WorldWideScience

Sample records for ptpase transmembrane protein

  1. Ligand-mediated negative regulation of a chimeric transmembrane receptor tyrosine phosphatase

    DEFF Research Database (Denmark)

    Desai, D M; Sap, J; Schlessinger, J;

    1993-01-01

    CD45, a transmembrane protein tyrosine phosphatase (PTPase), is required for TCR signaling. Multiple CD45 isoforms, differing in the extracellular domain, are expressed in a tissue- and activation-specific manner, suggesting an important function for this domain. We report that a chimeric protein...

  2. [Efficient extraction of transmembrane proteins using ProteoExtract Transmembrane Protein Extraction Kit].

    Science.gov (United States)

    Błachnio, Karina

    2010-01-01

    Detergents commonly used for solubilization of membrane proteins may be ionic or non-ionic. Exposing membrane proteins to detergents, however, can adversely affect their native structure, which can be a major hindrance for functional studies. This is especially true for proteins with multiple transmembrane domains. The ProteoExtract Transmembrane Protein Extraction Kit (TM-PEK), offered by Merck, provides a detergent-free novel reagents to enable the mild and efficient extraction of proteins containing seven transmembrane domains, such as GPCRs (G-Protein Coupled Receptors) e.g.: Frizzled-4 and CELSR-3, from mammalian cells. The fraction enriched in transmembrane proteins using TM-PEK is directly compatible with enzyme assays, non-denaturing gel electrophoresis, 1- and 2-D SDS-PAGE, MS analysis, Western blotting, immunoprecipitation and ELISA. Unlike many alternatives, TM-PEK extraction procedure does not require sonication, extended rigorous vortexing, ultracentrifugation, or incubation of samples at elevated temperatures--thus minimizing the risk of post-extraction degradation or modifications.

  3. Evolution of vertebrate interferon inducible transmembrane proteins

    Directory of Open Access Journals (Sweden)

    Hickford Danielle

    2012-04-01

    Full Text Available Abstract Background Interferon inducible transmembrane proteins (IFITMs have diverse roles, including the control of cell proliferation, promotion of homotypic cell adhesion, protection against viral infection, promotion of bone matrix maturation and mineralisation, and mediating germ cell development. Most IFITMs have been well characterised in human and mouse but little published data exists for other animals. This study characterised IFITMs in two distantly related marsupial species, the Australian tammar wallaby and the South American grey short-tailed opossum, and analysed the phylogeny of the IFITM family in vertebrates. Results Five IFITM paralogues were identified in both the tammar and opossum. As in eutherians, most marsupial IFITM genes exist within a cluster, contain two exons and encode proteins with two transmembrane domains. Only two IFITM genes, IFITM5 and IFITM10, have orthologues in both marsupials and eutherians. IFITM5 arose in bony fish and IFITM10 in tetrapods. The bone-specific expression of IFITM5 appears to be restricted to therian mammals, suggesting that its specialised role in bone production is a recent adaptation specific to mammals. IFITM10 is the most highly conserved IFITM, sharing at least 85% amino acid identity between birds, reptiles and mammals and suggesting an important role for this presently uncharacterised protein. Conclusions Like eutherians, marsupials also have multiple IFITM genes that exist in a gene cluster. The differing expression patterns for many of the paralogues, together with poor sequence conservation between species, suggests that IFITM genes have acquired many different roles during vertebrate evolution.

  4. Transmembrane protein sorting driven by membrane curvature

    Science.gov (United States)

    Strahl, H.; Ronneau, S.; González, B. Solana; Klutsch, D.; Schaffner-Barbero, C.; Hamoen, L. W.

    2015-11-01

    The intricate structure of prokaryotic and eukaryotic cells depends on the ability to target proteins to specific cellular locations. In most cases, we have a poor understanding of the underlying mechanisms. A typical example is the assembly of bacterial chemoreceptors at cell poles. Here we show that the classical chemoreceptor TlpA of Bacillus subtilis does not localize according to the consensus stochastic nucleation mechanism but accumulates at strongly curved membrane areas generated during cell division. This preference was confirmed by accumulation at non-septal curved membranes. Localization appears to be an intrinsic property of the protein complex and does not rely on chemoreceptor clustering, as was previously shown for Escherichia coli. By constructing specific amino-acid substitutions, we demonstrate that the preference for strongly curved membranes arises from the curved shape of chemoreceptor trimer of dimers. These findings demonstrate that the intrinsic shape of transmembrane proteins can determine their cellular localization.

  5. Specificity of transmembrane protein palmitoylation in yeast.

    Directory of Open Access Journals (Sweden)

    Ayelén González Montoro

    Full Text Available Many proteins are modified after their synthesis, by the addition of a lipid molecule to one or more cysteine residues, through a thioester bond. This modification is called S-acylation, and more commonly palmitoylation. This reaction is carried out by a family of enzymes, called palmitoyltransferases (PATs, characterized by the presence of a conserved 50- aminoacids domain called "Asp-His-His-Cys- Cysteine Rich Domain" (DHHC-CRD. There are 7 members of this family in the yeast Saccharomyces cerevisiae, and each of these proteins is thought to be responsible for the palmitoylation of a subset of substrates. Substrate specificity of PATs, however, is not yet fully understood. Several yeast PATs seem to have overlapping specificity, and it has been proposed that the machinery responsible for palmitoylating peripheral membrane proteins in mammalian cells, lacks specificity altogether.Here we investigate the specificity of transmembrane protein palmitoylation in S. cerevisiae, which is carried out predominantly by two PATs, Swf1 and Pfa4. We show that palmitoylation of transmembrane substrates requires dedicated PATs, since other yeast PATs are mostly unable to perform Swf1 or Pfa4 functions, even when overexpressed. Furthermore, we find that Swf1 is highly specific for its substrates, as it is unable to substitute for other PATs. To identify where Swf1 specificity lies, we carried out a bioinformatics survey to identify amino acids responsible for the determination of specificity or Specificity Determination Positions (SDPs and showed experimentally, that mutation of the two best SDP candidates, A145 and K148, results in complete and partial loss of function, respectively. These residues are located within the conserved catalytic DHHC domain suggesting that it could also be involved in the determination of specificity. Finally, we show that modifying the position of the cysteines in Tlg1, a Swf1 substrate, results in lack of palmitoylation, as

  6. The positive and negative control actions of PTPase on IL-2 signaling

    Institute of Scientific and Technical Information of China (English)

    朱锦芳; 季红斌; 鲁林荣; 郭丽英; 郑仲承; 刘新垣

    1999-01-01

    The tyrosine phosphorylation of intracellular proteins was greatly increased after the treatment of cells with sodium n-vanadate, the inhibitor of protein tyrosine phosphatase (PTPase) . It was found by using EMSA that during this period the signal transducer and activator of transcription 5 (STAT5) were tyrosine-phosphorylated and activated STAT5 may bind to ν-interferon activated sequence (GAS). Contrast to the activation of STATS by interleukin-2 (IL-2), the activation for STAT5 by sodium n-vanadate cannot be completely blocked by the inhibitor of protein tyrosine kinase (PTK). In addition, sodium n-vanadate may augment the IL-2 up-regulation on the expression of reporter genes containing GAS in their promoter regions. All the results here show that PTPase may negatively regulate the JAK-STAT signal transduction pathway induced by IL-2. However, the inhibition of PTPase activity may block the induction of tnf-β gene and c- myc gene transcription by IL-2 and ultimately results in cell death. Therefo

  7. Mechanisms for quality control of misfolded transmembrane proteins

    OpenAIRE

    Houck, Scott A.; Cyr, Douglas M.

    2011-01-01

    To prevent the accumulation of misfolded and aggregated proteins, the cell has developed a complex network of cellular quality control (QC) systems to recognize misfolded proteins and facilitate their refolding or degradation. The cell faces numerous obstacles when performing quality control on transmembrane proteins. Transmembrane proteins have domains on both sides of a membrane and QC systems in distinct compartments must coordinate to monitor the folding status of the protein. Additionall...

  8. Single methyl groups can act as toggle switches to specify transmembrane protein-protein interactions

    DEFF Research Database (Denmark)

    He, Li; Steinocher, Helena; Shelar, Ashish

    2017-01-01

    Transmembrane domains (TMDs) engage in protein-protein interactions that regulate many cellular processes, but the rules governing the specificity of these interactions are poorly understood. To discover these principles, we analyzed 26-residue model transmembrane proteins consisting exclusively ...

  9. Simultaneous prediction of protein secondary structure and transmembrane spans.

    Science.gov (United States)

    Leman, Julia Koehler; Mueller, Ralf; Karakas, Mert; Woetzel, Nils; Meiler, Jens

    2013-07-01

    Prediction of transmembrane spans and secondary structure from the protein sequence is generally the first step in the structural characterization of (membrane) proteins. Preference of a stretch of amino acids in a protein to form secondary structure and being placed in the membrane are correlated. Nevertheless, current methods predict either secondary structure or individual transmembrane states. We introduce a method that simultaneously predicts the secondary structure and transmembrane spans from the protein sequence. This approach not only eliminates the necessity to create a consensus prediction from possibly contradicting outputs of several predictors but bears the potential to predict conformational switches, i.e., sequence regions that have a high probability to change for example from a coil conformation in solution to an α-helical transmembrane state. An artificial neural network was trained on databases of 177 membrane proteins and 6048 soluble proteins. The output is a 3 × 3 dimensional probability matrix for each residue in the sequence that combines three secondary structure types (helix, strand, coil) and three environment types (membrane core, interface, solution). The prediction accuracies are 70.3% for nine possible states, 73.2% for three-state secondary structure prediction, and 94.8% for three-state transmembrane span prediction. These accuracies are comparable to state-of-the-art predictors of secondary structure (e.g., Psipred) or transmembrane placement (e.g., OCTOPUS). The method is available as web server and for download at www.meilerlab.org.

  10. Rigidity of transmembrane proteins determines their cluster shape

    CERN Document Server

    Jafarinia, Hamidreza; Jalali, Mir Abbas

    2015-01-01

    Protein aggregation in cell membrane is vital for majority of biological functions. Recent experimental results suggest that transmembrane domains of proteins such as $\\alpha$-helices and $\\beta$-sheets have different structural rigidity. We use molecular dynamics simulation of a coarse-grained model of protein-embedded lipid membranes to investigate the mechanisms of protein clustering. For a variety of protein concentrations, our simulations in thermal equilibrium conditions reveal that the structural rigidity of transmembrane domains dramatically affects interactions and changes the shape of the cluster. We have observed stable large aggregates even in the absence of hydrophobic mismatch which has been previously proposed as the mechanism of protein aggregation. According to our results, semi-flexible proteins aggregate to form two-dimensional clusters while rigid proteins, by contrast, form one-dimensional string-like structures. By assuming two probable scenarios for the formation of a two-dimensional tr...

  11. Optimizing an emperical scoring function for transmembrane protein structure determination.

    Energy Technology Data Exchange (ETDEWEB)

    Young, Malin M.; Sale, Kenneth L.; Gray, Genetha Anne; Kolda, Tamara Gibson

    2003-10-01

    We examine the problem of transmembrane protein structure determination. Like many other questions that arise in biological research, this problem cannot be addressed by traditional laboratory experimentation alone. An approach that integrates experiment and computation is required. We investigate a procedure which states the transmembrane protein structure determination problem as a bound constrained optimization problem using a special empirical scoring function, called Bundler, as the objective function. In this paper, we describe the optimization problem and some of its mathematical properties. We compare and contrast results obtained using two different derivative free optimization algorithms.

  12. Optimizing an emperical scoring function for transmembrane protein structure determination.

    Energy Technology Data Exchange (ETDEWEB)

    Young, Malin M.; Sale, Kenneth L.; Gray, Genetha Anne; Kolda, Tamara Gibson

    2003-10-01

    We examine the problem of transmembrane protein structure determination. Like many other questions that arise in biological research, this problem cannot be addressed by traditional laboratory experimentation alone. An approach that integrates experiment and computation is required. We investigate a procedure which states the transmembrane protein structure determination problem as a bound constrained optimization problem using a special empirical scoring function, called Bundler, as the objective function. In this paper, we describe the optimization problem and some of its mathematical properties. We compare and contrast results obtained using two different derivative free optimization algorithms.

  13. Functions of intrinsic disorder in transmembrane proteins

    DEFF Research Database (Denmark)

    Kjaergaard, Magnus; Kragelund, Birthe B.

    2017-01-01

    mechanisms. (3) Trafficking of membrane proteins. (4) Transient membrane associations. (5) Post-translational modifications most notably phosphorylation and (6) disorder-linked isoform dependent function. We finish the review by discussing the future challenges facing the membrane protein community regarding......Intrinsic disorder is common in integral membrane proteins, particularly in the intracellular domains. Despite this observation, these domains are not always recognized as being disordered. In this review, we will discuss the biological functions of intrinsically disordered regions of membrane...... proteins, and address why the flexibility afforded by disorder is mechanistically important. Intrinsically disordered regions are present in many common classes of membrane proteins including ion channels and transporters; G-protein coupled receptors (GPCRs), receptor tyrosine kinases and cytokine...

  14. Membrane topology of transmembrane proteins: determinants and experimental tools.

    Science.gov (United States)

    Lee, Hunsang; Kim, Hyun

    2014-10-17

    Membrane topology refers to the two-dimensional structural information of a membrane protein that indicates the number of transmembrane (TM) segments and the orientation of soluble domains relative to the plane of the membrane. Since membrane proteins are co-translationally translocated across and inserted into the membrane, the TM segments orient themselves properly in an early stage of membrane protein biogenesis. Each membrane protein must contain some topogenic signals, but the translocation components and the membrane environment also influence the membrane topology of proteins. We discuss the factors that affect membrane protein orientation and have listed available experimental tools that can be used in determining membrane protein topology.

  15. Transmembrane protein sorting driven by membrane curvature

    NARCIS (Netherlands)

    Strahl, H.; Ronneau, S.; Solana González, B.; Klutsch, D.; Schaffner-Barbero, C.; Hamoen, L.W.

    2015-01-01

    The intricate structure of prokaryotic and eukaryotic cells depends on the ability to target proteins to specific cellular locations. In most cases, we have a poor understanding of the underlying mechanisms. A typical example is the assembly of bacterial chemoreceptors at cell poles. Here we show

  16. Transmembrane protein sorting driven by membrane curvature

    NARCIS (Netherlands)

    Strahl, H.; Ronneau, S.; Solana González, B.; Klutsch, D.; Schaffner-Barbero, C.; Hamoen, L.W.

    2015-01-01

    The intricate structure of prokaryotic and eukaryotic cells depends on the ability to target proteins to specific cellular locations. In most cases, we have a poor understanding of the underlying mechanisms. A typical example is the assembly of bacterial chemoreceptors at cell poles. Here we show th

  17. Incorporating significant amino acid pairs to identify O-linked glycosylation sites on transmembrane proteins and non-transmembrane proteins

    Directory of Open Access Journals (Sweden)

    Lee Tzong-Yi

    2010-10-01

    Full Text Available Abstract Background While occurring enzymatically in biological systems, O-linked glycosylation affects protein folding, localization and trafficking, protein solubility, antigenicity, biological activity, as well as cell-cell interactions on membrane proteins. Catalytic enzymes involve glycotransferases, sugar-transferring enzymes and glycosidases which trim specific monosaccharides from precursors to form intermediate structures. Due to the difficulty of experimental identification, several works have used computational methods to identify glycosylation sites. Results By investigating glycosylated sites that contain various motifs between Transmembrane (TM and non-Transmembrane (non-TM proteins, this work presents a novel method, GlycoRBF, that implements radial basis function (RBF networks with significant amino acid pairs (SAAPs for identifying O-linked glycosylated serine and threonine on TM proteins and non-TM proteins. Additionally, a membrane topology is considered for reducing the false positives on glycosylated TM proteins. Based on an evaluation using five-fold cross-validation, the consideration of a membrane topology can reduce 31.4% of the false positives when identifying O-linked glycosylation sites on TM proteins. Via an independent test, GlycoRBF outperforms previous O-linked glycosylation site prediction schemes. Conclusion A case study of Cyclic AMP-dependent transcription factor ATF-6 alpha was presented to demonstrate the effectiveness of GlycoRBF. Web-based GlycoRBF, which can be accessed at http://GlycoRBF.bioinfo.tw, can identify O-linked glycosylated serine and threonine effectively and efficiently. Moreover, the structural topology of Transmembrane (TM proteins with glycosylation sites is provided to users. The stand-alone version of GlycoRBF is also available for high throughput data analysis.

  18. High-throughput synthesis of stable isotope-labeled transmembrane proteins for targeted transmembrane proteomics using a wheat germ cell-free protein synthesis system.

    Science.gov (United States)

    Takemori, Nobuaki; Takemori, Ayako; Matsuoka, Kazuhiro; Morishita, Ryo; Matsushita, Natsuki; Aoshima, Masato; Takeda, Hiroyuki; Sawasaki, Tatsuya; Endo, Yaeta; Higashiyama, Shigeki

    2015-02-01

    Using a wheat germ cell-free protein synthesis system, we developed a high-throughput method for the synthesis of stable isotope-labeled full-length transmembrane proteins as proteoliposomes to mimic the in vivo environment, and we successfully constructed an internal standard library for targeted transmembrane proteomics by using mass spectrometry.

  19. The Transmembrane Adaptor Protein SIT Inhibits TCR-Mediated Signaling

    Science.gov (United States)

    Arndt, Börge; Krieger, Tina; Kalinski, Thomas; Thielitz, Anja; Reinhold, Dirk; Roessner, Albert; Schraven, Burkhart; Simeoni, Luca

    2011-01-01

    Transmembrane adaptor proteins (TRAPs) organize signaling complexes at the plasma membrane, and thus function as critical linkers and integrators of signaling cascades downstream of antigen receptors. We have previously shown that the transmembrane adaptor protein SIT regulates the threshold for thymocyte selection. Moreover, T cells from SIT-deficient mice are hyperresponsive to CD3 stimulation and undergo enhanced lymphopenia-induced homeostatic proliferation, thus indicating that SIT inhibits TCR-mediated signaling. Here, we have further addressed how SIT regulates signaling cascades in T cells. We demonstrate that the loss of SIT enhances TCR-mediated Akt activation and increased phosphorylation/inactivation of Foxo1, a transcription factor of the Forkhead family that inhibits cell cycle progression and regulates T-cell homeostasis. We have also shown that CD4+ T cells from SIT-deficient mice display increased CD69 and CD40L expression indicating an altered activation status. Additional biochemical analyses further revealed that suppression of SIT expression by RNAi in human T cells resulted in an enhanced proximal TCR signaling. In summary, the data identify SIT as an important modulator of TCR-mediated signaling that regulates T-cell activation, homeostasis and tolerance. PMID:21957439

  20. Hkat, a novel nutritionally regulated transmembrane protein in adipose tissues.

    Science.gov (United States)

    Zhang, Ren

    2012-01-01

    White adipose tissue is an active endocrine organ regulating many aspects of whole body physiology and pathology. Adipogenesis, a process in which premature cells differentiate into adipocytes, is a complex process that includes orchestrated changes in gene expression and cell morphology in response to various nutritional and hormonal stimuli. To profile transcriptome changes in response to nutritional stimulation, we performed RNA-seq on fat in mice treated with either a high-fat diet or fasting. We identified a novel nutritionally regulated gene, Gm12824, named Hkat (heart, kidney, adipose-enriched transmembrane protein). We show that both fasting and obesity dramatically reduce Hkat in white adipose tissue, and that fasting reduces while obesity increases its expression in brown fat. Hkat is localized to the plasma membrane and induced during adipogenesis. Therefore, Hkat is a novel nutritionally regulated gene that is potentially involved in metabolism.

  1. A Novel Type III Endosome Transmembrane Protein, TEMP

    Directory of Open Access Journals (Sweden)

    Rohan D. Teasdale

    2012-11-01

    Full Text Available As part of a high-throughput subcellular localisation project, the protein encoded by the RIKEN mouse cDNA 2610528J11 was expressed and identified to be associated with both endosomes and the plasma membrane. Based on this, we have assigned the name TEMP for Type III Endosome Membrane Protein. TEMP encodes a short protein of 111 amino acids with a single, alpha-helical transmembrane domain. Experimental analysis of its membrane topology demonstrated it is a Type III membrane protein with the amino-terminus in the lumenal, or extracellular region, and the carboxy-terminus in the cytoplasm. In addition to the plasma membrane TEMP was localized to Rab5 positive early endosomes, Rab5/Rab11 positive recycling endosomes but not Rab7 positive late endosomes. Video microscopy in living cells confirmed TEMP's plasma membrane localization and identified the intracellular endosome compartments to be tubulovesicular. Overexpression of TEMP resulted in the early/recycling endosomes clustering at the cell periphery that was dependent on the presence of intact microtubules. The cellular function of TEMP cannot be inferred based on bioinformatics comparison, but its cellular distribution between early/recycling endosomes and the plasma membrane suggests a role in membrane transport.

  2. Prediction of transmembrane helix orientation in polytopic membrane proteins

    Directory of Open Access Journals (Sweden)

    Liang Jie

    2006-06-01

    Full Text Available Abstract Background Membrane proteins compose up to 30% of coding sequences within genomes. However, their structure determination is lagging behind compared with soluble proteins due to the experimental difficulties. Therefore, it is important to develop reliable computational methods to predict structures of membrane proteins. Results We present a method for prediction of the TM helix orientation, which is an essential step in ab initio modeling of membrane proteins. Our method is based on a canonical model of the heptad repeat originally developed for coiled coils. We identify the helical surface patches that interface with lipid molecules at an accuracy of about 88% from the sequence information alone, using an empirical scoring function LIPS (LIPid-facing Surface, which combines lipophilicity and conservation of residues in the helix. We test and discuss results of prediction of helix-lipid interfaces on 162 transmembrane helices from 18 polytopic membrane proteins and present predicted orientations of TM helices in TRPV1 channel. We also apply our method to two structures of homologous cytochrome b6f complexes and find discrepancy in the assignment of TM helices from subunits PetG, PetN and PetL. The results of LIPS calculations and analysis of packing and H-bonding interactions support the helix assignment found in the cytochrome b6f structure from green alga but not the assignment of TM helices in the cyanobacterium b6f structure. Conclusion LIPS calculations can be used for the prediction of helix orientation in ab initio modeling of polytopic membrane proteins. We also show with the example of two cytochrome b6f structures that our method can identify questionable helix assignments in membrane proteins. The LIPS server is available online at http://gila.bioengr.uic.edu/lab/larisa/lips.html.

  3. Structural organization and interactions of transmembrane domains in tetraspanin proteins

    Directory of Open Access Journals (Sweden)

    DeGrado William F

    2005-06-01

    Full Text Available Abstract Background Proteins of the tetraspanin family contain four transmembrane domains (TM1-4 linked by two extracellular loops and a short intracellular loop, and have short intracellular N- and C-termini. While structure and function analysis of the larger extracellular loop has been performed, the organization and role of transmembrane domains have not been systematically assessed. Results Among 28 human tetraspanin proteins, the TM1-3 sequences display a distinct heptad repeat motif (abcdefgn. In TM1, position a is occupied by structurally conserved bulky residues and position d contains highly conserved Asn and Gly residues. In TM2, position a is occupied by conserved small residues (Gly/Ala/Thr, and position d has a conserved Gly and two bulky aliphatic residues. In TM3, three a positions of the heptad repeat are filled by two leucines and a glutamate/glutamine residue, and two d positions are occupied by either Phe/Tyr or Val/Ile/Leu residues. No heptad motif is apparent in TM4 sequences. Mutations of conserved glycines in human CD9 (Gly25 and Gly32 in TM1; Gly67 and Gly74 in TM2 caused aggregation of mutant proteins inside the cell. Modeling of the TM1-TM2 interface in CD9, using a novel algorithm, predicts tight packing of conserved bulky residues against conserved Gly residues along the two helices. The homodimeric interface of CD9 was mapped, by disulfide cross-linking of single-cysteine mutants, to the vicinity of residues Leu14 and Phe17 in TM1 (positions g and c and Gly77, Gly80 and Ala81 in TM2 (positions d, g and a, respectively. Mutations of a and d residues in both TM1 and TM2 (Gly25, Gly32, Gly67 and Gly74, involved in intramolecular TM1-TM2 interaction, also strongly diminished intermolecular interaction, as assessed by cross-linking of Cys80. Conclusion Our results suggest that tetraspanin intra- and intermolecular interactions are mediated by conserved residues in adjacent, but distinct regions of TM1 and TM2. A key

  4. Transmembrane Protein 147 (TMEM147) Is a Novel Component of the Nicalin-NOMO Protein Complex*

    OpenAIRE

    Dettmer, Ulf; Kuhn, Peer-Hendrik; Abou-Ajram, Claudia; Lichtenthaler, Stefan F.; Krüger, Marcus; Kremmer, Elisabeth; Haass, Christian; Haffner, Christof

    2010-01-01

    Nicastrin and its relative Nicalin (Nicastrin-like protein) are both members of larger protein complexes, namely γ-secretase and the Nicalin-NOMO (Nodal modulator) complex. The γ-secretase complex, which contains Presenilin, APH-1, and PEN-2 in addition to Nicastrin, catalyzes the proteolytic cleavage of the transmembrane domain of various proteins including the β-amyloid precursor protein and Notch. Nicalin and its binding partner NOMO form a complex that was shown to modulate Nodal signalin...

  5. The transmembrane domain of TACE regulates protein ectodomain shedding

    Institute of Scientific and Technical Information of China (English)

    Xiaojin Li; Liliana Pérez; Zui Pan; Huizhou Fan

    2007-01-01

    Numerous membrane proteins are cleaved by tumor necrosis factor-α converting enzyme (TACE), which causes the release of their ectodomains. An ADAM (a disintegrin and metalloprotease domain) family member, TACE contains several noncatalytic domains whose roles in ectodomain shedding have yet to be fully resolved. Here, we have explored the function of the transmembrane domain (TM) of TACE by coupling molecular engineering and functional analysis. A TM-free TACE construct that is anchored to the plasma membrane by a glycosylphosphatidylino-sitol (GPI)-binding polypeptide failed to restore shedding of transforming growth factor-α (TGF-α), tumor necrosis factor-α (TNF-α) and L-selectin in cells lacking endogenous TACE activity. Substitution of the TACE TM with that of the prolactin receptor or platelet-derived growth factor receptor (PDGFR) also resulted in severe loss of TGF-α shedding, but had no effects on the cleavage of TNF-α and L-selectin. Replacement of the TM in TGF-a with that of L-selectin enabled TGF-a shedding by the TACE mutants carrying the TM of prolactin receptor and PDGFR. Taken together, our observations suggest that anchorage of TACE to the lipid bilayer through a TM is required for efficient cleavage of a broad spectrum of substrates, and that the amino-acid sequence of TACE TM may play a role in regulatory specificity among TACE substrates.

  6. Hidden markov model for the prediction of transmembrane proteins using MATLAB.

    Science.gov (United States)

    Chaturvedi, Navaneet; Shanker, Sudhanshu; Singh, Vinay Kumar; Sinha, Dhiraj; Pandey, Paras Nath

    2011-01-01

    Since membranous proteins play a key role in drug targeting therefore transmembrane proteins prediction is active and challenging area of biological sciences. Location based prediction of transmembrane proteins are significant for functional annotation of protein sequences. Hidden markov model based method was widely applied for transmembrane topology prediction. Here we have presented a revised and a better understanding model than an existing one for transmembrane protein prediction. Scripting on MATLAB was built and compiled for parameter estimation of model and applied this model on amino acid sequence to know the transmembrane and its adjacent locations. Estimated model of transmembrane topology was based on TMHMM model architecture. Only 7 super states are defined in the given dataset, which were converted to 96 states on the basis of their length in sequence. Accuracy of the prediction of model was observed about 74 %, is a good enough in the area of transmembrane topology prediction. Therefore we have concluded the hidden markov model plays crucial role in transmembrane helices prediction on MATLAB platform and it could also be useful for drug discovery strategy. The database is available for free at bioinfonavneet@gmail.comvinaysingh@bhu.ac.in.

  7. Bax transmembrane domain interacts with prosurvival Bcl-2 proteins in biological membranes.

    Science.gov (United States)

    Andreu-Fernández, Vicente; Sancho, Mónica; Genovés, Ainhoa; Lucendo, Estefanía; Todt, Franziska; Lauterwasser, Joachim; Funk, Kathrin; Jahreis, Günther; Pérez-Payá, Enrique; Mingarro, Ismael; Edlich, Frank; Orzáez, Mar

    2017-01-10

    The Bcl-2 (B-cell lymphoma 2) protein Bax (Bcl-2 associated X, apoptosis regulator) can commit cells to apoptosis via outer mitochondrial membrane permeabilization. Bax activity is controlled in healthy cells by prosurvival Bcl-2 proteins. C-terminal Bax transmembrane domain interactions were implicated recently in Bax pore formation. Here, we show that the isolated transmembrane domains of Bax, Bcl-xL (B-cell lymphoma-extra large), and Bcl-2 can mediate interactions between Bax and prosurvival proteins inside the membrane in the absence of apoptotic stimuli. Bcl-2 protein transmembrane domains specifically homooligomerize and heterooligomerize in bacterial and mitochondrial membranes. Their interactions participate in the regulation of Bcl-2 proteins, thus modulating apoptotic activity. Our results suggest that interactions between the transmembrane domains of Bax and antiapoptotic Bcl-2 proteins represent a previously unappreciated level of apoptosis regulation.

  8. New transmembrane AMPA receptor regulatory protein isoform, gamma-7, differentially regulates AMPA receptors

    National Research Council Canada - National Science Library

    Kato, Akihiko S; Zhou, Wei; Milstein, Aaron D; Knierman, Mike D; Siuda, Edward R; Dotzlaf, Joe E; Yu, Hong; Hale, John E; Nisenbaum, Eric S; Nicoll, Roger A; Bredt, David S

    2007-01-01

    AMPA-type glutamate receptors (GluRs) mediate most excitatory signaling in the brain and are composed of GluR principal subunits and transmembrane AMPA receptor regulatory protein (TARP) auxiliary subunits...

  9. Expression of Trans-Membrane Proteins in vitro Using a Cell Free System

    Science.gov (United States)

    Weisse, Natalie; Noireaux, Vincent; Chalmeau, Jerome

    2010-10-01

    Trans-membrane proteins represent a significant portion of the proteins expressed by cells. The expression of proteins in vitro, however, remains a challenge. Numerous expression approaches have been developed with cell free expression (CFE) being one of the most promising. CFE is based on a transcription-translation system that has been extracted from E. coli bacteria. Adding the desired DNA allows expression of a selected protein, and in the presence of phospholipids the expression of trans-membrane proteins becomes possible. In order to express trans-membrane proteins in a closed native environment, the cell free system (CFS) is encapsulated with a phospholipid bilayer, creating an artificial cell. To verify protein expression, AquaporinZ (AqpZ), a well-known trans-membrane protein tagged with a green fluorescent protein (eGFP), was used so the expressed proteins could be seen under a fluorescent microscope. These artificial cells will serve as an experimental platform for testing the viability of the expressed trans-membrane proteins. Results from the manipulation of these artificial cells by attaching them to the slide surface through streptavidin-biotin bonding will be presented.

  10. Intrinsic Disorder in Transmembrane Proteins: Roles in Signaling and Topology Prediction.

    Directory of Open Access Journals (Sweden)

    Jérôme Bürgi

    Full Text Available Intrinsically disordered regions (IDRs are peculiar stretches of amino acids that lack stable conformations in solution. Intrinsic Disorder containing Proteins (IDP are defined by the presence of at least one large IDR and have been linked to multiple cellular processes including cell signaling, DNA binding and cancer. Here we used computational analyses and publicly available databases to deepen insight into the prevalence and function of IDRs specifically in transmembrane proteins, which are somewhat neglected in most studies. We found that 50% of transmembrane proteins have at least one IDR of 30 amino acids or more. Interestingly, these domains preferentially localize to the cytoplasmic side especially of multi-pass transmembrane proteins, suggesting that disorder prediction could increase the confidence of topology prediction algorithms. This was supported by the successful prediction of the topology of the uncharacterized multi-pass transmembrane protein TMEM117, as confirmed experimentally. Pathway analysis indicated that IDPs are enriched in cell projection and axons and appear to play an important role in cell adhesion, signaling and ion binding. In addition, we found that IDP are enriched in phosphorylation sites, a crucial post translational modification in signal transduction, when compared to fully ordered proteins and to be implicated in more protein-protein interaction events. Accordingly, IDPs were highly enriched in short protein binding regions called Molecular Recognition Features (MoRFs. Altogether our analyses strongly support the notion that the transmembrane IDPs act as hubs in cellular signal events.

  11. Transmembrane protein aptamers that inhibit CCR5 expression and HIV coreceptor function.

    Science.gov (United States)

    Scheideman, Elizabeth H; Marlatt, Sara A; Xie, Yanhua; Hu, Yani; Sutton, Richard E; DiMaio, Daniel

    2012-10-01

    We have exploited the ability of transmembrane domains to engage in highly specific protein-protein interactions to construct a new class of small proteins that inhibit HIV infection. By screening a library encoding hundreds of thousands of artificial transmembrane proteins with randomized transmembrane domains (termed "traptamers," for transmembrane aptamers), we isolated six 44- or 45-amino-acid proteins with completely different transmembrane sequences that inhibited cell surface and total expression of the HIV coreceptor CCR5. The traptamers inhibited transduction of human T cells by HIV reporter viruses pseudotyped with R5-tropic gp120 envelope proteins but had minimal effects on reporter viruses with X4-tropic gp120. Optimization of two traptamers significantly increased their activity and resulted in greater than 95% inhibition of R5-tropic reporter virus transduction without inhibiting expression of CD4, the primary HIV receptor, or CXCR4, another HIV coreceptor. In addition, traptamers inhibited transduction mediated by a mutant R5-tropic gp120 protein resistant to maraviroc, a small-molecule CCR5 inhibitor, and they dramatically inhibited replication of an R5-tropic laboratory strain of HIV in a multicycle infection assay. Genetic experiments suggested that the active traptamers specifically interacted with the transmembrane domains of CCR5 and that some of the traptamers interacted with different portions of CCR5. Thus, we have constructed multiple proteins not found in nature that interfere with CCR5 expression and inhibit HIV infection. These proteins may be valuable tools to probe the organization of the transmembrane domains of CCR5 and their relationship to its biological activities, and they may serve as starting points to develop new strategies to inhibit HIV infection.

  12. HMMpTM: improving transmembrane protein topology prediction using phosphorylation and glycosylation site prediction.

    Science.gov (United States)

    Tsaousis, Georgios N; Bagos, Pantelis G; Hamodrakas, Stavros J

    2014-02-01

    During the last two decades a large number of computational methods have been developed for predicting transmembrane protein topology. Current predictors rely on topogenic signals in the protein sequence, such as the distribution of positively charged residues in extra-membrane loops and the existence of N-terminal signals. However, phosphorylation and glycosylation are post-translational modifications (PTMs) that occur in a compartment-specific manner and therefore the presence of a phosphorylation or glycosylation site in a transmembrane protein provides topological information. We examine the combination of phosphorylation and glycosylation site prediction with transmembrane protein topology prediction. We report the development of a Hidden Markov Model based method, capable of predicting the topology of transmembrane proteins and the existence of kinase specific phosphorylation and N/O-linked glycosylation sites along the protein sequence. Our method integrates a novel feature in transmembrane protein topology prediction, which results in improved performance for topology prediction and reliable prediction of phosphorylation and glycosylation sites. The method is freely available at http://bioinformatics.biol.uoa.gr/HMMpTM.

  13. Hendra virus fusion protein transmembrane domain contributes to pre-fusion protein stability.

    Science.gov (United States)

    Webb, Stacy; Nagy, Tamas; Moseley, Hunter; Fried, Michael; Dutch, Rebecca Ellis

    2017-02-17

    Enveloped viruses utilize fusion (F) proteins studding the surface of the virus to facilitate membrane fusion with a target cell membrane. Fusion of the viral envelope with a cellular membrane is required for release of viral genomic material so the virus can ultimately reproduce and spread. To drive fusion, the F protein undergoes an irreversible conformational change, transitioning from a meta-stable pre-fusion conformation to a more thermodynamically stable post-fusion structure. Understanding the elements which control stability of the pre-fusion state and triggering to the post-fusion conformation is important for understanding F protein function. Mutations in F protein transmembrane (TM) domains implicated the TM domain in the fusion process, but the structural and molecular details in fusion remain unclear. Previously, analytical ultracentrifugation was utilized to demonstrate that isolated TM domains of Hendra virus F protein associate in a monomer-trimer equilibrium (Smith EC, et al. Trimeric transmembrane domain interactions in paramyxovirus fusion proteins. 2013. J Biol Chem. 288, 35726). To determine factors driving this association, 140 paramyxovirus F protein TM domain sequences were analyzed. A heptad repeat of β-branched residues was found and analysis of the Hendra virus F TM domain revealed a heptad repeat leucine-isoleucine zipper motif (LIZ). Replacement of the LIZ with alanine resulted in dramatically reduced TM-TM association. Mutation of the LIZ in the whole protein resulted in decreased protein stability, including pre-fusion conformation stability. Together our data suggest that the heptad repeat LIZ contributed to TM-TM association and is important for F protein function and pre-fusion stability.

  14. Transmembrane Protein 147 (TMEM147) Is a Novel Component of the Nicalin-NOMO Protein Complex*

    Science.gov (United States)

    Dettmer, Ulf; Kuhn, Peer-Hendrik; Abou-Ajram, Claudia; Lichtenthaler, Stefan F.; Krüger, Marcus; Kremmer, Elisabeth; Haass, Christian; Haffner, Christof

    2010-01-01

    Nicastrin and its relative Nicalin (Nicastrin-like protein) are both members of larger protein complexes, namely γ-secretase and the Nicalin-NOMO (Nodal modulator) complex. The γ-secretase complex, which contains Presenilin, APH-1, and PEN-2 in addition to Nicastrin, catalyzes the proteolytic cleavage of the transmembrane domain of various proteins including the β-amyloid precursor protein and Notch. Nicalin and its binding partner NOMO form a complex that was shown to modulate Nodal signaling in developing zebrafish embryos. Because its experimentally determined native size (200–220 kDa) could not be satisfyingly explained by the molecular masses of Nicalin (60 kDa) and NOMO (130 kDa), we searched in affinity-purified complex preparations for additional components in the low molecular mass range. A ∼22-kDa protein was isolated and identified by mass spectrometry as transmembrane protein 147 (TMEM147), a novel, highly conserved membrane protein with a putative topology similar to APH-1. Like Nicalin and NOMO, it localizes to the endoplasmic reticulum and is expressed during early zebrafish development. Overexpression and knockdown experiments in cultured cells demonstrate a close relationship between the three proteins and suggest that they are components of the same complex. We present evidence that, similar to γ-secretase, its assembly is hierarchical starting with the formation of a Nicalin-NOMO intermediate. Nicalin appears to represent the limiting factor regulating the assembly rate by stabilizing the other two components. We conclude that TMEM147 is a novel core component of the Nicalin-NOMO complex, further emphasizing its similarity with γ-secretase. PMID:20538592

  15. Transmembrane protein 147 (TMEM147) is a novel component of the Nicalin-NOMO protein complex.

    Science.gov (United States)

    Dettmer, Ulf; Kuhn, Peer-Hendrik; Abou-Ajram, Claudia; Lichtenthaler, Stefan F; Krüger, Marcus; Kremmer, Elisabeth; Haass, Christian; Haffner, Christof

    2010-08-20

    Nicastrin and its relative Nicalin (Nicastrin-like protein) are both members of larger protein complexes, namely gamma-secretase and the Nicalin-NOMO (Nodal modulator) complex. The gamma-secretase complex, which contains Presenilin, APH-1, and PEN-2 in addition to Nicastrin, catalyzes the proteolytic cleavage of the transmembrane domain of various proteins including the beta-amyloid precursor protein and Notch. Nicalin and its binding partner NOMO form a complex that was shown to modulate Nodal signaling in developing zebrafish embryos. Because its experimentally determined native size (200-220 kDa) could not be satisfyingly explained by the molecular masses of Nicalin (60 kDa) and NOMO (130 kDa), we searched in affinity-purified complex preparations for additional components in the low molecular mass range. A approximately 22-kDa protein was isolated and identified by mass spectrometry as transmembrane protein 147 (TMEM147), a novel, highly conserved membrane protein with a putative topology similar to APH-1. Like Nicalin and NOMO, it localizes to the endoplasmic reticulum and is expressed during early zebrafish development. Overexpression and knockdown experiments in cultured cells demonstrate a close relationship between the three proteins and suggest that they are components of the same complex. We present evidence that, similar to gamma-secretase, its assembly is hierarchical starting with the formation of a Nicalin-NOMO intermediate. Nicalin appears to represent the limiting factor regulating the assembly rate by stabilizing the other two components. We conclude that TMEM147 is a novel core component of the Nicalin-NOMO complex, further emphasizing its similarity with gamma-secretase.

  16. A transmembrane ubiquitin ligase required to sort membrane proteins into multivesicular bodies

    NARCIS (Netherlands)

    Reggiori, Fulvio; Pelham, Hugh R B; Reggiori, Fulvio

    2002-01-01

    Membrane proteins with transmembrane domains (TMDs) that contain polar residues exposed to the lipid bilayer are selectively sorted into multivesicular bodies (MVBs) and delivered to the yeast vacuole. Sorting of some, although not all, proteins into these structures is mediated by ubiquitination. W

  17. A transmembrane ubiquitin ligase required to sort membrane proteins into multivesicular bodies

    NARCIS (Netherlands)

    Reggiori, Fulvio; Pelham, Hugh R B; Reggiori, Fulvio

    2002-01-01

    Membrane proteins with transmembrane domains (TMDs) that contain polar residues exposed to the lipid bilayer are selectively sorted into multivesicular bodies (MVBs) and delivered to the yeast vacuole. Sorting of some, although not all, proteins into these structures is mediated by ubiquitination. W

  18. Unexpected diversity in Shisa-like proteins suggests the importance of their roles as transmembrane adaptors.

    Science.gov (United States)

    Pei, Jimin; Grishin, Nick V

    2012-03-01

    The Shisa family of single-transmembrane proteins is characterized by an N-terminal cysteine-rich domain and a proline-rich C-terminal region. Its founding member, Xenopus Shisa, promotes head development by antagonizing Wnt and FGF signaling. Recently, a mouse brain-specific Shisa protein CKAMP44 (Shisa9) was shown to play an important role in AMPA receptor desensitization. We used sequence similarity searches against protein, genome and EST databases to study the evolutionary origin and phylogenetic distribution of Shisa homologs. In addition to nine Shisa subfamilies in vertebrates, we detected distantly related Shisa homologs that possess an N-terminal domain with six conserved cysteines. These Shisa-like proteins include FAM159 and KIAA1644 mainly from vertebrates, and members from various bilaterian invertebrates and Porifera, suggesting their presence in the last common ancestor of Metazoa. Shisa-like genes have undergone large expansions in Branchiostoma floridae and Saccoglossus kowalevskii, and appear to have been lost in certain insects. Pattern-based searches against eukaryotic proteomes also uncovered several other families of predicted single-transmembrane proteins with a similar cysteine-rich domain. We refer to these proteins (Shisa/Shisa-like, WBP1/VOPP1, CX, DUF2650, TMEM92, and CYYR1) as STMC6 proteins (single-transmembrane proteins with conserved 6 cysteines). STMC6 genes are widespread in Metazoa, with the human genome containing 17 members. Frequent occurrences of PY motifs in STMC6 proteins suggest that most of them could interact with WW-domain-containing proteins, such as the NEDD4 family E3 ubiquitin ligases, and could play critical roles in protein degradation and sorting. STMC6 proteins are likely transmembrane adaptors that regulate membrane proteins such as cell surface receptors.

  19. How protein transmembrane segments sense the lipid environment

    NARCIS (Netherlands)

    Nyholm, T.K.M.; Özdirekcan, S.; Killian, J.A.

    2007-01-01

    Integral membrane proteins have central roles in a vast number of vital cellular processes. A structural feature that most membrane proteins have in common is the presence of one or more R-helices with which they traverse the lipid bilayer. Because of the interaction with the surrounding lipids, the

  20. Lipid Bilayer Composition Affects Transmembrane Protein Orientation and Function

    Directory of Open Access Journals (Sweden)

    Katie D. Hickey

    2011-01-01

    Full Text Available Sperm membranes change in structure and composition upon ejaculation to undergo capacitation, a molecular transformation which enables spermatozoa to undergo the acrosome reaction and be capable of fertilization. Changes to the membrane environment including lipid composition, specifically lipid microdomains, may be responsible for enabling capacitation. To study the effect of lipid environment on proteins, liposomes were created using lipids extracted from bull sperm membranes, with or without a protein (Na+ K+-ATPase or -amylase. Protein incorporation, function, and orientation were determined. Fluorescence resonance energy transfer (FRET confirmed protein inclusion in the lipid bilayer, and protein function was confirmed using a colourometric assay of phosphate production from ATP cleavage. In the native lipid liposomes, ATPase was oriented with the subunit facing the outer leaflet, while changing the lipid composition to 50% native lipids and 50% exogenous lipids significantly altered this orientation of Na+ K+-ATPase within the membranes.

  1. First principles design of a core bioenergetic transmembrane electron-transfer protein

    Energy Technology Data Exchange (ETDEWEB)

    Goparaju, Geetha; Fry, Bryan A.; Chobot, Sarah E.; Wiedman, Gregory; Moser, Christopher C.; Leslie Dutton, P.; Discher, Bohdana M.

    2016-05-01

    Here we describe the design, Escherichia coli expression and characterization of a simplified, adaptable and functionally transparent single chain 4-α-helix transmembrane protein frame that binds multiple heme and light activatable porphyrins. Such man-made cofactor-binding oxidoreductases, designed from first principles with minimal reference to natural protein sequences, are known as maquettes. This design is an adaptable frame aiming to uncover core engineering principles governing bioenergetic transmembrane electron-transfer function and recapitulate protein archetypes proposed to represent the origins of photosynthesis. This article is part of a Special Issue entitled Biodesign for Bioenergetics — the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.

  2. Combined effect of cortical cytoskeleton and transmembrane proteins on domain formation in biomembranes

    DEFF Research Database (Denmark)

    Sikder, K. U.; Stone, K. A.; Kumar, P. B. S.

    2014-01-01

    We investigate the combined effects of transmembrane proteins and the subjacent cytoskeleton on the dynamics of phase separation in multicomponent lipid bilayers using computer simulations of a particle-based implicit solvent model for lipid membranes with soft-core interactions. We find that mic...... that microphase separation can be achieved by the protein confinement by the cytoskeleton. Our results have relevance to the finite size of lipid rafts in the plasma membrane of mammalian cells. (C) 2014 AIP Publishing LLC....

  3. Combined effect of cortical cytoskeleton and transmembrane proteins on domain formation in biomembranes

    Science.gov (United States)

    Sikder, Md. Kabir Uddin; Stone, Kyle A.; Kumar, P. B. Sunil; Laradji, Mohamed

    2014-08-01

    We investigate the combined effects of transmembrane proteins and the subjacent cytoskeleton on the dynamics of phase separation in multicomponent lipid bilayers using computer simulations of a particle-based implicit solvent model for lipid membranes with soft-core interactions. We find that microphase separation can be achieved by the protein confinement by the cytoskeleton. Our results have relevance to the finite size of lipid rafts in the plasma membrane of mammalian cells.

  4. Use of an Anaerobic Chamber Environment for the Assay of Endogenous Cellular Protein-Tyrosine Phosphatase Activities

    Directory of Open Access Journals (Sweden)

    Zhu Li

    2002-01-01

    Full Text Available Protein-tyrosine phosphatases (PTPases have a catalytic cysteine residue whose reduced state is integral to the reaction mechanism. Since exposure to air can artifactually oxidize this highly reactive thiol, PTPase assays have typically used potent reducing agents to reactivate the enzymes present; however, this approach does not allow for the measurement of the endogenous PTPase activity directly isolated from the in vivo cellular environment. Here we provide a method for using an anaerobic chamber to preserve the activity of the total PTPase complement in a tissue lysate or of an immunoprecipitated PTPase homolog to characterize their endogenous activation state. Comparison with a sample treated with biochemical reducing agents allows the determination of the activatable (reducible fraction of the endogenous PTPase pool.

  5. CFTR anion channel modulates expression of human transmembrane mucin MUC3 through the PDZ protein GOPC.

    Science.gov (United States)

    Pelaseyed, Thaher; Hansson, Gunnar C

    2011-09-15

    The transmembrane mucins in the enterocyte are type 1 transmembrane proteins with long and rigid mucin domains, rich in proline, threonine and serine residues that carry numerous O-glycans. Three of these mucins, MUC3, MUC12 and MUC17 are unique in harboring C-terminal class I PDZ motifs, making them suitable ligands for PDZ proteins. A screening of 123 different human PDZ domains for binding to MUC3 identified a strong interaction with the PDZ protein GOPC (Golgi-associated PDZ and coiled-coil motif-containing protein). This interaction was mediated by the C-terminal PDZ motif of MUC3, binding to the single GOPC PDZ domain. GOPC is also a binding partner for cystic fibrosis transmembrane conductance regulator (CFTR) that directs CFTR for degradation. Overexpression of GOPC downregulated the total levels of MUC3, an effect that was reversed by introducing CFTR. The results suggest that CFTR and MUC3 compete for binding to GOPC, which in turn can regulate levels of these two proteins. For the first time a direct coupling between mucins and the CFTR channel is demonstrated, a finding that will shed further light on the still poorly understood relationship between cystic fibrosis and the mucus phenotype of this disease.

  6. Expression of genes encoding multi-transmembrane proteins in specific primate taste cell populations.

    Directory of Open Access Journals (Sweden)

    Bryan D Moyer

    Full Text Available BACKGROUND: Using fungiform (FG and circumvallate (CV taste buds isolated by laser capture microdissection and analyzed using gene arrays, we previously constructed a comprehensive database of gene expression in primates, which revealed over 2,300 taste bud-associated genes. Bioinformatics analyses identified hundreds of genes predicted to encode multi-transmembrane domain proteins with no previous association with taste function. A first step in elucidating the roles these gene products play in gustation is to identify the specific taste cell types in which they are expressed. METHODOLOGY/PRINCIPAL FINDINGS: Using double label in situ hybridization analyses, we identified seven new genes expressed in specific taste cell types, including sweet, bitter, and umami cells (TRPM5-positive, sour cells (PKD2L1-positive, as well as other taste cell populations. Transmembrane protein 44 (TMEM44, a protein with seven predicted transmembrane domains with no homology to GPCRs, is expressed in a TRPM5-negative and PKD2L1-negative population that is enriched in the bottom portion of taste buds and may represent developmentally immature taste cells. Calcium homeostasis modulator 1 (CALHM1, a component of a novel calcium channel, along with family members CALHM2 and CALHM3; multiple C2 domains; transmembrane 1 (MCTP1, a calcium-binding transmembrane protein; and anoctamin 7 (ANO7, a member of the recently identified calcium-gated chloride channel family, are all expressed in TRPM5 cells. These proteins may modulate and effect calcium signalling stemming from sweet, bitter, and umami receptor activation. Synaptic vesicle glycoprotein 2B (SV2B, a regulator of synaptic vesicle exocytosis, is expressed in PKD2L1 cells, suggesting that this taste cell population transmits tastant information to gustatory afferent nerve fibers via exocytic neurotransmitter release. CONCLUSIONS/SIGNIFICANCE: Identification of genes encoding multi-transmembrane domain proteins

  7. Caenorhabditis elegans SMA-10/LRIG is a conserved transmembrane protein that enhances bone morphogenetic protein signaling.

    Directory of Open Access Journals (Sweden)

    Tina L Gumienny

    2010-05-01

    Full Text Available Bone morphogenetic protein (BMP pathways control an array of developmental and homeostatic events, and must themselves be exquisitely controlled. Here, we identify Caenorhabditis elegans SMA-10 as a positive extracellular regulator of BMP-like receptor signaling. SMA-10 acts genetically in a BMP-like (Sma/Mab pathway between the ligand DBL-1 and its receptors SMA-6 and DAF-4. We cloned sma-10 and show that it has fifteen leucine-rich repeats and three immunoglobulin-like domains, hallmarks of an LRIG subfamily of transmembrane proteins. SMA-10 is required in the hypodermis, where the core Sma/Mab signaling components function. We demonstrate functional conservation of LRIGs by rescuing sma-10(lf animals with the Drosophila ortholog lambik, showing that SMA-10 physically binds the DBL-1 receptors SMA-6 and DAF-4 and enhances signaling in vitro. This interaction is evolutionarily conserved, evidenced by LRIG1 binding to vertebrate receptors. We propose a new role for LRIG family members: the positive regulation of BMP signaling by binding both Type I and Type II receptors.

  8. Caenorhabditis elegans SMA-10/LRIG Is a Conserved Transmembrane Protein that Enhances Bone Morphogenetic Protein Signaling

    Science.gov (United States)

    Gumienny, Tina L.; MacNeil, Lesley; Zimmerman, Cole M.; Wang, Huang; Chin, Lena; Wrana, Jeffrey L.; Padgett, Richard W.

    2010-01-01

    Bone morphogenetic protein (BMP) pathways control an array of developmental and homeostatic events, and must themselves be exquisitely controlled. Here, we identify Caenorhabditis elegans SMA-10 as a positive extracellular regulator of BMP–like receptor signaling. SMA-10 acts genetically in a BMP–like (Sma/Mab) pathway between the ligand DBL-1 and its receptors SMA-6 and DAF-4. We cloned sma-10 and show that it has fifteen leucine-rich repeats and three immunoglobulin-like domains, hallmarks of an LRIG subfamily of transmembrane proteins. SMA-10 is required in the hypodermis, where the core Sma/Mab signaling components function. We demonstrate functional conservation of LRIGs by rescuing sma-10(lf) animals with the Drosophila ortholog lambik, showing that SMA-10 physically binds the DBL-1 receptors SMA-6 and DAF-4 and enhances signaling in vitro. This interaction is evolutionarily conserved, evidenced by LRIG1 binding to vertebrate receptors. We propose a new role for LRIG family members: the positive regulation of BMP signaling by binding both Type I and Type II receptors. PMID:20502686

  9. Cystic fibrosis transmembrane conductance regulator protein expression in the male excretory duct system during development.

    Science.gov (United States)

    Marcorelles, Pascale; Gillet, Danièle; Friocourt, Gaëlle; Ledé, Françoise; Samaison, Laura; Huguen, Geneviève; Ferec, Claude

    2012-03-01

    Sterility due to bilateral destruction in utero or in early infancy resulting in congenital absence of the vas deferens is the rule in male patients with cystic fibrosis. To understand the developmental pattern of this anomaly, the microscopic morphology of the male excretory system was analyzed during development and the expression of the cystic fibrosis transmembrane conductance regulator protein was explored by immunohistochemistry. We observed that cystic fibrosis fetuses had no excretory ducts agenesis or obstruction until 22 weeks of gestation. However, a focal inflammatory pattern and mucinous plugs in the oldest cystic fibrosis case suggested a disruptive mechanism. Immunolabeling of cytoplasmic epithelial cystic fibrosis transmembrane conductance regulator protein was demonstrated in all cystic fibrosis and control cases with a similar pattern of expression of the protein between age-matched controls and cystic fibrosis cases. At midgestation, an apical intensification appeared in both cystic fibrosis and control cases and was stable during the remainder of fetal life. No gradient of intensity could be detected between the different segments of the excretory tract. These findings are different from those reported in adults. The absence of any morphologic anomaly until 22 weeks of gestation, the focal destruction of the epithelial structures during the second trimester, and the chronological pattern of expression of cystic fibrosis transmembrane conductance regulator are of interest for a better understanding of the pathophysiology of this disease.

  10. Nanoporous microbead supported bilayers: stability, physical characterization, and incorporation of functional transmembrane proteins.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ryan W. (University of New Mexico, Albuquerque, NM); Brozik, James A. (University of New Mexico, Albuquerque, NM); Brozik, Susan Marie; Cox, Jason M. (University of New Mexico, Albuquerque, NM); Lopez, Gabriel P. (University of New Mexico, Albuquerque, NM); Barrick, Todd A. (University of New Mexico, Albuquerque, NM); Flores, Adrean (University of New Mexico, Albuquerque, NM)

    2007-03-01

    The introduction of functional transmembrane proteins into supported bilayer-based biomimetic systems presents a significant challenge for biophysics. Among the various methods for producing supported bilayers, liposomal fusion offers a versatile method for the introduction of membrane proteins into supported bilayers on a variety of substrates. In this study, the properties of protein containing unilamellar phosphocholine lipid bilayers on nanoporous silica microspheres are investigated. The effects of the silica substrate, pore structure, and the substrate curvature on the stability of the membrane and the functionality of the membrane protein are determined. Supported bilayers on porous silica microspheres show a significant increase in surface area on surfaces with structures in excess of 10 nm as well as an overall decrease in stability resulting from increasing pore size and curvature. Comparison of the liposomal and detergent-mediated introduction of purified bacteriorhodopsin (bR) and the human type 3 serotonin receptor (5HT3R) are investigated focusing on the resulting protein function, diffusion, orientation, and incorporation efficiency. In both cases, functional proteins are observed; however, the reconstitution efficiency and orientation selectivity are significantly enhanced through detergent-mediated protein reconstitution. The results of these experiments provide a basis for bulk ionic and fluorescent dye-based compartmentalization assays as well as single-molecule optical and single-channel electrochemical interrogation of transmembrane proteins in a biomimetic platform.

  11. Protein tyrosine phosphatases involved in signaling of the ABA-induced H2O2generation in guard cells of Vicia faba L.

    Institute of Scientific and Technical Information of China (English)

    SHI Wuliang; JlA Wensuo; LIU Xin; ZHANG Shuqiu

    2004-01-01

    Although protein tyrosine phosphatases (PTPases) play an important role in signal transduction in animal cells, little is known about the function of PTPases in higher plants. Hydrogen peroxide (H2O2) and mitogen-activated protein kinases (MAPKs) are the critical components of ABA signaling pathway in guard cells. PTPase is an important regulator of MAPK, which is believed to mediate ABA-induced H2O2 generation in guard cells of Viciafaba L. Here, we investigate the possible role of PTPases in stomatal movement process. Phenylarsine oxide (PAO), a specific inhibitor of PTPases, could prevent ABA or H2O2-induced stomatal closure of Vicia faba L; furthermore, it could promote opening of the stomata closed by ABA or H2O2. The activity of PTPases can be effectively inhibited by PAO and H2O2. DTT had no effect on the PAO-induced inhibition of PTPases activity, but it could relieve the inhibition of H2O2 on PTPases activity. PAO could also inhibit the ABA-induced H2O2 generation in guard cells of Vicia faba L. These results suggested that PTPases is a critical signaling component in ABA-induced stomatal closure, and serve as targets for H2O2 lying on the signaling pathways downstream of ABA induced H2O2 generation.

  12. Metabolism of minor isoforms of prion proteins: Cytosolic prion protein and transmembrane prion protein

    OpenAIRE

    Song, Zhiqi; Zhao, Deming; Yang, Lifeng

    2013-01-01

    Transmissible spongiform encephalopathy or prion disease is triggered by the conversion from cellular prion protein to pathogenic prion protein. Growing evidence has concentrated on prion protein configuration changes and their correlation with prion disease transmissibility and pathogenicity. In vivo and in vitro studies have shown that several cytosolic forms of prion protein with specific topological structure can destroy intracellular stability and contribute to prion protein pathogenicit...

  13. Use of carbonate extraction in analyzing moderately hydrophobic transmembrane proteins in the mitochondrial inner membrane.

    Science.gov (United States)

    Kim, Hayoung; Botelho, Salomé Calado; Park, Kwangjin; Kim, Hyun

    2015-12-01

    Resistance to sodium carbonate extraction is regarded as a canonical way to distinguish integral membrane proteins (MPs) from other membrane-associated proteins. However, it has been observed that carbonate extraction releases some mitochondrial integral MPs. Here, by analyzing both artificially designed and native mitochondrial inner MPs containing transmembrane domains (TMDs) of different hydrophobicities, we show that carbonate treatment can release moderately hydrophobic TMDs from the mitochondrial inner membrane. These results suggest that resistance and sensitivity to carbonate extraction may be interpreted with caution when analyzing the nature of mitochondrial inner MPs.

  14. Artificial Diels–Alderase based on the transmembrane protein FhuA

    Science.gov (United States)

    Beckerle, Klaus; Arlt, Marcus; Himiyama, Tomoki; Polen, Tino; Onoda, Akira; Schwaneberg, Ulrich; Hayashi, Takashi

    2016-01-01

    Summary Copper(I) and copper(II) complexes were covalently linked to an engineered variant of the transmembrane protein Ferric hydroxamate uptake protein component A (FhuA ΔCVFtev). Copper(I) was incorporated using an N-heterocyclic carbene (NHC) ligand equipped with a maleimide group on the side arm at the imidazole nitrogen. Copper(II) was attached by coordination to a terpyridyl ligand. The spacer length was varied in the back of the ligand framework. These biohybrid catalysts were shown to be active in the Diels–Alder reaction of a chalcone derivative with cyclopentadiene to preferentially give the endo product. PMID:27559380

  15. Artificial Diels-Alderase based on the transmembrane protein FhuA.

    Science.gov (United States)

    Osseili, Hassan; Sauer, Daniel F; Beckerle, Klaus; Arlt, Marcus; Himiyama, Tomoki; Polen, Tino; Onoda, Akira; Schwaneberg, Ulrich; Hayashi, Takashi; Okuda, Jun

    2016-01-01

    Copper(I) and copper(II) complexes were covalently linked to an engineered variant of the transmembrane protein Ferric hydroxamate uptake protein component A (FhuA ΔCVF(tev)). Copper(I) was incorporated using an N-heterocyclic carbene (NHC) ligand equipped with a maleimide group on the side arm at the imidazole nitrogen. Copper(II) was attached by coordination to a terpyridyl ligand. The spacer length was varied in the back of the ligand framework. These biohybrid catalysts were shown to be active in the Diels-Alder reaction of a chalcone derivative with cyclopentadiene to preferentially give the endo product.

  16. Artificial Diels–Alderase based on the transmembrane protein FhuA

    Directory of Open Access Journals (Sweden)

    Hassan Osseili

    2016-06-01

    Full Text Available Copper(I and copper(II complexes were covalently linked to an engineered variant of the transmembrane protein Ferric hydroxamate uptake protein component A (FhuA ΔCVFtev. Copper(I was incorporated using an N-heterocyclic carbene (NHC ligand equipped with a maleimide group on the side arm at the imidazole nitrogen. Copper(II was attached by coordination to a terpyridyl ligand. The spacer length was varied in the back of the ligand framework. These biohybrid catalysts were shown to be active in the Diels–Alder reaction of a chalcone derivative with cyclopentadiene to preferentially give the endo product.

  17. A portable lipid bilayer system for environmental sensing with a transmembrane protein.

    Directory of Open Access Journals (Sweden)

    Ryuji Kawano

    Full Text Available This paper describes a portable measurement system for current signals of an ion channel that is composed of a planar lipid bilayer. A stable and reproducible lipid bilayer is formed in outdoor environments by using a droplet contact method with a micropipette. Using this system, we demonstrated that the single-channel recording of a transmembrane protein (alpha-hemolysin was achieved in the field at a high-altitude (∼3623 m. This system would be broadly applicable for obtaining environmental measurements using membrane proteins as a highly sensitive sensor.

  18. Metabolism of minor isoforms of prion proteins Cytosolic prion protein and transmembrane prion protein*

    Institute of Scientific and Technical Information of China (English)

    Zhiqi Song; Deming Zhao; Lifeng Yang

    2013-01-01

    Transmissible spongiform encephalopathy or prion disease is triggered by the conversion from cellular prion protein to pathogenic prion protein. Growing evidence has concentrated on prion protein configuration changes and their correlation with prion disease transmissibility and pathoge-nicity. In vivo and in vitro studies have shown that several cytosolic forms of prion protein with spe-cific topological structure can destroy intracellular stability and contribute to prion protein pathoge-nicity. In this study, the latest molecular chaperone system associated with endoplasmic reticu-lum-associated protein degradation, the endoplasmic reticulum resident protein quality-control system and the ubiquitination proteasome system, is outlined. The molecular chaperone system directly correlates with the prion protein degradation pathway. Understanding the molecular me-chanisms wil help provide a fascinating avenue for further investigations on prion disease treatment and prion protein-induced neurodegenerative diseases.

  19. Obif, a Transmembrane Protein, Is Required for Bone Mineralization and Spermatogenesis in Mice.

    Directory of Open Access Journals (Sweden)

    Koji Mizuhashi

    Full Text Available Various kinds of transmembrane and secreted proteins play pivotal roles in development through cell-cell communication. We previously reported that Obif (Osteoblast induction factor, Tmem119, encoding a single transmembrane protein, is expressed in differentiating osteoblasts, and that Obif-/- mice exhibit significantly reduced bone volume in the femur. In the current study, we characterized the Obif protein and further investigated the biological phenotypes of a variety of tissues in Obif-/- mice.First, we found that O-glycosylation of the Obif protein occurs at serine residue 36 in the Obif extracellular domain. Next, we observed that Obif-/- mice exhibit bone dysplasia in association with significantly increased osteoid volume per osteoid surface (OV/OS and osteoid maturation time (Omt, and significantly decreased mineral apposition rate (MAR and bone formation rate per bone surface (BFR/BS. In addition, we observed that Obif-/- mice show a significant decrease in testis weight as well as in sperm number. By histological analysis, we found that Obif is expressed in spermatocytes and spermatids in the developing testis and that spermatogenesis is halted at the round spermatid stage in the Obif-/- testis that lacks sperm. However, the number of litters fathered by male mice was slightly reduced in Obif-/- mice compared with wild-type mice, although this was not statistically significant.Our results, taken together with previous observations, indicate that Obif is a type Ia transmembrane protein whose N-terminal region is O-glycosylated. In addition, we found that Obif is required for normal bone mineralization and late testicular differentiation in vivo. These findings suggest that Obif plays essential roles in the development of multiple tissues.

  20. A sesquiterpene quinone, dysidine, from the sponge Dysidea villosa, activates the insulin pathway through inhibition of PTPases

    Institute of Scientific and Technical Information of China (English)

    Yu ZHANG; Yan LI; Yue-wei GUO; Hua-liang JIANG; Xu SHEN

    2009-01-01

    Aim: The sesquiterpene hydroquinones/quinones belong to one class of marine sponge metabolites, and they have Accepted considerable attention due to their varied biological activities, including anti-tumor, anti-HIV, and anti-inflammatory action. In order to probe the potential anti-diabetic effect of the sesquiterpene hydroquinones/quinones, the effect of dysi-dine on the insulin pathway was studied.Methods: The promotion of glucose uptake by dysidine was studied in differentiated 3T3-L1 cells. The increase in membrane-located GLUT4 by dysidine was studied in CHO-K1/GLUT4 and 3T3-L1 cells by immuno-staining. The activation of the insulin signaling pathway by dysidine was probed by Western blotting. The inhibition of PTPases by dysidine was detected in vitro.Results: Dysidine, found in the Hainan sponge Dysidea villosa in the Chinese South Sea, effectively activated the insulin signaling pathway, greatly promoted glucose uptake in 3T3-L1 ceils, and showed strong insulin-sensitizing activities. The potential targets of action for dysidine were probed, and the results indicated that dysidine exhibited its cellular effects through activation of the insulin pathway, possibly through the inhibition of protein tyrosine phosphatases, with more specific inhibition against protein tyrosine phosphatase 1B (PTPIB). Conclusion: Our findings are expected to expand understanding of the biological activities of sesquiterpene hydroquino-nes/quinones, and they show that dysidine could be a potential lead compound in the development of an alternative adju-vant in insulin therapy.

  1. Topology prediction of helical transmembrane proteins: how far have we reached?

    Science.gov (United States)

    Tusnády, Gábor E; Simon, István

    2010-11-01

    Transmembrane protein topology prediction methods play important roles in structural biology, because the structure determination of these types of proteins is extremely difficult by the common biophysical, biochemical and molecular biological methods. The need for accurate prediction methods is high, as the number of known membrane protein structures fall far behind the estimated number of these proteins in various genomes. The accuracy of these prediction methods appears to be higher than most prediction methods applied on globular proteins, however it decreases slightly with the increasing number of structures. Unfortunately, most prediction algorithms use common machine learning techniques, and they do not reveal why topologies are predicted with such a high success rate and which biophysical or biochemical properties are important to achieve this level of accuracy. Incorporating topology data determined so far into the prediction methods as constraints helps us to reach even higher prediction accuracy, therefore collection of such topology data is also an important issue.

  2. Dimerization of the transmembrane domain of amyloid precursor proteins and familial Alzheimer's disease mutants

    Directory of Open Access Journals (Sweden)

    Fraser Paul E

    2008-01-01

    Full Text Available Abstract Background Amyloid precursor protein (APP is enzymatically cleaved by γ-secretase to form two peptide products, either Aβ40 or the more neurotoxic Aβ42. The Aβ42/40 ratio is increased in many cases of familial Alzheimer's disease (FAD. The transmembrane domain (TM of APP contains the known dimerization motif GXXXA. We have investigated the dimerization of both wild type and FAD mutant APP transmembrane domains. Results Using synthetic peptides derived from the APP-TM domain, we show that this segment is capable of forming stable transmembrane dimers. A model of a dimeric APP-TM domain reveals a putative dimerization interface, and interestingly, majority of FAD mutations in APP are localized to this interface region. We find that FAD-APP mutations destabilize the APP-TM dimer and increase the population of APP peptide monomers. Conclusion The dissociation constants are correlated to both the Aβ42/Aβ40 ratio and the mean age of disease onset in AD patients. We also show that these TM-peptides reduce Aβ production and Aβ42/Aβ40 ratios when added to HEK293 cells overexpressing the Swedish FAD mutation and γ-secretase components, potentially revealing a new class of γ-secretase inhibitors.

  3. System and methods for predicting transmembrane domains in membrane proteins and mining the genome for recognizing G-protein coupled receptors

    Science.gov (United States)

    Trabanino, Rene J; Vaidehi, Nagarajan; Hall, Spencer E; Goddard, William A; Floriano, Wely

    2013-02-05

    The invention provides computer-implemented methods and apparatus implementing a hierarchical protocol using multiscale molecular dynamics and molecular modeling methods to predict the presence of transmembrane regions in proteins, such as G-Protein Coupled Receptors (GPCR), and protein structural models generated according to the protocol. The protocol features a coarse grain sampling method, such as hydrophobicity analysis, to provide a fast and accurate procedure for predicting transmembrane regions. Methods and apparatus of the invention are useful to screen protein or polynucleotide databases for encoded proteins with transmembrane regions, such as GPCRs.

  4. Modeling the structure of SARS 3a transmembrane protein using a minimum unfavorable contact approach

    Indian Academy of Sciences (India)

    S Ramakrishna; Siladitya Padhi; U Deva Priyakumar

    2015-12-01

    3a is an accessory protein from SARS coronavirus that is known to play a significant role in the proliferation of the virus by forming tetrameric ion channels. Although the monomeric units are known to consist of three transmembrane (TM) domains, there are no solved structures available for the complete monomer. The present study proposes a structural model for the transmembrane region of the monomer by employing our previously tested approach, which predicts potential orientations of TM -helices by minimizing the unfavorable contact surfaces between the different TM domains. The best model structure comprising all three -helices has been subjected to MD simulations to examine its quality. The TM bundle was found to form a compact and stable structure with significant intermolecular interactions. The structural features of the proposed model of 3a account for observations from previous experimental investigations on the activity of the protein. Further analysis indicates that residues from the TM2 and TM3 domains are likely to line the pore of the ion channel, which is in good agreement with a recent experimental study. In the absence of an experimental structure for the protein, the proposed structure can serve as a useful model for inferring structure-function relationships about the protein.

  5. MONNA, a potent and selective blocker for transmembrane protein with unknown function 16/anoctamin-1.

    Science.gov (United States)

    Oh, Soo-Jin; Hwang, Seok Jin; Jung, Jonghoon; Yu, Kuai; Kim, Jeongyeon; Choi, Jung Yoon; Hartzell, H Criss; Roh, Eun Joo; Lee, C Justin

    2013-11-01

    Transmembrane protein with unknown function 16/anoctamin-1 (ANO1) is a protein widely expressed in mammalian tissues, and it has the properties of the classic calcium-activated chloride channel (CaCC). This protein has been implicated in numerous major physiological functions. However, the lack of effective and selective blockers has hindered a detailed study of the physiological functions of this channel. In this study, we have developed a potent and selective blocker for endogenous ANO1 in Xenopus laevis oocytes (xANO1) using a drug screening method we previously established (Oh et al., 2008). We have synthesized a number of anthranilic acid derivatives and have determined the correlation between biological activity and the nature and position of substituents in these derived compounds. A structure-activity relationship revealed novel chemical classes of xANO1 blockers. The derivatives contain a --NO₂ group on position 5 of a naphthyl group-substituted anthranilic acid, and they fully blocked xANO1 chloride currents with an IC₅₀ protein 2, and cystic fibrosis transmembrane conductance regulator were not appreciably blocked by 10∼30 μM MONNA. The potent and selective blockers for ANO1 identified here should permit pharmacological dissection of ANO1/CaCC function and serve as potential candidates for drug therapy of related diseases such as hypertension, cystic fibrosis, bronchitis, asthma, and hyperalgesia.

  6. Sequence-structure relationship study in all-α transmembrane proteins using an unsupervised learning approach.

    Science.gov (United States)

    Esque, Jérémy; Urbain, Aurélie; Etchebest, Catherine; de Brevern, Alexandre G

    2015-11-01

    Transmembrane proteins (TMPs) are major drug targets, but the knowledge of their precise topology structure remains highly limited compared with globular proteins. In spite of the difficulties in obtaining their structures, an important effort has been made these last years to increase their number from an experimental and computational point of view. In view of this emerging challenge, the development of computational methods to extract knowledge from these data is crucial for the better understanding of their functions and in improving the quality of structural models. Here, we revisit an efficient unsupervised learning procedure, called Hybrid Protein Model (HPM), which is applied to the analysis of transmembrane proteins belonging to the all-α structural class. HPM method is an original classification procedure that efficiently combines sequence and structure learning. The procedure was initially applied to the analysis of globular proteins. In the present case, HPM classifies a set of overlapping protein fragments, extracted from a non-redundant databank of TMP 3D structure. After fine-tuning of the learning parameters, the optimal classification results in 65 clusters. They represent at best similar relationships between sequence and local structure properties of TMPs. Interestingly, HPM distinguishes among the resulting clusters two helical regions with distinct hydrophobic patterns. This underlines the complexity of the topology of these proteins. The HPM classification enlightens unusual relationship between amino acids in TMP fragments, which can be useful to elaborate new amino acids substitution matrices. Finally, two challenging applications are described: the first one aims at annotating protein functions (channel or not), the second one intends to assess the quality of the structures (X-ray or models) via a new scoring function deduced from the HPM classification.

  7. Receptor tyrosine phosphatase R-PTP-alpha is tyrosine-phosphorylated and associated with the adaptor protein Grb2

    DEFF Research Database (Denmark)

    Su, J; Batzer, A; Sap, J

    1994-01-01

    Receptor tyrosine phosphatases (R-PTPases) have generated interest because of their suspected involvement in cellular signal transduction. The adaptor protein Grb2 has been implicated in coupling receptor tyrosine kinases to Ras. We report that a ubiquitous R-PTPase, R-PTP-alpha, is tyrosine-phos...

  8. Characterization and gene cloning of neurotactin, a Drosophila transmembrane protein related to cholinesterases.

    Science.gov (United States)

    de la Escalera, S; Bockamp, E O; Moya, F; Piovant, M; Jiménez, F

    1990-11-01

    Monoclonal antibodies have served to characterize neurotactin, a novel Drosophila protein for which a role in cell adhesion is postulated. Neurotactin is a transmembrane protein, as indicated by epitope mapping and amino acid sequence. Similarly to other cell adhesion molecules, neurotactin accumulates in parts of the membrane where neurotactin-expressing cells contact each other. The protein is only detected during cell proliferation and differentiation, and it is found mainly in neural tissue and also in mesoderm and imaginal discs. Neurotactin has a large cytoplasmic domain rich in charged residues and an extracellular domain similar to cholinesterase that lacks the active site serine required for esterase activity. The extracellular domain also contains three copies of the tripeptide leucine-arginine-glutamate, a motif that forms the primary sequence of the adhesive site of vertebrate s-laminin.

  9. Deorphanizing the human transmembrane genome: A landscape of uncharacterized membrane proteins.

    Science.gov (United States)

    Babcock, Joseph J; Li, Min

    2014-01-01

    The sequencing of the human genome has fueled the last decade of work to functionally characterize genome content. An important subset of genes encodes membrane proteins, which are the targets of many drugs. They reside in lipid bilayers, restricting their endogenous activity to a relatively specialized biochemical environment. Without a reference phenotype, the application of systematic screens to profile candidate membrane proteins is not immediately possible. Bioinformatics has begun to show its effectiveness in focusing the functional characterization of orphan proteins of a particular functional class, such as channels or receptors. Here we discuss integration of experimental and bioinformatics approaches for characterizing the orphan membrane proteome. By analyzing the human genome, a landscape reference for the human transmembrane genome is provided.

  10. Leucine-rich repeat transmembrane proteins instruct discrete dendrite targeting in an olfactory map.

    Science.gov (United States)

    Hong, Weizhe; Zhu, Haitao; Potter, Christopher J; Barsh, Gabrielle; Kurusu, Mitsuhiko; Zinn, Kai; Luo, Liqun

    2009-12-01

    Olfactory systems utilize discrete neural pathways to process and integrate odorant information. In Drosophila, axons of first-order olfactory receptor neurons (ORNs) and dendrites of second-order projection neurons (PNs) form class-specific synaptic connections at approximately 50 glomeruli. The mechanisms underlying PN dendrite targeting to distinct glomeruli in a three-dimensional discrete neural map are unclear. We found that the leucine-rich repeat (LRR) transmembrane protein Capricious (Caps) was differentially expressed in different classes of PNs. Loss-of-function and gain-of-function studies indicated that Caps instructs the segregation of Caps-positive and Caps-negative PN dendrites to discrete glomerular targets. Moreover, Caps-mediated PN dendrite targeting was independent of presynaptic ORNs and did not involve homophilic interactions. The closely related protein Tartan was partially redundant with Caps. These LRR proteins are probably part of a combinatorial cell-surface code that instructs discrete olfactory map formation.

  11. Coarse Grained Molecular Dynamics Simulations of Transmembrane Protein-Lipid Systems

    Directory of Open Access Journals (Sweden)

    Peter Spijker

    2010-06-01

    Full Text Available Many biological cellular processes occur at the micro- or millisecond time scale. With traditional all-atom molecular modeling techniques it is difficult to investigate the dynamics of long time scales or large systems, such as protein aggregation or activation. Coarse graining (CG can be used to reduce the number of degrees of freedom in such a system, and reduce the computational complexity. In this paper the first version of a coarse grained model for transmembrane proteins is presented. This model differs from other coarse grained protein models due to the introduction of a novel angle potential as well as a hydrogen bonding potential. These new potentials are used to stabilize the backbone. The model has been validated by investigating the adaptation of the hydrophobic mismatch induced by the insertion of WALP-peptides into a lipid membrane, showing that the first step in the adaptation is an increase in the membrane thickness, followed by a tilting of the peptide.

  12. Re-patterning of skeletal muscle energy metabolism by fat storage-inducing transmembrane protein 2.

    Science.gov (United States)

    Miranda, Diego A; Koves, Timothy R; Gross, David A; Chadt, Alexandra; Al-Hasani, Hadi; Cline, Gary W; Schwartz, Gary J; Muoio, Deborah M; Silver, David L

    2011-12-09

    Triacylglyceride stored in cytosolic lipid droplets (LDs) constitutes a major energy reservoir in most eukaryotes. The regulated turnover of triacylglyceride in LDs provides fatty acids for mitochondrial β-oxidation and ATP generation in physiological states of high demand for energy. The mechanisms for the formation of LDs in conditions of energy excess are not entirely understood. Fat storage-inducing transmembrane protein 2 (FIT2/FITM2) is the anciently conserved member of the fat storage-inducing transmembrane family of proteins implicated to be important in the formation of LDs, but its role in energy metabolism has not been tested. Here, we report that expression of FIT2 in mouse skeletal muscle had profound effects on muscle energy metabolism. Mice with skeletal muscle-specific overexpression of FIT2 (CKF2) had significantly increased intramyocellular triacylglyceride and complete protection from high fat diet-induced weight gain due to increased energy expenditure. Mass spectrometry-based metabolite profiling suggested that CKF2 skeletal muscle had increased oxidation of branched chain amino acids but decreased oxidation of fatty acids. Glucose was primarily utilized in CKF2 muscle for synthesis of the glycerol backbone of triacylglyceride and not for glycogen production. CKF2 muscle was ATP-deficient and had activated AMP kinase. Together, these studies indicate that FIT2 expression in skeletal muscle plays an unexpected function in regulating muscle energy metabolism and indicates an important role for lipid droplet formation in this process.

  13. Transmembrane amyloid-related proteins in CSF as potential biomarkers for Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Inmaculada eLopez-Font

    2015-06-01

    Full Text Available In the continuing search for new cerebrospinal fluid (CSF biomarkers for Alzheimer’s disease (AD, reasonable candidates are the secretase enzymes involved in the processing of the amyloid precursor protein (APP, as well as the large proteolytic cleavage fragments sAPPα and sAPPβ. The enzymatic activities of some of these secretases, such as BACE1 and TACE, have been investigated as potential AD biomarkers, and it has been assumed that these activities present in human CSF result from the soluble truncated forms of the membrane-bound enzymes. However, we and others recently identified soluble forms of BACE1 and APP in CSF containing the intracellular domains, as well as the multi-pass transmembrane presenilin-1 (PS1 and other subunits of γ-secretase. We also review recent findings that suggest that most of these soluble transmembrane proteins could display self-association properties based on hydrophobic and/or ionic interactions leading to the formation of heteromeric complexes. The oligomerization state of these potential new biomarkers needs to be taken into consideration for assessing their real potential as CSF biomarkers for AD by adequate molecular tools.

  14. Non-random distribution of amino acids in the transmembrane segments of human type I single span membrane proteins.

    Science.gov (United States)

    Landolt-Marticorena, C; Williams, K A; Deber, C M; Reithmeier, R A

    1993-02-05

    The distribution of amino acids in the transmembrane segments and flanking regions of 115 human type I single span (amino terminus extracellular and carboxyl terminus cytosolic) plasma membrane proteins was found to be non-random. In this sample, Ile was preferentially localized to the amino-terminal region of the hydrophobic transmembrane segments, followed by Val, while Leu predominated in the carboxyl-terminal half of the segment. Although Gly residues were preferentially located in the transmembrane segment, this residue was excluded from the carboxyl-terminal and adjacent boundary regions. Aromatic residues (Tyr, Trp and Phe) occurred preferentially at the cytoplasmic boundary, with Trp also favored at the extracellular boundary. The extracellular flanking sequence amino-terminal to the transmembrane segment was enriched in residues predicted to initiate helix formation (Pro, Asn and Ser), while Arg and Lys were enriched in the cytoplasmic flank where they may function as topological determinants. The positional preferences of these particular amino acids within the transmembrane segment and flanking regions suggests that, in addition to lipid-protein interactions, these residues may participate in specific protein-protein interactions. A consensus sequence motif for type I membrane proteins is proposed and its role in the biosynthesis, folding, assembly and function of these segments is discussed.

  15. The E3 Ubiquitin Ligase TMEM129 Is a Tri-Spanning Transmembrane Protein

    Directory of Open Access Journals (Sweden)

    Michael L. van de Weijer

    2016-11-01

    Full Text Available Misfolded proteins from the endoplasmic reticulum (ER are transported back into the cytosol for degradation via the ubiquitin-proteasome system. The human cytomegalovirus protein US11 hijacks this ER-associated protein degradation (ERAD pathway to downregulate human leukocyte antigen (HLA class I molecules in virus-infected cells, thereby evading elimination by cytotoxic T-lymphocytes. Recently, we identified the E3 ubiquitin ligase transmembrane protein 129 (TMEM129 as a key player in this process, where interference with TMEM129 activity in human cells completely abrogates US11-mediated class I degradation. Here, we set out to further characterize TMEM129. We show that TMEM129 is a non-glycosylated protein containing a non-cleaved signal anchor sequence. By glycosylation scanning mutagenesis, we show that TMEM129 is a tri-spanning ER-membrane protein that adopts an Nexo–Ccyto orientation. This insertion in the ER membrane positions the C-terminal really interesting new gene (RING domain of TMEM129 in the cytosol, making it available to catalyze ubiquitination reactions that are required for cytosolic degradation of secretory proteins.

  16. Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps.

    Science.gov (United States)

    Wei, Shipeng; Roessler, Bryan C; Chauvet, Sylvain; Guo, Jingyu; Hartman, John L; Kirk, Kevin L

    2014-07-18

    ATP-binding cassette (ABC) transporters are an ancient family of transmembrane proteins that utilize ATPase activity to move substrates across cell membranes. The ABCC subfamily of the ABC transporters includes active drug exporters (the multidrug resistance proteins (MRPs)) and a unique ATP-gated ion channel (cystic fibrosis transmembrane conductance regulator (CFTR)). The CFTR channel shares gating principles with conventional ligand-gated ion channels, but the allosteric network that couples ATP binding at its nucleotide binding domains (NBDs) with conformational changes in its transmembrane helices (TMs) is poorly defined. It is also unclear whether the mechanisms that govern CFTR gating are conserved with the thermodynamically distinct MRPs. Here we report a new class of gain of function (GOF) mutation of a conserved proline at the base of the pore-lining TM6. Multiple substitutions of this proline promoted ATP-free CFTR activity and activation by the weak agonist, 5'-adenylyl-β,γ-imidodiphosphate (AMP-PNP). TM6 proline mutations exhibited additive GOF effects when combined with a previously reported GOF mutation located in an outer collar of TMs that surrounds the pore-lining TMs. Each TM substitution allosterically rescued the ATP sensitivity of CFTR gating when introduced into an NBD mutant with defective ATP binding. Both classes of GOF mutations also rescued defective drug export by a yeast MRP (Yor1p) with ATP binding defects in its NBDs. We conclude that the conserved TM6 proline helps set the energy barrier to both CFTR channel opening and MRP-mediated drug efflux and that CFTR channels and MRP pumps utilize similar allosteric mechanisms for coupling conformational changes in their translocation pathways to ATP binding at their NBDs.

  17. Transmembrane signal transduction by peptide hormones via family B G protein-coupled receptors

    Directory of Open Access Journals (Sweden)

    Kelly J Culhane

    2015-11-01

    Full Text Available Although family B G protein-coupled receptors (GPCRs contain only 15 members, they play key roles in transmembrane signal transduction of hormones. Family B GPCRs are drug targets for developing therapeutics for diseases ranging from metabolic to neurological disorders. Despite their importance, the molecular mechanism of activation of family B GPCRs remains largely unexplored due to the challenges in expression and purification of functional receptors to the quantity for biophysical characterization. Currently, there is no crystal structure available of a full-length family B GPCR. However, structures of key domains, including the extracellular ligand binding regions and seven-helical transmembrane regions, have been solved by X-ray crystallography and NMR, providing insights into the mechanisms of ligand recognition and selectivity, and helical arrangements within the cell membrane. Moreover, biophysical and biochemical methods have been used to explore functions, key residues for signaling, and the kinetics and dynamics of signaling processes. This review summarizes the current knowledge of the signal transduction mechanism of family B GPCRs at the molecular level and comments on the challenges and outlook for mechanistic studies of family B GPCRs.

  18. Use of Molecular Dynamics Data in Biochemistry Courses: An Amphipathy Scale to Determine Protein [alpha]-Helix Transmembrane Segments

    Science.gov (United States)

    Mazze, Fernanda M.; Fuzo, Carlos A.; Degreve, Leo; Ciancaglini, Pietro

    2008-01-01

    The aim of this manuscript is to explain the application of an amphipathy scale obtained from molecular dynamics simulations and to demonstrate how it can be useful in the protein structure field. It is shown that this scale is easy to be used with the advantage of revealing domains of transmembrane [alpha]-helix of proteins without the need of…

  19. Defining the transmembrane helix of M2 protein from influenza A by molecular dynamics simulations in a lipid bilayer

    NARCIS (Netherlands)

    Forrest, LR; Tieleman, DP; Sansom, MSP

    1999-01-01

    Integral membrane proteins containing at least one transmembrane (TM) alpha-helix are believed to account for between 20% and 30% of most genomes. There are several algorithms that accurately predict the number and position of TM helices within,a membrane protein sequence. However, these methods ten

  20. Defining the transmembrane helix of M2 protein from influenza A by molecular dynamics simulations in a lipid bilayer

    NARCIS (Netherlands)

    Forrest, LR; Tieleman, DP; Sansom, MSP

    Integral membrane proteins containing at least one transmembrane (TM) alpha-helix are believed to account for between 20% and 30% of most genomes. There are several algorithms that accurately predict the number and position of TM helices within,a membrane protein sequence. However, these methods

  1. Use of Molecular Dynamics Data in Biochemistry Courses: An Amphipathy Scale to Determine Protein [alpha]-Helix Transmembrane Segments

    Science.gov (United States)

    Mazze, Fernanda M.; Fuzo, Carlos A.; Degreve, Leo; Ciancaglini, Pietro

    2008-01-01

    The aim of this manuscript is to explain the application of an amphipathy scale obtained from molecular dynamics simulations and to demonstrate how it can be useful in the protein structure field. It is shown that this scale is easy to be used with the advantage of revealing domains of transmembrane [alpha]-helix of proteins without the need of…

  2. Characterisation of the salmon cystic fibrosis transmembrane conductance regulator protein for structural studies

    Directory of Open Access Journals (Sweden)

    Naomi L. Pollock

    2014-11-01

    Full Text Available The cystic fibrosis transmembrane conductance regulator protein (CFTR is a chloride channel highly expressed in the gills of Salmo salar, with a role in osmoregulation. It shares 60% identity with the human CFTR channel, mutations to which can cause the common genetic disorder cystic fibrosis CF. The expression and localisation of salmon CFTR have been investigated, but the isolated protein has not been extensively characterised. Here we present a protocol for the purification of recombinant salmon CFTR, along with biophysical and structural characterisation of the purified protein. Salmon CFTR was overexpressed in Saccharomyces cerevisiae, solubilised in the detergent LPG-14 and chromatographically purified by nickel-affinity and size-exclusion chromatography methods. Prior to size-exclusion chromatography samples of salmon CFTR had low purity, and contained large quantities of aggregated protein. Compared to size-exclusion chromatography profiles of other orthologues of CFTR, which had less evidence of aggregation, salmon CFTR appeared to have lower intrinsic stability than human and platypus CFTR. Nonetheless, repeated size-exclusion chromatography allowed monodisperse salmon CFTR to be isolated, and multi-angle light scattering was used to determine its oligomeric state. The monodispersity of the sample and its oligomeric state were confirmed using cryo-electron microscopy and small-angle X-ray scattering (SAXS. These data were also processed to calculate a low-resolution structure of the salmon CFTR, which showed similar architecture to other ATP-binding cassette proteins.

  3. Transmembrane Protein 184A Is a Receptor Required for Vascular Smooth Muscle Cell Responses to Heparin.

    Science.gov (United States)

    Pugh, Raymond J; Slee, Joshua B; Farwell, Sara Lynn N; Li, Yaqiu; Barthol, Trista; Patton, Walter A; Lowe-Krentz, Linda J

    2016-03-01

    Vascular cell responses to exogenous heparin have been documented to include decreased vascular smooth muscle cell proliferation following decreased ERK pathway signaling. However, the molecular mechanism(s) by which heparin interacts with cells to induce those responses has remained unclear. Previously characterized monoclonal antibodies that block heparin binding to vascular cells have been found to mimic heparin effects. In this study, those antibodies were employed to isolate a heparin binding protein. MALDI mass spectrometry data provide evidence that the protein isolated is transmembrane protein 184A (TMEM184A). Commercial antibodies against three separate regions of the TMEM184A human protein were used to identify the TMEM184A protein in vascular smooth muscle cells and endothelial cells. A GFP-TMEM184A construct was employed to determine colocalization with heparin after endocytosis. Knockdown of TMEM184A eliminated the physiological responses to heparin, including effects on ERK pathway activity and BrdU incorporation. Isolated GFP-TMEM184A binds heparin, and overexpression results in additional heparin uptake. Together, these data support the identification of TMEM184A as a heparin receptor in vascular cells.

  4. Viable transmembrane region mutants of bacteriophage M13 coat protein prepared by site-directed mutagenesis.

    Science.gov (United States)

    Li, Z; Deber, C M

    1991-10-31

    Bacteriophage M13 coat protein - a 50-residue protein located at the E. coli host membrane during phage reproduction - is subjected to cytoplasmic, membrane-bound, and DNA-interactive environments during the phage life cycle. In research to examine the specific features of primary/secondary structure in the effective transmembrane (TM) region of the protein (residues 21-39: YIGYAWAMVVVIVGATIGI) which modulate its capacity to respond conformationally to the progressive influences of these varying environments, we have prepared over two dozen viable mutant phages with alterations in their coat protein TM regions. Mutants were obtained through use of site-directed mutagenesis techniques in combination with three "randomized" oligonucleotides which spanned the TM region. No subcloning was required. Among mutations observed were those in which each of the four TM Val residues was changed to Ala, and several with increased Ser or Thr content, including one double Ser mutant (G23S-A25S). Polar substitutions arising at Gly23 and Tyr24-including G23D, Y24H, Y24D and Y24N-suggested that this local segment resides external to the host membrane. Milligram quantities of mutant coat proteins are obtained by growing M13 mutant phages in liter preparations, with isotopic (e.g., 13C) labelling at desired sites, for subsequent characterization and conformational analysis in membrane-mimetic media.

  5. Structural fragment clustering reveals novel structural and functional motifs in α-helical transmembrane proteins

    Directory of Open Access Journals (Sweden)

    Vassilev Boris

    2010-04-01

    Full Text Available Abstract Background A large proportion of an organism's genome encodes for membrane proteins. Membrane proteins are important for many cellular processes, and several diseases can be linked to mutations in them. With the tremendous growth of sequence data, there is an increasing need to reliably identify membrane proteins from sequence, to functionally annotate them, and to correctly predict their topology. Results We introduce a technique called structural fragment clustering, which learns sequential motifs from 3D structural fragments. From over 500,000 fragments, we obtain 213 statistically significant, non-redundant, and novel motifs that are highly specific to α-helical transmembrane proteins. From these 213 motifs, 58 of them were assigned to function and checked in the scientific literature for a biological assessment. Seventy percent of the motifs are found in co-factor, ligand, and ion binding sites, 30% at protein interaction interfaces, and 12% bind specific lipids such as glycerol or cardiolipins. The vast majority of motifs (94% appear across evolutionarily unrelated families, highlighting the modularity of functional design in membrane proteins. We describe three novel motifs in detail: (1 a dimer interface motif found in voltage-gated chloride channels, (2 a proton transfer motif found in heme-copper oxidases, and (3 a convergently evolved interface helix motif found in an aspartate symporter, a serine protease, and cytochrome b. Conclusions Our findings suggest that functional modules exist in membrane proteins, and that they occur in completely different evolutionary contexts and cover different binding sites. Structural fragment clustering allows us to link sequence motifs to function through clusters of structural fragments. The sequence motifs can be applied to identify and characterize membrane proteins in novel genomes.

  6. Lysosomal-associated transmembrane protein 5 (LAPTM5 is a molecular partner of CD1e.

    Directory of Open Access Journals (Sweden)

    Catherine Angénieux

    Full Text Available The CD1e protein participates in the presentation of lipid antigens in dendritic cells. Its transmembrane precursor is transported to lysosomes where it is cleaved into an active soluble form. In the presence of bafilomycin, which inhibits vacuolar ATPase and consequently the acidification of endosomal compartments, CD1e associates with a 27 kD protein. In this work, we identified this molecular partner as LAPTM5. The latter protein and CD1e colocalize in trans-Golgi and late endosomal compartments. The quantity of LAPTM5/CD1e complexes increases when the cells are treated with bafilomycin, probably due to the protection of LAPTM5 from lysosomal proteases. Moreover, we could demonstrate that LAPTM5/CD1e association occurs under physiological conditions. Although LAPTM5 was previously shown to act as a platform recruiting ubiquitin ligases and facilitating the transport of receptors to lysosomes, we found no evidence that LATPM5 controls either CD1e ubiquitination or the generation of soluble lysosomal CD1e proteins. Notwithstanding these last observations, the interaction of LAPTM5 with CD1e and their colocalization in antigen processing compartments both suggest that LAPTM5 might influence the role of CD1e in the presentation of lipid antigens.

  7. Lipid-protein nanodiscs promote in vitro folding of transmembrane domains of multi-helical and multimeric membrane proteins.

    Science.gov (United States)

    Shenkarev, Zakhar O; Lyukmanova, Ekaterina N; Butenko, Ivan O; Petrovskaya, Lada E; Paramonov, Alexander S; Shulepko, Mikhail A; Nekrasova, Oksana V; Kirpichnikov, Mikhail P; Arseniev, Alexander S

    2013-02-01

    Production of helical integral membrane proteins (IMPs) in a folded state is a necessary prerequisite for their functional and structural studies. In many cases large-scale expression of IMPs in cell-based and cell-free systems results in misfolded proteins, which should be refolded in vitro. Here using examples of the bacteriorhodopsin ESR from Exiguobacterium sibiricum and full-length homotetrameric K(+) channel KcsA from Streptomyces lividans we found that the efficient in vitro folding of the transmembrane domains of the polytopic and multimeric IMPs could be achieved during the protein encapsulation into the reconstructed high-density lipoprotein particles, also known as lipid-protein nanodiscs. In this case the self-assembly of the IMP/nanodisc complexes from a mixture containing apolipoprotein, lipids and the partially denatured protein solubilized in a harsh detergent induces the folding of the transmembrane domains. The obtained folding yields showed significant dependence on the properties of lipids used for nanodisc formation. The largest recovery of the spectroscopically active ESR (~60%) from the sodium dodecyl sulfate (SDS) was achieved in the nanodiscs containing anionic saturated lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPG) and was approximately twice lower in the zwitterionic DMPC lipid. The reassembly of tetrameric KcsA from the acid-dissociated monomer solubilized in SDS was the most efficient (~80%) in the nanodiscs containing zwitterionic unsaturated lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). The charged and saturated lipids provided lower tetramer quantities, and the lowest yield (<20%) was observed in DMPC. The overall yield of the ESR and KcsA folding was mainly restricted by the efficiency of the protein encapsulation into the nanodiscs.

  8. Membrane-spanning domain of bovine foamy virus transmembrane protein having cytotoxicity

    Institute of Scientific and Technical Information of China (English)

    MA Yonggang; YU Hong; WANG Jinzhong; CHEN Qimin; GENG Yunqi

    2006-01-01

    Foamy viruses (FVs) have broad cellular tropism infecting vertebrates from fish to human being,which indicates that Env protein has a high capability for membrane fusion.Conservative features in all FV transmembrane (TM) proteins include a region of hydrophobic domain called membrane-spanning domain (MSD),which contains several stretches of hydrophobic amino acids.To investigate whether these features were associated with the cytotoxicity effect of TM on Escherichia coli,a series of mutants were constructed and expressed in the E.coli BL21 (DE3) using pET-32a (+) as expressing vector.The results showed that only TM3 without MSD was expressed in E.coli,whereas the other two containing full or part of the MSD (TM1 and TM2) could not be expressed.Furthermore,the bacterial amount and living bacteria analysis revealed that the cytotoxicity of TM was dependent on its MSD,especially on the stretches of hydrophobic amino acids.Western blotting analysis showed that TM3 protein was purified with affinity purification.

  9. Genes encoding novel secreted and transmembrane proteins are temporally and spatially regulated during Drosophila melanogaster embryogenesis

    Directory of Open Access Journals (Sweden)

    González Mauricio

    2009-09-01

    Full Text Available Abstract Background Morphogenetic events that shape the Drosophila melanogaster embryo are tightly controlled by a genetic program in which specific sets of genes are up-regulated. We used a suppressive subtractive hybridization procedure to identify a group of developmentally regulated genes during early stages of D. melanogaster embryogenesis. We studied the spatiotemporal activity of these genes in five different intervals covering 12 stages of embryogenesis. Results Microarrays were constructed to confirm induction of expression and to determine the temporal profile of isolated subtracted cDNAs during embryo development. We identified a set of 118 genes whose expression levels increased significantly in at least one developmental interval compared with a reference interval. Of these genes, 53% had a phenotype and/or molecular function reported in the literature, whereas 47% were essentially uncharacterized. Clustering analysis revealed demarcated transcript groups with maximum gene activity at distinct developmental intervals. In situ hybridization assays were carried out on 23 uncharacterized genes, 15 of which proved to have spatiotemporally restricted expression patterns. Among these 15 uncharacterized genes, 13 were found to encode putative secreted and transmembrane proteins. For three of them we validated our protein sequence predictions by expressing their cDNAs in Drosophila S2R+ cells and analyzed the subcellular distribution of recombinant proteins. We then focused on the functional characterization of the gene CG6234. Inhibition of CG6234 by RNA interference resulted in morphological defects in embryos, suggesting the involvement of this gene in germ band retraction. Conclusion Our data have yielded a list of developmentally regulated D. melanogaster genes and their expression profiles during embryogenesis and provide new information on the spatiotemporal expression patterns of several uncharacterized genes. In particular, we

  10. Transmembrane START domain proteins: in silico identification, characterization and expression analysis under stress conditions in chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Satheesh, Viswanathan; Chidambaranathan, Parameswaran; Jagannadham, Prasanth Tejkumar; Kumar, Vajinder; Jain, Pradeep K; Chinnusamy, Viswanathan; Bhat, Shripad R; Srinivasan, R

    2016-01-01

    Steroidogenic acute regulatory related transfer (StART) proteins that are involved in transport of lipid molecules, play a myriad of functions in insects, mammals and plants. These proteins consist of a modular START domain of approximately 200 amino acids which binds and transfers the lipids. In the present study we have performed a genome-wide search for all START domain proteins in chickpea. The search identified 36 chickpea genes belonging to the START domain family. Through a phylogenetic tree reconstructed with Arabidopsis, rice, chickpea, and soybean START proteins, we were able to identify four transmembrane START (TM-START) proteins in chickpea. These four proteins are homologous to the highly conserved mammalian phosphatidylcholine transfer proteins. Multiple sequence alignment of all the transmembrane containing START proteins from Arabidopsis, rice, chickpea, and soybean revealed that the amino acid residues to which phosphatidylcholine binds in mammals, is also conserved in all these plant species, implying an important functional role and a very similar mode of action of all these proteins across dicots and monocots. This study characterizes a few of the not so well studied transmembrane START superfamily genes that may be involved in stress signaling. Expression analysis in various tissues showed that these genes are predominantly expressed in flowers and roots of chickpea. Three of the chickpea TM-START genes showed induced expression in response to drought, salt, wound and heat stress, suggesting their role in stress response.

  11. Packing of coat protein amphipathic and transmembrane helices in filamentous bacteriophage M13: role of small residues in protein oligomerization.

    Science.gov (United States)

    Williams, K A; Glibowicka, M; Li, Z; Li, H; Khan, A R; Chen, Y M; Wang, J; Marvin, D A; Deber, C M

    1995-09-08

    Filamentous bacteriophage M13, an important cloning and phage display vector, is encapsulated by ca 2700 copies of its 50-residue major coat protein (gene 8). This protein occurs as a membrane protein while stably inserted into its E. coli host inner membrane, and as a coat protein upon assembly and packing onto phage DNA in the lipid-free virion. To examine the specific protein-protein interactions underlying these processes, we used a combination of randomized and saturation mutagenesis of the entire gene 8 to assess the susceptibility of each position to mutation. In the resulting library of ca 100 viable M13 mutants, "small" residues (Ala,Gly,Ser), which constitute the non-polar face of the N-terminal amphipathic helical segment, and a face of the hydrophobic (effective transmembrane) helical segment, were found to be highly conserved. These results support a model in which coat protein packing is stabilized by the presence within each protein subunit of two "oligomerization segments", i.e. specific helical regions with faces rich in small residues which function to promote the close approach of alpha-helices.

  12. Definition of the G protein-coupled receptor transmembrane bundle binding pocket and calculation of receptor similarities for drug design

    DEFF Research Database (Denmark)

    Gloriam, David Erik Immanuel; Foord, Steven M; Blaney, Frank E

    2009-01-01

    Recent advances in structural biology for G-protein-coupled receptors (GPCRs) have provided new opportunities to improve the definition of the transmembrane binding pocket. Here a reference set of 44 residue positions accessible for ligand binding was defined through detailed analysis of all curr...

  13. Identification of MarvelD3 as a tight junction-associated transmembrane protein of the occludin family

    Directory of Open Access Journals (Sweden)

    Balda Maria S

    2009-12-01

    Full Text Available Abstract Background Tight junctions are an intercellular adhesion complex of epithelial and endothelial cells, and form a paracellular barrier that restricts the diffusion of solutes on the basis of size and charge. Tight junctions are formed by multiprotein complexes containing cytosolic and transmembrane proteins. How these components work together to form functional tight junctions is still not well understood and will require a complete understanding of the molecular composition of the junction. Results Here we identify a new transmembrane component of tight junctions: MarvelD3, a four-span transmembrane protein. Its predicted transmembrane helices form a Marvel (MAL and related proteins for vesicle traffic and membrane link domain, a structural motif originally discovered in proteins involved in membrane apposition and fusion events, such as the tight junction proteins occludin and tricellulin. In mammals, MarvelD3 is expressed as two alternatively spliced isoforms. Both isoforms exhibit a broad tissue distribution and are expressed by different types of epithelial as well as endothelial cells. MarvelD3 co-localises with occludin at tight junctions in intestinal and corneal epithelial cells. RNA interference experiments in Caco-2 cells indicate that normal MarvelD3 expression is not required for the formation of functional tight junctions but depletion results in monolayers with increased transepithelial electrical resistance. Conclusions Our data indicate that MarvelD3 is a third member of the tight junction-associated occludin family of transmembrane proteins. Similar to occludin, normal expression of MarvelD3 is not essential for the formation of functional tight junctions. However, MarvelD3 functions as a determinant of epithelial paracellular permeability properties.

  14. Functional characterization of the trans-membrane domain interactions of the Sec61 protein translocation complex beta-subunit

    Directory of Open Access Journals (Sweden)

    Zhao Xueqiang

    2009-10-01

    Full Text Available Abstract Background In eukaryotic cells co- and post-translational protein translocation is mediated by the trimeric Sec61 complex. Currently, the role of the Sec61 complex β-subunit in protein translocation is poorly understood. We have shown previously that in Saccharomyces cerevisiae the trans-membrane domain alone is sufficient for the function of the β-subunit Sbh1p in co-translational protein translocation. In addition, Sbh1p co-purifies not only with the protein translocation channel subunits Sec61p and Sss1p, but also with the reticulon family protein Rtn1p. Results We used random mutagenesis to generate novel Sbh1p mutants in order to functionally map the Sbh1p trans-membrane domain. These mutants were analyzed for their interactions with Sec61p and how they support co-translational protein translocation. The distribution of mutations identifies one side of the Sbh1p trans-membrane domain α-helix that is involved in interactions with Sec61p and that is important for Sbh1p function in protein translocation. At the same time, these mutations do not affect Sbh1p interaction with Rtn1p. Furthermore we show that Sbh1p is found in protein complexes containing not only Rtn1p, but also the two other reticulon-like proteins Rtn2p and Yop1p. Conclusion Our results identify functionally important amino acids in the Sbh1p trans-membrane domain. In addition, our results provide additional support for the involvement of Sec61β in processes unlinked to protein translocation.

  15. Sprinter: a novel transmembrane protein required for Wg secretion and signaling.

    Science.gov (United States)

    Goodman, Robyn M; Thombre, Shreya; Firtina, Zeynep; Gray, Dione; Betts, Daniella; Roebuck, Jamie; Spana, Eric P; Selva, Erica M

    2006-12-01

    Wingless (Wg) is a secreted ligand that differentially activates gene expression in target tissues. It belongs to the Wnt family of secreted signaling molecules that regulate cell-to-cell interactions during development. Activation of Wg targets is dependent on the ligand concentration in the extracellular milieu; cellular mechanisms that govern the synthesis, delivery and receipt of Wg are elaborate and complex. We have identified sprinter (srt), which encodes a novel, evolutionarily conserved transmembrane protein required for the transmission of the Wg signal. Mutations in srt cause the accumulation of Wg in cells that express it, and retention of the ligand prevents activation of its target genes in signal-receiving cells. In the absence of Srt activity, levels of Wg targets (including Engrailed in embryos lacking maternal and zygotic srt, and Senseless and Achaete in wing discs) are reduced. Activation of Wg targets in the receiving cells does not require srt. Hence, the function of Srt is restricted to events occurring within the Wg-producing cells. We show that srt is not required for any aspect of Hedgehog (Hh) signal transduction, suggesting specificity of srt for the Wg pathway. We propose that srt encodes a protein required for Wg secretion that regulates maturation, membrane targeting or delivery of Wg. Loss of srt function in turn diminishes Wg-pathway activation in receiving cells.

  16. Interaction of protein C inhibitor with the type II transmembrane serine protease enteropeptidase.

    Directory of Open Access Journals (Sweden)

    Thomas A Prohaska

    Full Text Available The serine protease inhibitor protein C inhibitor (PCI is expressed in many human tissues and exhibits broad protease reactivity. PCI binds glycosaminoglycans and certain phospholipids, which modulate its inhibitory activity. Enteropeptidase (EP is a type II transmembrane serine protease mainly found on the brush border membrane of epithelial cells in the duodenum, where it activates trypsinogen to initiate the digestion of food proteins. Some active EP is also present in duodenal fluid and has been made responsible for causing pancreatitis in case of duodeno-pancreatic reflux. Together with its substrate trypsinogen, EP is furthermore present in the epidermis and in some cancer cells. In this report, we show that PCI inhibited EP with an apparent 2nd order rate constant of 4.48 × 10(4 M(-1 s(-1. Low molecular weight (LMWH and unfractionated heparin (UFH slightly reduced the inhibitory effect of PCI. The SI (stoichiometry of inhibition value for the inhibition of EP by PCI was 10.8 in the absence and 17.9 in the presence of UFH (10 U/ml. By inhibiting trypsin, chymotrypsin, and additionally EP, PCI might play a role in the protection of the pancreas from autodigestion. Furthermore the interaction of PCI with EP may influence the regulation of epithelial differentiation.

  17. Characterization of the GXXXG motif in the first transmembrane segment of Japanese encephalitis virus precursor membrane (prM) protein.

    Science.gov (United States)

    Lin, Ying-Ju; Peng, Jia-Guan; Wu, Suh-Chin

    2010-05-24

    The interaction between prM and E proteins in flavivirus-infected cells is a major driving force for the assembly of flavivirus particles. We used site-directed mutagenesis to study the potential role of the transmembrane domains of the prM proteins of Japanese encephalitis virus (JEV) in prM-E heterodimerization as well as subviral particle formation. Alanine insertion scanning mutagenesis within the GXXXG motif in the first transmembrane segment of JEV prM protein affected the prM-E heterodimerization; its specificity was confirmed by replacing the two glycines of the GXXXG motif with alanine, leucine and valine. The GXXXG motif was found to be conserved in the JEV serocomplex viruses but not other flavivirus groups. These mutants with alanine inserted in the two prM transmembrane segments all impaired subviral particle formation in cell cultures. The prM transmembrane domains of JEV may play importation roles in prM-E heterodimerization and viral particle assembly.

  18. Mouse fat storage-inducing transmembrane protein 2 (FIT2) promotes lipid droplet accumulation in plants.

    Science.gov (United States)

    Cai, Yingqi; McClinchie, Elizabeth; Price, Ann; Nguyen, Thuy N; Gidda, Satinder K; Watt, Samantha C; Yurchenko, Olga; Park, Sunjung; Sturtevant, Drew; Mullen, Robert T; Dyer, John M; Chapman, Kent D

    2017-07-01

    Fat storage-inducing transmembrane protein 2 (FIT2) is an endoplasmic reticulum (ER)-localized protein that plays an important role in lipid droplet (LD) formation in animal cells. However, no obvious homologue of FIT2 is found in plants. Here, we tested the function of FIT2 in plant cells by ectopically expressing mouse (Mus musculus) FIT2 in Nicotiana tabacum suspension-cultured cells, Nicotiana benthamiana leaves and Arabidopsis thaliana plants. Confocal microscopy indicated that the expression of FIT2 dramatically increased the number and size of LDs in leaves of N. benthamiana and Arabidopsis, and lipidomics analysis and mass spectrometry imaging confirmed the accumulation of neutral lipids in leaves. FIT2 also increased seed oil content by ~13% in some stable, overexpressing lines of Arabidopsis. When expressed transiently in leaves of N. benthamiana or suspension cells of N. tabacum, FIT2 localized specifically to the ER and was often concentrated at certain regions of the ER that resembled ER-LD junction sites. FIT2 also colocalized at the ER with other proteins known to be involved in triacylglycerol biosynthesis or LD formation in plants, but not with ER resident proteins involved in electron transfer or ER-vesicle exit sites. Collectively, these results demonstrate that mouse FIT2 promotes LD accumulation in plants, a surprising functional conservation in the context of a plant cell given the apparent lack of FIT2 homologues in higher plants. These results suggest also that FIT2 expression represents an effective synthetic biology strategy for elaborating neutral lipid compartments in plant tissues for potential biofuel or bioproduct purposes. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  19. Assembly of transmembrane helices of simple polytopic membrane proteins from sequence conservation patterns.

    Science.gov (United States)

    Park, Yungki; Helms, Volkhard

    2006-09-01

    The transmembrane (TM) domains of most membrane proteins consist of helix bundles. The seemingly simple task of TM helix bundle assembly has turned out to be extremely difficult. This is true even for simple TM helix bundle proteins, i.e., those that have the simple form of compact TM helix bundles. Herein, we present a computational method that is capable of generating native-like structural models for simple TM helix bundle proteins having modest numbers of TM helices based on sequence conservation patterns. Thus, the only requirement for our method is the presence of more than 30 homologous sequences for an accurate extraction of sequence conservation patterns. The prediction method first computes a number of representative well-packed conformations for each pair of contacting TM helices, and then a library of tertiary folds is generated by overlaying overlapping TM helices of the representative conformations. This library is scored using sequence conservation patterns, and a subsequent clustering analysis yields five final models. Assuming that neighboring TM helices in the sequence contact each other (but not that TM helices A and G contact each other), the method produced structural models of Calpha atom root-mean-square deviation (CA RMSD) of 3-5 A from corresponding crystal structures for bacteriorhodopsin, halorhodopsin, sensory rhodopsin II, and rhodopsin. In blind predictions, this type of contact knowledge is not available. Mimicking this, predictions were made for the rotor of the V-type Na(+)-adenosine triphosphatase without such knowledge. The CA RMSD between the best model and its crystal structure is only 3.4 A, and its contact accuracy reaches 55%. Furthermore, the model correctly identifies the binding pocket for sodium ion. These results demonstrate that the method can be readily applied to ab initio structure prediction of simple TM helix bundle proteins having modest numbers of TM helices.

  20. HTP: a neural network-based method for predicting the topology of helical transmembrane domains in proteins.

    Science.gov (United States)

    Fariselli, P; Casadio, R

    1996-02-01

    In this paper we describe a microcomputer program (HTP) for predicting the location and orientation of alpha-helical transmembrane segments in integral membrane proteins. HTP is a neural network-based tool which gives as output the protein membrane topology based on the statistical propensity of residues to be located in external and internal loops. This method, which uses single protein sequences as input to the network system, correctly predicts the topology of 71 out of 92 membrane proteins of putative membrane orientation, independently of the protein source.

  1. LINGO-1, a transmembrane signaling protein, inhibits oligodendrocyte differentiation and myelination through intercellular self-interactions.

    Science.gov (United States)

    Jepson, Scott; Vought, Bryan; Gross, Christian H; Gan, Lu; Austen, Douglas; Frantz, J Daniel; Zwahlen, Jacque; Lowe, Derek; Markland, William; Krauss, Raul

    2012-06-22

    Overcoming remyelination failure is a major goal of new therapies for demyelinating diseases like multiple sclerosis. LINGO-1, a key negative regulator of myelination, is a transmembrane signaling protein expressed in both neurons and oligodendrocytes. In neurons, LINGO-1 is an integral component of the Nogo receptor complex, which inhibits axonal growth via RhoA. Because the only ligand-binding subunit of this complex, the Nogo receptor, is absent in oligodendrocytes, the extracellular signals that inhibit myelination through a LINGO-1-mediated mechanism are unknown. Here we show that LINGO-1 inhibits oligodendrocyte terminal differentiation through intercellular interactions and is capable of a self-association in trans. Consistent with previous reports, overexpression of full-length LINGO-1 inhibited differentiation of oligodendrocyte precursor cells (OPCs). Unexpectedly, treatment with a soluble recombinant LINGO-1 ectodomain also had an inhibitory effect on OPCs and decreased myelinated axonal segments in cocultures with neurons from dorsal root ganglia. We demonstrated LINGO-1-mediated inhibition of OPCs through intercellular signaling by using a surface-bound LINGO-1 construct expressed ectopically in astrocytes. Further investigation showed that the soluble LINGO-1 ectodomain can interact with itself in trans by binding to CHO cells expressing full-length LINGO-1. Finally, we observed that soluble LINGO-1 could activate RhoA in OPCs. We propose that LINGO-1 acts as both a ligand and a receptor and that the mechanism by which it negatively regulates OPC differentiation and myelination is mediated by a homophilic intercellular interaction. Disruption of this protein-protein interaction could lead to a decrease of LINGO-1 inhibition and an increase in myelination.

  2. Mutagenesis of bacteriophage IKe major coat protein transmembrane domain: role of an interfacial proline residue.

    Science.gov (United States)

    Williams, K A; Deber, C M

    1993-10-15

    The transmembrane (TM) domain of the 53-residue major coat protein of the M13-related bacteriophage IKe (residues 24-42: LISQTWPVVTTVVVAGVLI) has been subjected to randomized mutagenesis to probe the conformation and stability of the TM domain, as well as the effect of structurally-important residues such as proline. TM mutants were obtained by the Eckstein method of site-directed mutagenesis using the IKe genome as template so as to eliminate the need for subcloning. Over 40 single- and double-site viable mutants of bacteriophage IKe were isolated. Every residue in the TM segment, except the highly conserved Trp29, could be mutated to at least one other residue; polar and charged mutations occurred in the TM segment adjacent to the N-terminal domain (residues 24-28), while non-polar substitutions predominated in the C-terminal portion (residues 30-42). The Pro30 locus tolerated four mutations-Ala, Gly, Cys, and Ser- which represent the four side chains of least volume. Mutant coat proteins obtained directly from the phage in milligram quantities were studied by circular dichroism spectroscopy and SDS-PAGE gels. Wild type IKe coat protein solubilized in sodium deoxycholate micelles was found to occur as an alpha-helical, monomeric species which is stable at 95 degrees C, whereas the mutant Pro30-->Gly undergoes an irreversible conformational transition at ca. 90 degrees C to an aggregated beta-sheet structure. The result that Pro30 stabilizes the TM helix in the micellar membrane suggests a sterically-restricted location for the wild type Pro pyrrolidine side chain in the bulky Trp-Pro-Val triad, where it may be positioned to direct the initiation of the subsequent TM core domain helix.

  3. Comprehensive analysis of the numbers, lengths and amino acid compositions of transmembrane helices in prokaryotic, eukaryotic and viral integral membrane proteins of high-resolution structure.

    Science.gov (United States)

    Saidijam, Massoud; Azizpour, Sonia; Patching, Simon G

    2017-02-15

    We report a comprehensive analysis of the numbers, lengths and amino acid compositions of transmembrane helices in 235 high-resolution structures of integral membrane proteins. The properties of 1551 transmembrane helices in the structures were compared with those obtained by analysis of the same amino acid sequences using topology prediction tools. Explanations for the 81 (5.2%) missing or additional transmembrane helices in the prediction results were identified. Main reasons for missing transmembrane helices were mis-identification of N-terminal signal peptides, breaks in α-helix conformation or charged residues in the middle of transmembrane helices and transmembrane helices with unusual amino acid composition. The main reason for additional transmembrane helices was mis-identification of amphipathic helices, extramembrane helices or hairpin re-entrant loops. Transmembrane helix length had an overall median of 24 residues and an average of 24.9 ± 7.0 residues and the most common length was 23 residues. The overall content of residues in transmembrane helices as a percentage of the full proteins had a median of 56.8% and an average of 55.7 ± 16.0%. Amino acid composition was analysed for the full proteins, transmembrane helices and extramembrane regions. Individual proteins or types of proteins with transmembrane helices containing extremes in contents of individual amino acids or combinations of amino acids with similar physicochemical properties were identified and linked to structure and/or function. In addition to overall median and average values, all results were analysed for proteins originating from different types of organism (prokaryotic, eukaryotic, viral) and for subgroups of receptors, channels, transporters and others.

  4. Brucella Intracellular Life Relies on the Transmembrane Protein CD98 Heavy Chain.

    Science.gov (United States)

    Keriel, Anne; Botella, Eric; Estrach, Soline; Bragagnolo, Gabriel; Vergunst, Annette C; Feral, Chloe C; O'Callaghan, David

    2015-06-01

    Brucella are intracellular bacterial pathogens that use a type IV secretion system (T4SS) to escape host defenses and create a niche in which they can multiply. Although the importance of Brucella T4SS is clear, little is known about its interactions with host cell structures. In this study, we identified the eukaryotic protein CD98hc as a partner for Brucella T4SS subunit VirB2. This transmembrane glycoprotein is involved in amino acid transport, modulation of integrin signaling, and cell-to-cell fusion. Knockdown of CD98hc expression in HeLa cells demonstrated that it is essential for Brucella infection. Using knockout dermal fibroblasts, we confirmed its role for Brucella but found that it is not required for Salmonella infection. CD98hc transiently accumulates around the bacteria during the early phases of infection and is required for both optimal bacterial uptake and intracellular multiplication of Brucella. These results provide new insights into the complex interplay between Brucella and its host.

  5. Transmembrane protein 108 is required for glutamatergic transmission in dentate gyrus.

    Science.gov (United States)

    Jiao, Hui-Feng; Sun, Xiang-Dong; Bates, Ryan; Xiong, Lei; Zhang, Lei; Liu, Fang; Li, Lei; Zhang, Hong-Sheng; Wang, Shun-Qi; Xiong, Ming-Tao; Patel, Mihir; Stranahan, Alexis M; Xiong, Wen-Cheng; Li, Bao-Ming; Mei, Lin

    2017-01-31

    Neurotransmission in dentate gyrus (DG) is critical for spatial coding, learning memory, and emotion processing. Although DG dysfunction is implicated in psychiatric disorders, including schizophrenia, underlying pathological mechanisms remain unclear. Here we report that transmembrane protein 108 (Tmem108), a novel schizophrenia susceptibility gene, is highly enriched in DG granule neurons and its expression increased at the postnatal period critical for DG development. Tmem108 is specifically expressed in the nervous system and enriched in the postsynaptic density fraction. Tmem108-deficient neurons form fewer and smaller spines, suggesting that Tmem108 is required for spine formation and maturation. In agreement, excitatory postsynaptic currents of DG granule neurons were decreased in Tmem108 mutant mice, indicating a hypofunction of glutamatergic activity. Further cell biological studies indicate that Tmem108 is necessary for surface expression of AMPA receptors. Tmem108-deficient mice display compromised sensorimotor gating and cognitive function. Together, these observations indicate that Tmem108 plays a critical role in regulating spine development and excitatory transmission in DG granule neurons. When Tmem108 is mutated, mice displayed excitatory/inhibitory imbalance and behavioral deficits relevant to schizophrenia, revealing potential pathophysiological mechanisms of schizophrenia.

  6. Contribution of Kunitz protease inhibitor and transmembrane domains to amyloid precursor protein homodimerization.

    Science.gov (United States)

    Ben Khalifa, N; Tyteca, D; Courtoy, P J; Renauld, J C; Constantinescu, S N; Octave, J N; Kienlen-Campard, P

    2012-01-01

    The two major isoforms of the human amyloid precursor protein (APP) are APP695 and APP751. They differ by the insertion of a Kunitz-type protease inhibitor (KPI) sequence in the extracellular domain of APP751. APP-KPI isoforms are increased in Alzheimer's disease brains, and they could be associated with disease progression. Recent studies have shown that APP processing to Aβ is regulated by homodimerization, which involves both extracellular and juxtamembrane/transmembrane (JM/TM) regions. Our aim is to understand the mechanisms controlling APP dimerization and the contribution of the ectodomain and JM/TM regions to this process. We used bimolecular fluorescence complementation approaches coupled to fluorescence-activated cell sorting analysis to measure the dimerization level of different APP isoforms and APP C-terminal fragments (C99) mutated in their JM/TM region. APP751 was found to form significantly more homodimers than APP695. Mutation of dimerization motifs in the TM domain of APP or C99 did not significantly affect fluorescence complementation. These findings indicate that the KPI domain plays a major role in APP dimerization. They set the basis for further investigation of the relation between dimerization, metabolism and function of APP. Copyright © 2012 S. Karger AG, Basel.

  7. A mathematical model of T lymphocyte calcium dynamics derived from single transmembrane protein properties

    Directory of Open Access Journals (Sweden)

    Christine Dorothee Schmeitz

    2013-09-01

    Full Text Available Fate decision processes of T lymphocytes are crucial for health and disease. Whether a T lymphocyte is activated, divides, gets anergic or initiates apoptosis depends on extracellular triggers and intracellular signalling. Free cytosolic calcium dynamics plays an important role in this context. The relative contributions of store-derived calcium entry and calcium entry from extracellular space to T lymphocyte activation are still a matter of debate. Here we develop a quantitative mathematical model of T lymphocyte calcium dynamics in order to establish a tool which allows to disentangle cause-effect relationships between ion fluxes and observed calcium time courses. The model is based on single transmembrane protein characteristics which have been determined in independent experiments. This reduces the number of unknown parameters in the model to a minimum and ensures the predictive power of the model. Simulation results are subsequently used for an analysis of whole cell calcium dynamics measured under various experimental conditions. The model accounts for a variety of these conditions, which supports the suitability of the modelling approach. The simulation results suggest a model in which calcium dynamics dominantly relies on the opening of channels in calcium stores while calcium entry through calcium-release activated channels (CRAC is more associated with the maintenance of the T lymphocyte calcium levels and prevents the cell from calcium depletion. Our findings indicate that CRAC guarantees a long-term stable calcium level which is required for cell survival and sustained calcium enhancement.

  8. Prokaryotic expression and purification of fibronectin leucine rich transmembrane protein 3 C-terminal domain proteins in rats

    Institute of Scientific and Technical Information of China (English)

    Yan Cai; Jing Yang; He Huang; Fang Li; Ganqiu Wu; Jing Yang; Xuegang Luo

    2009-01-01

    BACKGROUND: Studies have suggested that fibronectin leucine-rich transmembrane protein 3 (FLRT3) is related to injury and regeneration of the nervous system. However, the expression and biological characteristics of these proteins remain poorly understood.OBJECTIVE: To obtain FLRT3 C-terminal gene fragments, to effectively express and purify the target proteins.DESIGN, TIME AND SETTING: An observational study of cellular and molecular biology was performed at the laboratory of Histology and Embryology in Xiangya School of Medicine, Central South University between October 2007 and June 2008.MATERIALS: Three Sprague Dawley adult rats were used to extract total RNA from rat brains. The pGEX4T3 and Escherichia coli (E. Coli) JM109 were purchased from Promega. E. Coil BL21 was provided by Novagen.METHODS: FLRT3 protein coding C-terminal DNA fragments, at a length of 786 bp, were amplified using RT-PCR technique from rat total RNA. The amplified products were cloned into the expression vector pGEX4T3. A recombinant expression vector was then constructed and introduced into E. Coli BL21. IsopropyI-D-thiogalactopyranoside was applied to induce expression of recombinant GST fusion proteins, followed by isolation, purification, and renaturation of inclusion bodies that comprised recombinant proteins. Finally, the purified recombinant protein was obtained.MAIN OUTCOME MEASURES: Determination of FLRT3 C-terminal DNA sequence; expression of target proteins was assayed by SDS-PAGE electrophoresis; purified recombinant protein was identified with Western blot methods.RESULTS: FLRT3 protein coding C-terminal DNA fragments, at a length of 786 bp, were successfully harvested through RT-PCR amplification, and were then cloned into the prokaryotic expression vector pGEX4T3. The results of the sequence were consistent with the known gene sequence. SDS-PAGE analysis demonstrated that there was a specific protein band in the recombinant GST fusion proteins at a relative molecular mass

  9. Inactivation and unfolding of protein tyrosine phosphatase from Thermus thermophilus HB27 during urea and guanidine hydrochloride denaturation.

    Directory of Open Access Journals (Sweden)

    Yejing Wang

    Full Text Available The effects of urea and guanidine hydrochloride (GdnHCl on the activity, conformation and unfolding process of protein tyrosine phosphatase (PTPase, a thermostable low molecular weight protein from Thermus thermophilus HB27, have been studied. Enzymatic activity assays showed both urea and GdnHCl resulted in the inactivation of PTPase in a concentration and time-dependent manner. Inactivation kinetics analysis suggested that the inactivation of PTPase induced by urea and GdnHCl were both monophasic and reversible processes, and the effects of urea and GdnHCl on PTPase were similar to that of mixed-type reversible inhibitors. Far-ultraviolet (UV circular dichroism (CD, Tryptophan and 1-anilinonaphthalene -8-sulfonic acid (ANS fluorescence spectral analyses indicated the existence of a partially active and an inactive molten globule-like intermediate during the unfolding processes induced by urea and GdnHCl, respectively. Based on the sequence alignment and the homolog Tt1001 protein structure, we discussed the possible conformational transitions of PTPase induced by urea and GdnHCl and compared the conformations of these unfolding intermediates with the transient states in bovine PTPase and its complex structures in detail. Our results may be able to provide some valuable clues to reveal the relationship between the structure and enzymatic activity, and the unfolding pathway and mechanism of PTPase.

  10. Extracellular regulation of sperm transmembrane adenylyl cyclase by a forward motility stimulating protein.

    Directory of Open Access Journals (Sweden)

    Souvik Dey

    Full Text Available Forward motility stimulating factor (FMSF, a glycoprotein isolated from buffalo serum, binds to the surface of the mature sperm cells to promote their progressive motility. This article reports the mode of signal transduction of this extracellular factor in goat sperm. The mechanism was investigated by assaying intracellular second messenger level and forward motility in presence of different pharmacological modulators. Mg++-dependent Forskolin responsive form of transmembrane adenylyl cyclase (tmAC of goat spermatozoa was probed for its involvement in FMSF action. Dideoxyadenosine, a selective inhibitor of tmACs, was used to identify the role of this enzyme in the scheme of FMSF-signaling. Involvement of the α-subunit of G-protein in this regard has been inspected using GTPγS. Participation of protein kinase A (PKA and tyrosine kinase was checked using IP20 and genistein, respectively. FMSF promotes tmAC activity in a dose-dependent manner through receptor/G-protein activation to enhance intracellular cAMP and forward motility. Motility boosting effects of this glycoprotein are almost lost in presence of dideoxyadenosine. But, FMSF displayed substantial motility promoting activity when movement of spermatozoa was inhibited with KH7, the specific inhibitor of soluble adenylyl cyclase indicating tmAC to be the primary target of FMSF action. Involvement of cAMP in mediating FMSF action was confirmed by the application of dibutyryl cAMP. Observed motility regulatory effects with IP20 and genistein indicate contribution of PKA and tyrosine kinase in FMSF activity; enhanced phosphorylation of a tyrosine containing ≈50 kDa protein was detected in this regard. FMSF initiates a novel signaling cascade to stimulate tmAC activity that augments intracellular cAMP, which through downstream crosstalk of phosphokinases leads to enhanced forward motility in mature spermatozoa. Thus, this article for the first time describes conventional tm

  11. Transmembrane Signaling Proteoglycans

    DEFF Research Database (Denmark)

    Couchman, John R

    2010-01-01

    Virtually all metazoan cells contain at least one and usually several types of transmembrane proteoglycans. These are varied in protein structure and type of polysaccharide, but the total number of vertebrate genes encoding transmembrane proteoglycan core proteins is less than 10. Some core...... proteins, including those of the syndecans, always possess covalently coupled glycosaminoglycans; others do not. Syndecan has a long evolutionary history, as it is present in invertebrates, but many other transmembrane proteoglycans are vertebrate inventions. The variety of proteins......, and linkage to PDZ protein networks. Many transmembrane proteoglycans associate on the cell surface with metzincin proteases and can be shed by them. Work with model systems in vivo and in vitro reveal roles in growth, adhesion, migration, and metabolism. Furthermore, a wide range of phenotypes for the core...

  12. Characterization of a single b-type heme, FAD, and metal binding sites in the transmembrane domain of six-transmembrane epithelial antigen of the prostate (STEAP) family proteins.

    Science.gov (United States)

    Kleven, Mark D; Dlakić, Mensur; Lawrence, C Martin

    2015-09-11

    Six-transmembrane epithelial antigen of the prostate 3 (Steap3) is the major ferric reductase in developing erythrocytes. Steap family proteins are defined by a shared transmembrane domain that in Steap3 has been shown to function as a transmembrane electron shuttle, moving cytoplasmic electrons derived from NADPH across the lipid bilayer to the extracellular face where they are used to reduce Fe(3+) to Fe(2+) and potentially Cu(2+) to Cu(1+). Although the cytoplasmic N-terminal oxidoreductase domain of Steap3 and Steap4 are relatively well characterized, little work has been done to characterize the transmembrane domain of any member of the Steap family. Here we identify high affinity FAD and iron biding sites and characterize a single b-type heme binding site in the Steap3 transmembrane domain. Furthermore, we show that Steap3 is functional as a homodimer and that it utilizes an intrasubunit electron transfer pathway through the single heme moiety rather than an intersubunit electron pathway through a potential domain-swapped dimer. Importantly, the sequence motifs in the transmembrane domain that are associated with the FAD and metal binding sites are not only present in Steap2 and Steap4 but also in Steap1, which lacks the N-terminal oxidoreductase domain. This strongly suggests that Steap1 harbors latent oxidoreductase activity.

  13. Dual roles of the transmembrane protein p23/TMP21 in the modulation of amyloid precursor protein metabolism

    Directory of Open Access Journals (Sweden)

    Wieland Felix T

    2007-02-01

    Full Text Available Abstract Background Alzheimer's disease (AD is characterized by cerebral deposition of β-amyloid (Aβ peptides. Aβ is released from ectodomain cleaved amyloid precursor protein (APP via intramembranous proteolysis by γ-secretase, a complex consisting of presenilin and a few other proteins. p23/TMP21, a member of the p24 family type I transmembrane proteins, was recently identified as a presenilin complex component capable of modulating γ-secretase cleavage. The p24 family proteins form oligomeric complexes and regulate vesicular trafficking in the early secretory pathway, but their role in APP trafficking has not been investigated. Results Here, we report that siRNA-mediated depletion of p23 in N2a neuroblastoma and HeLa cells produces concomitant knockdown of additional p24 family proteins and increases secretion of sAPP. Furthermore, intact cell and cell-free Aβ production increases following p23 knockdown, similar to data reported earlier using HEK293 cells. However, we find that p23 is not present in mature γ-secretase complexes isolated using an active-site γ-secretase inhibitor. Depletion of p23 and expression of a familial AD-linked PS1 mutant have additive effects on Aβ42 production. Knockdown of p23 expression confers biosynthetic stability to nascent APP, allowing its efficient maturation and surface accumulation. Moreover, immunoisolation analyses show decrease in co-residence of APP and the APP adaptor Mint3. Thus, multiple lines of evidence indicate that p23 function influences APP trafficking and sAPP release independent of its reported role in γ-secretase modulation. Conclusion These data assign significance to p24 family proteins in regulating APP trafficking in the continuum of bidirectional transport between the ER and Golgi, and ascribe new relevance to the regulation of early trafficking in AD pathogenesis.

  14. Hydrophobic blocks facilitate lipid compatibility and translocon recognition of transmembrane protein sequences.

    Science.gov (United States)

    Stone, Tracy A; Schiller, Nina; von Heijne, Gunnar; Deber, Charles M

    2015-02-24

    Biophysical hydrophobicity scales suggest that partitioning of a protein segment from an aqueous phase into a membrane is governed by its perceived segmental hydrophobicity but do not establish specifically (i) how the segment is identified in vivo for translocon-mediated insertion or (ii) whether the destination lipid bilayer is biochemically receptive to the inserted sequence. To examine the congruence between these dual requirements, we designed and synthesized a library of Lys-tagged peptides of a core length sufficient to span a bilayer but with varying patterns of sequence, each composed of nine Leu residues, nine Ser residues, and one (central) Trp residue. We found that peptides containing contiguous Leu residues (Leu-block peptides, e.g., LLLLLLLLLWSSSSSSSSS), in comparison to those containing discontinuous stretches of Leu residues (non-Leu-block peptides, e.g., SLSLLSLSSWSLLSLSLLS), displayed greater helicity (circular dichroism spectroscopy), traveled slower during sodium dodecyl sulfate-polyacrylamide gel electrophoresis, had longer reverse phase high-performance liquid chromatography retention times on a C-18 column, and were helical when reconstituted into 1-palmitoyl-2-oleoylglycero-3-phosphocholine liposomes, each observation indicating superior lipid compatibility when a Leu-block is present. These parameters were largely paralleled in a biological membrane insertion assay using microsomal membranes from dog pancreas endoplasmic reticulum, where we found only the Leu-block sequences successfully inserted; intriguingly, an amphipathic peptide (SLLSSLLSSWLLSSLLSSL; Leu face, Ser face) with biophysical properties similar to those of Leu-block peptides failed to insert. Our overall results identify local sequence lipid compatibility rather than average hydrophobicity as a principal determinant of transmembrane segment potential, while demonstrating that further subtleties of hydrophobic and helical patterning, such as circumferential hydrophobicity in

  15. The LAR transmembrane protein tyrosine phosphatase and a coiled-coil LAR-interacting protein co-localize at focal adhesions.

    OpenAIRE

    1995-01-01

    Focal adhesions are sites of cell-extracellular matrix interactions that function in anchoring stress fibers to the plasma membrane and in adhesion-mediated signal transduction. Both focal adhesion structure and signaling ability involve protein tyrosine phosphorylation. LAR is a broadly expressed transmembrane protein tyrosine phosphatase comprised of a cell adhesion-like ectodomain and two intracellular protein tyrosine phosphatase domains. We have identified a novel cytoplasmic 160 kDa pho...

  16. Pyridoxal phosphate as a probe of the cytoplasmic domains of transmembrane proteins: Application to the nicotinic acetylcholine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Ramirez, B.; Martinez-Carrion, M. (Univ. of Missouri, Kansas City (USA))

    1989-06-13

    A novel procedure has been developed to specifically label the cytoplasmic domains of transmembrane proteins with the aldehyde pyridoxal 5-phosphate (PLP). Torpedo californica acetylcholine receptor (AcChR) vesicles were loaded with ({sup 3}H)pyridoxine 5-phosphate (({sup 3}H)PNP) and pyridoxine-5-phosphate oxidase, followed by intravesicular enzymatic oxidation of ({sup 3}H)PNP at 37{degree}C in the presence of externally added cytochrome c as a scavenger of possible leaking PLP product. The four receptor subunits were labeled whether the reaction was carried out on the internal surface or separately designed to mark the external one. On the other hand, the relative pyridoxylation of the subunits differed in both cases, reflecting differences in accessible lysyl residues in each side of the membrane. Even though there are no large differences in the total lysine content among the subunits and there are two copies of the {alpha}-subunit, internal surface labeling by PLP was greatest for the highest molecular weight ({delta}) subunit, reinforcing the concept that the four receptor subunits are transmembranous and may protrude into the cytoplasmic face in a fashion that is proportional to their subunit molecular weight. Yet, the labeling data do not fit well to any of the models proposed for AcChR subunit folding. The method described can be used for selective labeling of the cytoplasmic domains of transmembrane proteins in sealed membrane vesicles.

  17. TMC and EVER genes belong to a larger novel family, the TMC gene family encoding transmembrane proteins

    Directory of Open Access Journals (Sweden)

    Mutai Hideki

    2003-06-01

    Full Text Available Abstract Background Mutations in the transmembrane cochlear expressed gene 1 (TMC1 cause deafness in human and mouse. Mutations in two homologous genes, EVER1 and EVER2 increase the susceptibility to infection with certain human papillomaviruses resulting in high risk of skin carcinoma. Here we report that TMC1, EVER1 and EVER2 (now TMC6 and TMC8 belong to a larger novel gene family, which is named TMC for trans membrane channel-like gene family. Results Using a combination of iterative database searches and reverse transcriptase-polymerase chain reaction (RT-PCR experiments we assembled contigs for cDNA encoding human, murine, puffer fish, and invertebrate TMC proteins. TMC proteins of individual species can be grouped into three subfamilies A, B, and C. Vertebrates have eight TMC genes. The majority of murine TMC transcripts are expressed in most organs; some transcripts, however, in particular the three subfamily A members are rare and more restrictively expressed. Conclusion The eight vertebrate TMC genes are evolutionary conserved and encode proteins that form three subfamilies. Invertebrate TMC proteins can also be categorized into these three subfamilies. All TMC genes encode transmembrane proteins with intracellular amino- and carboxyl-termini and at least eight membrane-spanning domains. We speculate that the TMC proteins constitute a novel group of ion channels, transporters, or modifiers of such.

  18. Importance of interferon inducible trans-membrane proteins and retinoic acid inducible gene I for influenza virus replication: A review.

    Science.gov (United States)

    Suo, Siqingaowa; Ren, Xiaofeng

    2016-01-01

    Understanding the interplay between Influenza viruses and host cells is key to elucidating the pathogenesis of these viruses. Several host factors have been identified that exert antiviral functions; however, influenza viruses continue to replicate utilizing host cell machinery. Herein, we review the mechanisms of action of two host-derived proteins on conferring cellular resistance to the influenza virus; (1) the interferon inducible trans-membrane proteins, 1, 2 and 3, a recently identified family of early restriction factors; and (2) retinoic acid inducible gene I, a key mediator of antiviral immunity. These data may contribute to the design of novel and efficient anti-influenza treatments.

  19. The transmembrane topology of Batten disease protein CLN3 determined by consensus computational prediction constrained by experimental data.

    Science.gov (United States)

    Nugent, Timothy; Mole, Sara E; Jones, David T

    2008-04-02

    The CLN3 gene encodes an integral membrane protein of unknown function. Mutations in CLN3 can cause juvenile neuronal ceroid lipofuscinosis, or Batten disease, an inherited neurodegenerative lysosomal storage disease affecting children. Here, we report a topological study of the CLN3 protein using bioinformatic approaches constrained by experimental data. Our results suggest that CLN3 has a six transmembrane helix topology with cytoplasmic N and C-termini, three large lumenal loops, one of which may contain an amphipathic helix, and one large cytoplasmic loop. Surprisingly, varied topological predictions were made using different subsets of orthologous sequences, highlighting the challenges still remaining for bioinformatics.

  20. An improved and robust DNA immunization method to develop antibodies against extracellular loops of multi-transmembrane proteins.

    Science.gov (United States)

    Hazen, Meredith; Bhakta, Sunil; Vij, Rajesh; Randle, Steven; Kallop, Dara; Chiang, Vicki; Hötzel, Isidro; Jaiswal, Bijay S; Ervin, Karen E; Li, Bing; Weimer, Robby M; Polakis, Paul; Scheller, Richard H; Junutula, Jagath R; Hongo, Jo-Anne S

    2014-01-01

    Multi-transmembrane proteins are especially difficult targets for antibody generation largely due to the challenge of producing a protein that maintains its native conformation in the absence of a stabilizing membrane. Here, we describe an immunization strategy that successfully resulted in the identification of monoclonal antibodies that bind specifically to extracellular epitopes of a 12 transmembrane protein, multi-drug resistant protein 4 (MRP4). These monoclonal antibodies were developed following hydrodynamic tail vein immunization with a cytomegalovirus (CMV) promoter-based plasmid expressing MRP4 cDNA and were characterized by flow cytometry. As expected, the use of the immune modulators fetal liver tyrosine kinase 3 ligand (Flt3L) and granulocyte-macrophage colony-stimulating factor positively enhanced the immune response against MRP4. Imaging studies using CMV-based plasmids expressing luciferase showed that the in vivo half-life of the target antigen was less than 48 h using CMV-based plasmids, thus necessitating frequent boosting with DNA to achieve an adequate immune response. We also describe a comparison of plasmids, which contained MRP4 cDNA with either the CMV or CAG promoters, used for immunizations. The observed luciferase activity in this comparison demonstrated that the CAG promoter-containing plasmid pCAGGS induced prolonged constitutive expression of MRP4 and an increased anti-MRP4 specific immune response even when the plasmid was injected less frequently. The method described here is one that can be broadly applicable as a general immunization strategy to develop antibodies against multi-transmembrane proteins, as well as target antigens that are difficult to express or purify in native and functionally active conformation.

  1. A Novel Topology of Proline-rich Transmembrane Protein 2 (PRRT2): HINTS FOR AN INTRACELLULAR FUNCTION AT THE SYNAPSE.

    Science.gov (United States)

    Rossi, Pia; Sterlini, Bruno; Castroflorio, Enrico; Marte, Antonella; Onofri, Franco; Valtorta, Flavia; Maragliano, Luca; Corradi, Anna; Benfenati, Fabio

    2016-03-18

    Proline-rich transmembrane protein 2 (PRRT2) has been identified as the single causative gene for a group of paroxysmal syndromes of infancy, including epilepsy, paroxysmal movement disorders, and migraine. On the basis of topology predictions, PRRT2 has been assigned to the recently characterized family of Dispanins, whose members share the two-transmembrane domain topology with a large N terminus and short C terminus oriented toward the outside of the cell. Because PRRT2 plays a role at the synapse, it is important to confirm the exact orientation of its N and C termini with respect to the plasma membrane to get clues regarding its possible function. Using a combination of different experimental approaches, including live immunolabeling, immunogold electron microscopy, surface biotinylation and computational modeling, we demonstrate a novel topology for this protein. PRRT2 is a type II transmembrane protein in which only the second hydrophobic segment spans the plasma membrane, whereas the first one is associated with the internal surface of the membrane and forms a helix-loop-helix structure without crossing it. Most importantly, the large proline-rich N-terminal domain is not exposed to the extracellular space but is localized intracellularly, and only the short C terminus is extracellular (N cyt/C exo topology). Accordingly, we show that PRRT2 interacts with the Src homology 3 domain-bearing protein Intersectin 1, an intracellular protein involved in synaptic vesicle cycling. These findings will contribute to the clarification of the role of PRRT2 at the synapse and the understanding of pathogenic mechanisms on the basis of PRRT2-related neurological disorders.

  2. An investigation of the effect of membrane curvature on transmembrane-domain dependent protein sorting in lipid bilayers

    Science.gov (United States)

    Fossati, Matteo; Goud, Bruno; Borgese, Nica; Manneville, Jean-Baptiste

    2014-01-01

    Sorting of membrane proteins within the secretory pathway of eukaryotic cells is a complex process involving discrete sorting signals as well as physico-chemical properties of the transmembrane domain (TMD). Previous work demonstrated that tail-anchored (TA) protein sorting at the interface between the Endoplasmic Reticulum (ER) and the Golgi complex is exquisitely dependent on the length and hydrophobicity of the transmembrane domain, and suggested that an imbalance between TMD length and bilayer thickness (hydrophobic mismatch) could drive long TMD-containing proteins into curved membrane domains, including ER exit sites, with consequent export of the mismatched protein out of the ER. Here, we tested a possible role of curvature in TMD-dependent sorting in a model system consisting of Giant Unilamellar Vesicles (GUVs) from which narrow membrane tubes were pulled by micromanipulation. Fluorescent TA proteins differing in TMD length were incorporated into GUVs of uniform lipid composition or made of total ER lipids, and TMD-dependent sorting and diffusion, as well as the bending rigidity of bilayers made of microsomal lipids, were investigated. Long and short TMD-containing constructs were inserted with similar orientation, diffused equally rapidly in GUVs and in tubes pulled from GUVs, and no difference in their final distribution between planar and curved regions was detected. These results indicate that curvature alone is not sufficient to drive TMD-dependent sorting at the ER-Golgi interface, and set the basis for the investigation of the additional factors that must be required. PMID:25210649

  3. Magnaporthe oryzae MTP1 gene encodes a type Ⅲ transmembrane protein involved in conidiation and conidial germination

    Institute of Scientific and Technical Information of China (English)

    Qin LU; Jian-ping LU; Xiao-dong LI; Xiao-hong LIU; Hang MIN; Fu-cheng LIN

    2008-01-01

    In this study the MTP1 gene, encoding a type Ⅲ integral transmembrane protein, was isolated fi'om the rice blast fungus Magnaporthe oryzae. The Mtpl protein is 520 amino acids long and is comparable to the Ytpl protein of Saccharomyces cerevisiae with 46% sequence similarity. Prediction programs and MTP1-GFP (green fluorescent protein) fusion expression results indicate that Mtpl is a protein located at several membranes in the cytoplasm. The functions of the MTP1 gene in the growth and development of the fungus were studied using an MTP1 gene knockout mutant. The MTP1 gene was primarily ex-pressed at the hyphal and conidial stages and is necessary for conidiation and conidial germination, but is not required for patho-genicity. The △mtpl mutant grew more efficiently than the wild type strain on non-fermentable carbon sources, implying that the MTP1 gene has a unique role in respiratory growth and carbon source use.

  4. Structure and mechanism of proton transport through the transmembrane tetrameric M2 protein bundle of the influenza A virus.

    Science.gov (United States)

    Acharya, Rudresh; Carnevale, Vincenzo; Fiorin, Giacomo; Levine, Benjamin G; Polishchuk, Alexei L; Balannik, Victoria; Samish, Ilan; Lamb, Robert A; Pinto, Lawrence H; DeGrado, William F; Klein, Michael L

    2010-08-24

    The M2 proton channel from influenza A virus is an essential protein that mediates transport of protons across the viral envelope. This protein has a single transmembrane helix, which tetramerizes into the active channel. At the heart of the conduction mechanism is the exchange of protons between the His37 imidazole moieties of M2 and waters confined to the M2 bundle interior. Protons are conducted as the total charge of the four His37 side chains passes through 2(+) and 3(+) with a pK(a) near 6. A 1.65 A resolution X-ray structure of the transmembrane protein (residues 25-46), crystallized at pH 6.5, reveals a pore that is lined by alternating layers of sidechains and well-ordered water clusters, which offer a pathway for proton conduction. The His37 residues form a box-like structure, bounded on either side by water clusters with well-ordered oxygen atoms at close distance. The conformation of the protein, which is intermediate between structures previously solved at higher and lower pH, suggests a mechanism by which conformational changes might facilitate asymmetric diffusion through the channel in the presence of a proton gradient. Moreover, protons diffusing through the channel need not be localized to a single His37 imidazole, but instead may be delocalized over the entire His-box and associated water clusters. Thus, the new crystal structure provides a possible unification of the discrete site versus continuum conduction models.

  5. Effects of overexpression of Pkn2, a transmembrane protein serine/threonine kinase, on development of Myxococcus xanthus.

    OpenAIRE

    Udo, H; Inouye, M; Inouye, S.

    1996-01-01

    Pkn2 is a putative transmembrane protein serine/threonine kinase required for normal development of Myxococcus xanthus. The effect of Pkn2 overexpression on development of M. xanthus was examined by expressing pkn2 under the control of a kanamycin promoter. Pkn2 was clearly detected by Western blot (immunoblot) analysis in the overexpression strain (the PKm/pkn2 strain) but could not be detected in the wild-type strain. Overexpressed Pkn2 was located almost exclusively in the membrane fractio...

  6. PheVI:09 (Phe6.44) as a sliding microswitch in seven-transmembrane (7TM) G protein-coupled receptor activation

    DEFF Research Database (Denmark)

    Valentin-Hansen, Louise; Holst, Birgitte; Frimurer, Thomas M;

    2012-01-01

    In seven-transmembrane (7TM), G protein-coupled receptors, highly conserved residues function as microswitches, which alternate between different conformations and interaction partners in an extended allosteric interface between the transmembrane segments performing the large scale conformational...... changes upon receptor activation. Computational analysis using x-ray structures of the β(2)-adrenergic receptor demonstrated that PheVI:09 (6.44), which in the inactive state is locked between the backbone and two hydrophobic residues in transmembrane (TM)-III, upon activation slides ∼2 Å toward TM...

  7. An Organellar Nα-Acetyltransferase, Naa60, Acetylates Cytosolic N Termini of Transmembrane Proteins and Maintains Golgi Integrity

    Directory of Open Access Journals (Sweden)

    Henriette Aksnes

    2015-03-01

    Full Text Available N-terminal acetylation is a major and vital protein modification catalyzed by N-terminal acetyltransferases (NATs. NatF, or Nα-acetyltransferase 60 (Naa60, was recently identified as a NAT in multicellular eukaryotes. Here, we find that Naa60 differs from all other known NATs by its Golgi localization. A new membrane topology assay named PROMPT and a selective membrane permeabilization assay established that Naa60 faces the cytosolic side of intracellular membranes. An Nt-acetylome analysis of NAA60-knockdown cells revealed that Naa60, as opposed to other NATs, specifically acetylates transmembrane proteins and has a preference for N termini facing the cytosol. Moreover, NAA60 knockdown causes Golgi fragmentation, indicating an important role in the maintenance of the Golgi’s structural integrity. This work identifies a NAT associated with membranous compartments and establishes N-terminal acetylation as a common modification among transmembrane proteins, a thus-far poorly characterized part of the N-terminal acetylome.

  8. An organellar nα-acetyltransferase, naa60, acetylates cytosolic N termini of transmembrane proteins and maintains Golgi integrity.

    Science.gov (United States)

    Aksnes, Henriette; Van Damme, Petra; Goris, Marianne; Starheim, Kristian K; Marie, Michaël; Støve, Svein Isungset; Hoel, Camilla; Kalvik, Thomas Vikestad; Hole, Kristine; Glomnes, Nina; Furnes, Clemens; Ljostveit, Sonja; Ziegler, Mathias; Niere, Marc; Gevaert, Kris; Arnesen, Thomas

    2015-03-03

    N-terminal acetylation is a major and vital protein modification catalyzed by N-terminal acetyltransferases (NATs). NatF, or Nα-acetyltransferase 60 (Naa60), was recently identified as a NAT in multicellular eukaryotes. Here, we find that Naa60 differs from all other known NATs by its Golgi localization. A new membrane topology assay named PROMPT and a selective membrane permeabilization assay established that Naa60 faces the cytosolic side of intracellular membranes. An Nt-acetylome analysis of NAA60-knockdown cells revealed that Naa60, as opposed to other NATs, specifically acetylates transmembrane proteins and has a preference for N termini facing the cytosol. Moreover, NAA60 knockdown causes Golgi fragmentation, indicating an important role in the maintenance of the Golgi's structural integrity. This work identifies a NAT associated with membranous compartments and establishes N-terminal acetylation as a common modification among transmembrane proteins, a thus-far poorly characterized part of the N-terminal acetylome.

  9. Short transmembrane domains with high-volume exoplasmic halves determine retention of Type II membrane proteins in the Golgi complex.

    Science.gov (United States)

    Quiroga, Rodrigo; Trenchi, Alejandra; González Montoro, Ayelén; Valdez Taubas, Javier; Maccioni, Hugo J F

    2013-12-01

    It is still unclear why some proteins that travel along the secretory pathway are retained in the Golgi complex whereas others make their way to the plasma membrane. Recent bioinformatic analyses on a large number of single-spanning membrane proteins support the hypothesis that specific features of the transmembrane domain (TMD) are relevant to the sorting of these proteins to particular organelles. Here we experimentally test this hypothesis for Golgi and plasma membrane proteins. Using the Golgi SNARE protein Sft1 and the plasma membrane SNARE protein Sso1 from Saccharomyces cerevisiae as model proteins, we modified the length of their TMDs and the volume of their exoplasmic hemi-TMD, and determined their subcellular localization both in yeast and mammalian cells. We found that short TMDs with high-volume exoplasmic hemi-TMDs confer Golgi membrane residence, whereas TMDs with low-volume exoplasmic hemi-TMDs, either short or long, confer plasma membrane residence to these proteins. Results indicate that the shape of the exoplasmic hemi-TMD, in addition to the length of the entire TMD, determine retention in the Golgi or exit to the plasma membrane of Type II membrane proteins.

  10. Expression, purification and characterization of recombinant protein tyrosine phosphatase from Thermus thermophilus HB27

    Institute of Scientific and Technical Information of China (English)

    Yejing Wang; Fanguo Meng; Yingmei Zhang

    2009-01-01

    The low-molecular-weight protein tyrosine phospha-tases (PTPase) exist ubiquitously in prokaryotes and eukaryotes and play important roles in the regulation of physiological activities. We report here the expression, purification and characterization of an active and soluble PTPase from Thermus thermophilus HB27 in Escherichia coli. This PTPase has an optimum pH range of 2.8-4.8 when using p-nitrophenyl phos-phate as the substrate. The thermal inactivation results indicate a high thermal stability of this enzyme, with the optimum temperature of 75℃ for activity. It can be activated by Mn2+, Mg2+, Ca2+, Ba2+, and Ni2+, but inhibited by Zn2+, Cu2+, Cl-, and SO2-4. These results suggest that this heat-resistant PTPase may play impor-tant roles in vivo in the adaptation of the microorgan-ism to extreme temperatures and specific nutritional conditions.

  11. Effects of overexpression of Pkn2, a transmembrane protein serine/threonine kinase, on development of Myxococcus xanthus.

    Science.gov (United States)

    Udo, H; Inouye, M; Inouye, S

    1996-11-01

    Pkn2 is a putative transmembrane protein serine/threonine kinase required for normal development of Myxococcus xanthus. The effect of Pkn2 overexpression on development of M. xanthus was examined by expressing pkn2 under the control of a kanamycin promoter. Pkn2 was clearly detected by Western blot (immunoblot) analysis in the overexpression strain (the PKm/pkn2 strain) but could not be detected in the wild-type strain. Overexpressed Pkn2 was located almost exclusively in the membrane fraction, suggesting that Pkn2 is a transmembrane receptor-type protein Ser/Thr kinase. The PKm/pkn2 strain formed fruiting bodies more slowly than the wild-type strain, in contrast to a Pkn2 deletion strain, the delta pkn2 strain, which developed faster than the wild-type strain. However, spore production was reduced in both the PKm/pkn2 and delta pkn2 strains. These data suggest that Pkn2 functions as a negative regulator for fruiting-body formation and that the proper level of Pkn2 is necessary for maximum myxospore yield.

  12. HSV-1 nucleocapsid egress mediated by UL31 in association with UL34 is impeded by cellular transmembrane protein 140

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Ying [Department of Viral Immunology, Institute of Medical Biology, Chinese Academy of Medicine Science, Peking Union Medical College, Kunming 650118 (China); Yunnan Academy of Tobacco Science, Kunming, Yunnan 650106 (China); Guo, Lei; Yang, Erxia; Liao, Yun; Liu, Longding; Che, Yanchun; Zhang, Ying; Wang, Lichun; Wang, Jingjing [Department of Viral Immunology, Institute of Medical Biology, Chinese Academy of Medicine Science, Peking Union Medical College, Kunming 650118 (China); Li, Qihan, E-mail: imbcams.lq@gmail.com [Department of Viral Immunology, Institute of Medical Biology, Chinese Academy of Medicine Science, Peking Union Medical College, Kunming 650118 (China)

    2014-09-15

    During HSV-1 infection, the viral UL31 protein forms a complex with the UL34 protein at the cellular nuclear membrane, where both proteins play important roles in the envelopment of viral nucleocapsids and their egress into the cytoplasm. To characterize the mechanism of HSV-1 nucleocapsid egress, we screened host proteins to identify proteins that interacted with UL31 via yeast two-hybrid analysis. Transmembrane protein 140 (TMEM140), was identified and confirmed to bind to and co-localize with UL31 during viral infection. Further studies indicated that TMEM140 inhibits HSV-1 proliferation through selectively blocking viral nucleocapsid egress during the viral assembly process. The blockage function of TMEM140 is mediated by impeding the formation of the UL31–UL34 complex due to competitive binding to UL31. Collectively, these data suggest the essentiality of the UL31–UL34 interaction in the viral nucleocapsid egress process and provide a new anti-HSV-1 strategy in viral assembly process of nucleocapsid egress. - Highlights: • Cellular TMEM140 protein interacts with HSV-1 UL31 protein during viral infection. • Increasing expression of TMEM140 leads to inhibition of HSV-1 proliferation. • Increasing expression of TMEM140 blocks HSV-1 nucleocapsid egress process. • Binding to UL31 of TMEM140 impedes formation of HSV-1 UL31–UL34 complex.

  13. The Planar Cell Polarity Transmembrane Protein Vangl2 Promotes Dendrite, Spine and Glutamatergic Synapse Formation in the Mammalian Forebrain.

    Science.gov (United States)

    Okerlund, Nathan D; Stanley, Robert E; Cheyette, Benjamin N R

    2016-07-01

    The transmembrane protein Vangl2, a key regulator of the Wnt/planar cell polarity (PCP) pathway, is involved in dendrite arbor elaboration, dendritic spine formation and glutamatergic synapse formation in mammalian central nervous system neurons. Cultured forebrain neurons from Vangl2 knockout mice have simpler dendrite arbors, fewer total spines, less mature spines and fewer glutamatergic synapse inputs on their dendrites than control neurons. Neurons from mice heterozygous for a semidominant Vangl2 mutation have similar but not identical phenotypes, and these phenotypes are also observed in Golgi-stained brain tissue from adult mutant mice. Given increasing evidence linking psychiatric pathophysiology to these subneuronal sites and structures, our findings underscore the relevance of core PCP proteins including Vangl2 to the underlying biology of major mental illnesses and their treatment.

  14. Structure and Mechanism of Proton Transport Through the Transmembrane Tetrameric M2 Protein Bundle of the Influenza A Virus

    Energy Technology Data Exchange (ETDEWEB)

    R Acharya; V Carnevale; G Fiorin; B Levine; A Polishchuk; V Balannick; I Samish; R Lamb; L Pinto; et al.

    2011-12-31

    The M2 proton channel from influenza A virus is an essential protein that mediates transport of protons across the viral envelope. This protein has a single transmembrane helix, which tetramerizes into the active channel. At the heart of the conduction mechanism is the exchange of protons between the His37 imidazole moieties of M2 and waters confined to the M2 bundle interior. Protons are conducted as the total charge of the four His37 side chains passes through 2{sup +} and 3{sup +} with a pK{sub a} near 6. A 1.65 {angstrom} resolution X-ray structure of the transmembrane protein (residues 25-46), crystallized at pH 6.5, reveals a pore that is lined by alternating layers of sidechains and well-ordered water clusters, which offer a pathway for proton conduction. The His37 residues form a box-like structure, bounded on either side by water clusters with well-ordered oxygen atoms at close distance. The conformation of the protein, which is intermediate between structures previously solved at higher and lower pH, suggests a mechanism by which conformational changes might facilitate asymmetric diffusion through the channel in the presence of a proton gradient. Moreover, protons diffusing through the channel need not be localized to a single His37 imidazole, but instead may be delocalized over the entire His-box and associated water clusters. Thus, the new crystal structure provides a possible unification of the discrete site versus continuum conduction models.

  15. Optimisation of expression and purification of the feline and primate foamy virus transmembrane envelope proteins using a 96 deep well screen.

    Science.gov (United States)

    Mühle, Michael; Löchelt, Martin; Denner, Joachim

    2012-01-01

    The production of recombinant transmembrane proteins is due to their biochemical properties often troublesome and time consuming. Here the prokaryotic expression and purification of the transmembrane envelope proteins of the feline and primate foamy viruses using a screening assay for optimisation of expression in 96 deep well plates is described. Testing simultaneously various bacterial strains, media, temperatures, inducer concentrations and different transformants, conditions for an about twentyfold increased production were quickly determined. These small scale test conditions could be easily scaled up, allowing purification of milligram amounts of recombinant protein. Proteins with a purity of about 95% were produced using a new purification protocol, they were characterised by gel filtration and circular dichroism and successfully applied in immunological assays screening for foamy virus infection and in immunisation studies. Compared to the previously described protocol (M. Mühle, A. Bleiholder, S. Kolb, J. Hübner, M. Löchelt, J. Denner, Immunological properties of the transmembrane envelope protein of the feline foamy virus and its use for serological screening, Virology 412 (2011) 333-340), proteins with similar characteristics but about thirtyfold increased yields were obtained. The screening and production method presented here can also be applied for the production of transmembrane envelope proteins of other retroviruses, including HIV-1.

  16. VAMP-associated Proteins (VAP) as Receptors That Couple Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Proteostasis with Lipid Homeostasis.

    Science.gov (United States)

    Ernst, Wayne L; Shome, Kuntala; Wu, Christine C; Gong, Xiaoyan; Frizzell, Raymond A; Aridor, Meir

    2016-03-04

    Unesterified cholesterol accumulates in late endosomes in cells expressing the misfolded cystic fibrosis transmembrane conductance regulator (CFTR). CFTR misfolding in the endoplasmic reticulum (ER) or general activation of ER stress led to dynein-mediated clustering of cholesterol-loaded late endosomes at the Golgi region, a process regulated by ER-localized VAMP-associated proteins (VAPs). We hypothesized that VAPs serve as intracellular receptors that couple lipid homeostasis through interactions with two phenylalanines in an acidic track (FFAT) binding signals (found in lipid sorting and sensing proteins, LSS) with proteostasis regulation. VAPB inhibited the degradation of ΔF508-CFTR. The activity was mapped to the ligand-binding major sperm protein (MSP) domain, which was sufficient in regulating CFTR biogenesis. We identified mutations in an unstructured loop within the MSP that uncoupled VAPB-regulated CFTR biogenesis from basic interactions with FFAT. Using this information, we defined functional and physical interactions between VAPB and proteostasis regulators (ligands), including the unfolded protein response sensor ATF6 and the ER degradation cluster that included FAF1, VCP, BAP31, and Derlin-1. VAPB inhibited the degradation of ΔF508-CFTR in the ER through interactions with the RMA1-Derlin-BAP31-VCP pathway. Analysis of pseudoligands containing tandem FFAT signals supports a competitive model for VAP interactions that direct CFTR biogenesis. The results suggest a model in which VAP-ligand binding couples proteostasis and lipid homeostasis leading to observed phenotypes of lipid abnormalities in protein folding diseases.

  17. Cooperative immunoregulatory function of the transmembrane adaptor proteins SIT and LAX.

    Science.gov (United States)

    Arndt, Börge; Kalinski, Thomas; Reinhold, Dirk; Thielitz, Anja; Roessner, Albert; Schraven, Burkhart; Simeoni, Luca

    2013-03-01

    Lymphocyte activation is crucial for the generation of immune responses. In vitro studies have demonstrated that TRAPs are critical regulators of lymphocyte activation. However, more recent in vivo studies have demonstrated that with the exception of LAT, TRAPs, such as SIT, NTAL, and LAX, only minimally affect immune cell functions. Additional studies have suggested that the mild or the apparent lack of a phenotype displayed by most TRAP KO mice may be explained by functional redundancy among this family of adaptors. In fact, it has been shown that the phenotype of NTAL/LAT or SIT/TRIM double-deficient mice is more severe than that of the single KOs. Here, we have evaluated whether SIT and the related transmembrane adaptor LAX have overlapping functions by generating SIT/LAX DKO mice. We show that DKO, in contrast to single KO mice, accumulate large numbers of activated CD4(+) T cells in the spleen. Moreover, conventional B cells from DKO mice are hyperproliferative upon CD40 stimulation. Additionally, we found that DKO mice displayed an expansion of the B1 cell pool in the peritoneal cavity, hypergammaglobulinaemia, and an enhanced immune response to the T1-independent antigen, TNP-LPS. Finally, we demonstrate that SIT/LAX double deficiency resulted in a more pronounced breakdown of peripheral tolerance and the development of autoimmunity characterized by ANAs and renal disease (glomerulonephritis and proteinuria). Collectively, our data indicate that SIT and LAX are important negative regulators of immune responses that functionally cooperate.

  18. Molecular and functional analysis of Popeye genes: A novel family of transmembrane proteins preferentially expressed in heart and skeletal muscle.

    Science.gov (United States)

    Andrée, Birgit; Fleige, Anne; Hillemann, Tina; Arnold, Hans-Henning; Kessler-Icekson, Gania; Brand, Thomas

    2002-01-01

    Popeye (Pop) genes encode novel transmembrane proteins, of which three family members are present in vertebrates, while in Drosophila a single gene is found. By northern blot analysis a restricted expression pattern is observed; Pop genes are predominantly expressed in the heart, skeletal and smooth muscle. Using homologous recombination, a null mutation was generated in the case of Pop1. The homozygous mutants are viable and do not display any obvious phenotype. They display an impaired ability to regenerate skeletal muscle while the hypertropic response of the heart after isoproterenol infusion revealed no difference between genotypes. Recently a function for Pop1 as a prototype of a novel class of cell adhesion molecules was proposed. Further work is required to substantiate these findings and to extend it to other members of the family.

  19. Exosome-related multi-pass transmembrane protein TSAP6 is a target of rhomboid protease RHBDD1-induced proteolysis.

    Directory of Open Access Journals (Sweden)

    Chunhua Wan

    Full Text Available We have previously reported that rhomboid domain containing 1 (RHBDD1, a mammalian rhomboid protease highly expressed in the testis, can cleave the Bcl-2 protein Bik. In this study, we identified a multi-pass transmembrane protein, tumor suppressor activated pathway-6 (TSAP6 as a potential substrate of RHBDD1. RHBDD1 was found to induce the proteolysis of TSAP6 in a dose- and activity-dependent manner. The cleavage of TSAP6 was not restricted to its glycosylated form and occurred in three different regions. In addition, mass spectrometry and mutagenesis analyses both indicated that the major cleavage site laid in the C-terminal of the third transmembrane domain of TSAP6. A somatic cell knock-in approach was used to genetically inactivate the endogenous RHBDD1 in HCT116 and RKO colon cancer cells. Exosome secretion was significantly elevated when RHBDD1 was inactivated in the two cells lines. The increased exosome secretion was verfied through the detection of certain exosomal components, including Tsg101, Tf-R, FasL and Trail. In addition, the elevation of exosome secretion by RHBDD1 inactivation was reduced when TSAP6 was knocked down, indicating that the role of RHBDD1 in regulating exosomal trafficking is very likely to be TSAP6-dependent. We found that the increase in FasL and Trail increased exosome-induced apoptosis in Jurkat cells. Taken together, our findings suggest that RHBDD1 is involved in the regulation of a nonclassical exosomal secretion pathway through the restriction of TSAP6.

  20. TMB-Hunt: An amino acid composition based method to screen proteomes for beta-barrel transmembrane proteins

    Directory of Open Access Journals (Sweden)

    Agnew Alison

    2005-03-01

    Full Text Available Abstract Background Beta-barrel transmembrane (bbtm proteins are a functionally important and diverse group of proteins expressed in the outer membranes of bacteria (both gram negative and acid fast gram positive, mitochondria and chloroplasts. Despite recent publications describing reasonable levels of accuracy for discriminating between bbtm proteins and other proteins, screening of entire genomes remains troublesome as these molecules only constitute a small fraction of the sequences screened. Therefore, novel methods are still required capable of detecting new families of bbtm protein in diverse genomes. Results We present TMB-Hunt, a program that uses a k-Nearest Neighbour (k-NN algorithm to discriminate between bbtm and non-bbtm proteins on the basis of their amino acid composition. By including differentially weighted amino acids, evolutionary information and by calibrating the scoring, an accuracy of 92.5% was achieved, with 91% sensitivity and 93.8% positive predictive value (PPV, using a rigorous cross-validation procedure. A major advantage of this approach is that because it does not rely on beta-strand detection, it does not require resolved structures and thus larger, more representative, training sets could be used. It is therefore believed that this approach will be invaluable in complementing other, physicochemical and homology based methods. This was demonstrated by the correct reassignment of a number of proteins which other predictors failed to classify. We have used the algorithm to screen several genomes and have discussed our findings. Conclusion TMB-Hunt achieves a prediction accuracy level better than other approaches published to date. Results were significantly enhanced by use of evolutionary information and a system for calibrating k-NN scoring. Because the program uses a distinct approach to that of other discriminators and thus suffers different liabilities, we believe it will make a significant contribution to the

  1. COMSAT: Residue contact prediction of transmembrane proteins based on support vector machines and mixed integer linear programming.

    Science.gov (United States)

    Zhang, Huiling; Huang, Qingsheng; Bei, Zhendong; Wei, Yanjie; Floudas, Christodoulos A

    2016-03-01

    In this article, we present COMSAT, a hybrid framework for residue contact prediction of transmembrane (TM) proteins, integrating a support vector machine (SVM) method and a mixed integer linear programming (MILP) method. COMSAT consists of two modules: COMSAT_SVM which is trained mainly on position-specific scoring matrix features, and COMSAT_MILP which is an ab initio method based on optimization models. Contacts predicted by the SVM model are ranked by SVM confidence scores, and a threshold is trained to improve the reliability of the predicted contacts. For TM proteins with no contacts above the threshold, COMSAT_MILP is used. The proposed hybrid contact prediction scheme was tested on two independent TM protein sets based on the contact definition of 14 Å between Cα-Cα atoms. First, using a rigorous leave-one-protein-out cross validation on the training set of 90 TM proteins, an accuracy of 66.8%, a coverage of 12.3%, a specificity of 99.3% and a Matthews' correlation coefficient (MCC) of 0.184 were obtained for residue pairs that are at least six amino acids apart. Second, when tested on a test set of 87 TM proteins, the proposed method showed a prediction accuracy of 64.5%, a coverage of 5.3%, a specificity of 99.4% and a MCC of 0.106. COMSAT shows satisfactory results when compared with 12 other state-of-the-art predictors, and is more robust in terms of prediction accuracy as the length and complexity of TM protein increase. COMSAT is freely accessible at http://hpcc.siat.ac.cn/COMSAT/.

  2. Retromer and the dynamin Vps1 cooperate in the retrieval of transmembrane proteins from vacuoles

    NARCIS (Netherlands)

    Arlt, Henning; Reggiori, Fulvio; Ungermann, Christian

    2015-01-01

    Endosomes are dynamic organelles that need to combine the ability to successfully deliver proteins and lipids to the lysosome-like vacuole, and recycle others to the Golgi or the plasma membrane. We now show that retromer, which is implicated in retrieval of proteins from endosomes to the Golgi or t

  3. Retromer and the dynamin Vps1 cooperate in the retrieval of transmembrane proteins from vacuoles

    NARCIS (Netherlands)

    Arlt, Henning; Reggiori, Fulvio; Ungermann, Christian

    2015-01-01

    Endosomes are dynamic organelles that need to combine the ability to successfully deliver proteins and lipids to the lysosome-like vacuole, and recycle others to the Golgi or the plasma membrane. We now show that retromer, which is implicated in retrieval of proteins from endosomes to the Golgi or t

  4. Confined diffusion of transmembrane proteins and lipids induced by the same actin meshwork lining the plasma membrane.

    Science.gov (United States)

    Fujiwara, Takahiro K; Iwasawa, Kokoro; Kalay, Ziya; Tsunoyama, Taka A; Watanabe, Yusuke; Umemura, Yasuhiro M; Murakoshi, Hideji; Suzuki, Kenichi G N; Nemoto, Yuri L; Morone, Nobuhiro; Kusumi, Akihiro

    2016-04-01

    The mechanisms by which the diffusion rate in the plasma membrane (PM) is regulated remain unresolved, despite their importance in spatially regulating the reaction rates in the PM. Proposed models include entrapment in nanoscale noncontiguous domains found in PtK2 cells, slow diffusion due to crowding, and actin-induced compartmentalization. Here, by applying single-particle tracking at high time resolutions, mainly to the PtK2-cell PM, we found confined diffusion plus hop movements (termed "hop diffusion") for both a nonraft phospholipid and a transmembrane protein, transferrin receptor, and equal compartment sizes for these two molecules in all five of the cell lines used here (actual sizes were cell dependent), even after treatment with actin-modulating drugs. The cross-section size and the cytoplasmic domain size both affected the hop frequency. Electron tomography identified the actin-based membrane skeleton (MSK) located within 8.8 nm from the PM cytoplasmic surface of PtK2 cells and demonstrated that the MSK mesh size was the same as the compartment size for PM molecular diffusion. The extracellular matrix and extracellular domains of membrane proteins were not involved in hop diffusion. These results support a model of anchored TM-protein pickets lining actin-based MSK as a major mechanism for regulating diffusion.

  5. pH regulation in early endosomes and interferon-inducible transmembrane proteins control avian retrovirus fusion.

    Science.gov (United States)

    Desai, Tanay M; Marin, Mariana; Mason, Caleb; Melikyan, Gregory B

    2017-05-12

    Enveloped viruses infect host cells by fusing their membranes with those of the host cell, a process mediated by viral glycoproteins upon binding to cognate host receptors or entering into acidic intracellular compartments. Whereas the effect of receptor density on viral infection has been well studied, the role of cell type-specific factors/processes, such as pH regulation, has not been characterized in sufficient detail. Here, we examined the effects of cell-extrinsic factors (buffer environment) and cell-intrinsic factors (interferon-inducible transmembrane proteins, IFITMs), on the pH regulation in early endosomes and on the efficiency of acid-dependent fusion of the avian sarcoma and leukosis virus (ASLV), with endosomes. First, we found that a modest elevation of external pH can raise the pH in early endosomes in a cell type-dependent manner and thereby delay the acid-induced fusion of endocytosed ASLV. Second, we observed a cell type-dependent delay between the low pH-dependent and temperature-dependent steps of viral fusion, consistent with the delayed enlargement of the fusion pore. Third, ectopic expression of IFITMs, known to potently block influenza virus fusion with late compartments, was found to only partially inhibit ASLV fusion with early endosomes. Interestingly, IFITM expression promoted virus uptake and the acidification of endosomal compartments, resulting in an accelerated fusion rate when driven by the glycosylphosphatidylinositol-anchored, but not by the transmembrane isoform of the ASLV receptor. Collectively, these results highlight the role of cell-extrinsic and cell-intrinsic factors in regulating the efficiency and kinetics of virus entry and fusion with target cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. cGMP stimulation of cystic fibrosis transmembrane conductance regulator Cl- channels co-expressed with cGMP-dependent protein kinase type II but not type Ibeta

    NARCIS (Netherlands)

    A.B. Vaandrager (Arie); S.M. Lohmann (Suzanne); H.R. de Jonge (Hugo); W.C. Poller; B.C. Tilly (Bernard); A. Smolenski; S. Schneider-Rasp; A.G. Bot (Alice); M.J. Edixhoven (Marcel); B.J. Scholte (Bob); T. Jarchau; U. Walter

    1997-01-01

    textabstractIn order to investigate the involvement of cGMP-dependent protein kinase (cGK) type II in cGMP-provoked intestinal Cl- secretion, cGMP-dependent activation and phosphorylation of cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels was ana

  7. Isotype-specific activation of cystic fibrosis transmembrane conductance regulator-chloride channels by cGMP-dependent protein kinase II

    NARCIS (Netherlands)

    P.J. French (Pim); J. Bijman (Jan); M.J. Edixhoven (Marcel); A.B. Vaandrager (Arie); B.J. Scholte (Bob); S.M. Lohmann (Suzanne); A.C. Nairn; H.R. de Jonge (Hugo)

    1995-01-01

    textabstractType II cGMP-dependent protein kinase (cGKII) isolated from pig intestinal brush borders and type I alpha cGK (cGKI) purified from bovine lung were compared for their ability to activate the cystic fibrosis transmembrane conductance regulator (CFTR)-Cl- channel in excis

  8. The four-transmembrane protein IP39 of Euglena forms strands by a trimeric unit repeat.

    Science.gov (United States)

    Suzuki, Hiroshi; Ito, Yasuyuki; Yamazaki, Yuji; Mineta, Katsuhiko; Uji, Masami; Abe, Kazuhiro; Tani, Kazutoshi; Fujiyoshi, Yoshinori; Tsukita, Sachiko

    2013-01-01

    Euglenoid flagellates have striped surface structures comprising pellicles, which allow the cell shape to vary from rigid to flexible during the characteristic movement of the flagellates. In Euglena gracilis, the pellicular strip membranes are covered with paracrystalline arrays of a major integral membrane protein, IP39, a putative four-membrane-spanning protein with the conserved sequence motif of the PMP-22/EMP/MP20/Claudin superfamily. Here we report the three-dimensional structure of Euglena IP39 determined by electron crystallography. Two-dimensional crystals of IP39 appear to form a striated pattern of antiparallel double-rows in which trimeric IP39 units are longitudinally polymerised, resulting in continuously extending zigzag-shaped lines. Structural analysis revealed an asymmetric molecular arrangement in the trimer, and suggested that at least four different interactions between neighbouring protomers are involved. A combination of such multiple interactions would be important for linear strand formation of membrane proteins in a lipid bilayer.

  9. PONGO: a web server for multiple predictions of all-alpha transmembrane proteins

    DEFF Research Database (Denmark)

    Amico, M.; Finelli, M.; Rossi, I.;

    2006-01-01

    ://pongo.biocomp.unibo.it/ ) provides the annotation on predictive basis for the all-alpha membrane proteins in the human genome, not only through DAS queries, but also directly using a simple web interface. In order to produce a more comprehensive analysis of the sequence at hand, this annotation is carried out with four selected...... and high scoring predictors: TMHMM2.0, MEMSAT, PRODIV and ENSEMBLE1.0. The stored and pre-computed predictions for the human proteins can be searched and displayed in a graphical view. However the web service allows the prediction of the topology of any kind of putative membrane proteins, regardless...... of the organism and more importantly with the same sequence profile for a given sequence when required. Here we present a new web server that incorporates the state-of-the-art topology predictors in a single framework, so that putative users can interactively compare and evaluate four predictions simultaneously...

  10. Development of recombinant capsid antigen/transmembrane epitope fusion proteins for serological diagnosis of animal lentivirus infections.

    Science.gov (United States)

    Rosati, S; Profiti, M; Lorenzetti, R; Bandecchi, P; Mannelli, A; Ortoffi, M; Tolari, F; Ciabatti, I M

    2004-10-01

    Among animal lentiviruses, Feline immunodeficiency virus (FIV), Equine infectious anaemia virus (EIAV) and Small ruminant lentiviruses (SRLV) are important pathogens associated with a variety of clinical pictures including immunodeficiency, anaemia, arthritis, pneumonia. The detection of viral antibody response represents a practical diagnostic approach in all lentivirus infections since they remain detectable long life. Capsid antigen (CA) is the major viral core protein and specific antibodies against this antigen are usually first recognised in infected sheep, goat and horse, remaining detectable for long period. Transmembrane (TM) domain of envelope glycoprotein contains a well conserved motif known to form an immunodominant epitope in several lentiviruses. In this study a simple strategy was developed to express the entire CA and the TM epitope in a single fusion protein from equine, feline and small ruminant lentiviruses in prokaryotic system and evaluated the diagnostic utility of a purified preparation in an indirect ELISA for each of the three infections. Results demonstrate that, for FIV and SRLV infections, the combination of CA and TM fractions increases the sensitivity of diagnostic tests based only on CA. The corresponding CA/TM antigen from EIAV showed excellent agreement with Coggins test.

  11. The calcium-dependent protease of Loxosceles gaucho venom acts preferentially upon red cell band 3 transmembrane protein

    Directory of Open Access Journals (Sweden)

    Barretto O.C. de O.

    2003-01-01

    Full Text Available Eighty micrograms red blood cell (RBC ghosts from patients who had previously exhibited the cutaneous form of loxoscelism (presenting localized dermonecrosis and the viscerocutaneous form of loxoscelism (presenting dermonecrosis, hemoglobinuria, hematuria, and jaundice and from controls were incubated with 2.5 µg crude Loxosceles gaucho venom in 5 mM phosphate buffer, pH 7.4, at 37ºC. Among all membrane proteins, quantitative proteolysis of the important integral transmembrane protein 3 increased with venom dose and with incubation time from 30 to 120 min, as demonstrated by gel densitometry. Similar quantitative data were obtained for RBC ghosts from patients and from control subjects, a fact that argues against the possibility of genetic factors favoring the hemolytic viscerocutaneous form. These data suggest that the clinical forms may be different types of the same disease, with the viscerocutaneous form being the result of large amounts of intravascularly injected venom and the superficial form being the result of in situ venom action. Since protein 3 is a housekeeping integral membrane protein, whose genetic deficiency leads to hemolytic anemia, it is reasonable to relate it to the hemolysis which occurs in the viscerocutaneous form of loxoscelism. The venom protease responsible for the process was not inhibited after 120-min incubation by 0.2 mM paramethylsulfonyl fluoride or by 0.2 mM N-ethylmaleimide but was inhibited by 25 mM ethylenediaminetetraacetic acid (a calcium-chelating agent in 5 mM phosphate buffer at pH 7.4, which suggests that the enzyme is a calcium-dependent metalloprotease.

  12. Not all transmembrane helices are born equal: Towards the extension of the sequence homology concept to membrane proteins

    Science.gov (United States)

    2011-01-01

    Background Sequence homology considerations widely used to transfer functional annotation to uncharacterized protein sequences require special precautions in the case of non-globular sequence segments including membrane-spanning stretches composed of non-polar residues. Simple, quantitative criteria are desirable for identifying transmembrane helices (TMs) that must be included into or should be excluded from start sequence segments in similarity searches aimed at finding distant homologues. Results We found that there are two types of TMs in membrane-associated proteins. On the one hand, there are so-called simple TMs with elevated hydrophobicity, low sequence complexity and extraordinary enrichment in long aliphatic residues. They merely serve as membrane-anchoring device. In contrast, so-called complex TMs have lower hydrophobicity, higher sequence complexity and some functional residues. These TMs have additional roles besides membrane anchoring such as intra-membrane complex formation, ligand binding or a catalytic role. Simple and complex TMs can occur both in single- and multi-membrane-spanning proteins essentially in any type of topology. Whereas simple TMs have the potential to confuse searches for sequence homologues and to generate unrelated hits with seemingly convincing statistical significance, complex TMs contain essential evolutionary information. Conclusion For extending the homology concept onto membrane proteins, we provide a necessary quantitative criterion to distinguish simple TMs (and a sufficient criterion for complex TMs) in query sequences prior to their usage in homology searches based on assessment of hydrophobicity and sequence complexity of the TM sequence segments. Reviewers This article was reviewed by Shamil Sunyaev, L. Aravind and Arcady Mushegian. PMID:22024092

  13. Assessing the Outer Membrane Insertion and Folding of Multimeric Transmembrane β-Barrel Proteins.

    Science.gov (United States)

    Leo, Jack C; Oberhettinger, Philipp; Linke, Dirk

    2015-01-01

    In addition to the cytoplasmic membrane, Gram-negative bacteria have a second lipid bilayer, the outer membrane, which is the de facto barrier between the cell and the extracellular milieu. Virtually all integral proteins of the outer membrane form β-barrels, which are inserted into the outer membrane by the BAM complex. Some outer membrane proteins, like the porins and trimeric autotransporter adhesins, are multimeric. In the former case, the porin trimer consists of three individual β-barrels, whereas in the latter, the single autotransporter β-barrel domain is formed by three separate polypeptides. This chapter reviews methods to investigate the folding and membrane insertion of multimeric OMPs and further explains the use of a BamA depletion strain to study the effects of the BAM complex on multimeric OMPs in E. coli.

  14. Two seven-transmembrane domain MILDEW RESISTANCE LOCUS O proteins cofunction in Arabidopsis root thigmomorphogenesis.

    Science.gov (United States)

    Chen, Zhongying; Noir, Sandra; Kwaaitaal, Mark; Hartmann, H Andreas; Wu, Ming-Jing; Mudgil, Yashwanti; Sukumar, Poornima; Muday, Gloria; Panstruga, Ralph; Jones, Alan M

    2009-07-01

    Directional root expansion is governed by nutrient gradients, positive gravitropism and hydrotropism, negative phototropism and thigmotropism, as well as endogenous oscillations in the growth trajectory (circumnutation). Null mutations in phylogenetically related Arabidopsis thaliana genes MILDEW RESISTANCE LOCUS O 4 (MLO4) and MLO11, encoding heptahelical, plasma membrane-localized proteins predominantly expressed in the root tip, result in aberrant root thigmomorphogenesis. mlo4 and mlo11 mutant plants show anisotropic, chiral root expansion manifesting as tightly curled root patterns upon contact with solid surfaces. The defect in mlo4 and mlo11 mutants is nonadditive and dependent on light and nutrients. Genetic epistasis experiments demonstrate that the mutant phenotype is independently modulated by the Gbeta subunit of the heterotrimeric G-protein complex. Analysis of expressed chimeric MLO4/MLO2 proteins revealed that the C-terminal domain of MLO4 is necessary but not sufficient for MLO4 action in root thigmomorphogenesis. The expression of the auxin efflux carrier fusion, PIN1-green fluorescent protein, the pattern of auxin-induced gene expression, and acropetal as well as basipetal auxin transport are altered at the root tip of mlo4 mutant seedlings. Moreover, addition of auxin transport inhibitors or the loss of EIR1/AGR1/PIN2 function abolishes root curling of mlo4, mlo11, and wild-type seedlings. These results demonstrate that the exaggerated root curling phenotypes of the mlo4 and mlo11 mutants depend on auxin gradients and suggest that MLO4 and MLO11 cofunction as modulators of touch-induced root tropism.

  15. Modulation of the oligomerization of myelin proteolipid protein by transmembrane helix interaction motifs.

    Science.gov (United States)

    Ng, Derek P; Deber, Charles M

    2010-08-17

    Proteolipid protein (PLP) is a highly hydrophobic 276-residue integral membrane protein that constitutes more than 50% of the total protein in central nervous system myelin. Previous studies have shown that this protein exists in myelin as an oligomer rather than as a monomer, and mutations in PLP that lead to neurological disorders such as Pelizaeus-Merzbacher disease and spastic paraplegia type 2 have been reported to affect its normal oligomerization. Here we employ peptide-based and in vivo approaches to examine the role of the TM domain in the formation of PLP quaternary structure through homo-oligomeric helix-helix interactions. Focusing on the TM4 alpha-helix (sequence (239)FIAAFVGAAATLVSLLTFMIAATY(262)), the site of several disease-causing point mutations that involve putative small residue helix-helix interaction motifs in the TM4 sequence, we used SDS-PAGE, fluorescence resonance energy transfer, size-exclusion chromatography, and TOXCAT assays in an Escherichia coli membrane to show that the PLP TM4 helix readily assembles into varying oligomeric states. In addition, through targeted studies of the PLP TM4 alpha-helix with point mutations that selectively eliminate these small residue motifs via substitution of Gly, Ala, or Ser residues with Ile residues, we describe a potential mechanism through which disease-causing point mutations can lead to aberrant PLP assembly. The overall results suggest that TM segments in misfolded PLP monomers that expose and/or create surface-exposed helix-helix interaction sites that are normally masked may have consequences for disease.

  16. Serum- and glucocorticoid-induced protein kinase 1 (SGK1) increases the cystic fibrosis transmembrane conductance regulator (CFTR) in airway epithelial cells by phosphorylating Shank2E protein.

    Science.gov (United States)

    Koeppen, Katja; Coutermarsh, Bonita A; Madden, Dean R; Stanton, Bruce A

    2014-06-13

    The glucocorticoid dexamethasone increases cystic fibrosis transmembrane conductance regulator (CFTR) abundance in human airway epithelial cells by a mechanism that requires serum- and glucocorticoid-induced protein kinase 1 (SGK1) activity. The goal of this study was to determine whether SGK1 increases CFTR abundance by phosphorylating Shank2E, a PDZ domain protein that contains two SGK1 phosphorylation consensus sites. We found that SGK1 phosphorylates Shank2E as well as a peptide containing the first SGK1 consensus motif of Shank2E. The dexamethasone-induced increase in CFTR abundance was diminished by overexpression of a dominant-negative Shank2E in which the SGK1 phosphorylation sites had been mutated. siRNA-mediated reduction of Shank2E also reduced the dexamethasone-induced increase in CFTR abundance. Taken together, these data demonstrate that the glucocorticoid-induced increase in CFTR abundance requires phosphorylation of Shank2E at an SGK1 consensus site.

  17. Tumor progression-related transmembrane protein aspartate β-hydroxylase is a target for immunotherapy of hepatocellular carcinoma

    Science.gov (United States)

    Shimoda, Masafumi; Tomimaru, Yoshito; Charpentier, Kevin P.; Safran, Howard; Carlson, Rolf I.; Wands, Jack

    2012-01-01

    Background/Aims Hepatocellular carcinoma (HCC) has a poor survival rate due to recurrent intrahepatic metastases and lack of effective adjuvant therapy. Aspartate-β-hydroxylase (ASPH) is an attractive cellular target since it is a highly conserved transmembrane protein overexpressed on both murine and human HCC tumors, and promotes a malignant phenotype as characterized by enhanced tumor cell migration and invasion. Methods Dendritic cells (DCs), expanded and isolated from the spleen, were incubated with a cytokine cocktail to optimize IL-12 secretion and co-stimulatory molecule expression, then subsequently loaded with ASPH protein for immunization. Mice were injected with syngeneic BNL HCC tumor cells followed by subcutaneous inoculation with 5–10×105 ASPH loaded DCs using a prophylactic and therapeutic experimental approach. Tumor infiltrating lymphocytes (TILs) were characterized, and their role in producing anti-tumor effects determined. The immunogenicity of ASPH protein with respect to activating antigen specific CD4+ T cells derived from human peripheral blood mononuclear cells (PBMCs) was also explored. Methods We found that immunotherapy with ASPH-loaded DCs suppressed and delayed established HCC and tumor growth when administered prophylactically. Ex-vivo re-stimulation experiments and in vivo depletion studies demonstrate that both CD4+ and CD8+ cells contributed to anti-tumor effects. Using PBMCs derived from healthy volunteers and HCC patients, we showed that ASPH stimulation led to significant development of antigen-specific CD4+ T-cells. Conclusion Immunization with ASPH-loaded DCs has substantial anti-tumor effects which could reduce the risk of HCC recurrence. PMID:22245894

  18. The transmembrane protein meckelin (MKS3) is mutated in Meckel-Gruber syndrome and the wpk rat.

    Science.gov (United States)

    Smith, Ursula M; Consugar, Mark; Tee, Louise J; McKee, Brandy M; Maina, Esther N; Whelan, Shelly; Morgan, Neil V; Goranson, Erin; Gissen, Paul; Lilliquist, Stacie; Aligianis, Irene A; Ward, Christopher J; Pasha, Shanaz; Punyashthiti, Rachaneekorn; Malik Sharif, Saghira; Batman, Philip A; Bennett, Christopher P; Woods, C Geoffrey; McKeown, Carole; Bucourt, Martine; Miller, Caroline A; Cox, Phillip; Algazali, Lihadh; Trembath, Richard C; Torres, Vicente E; Attie-Bitach, Tania; Kelly, Deirdre A; Maher, Eamonn R; Gattone, Vincent H; Harris, Peter C; Johnson, Colin A

    2006-02-01

    Meckel-Gruber syndrome is a severe autosomal, recessively inherited disorder characterized by bilateral renal cystic dysplasia, developmental defects of the central nervous system (most commonly occipital encephalocele), hepatic ductal dysplasia and cysts and polydactyly. MKS is genetically heterogeneous, with three loci mapped: MKS1, 17q21-24 (ref. 4); MKS2, 11q13 (ref. 5) and MKS3 (ref. 6). We have refined MKS3 mapping to a 12.67-Mb interval (8q21.13-q22.1) that is syntenic to the Wpk locus in rat, which is a model with polycystic kidney disease, agenesis of the corpus callosum and hydrocephalus. Positional cloning of the Wpk gene suggested a MKS3 candidate gene, TMEM67, for which we identified pathogenic mutations for five MKS3-linked consanguineous families. MKS3 is a previously uncharacterized, evolutionarily conserved gene that is expressed at moderate levels in fetal brain, liver and kidney but has widespread, low levels of expression. It encodes a 995-amino acid seven-transmembrane receptor protein of unknown function that we have called meckelin.

  19. Hydrophobic pulses predict transmembrane helix irregularities and channel transmembrane units

    Directory of Open Access Journals (Sweden)

    Claustres Mireille

    2011-05-01

    Full Text Available Abstract Background Few high-resolution structures of integral membranes proteins are available, as crystallization of such proteins needs yet to overcome too many technical limitations. Nevertheless, prediction of their transmembrane (TM structure by bioinformatics tools provides interesting insights on the topology of these proteins. Methods We describe here how to extract new information from the analysis of hydrophobicity variations or hydrophobic pulses (HPulses in the sequence of integral membrane proteins using the Hydrophobic Pulse Predictor, a new tool we developed for this purpose. To analyze the primary sequence of 70 integral membrane proteins we defined two levels of analysis: G1-HPulses for sliding windows of n = 2 to 6 and G2-HPulses for sliding windows of n = 12 to 16. Results The G2-HPulse analysis of 541 transmembrane helices allowed the definition of the new concept of transmembrane unit (TMU that groups together transmembrane helices and segments with potential adjacent structures. In addition, the G1-HPulse analysis identified helix irregularities that corresponded to kinks, partial helices or unannotated structural events. These irregularities could represent key dynamic elements that are alternatively activated depending on the channel status as illustrated by the crystal structures of the lactose permease in different conformations. Conclusions Our results open a new way in the understanding of transmembrane secondary structures: hydrophobicity through hydrophobic pulses strongly impacts on such embedded structures and is not confined to define the transmembrane status of amino acids.

  20. Repositioning antimicrobial agent pentamidine as a disruptor of the lateral interactions of transmembrane domain 5 of EBV latent membrane protein 1.

    Science.gov (United States)

    Wang, Xiaohui; Fiorini, Zeno; Smith, Christina; Zhang, Yingning; Li, Jing; Watkins, Linda R; Yin, Hang

    2012-01-01

    The lateral transmembrane protein-protein interactions (PPI) have been regarded as "undruggable" despite their importance in many essential biological processes. The homo-trimerization of transmembrane domain 5 (TMD-5) of latent membrane protein 1 (LMP-1) is critical for the constitutive oncogenic activation of the Epstein-Barr virus (EBV). Herein we repurpose the antimicrobial agent pentamidine as a regulator of LMP-1 TMD-5 lateral interactions. The results of ToxR assay, tryptophan fluorescence assay, courmarin fluorescence dequenching assay, and Bis-Tris sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) consistently show pentamidine disrupts LMP-1 TMD-5 lateral interactions. Furthermore, pentamidine inhibits LMP-1 signaling, inducing cellular apoptosis and suppressing cell proliferation in the EBV infected B cells. In contrast, EBV negative cells are less susceptible to pentamidine. This study provides a novel non-peptide small molecule agent for regulating LMP-1 TMD-5 lateral interactions.

  1. Repositioning antimicrobial agent pentamidine as a disruptor of the lateral interactions of transmembrane domain 5 of EBV latent membrane protein 1.

    Directory of Open Access Journals (Sweden)

    Xiaohui Wang

    Full Text Available The lateral transmembrane protein-protein interactions (PPI have been regarded as "undruggable" despite their importance in many essential biological processes. The homo-trimerization of transmembrane domain 5 (TMD-5 of latent membrane protein 1 (LMP-1 is critical for the constitutive oncogenic activation of the Epstein-Barr virus (EBV. Herein we repurpose the antimicrobial agent pentamidine as a regulator of LMP-1 TMD-5 lateral interactions. The results of ToxR assay, tryptophan fluorescence assay, courmarin fluorescence dequenching assay, and Bis-Tris sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE consistently show pentamidine disrupts LMP-1 TMD-5 lateral interactions. Furthermore, pentamidine inhibits LMP-1 signaling, inducing cellular apoptosis and suppressing cell proliferation in the EBV infected B cells. In contrast, EBV negative cells are less susceptible to pentamidine. This study provides a novel non-peptide small molecule agent for regulating LMP-1 TMD-5 lateral interactions.

  2. Sequence variation of koala retrovirus transmembrane protein p15E among koalas from different geographic regions.

    Science.gov (United States)

    Ishida, Yasuko; McCallister, Chelsea; Nikolaidis, Nikolas; Tsangaras, Kyriakos; Helgen, Kristofer M; Greenwood, Alex D; Roca, Alfred L

    2015-01-15

    The koala retrovirus (KoRV), which is transitioning from an exogenous to an endogenous form, has been associated with high mortality in koalas. For other retroviruses, the envelope protein p15E has been considered a candidate for vaccine development. We therefore examined proviral sequence variation of KoRV p15E in a captive Queensland and three wild southern Australian koalas. We generated 163 sequences with intact open reading frames, which grouped into 39 distinct haplotypes. Sixteen distinct haplotypes comprising 139 of the sequences (85%) coded for the same polypeptide. Among the remaining 23 haplotypes, 22 were detected only once among the sequences, and each had 1 or 2 non-synonymous differences from the majority sequence. Several analyses suggested that p15E was under purifying selection. Important epitopes and domains were highly conserved across the p15E sequences and in previously reported exogenous KoRVs. Overall, these results support the potential use of p15E for KoRV vaccine development. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Ataluren (PTC124) induces cystic fibrosis transmembrane conductance regulator protein expression and activity in children with nonsense mutation cystic fibrosis.

    Science.gov (United States)

    Sermet-Gaudelus, Isabelle; Boeck, Kris De; Casimir, Georges J; Vermeulen, François; Leal, Teresinha; Mogenet, Agnès; Roussel, Delphine; Fritsch, Janine; Hanssens, Laurence; Hirawat, Samit; Miller, Nilsen L; Constantine, Scott; Reha, Allen; Ajayi, Temitayo; Elfring, Gary L; Miller, Langdon L

    2010-11-15

    Nonsense (premature stop codon) mutations in mRNA for the cystic fibrosis transmembrane conductance regulator (CFTR) cause cystic fibrosis (CF) in approximately 10% of patients. Ataluren (PTC124) is an oral drug that permits ribosomes to readthrough premature stop codons in mRNA to produce functional protein. To evaluate ataluren activity, safety, and pharmacokinetics in children with nonsense mutation CF. Patients were assessed in two 28-day cycles, comprising 14 days on and 14 days off ataluren. Patients took ataluren three times per day (morning, midday, and evening) with randomization to the order of receiving a lower dose (4, 4, and 8 mg/kg) and a higher dose (10, 10, and 20 mg/kg) in the two cycles. The study enrolled 30 patients (16 male and 14 female, ages 6 through 18 yr) with a nonsense mutation in at least one allele of the CFTR gene, a classical CF phenotype, and abnormal baseline nasal epithelial chloride transport. Ataluren induced a nasal chloride transport response (at least a -5-mV improvement) or hyperpolarization (value more electrically negative than -5 mV) in 50% and 47% of patients, respectively, with more hyperpolarizations at the higher dose. Improvements were seen in seven of nine nonsense mutation genotypes represented. Ataluren significantly increased the proportion of nasal epithelial cells expressing apical full-length CFTR protein. Adverse events and laboratory abnormalities were infrequent and usually mild. Ataluren pharmacokinetics were similar to those in adults. In children with nonsense mutation CF, ataluren can induce functional CFTR production and is well tolerated.

  4. Lysosomal-associated protein multispanning transmembrane 5 gene (LAPTM5 is associated with spontaneous regression of neuroblastomas.

    Directory of Open Access Journals (Sweden)

    Jun Inoue

    Full Text Available BACKGROUND: Neuroblastoma (NB is the most frequently occurring solid tumor in children, and shows heterogeneous clinical behavior. Favorable tumors, which are usually detected by mass screening based on increased levels of catecholamines in urine, regress spontaneously via programmed cell death (PCD or mature through differentiation into benign ganglioneuroma (GN. In contrast, advanced-type NB tumors often grow aggressively, despite intensive chemotherapy. Understanding the molecular mechanisms of PCD during spontaneous regression in favorable NB tumors, as well as identifying genes with a pro-death role, is a matter of urgency for developing novel approaches to the treatment of advanced-type NB tumors. PRINCIPAL FINDINGS: We found that the expression of lysosomal associated protein multispanning transmembrane 5 (LAPTM5 was usually down-regulated due to DNA methylation in an NB cell-specific manner, but up-regulated in degenerating NB cells within locally regressing areas of favorable tumors detected by mass-screening. Experiments in vitro showed that not only a restoration of its expression but also the accumulation of LAPTM5 protein, was required to induce non-apoptotic cell death with autophagic vacuoles and lysosomal destabilization with lysosomal-membrane permeabilization (LMP in a caspase-independent manner. While autophagy is a membrane-trafficking pathway to degrade the proteins in lysosomes, the LAPTM5-mediated lysosomal destabilization with LMP leads to an interruption of autophagic flux, resulting in the accumulation of immature autophagic vacuoles, p62/SQSTM1, and ubiqitinated proteins as substrates of autophagic degradation. In addition, ubiquitin-positive inclusion bodies appeared in degenerating NB cells. CONCLUSIONS: We propose a novel molecular mechanism for PCD with the accumulation of autophagic vacuoles due to LAPTM5-mediated lysosomal destabilization. LAPTM5-induced cell death is lysosomal cell death with impaired autophagy

  5. Aspirin and some other nonsteroidal anti-inflammatory drugs inhibit cystic fibrosis transmembrane conductance regulator protein gene expression in T-84 cells.

    Science.gov (United States)

    Tondelier, D; Brouillard, F; Lipecka, J; Labarthe, R; Bali, M; Costa de Beauregard, M A; Torossi, T; Cougnon, M; Edelman, A; Baudouin-Legros, M

    1999-01-01

    Cystic fibrosis (CF) is caused by mutations in the CF gene, which encodes CF transmembrane conductance regulator protein (CFTR), a transmembrane protein that acts as a cAMP-regulated chloride channel The disease is characterized by inflammation but the relationship between inflammation, abnormal transepithelial ion transport, and the clinical manifestations of CF are uncertain. The present study was undertaken to determine whether three nonsteroidal anti-inflammatory drugs (NSAIDs) (aspirin, ibuprofen, and indomethacin) modulate CFTR gene expression in T-84 cells. Treatment with NSAIDs reduced CFTR transcripts, and decreased cAMP-stimulated anion fluxes, an index of CFTR function. However, the two phenomena occurred at different concentrations of both drugs. The results indicate that NSAIDs can regulate both CFTR gene expression and the function of CFTR-related chloride transport, and suggest that NSAIDs act via multiple transduction pathways.

  6. Aspirin and Some Other Nonsteroidal Anti-Inflammatory Drugs Inhibit Cystic Fibrosis Transmembrane Conductance Regulator Protein Gene Expression in T-84 Cells

    Directory of Open Access Journals (Sweden)

    Danielle Tondelier

    1999-01-01

    Full Text Available Cystic fibrosis (CF is caused by mutations in the CF gene, which encodes CF transmembrane conductance regulator protein (CFTR, a transmembrane protein that acts as a cAMP-regulated chloride channel. The disease is characterized by inflammation but the relationship between inflammation, abnormal transepithelial ion transport, and the clinical manifestations of CF are uncertain. The present study was undertaken to determine whether three nonsteroidal anti-inflammatory drugs (NSAIDs (aspirin, ibuprofen, and indomethacin modulate CFTR gene expression in T-84 cells. Treatment with NSAIDs reduced CFTR transcripts, and decreased cAMP-stimulated anion fluxes, an index of CFTR function. However, the two phenomena occurred at different concentrations of both drugs. The results indicate that NSAIDs can regulate both CFTR gene expression and the function of CFTR-related chloride transport, and suggest that NSAIDs act via multiple transduction pathways.

  7. Identification of the gene encoding Brain Cell Membrane Protein 1 (BCMP1, a putative four-transmembrane protein distantly related to the Peripheral Myelin Protein 22 / Epithelial Membrane Proteins and the Claudins

    Directory of Open Access Journals (Sweden)

    Christophe Daniel

    2001-07-01

    Full Text Available Abstract Background A partial cDNA clone from dog thyroid presenting a very significant similarity with an uncharacterized mouse EST sequence was isolated fortuitously. We report here the identification of the complete mRNA and of the gene, the product of which was termed "brain cell membrane protein 1" (BCMP1. Results The 4 kb-long mRNA sequence exhibited an open-reading frame of only 543 b followed by a 3.2 kb-long 3' untranslated region containing several AUUUA instability motifs. Analysis of the encoded protein sequence identified the presence of four putative transmembrane domains. Similarity searches in protein domain databases identified partial sequence conservations with peripheral myelin protein 22 (PMP22/ epithelial membrane proteins (EMPs and Claudins, defining the encoded protein as representative of the existence of a novel subclass in this protein family. Northern-blot analysis of the expression of the corresponding mRNA in adult dog tissues revealed the presence of a huge amount of the 4 kb transcript in the brain. An EGFP-BCMP1 fusion protein expressed in transfected COS-7 cells exhibited a membranous localization as expected. The sequences encoding BCMP1 were assigned to chromosome X in dog, man and rat using radiation hybrid panels and were partly localized in the currently available human genome sequence. Conclusions We have identified the existence in several mammalian species of a gene encoding a putative four-transmembrane protein, BCMP1, wich defines a novel subclass in this family of proteins. In dog at least, the corresponding mRNA is highly present in brain cells. The chromosomal localization of the gene in man makes of it a likely candidate gene for X-linked mental retardation.

  8. Expression and regulation of transcript for the novel transmembrane protein Tmem182 in the adipocyte and muscle lineage

    Directory of Open Access Journals (Sweden)

    Smas Cynthia M

    2008-09-01

    Full Text Available Abstract Background White adipose tissue is not only an energy storage organ; it also functions as an endocrine organ. The coordination and integration of numerous gene expression events is required to establish and maintain the adipocyte phenotype. Findings We previously observed a 45-fold upregulation for a transcript encoding a novel predicted transmembrane protein, Tmem182, upon brown preadipocyte to adipocyte conversion. Here we use real-time PCR analysis to further characterize Tmem182 transcript expression in the adipocyte lineage. Analysis across a panel of 10 murine tissues revealed highest Tmem182 transcript expression in white adipose tissues (WAT, with 10-fold to 20-fold higher levels than in brown adipose tissue (BAT. Tmem182 transcript expression is ~3-fold upregulated in BAT of genetically obese (ob/ob mice vs. wild type C57BL/6. Analysis of three in vitro models of white adipogenesis indicates markedly enriched expression of Tmem182 transcript in adipocytes vs. preadipocytes. Compared to 3T3-L1 preadipocytes, a 157-fold higher level of Tmem182 transcript is detected at 3 day post-induction of adipogenesis and an ~2500-fold higher level in mature 3T3-L1 adipocytes. TNFα treatment of 3T3-L1 adipocytes resulted in a ~90% decrease in Tmem182 transcript level. As skeletal muscle and heart were also found to express Tmem182 transcript, we assessed expression in C2C12 myogenesis and observed a ~770-fold upregulation upon conversion of myoblasts to myocytes. Conclusion WAT is the most prominent site of Tmem182 transcript expression and levels of transcript for Tmem182 are altered in adipose tissues of ob/ob mice and upon exposure of 3T3-L1 adipocytes to the proinflammatory cytokine TNFα. The dramatic upregulation of Tmem182 transcript during in vitro adipogenesis and myogenesis suggests Tmem182 may function in intracellular pathways important in these two cell types.

  9. VX-809 corrects folding defects in cystic fibrosis transmembrane conductance regulator protein through action on membrane-spanning domain 1.

    Science.gov (United States)

    Ren, Hong Yu; Grove, Diane E; De La Rosa, Oxana; Houck, Scott A; Sopha, Pattarawut; Van Goor, Fredrick; Hoffman, Beth J; Cyr, Douglas M

    2013-10-01

    Cystic fibrosis (CF) is a fatal genetic disorder associated with defective hydration of lung airways due to the loss of chloride transport through the CF transmembrane conductance regulator protein (CFTR). CFTR contains two membrane-spanning domains (MSDs), two nucleotide-binding domains (NBDs), and a regulatory domain, and its channel assembly requires multiple interdomain contacts. The most common CF-causing mutation, F508del, occurs in NBD1 and results in misfolding and premature degradation of F508del-CFTR. VX-809 is an investigational CFTR corrector that partially restores CFTR function in people who are homozygous for F508del-CFTR. To identify the folding defect(s) in F508del-CFTR that must be repaired to treat CF, we explored the mechanism of VX-809 action. VX-809 stabilized an N-terminal domain in CFTR that contains only MSD1 and efficaciously restored function to CFTR forms that have missense mutations in MSD1. The action of VX-809 on MSD1 appears to suppress folding defects in F508del-CFTR by enhancing interactions among the NBD1, MSD1, and MSD2 domains. The ability of VX-809 to correct F508del-CFTR is enhanced when combined with mutations that improve F508del-NBD1 interaction with MSD2. These data suggest that the use of VX-809 in combination with an additional CFTR corrector that suppresses folding defects downstream of MSD1 may further enhance CFTR function in people with F508del-CFTR.

  10. The catalytic activity of the CD45 membrane-proximal phosphatase domain is required for TCR signaling and regulation

    DEFF Research Database (Denmark)

    Desai, D M; Sap, J; Silvennoinen, O;

    1994-01-01

    Cell surface expression of CD45, a receptor-like protein tyrosine phosphatase (PTPase), is required for T cell antigen receptor (TCR)-mediated signal transduction. Like the majority of transmembrane PTPases, CD45 contains two cytoplasmic phosphatase domains, whose relative in vivo function is not...

  11. Myxococcus xanthus, a gram-negative bacterium, contains a transmembrane protein serine/threonine kinase that blocks the secretion of beta-lactamase by phosphorylation.

    Science.gov (United States)

    Udo, H; Munoz-Dorado, J; Inouye, M; Inouye, S

    1995-04-15

    A gene, pkn2, encoding a Myxococcus xanthus protein with significant similarities to eukaryotic protein serine/threonine kinases, was cloned using the polymerase chain reaction. The open reading frame for the protein, beginning with a GUG initiation codon, consists of 830 amino acids. The amino-terminal 279 residues show 37% identity to catalytic domain of Pkn1, another protein serine/threonine kinase expressed during the development at the onset of sporulation. The catalytic domain of Pkn2 contains 27% and 25% identity to rat Ca2+/calmodulin-dependent protein kinase and Bos taurus rhodopsin kinase, respectively. In the middle of the carboxy-terminal regulatory domain, there is a typical transmembrane domain consisting of 18 hydrophobic residues. The gene product, Pkn2, produced in Escherichia coli under a T7 promoter was phosphorylated at both serine and threonine residues. TEM-beta-lactamase produced in E. coli was found to serve as an effective substrate for Pkn2, phosphorylated only at threonine residues, shifting its apparent molecular mass from 29 to 44 kD. The phosphorylated beta-lactamase was unable to be secreted into the periplasmic space and localized in the cytoplasmic and membrane fractions. Analysis of phoA fusions with pkn2 demonstrated that Pkn2 is a transmembrane protein with the kinase domain in the cytoplasm and the 207-residue carboxy-terminal domain outside the cytoplasmic membrane. Disruption of pkn2 showed no effect on vegetative growth but reduced the yield of myxospores by 30%-50%. On the basis of the present results, we propose that Pkn2 is a transmembrane protein serine/threonine kinase that regulates the activity of endogenous beta-lactamase or related enzymes in response to an external signal yet to be identified.

  12. Asymmetry in structural response of inner and outer transmembrane segments of CorA protein by a coarse-grain model

    Science.gov (United States)

    Kitjaruwankul, Sunan; Khrutto, Channarong; Sompornpisut, Pornthep; Farmer, B. L.; Pandey, R. B.

    2016-10-01

    Structure of CorA protein and its inner (i.corA) and outer (o.corA) transmembrane (TM) components are investigated as a function of temperature by a coarse-grained Monte Carlo simulation. Thermal response of i.corA is found to differ considerably from that of the outer component, o.corA. Analysis of the radius of gyration reveals that the inner TM component undergoes a continuous transition from a globular conformation to a random coil structure on raising the temperature. In contrast, the outer transmembrane component exhibits an abrupt (nearly discontinuous) thermal response in a narrow range of temperature. Scaling of the structure factor shows a globular structure of i.corA at a low temperature with an effective dimension D ˜ 3 and a random coil at a high temperature with D ˜ 2. The residue distribution in o.corA is slightly sparser than that of i.corA in a narrow thermos-responsive regime. The difference in thermos-response characteristics of these components (i.corA and o.corA) may reflect their unique transmembrane functions.

  13. A comprehensive proteomics and genomics analysis reveals novel transmembrane proteins in human platelets and mouse megakaryocytes including G6b-B, a novel immunoreceptor tyrosine-based inhibitory motif protein.

    Science.gov (United States)

    Senis, Yotis A; Tomlinson, Michael G; García, Angel; Dumon, Stephanie; Heath, Victoria L; Herbert, John; Cobbold, Stephen P; Spalton, Jennifer C; Ayman, Sinem; Antrobus, Robin; Zitzmann, Nicole; Bicknell, Roy; Frampton, Jon; Authi, Kalwant S; Martin, Ashley; Wakelam, Michael J O; Watson, Stephen P

    2007-03-01

    The platelet surface is poorly characterized due to the low abundance of many membrane proteins and the lack of specialist tools for their investigation. In this study we identified novel human platelet and mouse megakaryocyte membrane proteins using specialist proteomics and genomics approaches. Three separate methods were used to enrich platelet surface proteins prior to identification by liquid chromatography and tandem mass spectrometry: lectin affinity chromatography, biotin/NeutrAvidin affinity chromatography, and free flow electrophoresis. Many known, abundant platelet surface transmembrane proteins and several novel proteins were identified using each receptor enrichment strategy. In total, two or more unique peptides were identified for 46, 68, and 22 surface membrane, intracellular membrane, and membrane proteins of unknown subcellular localization, respectively. The majority of these were single transmembrane proteins. To complement the proteomics studies, we analyzed the transcriptome of a highly purified preparation of mature primary mouse megakaryocytes using serial analysis of gene expression in view of the increasing importance of mutant mouse models in establishing protein function in platelets. This approach identified all of the major classes of platelet transmembrane receptors, including multitransmembrane proteins. Strikingly 17 of the 25 most megakaryocyte-specific genes (relative to 30 other serial analysis of gene expression libraries) were transmembrane proteins, illustrating the unique nature of the megakaryocyte/platelet surface. The list of novel plasma membrane proteins identified using proteomics includes the immunoglobulin superfamily member G6b, which undergoes extensive alternate splicing. Specific antibodies were used to demonstrate expression of the G6b-B isoform, which contains an immunoreceptor tyrosine-based inhibition motif. G6b-B undergoes tyrosine phosphorylation and association with the SH2 domain-containing phosphatase

  14. Protein Tyrosine Phosphatases Mediate the Signaling Pathway of Stomatal Closure of Vicia faba L.

    Institute of Scientific and Technical Information of China (English)

    Wu-Liang SHI; Xin LIU; Wen-Suo JIA; Shu-Qiu ZHANG

    2005-01-01

    The regulation of stomatal movement is one of the most important signaling networks in plants.The H+-ATPase at the plasma membrane of guard cells plays a critical role in the stomata opening, while there are some conflicting results regarding the effectiveness of the plasma membrane H+-ATPase inhibitor,vanadate, in inhibiting stomata opening. We observed that 2 mmol/L vanadate hardly inhibited light-stimulated stomata opening in epidermal peels of Viciafaba L., but significantly inhibited dark- and ABA-induced stomatal closure. These results cannot be explained with the previous findings that H+-ATPase was inhibited by vanadate. In view of the fact that vanadate is an inhibitor of protein tyrosine phosphatases (PTPases),we investigated whether the stomatal movement regulated by vanadate is through the regulation of PTPase.As expected, phenylarsine oxide (PAO), a specific inhibitor of PTPase, has very similar effects and even more effective than vanadate. Typical PTPase activity was found in guard cells of V. faba; moreover, the phosphatase activity could be inhibited by both vanadate and PAO. These results not only provide a novel explanation for conflicting results about vanadate modulating stomatal movement, but also provide further evidence for the involvement of PTPases in modulating signal transduction of stomatal movement.

  15. A flow cytometry-based screen of nuclear envelope transmembrane proteins identifies NET4/Tmem53 as involved in stress-dependent cell cycle withdrawal.

    Directory of Open Access Journals (Sweden)

    Nadia Korfali

    Full Text Available Disruption of cell cycle regulation is one mechanism proposed for how nuclear envelope protein mutation can cause disease. Thus far only a few nuclear envelope proteins have been tested/found to affect cell cycle progression: to identify others, 39 novel nuclear envelope transmembrane proteins were screened for their ability to alter flow cytometry cell cycle/DNA content profiles when exogenously expressed. Eight had notable effects with seven increasing and one decreasing the 4N:2N ratio. We subsequently focused on NET4/Tmem53 that lost its effects in p53(-/- cells and retinoblastoma protein-deficient cells. NET4/TMEM53 knockdown by siRNA altered flow cytometry cell cycle/DNA content profiles in a similar way as overexpression. NET4/TMEM53 knockdown did not affect total retinoblastoma protein levels, unlike nuclear envelope-associated proteins Lamin A and LAP2α. However, a decrease in phosphorylated retinoblastoma protein was observed along with a doubling of p53 levels and a 7-fold increase in p21. Consequently cells withdrew from the cell cycle, which was confirmed in MRC5 cells by a drop in the percentage of cells expressing Ki-67 antigen and an increase in the number of cells stained for ß-galactosidase. The ß-galactosidase upregulation suggests that cells become prematurely senescent. Finally, the changes in retinoblastoma protein, p53, and p21 resulting from loss of NET4/Tmem53 were dependent upon active p38 MAP kinase. The finding that roughly a fifth of nuclear envelope transmembrane proteins screened yielded alterations in flow cytometry cell cycle/DNA content profiles suggests a much greater influence of the nuclear envelope on the cell cycle than is widely held.

  16. Transmembrane protein 85 from both human (TMEM85) and yeast (YGL231c) inhibit hydrogen peroxide mediated cell death in yeast.

    Science.gov (United States)

    Ring, Giselle; Khoury, Chamel M; Solar, Aidan J; Yang, Zhao; Mandato, Craig A; Greenwood, Michael T

    2008-07-23

    Anti-apoptotic proteins are involved in modulating the process of apoptosis. Here, we report the identification of the previously uncharacterized transmembrane domain protein 85 (TMEM85) as a novel anti-apoptotic sequence. Using growth and viability assays, we demonstrate that the heterologous expression of human TMEM85 in yeast promotes growth and prevents cell death in response to oxidative stress. Overexpression of the yeast TMEM85 ortholog (YGL231c) also leads to increased resistance to oxidative stress. Analysis of the existing TMEM85 DNA complimentary to mRNAs revealed that the human TMEM85 gene is alternatively spliced to produce multiple transcripts and proteins. Thus TMEM85 is a complex gene that encodes a novel conserved anti-apoptotic protein.

  17. The role of charged residues in the transmembrane helices of monocarboxylate transporter 1 and its ancillary protein basigin in determining plasma membrane expression and catalytic activity

    OpenAIRE

    Manoharan, Christine; Wilson, Marieangela C.; Sessions, Richard B; Halestrap, Andrew P.

    2006-01-01

    Monocarboxylate transporters MCT1-MCT4 require basigin (CD147) or embigin (gp70), ancillary proteins with a glutamate residue in their single transmembrane (TM) domain, for plasma membrane (PM) expression and activity. Here we use site-directed mutagenesis and expression in COS cells or Xenopus oocytes to investigate whether this glutamate (Glu218 in basigin) may charge-pair with a positively charged TM-residue of MCT1. Such residues were predicted using a new molecular model of MCT1 based up...

  18. Up-regulation of NG2 proteoglycan and interferon-induced transmembrane proteins 1 and 3 in mouse astrocytoma: a membrane proteomics approach.

    Science.gov (United States)

    Seyfried, Nicholas T; Huysentruyt, Leanne C; Atwood, James A; Xia, Qiangwei; Seyfried, Thomas N; Orlando, Ron

    2008-05-18

    Although brain tumors are classified as if their lineage were well understood, the relationship between the molecular events that specify neural cell lineage and brain tumors remains enigmatic. Traditionally, cell surface membrane antigens have served as biomarkers that distinguish brain tumor origin and malignancy. In this study, membrane proteins were identified from a terminally differentiated mouse astrocyte (AC) and CT-2A astrocytoma (CT-2A) cell line using liquid-chromatography coupled with tandem mass spectrometry (LC-MS/MS). A total of 321 and 297 protein groups with at least one unique peptide were identified in the AC and CT-2A cells. Using a label-free quantitative MS approach, 25 plasma membrane proteins in CT-2A were found significantly up- or down-regulated compared with those in AC. Three of the up-regulated proteins, chondroitin sulfate proteoglycan-4 (Cspg4), interferon-induced transmembrane protein-2 (IFITM2) and -3 (IFITM3) were further validated by semi-quantitative RT-PCR analysis. In addition, a third member of the IFITM family, interferon-induced transmembrane protein-1 (IFITM1) was also analyzed. Expression of Cspg4, IFITM1 and IFITM3 was significantly greater in the CT-2A cells than that in the AC cells. Interestingly, Cspg4, also known as neuronal/glial 2 (NG2) proteoglycan in human, is an oligodendrocyte progenitor marker. Therefore, our data suggest that the CT-2A tumor may be derived from NG2 glia rather than from fully differentiated astrocytes. Moreover, the CT-2A cells also express a series of interferon-induced signature proteins that may be specific to this tumor. These data highlight the utility of LC-MS/MS for the identification of brain tumor membrane biomarkers.

  19. Expression, refolding and spectroscopic characterization of fibronectin type III (FnIII)-homology domains derived from human fibronectin leucine rich transmembrane protein (FLRT)-1,-2, and-3

    DEFF Research Database (Denmark)

    Yang, Lila; Falkesgaard, Maria Hansen; Thulstrup, Peter Waaben

    2017-01-01

    The fibronectin leucine rich transmembrane (FLRT) protein family consists in humans of 3 proteins, FLRT1, -2, and -3. The FLRT proteins contain two extracellular domains separated by an unstructured linker. The most membrane distal part is a leucine rich repeat (LRR) domain responsible for both cis......- and trans-interactions, whereas the membrane proximal part is a fibronectin type III (FnIII) domain responsible for a cis-interaction with members of the fibroblast growth factor receptor 1 (FGFR1) family, which results in FGFR tyrosine kinase activation. Whereas the structures of FLRT LRR domains from...... in inclusion bodies in Escherichia coli. His-tags permitted affinity purification of the domains, which subsequently were refolded on a Ni-NTA agarose column by reducing the concentration of urea. The refolding was confirmed by circular dichroism (CD) and 1H-NMR. By thermal unfolding experiments we show...

  20. PSI/TM-Coffee: a web server for fast and accurate multiple sequence alignments of regular and transmembrane proteins using homology extension on reduced databases.

    Science.gov (United States)

    Floden, Evan W; Tommaso, Paolo D; Chatzou, Maria; Magis, Cedrik; Notredame, Cedric; Chang, Jia-Ming

    2016-07-08

    The PSI/TM-Coffee web server performs multiple sequence alignment (MSA) of proteins by combining homology extension with a consistency based alignment approach. Homology extension is performed with Position Specific Iterative (PSI) BLAST searches against a choice of redundant and non-redundant databases. The main novelty of this server is to allow databases of reduced complexity to rapidly perform homology extension. This server also gives the possibility to use transmembrane proteins (TMPs) reference databases to allow even faster homology extension on this important category of proteins. Aside from an MSA, the server also outputs topological prediction of TMPs using the HMMTOP algorithm. Previous benchmarking of the method has shown this approach outperforms the most accurate alignment methods such as MSAProbs, Kalign, PROMALS, MAFFT, ProbCons and PRALINE™. The web server is available at http://tcoffee.crg.cat/tmcoffee. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Structure of transmembrane domain of lysosome-associated membrane protein type 2a (LAMP-2A) reveals key features for substrate specificity in chaperone-mediated autophagy.

    Science.gov (United States)

    Rout, Ashok K; Strub, Marie-Paule; Piszczek, Grzegorz; Tjandra, Nico

    2014-12-19

    Chaperone-mediated autophagy (CMA) is a highly regulated cellular process that mediates the degradation of a selective subset of cytosolic proteins in lysosomes. Increasing CMA activity is one way for a cell to respond to stress, and it leads to enhanced turnover of non-critical cytosolic proteins into sources of energy or clearance of unwanted or damaged proteins from the cytosol. The lysosome-associated membrane protein type 2a (LAMP-2A) together with a complex of chaperones and co-chaperones are key regulators of CMA. LAMP-2A is a transmembrane protein component for protein translocation to the lysosome. Here we present a study of the structure and dynamics of the transmembrane domain of human LAMP-2A in n-dodecylphosphocholine micelles by nuclear magnetic resonance (NMR). We showed that LAMP-2A exists as a homotrimer in which the membrane-spanning helices wrap around each other to form a parallel coiled coil conformation, whereas its cytosolic tail is flexible and exposed to the cytosol. This cytosolic tail of LAMP-2A interacts with chaperone Hsc70 and a CMA substrate RNase A with comparable affinity but not with Hsp40 and RNase S peptide. Because the substrates and the chaperone complex can bind at the same time, thus creating a bimodal interaction, we propose that substrate recognition by chaperones and targeting to the lysosomal membrane by LAMP-2A are coupled. This can increase substrate affinity and specificity as well as prevent substrate aggregation, assist in the unfolding of the substrate, and promote the formation of the higher order complex of LAMP-2A required for translocation.

  2. Development of surface-based assays for transmembrane proteins: selective immobilization of functional CCR5, a G protein-coupled receptor.

    Science.gov (United States)

    Silin, Vitalii I; Karlik, Evan A; Ridge, Kevin D; Vanderah, David J

    2006-02-15

    A general method to develop surface-based assays for transmembrane (TM) receptor function(s) without the need to isolate, purify, and reconstitute the proteins is presented. Based on the formation of an active surface that selectively immobilizes membrane vesicles, the method is illustrated using the chemokine receptor CCR5, a member of the largest family of cell surface eukaryotic TM proteins, the G protein-coupled receptors (GPCRs). The method begins with a protein-resistant surface containing a low percentage (1-5%) of surface-bound biotin on gold as the initial template. Surface plasmon resonance (SPR) data show specific immobilization of functional CCR5 after the initial template is activated by immobilization of rho 1D4 antibody, an anti-rhodopsin monoclonal antibody specific for the carboxyl terminal nine amino acids on bovine rhodopsin that had been engineered into the carboxyl terminus of CCR5, and exposure to vesicles obtained from mammalian cells transfected with a synthetic human CCR5 gene. Activation of the initial template is effected by sequential immobilization of avidin, which binds to the biotin in the initial template, a biotinylated goat anti-mouse immunoglobulin G (Bt-IgG), which binds to the avidin binding sites distal to the surface and the F(c) portion of the rho 1D4 antibody through its F(ab) region(s) and finally rho 1D4. This approach establishes a broad outline for the development and application of various assays for CCR5 functions. SPR data also showed that vesicle immobilization could be achieved through an integrin-integrin antibody interaction after activation of the initial template with a goat anti-human integrin beta1 antibody. These results suggest that the generic nature of the initial platform and flexibility of the subsequent surface activation for specific immobilization of membrane vesicles can be applied to the development of assays for other GPCRs or TM receptors for which antibodies are available or can be engineered to

  3. A conserved gene family encodes transmembrane proteins with fibronectin, immunoglobulin and leucine-rich repeat domains (FIGLER

    Directory of Open Access Journals (Sweden)

    Haga Christopher L

    2007-09-01

    Full Text Available Abstract Background In mouse the cytokine interleukin-7 (IL-7 is required for generation of B lymphocytes, but human IL-7 does not appear to have this function. A bioinformatics approach was therefore used to identify IL-7 receptor related genes in the hope of identifying the elusive human cytokine. Results Our database search identified a family of nine gene candidates, which we have provisionally named fibronectin immunoglobulin leucine-rich repeat (FIGLER. The FIGLER 1–9 genes are predicted to encode type I transmembrane glycoproteins with 6–12 leucine-rich repeats (LRR, a C2 type Ig domain, a fibronectin type III domain, a hydrophobic transmembrane domain, and a cytoplasmic domain containing one to four tyrosine residues. Members of this multichromosomal gene family possess 20–47% overall amino acid identity and are differentially expressed in cell lines and primary hematopoietic lineage cells. Genes for FIGLER homologs were identified in macaque, orangutan, chimpanzee, mouse, rat, dog, chicken, toad, and puffer fish databases. The non-human FIGLER homologs share 38–99% overall amino acid identity with their human counterpart. Conclusion The extracellular domain structure and absence of recognizable cytoplasmic signaling motifs in members of the highly conserved FIGLER gene family suggest a trophic or cell adhesion function for these molecules.

  4. A tyrosine phosphorylation switch controls the interaction between the transmembrane modulator protein Wzd and the tyrosine kinase Wze of Lactobacillus rhamnosus.

    Science.gov (United States)

    Kang, Hye-Ji; Gilbert, Christophe; Badeaux, Frédérique; Atlan, Danièle; LaPointe, Gisèle

    2015-02-21

    One proposed mechanism for assembly of secreted heteropolysaccharides by many Gram positive bacteria relies on the coordinated action of a polymerization complex through reversible phosphorylation events. The role of the tyrosine protein kinase transmembrane modulator is, however, not well understood. The protein sequences deduced from the wzb, wzd and wze genes from Lactobacillus rhamnosus ATCC 9595 and RW-9595 M contain motifs also found in corresponding proteins CpsB, CpsC and CpsD from Streptococcus pneumoniae D39 (serotype 2). Use of an anti-phosphotyrosine antibody demonstrated that both Wzd and Wze can be found in tyrosine phosphorylated form. When tyrosine 266 was mutated to phenylalanine, WzdY266F showed slightly less phosphorylated protein than those produced by using eight other tyrosine mutated Wzd genes, when expressed along with Wze and Wzb in Lactococcus lactis subsp. cremoris MG1363. In order to demonstrate the importance of ATP for the interactions among these proteins, native and fusion Wzb, Wzd and Wze proteins were expressed and purified from Escherichia coli cultures. The modulator protein, Wzd, binds with the phosphotyrosine kinase Wze, irrespective of its phosphorylation status. However, Wze attained a higher phosphorylation level after interacting with phosphorylated Wzd in the presence of 10 mM ATP. This highly phosphorylated Wze did not remain in close association with phosphorylated Wzd. The Wze tyrosine kinase protein of Lactobacillus rhamnosus thus carries out tyrosine phosphorylation of Wzd in addition to auto- and trans- phosphorylation of the kinase itself.

  5. Compartmentalized accumulation of cAMP near complexes of multidrug resistance protein 4 (MRP4) and cystic fibrosis transmembrane conductance regulator (CFTR) contributes to drug-induced diarrhea.

    Science.gov (United States)

    Moon, Changsuk; Zhang, Weiqiang; Ren, Aixia; Arora, Kavisha; Sinha, Chandrima; Yarlagadda, Sunitha; Woodrooffe, Koryse; Schuetz, John D; Valasani, Koteswara Rao; de Jonge, Hugo R; Shanmukhappa, Shiva Kumar; Shata, Mohamed Tarek M; Buddington, Randal K; Parthasarathi, Kaushik; Naren, Anjaparavanda P

    2015-05-01

    Diarrhea is one of the most common adverse side effects observed in ∼7% of individuals consuming Food and Drug Administration (FDA)-approved drugs. The mechanism of how these drugs alter fluid secretion in the gut and induce diarrhea is not clearly understood. Several drugs are either substrates or inhibitors of multidrug resistance protein 4 (MRP4), such as the anti-colon cancer drug irinotecan and an anti-retroviral used to treat HIV infection, 3'-azido-3'-deoxythymidine (AZT). These drugs activate cystic fibrosis transmembrane conductance regulator (CFTR)-mediated fluid secretion by inhibiting MRP4-mediated cAMP efflux. Binding of drugs to MRP4 augments the formation of MRP4-CFTR-containing macromolecular complexes that is mediated via scaffolding protein PDZK1. Importantly, HIV patients on AZT treatment demonstrate augmented MRP4-CFTR complex formation in the colon, which defines a novel paradigm of drug-induced diarrhea.

  6. Web-based toolkits for topology prediction of transmembrane helical proteins, fold recognition, structure and binding scoring, folding-kinetics analysis and comparative analysis of domain combinations.

    Science.gov (United States)

    Zhou, Hongyi; Zhang, Chi; Liu, Song; Zhou, Yaoqi

    2005-07-01

    We have developed the following web servers for protein structural modeling and analysis at http://theory.med.buffalo.edu: THUMBUP, UMDHMM(TMHP) and TUPS, predictors of transmembrane helical protein topology based on a mean-burial-propensity scale of amino acid residues (THUMBUP), hidden Markov model (UMDHMM(TMHP)) and their combinations (TUPS); SPARKS 2.0 and SP3, two profile-profile alignment methods, that match input query sequence(s) to structural templates by integrating sequence profile with knowledge-based structural score (SPARKS 2.0) and structure-derived profile (SP3); DFIRE, a knowledge-based potential for scoring free energy of monomers (DMONOMER), loop conformations (DLOOP), mutant stability (DMUTANT) and binding affinity of protein-protein/peptide/DNA complexes (DCOMPLEX & DDNA); TCD, a program for protein-folding rate and transition-state analysis of small globular proteins; and DOGMA, a web-server that allows comparative analysis of domain combinations between plant and other 55 organisms. These servers provide tools for prediction and/or analysis of proteins on the secondary structure, tertiary structure and interaction levels, respectively.

  7. The specificity of association of the IgD molecule with the accessory proteins BAP31/BAP29 lies in the IgD transmembrane sequence.

    Science.gov (United States)

    Adachi, T; Schamel, W W; Kim, K M; Watanabe, T; Becker, B; Nielsen, P J; Reth, M

    1996-04-01

    Mature B cells co-express on their cell surface two classes of antigen receptor, the IgM and IgD immunoglobulins. The structural and functional differences between the two receptor classes are poorly understood. Recently two proteins of 29 and 31 kDa (BAP29 and BAP31) have been described that are preferentially associated with membrane IgD but only weakly with membrane IgM. We describe here the cloning of full-length murine and human BAP31 cDNAs encoding proteins of 245 and 246 amino acids respectively. The two BAP31 proteins are 95% identical. The BAP31 gene is ubiquitously expressed in murine tissues and is located on the X chromosome in both mouse and man. The murine BAP31 protein has 43% sequence identity to murine BAP29. Both proteins have a hydrophobic N-terminus and an alpha-helical C-terminus which ends with a KKXX motif implicated in vesicular transport. By a mutational analysis we have identified amino acids in the transmembrane sequence of the delta m chain that are critical for binding to BAP31/BAP29. A structural model of the BAPs and their potential functions are discussed.

  8. Pathogen and autoantigen homologous regions within the cystic fibrosis transmembrane conductance regulator (CFTR) protein suggest an autoimmune treatable component of cystic fibrosis.

    Science.gov (United States)

    Carter, Chris J

    2011-07-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel provides the glutathione and hypochlorous acid necessary for bactericidal/viricidal actions. CFTR mutations block these effects, diminishing pathogen defence and allowing extracellular pathogen accumulation, where antibody encounter is likely. KEGG pathway analysis of the CFTR interactome shows that CFTR is involved in pathogen entry pathways and immune defence as well as in pathways relevant to comorbid conditions (diabetes, cardiomyopathies and sexual organ development). Pseudomonas aeruginosa and Staphylococcus aureus infections decrease the lifespan of cystic fibrosis patients and Stenotrophomonas maltophilia colonization is increased. Autoantibodies, targeting myeloperoxidase, the bactericidal/permeability-increasing protein and calgranulin may further compromise pathogen defence. Short consensus sequences, within immunogenic extracellular regions of the CFTR protein, are homologous to proteins expressed by P. aeruginosa, S. aureus and S. maltophilia, and to several autoantigens, with a universal overlap between autoantigen/pathogen/CFTR consensi. Antibodies to pathogens are thus likely responsible for the creation of these autoantibodies, which, with pathogen antibodies, may target the CFTR protein acting as antagonists, further compromising its function. This creates a feedforward cycle, diminishing the function of the CFTR protein and increasing the probability of pathogen accumulation and antibody production at every turn. Interruption of this cycle by antibody adsorption or immunosuppressant therapy may be beneficial in cystic fibrosis.

  9. Decreased basal chloride secretion and altered cystic fibrosis transmembrane conductance regulatory protein, Villin, GLUT5 protein expression in jejunum from leptin-deficient mice

    Directory of Open Access Journals (Sweden)

    Leung L

    2014-07-01

    Full Text Available Lana Leung, Jonathan Kang, Esa Rayyan, Ashesh Bhakta, Brennan Barrett, David Larsen, Ryan Jelinek, Justin Willey, Scott Cochran, Tom L Broderick, Layla Al-NakkashDepartment of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USAAbstract: Patients with diabetes and obesity are at increased risk of developing disturbances in intestinal function. In this study, we characterized jejunal function in the clinically relevant leptin-deficient ob/ob mouse, a model of diabetes and obesity. We measured transepithelial short circuit current (Isc, across freshly isolated segments of jejunum from 12-week-old ob/ob and lean C57BL/6J (female and male mice. The basal Isc was significantly decreased (~30% in the ob/ob mice (66.5±5.7 µA/cm2 [n=20] (P< 0.05 compared with their lean counterparts (95.1±9.1 µA/cm2 [n=19]. Inhibition with clotrimazole (100 µM, applied bilaterally was significantly reduced in the ob/ob mice (−7.92%±3.67% [n=15] (P<0.05 compared with the lean mice (10.44%±7.92% [n=15], indicating a decreased contribution of Ca2+-activated K+ (KCa channels in the ob/ob mice. Inhibition with ouabain (100 µM, applied serosally was significantly reduced in the ob/ob mice (1.40%±3.61%, n=13 (P< 0.05 versus the lean mice (18.93%±3.76% [n=18], suggesting a potential defect in the Na+/K+-adenosine triphosphate (ATPase pump with leptin-deficiency. Expression of cystic fibrosis transmembrane conductance regulatory protein (CFTR (normalized to glyceraldehyde-3-phosphate dehydrogenase [GAPDH] was significantly decreased ~twofold (P<0.05 in the ob/ob mice compared with the leans, whilst crypt depth was unchanged. Villi length was significantly increased by ~25% (P<0.05 in the ob/ob mice compared with the leans and was associated with an increase in Villin and GLUT5 expression. GLUT2 and SGLT-1 expression were both unchanged. Our data suggests that reduced basal jejunal Isc in ob/ob mice is likely a consequence of

  10. Identification of Putative Transmembrane Proteins Involved in Salinity Tolerance in Chenopodium quinoa by Integrating Physiological Data, RNAseq, and SNP Analyses.

    Science.gov (United States)

    Schmöckel, Sandra M; Lightfoot, Damien J; Razali, Rozaimi; Tester, Mark; Jarvis, David E

    2017-01-01

    Chenopodium quinoa (quinoa) is an emerging crop that produces nutritious grains with the potential to contribute to global food security. Quinoa can also grow on marginal lands, such as soils affected by high salinity. To identify candidate salt tolerance genes in the recently sequenced quinoa genome, we used a multifaceted approach integrating RNAseq analyses with comparative genomics and topology prediction. We identified 219 candidate genes by selecting those that were differentially expressed in response to salinity, were specific to or overrepresented in quinoa relative to other Amaranthaceae species, and had more than one predicted transmembrane domain. To determine whether these genes might underlie variation in salinity tolerance in quinoa and its close relatives, we compared the response to salinity stress in a panel of 21 Chenopodium accessions (14 C. quinoa, 5 C. berlandieri, and 2 C. hircinum). We found large variation in salinity tolerance, with one C. hircinum displaying the highest salinity tolerance. Using genome re-sequencing data from these accessions, we investigated single nucleotide polymorphisms and copy number variation (CNV) in the 219 candidate genes in accessions of contrasting salinity tolerance, and identified 15 genes that could contribute to the differences in salinity tolerance of these Chenopodium accessions.

  11. Identification of Putative Transmembrane Proteins Involved in Salinity Tolerance in Chenopodium quinoa by Integrating Physiological Data, RNAseq, and SNP Analyses

    KAUST Repository

    Schmöckel, Sandra M.

    2017-06-21

    Chenopodium quinoa (quinoa) is an emerging crop that produces nutritious grains with the potential to contribute to global food security. Quinoa can also grow on marginal lands, such as soils affected by high salinity. To identify candidate salt tolerance genes in the recently sequenced quinoa genome, we used a multifaceted approach integrating RNAseq analyses with comparative genomics and topology prediction. We identified 219 candidate genes by selecting those that were differentially expressed in response to salinity, were specific to or overrepresented in quinoa relative to other Amaranthaceae species, and had more than one predicted transmembrane domain. To determine whether these genes might underlie variation in salinity tolerance in quinoa and its close relatives, we compared the response to salinity stress in a panel of 21 Chenopodium accessions (14 C. quinoa, 5 C. berlandieri, and 2 C. hircinum). We found large variation in salinity tolerance, with one C. hircinum displaying the highest salinity tolerance. Using genome re-sequencing data from these accessions, we investigated single nucleotide polymorphisms and copy number variation (CNV) in the 219 candidate genes in accessions of contrasting salinity tolerance, and identified 15 genes that could contribute to the differences in salinity tolerance of these Chenopodium accessions.

  12. Molecular Characterization of an Ice Nucleation Protein Variant (InaQ from Pseudomonas syringae and the Analysis of Its Transmembrane Transport Activity in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Qianqian Li, Qi Yan, Jinsi Chen, Yan He, Jing Wang, Hongxing Zhang, Ziniu Yu, Lin Li

    2012-01-01

    Full Text Available The ice nucleation protein (INP of Pseudomonas syringae has gained scientific interest not only because of its pathogenicity of foliar necroses but also for its wide range of potential applications, such as in snow making, frozen food preparation, and surface-display system development. However, studies on the transport activity of INP remain lacking. In the present study, a newly identified INP-gene variant, inaQ, from a P. syringae MB03 strain was cloned. Its structural domains, signal sequences, and the hydrophilicity or hydrophobicity of each domain, were then characterized. The deduced amino acid sequence of InaQ shares similar protein domains with three P. syringae INPs, namely, InaK, InaZ, and InaV, which were identified as an N-terminal domain, a central repeating domain, and a C-terminal domain. The expression of the full-length InaQ and of various truncated variants was induced in Escherichia coli to analyze their transmembrane transport and surface-binding activities, while using the green fluorescence protein (GFP as the fusion partner. With two transmembrane segments and a weak secretion signal, the N-terminal domain (InaQ-N alone was found to be responsible for the transport process as well as for the binding to the outer membrane, whereas the C-terminal region was nonfunctional in protein transport. Increased membrane transport and surface-binding capacities were induced by a low isopropyl-β-D-thiogalactoside concentration (0.1 mmol/l but not by culture temperatures (15 ºC to 37 ºC. Furthermore, by constructing the GFP-fused proteins with a single InaQ-N, as well as two and three tandemly aligned InaQ-N molecules, the transport and membrane-binding activities of these proteins were compared using Western blot analysis, immmunofluorescence microscopy, and assays of the GFP specific fluorescence intensity of subcellular fractions and flow cytometry, which showed that the increase of InaQ-N repeats resulted in a coordinated

  13. Molecular characterization of an ice nucleation protein variant (inaQ) from Pseudomonas syringae and the analysis of its transmembrane transport activity in Escherichia coli.

    Science.gov (United States)

    Li, Qianqian; Yan, Qi; Chen, Jinsi; He, Yan; Wang, Jing; Zhang, Hongxing; Yu, Ziniu; Li, Lin

    2012-01-01

    The ice nucleation protein (INP) of Pseudomonas syringae has gained scientific interest not only because of its pathogenicity of foliar necroses but also for its wide range of potential applications, such as in snow making, frozen food preparation, and surface-display system development. However, studies on the transport activity of INP remain lacking. In the present study, a newly identified INP-gene variant, inaQ, from a P. syringae MB03 strain was cloned. Its structural domains, signal sequences, and the hydrophilicity or hydrophobicity of each domain, were then characterized. The deduced amino acid sequence of InaQ shares similar protein domains with three P. syringae INPs, namely, InaK, InaZ, and InaV, which were identified as an N-terminal domain, a central repeating domain, and a C-terminal domain. The expression of the full-length InaQ and of various truncated variants was induced in Escherichia coli to analyze their transmembrane transport and surface-binding activities, while using the green fluorescence protein (GFP) as the fusion partner. With two transmembrane segments and a weak secretion signal, the N-terminal domain (InaQ-N) alone was found to be responsible for the transport process as well as for the binding to the outer membrane, whereas the C-terminal region was nonfunctional in protein transport. Increased membrane transport and surface-binding capacities were induced by a low isopropyl-β-D-thiogalactoside concentration (0.1 mmol/l) but not by culture temperatures (15 ºC to 37 ºC). Furthermore, by constructing the GFP-fused proteins with a single InaQ-N, as well as two and three tandemly aligned InaQ-N molecules, the transport and membrane-binding activities of these proteins were compared using Western blot analysis, immmunofluorescence microscopy, and assays of the GFP specific fluorescence intensity of subcellular fractions and flow cytometry, which showed that the increase of InaQ-N repeats resulted in a coordinated increase of the

  14. The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR)

    OpenAIRE

    Rosenberg, Mark F.; O'Ryan, Liam P.; Hughes, Guy; Zhao, Zhefeng; Aleksandrov, Luba A.; Riordan, John R.; Ford, Robert C.

    2011-01-01

    Cystic fibrosis affects about 1 in 2500 live births and involves loss of transmembrane chloride flux due to a lack of a membrane protein channel termed the cystic fibrosis transmembrane conductance regulator (CFTR). We have studied CFTR structure by electron crystallography. The data were compared with existing structures of other ATP-binding cassette transporters. The protein was crystallized in the outward facing state and resembled the well characterized Sav1866 transporter. We identified ...

  15. Biophysical Characterization of a Vaccine Candidate against HIV-1: The Transmembrane and Membrane Proximal Domains of HIV-1 gp41 as a Maltose Binding Protein Fusion.

    Directory of Open Access Journals (Sweden)

    Zhen Gong

    Full Text Available The membrane proximal region (MPR, residues 649-683 and transmembrane domain (TMD, residues 684-705 of the gp41 subunit of HIV-1's envelope protein are highly conserved and are important in viral mucosal transmission, virus attachment and membrane fusion with target cells. Several structures of the trimeric membrane proximal external region (residues 662-683 of MPR have been reported at the atomic level; however, the atomic structure of the TMD still remains unknown. To elucidate the structure of both MPR and TMD, we expressed the region spanning both domains, MPR-TM (residues 649-705, in Escherichia coli as a fusion protein with maltose binding protein (MBP. MPR-TM was initially fused to the C-terminus of MBP via a 42 aa-long linker containing a TEV protease recognition site (MBP-linker-MPR-TM. Biophysical characterization indicated that the purified MBP-linker-MPR-TM protein was a monodisperse and stable candidate for crystallization. However, crystals of the MBP-linker-MPR-TM protein could not be obtained in extensive crystallization screens. It is possible that the 42 residue-long linker between MBP and MPR-TM was interfering with crystal formation. To test this hypothesis, the 42 residue-long linker was replaced with three alanine residues. The fusion protein, MBP-AAA-MPR-TM, was similarly purified and characterized. Significantly, both the MBP-linker-MPR-TM and MBP-AAA-MPR-TM proteins strongly interacted with broadly neutralizing monoclonal antibodies 2F5 and 4E10. With epitopes accessible to the broadly neutralizing antibodies, these MBP/MPR-TM recombinant proteins may be in immunologically relevant conformations that mimic a pre-hairpin intermediate of gp41.

  16. Characterization of the heterotrimeric G-protein family and its transmembrane regulator from capsicum (Capsicum annuum L.).

    Science.gov (United States)

    Romero-Castillo, Rafael A; Roy Choudhury, Swarup; León-Félix, Josefina; Pandey, Sona

    2015-05-01

    Throughout evolution, organisms have created numerous mechanisms to sense and respond to their environment. One such highly conserved mechanism involves regulation by heterotrimeric G-protein complex comprised of alpha (Gα), beta (Gβ) and gamma (Gγ) subunits. In plants, these proteins play important roles in signal transduction pathways related to growth and development including response to biotic and abiotic stresses and consequently affect yield. In this work, we have identified and characterized the complete heterotrimeric G-protein repertoire in the Capsicum annuum (Capsicum) genome which consists of one Gα, one Gβ and three Gγ genes. We have also identified one RGS gene in the Capsicum genome that acts as a regulator of the G-protein signaling. Biochemical activities of the proteins were confirmed by assessing the GTP-binding and GTPase activity of the recombinant Gα protein and its regulation by the GTPase acceleration activity of the RGS protein. Interaction between different subunits was established using yeast- and plant-based analyses. Gene and protein expression profiles of specific G-protein components revealed interesting spatial and temporal regulation patterns, especially during root development and during fruit development and maturation. This research thus details the characterization of the first heterotrimeric G-protein family from a domesticated, commercially important vegetable crop.

  17. RosettaTMH: a method for membrane protein structure elucidation combining EPR distance restraints with assembly of transmembrane helices

    Directory of Open Access Journals (Sweden)

    Andrew Leaver-Fay

    2015-12-01

    Full Text Available Membrane proteins make up approximately one third of all proteins, and they play key roles in a plethora of physiological processes. However, membrane proteins make up less than 2% of experimentally determined structures, despite significant advances in structure determination methods, such as X-ray crystallography, nuclear magnetic resonance spectroscopy, and cryo-electron microscopy. One potential alternative means of structure elucidation is to combine computational methods with experimental EPR data. In 2011, Hirst and others introduced RosettaEPR and demonstrated that this approach could be successfully applied to fold soluble proteins. Furthermore, few computational methods for de novo folding of integral membrane proteins have been presented. In this work, we present RosettaTMH, a novel algorithm for structure prediction of helical membrane proteins. A benchmark set of 34 proteins, in which the proteins ranged in size from 91 to 565 residues, was used to compare RosettaTMH to Rosetta’s two existing membrane protein folding protocols: the published RosettaMembrane folding protocol (“MembraneAbinitio” and folding from an extended chain (“ExtendedChain”. When EPR distance restraints are used, RosettaTMH+EPR outperforms ExtendedChain+EPR for 11 proteins, including the largest six proteins tested. RosettaTMH+EPR is capable of achieving native-like folds for 30 of 34 proteins tested, including receptors and transporters. For example, the average RMSD100SSE relative to the crystal structure for rhodopsin was 6.1 ± 0.4 Å and 6.5 ± 0.6 Å for the 449-residue nitric oxide reductase subunit B, where the standard deviation reflects variance in RMSD100SSE values across ten different EPR distance restraint sets. The addition of RosettaTMH and RosettaTMH+EPR to the Rosetta family of de novo folding methods broadens the scope of helical membrane proteins that can be accurately modeled with this software suite.

  18. The signal for clathrin-mediated endocytosis of the paramyxovirus SV5 HN protein resides at the transmembrane domain-ectodomain boundary region.

    Science.gov (United States)

    Leser, G P; Ector, K J; Ng, D T; Shaughnessy, M A; Lamb, R A

    1999-09-15

    The hemagglutinin-neuraminidase (HN) glycoprotein of the paramyxovirus SV5 is internalized from the cell surface via clathrin-coated pits. However, the cytoplasmic domain of SV5 HN does not contain a previously characterized internalization motif. A cell-surface-expressed chimeric protein (APK), consisting of the cytoplasmic tail, transmembrane (TM) domain, and 12 residues of the ectodomain of HN joined to the cytoplasmic protein pyruvate kinase is internalized, indicating that the N-terminal region of HN contains an internalization signal. Although SV5 HN is internalized at a rate similar to that of influenza virus hemagglutinin (HA) mutant Y543, which contains a degenerate tyrosine-based signal in its cytoplasmic tail, the elimination of the majority of the HN cytoplasmic tail, or substitution of the HN TM domain with leucine residues, did not affect the rate of HN internalization. The HN protein of the closely related virus, Newcastle disease virus (NDV), is not internalized from the cell surface. Working under the usual convention that the TM domain consists of the hydrophobic residues bounded by two charged residues, analysis of internalization of mutant and chimeric NDV HN molecules indicates that the first seven SV5 HN ectodomain residues are critical for internalization of HN. A glutamic acid residue (E37) that abuts this presumptive HN TM domain/ectodomain boundary is important for SV5 HN internalization.

  19. The transmembrane protein Sho1 cooperates with the mucin Msb2 to regulate invasive growth and plant infection in Fusarium oxysporum.

    Science.gov (United States)

    Perez-Nadales, Elena; Di Pietro, Antonio

    2015-08-01

    In the vascular wilt pathogen Fusarium oxysporum, the mitogen-activated protein kinase (MAPK) Fmk1 is essential for plant infection. The mucin-like membrane protein Msb2 regulates a subset of Fmk1-dependent functions. Here, we examined the role of the tetraspan transmembrane protein Sho1 as an additional regulator of the Fmk1 pathway and determined its genetic interaction with Msb2. Targeted Δsho1 mutants were generated in wild-type and Δmsb2 backgrounds to test possible interactions between the two genes. The mutants were examined for hyphal growth under different stress conditions, phosphorylation of the MAPK Fmk1 and an array of Fmk1-dependent virulence functions. Similar to Msb2, Sho1 was required for the activation of Fmk1 phosphorylation, as well as Fmk1-dependent gene expression and invasive growth functions, including extracellular pectinolytic activity, cellophane penetration, plant tissue colonization and virulence on tomato plants. Δsho1 mutants were hypersensitive to the cell wall-perturbing compound Calcofluor White, and this phenotype was exacerbated in the Δmsb2 Δsho1 double mutant. These results highlight that Sho1 and Msb2 have partially overlapping functions upstream of the Fmk1 MAPK cascade, to promote invasive growth and plant infection, as well as cell wall integrity, in F. oxysporum. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  20. The putative Notch ligand HyJagged is a transmembrane protein present in all cell types of adult Hydra and upregulated at the boundary between bud and parent

    Directory of Open Access Journals (Sweden)

    Tischer Susanne

    2011-09-01

    Full Text Available Abstract Background The Notch signalling pathway is conserved in pre-bilaterian animals. In the Cnidarian Hydra it is involved in interstitial stem cell differentiation and in boundary formation during budding. Experimental evidence suggests that in Hydra Notch is activated by presenilin through proteolytic cleavage at the S3 site as in all animals. However, the endogenous ligand for HvNotch has not been described yet. Results We have cloned a cDNA from Hydra, which encodes a bona-fide Notch ligand with a conserved domain structure similar to that of Jagged-like Notch ligands from other animals. Hyjagged mRNA is undetectable in adult Hydra by in situ hybridisation but is strongly upregulated and easily visible at the border between bud and parent shortly before bud detachment. In contrast, HyJagged protein is found in all cell types of an adult hydra, where it localises to membranes and endosomes. Co-localisation experiments showed that it is present in the same cells as HvNotch, however not always in the same membrane structures. Conclusions The putative Notch ligand HyJagged is conserved in Cnidarians. Together with HvNotch it may be involved in the formation of the parent-bud boundary in Hydra. Moreover, protein distribution of both, HvNotch receptor and HyJagged indicate a more widespread function for these two transmembrane proteins in the adult hydra, which may be regulated by additional factors, possibly involving endocytic pathways.

  1. Small heat shock proteins target mutant cystic fibrosis transmembrane conductance regulator for degradation via a small ubiquitin-like modifier-dependent pathway.

    Science.gov (United States)

    Ahner, Annette; Gong, Xiaoyan; Schmidt, Bela Z; Peters, Kathryn W; Rabeh, Wael M; Thibodeau, Patrick H; Lukacs, Gergely L; Frizzell, Raymond A

    2013-01-01

    Small heat shock proteins (sHsps) bind destabilized proteins during cell stress and disease, but their physiological functions are less clear. We evaluated the impact of Hsp27, an sHsp expressed in airway epithelial cells, on the common protein misfolding mutant that is responsible for most cystic fibrosis. F508del cystic fibrosis transmembrane conductance regulator (CFTR), a well-studied protein that is subject to cytosolic quality control, selectively associated with Hsp27, whose overexpression preferentially targeted mutant CFTR to proteasomal degradation. Hsp27 interacted physically with Ubc9, the small ubiquitin-like modifier (SUMO) E2 conjugating enzyme, implying that F508del SUMOylation leads to its sHsp-mediated degradation. Enhancing or disabling the SUMO pathway increased or blocked Hsp27's ability to degrade mutant CFTR. Hsp27 promoted selective SUMOylation of F508del NBD1 in vitro and of full-length F508del CFTR in vivo, which preferred endogenous SUMO-2/3 paralogues that form poly-chains. The SUMO-targeted ubiquitin ligase (STUbL) RNF4 recognizes poly-SUMO chains to facilitate nuclear protein degradation. RNF4 overexpression elicited F508del degradation, whereas Hsp27 knockdown blocked RNF4's impact on mutant CFTR. Similarly, the ability of Hsp27 to degrade F508del CFTR was lost during overexpression of dominant-negative RNF4. These findings link sHsp-mediated F508del CFTR degradation to its SUMOylation and to STUbL-mediated targeting to the ubiquitin-proteasome system and thereby implicate this pathway in the disposal of an integral membrane protein.

  2. Transmembrane and ubiquitin-like domain-containing protein 1 (Tmub1/HOPS facilitates surface expression of GluR2-containing AMPA receptors.

    Directory of Open Access Journals (Sweden)

    Hyunjeong Yang

    Full Text Available Some ubiquitin-like (UBL domain-containing proteins are known to play roles in receptor trafficking. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs undergo constitutive cycling between the intracellular compartment and the cell surface in the central nervous system. However, the function of UBL domain-containing proteins in the recycling of the AMPARs to the synaptic surface has not yet been reported.Here, we report that the Transmembrane and ubiquitin-like domain-containing 1 (Tmub1 protein, formerly known as the Hepatocyte Odd Protein Shuttling (HOPS protein, which is abundantly expressed in the brain and which exists in a synaptosomal membrane fraction, facilitates the recycling of the AMPAR subunit GluR2 to the cell surface. Neurons transfected with Tmub1/HOPS-RNAi plasmids showed a significant reduction in the AMPAR current as compared to their control neurons. Consistently, the synaptic surface expression of GluR2, but not of GluR1, was significantly decreased in the neurons transfected with the Tmub1/HOPS-RNAi and increased in the neurons overexpressing EGFP-Tmub1/HOPS. The altered surface expression of GluR2 was speculated to be due to the altered surface-recycling of the internalized GluR2 in our recycling assay. Eventually, we found that GluR2 and glutamate receptor interacting protein (GRIP were coimmunoprecipitated by the anti-Tmub1/HOPS antibody from the mouse brain. Taken together, these observations show that the Tmub1/HOPS plays a role in regulating basal synaptic transmission; it contributes to maintain the synaptic surface number of the GluR2-containing AMPARs by facilitating the recycling of GluR2 to the plasma membrane.

  3. TmpL, a transmembrane protein required for intracellular redox homeostasis and virulence in a plant and an animal fungal pathogen.

    Directory of Open Access Journals (Sweden)

    Kwang-Hyung Kim

    2009-11-01

    Full Text Available The regulation of intracellular levels of reactive oxygen species (ROS is critical for developmental differentiation and virulence of many pathogenic fungi. In this report we demonstrate that a novel transmembrane protein, TmpL, is necessary for regulation of intracellular ROS levels and tolerance to external ROS, and is required for infection of plants by the necrotroph Alternaria brassicicola and for infection of mammals by the human pathogen Aspergillus fumigatus. In both fungi, tmpL encodes a predicted hybrid membrane protein containing an AMP-binding domain, six putative transmembrane domains, and an experimentally-validated FAD/NAD(P-binding domain. Localization and gene expression analyses in A. brassicicola indicated that TmpL is associated with the Woronin body, a specialized peroxisome, and strongly expressed during conidiation and initial invasive growth in planta. A. brassicicola and A. fumigatus DeltatmpL strains exhibited abnormal conidiogenesis, accelerated aging, enhanced oxidative burst during conidiation, and hypersensitivity to oxidative stress when compared to wild-type or reconstituted strains. Moreover, A. brassicicola DeltatmpL strains, although capable of initial penetration, exhibited dramatically reduced invasive growth on Brassicas and Arabidopsis. Similarly, an A. fumigatus DeltatmpL mutant was dramatically less virulent than the wild-type and reconstituted strains in a murine model of invasive aspergillosis. Constitutive expression of the A. brassicicola yap1 ortholog in an A. brassicicola DeltatmpL strain resulted in high expression levels of genes associated with oxidative stress tolerance. Overexpression of yap1 in the DeltatmpL background complemented the majority of observed developmental phenotypic changes and partially restored virulence on plants. Yap1-GFP fusion strains utilizing the native yap1 promoter exhibited constitutive nuclear localization in the A. brassicicola DeltatmpL background. Collectively, we

  4. Long-range coupling between the extracellular gates and the intracellular ATP binding domains of multidrug resistance protein pumps and cystic fibrosis transmembrane conductance regulator channels.

    Science.gov (United States)

    Wei, Shipeng; Roessler, Bryan C; Icyuz, Mert; Chauvet, Sylvain; Tao, Binli; Hartman, John L; Kirk, Kevin L

    2016-03-01

    The ABCC transporter subfamily includes pumps, the long and short multidrug resistance proteins (MRPs), and an ATP-gated anion channel, the cystic fibrosis transmembrane conductance regulator (CFTR). We show that despite their thermodynamic differences, these ABCC transporter subtypes use broadly similar mechanisms to couple their extracellular gates to the ATP occupancies of their cytosolic nucleotide binding domains. A conserved extracellular phenylalanine at this gate was a prime location for producing gain of function (GOF) mutants of a long MRP in yeast (Ycf1p cadmium transporter), a short yeast MRP (Yor1p oligomycin exporter), and human CFTR channels. Extracellular gate mutations rescued ATP binding mutants of the yeast MRPs and CFTR by increasing ATP sensitivity. Control ATPase-defective MRP mutants could not be rescued by this mechanism. A CFTR double mutant with an extracellular gate mutation plus a cytosolic GOF mutation was highly active (single-channel open probability >0.3) in the absence of ATP and protein kinase A, each normally required for CFTR activity. We conclude that all 3 ABCC transporter subtypes use similar mechanisms to couple their extracellular gates to ATP occupancy, and highly active CFTR channels that bypass defects in ATP binding or phosphorylation can be produced.

  5. Optimization of a Yellow fluorescent protein-based iodide influx high-throughput screening assay for cystic fibrosis transmembrane conductance regulator (CFTR) modulators.

    Science.gov (United States)

    Sui, Jinliang; Cotard, Shakira; Andersen, Jennifer; Zhu, Ping; Staunton, Jane; Lee, Margaret; Lin, Stephen

    2010-12-01

    Cystic fibrosis is an inherited, life-threatening disease associated with mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The most common mutation, F508del CFTR, is found in 90% of CF patients. The loss of a single amino acid (phenylalanine at position 508) results in malformed CFTR with defective trafficking to the plasma membrane and impaired channel function. A functional assay with cells expressing F508del CFTR has been previously described by others using genetically engineered halide-sensitive yellow fluorescent protein to screen for CFTR modulators. We adapted this yellow fluorescent protein assay to 384-well plate format with a high-throughput screening plate reader, and optimized the assay in terms of data quality, resolution, and throughput, with target-specific protocols. The optimized assay was validated with reference compounds from cystic fibrosis foundation therapeutics. On the basis of the Z-factor range (≥0.5) and the potential productivity, this assay is well suited for high-throughput screening. It was successfully used to screen for active single agent and synergistic combinations of single agent modulators of F508del CFTR from a library collection of current active pharmaceutical ingredients (supported by Cystic Fibrosis Foundation Therapeutics).

  6. Heparin Decreases in Tumor Necrosis Factor α (TNFα)-induced Endothelial Stress Responses Require Transmembrane Protein 184A and Induction of Dual Specificity Phosphatase 1.

    Science.gov (United States)

    Farwell, Sara Lynn N; Kanyi, Daniela; Hamel, Marianne; Slee, Joshua B; Miller, Elizabeth A; Cipolle, Mark D; Lowe-Krentz, Linda J

    2016-03-01

    Despite the large number of heparin and heparan sulfate binding proteins, the molecular mechanism(s) by which heparin alters vascular cell physiology is not well understood. Studies with vascular smooth muscle cells (VSMCs) indicate a role for induction of dual specificity phosphatase 1 (DUSP1) that decreases ERK activity and results in decreased cell proliferation, which depends on specific heparin binding. The hypothesis that unfractionated heparin functions to decrease inflammatory signal transduction in endothelial cells (ECs) through heparin-induced expression of DUSP1 was tested. In addition, the expectation that the heparin response includes a decrease in cytokine-induced cytoskeletal changes was examined. Heparin pretreatment of ECs resulted in decreased TNFα-induced JNK and p38 activity and downstream target phosphorylation, as identified through Western blotting and immunofluorescence microscopy. Through knockdown strategies, the importance of heparin-induced DUSP1 expression in these effects was confirmed. Quantitative fluorescence microscopy indicated that heparin treatment of ECs reduced TNFα-induced increases in stress fibers. Monoclonal antibodies that mimic heparin-induced changes in VSMCs were employed to support the hypothesis that heparin was functioning through interactions with a receptor. Knockdown of transmembrane protein 184A (TMEM184A) confirmed its involvement in heparin-induced signaling as seen in VSMCs. Therefore, TMEM184A functions as a heparin receptor and mediates anti-inflammatory responses of ECs involving decreased JNK and p38 activity.

  7. Interferon-Induced Transmembrane Protein 3 Inhibits Hantaan Virus Infection, and Its Single Nucleotide Polymorphism rs12252 Influences the Severity of Hemorrhagic Fever with Renal Syndrome

    Science.gov (United States)

    Xu-yang, Zheng; Pei-yu, Bian; Chuan-tao, Ye; Wei, Ye; Hong-wei, Ma; Kang, Tang; Chun-mei, Zhang; Ying-feng, Lei; Xin, Wei; Ping-zhong, Wang; Chang-xing, Huang; Xue-fan, Bai; Ying, Zhang; Zhan-sheng, Jia

    2017-01-01

    Hantaan virus (HTNV) causes hemorrhagic fever with renal syndrome (HFRS). Previous studies have identified interferon-induced transmembrane proteins (IFITMs) as an interferon-stimulated gene family. However, the role of IFITMs in HTNV infection is unclear. In this study, we observed that IFITM3 single nucleotide polymorphisms (SNP) rs12252 C allele and CC genotype associated with the disease severity and HTNV load in the plasma of HFRS patients. In vitro experiments showed that the truncated protein produced by the rs12252 C allele exhibited an impaired anti-HTNV activity. We also proved that IFITM3 was able to inhibit HTNV infection in both HUVEC and A549 cells by overexpression and RNAi assays, likely via a mechanism of inhibiting virus entry demonstrated by binding and entry assay. Localization of IFITM3 in late endosomes was also observed. In addition, we demonstrated that the transcription of IFITM3 is negatively regulated by an lncRNA negative regulator of interferon response (NRIR). Taken together, we conclude that IFITM3, negatively regulated by NRIR, inhibits HTNV infection, and its SNP rs12252 correlates with the plasma HTNV load and the disease severity of patients with HFRS. PMID:28096800

  8. FK506 binding protein 8 peptidylprolyl isomerase activity manages a late stage of cystic fibrosis transmembrane conductance regulator (CFTR) folding and stability.

    Science.gov (United States)

    Hutt, Darren M; Roth, Daniela Martino; Chalfant, Monica A; Youker, Robert T; Matteson, Jeanne; Brodsky, Jeffrey L; Balch, William E

    2012-06-22

    Cystic fibrosis (CF) is caused by mutations in the apical chloride channel cystic fibrosis transmembrane conductance regulator (CFTR) with 90% of patients carrying at least one deletion of the F508 (ΔF508) allele. This mutant form of CFTR is characterized by a folding and trafficking defect that prevents exit from the endoplasmic reticulum. We previously reported that ΔF508 CFTR can be recovered in a complex with Hsp90 and its co-chaperones as an on-pathway folding intermediate, suggesting that Δ508 CF disease arises due to a failure of the proteostasis network (PN), which manages protein folding and degradation in the cell. We have now examined the role of FK506-binding protein 8 (FKBP8), a component of the CFTR interactome, during the biogenesis of wild-type and ΔF508 CFTR. FKBP8 is a member of the peptidylprolyl isomerase family that mediates the cis/trans interconversion of peptidyl prolyl bonds. Our results suggest that FKBP8 is a key PN factor required at a post-Hsp90 step in CFTR biogenesis. In addition, changes in its expression level or alteration of its activity by a peptidylprolyl isomerase inhibitor alter CFTR stability and transport. We propose that CF is caused by the sequential failure of the prevailing PN pathway to stabilize ΔF508-CFTR for endoplasmic reticulum export, a pathway that can be therapeutically managed.

  9. SYVN1, NEDD8, and FBXO2 Proteins Regulate ΔF508 Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Ubiquitin-mediated Proteasomal Degradation.

    Science.gov (United States)

    Ramachandran, Shyam; Osterhaus, Samantha R; Parekh, Kalpaj R; Jacobi, Ashley M; Behlke, Mark A; McCray, Paul B

    2016-12-02

    We previously reported that delivery of a microRNA-138 mimic or siRNA against SIN3A to cultured cystic fibrosis (ΔF508/ΔF508) airway epithelia partially restored ΔF508-cystic fibrosis transmembrane conductance regulator (CFTR)-mediated cAMP-stimulated Cl(-) conductance. We hypothesized that dissecting this microRNA-138/SIN3A-regulated gene network would identify individual proteins contributing to the rescue of ΔF508-CFTR function. Among the genes in the network, we rigorously validated candidates using functional CFTR maturation and electrolyte transport assays in polarized airway epithelia. We found that depletion of the ubiquitin ligase SYVN1, the ubiquitin/proteasome system regulator NEDD8, or the F-box protein FBXO2 partially restored ΔF508-CFTR-mediated Cl(-) transport in primary cultures of human cystic fibrosis airway epithelia. Moreover, knockdown of SYVN1, NEDD8, or FBXO2 in combination with corrector compound 18 further potentiated rescue of ΔF508-CFTR-mediated Cl(-) conductance. This study provides new knowledge of the CFTR biosynthetic pathway. It suggests that SYVN1 and FBXO2 represent two distinct multiprotein complexes that may degrade ΔF508-CFTR in airway epithelia and identifies a new role for NEDD8 in regulating ΔF508-CFTR ubiquitination.

  10. Membrane targeting of cGMP-dependent protein kinase is required for cystic fibrosis transmembrane conductance regulator Cl- channel activation

    NARCIS (Netherlands)

    A.B. Vaandrager (Arie); A. Smolenski; B.C. Tilly (Bernard); A.B. Houtsmuller (Adriaan); E.M.E. Ehlert (Ehrich); A.G. Bot (Alice); M.J. Edixhoven (Marcel); W.E. Boomaars (Wendy); S.M. Lohmann (Suzanne); H.R. de Jonge (Hugo)

    1998-01-01

    textabstractA recently cloned isoform of cGMP-dependent protein kinase (cGK), designated type II, was implicated as the mediator of cGMP-provoked intestinal Cl- secretion based on its localization in the apical membrane of enterocytes and on its capacity to activate cys

  11. Mutations of C19orf12, coding for a transmembrane glycine zipper containing mitochondrial protein, cause mis-localization of the protein, inability to respond to oxidative stress and increased mitochondrial Ca²⁺.

    Science.gov (United States)

    Venco, Paola; Bonora, Massimo; Giorgi, Carlotta; Papaleo, Elena; Iuso, Arcangela; Prokisch, Holger; Pinton, Paolo; Tiranti, Valeria

    2015-01-01

    Mutations in C19orf12 have been identified in patients affected by Neurodegeneration with Brain Iron Accumulation (NBIA), a clinical entity characterized by iron accumulation in the basal ganglia. By using western blot analysis with specific antibody and confocal studies, we showed that wild-type C19orf12 protein was not exclusively present in mitochondria, but also in the Endoplasmic Reticulum (ER) and MAM (Mitochondria Associated Membrane), while mutant C19orf12 variants presented a different localization. Moreover, after induction of oxidative stress, a GFP-tagged C19orf12 wild-type protein was able to relocate to the cytosol. On the contrary, mutant isoforms were not able to respond to oxidative stress. High mitochondrial calcium concentration and increased H2O2 induced apoptosis were found in fibroblasts derived from one patient as compared to controls. C19orf12 protein is a 17 kDa mitochondrial membrane-associated protein whose function is still unknown. Our in silico investigation suggests that, the glycine zipper motifs of C19orf12 form helical regions spanning the membrane. The N- and C-terminal regions with respect to the transmembrane portion, on the contrary, are predicted to rearrange in a structural domain, which is homologs to the N-terminal regulatory domain of the magnesium transporter MgtE, suggesting that C19orf12 may act as a regulatory protein for human MgtE transporters. The mutations here described affect respectively one glycine residue of the glycine zipper motifs, which are involved in dimerization of transmembrane helices and predicted to impair the correct localization of the protein into the membranes, and one residue present in the regulatory domain, which is important for protein-protein interaction.

  12. Mutations of C19orf12, coding for a transmembrane glycine zipper containing mitochondrial protein, cause mis-localization of the protein, inability to respond to oxidative stress and increased mitochondrial Ca2+

    Science.gov (United States)

    Venco, Paola; Bonora, Massimo; Giorgi, Carlotta; Papaleo, Elena; Iuso, Arcangela; Prokisch, Holger; Pinton, Paolo; Tiranti, Valeria

    2015-01-01

    Mutations in C19orf12 have been identified in patients affected by Neurodegeneration with Brain Iron Accumulation (NBIA), a clinical entity characterized by iron accumulation in the basal ganglia. By using western blot analysis with specific antibody and confocal studies, we showed that wild-type C19orf12 protein was not exclusively present in mitochondria, but also in the Endoplasmic Reticulum (ER) and MAM (Mitochondria Associated Membrane), while mutant C19orf12 variants presented a different localization. Moreover, after induction of oxidative stress, a GFP-tagged C19orf12 wild-type protein was able to relocate to the cytosol. On the contrary, mutant isoforms were not able to respond to oxidative stress. High mitochondrial calcium concentration and increased H2O2 induced apoptosis were found in fibroblasts derived from one patient as compared to controls. C19orf12 protein is a 17 kDa mitochondrial membrane-associated protein whose function is still unknown. Our in silico investigation suggests that, the glycine zipper motifs of C19orf12 form helical regions spanning the membrane. The N- and C-terminal regions with respect to the transmembrane portion, on the contrary, are predicted to rearrange in a structural domain, which is homologs to the N-terminal regulatory domain of the magnesium transporter MgtE, suggesting that C19orf12 may act as a regulatory protein for human MgtE transporters. The mutations here described affect respectively one glycine residue of the glycine zipper motifs, which are involved in dimerization of transmembrane helices and predicted to impair the correct localization of the protein into the membranes, and one residue present in the regulatory domain, which is important for protein-protein interaction. PMID:26136767

  13. Solid-State Nuclear Magnetic Resonance Investigation of the Structural Topology and Lipid Interactions of a Viral Fusion Protein Chimera Containing the Fusion Peptide and Transmembrane Domain.

    Science.gov (United States)

    Yao, Hongwei; Lee, Myungwoon; Liao, Shu-Yu; Hong, Mei

    2016-12-13

    The fusion peptide (FP) and transmembrane domain (TMD) of viral fusion proteins play important roles during virus-cell membrane fusion, by inducing membrane curvature and transient dehydration. The structure of the water-soluble ectodomain of viral fusion proteins has been extensively studied crystallographically, but the structures of the FP and TMD bound to phospholipid membranes are not well understood. We recently investigated the conformations and lipid interactions of the separate FP and TMD peptides of parainfluenza virus 5 (PIV5) fusion protein F using solid-state nuclear magnetic resonance. These studies provide structural information about the two domains when they are spatially well separated in the fusion process. To investigate how these two domains are structured relative to each other in the postfusion state, when the ectodomain forms a six-helix bundle that is thought to force the FP and TMD together in the membrane, we have now expressed and purified a chimera of the FP and TMD, connected by a Gly-Lys linker, and measured the chemical shifts and interdomain contacts of the protein in several lipid membranes. The FP-TMD chimera exhibits α-helical chemical shifts in all the membranes examined and does not cause strong curvature of lamellar membranes or membranes with negative spontaneous curvature. These properties differ qualitatively from those of the separate peptides, indicating that the FP and TMD interact with each other in the lipid membrane. However, no (13)C-(13)C cross peaks are observed in two-dimensional correlation spectra, suggesting that the two helices are not tightly associated. These results suggest that the ectodomain six-helix bundle does not propagate into the membrane to the two hydrophobic termini. However, the loosely associated FP and TMD helices are found to generate significant negative Gaussian curvature to membranes that possess spontaneous positive curvature, consistent with the notion that the FP-TMD assembly may

  14. The tep1 gene of Sinorhizobium meliloti coding for a putative transmembrane efflux protein and N-acetyl glucosamine affect nod gene expression and nodulation of alfalfa plants

    Directory of Open Access Journals (Sweden)

    Soto María

    2009-01-01

    Full Text Available Abstract Background Soil bacteria collectively known as Rhizobium, characterized by their ability to establish beneficial symbiosis with legumes, share several common characteristics with pathogenic bacteria when infecting the host plant. Recently, it was demonstrated that a fadD mutant of Sinorhizobium meliloti is altered in the control of swarming, a type of co-ordinated movement previously associated with pathogenicity, and is also impaired in nodulation efficiency on alfalfa roots. In the phytopathogen Xanthomonas campestris, a fadD homolog (rpfB forms part of a cluster of genes involved in the regulation of pathogenicity factors. In this work, we have investigated the role in swarming and symbiosis of SMc02161, a S. meliloti fadD-linked gene. Results The SMc02161 locus in S. meliloti shows similarities with members of the Major Facilitator Superfamily (MFS of transporters. A S. meliloti null-mutant shows increased sensitivity to chloramphenicol. This indication led us to rename the locus tep1 for transmembrane efflux protein. The lack of tep1 does not affect the appearance of swarming motility. Interestingly, nodule formation efficiency on alfalfa plants is improved in the tep1 mutant during the first days of the interaction though nod gene expression is lower than in the wild type strain. Curiously, a nodC mutation or the addition of N-acetyl glucosamine to the wild type strain lead to similar reductions in nod gene expression as in the tep1 mutant. Moreover, aminosugar precursors of Nod factors inhibit nodulation. Conclusion tep1 putatively encodes a transmembrane protein which can confer chloramphenicol resistance in S. meliloti by expelling the antibiotic outside the bacteria. The improved nodulation of alfalfa but reduced nod gene expression observed in the tep1 mutant suggests that Tep1 transports compounds which influence nodulation. In contrast to Bradyrhizobium japonicum, we show that in S. meliloti there is no feedback regulation

  15. The tep1 gene of Sinorhizobium meliloti coding for a putative transmembrane efflux protein and N-acetyl glucosamine affect nod gene expression and nodulation of alfalfa plants.

    Science.gov (United States)

    van Dillewijn, Pieter; Sanjuán, Juan; Olivares, José; Soto, María José

    2009-01-27

    Soil bacteria collectively known as Rhizobium, characterized by their ability to establish beneficial symbiosis with legumes, share several common characteristics with pathogenic bacteria when infecting the host plant. Recently, it was demonstrated that a fadD mutant of Sinorhizobium meliloti is altered in the control of swarming, a type of co-ordinated movement previously associated with pathogenicity, and is also impaired in nodulation efficiency on alfalfa roots. In the phytopathogen Xanthomonas campestris, a fadD homolog (rpfB) forms part of a cluster of genes involved in the regulation of pathogenicity factors. In this work, we have investigated the role in swarming and symbiosis of SMc02161, a S. meliloti fadD-linked gene. The SMc02161 locus in S. meliloti shows similarities with members of the Major Facilitator Superfamily (MFS) of transporters. A S. meliloti null-mutant shows increased sensitivity to chloramphenicol. This indication led us to rename the locus tep1 for transmembrane efflux protein. The lack of tep1 does not affect the appearance of swarming motility. Interestingly, nodule formation efficiency on alfalfa plants is improved in the tep1 mutant during the first days of the interaction though nod gene expression is lower than in the wild type strain. Curiously, a nodC mutation or the addition of N-acetyl glucosamine to the wild type strain lead to similar reductions in nod gene expression as in the tep1 mutant. Moreover, aminosugar precursors of Nod factors inhibit nodulation. tep1 putatively encodes a transmembrane protein which can confer chloramphenicol resistance in S. meliloti by expelling the antibiotic outside the bacteria. The improved nodulation of alfalfa but reduced nod gene expression observed in the tep1 mutant suggests that Tep1 transports compounds which influence nodulation. In contrast to Bradyrhizobium japonicum, we show that in S. meliloti there is no feedback regulation of nodulation genes. Moreover, the Nod factor precursor

  16. Vaccination with Recombinant Non-transmembrane Domain of Protein Mannosyltransferase 4 Improves Survival during Murine Disseminated Candidiasis.

    Science.gov (United States)

    Wang, Li; Yan, Lan; Li, Xing Xing; Xu, Guo Tong; An, Mao Mao; Jiang, Yuan Ying

    2015-01-01

    Candida albicans is the most common cause of invasive fungal infections in humans. The C. albicans cell wall proteins play an important role in crucial host-fungus interactions and might be ideal vaccine targets to induce protective immune response in host. Meanwhile, protein that is specific to C. albicans is also an ideal target of vaccine. In this study, 11 proteins involving cell wall biosynthesis, yeast-to-hypha formation, or specific to C. albicans were chosen and were successfully cloned, purified and verified. The immune protection of vaccination with each recombinant protein respectively in preventing systemic candidiasis in BALB/c mice was assessed. The injection of rPmt4p vaccination significantly increased survival rate, decreased fungal burdens in the heart, liver, brain, and kidneys, and increased serum levels of both immunoglobulin G (IgG) and IgM against rPmt4p in the immunized mice. Histopathological assessment demonstrated that rPmt4p vaccination protected the tissue structure, and decreased the infiltration of inflammatory cells. Passive transfer of the rPmt4p immunized serum increased survival rate against murine systemic candidiasis and significantly reduced organ fungal burden. The immune serum enhanced mouse neutrophil killing activity by directly neutralizing rPmt4p effects in vitro. Levels of interleukin (IL)-4, IL-10, IL-12p70, IL-17A and tumor necrosis factor (TNF)-α in serum were higher in the immunized mice compared to those in the adjuvant control group. In conclusion, our results suggested that rPmt4p vaccination may be considered as a potential vaccine candidate against systemic candidiasis.

  17. Human tetraspanin transmembrane 4 superfamily member 4 or intestinal and liver tetraspan membrane protein is overexpressed in hepatocellular carcinoma and accelerates tumor cell growth

    Institute of Scientific and Technical Information of China (English)

    Ying Li; Leiming Wang; Jie Qiu; Liang Da; Pierre Tiollais; Zaiping Li; Mujun Zhao

    2012-01-01

    The human transmembrane 4 superfamily member 4 or intestinal and liver tetraspan membrane protein (TM4SF4/il-TMP) was originally cloned as an intestinal and liver tetraspan membrane protein and mediates density-dependent cell proliferation.The rat homolog of TM4SF4 was found to be up-regulated in regenerating liver after two-thirds hepatectomy and overexpression of TM4SF4 could enhance liver injury induced by CCl4.However,the expression and significance of TM4SF4/il-TMP in liver cancer remain unknown.Here,we report that TM4SF4/il-TMP is frequently and significantly overexpressed in hepatocellular carcinoma (HCC).Real-time quantitative reverse transcription polymerase chain reaction (RT-PCR) and western blot analysis showed that TM4SF4/il-TMP mRNA and protein levels were upregulated in ~80% of HCC tissues,Immunohistochemical analysis of a 75 paired HCC tissue microarray revealed that TM4SF4/il-TMP was significantly overexpressed in HCC tissues (P < 0.001),and high immunointensity of TM4SF4/iI-TMP tended to be in well-to-moderately differentiated HCC compared with poorly differentiated tumors.Functional studies showed that overexpression of TM4SF4/il-TMP in QGY-7701 and BEL-7404 HCC cell lines through stable transfection of TM4SF4 expression plasmid significantly promoted both cell growth and colony formation of HCC cells.Reduction of TM4SF4/il-TMP expression in QGY-7701 and BEL-7404 cells by stably transfecting TM4SF4 antisense plasmid caused great inhibition of cell proliferation.Our findings suggest that TM4SF4/il-TMP has the potential to be biomarker in HCC and plays a crucial role in promotion of cancer cell proliferation.

  18. Effect of ceramic membrane channel geometry and uniform transmembrane pressure on limiting flux and serum protein removal during skim milk microfiltration.

    Science.gov (United States)

    Adams, Michael C; Hurt, Emily E; Barbano, David M

    2015-11-01

    Our objectives were to determine the effects of a ceramic microfiltration (MF) membrane's retentate flow channel geometry (round or diamond-shaped) and uniform transmembrane pressure (UTP) on limiting flux (LF) and serum protein (SP) removal during skim milk MF at a temperature of 50°C, a retentate protein concentration of 8.5%, and an average cross-flow velocity of 7 m·s(-1). Performance of membranes with round and diamond flow channels was compared in UTP mode. Performance of the membrane with round flow channels was compared with and without UTP. Using UTP with round flow channel MF membranes increased the LF by 5% when compared with not using UTP, but SP removal was not affected by the use of UTP. Using membranes with round channels instead of diamond-shaped channels in UTP mode increased the LF by 24%. This increase was associated with a 25% increase in Reynolds number and can be explained by lower shear at the vertices of the diamond-shaped channel's surface. The SP removal factor of the diamond channel system was higher than the SP removal factor of the round channel system below the LF. However, the diamond channel system passed more casein into the MF permeate than the round channel system. Because only one batch of each membrane was tested in our study, it was not possible to determine if the differences in protein rejection between channel geometries were due to the membrane design or random manufacturing variation. Despite the lower LF of the diamond channel system, the 47% increase in membrane module surface area of the diamond channel system produced a modular permeate removal rate that was at least 19% higher than the round channel system. Consequently, using diamond channel membranes instead of round channel membranes could reduce some of the costs associated with ceramic MF of skim milk if fewer membrane modules could be used to attain the required membrane area.

  19. Cystic fibrosis transmembrane conductance regulator protein (CFTR) expression in the developing human brain: comparative immunohistochemical study between patients with normal and mutated CFTR.

    Science.gov (United States)

    Marcorelles, Pascale; Friocourt, Gaëlle; Uguen, Arnaud; Ledé, Françoise; Férec, Claude; Laquerrière, Annie

    2014-11-01

    Cystic Fibrosis Transmembrane conductance Regulator (CFTR) protein has recently been shown to be expressed in the human adult central nervous system (CNS). As CFTR expression has also been documented during embryonic development in several organs, such as the respiratory tract, the intestine and the male reproductive system, suggesting a possible role during development we decided to investigate the expression of CFTR in the human developing CNS. In addition, as some, although rare, neurological symptoms have been reported in patients with CF, we compared the expression of normal and mutated CFTR at several fetal stages. Immunohistochemistry was performed on brain and spinal cord samples of foetuses between 13 and 40 weeks of gestation and compared with five patients with cystic fibrosis (CF) of similar ages. We showed in this study that CFTR is only expressed in neurons and has an early and widespread distribution during development. Although we did not observe any cerebral abnormality in patients with CF, we observed a slight delay in the maturation of several brain structures. We also observed different expression and localization of CFTR depending on the brain structure or the cell maturation stage. Our findings, along with a literature review on the neurological phenotypes of patients with CF, suggest that this gene may play previously unsuspected roles in neuronal maturation or function.

  20. Interferon Induced Transmembrane Protein-1 Gene Expression as a Biomarker for Early Detection of Invasive Potential of Oral Squamous Cell Carcinomas.

    Science.gov (United States)

    Ramanathan, Arvind; Ramanathan, Arvind

    2016-01-01

    Early detection of malignant transformation with expression biomarkers has significant potential to improve the survival rate of patients as such biomarkers enable prediction of progression and assess sensitivity to chemotherapy. The expression of interferon inducible transmembrane protein 1 (IFITM1) has been associated with early invasion events in several carcinomas, including head and neck cancers, and hence has been proposed as a novel candidate biomarker. As the incidence of oral squamous cell carcinoma (OSCC) is highest in the Indian population, we sought to investigate: 1) the expression pattern of IFITM1 in OSCC tissue samples obtained from Indian patients of Dravidian origin; and 2) the possibility of using IFITM1 expression as a potential biomarker. Total RNA extracted from thirty eight OSCC biopsy samples was subjected to semi-quantitative RT-PCR with IFITM1 and GAPDH specific primers. Of the thirty eight OSCC samples that were analyzed, IFITM1 overexpression was identified in fifteen (39%). Seven expressed a low level, while the remainder expressed high level of IFITM1. The overexpression of IFITM1 in OSCC samples indicates that IFITM1 may be explored for the possibility of use as a high confidence diagnostic biomarker in oral cancers. To the best of our knowledge, this is the first time that IFITM1 overexpression is being reported in Indian OSCC samples.

  1. 多功能的Ⅰ型跨膜蛋白ESDN%ESDN Is A Multifunctional Type-Ⅰ Transmembrane Protein

    Institute of Scientific and Technical Information of China (English)

    李巍伟; 聂磊; 韩梅

    2015-01-01

    内皮和平滑肌细胞来源的neuropilin样分子ESDN(endothelial and smooth muscle cell-derived neuropilin-like molecule)是在哺乳类动物中广泛存在的一类Ⅰ型跨膜蛋白(type-Ⅰ transmembrane protein). ESDN由N-端长分泌信号序列、一个CUB(domain found in complement Clr/Cls、Uegf和Bmpl)结构域、一个LCCL(domain found in Limulus factor C、Coch和Lgl)结构域、一个凝血因子Ⅴ/Ⅷ同源结构域和一个长胞质尾部组成,在生物进化过程中相对保守.该文综述了ESDN蛋白的发现与分布及其结构特征,对ESDN参与血管再生调控的研究成果进行了较为详细的综述,同时介绍了ESDN在肿瘤发生、转移及免疫等方面作用的研究进展.

  2. Mammalian osmolytes and S-nitrosoglutathione promote Delta F508 cystic fibrosis transmembrane conductance regulator (CFTR) protein maturation and function.

    Science.gov (United States)

    Howard, Marybeth; Fischer, Horst; Roux, Jeremie; Santos, Bento C; Gullans, Steven R; Yancey, Paul H; Welch, William J

    2003-09-12

    In cystic fibrosis, the absence of functional CFTR results in thick mucous secretions in the lung and intestines, as well as pancreatic deficiency. Although expressed at high levels in the kidney, mutations in CFTR result in little or no apparent kidney dysfunction. In an effort to understand this phenomenon, we analyzed Delta F508 CFTR maturation and function in kidney cells under conditions that are common to the kidney, namely osmotic stress. Kidney cells were grown in culture and adapted to 250 mM NaCl and 250 mM urea. High performance liquid chromatography analysis of lysates from kidney cells adapted to these conditions identified an increase in the cellular osmolytes glycerophosphorylcholine, myo-inositol, sorbitol, and taurine. In contrast to isoosmotic conditions, hyperosmotic stress led to the proper folding and processing of Delta F508 CFTR. Furthermore, three of the cellular osmolytes, when added individually to cells, proved effective in promoting the proper folding and processing of the Delta F508 CFTR protein in both epithelial and fibroblast cells. Whole-cell patch clamping of osmolyte-treated cells showed that Delta F508 CFTR had trafficked to the plasma membrane and was activated by forskolin. Encouraged by these findings, we looked at other features common to the kidney that may impact Delta F508 maturation and function. Interestingly, a small molecule, S-nitrosoglutathione, which is a substrate for gamma glutamyltranspeptidase, an abundant enzyme in the kidney, likewise promoted Delta F508 CFTR maturation and function. S-Nitrosoglutathione-corrected Delta F508 CFTR exhibited a shorter half-life as compared with wild type CFTR. These results demonstrate the feasibility of a small molecule approach as a therapeutic treatment in promoting Delta F508 CFTR maturation and function and suggest that an additional treatment may be required to stabilize Delta F508 CFTR protein once present at the plasma membrane. Finally, our observations may help to

  3. P48—Triggered transmembrane signaling transduction of human monocytes:modilization of calcium ion and activation of protein kinase C(PKC)

    Institute of Scientific and Technical Information of China (English)

    CHANGZL; REHALL

    1995-01-01

    P48 is a cytokine which induces monocyte differentiation and the induction of cytotoxic activity.In this study,the signal transduction events involved in the stimulation of monocytes with the membrane form of P48 (mP48) were investigated.Monocyte stimulation with mP48 was found to involve the mobilization of intracellular calcium(Ca2+) and the activation and translocation of PKC from the cytosol to the membrane.Membane P48 induced a rapid rise of intracellular Ca2+ in a dose dependent maner.Similarly,the stimulation of monocytes with P48 was found to involve the activation and translocation of PKC.The translocation of PKC was rapid(within 0-5min) yet transient with PKC activity returning to control levels by 8 min.The functional role of protein kineses in P48 induced TNF secretion was studied using various kinese inhibitors.The PKC inhibitors,H-7 and sphingosine,were found to inhibit P48 induced TNF secretion with 50% inhibition at 5μM.HA1004,which inhibts cyclic nucleotide-dependent kinase(PKA,Ki 1.2μM),did not inhibit TNF secretion.H-8(PKA inhibitor) was found to be an effective inhibitor of TNF secretion only at high concentrations(30μM).The Calmodulin-dependent kinase inhibitor,W7(Ki 12μM) was found to be effective at concentration above 5μM.These findings suggest that P48-triggered TNF secretion involves transmembrane Ca2+ signaling and the subsequent activation of at least two protein kineses,PKC and CaMK.

  4. Role of Interaction and Nucleoside Diphosphate Kinase B in Regulation of the Cystic Fibrosis Transmembrane Conductance Regulator Function by cAMP-Dependent Protein Kinase A.

    Science.gov (United States)

    Borthwick, Lee A; Kerbiriou, Mathieu; Taylor, Christopher J; Cozza, Giorgio; Lascu, Ioan; Postel, Edith H; Cassidy, Diane; Trouvé, Pascal; Mehta, Anil; Robson, Louise; Muimo, Richmond

    2016-01-01

    Cystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent protein kinase A (PKA) and ATP-regulated chloride channel. Here, we demonstrate that nucleoside diphosphate kinase B (NDPK-B, NM23-H2) forms a functional complex with CFTR. In airway epithelia forskolin/IBMX significantly increases NDPK-B co-localisation with CFTR whereas PKA inhibitors attenuate complex formation. Furthermore, an NDPK-B derived peptide (but not its NDPK-A equivalent) disrupts the NDPK-B/CFTR complex in vitro (19-mers comprising amino acids 36-54 from NDPK-B or NDPK-A). Overlay (Far-Western) and Surface Plasmon Resonance (SPR) analysis both demonstrate that NDPK-B binds CFTR within its first nucleotide binding domain (NBD1, CFTR amino acids 351-727). Analysis of chloride currents reflective of CFTR or outwardly rectifying chloride channels (ORCC, DIDS-sensitive) showed that the 19-mer NDPK-B peptide (but not its NDPK-A equivalent) reduced both chloride conductances. Additionally, the NDPK-B (but not NDPK-A) peptide also attenuated acetylcholine-induced intestinal short circuit currents. In silico analysis of the NBD1/NDPK-B complex reveals an extended interaction surface between the two proteins. This binding zone is also target of the 19-mer NDPK-B peptide, thus confirming its capability to disrupt NDPK-B/CFTR complex. We propose that NDPK-B forms part of the complex that controls chloride currents in epithelia.

  5. Role of Interaction and Nucleoside Diphosphate Kinase B in Regulation of the Cystic Fibrosis Transmembrane Conductance Regulator Function by cAMP-Dependent Protein Kinase A.

    Directory of Open Access Journals (Sweden)

    Lee A Borthwick

    Full Text Available Cystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR, a cAMP-dependent protein kinase A (PKA and ATP-regulated chloride channel. Here, we demonstrate that nucleoside diphosphate kinase B (NDPK-B, NM23-H2 forms a functional complex with CFTR. In airway epithelia forskolin/IBMX significantly increases NDPK-B co-localisation with CFTR whereas PKA inhibitors attenuate complex formation. Furthermore, an NDPK-B derived peptide (but not its NDPK-A equivalent disrupts the NDPK-B/CFTR complex in vitro (19-mers comprising amino acids 36-54 from NDPK-B or NDPK-A. Overlay (Far-Western and Surface Plasmon Resonance (SPR analysis both demonstrate that NDPK-B binds CFTR within its first nucleotide binding domain (NBD1, CFTR amino acids 351-727. Analysis of chloride currents reflective of CFTR or outwardly rectifying chloride channels (ORCC, DIDS-sensitive showed that the 19-mer NDPK-B peptide (but not its NDPK-A equivalent reduced both chloride conductances. Additionally, the NDPK-B (but not NDPK-A peptide also attenuated acetylcholine-induced intestinal short circuit currents. In silico analysis of the NBD1/NDPK-B complex reveals an extended interaction surface between the two proteins. This binding zone is also target of the 19-mer NDPK-B peptide, thus confirming its capability to disrupt NDPK-B/CFTR complex. We propose that NDPK-B forms part of the complex that controls chloride currents in epithelia.

  6. Expression of lysosome-associated protein transmembrane 4B-35 in cancer and its correlation with the differentiation status of hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Cong Peng; Rou-Li Zhou; Gen-Ze Shao; Jing-An Rui; Shao-Bin Wang; Ming Lin; Sha Zhang; Zi-Feng Gao

    2005-01-01

    AIM: To produce high-quality polydonal antibody to lysosome associated protein transmembrane 4B-35 and to identify LAPTM4B-35 expression in cancer tissues and its correlation with differentiation status of hepatocellular carcinoma (HCC).METHODS: The 297 bp 5' end of LAPTM4BcDNA was obtained by PCR and inserted into prokaryotic expression vector pGEXKG. Then the recombinant pGEX-KG-N1-99 was transformedinto E. coli JM109 to express GST-fusion protein. The fusion protein was purified by glutathione sepharoseTM 4B agarose. The purified GST-LAPTM4B-N1-99 was characterized by SDSPAGE, and used to immunize rabbits. The titer and specificity of antisera were detected by ELISA and Western blot, respectively. The correlation between the expression levels of LAPTM4B-35 and the differentiation status of HCC was analyzed via Western blot. The expression of LAPTM4B35 in HCC and other six cancer tissues was investigated via tissue chip and immunohistochemical analysis. RESULTS: About 6.2 mg of pure GST-LAPTM4B-N1-99 was isolated from 1 L of bacteria. The GST-LAPTM4B-N1-99produced high titer antisera in rabbits and showed good immunity. Western blot showed specific reactions for the antibody to the LAPTM4B-35 in the total proteins from HCC tissues and BEL-7402 cells, also to the fusion protein purified or in the transformed bacteria. LAPTM4B-35 was remarkably expressed in several cancers, such as HCC, breast cancer, gastric carcinoma, lung cancer, and colon carcinoma, but not commonly expressed in esophageal cancer and rectum carcinoma. Notably, the expression levels of LAPTM4B-35 were significantly and inversely correlated to the differentiation of HCCs in a 20 case analysis. CONCLUSION: Specific polyclonal antibody (LAPTM4B-N1-99-pAb) to LAPTM4B-35 was produced. It identified the expression of LAPTM4B-35 in some cancer tissues originated from single layer cuboidal and columnar epithelial cells and firmly demonstrated that the expression of LAPTM4B-35 in HCC was inversely

  7. Protein tyrosine phosphatase is possibly involved in cellular signal transduction and the regulation of ABA accumulation in response to water deficit in Maize L. coleoptile

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Water deficit-induced ABA accumulation is an ideal model or "stimulus-response" system to investigate cellular stress signaling in plant cells, using such a model the cellular stress signaling triggered by water deficit was investigated in Maize L. coleoptile. Water deficit-induced ABA accumulation was sensitively blocked by NaVO3, a potent inhibitor both to plasma membrane H+-ATPase (PM-H+- ATPase) and protein tyrosine phosphatase (PTPase). However, while PM- H+-ATPase activity was unaffected under water deficit and PM- H+-ATPase activator did not induce an ABA accumulation instead of water deficit, water deficit induced an increase in the protein phosphatase activity, and furthermore, ABA accumulation was inhibited by PAO, a specific inhibitor of PTPase. These results indicate that protein phosphtases may be involved in the cellular signaling in response to water deficit. Further studies identified at least four species of protein phosphtase as assayed by using pNPP as substrate, among which one component was especially sensitive to NaVO3. The NaVO3-sensitive enzyme was purified and finally showed a protein band about 66 kD on SDS/PAGE. The purified enzyme showed a great activity to some specific PTPase substrates at pH 6.0. In addition to NaVO3, the enzyme was also sensitive to some other PTPase inhibitors such as Zn2+ and MO33+, but not to Ca2+ and Mg2+, indicating that it might be a protein tyrosine phosphatase. Interestingly, the purified enzyme could be deactivated by some reducing agent DTT, which was previously proved to be an inhibitor of water deficit-induced ABA accumulation. This result further proved that PTPase might be involved in the cellular signaling of ABA accumulation in response to water deficit.

  8. The Impact of the ‘Austrian’ Mutation of the Amyloid Precursor Protein Transmembrane Helix is Communicated to the Hinge Region

    DEFF Research Database (Denmark)

    Stelzer, Walter; Scharnagl, Christina; Leurs, Ulrike;

    2016-01-01

    destabilizes amide hydrogen bonds in the hinge which connects dimerization and cleavage regions. Weaker intrahelical hydrogen bonds at the hinge may enhance helix bending and thereby affect recognition of the transmembrane substrate by the enzyme and/or presentation of its cleavage sites to the catalytic cleft....

  9. Structure and functional dynamics characterization of the ion channel of the human respiratory syncytial virus (hRSV) small hydrophobic protein (SH) transmembrane domain by combining molecular dynamics with excited normal modes.

    Science.gov (United States)

    Araujo, Gabriela C; Silva, Ricardo H T; Scott, Luis P B; Araujo, Alexandre S; Souza, Fatima P; de Oliveira, Ronaldo Junio

    2016-12-01

    The human respiratory syncytial virus (hRSV) is the major cause of lower respiratory tract infection in children and elderly people worldwide. Its genome encodes 11 proteins including SH protein, whose functions are not well known. Studies show that SH protein increases RSV virulence degree and permeability to small compounds, suggesting it is involved in the formation of ion channels. The knowledge of SH structure and function is fundamental for a better understanding of its infection mechanism. The aim of this study was to model, characterize, and analyze the structural behavior of SH protein in the phospholipids bilayer environment. Molecular modeling of SH pentameric structure was performed, followed by traditional molecular dynamics (MD) simulations of the protein immersed in the lipid bilayer. Molecular dynamics with excited normal modes (MDeNM) was applied in the resulting system in order to investigate long time scale pore dynamics. MD simulations support that SH protein is stable in its pentameric form. Simulations also showed the presence of water molecules within the bilayer by density distribution, thus confirming that SH protein is a viroporin. This water transport was also observed in MDeNM studies with histidine residues of five chains (His22 and His51), playing a key role in pore permeability. The combination of traditional MD and MDeNM was a very efficient protocol to investigate functional conformational changes of transmembrane proteins that act as molecular channels. This protocol can support future investigations of drug candidates by acting on SH protein to inhibit viral infection. Graphical Abstract The ion channel of the human respiratory syncytial virus (hRSV) small hydrophobic protein (SH) transmembrane domainᅟ.

  10. α-螺旋跨膜蛋白拓扑结构预测方法的评价%Evaluation for prediction methods of α-helix transmembrane protein topology

    Institute of Scientific and Technical Information of China (English)

    张莹; 徐晓燕; 李娟; 方慧生

    2012-01-01

    20% to 30% of the product is predicted to be transmembrane proteins in genomic database. This paper analyses membrane protein topology prediction methods, and evaluate the results, to choose a more suitable topology prediction method to predict membrane protein structure. In the study of membrane proteins in the wet -lab research to accurately predict the topology has an important role in guiding. Construction and expression of recombi-nant membrane proteins, the topology of membrane proteins is an important factor to consider, in particular, is a membrane protein N - terminal and C - terminal position. On one hand, the membrane transport proteins of heter-ologous overexpression by its N - terminal sequence of a transmembrane helix in the lipid membrane lateral; on the other hand, according to the topology of transmembrane protein structure and polarity of the amino acid side chains, You can select the type and location of the need to introduce an affinity tag, used to judge whether the target protein expression and affinity purification of target protein. Evaluation and analysis of the topology prediction methods are currently available, an important reference for us in practical work. Then combined with the length of the sequence to determine the protein is a single transmembrane domain or multiple transmembrane Reference results, select the appropriate topology prediction methods to predict.%在基因组数据中,有20%~30%的产物被预测为跨膜蛋白,本文通过对膜蛋白拓扑结构预测方法进行分析,并评价其结果,为选择更合适的拓扑结构预测方法预测膜蛋白结构.通过对目前已有的拓扑结构预测方法的评价分析,可以为我们在实际工作中提供重要的参考.比如对一个未知拓扑结构的跨膜蛋白序列,我们可以先进行是否含有信号肽的预测,参考Polyphobius和SignalP两种方法,若两种方法预测结果不一致,综合上述对两种方法的评价,Polyphobius预测的

  11. Influences of the interferon induced transmembrane protein I on the proliferation, invasion, and metastasis of the colorectal cancer SW480 cell lines

    Institute of Scientific and Technical Information of China (English)

    HE Jing-dong; LUO Hong-lei; LI Jin; FENG Wan-ting; CHEN Long-bang

    2012-01-01

    Background Interferon-induced transmembrane protein 1 (IFITM1) has been identified as a molecular marker of the colorectal tumors; however its influences on the biological behaviors of the colorectal cancer cells are currently unknown.We aimed to study the influences of IFITM1 on the proliferation,invasion,and metastasis of the colorectal cancer SW480 cell lines.Methods We constructed IFITM1/pEGFP-C3 recombinant plasmids and transfected them into the colorectal cancer SW480 cell lines.IFITM1/pEGFP-C3 recombinant plasmids were identified by means of immunofluorescence,laser confocal scanning microscopy,and reverse transcription polymerase chain reaction.IFITM1/SW480 cells with stable over-expression of IFITM1 were confirmed by G418 screening.The influences of IFITM1 on the proliferation of the SW480 cell lines were investigated by MTT assay and tumor transplantation experiments in nude mice.Cell invasion experiments were performed to determine the invasion capacity of the IFITM1/SW480 cells.Matrix metalloproteinase 2 (MMP-2) and MMP-9 activities were detected by the gelatin zymographic analysis,and MMP-9 expression by the Western blotting analysis.Results IFITM1/pEGFP-C3 recombinant plasmids were successfully constructed in this study,and the IFITM1/SW480 cells with stable IFITM1 gene over-expression were confirmed by G418 screening.MTT results showed that the proliferation of the IFITM1/SW480 cells was significantly enhanced (P <0.01).Tumors were harvested from four weeks old mice.Tumor volumes were (1347.00±60.94) mm3,(1032.40±111.38) mm3 and (1018.78±28.83) mm3; and tumor weights were (1522.34±62.76) mg,(1137.78±97.22) mg and (1155.76±133.31) mg for mice inoculated with the IFITM1/SW480 cells,pEGFP-C3/SW480 cells and SW480 cells,respectively.Tumor volumes and weights from mice inoculated with the IFITM1/SW480 cells were significantly increased (P <0.01).In addition,the numbers of the SW480 cells and IFITM1/SW480 cells that migrated through Matrigel were

  12. A new LxxxA motif in the transmembrane Helix3 of maize aquaporins belonging to the plasma membrane intrinsic protein PIP2 group is required for their trafficking to the plasma membrane.

    Science.gov (United States)

    Chevalier, Adrien S; Bienert, Gerd Patrick; Chaumont, François

    2014-09-01

    Aquaporins play important roles in maintaining plant water status under challenging environments. The regulation of aquaporin density in cell membranes is essential to control transcellular water flows. This work focuses on the maize (Zea mays) plasma membrane intrinsic protein (ZmPIP) aquaporin subfamily, which is divided into two sequence-related groups (ZmPIP1s and ZmPIP2s). When expressed alone in mesophyll protoplasts, ZmPIP2s are efficiently targeted to the plasma membrane, whereas ZmPIP1s are retained in the endoplasmic reticulum (ER). A protein domain-swapping approach was utilized to demonstrate that the transmembrane domain3 (TM3), together with the previously identified N-terminal ER export diacidic motif, account for the differential localization of these proteins. In addition to protoplasts, leaf epidermal cells transiently transformed by biolistic particle delivery were used to confirm and refine these results. By generating artificial proteins consisting of a single transmembrane domain, we demonstrated that the TM3 of ZmPIP1;2 or ZmPIP2;5 discriminates between ER and plasma membrane localization, respectively. More specifically, a new LxxxA motif in the TM3 of ZmPIP2;5, which is highly conserved in plant PIP2s, was shown to regulate its anterograde routing along the secretory pathway, particularly its export from the ER.

  13. A New LxxxA Motif in the Transmembrane Helix3 of Maize Aquaporins Belonging to the Plasma Membrane Intrinsic Protein PIP2 Group Is Required for Their Trafficking to the Plasma Membrane1[W][OPEN

    Science.gov (United States)

    Chevalier, Adrien S.; Bienert, Gerd Patrick; Chaumont, François

    2014-01-01

    Aquaporins play important roles in maintaining plant water status under challenging environments. The regulation of aquaporin density in cell membranes is essential to control transcellular water flows. This work focuses on the maize (Zea mays) plasma membrane intrinsic protein (ZmPIP) aquaporin subfamily, which is divided into two sequence-related groups (ZmPIP1s and ZmPIP2s). When expressed alone in mesophyll protoplasts, ZmPIP2s are efficiently targeted to the plasma membrane, whereas ZmPIP1s are retained in the endoplasmic reticulum (ER). A protein domain-swapping approach was utilized to demonstrate that the transmembrane domain3 (TM3), together with the previously identified N-terminal ER export diacidic motif, account for the differential localization of these proteins. In addition to protoplasts, leaf epidermal cells transiently transformed by biolistic particle delivery were used to confirm and refine these results. By generating artificial proteins consisting of a single transmembrane domain, we demonstrated that the TM3 of ZmPIP1;2 or ZmPIP2;5 discriminates between ER and plasma membrane localization, respectively. More specifically, a new LxxxA motif in the TM3 of ZmPIP2;5, which is highly conserved in plant PIP2s, was shown to regulate its anterograde routing along the secretory pathway, particularly its export from the ER. PMID:24989232

  14. The ectodomains but not the transmembrane domains of the fusion proteins of subtypes A and B avian pneumovirus are conserved to a similar extent as those of human respiratory syncytial virus.

    Science.gov (United States)

    Naylor, C J; Britton, P; Cavanagh, D

    1998-06-01

    The fusion glycoprotein (F(B)) gene of five strains of the B subtype of avian pneumovirus (APV; turkey rhinotracheitis virus) has been sequenced. The length of the F(B) protein was 538 amino acids, identical to that of the F protein of subtype A virus, with which it had 74% and 83% overall nucleotide and deduced amino acid identities, respectively. The F(B) and F(A) ectodomains had 90% amino acid identity, very similar to the 91% identity between the ectodomains of the F proteins of subtype A and B human respiratory syncytial virus (HRSV). As with HRSV, the F2 polypeptide was less conserved (83% identity) than F1 (94%). In contrast to the ectodomain, the transmembrane and cytoplasmic domains of the two APV subtypes were much less conserved (30% and 48% identity, respectively) than those of HRSV (92% and 87%, respectively). Comparisons within all the genera of the Paramyxoviridae (Pneumovirus, Morbillivirus, Paramyxovirus and Rubullavirus) show that low amino acid identity between F protein transmembrane domains is a feature of different species of virus rather than of strain differences. This may indicate that the two subtypes of APV have evolved in different geographical regions and/or different avian species. This is the first report of an F gene sequence from a subtype B APV.

  15. The HEM proteins: a novel family of tissue-specific transmembrane proteins expressed from invertebrates through mammals with an essential function in oogenesis.

    Science.gov (United States)

    Baumgartner, S; Martin, D; Chiquet-Ehrismann, R; Sutton, J; Desai, A; Huang, I; Kato, K; Hromas, R

    1995-08-04

    We report the identification of a new family of proteins, termed the HEM family, which show distinct expression patterns in blood cells and the central nervous system. Through the isolation and characterization of the corresponding brain-specific Drosophila (dhem-2) and rat orthologues (Hem-2), and through the detection of the Caenorhabditis elegans Hem-2 orthologue in the database, we show that this family is conserved throughout evolution. HEM proteins show a conserved length ranging from 1118 to 1126 amino acid residues. Moreover, they are at least 35% identical with each other and harbour several conserved membrane-spanning domains, indicative for their location on the cell surface. One of the members, the Drosophila orthologue dhem-2, was analysed in detail for its spatial expression pattern during development and for its mutant phenotype. dhem-2 is expressed maternally in the oocyte and shows uniform expression during the first half of embryogenesis, but becomes restricted to the brain and the nervous system during late embryogenesis, consistent with the expression of its vertebrate orthologue in the brain. One P-element insertion, located 39 base-pairs downstream from the dhem-2 transcription start site, causes female sterility, due to the fact that developmental processes in the oocyte are disturbed. Of the vertebrate HEM family members, the mammalian Hem-1 gene is expressed only in cells of hematopoietic origin, while Hem-2 is preferentially expressed in brain, heart, liver and testis.

  16. Energetics and Structure Prediction of the Network of Homo- and Hetero-Oligomers Formed by the Transmembrane Domains of the ErbReceptor Family of Proteins

    Science.gov (United States)

    2006-06-01

    DNA sequence was verified by double-stranded DNA sequencing. The Cys-to- Ser mutation (immediately before the KKR) was introduced using the QuickChange...amino acid residue motif, Small-x-x-Large-G/A, consist- ing of a small residue (Gly, Ala, Ser , Thr, or Pro) in the zero position, a large aliphatic...Partridge, A. W. & Deber , C. M. (2001). 772 Weak Interactions of the ErbB TMsRetention of native-like oligomerization states in transmembrane segment

  17. Cysteine string protein promotes proteasomal degradation of the cystic fibrosis transmembrane conductance regulator (CFTR) by increasing its interaction with the C terminus of Hsp70-interacting protein and promoting CFTR ubiquitylation.

    Science.gov (United States)

    Schmidt, Béla Z; Watts, Rebecca J; Aridor, Meir; Frizzell, Raymond A

    2009-02-13

    Cysteine string protein (Csp) is a J-domain-containing protein whose overexpression blocks the exit of cystic fibrosis transmembrane conductance regulator (CFTR) from the endoplasmic reticulum (ER). Another method of blocking ER exit, the overexpression of Sar1-GTP, however, yielded twice as much immature CFTR compared with Csp overexpression. This finding suggested that Csp not only inhibits CFTR ER exit but also facilitates the degradation of immature CFTR. This was confirmed by treatment with a proteasome inhibitor, which returned the level of immature CFTR to that found in cells expressing Sar1-GTP only. CspH43Q, which does not interact with Hsc70/Hsp70 efficiently, did not promote CFTR degradation, suggesting that the pro-degradative effect of Csp requires Hsc70/Hsp70 binding/activation. In agreement with this, Csp overexpression increased the amount of Hsc70/Hsp70 co-immunoprecipitated with CFTR, whereas overexpression of CspH43Q did not. The Hsc70/Hsp70 binding partner C terminus of Hsp70-interacting protein (CHIP) can target CFTR for proteasome-mediated degradation. Csp overexpression also increased the amount of CHIP co-immunoprecipitated with CFTR. In addition, CHIP interacted directly with Csp, which was confirmed by in vitro binding experiments. Csp overexpression also increased CFTR ubiquitylation and reduced the half-life of immature CFTR. These findings indicate that Csp not only regulates the exit of CFTR from the ER, but that this action is accompanied by Hsc70/Hsp70 and CHIP-mediated CFTR degradation.

  18. The Cucumber leaf spot virus p25 auxiliary replicase protein binds and modifies the endoplasmic reticulum via N-terminal transmembrane domains

    Energy Technology Data Exchange (ETDEWEB)

    Ghoshal, Kankana [University of British Columbia, Faculty of Land and Food Systems, Vancouver, British Columbia, Canada V6T 1Z4 (Canada); Theilmann, Jane; Reade, Ron; Sanfacon, Helene [Agriculture and Agri-Food Canada Pacific Agri-Food Research Centre, 4200 Hwy 97, Summerland, British Columbia, Canada V0H 1Z0 (Canada); Rochon, D’Ann, E-mail: dann.rochon@agr.gc.ca [University of British Columbia, Faculty of Land and Food Systems, Vancouver, British Columbia, Canada V6T 1Z4 (Canada); Agriculture and Agri-Food Canada Pacific Agri-Food Research Centre, 4200 Hwy 97, Summerland, British Columbia, Canada V0H 1Z0 (Canada)

    2014-11-15

    Cucumber leaf spot virus (CLSV) is a member of the Aureusvirus genus, family Tombusviridae. The auxiliary replicase of Tombusvirids has been found to localize to endoplasmic reticulum (ER), peroxisomes or mitochondria; however, localization of the auxiliary replicase of aureusviruses has not been determined. We have found that the auxiliary replicase of CLSV (p25) fused to GFP colocalizes with ER and that three predicted transmembrane domains (TMDs) at the N-terminus of p25 are sufficient for targeting, although the second and third TMDs play the most prominent roles. Confocal analysis of CLSV infected 16C plants shows that the ER becomes modified including the formation of punctae at connections between ER tubules and in association with the nucleus. Ultrastructural analysis shows that the cytoplasm contains numerous vesicles which are also found between the perinuclear ER and nuclear membrane. It is proposed that these vesicles correspond to modified ER used as sites for CLSV replication. - Highlights: • The CLSV p25 auxiliary replicase targets the endoplasmic reticulum (ER). • Targeting of CLSV p25 is associated with ER restructuring. • Restructuring of the ER occurs during CLSV infection. • CLSV p25 contains 3 predicted transmembrane domains 2 of which are required for ER targeting. • Vesicles derived from the ER may be sites of CLSV replication.

  19. Implication of a protein-tyrosine-phosphatase in human lung cancer.

    Science.gov (United States)

    Gaits, F; Li, R Y; Ragab, A; Selves, J; Ragab-Thomas, J M; Chap, H

    1994-07-01

    Protein tyrosyl phosphorylation plays an essential role in regulating cellular events such as proliferation, differentiation and oncogenesis. The recent characterization of the family of protein tyrosine phosphatases (PTPases) suggests that dephosphorylation might be a crucial event in these phenomena. One of the functions of PTPases is to reverse the effect of protein tyrosine kinases (PTKases), many of which are oncogenes, suggesting that they may act as tumor suppressors as described for HPTP gamma. In order to investigate the implication in lung cancer of HPTP beta, a receptor PTPase, we have developed a semi-quantitative method derived from primer-directed reverse transcription (RT) and subsequent polymerase chain reaction (PCR) with 32P-labelled nucleotide. We have demonstrated that the expression of HPTP beta mRNA was dramatically decreased in lung adenocarcinomas and lung malpighian carcinomas as compared to normal lung tissue. In addition, HPTP beta was not expressed in the pulmonar adenocarcinoma cell line A427, which proliferates in a deregulated way. These results suggest that the loss of expression of HPTP beta might play a role in neoplasic transformation and thus this molecule could act as a tumor suppressor factor.

  20. Electron microscope observation of Salmonella Pullorum transmembrane tunnel mediated by the bacteriophage lysis protein E%噬菌体裂解E蛋白介导鸡白痢沙门菌跨膜孔道的电镜观察

    Institute of Scientific and Technical Information of China (English)

    郭荣显; 耿士忠; 焦红梅; 焦新安; 潘志明; 陈义芳; 安树敏

    2014-01-01

    Bacteriophage lysis protein E can lead to a fusion of the inner and outer membranes to form a specific transmembrane tunnel in Salmonella cytoderm. In this study, scanning electron microscopy ( SEM) and transmission electron microscopy ( TEM) were used to observe the characteristic of the transmembrane tunnel. Bacterial ghosts were prepared by inducing expression of the bacteriophage lysis gene E in Salmonella Pullorum S06004 harboring plasmid pBBR1MCS2-E. The pre-treatment of samples were observed by SEM and TEM. After induced in 42 ℃, the vast majority of Salmonella Pullorum recombinants could form a transmembrane tunnel at the polar sites of bacteria with a diameter varying in the range of 200~400 nm. Bacterial ghosts show the loss of cytoplasmic material and maintain the integrity of the outer membrane structure. The cell surface wrinkled obviously. This research provides an efficient morphological evidence for Salmonella ghosts as vaccine candidate, which is mediated by the bacteriophage lysis protein E.%应用电镜对噬菌体裂解 E蛋白介导沙门菌内外膜融合而形成的特异性跨膜孔道进行超微结构观察。42℃诱导携带温控表达质粒的重组鸡白痢沙门菌S06004(pBBR1MCS2-E)表达E基因以制备鸡白痢沙门菌菌影;样品经前处理,扫描电镜和透射电镜观察其形态结构变化。重组鸡白痢沙门菌经温度诱导后,绝大多数发生裂解,在两极形成直径介于200~400 nm之间的跨膜孔道,细菌整体呈空泡状,并保持完整的外膜结构,但细胞表面发生明显的褶皱。本研究为噬菌体E蛋白裂解沙门菌制备新型灭活疫苗的研究提供了形态学依据。

  1. The stability of the three transmembrane and the four transmembrane human vitamin K epoxide reductase models

    Science.gov (United States)

    Wu, Sangwook

    2016-04-01

    The three transmembrane and the four transmembrane helix models are suggested for human vitamin K epoxide reductase (VKOR). In this study, we investigate the stability of the human three transmembrane/four transmembrane VKOR models by employing a coarse-grained normal mode analysis and molecular dynamics simulation. Based on the analysis of the mobility of each transmembrane domain, we suggest that the three transmembrane human VKOR model is more stable than the four transmembrane human VKOR model.

  2. TSSOM:Transmembrane Segments Prediction by Self—Organizing Map

    Institute of Scientific and Technical Information of China (English)

    LIUQi; ZHUYisheng; WANGBaohua; LIYixue

    2003-01-01

    A novel method ealled TSSOM(Transmembrane segments prediction by self-organizing map)is presented in the paper.The main idea of the method lies in the application of self-organizing feature map together with special visualization techniques to classify the multivariate "time" series of transmembrane proteins into flve classes.Through the analysis of resulting trajectories on the map,frequent patterns of transmembrane segments are detected and even some kind of "new"knowledge about membrane insertion mechanism is acquired.The discovered patterns and the knowledge are then used to predict transmembrane segments for auery sequence.The prediction results not only show that the method is powerful,but also prove that the patterns and the knowledge about the interaction bwtween the patterns are effective and acceptable.

  3. Expression and Function of Transmembrane-4 Superfamily (Tetraspanin Proteins in Osteoclasts: Reciprocal Roles of Tspan-5 and NET-6 during Osteoclastogenesis

    Directory of Open Access Journals (Sweden)

    Kaori Iwai

    2007-01-01

    Conclusions: These data indicate that a diversity of tetraspanins is expressed in osteoclast precursors, and that cell fusion during osteoclastogenesis is regulated by cooperation of distinct tetraspanin family proteins such as Tspan-5 and NET-6. This study indicates that functional alterations of tetraspanin family proteins may have therapeutic potential in diseases where osteoclasts play a major role, such as rheumatoid arthritis and osteoporosis.

  4. High constitutive activity of a virus-encoded seven transmembrane receptor in the absence of the conserved DRY motif (Asp-Arg-Tyr) in transmembrane helix 3

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M; Kledal, Thomas N; Schwartz, Thue W

    2005-01-01

    The highly conserved Arg in the so-called DRY motif (Asp-Arg-Tyr) at the intracellular end of transmembrane helix 3 is in general considered as an essential residue for G protein coupling in rhodopsin-like seven transmembrane (7TM) receptors. In the open reading frame 74 (ORF74) receptor encoded ...

  5. The specificity of association of the IgD molecule with the accessory proteins BAP31/BAP29 lies in the IgD transmembrane sequence.

    OpenAIRE

    Adachi, T.; Schamel, W W; Kim, K. M.; Watanabe, T; Becker, B.; Nielsen, P J; Reth, M

    1996-01-01

    Mature B cells co-express on their cell surface two classes of antigen receptor, the IgM and IgD immunoglobulins. The structural and functional differences between the two receptor classes are poorly understood. Recently two proteins of 29 and 31 kDa (BAP29 and BAP31) have been described that are preferentially associated with membrane IgD but only weakly with membrane IgM. We describe here the cloning of full-length murine and human BAP31 cDNAs encoding proteins of 245 and 246 amino acids re...

  6. Simian-Human immunodeficiency viruses expressing chimeric subtype B/C Vpu proteins demonstrate the importance of the amino terminal and transmembrane domains in the rate of CD4(+) T cell loss in macaques.

    Science.gov (United States)

    Ruiz, Autumn; Schmitt, Kimberly; Culley, Nathan; Stephens, Edward B

    2013-01-20

    Previously, we reported that simian-human immunodeficiency viruses expressing either the lab adapted subtype B (SHIV(KU-1bMC33)) or subtype C (SHIV(SCVpu)) Vpu proteins of human immunodeficiency virus type 1 (HIV-1) had different rates of CD4(+) T cell loss following inoculation into macaques. In this study, we have generated SHIVs that express either the subtype B or subtype C N-terminal (NTD) and transmembrane (TMD) domains and the opposing cytoplasmic domain (SHIV(VpuBC), SHIV(VpuCB)). In culture systems, SHIV(VpuBC) replicated faster than SHIV(VpuCB) while both proteins exhibited similar ability to down-modulate CD4 surface expression. Following inoculation into macaques, SHIV(VpuBC) resulted in rapid CD4(+) T cell loss similar to the parental SHIV(KU-1bMC33), while the rate of CD4(+) T cell loss in those inoculated with SHIV(VpuCB) was intermediate of SHIV(SCVpu) and SHIV(KU-1bMC33). These results emphasize the importance of the Vpu NTD/TMD region in the rate of CD4(+) T cell loss in the pathogenic X4 SHIV/macaque model.

  7. miR-203 inhibits arecoline-induced epithelial-mesenchymal transition by regulating secreted frizzled-related protein 4 and transmembrane-4 L six family member 1 in oral submucous fibrosis.

    Science.gov (United States)

    Zheng, Lian; Jian, Xinchun; Guo, Feng; Li, Ning; Jiang, Canhua; Yin, Ping; Min, An-Jie; Huang, Long

    2015-06-01

    Oral submucous fibrosis (OSF) is a potentially malignant disease predominantly found in Asian people. The areca nut has been implicated in this disease. Arecoline, one of the areca alkaloids, induces epithelial-mesenchymal transition (EMT)-related factors in primary human buccal mucosal fibroblasts. Yet, the mechanisms of the underlying arecoline-induced EMT in OSF remain unknown. In the present study, we aimed to investigate the role of microRNAs (miRNAs) in arecoline-induced EMT in HaCaT cells. We found that miR-203 was significantly downregulated in OSF tissues compared to that in normal buccal mucosa tissues, and that miR-203 negatively regulated secreted frizzled-related protein 4 (SFRP4) and positively regulated transmembrane-4 L six family member 1 (TM4SF1). We observed that upregulation of miR-203 significantly decreased the cell proliferation of HaCaT cells, and significantly upregulated the expression of cytokeratin 19 (CK19) and E-cadherin proteins, whereas it significantly downregulated the expression of N-cadherin and vimentin compared to these levels in the vehicle control cells. Thus, we provide evidence to illustrate that miR-203 plays a role in the pathogenesis of OSF, which may be a target for OSF management.

  8. The Improved Method for Isolation of Photochrome Trans-membrane Protein Bacteriorhodopsin from Purple Membranes of Halobacterium Halobacterium Halobium ET 1001

    Directory of Open Access Journals (Sweden)

    Oleg Mosin

    2015-12-01

    Full Text Available It was developed the improved method for isolation of photochrome trans-membraine protein bacteriorhodopsin (output – 5 mg from 100 g of wet biomass capable to transform light energy to electrochemical energy of generated protons H+ and АТP. The protein was isolated from purple membranes of photo-organotrophic halobacterium Halobacterium halobium ET 1001 by cellular autolysis by distilled water, processing of bacterial biomass by ultrasound at 22 KHz, alcohol extraction of low and high-weight molecular impurities, cellular RNA, carotenoids and lipids, solubilization with 0.5% (w/v SDS-Na, fractionation by MeOH and column gel permeation chromatography (GPC of the final protein on Sephadex G-200 with 0.1% (w/v SDS-Na and 2.5 mM ETDA. The homogeneity of the isolated bacteriorhodopsin was proved by combination of preparative and analytical methods, including elecrtophoresis in 12.5% (w/v PAAG with 0.1% (w/v SDS-Na and regeneration of apomembranes with 13-trans-retinal.

  9. Phylogenetic analyses of the homologous transmembrane channel-forming proteins of the F0F1-ATPases of bacteria, chloroplasts and mitochondria.

    Science.gov (United States)

    Blair, A; Ngo, L; Park, J; Paulsen, I T; Saier, M H

    1996-01-01

    Sequences of the three integral membrane subunits (subunits a, b and c) of the F0 sector of the proton-translocating F-type (F0F1-) ATPases of bacteria, chloroplasts and mitochondria have been analysed. All homologous-sequenced proteins of these subunits, comprising three distinct families, have been identified by database searches, and the homologous protein sequences have been aligned and analysed for phylogenetic relatedness. The results serve to define the relationships of the members of each of these three families of proteins, to identify regions of relative conservation, and to define relative rates of evolutionary divergence. Of these three subunits, c-subunits exhibited the slowest rate of evolutionary divergence, b-subunits exhibited the most rapid rate of evolutionary divergence, and a-subunits exhibited an intermediate rate of evolutionary divergence. The results allow definition of the relative times of occurrence of specific events during evolutionary history, such as the intragenic duplication event that gave rise to large c-subunits in eukaryotic vacuolar-type ATPases after eukaryotes diverged from archaea, and the extragenic duplication of F-type ATPase b-subunits that occurred in blue-green bacteria before the advent of chloroplasts. The results generally show that the three F0 subunits evolved as a unit from a primordial set of genes without appreciable horizontal transmission of the encoding genetic information although a few possible exceptions were noted.

  10. Orphan nuclear receptor Errγ induces C-reactive protein gene expression through induction of ER-bound Bzip transmembrane transcription factor CREBH.

    Directory of Open Access Journals (Sweden)

    Jagannath Misra

    Full Text Available The orphan nuclear receptor estrogen-related receptor-γ (ERRγ is a constitutively active transcription factor regulating genes involved in several important cellular processes, including hepatic glucose metabolism, alcohol metabolism, and the endoplasmic reticulum (ER stress response. cAMP responsive element-binding protein H (CREBH is an ER-bound bZIP family transcription factor that is activated upon ER stress and regulates genes encoding acute-phase proteins whose expression is increased in response to inflammation. Here, we report that ERRγ directly regulates CREBH gene expression in response to ER stress. ERRγ bound to the ERRγ response element (ERRE in the CREBH promoter. Overexpression of ERRγ by adenovirus significantly increased expression of CREBH as well as C-reactive protein (CRP, whereas either knockdown of ERRγ or inhibition of ERRγ by ERRγ specific inverse agonist, GSK5182, substantially inhibited ER stress-mediated induction of CREBH and CRP. The transcriptional coactivator PGC1α was required for ERRγ mediated induction of the CREBH gene as demonstrated by the chromatin immunoprecipitation (ChIP assay showing binding of both ERRγ and PGC1α on the CREBH promoter. The ChIP assay also revealed that histone H3 and H4 acetylation occurred at the ERRγ and PGC1α binding site. Moreover, chronic alcoholic hepatosteatosis, as well as the diabetic obese condition significantly increased CRP gene expression, and this increase was significantly attenuated by GSK5182 treatment. We suggest that orphan nuclear receptor ERRγ directly regulates the ER-bound transcription factor CREBH in response to ER stress and other metabolic conditions.

  11. Detergent-free incorporation of a seven-transmembrane receptor protein into nanosized bilayer Lipodisq particles for functional and biophysical studies.

    Science.gov (United States)

    Orwick-Rydmark, Marcella; Lovett, Janet E; Graziadei, Andrea; Lindholm, Ljubica; Hicks, Matthew R; Watts, Anthony

    2012-09-12

    SMA-Lipodisq nanoparticles, with one bacteriorhodopsin (bR) per 12 nm particle on average (protein/lipid molar ratio, 1:172), were prepared without the use of detergents. Using pulsed and continuous wave nitroxide spin label electron paramagnetic resonance, the structural and dynamic integrity of bR was retained when compared with data for bR obtained in the native membrane and in detergents and then with crystal data. This indicates the potential of Lipodisq nanoparticles as a useful membrane mimetic.

  12. Phosphorylation by cAMP-dependent protein kinase causes a conformational change in the R domain of the cystic fibrosis transmembrane conductance regulator.

    Science.gov (United States)

    Dulhanty, A M; Riordan, J R

    1994-04-05

    Individuals with cystic fibrosis have a defect in the CFTR protein, a chloride channel regulated by cAMP-dependent protein kinase (PKA). The majority of the phosphorylation sites of PKA are located in the R domain of CFTR. It has been postulated that this domain may act as a gate for the chloride channel. Of the many possible mechanisms whereby the R domain could gate the channel, including interdomain interactions, charge distribution, or conformational change, we investigated the possibility that phosphorylation leads to conformational changes in the R domain. To test this hypothesis, a protocol for purification of human R domain peptide synthesized in a bacterial expression system was developed. Purified R domain was phosphorylated by PKA, and CD spectra were obtained. As a result of phosphorylation by PKA, a significant spectral change, indicative of a reduction in the alpha-helical content, was found. CD spectra of the R domain of a shark homologue of CFTR indicated similar changes in conformation as a result of phosphorylation by PKA. In contrast, phosphorylation of the human R domain by PKC, which has only a small influence on CFTR channel activity, failed to elicit CD spectral changes, indicating no conformational change comparable to those induced by PKA phosphorylation. These observations provide the first structural characterization of the R domain and suggest that the gating of the CFTR chloride channel by PKA may involve a conformational change in the R domain.

  13. 朊粒蛋白PrP~(Sc)寡聚体的形成与跨膜毒性%Formation and Transmembrane Toxicity of Prion Protein Oligomer

    Institute of Scientific and Technical Information of China (English)

    衡杰; 吴琦

    2010-01-01

    朊粒蛋白(prion protein,PrP)传染致病机制一直是朊粒(prion)研究领域的焦点.由正常型朊粒蛋白(PrP~C)向致病型朊粒蛋白(PrP~(Sc))的转变是致病的关键步骤.本文综述了近年来PrP~C向PrP~(Sc)转变的结构变化特征、PrP~(Sc)由单体形成寡聚体的组装机制、以及PrP~(Sc)寡聚体的跨膜机制与细胞毒性间的关系等方面的研究进展.

  14. ER reorganization is remarkably induced in COS-7 cells accumulating transmembrane protein receptors not competent for export from the endoplasmic reticulum.

    Science.gov (United States)

    D'Agostino, Massimo; Crespi, Arianna; Polishchuk, Elena; Generoso, Serena; Martire, Gianluca; Colombo, Sara Francesca; Bonatti, Stefano

    2014-11-01

    The newly synthesized mutant L501fsX533 Frizzled-4 form and the alpha3beta4 nicotinic acetylcholine receptor expressed in the absence of nicotine accumulate in the endoplasmic reticulum of COS-7 cells and induce the formation of large areas of smooth and highly convoluted cisternae. This results in a generalized block of the transport to the Golgi complex of newly synthesized proteins. Intriguingly, both effects happen peculiarly in COS-7 cells; HeLa, Huh-7, and HEK293 cells expressing the two receptors at similar level than COS-7 cells show normal ER and normal transport toward the plasma membrane. These results question the conclusion that a dominant-negative mechanism would explain the dominance of the mutant L501fsX533 Fz4 allele in the transmission of a form of Familial exudative vitreoretinopathy. Moreover, they indicate that the coordination of endoplasmic reticulum homeostasis in COS-7 cells is particularly error prone. This finding suggests that COS-7 cells may be extremely useful to study the molecular mechanisms regulating endoplasmic reticulum size and architecture.

  15. Mutation Patterns in Human Cystic Fibrosis Transmem-brane Conductance Regulator Protein%人囊性纤维化跨膜电导调节子蛋白的变异模式研究

    Institute of Scientific and Technical Information of China (English)

    龙思宇; 严少敏; 吴光

    2014-01-01

    Objective]Mutations in the gene that encodes the fibrosis transmembrane conductan-ce regulator (CFTR)protein can cause cystic fibrosis but the patterns of missense mutations in CFTR protein haven’t yet been reported.[Methods]The amino-acid pair predictability was used to convert the CFTR protein with its 178 missense mutations into scalar sequences,and then the substituted and substituting amino-acid pairs were analysed before and after mutation.[Re-sults]97.19% of mutations occurred in unpredictable amino acid pairs.87.08% of mutations targeted one or both substituted amino acid pairs whose actual frequency was larger than their predicted one.1 5 .1 7% mutations resulted in one or both substituting amino-acid pairs that were absent before mutation.A total of 122 mutations brought about the substituting amino-acid pairs with their actual frequency smaller than predicted one.[Conclusion]The unpredicta-ble amino-acid pairs are more sensitive to muta-tion,and the mutation trend is to narrow the difference between predicted and actual frequen-cy of amino-acid pairs,thus the composition of a-mino acid pairs becomes more randomized,which leads the human CFTR protein degenerative and causes cystic fibrosis.%【目的】编码囊性纤维化跨膜电导调节子(Cystic fibrosis transmembrane conductance regulator,CFTR)蛋白的基因突变可引起囊性纤维化,但该蛋白错义点突变的变异模式尚无报道。【方法】先用氨基酸对可预测性为指标将人CFTR蛋白及其178个错义点突变的氨基酸序列转换成标量序列,然后分析变异前后被替换掉的和替换出的氨基酸对的变化。【结果】97.19%的变异发生在不可预测的氨基酸对;87.08%的变异涉及1个或2个被替换掉的氨基酸对,其实际频率大于预测频率;15.17%的变异带来1个或2个替换出的氨基酸对,它们在正常的CFTR蛋白是不存在的;共有122个变异导致替换出的氨基酸对的实际

  16. Histidine at residue 99 and the transmembrane region of the precursor membrane prM protein are important for the prM-E heterodimeric complex formation of Japanese encephalitis virus.

    Science.gov (United States)

    Lin, Ying-Ju; Wu, Suh-Chin

    2005-07-01

    The formation of the flavivirus prM-E complex is an important step for the biogenesis of immature virions, which is followed by a subsequent cleavage of prM to M protein through cellular protease to result in the production and release of mature virions. In this study, the intracellular formation of the prM-E complex of Japanese encephalitis virus was investigated by baculovirus coexpression of prM and E in trans in Sf9 insect cells as analyzed by anti-E antibody immunoprecipitation and sucrose gradient sedimentation analysis. A series of carboxyl-terminally truncated prM mutant baculoviruses was constructed to demonstrate that the truncations of the transmembrane (TM) region resulted in a reduction of the formation of the stable prM-E complex by approximately 40% for the TM1 (at residues 130 to 147 [prM130-147]) truncation and 20% for TM2 (at prM153-167) truncation. Alanine-scanning site-directed mutagenesis on the prM99-103 region indicated that the His99 residue was the critical prM binding element for stable prM-E heterodimeric complex formation. The single amino acid mutation at the His99 residue of prM abolishing the prM-E interaction was not due to reduced expression or different subcellular location of the mutant prM protein involved in prM-E interactions as characterized by pulse-chase labeling and confocal scanning microscopic analysis. Recombinant subviral particles were detected in the Sf9 cell culture supernatants by baculovirus coexpression of prM and E proteins but not with the prM H99A mutant. Sequence alignment analysis was further conducted with different groups of flaviviruses to show that the prM H99 residues are generally conserved. Our findings are the first report to characterize the minimum binding elements of the prM protein that are involved in prM-E interactions of flaviviruses. This information, concerning a molecular framework for the prM protein, is considered to elucidate the structure/function relationship of the prM-E complex

  17. Molecular mechanisms for generating transmembrane proton gradients.

    Science.gov (United States)

    Gunner, M R; Amin, Muhamed; Zhu, Xuyu; Lu, Jianxun

    2013-01-01

    Membrane proteins use the energy of light or high energy substrates to build a transmembrane proton gradient through a series of reactions leading to proton release into the lower pH compartment (P-side) and proton uptake from the higher pH compartment (N-side). This review considers how the proton affinity of the substrates, cofactors and amino acids are modified in four proteins to drive proton transfers. Bacterial reaction centers (RCs) and photosystem II (PSII) carry out redox chemistry with the species to be oxidized on the P-side while reduction occurs on the N-side of the membrane. Terminal redox cofactors are used which have pKas that are strongly dependent on their redox state, so that protons are lost on oxidation and gained on reduction. Bacteriorhodopsin is a true proton pump. Light activation triggers trans to cis isomerization of a bound retinal. Strong electrostatic interactions within clusters of amino acids are modified by the conformational changes initiated by retinal motion leading to changes in proton affinity, driving transmembrane proton transfer. Cytochrome c oxidase (CcO) catalyzes the reduction of O2 to water. The protons needed for chemistry are bound from the N-side. The reduction chemistry also drives proton pumping from N- to P-side. Overall, in CcO the uptake of 4 electrons to reduce O2 transports 8 charges across the membrane, with each reduction fully coupled to removal of two protons from the N-side, the delivery of one for chemistry and transport of the other to the P-side.

  18. The Origins of Transmembrane Ion Channels

    Science.gov (United States)

    Pohorille, Andrew; Wilson, Michael A.

    2012-01-01

    Even though membrane proteins that mediate transport of ions and small molecules across cell walls are among the largest and least understood biopolymers in contemporary cells, it is still possible to shed light on their origins and early evolution. The central observation is that transmembrane portions of most ion channels are simply bundles of -helices. By combining results of experimental and computer simulation studies on synthetic models and natural channels, mostly of non-genomic origin, we show that the emergence of -helical channels was protobiologically plausible, and did not require highly specific amino acid sequences. Despite their simple structure, such channels could possess properties that, at the first sight, appear to require markedly larger complexity. Specifically, we explain how the antiamoebin channels, which are made of identical helices, 16 amino acids in length, achieve efficiency comparable to that of highly evolved channels. We further show that antiamoebin channels are extremely flexible, compared to modern, genetically coded channels. On the basis of our results, we propose that channels evolved further towards high structural complexity because they needed to acquire stable rigid structures and mechanisms for precise regulation rather than improve efficiency. In general, even though architectures of membrane proteins are not nearly as diverse as those of water-soluble proteins, they are sufficiently flexible to adapt readily to the functional demands arising during evolution.

  19. Isolated Toll-like receptor transmembrane domains are capable of oligomerization.

    Directory of Open Access Journals (Sweden)

    James I Godfroy

    Full Text Available Toll-like receptors (TLRs act as the first line of defense against bacterial and viral pathogens by initiating critical defense signals upon dimer activation. The contribution of the transmembrane domain in the dimerization and signaling process has heretofore been overlooked in favor of the extracellular and intracellular domains. As mounting evidence suggests that the transmembrane domain is a critical region in several protein families, we hypothesized that this was also the case for Toll-like receptors. Using a combined biochemical and biophysical approach, we investigated the ability of isolated Toll-like receptor transmembrane domains to interact independently of extracellular domain dimerization. Our results showed that the transmembrane domains had a preference for the native dimer partners in bacterial membranes for the entire receptor family. All TLR transmembrane domains showed strong homotypic interaction potential. The TLR2 transmembrane domain demonstrated strong heterotypic interactions in bacterial membranes with its known interaction partners, TLR1 and TLR6, as well as with a proposed interaction partner, TLR10, but not with TLR4, TLR5, or unrelated transmembrane receptors providing evidence for the specificity of TLR2 transmembrane domain interactions. Peptides for the transmembrane domains of TLR1, TLR2, and TLR6 were synthesized to further study this subfamily of receptors. These peptides validated the heterotypic interactions seen in bacterial membranes and demonstrated that the TLR2 transmembrane domain had moderately strong interactions with both TLR1 and TLR6. Combined, these results suggest a role for the transmembrane domain in Toll-like receptor oligomerization and as such, may be a novel target for further investigation of new therapeutic treatments of Toll-like receptor mediated diseases.

  20. Receptor tyrosine phosphatase R-PTP-kappa mediates homophilic binding

    DEFF Research Database (Denmark)

    Sap, J; Jiang, Y P; Friedlander, D

    1994-01-01

    Receptor tyrosine phosphatases (R-PTPases) feature PTPase domains in the context of a receptor-like transmembrane topology. The R-PTPase R-PTP-kappa displays an extracellular domain composed of fibronectin type III motifs, a single immunoglobulin domain, as well as a recently defined MAM domain (Y.......-P. Jiang, H. Wang, P. D'Eustachio, J.M. Musacchio, J. Schlessinger, and J. Sap, Mol. Cell. Biol. 13:2942-2951, 1993). We report here that R-PTP-kappa can mediate homophilic intercellular interaction. Inducible expression of the R-PTP-kappa protein in heterologous cells results in formation of stable...... cellular aggregates strictly consisting of R-PTP-kappa-expressing cells. Moreover, the purified extracellular domain of R-PTP-kappa functions as a substrate for adhesion by cells expressing R-PTP-kappa and induces aggregation of coated synthetic beads. R-PTP-kappa-mediated intercellular adhesion does...

  1. Comparisons of Interfacial Phe, Tyr, and Trp Residues as Determinants of Orientation and Dynamics for GWALP Transmembrane Peptides

    OpenAIRE

    Sparks, Kelsey A.; Gleason, Nicholas J.; Gist, Renetra; Langston, Rebekah; Greathouse, Denise V.; Koeppe, Roger E.

    2014-01-01

    Aromatic amino acids often flank the transmembrane alpha helices of integral membrane proteins. By favoring locations within the membrane–water interface of the lipid bilayer, aromatic residues Trp, Tyr, and sometimes Phe may serve as anchors to help stabilize a transmembrane orientation. In this work, we compare the influence of interfacial Trp, Tyr, or Phe residues upon the properties of tilted helical transmembrane peptides. For such comparisons, it has been critical to start with no more ...

  2. Mutations of C19orf12, coding for a transmembrane glycine zipper containing mitochondrial protein, cause mis-localization of the protein, inability to respond to oxidative stress and increased mitochondrial Ca2+

    DEFF Research Database (Denmark)

    Venco, Paola; Bonora, Massimo; Giorgi, Carlotta;

    2015-01-01

    19orf12 protein was not exclusively present in mitochondria, but also in the Endoplasmic Reticulum (ER) and MAM (Mitochondria Associated Membrane), while mutant C19orf12 variants presented a different localization. Moreover, after induction of oxidative stress, a GFP-tagged C19orf12 wild-type protein...... was able to relocate to the cytosol. On the contrary, mutant isoforms were not able to respond to oxidative stress. High mitochondrial calcium concentration and increased H2O2 induced apoptosis were found in fibroblasts derived from one patient as compared to controls. C19orf12 protein is a 17 k...... to rearrange in a structural domain, which is homologs to the N-terminal regulatory domain of the magnesium transporter MgtE, suggesting that C19orf12 may act as a regulatory protein for human MgtE transporters. The mutations here described affect respectively one glycine residue of the glycine zipper motifs...

  3. The first transmembrane domain (TM1) of β2-subunit binds to the transmembrane domain S1 of α-subunit in BK potassium channels

    Science.gov (United States)

    Morera, Francisco J.; Alioua, Abderrahmane; Kundu, Pallob; Salazar, Marcelo; Gonzalez, Carlos; Martinez, Agustin D.; Stefani, Enrico; Toro, Ligia; Latorre, Ramon

    2012-01-01

    The BK channel is one of the most broadly expressed ion channels in mammals. In many tissues, the BK channel pore-forming α-subunit is associated to an auxiliary β-subunit that modulates the voltage- and Ca2+-dependent activation of the channel. Structural components present in β-subunits that are important for the physical association with the α-subunit are yet unknown. Here, we show through co-immunoprecipitation that the intracellular C-terminus, the second transmembrane domain (TM2) and the extracellular loop of the β2-subunit are dispensable for association with the α-subunit pointing transmembrane domain 1 (TM1) as responsible for the interaction. Indeed, the TOXCAT assay for transmembrane protein–protein interactions demonstrated for the first time that TM1 of the β2-subunit physically binds to the transmembrane S1 domain of the α-subunit. PMID:22710124

  4. Advantages of combined transmembrane topology and signal peptide prediction--the Phobius web server

    DEFF Research Database (Denmark)

    Käll, Lukas; Krogh, Anders; Sonnhammer, Erik L L

    2007-01-01

    predicted transmembrane topologies overlap. This impairs predictions of 5-10% of the proteome, hence this is an important issue in protein annotation. To address this problem, we previously designed a hidden Markov model, Phobius, that combines transmembrane topology and signal peptide predictions....... The method makes an optimal choice between transmembrane segments and signal peptides, and also allows constrained and homology-enriched predictions. We here present a web interface (http://phobius.cgb.ki.se and http://phobius.binf.ku.dk) to access Phobius. Udgivelsesdato: 2007-Jul...

  5. Biophysical Aspects of Transmembrane Signaling

    CERN Document Server

    Damjanovich, Sandor

    2005-01-01

    Transmembrane signaling is one of the most significant cell biological events in the life and death of cells in general and lymphocytes in particular. Until recently biochemists and biophysicists were not accustomed to thinking of these processes from the side of a high number of complex biochemical events and an equally high number of physical changes at molecular and cellular levels at the same time. Both types of researchers were convinced that their findings are the most decisive, having higher importance than the findings of the other scientist population. Both casts were wrong. Life, even at cellular level, has a number of interacting physical and biochemical mechanisms, which finally build up the creation of an "excited" cell that will respond to particular signals from the outer or inner world. This book handles both aspects of the signalling events, and in some cases tries to unify our concepts and help understand the signals that govern the life and death of our cells. Not only the understanding, bu...

  6. How are exons encoding transmembrane sequences distributed in the exon-intron structure of genes?

    Science.gov (United States)

    Sawada, Ryusuke; Mitaku, Shigeki

    2011-01-01

    The exon-intron structure of eukaryotic genes raises a question about the distribution of transmembrane regions in membrane proteins. Were exons that encode transmembrane regions formed simply by inserting introns into preexisting genes or by some kind of exon shuffling? To answer this question, the exon-per-gene distribution was analyzed for all genes in 40 eukaryotic genomes with a particular focus on exons encoding transmembrane segments. In 21 higher multicellular eukaryotes, the percentage of multi-exon genes (those containing at least one intron) within all genes in a genome was high (>70%) and with a mean of 87%. When genes were grouped by the number of exons per gene in higher eukaryotes, good exponential distributions were obtained not only for all genes but also for the exons encoding transmembrane segments, leading to a constant ratio of membrane proteins independent of the exon-per-gene number. The positional distribution of transmembrane regions in single-pass membrane proteins showed that they are generally located in the amino or carboxyl terminal regions. This nonrandom distribution of transmembrane regions explains the constant ratio of membrane proteins to the exon-per-gene numbers because there are always two terminal (i.e., the amino and carboxyl) regions - independent of the length of sequences.

  7. Cloning and characterization of SCART1, a novel scavenger receptor cysteine-rich type I transmembrane molecule

    DEFF Research Database (Denmark)

    Holm, Dorte; Fink, Dorte Rosenbek; Grønlund, Jørn

    2009-01-01

    We have cloned and characterized a novel murine transmembrane molecule, mSCART1 belonging to the scavenger receptor cysteine-rich superfamily. The cDNA encodes a polypeptide chain of 989 amino acids, organized as a type I transmembrane protein that contains eight extracellular SRCR domains followed...

  8. Transmembrane Helix Assembly by Max-Min Ant System Algorithm.

    Science.gov (United States)

    Sujaree, Kanon; Kitjaruwankul, Sunan; Boonamnaj, Panisak; Supunyabut, Chirayut; Sompornpisut, Pornthep

    2015-12-01

    Because of the rapid progress in biochemical and structural studies of membrane proteins, considerable attention has been given on developing efficient computational methods for solving low-to-medium resolution structures using sparse structural data. In this study, we demonstrate a novel algorithm, max-min ant system (MMAS), designed to find an assembly of α-helical transmembrane proteins using a rigid helix arrangement guided by distance constraints. The new algorithm generates a large variety with finite number of orientations of transmembrane helix bundle and finds the solution that is matched with the provided distance constraints based on the behavior of ants to search for the shortest possible path between their nest and the food source. To demonstrate the efficiency of the novel search algorithm, MMAS is applied to determine the transmembrane packing of KcsA and MscL ion channels from a limited distance information extracted from the crystal structures, and the packing of KvAP voltage sensor domain using a set of 10 experimentally determined constraints, and the results are compared with those of two popular used stochastic methods, simulated annealing Monte Carlo method and genetic algorithm. © 2015 John Wiley & Sons A/S.

  9. Astragaloside Ⅱ triggers T cell activation through regulation of CD45 protein tyrosine phosphatase activity

    Institute of Scientific and Technical Information of China (English)

    Chun-ping WAN; Li-xin GAO; Li-fei HOU; Xiao-qian YANG; Pei-lan HE; Yi-fu YANG; Wei TANG

    2013-01-01

    Aim:To investigate the immunomodulating activity of astragalosides,the active compounds from a traditional tonic herb Astragalus membranaceus Bge,and to explore the molecular mechanisms underlying the actions,focusing on CD45 protein tyrosine phosphatase (CD45 PTPase),which plays a critical role in T lymphocyte activation.Methods:Primary splenocytes and T cells were prepared from mice.CD45 PTPase activity was assessed using a colorimetric assay.Cell proliferation was measured using a [3H]-thymidine incorporation assay.Cytokine proteins and mRNAs were examined with ELISA and RT-PCR,respectively.Activation markers,including CD25 and CD69,were analyzed using flow cytometry.Activation of LCK (Tyr505) was detected using Western blot analysis.Mice were injected with the immunosuppressant cyclophosphamide (CTX,80 mg/kg),and administered astragaloside Ⅱ (50 mg/kg).Results:Astragaloside Ⅰ,Ⅱ,Ⅲ,and Ⅳ concentration-dependently increased the CD45-mediated of pNPP/OMFP hydrolysis with the EC50 values ranged from 3.33 to 10.42 μg/mL.Astragaloside Ⅱ (10 and 30 μg/mL) significantly enhanced the proliferation of primary splenocytes induced by ConA,alloantigen or anti-CD3.Astragaloside Ⅱ (30 μg/mL) significantly increased IL-2 and IFN-y secretion,upregulated the mRNA levels of IFN-y and T-bet in primary splenocytes,and promoted CD25 and CD69 expression on primary CD4+T cells upon TCR stimulation.Furthermore,astragaloside Ⅱ (100 ng/mL) promoted CD45-mediated dephosphorylation of LCK (Tyr505) in primary T cells,which could be blocked by a specific CD45 PTPase inhibitor.In CTX-induced immunosuppressed mice,oral administration of astragaloside Ⅱ restored the proliferation of splenic T cells and the production of IFN-Y and IL-2.However,astragaloside Ⅱ had no apparent effects on B cell proliferation.Conclusion:Astragaloside Ⅱ enhances T cell activation by regulating the activity of CD45 PTPase,which may explain why Astragalus membranaceus Bge is used as a tonic

  10. Modulation of Innate Immune Signalling by Lipid-Mediated MAVS Transmembrane Domain Oligomerization.

    Directory of Open Access Journals (Sweden)

    Luis Nobre

    Full Text Available RIG-I-like receptors detect viral RNA in infected cells and promote oligomerization of the outer mitochondrial membrane protein MAVS to induce innate immunity to viral infection through type I interferon production. Mitochondrial reactive oxygen species (mROS have been shown to enhance anti-viral MAVS signalling, but the mechanisms have remained obscure. Using a biochemical oligomerization-reporter fused to the transmembrane domain of MAVS, we found that mROS inducers promoted lipid-dependent MAVS transmembrane domain oligomerization in the plane of the outer mitochondrial membrane. These events were mirrored by Sendai virus infection, which similarly induced lipid peroxidation and promoted lipid-dependent MAVS transmembrane domain oligomerization. Our observations point to a role for mROS-induced changes in lipid bilayer properties in modulating antiviral innate signalling by favouring the oligomerization of MAVS transmembrane domain in the outer-mitochondrial membrane.

  11. Structure and function of the cystic fibrosis transmembrane conductance regulator

    Directory of Open Access Journals (Sweden)

    M.M. Morales

    1999-08-01

    Full Text Available Cystic fibrosis (CF is a lethal autosomal recessive genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR. Mutations in the CFTR gene may result in a defective processing of its protein and alter the function and regulation of this channel. Mutations are associated with different symptoms, including pancreatic insufficiency, bile duct obstruction, infertility in males, high sweat Cl-, intestinal obstruction, nasal polyp formation, chronic sinusitis, mucus dehydration, and chronic Pseudomonas aeruginosa and Staphylococcus aureus lung infection, responsible for 90% of the mortality of CF patients. The gene responsible for the cellular defect in CF was cloned in 1989 and its protein product CFTR is activated by an increase of intracellular cAMP. The CFTR contains two membrane domains, each with six transmembrane domain segments, two nucleotide-binding domains (NBDs, and a cytoplasmic domain. In this review we discuss the studies that have correlated the role of each CFTR domain in the protein function as a chloride channel and as a regulator of the outwardly rectifying Cl- channels (ORCCs.

  12. Retromer-Mediated Trafficking of Transmembrane Receptors and Transporters

    Directory of Open Access Journals (Sweden)

    Stine C. Klinger

    2015-07-01

    Full Text Available Transport between the endoplasmatic reticulum, the Golgi-network, the endo-lysosomal system and the cell surface can be categorized as anterograde or retrograde, describing traffic that goes forward or backward, respectively. Traffic going from the plasma membrane to endosomes and lysosomes or the trans-Golgi network (TGN constitutes the major retrograde transport routes. Several transmembrane proteins undergo retrograde transport as part of a recycling mechanism that contributes to reutilization and maintenance of a steady-state protein localization. In addition, some receptors are hijacked by exotoxins and used for entry and intracellular transport. The physiological relevance of retrograde transport cannot be overstated. Retrograde trafficking of the amyloid precursor protein determines the distribution between organelles, and hence the possibility of cleavage by γ-secretase. Right balancing of the pathways is critical for protection against Alzheimer’s disease. During embryonic development, retrograde transport of Wntless to the TGN is essential for the following release of Wnt from the plasma membrane. Furthermore, overexpression of Wntless has been linked to oncogenesis. Here, we review relevant aspects of the retrograde trafficking of mammalian transmembrane receptors and transporters, with focus on the retromer-mediated transport between endosomes and the TGN.

  13. Protein (Viridiplantae): 834009 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available ... 70447:3022 ... 70448:3851 ... Transmembrane protein (ISS), partial Ostreococcus tauri MTEIPRDAPARAWFARGLAETE...TIPNVLAEKMRFTDAERSGYYPTLYFNEFWMINSYLQPLNETTAKSLKLNFEYATLSQVKWQFQTSMEKTWETHRRFGVSS...ERDSDDLKKIFLEGNPYLLAVTTVVSLLHTVFDFLAFKNDISFWKNRKSMEGLSSRSVVVNAVCQVVIFMYLCDNETSWTILISSGVGTAIEIWKVTRALDVSFEKGR

  14. Role of α and β Transmembrane Domains in Integrin Clustering

    Directory of Open Access Journals (Sweden)

    Amir Shamloo

    2015-11-01

    Full Text Available Integrins are transmembrane proteins playing a crucial role in the mechanical signal transduction from the outside to the inside of a cell, and vice versa. Nevertheless, this signal transduction could not be implemented by a single protein. Rather, in order for integrins to be able to participate in signal transduction, they need to be activated and produce clusters first. As integrins consist of α- and β-subunits that are separate in the active state, studying both subunits separately is of a great importance, for, in the active state, the distance between α- and β-subunits is long enough that they do not influence one another significantly. Thus, this study aims to investigate the tendency of transmembrane domains of integrins to form homodimers. We used both Steered and MARTINI Coarse-grained molecular dynamics method to perform our simulations, mainly because of a better resolution and computational feasibility that each of these methods could provide to us. Using the Steered molecular dynamics method for α- and β-subunits, we found that the localized lipid packing prevented them from clustering. Nonetheless, the lipid packing phenomenon was found to be an artifact after investigating this process using a coarse grained (CG model. Exploiting the coarse-grained molecular dynamics simulations, we found that α- and β-subunits tend to form a stable homo-dimer.

  15. TMM@: a web application for the analysis of transmembrane helix mobility

    Directory of Open Access Journals (Sweden)

    Jonassen Inge

    2007-07-01

    Full Text Available Abstract Background To understand the mechanism by which a protein transmits a signal through the cell membrane, an understanding of the flexibility of its transmembrane (TM region is essential. Normal Mode Analysis (NMA has become the method of choice to investigate the slowest motions in macromolecular systems. It has been widely used to study transmembrane channels and pumps. It relies on the hypothesis that the vibrational normal modes having the lowest frequencies (also named soft modes describe the largest movements in a protein and are the ones that are functionally relevant. In particular NMA can be used to study dynamics of TM regions, but no tool making this approach available for non-experts, has been available so far. Results We developed the web-application TMM@ (TransMembrane α-helical Mobility analyzer. It uses NMA to characterize the propensity of transmembrane α-helices to be displaced. Starting from a structure file at the PDB format, the server computes the normal modes of the protein and identifies which helices in the bundle are the most mobile. Each analysis is performed independently from the others and results can be visualized using only a web browser. No additional plug-in or software is required. For users who would like to further analyze the output data with their favourite software, raw results can also be downloaded. Conclusion We built a novel and unique tool, TMM@, to study the mobility of transmembrane α-helices. The tool can be applied to for example membrane transporters and provides biologists studying transmembrane proteins with an approach to investigate which α-helices are likely to undergo the largest displacements, and hence which helices are most likely to be involved in the transportation of molecules in and out of the cell.

  16. Molecular Insights into the Transmembrane Domain of the Thyrotropin Receptor.

    Directory of Open Access Journals (Sweden)

    Vanessa Chantreau

    Full Text Available The thyrotropin receptor (TSHR is a G protein-coupled receptor (GPCR that is member of the leucine-rich repeat subfamily (LGR. In the absence of crystal structure, the success of rational design of ligands targeting the receptor internal cavity depends on the quality of the TSHR models built. In this subfamily, transmembrane helices (TM 2 and 5 are characterized by the absence of proline compared to most receptors, raising the question of the structural conformation of these helices. To gain insight into the structural properties of these helices, we carried out bioinformatics and experimental studies. Evolutionary analysis of the LGR family revealed a deletion in TM5 but provided no information on TM2. Wild type residues at positions 2.58, 2.59 or 2.60 in TM2 and/or at position 5.50 in TM5 were substituted to proline. Depending on the position of the proline substitution, different effects were observed on membrane expression, glycosylation, constitutive cAMP activity and responses to thyrotropin. Only proline substitution at position 2.59 maintained complex glycosylation and high membrane expression, supporting occurrence of a bulged TM2. The TSHR transmembrane domain was modeled by homology with the orexin 2 receptor, using a protocol that forced the deletion of one residue in the TM5 bulge of the template. The stability of the model was assessed by molecular dynamics simulations. TM5 straightened during the equilibration phase and was stable for the remainder of the simulations. Our data support a structural model of the TSHR transmembrane domain with a bulged TM2 and a straight TM5 that is specific of glycoprotein hormone receptors.

  17. Impact of histidine residues on the transmembrane helices of viroporins.

    Science.gov (United States)

    Wang, Yan; Park, Sang Ho; Tian, Ye; Opella, Stanley J

    2013-11-01

    Abstract The role of histidine in channel-forming transmembrane (TM) helices was investigated by comparing the TM helices from Virus protein 'u' (Vpu) and the M2 proton channel. Both proteins are members of the viroporin family of small membrane proteins that exhibit ion channel activity, and have a single TM helix that is capable of forming oligomers. The TM helices from both proteins have a conserved tryptophan towards the C-terminus. Previously, alanine 18 of Vpu was mutated to histidine in order to artificially introduce the same HXXXW motif that is central to the proton channel activity of M2. Interestingly, the mutated Vpu TM resulted in an increase in helix tilt angle of 11° in lipid bilayers compared to the wild-type Vpu TM. Here, we find the reverse, when histidine 37 of the HXXXW motif in M2 was mutated to alanine, it decreased the helix tilt by 10° from that of wild-type M2. The tilt change is independent of both the helix length and the presence of tryptophan. In addition, compared to wild-type M2, the H37A mutant displayed lowered sensitivity to proton concentration. We also found that the solvent accessibility of histidine-containing M2 is greater than without histidine. This suggests that the TM helix may increase the solvent exposure by changing its tilt angle in order to accommodate a polar/charged residue within the hydrophobic membrane region. The comparative results of M2, Vpu and their mutants demonstrated the significance of histidine in a transmembrane helix and the remarkable plasticity of the function and structure of ion channels stemming from changes at a single amino acid site.

  18. Predicting transmembrane helix packing arrangements using residue contacts and a force-directed algorithm.

    Science.gov (United States)

    Nugent, Timothy; Jones, David T

    2010-03-19

    Alpha-helical transmembrane proteins constitute roughly 30% of a typical genome and are involved in a wide variety of important biological processes including cell signalling, transport of membrane-impermeable molecules and cell recognition. Despite significant efforts to predict transmembrane protein topology, comparatively little attention has been directed toward developing a method to pack the helices together. Here, we present a novel approach to predict lipid exposure, residue contacts, helix-helix interactions and finally the optimal helical packing arrangement of transmembrane proteins. Using molecular dynamics data, we have trained and cross-validated a support vector machine (SVM) classifier to predict per residue lipid exposure with 69% accuracy. This information is combined with additional features to train a second SVM to predict residue contacts which are then used to determine helix-helix interaction with up to 65% accuracy under stringent cross-validation on a non-redundant test set. Our method is also able to discriminate native from decoy helical packing arrangements with up to 70% accuracy. Finally, we employ a force-directed algorithm to construct the optimal helical packing arrangement which demonstrates success for proteins containing up to 13 transmembrane helices. This software is freely available as source code from http://bioinf.cs.ucl.ac.uk/memsat/mempack/.

  19. Predicting transmembrane helix packing arrangements using residue contacts and a force-directed algorithm.

    Directory of Open Access Journals (Sweden)

    Timothy Nugent

    2010-03-01

    Full Text Available Alpha-helical transmembrane proteins constitute roughly 30% of a typical genome and are involved in a wide variety of important biological processes including cell signalling, transport of membrane-impermeable molecules and cell recognition. Despite significant efforts to predict transmembrane protein topology, comparatively little attention has been directed toward developing a method to pack the helices together. Here, we present a novel approach to predict lipid exposure, residue contacts, helix-helix interactions and finally the optimal helical packing arrangement of transmembrane proteins. Using molecular dynamics data, we have trained and cross-validated a support vector machine (SVM classifier to predict per residue lipid exposure with 69% accuracy. This information is combined with additional features to train a second SVM to predict residue contacts which are then used to determine helix-helix interaction with up to 65% accuracy under stringent cross-validation on a non-redundant test set. Our method is also able to discriminate native from decoy helical packing arrangements with up to 70% accuracy. Finally, we employ a force-directed algorithm to construct the optimal helical packing arrangement which demonstrates success for proteins containing up to 13 transmembrane helices. This software is freely available as source code from http://bioinf.cs.ucl.ac.uk/memsat/mempack/.

  20. [Effect of acupuncture on transmembrane signal pathway in AD mice: an analysis based on lipid-raft proteomics].

    Science.gov (United States)

    Nie, Kun; Zhang, Xue-Zhu; Zhao, Lan; Jia, Yu-Jie; Han, Jing-Xian

    2014-08-01

    To reveal the transmembrane signal pathway participating in regulating neuron functions of treating Alzheimer's disease (AD) by acupuncture. SAMP8 mice was used for AD animal model. The effect of acupuncture method for qi benefiting, blood regulating, health supporting, and root strengthening on the amount and varieties of transmembrane signal proteins from hippocampal lipid rafts in SAMP8 mice was detected using HPLC MS/MS proteomics method. Compared with the control group, acupuncture increased 39 transmembrane signal proteins from hippocampal lipid rafts in SAMP8 mice, of them, 14 belonged to ionophorous protein, 8 to G protein, 8 to transmembrane signal receptor, and 9 to kinase protein. Totally 3 main cell signal pathways were involved, including G-protein-coupled receptors signal, enzyme linked receptor signal, and ion-channel mediated signal. Compared with the sham-acupuncture group, acupuncture resulted in significant increase of kinase signal protein amount. From the aspect of functions, they were dominant in regulating synapse functions relevant to cytoskeleton and secreting neurotransmitters. The cell biological mechanism for treating AD by acupuncture might be achieved by improving synapse functions and promoting the secretion of neurotransmitters through transmembrane signal transduction, thus improving cognitive function of AD patients.

  1. Species-specific activity of HIV-1 Vpu and positive selection of tetherin transmembrane domain variants.

    Directory of Open Access Journals (Sweden)

    Matthew W McNatt

    2009-02-01

    Full Text Available Tetherin/BST-2/CD317 is a recently identified antiviral protein that blocks the release of nascent retrovirus, and other virus, particles from infected cells. An HIV-1 accessory protein, Vpu, acts as an antagonist of tetherin. Here, we show that positive selection is evident in primate tetherin sequences and that HIV-1 Vpu appears to have specifically adapted to antagonize variants of tetherin found in humans and chimpanzees. Tetherin variants found in rhesus macaques (rh, African green monkeys (agm and mice were able to inhibit HIV-1 particle release, but were resistant to antagonism by HIV-1 Vpu. Notably, reciprocal exchange of transmembrane domains between human and monkey tetherins conferred sensitivity and resistance to Vpu, identifying this protein domain as a critical determinant of Vpu function. Indeed, differences between hu-tetherin and rh-tetherin at several positions in the transmembrane domain affected sensitivity to antagonism by Vpu. Two alterations in the hu-tetherin transmembrane domain, that correspond to differences found in rh- and agm-tetherin proteins, were sufficient to render hu-tetherin completely resistant to HIV-1 Vpu. Interestingly, transmembrane and cytoplasmic domain sequences in primate tetherins exhibit variation at numerous codons that is likely the result of positive selection, and some of these changes coincide with determinants of HIV-1 Vpu sensitivity. Overall, these data indicate that tetherin could impose a barrier to viral zoonosis as a consequence of positive selection that has been driven by ancient viral antagonists, and that the HIV-1 Vpu protein has specialized to target the transmembrane domains found in human/chimpanzee tetherin proteins.

  2. Species-specific activity of HIV-1 Vpu and positive selection of tetherin transmembrane domain variants.

    Science.gov (United States)

    McNatt, Matthew W; Zang, Trinity; Hatziioannou, Theodora; Bartlett, Mackenzie; Fofana, Ismael Ben; Johnson, Welkin E; Neil, Stuart J D; Bieniasz, Paul D

    2009-02-01

    Tetherin/BST-2/CD317 is a recently identified antiviral protein that blocks the release of nascent retrovirus, and other virus, particles from infected cells. An HIV-1 accessory protein, Vpu, acts as an antagonist of tetherin. Here, we show that positive selection is evident in primate tetherin sequences and that HIV-1 Vpu appears to have specifically adapted to antagonize variants of tetherin found in humans and chimpanzees. Tetherin variants found in rhesus macaques (rh), African green monkeys (agm) and mice were able to inhibit HIV-1 particle release, but were resistant to antagonism by HIV-1 Vpu. Notably, reciprocal exchange of transmembrane domains between human and monkey tetherins conferred sensitivity and resistance to Vpu, identifying this protein domain as a critical determinant of Vpu function. Indeed, differences between hu-tetherin and rh-tetherin at several positions in the transmembrane domain affected sensitivity to antagonism by Vpu. Two alterations in the hu-tetherin transmembrane domain, that correspond to differences found in rh- and agm-tetherin proteins, were sufficient to render hu-tetherin completely resistant to HIV-1 Vpu. Interestingly, transmembrane and cytoplasmic domain sequences in primate tetherins exhibit variation at numerous codons that is likely the result of positive selection, and some of these changes coincide with determinants of HIV-1 Vpu sensitivity. Overall, these data indicate that tetherin could impose a barrier to viral zoonosis as a consequence of positive selection that has been driven by ancient viral antagonists, and that the HIV-1 Vpu protein has specialized to target the transmembrane domains found in human/chimpanzee tetherin proteins.

  3. Structural Dynamics of Insulin Receptor and Transmembrane Signaling.

    Science.gov (United States)

    Tatulian, Suren A

    2015-09-15

    The insulin receptor (IR) is a (αβ)2-type transmembrane tyrosine kinase that plays a central role in cell metabolism. Each αβ heterodimer consists of an extracellular ligand-binding α-subunit and a membrane-spanning β-subunit that comprises the cytoplasmic tyrosine kinase (TK) domain and the phosphorylation sites. The α- and β-subunits are linked via a single disulfide bridge, and the (αβ)2 tetramer is formed by disulfide bonds between the α-chains. Insulin binding induces conformational changes in IR that reach the intracellular β-subunit followed by a protein phosphorylation and activation cascade. Defects in this signaling process, including IR dysfunction caused by mutations, result in type 2 diabetes. Rational drug design aimed at treatment of diabetes relies on knowledge of the detailed structure of IR and the dynamic structural transformations during transmembrane signaling. Recent X-ray crystallographic studies have provided important clues about the mode of binding of insulin to IR, the resulting structural changes and their transmission to the TK domain, but a complete understanding of the structural basis underlying insulin signaling has not been achieved. This review presents a critical analysis of the current status of the structure-function relationship of IR, with a comparative assessment of the other IR family receptors, and discusses potential advancements that may provide insight into the molecular mechanism of insulin signaling.

  4. Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore

    Science.gov (United States)

    Song, Langzhou; Hobaugh, Michael R.; Shustak, Christopher; Cheley, Stephen; Bayley, Hagan; Gouaux, J. Eric

    1996-12-01

    The structure of the Staphylococcus aureus α-hemolysin pore has been determined to 1.9 overset{circ}{mathrm A} resolution. Contained within the mushroom-shaped homo-oligomeric heptamer is a solvent-filled channel, 100 overset{circ}{mathrm A} in length, that runs along the sevenfold axis and ranges from 14 overset{circ}{mathrm A} to 46 overset{circ}{mathrm A} in diameter. The lytic, transmembrane domain comprises the lower half of a 14-strand antiparallel β barrel, to which each protomer contributes two β strands, each 65 overset{circ}{mathrm A} long. The interior of the β barrel is primarily hydrophilic, and the exterior has a hydrophobic belt 28 overset{circ}{mathrm A} wide. The structure proves the heptameric subunit stoichiometry of the α-hemolysin oligomer, shows that a glycine-rich and solvent-exposed region of a water-soluble protein can self-assemble to form a transmembrane pore of defined structure, and provides insight into the principles of membrane interaction and transport activity of β barrel pore-forming toxins.

  5. [Bacterial synthesis, purification, and solubilization of transmembrane segments of ErbB family members].

    Science.gov (United States)

    Goncharuk, M V; Shul'ga, A A; Ermoliuk, Ia S; Tkach, E N; Goncharuk, S A; Pustovalova, Iu E; Mineev, K S; Bocharov, É V; Maslennikov, I V; Arsen'ev, A S; Kirpichnikov, M P

    2011-01-01

    A family of epidermal growth factor receptors, ErbB, represents an important class of receptor tyrosine kinases, playing a leading role in cellular growth, development and differentiation. Transmembrane domains of these receptors transduce biochemical signals across plasma membrane via lateral homo- and heterodimerization. Relatively small size of complexes of ErbB transmembrane domains with detergents or lipids allows one to study their detailed spatial structure using three-dimensional heteronuclear high-resolution NMR spectroscopy. Here, we describe the effective expression system and purification procedure for preparative-scale production of transmembrane peptides from four representatives of ErbB family, ErbB1, ErbB2, ErbB3, ErbB4, for structural studies. The recombinant peptides were produced in Escherichia coli BL21(DE3)pLysS as C-terminal extensions of thioredoxin A. The fusion protein cleavage was accomplished with the light subunit of human enterokinase. Several (10-30) milligrams of purified isotope-labeled transmembrane peptides were isolated with the use of a simple and convenient procedure, which consists of consecutive steps of immobilized metal affinity chromatography and cation-exchange chromatography. The purified peptides were reconstituted in lipid/detergent environment (micelles or bicelles) and characterized using dynamic light scattering, CD and NMR spectroscopy. The data obtained indicate that the purified ErbB transmembrane peptides are suitable for structural and dynamic studies of their homo- and heterodimer complexes using high resolution NMR spectroscopy.

  6. Introduction of Deuterated Aromatic Amino Acids  [2,3,4,5,6-2H5]phenylalanine, [3,5-2H2]tyrosine and [2,4,5,6,7-2H5]tryptophan into a Molecule of Photochrome Trans-membrane Protein Bacteriorhodopsin

    Directory of Open Access Journals (Sweden)

    Oleg Mosin

    2015-09-01

    Full Text Available It was carried out the introduction of functionally important deuterated aromatic amino acids  [2,3,4,5,6-2H5]phenylalanine, [3,5-2H2]tyrosine and [2,4,5,6,7-2H5]tryptophan into a molecule of photochrome trans-membrane protein bacteriorhodopsin, synthesized by a photo-organotrophic halobacterium Halobacterium halobium ET 1001. The deuterated protein (output 810 mg was isolated from purple membranes by cellular autolysis by distilled water, processing of bacterial biomass by ultrasound at 22 KHz, alcohol extraction of low and high-weight molecular impurities, cellular RNA, carotenoids and lipids, with the subsequent solubilization of final product with 0,5 % (w/v SDS-Na and fractionation by methanol, gel filtration chromatography on Sephadex G-200, reverse-phase HPLC and EI impact mass-spectrometry of methyl esters of N-Dns-[2H]derivatives of amino acids. Deuterium was detected in all residues of aromatic amino acids. However, the presence in the EI mass spectrum of the BR hydrolysate the peaks [M]+ of semi-deuterated analogues of aromatic amino acids  phenylalanine with [M]+ at m/z = 413418, tyrosine  with [M]+ at m/z = 428430 and tryptophan  with [M]+ at m/z = 453457 with different levels of contributions to the deuterium enrichment of molecules testifies about the conservation of the minor pathways of biosynthesis of aromatic amino acids de novo.

  7. Molecular pharmacology of promiscuous seven transmembrane receptors sensing organic nutrients

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Johansen, Lars Dan; Bräuner-Osborne, Hans

    2009-01-01

    -sensing receptor, the G protein-coupled receptor family C, group 6, subtype A (GPRC6A), and the taste1 receptor T1R1/T1R3, which are sensing L-alpha-amino acids, the carbohydrate-sensing T1R2/T1R3 receptor, the proteolytic degradation product sensor GPR93 (also termed GPR92), and the free fatty acid (FFA) sensing......A number of highly promiscuous seven transmembrane (7TM) receptors have been cloned and characterized within the last few years. It is noteworthy that many of these receptors are activated broadly by amino acids, proteolytic degradation products, carbohydrates, or free fatty acids and are expressed...... in taste tissue, the gastrointestinal tract, endocrine glands, adipose tissue, and/or kidney. These receptors thus hold the potential to act as sensors of food intake, regulating, for example, release of incretin hormones from the gut, insulin/glucagon from the pancreas, and leptin from adipose tissue...

  8. ATPase activity of the cystic fibrosis transmembrane conductance regulator.

    Science.gov (United States)

    Li, C; Ramjeesingh, M; Wang, W; Garami, E; Hewryk, M; Lee, D; Rommens, J M; Galley, K; Bear, C E

    1996-11-08

    The gene mutated in cystic fibrosis codes for the cystic fibrosis transmembrane conductance regulator (CFTR), a cyclic AMP-activated chloride channel thought to be critical for salt and water transport by epithelial cells. Plausible models exist to describe a role for ATP hydrolysis in CFTR channel activity; however, biochemical evidence that CFTR possesses intrinsic ATPase activity is lacking. In this study, we report the first measurements of the rate of ATP hydrolysis by purified, reconstituted CFTR. The mutation CFTRG551D resides within a motif conserved in many nucleotidases and is known to cause severe human disease. Following reconstitution the mutant protein exhibited both defective ATP hydrolysis and channel gating, providing direct evidence that CFTR utilizes ATP to gate its channel activity.

  9. Bis-histidine-coordinated hemes in four-helix bundles: how the geometry of the bundle controls the axial imidazole plane orientations in transmembrane cytochromes of mitochondrial complexes II and III and related proteins.

    Science.gov (United States)

    Berry, Edward A; Walker, F Ann

    2008-05-01

    Early investigation of the electron paramagnetic resonance spectra of bis-histidine-coordinated membrane-bound ferriheme proteins led to the description of a spectral signal that had only one resolved feature. These became known as "highly anisotropic low-spin" or "large g(max)" ferriheme centers. Extensive work with small-molecule model heme complexes showed that this spectroscopic signature occurs in bis-imidazole ferrihemes in which the planes of the imidazole ligands are nearly perpendicular, deltaphi = 57-90 degrees. In the last decade protein crystallographic studies have revealed the atomic structures of a number of examples of bis-histidine heme proteins. A frequent characteristic of these large g(max) ferrihemes in membrane-bound proteins is the occurrence of the heme within a four-helix bundle with a left-handed twist. The histidine ligands occur at the same level on two diametrically opposed helices of the bundle. These ligands have the same side-chain conformation and ligate heme iron on the bundle axis, resulting in a quasi-twofold symmetric structure. The two non-ligand-bearing helices also obey this symmetry, and have a conserved small residue, usually glycine, where the edge of the heme ring makes contact with the helix backbones. In many cases this small residue is preceded by a threonine or serine residue whose side-chain hydroxyl oxygen acts as a hydrogen-bond acceptor from the N(delta1) atom of the heme-ligating histidine. The deltaphi angle is thus determined by the common histidine side-chain conformation and the crossing angle of the ligand-bearing helices, in some cases constrained by hydrogen bonds to the serine/threonine residues on the non-ligand-bearing helices.

  10. MemBrain: improving the accuracy of predicting transmembrane helices.

    Directory of Open Access Journals (Sweden)

    Hongbin Shen

    Full Text Available Prediction of transmembrane helices (TMH in alpha helical membrane proteins provides valuable information about the protein topology when the high resolution structures are not available. Many predictors have been developed based on either amino acid hydrophobicity scale or pure statistical approaches. While these predictors perform reasonably well in identifying the number of TMHs in a protein, they are generally inaccurate in predicting the ends of TMHs, or TMHs of unusual length. To improve the accuracy of TMH detection, we developed a machine-learning based predictor, MemBrain, which integrates a number of modern bioinformatics approaches including sequence representation by multiple sequence alignment matrix, the optimized evidence-theoretic K-nearest neighbor prediction algorithm, fusion of multiple prediction window sizes, and classification by dynamic threshold. MemBrain demonstrates an overall improvement of about 20% in prediction accuracy, particularly, in predicting the ends of TMHs and TMHs that are shorter than 15 residues. It also has the capability to detect N-terminal signal peptides. The MemBrain predictor is a useful sequence-based analysis tool for functional and structural characterization of helical membrane proteins; it is freely available at http://chou.med.harvard.edu/bioinf/MemBrain/.

  11. Histidine at Residue 99 and the Transmembrane Region of the Precursor Membrane prM Protein Are Important for the prM-E Heterodimeric Complex Formation of Japanese Encephalitis Virus

    OpenAIRE

    Lin, Ying-Ju; Wu, Suh-Chin

    2005-01-01

    The formation of the flavivirus prM-E complex is an important step for the biogenesis of immature virions, which is followed by a subsequent cleavage of prM to M protein through cellular protease to result in the production and release of mature virions. In this study, the intracellular formation of the prM-E complex of Japanese encephalitis virus was investigated by baculovirus coexpression of prM and E in trans in Sf9 insect cells as analyzed by anti-E antibody immunoprecipitation and sucro...

  12. Role of ATP binding and hydrolysis in the gating of the cystic fibrosis transmembrane conductance regulator

    Directory of Open Access Journals (Sweden)

    Taras Gout

    2012-01-01

    Full Text Available The CFTR gene is unique within the ATP-binding cassette (ABC protein family, predominantly of transporters, by coding a chloride channel. The gating mechanism of ABC proteins has been characterized by the ATP Switch model in terms cycles of dimer formation and dissociation linked to ATP binding and hydrolysis, respectively. It would be of interest to assess the extent that Cystic Fibrosis Transmembrane Conductance Regulator (CFTR, a functional channel, fits the ATP Switch model for ABC transporters. Additional transporter mechanisms, namely those of Pgp and HlyB, are discussed for perspective. Literature search of databases selected key references in comparing and contrasting the gating mechanism. CFTR is a functional chloride channel facilitating transmembrane anion flow down electrochemical gradients. A dysfunctional CFTR protein results in cystic fibrosis, a fatal pleiotropic disease currently managed symptomatically. Understanding the gating mechanism will help target drug development aimed at alleviating and curing the disease.

  13. A synthetic peptide derived from human immunodeficiency virus type 1 gp120 downregulates the expression and function of chemokine receptors CCR5 and CXCR4 in monocytes by activating the 7-transmembrane G-protein-coupled receptor FPRL1/LXA4R.

    Science.gov (United States)

    Deng, X; Ueda, H; Su, S B; Gong, W; Dunlop, N M; Gao, J L; Murphy, P M; Wang, J M

    1999-08-15

    Because envelope gp120 of various strains of human immunodeficiency virus type 1 (HIV-1) downregulates the expression and function of a variety of chemoattractant receptors through a process of heterologous desensitization, we investigated whether epitopes derived from gp120 could mimic the effect. A synthetic peptide domain, designated F peptide, corresponding to amino acid residues 414-434 in the V4-C4 region of gp120 of the HIV-1 Bru strain, potently reduced monocyte binding and chemotaxis response to macrophage inflammatory protein 1beta (MIP-1beta) and stromal cell-derived factor 1alpha (SDF-1alpha), chemokines that use the receptors CCR5 and CXCR4, respectively. Further study showed that F peptide by itself is an inducer of chemotaxis and calcium mobilization in human monocytes and neutrophils. In cross-desensitization experiments, among the numerous chemoattractants tested, only the bacterial chemotactic peptide fMLF, when used at high concentrations, partially attenuated calcium mobilization induced by F peptide in phagocytes, suggesting that this peptide domain might share a 7-transmembrane, G-protein-coupled receptor with fMLF. By using cells transfected with cDNAs encoding receptors that interact with fMLF, we found that F peptide uses an fMLF receptor variant, FPRL1, as a functional receptor. The activation of monocytes by F peptide resulted in downregulation of the cell surface expression of CCR5 and CXCR4 in a protein kinase C-dependent manner. These results demonstrate that activation of FPRL1 on human moncytes by a peptide domain derived from HIV-1 gp120 could lead to desensitization of cell response to other chemoattractants. This may explain, at least in part, the initial activation of innate immune responses in HIV-1-infected patients followed by immune suppression.

  14. Responses of Transmembrane Peptide and Lipid Chains to Hydrophobic Mismatch

    Institute of Scientific and Technical Information of China (English)

    YANG Lei; LI Jian-tao; QI Hai-yan; LI Fei

    2012-01-01

    Hydrophobic mismatch between the hydrophobic length of membrane proteins and hydrophobic thickness of membranes is a crucial factor in controlling protein function and assembly.We combined fluorescence with circular dichroism(CD) and attenuated total reflection infrared(ATR-IR) spectroscopic methods to investigate the behaviors of the peptide and lipids under hydrophobic mismatch using a model peptide from the fourth transmembrane domain of natural resistance-associated macrophage protein 1 (Nramp 1),the phosphatidylcholines(PCs) and phosphatidylglycerols(PGs) with different lengths of acyl chains(14:0,16:0 and 18:0).In all PG lipid membranes,the peptide forms stable α-helix structure,and the helix axis is parallel to lipid chains.The helical span and orientation hardly change in varying thickness of PG membranes,while the lipid chains can deform to accommodate to the hydrophobic surface of embedded peptide.By comparison,the helical structures of the model peptide in PC lipid membranes are less stable.Upon incorporation with PC lipid membranes,the peptide can deform itself to accommodate to the hydrophobic thickness of lipid membranes in response to hydrophobic mismatch.In addition,hydrophobic mismatch can increase the aggregation propensity of the peptide in both PC and PG lipid membranes and the peptide in PC membranes has more aggregation tendency than that in PG membranes.

  15. Virus-Encoded 7 Transmembrane Receptors

    DEFF Research Database (Denmark)

    Mølleskov-Jensen, Ann-Sofie; Oliveira, MarthaTrindade; Farrell, Helen Elizabeth

    2015-01-01

    Herpesviruses are an ancient group which have exploited gene capture of multiple cellular modulators of the immune response. Viral homologues of 7 transmembrane receptors (v7TMRs) are a consistent feature of beta- and gammaherpesviruses; the majority of the v7TMRs are homologous to cellular...... chemokine receptors (CKRs). Conserved families of v7TMRs distinguish between beta- versus gammaherpesviruses; furthermore, significant divisions within these subfamilies, such as between genera of the gammaherpesviruses or between the primate and rodent cytomegaloviruses, coincide with specific v7TMR gene...... families. Divergence of functional properties between the viral 7TMR and their cellular counterparts is likely, therefore, to reflect adaptation supporting various aspects of the viral lifecycle with concomitant effects upon viral pathogenesis. Consistent with their long evolutionary history, the v7TMRs...

  16. Expression of chemokine like factor-like myelin and lymphocyte and related proteins for vesicle trafficking and membrane link transmembrane domain-containing protein 2 in rats with varicocele%人类趋化素样因子超家族2在精索静脉曲张大鼠模型中的表达

    Institute of Scientific and Technical Information of China (English)

    张晓威; 顿耀军; 唐旭; 殷华奇; 胡志平; 赵永平; 徐涛; 李清

    2016-01-01

    目的:通过建立精索静脉曲张大鼠模型,探讨人类趋化素样因子超家族2(chemokine like factor-like myelin and lymphocyte and related proteins for vesicle trafficking and membrane link transmembrane domain-containing protein 2, CMTM2)对精索静脉曲张大鼠生精过程的影响。方法:选取雄性 SD 大鼠40只(体重220~330 g,6~7周龄),将大鼠随机分为精索静脉曲张持续4、12周后处死取样组,和相应的接受假手术处理的对照组,每组均为10只大鼠。通过手术进行左肾静脉缩窄建立左侧精索静脉曲张的大鼠模型。将实验组和对照组大鼠于4周或12周后处死,取出左侧睾丸,游离附睾中精子,观察并计算精子密度与活力,测量生精小管外径、内径及上皮直径改变,并进行免疫组织化学分析以判断 CMTM2蛋白的表达状况。结果:与对照组相比,精索静脉曲张4周组中大鼠的精子密度[(63.9±7.1)×106/mL vs.(74.3±5.0)×106/mL]和活力[(58.7%±7.9%)vs.(66.1%±4.3%)]轻度下降(t =1.432,1.563;P =0.076,0.059),精索静脉曲张12周组中大鼠的精子密度[(40.5±7.2)×106/mL vs.(71.1±4.5)×106/mL]和活力[(35.2%±8.5%)vs.(63.4%±4.1%)]显著下降(t =3.754,3.933;P =0.004,0.002)。此外,CMTM2蛋白的表达水平在精索静脉曲张组也出现明显下降,对照组 CMTM2水平为精索静脉曲张12周组的(2.3±0.4)倍(t =1.978;P =0.039)。4周时,精索静脉曲张组生精小管外径出现轻度降低[(271.1±8.4)μm vs.(280.0±8.1)μm,t =1.361,P =0.132],而12周组则出现明显降低[(198.2±10.2)μm vs.(255.8±12.7)μm,t =2.125,P =0.003],此外,精索静脉曲张12周组的生精小管上皮直径出现明显下降[(54.1±1.5)μm vs

  17. Snorkeling of lysine side chains in transmembrane helices: how easy can it get?

    Science.gov (United States)

    Strandberg, Erik; Killian, J Antoinette

    2003-06-05

    Transmembrane segments of proteins are often flanked by lysine residues. The side chains of these residues may snorkel, i.e. they may bury themselves with their aliphatic part in the hydrophobic region of the lipid bilayer, while positioning the charged amino group in the more polar interface. Here we estimate the free energy cost of snorkeling from thermodynamical calculations based on studies with synthetic transmembrane peptides [Strandberg et al. (2002) Biochemistry 41, 7190-7198]. The value is estimated to be between 0.07 and 0.7 kcal mol(-1) for a lysine side chain. This very low value indicates that snorkeling may be a common process, which should be taken into consideration both in experimental and in theoretical studies on protein-lipid interactions.

  18. Molecular dynamics simulation of the transmembrane subunit of BtuCD in the lipid bilayer

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on the crystal structure of the vitamin B12 transporter protein of Escherichia coli(BtuCD) a system consisting of the BtuCD transmembrane domain(BtuC) and the palmitoyloleoyl phosphatidylcholine(POPC) lipid bilayer was constructed in silica,and a more-than-57-nanosecond molecular dynamics(MD) simulation was performed on it to reveal the intrinsic functional motions of BtuC.The results showed that a stable protein-lipid bilayer was obtained and the POPC lipid bilayer was able to adjust its thickness to match the embedded BtuC which underwent relatively complicated motions.These results may help to understand the mechanism of transmembrane substrate transport at the atomic level.

  19. TMV recombinants encoding fused foreign transmembrane domains to the CP subunit caused local necrotic response on susceptible tobacco.

    Science.gov (United States)

    Li, Qiaoli; Li, Mangmang; Jiang, Lubin; Zhang, Qingqi; Song, Rentao; Xu, Zhengkai

    2006-05-10

    With regard to the effects of various foreign peptides fused to the coat protein subunits on the infectivity of corresponding TMV recombinants, some of TMV recombinants were found to induce necrotic local lesions on the inoculated leaves of susceptible tobacco. This paper reported that there existed a group of TMV recombinants in which the fused foreign peptides contained a transmembrane domain according to the predictions by three programs of SOSUI, TMpred and DAS. Further studies showed for the first time that a foreign transmembrane domain in a fused peptide of the corresponding TMV recombinant would result in the local lesions on the susceptible tobacco leaves. In addition, it was concluded that none of the TMV recombinants that systematically infected susceptible tobacco contained a transmembrane domain in the coat protein subunits.

  20. Development of a Proteoliposome Model to Probe Transmembrane Electron-Transfer Reactions

    Energy Technology Data Exchange (ETDEWEB)

    White, Gaye F. [Univ. of East Anglia, Norwich (United Kingdom); Shi, Zhi [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shi, Liang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dohnalkova, Alice [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fredrickson, Jim K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zachara, John M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Butt, Julea N. [Univ. of East Anglia, Norwich (United Kingdom); Richardson, David J. [Univ. of East Anglia, Norwich (United Kingdom); Clarke, Thomas [Univ. of East Anglia, Norwich (United Kingdom)

    2012-12-01

    The mineral respiring bacterium Shewanella oneidensis uses a protein complex, MtrCAB, composed of two decaheme cytochromes brought together inside a transmembrane porin to transport electrons across the outer membrane to a variety of mineral-based electron acceptors. A proteoliposome system has been developed that contains methyl viologen (MV) as an internalised electron acceptor and valinomycin (V) as a membrane associated cation exchanger. These proteoliposomes can be used as a model system to investigate MtrCAB function.

  1. Peptide microarray analysis of substrate specificity of the transmembrane Ser/Thr kinase KPI-2 reveals reactivity with cystic fibrosis transmembrane conductance regulator and phosphorylase.

    Science.gov (United States)

    Wang, Hong; Brautigan, David L

    2006-11-01

    Human lemur (Lmr) kinases are predicted to be Tyr kinases based on sequences and are related to neurotrophin receptor Trk kinases. This study used homogeneous recombinant KPI-2 (Lmr2, LMTK2, Cprk, brain-enriched protein kinase) kinase domain and a library of 1,154 peptides on a microarray to analyze substrate specificity. We found that KPI-2 is strictly a Ser/Thr kinase that reacts with Ser either preceded by or followed by Pro residues but unlike other Pro-directed kinases does not strictly require an adjacent Pro residue. The most reactive peptide in the library corresponds to Ser-737 of cystic fibrosis transmembrane conductance regulator, and the recombinant R domain of cystic fibrosis transmembrane conductance regulator was a preferred substrate. Furthermore the KPI-2 kinase phosphorylated peptides corresponding to the single site in phosphorylase and purified phosphorylase b, making this only the second known phosphorylase b kinase. Phosphorylase was used as a specific substrate to show that KPI-2 is inhibited in living cells by addition of nerve growth factor or serum. The results demonstrate the utility of the peptide library to probe specificity and discover kinase substrates and offer a specific assay that reveals hormonal regulation of the activity of this unusual transmembrane kinase.

  2. SNPs Detection of Transmembrane Protein 18 Gene (TMEM18) and Its Asscoation with Growth Traits in Jiaxian Red Cattle(Bos taurus)%郏县红牛跨膜蛋白18基因(TMEM18)SNPs检测及其与生长性状的关联分析

    Institute of Scientific and Technical Information of China (English)

    马伟; 马云; 刘栋; 高远; 王居强; 陈宏

    2013-01-01

    跨膜蛋白18基因(Transmembrane protein 18,TMEM18)在神经系统表达.全基因组关联分析(GWAS)表明,该基因的突变会影响人类肥胖和Body Mass Index(BMI)值变化.本研究采用DNA池测序技术检测了郏县红牛(Bos taurus) TMEM18基因5个外显子和部分内含子区单核苷酸多态(single nucleotide polymorphism,SNP)位点,通过PCR-RFLP技术对所发现的SNP位点进行分型验证,然后分析不同基因型与郏县红牛生长性状的关联性.结果表明,在郏县红牛TMEM18基因上共发现了3处新的SNPs:NW_003099175.1∶g.2303G>A、g.3835 G>A和g.3865 A>G(aa.Gly>Ser).关联分析结果表明,郏县红牛TMEM18基因g.2303G>A位点AA型个体体高、体长、胸围和体重显著大于GG型(P<0.05),郏县红牛TMEM18基因g.3835 G>A位点AG型个体胸围和体重显著大于AA型(P<0.05).研究结果提示,这两个位点可作为郏县红牛品种体尺和体重生长性状选择的分子育种候选标记.%Transmembrane protein 18 gene(TAEM18) is expressed in the central nervous system that has recently been linked to human obesity and body mass index (BMI) in genome wide association studies (GWAS). In this study, direct DNA pool sequencing and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods were used to genotype novel SNPs in TMEM18 gene, and then analyzed associations between different genotypes and growth traits in Jiaxian Red cattle (Bos taurus). Three novel SNPs were detected in Jiaxian Red cattle TMEM18 gene: NW_003099175.1: g. 2303G>A, g. 3835 G>A and g. 3865 A>G (aa. Gly>Ser). Significant association analysis revealed that the individuals with genotype AA had a larger body height, body length, heart girth and body weight than that of the individuals with genotypes GG at g.2303 A>G locus (P>0.05), The result also suggested that the individuals with genotype AG had a larger body weight and heart girth than that of the individuals with genotype AA at g

  3. Activation of 3-phosphoinositide-dependent kinase 1 (PDK1) and serum- and glucocorticoid-induced protein kinase 1 (SGK1) by short-chain sphingolipid C4-ceramide rescues the trafficking defect of ΔF508-cystic fibrosis transmembrane conductance regulator (ΔF508-CFTR).

    Science.gov (United States)

    Caohuy, Hung; Yang, Qingfeng; Eudy, Yvonne; Ha, Thien-An; Xu, Andrew E; Glover, Matthew; Frizzell, Raymond A; Jozwik, Catherine; Pollard, Harvey B

    2014-12-26

    Cystic fibrosis (CF) is due to a folding defect in the CF transmembrane conductance regulator (CFTR) protein. The most common mutation, ΔF508, prevents CFTR from trafficking to the apical plasma membrane. Here we show that activation of the PDK1/SGK1 signaling pathway with C4-ceramide (C4-CER), a non-toxic small molecule, functionally corrects the trafficking defect in both cultured CF cells and primary epithelial cell explants from CF patients. The mechanism of C4-CER action involves a series of mutual autophosphorylation and phosphorylation events between PDK1 and SGK1. Detailed mechanistic studies indicate that C4-CER initially induces autophosphorylation of SGK1 at Ser(422). SGK1[Ser(P)(422)] and C4-CER coincidently bind PDK1 and permit PDK1 to autophosphorylate at Ser(241). Then PDK1[Ser(P)(241)] phosphorylates SGK1[Ser(P)(422)] at Thr(256) to generate fully activated SGK1[Ser(422), Thr(P)(256)]. SGK1[Ser(P)(422),Thr(P)(256)] phosphorylates and inactivates the E3 ubiquitin ligase Nedd4-2. ΔF508-CFTR is thus free to traffic to the plasma membrane. Importantly, C4-CER-mediated activation of both PDK1 and SGK1 is independent of the PI3K/Akt/mammalian target of rapamycin signaling pathway. Physiologically, C4-CER significantly increases maturation and stability of ΔF508-CFTR (t½ ∼10 h), enhances cAMP-activated chloride secretion, and suppresses hypersecretion of interleukin-8 (IL-8). We suggest that candidate drugs for CF directed against the PDK1/SGK1 signaling pathway, such as C4-CER, provide a novel therapeutic strategy for a life-limiting disorder that affects one child, on average, each day.

  4. Effect of Tumor Necrosis Factor - α on Membrane Translocation of Six - Transmembrane Protein 4 in Human Adipocytes and Its Mechanism%肿瘤坏死因子-α对人脂肪细胞STEAP4蛋白膜转位的影响及其机制

    Institute of Scientific and Technical Information of China (English)

    邱洁; 周晓玉; 程锐; 季晨博; 秦大妮; 郭锡熔

    2011-01-01

    目的 探讨肿瘤坏死因子-α (TNF-α)对人脂肪细胞STEAP4蛋白膜转位的影响,并分析其可能的机制.方法 应用1-甲基3-异丁基黄嘌呤(MIX)、地塞米松、胰岛素、罗格列酮方案诱导人前体脂肪细胞分化,以人重组TNF-α或加用细胞外信号调节蛋白激酶( ERK)抑制剂PD-98059干预人成熟脂肪细胞24 h,采用Western blot技术检测细胞膜蛋白与总蛋白中STEAP4蛋白的表达.结果TNF-α干预能显著促进人成熟脂肪细胞中STEAP4蛋白向细胞膜转位;ERK抑制剂PD-98059联合TNF-α与单独应用TNF-α诱导人成熟脂肪细胞的细胞膜蛋白和总蛋白中STEAP4蛋白的表达水平比较均无显著差异.结论 TNF-α干预显著促进人成熟脂肪细胞中STEAP4蛋白的膜转位,初步排除丝裂原活化蛋白激酶信号途径参与这一调控机制.%Objective To investigate the effect of tumor necrosis factor-α(TNF - a)on the membrane transloeation of six - transmem-brane protein 4 (STEAP4) in human adipocytes and analyze its possible mechanisms. Methods Human preadipocytes were cultured in vitro and differentiated into the adipocytes induced by 3 - Isobutyl - 1 - methylxanthine, dexamethasone, insulin and rosiglitazone. The human matured adipocytes were treated by TNF - α and( or) extracellular regulated protein kinases( ERK) pathway inhibitor PD - 98059 for 24 hours. Then, the protein expression level of the STEAP4 in membrane protein and total protein were determined by Western blot. Results The results of Western blot showed that TNF - α dramatically promotes STEAP4 translocate to cell membrane. No significant difference was observed in expression of STEAP4 in membrane protein and total protein between the adipocytes treated by TNF - a combined with PD - 98059 and TNF - a singlely. Conclusions TNF - α dramatically promotes STEAP4 translocating to cell membrane,independent of the effects of mitogen -activated protein kinases pathway.

  5. Point Mutations in Transmembrane Helices 2 and 3 of ExbB and TolQ Affect Their Activities in Escherichia coli K-12

    OpenAIRE

    Braun, Volkmar; Herrmann, Christina

    2004-01-01

    Replacement of glutamate 176, the only charged amino acid in the third transmembrane helix of ExbB, with alanine (E176A) abolished ExbB activity in all determined ExbB-dependent functions of Escherichia coli. Combination of the mutations T148A in the second transmembrane helix and T181A in the third transmembrane helix, proposed to form part of a proton pathway through ExbB, also resulted in inactive ExbB. E176 and T148 are strictly conserved in ExbB and TolQ proteins, and T181 is almost stri...

  6. G Protein Coupled Receptors, the Magic Molecules with Seven Transmembrane Helices: A Brief Introduction to the Nobel Prize in Chemistry 2012%G蛋白偶联受体:七次跨膜结构的超级分子——2012年诺贝尔化学奖简介

    Institute of Scientific and Technical Information of China (English)

    路伟振; 吴蓓丽; 赵强

    2012-01-01

    G protein coupled receptors are the largest and the most important protein family in human genome, which involved in almost all of the living activities. The gene cloning, functional studies and structural determination of these receptors shed a new light on understanding the physiological regulation and the pathogenicity and treatment of almost all the human diseases. The Nobel Prize had issued to related research for 9 times, and in 2012, the Nobel Prize in Chemistry was issued to two American scientists. Robert J. Lefkowitz and Brian K. Kobilka, for their extraordinary work on this area, especially on β2 adrenergic receptors. In this paper, we briefly reviewed the research progresses of G protein coupled receptors in the past, their unique 7 transmembrane architecture, activation mechanism and their future trends.%G蛋白偶联受体是人类基因组中最大也是最重要的一类蛋白质,它们几乎参与了生物体中所有的生命活动.这一类受体的发现、功能研究以及结构解析为我们了解生理调控以及疾病的发生与治疗等带来新的曙光.在此之前,G蛋白偶联受体的相关研究已经被九次授予诺贝尔奖,而2012年,诺贝尔化学奖再次授予Robert J.Lefkowitz和Brian K.Kobilka,以表彰他们在此领域,尤其是肾上腺素受体上的相关研究.文中简介了G蛋白偶联受体的研究历程,其独特的七次跨膜结构与激活机制,并对此领域的未来发展做了展望.

  7. Transmembrane potentials of canine AV junctional tissues.

    Science.gov (United States)

    Tse, W W

    1986-06-01

    The atrioventricular (AV) junction comprises the AV node, His bundle (HB), and specialized tissues proximal to the node called paranodal fibers (PNF). In the present study, an in vitro, dissection-exposed canine right atrial (RA), transitional fiber (TF), AV junctional preparation was used. The TF and PNF formed a pathway running along the base of the septal cusp of the tricuspid valve (SCTV). In the first experiment, impulses elicited at the RA were monitored to propagate sequentially through the TF, PNF, AV node, and then the HB. This functional evidence supports the concept that a conduction pathway connecting the RA and the AV node exists along the base of the SCTV. This internodal pathway is referred to as the septal cusp pathway. In another experiment, transmembrane potentials and Vmax were determined on each of the AV junctional tissues. Results showed that PNF had the lowest Vmax (2.5 V/sec), followed by AV node (7.0 V/sec) and HB (33 V/sec). This finding showed that PNF, and not the AV node, has the lowest Vmax, suggesting that the PNF has the lowest conductivity among the AV junctional tissues, and this study advances our understanding on the mechanism of AV conduction delay in dog hearts.

  8. Sequence-specific conformational flexibility of SNARE transmembrane helices probed by hydrogen/deuterium exchange.

    Science.gov (United States)

    Stelzer, Walter; Poschner, Bernhard C; Stalz, Holger; Heck, Albert J; Langosch, Dieter

    2008-08-01

    SNARE proteins mediate fusion of intracellular eukaryotic membranes and their alpha-helical transmembrane domains are known to contribute to lipid bilayer mixing. Synthetic transmembrane domain peptides were previously shown to mimic the function of SNARE proteins in that they trigger liposome fusion in a sequence-specific fashion. Here, we performed a detailed investigation of the conformational dynamics of the transmembrane helices of the presynaptic SNAREs synaptobrevin II and syntaxin 1a. To this end, we recorded deuterium/hydrogen-exchange kinetics in isotropic solution as well as in the membrane-embedded state. In solution, the exchange kinetics of each peptide can be described by three different classes of amide deuteriums that exchange with different rate constants. These are likely to originate from exchange at different domains of the helices. Interestingly, the rate constants of each class vary with the TMD sequence. Thus, the exchange rate is position-specific and sequence-specific. Further, the rate constants correlate with the previously determined membrane fusogenicities. In membranes, exchange is retarded and a significant proportion of amide hydrogens are protected from exchange. We conclude that the conformational dynamics of SNARE TMD helices is mechanistically linked to their ability to drive lipid mixing.

  9. Biomimetic Transmembrane Channels with High Stability and Transporting Efficiency from Helically Folded Macromolecules.

    Science.gov (United States)

    Lang, Chao; Li, Wenfang; Dong, Zeyuan; Zhang, Xin; Yang, Feihu; Yang, Bing; Deng, Xiaoli; Zhang, Chenyang; Xu, Jiayun; Liu, Junqiu

    2016-08-08

    Membrane channels span the cellular lipid bilayers to transport ions and molecules into cells with sophisticated properties including high efficiency and selectivity. It is of particular biological importance in developing biomimetic transmembrane channels with unique functions by means of chemically synthetic strategies. An artificial unimolecular transmembrane channel using pore-containing helical macromolecules is reported. The self-folding, shape-persistent, pore-containing helical macromolecules are able to span the lipid bilayer, and thus result in extraordinary channel stability and high transporting efficiency for protons and cations. The lifetime of this artificial unimolecular channel in the lipid bilayer membrane is impressively long, rivaling those of natural protein channels. Natural channel mimics designed by helically folded polymeric scaffolds will display robust and versatile transport-related properties at single-molecule level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. [Research advances in CKLF-like MARVEL transmembrane domain containing member 5].

    Science.gov (United States)

    Yuan, Ye-qing; Xiao, Yun-bei; Liu, Zhen-hua; Zhang, Xiao-wei; Xu, Tao; Wang, Xiao-feng

    2012-12-01

    CKLF-like MARVEL transmembrane domain containing member(CMTM)is a novel generic family firstly reported by Peking University Center for Human Disease Genomics. CMTM5 belongs to this family and has exhibited tumor-inhibiting activities. It can encode proteins approaching to the transmembrane 4 superfamily(TM4SF). CMTM5 is broadly expressed in normal adult and fetal human tissues, but is undetectable or down-regulated in most carcinoma cell lines and tissues. Restoration of CMTM5 may inhibit the proliferation, migration, and invasion of carcinoma cells. Although the exact mechanism of its anti-tumor activity remains unclear, CMTM5 may be involved in various signaling pathways governing the occurrence and development of tumors. CMTM5 may be a new target in the gene therapies for tumors, while further studies on CMTM5 and its anti-tumor mechanisms are warranted.

  11. The Cystic Fibrosis Transmembrane Regulator (CFTR in the kidney

    Directory of Open Access Journals (Sweden)

    MORALES MARCELO M.

    2000-01-01

    Full Text Available The cystic fibrosis transmembrane regulator (CFTR is a Cl- channel. Mutations of this transporter lead to a defect of chloride secretion by epithelial cells causing the Cystic Fibrosis disease (CF. In spite of the high expression of CFTR in the kidney, patients with CF do not show major renal dysfunction, but it is known that both the urinary excretion of drugs and the renal capacity to concentrate and dilute urine is deficient. CFTR mRNA is expressed in all nephron segments and its protein is involved with chloride secretion in the distal tubule, and the principal cells of the cortical (CCD and medullary (IMCD collecting ducts. Several studies have demonstrated that CFTR does not only transport Cl- but also secretes ATP and, thus, controls other conductances such as Na+ (ENaC and K+ (ROMK2 channels, especially in CCD. In the polycystic kidney the secretion of chloride through CFTR contributes to the cyst enlargement. This review is focused on the role of CFTR in the kidney and the implications of extracellular volume regulators, such as hormones, on its function and expression.

  12. Expression of cystic fibrosis transmembrane conductance regulator in rat ovary.

    Science.gov (United States)

    Jin, Lei; Tang, Ruiling

    2008-10-01

    The protein expression of cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated Cl(-) channel, in ovarian stimulated premature female rat ovary during a cycle of follicle development and corpus luteum formation was investigated. Animals were injected with 10 U pregnant Mare's serum gonadotropin (PMSG) and subsequently 10 U hCG 48 h later. Time-dependent immunohistochemistry and Western blotting experiments were performed before and 24, 48, 72 h after hCG treatment. The immunohistochemistry revealed that administration of PMSG stimulated the CFTR expression in thecal cell layer and granulosa cell layer of mature follicles 48 h post injection, coincident with the PMSG-induced peak in follicular estradiol. However, the expression of CFTR in the granulose lutein cell layer and thecal lutein cell layer was time-dependently reduced following hCG injection, in accordance with the gradually increased progestogen level during luteum corpus formation. Western blotting analysis demonstrated that rat ovarian tissue expressed the special CFTR band at 170 kD. It is concluded that cAMP-dependent Cl(-) channels are involved in regulation of follicle development and luteum formation.

  13. Expression of Cystic Fibrosis Transmembrane Conductance Regulator in Rat Ovary

    Institute of Scientific and Technical Information of China (English)

    Lei JIN; Ruiling TANG

    2008-01-01

    Summary: The protein expression of cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated Cl- channel, in ovarian stimulated premature female rat ovary during a cycle of follicle development and corpus luteum formation was investigated. Animals were injected with 10 U pregnant Mare's serum gonadotropin (PMSG) and subsequently 10U hCG 48h later. Time-dependent immunohistochemistry and Western blotting experiments were performed before and 24, 48, 72h after hCG treatment. The immnnohistochemistry revealed that administration of PMSG stimulated the CFTR expression in theeal cell layer and granulosa cell layer of mature follicles 48 h post injection, coincident with the PMSG-induced peak in follicular estradiol. However, the expression of CFTR in the granuiose lutein cell layer and theeal lutein cell layer was time-dependently reduced following hCG injection, in accordance with the gradually increased progestogen level during luteum corpus formation. Western blotting analysis demonstrated that rat ovarian tissue expressed the special CFTR band at 170kD. It is concluded that cAMP-dependent Cl- channels are involved in regulation of follicle development and luteum formation.

  14. The role of lipophilicity in transmembrane anion transport

    NARCIS (Netherlands)

    Saggiomo, Vittorio; Otto, Sijbren; Marques, Igor; Felix, Vitor; Torroba, Tomas; Quesada, Roberto

    2012-01-01

    The transmembrane anion transport activity of a series of synthetic molecules inspired by the structure of tambjamine alkaloids can be tuned by varying the lipophilicity of the receptor, with carriers within a certain log P range performing best.

  15. Lipid bilayer microarray for parallel recording of transmembrane ion currents.

    Science.gov (United States)

    Le Pioufle, Bruno; Suzuki, Hiroaki; Tabata, Kazuhito V; Noji, Hiroyuki; Takeuchi, Shoji

    2008-01-01

    This paper describes a multiwell biochip for simultaneous parallel recording of ion current through transmembrane pores reconstituted in planar lipid bilayer arrays. Use of a thin poly(p-xylylene) (parylene) film having micrometer-sized apertures (phi=15-50 microm, t=20 microm) led to formation of highly stable bilayer lipid membranes (BLMs) for incorporation of transmembrane pores; thus, a large number of BLMs could be arrayed without any skillful technique. We optically confirmed the simultaneous formation of BLMs in a 5x5 matrix, and in our durability test, the BLM lasted more than 15 h. Simultaneous parallel recording of alamethicin and gramicidin transmembrane pores in multiple contiguous recording sites demonstrated the feasibility of high-throughput screening of transmembrane ion currents in artificial lipid bilayers.

  16. The Lantibiotic Nisin Induces Transmembrane Movement of a Fluorescent Phospholipid

    NARCIS (Netherlands)

    Moll, Gert N.; Konings, Wil N.; Driessen, Arnold J.M.

    1998-01-01

    Nisin is a pore-forming antimicrobial peptide. The capacity of nisin to induce transmembrane movement of a fluorescent phospholipid in lipid vesicles was investigated. Unilamellar phospholipid vesicles that contained a fluorescent phospholipid

  17. A unique phenylalanine in the transmembrane domain strengthens homodimerization of the syndecan-2 transmembrane domain and functionally regulates syndecan-2.

    Science.gov (United States)

    Kwon, Mi-Jung; Choi, Youngsil; Yun, Ji-Hye; Lee, Weontae; Han, Inn-Oc; Oh, Eok-Soo

    2015-02-27

    The syndecans are a type of cell surface adhesion receptor that initiates intracellular signaling events through receptor clustering mediated by their highly conserved transmembrane domains (TMDs). However, the exact function of the syndecan TMD is not yet fully understood. Here, we investigated the specific regulatory role of the syndecan-2 TMD. We found that syndecan-2 mutants in which the TMD had been replaced with that of syndecan-4 were defective in syndecan-2-mediated functions, suggesting that the TMD of syndecan-2 plays one or more specific roles. Interestingly, syndecan-2 has a stronger tendency to form sodium dodecyl sulfate (SDS)-resistant homodimers than syndecan-4. Our structural studies showed that a unique phenylalanine residue (Phe(167)) enables an additional molecular interaction between the TMDs of the syndecan-2 homodimer. The presence of Phe(167) was correlated with a higher tendency toward oligomerization, and its replacement with isoleucine significantly reduced the SDS-resistant dimer formation and cellular functions of syndecan-2 (e.g. cell migration). Conversely, replacement of isoleucine with phenylalanine at this position in the syndecan-4 TMD rescued the defects observed in a mutant syndecan-2 harboring the syndecan-4 TMD. Taken together, these data suggest that Phe(167) in the TMD of syndecan-2 endows the protein with specific functions. Our work offers new insights into the signaling mediated by the TMD of syndecan family members.

  18. STAC--A New Domain Associated with Transmembrane Solute Transport and Two-Component Signal Transduction Systems.

    Science.gov (United States)

    Korycinski, Mateusz; Albrecht, Reinhard; Ursinus, Astrid; Hartmann, Marcus D; Coles, Murray; Martin, Jörg; Dunin-Horkawicz, Stanislaw; Lupas, Andrei N

    2015-10-09

    Transmembrane receptors are integral components of sensory pathways in prokaryotes. These receptors share a common dimeric architecture, consisting in its basic form of an N-terminal extracellular sensor, transmembrane helices, and an intracellular effector. As an exception, we have identified an archaeal receptor family--exemplified by Af1503 from Archaeoglobus fulgidus--that is C-terminally shortened, lacking a recognizable effector module. Instead, a HAMP domain forms the sole extension for signal transduction in the cytosol. Here, we examine the gene environment of Af1503-like receptors and find a frequent association with transmembrane transport proteins. Furthermore, we identify and define a closely associated new protein domain family, which we characterize structurally using Af1502 from A. fulgidus. Members of this family are found both as stand-alone proteins and as domains within extant receptors. In general, the latter appear as connectors between the solute carrier 5 (SLC5)-like transmembrane domains and two-component signal transduction (TCST) domains. This is seen, for example, in the histidine kinase CbrA, which is a global regulator of metabolism, virulence, and antibiotic resistance in Pseudomonads. We propose that this newly identified domain family mediates signal transduction in systems regulating transport processes and name it STAC, for SLC and TCST-Associated Component. Copyright © 2015 MRC Laboratory of Molecular Biology. Published by Elsevier Ltd.. All rights reserved.

  19. Structural basis of transmembrane domain interactions in integrin signaling.

    Science.gov (United States)

    Ulmer, Tobias S

    2010-01-01

    Cell surface receptors of the integrin family are pivotal to cell adhesion and migration. The activation state of heterodimeric alphabeta integrins is correlated to the association state of the single-pass alpha and beta transmembrane domains. The association of integrin alphaIIbbeta3 transmembrane domains, resulting in an inactive receptor, is characterized by the asymmetric arrangement of a straight (alphaIIb) and tilted (beta3) helix relative to the membrane in congruence to the dissociated structures. This allows for a continuous association interface centered on helix-helix glycine-packing and an unusual alphaIIb(GFF) structural motif that packs the conserved Phe-Phe residues against the beta3 transmembrane helix, enabling alphaIIb(D723)beta3(R995) electrostatic interactions. The transmembrane complex is further stabilized by the inactive ectodomain, thereby coupling its association state to the ectodomain conformation. In combination with recently determined structures of an inactive integrin ectodomain and an activating talin/beta complex that overlap with the alphabeta transmembrane complex, a comprehensive picture of integrin bi-directional transmembrane signaling has emerged.

  20. [Polymethoxylated flavonoids activate cystic fibrosis transmembrane conductance regulator chloride channel].

    Science.gov (United States)

    Cao, Huan-Huan; Fang, Fang; Yu, Bo; Luan, Jian; Jiang, Yu; Yang, Hong

    2015-04-25

    Cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent chloride channel, plays key roles in fluid secretion in serous epithelial cells. Previously, we identified two polymethoxylated flavonoids, 3',4',5,5',6,7-hexamethoxyflavone (HMF) and 5-hydroxy-6,7,3',4'-tetramethoxyflavone (HTF) which could potentiate CFTR chloride channel activities. The present study was aimed to investigate the potentiation effects of HMF and HTF on CFTR Cl(-) channel activities by using a cell-based fluorescence assay and the short circuit Ussing chamber assay. The results of cell-based fluorescence assay showed that both HMF and HTF could dose-dependently potentiate CFTR Cl(-) channel activities in rapid and reversible ways, and the activations could be reversed by the CFTR blocker CFTRinh-172. Notably, HMF showed the highest affinity (EC50 = 2 μmol/L) to CFTR protein among the flavonoid CFTR activators identified so far. The activation of CFTR by HMF or HTF was forskolin (FSK) dependent. Both compounds showed additive effect with FSK and 3-Isobutyl-1-methylx (IBMX) in the activation of CFTR, while had no additive effect with genistein (GEN). In ex vivo studies, HMF and HTF could stimulate transepithelial Cl(-) secretion in rat colonic mucosa and enhance fluid secretion in mouse trachea submucosal glands. These results suggest that HMF and HTF may potentiate CFTR Cl(-) channel activities through both elevation of cAMP level and binding to CFTR protein pathways. The results provide new clues in elucidating structure and activity relationship of flavonoid CFTR activators. HMF might be developed as a new drug in the therapy of CFTR-related diseases such as bronchiectasis and habitual constipation.

  1. Synaptobrevin transmembrane domain influences exocytosis by perturbing vesicle membrane curvature.

    Science.gov (United States)

    Chang, Che-Wei; Jackson, Meyer B

    2015-07-07

    Membrane fusion requires that nearly flat lipid bilayers deform into shapes with very high curvature. This makes membrane bending a critical force in determining fusion mechanisms. A lipid bilayer will bend spontaneously when material is distributed asymmetrically between its two monolayers, and its spontaneous curvature (C0) will influence the stability of curved fusion intermediates. Prior work on Ca(2+)-triggered exocytosis revealed that fusion pore lifetime (τ) varies with vesicle content (Q), and showed that this relation reflects membrane bending energetics. Lipids that alter C0 change the dependence of τ on Q. These results suggested that the greater stability of an initial exocytotic fusion pore associated with larger vesicles reflects the need to bend more membrane during fusion pore dilation. In this study, we explored the possibility of manipulating C0 by mutating the transmembrane domain (TMD) of the vesicle membrane protein synaptobrevin 2 (syb2). Amperometric measurements of exocytosis in mouse chromaffin cells revealed that syb2 TMD mutations altered the relation between τ and Q. The effects of these mutations showed a striking periodicity, changing sign as the structural perturbation moved through the inner and outer leaflets. Some glycine and charge mutations also influenced the dependence of τ on Q in a manner consistent with expected changes in C0. These results suggest that side chains in the syb2 TMD influence the kinetics of exocytosis by perturbing the packing of the surrounding lipids. The present results support the view that membrane bending occurs during fusion pore expansion rather than during fusion pore formation. This supports the view of an initial fusion pore through two relatively flat membranes formed by protein. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Exploiting hydrophobicity for efficient production of transmembrane helices for structure determination by NMR spectroscopy

    DEFF Research Database (Denmark)

    Bugge, Katrine Østergaard; Steinocher, Helena; Brooks, Andrew J.

    2015-01-01

    Despite the biological and pharmaceutical significance of membrane proteins, their tertiary structures constitute less than 3% of known structures. One of the major obstacles for initiating structural studies of membrane proteins by NMR spectroscopy is the generation of high amounts of isotope......-labeled protein. In this work, we have exploited the hydrophobic nature of membrane proteins to develop a simple and efficient production scheme for isotope-labeled single-pass transmembrane domains (TMDs) with or without intrinsically disordered regions. We have evaluated the applicability and limitations...... of the strategy using seven membrane protein variants that differ in their overall hydrophobicity and length and show a recovery for suitable variants of >70%. The developed production scheme is cost-efficient and easy to implement and has the potential to facilitate an increase in the number of structures...

  3. Protein: MPA1 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available feron stimulator, Mediator of IRF3 activation, Stimulator of interferon genes protein 9606 Homo sapiens Q86WV6 340061 ... ...MPA1 TLR signaling molecules TMEM173 ERIS, MITA, STING Transmembrane protein 173 Endoplasmic reticulum inter

  4. TMDIM: an improved algorithm for the structure prediction of transmembrane domains of bitopic dimers

    Science.gov (United States)

    Cao, Han; Ng, Marcus C. K.; Jusoh, Siti Azma; Tai, Hio Kuan; Siu, Shirley W. I.

    2017-09-01

    α -Helical transmembrane proteins are the most important drug targets in rational drug development. However, solving the experimental structures of these proteins remains difficult, therefore computational methods to accurately and efficiently predict the structures are in great demand. We present an improved structure prediction method TMDIM based on Park et al. (Proteins 57:577-585, 2004) for predicting bitopic transmembrane protein dimers. Three major algorithmic improvements are introduction of the packing type classification, the multiple-condition decoy filtering, and the cluster-based candidate selection. In a test of predicting nine known bitopic dimers, approximately 78% of our predictions achieved a successful fit (RMSD <2.0 Å) and 78% of the cases are better predicted than the two other methods compared. Our method provides an alternative for modeling TM bitopic dimers of unknown structures for further computational studies. TMDIM is freely available on the web at https://cbbio.cis.umac.mo/TMDIM. Website is implemented in PHP, MySQL and Apache, with all major browsers supported.

  5. Corrector VX-809 stabilizes the first transmembrane domain of CFTR.

    Science.gov (United States)

    Loo, Tip W; Bartlett, M Claire; Clarke, David M

    2013-09-01

    Processing mutations that inhibit folding and trafficking of CFTR are the main cause of cystic fibrosis (CF). A potential CF therapy would be to repair CFTR processing mutants. It has been demonstrated that processing mutants of P-glycoprotein (P-gp), CFTR's sister protein, can be efficiently repaired by a drug-rescue mechanism. Many arginine suppressors that mimic drug-rescue have been identified in the P-gp transmembrane (TM) domains (TMDs) that rescue by forming hydrogen bonds with residues in adjacent helices to promote packing of the TM segments. To test if CFTR mutants could be repaired by a drug-rescue mechanism, we used truncation mutants to test if corrector VX-809 interacted with the TMDs. VX-809 was selected for study because it is specific for CFTR, it is the most effective corrector identified to date, but it has limited clinical benefit. Identification of the VX-809 target domain will help to develop correctors with improved clinical benefits. It was found that VX-809 rescued truncation mutants lacking the NBD2 and R domains. When the remaining domains (TMD1, NBD1, TMD2) were expressed as separate polypeptides, VX-809 only increased the stability of TMD1. We then performed arginine mutagenesis on TM6 in TMD1. Although the results showed that TM6 had distinct lipid and aqueous faces, CFTR was different from P-gp as no arginine promoted maturation of CFTR processing mutants. The results suggest that TMD1 contains a VX-809 binding site, but its mechanism differed from P-gp drug-rescue. We also report that V510D acts as a universal suppressor to rescue CFTR processing mutants.

  6. A novel transmembrane topology of presenilin based on reconciling experimental and computational evidence.

    Science.gov (United States)

    Henricson, Anna; Käll, Lukas; Sonnhammer, Erik L L

    2005-06-01

    The transmembrane topology of presenilins is still the subject of debate despite many experimental topology studies using antibodies or gene fusions. The results from these studies are partly contradictory and consequently several topology models have been proposed. Studies of presenilin-interacting proteins have produced further contradiction, primarily regarding the location of the C-terminus. It is thus impossible to produce a topology model that agrees with all published data on presenilin. We have analyzed the presenilin topology through computational sequence analysis of the presenilin family and the homologous presenilin-like protein family. Members of these families are intramembrane-cleaving aspartyl proteases. Although the overall sequence homology between the two families is low, they share the conserved putative active site residues and the conserved 'PAL' motif. Therefore, the topology model for the presenilin-like proteins can give some clues about the presenilin topology. Here we propose a novel nine-transmembrane topology with the C-terminus in the extracytosolic space. This model has strong support from published data on gamma-secretase function and presenilin topology. Contrary to most presenilin topology models, we show that hydrophobic region X is probably a transmembrane segment. Consequently, the C-terminus would be located in the extracytosolic space. However, the last C-terminal amino acids are relatively hydrophobic and in conjunction with existing experimental data we cannot exclude the possibility that the extreme C-terminus could be buried within the gamma-secretase complex. This might explain the difficulties in obtaining consistent experimental evidence regarding the location of the C-terminal region of presenilin.

  7. The transmembrane nucleoporin NDC1 is required for targeting of ALADIN to nuclear pore complexes

    Energy Technology Data Exchange (ETDEWEB)

    Yamazumi, Yusuke; Kamiya, Atsushi; Nishida, Ayumu; Nishihara, Ayako [Laboratory of Molecular and Genetic Information, Institute for Molecular and Cellular Bioscience, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Iemura, Shun-ichiro; Natsume, Tohru [Biological Information Research Center (AIST), Japan Biological Information Research Center (JBIC), Aomi 2-41-6, Koutou-ku, Tokyo 135-0064 (Japan); Akiyama, Tetsu, E-mail: akiyama@iam.u-tokyo.ac.jp [Laboratory of Molecular and Genetic Information, Institute for Molecular and Cellular Bioscience, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan)

    2009-11-06

    NDC1 is a transmembrane nucleoporin that is required for NPC assembly and nucleocytoplasmic transport. We show here that NDC1 directly interacts with the nucleoporin ALADIN, mutations of which are responsible for triple-A syndrome, and that this interaction is required for targeting of ALADIN to nuclear pore complexes (NPCs). Furthermore, we show that NDC1 is required for selective nuclear import. Our findings suggest that NDC1-mediated localization of ALADIN to NPCs is essential for selective nuclear protein import, and that abrogation of the interaction between ALADIN and NDC1 may be important for the development of triple-A syndrome.

  8. Structure, function and physiological consequences of virally encoded chemokine seven transmembrane receptors

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Smit, M J; Waldhoer, M

    2008-01-01

    A number of human and animal herpes viruses encode G-protein coupled receptors with seven transmembrane (7TM) segments-most of which are clearly related to human chemokine receptors. It appears, that these receptors are used by the virus for immune evasion, cellular transformation, tissue targeting...... pathogenesis is still poorly understood. Here we focus on the current knowledge of structure, function and trafficking patterns of virally encoded chemokine receptors and further address the putative roles of these receptors in virus survival and host -cell and/or -immune system modulation. Finally, we...

  9. Slow conversions among subconductance states of cystic fibrosis transmembrane conductance regulator chloride channel.

    OpenAIRE

    Tao, T.; Xie, J; Drumm, M L; Zhao, J.; Davis, P B; Ma, J.

    1996-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel exhibits multiple subconductance states. To study the regulation of conductance states of the CFTR channel, we expressed the wild-type CFTR protein in HEK 293 cells, and isolated microsomal membrane vesicles for reconstitution studies in lipid bilayer membranes. A single CFTR channel had a dominant conductance of 7.8 pS (H), plus two sub-open states with conductances of approximately 6 pS (M) and 2.7 pS (L) in 200...

  10. Poxvirus-encoded TNF decoy receptors inhibit the biological activity of transmembrane TNF

    OpenAIRE

    Pontejo, Sergio M; Alejo, Alí; Alcamí, Antonio

    2015-01-01

    © 2015 The Authors. Poxviruses encode up to four different soluble TNF receptors, named cytokine response modifier B (CrmB), CrmC, CrmD and CrmE. These proteins mimic the extracellular domain of the cellular TNF receptors to bind and inhibit the activity of TNF and, in some cases, other TNF superfamily ligands. Most of these ligands are released after the enzymic cleavage of a membrane precursor. However, transmembrane TNF (tmTNF) is not only a precursor of soluble TNF but also exerts specifi...

  11. Cell-type dependent modulation of Notch signaling by the amyloid precursor protein

    National Research Council Canada - National Science Library

    Oh, Sun Young; Chen, Ci-Di; Abraham, Carmela R

    2010-01-01

    The amyloid precursor protein is a ubiquitously expressed transmembrane protein that has been long implicated in the pathogenesis of Alzheimer's disease but its normal biological function has remained...

  12. Energetics of side-chain snorkeling in transmembrane helices probed by nonproteinogenic amino acids.

    Science.gov (United States)

    Öjemalm, Karin; Higuchi, Takashi; Lara, Patricia; Lindahl, Erik; Suga, Hiroaki; von Heijne, Gunnar

    2016-09-20

    Cotranslational translocon-mediated insertion of membrane proteins into the endoplasmic reticulum is a key process in membrane protein biogenesis. Although the mechanism is understood in outline, quantitative data on the energetics of the process is scarce. Here, we have measured the effect on membrane integration efficiency of nonproteinogenic analogs of the positively charged amino acids arginine and lysine incorporated into model transmembrane segments. We provide estimates of the influence on the apparent free energy of membrane integration (ΔGapp) of "snorkeling" of charged amino acids toward the lipid-water interface, and of charge neutralization. We further determine the effect of fluorine atoms and backbone hydrogen bonds (H-bonds) on ΔGapp These results help establish a quantitative basis for our understanding of membrane protein assembly in eukaryotic cells.

  13. A model of a transmembrane drug-efflux pump from Gram-negative bacteria.

    Science.gov (United States)

    Fernandez-Recio, Juan; Walas, Fabien; Federici, Luca; Venkatesh Pratap, J; Bavro, Vassiliy N; Miguel, Ricardo Nunez; Mizuguchi, Kenji; Luisi, Ben

    2004-12-03

    In Gram-negative bacteria, drug resistance is due in part to the activity of transmembrane efflux-pumps, which are composed of three types of proteins. A representative pump from Escherichia coli is an assembly of the trimeric outer-membrane protein TolC, which is an allosteric channel, the trimeric inner-membrane proton-antiporter AcrB, and the periplasmic protein, AcrA. The pump displaces drugs vectorially from the bacterium using proton electrochemical force. Crystal structures are available for TolC and AcrB from E. coli, and for the AcrA homologue MexA from Pseudomonas aeruginosa. Based on homology modelling and molecular docking, we show how AcrA, AcrB and TolC might assemble to form a tripartite pump, and how allostery may occur during transport.

  14. Structural determinants for the membrane insertion of the transmembrane peptide of hemagglutinin from influenza virus.

    Science.gov (United States)

    Victor, Bruno L; Baptista, António M; Soares, Cláudio M

    2012-11-26

    Membrane fusion is a process involved in a high range of biological functions, going from viral infections to neurotransmitter release. Fusogenic proteins increase the slow rate of fusion by coupling energetically downhill conformational changes of the protein to the kinetically unfavorable fusion of the membrane lipid bilayers. Hemagglutinin is an example of a fusogenic protein, which promotes the fusion of the membrane of the influenza virus with the membrane of the target cell. The N-terminus of the HA2 subunit of this protein contains a fusion domain described to act as a destabilizer of the target membrane bilayers, leading eventually to a full fusion of the two membranes. On the other hand, the C-terminus of the same subunit contains a helical transmembrane domain which was initially described to act as the anchor of the protein to the membrane of the virus. However, in recent years the study of this peptide segment has been gaining more attention since it has also been described to be involved in the membrane fusion process. Yet, the structural characterization of the interaction of such a protein domain with membrane lipids is still very limited. Therefore, in this work, we present a study of this transmembrane peptide domain in the presence of DMPC membrane bilayers, and we evaluate the effect of several mutations, and the effect of peptide oligomerization in this interaction process. Our results allowed us to identify and confirm amino acid residue motifs that seem to regulate the interaction between the segment peptide and membrane bilayers. Besides these sequence requirements, we have also identified length and tilt requirements that ultimately contribute to the hydrophobic matching between the peptide and the membrane. Additionally, we looked at the association of several transmembrane peptide segments and evaluated their direct interaction and stability inside a membrane bilayer. From our results we could conclude that three independent TM peptide

  15. Modelling of a transmembrane evaporation module for desalination of seawater

    NARCIS (Netherlands)

    Guijt, Caroliene M.; Rácz, Imre G.; Heuven, van Jan Willem; Reith, Tom; Haan, de André B.

    1999-01-01

    Transmembrane evaporation (often called membrane distillation) carried out in a countercurrent flow module, in which incoming cold seawater is heated by the condensing product water flow, is a promising technology for low-cost seawater desalination. This paper presents a model for preliminary design

  16. A hidden Markov model for prediction transmembrane helices in proteinsequences

    DEFF Research Database (Denmark)

    Sonnhammer, Erik L.L.; von Heijne, Gunnar; Krogh, Anders Stærmose

    1998-01-01

    and constraints involved. Models were estimated both by maximum likelihood and a discriminative method, and a method for reassignment of the membrane helix boundaries were developed. In a cross validated test on single sequences, our transmembrane HMM, TMHMM, correctly predicts the entire topology for 77...

  17. The Lantibiotic Nisin Induces Transmembrane Movement of a Fluorescent Phospholipid

    NARCIS (Netherlands)

    Moll, Gert N.; Konings, Wil N.; Driessen, Arnold J.M.

    1998-01-01

    Nisin is a pore-forming antimicrobial peptide. The capacity of nisin to induce transmembrane movement of a fluorescent phospholipid in lipid vesicles was investigated. Unilamellar phospholipid vesicles that contained a fluorescent phospholipid (1-acyl-2-{6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]ca

  18. Regulation of cytoskeletal organization by syndecan transmembrane proteoglycans

    DEFF Research Database (Denmark)

    Yoneda, Atsuko; Couchman, John R

    2003-01-01

    Syndecans, a family of transmembrane proteoglycans, interact with numerous extracellular ligands through specific sequences in their heparan sulfate chains and have been considered to be co-receptors for matrix molecules and growth factors. In addition to their roles as co-receptors, many studies...

  19. Evolutionary and Comparative Genomics to Drive Rational Drug Design, with Particular Focus on Neuropeptide Seven-Transmembrane Receptors

    OpenAIRE

    Furlong, Michael; Seong, Jae Young

    2017-01-01

    Seven transmembrane receptors (7TMRs), also known as G protein-coupled receptors, are popular targets of drug development, particularly 7TMR systems that are activated by peptide ligands. Although many pharmaceutical drugs have been discovered via conventional bulk analysis techniques the increasing availability of structural and evolutionary data are facilitating change to rational, targeted drug design. This article discusses the appeal of neuropeptide-7TMR systems as drug targets and provi...

  20. Trans-membrane transport of fluoranthene by Rhodococcus sp. BAP-1 and optimization of uptake process.

    Science.gov (United States)

    Li, Yi; Wang, Hongqi; Hua, Fei; Su, Mengyuan; Zhao, Yicun

    2014-03-01

    The mechanism of transport of (14)C-fluoranthene by Rhodococcus sp. BAP-1, a Gram-positive bacterium isolated from crude oil-polluted soil, was examined. Our finding demonstrated that the mechanism for fluoranthene travel across the cell membrane in Rhodococcus sp. BAP-1 requires energy. Meanwhile, the transport of fluoranthene involves concurrent catabolism of (14)C, that leading to the generation of significant amount of (14)CO2. Combined with trans-membrane transport dynamic and response surface methodology, a significant influence of temperature, pH and salinity on cellular uptake rate was screened by Plackett-Burman design. Then, Box-Behnken design was employed to optimize and enhanced the trans-membrane transport process. The results predicted by Box-Behnken design indicated that the maximum cellular uptake rate of fluoranthene could be achieve to 0.308μmolmin(-1)mg(-1)·protein (observed) and 0.304μmolmin(-1)mg(-1)·protein (predicted) when the initial temperature, pH and salinity were set at 20°C, 9% and 1%, respectively.

  1. Complete coding sequence, sequence analysis and transmembrane topology modelling of Trypanosoma brucei rhodesiense putative oligosaccharyl transferase (TbOST II).

    Science.gov (United States)

    Baticados, Waren N; Inoue, Noboru; Sugimoto, Chihiro; Nagasawa, Hideyuki; Baticados, Abigail M

    2011-01-01

    The partial nucleotide sequence of putative Trypanosoma brucei rhodesiense oligosaccharyl transferase gene was previously reported. Here, we describe the determination of its full-length nucleotide sequence by Inverse PCR (IPCR), subsequent biological sequence analysis and transmembrane topology modelling. The full-length DNA sequence has an Open Reading Frame (ORF) of 2406 bp and encodes a polypeptide of 801 amino acid residues. Protein and DNA sequence analyses revealed that homologues within the genome of other kinetoplastid and various origins exist. Protein topology analysis predicted that Trypanosoma brucei rhodesiense putative oligosaccharyl transferase clone II (TbOST II) is a transmembrane protein with transmembrane helices in probably an N(cytosol)-C(cytosol) orientation. Data from the GenBank database assembly and sequence analyses in general clearly state that TbOST II is the STT3 subunit of OST in T.b. rhodesiense that necessitates further characterisation and functional studies with RNAi. TbOST II sequence had been deposited in the GenBank (accession number GU245937).

  2. Early vertebrate origin and diversification of small transmembrane regulators of cellular ion transport.

    Science.gov (United States)

    Pirkmajer, Sergej; Kirchner, Henriette; Lundell, Leonidas S; Zelenin, Pavel V; Zierath, Juleen R; Makarova, Kira S; Wolf, Yuri I; Chibalin, Alexander V

    2017-07-15

    Small transmembrane proteins such as FXYDs, which interact with Na(+) ,K(+) -ATPase, and the micropeptides that interact with sarco/endoplasmic reticulum Ca(2+) -ATPase play fundamental roles in regulation of ion transport in vertebrates. Uncertain evolutionary origins and phylogenetic relationships among these regulators of ion transport have led to inconsistencies in their classification across vertebrate species, thus hampering comparative studies of their functions. We discovered the first FXYD homologue in sea lamprey, a basal jawless vertebrate, which suggests small transmembrane regulators of ion transport emerged early in the vertebrate lineage. We also identified 13 gene subfamilies of FXYDs and propose a revised, phylogeny-based FXYD classification that is consistent across vertebrate species. These findings provide an improved framework for investigating physiological and pathophysiological functions of small transmembrane regulators of ion transport. Small transmembrane proteins are important for regulation of cellular ion transport. The most prominent among these are members of the FXYD family (FXYD1-12), which regulate Na(+) ,K(+) -ATPase, and phospholamban, sarcolipin, myoregulin and DWORF, which regulate the sarco/endoplasmic reticulum Ca(2+) -ATPase (SERCA). FXYDs and regulators of SERCA are present in fishes, as well as terrestrial vertebrates; however, their evolutionary origins and phylogenetic relationships are obscure, thus hampering comparative physiological studies. Here we discovered that sea lamprey (Petromyzon marinus), a representative of extant jawless vertebrates (Cyclostomata), expresses an FXYD homologue, which strongly suggests that FXYDs predate the emergence of fishes and other jawed vertebrates (Gnathostomata). Using a combination of sequence-based phylogenetic analysis and conservation of local chromosome context, we determined that FXYDs markedly diversified in the lineages leading to cartilaginous fishes (Chondrichthyes) and

  3. EMR1, an unusual member in the family of hormone receptors with seven transmembrane segments.

    Science.gov (United States)

    Baud, V; Chissoe, S L; Viegas-Péquignot, E; Diriong, S; N'Guyen, V C; Roe, B A; Lipinski, M

    1995-03-20

    Proteins with seven transmembrane segments (7TM) define a superfamily of receptors (7TM receptors) sharing the same topology: an extracellular N-terminus, three extramembranous loops on either side of the plasma membrane, and a cytoplasmic C-terminal tail. Upon ligand binding, cytoplasmic portions of the activated receptor interact with heterotrimeric G-coupled proteins to induce various second messengers. A small group, recently recognized on the basis of homologous primary amino acid sequences, comprises receptors to hormones of the secretin/vasoactive intestinal peptide/glucagon family, parathyroid hormone and parathyroid hormone-related peptides, growth hormone-releasing factor, corticotropin-releasing factor, and calcitonin. A cDNA, extracted from a neuroectodermal cDNA library, was predicted to encode a new 886-amino-acid protein with three distinct domains. The C-terminal third contains the seven hydrophobic segments and characteristic residues that allow the protein to be readily aligned with the various hormone receptors in the family. Six egf-like modules, at the N-terminus of the predicted mature protein, are separated from the transmembrane segments by a serine/threonine-rich domain, a feature reminiscent of mucin-like, single-span, integral membrane glycoproteins with adhesive properties. Because of its unique characteristics, this putative egf module-containing, mucin-like hormone receptor has been named EMR1. Southern analysis of a panel of somatic cell hybrids and fluorescence in situ hybridization have assigned the EMR1 gene to human chromosome 19p13.3.

  4. A Globin Domain in a Neuronal Transmembrane Receptor of Caenorhabditis elegans and Ascaris suum

    Science.gov (United States)

    Tilleman, Lesley; Germani, Francesca; De Henau, Sasha; Helbo, Signe; Desmet, Filip; Berghmans, Herald; Van Doorslaer, Sabine; Hoogewijs, David; Schoofs, Liliane; Braeckman, Bart P.; Moens, Luc; Fago, Angela; Dewilde, Sylvia

    2015-01-01

    We report the structural and biochemical characterization of GLB-33, a putative neuropeptide receptor that is exclusively expressed in the nervous system of the nematode Caenorhabditis elegans. This unique chimeric protein is composed of a 7-transmembrane domain (7TM), GLB-33 7TM, typical of a G-protein-coupled receptor, and of a globin domain (GD), GLB-33 GD. Comprehensive sequence similarity searches in the genome of the parasitic nematode, Ascaris suum, revealed a chimeric protein that is similar to a Phe-Met-Arg-Phe-amide neuropeptide receptor. The three-dimensional structures of the separate domains of both species and of the full-length proteins were modeled. The 7TM domains of both proteins appeared very similar, but the globin domain of the A. suum receptor surprisingly seemed to lack several helices, suggesting a novel truncated globin fold. The globin domain of C. elegans GLB-33, however, was very similar to a genuine myoglobin-type molecule. Spectroscopic analysis of the recombinant GLB-33 GD showed that the heme is pentacoordinate when ferrous and in the hydroxide-ligated form when ferric, even at neutral pH. Flash-photolysis experiments showed overall fast biphasic CO rebinding kinetics. In its ferrous deoxy form, GLB-33 GD is capable of reversibly binding O2 with a very high affinity and of reducing nitrite to nitric oxide faster than other globins. Collectively, these properties suggest that the globin domain of GLB-33 may serve as a highly sensitive oxygen sensor and/or as a nitrite reductase. Both properties are potentially able to modulate the neuropeptide sensitivity of the neuronal transmembrane receptor. PMID:25666609

  5. Yeast Interacting Proteins Database: YKR100C, YDL100C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YKR100C SKG1 Transmembrane protein with a role in cell wall polymer composition; lo...position; localizes on the inner surface of the plasma membrane at the bud and in t...RF YKR100C Bait gene name SKG1 Bait description Transmembrane protein with a role in cell wall polymer com

  6. Interaction of inhibitors of the vacuolar H(+)-ATPase with the transmembrane Vo-sector.

    Science.gov (United States)

    Páli, Tibor; Whyteside, Graham; Dixon, Neil; Kee, Terence P; Ball, Stephen; Harrison, Michael A; Findlay, John B C; Finbow, Malcolm E; Marsh, Derek

    2004-09-28

    The macrolide antibiotic concanamycin A and a designed derivative of 5-(2-indolyl)-2,4-pentadienamide (INDOL0) are potent inhibitors of vacuolar H(+)-ATPases, with IC(50) values in the low and medium nanomolar range, respectively. Interaction of these V-ATPase inhibitors with spin-labeled subunit c in the transmembrane V(o)-sector of the ATPase was studied by using the transport-active 16-kDa proteolipid analogue of subunit c from the hepatopancreas of Nephrops norvegicus. Analogous experiments were also performed with vacuolar membranes from Saccharomyces cerevisiae. Membranous preparations of the Nephrops 16-kDa proteolipid were spin-labeled either on the unique cysteine C54, with a nitroxyl maleimide, or on the functionally essential glutamate E140, with a nitroxyl analogue of dicyclohexylcarbodiimide (DCCD). These residues were previously demonstrated to be accessible to lipid. Interaction of the inhibitors with these lipid-exposed residues was studied by using both conventional and saturation transfer EPR spectroscopy. Immobilization of the spin-labeled residues by the inhibitors was observed on both the nanosecond and microsecond time scales. The perturbation by INDOL0 was mostly greater than that by concanamycin A. Qualitatively similar but quantitatively greater effects were obtained with the same spin-label reagents and vacuolar membranes in which the Nephrops 16-kDa proteolipid was expressed in place of the native vma3p proteolipid of yeast. The spin-label immobilization corresponds to a direct interaction of the inhibitors with these intramembranous sites on the protein. A mutational analysis on transmembrane segment 4 known to give resistance to concanamycin A also gave partial resistance to INDOL0. The results are consistent with transmembrane segments 2 and 4 of the 16-kDa putative four-helix bundle, and particularly the functionally essential protonation locus, being involved in the inhibitor binding sites. Inhibition of proton transport may also

  7. Neuregulin 1 expression and electrophysiological abnormalities in the Neuregulin 1 transmembrane domain heterozygous mutant mouse.

    Directory of Open Access Journals (Sweden)

    Leonora E Long

    Full Text Available The Neuregulin 1 transmembrane domain heterozygous mutant (Nrg1 TM HET mouse is used to investigate the role of Nrg1 in brain function and schizophrenia-like behavioural phenotypes. However, the molecular alterations in brain Nrg1 expression that underpin the behavioural observations have been assumed, but not directly determined. Here we comprehensively characterise mRNA Nrg1 transcripts throughout development of the Nrg1 TM HET mouse. In addition, we investigate the regulation of high-frequency (gamma electrophysiological oscillations in this mutant mouse to associate molecular changes in Nrg1 with a schizophrenia-relevant neurophysiological profile.Using exonic probes spanning the cysteine-rich, epidermal growth factor (EGF-like, transmembrane and intracellular domain encoding regions of Nrg1, mRNA levels were measured using qPCR in hippocampus and frontal cortex from male and female Nrg1 TM HET and wild type-like (WT mice throughout development. We also performed electrophysiological recordings in adult mice and analysed gamma oscillatory at baseline, in responses to auditory stimuli and to ketamine.In both hippocampus and cortex, Nrg1 TM HET mice show significantly reduced expression of the exon encoding the transmembrane domain of Nrg1 compared with WT, but unaltered mRNA expression encoding the extracellular bioactive EGF-like and the cysteine-rich (type III domains, and development-specific and region-specific reductions in the mRNA encoding the intracellular domain. Hippocampal Nrg1 protein expression was not altered, but NMDA receptor NR2B subunit phosphorylation was lower in Nrg1 TM HET mice. We identified elevated ongoing and reduced sensory-evoked gamma power in Nrg1 TM HET mice.We found no evidence to support the claim that the Nrg1 TM HET mouse represents a simple haploinsufficient model. Further research is required to explore the possibility that mutation results in a gain of Nrg1 function.

  8. Failure of the Cystic Fibrosis Transmembrane Conductance Regulator to Conduct ATP

    Science.gov (United States)

    Reddy, M. M.; Quinton, P. M.; Haws, C.; Wine, J. J.; Grygorczyk, R.; Tabcharani, J. A.; Hanrahan, J. W.; Gunderson, K. L.; Kopito, R. R.

    1996-03-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is chloride ion channel regulated by protein kinase A and adenosine triphosphate (ATP). Loss of CFTR-mediated chloride ion conductance from the apical plasma membrane of epithelial cells is a primary physiological lesion in cystic fibrosis. CFTR has also been suggested to function as an ATP channel, although the size of the ATP anion is much larger than the estimated size of the CFTR pore. ATP was not conducted through CFTR in intact organs, polarized human lung cell lines, stably transfected mammalian cell lines, or planar lipid bilayers reconstituted with CFTR protein. These findings suggest that ATP permeation through the CFTR is unlikely to contribute to the normal function of CFTR or to the pathogenesis of cystic fibrosis.

  9. Crystal structure of AcrB in complex with a single transmembrane subunit reveals another twist.

    Science.gov (United States)

    Törnroth-Horsefield, Susanna; Gourdon, Pontus; Horsefield, Rob; Brive, Lars; Yamamoto, Natsuko; Mori, Hirotada; Snijder, Arjan; Neutze, Richard

    2007-12-01

    Bacterial drug resistance is a serious concern for human health. Multidrug efflux pumps export a broad variety of substrates out of the cell and thereby convey resistance to the host. In Escherichia coli, the AcrB:AcrA:TolC efflux complex forms a principal transporter for which structures of the individual component proteins have been determined in isolation. Here, we present the X-ray structure of AcrB in complex with a single transmembrane protein, assigned by mass spectrometry as YajC. A specific rotation of the periplasmic porter domain of AcrB is also revealed, consistent with the hypothesized "twist-to-open" mechanism for TolC activation. Growth experiments with yajc-deleted E. coli reveal a modest increase in the organism's susceptibility to beta-lactam antibiotics, but this effect could not conclusively be attributed to the loss of interactions between YajC and AcrB.

  10. A novel member of the transmembrane serine/threonine kinase receptor family is specifically expressed in the gonads and in mesenchymal cells adjacent to the mullerian duct

    NARCIS (Netherlands)

    W.M. Baarends (Willy); M.J. van Helmond (Marjolein); M. Verhoef-Post (Miriam); P.J.C.M. van der Schoot; J.W. Hoogerbrugge (Jos); J.P. de Winter (Johan); J.Th.J. Uilenbroek (Jan); B. Karels (Bas)

    1994-01-01

    textabstractThe activin and TGF-beta type II receptors are members of a separate subfamily of transmembrane receptors with intrinsic protein kinase activity, which also includes the recently cloned TGF-beta type I receptor. We have isolated and characterized a cDNA clon

  11. Evolutionary characterization of pig interferon-inducible transmembrane gene family and member expression dynamics in tracheobronchial lymph nodes of pigs infected with swine respiratory disease viruses

    Science.gov (United States)

    Studies have found that a cluster of duplicated gene loci encoding the interferon-inducible transmembrane proteins (IFITMs) family have antiviral activity against several viruses, including influenza A virus. The gene family has 5 and 7 members in humans and mice, respectively. Here, we confirm the ...

  12. Evolutionary characterization of pig interferon-inducible transmembrane gene family and member expression dynamics in tracheobronchial lymph nodes of pigs infected with influenza A virus

    Science.gov (United States)

    Studies have found that a cluster of duplicated gene loci encoding the interferon-inducible transmembrane proteins (IFITMs) family have antiviral activity against several viruses, including influenza A virus (IAV). Whether the duplicated members have selective viral targets, recognition patterns and...

  13. A potential smoothing algorithm accurately predicts transmembrane helix packing.

    Science.gov (United States)

    Pappu, R V; Marshall, G R; Ponder, J W

    1999-01-01

    Potential smoothing, a deterministic analog of stochastic simulated annealing, is a powerful paradigm for the solution of conformational search problems that require extensive sampling, and should be a useful tool in computational approaches to structure prediction and refinement. A novel potential smoothing and search (PSS) algorithm has been developed and applied to predict the packing of transmembrane helices. The highlight of this method is the efficient manner in which it circumvents the combinatorial explosion associated with the large number of minima on multidimensional potential energy surfaces in order to converge to the global energy minimum. Here we show how our potential smoothing and search method succeeds in finding the global minimum energy structure for the glycophorin A (GpA) transmembrane helix dimer by optimizing interhelical van der Waals interactions over rigid and semi-rigid helices. Structures obtained from our ab initio predictions are in close agreement with recent experimental data.

  14. Darier disease mutation E917K of SERCA2b relieves the inhibitory influence of the 11th transmembrane segment

    DEFF Research Database (Denmark)

    Mikkelsen, Stine; Holdensen, Anne Nyholm; Vangheluwe, Peter;

    1, relative to wild type SERCA2b, thus relieving the inhibitory influence of the 11th transmembrane segment. The reduced Ca2+ affinity, on the other hand, derives from a reduced rate of E1E1Ca2. The corresponding mutation E918K in SERCA1a was also studied, and unlike SERCA2b E917K, SERCA1a E918K...... to the proteins SERCA1, SERCA2 and SERCA3. SERCA2 is spliced into three variants SERCA2a, SERCA2b and SERCA2c, the only difference between SERCA2a and SERCA2b is the extended C-terminus of SERCA2b (49 amino acids) which forms an extra 11th transmembrane segment (compared with the 10 transmembrane segments of all...... other SERCA proteins). SERCA2b is expressed in all cell types and is known as the “house keeping” SERCA isoform. It has a characteristic low catalytic turnover rate and increased Ca2+ affinity compared with SERCA2a and the well characterized SERCA1a isoform. Glutamate 917 is located in the cytoplasmic...

  15. The cystic fibrosis transmembrane conductance regulator (CFTR): three-dimensional structure and localization of a channel gate.

    Science.gov (United States)

    Rosenberg, Mark F; O'Ryan, Liam P; Hughes, Guy; Zhao, Zhefeng; Aleksandrov, Luba A; Riordan, John R; Ford, Robert C

    2011-12-09

    Cystic fibrosis affects about 1 in 2500 live births and involves loss of transmembrane chloride flux due to a lack of a membrane protein channel termed the cystic fibrosis transmembrane conductance regulator (CFTR). We have studied CFTR structure by electron crystallography. The data were compared with existing structures of other ATP-binding cassette transporters. The protein was crystallized in the outward facing state and resembled the well characterized Sav1866 transporter. We identified regions in the CFTR map, not accounted for by Sav1866, which were potential locations for the regulatory region as well as the channel gate. In this analysis, we were aided by the fact that the unit cell was composed of two molecules not related by crystallographic symmetry. We also identified regions in the fitted Sav1866 model that were missing from the map, hence regions that were either disordered in CFTR or differently organized compared with Sav1866. Apart from the N and C termini, this indicated that in CFTR, the cytoplasmic end of transmembrane helix 5/11 and its associated loop could be partly disordered (or alternatively located).

  16. ER-mediated control for abundance, quality, and signaling of transmembrane immune receptors in plants

    Directory of Open Access Journals (Sweden)

    Nico eTintor

    2014-02-01

    Full Text Available Plants recognize a wide range of microbes with cell-surface and intracellular immune receptors. Transmembrane pattern recognition receptors (PRRs initiate immune responses upon recognition of cognate ligands characteristic of microbes or aberrant cellular states, designated microbe-associated molecular patterns (MAMPs or danger-associated molecular patterns (DAMPs, respectively. Pattern-triggered immunity (PTI provides a first line of defense that restricts the invasion and propagation of both adapted and non-adapted pathogens. Receptor kinases (RKs and receptor-like proteins (RLPs with an extracellular leucine-rich repeat (LRR or lysine-motif (LysM domain are extensively used as PRRs. The correct folding of the extracellular domain of these receptors is under quality control (QC in the endoplasmic reticulum (ER, which thus provides a critical step in plant immunity. Genetic and structural insight suggests that ERQC regulates not only the abundance and quality of transmembrane receptors but also affects signal sorting between multi-branched pathways downstream of the receptor. However, ERQC dysfunction can also positively stimulate plant immunity, possibly through cell death and DAMP signaling pathways.

  17. Mutational Analysis of Region-cytotoxicity Relationship in Human Transmembrane Tumor Necrosis Factor-alpha

    Institute of Scientific and Technical Information of China (English)

    ZHENGFang; GONGFeili; LIZhuoya; JIANGXiaodan; XIONGPing; FENGWei; XUYong

    2002-01-01

    Objective:To determine the region of human transmembrane tumor necrosis factor-alpha (TM-TNFa), essential for cytotoxic activity a-gainst human breast cancer cell line MCF-7. Methods:Single amino-acid-substituted TM-TNFα mutant proteins (muteins) were produced by in vitro transcription linked translation techniques. The cDNA of TM-TNFα was site-directed mutagenized by recombinant PCR. Results:13 single amino-acid substituted TM-TNFα muteins were generated and assayed for cytotoxic activity. The cytotoxic activities of TM-TNFα muteins, eg, TM-TNFα-71/Lys, -28/Phe and 117/Leu were significantly decreased (P<0.01) compared to that of parent TM-TNFα, 143/Tyr decreased 4-folds, and-17/Thr,-39/Ser,ll9/His,35/Gly,95/Cys and 147/Phe decreased 1.5-2.5-folds, respectively. However, the cytotoxic activities of TM-TNFα-8/Arg, 31/Gly and 87/Phe showed no significant change. Conclusion:These results indicate that the regions associated with cytotoxic-activity of TM-TNFα are different with that of secretory TNF-lpha (S-TNFα). The inner cell region and transmembrane region of TM-TNFα are related to the cytotoxic activity of TM-TNFα.

  18. Differential effect of rebamipide on transmembrane mucin biosynthesis in stratified ocular surface epithelial cells.

    Science.gov (United States)

    Uchino, Yuichi; Woodward, Ashley M; Argüeso, Pablo

    2016-12-01

    Mucins are a group of highly glycosylated glycoproteins responsible for the protection of wet-surfaced epithelia. Recent data indicate that transmembrane mucins differ in their contribution to the protective function of the ocular surface, with MUC16 being the most effective barrier on the apical surface glycocalyx. Here, we investigated the role of the mucoprotective drug rebamipide in the regulation of transmembrane mucin biosynthesis using stratified cultures of human corneal and conjunctival epithelial cells. We find that the addition of rebamipide to corneal, but not conjunctival, epithelial cells increased MUC16 protein biosynthesis. Rebamipide did not affect the levels of MUC1, 4 and 20 compared to control. In these experiments, rebamipide had no effect on the expression levels of Notch intracellular domains, suggesting that the rebamipide-induced increase in MUC16 biosynthesis in differentiated corneal cultures is not regulated by Notch signaling. Overall these findings indicate that rebamipide induces the differential upregulation of MUC16 in stratified cultures of human corneal epithelial cells, which may have implications to the proper restoration of barrier function in ocular surface disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Trichomonas transmembrane cyclases result from massive gene duplication and concomitant development of pseudogenes.

    Directory of Open Access Journals (Sweden)

    Jike Cui

    2010-08-01

    Full Text Available Trichomonas vaginalis has an unusually large genome (approximately 160 Mb encoding approximately 60,000 proteins. With the goal of beginning to understand why some Trichomonas genes are present in so many copies, we characterized here a family of approximately 123 Trichomonas genes that encode transmembrane adenylyl cyclases (TMACs.The large family of TMACs genes is the result of recent duplications of a small set of ancestral genes that appear to be unique to trichomonads. Duplicated TMAC genes are not closely associated with repetitive elements, and duplications of flanking sequences are rare. However, there is evidence for TMAC gene replacements by homologous recombination. A high percentage of TMAC genes (approximately 46% are pseudogenes, as they contain stop codons and/or frame shifts, or the genes are truncated. Numerous stop codons present in the genome project G3 strain are not present in orthologous genes of two other Trichomonas strains (S1 and B7RC2. Each TMAC is composed of a series of N-terminal transmembrane helices and a single C-terminal cyclase domain that has adenylyl cyclase activity. Multiple TMAC genes are transcribed by Trichomonas cloned by limiting dilution.We conclude that one reason for the unusually large genome of Trichomonas is the presence of unstable families of genes such as those encoding TMACs that are undergoing massive gene duplication and concomitant development of pseudogenes.

  20. A di-arginine motif contributes to the ER localization of the type I transmembrane ER oxidoreductase TMX4

    DEFF Research Database (Denmark)

    Roth, D.; Lynes, E.; Riemer, Jan

    2010-01-01

    The thiol-disulfide oxidoreductases of the PDI (protein disulfide isomerase) family assist in disulfide-bond formation in the ER (endoplasmic reticulum). In the present study, we have shown that the previously uncharacterized PDI family member TMX4 (thioredoxin-like transmembrane 4) is an N......-glycosylated type I membrane protein that localizes to the ER. We also demonstrate that TMX4 contains a single ER-luminal thioredoxin-like domain, which, in contrast with similar domains in other PDIs, is mainly oxidized in living cells. The TMX4 transcript displays a wide tissue distribution, and is strongly...... of the protein. Moreover, whereas the cytoplasmic region of TMX4 confers ER localization to a reporter protein, the KQK mutant of the same protein redistributes to the cell surface. Overall, features not commonly found in other PDIs characterize TMX4 and suggest unique functional properties of the protein...

  1. SEC14 and spectrin domains 1 (Sestd1) and Dapper antagonist of catenin 1 (Dact1) scaffold proteins cooperatively regulate the Van Gogh-like 2 (Vangl2) four-pass transmembrane protein and planar cell polarity (PCP) pathway during embryonic development in mice.

    Science.gov (United States)

    Yang, XiaoYong; Cheyette, Benjamin N R

    2013-07-12

    The planar cell polarity (PCP) pathway is a conserved non-canonical (β-catenin-independent) branch of Wnt signaling crucial to embryogenesis, during which it regulates cell polarity and polarized cell movements. Disruption of PCP components in mice, including Vangl2 and Dact1, results in defective neural tube closure and other developmental defects. Here, we show that Sestd1 is a novel binding partner of Vangl2 and Dact1. The Sestd1-Dact1 interface is formed by circumscribed regions of Sestd1 (the carboxyl-terminal region) and Dact1 (the amino-terminal region). Remarkably, we show that loss of Sestd1 precisely phenocopies loss of Dact1 during embryogenesis in mice, leading to a spectrum of birth malformations, including neural tube defects, a shortened and/or curly tail, no genital tubercle, blind-ended colons, hydronephrotic kidneys, and no bladder. Moreover, as with Dact1, a knock-out mutation at the Sestd1 locus exhibits reciprocal genetic rescue interactions during development with a semidominant mutation at the Vangl2 locus. Consistent with this, examination of Wnt pathway activities in Sestd1 mutant mouse embryonic tissue reveals disrupted PCP pathway biochemistry similar to that characterized in Dact1 mutant embryos. The Sestd1 protein is a divergent member of the Trio family of GTPase regulatory proteins that lacks a guanine nucleotide exchange factor domain. Nonetheless, in cell-based assays the Sestd1-Dact1 interaction can induce Rho GTPase activation. Together, our data indicate that Sestd1 cooperates with Dact1 in Vangl2 regulation and in the PCP pathway during mammalian embryonic development.

  2. Efficient isolation of Pseudomonas aeruginosa type III secretion translocators and assembly of heteromeric transmembrane pores in model membranes.

    Science.gov (United States)

    Romano, Fabian B; Rossi, Kyle C; Savva, Christos G; Holzenburg, Andreas; Clerico, Eugenia M; Heuck, Alejandro P

    2011-08-23

    Translocation of bacterial toxins or effectors into host cells using the type III secretion (T3S) system is a conserved mechanism shared by many Gram-negative pathogens. Pseudomonas aeruginosa injects different proteins across the plasma membrane of target cells, altering the normal metabolism of the host. Protein translocation presumably occurs through a proteinaceous transmembrane pore formed by two T3S secreted protein translocators, PopB and PopD. Unfolded translocators are secreted through the T3S needle prior to insertion into the target membrane. Purified PopB and PopD form pores in model membranes. However, their tendency to form heterogeneous aggregates in solution had hampered the analysis of how these proteins undergo the transition from a denatured state to a membrane-inserted state. Translocators were purified as stable complexes with the cognate chaperone PcrH and isolated from the chaperone using 6 M urea. We report here the assembly of stable transmembrane pores by dilution of urea-denatured translocators in the presence of membranes. PopB and PopD spontaneously bound liposomes containing anionic phospholipids and cholesterol in a pH-dependent manner as observed by two independent assays, time-resolved Förster resonance energy transfer and sucrose-step gradient ultracentrifugation. Using Bodipy-labeled proteins, we found that PopB interacts with PopD on the membrane surface as determined by excitation energy migration and fluorescence quenching. Stable transmembrane pores are more efficiently assembled at pH <5.0, suggesting that acidic residues might be involved in the initial membrane binding and/or insertion. Altogether, the experimental setup described here represents an efficient method for the reconstitution and analysis of membrane-inserted translocators.

  3. Substrate-dependent transmembrane signaling in TonB-dependent transporters is not conserved.

    Science.gov (United States)

    Kim, Miyeon; Fanucci, Gail E; Cafiso, David S

    2007-07-17

    Site-directed spin labeling (SDSL) was used to examine and compare transmembrane signaling events in the bacterial outer-membrane transport proteins BtuB, FecA, and FhuA. These proteins extract energy for transport by coupling to the transperiplasmic protein TonB, an interaction that is thought to be mediated by the Ton box, a highly conserved energy-coupling motif in these transporters. In the ferric citrate transporter, FecA, SDSL indicates that the Ton box undergoes a substrate-induced disorder transition similar to that seen for BtuB, the vitamin B(12) transporter. This conformational change produces an aqueous exposed, highly disordered protein fragment, which likely regulates transporter-TonB interactions. However, in the ferrichrome transporter, FhuA, SDSL does not reveal a substrate-induced unfolding transition. In this protein, with or without substrate, the Ton box conformation is found to be highly dynamic and constitutively unfolded. In addition, SDSL indicates that structural features seen in high-resolution models are not found in membrane-associated FhuA. Taken together, these data indicate that the Ton box of FhuA may always be available for interactions with TonB, implying that transporter-TonB interactions in FhuA are either constitutive or not regulated by the Ton box configuration.

  4. Two cystic fibrosis transmembrane conductance regulator mutations have different effects on both pulmonary phenotype and regulation of outwardly rectified chloride currents.

    OpenAIRE

    Fulmer, S B; Schwiebert, E M; M.M. Morales; Guggino, W B; Cutting, G R

    1995-01-01

    Cystic fibrosis (CF), a disorder of electrolyte transport manifest in the lungs, pancreas, sweat duct, and vas deferens, is caused by mutations in the CF transmembrane conductance regulator (CFTR). The CFTR protein has been shown to function as a cAMP-activated chloride channel and also regulates a separate protein, the outwardly rectifying chloride channel (ORCC). To determine the consequence of disease-producing mutations upon these functions, mutant CFTR was transiently expressed in Xenopu...

  5. Protein

    Science.gov (United States)

    ... Food Service Resources Additional Resources About FAQ Contact Protein Protein is found throughout the body—in muscle, ... the heart and respiratory system, and death. All Protein Isn’t Alike Protein is built from building ...

  6. Localized lipid packing of transmembrane domains impedes integrin clustering.

    Directory of Open Access Journals (Sweden)

    Mehrdad Mehrbod

    Full Text Available Integrin clustering plays a pivotal role in a host of cell functions. Hetero-dimeric integrin adhesion receptors regulate cell migration, survival, and differentiation by communicating signals bidirectionally across the plasma membrane. Thus far, crystallographic structures of integrin components are solved only separately, and for some integrin types. Also, the sequence of interactions that leads to signal transduction remains ambiguous. Particularly, it remains controversial whether the homo-dimerization of integrin transmembrane domains occurs following the integrin activation (i.e. when integrin ectodomain is stretched out or if it regulates integrin clustering. This study employs molecular dynamics modeling approaches to address these questions in molecular details and sheds light on the crucial effect of the plasma membrane. Conducting a normal mode analysis of the intact αllbβ3 integrin, it is demonstrated that the ectodomain and transmembrane-cytoplasmic domains are connected via a membrane-proximal hinge region, thus merely transmembrane-cytoplasmic domains are modeled. By measuring the free energy change and force required to form integrin homo-oligomers, this study suggests that the β-subunit homo-oligomerization potentially regulates integrin clustering, as opposed to α-subunit, which appears to be a poor regulator for the clustering process. If α-subunits are to regulate the clustering they should overcome a high-energy barrier formed by a stable lipid pack around them. Finally, an outside-in activation-clustering scenario is speculated, explaining how further loading the already-active integrin affects its homo-oligomerization so that focal adhesions grow in size.

  7. Transmembrane anion transport and cytotoxicity of synthetic tambjamine analogs.

    Science.gov (United States)

    Hernando, Elsa; Soto-Cerrato, Vanessa; Cortés-Arroyo, Susana; Pérez-Tomás, Ricardo; Quesada, Roberto

    2014-03-21

    Ten synthetic analogs of the marine alkaloids tambjamines, bearing aromatic enamine moieties, have been synthesized. These compounds proved to be highly efficient transmembrane anion transporters in model liposomes. Changes in the electronic nature of the substituents of the aromatic enamine or the alkoxy group of the central pyrrole group did not affect this anionophore activity. The in vitro activity of these compounds has also been studied. They trigger apoptosis in several cancer cell lines with IC50 values in the low micromolar range as well as modify the intracellular pH, inducing the basification of acidic organelles.

  8. Insertion of short transmembrane helices by the Sec61 translocon.

    Science.gov (United States)

    Jaud, Simon; Fernández-Vidal, Mónica; Nilsson, Ingmarie; Meindl-Beinker, Nadja M; Hübner, Nadja C; Tobias, Douglas J; von Heijne, Gunnar; White, Stephen H

    2009-07-14

    The insertion efficiency of transmembrane (TM) helices by the Sec61 translocon depends on helix amino acid composition, the positions of the amino acids within the helix, and helix length. We have used an in vitro expression system to examine systematically the insertion efficiency of short polyleucine segments (L(n), n = 4 ... 12) flanked at either end by 4-residue sequences of the form XXPX-L(n)-XPXX with X = G, N, D, or K. Except for X = K, insertion efficiency (p) is snorkeling) and by partial unfolding.

  9. Promiscuous Seven Transmembrane Receptors Sensing L-α-amino Acids

    DEFF Research Database (Denmark)

    Smajilovic, Sanela; Wellendorph, Petrine; Bräuner-Osborne, Hans

    2014-01-01

    A number of nutrient sensing seven trans-membrane (7TM) receptors have been identified and characterized over the past few years. While the sensing mechanisms to carbohydrates and free fatty acids are well understood, the molecular basis of amino acid sensing has recently come to the limelight. T....... The present review describes the current status of promiscuous L-α-amino acid sensors, the calcium sensing receptor (CaSR), the GPRC6A receptor, the T1R1/T1R3 receptor and also their molecular pharmacology, expression pattern and physiological significance....

  10. Differential Contribution of Transmembrane Domains IV, V, VI, and VII to Human Angiotensin II Type 1 Receptor Homomer Formation.

    Science.gov (United States)

    Young, Brent M; Nguyen, Elaine; Chedrawe, Matthew A J; Rainey, Jan K; Dupré, Denis J

    2017-02-24

    G protein-coupled receptors (GPCRs) play an important role in drug therapy and represent one of the largest families of drug targets. The angiotensin II type 1 receptor (AT1R) is notable as it has a central role in the treatment of cardiovascular disease. Blockade of AT1R signaling has been shown to alleviate hypertension and improve outcomes in patients with heart failure. Despite this, it has become apparent that our initial understanding of AT1R signaling is oversimplified. There is considerable evidence to suggest that AT1R signaling is highly modified in the presence of receptor-receptor interactions, but there is very little structural data available to explain this phenomenon even with the recent elucidation of the AT1R crystal structure. The current study investigates the involvement of transmembrane domains in AT1R homomer assembly with the goal of identifying hydrophobic interfaces that contribute to receptor-receptor affinity. A recently published crystal structure of the AT1R was used to guide site-directed mutagenesis of outward-facing hydrophobic residues within the transmembrane region of the AT1R. Bioluminescence resonance energy transfer was employed to analyze how receptor mutation affects the assembly of AT1R homomers with a specific focus on hydrophobic residues. Mutations within transmembrane domains IV, V, VI, and VII had no effect on angiotensin-mediated β-arrestin1 recruitment; however, they exhibited differential effects on the assembly of AT1R into oligomeric complexes. Our results demonstrate the importance of hydrophobic amino acids at the AT1R transmembrane interface and provide the first glimpse of the requirements for AT1R complex assembly.

  11. A Transmembrane Domain GGxxG Motif in CD4 Contributes to Its Lck-Independent Function but Does Not Mediate CD4 Dimerization.

    Directory of Open Access Journals (Sweden)

    Heather L Parrish

    Full Text Available CD4 interactions with class II major histocompatibility complex (MHC molecules are essential for CD4+ T cell development, activation, and effector functions. While its association with p56lck (Lck, a Src kinase, is important for these functions CD4 also has an Lck-independent role in TCR signaling that is incompletely understood. Here, we identify a conserved GGxxG motif in the CD4 transmembrane domain that is related to the previously described GxxxG motifs of other proteins and predicted to form a flat glycine patch in a transmembrane helix. In other proteins, these patches have been reported to mediate dimerization of transmembrane domains. Here we show that introducing bulky side-chains into this patch (GGxxG to GVxxL impairs the Lck-independent role of CD4 in T cell activation upon TCR engagement of agonist and weak agonist stimulation. However, using Forster's Resonance Energy Transfer (FRET, we saw no evidence that these mutations decreased CD4 dimerization either in the unliganded state or upon engagement of pMHC concomitantly with the TCR. This suggests that the CD4 transmembrane domain is either mediating interactions with an unidentified partner, or mediating some other function such as membrane domain localization that is important for its role in T cell activation.

  12. Transmembrane electron transport in sealed and NAD(P)H-loaded right-side-out plasma membrane vesicles isolated from maize (Zea mays L.) roots.

    Science.gov (United States)

    Menckhoff, Mathias; Lüthje, Sabine

    2004-06-01

    Electron transport across plasma membranes has been observed in vivo in several plant species and tissues after the application of ferricyanide (hexacyanoferrate III, HCF III). In the present work, a transmembrane electron flow was demonstrated in sealed and NAD(P)H-loaded right-side-out (apoplastic-side-out) plasma membrane vesicles isolated from maize (Zea mays L.) roots. HCF III was reduced at a rate of up to 126 nmol min(-1) mg(-1) protein by NADPH-loaded vesicles, while reduction rates with NADH-loaded vesicles were several-fold lower. Coincident with the reduction of HCF III, NAD(P)H oxidation was observed inside the vesicles. The dependence of reduction on K+ indicated an electrogenic transmembrane electron flow. Application of 100 microM calcium decreased HCF III reduction up to 66%, while pre-incubation with 200 microM warfarin or diphenylene iodonium inhibited transmembrane electron transport only weakly. Fe(3+)-EDTA was not reduced significantly by NADPH-loaded plasma membrane vesicles, whereas XTT was reduced at a rate of 765 pmol min(-1) mg(-1) protein. The results suggested a major function for NADPH in transmembrane electron flow and were discussed in conjunction with in vivo experiments.

  13. The position of the Gly-xxx-Gly motif in transmembrane segments modulates dimer affinity.

    Science.gov (United States)

    Johnson, Rachel M; Rath, Arianna; Deber, Charles M

    2006-12-01

    Although the intrinsic low solubility of membrane proteins presents challenges to their high-resolution structure determination, insight into the amino acid sequence features and forces that stabilize their folds has been provided through study of sequence-dependent helix-helix interactions between single transmembrane (TM) helices. While the stability of helix-helix partnerships mediated by the Gly-xxx-Gly (GG4) motif is known to be generally modulated by distal interfacial residues, it has not been established whether the position of this motif, with respect to the ends of a given TM segment, affects dimer affinity. Here we examine the relationship between motif position and affinity in the homodimers of 2 single-spanning membrane protein TM sequences: glycophorin A (GpA) and bacteriophage M13 coat protein (MCP). Using the TOXCAT assay for dimer affinity on a series of GpA and MCP TM segments that have been modified with either 4 Leu residues at each end or with 8 Leu residues at the N-terminal end, we show that in each protein, centrally located GG4 motifs are capable of stronger helix-helix interactions than those proximal to TM helix ends, even when surrounding interfacial residues are maintained. The relative importance of GG4 motifs in stabilizing helix-helix interactions therefore must be considered not only in its specific residue context but also in terms of the location of the interactive surface relative to the N and C termini of alpha-helical TM segments.

  14. The cystic fibrosis transmembrane recruiter the alter ego of CFTR as a multi-kinase anchor.

    Science.gov (United States)

    Mehta, Anil

    2007-11-01

    This review focuses on a newly discovered interaction between protein kinases involved in cellular energetics, a process that may be disturbed in cystic fibrosis for unknown reasons. I propose a new model where kinase-mediated cellular transmission of energy provides mechanistic insight to a latent role of the cystic fibrosis transmembrane conductance regulator (CFTR). I suggest that CFTR acts as a multi-kinase recruiter to the apical epithelial membrane. My group finds that, in the cytosol, two protein kinases involved in cell energy homeostasis, nucleoside diphosphate kinase (NDPK) and AMP-activated kinase (AMPK), bind one another. Preliminary data suggest that both can also bind CFTR (function unclear). The disrupted role of this CFTR-kinase complex as 'membrane transmitter to the cell' is proposed as an alternative paradigm to the conventional ion transport mediated and CFTR/chloride-centric view of cystic fibrosis pathogenesis. Chloride remains important, but instead, chloride-induced control of the phosphohistidine content of one kinase component (NDPK, via a multi-kinase complex that also includes a third kinase, CK2; formerly casein kinase 2). I suggest that this complex provides the necessary near-equilibrium conditions needed for efficient transmission of phosphate energy to proteins controlling cellular energetics. Crucially, a new role for CFTR as a kinase controller is proposed with ionic concentration acting as a signal. The model posits a regulatory control relay for energy sensing involving a cascade of protein kinases bound to CFTR.

  15. Molecular scaffolds regulate bidirectional crosstalk between Wnt and classical seven-transmembrane-domain receptor signaling pathways.

    Science.gov (United States)

    Force, Thomas; Woulfe, Kathleen; Koch, Walter J; Kerkelä, Risto

    2007-07-31

    Signaling downstream of classical seven-transmembrane domain receptors (7TMRs) had generally been thought to recruit factors that are in large part separate from those recruited by atypical 7TMRs, such as Frizzleds (Fzs), receptors for the Wnt family of glycoproteins. Classical 7TMRs are also known as G protein-coupled receptors (GPCRs) and are mediated by signaling factors such as heterotrimeric guanine nucleotide-binding proteins (G proteins), GPCR kinases (GRKs), and beta-arrestins. Over the past few years, it has become increasingly apparent that classical and atypical 7TMRs share these factors, which are often associated with mediating classical 7TMR signaling, as well as the scaffolding proteins that were initially thought to be involved in transmitting atypical 7TMR signals. This sharing of signaling components by agonists that bind classical 7TMRs and those binding to atypical 7TMRs establishes the possibility of extensive crosstalk between these receptor classes. We discuss the evidence for, and against, crosstalk, and examine mechanisms by which this can occur.

  16. Stability analysis of the inverse transmembrane potential problem in electrocardiography

    Science.gov (United States)

    Burger, Martin; Mardal, Kent-André; Nielsen, Bjørn Fredrik

    2010-10-01

    In this paper we study some mathematical properties of an inverse problem arising in connection with electrocardiograms (ECGs). More specifically, we analyze the possibility for recovering the transmembrane potential in the heart from ECG recordings, a challenge currently investigated by a growing number of groups. Our approach is based on the bidomain model for the electrical activity in the myocardium, and leads to a parameter identification problem for elliptic partial differential equations (PDEs). It turns out that this challenge can be split into two subproblems: the task of recovering the potential at the heart surface from body surface recordings; the problem of computing the transmembrane potential inside the heart from the potential determined at the heart surface. Problem (1), which can be formulated as the Cauchy problem for an elliptic PDE, has been extensively studied and is well known to be severely ill-posed. The main purpose of this paper is to prove that problem (2) is stable and well posed if a suitable prior is available. Moreover, our theoretical findings are illuminated by a series of numerical experiments. Finally, we discuss some aspects of uniqueness related to the anisotropy in the heart.

  17. The viral transmembrane superfamily: possible divergence of Arenavirus and Filovirus glycoproteins from a common RNA virus ancestor

    Directory of Open Access Journals (Sweden)

    Buchmeier Michael J

    2001-02-01

    Full Text Available Abstract Background Recent studies of viral entry proteins from influenza, measles, human immunodeficiency virus, type 1 (HIV-1, and Ebola virus have shown, first with molecular modeling, and then X-ray crystallographic or other biophysical studies, that these disparate viruses share a coiled-coil type of entry protein. Results Structural models of the transmembrane glycoproteins (GP-2 of the Arenaviruses, lymphochoriomeningitis virus (LCMV and Lassa fever virus, are presented, based on consistent structural propensities despite variation in the amino acid sequence. The principal features of the model, a hydrophobic amino terminus, and two antiparallel helices separated by a glycosylated, antigenic apex, are common to a number of otherwise disparate families of enveloped RNA viruses. Within the first amphipathic helix, demonstrable by circular dichroism of a peptide fragment, there is a highly conserved heptad repeat pattern proposed to mediate multimerization by coiled-coil interactions. The amino terminal 18 amino acids are 28% identical and 50% highly similar to the corresponding region of Ebola, a member of the Filovirus family. Within the second, charged helix just prior to membrane insertion there is also high similarity over the central 18 amino acids in corresponding regions of Lassa and Ebola, which may be further related to the similar region of HIV-1 defining a potent antiviral peptide analogue. Conclusions These findings indicate a common pattern of structure and function among viral transmembrane fusion proteins from a number of virus families. Such a pattern may define a viral transmembrane superfamily that evolved from a common precursor eons ago.

  18. Metal bridges illuminate transmembrane domain movements during gating of the cystic fibrosis transmembrane conductance regulator chloride channel.

    Science.gov (United States)

    El Hiani, Yassine; Linsdell, Paul

    2014-10-10

    Opening and closing of the cystic fibrosis transmembrane conductance regulator are controlled by ATP binding and hydrolysis by the cytoplasmic nucleotide-binding domains. Different conformational changes in the channel pore have been described during channel opening and closing; however, the relative importance of these changes to the process of gating the pore is not known. We have used patch clamp recording to identify high affinity Cd(2+) bridges formed between pairs of pore-lining cysteine residues introduced into different transmembrane α-helices (TMs). Seven Cd(2+) bridges were identified forming between cysteines in TMs 6 and 12. Interestingly, each of these Cd(2+) bridges apparently formed only in closed channels, and their formation stabilized the closed state. In contrast, a single Cd(2+) bridge identified between cysteines in TMs 1 and 12 stabilized the channel open state. Analysis of the pattern of Cd(2+) bridge formation in different channel states suggests that lateral separation and convergence of different TMs, rather than relative rotation or translation of different TMs, is the key conformational change that causes the channel pore to open and close.

  19. Effects of La3+ on H+ Transmembrane Gradient and Membrane Potential in Rice Seedling Roots

    Institute of Scientific and Technical Information of China (English)

    郑海雷; 张春光; 赵中秋; 马建华; 李利

    2002-01-01

    The effects of LaCl3 on membrane potential and transmembrane proton gradient for rice (Oryza sativa) seedling roots were studied. Highly purified plasma membrane was isolated by aqueous two-phase partitioning method. Both the gradient of transmembrane proton and membrane potential were stimulated by certain low concentration of LaCl3 and depressed by high concentration of LaCl3. The optimal concentration of La3+ is around 40~60 μmolL-1 for transmembrane proton gradient and membrane potential. It shows that La3+ can influence the generations and maintenances of membrane potential and transmembrane proton gradient in rice seedling roots.

  20. Control of cystic fibrosis transmembrane conductance regulator expression by BAP31.

    Science.gov (United States)

    Lambert, G; Becker, B; Schreiber, R; Boucherot, A; Reth, M; Kunzelmann, K

    2001-06-08

    Expression of the cystic fibrosis transmembrane conductance regulator (CFTR) is stringently controlled by molecular chaperones participating in formation of the quality control system. It has been shown that about 75% of all CFTR protein and close to 100% of the [DeltaPhe(508)] CFTR variant are rapidly degraded before leaving the endoplasmic reticulum (ER). B cell antigen receptor-associated proteins (BAPs) are ubiquitously expressed integral membrane proteins that may control association with the cytoskeleton, vesicular transport, or retrograde transport from the cis Golgi to the ER. The present study delivers evidence for cytosolic co-localization of both BAP31 and CFTR and for the control of expression of recombinant CFTR in Chinese hamster ovary (CHO) cells and Xenopus oocytes by BAP31. Antisense inhibition of BAP31 in various cell types increased expression of both wild-type CFTR and [DeltaPhe(508)]CFTR and enabled cAMP-activated Cl(-) currents in [DeltaPhe(508)]CFTR-expressing CHO cells. Coexpression of CFTR together with BAP31 attenuated cAMP-activated Cl(-) currents in Xenopus oocytes. These data therefore suggest association of BAP31 with CFTR that may control maturation or trafficking of CFTR and thus expression in the plasma membrane.

  1. Entamoeba histolytica Phagocytosis of Human Erythrocytes Involves PATMK, a Member of the Transmembrane Kinase Family

    Science.gov (United States)

    Boettner, Douglas R; Huston, Christopher D; Linford, Alicia S; Buss, Sarah N; Houpt, Eric; Sherman, Nicholas E; Petri, William A

    2008-01-01

    Entamoeba histolytica is the cause of amebic colitis and liver abscess. This parasite induces apoptosis in host cells and utilizes exposed ligands such as phosphatidylserine to ingest the apoptotic corpses and invade deeper into host tissue. The purpose of this work was to identify amebic proteins involved in the recognition and ingestion of dead cells. A member of the transmembrane kinase family, phagosome-associated TMK96 (PATMK), was identified in a proteomic screen for early phagosomal proteins. Anti-peptide affinity-purified antibody produced against PATMK demonstrated that it was a type I integral membrane protein that was expressed on the trophozoite surface, and that co-localized with human erythrocytes at the site of contact. The role of PATMK in erythrophagocytosis in vitro was demonstrated by: (i) incubation of ameba with anti-PATMK antibodies; (ii) PATMK mRNA knock-down using a novel shRNA expression system; and (iii) expression of a carboxy-truncation of PATMK (PATMKΔ932). Expression of the carboxy-truncation of PATMKΔ932 also caused a specific reduction in the ability of E. histolytica to establish infection in the intestinal model of amebiasis, however these amebae retained the ability to cause hepatic abscesses when directly injected in the liver. In conclusion, PATMK was identified as a member of the TMK family that participates in erythrophagocytosis and is uniquely required for intestinal infection. PMID:18208324

  2. Entamoeba histolytica phagocytosis of human erythrocytes involves PATMK, a member of the transmembrane kinase family.

    Directory of Open Access Journals (Sweden)

    Douglas R Boettner

    2008-01-01

    Full Text Available Entamoeba histolytica is the cause of amebic colitis and liver abscess. This parasite induces apoptosis in host cells and utilizes exposed ligands such as phosphatidylserine to ingest the apoptotic corpses and invade deeper into host tissue. The purpose of this work was to identify amebic proteins involved in the recognition and ingestion of dead cells. A member of the transmembrane kinase family, phagosome-associated TMK96 (PATMK, was identified in a proteomic screen for early phagosomal proteins. Anti-peptide affinity-purified antibody produced against PATMK demonstrated that it was a type I integral membrane protein that was expressed on the trophozoite surface, and that co-localized with human erythrocytes at the site of contact. The role of PATMK in erythrophagocytosis in vitro was demonstrated by: (i incubation of ameba with anti-PATMK antibodies; (ii PATMK mRNA knock-down using a novel shRNA expression system; and (iii expression of a carboxy-truncation of PATMK (PATMK(delta932. Expression of the carboxy-truncation of PATMK(delta932 also caused a specific reduction in the ability of E. histolytica to establish infection in the intestinal model of amebiasis, however these amebae retained the ability to cause hepatic abscesses when directly injected in the liver. In conclusion, PATMK was identified as a member of the TMK family that participates in erythrophagocytosis and is uniquely required for intestinal infection.

  3. Periplasmic response upon disruption of transmembrane Cu transport in Pseudomonas aeruginosa.

    Science.gov (United States)

    Raimunda, Daniel; Padilla-Benavides, Teresita; Vogt, Stefan; Boutigny, Sylvain; Tomkinson, Kaleigh N; Finney, Lydia A; Argüello, José M

    2013-02-01

    Pseudomonas aeruginosa, an opportunistic pathogen, has two transmembrane Cu(+) transport ATPases, CopA1 and CopA2. Both proteins export cytoplasmic Cu(+) into the periplasm and mutation of either gene leads to attenuation of virulence. CopA1 is required for maintaining cytoplasmic copper levels, while CopA2 provides copper for cytochrome c oxidase assembly. We hypothesized that transported Cu(+) ions would be directed to their destination via specific periplasmic partners and disruption of transport should affect the periplasmic copper homeostasis. Supporting this, mutation of either ATPase gene led to large increments in periplasmic cuproprotein levels. Toward identifying the proteins participating in this cellular response the periplasmic metalloproteome was resolved in non-denaturing bidimensional gel electrophoresis, followed by X-ray fluorescence visualization and identification by mass-spectrometry. A single spot containing the electron shuttle protein azurin was responsible for the observed increments in cuproprotein contents. In agreement, lack of either Cu(+)-ATPase induced an increase in azu transcription. This is associated with an increase in the expression of anr and rpoS oxidative stress response regulators, rather than cueR, a copper sensing regulator. We propose that azurin overexpression and accumulation in the periplasm is part of the cellular response to cytoplasmic oxidative stress in P. aeruginosa.

  4. The MARVEL transmembrane motif of occludin mediates oligomerization and targeting to the basolateral surface in epithelia.

    Science.gov (United States)

    Yaffe, Yakey; Shepshelovitch, Jeanne; Nevo-Yassaf, Inbar; Yeheskel, Adva; Shmerling, Hedva; Kwiatek, Joanna M; Gaus, Katharina; Pasmanik-Chor, Metsada; Hirschberg, Koret

    2012-08-01

    Occludin (Ocln), a MARVEL-motif-containing protein, is found in all tight junctions. MARVEL motifs are comprised of four transmembrane helices associated with the localization to or formation of diverse membrane subdomains by interacting with the proximal lipid environment. The functions of the Ocln MARVEL motif are unknown. Bioinformatics sequence- and structure-based analyses demonstrated that the MARVEL domain of Ocln family proteins has distinct evolutionarily conserved sequence features that are consistent with its basolateral membrane localization. Live-cell microscopy, fluorescence resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC) were used to analyze the intracellular distribution and self-association of fluorescent-protein-tagged full-length human Ocln or the Ocln MARVEL motif excluding the cytosolic C- and N-termini (amino acids 60-269, FP-MARVEL-Ocln). FP-MARVEL-Ocln efficiently arrived at the plasma membrane (PM) and was sorted to the basolateral PM in filter-grown polarized MDCK cells. A series of conserved aromatic amino acids within the MARVEL domain were found to be associated with Ocln dimerization using BiFC. FP-MARVEL-Ocln inhibited membrane pore growth during Triton-X-100-induced solubilization and was shown to increase the membrane-ordered state using Laurdan, a lipid dye. These data demonstrate that the Ocln MARVEL domain mediates self-association and correct sorting to the basolateral membrane.

  5. Transmembrane and secreted MUC1 probes show trafficking-dependent changes in O-glycan core profiles.

    Science.gov (United States)

    Engelmann, Katja; Kinlough, Carol L; Müller, Stefan; Razawi, Hani; Baldus, Stephan E; Hughey, Rebecca P; Hanisch, Franz-Georg

    2005-11-01

    The human mucin MUC1 is expressed both as a transmembrane heterodimeric protein complex that recycles via the trans-Golgi network (TGN) and as a secreted isoform. To determine whether differences in cellular trafficking might influence the O-glycosylation profiles on these isoforms, we developed a model system consisting of membrane-bound and secretory-recombinant glycosylation probes. Secretory MUC1-S contains only a truncated repeat domain, whereas in MUC1-M constructs this domain is attached to the native transmembrane and cytoplasmic domains of MUC1 either directly (M0) or via an intermitting nonfunctional (M1) or functional sperm protein-enterokinase-agrin (SEA) module (M2); the SEA module contains a putative proteolytic cleavage site and is associated with proteins receiving extensive O-glycosylation. We showed that MUC1-M2 simulates endogenous MUC1 by recycling from the cell surface of Chinese hamster ovary (CHO) mutant ldlD14 cells through intracellular compartments where its glycosylation continues. The profiles of O-linked glycans on MUC1-S secreted by epithelial EBNA-293 and MCF-7 breast cancer cells revealed patterns dominated by core 2-based oligosaccharides. In contrast, the respective membrane-shed probes expressed in the same cells showed a complete shift to patterns dominated by sialyl core 1. In conclusion, glycan core profiles reflected the subcellular trafficking pathways of the secretory or membranous probes and the modifying activities of the resident glycosyltransferases.

  6. [Progress of studies on acu-moxibustion stimulation-induced cellular transmembrane signal transduction of the target-organs].

    Science.gov (United States)

    Yi, Shou-Xiang; Peng, Yan

    2009-10-01

    Abundant research results have shown that multiple levels and links of cellular transmembrane signal transduction pathways in the target organs were involved in the efficacy of acupuncture. For instance, 1) various extra-cellular growth factors for initiating signal transduction by activating tyrosine protein kinase and non-receptor tyrosine kinase, 2) G protein-coupled protein kinase-second signal messengers, 3) ligands acting on intra-nuclear receptors to activate transduction pathway of nuclear transcription factors of the target genes, have been demonstrated in the favorable regulating process of acupuncture and moxibustion in different pathological animal models. In the present paper, the authors review the progress of studies on the abovementioned mechanism of acu-moxibustion underlying improving some disorders as 1) pain, cerebral ischemia, and senile dementia, 2) inflammation and tumor, and 3) myocardial ischemia. Moreover, the authors also analyze the extant problems and make a prospect on the future studies about the cellular transmembrane signal transduction pathways involving the effects of acupuncture and moxibustion.

  7. Recombinant Expression Screening of P. aeruginosa Bacterial Inner Membrane Proteins

    Directory of Open Access Journals (Sweden)

    Jeffery Constance J

    2010-11-01

    Full Text Available Abstract Background Transmembrane proteins (TM proteins make up 25% of all proteins and play key roles in many diseases and normal physiological processes. However, much less is known about their structures and molecular mechanisms than for soluble proteins. Problems in expression, solubilization, purification, and crystallization cause bottlenecks in the characterization of TM proteins. This project addressed the need for improved methods for obtaining sufficient amounts of TM proteins for determining their structures and molecular mechanisms. Results Plasmid clones were obtained that encode eighty-seven transmembrane proteins with varying physical characteristics, for example, the number of predicted transmembrane helices, molecular weight, and grand average hydrophobicity (GRAVY. All the target proteins were from P. aeruginosa, a gram negative bacterial opportunistic pathogen that causes serious lung infections in people with cystic fibrosis. The relative expression levels of the transmembrane proteins were measured under several culture growth conditions. The use of E. coli strains, a T7 promoter, and a 6-histidine C-terminal affinity tag resulted in the expression of 61 out of 87 test proteins (70%. In this study, proteins with a higher grand average hydrophobicity and more transmembrane helices were expressed less well than less hydrophobic proteins with fewer transmembrane helices. Conclusions In this study, factors related to overall hydrophobicity and the number of predicted transmembrane helices correlated with the relative expression levels of the target proteins. Identifying physical characteristics that correlate with protein expression might aid in selecting the "low hanging fruit", or proteins that can be expressed to sufficient levels using an E. coli expression system. The use of other expression strategies or host species might be needed for sufficient levels of expression of transmembrane proteins with other physical

  8. Atomic Structure of the Cystic Fibrosis Transmembrane Conductance Regulator.

    Science.gov (United States)

    Zhang, Zhe; Chen, Jue

    2016-12-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel evolved from the ATP-binding cassette (ABC) transporter family. In this study, we determined the structure of zebrafish CFTR in the absence of ATP by electron cryo-microscopy to 3.7 Å resolution. Human and zebrafish CFTR share 55% sequence identity, and 42 of the 46 cystic-fibrosis-causing missense mutational sites are identical. In CFTR, we observe a large anion conduction pathway lined by numerous positively charged residues. A single gate near the extracellular surface closes the channel. The regulatory domain, dephosphorylated, is located in the intracellular opening between the two nucleotide-binding domains (NBDs), preventing NBD dimerization and channel opening. The structure also reveals why many cystic-fibrosis-causing mutations would lead to defects either in folding, ion conduction, or gating and suggests new avenues for therapeutic intervention.

  9. Large-Conductance Transmembrane Porin Made from DNA Origami.

    Science.gov (United States)

    Göpfrich, Kerstin; Li, Chen-Yu; Ricci, Maria; Bhamidimarri, Satya Prathyusha; Yoo, Jejoong; Gyenes, Bertalan; Ohmann, Alexander; Winterhalter, Mathias; Aksimentiev, Aleksei; Keyser, Ulrich F

    2016-09-27

    DNA nanotechnology allows for the creation of three-dimensional structures at nanometer scale. Here, we use DNA to build the largest synthetic pore in a lipid membrane to date, approaching the dimensions of the nuclear pore complex and increasing the pore-area and the conductance 10-fold compared to previous man-made channels. In our design, 19 cholesterol tags anchor a megadalton funnel-shaped DNA origami porin in a lipid bilayer membrane. Confocal imaging and ionic current recordings reveal spontaneous insertion of the DNA porin into the lipid membrane, creating a transmembrane pore of tens of nanosiemens conductance. All-atom molecular dynamics simulations characterize the conductance mechanism at the atomic level and independently confirm the DNA porins' large ionic conductance.

  10. Glycosylation and the cystic fibrosis transmembrane conductance regulator

    Directory of Open Access Journals (Sweden)

    Glick Mary Catherine

    2001-08-01

    Full Text Available Abstract The cystic fibrosis transmembrane conductance regulator (CFTR has been known for the past 11 years to be a membrane glycoprotein with chloride channel activity. Only recently has the glycosylation of CFTR been examined in detail, by O'Riordan et al in Glycobiology. Using cells that overexpress wild-type (wtCFTR, the presence of polylactosamine was noted on the fully glycosylated form of CFTR. In the present commentary the results of that work are discussed in relation to the glycosylation phenotype of cystic fibrosis (CF, and the cellular localization and processing of ΔF508 CFTR. The significance of the glycosylation will be known when endogenous CFTR from primary human tissue is examined.

  11. Magnetic resonance study of the transmembrane nitrite diffusion.

    Science.gov (United States)

    Samouilov, A; Woldman, Ya Yu; Zweier, J L; Khramtsov, V V

    2007-05-01

    Nitrite (NO(2)-), being a product of metabolism of both nitric oxide (NO(*)) and nitrate (NO(3)-), can accumulate in tissues and regenerate NO() by several mechanisms. The effect of NO(2)- on ischemia/reperfusion injury was also reported. Nevertheless, the mechanisms of intracellular NO(2)- accumulation are poorly understood. We suggested significant role of nitrite penetration through biological membranes in the form of undissociated nitrous acid (HNO(2)). This hypothesis has been tested using large unilamellar phosphatidylcholine liposomes and several spectroscopic techniques. HNO(2) transport across the phospholipid bilayer of liposomes facilitates proton transfer resulting in intraliposomal acidification, which was measured using pH-sensitive probes. NO(2)(-)-mediated intraliposomal acidification was confirmed by EPR spectroscopy using membrane-impermeable pH-sensitive nitroxide, AMC (2,2,5,5-tetramethyl-1-yloxy-2,5-dihydro-1H-imidazol-3-ium-4-yl)-aminomethanesulfonic acid (pK 5.25), and by (31)P NMR spectroscopy using inorganic phosphate (pK 6.9). Nitrite accumulates inside liposomes in concentration exceeding its concentration in the bulk solution, when initial transmembrane pH gradient (alkaline inside) is applied. Intraliposomal accumulation of NO(2)- was observed by direct measurement using chemiluminescence technique. Perfusion of isolated rat hearts with buffer containing 4 microM NO(2)- was performed. The nitrite concentrations in the effluent and in the tissue, measured after 1 min perfusion, were close, supporting fast penetration of the nitrite through the tissue. Measurements of the nitrite/nitrate showed that total concentration of NO(x) in myocardium increased from initial 7.8 to 24.7 microM after nitrite perfusion. Physiological significance of passive transmembrane transport of NO(2)- and its coupling with intraliposomal acidification are discussed.

  12. Protein (Cyanobacteria): 86287 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available YP_007165248.1 1117:1665 1118:2656 102234:455 102235:1319 292563:1319 cytochrome c biogenesis... protein transmembrane region Cyanobacterium stanieri PCC 7202 MNLESISEQLYYLQQFANELVNSQLSHLTVFSVGI

  13. Transmembrane oligomeric form of Vibrio cholerae cytolysin triggers TLR2/TLR6-dependent proinflammatory responses in monocytes and macrophages.

    Science.gov (United States)

    Khilwani, Barkha; Mukhopadhaya, Arunika; Chattopadhyay, Kausik

    2015-02-15

    Vibrio cholerae cytolysin (VCC) kills target eukaryotic cells by forming transmembrane oligomeric β-barrel pores. Once irreversibly converted into the transmembrane oligomeric form, VCC acquires an unusual structural stability and loses its cytotoxic property. It is therefore possible that, on exertion of its cytotoxic activity, the oligomeric form of VCC retained in the disintegrated membrane fractions of the lysed cells would survive within the host cellular milieu for a long period, without causing any further cytotoxicity. Under such circumstances, VCC oligomers may potentially be recognized by the host immune cells. Based on such a hypothesis, in the present study we explored the interaction of the transmembrane oligomeric form of VCC with the monocytes and macrophages of the innate immune system. Our study shows that the VCC oligomers assembled in the liposome membranes elicit potent proinflammatory responses in monocytes and macrophages, via stimulation of the toll-like receptor (TLR)2/TLR6-dependent signalling cascades that involve myeloid differentiation factor 88 (MyD88)/interleukin-1-receptor-associated kinase (IRAK)1/tumour-necrosis-factor-receptor-associated factor (TRAF)6. VCC oligomer-mediated proinflammatory responses critically depend on the activation of the transcription factor nuclear factor-κB. Proinflammatory responses induced by the VCC oligomers also require activation of the mitogen-activated protein kinase (MAPK) family member c-Jun N-terminal kinase, which presumably acts via stimulation of the transcription factor activator protein-1. Notably, the role of the MAPK p38 could not be documented in the process.

  14. Multiscale modeling and computation of nano-electronic transistors and transmembrane proton channels

    Science.gov (United States)

    Chen, Duan

    The miniaturization of nano-scale electronic transistors, such as metal oxide semiconductor field effect transistors (MOSFETs), has given rise to a pressing demand in the new theoretical understanding and practical tactic for dealing with quantum mechanical effects in integrated circuits. In biology, proton dynamics and transport across membrane proteins are of paramount importance to the normal function of living cells. Similar physical characteristics are behind the two subjects, and model simulations share common mathematical interests/challenges. In this thesis work, multiscale and multiphysical models are proposed to study the mechanisms of nanotransistors and proton transport in transmembrane at the atomic level. For nano-electronic transistors, we introduce a unified two-scale energy functional to describe the electrons and the continuum electrostatic potential. This framework enables us to put microscopic and macroscopic descriptions on an equal footing at nano-scale. Additionally, this model includes layered structures and random doping effect of nano-transistors. For transmembrane proton channels, we describe proton dynamics quantum mechanically via a density functional approach while implicitly treat numerous solvent molecules as a dielectric continuum. The densities of all other ions in the solvent are assumed to obey the Boltzmann distribution. The impact of protein molecular structure and its charge polarization on the proton transport is considered in atomic details. We formulate a total free energy functional to include kinetic and potential energies of protons, as well as electrostatic energy of all other ions on an equal footing. For both nano-transistors and proton channels systems, the variational principle is employed to derive nonlinear governing equations. The Poisson-Kohn-Sham equations are derived for nano-transistors while the generalized Poisson-Boltzmann equation and Kohn-Sham equation are obtained for proton channels. Related numerical

  15. Bacterial Synthesis and Purification of Normal and Mutant Forms of Human FGFR3 Transmembrane Segment.

    Science.gov (United States)

    Goncharuk, S A; Goncharuk, M V; Mayzel, M L; Lesovoy, D M; Chupin, V V; Bocharov, E V; Arseniev, A S; Kirpichnikov, M P

    2011-07-01

    The fibroblast growth factor receptor 3 (FGFR3) is a protein belonging to the family of receptor tyrosine kinases. FGFR3 plays an important role in human skeletal development. Mutations in this protein, including Gly380Arg or Ala391Glu substitutions in the transmembrane (TM) region, can cause different disorders in bone development. The determination of the spatial structure of the FGFR3 TM domain in a normal protein and in a protein with single Gly380Arg and Ala391Glu mutations is essential in order to understand the mechanisms that control dimerization and signal transduction by receptor tyrosine kinases. The effective system of expression of eukaryotic genes in bacteria and the purification protocol for the production of milligram amounts of both normal TM fragments of FGFR3 and those with single pathogenic mutations Gly380Arg and Ala391Glu, as well as their(15)N- and [(15)N,(13)C]-isotope-labelled derivatives, were described. Each peptide was produced inEscherichia coliBL21(DE3)pLysS cells as a C-terminal extension of thioredoxin A. The purification protocol involved immobilized metal affinity chromatography and cation- and anion-exchange chromatography, as well as the fusion protein cleavage with the light subunit of human enterokinase. The efficiency of the incorporation of target peptides into DPC/SDS and DPC/DPG micelles was confirmed using NMR spectroscopy. The described methodology of production of the native FGFR3 TM domain in norma and with single Gly380Arg and Ala391Glu mutations enables one to study their spatial structure using high-resolution heteronuclear NMR spectroscopy.

  16. Kit- and Fc epsilonRI-induced differential phosphorylation of the transmembrane adaptor molecule NTAL/LAB/LAT2 allows flexibility in its scaffolding function in mast cells

    DEFF Research Database (Denmark)

    Iwaki, Shoko; Spicka, Jiri; Tkaczyk, Christine;

    2008-01-01

    The transmembrane adaptor protein (TRAP), NTAL, is phosphorylated in mast cells following FcvarepsilonRI aggregation whereby it cooperates with LAT to induce degranulation. The Kit ligand, stem cell factor (SCF), enhances antigen-induced degranulation and this also appears to be NTAL......-knock down-human mast cells. The observations reported herein support the conclusion that NTAL may be differentially utilized by specific receptors for relaying alternative signals and this suggests a flexibility in the function of TRAPs not previously appreciated....

  17. Structural and functional characterization of alternative transmembrane domain conformations in VEGF receptor 2 activation.

    Science.gov (United States)

    Manni, Sandro; Mineev, Konstantin S; Usmanova, Dinara; Lyukmanova, Ekaterina N; Shulepko, Mikhail A; Kirpichnikov, Mikhail P; Winter, Jonas; Matkovic, Milos; Deupi, Xavier; Arseniev, Alexander S; Ballmer-Hofer, Kurt

    2014-08-05

    Transmembrane signaling by receptor tyrosine kinases (RTKs) entails ligand-mediated dimerization and structural rearrangement of the extracellular domains. RTK activation also depends on the specific orientation of the transmembrane domain (TMD) helices, as suggested by pathogenic, constitutively active RTK mutants. Such mutant TMDs carry polar amino acids promoting stable transmembrane helix dimerization, which is essential for kinase activation. We investigated the effect of polar amino acids introduced into the TMD of vascular endothelial growth factor receptor 2, regulating blood vessel homeostasis. Two mutants showed constitutive kinase activity, suggesting that precise TMD orientation is mandatory for kinase activation. Nuclear magnetic resonance spectroscopy revealed that TMD helices in activated constructs were rotated by 180° relative to the interface of the wild-type conformation, confirming that ligand-mediated receptor activation indeed results from transmembrane helix rearrangement. A molecular dynamics simulation confirmed the transmembrane helix arrangement of wild-type and mutant TMDs revealed by nuclear magnetic resonance spectroscopy.

  18. A specific interface between integrin transmembrane helices and affinity for ligand.

    Science.gov (United States)

    Luo, Bing-Hao; Springer, Timothy A; Takagi, Junichi

    2004-06-01

    Conformational communication across the plasma membrane between the extracellular and intracellular domains of integrins is beginning to be defined by structural work on both domains. However, the role of the alpha and beta subunit transmembrane domains and the nature of signal transmission through these domains have been elusive. Disulfide bond scanning of the exofacial portions of the integrin alpha(IIbeta) and beta(3) transmembrane domains reveals a specific heterodimerization interface in the resting receptor. This interface is lost rather than rearranged upon activation of the receptor by cytoplasmic mutations of the alpha subunit that mimic physiologic inside-out activation, demonstrating a link between activation of the extracellular domain and lateral separation of transmembrane helices. Introduction of disulfide bridges to prevent or reverse separation abolishes the activating effect of cytoplasmic mutations, confirming transmembrane domain separation but not hinging or piston-like motions as the mechanism of transmembrane signaling by integrins.

  19. Targeting a genetic defect: cystic fibrosis transmembrane conductance regulator modulators in cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Nico Derichs

    2013-03-01

    Full Text Available Cystic fibrosis (CF is caused by genetic mutations that affect the cystic fibrosis transmembrane conductance regulator (CFTR protein. These mutations can impact the synthesis and transfer of the CFTR protein to the apical membrane of epithelial cells, as well as influencing the gating or conductance of chloride and bicarbonate ions through the channel. CFTR dysfunction results in ionic imbalance of epithelial secretions in several organ systems, such as the pancreas, gastrointestinal tract, liver and the respiratory system. Since discovery of the CFTR gene in 1989, research has focussed on targeting the underlying genetic defect to identify a disease-modifying treatment for CF. Investigated management strategies have included gene therapy and the development of small molecules that target CFTR mutations, known as CFTR modulators. CFTR modulators are typically identified by high-throughput screening assays, followed by preclinical validation using cell culture systems. Recently, one such modulator, the CFTR potentiator ivacaftor, was approved as an oral therapy for CF patients with the G551D-CFTR mutation. The clinical development of ivacaftor not only represents a breakthrough in CF care but also serves as a noteworthy example of personalised medicine.

  20. Cardiac 7-transmembrane-spanning domain receptor portfolios: diversify, diversify, diversify.

    Science.gov (United States)

    Liggett, Stephen B

    2006-04-01

    Enhanced signaling in myocytes by the G protein Gq has been implicated in cardiac hypertrophy and the transition to heart failure. alpha1-Adrenergic receptors (alpha1-ARs) are members of the 7-transmembrane-spanning domain (7-TM) receptor family and signal via interaction with Gq in the heart. The specific effects of a loss of alpha1-AR signaling in the heart are explored by O'Connell et al. in this issue of the JCI (see the related article beginning on page 1005). Paradoxically, gene ablation of the alpha 1A and alpha 1B subtypes in mice results in a maladaptive form of reactive cardiac hypertrophy from pressure overload, with a predisposition to heart failure. Thus signaling to the alpha1-AR (compared with signaling from other receptors such as angiotensin receptors, which also couple to Gq) appears to be specifically required for a normal hypertrophic response. This represents another example of how receptors that share common G proteins have diversified, developing unique signaling programs. These findings may have particular clinical relevance because of the widespread use of alpha1-AR antagonists in the treatment of hypertension and symptomatic prostate enlargement.

  1. Structure and Function of the Intracellular Region of the Plexin-B1 Transmembrane Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Yufeng; Hota, Prasanta K.; Penachioni, Junia Y.; Hamaneh, Mehdi B.; Kim, SoonJeung; Alviani, Rebecca S.; Shen, Limin; He, Hao; Tempel, Wolfram; Tamagnone, Luca; Park, Hee-Won; Buck, Matthias; (Torino); (Toronto); (Case Western U.-Med)

    2010-02-11

    Members of the plexin family are unique transmembrane receptors in that they interact directly with Rho family small GTPases; moreover, they contain a GTPase-activating protein (GAP) domain for R-Ras, which is crucial for plexin-mediated regulation of cell motility. However, the functional role and structural basis of the interactions between the different intracellular domains of plexins remained unclear. Here we present the 2.4 {angstrom} crystal structure of the complete intracellular region of human plexin-B1. The structure is monomeric and reveals that the GAP domain is folded into one structure from two segments, separated by the Rho GTPase binding domain (RBD). The RBD is not dimerized, as observed previously. Instead, binding of a conserved loop region appears to compete with dimerization and anchors the RBD to the GAP domain. Cell-based assays on mutant proteins confirm the functional importance of this coupling loop. Molecular modeling based on structural homology to p120{sup GAP} {center_dot}H-Ras suggests that Ras GTPases can bind to the plexin GAP region. Experimentally, we show that the monomeric intracellular plexin-B1 binds R-Ras but not H-Ras. These findings suggest that the monomeric form of the intracellular region is primed for GAP activity and extend a model for plexin activation.

  2. Mice deficient in transmembrane prostatic acid phosphatase display increased GABAergic transmission and neurological alterations.

    Directory of Open Access Journals (Sweden)

    Heidi O Nousiainen

    Full Text Available Prostatic acid phosphatase (PAP, the first diagnostic marker and present therapeutic target for prostate cancer, modulates nociception at the dorsal root ganglia (DRG, but its function in the central nervous system has remained unknown. We studied expression and function of TMPAP (the transmembrane isoform of PAP in the brain by utilizing mice deficient in TMPAP (PAP-/- mice. Here we report that TMPAP is expressed in a subpopulation of cerebral GABAergic neurons, and mice deficient in TMPAP show multiple behavioral and neurochemical features linked to hyperdopaminergic dysregulation and altered GABAergic transmission. In addition to increased anxiety, disturbed prepulse inhibition, increased synthesis of striatal dopamine, and augmented response to amphetamine, PAP-deficient mice have enlarged lateral ventricles, reduced diazepam-induced loss of righting reflex, and increased GABAergic tone in the hippocampus. TMPAP in the mouse brain is localized presynaptically, and colocalized with SNARE-associated protein snapin, a protein involved in synaptic vesicle docking and fusion, and PAP-deficient mice display altered subcellular distribution of snapin. We have previously shown TMPAP to reside in prostatic exosomes and we propose that TMPAP is involved in the control of GABAergic tone in the brain also through exocytosis, and that PAP deficiency produces a distinct neurological phenotype.

  3. Ultraslow Water-Mediated Transmembrane Interactions Regulate the Activation of A2A Adenosine Receptor.

    Science.gov (United States)

    Lee, Yoonji; Kim, Songmi; Choi, Sun; Hyeon, Changbong

    2016-09-20

    Water molecules inside a G-protein coupled receptor (GPCR) have recently been spotlighted in a series of crystal structures. To decipher the dynamics and functional roles of internal water molecules in GPCR activity, we studied the A2A adenosine receptor using microsecond molecular-dynamics simulations. Our study finds that the amount of water flux across the transmembrane (TM) domain varies depending on the receptor state, and that the water molecules of the TM channel in the active state flow three times more slowly than those in the inactive state. Depending on the location in solvent-protein interface as well as the receptor state, the average residence time of water in each residue varies from ∼O(10(2)) ps to ∼O(10(2)) ns. Especially, water molecules, exhibiting ultraslow relaxation (∼O(10(2)) ns) in the active state, are found around the microswitch residues that are considered activity hotspots for GPCR function. A continuous allosteric network spanning the TM domain, arising from water-mediated contacts, is unique in the active state, underscoring the importance of slow water molecules in the activation of GPCRs. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Transmembrane helix hydrophobicity is an energetic barrier during the retrotranslocation of integral membrane ERAD substrates

    Science.gov (United States)

    Guerriero, Christopher J.; Reutter, Karl-Richard; Augustine, Andrew A.; Preston, G. Michael; Weiberth, Kurt F.; Mackie, Timothy D.; Cleveland-Rubeor, Hillary C.; Bethel, Neville P.; Callenberg, Keith M.; Nakatsukasa, Kunio; Grabe, Michael; Brodsky, Jeffrey L.

    2017-01-01

    Integral membrane proteins fold inefficiently and are susceptible to turnover via the endoplasmic reticulum–associated degradation (ERAD) pathway. During ERAD, misfolded proteins are recognized by molecular chaperones, polyubiquitinated, and retrotranslocated to the cytoplasm for proteasomal degradation. Although many aspects of this pathway are defined, how transmembrane helices (TMHs) are removed from the membrane and into the cytoplasm before degradation is poorly understood. In this study, we asked whether the hydrophobic character of a TMH acts as an energetic barrier to retrotranslocation. To this end, we designed a dual-pass model ERAD substrate, Chimera A*, which contains the cytoplasmic misfolded domain from a characterized ERAD substrate, Sterile 6* (Ste6p*). We found that the degradation requirements for Chimera A* and Ste6p* are similar, but Chimera A* was retrotranslocated more efficiently than Ste6p* in an in vitro assay in which retrotranslocation can be quantified. We then constructed a series of Chimera A* variants containing synthetic TMHs with a range of ΔG values for membrane insertion. TMH hydrophobicity correlated inversely with retrotranslocation efficiency, and in all cases, retrotranslocation remained Cdc48p dependent. These findings provide insight into the energetic restrictions on the retrotranslocation reaction, as well as a new computational approach to predict retrotranslocation efficiency. PMID:28539401

  5. Transmembrane TNF-α is sufficient for articular inflammation and hypernociception in a mouse model of gout.

    Science.gov (United States)

    Amaral, Flávio A; Bastos, Leandro F S; Oliveira, Thiago H C; Dias, Ana C F; Oliveira, Vívian L S; Tavares, Lívia D; Costa, Vivian V; Galvão, Izabela; Soriani, Frederico M; Szymkowski, David E; Ryffel, Bernhard; Souza, Danielle G; Teixeira, Mauro M

    2016-01-01

    Gout manifests as recurrent episodes of acute joint inflammation and pain due to the deposition of monosodium urate (MSU) crystals within the affected tissue in a process dependent on NLRP3 inflammasome activation. The synthesis, activation, and release of IL-1β are crucial for MSU-induced inflammation. The current study evaluated the mechanism by which TNF-α contributed to MSU-induced inflammation. Male C57BL/6J or transgenic mice were used in this study and inflammation was induced by the injection of MSU crystals into the joint. TNF-α was markedly increased in the joint after the injection of MSU. There was inhibition in the infiltration of neutrophils, production of CXCL1 and IL-1β, and decreased hypernociception in mice deficient for TNF-α or its receptors. Pharmacological blockade of TNF-α with Etanercept or pentoxyfylline produced similar results. Mechanistically, TNF-α blockade resulted in lower amounts of IL-1β protein and pro-IL-1β mRNA transcripts in joints. Gene-modified mice that express only transmembrane TNF-α had an inflammatory response similar to that of WT mice and blockade of soluble TNF-α (XPro™1595) did not decrease MSU-induced inflammation. In conclusion, TNF-α drives expression of pro-IL-1β mRNA and IL-1β protein in experimental gout and that its transmembrane form is sufficient to trigger MSU-induced inflammation in mice.

  6. Large lateral movement of transmembrane helix S5 is not required for substrate access to the active site of rhomboid intramembrane protease.

    Science.gov (United States)

    Xue, Yi; Ha, Ya

    2013-06-07

    Rhomboids represent an evolutionarily ancient protease family. Unlike most other proteases, they are polytopic membrane proteins and specialize in cleaving transmembrane protein substrates. The polar active site of rhomboid protease is embedded in the membrane and normally closed. For the bacterial rhomboid GlpG, it has been proposed that one of the transmembrane helices (S5) of the protease can rotate to open a lateral gate, enabling substrate to enter the protease from inside the membrane. Here, we studied the conformational change in GlpG by solving the cocrystal structure of the protease with a mechanism-based inhibitor. We also examined the lateral gating model by cross-linking S5 to a neighboring helix (S2). The crystal structure shows that inhibitor binding displaces a capping loop (L5) from the active site but causes only minor shifts in the transmembrane helices. Cross-linking S5 and S2, which not only restricts the lateral movement of S5 but also prevents substrate from passing between the two helices, does not hinder the ability of the protease to cleave a membrane protein substrate in detergent solution and in reconstituted membrane vesicles. Taken together, these data suggest that a large lateral movement of the S5 helix is not required for substrate access to the active site of rhomboid protease.

  7. A globin domain in a neuronal transmembrane receptor of Caenorhabditis elegans and Ascaris suum: molecular modeling and functional properties.

    Science.gov (United States)

    Tilleman, Lesley; Germani, Francesca; De Henau, Sasha; Helbo, Signe; Desmet, Filip; Berghmans, Herald; Van Doorslaer, Sabine; Hoogewijs, David; Schoofs, Liliane; Braeckman, Bart P; Moens, Luc; Fago, Angela; Dewilde, Sylvia

    2015-04-17

    We report the structural and biochemical characterization of GLB-33, a putative neuropeptide receptor that is exclusively expressed in the nervous system of the nematode Caenorhabditis elegans. This unique chimeric protein is composed of a 7-transmembrane domain (7TM), GLB-33 7TM, typical of a G-protein-coupled receptor, and of a globin domain (GD), GLB-33 GD. Comprehensive sequence similarity searches in the genome of the parasitic nematode, Ascaris suum, revealed a chimeric protein that is similar to a Phe-Met-Arg-Phe-amide neuropeptide receptor. The three-dimensional structures of the separate domains of both species and of the full-length proteins were modeled. The 7TM domains of both proteins appeared very similar, but the globin domain of the A. suum receptor surprisingly seemed to lack several helices, suggesting a novel truncated globin fold. The globin domain of C. elegans GLB-33, however, was very similar to a genuine myoglobin-type molecule. Spectroscopic analysis of the recombinant GLB-33 GD showed that the heme is pentacoordinate when ferrous and in the hydroxide-ligated form when ferric, even at neutral pH. Flash-photolysis experiments showed overall fast biphasic CO rebinding kinetics. In its ferrous deoxy form, GLB-33 GD is capable of reversibly binding O2 with a very high affinity and of reducing nitrite to nitric oxide faster than other globins. Collectively, these properties suggest that the globin domain of GLB-33 may serve as a highly sensitive oxygen sensor and/or as a nitrite reductase. Both properties are potentially able to modulate the neuropeptide sensitivity of the neuronal transmembrane receptor. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Function and expression of cystic fibrosis transmembrane conductance regulator after small intestinal transplantation in mice.

    Directory of Open Access Journals (Sweden)

    Penghong Song

    Full Text Available The secretion function of intestinal graft is one of the most important factors for successful intestinal transplantation. Cystic fibrosis transmembrane conductance regulator (CFTR mediates HCO3(- and Cl(- secretions in intestinal epithelial cells. In this study, we made investigation on the expression and function of CFTR in an experimental model of murine small intestinal transplantation. Heterotopic intestinal transplantations were performed in syngeneic mice. The mRNA and protein expressions of CFTR were analyzed by real time PCR and western blot. Murine intestinal mucosal HCO3(- and Cl(- secretions were examined in vitro in Ussing chambers by the pH stat and short circuit current (I(sc techniques. The results showed that forskolin, an activator of CFTR, stimulated jejunal mucosal epithelial HCO3(- and Cl(- secretions in mice, but forskolin-stimulated HCO3(- and Cl(- secretions in donor and recipient jejunal mucosae of mice after heterotopic jejunal transplantation were markedly decreased, compared with controls (P<0.001. The mRNA and protein expression levels of CFTR in donor and recipient jejunal mucosae of mice were also markedly lower than those in controls (P<0.001, and the mRNA and protein expression levels of tumor necrosis factor α (TNFα were markedly increased in donor jejunal mucosae of mice (P<0.001, compared with controls. Further experiments showed that TNFα down-regulated the expression of CFTR mRNA in murine jejunal mucosa. In conclusion, after intestinal transplantation, the function of CFTR was impaired, and its mRNA and protein expressions were down-regulated, which may be induced by TNFα.

  9. Recognition and transmembrane delivery of bioconjugated Fe2O3@Au nanoparticles with living cells

    Science.gov (United States)

    Sun, Linlin; Wang, Jine; Wang, Zhenxin

    2010-02-01

    Here, we describe the synthesis of peptide- and/or protein-functionalized Fe2O3 core-Au shell (Fe2O3@Au) nanoparticles for imaging and targeting of living cells. When functionalized with the transmembrane peptide RRRRRRRR (R8), the Fe2O3@Au nanoparticles (R8-Fe2O3@Au) are able to serve as cellular trafficking agents with excellent biocompatibility. The internalization mechanism and delivery efficiency of the R8-Fe2O3@Au nanoparticles have been characterized with dark-field microscopy and fluorescence confocal scanning laser microcopy. Experimental result suggests that the R8-Fe2O3@Au nanoparticles are internalized initially by binding with the membrane-associated proteoglycans on cell surfaces, especially heparan sulfate proteoglycans (HSPGs), following an energy-dependent endocytosis process to enter into living cells. After conjugation with the epidermal growth factor receptor antibody (anti-EGFR), these nanoparticles can also be used for the recognition of cell membrane antigens to specifically label tumor cells.Here, we describe the synthesis of peptide- and/or protein-functionalized Fe2O3 core-Au shell (Fe2O3@Au) nanoparticles for imaging and targeting of living cells. When functionalized with the transmembrane peptide RRRRRRRR (R8), the Fe2O3@Au nanoparticles (R8-Fe2O3@Au) are able to serve as cellular trafficking agents with excellent biocompatibility. The internalization mechanism and delivery efficiency of the R8-Fe2O3@Au nanoparticles have been characterized with dark-field microscopy and fluorescence confocal scanning laser microcopy. Experimental result suggests that the R8-Fe2O3@Au nanoparticles are internalized initially by binding with the membrane-associated proteoglycans on cell surfaces, especially heparan sulfate proteoglycans (HSPGs), following an energy-dependent endocytosis process to enter into living cells. After conjugation with the epidermal growth factor receptor antibody (anti-EGFR), these nanoparticles can also be used for the

  10. Yeast Interacting Proteins Database: YER081W, YDR105C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YDR105C TMS1 Vacuolar membrane protein of unknown function that is conserved in mammals; predicted to contai...tion that is conserved in mammals; predicted to contain eleven transmembrane heli

  11. Beta-arrestin biased agonism/antagonism at cardiovascular seven transmembrane-spanning receptors.

    Science.gov (United States)

    Lymperopoulos, Anastasios

    2012-01-01

    Heptahelical, G protein-coupled or seven transmembrane-spanning receptors, such as the β-adrenergic and the angiotensin II type 1 receptors, are the most diverse and therapeutically important family of receptors in the human genome, playing major roles in the physiology of various organs/tissues including the heart and blood vessels. Ligand binding activates heterotrimeric G proteins that transmit intracellular signals by regulating effector enzymes or ion channels. G protein signaling is terminated, in large part, by phosphorylation of the agonist-bound receptor by the G-protein coupled receptor kinases (GRKs), followed by βarrestin binding, which uncouples the phosphorylated receptor from the G protein and subsequently targets the receptor for internalization. As the receptor-βarrestin complex enters the cell, βarrestin-1 and -2, the two mammalian βarrestin isoforms, serve as ligand-regulated scaffolds that recruit a host of intracellular proteins and signal transducers, thus promoting their own wave of signal transduction independently of G-proteins. A constantly increasing number of studies over the past several years have begun to uncover specific roles played by these ubiquitously expressed receptor adapter proteins in signal transduction of several important heptahelical receptors regulating the physiology of various organs/ systems, including the cardiovascular (CV) system. Thus, βarrestin-dependent signaling has increasingly been implicated in CV physiology and pathology, presenting several exciting opportunities for therapeutic intervention in the treatment of CV disorders. Additionally, the discovery of this novel mode of heptahelical receptor signaling via βarrestins has prompted a revision of classical pharmacological concepts such as receptor agonism/antagonism, as well as introduction of new terms such as "biased signaling", which refers to ligand-specific activation of selective signal transduction pathways by the very same receptor. The

  12. Modeling of Transmembrane Potential in Realistic Multicellular Structures before Electroporation.

    Science.gov (United States)

    Murovec, Tomo; Sweeney, Daniel C; Latouche, Eduardo; Davalos, Rafael V; Brosseau, Christian

    2016-11-15

    Many approaches for studying the transmembrane potential (TMP) induced during the treatment of biological cells with pulsed electric fields have been reported. From the simple analytical models to more complex numerical models requiring significant computational resources, a gamut of methods have been used to recapitulate multicellular environments in silico. Cells have been modeled as simple shapes in two dimensions as well as more complex geometries attempting to replicate realistic cell shapes. In this study, we describe a method for extracting realistic cell morphologies from fluorescence microscopy images to generate the piecewise continuous mesh used to develop a finite element model in two dimensions. The preelectroporation TMP induced in tightly packed cells is analyzed for two sets of pulse parameters inspired by clinical irreversible electroporation treatments. We show that high-frequency bipolar pulse trains are better, and more homogeneously raise the TMP of tightly packed cells to a simulated electroporation threshold than conventional irreversible electroporation pulse trains, at the expense of larger applied potentials. Our results demonstrate the viability of our method and emphasize the importance of considering multicellular effects in the numerical models used for studying the response of biological tissues exposed to electric fields. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. The influence of a transmembrane pH gradient on protonation probabilities of bacteriorhodopsin: the structural basis of the back-pressure effect.

    Science.gov (United States)

    Calimet, Nicolas; Ullmann, G Matthias

    2004-06-01

    Bacteriorhodopsin pumps protons across a membrane using the energy of light. The proton pumping is inhibited when the transmembrane proton gradient that the protein generates becomes larger than four pH units. This phenomenon is known as the back-pressure effect. Here, we investigate the structural basis of this effect by predicting the influence of a transmembrane pH gradient on the titration behavior of bacteriorhodopsin. For this purpose we introduce a method that accounts for a pH gradient in protonation probability calculations. The method considers that in a transmembrane protein, which is exposed to two different aqueous phases, each titratable residue is accessible for protons from one side of the membrane depending on its hydrogen-bond pattern. This method is applied to several ground-state structures of bacteriorhodopsin, which residues already present complicated titration behaviors in the absence of a proton gradient. Our calculations show that a pH gradient across the membrane influences in a non-trivial manner the protonation probabilities of six titratable residues which are known to participate in the proton transfer: D85, D96, D115, E194, E204, and the Schiff base. The residues connected to one side of the membrane are influenced by the pH on the other side because of their long-range electrostatic interactions within the protein. In particular, D115 senses the pH at the cytoplasmic side of the membrane and transmits this information to D85 and the Schiff base. We propose that the strong electrostatic interactions found between D85, D115, and the Schiff base as well as the interplay of their respective protonation states under the influence of a transmembrane pH gradient are responsible for the back-pressure effect on bacteriorhodopsin.

  14. Transmembrane Potential of Red Blood Cells Under Low Ionic Strength Conditions

    Directory of Open Access Journals (Sweden)

    Daniel Moersdorf

    2013-06-01

    Full Text Available Background/Aims: In a variety of investigations described in the literature it was not clear to what extent the transmembrane potential red blood cells (RBCs was changed after the cells have been transferred into low ionic strength (LIS solutions. Another open question was to find out how fast the transmembrane potential of RBCs in LIS solution will change and which final new equilibrium value will be reached. Methods: The transmembrane potential of human and bovine RBCs was investigated using the potential-sensitive fluorescent dye DIBAC4(3 (bis(1,3-dibutylbarbituric acid trimethine oxonol as well as the CCCP (carbonylcyanide-m-chlorophenylhydrazone method. Results: Under physiological conditions the transmembrane potential was about -10 mV in agreement with literature data. However, when the RBCs were transferred into an isosmotic low ionic strength medium containing sucrose the transmembrane potential increased to +73 mV and +81 mV for human and bovine RBCs, respectively. In case of human RBCs it continuously decreased reaching finally an equilibrium state of -10 mV again after 30 - 60 min. For bovine RBCs the transmembrane potential declined more slowly reaching a value of +72 mV after 30 min. Conclusions: Investigations of parameters of RBCs depending on transmembrane potential cannot be performed with human RBCs in LIS media.

  15. Transmembrane TNF-α: structure, function and interaction with anti-TNF agents

    OpenAIRE

    Horiuchi, Takahiko; Mitoma, Hiroki; Harashima, Shin-ichi; Tsukamoto, Hiroshi; Shimoda, Terufumi

    2010-01-01

    Transmembrane TNF-α, a precursor of the soluble form of TNF-α, is expressed on activated macrophages and lymphocytes as well as other cell types. After processing by TNF-α-converting enzyme (TACE), the soluble form of TNF-α is cleaved from transmembrane TNF-α and mediates its biological activities through binding to Types 1 and 2 TNF receptors (TNF-R1 and -R2) of remote tissues. Accumulating evidence suggests that not only soluble TNF-α, but also transmembrane TNF-α is involved in the inflamm...

  16. Hydrophobic Clusters Raise the Threshold Hydrophilicity for Insertion of Transmembrane Sequences in Vivo.

    Science.gov (United States)

    Stone, Tracy A; Schiller, Nina; Workewych, Natalie; von Heijne, Gunnar; Deber, Charles M

    2016-10-11

    Insertion of a nascent membrane protein segment by the translocon channel into the bilayer is naturally promoted by high segmental hydrophobicity, but its selection as a transmembrane (TM) segment is complicated by the diverse environments (aqueous vs lipidic) the protein encounters and by the fact that most TM segments contain a substantial amount (∼30%) of polar residues, as required for protein structural stabilization and/or function. To examine the contributions of these factors systematically, we designed and synthesized a peptide library consisting of pairs of compositionally identical, but sequentially different, peptides with 19-residue core sequences varying (i) in Leu positioning (with five or seven Leu residues clustered into a contiguous "block" in the middle of the segment or "scrambled" throughout the sequence) and (ii) in Ser content (0-6 residues). The library was analyzed by a combination of biophysical and biological techniques, including HPLC retention times, circular dichroism measurements of helicity in micelle and phospholipid bilayer media, and relative blue shifts in Trp fluorescence maxima, as well as by the extent of membrane insertion in a translocon-mediated assay using microsomal membranes from dog pancreas endoplasmic reticulum. We found that local blocks of high hydrophobicity heighten the translocon's propensity to insert moderately hydrophilic sequences, until a "threshold hydrophilicity" is surpassed whereby segments no longer insert even in the presence of Leu blocks. This study codifies the prerequisites of apolar/polar content and residue positioning that define nascent TM segments, illustrates the accuracy in their prediction, and highlights how a single disease-causing mutation can tip the balance toward anomalous translocation/insertion.

  17. Secreted and Transmembrane αKlotho Isoforms Have Different Spatio-Temporal Profiles in the Brain during Aging and Alzheimer's Disease Progression

    Science.gov (United States)

    Massó, Anna; Sánchez, Angela; Gimenez-Llort, Lydia; Lizcano, Jose Miguel; Cañete, Manuel; García, Belen; Torres-Lista, Virginia; Puig, Meritxell; Bosch, Assumpció; Chillon, Miguel

    2015-01-01

    The Klotho protein is a β-glucuronidase, and its overexpression is associated with life extension. Its mechanism of action is not fully understood, although it has been recently reported that αKlotho improves synaptic and cognitive functions, and it may also influence a variety of structures and functions during CNS maturation and aging. The αKlotho gene has two transcripts, one encoding a transmembrane isoform (m-KL), and the other a putative secreted isoform (s-KL). Unfortunately, little is known about the secreted αKlotho isoform, since available antibodies cannot discriminate s-KL from the KL1 domain cleaved from the transmembrane isoform. This study shows, for the first time, that the klotho transcript produced by alternative splicing generates a stable protein (70 kDa), and that in contrast to the transmembrane Klotho isoform, it is ten times more abundant in the brain than in the kidney suggesting that the two isoforms may have different functions. We also studied whether klotho expression in the CNS was influenced by aging, Alzheimer's disease (AD), or a healthy lifestyle, such as voluntary moderate continuous exercise. We observed a strong correlation between high expression levels of the two klotho transcripts and the healthy status of the animals. Expression of Klotho in brain areas decayed more rapidly in the 3xTg-AD model of AD than in healthy animals, whilst moderate continuous exercise in adulthood prevents the decline in expression of both klotho transcripts. PMID:26599613

  18. Secreted and Transmembrane αKlotho Isoforms Have Different Spatio-Temporal Profiles in the Brain during Aging and Alzheimer's Disease Progression.

    Directory of Open Access Journals (Sweden)

    Anna Massó

    Full Text Available The Klotho protein is a β-glucuronidase, and its overexpression is associated with life extension. Its mechanism of action is not fully understood, although it has been recently reported that αKlotho improves synaptic and cognitive functions, and it may also influence a variety of structures and functions during CNS maturation and aging. The αKlotho gene has two transcripts, one encoding a transmembrane isoform (m-KL, and the other a putative secreted isoform (s-KL. Unfortunately, little is known about the secreted αKlotho isoform, since available antibodies cannot discriminate s-KL from the KL1 domain cleaved from the transmembrane isoform. This study shows, for the first time, that the klotho transcript produced by alternative splicing generates a stable protein (70 kDa, and that in contrast to the transmembrane Klotho isoform, it is ten times more abundant in the brain than in the kidney suggesting that the two isoforms may have different functions. We also studied whether klotho expression in the CNS was influenced by aging, Alzheimer's disease (AD, or a healthy lifestyle, such as voluntary moderate continuous exercise. We observed a strong correlation between high expression levels of the two klotho transcripts and the healthy status of the animals. Expression of Klotho in brain areas decayed more rapidly in the 3xTg-AD model of AD than in healthy animals, whilst moderate continuous exercise in adulthood prevents the decline in expression of both klotho transcripts.

  19. The Biochemical and Genetic Odyssey to the Function of a Nicastrin-Like Protein

    OpenAIRE

    Haffner, Christof; Haass, Christian

    2004-01-01

    gamma-Secretase is a high-molecular-weight protein complex required for the proteolytic processing of various transmembrane proteins including the Alzheimer's disease-associated amyloid precursor protein and the signaling receptor Notch. One of the gamma-secretase complex components is the type I transmembrane protein nicastrin. Here we review the odyssey to a cyclopic fish, which at the end allowed the functional analysis of nicalin, a novel member of the nicastrin protein family. This 60-kD...

  20. Crystallization and preliminary X-ray diffraction analysis of P30, the transmembrane domain of pertactin, an autotransporter from Bordetella pertussis

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yanshi; Black, Isobel; Roszak, Aleksander W.; Isaacs, Neil W., E-mail: n.isaacs@chem.gla.ac.uk [Department of Chemistry and WestChem, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA,Scotland (United Kingdom)

    2007-07-01

    P30, the transmembrane C-terminal domain of pertactin from B. pertussis has been crystallized after refolding in vitro. Preliminary X-ray crystallographic data are reported. P30, the 32 kDa transmembrane C-terminal domain of pertactin from Bordetella pertussis, is supposed to form a β-barrel inserted into the outer membrane for the translocation of the passenger domain. P30 was cloned and expressed in inclusion bodies in Escherichia coli. After refolding and purification, the protein was crystallized using the sitting-drop vapour-diffusion method at 292 K. The crystals diffract to a resolution limit of 3.5 Å using synchrotron radiation and belong to the hexagonal space group P6{sub 1}22, with unit-cell parameters a = b = 123.27, c = 134.43 Å.

  1. Tyrosine oxidation and nitration in transmembrane peptides is connected to lipid peroxidation.

    Science.gov (United States)

    Bartesaghi, Silvina; Herrera, Daniel; Martinez, Débora M; Petruk, Ariel; Demicheli, Verónica; Trujillo, Madia; Martí, Marcelo A; Estrín, Darío A; Radi, Rafael

    2017-05-15

    Tyrosine nitration is an oxidative post-translational modification that can occur in proteins associated to hydrophobic bio-structures such as membranes and lipoproteins. In this work, we have studied tyrosine nitration in membranes using a model system consisting of phosphatidylcholine liposomes with pre-incorporated tyrosine-containing 23 amino acid transmembrane peptides. Tyrosine residues were located at positions 4, 8 or 12 of the amino terminal, resulting in different depths in the bilayer. Tyrosine nitration was accomplished by exposure to peroxynitrite and a peroxyl radical donor or hemin in the presence of nitrite. In egg yolk phosphatidylcholine liposomes, nitration was highest for the peptide with tyrosine at position 8 and dramatically increased as a function of oxygen levels. Molecular dynamics studies support that the proximity of the tyrosine phenolic ring to the linoleic acid peroxyl radicals contributes to the efficiency of tyrosine oxidation. In turn, α-tocopherol inhibited both lipid peroxidation and tyrosine nitration. The mechanism of tyrosine nitration involves a "connecting reaction" by which lipid peroxyl radicals oxidize tyrosine to tyrosyl radical and was fully recapitulated by computer-assisted kinetic simulations. Altogether, this work underscores unique characteristics of the tyrosine oxidation and nitration process in lipid-rich milieu that is fueled via the lipid peroxidation process. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Transmembrane collagen XVII modulates integrin dependent keratinocyte migration via PI3K/Rac1 signaling.

    Directory of Open Access Journals (Sweden)

    Stefanie Löffek

    Full Text Available The hemidesmosomal transmembrane component collagen XVII (ColXVII plays an important role in the anchorage of the epidermis to the underlying basement membrane. However, this adhesion protein seems to be also involved in the regulation of keratinocyte migration, since its expression in these cells is strongly elevated during reepithelialization of acute wounds and in the invasive front of squamous cell carcinoma, while its absence in ColXVII-deficient keratinocytes leads to altered cell motility. Using a genetic model of murine Col17a1⁻/⁻ keratinocytes we elucidated ColXVII mediated signaling pathways in cell adhesion and migration. Col17a1⁻/⁻ keratinocytes exhibited increased spreading on laminin 332 and accelerated, but less directed cell motility. These effects were accompanied by increased expression of the integrin subunits β4 and β1. The migratory phenotype, as evidenced by formation of multiple unstable lamellipodia, was associated with enhanced phosphoinositide 3-kinase (PI3K activity. Dissection of the signaling pathway uncovered enhanced phosphorylation of the β4 integrin subunit and the focal adhesion kinase (FAK as activators of PI3K. This resulted in elevated Rac1 activity as a downstream consequence. These results provide mechanistic evidence that ColXVII coordinates keratinocyte adhesion and directed motility by interfering integrin dependent PI3K activation and by stabilizing lamellipodia at the leading edge of reepithelializing wounds and in invasive squamous cell carcinoma.

  3. Transmembrane Collagen XVII Modulates Integrin Dependent Keratinocyte Migration via PI3K/Rac1 Signaling

    Science.gov (United States)

    Löffek, Stefanie; Sigloch, Florian Christoph; Schilling, Oliver; Tasanen, Kaisa; Bruckner-Tuderman, Leena; Franzke, Claus-Werner

    2014-01-01

    The hemidesmosomal transmembrane component collagen XVII (ColXVII) plays an important role in the anchorage of the epidermis to the underlying basement membrane. However, this adhesion protein seems to be also involved in the regulation of keratinocyte migration, since its expression in these cells is strongly elevated during reepithelialization of acute wounds and in the invasive front of squamous cell carcinoma, while its absence in ColXVII-deficient keratinocytes leads to altered cell motility. Using a genetic model of murine Col17a1−/− keratinocytes we elucidated ColXVII mediated signaling pathways in cell adhesion and migration. Col17a1−/− keratinocytes exhibited increased spreading on laminin 332 and accelerated, but less directed cell motility. These effects were accompanied by increased expression of the integrin subunits β4 and β1. The migratory phenotype, as evidenced by formation of multiple unstable lamellipodia, was associated with enhanced phosphoinositide 3-kinase (PI3K) activity. Dissection of the signaling pathway uncovered enhanced phosphorylation of the β4 integrin subunit and the focal adhesion kinase (FAK) as activators of PI3K. This resulted in elevated Rac1 activity as a downstream consequence. These results provide mechanistic evidence that ColXVII coordinates keratinocyte adhesion and directed motility by interfering integrin dependent PI3K activation and by stabilizing lamellipodia at the leading edge of reepithelializing wounds and in invasive squamous cell carcinoma. PMID:24505282

  4. Human amnion epithelial cells induced to express functional cystic fibrosis transmembrane conductance regulator.

    Directory of Open Access Journals (Sweden)

    Sean V Murphy

    Full Text Available Cystic fibrosis, an autosomal recessive disorder caused by a mutation in a gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR, remains a leading cause of childhood respiratory morbidity and mortality. The respiratory consequences of cystic fibrosis include the generation of thick, tenacious mucus that impairs lung clearance, predisposing the individual to repeated and persistent infections, progressive lung damage and shortened lifespan. Currently there is no cure for cystic fibrosis. With this in mind, we investigated the ability of human amnion epithelial cells (hAECs to express functional CFTR. We found that hAECs formed 3-dimensional structures and expressed the CFTR gene and protein after culture in Small Airway Growth Medium (SAGM. We also observed a polarized CFTR distribution on the membrane of hAECs cultured in SAGM, similar to that observed in polarized airway cells in vivo. Further, hAECs induced to express CFTR possessed functional iodide/chloride (I(-/Cl(- ion channels that were inhibited by the CFTR-inhibitor CFTR-172, indicating the presence of functional CFTR ion channels. These data suggest that hAECs may be a promising source for the development of a cellular therapy for cystic fibrosis.

  5. Cloning and characterization of two putative seven-transmembrane receptor genes from cotton

    Institute of Scientific and Technical Information of China (English)

    Peng Gao; Piming Zhao; Juan Wang; Haiyun Wang; Guiling Wang; Guixian Xia

    2008-01-01

    Using rapid amplification of cDNA ends (RACE)-PCR,two full-length cDNAs encoding putative seven-transmembrane receptors (designated Gh7TMpR1 and Gh7TMpR2) were cloned from cotton plants.Southern blot and an ApaLl restriction site polymorphism analyses revealed that GhTTMpR1 was derived from the ancestral A diploid genome,while Gh7TMpR2 was from the D subgenome.Northern blot hybridization indicated that both Gh7TMpR1 and Gh7TMpR2 were expressed preferentially in the elongation phase of fiber development.Majority of the Gh7TMpR1 proteins were located within the membrane structure and displayed a punctuate pattern of distribution.Overexpression of Gh7TMpR1 in fission yeast disrupted the polar growth and caused the formation of rounded cells.These results suggest that GhT7MpRI may play a critical role in cotton fiber development,perhaps as a signaling receptor that is involved in controlling fiber elongation.

  6. How Phosphorylation and ATPase Activity Regulate Anion Flux though the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR).

    Science.gov (United States)

    Zwick, Matthias; Esposito, Cinzia; Hellstern, Manuel; Seelig, Anna

    2016-07-08

    The cystic fibrosis transmembrane conductance regulator (CFTR, ABCC7), mutations of which cause cystic fibrosis, belongs to the ATP-binding cassette (ABC) transporter family and works as a channel for small anions, such as chloride and bicarbonate. Anion channel activity is known to depend on phosphorylation by cAMP-dependent protein kinase A (PKA) and CFTR-ATPase activity. Whereas anion channel activity has been extensively investigated, phosphorylation and CFTR-ATPase activity are still poorly understood. Here, we show that the two processes can be measured in a label-free and non-invasive manner in real time in live cells, stably transfected with CFTR. This study reveals three key findings. (i) The major contribution (≥90%) to the total CFTR-related ATP hydrolysis rate is due to phosphorylation by PKA and the minor contribution (≤10%) to CFTR-ATPase activity. (ii) The mutant CFTR-E1371S that is still conductive, but defective in ATP hydrolysis, is not phosphorylated, suggesting that phosphorylation requires a functional nucleotide binding domain and occurs in the post-hydrolysis transition state. (iii) CFTR-ATPase activity is inversely related to CFTR anion flux. The present data are consistent with a model in which CFTR is in a closed conformation with two ATPs bound. The open conformation is induced by ATP hydrolysis and corresponds to the post-hydrolysis transition state that is stabilized by phosphorylation and binding of chloride channel potentiators.

  7. Transmembrane and Juxtamembrane Structure of αL Integrin in Bicelles.

    Directory of Open Access Journals (Sweden)

    Wahyu Surya

    Full Text Available The accepted model for the interaction of α and β integrins in the transmembrane (TM domain is based on the pair αIIbβ3. This involves the so-called outer and inner membrane association clasps (OMC and IMC, respectively. In the α chain, the OMC involves a GxxxG-like motif, whereas in the IMC a conserved juxtamembrane GFFKR motif experiences a backbone reversal that partially fills the void generated by TM separation towards the cytoplasmic half. However, the GFFKR motif of several α integrin cytoplasmic tails in non-bicelle environments has been shown to adopt an α-helical structure that is not membrane-embedded and which was shown to bind a variety of cytoplasmic proteins. Thus it is not known if a membrane-embedded backbone reversal is a conserved structural feature in α integrins. We have studied the system αLβ2 because of its importance in leukocytes, where integrin deactivation is particularly important. Herein we show that the backbone reversal feature is not only present in αIIb but also in αL-TM when reconstituted in bicelles. Additionally, titration with β2 TM showed eight residues clustering along one side of αL-TM, forming a plausible interacting face with β2. The latter orientation is consistent with a previously predicted reported polar interaction between αL Ser-1071 and β2 Thr-686.

  8. Transmembrane and Juxtamembrane Structure of αL Integrin in Bicelles.

    Science.gov (United States)

    Surya, Wahyu; Li, Yan; Millet, Oscar; Diercks, Tammo; Torres, Jaume

    2013-01-01

    The accepted model for the interaction of α and β integrins in the transmembrane (TM) domain is based on the pair αIIbβ3. This involves the so-called outer and inner membrane association clasps (OMC and IMC, respectively). In the α chain, the OMC involves a GxxxG-like motif, whereas in the IMC a conserved juxtamembrane GFFKR motif experiences a backbone reversal that partially fills the void generated by TM separation towards the cytoplasmic half. However, the GFFKR motif of several α integrin cytoplasmic tails in non-bicelle environments has been shown to adopt an α-helical structure that is not membrane-embedded and which was shown to bind a variety of cytoplasmic proteins. Thus it is not known if a membrane-embedded backbone reversal is a conserved structural feature in α integrins. We have studied the system αLβ2 because of its importance in leukocytes, where integrin deactivation is particularly important. Herein we show that the backbone reversal feature is not only present in αIIb but also in αL-TM when reconstituted in bicelles. Additionally, titration with β2 TM showed eight residues clustering along one side of αL-TM, forming a plausible interacting face with β2. The latter orientation is consistent with a previously predicted reported polar interaction between αL Ser-1071 and β2 Thr-686.

  9. Regulation of Voltage-Activated K(+) Channel Gating by Transmembrane β Subunits.

    Science.gov (United States)

    Sun, Xiaohui; Zaydman, Mark A; Cui, Jianmin

    2012-01-01

    Voltage-activated K(+) (K(V)) channels are important for shaping action potentials and maintaining resting membrane potential in excitable cells. K(V) channels contain a central pore-gate domain (PGD) surrounded by four voltage-sensing domains (VSDs). The VSDs will change conformation in response to alterations of the membrane potential thereby inducing the opening of the PGD. Many K(V) channels are heteromeric protein complexes containing auxiliary β subunits. These β subunits modulate channel expression and activity to increase functional diversity and render tissue specific phenotypes. This review focuses on the K(V) β subunits that contain transmembrane (TM) segments including the KCNE family and the β subunits of large conductance, Ca(2+)- and voltage-activated K(+) (BK) channels. These TM β subunits affect the voltage-dependent activation of K(V) α subunits. Experimental and computational studies have described the structural location of these β subunits in the channel complexes and the biophysical effects on VSD activation, PGD opening, and VSD-PGD coupling. These results reveal some common characteristics and mechanistic insights into K(V) channel modulation by TM β subunits.

  10. Regulation of KV channel voltage-dependent activation by transmembrane β subunits

    Directory of Open Access Journals (Sweden)

    Xiaohui eSun

    2012-04-01

    Full Text Available Voltage-activated K+ (KV channels are important for shaping action potentials and maintaining resting membrane potential in excitable cells. KV channels contain a central pore-gate domain (PGD surrounded by four voltage-sensing domains (VSD. The VSDs will change conformation in response to alterations of the membrane potential thereby inducing the opening of the PGD. Many KV channels are heteromeric protein complexes containing auxiliary β subunits. These β subunits modulate channel expression and activity to increase functional diversity and render tissue specific phenotypes. This review focuses on the KV β subunits that contain transmembrane (TM segments including the KCNE family and the β subunits of large conductance, Ca2+- and voltage-activated K+ (BK channels. These TM β subunits affect the voltage-dependent activation of KV α subunits. Experimental and computational studies have described the structural location of these β subunits in the channel complexes and the biophysical effects on VSD activation, PGD opening and VSD-PGD coupling. These results reveal some common characteristics and mechanistic insights into KV channel modulation by TM β subunits.

  11. Azorhizobium caulinodans Transmembrane Chemoreceptor TlpA1 Involved in Host Colonization and Nodulation on Roots and Stems.

    Science.gov (United States)

    Liu, Wei; Yang, Jinbao; Sun, Yu; Liu, Xiaolin; Li, Yan; Zhang, Zhenpeng; Xie, Zhihong

    2017-01-01

    Azorhizobium caulinodans ORS571 is a motile soil bacterium that interacts symbiotically with legume host Sesbania rostrata, forming nitrogen-fixing root and stem nodules. Bacterial chemotaxis plays an important role in establishing this symbiotic relationship. To determine the contribution of chemotaxis to symbiosis in A. caulinodans ORS571-S. rostrata, we characterized the function of TlpA1 (transducer-like protein in A. caulinodans), a chemoreceptor predicted by SMART (Simple Modular Architecture Research Tool), containing two N-terminal transmembrane regions. The tlpA1 gene is located immediately upstream of the unique che gene cluster and is transcriptionally co-oriented. We found that a ΔtlpA1 mutant is severely impaired for chemotaxis to various organic acids, glycerol and proline. Furthermore, biofilm forming ability of the strain carrying the mutation is reduced under certain growth conditions. Interestingly, competitive colonization ability on S. rostrata root surfaces is impaired in the ΔtlpA1 mutant, suggesting that chemotaxis of the A. caulinodans ORS571 contributes to root colonization. We also found that TlpA1 promotes competitive nodulation not only on roots but also on stems of S. rostrata. Taken together, our data strongly suggest that TlpA1 is a transmembrane chemoreceptor involved in A. caulinodans-S. rostrata symbiosis.

  12. Azorhizobium caulinodans Transmembrane Chemoreceptor TlpA1 Involved in Host Colonization and Nodulation on Roots and Stems

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2017-07-01

    Full Text Available Azorhizobium caulinodans ORS571 is a motile soil bacterium that interacts symbiotically with legume host Sesbania rostrata, forming nitrogen-fixing root and stem nodules. Bacterial chemotaxis plays an important role in establishing this symbiotic relationship. To determine the contribution of chemotaxis to symbiosis in A. caulinodans ORS571-S. rostrata, we characterized the function of TlpA1 (transducer-like protein in A. caulinodans, a chemoreceptor predicted by SMART (Simple Modular Architecture Research Tool, containing two N-terminal transmembrane regions. The tlpA1 gene is located immediately upstream of the unique che gene cluster and is transcriptionally co-oriented. We found that a ΔtlpA1 mutant is severely impaired for chemotaxis to various organic acids, glycerol and proline. Furthermore, biofilm forming ability of the strain carrying the mutation is reduced under certain growth conditions. Interestingly, competitive colonization ability on S. rostrata root surfaces is impaired in the ΔtlpA1 mutant, suggesting that chemotaxis of the A. caulinodans ORS571 contributes to root colonization. We also found that TlpA1 promotes competitive nodulation not only on roots but also on stems of S. rostrata. Taken together, our data strongly suggest that TlpA1 is a transmembrane chemoreceptor involved in A. caulinodans-S. rostrata symbiosis.

  13. Transmembrane helices in "classical" nuclear reproductive steroid receptors: a perspective.

    Science.gov (United States)

    Morrill, Gene A; Kostellow, Adele B; Gupta, Raj K

    2015-01-01

    Steroid receptors of the nuclear receptor superfamily are proposed to be either: 1) located in the cytosol and moved to the cell nucleus upon activation, 2) tethered to the inside of the plasma membrane, or 3) retained in the nucleus until free steroid hormone enters and activates specific receptors. Using computational methods to analyze peptide receptor topology, we find that the "classical" nuclear receptors for progesterone (PRB/PGR), androgen (ARB/AR) and estrogen (ER1/ESR1) contain two transmembrane helices (TMH) within their ligand-binding domains (LBD).The MEMSAT-SVM algorithm indicates that ARB and ER2 (but not PRB or ER1) contain a pore-lining (channel-forming) region which may merge with other pore-lining regions to form a membrane channel. ER2 lacks a TMH, but contains a single pore-lining region. The MemBrain algorithm predicts that PRB, ARB and ER1 each contain one TMH plus a half TMH separated by 51 amino acids.ER2 contains two half helices. The TM-2 helices of ARB, ER1 and ER2 each contain 9-13 amino acid motifs reported to translocate the receptor to the plasma membrane, as well as cysteine palmitoylation sites. PoreWalker analysis of X-ray crystallographic data identifies a pore or channel within the LBDs of ARB and ER1 and predicts that 70 and 72 residues are pore-lining residues, respectively. The data suggest that (except for ER2), cytosolic receptors become anchored to the plasma membrane following synthesis. Half-helices and pore-lining regions in turn form functional ion channels and/or facilitate passive steroid uptake into the cell. In perspective, steroid-dependent insertion of "classical" receptors containing pore-lining regions into the plasma membrane may regulate permeability to ions such as Ca(2+), Na(+) or K(+), as well as facilitate steroid translocation into the nucleus.

  14. Regulation of serum-responsive transmembrane kinase EhTMKB1-9 by an unsaturated lipid, oleic acid in protistan parasite Entamoeba histolytica.

    Science.gov (United States)

    Saha, Arpita; Bhattacharya, Sudha; Bhattacharya, Alok

    2014-11-01

    Transmembrane kinases of Entamoeba histolytica are known to play a wide range of roles from virulence, phagocytosis, and proliferation to stress response. Transmembrane kinase EhTMKB1-9 is thought to be involved in early proliferative response and it was originally identified as a serum inducible gene. Ability to stimulate EhTMKB1 expression of serum starved cells resides in unsaturated fatty acids associated with albumin fraction of serum and the mechanism of stimulation follows activation of EhTMKB1-9 promoter. Gel shift assay showed the presence of proteins that bind to the specific site of EhTMKB1-9 upstream region and the concentration of these protein(s) go down on serum starvation, but level of binding protein(s) go up on serum or fatty acid replenishment. This increase in concentration of binding molecule(s) is due to new synthesis rather than activation of existing molecule(s) as a protein synthesis inhibitor blocked enhanced level of gel shifted material on replenishment. The stimulating activity resides in the fatty acyl chain, but not in the head group. Moreover, the fatty acid initiates signaling through class I PI3 kinases that result in activation of EhTMKB1-9 expression. These results suggest a novel mechanism of gene regulation in E. histolytica, and unsaturated fatty acids as potential new signaling molecules.

  15. Structural and thermodynamic insight into the process of "weak" dimerization of the ErbB4 transmembrane domain by solution NMR.

    Science.gov (United States)

    Bocharov, Eduard V; Mineev, Konstantin S; Goncharuk, Marina V; Arseniev, Alexander S

    2012-09-01

    Specific helix-helix interactions between the single-span transmembrane domains of receptor tyrosine kinases are believed to be important for their lateral dimerization and signal transduction. Establishing structure-function relationships requires precise structural-dynamic information about this class of biologically significant bitopic membrane proteins. ErbB4 is a ubiquitously expressed member of the HER/ErbB family of growth factor receptor tyrosine kinases that is essential for the normal development of various adult and fetal human tissues and plays a role in the pathobiology of the organism. The dimerization of the ErbB4 transmembrane domain in membrane-mimicking lipid bicelles was investigated by solution NMR. In a bicellar DMPC/DHPC environment, the ErbB4 membrane-spanning α-helices (651-678)(2) form a right-handed parallel dimer through the N-terminal double GG4-like motif A(655)GxxGG(660) in a fashion that is believed to permit proper kinase domain activation. During helix association, the dimer subunits undergo a structural adjustment (slight bending) with the formation of a network of inter-monomeric polar contacts. The quantitative analysis of the observed monomer-dimer equilibrium provides insights into the kinetics and thermodynamics of the folding process of the helical transmembrane domain in the model environment that may be directly relevant to the process that occurs in biological membranes. The lipid bicelles occupied by a single ErbB4 transmembrane domain behave as a true ("ideal") solvent for the peptide, while multiply occupied bicelles are more similar to the ordered lipid microdomains of cellular membranes and appear to provide substantial entropic enhancement of the weak helix-helix interactions, which may be critical for membrane protein activity.

  16. Phospholipase D family member 4, a transmembrane glycoprotein with no phospholipase D activity, expression in spleen and early postnatal microglia.

    Directory of Open Access Journals (Sweden)

    Fumio Yoshikawa

    Full Text Available BACKGROUND: Phospholipase D (PLD catalyzes conversion of phosphatidylcholine into choline and phosphatidic acid, leading to a variety of intracellular signal transduction events. Two classical PLDs, PLD1 and PLD2, contain phosphatidylinositide-binding PX and PH domains and two conserved His-x-Lys-(x(4-Asp (HKD motifs, which are critical for PLD activity. PLD4 officially belongs to the PLD family, because it possesses two HKD motifs. However, it lacks PX and PH domains and has a putative transmembrane domain instead. Nevertheless, little is known regarding expression, structure, and function of PLD4. METHODOLOGY/PRINCIPAL FINDINGS: PLD4 was analyzed in terms of expression, structure, and function. Expression was analyzed in developing mouse brains and non-neuronal tissues using microarray, in situ hybridization, immunohistochemistry, and immunocytochemistry. Structure was evaluated using bioinformatics analysis of protein domains, biochemical analyses of transmembrane property, and enzymatic deglycosylation. PLD activity was examined by choline release and transphosphatidylation assays. Results demonstrated low to modest, but characteristic, PLD4 mRNA expression in a subset of cells preferentially localized around white matter regions, including the corpus callosum and cerebellar white matter, during the first postnatal week. These PLD4 mRNA-expressing cells were identified as Iba1-positive microglia. In non-neuronal tissues, PLD4 mRNA expression was widespread, but predominantly distributed in the spleen. Intense PLD4 expression was detected around the marginal zone of the splenic red pulp, and splenic PLD4 protein recovered from subcellular membrane fractions was highly N-glycosylated. PLD4 was heterologously expressed in cell lines and localized in the endoplasmic reticulum and Golgi apparatus. Moreover, heterologously expressed PLD4 proteins did not exhibit PLD enzymatic activity. CONCLUSIONS/SIGNIFICANCE: Results showed that PLD4 is a non

  17. Metal ion site engineering indicates a global toggle switch model for seven-transmembrane receptor activation

    DEFF Research Database (Denmark)

    Elling, Christian E; Frimurer, Thomas M; Gerlach, Lars-Ole;

    2006-01-01

    Much evidence indicates that, during activation of seven-transmembrane (7TM) receptors, the intracellular segments of the transmembrane helices (TMs) move apart with large amplitude, rigid body movements of especially TM-VI and TM-VII. In this study, AspIII:08 (Asp113), the anchor point for monoa...... that the pivots for these vertical seesaw movements are the highly conserved proline bends of the involved helices....

  18. Structure of the integrin beta3 transmembrane segment in phospholipid bicelles and detergent micelles.

    Science.gov (United States)

    Lau, Tong-Lay; Partridge, Anthony W; Ginsberg, Mark H; Ulmer, Tobias S

    2008-04-01

    Integrin adhesion receptors transduce bidirectional signals across the plasma membrane, with the integrin transmembrane domains acting as conduits in this process. Here, we report the first high-resolution structure of an integrin transmembrane domain. To assess the influence of the membrane model system, structure determinations of the beta3 integrin transmembrane segment and flanking sequences were carried out in both phospholipid bicelles and detergent micelles. In bicelles, a 30-residue linear alpha-helix, encompassing residues I693-H772, is adopted, of which I693-I721 appear embedded in the hydrophobic bicelle core. This relatively long transmembrane helix implies a pronounced helix tilt within a typical lipid bilayer, which facilitates the snorkeling of K716's charged side chain out of the lipid core while simultaneously immersing hydrophobic L717-I721 in the membrane. A shortening of bicelle lipid hydrocarbon tails does not lead to the transfer of L717-I721 into the aqueous phase, suggesting that the reported embedding represents the preferred beta3 state. The nature of the lipid headgroup affected only the intracellular part of the transmembrane helix, indicating that an asymmetric lipid distribution is not required for studying the beta3 transmembrane segment. In the micelle, residues L717-I721 are also embedded but deviate from linear alpha-helical conformation in contrast to I693-K716, which closely resemble the bicelle structure.

  19. Yeast as a model system for mammalian seven-transmembrane segment receptors

    Energy Technology Data Exchange (ETDEWEB)

    Jeansonne, N.E. [East Carolina Univ. Medical School, Greenville, NC (United States)

    1994-05-01

    Investigators have used the budding yeast Saccharomyces cerevisiae as a model system in which to study the {beta}-adrenergic receptor, the T-cell receptor pathway, initiation of mammalian DNA replication, initiation of mammalian transcription, secretion, the CDC2 kinase system, cell cycle control, and aging, as well as the function of oncogenes. This list continues to growth with the discovery of an immunoglobulin heavy-chain binding homologue in yeast, an Rb binding protein homologue, and a possible yeast arrestin. Yeast is relatively easy to maintain, to grow, and to genetically manipulate. A single gene can be overexpressed, selectively mutated or deleted from its chromosomal location. In this way, the in vivo function of a gene can be studied. It has become reasonable to consider yeast as a model system for studying the seven transmembrane segments (7-TMS) receptor family. Currently, subtypes of the {beta}-adrenergic receptor are being studied in yeast. The receptor and its G{sub {alpha}}-G-protein, trigger the mating pheromone receptor pathway. This provides a powerful assay for determining receptor function. Studies expressing the muscarinic cholinergic receptor in yeast are underway. The yeast pheromone receptor belongs to this receptor family, sharing sequences and secondary structure homology. An effective strategy has been to identify a yeast pathway or process which is homologous to a mammalian system. The pathway is delineated in yeast, identifying other genetic components. Then yeast genes are used to screen for human homologues of these components. The putative human homologues are then expressed in yeast and in mammalian cells to determine function. When this type of {open_quotes}mixing and matching{close_quotes} works, yeast genetics can be a powerful tool. 115 refs.

  20. Relevance of lysine snorkeling in the outer transmembrane domain of small viral potassium ion channels.

    Science.gov (United States)

    Gebhardt, Manuela; Henkes, Leonhard M; Tayefeh, Sascha; Hertel, Brigitte; Greiner, Timo; Van Etten, James L; Baumeister, Dirk; Cosentino, Cristian; Moroni, Anna; Kast, Stefan M; Thiel, Gerhard

    2012-07-17

    Transmembrane domains (TMDs) are often flanked by Lys or Arg because they keep their aliphatic parts in the bilayer and their charged groups in the polar interface. Here we examine the relevance of this so-called "snorkeling" of a cationic amino acid, which is conserved in the outer TMD of small viral K(+) channels. Experimentally, snorkeling activity is not mandatory for Kcv(PBCV-1) because K29 can be replaced by most of the natural amino acids without any corruption of function. Two similar channels, Kcv(ATCV-1) and Kcv(MT325), lack a cytosolic N-terminus, and neutralization of their equivalent cationic amino acids inhibits their function. To understand the variable importance of the cationic amino acids, we reanalyzed molecular dynamics simulations of Kcv(PBCV-1) and N-terminally truncated mutants; the truncated mutants mimic Kcv(ATCV-1) and Kcv(MT325). Structures were analyzed with respect to membrane positioning in relation to the orientation of K29. The results indicate that the architecture of the protein (including the selectivity filter) is only weakly dependent on TMD length and protonation of K29. The penetration depth of Lys in a given protonation state is independent of the TMD architecture, which leads to a distortion of shorter proteins. The data imply that snorkeling can be important for K(+) channels; however, its significance depends on the architecture of the entire TMD. The observation that the most severe N-terminal truncation causes the outer TMD to move toward the cytosolic side suggests that snorkeling becomes more relevant if TMDs are not stabilized in the membrane by other domains.

  1. Cystic Fibrosis Transmembrane Conductance Regulator is an Epithelial Cell Receptor for Clearance of Pseudomonas aeruginosa from the Lung

    Science.gov (United States)

    Pier, Gerald B.; Grout, Martha; Zaidi, Tanweer S.

    1997-10-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride ion channel, but its relationship to the primary clinical manifestation of CF, chronic Pseudomonas aeruginosa pulmonary infection, is unclear. We report that CFTR is a cellular receptor for binding, endocytosing, and clearing P. aeruginosa from the normal lung. Murine cells expressing recombinant human wild-type CFTR ingested 30-100 times as many P. aeruginosa as cells lacking CFTR or expressing mutant Δ F508 CFTR protein. Purified CFTR inhibited ingestion of P. aeruginosa by human airway epithelial cells. The first extracellular domain of CFTR specifically bound to P. aeruginosa and a synthetic peptide of this region inhibited P. aeruginosa internalization in vivo, leading to increased bacterial lung burdens. CFTR clears P. aeruginosa from the lung, indicating a direct connection between mutations in CFTR and the clinical consequences of CF.

  2. The carboxyl terminus of human cytomegalovirus-encoded 7 transmembrane receptor US28 camouflages agonism by mediating constitutive endocytosis

    DEFF Research Database (Denmark)

    Waldhoer, Maria; Casarosa, Paola; Rosenkilde, Mette M;

    2003-01-01

    US28 is one of four 7 transmembrane (7TM) chemokine receptors encoded by human cytomegalovirus and has been shown to both signal and endocytose in a ligand-independent, constitutively active manner. Here we show that the constitutive activity and constitutive endocytosis properties of US28...... that the cytoplasmic tail domain of US28 per se regulates receptor endocytosis, independent of the signaling ability of the core domain of US28. The constitutive endocytic property of the US28 c-tail was transposable to other 7TM receptors, the herpes virus 8-encoded ORF74 and the tachykinin NK1 receptor (ORF74-US28......-ctail and NK1-US28-ctail). Deletion of the US28 C terminus resulted in reduced constitutive endocytosis and consequently enhanced signaling capacity of all receptors tested as assessed by inositol phosphate turnover, NF-kappa B, and cAMP-responsive element-binding protein transcription assays. We...

  3. PROTEN TYROSINE PHOSPHATASE ACTIVITY IN RAT ASCITES HEPATOMA CELLS

    Directory of Open Access Journals (Sweden)

    M.Saadat

    1998-10-01

    Full Text Available Protein tyrosine phosphatases (PTPases regulate tyrosine phosphorylation of target proteins involved in several aspects of cellular functions. Enzyme activities of the PTPases in cytosolic and particulate fractions of rat ascites hepatoma cell lines were determined and compared with those of normal rat liver. Our present data revealed that although there was no neoplatic-specific alteration of the PTPase activity in examined hepatomas, the activity in particulate fractions of island type of hepatomas was remarkably decreased compared with either rat liver or free type hepatomas.

  4. Conserved aromatic residues in the transmembrane region VI of the V1a vasopressin receptor differentiate agonist vs. antagonist ligand binding.

    Science.gov (United States)

    Cotte, N; Balestre, M N; Aumelas, A; Mahé, E; Phalipou, S; Morin, D; Hibert, M; Manning, M; Durroux, T; Barberis, C; Mouillac, B

    2000-07-01

    Despite their opposite effects on signal transduction, the nonapeptide hormone arginine-vasopressin (AVP) and its V1a receptor-selective cyclic peptide antagonist d(CH2)5[Tyr(Me)2]AVP display homologous primary structures, differing only at residues 1 and 2. These structural similarities led us to hypothesize that both ligands could interact with the same binding pocket in the V1a receptor. To determine receptor residues responsible for discriminating binding of agonist and antagonist ligands, we performed site-directed mutagenesis of conserved aromatic and hydrophilic residues as well as nonconserved residues, all located in the transmembrane binding pocket of the V1a receptor. Mutation of aromatic residues of transmembrane region VI (W304, F307, F308) reduced affinity for the d(CH2)5[Tyr(Me)2]AVP and markedly decreased affinity for the unrelated strongly hydrophobic V1a-selective nonpeptide antagonist SR 49059. Replacement of these aromatic residues had no effect on AVP binding, but increased AVP-induced coupling efficacy of the receptor for its G protein. Mutating hydrophilic residues Q108, K128 and Q185 in transmembrane regions II, III and IV, respectively, led to a decrease in affinity for both agonists and antagonists. Finally, the nonconserved residues T333 and A334 in transmembrane region VII, controlled the V1a/V2 binding selectivity for both nonpeptide and cyclic peptide antagonists. Thus, because conserved aromatic residues of the V1a receptor binding pocket seem essential for antagonists and do not contribute at all to the binding of agonists, we propose that these residues differentiate agonist vs. antagonist ligand binding.

  5. NMR-based approach to measure the free energy of transmembrane helix-helix interactions.

    Science.gov (United States)

    Mineev, Konstantin S; Lesovoy, Dmitry M; Usmanova, Dinara R; Goncharuk, Sergey A; Shulepko, Mikhail A; Lyukmanova, Ekaterina N; Kirpichnikov, Mikhail P; Bocharov, Eduard V; Arseniev, Alexander S

    2014-01-01

    Knowledge of the energetic parameters of transmembrane helix-helix interactions is necessary for the establishment of a structure-energy relationship for α-helical membrane domains. A number of techniques have been developed to measure the free energies of dimerization and oligomerization of transmembrane α-helices, and all of these have their advantages and drawbacks. In this study we propose a methodology to determine the magnitudes of the free energy of interactions between transmembrane helices in detergent micelles. The suggested approach employs solution nuclear magnetic resonance (NMR) spectroscopy to determine the population of the oligomeric states of the transmembrane domains and introduces a new formalism to describe the oligomerization equilibrium, which is based on the assumption that both the dimerization of the transmembrane domains and the dissociation of the dimer can occur only upon the collision of detergent micelles. The technique has three major advantages compared with other existing approaches: it may be used to analyze both weak and relatively strong dimerization/oligomerization processes, it works well for the analysis of complex equilibria, e.g. when monomer, dimer and high-order oligomer populations are simultaneously present in the solution, and it can simultaneously yield both structural and energetic characteristics of the helix-helix interaction under study. The proposed methodology was applied to investigate the oligomerization process of transmembrane domains of fibroblast growth factor receptor 3 (FGFR3) and vascular endothelium growth factor receptor 2 (VEGFR2), and allowed the measurement of the free energy of dimerization of both of these objects. In addition the proposed method was able to describe the multi-state oligomerization process of the VEGFR2 transmembrane domain.

  6. Self-Assembling Organic Nanopores as Synthetic Transmembrane Channels with Tunable Functions

    Science.gov (United States)

    Wei, Xiaoxi

    A long-standing goal in the area of supramolecular self-assembly involves the development of synthetic ion/water channels capable of mimicking the mass-transport characteristics of biological channels and pores. Few examples of artificial transmembrane channels with large lumen, high conductivity and selectivity are known. A review of pronounced biological transmembrane protein channels and some representative synthetic models have been provided in Chapter 1, followed by our discovery and initial investigation of shape-persistent oligoamide and phenylene ethynylene macrocycles as synthetic ion/water channels. In Chapter 2, the systematic structural modification of oligoamide macrocycles 1, the so-called first-generation of these shape-persistent macrocycles, has led to third-generation macrocycles 3. The third generation was found to exhibit unprecedented, strong intermolecular association in both the solid state and solution via multiple techniques including X-ray diffraction (XRD), SEM, and 1H NMR. Fluorescence spectroscopy paired with dynamic light scattering (DLS) revealed that macrocycles 3 can assemble into a singly dispersed nanotubular structure in solution. The resultant self-assembling pores consisting of 3 were examined by HPTS-LUVs assays and BLM studies (Chapter 3) and found to form cation-selective (PK+/PCl- = 69:1) transmembrane ion channels with large conductance (200 ˜ 2000 pS for alkali cations) and high stability with open times reaching to 103 seconds. Tuning the aggregation state of macrocycles by choosing an appropriate polar solvent mixture (i.e., 3:1, THF:DMF, v/v) and concentration led to the formation of ion channels with well-defined square top behavior. A parallel study using DLS to examine the size of aggregates was used in conjunction with channel activity assays (LUVs/BLM) to reveal the effects of the aggregation state on channel activity. Empirical evidence now clearly indicates that a preassembled state, perhaps that of a

  7. Association between genetic polymorphism of the six-transmembrane protein of prostate 2 and obesity in Uygur%前列腺六次跨膜蛋白-2基因多态性与维吾尔族人群中心性肥胖的相关性

    Institute of Scientific and Technical Information of China (English)

    韩瑞梅; 张向阳; 严治涛; 张菊红; 郭艳英; 王红梅; 周玲; 李南方

    2012-01-01

    目的 探讨前列腺六次跨膜蛋白-2(STAMP2)基因多态性与维吾尔族人群中心性肥胖的相关性.方法 采取以流行病学调查为基础的病例对照研究方法,选择2332例维吾尔族人为研究对象,其中1455例中心性肥胖者作为肥胖组,其余877例非肥胖者作为对照组.测序筛查STAMP2基因变异位点后,以TaqMan-PCR技术对代表性变异位点进行基因分型,分析STAMP2基因多态性与维吾尔族中心性肥胖的相关性.结果 测序发现20个变异,包括14个新发现的变异位点.肥胖组STAMP2基因rs1981529的AA基因型频率高于对照组(67.6%比62.8%,P<0.05),而rs8122和rs34741656的基因型和等位基因频率在肥胖组与对照组之间差异均无统计学意义(P均>0.05).肥胖组A-G-G单体型频率低于对照组(17%比20%,P<0.05),而G-A-G单体型频率高于对照组(62.4%比58.9%,P<0.05).多因素非条件logistic回归分析在调整性别、年龄、吸烟和饮酒后显示,rs1981529的AA基因型(OR:1.276,95% CI:1.049 ~1.552,P<0.05)和G-A-G单体型(OR:1.356,95% CI:1.007 ~1.862,P<0.05)是肥胖的独立危险因素.结论 STAMP2基因rs1981529的AA基因型可能与维吾尔族人群的中心性肥胖有关,G-A-G单体型可能是维吾尔族人群肥胖的易感标记.%Objective To investigate the association between genetic variations of the six transmembrance protein of prostate 2 (STAMP2) and obesity in Xinjiang Uygur population.Methods A total of 2332 Uygur subjects (1455 obesity and 877 non-obesity control subjects) were included in this casecontrol study based on epidemiological survey.Genetic variations of STAMP2 gene functional region were sequenced.The representative variations selected were genotyped by TaqMan-PCR method.Results Twenty genetic variations,including 14 novel variations,were identified.The genotype distributions of the control group and obesity group were in the Hardy-Weinberg equilibrium (both P > 0.05).The

  8. Unprecedented multiplicity of Ig transmembrane and secretory mRNA forms in the cartilaginous fish.

    Science.gov (United States)

    Rumfelt, Lynn L; Diaz, Marilyn; Lohr, Rebecca L; Mochon, Evonne; Flajnik, Martin F

    2004-07-15

    In most jawed vertebrates including cartilaginous fish, membrane-bound IgM is expressed as a five Ig superfamily (Igsf)-domain H chain attached to a transmembrane (Tm) region. Heretofore, bony fish IgM was the one exception with IgM mRNA spliced to produce a four-domain Tm H chain. We now demonstrate that the Tm and secretory (Sec) mRNAs of the novel cartilaginous fish Ig isotypes, IgW and IgNAR, are present in multiple forms, most likely generated by alternative splicing. In the nurse shark, Ginglymostoma cirratum, and horn shark, Heterodontus francisci, alternative splicing of Tm exons to the second or the fourth constant (C(H)) exons produces two distinct IgW Tm cDNAs. Although the seven-domain IgW Sec cDNA form contains a canonical secretory tail shared with IgM, IgNAR, and IgA, we report a three-domain cDNA form of shark IgW (IgW(short)) having an unusual Sec tail, which is orthologous to skate IgX(short) cDNA. The IgW and IgW(short) Sec transcripts are restricted in their tissue distribution and expression levels vary among individual sharks, with all forms expressed early in ontogeny. IgNAR mRNA is alternatively spliced to produce a truncated four-domain Tm cDNA and a second Tm cDNA is expressed identical in Igsf domains as the Sec form. PBL is enriched in the Tm cDNA of these Igs. These molecular data suggest that cartilaginous fish have augmented their humoral immune repertoire by diversifying the sizes of their Ig isotypes. Furthermore, these Tm cDNAs are prototypical and the truncated variants may translate as more stable protein at the cell surface.

  9. Tetramethylpyrazine stimulates cystic fibrosis transmembrane conductance regulator-mediated anion secretion in distal colon of rodents

    Institute of Scientific and Technical Information of China (English)

    Qiong He; Jin-Xia Zhu; Ying Xing; Lai-Ling Tsang; Ning Yang; Dewi Kenneth Rowlands; Yiu-Wa Chung; Hsiao-Chang Chan

    2005-01-01

    AIM: To investigate the effect of tetramethylpyrazine (TMP), an active compound from Ligustiun Wollichii Franchat, on electrolyte transport across the distal colon of rodents and the mechanism involved.METHODS: The short-circuit current (ISC) technique in conjunction with pharmacological agents and specific inhibitors were used in analyzing the electrolyte transport across the distal colon of rodents. The underlying cellular signaling mechanism was investigated by radioimmunoassay analysis (RIA) and a special mouse model of cystic fibrosis.RESULTS: TMP stimulated a concentration-dependent rise in ISC, which was dependent on both Cl- and HCO3-, and inhibited by apical application of diphenylamine-2,2'-dicarboxylic acid (DPC) and glibenclamide, but resistant to 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid disodium salt hydrate (DIDS). Removal of Na+ from basolateral solution almost completely abolished the ISC response to TMP, but it was insensitive to apical Na+ replacement or apical Na+channel blocker, amiloride. Pretreatment of colonic mucosa with BAPTA-AM, a membrane-permeable selective Ca2+chelator, did not significantly alter the TMP-induced ISC. No additive effect of forskolin and 3-isobutyl-1-methylxanthine (IBMX) was observed on the TMP-induced ISc, but it was significantly reduced by a protein kinase A inhibitor, H89.RIA results showed that TMP (1 mmol/L) elicited a significant increase in cellular cAMP production, which was similar to that elicited by the adenylate cyclase activator, forskolin (10 μmol/L). The TMP-elicited ISC as well as forskolin- or IBMX-induced ISC were abolished in mice with homozygous mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) presenting defective CFTR functions and secretions.CONCLUSION: TMP may stimulate cAMP-dependent and CFTR-mediated Cl- and HCO3- secretion. This may have implications in the future development of alternative treatment for constipation.

  10. Relating the disease mutation spectrum to the evolution of the cystic fibrosis transmembrane conductance regulator (CFTR.

    Directory of Open Access Journals (Sweden)

    Lavanya Rishishwar

    Full Text Available Cystic fibrosis (CF is the most common genetic disease among Caucasians, and accordingly the cystic fibrosis transmembrane conductance regulator (CFTR protein has perhaps the best characterized disease mutation spectrum with more than 1,500 causative mutations having been identified. In this study, we took advantage of that wealth of mutational information in an effort to relate site-specific evolutionary parameters with the propensity and severity of CFTR disease-causing mutations. To do this, we devised a scoring scheme for known CFTR disease-causing mutations based on the Grantham amino acid chemical difference matrix. CFTR site-specific evolutionary constraint values were then computed for seven different evolutionary metrics across a range of increasing evolutionary depths. The CFTR mutational scores and the various site-specific evolutionary constraint values were compared in order to evaluate which evolutionary measures best reflect the disease-causing mutation spectrum. Site-specific evolutionary constraint values from the widely used comparative method PolyPhen2 show the best correlation with the CFTR mutation score spectrum, whereas more straightforward conservation based measures (ConSurf and ScoreCons show the greatest ability to predict individual CFTR disease-causing mutations. While far greater than could be expected by chance alone, the fraction of the variability in mutation scores explained by the PolyPhen2 metric (3.6%, along with the best set of paired sensitivity (58% and specificity (60% values for the prediction of disease-causing residues, were marginal. These data indicate that evolutionary constraint levels are informative but far from determinant with respect to disease-causing mutations in CFTR. Nevertheless, this work shows that, when combined with additional lines of evidence, information on site-specific evolutionary conservation can and should be used to guide site-directed mutagenesis experiments by more narrowly

  11. Cystic fibrosis transmembrane conductance regulator: a chloride channel gated by ATP binding and hydrolysis.

    Science.gov (United States)

    Bompadre, Silvia G; Hwang, Tzyh-Chang

    2007-08-25

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that belongs to the ATP-binding cassette (ABC) transporter superfamily. Defective function of CFTR is responsible for cystic fibrosis (CF), the most common lethal autosomal recessive disorder in Caucasian populations. The disease is manifested in defective chloride transport across the epithelial cells in various tissues. To date, more than 1400 different mutations have been identified as CF-associated. CFTR is regulated by phosphorylation in its regulatory (R) domain, and gated by ATP binding and hydrolysis at its two nucleotide-binding domains (NBD1 and NBD2). Recent studies reveal that the NBDs of CFTR may dimerize as observed in other ABC proteins. Upon dimerization of CFTR's two NBDs, in a head-to-tail configuration, the two ATP-binding pockets (ABP1 and ABP2) are formed by the canonical Walker A and B motifs from one NBD and the signature sequence from the partner NBD. Mutations of the amino acids that interact with ATP reveal that the two ABPs play distinct roles in controlling ATP-dependent gating of CFTR. It was proposed that binding of ATP to the ABP2, which is formed by the Walker A and B in NBD2 and the signature sequence in NBD1, is critical for catalyzing channel opening. While binding of ATP to the ABP1 alone may not increase the opening rate, it does contribute to the stabilization of the open channel conformation. Several disease-associated mutations of the CFTR channel are characterized by gating defects. Understanding how CFTR's two NBDs work together to gate the channel could provide considerable mechanistic information for future pharmacological studies, which could pave the way for tailored drug design for therapeutical interventions in CF.

  12. 3D Architecture of the Trypanosoma brucei Flagella Connector, a Mobile Transmembrane Junction.

    Directory of Open Access Journals (Sweden)

    Johanna L Höög

    2016-01-01

    Full Text Available Cellular junctions are crucial for the formation of multicellular organisms, where they anchor cells to each other and/or supportive tissue and enable cell-to-cell communication. Some unicellular organisms, such as the parasitic protist Trypanosoma brucei, also have complex cellular junctions. The flagella connector (FC is a three-layered transmembrane junction that moves with the growing tip of a new flagellum and attaches it to the side of the old flagellum. The FC moves via an unknown molecular mechanism, independent of new flagellum growth. Here we describe the detailed 3D architecture of the FC suggesting explanations for how it functions and its mechanism of motility.We have used a combination of electron tomography and cryo-electron tomography to reveal the 3D architecture of the FC. Cryo-electron tomography revealed layers of repetitive filamentous electron densities between the two flagella in the interstitial zone. Though the FC does not change in length and width during the growth of the new flagellum, the interstitial zone thickness decreases as the FC matures. This investigation also shows interactions between the FC layers and the axonemes of the new and old flagellum, sufficiently strong to displace the axoneme in the old flagellum. We describe a novel filament, the flagella connector fibre, found between the FC and the axoneme in the old flagellum.The FC is similar to other cellular junctions in that filamentous proteins bridge the extracellular space and are anchored to underlying cytoskeletal structures; however, it is built between different portions of the same cell and is unique because of its intrinsic motility. The detailed description of its structure will be an important tool to use in attributing structure / function relationships as its molecular components are discovered in the future. The FC is involved in the inheritance of cell shape, which is important for the life cycle of this human parasite.

  13. Influence of glutamic acid residues and pH on the properties of transmembrane helices.

    Science.gov (United States)

    Rajagopalan, Venkatesan; Greathouse, Denise V; Koeppe, Roger E

    2017-03-01

    Negatively charged side chains are important for the function of particular ion channels and certain other membrane proteins. To investigate the influence of single glutamic acid side chains on helices that span lipid-bilayer membranes, we have employed GWALP23 (acetyl-GGALW(5)LALALALALALALW(19)LAGA-amide) as a favorable host peptide framework. We substituted individual Leu residues with Glu residues (L12E or L14E or L16E) and incorporated specific (2)H-labeled alanine residues within the core helical region or near the ends of the sequence. Solid-state (2)H NMR spectra reveal little change for the core labels in GWALP23-E12, -E14 and -E16 over a pH range of 4 to 12.5, with the spectra being broader for samples in DOPC compared to DLPC bilayers. The spectra for samples with deuterium labels near the helix ends on alanines 3 and 21 show modest pH-dependent changes in the extent of unwinding of the helix terminals in DLPC and DOPC bilayers. The combined results indicate minor overall responses of these transmembrane helices to changes in pH, with the most buried residue E12 showing no pH dependence. While the Glu residues E14 and E16 may have high pKa values in the lipid bilayer environment, it is also possible that a paucity of helix response is masking the pKa values. Interestingly, when E16 is present, spectral changes at high pH report significant local unwinding of the core helix. Our results are consistent with the expectation that buried carboxyl groups aggressively hold their protons and/or waters of hydration.

  14. Functional expression of cystic fibrosis transmembrane conductance regulator in rat oviduct epithelium

    Institute of Scientific and Technical Information of China (English)

    Minhui Chen; Jianyang Du; Weijian Jiang; Wulin Zuo; Fang Wang; Manhui Li; Zhongluan Wu; Hsiaochang Chan; Wenliang Zhou

    2008-01-01

    The aim of this study was to investigate the functional expression of cystic fibrosis transmembrane conductance regulator (CFFR) with electrophysiological and molecular technique in rat oviduct epithelium. In whole-cell patch clamp,oviduct epithelial cells responded to 100 μM 8-bromo-adenosine 3',5'-cycfic monophosphate (8-Br-cAMP) with a rise in inward current in Gap-free mode, which was inhibited successively by 5 μM CFTR(inh)-172, a CFTR specific inhibitor, and 1 mM diphenylamine-2-carboxylate (DPC), the CI- channel blocker. The cAMP-activated current exhibited a linear current-voltage (I-V) relationship and time- and voltage-independent characteristics. The reversal potentials of the cAMP-activated currents in symmetrical CI- solutions were close to the CI- equilibrium, 0.5±0.2 mV (n=4). When CI- concentration in the bath solution was changed from 140mM to 70 mM and a pipette solution containing 140 mM CI-was used, the reversal potential shifted to a value close to the new equilibrium for Ci-, 20±0.6 mV (n=4), as compared with the theoretic value of 18.7 mV. In addition, mRNA expression of CFTR was also detected in rat oviduct epithelium. Western blot analysis showed that CFTR protein is found in the oviduct throughout the cycle with maximal expression at estrus, and immunofluorescence and immunohistochemistry analysis revealed that CFYR is located at the apical membrane of the epithelial cells. These results showed that the cAMP-activatod CI- current in the oviduct epithelium was characteristic of CFTR, which provided direct evidence for the functional expression of CFTR in the rat oviduct epithelium. CFTR may play a role in modulating fluid transport in the oviduct.

  15. Structural mutants of dengue virus 2 transmembrane domains exhibit host-range phenotype

    Directory of Open Access Journals (Sweden)

    Thomas Gwynneth S

    2011-06-01

    Full Text Available Abstract Background There are over 700 known arboviruses and at least 80 immunologically distinct types that cause disease in humans. Arboviruses are transmitted among vertebrates by biting insects, chiefly mosquitoes and ticks. These viruses are widely distributed throughout the world, depending on the presence of appropriate hosts (birds, horses, domestic animals, humans and vectors. Mosquito-borne arboviruses present some of the most important examples of emerging and resurgent diseases of global significance. Methods A strategy has been developed by which host-range mutants of Dengue virus can be constructed by generating deletions in the transmembrane domain (TMD of the E glycoprotein. The host-range mutants produced and selected favored growth in the insect hosts. Mouse trials were conducted to determine if these mutants could initiate an immune response in an in vivo system. Results The DV2 E protein TMD defined as amino acids 452SWTMKILIGVIITWIG467 was found to contain specific residues which were required for the production of this host-range phenotype. Deletion mutants were found to be stable in vitro for 4 sequential passages in both host cell lines. The host-range mutants elicited neutralizing antibody above that seen for wild-type virus in mice and warrant further testing in primates as potential vaccine candidates. Conclusions Novel host-range mutants of DV2 were created that have preferential growth in insect cells and impaired infectivity in mammalian cells. This method for creating live, attenuated viral mutants that generate safe and effective immunity may be applied to many other insect-borne viral diseases for which no current effective therapies exist.

  16. Synthetic null-cysteine phospholamban analogue and the corresponding transmembrane domain inhibit the Ca-ATPase.

    Science.gov (United States)

    Karim, C B; Marquardt, C G; Stamm, J D; Barany, G; Thomas, D D

    2000-09-05

    Chemical synthesis, functional reconstitution, and electron paramagnetic resonance (EPR) have been used to analyze the structure and function of phospholamban (PLB), a 52-residue integral membrane protein that regulates the calcium pump (Ca-ATPase) in cardiac sarcoplasmic reticulum (SR). PLB exists in equilibrium between monomeric and pentameric forms, as observed by SDS-PAGE, EPR, and fluorescence. It has been proposed that inhibition of the pump is due primarily to the monomeric form, with both pentameric stability and inhibition dependent primarily on the transmembrane (TM) domain. To test these hypotheses, we have studied the physical and functional properties of a synthetic null-cysteine PLB analogue that is entirely monomeric on SDS-PAGE, and compared it with the synthetic null-cysteine TM domain (residues 26-52). The TM domain was found to be primarily oligomeric on SDS-PAGE, and boundary lipid spin label analysis in lipid bilayers verified that the isolated TM domain is more oligomeric than the full-length parent molecule. These results indicate that the stability of the PLB pentamer is due primarily to attractive interactions between hydrophobic TM domains, overcoming the repulsive electrostatic interactions between the cationic cytoplasmic domains (residues 1-25). When reconstituted into liposomes containing the Ca-ATPase, the null-cysteine TM domain had the same inhibitory function as that of the full-length parent molecule. We conclude that the TM domain of PLB is sufficient for inhibitory function, the oligomeric stability of PLB does not determine its inhibitory activity, and the three Cys residues in the TM domain are not required for inhibitory function.

  17. Slow conversions among subconductance states of cystic fibrosis transmembrane conductance regulator chloride channel.

    Science.gov (United States)

    Tao, T; Xie, J; Drumm, M L; Zhao, J; Davis, P B; Ma, J

    1996-02-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel exhibits multiple subconductance states. To study the regulation of conductance states of the CFTR channel, we expressed the wild-type CFTR protein in HEK 293 cells, and isolated microsomal membrane vesicles for reconstitution studies in lipid bilayer membranes. A single CFTR channel had a dominant conductance of 7.8 pS (H), plus two sub-open states with conductances of approximately 6 pS (M) and 2.7 pS (L) in 200 mM KCl with 1 mM MgCl2 (intracellular) and 50 mM KCl with no MgCl2 (extracellular), with pH maintained at 7.4 by 10 mM HEPES-Tris on both sides of the channel. In 200 mM KCl, both H and L states could be measured in stable single-channel recordings, whereas M could not. Spontaneous transitions between H and L were slow; it took 4.5 min for L-->H, and 3.2 min for H-->L. These slow conversions among subconductance states of the CFTR channel were affected by extracellular Mg; in the presence of millimolar Mg, the channel remained stable in the H state. Similar phenomena were also observed with endogenous CFTR channels in T84 cells. In high-salt conditions (1.5 M KCl), all three conductance states of the expressed CFTR channel, 12.1 pS, 8.2 pS, and 3.6 pS, became stable and seemed to gate independently from each other. The existence of multiple stable conductance states associated with the CFTR channel suggests two possibilities: either a single CFTR molecule can exist in multiple configurations with different conductance values, or the CFTR channel may contain multimers of the 170-kDa CFTR protein, and different conductance states are due to different aggregation states of the CFTR protein.

  18. Chikungunya virus non-structural protein 2-mediated host shut-off disables the unfolded protein response

    NARCIS (Netherlands)

    Fros, J.J.; Major, L.D.; Scholte, F.E.; Gardner, J.; Hemert, van M.J.; Suhrbier, A.; Pijlman, G.P.

    2015-01-01

    The unfolded protein response (UPR) is a cellular defence mechanism against high concentrations of misfolded protein in the endoplasmic reticulum (ER). In the presence of misfolded proteins, ER-transmembrane proteins PERK and IRE1a become activated. PERK phosphorylates eIF2a leading to a general inh

  19. Chikungunya virus non-structural protein 2-mediated host shut-off disables the unfolded protein response

    NARCIS (Netherlands)

    Fros, J.J.; Major, L.D.; Scholte, F.E.; Gardner, J.; Hemert, van M.J.; Suhrbier, A.; Pijlman, G.P.

    2015-01-01

    The unfolded protein response (UPR) is a cellular defence mechanism against high concentrations of misfolded protein in the endoplasmic reticulum (ER). In the presence of misfolded proteins, ER-transmembrane proteins PERK and IRE1a become activated. PERK phosphorylates eIF2a leading to a general inh

  20. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins.

    Science.gov (United States)

    Kim, Minsoo; Carman, Christopher V; Springer, Timothy A

    2003-09-19

    Although critical for development, immunity, wound healing, and metastasis, integrins represent one of the few classes of plasma membrane receptors for which the basic signaling mechanism remains a mystery. We investigated cytoplasmic conformational changes in the integrin LFA-1 (alphaLbeta2) in living cells by measuring fluorescence resonance energy transfer between cyan fluorescent protein-fused and yellow fluorescent protein-fused alphaL and beta2 cytoplasmic domains. In the resting state these domains were close to each other, but underwent significant spatial separation upon either intracellular activation of integrin adhesiveness (inside-out signaling) or ligand binding (outside-in signaling). Thus, bidirectional integrin signaling is accomplished by coupling extracellular conformational changes to an unclasping and separation of the alpha and beta cytoplasmic domains, a distinctive mechanism for transmitting information across the plasma membrane.

  1. Effects of crossflow velocity and transmembrane pressure on microfiltration of oil-in-water emulsions

    CERN Document Server

    Darvishzadeh, Tohid

    2012-01-01

    This study addresses the issue of oil removal from water using hydrophilic porous membranes. The effective separation of oil-in-water dispersions involves high flux of water through the membrane and, at the same time, high rejection rate of the oil phase. The effects of transmembrane pressure and crossflow velocity on rejection of oil droplets and thin oil films by pores of different cross-section are investigated numerically by solving the Navier-Stokes equation. We found that in the absence of crossflow, the critical transmembrane pressure, which is required for the oil droplet entry into a circular pore of a given surface hydrophilicity, agrees well with analytical predictions based on the Young-Laplace equation. With increasing crossflow velocity, the shape of the oil droplet is strongly deformed near the pore entrance and the critical pressure of permeation increases. We determined numerically the phase diagram for the droplet rejection, permeation, and breakup depending of the transmembrane pressure and...

  2. The H-loop in the Second Nucleotide-binding Domain of the Cystic Fibrosis Transmembrane Conductance Regulator is Required for Efficient Chloride Channel Closing

    OpenAIRE

    Kloch, Monika; Milewski, Michał; Nurowska, Ewa; Dworakowska, Beata; Cutting, Garry R.; Dołowy, Krzysztof

    2010-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-binding cassette (ABC) transporter that functions as a cAMP-activated chloride channel. The recent model of CFTR gating predicts that the ATP binding to both nucleotide-binding domains (NBD1 and NBD2) of CFTR is required for the opening of the channel, while the ATP hydrolysis at NBD2 induces subsequent channel closing. In most ABC proteins, efficient hydrolysis of ATP requires the presence of the invariant histidine res...

  3. Intramolecular cross-linking in a bacterial homolog of mammalian SLC6 neurotransmitter transporters suggests an evolutionary conserved role of transmembrane segments 7 and 8

    DEFF Research Database (Denmark)

    Kniazeff, Julie; Loland, Claus Juul; Goldberg, Naomi

    2005-01-01

    The extracellular concentration of the neurotransmitters dopamine, serotonin, norepinephrine, GABA and glycine is tightly controlled by plasma membrane transporters belonging to the SLC6 gene family. A very large number of putative transport proteins with a remarkable homology to the SLC6...... transporters has recently been identified in prokaryotes. Here we have probed structural relationships in a 'microdoman' corresponding to the extracellular ends of transmembrane segments (TM) 7 and 8 in one of these homologs, the tryptophan transporter TnaT from Symbiobacterium thermophilum. We found...

  4. Soluble, but not transmembrane, TNF-α is required during influenza infection to limit the magnitude of immune responses and the extent of immunopathology

    OpenAIRE

    DeBerge, Matthew P.; Ely, Kenneth H.; Richard I Enelow

    2014-01-01

    TNF-α is a pleotropic cytokine, which has both proinflammatory and anti-inflammatory functions during influenza infection. TNF-α is first expressed as a transmembrane (mem) protein that is proteolytically processed to release a soluble (sol) form. memTNF-α and solTNF-α have been shown to exert distinct tissue-protective or -pathologic effects in several disease models. However, the relative contributions of memTNF-α or solTNF-α in regulating pulmonary immunopathology following influenza infec...

  5. Human cytomegalovirus gH stability and trafficking are regulated by ER-associated degradation and transmembrane architecture.

    Science.gov (United States)

    Gardner, Thomas J; Hernandez, Rosmel E; Noriega, Vanessa M; Tortorella, Domenico

    2016-03-30

    The prototypic betaherpesvirus human cytomegalovirus (CMV) establishes life-long persistence within its human host. While benign in healthy individuals, CMV poses a significant threat to the immune compromised, including transplant recipients and neonates. The CMV glycoprotein complex gH/gL/gO mediates infection of fibroblasts, and together with the gH/gL/UL128/130/131 a pentameric complex permits infection of epithelial, endothethial, and myeloid cells. Given the central role of the gH/gL complex during infection, we were interested in studying cellular trafficking of the gH/gL complex through generation of human cells that stably express gH and gL. When expressed alone, CMV gH and gL were degraded through the ER-associated degradation (ERAD) pathway. However, co-expression of these proteins stabilized the polypeptides and enhanced their cell-surface expression. To further define regulatory factors involved in gH/gL trafficking, a CMV gH chimera in which the gH transmembrane and cytoplasmic tail were replaced with that of human CD4 protein permitted cell surface gH expression in absence of gL. We thus demonstrate the ability of distinct cellular processes to regulate the trafficking of viral glycoproteins. Collectively, the data provide insight into the processing and trafficking requirements of CMV envelope protein complexes and provide an example of the co-opting of cellular processes by CMV.

  6. Distinct Roles of Soluble and Transmembrane Adenylyl Cyclases in the Regulation of Flagellar Motility in Ciona Sperm

    Directory of Open Access Journals (Sweden)

    Kogiku Shiba

    2014-07-01

    Full Text Available Adenylyl cyclase (AC is a key enzyme that synthesizes cyclic AMP (cAMP at the onset of the signaling pathway to activate sperm motility. Here, we showed that both transmembrane AC (tmAC and soluble AC (sAC are distinctly involved in the regulation of sperm motility in the ascidian Ciona intestinalis. A tmAC inhibitor blocked both cAMP synthesis and the activation of sperm motility induced by the egg factor sperm activating and attracting factor (SAAF, as well as those induced by theophylline, an inhibitor of phoshodiesterase. It also significantly inhibited cAMP-dependent phosphorylation of a set of proteins at motility activation. On the other hand, a sAC inhibitor does not affect on SAAF-induced transient increase of cAMP, motility activation or protein phosphorylation, but it reduced swimming velocity to half in theophylline-induced sperm. A sAC inhibitor KH-7 induced circular swimming trajectory with smaller diameter and significantly suppressed chemotaxis of sperm to SAAF. These results suggest that tmAC is involved in the basic mechanism for motility activation through cAMP-dependent protein phosphorylation, whereas sAC plays distinct roles in increase of flagellar beat frequency and in the Ca2+-dependent chemotactic movement of sperm.

  7. Determinants of Helix Formation for a Kv1.3 Transmembrane Segment inside the Ribosome Exit Tunnel.

    Science.gov (United States)

    Tu, LiWei; Deutsch, Carol

    2017-06-02

    Proteins begin to fold in the ribosome, and misfolding has pathological consequences. Among the earliest folding events in biogenesis is the formation of a helix, an elementary structure that is ubiquitously present and required for correct protein folding in all proteomes. The determinants underlying helix formation in the confined space of the ribosome exit tunnel are relatively unknown. We chose the second transmembrane segment, S2, of a voltage-gated potassium channel, Kv1.3, as a model to probe this issue. Since the N terminus of S2 is initially in an extended conformation in the folding vestibule of the ribosome yet ultimately emerges at the exit port as a helix, S2 is ideally suited for delineating sequential events and folding determinants of helix formation inside the ribosome. We show that S2's extended N terminus inside the tunnel is converted into a helix by a single, distant mutation in the nascent peptide. This transition depends on nascent peptide sequence at specific tunnel locations. Co-translational secondary folding of nascent chains inside the ribosome has profound physiological consequences that bear on correct membrane insertion, tertiary folding, oligomerization, and biochemical modification of the newborn protein during biogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Mathematical Models for Quantitative Assessment of Bioluminescence Resonance Energy Transfer (BRET: Application to Seven Transmembrane Receptors (7TMRs Oligomerization

    Directory of Open Access Journals (Sweden)

    Luka eDrinovec

    2012-08-01

    Full Text Available The idea that seven transmembrane receptors (7TMRs; also designated G-protein coupled receptors (GPCRs might form dimers or higher order oligomeric complexes was formulated more than 20 years ago and has been intensively studied since then. In the last decade, bioluminescence resonance energy transfer (BRET has been one of the most frequently used biophysical methods for studying 7TMRs oligomerization. This technique enables monitoring physical interactions between protein partners in living cells fused to donor and acceptor moieties. It relies on non-radiative transfer of energy between donor and acceptor, depending on their intermolecular distance (1–10 nm and relative orientation. Results derived from BRET-based techniques are very persuasive; however, they need appropriate controls and critical interpretation. To overcome concerns about the specificity of BRET-derived results, a set of experiments has been proposed, including negative control with a non-interacting receptor or protein, BRET dilution, saturation and competition assays. This article presents the theoretical background behind BRET assays, then outlines mathematical models for quantitative interpretation of BRET saturation and competition assay results, gives examples of their utilization and discusses the possibilities of quantitative analysis of data generated with other RET-based techniques.

  9. Graph-Theoretic Models of Mutations in the Nucleotide Binding Domain 1 of the Cystic Fibrosis Transmembrane Conductance Regulator

    Directory of Open Access Journals (Sweden)

    Debra J. Knisley

    2013-01-01

    Full Text Available Cystic fibrosis is one of the most common inherited diseases and is caused by a mutation in a membrane protein, the cystic fibrosis transmembrane conductance regulator (CFTR. This protein serves as a chloride channel and regulates the viscosity of mucus lining the ducts of a number of organs. Although much has been learned about the consequences of mutations on the energy landscape and the resulting disrupted folding pathway of CFTR, a level of understanding needed to correct the misfolding has not been achieved. The most common mutations of CFTR are located in one of two nucleotide binding domains, namely, the nucleotide binding domain 1 (NBD1. We model NBD1 using a nested graph model. The vertices in the lowest layer each represent an atom in the structure of an amino acid residue, while the vertices in the mid layer each represent the residue. The vertices in the top layer each represent a subdomain of the nucleotide binding domain. We use this model to quantify the effects of a single point mutation on the protein domain. We compare the wildtype structure with eight of the most common mutations. The graph-theoretic model provides insight into how a single point mutation can have such profound structural consequences.

  10. Effects of transmembrane potential and pH gradient on the cytochrome c-promoted fusion of mitochondrial mimetic membranes.

    Science.gov (United States)

    Kawai, Cintia; Pessoto, Felipe S; Graves, Catharine V; Carmona-Ribeiro, Ana Maria; Nantes, Iseli L

    2013-08-01

    The present study investigated the effects of ΔΨ and ΔpH (pH gradient) on the interaction of cytochrome c with a mitochondrial mimetic membrane composed of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and cardiolipin (CL) leading to vesicle fusion. ΔpH generated by lowered bulk pH (pH(out)) of PCPECL liposomes, with an internal pH (pH(in)) of 8.0, favored vesicle fusion with a titration sigmoidal profile (pK(a) ~ 6.9). Conversely, ΔpH generated by enhanced pH(in) of PCPECL at a pH(out) of 6.0 favored the fusion of vesicles with a linear profile. We did not observe a significant amount of liposome fusion when ΔpH was generated by lowered pH(in) at a pH(out) of 8.0. At bulk acidic pH, ΔΨ generated by Na⁺ gradient also favored cyt c-promoted vesicle fusion. At acidic and alkaline pH(out), the presence of ΔpH and ΔΨ did not affect cytochrome c binding affinity measured by pyrene quenching. Therefore, cytochrome c-mediated PC/PE/CL vesicle fusion is dependent of ionization of the protein site L (acidic pH) and the presence of transmembrane potential. The effect of transmembrane potential is probably related to the generation of defects on the lipid bilayer. These results are consistent with previous reports showing that cytochrome c release prior to the dissipation of the ΔΨ(M) blocks inner mitochondrial membrane fusion during apoptosis.

  11. Evidence for intersubunit interactions between S4 and S5 transmembrane segments of the Shaker potassium channel.

    Science.gov (United States)

    Neale, Edward J; Elliott, David J S; Hunter, Malcolm; Sivaprasadarao, Asipu

    2003-08-01

    Voltage-gated potassium channels are transmembrane proteins made up of four subunits, each comprising six transmembrane (S1-S6) segments. S1-S4 form the voltage-sensing domain and S5-S6 the pore domain with its central pore. The sensor domain detects membrane depolarization and transmits the signal to the activation gates situated in the pore domain, thereby leading to channel opening. An understanding of the mechanism by which the sensor communicates the signal to the pore requires knowledge of the structure of the interface between the voltage-sensing and pore domains. Toward this end, we have introduced single cysteine mutations into the extracellular end of S4 (positions 356 and 357) in conjunction with a cysteine in S5 (position 418) of the Shaker channel and expressed the mutants in Xenopus oocytes. We then examined the propensity of each pair of engineered cysteines to form a metal bridge or a disulfide bridge, respectively, by examining the effect of Cd2+ ions and copper phenanthroline on the K+ conductance of a whole oocyte. Both reagents reduced currents through the S357C,E418C double mutant channel, presumably by restricting the movements necessary for coupling the voltage-sensing function to pore opening. This inhibitory effect was seen in the closed state of the channel and with heteromers composed of S357C and E418C single mutant subunits; no effect was seen with homomers of any of the single mutant channels. These data indicate that the extracellular end of S4 lies in close proximity to the extracellular end of the S5 of the neighboring subunit in closed channels.

  12. Single tryptophan and tyrosine comparisons in the N-terminal and C-terminal interface regions of transmembrane GWALP peptides.

    Science.gov (United States)

    Gleason, Nicholas J; Greathouse, Denise V; Grant, Christopher V; Opella, Stanley J; Koeppe, Roger E

    2013-11-07

    Hydrophobic membrane-spanning helices often are flanked by interfacial aromatic or charged residues. In this paper, we compare the consequences of single Trp → Tyr substitutions at each interface for the properties of a defined transmembrane helix in the absence of charged residues. The choice of molecular framework is critical for these single-residue experiments because the presence of "too many" aromatic residues (more than one at either membrane-water interface) introduces excess dynamic averaging of solid state NMR observables. To this end, we compare the outcomes when changing W(5) or W(19), or both of them, to tyrosine in the well-characterized transmembrane peptide acetyl-GGALW(5)(LA)6LW(19)LAGA-amide ("GWALP23"). By means of solid-state (2)H and (15)N NMR experiments, we find that Y(19)GW(5)ALP23 displays similar magnitudes of peptide helix tilt as Y(5)GW(19)ALP23 and responds similarly to changes in bilayer thickness, from DLPC to DMPC to DOPC. The presence of Y(19) changes the azimuthal rotation angle ρ (about the helix axis) to a similar extent as Y(5), but in the opposite direction. When tyrosines are substituted for both tryptophans to yield GY(5,19)ALP23, the helix tilt angle is again of comparable magnitude, and furthermore, the preferred azimuthal rotation angle ρ is relatively unchanged from that of GW(5,19)ALP23. The extent of dynamic averaging increases marginally when Tyr replaces Trp. Yet, importantly, all members of the peptide family having single Tyr or Trp residues near each interface exhibit only moderate and not highly extensive dynamic averaging. The results provide important benchmarks for evaluating conformational and dynamic control of membrane protein function.

  13. Heme uptake by Leishmania amazonensis is mediated by the transmembrane protein LHR1.

    Directory of Open Access Journals (Sweden)

    Chau Huynh

    Full Text Available Trypanosomatid protozoan parasites lack a functional heme biosynthetic pathway, so must acquire heme from the environment to survive. However, the molecular pathway responsible for heme acquisition by these organisms is unknown. Here we show that L. amazonensis LHR1, a homolog of the C. elegans plasma membrane heme transporter HRG-4, functions in heme transport. Tagged LHR1 localized to the plasma membrane and to endocytic compartments, in both L. amazonensis and mammalian cells. Heme deprivation in L. amazonensis increased LHR1 transcript levels, promoted uptake of the fluorescent heme analog ZnMP, and increased the total intracellular heme content of promastigotes. Conversely, deletion of one LHR1 allele reduced ZnMP uptake and the intracellular heme pool by approximately 50%, indicating that LHR1 is a major heme importer in L. amazonensis. Viable parasites with correct replacement of both LHR1 alleles could not be obtained despite extensive attempts, suggesting that this gene is essential for the survival of promastigotes. Notably, LHR1 expression allowed Saccharomyces cerevisiae to import heme from the environment, and rescued growth of a strain deficient in heme biosynthesis. Syntenic genes with high sequence identity to LHR1 are present in the genomes of several species of Leishmania and also Trypanosoma cruzi and Trypanosoma brucei, indicating that therapeutic agents targeting this transporter could be effective against a broad group of trypanosomatid parasites that cause serious human disease.

  14. Seven transmembrane G protein-coupled receptor repertoire of gastric ghrelin cells

    DEFF Research Database (Denmark)

    Engelstoft, Maja S; Park, Won-Mee; Sakata, Ichiro

    2013-01-01

    The molecular mechanisms regulating secretion of the orexigenic-glucoregulatory hormone ghrelin remain unclear. Based on qPCR analysis of FACS-purified gastric ghrelin cells, highly expressed and enriched 7TM receptors were comprehensively identified and functionally characterized using in vitro,...

  15. Reversal of charge selectivity in transmembrane protein pores by using noncovalent molecular adapters

    Science.gov (United States)

    Gu, Li-Qun; Dalla Serra, Mauro; Vincent, J. Bryan; Vigh, Gyula; Cheley, Stephen; Braha, Orit; Bayley, Hagan

    2000-01-01

    In this study, the charge selectivity of staphylococcal α-hemolysin (αHL), a bacterial pore-forming toxin, is manipulated by using cyclodextrins as noncovalent molecular adapters. Anion-selective versions of αHL, including the wild-type pore and various mutants, become more anion selective when β-cyclodextrin (βCD) is lodged within the channel lumen. By contrast, the negatively charged adapter, hepta-6-sulfato-β-cyclodextrin (s7βCD), produces cation selectivity. The cyclodextrin adapters have similar effects when placed in cation-selective mutant αHL pores. Most probably, hydrated Cl− ions partition into the central cavity of βCD more readily than K+ ions, whereas s7βCD introduces a charged ring near the midpoint of the channel lumen and confers cation selectivity through electrostatic interactions. The molecular adapters generate permeability ratios (PK+/PCl−) over a 200-fold range and should be useful in the de novo design of membrane channels both for basic studies of ion permeation and for applications in biotechnology. PMID:10760267

  16. The role of transmembrane segment II in 7TM receptor activation

    DEFF Research Database (Denmark)

    Benned-Jensen, Tau; Rosenkilde, M M

    2009-01-01

    During the two past decades tremendous effort has been put into uncovering the activation mechanism of 7TM receptors. The majority of such studies have focused on the major binding pocket, comprised of transmembrane segments (TM) -III through -VII, as most non-peptide and peptide ligands, in addi......During the two past decades tremendous effort has been put into uncovering the activation mechanism of 7TM receptors. The majority of such studies have focused on the major binding pocket, comprised of transmembrane segments (TM) -III through -VII, as most non-peptide and peptide ligands...

  17. Structural and functional studies of the HAMP domain of EnvZ, an osmosensing transmembrane histidine kinase in Escherichia coli.

    Science.gov (United States)

    Kishii, Ryuta; Falzon, Liliana; Yoshida, Takeshi; Kob