increased system efficiency. In this manner, combustion flue gas streams can be treated for the removal of SOx and heavy metals, while isolating useful by-products streams of sulfuric acid as well as solids for the recovery of the heavy metals. Where removal of NOx emissions is included, nitric acid may also be isolated for use in fertilizer or other industrial applications.

  10. Practical acoustic emission testing

    CERN Document Server

    2016-01-01

    This book is intended for non-destructive testing (NDT) technicians who want to learn practical acoustic emission testing based on level 1 of ISO 9712 (Non-destructive testing – Qualification and certification of personnel) criteria. The essential aspects of ISO/DIS 18436-6 (Condition monitoring and diagnostics of machines – Requirements for training and certification of personnel, Part 6: Acoustic Emission) are explained, and readers can deepen their understanding with the help of practice exercises. This work presents the guiding principles of acoustic emission measurement, signal processing, algorithms for source location, measurement devices, applicability of testing methods, and measurement cases to support not only researchers in this field but also and especially NDT technicians.

  11. Field emission electronics

    CERN Document Server

    Egorov, Nikolay

    2017-01-01

    This book is dedicated to field emission electronics, a promising field at the interface between “classic” vacuum electronics and nanotechnology. In addition to theoretical models, it includes detailed descriptions of experimental and research techniques and production technologies for different types of field emitters based on various construction principles. It particularly focuses on research into and production of field cathodes and electron guns using recently developed nanomaterials and carbon nanotubes. Further, it discusses the applications of field emission cathodes in new technologies such as light sources, flat screens, microwave and X-ray devices.

  12. Mercury emission from crematoria.

    Science.gov (United States)

    Santarsiero, Anna; Settimo, Gaetano; Dell'andrea, Elena

    2006-01-01

    The purpose of this study, undertaken at a cremator representing an example of current equipment and cremation practices in use in Italy, is to assess the possible mercury emitted during cremation and substantiate the current data available. This paper reports some preliminary results concerning mercury and total particulate matter emissions during three cremation processes. The obtained results gave a mercury concentration ranging from 0.005 to 0.300 mg/m3 and a mercury emission factor ranging from 0.036 to 2.140 g/corpse cremated. The total particulate matter concentration range was 1.0 to 2.4 mg/m3.

  13. Simple proxies for estimating the concentrations of monoterpenes and their oxidation products at a boreal forest site

    Science.gov (United States)

    Kontkanen, Jenni; Paasonen, Pauli; Aalto, Juho; Bäck, Jaana; Rantala, Pekka; Petäjä, Tuukka; Kulmala, Markku

    2016-10-01

    The oxidation products of monoterpenes likely have a crucial role in the formation and growth of aerosol particles in boreal forests. However, the continuous measurements of monoterpene concentrations are usually not available on decadal timescales, and the direct measurements of the concentrations of monoterpene oxidation product have so far been scarce. In this study we developed proxies for the concentrations of monoterpenes and their oxidation products at a boreal forest site in Hyytiälä, southern Finland. For deriving the proxies we used the monoterpene concentration measured with a proton transfer reaction mass spectrometer (PTR-MS) during 2006-2013. Our proxies for the monoterpene concentration take into account the temperature-controlled emissions from the forest ecosystem, the dilution caused by the mixing within the boundary layer and different oxidation processes. All the versions of our proxies captured the seasonal variation of the monoterpene concentration, the typical proxy-to-measurements ratios being between 0.8 and 1.3 in summer and between 0.6 and 2.6 in winter. In addition, the proxies were able to describe the diurnal variation of the monoterpene concentration rather well, especially in summer months. By utilizing one of the proxies, we calculated the concentration of oxidation products of monoterpenes by considering their production in the oxidation and their loss due to condensation on aerosol particles. The concentration of oxidation products was found to have a clear seasonal cycle, with a maximum in summer and a minimum in winter. The concentration of oxidation products was lowest in the morning or around noon and highest in the evening. In the future, our proxies for the monoterpene concentration and their oxidation products can be used, for example, in the analysis of new particle formation and growth in boreal environments.

  14. The Morphology of the Anomalous Microwave Emission in the Planck 2015 data release

    CERN Document Server

    von Hausegger, Sebastian

    2015-01-01

    We calculate weighted mosaic correlations between the recently published Planck 2015 foreground maps - both anomalous microwave emission (AME) maps, free-free emission, synchrotron radiation and thermal dust emission. The weighting coefficients are constructed taking account of the signal-to-error ratio given by the data product. Positive correlation is found for AME compared with thermal dust emission as well as synchrotron radiation. We find AME and free-free emission tending to be anti-correlated, however, when investigating different scales, their relationship appears to be more complex. We argue that dust particles responsible for AME are pushed out of hot zones in the interstellar medium (ISM).

  15. CALIPSO lidar ratio retrieval over the ocean.

    Science.gov (United States)

    Josset, Damien; Rogers, Raymond; Pelon, Jacques; Hu, Yongxiang; Liu, Zhaoyan; Omar, Ali; Zhai, Peng-Wang

    2011-09-12

    We are demonstrating on a few cases the capability of CALIPSO to retrieve the 532 nm lidar ratio over the ocean when CloudSat surface scattering cross section is used as a constraint. We are presenting the algorithm used and comparisons with the column lidar ratio retrieved by the NASA airborne high spectral resolution lidar. For the three cases presented here, the agreement is fairly good. The average CALIPSO 532 nm column lidar ratio bias is 13.7% relative to HSRL, and the relative standard deviation is 13.6%. Considering the natural variability of aerosol microphysical properties, this level of accuracy is significant since the lidar ratio is a good indicator of aerosol types. We are discussing dependencies of the accuracy of retrieved aerosol lidar ratio on atmospheric aerosol homogeneity, lidar signal to noise ratio, and errors in the optical depth retrievals. We are obtaining the best result (bias 7% and standard deviation around 6%) for a nighttime case with a relatively constant lidar ratio (in the vertical) indicative of homogeneous aerosol type.

  16. A study on emission characteristics of an EFI engine with ethanol blended gasoline fuels

    Science.gov (United States)

    He, Bang-Quan; Wang, Jian-Xin; Hao, Ji-Ming; Yan, Xiao-Guang; Xiao, Jian-Hua

    The effect of ethanol blended gasoline fuels on emissions and catalyst conversion efficiencies was investigated in a spark ignition engine with an electronic fuel injection (EFI) system. The addition of ethanol to gasoline fuel enhances the octane number of the blended fuels and changes distillation temperature. Ethanol can decrease engine-out regulated emissions. The fuel containing 30% ethanol by volume can drastically reduce engine-out total hydrocarbon emissions (THC) at operating conditions and engine-out THC, CO and NO x emissions at idle speed, but unburned ethanol and acetaldehyde emissions increase. Pt/Rh based three-way catalysts are effective in reducing acetaldehyde emissions, but the conversion of unburned ethanol is low. Tailpipe emissions of THC, CO and NO x have close relation to engine-out emissions, catalyst conversion efficiency, engine's speed and load, air/fuel equivalence ratio. Moreover, the blended fuels can decrease brake specific energy consumption.

  17. Investigation on the Plasma-Induced Emission Properties of Large Area Carbon Nanotube Array Cathodes with Different Morphologies

    OpenAIRE

    Liu Liang; Liao Qingliang; Qin Zi; Zhang Zheng; Qi Junjie; Zhang Yue; Huang Yunhua

    2011-01-01

    Abstract Large area well-aligned carbon nanotube (CNT) arrays with different morphologies were synthesized by using a chemical vapor deposition. The plasma-induced emission properties of CNT array cathodes with different morphologies were investigated. The ratio of CNT height to CNT-to-CNT distance has considerable effects on their plasma-induced emission properties. As the ratio increases, emission currents of CNT array cathodes decrease due to screening effects. Under the pulse electric fie...

  18. Introducing optional reserve ratios in Hungary

    OpenAIRE

    Lóránt Varga

    2010-01-01

    As of the reserve maintenance period commencing in November 2010, Hungarian credit institutions will be free to decide whether to apply the previously valid 2% reserve ratio, or to apply a higher mandatory reserve ratio. Credit institutions required to hold reserves may select from reserve ratios of 2, 3, 4 and 5%, and may change their decision on a semi-annual basis. In line with the international best practice, the purpose of the MNB’s reserve requirement system is to support credit institu...

  19. Financial Ratios and Perceived Household Financial Satisfaction

    Directory of Open Access Journals (Sweden)

    Scott Garrett

    2013-08-01

    Full Text Available This paper tests the relative strength of three objective measures of financial health (using the solvency, liquidity, and investment asset ratio in predicting a household’s subjective feeling of current financial satisfaction. Using a sample of 6,923 respondents in the 2008 Health and Retirement Study this paper presents evidence of two main findings: 1 the solvency ratio is most strongly associated with financial satisfaction levels based on a cross-sectional design and 2 changes in the investment asset ratio are most strongly associated with changes in financial satisfaction over time.

  20. The Panofsky ratio in 3He

    Science.gov (United States)

    Corriveau, F.; Hasinoff, M. D.; Measday, D. F.; Poutissou, J.-M.; Salomon, M.

    1987-11-01

    The branching ratios have been measured for γ-ray channels produced by π- stopping in liquid 3He. The results for the Panofsky ratio are P3 = ω( π-3He → π0t)/ ω( π-3He → γt) = 2.83 ± 0.07, and for the ratio of the radiative breakup channels, B3 = ω)( π-3He → γnd + γnnp)/ ω( π-3He → γt) = 1.35 ±0.11.

  1. Aerosol organic carbon to black carbon ratios: Analysis ofpublished data and implications for climate forcing

    Energy Technology Data Exchange (ETDEWEB)

    Novakov, T.; Menon, S.; Kirchstetter, T.W.; Koch, D.; Hansen, J.E.

    2005-07-11

    Measurements of organic carbon (OC) and black carbon (BC)concentrations over a variety of locations worldwide, have been analyzed to infer the spatial distributions of the ratios of OC to BC. Since these ratios determine the relative amounts of scattering and absorption, they are often used to estimate the radiative forcing due to aerosols. An artifact in the protocol for filter measurements of OC has led to widespread overestimates of the ratio of OC to BC in atmospheric aerosols. We developed a criterion to correct for this artifact and analyze corrected OC to BC ratios. The OC to BC ratios, ranging from 1.3to 2.4, appear relatively constant and are generally unaffected by seasonality, sources or technology changes, at the locations considered here. The ratios compare well with emission inventories over Europe and China but are a factor of two lower in other regions. The reduced estimate for OC/BC in aerosols strengthens the argument that reduction of soot emissions maybe a useful approach to slow global warming.

  2. Numerical investigation of exhaust gas emissions for a dual fuel engine configuration using diesel and pongamia oil.

    Science.gov (United States)

    Mohamed Ibrahim, N H; Udayakumar, M

    2016-12-01

    The investigation presented in this paper focuses on determination of gaseous exhaust emissions by computational simulation during combustion in compression ignition engine with pongamia oil substitution. Combustion is modeled using Equilibrium Constants Method (ECM) with MATLAB program to calculate the mole fraction of 10 combustion products when pongamia oil is burnt along with diesel at variable equivalence ratio and blend ratio. It had been observed that pongamia oil substitution causes decrease in the CO emission and increase in the NOx emission as the blend ratio as well as equivalence ratio increases. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Variations of the BrO/SO2 ratios from Tungurahua volcano, Ecuador

    Science.gov (United States)

    Warnach, Simon; Lübcke, Peter; Dinger, Florian; Bobrowski, Nicole; Hidalgo, Silvana; Arellano, Santiago; Battaglia, Jean; Galle, Bo; Hörmann, Christoph; Ruiz, Mario; Vogel, Leif; Wagner, Thomas; Platt, Ulrich

    2016-04-01

    The amount and composition of volcanic gas emissions can yield information about magmatic processes. Apart from the SO2 emission rate, which is used as a widespread tool in monitoring volcanoes, the molar ratio of BrO/SO2 in a volcanic plume has shown the potential for interpreting volcanic activity. The evaluation of long-term spectral data collected with UV-scanning spectrometers through the Network for Observation of Volcanic and Atmospheric Change (NOVAC) using the DOAS technique can help to obtain a better understanding of the BrO/SO2 molar ratio and its correlation to magmatic processes. BrO and SO2 emissions as well as the BrO/SO2 ratio have been successfully retrieved from NOVAC data at Nevado del Ruiz (Colombia), where a decrease of the BrO/SO2 ratio was observed prior to a large eruption. We apply this evaluation algorithm to determine the plume composition of Tungurahua volcano, Ecuador, which is part of NOVAC since 2007. Different from Nevado del Ruiz the retrieved column densities of SO2 and BrO at Tungurahua are typically more than a factor of two lower during the respective period of observation. In addition, changes in the volcanic activity appear on a smaller timescale, as Tungurahua displays a succession of activity and quiescence phases. In order to still obtain robust BrO/SO2 ratios at Tungurahua, it is necessary to improve the data evaluation as well as applying a more sophisticated scheme to calculate the BrO/SO2 ratio. By combining both methods we create a time series of the BrO/SO2 ratio for several eruptive phases between 2007 and 2014. The ratio shows values between 2 and 8 × 10-5. The variation of the BrO/SO2 ratio during these eruptive phases is compared to seismic data and volcanological phenomenological observations as well as satellite and ground based SO2 measurements. During several eruptive phases we observe an increase in the BrO/SO2 ratio on the transition from high explosive activity to low explosive activity. During the

  4. Optimising Blackbody Cavity Shape for Spatially Uniform Integrated Emissivity

    Science.gov (United States)

    Saunders, P.

    2017-01-01

    The emissivity of a blackbody cavity, as seen by a radiation thermometer viewing the cavity, depends on both the field of view of the thermometer and the distribution of local effective emissivity values within the field of view. For cylindro-conical cavities, the local effective emissivity generally attains a maximum value at the apex of the cone and drops along the conical section. Thus, radiation thermometers with different fields of view see different blackbody emissivity values. This impacts, particularly, on the calibration of wide-angle low-temperature radiation thermometers and thermal imaging systems where each pixel responds to a different radiance. The spatial uniformity of the effective emissivity profile depends principally on the cone angle, with a weaker dependence on the length-to-diameter ratio of the cavity, the intrinsic emissivity of the cavity surfaces, and the temperature gradient along the cavity. In this paper, a nonlinear least-squares method is used to determine the optimal cone angle as a function of the cavity parameters. It is concluded that full cone angles close to 160° provide the flattest effective emissivity profile across the conical section of the cavity for typical cavity parameters. A method is also described for calculating the value of integrated emissivity, which includes the umbral and penumbral regions seen by an imaging radiation thermometer.

  5. Emissions of NO, NO2 and PM from inland shipping

    Science.gov (United States)

    Kurtenbach, Ralf; Vaupel, Kai; Kleffmann, Jörg; Klenk, Ulrich; Schmidt, Eberhard; Wiesen, Peter

    2016-11-01

    Particulate matter (PM) and nitrogen oxides NOx (NOx = NO2+ NO) are key species for urban air quality in Europe and are emitted by mobile sources. According to European recommendations, a significant fraction of road freight should be shifted to waterborne transport in the future. In order to better consider this emission change pattern in future emission inventories, in the present study inland water transport emissions of NOx, CO2 and PM were investigated under real world conditions on the river Rhine, Germany, in 2013. An average NO2 / NOx emission ratio of 0.08 ± 0.02 was obtained, which is indicative of ship diesel engines without exhaust gas aftertreatment systems. For all measured motor ship types and operation conditions, overall weighted average emission indices (EIs), as emitted mass of pollutant per kg burnt fuel of EINOx = 54 ± 4 g kg-1 and a lower limit EIPM1 ≥ 2.0 ± 0.3 g kg-1, were obtained. EIs for NOx and PM1 were found to be in the range of 20-161 and ≥ 0.2-8.1 g kg-1 respectively. A comparison with threshold values of national German guidelines shows that the NOx emissions of all investigated motor ship types are above the threshold values, while the obtained lower limit PM1 emissions are just under. To reduce NOx emissions to acceptable values, implementation of exhaust gas aftertreatment systems is recommended.

  6. Exposure to motor vehicle emissions: An intake fraction approach

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Julian D. [Univ. of California, Berkeley, CA (United States)

    2002-05-22

    Motor vehicles are a significant source of population exposure to air pollution. Focusing on California's South Coast Air Basin as a case study, the author combines ambient monitoring station data with hourly time-activity patterns to determine the population intake of motor vehicle emissions during 1996-1999. Three microenvironments are considered wherein the exposure to motor vehicle emissions is higher than in ambient air: in and near vehicles, inside a building that is near a freeway, and inside a residence with an attached garage. Total motor vehicle emissions are taken from the EMFAC model. The 15 million people in the South Coast inhale 0.0048% of primary, nonreactive compounds emitted into the basin by motor vehicles. Intake of motor vehicle emissions is 46% higher than the average ambient concentration times the average breathing rate, because of microenvironments and because of temporal and spatial correlation among breathing rates, concentrations, and population densities. Intake fraction (iF) summarizes the emissions-to-intake relationship as the ratio of population intake to total emissions. iF is a population level exposure metric that incorporates spatial, temporal, and interindividual variability in exposures. iFs can facilitate the calculation of population exposures by distilling complex emissions-transport-receptor relationships. The author demonstrates this point by predicting the population intake of various primary gaseous emissions from motor vehicles, based on the intake fraction for benzene and carbon monoxide.

  7. Exposure to motor vehicle emissions: An intake fraction approach

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Julian D.

    2002-05-01

    Motor vehicles are a significant source of population exposure to air pollution. Focusing on California's South Coast Air Basin as a case study, the author combines ambient monitoring station data with hourly time-activity patterns to determine the population intake of motor vehicle emissions during 1996-1999. Three microenvironments are considered wherein the exposure to motor vehicle emissions is higher than in ambient air: in and near vehicles, inside a building that is near a freeway, and inside a residence with an attached garage. Total motor vehicle emissions are taken from the EMFAC model. The 15 million people in the South Coast inhale 0.0048% of primary, nonreactive compounds emitted into the basin by motor vehicles. Intake of motor vehicle emissions is 46% higher than the average ambient concentration times the average breathing rate, because of microenvironments and because of temporal and spatial correlation among breathing rates, concentrations, and population densities. Intake fraction (iF) summarizes the emissions-to-intake relationship as the ratio of population intake to total emissions. iF is a population level exposure metric that incorporates spatial, temporal, and interindividual variability in exposures. iFs can facilitate the calculation of population exposures by distilling complex emissions-transport-receptor relationships. The author demonstrates this point by predicting the population intake of various primary gaseous emissions from motor vehicles, based on the intake fraction for benzene and carbon monoxide.

  8. Evoked acoustic emission

    DEFF Research Database (Denmark)

    Elberling, C; Parbo, J; Johnsen, N J;

    1985-01-01

    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has onl...

  9. Controlling spontaneous emission

    DEFF Research Database (Denmark)

    Lodahl, Peter

    dots (QDs) embedded in 3D photonic crystals consisting of air spheres in titanium dioxide. Performing time-resolved experiments, we show that the photonic crystals control the emission decay rate of excitons confined in the QDs1,2. By varying the lattice parameter of the photonic crystals, we...

  10. Aircraft Emissions Characterization

    Science.gov (United States)

    1988-03-01

    sample from each trap through a heated (1500C) six-port valve ’ Carle Instruments Model 5621) and onto the analytical column. The coLoponents in each...Environmental Protection, Vol. II. Aircraft Engine Emissions, Int. Civil Aviation Organ., 1981. 7. Nebel , G. J., "Benzene in Auto Exhaust," J. Air Poll

  11. Reaching peak emissions

    Science.gov (United States)

    Jackson, Robert B.; Canadell, Josep G.; Le Quéré, Corinne; Andrew, Robbie M.; Korsbakken, Jan Ivar; Peters, Glen P.; Nakicenovic, Nebojsa

    2016-01-01

    Rapid growth in global CO2 emissions from fossil fuels and industry ceased in the past two years, despite continued economic growth. Decreased coal use in China was largely responsible, coupled with slower global growth in petroleum and faster growth in renewables.

  12. Radio Emission from Exoplanets

    OpenAIRE

    George, Samuel J.; Stevens, Ian R.

    2008-01-01

    We present results from new low frequency observations of two extrasolar planetary systems (Epsilon Eridani and HD128311) taken at 150 MHz with the Giant Metrewave Radio Telescope (GMRT). We do not detect either system, but are able to place tight upper limits on their low frequency radio emission.

  13. Evoked acoustic emission

    DEFF Research Database (Denmark)

    Elberling, C; Parbo, J; Johnsen, N J;

    1985-01-01

    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has only...

  14. Methane emissions from ruminants

    African Journals Online (AJOL)

    user

    2011-02-21

    Feb 21, 2011 ... Review. Livestock-environment interactions: Methane emissions from ruminants. Aluwong, T.1* ... perception of air quality by human neighbours.The three ... on the climate; the global warming potential of methane is. 21-times that of ... has serious impact on high atmosphere ozone formation. It is important ...

  15. Generalized emissivity inverse problem.

    Science.gov (United States)

    Ming, DengMing; Wen, Tao; Dai, XianXi; Dai, JiXin; Evenson, William E

    2002-04-01

    Inverse problems have recently drawn considerable attention from the physics community due to of potential widespread applications [K. Chadan and P. C. Sabatier, Inverse Problems in Quantum Scattering Theory, 2nd ed. (Springer Verlag, Berlin, 1989)]. An inverse emissivity problem that determines the emissivity g(nu) from measurements of only the total radiated power J(T) has recently been studied [Tao Wen, DengMing Ming, Xianxi Dai, Jixin Dai, and William E. Evenson, Phys. Rev. E 63, 045601(R) (2001)]. In this paper, a new type of generalized emissivity and transmissivity inverse (GETI) problem is proposed. The present problem differs from our previous work on inverse problems by allowing the unknown (emissivity) function g(nu) to be temperature dependent as well as frequency dependent. Based on published experimental information, we have developed an exact solution formula for this GETI problem. A universal function set suggested for numerical calculation is shown to be robust, making this inversion method practical and convenient for realistic calculations.

  16. Evoked acoustic emission

    DEFF Research Database (Denmark)

    Elberling, C; Parbo, J; Johnsen, N J

    1985-01-01

    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has onl...... reveals presence of a true emission from all ears tested. It is concluded that the cochlear echo can be recorded in normal-hearing newborns with an extremely low rate of type I errors.......Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has only...... a minor effect on the power spectra, i.e. the maximum jumps from one spectral peak to another. Experiments with deconvolution demonstrate that the emission generating system at least at a fixed intensity can be regarded as being linear and characterized by its impulse response which is similar...

  17. Secondary emission gas chamber

    CERN Document Server

    In'shakov, V; Skvortsov, V

    2014-01-01

    For a hadron calorimeter active element there is considered a gaseous secondary emis-sion detector (150 micron gap, 50 kV/cm). Such one-stage parallel plate chamber must be a radiation hard, fast and simple. A model of such detector has been produced, tested and some characteristics are presented.

  18. Diesel emissions in Vienna

    Science.gov (United States)

    Horvath, H.; Kreiner, I.; Norek, C.; Preining, O.; Georgi, B.

    The aerosol in a non-industrial town normally is dominated by emissions from vehicles. Whereas gasoline-powered cars normally only emit a small amount of particulates, the emission by diesel-powered cars is considerable. The aerosol particles produced by diesel engines consist of graphitic carbon (GC) with attached hydrocarbons (HCs) including also polyaromatic HCs. Therefore the diesel particles can be carcinogenic. Besides diesel vehicles, all other combustion processes are also a source for GC; thus source apportionment of diesel emissions to the GC in the town is difficult. A direct apportionment of diesel emissions has been made possible by marking all the diesel fuel used by the vehicles in Vienna by a normally not occurring and easily detectable substance. All emitted diesel particles thus were marked with the tracer and by analyzing the atmospheric samples for the marking substance we found that the mass concentrations of diesel particles in the atmosphere varied between 5 and 23 μg m -3. Busy streets and calm residential areas show less difference in mass concentration than expected. The deposition of diesel particles on the ground has been determined by collecting samples from the road surface. The concentration of the marking substance was below the detection limit before the marking period and a year after the period. During the period when marked diesel fuel was used, the concentrations of the diesel particles settling to the ground was 0.012-0.07 g g -1 of collected dust. A positive correlation between the diesel vehicle density and the sampled mass of diesel vehicles exists. In Vienna we have a background diesel particle concentration of 11 μg m -3. This value increases by 5.5 μg m -3 per 500 diesel vehicles h -1 passing near the sampling location. The mass fraction of diesel particles of the total aerosol mass varied between 12.2 and 33%; the higher values were found in more remote areas, since diesel particles apparently diffuse easily

  19. Nitrous oxide emissions from soils amended by cover-crops and under plastic film mulching: Fluxes, emission factors and yield-scaled emissions

    Science.gov (United States)

    Kim, Gil Won; Das, Suvendu; Hwang, Hyun Young; Kim, Pil Joo

    2017-03-01

    Assessment of nitrous oxide (N2O) emission factor (EF) for N2O emission inventory from arable crops fertilized with different nitrogen sources are under increased scrutiny because of discrepancies between the default IPCC EFs and low EFs reported by many researchers. Mixing ratio of leguminous and non-leguminous cover crop residues incorporation and plastic film mulching (PFM) in upland soil has been recommended as a vital agronomic practice to enhance yield and soil quality. However, how these practices together affect N2O emissions, yield-scaled emissions and the EFs remain uncertain. Field experiments spanning two consecutive years were conducted to evaluate the effects of PFM on N2O emissions, yield-scaled emissions and the seasonal EFs in cover crop residues amended soil during maize cultivation. The mixture of barley (Hordeum vulgare) and hairy vetch (Vicia villosa) seeds with 75% recommended dose (RD 140 kg ha-1) and 25% recommended dose (RD 90 kg ha-1), respectively, were broadcasted during the fallow period and 0, 25, 50 and 100% of the total aboveground harvested biomass that correspond to 0, 76, 152 and 304 kg N ha-1 were incorporated before maize transplanting. It was found that the mean seasonal EFs from cover crop residues amended soil under No-mulching (NM) and PFM were 1.13% (ranging from 0.81 to 1.23%) and 1.49% (ranging from 1.02 to 1.63%), respectively, which are comparable to the IPCC (2006) default EF (1%) for emission inventories of N2O from crop residues. The emission fluxes were greatly influenced by NH4+sbnd N, NO3--N, DOC and DON contents of soil. The cumulative N2O emissions markedly increased with the increase in cover crop residues application rates and it was more prominent under PFM than under NM. However, the yield-scaled emissions markedly decreased under PFM compared to NM due to the improved yield. With relatively low yield-scaled N2O emissions, 25% biomass mixing ratio of barley and hairy vetch (76 kg N ha-1) under PFM could be

  20. Asthma Medication Ratio Predicts Emergency Depart...

    Data.gov (United States)

    U.S. Department of Health & Human Services — According to findings reported in Asthma Medication Ratio Predicts Emergency Department Visits and Hospitalizations in Children with Asthma, published in Volume 3,...

  1. Negative Poisson's Ratio in Modern Functional Materials.

    Science.gov (United States)

    Huang, Chuanwei; Chen, Lang

    2016-10-01

    Materials with negative Poisson's ratio attract considerable attention due to their underlying intriguing physical properties and numerous promising applications, particularly in stringent environments such as aerospace and defense areas, because of their unconventional mechanical enhancements. Recent progress in materials with a negative Poisson's ratio are reviewed here, with the current state of research regarding both theory and experiment. The inter-relationship between the underlying structure and a negative Poisson's ratio is discussed in functional materials, including macroscopic bulk, low-dimensional nanoscale particles, films, sheets, or tubes. The coexistence and correlations with other negative indexes (such as negative compressibility and negative thermal expansion) are also addressed. Finally, open questions and future research opportunities are proposed for functional materials with negative Poisson's ratios.

  2. Determining sex ratios of turtle hatchlings

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Previous status assessments of marine turtles have assumed that the natural sex ratio of a marine turtle population is 1:1 (e.g. Conant et al. 2009). However, this...

  3. Sex Ratio at Birth in China

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    The demographic structure of populations,particularly age and sex, has profound consequences for harmonious and sustainable social and economic development. Furthermore, analyzing sex ratios of populations is important in analyzing the development of the status Of women and girls.

  4. Ratio Analysis: Where Investments Meet Mathematics.

    Science.gov (United States)

    Barton, Susan D.; Woodbury, Denise

    2002-01-01

    Discusses ratio analysis by which investments may be evaluated. Requires the use of fundamental mathematics, problem solving, and a comparison of the mathematical results within the framework of industry. (Author/NB)

  5. Enantiomer fractions instead of enantiomer ratios

    NARCIS (Netherlands)

    Geus, de H.J.; Wester, P.G.; Boer, de J.; Brinkman, U.A.Th.

    2000-01-01

    The use of enantiomer ratios (ERs) to indicate the relative amounts of a pair of enantiomers in a sample has some disadvantages. Enantiomer fractions (EFs) are proposed as all alternative expression to eliminate the difficulties. (C) 2000 Elsevier Science Ltd.

  6. From Fibonacci Sequence to the Golden Ratio

    Directory of Open Access Journals (Sweden)

    Alberto Fiorenza

    2013-01-01

    Full Text Available We consider the well-known characterization of the Golden ratio as limit of the ratio of consecutive terms of the Fibonacci sequence, and we give an explanation of this property in the framework of the Difference Equations Theory. We show that the Golden ratio coincides with this limit not because it is the root with maximum modulus and multiplicity of the characteristic polynomial, but, from a more general point of view, because it is the root with maximum modulus and multiplicity of a restricted set of roots, which in this special case coincides with the two roots of the characteristic polynomial. This new perspective is the heart of the characterization of the limit of ratio of consecutive terms of all linear homogeneous recurrences with constant coefficients, without any assumption on the roots of the characteristic polynomial, which may be, in particular, also complex and not real.

  7. Changes in monoterpene mixing ratios during summer storms in rural New Hampshire (USA

    Directory of Open Access Journals (Sweden)

    K. B. Haase

    2011-11-01

    Full Text Available Monoterpenes are an important class of biogenic hydrocarbons that influence ambient air quality and are a principle source of secondary organic aerosol (SOA. Emitted from vegetation, monoterpenes are a product of photosynthesis and act as a response to a variety of environmental factors. Most parameterizations of monoterpene emissions are based on clear weather models that do not take into account episodic conditions that can drastically change production and release rates into the atmosphere. Here, the monoterpene dataset from the rural Thompson Farm measurement site in Durham, New Hampshire is examined in the context of a set of known severe storm events. While some storm systems had a negligible influence on ambient monoterpene mixing ratios, the average storm event increased mixing ratios by 0.59 ± 0.21 ppbv, a factor of 93% above pre-storm levels. In some events, mixing ratios reached the 10's of ppbv range and persisted overnight. These mixing ratios correspond to increases in the monoterpene emission rate, ranging from 120 to 1240 g km−2 h−1 compared to an estimated clear weather rate of 116 to 193 g km−2 h−1. Considering the regularity of storm events over most forested areas, this could be an important factor to consider when modeling global monoterpene emissions and their resulting influence on the formation of organic aerosols.

  8. Millimeter-Wave Line Ratios and Sub-beam Volume Density Distributions

    CERN Document Server

    Leroy, Adam K; Schruba, Andreas; Bigiel, Frank; Kruijssen, J M Diederik; Kepley, Amanda; Blanc, Guillermo A; Bolatto, Alberto D; Cormier, Diane; Gallagher, Molly; Hughes, Annie; Jimenez-Donaire, Maria J; Rosolowsky, Erik; Schinnerer, Eva

    2016-01-01

    We explore the use of mm-wave emission line ratios to trace molecular gas density when observations integrate over a wide range of volume densities within a single telescope beam. For observations targeting external galaxies, this case is unavoidable. Using a framework similar to that of Krumholz and Thompson (2007), we model emission for a set of common extragalactic lines from lognormal and power law density distributions. We consider the median density of gas producing emission and the ability to predict density variations from observed line ratios. We emphasize line ratio variations, because these do not require knowing the absolute abundance of our tracers. Patterns of line ratio variations have the prospect to illuminate the high-end shape of the density distribution, and to capture changes in the dense gas fraction and median volume density. Our results with and without a high density power law tail differ appreciably; we highlight better knowledge of the PDF shape as an important area. We also show th...

  9. Changes in monoterpene mixing ratios during summer storms in rural New Hampshire (USA)

    Science.gov (United States)

    Haase, K.B.; Jordan, C.; Mentis, E.; Cottrell, L.; Mayne, H.R.; Talbot, R.; Sive, B.C.

    2011-01-01

    Monoterpenes are an important class of biogenic hydrocarbons that influence ambient air quality and are a principle source of secondary organic aerosol (SOA). Emitted from vegetation, monoterpenes are a product of photosynthesis and act as a response to a variety of environmental factors. Most parameterizations of monoterpene emissions are based on clear weather models that do not take into account episodic conditions that can drastically change production and release rates into the atmosphere. Here, the ongoing monoterpene dataset from the rural Thompson Farm measurement site in Durham, New Hampshire is examined in the context of a set of known severe storm events. While some storm systems had a negligible influence on ambient monoterpene mixing ratios, the average storm event increased mixing ratios by 0.59 ?? 0.21 ppbv, a factor of 93 % above pre-storm levels. In some events, mixing ratios reached the 10's of ppbv range and persisted overnight. These mixing ratios correspond to increases in the monoterpene emission rate, ranging from 120 to 1240 g km-2 h -1 compared to an estimated clear weather rate of 116 to 193 g km-2 h-1. Considering the regularity of storm events over most forested areas, this could be an important factor to consider when modeling global monoterpene emissions and their resulting influence on the formation of organic aerosols. ?? 2011 Author(s).

  10. Carbon Dioxide Emission Evaluation of Porous Vegetation Concrete Blocks for Ecological Restoration Projects

    Directory of Open Access Journals (Sweden)

    Hwang-Hee Kim

    2017-02-01

    Full Text Available The purpose of this study is to determine the mix proportions that can minimize CO2 emissions while satisfying the target performance of porous vegetation concrete. The target performance of porous vegetation concrete was selected as compressive strength (>15 MPa and void ratio (>25%. This study considered the use of reinforcing fiber and styrene butadiene (SB latex to improve the strength of porous vegetation concrete, as well as the use of blast furnace slag aggregate to improve the CO2 emissions-reducing effect, and analyzed and evaluated the influence of fiber reinforcing, SB latex, and blast furnace slag aggregate on the compressive strength and CO2 emissions of porous vegetation concrete. The CO2 emissions of the raw materials were highest for cement, followed by aggregate, SB latex, and fiber. Blast furnace slag aggregate showed a 30% or more CO2 emissions-reducing effect versus crushed aggregate, and blast furnace slag cement showed a 78% CO2 emissions-reducing effect versus Portland cement. The CO2 emissions analyses for each raw material showed that the CO2 emissions during transportation were highest for the aggregate. Regarding CO2 emissions in each production stage, the materials stage produced the highest CO2 emissions, while the proportion of CO2 emissions in the transportation stage for each raw material, excluding fiber, were below 3% of total emissions. Use of blast furnace slag aggregate in porous vegetation concrete produced CO2 emissions-reducing effects, but decreased its compressive strength. Use of latex in porous vegetation concrete improved its compressive strength, but also increased CO2 emissions. Thus, it is appropriate to use latex in porous vegetation concrete to improve its strength and void ratio, and to use a blast furnace slag aggregate replacement ratio of 40% or less.

  11. Mills' ratio: Reciprocal concavity and functional inequalities

    CERN Document Server

    Baricz, Árpád

    2010-01-01

    This note contains suficient conditions for the probability density function of an arbitrary continuous univariate distribution such that the corresponding Mills ratio to be reciprocally convex (concave). To illustrate the applications of the main results, the Mills ratio of some common continuous univariate distributions, like gamma, log-normal and Student's t distributions, are discussed in details. The application to monopoly theory is also summarized.

  12. $\\tau$ hadronic branching ratios at DELPHI

    CERN Document Server

    Humble, Stephen

    1999-01-01

    Using data collected in the DELPHI detector at LEP1, we have measured the exclusive branching ratios in modes with several hadrons. Both classical cuts and neural network methods have been performed to make the best use of the DELPHI neutral particle identification capability. In addition, a measurement of inclusive branching ratios for tau decays containing one or three charged particles has been performed. (4 refs).

  13. The Laplace Likelihood Ratio Test for Heteroscedasticity

    Directory of Open Access Journals (Sweden)

    J. Martin van Zyl

    2011-01-01

    Full Text Available It is shown that the likelihood ratio test for heteroscedasticity, assuming the Laplace distribution, gives good results for Gaussian and fat-tailed data. The likelihood ratio test, assuming normality, is very sensitive to any deviation from normality, especially when the observations are from a distribution with fat tails. Such a likelihood test can also be used as a robust test for a constant variance in residuals or a time series if the data is partitioned into groups.

  14. Golden Ratio: A Measure of Physical Beauty

    Indian Academy of Sciences (India)

    2017-01-01

    Our attraction to another body increases if the body is symmetricaland in proportion. If a face or a structure is in proportion,we are more likely to notice it and find it beautiful.The universal ratio of beauty is the ‘Golden Ratio’, found inmany structures. This ratio comes from Fibonacci numbers.In this article, we explore this concept along with its applications.

  15. Negative Emissions Technology

    Science.gov (United States)

    Day, Danny

    2006-04-01

    Although `negative emissions' of carbon dioxide need not, in principle, involve use of biological processes to draw carbon out of the atmosphere, such `agricultural' sequestration' is the only known way to remove carbon from the atmosphere on time scales comparable to the time scale for anthropogenic increases in carbon emissions. In order to maintain the `negative emissions' the biomass must be used in such a way that the resulting carbon dioxide is separated and permanently sequestered. Two options for sequestration are in the topsoil and via geologic carbon sequestration. The former has multiple benefits, but the latter also is needed. Thus, although geologic carbon sequestration is viewed skeptically by some environmentalists as simply a way to keep using fossil fuels---it may be a key part of reversing accelerating climate forcing if rapid climate change is beginning to occur. I will first review the general approach of agricultural sequestration combined with use of resulting biofuels in a way that permits carbon separation and then geologic sequestration as a negative emissions technology. Then I discuss the process that is the focus of my company---the EPRIDA cycle. If deployed at a sufficiently large scale, it could reverse the increase in CO2 concentrations. I also estimate of benefits --carbon and other---of large scale deployment of negative emissions technologies. For example, using the EPRIDA cycle by planting and soil sequestering carbon in an area abut In 3X the size of Texas would remove the amount of carbon that is being accumulated worldwide each year. In addition to the atmospheric carbon removal, the EPRIDA approach also counters the depletion of carbon in the soil---increasing topsoil and its fertility; reduces the excess nitrogen in the water by eliminating the need for ammonium nitrate fertilizer and reduces fossil fuel reliance by providing biofuel and avoiding natural gas based fertilizer production.

  16. Spectral variability of the particulate backscattering ratio

    Science.gov (United States)

    Whitmire, A. L.; Boss, E.; Cowles, T. J.; Pegau, W. S.

    2007-05-01

    The spectral dependency of the particulate backscattering ratio is relevant in the fields of ocean color inversion, light field modeling, and inferring particle properties from optical measurements. Aside from theoretical predictions for spherical, homogeneous particles, we have very limited knowledge of the actual in situ spectral variability of the particulate backscattering ratio. This work presents results from five research cruises that were conducted over a three-year period. Water column profiles of physical and optical properties were conducted across diverse aquatic environments that offered a wide range of particle populations. The main objective of this research was to examine the behavior of the spectral particulate backscattering ratio in situ, both in terms of its absolute magnitude and its variability across visible wavelengths, using over nine thousand 1-meter binned data points for each of five wavelengths of the spectral particulate backscattering ratio. Our analysis reveals no spectral dependence of the particulate backscattering ratio within our measurement certainty, and a geometric mean value of 0.013 for this dataset. This is lower than the commonly used value of 0.0183 from Petzold’s integrated volume scattering data. Within the first optical depth of the water column, the mean particulate backscattering ratio was 0.010.

  17. Plutonium isotope ratio variations in North America

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Robert E [Los Alamos National Laboratory; La Mont, Stephen P [Los Alamos National Laboratory; Eisele, William F [Los Alamos National Laboratory; Fresquez, Philip R [Los Alamos National Laboratory; Mc Naughton, Michael [Los Alamos National Laboratory; Whicker, Jeffrey J [Los Alamos National Laboratory

    2010-12-14

    Historically, approximately 12,000 TBq of plutonium was distributed throughout the global biosphere by thermo nuclear weapons testing. The resultant global plutonium fallout is a complex mixture whose {sup 240}Pu/{sup 239}Pu atom ratio is a function of the design and yield of the devices tested. The average {sup 240}Pu/{sup 239}Pu atom ratio in global fallout is 0.176 + 014. However, the {sup 240}Pu/{sup 239}Pu atom ratio at any location may differ significantly from 0.176. Plutonium has also been released by discharges and accidents associated with the commercial and weapons related nuclear industries. At many locations contributions from this plutonium significantly alters the {sup 240}Pu/{sup 239}Pu atom ratios from those observed in global fallout. We have measured the {sup 240}Pu/{sup 239}Pu atom ratios in environmental samples collected from many locations in North America. This presentation will summarize the analytical results from these measurements. Special emphasis will be placed on interpretation of the significance of the {sup 240}Pu/{sup 239}Pu atom ratios measured in environmental samples collected in the Arctic and in the western portions of the United States.

  18. A note on trader Sharpe Ratios.

    Directory of Open Access Journals (Sweden)

    John M Coates

    Full Text Available Traders in the financial world are assessed by the amount of money they make and, increasingly, by the amount of money they make per unit of risk taken, a measure known as the Sharpe Ratio. Little is known about the average Sharpe Ratio among traders, but the Efficient Market Hypothesis suggests that traders, like asset managers, should not outperform the broad market. Here we report the findings of a study conducted in the City of London which shows that a population of experienced traders attain Sharpe Ratios significantly higher than the broad market. To explain this anomaly we examine a surrogate marker of prenatal androgen exposure, the second-to-fourth finger length ratio (2D:4D, which has previously been identified as predicting a trader's long term profitability. We find that it predicts the amount of risk taken by traders but not their Sharpe Ratios. We do, however, find that the traders' Sharpe Ratios increase markedly with the number of years they have traded, a result suggesting that learning plays a role in increasing the returns of traders. Our findings present anomalous data for the Efficient Markets Hypothesis.

  19. A note on trader Sharpe Ratios.

    Science.gov (United States)

    Coates, John M; Page, Lionel

    2009-11-25

    Traders in the financial world are assessed by the amount of money they make and, increasingly, by the amount of money they make per unit of risk taken, a measure known as the Sharpe Ratio. Little is known about the average Sharpe Ratio among traders, but the Efficient Market Hypothesis suggests that traders, like asset managers, should not outperform the broad market. Here we report the findings of a study conducted in the City of London which shows that a population of experienced traders attain Sharpe Ratios significantly higher than the broad market. To explain this anomaly we examine a surrogate marker of prenatal androgen exposure, the second-to-fourth finger length ratio (2D:4D), which has previously been identified as predicting a trader's long term profitability. We find that it predicts the amount of risk taken by traders but not their Sharpe Ratios. We do, however, find that the traders' Sharpe Ratios increase markedly with the number of years they have traded, a result suggesting that learning plays a role in increasing the returns of traders. Our findings present anomalous data for the Efficient Markets Hypothesis.

  20. Observation of CH4 and other Non-CO2 Green House Gas Emissions from California

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Marc L.; Zhao, Chuanfeng; Riley, William J.; Andrews, Arlyn C.

    2009-01-09

    In 2006, California passed the landmark assembly bill AB-32 to reduce California's emissions of greenhouse gases (GHGs) that contribute to global climate change. AB-32 commits California to reduce total GHG emissions to 1990 levels by 2020, a reduction of 25 percent from current levels. To verify that GHG emission reductions are actually taking place, it will be necessary to measure emissions. We describe atmospheric inverse model estimates of GHG emissions obtained from the California Greenhouse Gas Emissions Measurement (CALGEM) project. In collaboration with NOAA, we are measuring the dominant long-lived GHGs at two tall-towers in central California. Here, we present estimates of CH{sub 4} emissions obtained by statistical comparison of measured and predicted atmospheric mixing ratios. The predicted mixing ratios are calculated using spatially resolved a priori CH{sub 4} emissions and surface footprints, that provide a proportional relationship between the surface emissions and the mixing ratio signal at tower locations. The footprints are computed using the Weather Research and Forecast (WRF) coupled to the Stochastic Time-Inverted Lagrangian Transport (STILT) model. Integral to the inverse estimates, we perform a quantitative analysis of errors in atmospheric transport and other factors to provide quantitative uncertainties in estimated emissions. Regressions of modeled and measured mixing ratios suggest that total CH{sub 4} emissions are within 25% of the inventory estimates. A Bayesian source sector analysis obtains posterior scaling factors for CH{sub 4} emissions, indicating that emissions from several of the sources (e.g., landfills, natural gas use, petroleum production, crops, and wetlands) are roughly consistent with inventory estimates, but livestock emissions are significantly higher than the inventory. A Bayesian 'region' analysis is used to identify spatial variations in CH{sub 4} emissions from 13 sub-regions within California

  1. Mercury emissions of a coal-fired power plant in Germany

    Science.gov (United States)

    Weigelt, Andreas; Slemr, Franz; Ebinghaus, Ralf; Pirrone, Nicola; Bieser, Johannes; Bödewadt, Jan; Esposito, Giulio; van Velthoven, Peter F. J.

    2016-11-01

    Hg / SO2, Hg / CO, NOx / SO2 (NOx being the sum of NO and NO2) emission ratios (ERs) in the plume of the coal-fired power plant (CFPP), Lippendorf, near Leipzig, Germany, were determined within the European Tropospheric Mercury Experiment (ETMEP) aircraft campaign in August 2013. The gaseous oxidized mercury (GOM) fraction of mercury emissions was also assessed. Measured Hg / SO2 and Hg / CO ERs were within the measurement uncertainties consistent with the ratios calculated from annual emissions in 2013 reported by the CFPP operator, while the NOx / SO2 ER was somewhat lower. The GOM fraction of total mercury emissions, estimated using three independent methods, was below ˜ 25 %. This result is consistent with other findings and suggests that GOM fractions of ˜ 40 % of CFPP mercury emissions in current emission inventories are overestimated.

  2. The relationship between polycyclic aromatic hydrocarbon emission and far-infrared dust emission from NGC 2403 and M83

    CERN Document Server

    Jones, A G; Baes, M; Boquien, M; Boselli, A; De Looze, I; Fritz, J; Galliano, F; Hughes, T M; Lebouteiller, V; Lu, N; Madden, S C; Remy-Ruyer, A; Smith, M W L; Spinoglio, L; Zijlstra, A A

    2014-01-01

    We examine the relation between polycyclic aromatic hydrocarbon (PAH) emission at 8 microns and far-infrared emission from hot dust grains at 24 microns and from large dust grains at 160 and 250 microns in the nearby spiral galaxies NGC 2403 and M83 using data from the Spitzer Space Telescope and Herschel Space Observatory. We find that the PAH emission in NGC 2403 is better correlated with emission at 250 microns from dust heated by the diffuse interstellar radiation field (ISRF) and that the 8/250 micron surface brightness ratio is well-correlated with the stellar surface brightness as measured at 3.6 microns. This implies that the PAHs in NGC 2403 are intermixed with cold large dust grains in the diffuse interstellar medium (ISM) and that the PAHs are excited by the diffuse ISRF. In M83, the PAH emission appears more strongly correlated with 160 micron emission originating from large dust grains heated by star forming regions. However, the PAH emission in M83 is low where the 24 micron emission peaks withi...

  3. Experimental Study on Emission Performance of an LPP/TVC

    Institute of Scientific and Technical Information of China (English)

    JIN Yi; HE Xiaomin; ZHANG Jingyu; JIANG Bo; WU Zejun

    2012-01-01

    A key issue in the commercial aircraft engine design is environmental acceptability,and designers are continually challenged to reduce emissions.In this paper,an experimental investigation is performed to evaluate the emission performance of a liquid-fueled trapped vortex combustor (TVC) under lean premixed prevaporized (LPP) mode.When operating as an LPP system,a TVC is fueled both in the cavities and in the main stream.The correlations between the emission performance and the total excess air ratio,the positions (4 positions) of the fuel injectors in the main stream,and the inlet temperature are obtained.Experimental results show that both the volume concentrations of unbumt hydrocarbon (UHC) and NOx (NO,NO2 usually grouped together as NOx) increase with the increase of total excess air ratio from 1.5 to 3.0; the emission performance relies heavily on the position of the main stream injector,and the best performance is achieved at Position 4 in the experiments; the increase of the inlet temperature impacts on the emission performance positively; the smallest volume concentrations of UHC and NOx obtained in the experiment are 94× 10-6 and 2.3× 10-6 respectively.This paper validates the feasibility of low emissions for an LPP/TVC and provides a reference for further optimization of TVCs.

  4. Methyl chavicol: characterization of its biogenic emission rate

    NARCIS (Netherlands)

    Bouvier-Brown, N.C.; Goldstein, A.H.; Worton, D.R.; Matross, D.M.; Gilman, J.B.; Kuster, W.C.; Welsh-Bon, D.; Warneke, C.; de Gouw, J.A.; Cahill, M.J.; Holzinger, R.

    2009-01-01

    We report measurements of ambient atmospheric mixing ratios for methyl chavicol and determine its biogenic emission rate. Methyl chavicol, a biogenic oxygenated aromatic compound, is abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Meth

  5. Methyl chavicol: characterization of its biogenic emission rate

    NARCIS (Netherlands)

    Bouvier-Brown, N.C.; Goldstein, A.H.; Worton, D.R.; Matross, D.M.; Gilman, J.B.; Kuster, W.C.; Welsh-Bon, D.; Warneke, C.; de Gouw, J.A.; Cahill, M.J.; Holzinger, R.

    2009-01-01

    We report measurements of ambient atmospheric mixing ratios for methyl chavicol and determine its biogenic emission rate. Methyl chavicol, a biogenic oxygenated aromatic compound, is abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California.

  6. 40 CFR 98.183 - Calculating GHG emissions.

    Science.gov (United States)

    2010-07-01

    ... (metric tons). 44/12 = Ratio of molecular weights, CO2 to carbon. 2000/2205 = Conversion factor to convert... smelting furnace, determine the annual mass of carbon in each carbon-containing material, other than fuel... emissions using Equation R-1 of this section. Carbon-containing materials include carbonaceous...

  7. Fast sorption measurements of volatile organic compounds on building materials: Part 1 – Methodology developed for field applications

    Directory of Open Access Journals (Sweden)

    M. Rizk

    2016-03-01

    Full Text Available A Proton Transfer Reaction-Mass Spectrometer (PTR-MS has been coupled to the outlet of a Field and Laboratory Emission Cell (FLEC, to measure volatile organic compounds (VOC concentration during a sorption experiments (Rizk et al., this issue [1]. The limits of detection of the PTR-MS for three VOCs are presented for different time resolution (2, 10 and 20 s. The mass transfer coefficient was calculated in the FLEC cavity for the different flow rates. The concentration profile obtained from a sorption experiment performed on a gypsum board and a vinyl flooring are also presented in comparison with the profile obtained for a Pyrex glass used as a material that do not present any sorption behavior (no sink. Finally, the correlation between the concentration of VOCs adsorbed on the surface of the gypsum board at equilibrium (Cse and the concentration of VOCs Ce measured in the gas phase at equilibrium is presented for benzene, C8 aromatics and toluene.

  8. Sex ratios at birth after induced abortion.

    Science.gov (United States)

    Urquia, Marcelo L; Moineddin, Rahim; Jha, Prabhat; O'Campo, Patricia J; McKenzie, Kwame; Glazier, Richard H; Henry, David A; Ray, Joel G

    2016-06-14

    Skewed male:female ratios at birth have been observed among certain immigrant groups. Data on abortion practices that might help to explain these findings are lacking. We examined 1 220 933 births to women with up to 3 consecutive singleton live births between 1993 and 2012 in Ontario. Records of live births, and induced and spontaneous abortions were linked to Canadian immigration records. We determined associations of male:female infant ratios with maternal birthplace, sex of the previous living sibling(s) and prior spontaneous or induced abortions. Male:female infant ratios did not appreciably depart from the normal range among Canadian-born women and most women born outside of Canada, irrespective of the sex of previous children or the characteristics of prior abortions. However, among infants of women who immigrated from India and had previously given birth to 2 girls, the overall male:female ra