WorldWideScience

Sample records for ptp inhibitor sodium

  1. Vanadium Compounds as PTP Inhibitors

    Directory of Open Access Journals (Sweden)

    Elsa Irving

    2017-12-01

    Full Text Available Phosphotyrosine signaling is regulated by the opposing actions of protein tyrosine kinases (PTKs and protein tyrosine phosphatases (PTPs. Here we discuss the potential of vanadium derivatives as PTP enzyme inhibitors and metallotherapeutics. We describe how vanadate in the V oxidized state is thought to inhibit PTPs, thus acting as a pan-inhibitor of this enzyme superfamily. We discuss recent developments in the biological and biochemical actions of more complex vanadium derivatives, including decavanadate and in particular the growing number of oxidovanadium compounds with organic ligands. Pre-clinical studies involving these compounds are discussed in the anti-diabetic and anti-cancer contexts. Although in many cases PTP inhibition has been implicated, it is also clear that many such compounds have further biochemical effects in cells. There also remain concerns surrounding off-target toxicities and long-term use of vanadium compounds in vivo in humans, hindering their progress through clinical trials. Despite these current misgivings, interest in these chemicals continues and many believe they could still have therapeutic potential. If so, we argue that this field would benefit from greater focus on improving the delivery and tissue targeting of vanadium compounds in order to minimize off-target toxicities. This may then harness their full therapeutic potential.

  2. PTP1B Inhibitors from the Entomogenous Fungi Isaria fumosorosea

    OpenAIRE

    Jun Zhang; Lin-Lin Meng; Jing-Jing Wei; Peng Fan; Sha-Sha Liu; Wei-Yu Yuan; You-Xing Zhao; Du-Qiang Luo

    2017-01-01

    Protein tyrosine phosphatase 1B (PTP1B) is implicated as a negative regulator of insulin receptor (IR) signaling and a potential drug target for the treatment of type II diabetes and other associated metabolic syndromes. Thus, small molecule inhibitors of PTP1B can be considered as an attractive approach for the design of new therapeutic agents of type II diabetes and cancer diseases. In a continuing search for new PTP1B inhibitors, a new tetramic acid possessing a rare pyrrolidinedione skele...

  3. Tea Contains Potent Inhibitors of Tyrosine Phosphatase PTP1B

    OpenAIRE

    Ma, Junfeng; Li, Zhe; Xing, Shu; Ho, Wanting Tina; Fu, Xueqi; Zhao, Zhizhuang Joe

    2011-01-01

    Tea is widely consumed all over the world. Studies have demonstrated the role of tea in prevention and treatment of various chronic diseases including diabetes and obesity, but the underlying mechanism is unclear. PTP1B is a widely expressed tyrosine phosphatase which has been defined as a target for therapeutic drug development to treat diabetes and obesity. In screening for inhibitors of PTP1B, we found that aqueous extracts of teas exhibited potent PTP1B inhibitory effects with an IC50 val...

  4. PTP1B Inhibitors from the Entomogenous Fungi Isaria fumosorosea

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2017-11-01

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B is implicated as a negative regulator of insulin receptor (IR signaling and a potential drug target for the treatment of type II diabetes and other associated metabolic syndromes. Thus, small molecule inhibitors of PTP1B can be considered as an attractive approach for the design of new therapeutic agents of type II diabetes and cancer diseases. In a continuing search for new PTP1B inhibitors, a new tetramic acid possessing a rare pyrrolidinedione skeleton named fumosorinone A (1, together with five known ones 2–6 were isolated from the entomogenous fungus Isaria fumosorosea. The structures of 2–6 were elucidated by extensive spectroscopic analysis. Fumosorinone A (1 and beauvericin (6 showed significant PTP1B inhibitory activity with IC50 value of 3.24 μM and 0.59 μM.

  5. PTP1B Inhibitors from the Entomogenous Fungi Isaria fumosorosea.

    Science.gov (United States)

    Zhang, Jun; Meng, Lin-Lin; Wei, Jing-Jing; Fan, Peng; Liu, Sha-Sha; Yuan, Wei-Yu; Zhao, You-Xing; Luo, Du-Qiang

    2017-11-24

    Protein tyrosine phosphatase 1B (PTP1B) is implicated as a negative regulator of insulin receptor (IR) signaling and a potential drug target for the treatment of type II diabetes and other associated metabolic syndromes. Thus, small molecule inhibitors of PTP1B can be considered as an attractive approach for the design of new therapeutic agents of type II diabetes and cancer diseases. In a continuing search for new PTP1B inhibitors, a new tetramic acid possessing a rare pyrrolidinedione skeleton named fumosorinone A ( 1 ), together with five known ones 2 - 6 were isolated from the entomogenous fungus Isaria fumosorosea. The structures of 2 - 6 were elucidated by extensive spectroscopic analysis. Fumosorinone A ( 1 ) and beauvericin ( 6 ) showed significant PTP1B inhibitory activity with IC 50 value of 3.24 μM and 0.59 μM.

  6. Polycyclic phloroglucinols as PTP1B inhibitors from Hypericum longistylum: Structures, PTP1B inhibitory activities, and interactions with PTP1B.

    Science.gov (United States)

    Cao, Xiangrong; Yang, Xueyuan; Wang, Peixia; Liang, Yue; Liu, Feng; Tuerhong, Muhetaer; Jin, Da-Qing; Xu, Jing; Lee, Dongho; Ohizumi, Yasushi; Guo, Yuanqiang

    2017-12-01

    Protein tyrosine phosphatase 1B (PTP1B) has been regarded asa target for the research and development of new drugs to treat type II diabetes and PTP1B inhibitors are potential lead compounds for this type of new drugs. A phytochemical investigation to obtain new PTP1B inhibitors resulted in the isolation of four new phloroglucinols, longistyliones A-D (1-4) from the aerial parts of Hypericum longistylum. The structures of 1-4 were elucidated on the basis of extensive 1D and 2D NMR spectroscopic data analysis, and the absolute configurations of these compounds were established by comparing their experimental electronic circular dichroism (ECD) spectra with those calculated by the time-dependent density functional theory method. Compounds 1-4 possess a rare polycyclic phloroglucinol skeleton. The following biological evaluation revealed that all of the compounds showed PTP1B inhibitory effects. The further molecular docking studies indicated the strong interactions between these bioactive compounds with the PTP1B protein, which revealed the possible mechanism of PTP1B inhibition of bioactive compounds. All of the results implied that these compounds are potentially useful for the treatment of type II diabetes. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The design strategy of selective PTP1B inhibitors over TCPTP.

    Science.gov (United States)

    Li, XiangQian; Wang, LiJun; Shi, DaYong

    2016-08-15

    Protein tyrosine phosphatase 1B (PTP1B) has already been well studied as a highly validated therapeutic target for diabetes and obesity. However, the lack of selectivity limited further studies and clinical applications of PTP1B inhibitors, especially over T-cell protein tyrosine phosphatase (TCPTP). In this review, we enumerate the published specific inhibitors of PTP1B, discuss the structure-activity relationships by analysis of their X-ray structures or docking results, and summarize the characteristic of selectivity related residues and groups. Furthermore, the design strategy of selective PTP1B inhibitors over TCPTP is also proposed. We hope our work could provide an effective way to gain specific PTP1B inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. PTP1B inhibitor promotes endothelial cell motility by activating the DOCK180/Rac1 pathway.

    Science.gov (United States)

    Wang, Yuan; Yan, Feng; Ye, Qing; Wu, Xiao; Jiang, Fan

    2016-04-07

    Promoting endothelial cell (EC) migration is important not only for therapeutic angiogenesis, but also for accelerating re-endothelialization after vessel injury. Several recent studies have shown that inhibition of protein tyrosine phosphatase 1B (PTP1B) may promote EC migration and angiogenesis by enhancing the vascular endothelial growth factor receptor-2 (VEGFR2) signalling. In the present study, we demonstrated that PTP1B inhibitor could promote EC adhesion, spreading and migration, which were abolished by the inhibitor of Rac1 but not RhoA GTPase. PTP1B inhibitor significantly increased phosphorylation of p130Cas, and the interactions among p130Cas, Crk and DOCK180; whereas the phosphorylation levels of focal adhesion kinase, Src, paxillin, or Vav2 were unchanged. Gene silencing of DOCK180, but not Vav2, abrogated the effects of PTP1B inhibitor on EC motility. The effects of PTP1B inhibitor on EC motility and p130Cas/DOCK180 activation persisted in the presence of the VEGFR2 antagonist. In conclusion, we suggest that stimulation of the DOCK180 pathway represents an alternative mechanism of PTP1B inhibitor-stimulated EC motility, which does not require concomitant VEGFR2 activation as a prerequisite. Therefore, PTP1B inhibitor may be a useful therapeutic strategy for promoting EC migration in cardiovascular patients in which the VEGF/VEGFR functions are compromised.

  9. Discovery of novel high potent and cellular active ADC type PTP1B inhibitors with selectivity over TC-PTP via modification interacting with C site.

    Science.gov (United States)

    Du, Yongli; Zhang, Yanhui; Ling, Hao; Li, Qunyi; Shen, Jingkang

    2018-01-20

    PTP1B serving as a key negative regulator of insulin signaling is a novel target for type 2 diabetes and obesity. Modification at ring B of N-{4-[(3-Phenyl-ureido)-methyl]-phenyl}-methane-sulfonamide template to interact with residues Arg47 and Lys41 in the C site of PTP1B by molecular docking aided design resulted in the discovery of a series of novel high potent and selective inhibitors of PTP1B. The structure activity relationship interacting with the C site of PTP1B was well illustrated. Compounds 8 and 18 were shown to be the high potent and most promising PTP1B inhibitors with cellular activity and great selectivity over the highly homologous TCPTP and other PTPs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Design, synthesis and biological evaluation of uncharged catechol derivatives as selective inhibitors of PTP1B.

    Science.gov (United States)

    Li, Xiang-Qian; Xu, Qi; Luo, Jiao; Wang, Li-Jun; Jiang, Bo; Zhang, Ren-Shuai; Shi, Da-Yong

    2017-08-18

    Protein tyrosine phosphatases 1B (PTP1B) is a promising and validated therapeutic target to effectively treat T2DM and obesity. However, the development of charged PTP1B inhibitors was restricted due to their low cell permeability and poor bioavailability. Based on active natural products, two series of uncharged catechol derivatives were identified as PTP1B inhibitors by targeting a secondary aryl phosphate-binding site as well as the catalytic site. The most potent inhibitor 22 showed an IC 50 of 0.487 μM against PTP1B and strong selectivity (27-fold) over TCPTP. Kinetic studies were also performed that 22 act as a competitive PTP1B inhibitor. The treatment of C2C12 myotubes with 22 markedly increased the phosphorylation levels of IRβ, Akt and IRS1 phosphorylation. The similarity of its action profiling with that produced by insulin suggested its potential as a new non-insulin-dependent drug candidate. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Trivaric acid, a new inhibitor of PTP1b with potent beneficial effect on diabetes.

    Science.gov (United States)

    Sun, Wenlong; Zhang, Bowei; Zheng, Haizhou; Zhuang, Chunlin; Li, Xia; Lu, Xinhua; Quan, Chunshan; Dong, Yuesheng; Zheng, Zhihui; Xiu, Zhilong

    2017-01-15

    To screen a potential PTP1b inhibitor from the microbial origin-based compound library and to investigate the potential anti-diabetic effects of the inhibitor in vivo and determine its primary anti-diabetic mechanism in vitro and in silico. PTP1b inhibitory activity was measured using recombination protein as the enzyme and p-NPP as the substrate. The binding of the inhibitor to PTP1b was analysed by docking in silico and confirmed by ITC experiments. The intracellular signalling pathway was detected by Western blot analysis in HepG2 cells. The anti-diabetic effects were evaluated using a diabetic mice model in vivo. Among 545 microbial origin-based pure compounds tested, trivaric acid, a tridepside, was selected as a PTP1B inhibitor exhibiting strong inhibitory activity with an IC 50 of 173nM. Docking and ITC studies showed that trivaric acid was able to spontaneously bind to PTP1b and may inhibit PTP1b by blocking the catalytic domain of the phosphatase. Trivaric acid also enhanced the ability of insulin to stimulate the IR/IRS/Akt/GLUT2 pathway and increase the glucose consumption in HepG2 cells. In diabetic mice, trivaric acid that had been encapsulated into Eudrgit L100-5.5 showed significant anti-diabetic effects, improving insulin resistance, leptin resistance and lipid profile and weight control at doses of 5mg/kg and 50mg/kg. Trivaric acid is a potential lead compound in the search for anti-diabetic agents targeting PTP1b. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Screening and identification of potential PTP1B allosteric inhibitors using in silico and in vitro approaches.

    Science.gov (United States)

    Shinde, Ranajit Nivrutti; Kumar, G Siva; Eqbal, Shahbaz; Sobhia, M Elizabeth

    2018-01-01

    Protein tyrosine phosphatase 1B (PTP1B) is a validated therapeutic target for Type 2 diabetes due to its specific role as a negative regulator of insulin signaling pathways. Discovery of active site directed PTP1B inhibitors is very challenging due to highly conserved nature of the active site and multiple charge requirements of the ligands, which makes them non-selective and non-permeable. Identification of the PTP1B allosteric site has opened up new avenues for discovering potent and selective ligands for therapeutic intervention. Interactions made by potent allosteric inhibitor in the presence of PTP1B were studied using Molecular Dynamics (MD). Computationally optimized models were used to build separate pharmacophore models of PTP1B and TCPTP, respectively. Based on the nature of interactions the target residues offered, a receptor based pharmacophore was developed. The pharmacophore considering conformational flexibility of the residues was used for the development of pharmacophore hypothesis to identify potentially active inhibitors by screening large compound databases. Two pharmacophore were successively used in the virtual screening protocol to identify potential selective and permeable inhibitors of PTP1B. Allosteric inhibition mechanism of these molecules was established using molecular docking and MD methods. The geometrical criteria values confirmed their ability to stabilize PTP1B in an open conformation. 23 molecules that were identified as potential inhibitors were screened for PTP1B inhibitory activity. After screening, 10 molecules which have good permeability values were identified as potential inhibitors of PTP1B. This study confirms that selective and permeable inhibitors can be identified by targeting allosteric site of PTP1B.

  13. Synthesis and biological evaluation of novel bis-aromatic amides as novel PTP1B inhibitors.

    Science.gov (United States)

    Wang, Wen-Long; Huang, Chao; Gao, Li-Xin; Tang, Chun-Lan; Wang, Jun-Qing; Wu, Min-Chen; Sheng, Li; Chen, Hai-Jun; Nan, Fa-Jun; Li, Jing-Ya; Li, Jia; Feng, Bainian

    2014-04-15

    A series of bis-aromatic amides was designed, synthesized, and evaluated as a new class of inhibitors with IC50 values in the micromolar range against protein tyrosine phosphatase 1B (PTP1B). Among them, compound 15 displayed an IC50 value of 2.34±0.08 μM with 5-fold preference over TCPTP. More importantly, the treatment of CHO/HIR cells with compound 15 resulted in increased phosphorylation of insulin receptor (IR), which suggested extensive cellular activity of compound 15. These results provided novel lead compounds for the design of inhibitors of PTP1B as well as other PTPs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Acquisition of a potent and selective TC-PTP inhibitor via a stepwise fluorophore-tagged combinatorial synthesis and screening strategy.

    Science.gov (United States)

    Zhang, Sheng; Chen, Lan; Luo, Yong; Gunawan, Andrea; Lawrence, David S; Zhang, Zhong-Yin

    2009-09-16

    Protein tyrosine phosphatases (PTPs) regulate a broad range of cellular processes including proliferation, differentiation, migration, apoptosis, and immune responses. Dysfunction of PTP activity is associated with cancers, metabolic syndromes, and autoimmune disorders. Consequently, small molecule PTP inhibitors should serve not only as powerful tools to delineate the physiological roles of these enzymes in vivo but also as lead compounds for therapeutic development. We describe a novel stepwise fluorophore-tagged combinatorial library synthesis and competitive fluorescence polarization screening approach that transforms a weak and general PTP inhibitor into an extremely potent and selective TC-PTP inhibitor with highly efficacious cellular activity. The result serves as a proof-of-concept in PTP inhibitor development, as it demonstrates the feasibility of acquiring potent, yet highly selective, cell permeable PTP inhibitory agents. Given the general nature of the approach, this strategy should be applicable to other PTP targets.

  15. Discovery of novel, high potent, ABC type PTP1B inhibitors with TCPTP selectivity and cellular activity.

    Science.gov (United States)

    Liu, Peihong; Du, Yongli; Song, Lianhua; Shen, Jingkang; Li, Qunyi

    2016-08-08

    Protein tyrosine phosphatase 1B (PTP1B) as a key negative regulator of both insulin and leptin receptor pathways has been an attractive therapeutic target for the treatment of type 2 diabetes mellitus (T2DM) and obesity. With the goal of enhancing potency and selectivity of the PTP1B inhibitors, a series of methyl salicylate derivatives as ABC type PTP1B inhibitors (P1-P7) were discovered. More importantly, compound P6 exhibited high potent inhibitory activity (IC50 = 50 nM) for PTP1B with 15-fold selectivity over T-cell PTPase (TCPTP). Further studies on cellular activities revealed that compound P6 could enhance insulin-mediated insulin receptor β (IRβ) phosphorylation and insulin-stimulated glucose uptake. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Discovery of a new mitochondria permeability transition pore (mPTP) inhibitor based on gallic acid.

    Science.gov (United States)

    Teixeira, José; Oliveira, Catarina; Cagide, Fernando; Amorim, Ricardo; Garrido, Jorge; Borges, Fernanda; Oliveira, Paulo J

    2018-12-01

    Pharmacological interventions targeting mitochondria present several barriers for a complete efficacy. Therefore, a new mitochondriotropic antioxidant (AntiOxBEN 3 ) based on the dietary antioxidant gallic acid was developed. AntiOxBEN 3 accumulated several thousand-fold inside isolated rat liver mitochondria, without causing disruption of the oxidative phosphorylation apparatus, as seen by the unchanged respiratory control ratio, phosphorylation efficiency, and transmembrane electric potential. AntiOxBEN 3 showed also limited toxicity on human hepatocarcinoma cells. Moreover, AntiOxBEN 3 presented robust iron-chelation and antioxidant properties in both isolated liver mitochondria and cultured rat and human cell lines. Along with its low toxicity profile and high antioxidant activity, AntiOxBEN 3 strongly inhibited the calcium-dependent mitochondrial permeability transition pore (mPTP) opening. From our data, AntiOxBEN 3 can be considered as a lead compound for the development of a new class of mPTP inhibitors and be used as mPTP de-sensitiser for basic research or clinical applications or emerge as a therapeutic application in mitochondria dysfunction-related disorders.

  17. Synthesis of three bromophenols from red algae as PTP1B inhibitors

    Science.gov (United States)

    Guo, Shuju; Li, Jing; Li, Ting; Shi, Dayong; Han, Lijun

    2011-01-01

    Bromophenols are a set of natural products widely distributed in seaweed, most of which exhibit interesting and useful biological activities. To develop a reliable and efficient synthetic route to these natural bromophenols, three of them, 3,4-dibromo-5-(2'-bromo-3',4'-dihydroxy-6'-methoxymethyl-benzyl)-benzene-1,2-diol (compound 9), 3,4-dibromo-5-(2'-bromo-6'-ethoxy methyl-3',4'-dihydroxybenzyl)-benzene-1,2-diol (compound 10), and 3-bromo-4-(3'-bromo-4',5'-dihydroxy benzyl)-5-(ethoxymethyl)-benzene-1,2-diol (compound 14), isolated from red marine algae, have been synthesized in eight steps with an overall yield of 14.4%, 14.4%, and 18.2% respectively, via a practical approach employing bromination, Wolff-Kishner-Huang reduction and a Friedel-Crafts reaction as key steps. The protein tyrosine phosphatase 1B (PTP1B) inhibitory activities of the synthetic compounds were evaluated by the colorimetric assay. The results show that these compounds are moderate PTP1B inhibitors. The synthesis of these bromophenol derivatives makes in vivo studies of their structure-activity relationships and inhibition activity against PTP1B possible.

  18. In silico modelling and molecular dynamics simulation studies of thiazolidine based PTP1B inhibitors.

    Science.gov (United States)

    Mahapatra, Manoj Kumar; Bera, Krishnendu; Singh, Durg Vijay; Kumar, Rajnish; Kumar, Manoj

    2018-04-01

    Protein tyrosine phosphatase 1B (PTP1B) has been identified as a negative regulator of insulin and leptin signalling pathway; hence, it can be considered as a new therapeutic target of intervention for the treatment of type 2 diabetes. Inhibition of this molecular target takes care of both diabetes and obesity, i.e. diabestiy. In order to get more information on identification and optimization of lead, pharmacophore modelling, atom-based 3D QSAR, docking and molecular dynamics studies were carried out on a set of ligands containing thiazolidine scaffold. A six-point pharmacophore model consisting of three hydrogen bond acceptor (A), one negative ionic (N) and two aromatic rings (R) with discrete geometries as pharmacophoric features were developed for a predictive 3D QSAR model. The probable binding conformation of the ligands within the active site was studied through molecular docking. The molecular interactions and the structural features responsible for PTP1B inhibition and selectivity were further supplemented by molecular dynamics simulation study for a time scale of 30 ns. The present investigation has identified some of the indispensible structural features of thiazolidine analogues which can further be explored to optimize PTP1B inhibitors.

  19. Molecular dynamics simulation study of PTP1B with allosteric inhibitor and its application in receptor based pharmacophore modeling

    Science.gov (United States)

    Bharatham, Kavitha; Bharatham, Nagakumar; Kwon, Yong Jung; Lee, Keun Woo

    2008-12-01

    Allosteric inhibition of protein tyrosine phosphatase 1B (PTP1B), has paved a new path to design specific inhibitors for PTP1B, which is an important drug target for the treatment of type II diabetes and obesity. The PTP1B1-282-allosteric inhibitor complex crystal structure lacks α7 (287-298) and moreover there is no available 3D structure of PTP1B1-298 in open form. As the interaction between α7 and α6-α3 helices plays a crucial role in allosteric inhibition, α7 was modeled to the PTP1B1-282 in open form complexed with an allosteric inhibitor (compound-2) and a 5 ns MD simulation was performed to investigate the relative orientation of the α7-α6-α3 helices. The simulation conformational space was statistically sampled by clustering analyses. This approach was helpful to reveal certain clues on PTP1B allosteric inhibition. The simulation was also utilized in the generation of receptor based pharmacophore models to include the conformational flexibility of the protein-inhibitor complex. Three cluster representative structures of the highly populated clusters were selected for pharmacophore model generation. The three pharmacophore models were subsequently utilized for screening databases to retrieve molecules containing the features that complement the allosteric site. The retrieved hits were filtered based on certain drug-like properties and molecular docking simulations were performed in two different conformations of protein. Thus, performing MD simulation with α7 to investigate the changes at the allosteric site, then developing receptor based pharmacophore models and finally docking the retrieved hits into two distinct conformations will be a reliable methodology in identifying PTP1B allosteric inhibitors.

  20. Covalent Allosteric Inactivation of Protein Tyrosine Phosphatase 1B (PTP1B) by an Inhibitor-Electrophile Conjugate.

    Science.gov (United States)

    Punthasee, Puminan; Laciak, Adrian R; Cummings, Andrea H; Ruddraraju, Kasi Viswanatharaju; Lewis, Sarah M; Hillebrand, Roman; Singh, Harkewal; Tanner, John J; Gates, Kent S

    2017-04-11

    Protein tyrosine phosphatase 1B (PTP1B) is a validated drug target, but it has proven difficult to develop medicinally useful, reversible inhibitors of this enzyme. Here we explored covalent strategies for the inactivation of PTP1B using a conjugate composed of an active site-directed 5-aryl-1,2,5-thiadiazolidin-3-one 1,1-dioxide inhibitor connected via a short linker to an electrophilic α-bromoacetamide moiety. Inhibitor-electrophile conjugate 5a caused time-dependent loss of PTP1B activity consistent with a covalent inactivation mechanism. The inactivation occurred with a second-order rate constant of (1.7 ± 0.3) × 10 2 M -1 min -1 . Mass spectrometric analysis of the inactivated enzyme indicated that the primary site of modification was C121, a residue distant from the active site. Previous work provided evidence that covalent modification of the allosteric residue C121 can cause inactivation of PTP1B [Hansen, S. K., Cancilla, M. T., Shiau, T. P., Kung, J., Chen, T., and Erlanson, D. A. (2005) Biochemistry 44, 7704-7712]. Overall, our results are consistent with an unusual enzyme inactivation process in which noncovalent binding of the inhibitor-electrophile conjugate to the active site of PTP1B protects the nucleophilic catalytic C215 residue from covalent modification, thus allowing inactivation of the enzyme via selective modification of allosteric residue C121.

  1. PTP1B inhibitors from Selaginella tamariscina (Beauv.) Spring and their kinetic properties and molecular docking simulation.

    Science.gov (United States)

    Le, Duc Dat; Nguyen, Duc Hung; Zhao, Bing Tian; Seong, Su Hui; Choi, Jae Sue; Kim, Seok Kyu; Kim, Jeong Ah; Min, Byung Sun; Woo, Mi Hee

    2017-06-01

    Diabetes is one of the most popular worldwide diseases, regulated by the defects in insulin secretion, insulin action, or both. The overexpression of protein tyrosine phosphatase 1B (PTP1B) was found to down-regulate the insulin-receptor activation. PTP1B has been known as a strategy for the treatment of diabetes via the regulation of insulin signal transduction pathway. Herein, we investigated the PTP1B inhibitors isolated from natural sources. The chemical investigation of Selaginella tamariscina (Beauv.) Spring revealed seven unsaturated alkynyl phenols 1-7, four new selaginellins T-W 1-4 together with three known compounds 5-7 isolated from the aerial parts. The structures of the isolates were determined by spectroscopic techniques (1D/2D-NMR, MS, and CD). The inhibitory effects of these isolates on the PTP1B enzyme activity were investigated. Among them, compounds 2-7 significantly exhibited the inhibitory effects with the IC 50 values ranging from 4.8 to 15.9μM. Compound 1 moderately displayed the inhibitory activity with an IC 50 of 57.9μM. Furthermore, active compounds were discovered from their kinetic and molecular docking analysis. The results revealed that compounds 2 and 4-7 were mixed-competitive inhibitors, whereas compound 3 was a non-competitive inhibitor. This data confirm that these compounds exhibited potential inhibitory effect on the PTP1B enzyme activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Multiple machine learning based descriptive and predictive workflow for the identification of potential PTP1B inhibitors.

    Science.gov (United States)

    Chandra, Sharat; Pandey, Jyotsana; Tamrakar, Akhilesh Kumar; Siddiqi, Mohammad Imran

    2017-01-01

    In insulin and leptin signaling pathway, Protein-Tyrosine Phosphatase 1B (PTP1B) plays a crucial controlling role as a negative regulator, which makes it an attractive therapeutic target for both Type-2 Diabetes (T2D) and obesity. In this work, we have generated classification models by using the inhibition data set of known PTP1B inhibitors to identify new inhibitors of PTP1B utilizing multiple machine learning techniques like naïve Bayesian, random forest, support vector machine and k-nearest neighbors, along with structural fingerprints and selected molecular descriptors. Several models from each algorithm have been constructed and optimized, with the different combination of molecular descriptors and structural fingerprints. For the training and test sets, most of the predictive models showed more than 90% of overall prediction accuracies. The best model was obtained with support vector machine approach and has Matthews Correlation Coefficient of 0.82 for the external test set, which was further employed for the virtual screening of Maybridge small compound database. Five compounds were subsequently selected for experimental assay. Out of these two compounds were found to inhibit PTP1B with significant inhibitory activity in in-vitro inhibition assay. The structural fragments which are important for PTP1B inhibition were identified by naïve Bayesian method and can be further exploited to design new molecules around the identified scaffolds. The descriptive and predictive modeling strategy applied in this study is capable of identifying PTP1B inhibitors from the large compound libraries. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Varic acid analogues from fungus as PTP1B inhibitors: Biological evaluation and structure-activity relationships.

    Science.gov (United States)

    Sun, Wenlong; Zhuang, Chunlin; Li, Xia; Zhang, Bowei; Lu, Xinhua; Zheng, Zhihui; Dong, Yuesheng

    2017-08-01

    Protein tyrosine phosphatase 1B (PTP1B) inhibitors as potential therapies for diabetes and obesity have attracted much attention in recent years. Six varic acid analogues were isolated from two strains of fungi and evaluated for PTP1B inhibition activities. The structure-activity relationships were also characterized and predicted by molecular modeling. Further kinetic studies indicated the reversible and competitive inhibition manner of varic acid analogues. Trivaric acid showed insulin-sensitizing effect not only in vitro but also in vivo, representing a promising lead compound for further optimization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Synthesis and biological evaluation of novel thiadiazole amides as potent Cdc25B and PTP1B inhibitors.

    Science.gov (United States)

    Li, Yingjun; Yu, Yang; Jin, Kun; Gao, Lixin; Luo, Tongchuan; Sheng, Li; Shao, Xin; Li, Jia

    2014-09-01

    A series of novel thiadiazole amide derivatives have been synthesized and evaluated for inhibitory activities against Cdc25B and PTP1B. Most of them showed inhibitory activities against Cdc25B (IC50=1.18-8.01 μg/mL) and PTP1B (IC50=0.85-8.75 μg/mL), respectively. Moreover, compounds 5b and 4l were most potent with IC50 values of 1.18 and 0.85 μg/mL for Cdc25B and PTP1B, respectively, compared with reference drugs Na3VO4 (IC50=0.93 μg/mL) and oleanolic acid (IC50=0.85 μg/mL). The results of selectivity experiments showed that the target compounds were selective inhibitors against PTP1B and Cdc25B. Enzyme kinetic experiments demonstrated that compound 5k was a specific inhibitor with the typical characteristics of a mixed inhibitor. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Structure-based prediction of free energy changes of binding of PTP1B inhibitors

    Science.gov (United States)

    Wang, Jing; Ling Chan, Shek; Ramnarayan, Kal

    2003-08-01

    The goals were (1) to understand the driving forces in the binding of small molecule inhibitors to the active site of PTP1B and (2) to develop a molecular mechanics-based empirical free energy function for compound potency prediction. A set of compounds with known activities was docked onto the active site. The related energy components and molecular surface areas were calculated. The bridging water molecules were identified and their contributions were considered. Linear relationships were explored between the above terms and the binding free energies of compounds derived based on experimental inhibition constants. We found that minimally three terms are required to give rise to a good correlation (0.86) with predictive power in five-group cross-validation test (q2 = 0.70). The dominant terms are the electrostatic energy and non-electrostatic energy stemming from the intra- and intermolecular interactions of solutes and from those of bridging water molecules in complexes.

  6. The kunitz protease inhibitor form of the amyloid precursor protein (KPI/APP) inhibits the proneuropeptide processing enzyme prohormone thiol protease (PTP). Colocalization of KPI/APP and PTP in secretory vesicles.

    Science.gov (United States)

    Hook, V Y; Sei, C; Yasothornsrikul, S; Toneff, T; Kang, Y H; Efthimiopoulos, S; Robakis, N K; Van Nostrand, W

    1999-01-29

    Proteolytic processing of proenkephalin and proneuropeptides is required for the production of active neurotransmitters and peptide hormones. Variations in the extent of proenkephalin processing in vivo suggest involvement of endogenous protease inhibitors. This study demonstrates that "protease nexin 2 (PN2)," the secreted form of the kunitz protease inhibitor (KPI) of the amyloid precursor protein (APP), potently inhibited the proenkephalin processing enzyme known as prohormone thiol protease (PTP), with a Ki,app of 400 nM. Moreover, PTP and PN2 formed SDS-stable complexes that are typical of kunitz protease inhibitor interactions with target proteases. In vivo, KPI/APP (120 kDa), as well as a truncated form of KPI/APP that resembles PN2 in apparent molecular mass (110 kDa), were colocalized with PTP and (Met)enkephalin in secretory vesicles of adrenal medulla (chromaffin granules). KPI/APP (110-120 kDa) was also detected in pituitary secretory vesicles that contain PTP. In chromaffin cells, calcium-dependent secretion of KPI/APP with PTP and (Met)enkephalin demonstrated the colocalization of these components in functional secretory vesicles. These results suggest a role for KPI/APP inhibition of PTP in regulated secretory vesicles. In addition, these results are the first to identify an endogenous protease target of KPI/APP, which is developmentally regulated in aging and Alzheimer's disease.

  7. A potent, selective, and orally bioavailable inhibitor of the protein-tyrosine phosphatase PTP1B improves insulin and leptin signaling in animal models.

    Science.gov (United States)

    Krishnan, Navasona; Konidaris, Konstantis F; Gasser, Gilles; Tonks, Nicholas K

    2018-02-02

    The protein-tyrosine phosphatase PTP1B is a negative regulator of insulin and leptin signaling and a highly validated therapeutic target for diabetes and obesity. Conventional approaches to drug development have produced potent and specific PTP1B inhibitors, but these inhibitors lack oral bioavailability, which limits their potential for drug development. Here, we report that DPM-1001, an analog of the specific PTP1B inhibitor trodusquemine (MSI-1436), is a potent, specific, and orally bioavailable inhibitor of PTP1B. DPM-1001 also chelates copper, which enhanced its potency as a PTP1B inhibitor. DPM-1001 displayed anti-diabetic properties that were associated with enhanced signaling through insulin and leptin receptors in animal models of diet-induced obesity. Therefore, DPM-1001 represents a proof of concept for a new approach to therapeutic intervention in diabetes and obesity. Although the PTPs have been considered undruggable, the findings of this study suggest that allosteric PTP inhibitors may help reinvigorate drug development efforts that focus on this important family of signal-transducing enzymes. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Competitive protein tyrosine phosphatase 1B (PTP1B) inhibitors, prenylated caged xanthones from Garcinia hanburyi and their inhibitory mechanism.

    Science.gov (United States)

    Tan, Xue Fei; Uddin, Zia; Park, Chanin; Song, Yeong Hun; Son, Minky; Lee, Keun Woo; Park, Ki Hun

    2017-04-15

    Protein tyrosine phosphatase 1B (PTP1B) plays important role in diabetes, obesity and cancer. The methanol extract of the gum resin of Garcinia hanburyi (G. hanburyi) showed potent PTP1B inhibition at 10µg/ml. The active compounds were identified as prenylated caged xanthones (1-9) which inhibited PTP1B in dose-dependent manner. Carboxybutenyl group within caged motif (A ring) was found to play a critical role in enzyme inhibition such as 1-6 (IC 50 s=0.47-4.69µM), whereas compounds having hydroxymethylbutenyl 7 (IC 50 =70.25µM) and methylbutenyl 8 (IC 50 >200µM) showed less activity. The most potent inhibitor, gambogic acid 1 (IC 50 =0.47µM) showed 30-fold more potency than ursolic acid (IC 50 =15.5µM), a positive control. In kinetic study, all isolated xanthones behaved as competitive inhibitors which were fully demonstrated with K m , V max and K ik /K iv ratio. It was also proved that inhibitor 1 operated under the enzyme isomerization model having k 5 =0.0751µM - 1 S - 1 , k 6 =0.0249µM - 1 S - 1 and K i app =0.499µM. To develop a pharmacophore model, we explored the binding sites of compound 1 and 7 in PTP1B. These modeling results were in agreement with our findings, which revealed that the inhibitory activities are tightly related to caged motif and prenyl group in A ring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. PTP1B inhibitors from the seeds of Iris sanguinea and their insulin mimetic activities via AMPK and ACC phosphorylation.

    Science.gov (United States)

    Yang, Jun Li; Ha, Thi Kim Quy; Lee, Ba Wool; Kim, Jinwoong; Oh, Won Keun

    2017-11-15

    To find PTP1B inhibitors from natural products, two new compounds (1 and 2), along with nine known compounds (3-11), were isolated from a methanol-soluble extract of Iris sanguinea seeds. The structures of compounds 1 and 2 were determined based on extensive spectroscopic data analysis including UV, IR, NMR, and MS. The IC 50 value of compound 5 on protein tyrosine phosphatase 1B (PTP1B) inhibitory activity is 7.30±0.88µM with a little activity compared to the IC 50 values of the tested positive compound. Compound 5 significantly enhanced glucose uptake and activation of pACC, pAMPK and partially Erk1/2 signaling. These results suggest that compound 5 from Iris sanguinea seeds are utilized as both PTP1B inhibitors and regulators of glucose uptake. These beneficial effects could be applied to treat metabolic diseases such as diabetes and obesity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Activation of mPTP-dependent mitochondrial apoptosis pathway by a novel pan HDAC inhibitor resminostat in hepatocellular carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Meili [Department of Infectious Disease, Linyi People’s Hospital, Linyi (China); Shi, Wenhong [Department of Radiotherapy, Linyi Tumor Hospital, Linyi (China); Li, Zhengling [Department of Nursing, Tengzhou Central People’s Hospital, Tengzhou (China); Liu, Haiyan, E-mail: liuhaiyanlinyi5@sina.com [Department of Nursing, Linyi People’s Hospital, No. 27 Jiefang Road, Linyi 276000, Shandong (China)

    2016-09-02

    Over-expression and aberrant activation of histone deacetylases (HDACs) are often associated with poor prognosis of hepatocellular carcinoma (HCC). Here, we evaluated the potential anti-hepatocellular carcinoma (HCC) cell activity by resminostat, a novel pan HDAC inhibitor (HDACi). We demonstrated that resminostat induced potent cytotoxic and anti-proliferative activity against established HCC cell lines (HepG2, HepB3, SMMC-7721) and patient-derived primary HCC cells. Further, resminostat treatment in HCC cells activated mitochondrial permeability transition pore (mPTP)-dependent apoptosis pathway, which was evidenced by physical association of cyclophilin-D and adenine nucleotide translocator 1 (ANT-1), mitochondrial depolarization, cytochrome C release and caspase-9 activation. Intriguingly, the mPTP blockers (sanglifehrin A and cyclosporine A), shRNA knockdown of cyclophilin-D or the caspase-9 inhibitor dramatically attenuated resminostat-induced HCC cell apoptosis and cytotoxicity. Reversely, HCC cells with exogenous cyclophilin-D over-expression were hyper-sensitive to resminostat. Intriguingly, a low concentration of resminostat remarkably potentiated sorafenib-induced mitochondrial apoptosis pathway activation, leading to a profound cytotoxicity in HCC cells. The results of this preclinical study indicate that resminostat (or plus sorafenib) could be further investigated as a valuable anti-HCC strategy. - Highlights: • Resminostat inhibits human HCC cell survival and proliferation. • Resminostat activates mPTP-dependent mitochondrial apoptosis pathway in HCC cells. • Resminostat potentiates sorafenib-induced mitochondrial apoptosis pathway activation. • mPTP or caspase-9 inhibition attenuates apoptosis by resminostat or plus sorafenib.

  11. Serendipitous discovery of light-induced (In Situ) formation of an Azo-bridged dimeric sulfonated naphthol as a potent PTP1B inhibitor.

    Science.gov (United States)

    Bongard, Robert D; Lepley, Michael; Thakur, Khushabu; Talipov, Marat R; Nayak, Jaladhi; Lipinski, Rachel A Jones; Bohl, Chris; Sweeney, Noreena; Ramchandran, Ramani; Rathore, Rajendra; Sem, Daniel S

    2017-05-31

    Protein tyrosine phosphatases (PTPs) like dual specificity phosphatase 5 (DUSP5) and protein tyrosine phosphatase 1B (PTP1B) are drug targets for diseases that include cancer, diabetes, and vascular disorders such as hemangiomas. The PTPs are also known to be notoriously difficult targets for designing inihibitors that become viable drug leads. Therefore, the pipeline for approved drugs in this class is minimal. Furthermore, drug screening for targets like PTPs often produce false positive and false negative results. Studies presented herein provide important insights into: (a) how to detect such artifacts, (b) the importance of compound re-synthesis and verification, and (c) how in situ chemical reactivity of compounds, when diagnosed and characterized, can actually lead to serendipitous discovery of valuable new lead molecules. Initial docking of compounds from the National Cancer Institute (NCI), followed by experimental testing in enzyme inhibition assays, identified an inhibitor of DUSP5. Subsequent control experiments revealed that this compound demonstrated time-dependent inhibition, and also a time-dependent change in color of the inhibitor that correlated with potency of inhibition. In addition, the compound activity varied depending on vendor source. We hypothesized, and then confirmed by synthesis of the compound, that the actual inhibitor of DUSP5 was a dimeric form of the original inhibitor compound, formed upon exposure to light and oxygen. This compound has an IC 50 of 36 μM for DUSP5, and is a competitive inhibitor. Testing against PTP1B, for selectivity, demonstrated the dimeric compound was actually a more potent inhibitor of PTP1B, with an IC 50 of 2.1 μM. The compound, an azo-bridged dimer of sulfonated naphthol rings, resembles previously reported PTP inhibitors, but with 18-fold selectivity for PTP1B versus DUSP5. We report the identification of a potent PTP1B inhibitor that was initially identified in a screen for DUSP5, implying common

  12. Discovery of core-structurally novel PTP1B inhibitors with specific selectivity containing oxindole-fused spirotetrahydrofurochroman by one-pot reaction.

    Science.gov (United States)

    Dong, Suzhen; Lei, Yubing; Jia, Shikun; Gao, Lixin; Li, Jia; Zhu, Tong; Liu, Shunying; Hu, Wenhao

    2017-02-15

    Protein tyrosine phosphatase 1B (PTP1B) has been proposed to be an ideal target for treatment of type II diabetes and obesity. However, no druggable PTP1B inhibitor has been established and there is still an urgent demand for the development of structurally novel PTPIB inhibitor. Herein, we reported core-structurally novel PTP1B inhibitors with low micromole-ranged inhibitory activity by one-pot reaction from simple starting materials. Further studies demonstrated some of these active compounds had a specific selectivity over other PTPs. The structure and activity relationship was also described. The best active and selective compound 5e inhibited PTP1B activity with an IC 50 of 4.53μM. Molecular docking analysis further demonstrated that compound 5e bound to the active pocket of PTP1B. The results might provide some insights for further development of new drugs for type II diabetes and obesity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. High-Resolution Inhibition Profiling Combined with HPLC-HRMS-SPE-NMR for Identification of PTP1B Inhibitors from Vietnamese Plants.

    Science.gov (United States)

    Trinh, Binh Thi Dieu; Jäger, Anna K; Staerk, Dan

    2017-07-20

    Protein tyrosine phosphatase 1B (PTP1B) plays a key role as a negative regulator in insulin signal transduction by deactivating the insulin receptor. Thus, PTP1B inhibition has emerged as a potential therapeutic strategy for curing insulin resistance. In this study, 40 extracts from 18 different plant species were investigated for PTP1B inhibitory activity in vitro. The most promising one, the EtOAc extract of Ficus racemosa , was investigated by high-resolution PTP1B inhibition profiling combined with HPLC-HRMS-SPE-NMR analysis. This led to the identification of isoderrone ( 1 ), derrone ( 2 ), alpinumisoflavone ( 3 ) and mucusisoflavone B ( 4 ) as PTP1B inhibitors. IC 50 of these compounds were 22.7 ± 1.7, 12.6 ± 1.6, 21.2 ± 3.8 and 2.5 ± 0.2 µM, respectively. Kinetics analysis revealed that these compounds inhibited PTP1B non-competitively with K i values of 21.3 ± 2.8, 7.9 ± 1.9, 14.3 ± 2.0, and 3.0 ± 0.5 µM, respectively. These findings support the important role of F. racemosa as a novel source of new drugs and/or as a herbal remedy for treatment of type 2 diabetes.

  14. High-Resolution Inhibition Profiling Combined with HPLC-HRMS-SPE-NMR for Identification of PTP1B Inhibitors from Vietnamese Plants

    Directory of Open Access Journals (Sweden)

    Binh Thi Dieu Trinh

    2017-07-01

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B plays a key role as a negative regulator in insulin signal transduction by deactivating the insulin receptor. Thus, PTP1B inhibition has emerged as a potential therapeutic strategy for curing insulin resistance. In this study, 40 extracts from 18 different plant species were investigated for PTP1B inhibitory activity in vitro. The most promising one, the EtOAc extract of Ficus racemosa, was investigated by high-resolution PTP1B inhibition profiling combined with HPLC-HRMS-SPE-NMR analysis. This led to the identification of isoderrone (1, derrone (2, alpinumisoflavone (3 and mucusisoflavone B (4 as PTP1B inhibitors. IC50 of these compounds were 22.7 ± 1.7, 12.6 ± 1.6, 21.2 ± 3.8 and 2.5 ± 0.2 µM, respectively. Kinetics analysis revealed that these compounds inhibited PTP1B non-competitively with Ki values of 21.3 ± 2.8, 7.9 ± 1.9, 14.3 ± 2.0, and 3.0 ± 0.5 µM, respectively. These findings support the important role of F. racemosa as a novel source of new drugs and/or as a herbal remedy for treatment of type 2 diabetes.

  15. Further New Diterpenoids as PTP1B Inhibitors from the Xisha Soft Coral Sinularia polydactyla

    Directory of Open Access Journals (Sweden)

    Fei Ye

    2018-03-01

    Full Text Available A new prenyleudesmane type diterpene, sinupol (8, and a new capnosane type diterpenoid, sinulacetate (9, were isolated from the Xisha soft coral Sinularia polydactyla along with five known related diterpenes (4–7 and 10. Their structures, including absolute configurations, were determined by extensive spectroscopic analysis, the comparison of their NMR data with those of related compounds, and time-dependent density functional theory electronic circular dichroism (TDDFT ECD calculations. Both new compounds (8 and 9 exhibited promising inhibitory activity against protein tyrosine phosphatase 1B (PTP1B, a potential drug target for the treatment of type II diabetes and obesity.

  16. Further New Diterpenoids as PTP1B Inhibitors from the Xisha Soft Coral Sinularia polydactyla.

    Science.gov (United States)

    Ye, Fei; Zhu, Zheng-Dan; Gu, Yu-Cheng; Li, Jia; Zhu, Wei-Liang; Guo, Yue-Wei

    2018-03-25

    A new prenyleudesmane type diterpene, sinupol ( 8 ), and a new capnosane type diterpenoid, sinulacetate ( 9 ), were isolated from the Xisha soft coral Sinularia polydactyla along with five known related diterpenes ( 4 - 7 and 10 ). Their structures, including absolute configurations, were determined by extensive spectroscopic analysis, the comparison of their NMR data with those of related compounds, and time-dependent density functional theory electronic circular dichroism (TDDFT ECD) calculations. Both new compounds ( 8 and 9 ) exhibited promising inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), a potential drug target for the treatment of type II diabetes and obesity.

  17. Synthesis, biological evaluation and in silico studies of 5-(3-methoxybenzylidene)thiazolidine-2,4-dione analogues as PTP1B inhibitors.

    Science.gov (United States)

    Mahapatra, Manoj Kumar; Kumar, Rajnish; Kumar, Manoj

    2017-04-01

    PTP1B (protein tyrosine phosphatase 1B) dephosphorylates the insulin receptor substrate and thus acts as a negative regulator of the insulin and leptin signalling pathway. Recently, it has been considered as a new therapeutic target of intervention for the treatment of type2 diabetes. A series of aryl/alkylsulfonyloxy-5-(3-methoxybenzylidene)thiazolidine-2,4-dione derivatives were synthesized, screened in vitro for their PTP1B inhibitory activity and in vivo for anti-hyperglycaemic activity. Docking results further helped in understanding the nature of interactions governing the binding mode of ligands inside the active site of PTP1B. Among the synthesized compounds, 13 and 16 were found to be potent PTP1B inhibitors having IC 50 of 7.31 and 8.73μM respectively. Significant lowering of blood glucose level was observed in some of the synthesized compounds in in vivo study. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Inhibitin: a specific inhibitor of sodium/sodium exchange in erythrocytes.

    OpenAIRE

    Morgan, K; Brown, R C; Spurlock, G; Southgate, K; Mir, M A

    1986-01-01

    An inhibitor of ouabain-insensitive sodium/sodium exchange in erythrocytes has been isolated from leukemic promyelocytes. To explore the specific effects of this inhibitor, named inhibitin, sodium transport experiments were carried out in human erythrocytes. Inhibitin reduced ouabain-insensitive bidirectional sodium transport. It did not change net sodium fluxes, had no significant effect on rubidium influx, and did not inhibit sodium-potassium-ATPase activity. The inhibitory effect of inhibi...

  19. Function-Oriented Synthesis of Marine Phidianidine Derivatives as Potential PTP1B Inhibitors with Specific Selectivity

    Directory of Open Access Journals (Sweden)

    Jin Liu

    2018-03-01

    Full Text Available Phidianidines A and B are two novel marine indole alkaloids bearing an uncommon 1,2,4-oxadiazole ring and exhibiting various biological activities. Our previous research showed that the synthesized phidianidine analogs had the potential to inhibit the activity of protein tyrosine phosphatase 1B (PTP1B, a validated target for Type II diabetes, which indicates that these analogs are worth further structural modification. Therefore, in this paper, a series of phidianidine derivatives were designed and rapidly synthesized with a function-oriented synthesis (FOS strategy. Their inhibitory effects on PTP1B and T-cell protein tyrosine phosphatase (TCPTP were evaluated, and several compounds displayed significant inhibitory potency and specific selectivity over PTP1B. The structure–activity relationship (SAR and molecular docking analyses are also described.

  20. Function-Oriented Synthesis of Marine Phidianidine Derivatives as Potential PTP1B Inhibitors with Specific Selectivity.

    Science.gov (United States)

    Liu, Jin; Chen, Yu; Li, Jing-Ya; Luo, Cheng; Li, Jia; Chen, Kai-Xian; Li, Xu-Wen; Guo, Yue-Wei

    2018-03-20

    Phidianidines A and B are two novel marine indole alkaloids bearing an uncommon 1,2,4-oxadiazole ring and exhibiting various biological activities. Our previous research showed that the synthesized phidianidine analogs had the potential to inhibit the activity of protein tyrosine phosphatase 1B (PTP1B), a validated target for Type II diabetes, which indicates that these analogs are worth further structural modification. Therefore, in this paper, a series of phidianidine derivatives were designed and rapidly synthesized with a function-oriented synthesis (FOS) strategy. Their inhibitory effects on PTP1B and T-cell protein tyrosine phosphatase (TCPTP) were evaluated, and several compounds displayed significant inhibitory potency and specific selectivity over PTP1B. The structure-activity relationship (SAR) and molecular docking analyses are also described.

  1. Design and synthesis of new potent PTP1B inhibitors with the skeleton of 2-substituted imino-3-substituted-5-heteroarylidene-1,3-thiazolidine-4-one: Part I.

    Science.gov (United States)

    Meng, Ge; Zheng, Meilin; Wang, Mei; Tong, Jing; Ge, Weijuan; Zhang, Jiehe; Zheng, Aqun; Li, Jingya; Gao, Lixin; Li, Jia

    2016-10-21

    A new series of 2-substituted imino-3-substituted-5- heteroarylidene-1,3-thiazolidine-4-ones as the potent bidentate PTP1B inhibitors were designed and synthesized in this paper. All of the new compounds were characterized and identified by spectra analysis. The biological screening test against PTP1B showed that some of these compounds have the positive inhibitory activity against PTP1B. The activity of the compounds with 5-substituted pyrrole on 5-postion of 1,3-thiazolidine-4-one are more potent than that of those compounds with 5-substituted pyridine group. Compound 14b, 14h and 14i showed IC50 values of 8.66 μM, 6.83 μM and 6.09 μM against PTP1B, respectively. Docking analysis of these active compounds with PTP1B showed the possible interaction modes of these biheterocyclic compounds with the active sites of PTP1B. The inhibition tests against oncogenetic CDC25B were also conducted on this set of compounds to evaluate the selectivity and possible anti-neoplastic activity. Compound 14b also showed the lowest IC50 of 1.66 μM against CDC25B among all the possible inhibitors, including 14g, 14h, 14i and 15c. Some pharmacological parameters including VolSurf, steric and electric descriptors of all the compounds were calculated to give some hints about the relative relationship with the biological activity. The result of this study might give some light on designing the possible anti-cancer drugs targeting at phosphatases. The most active compound 14i might be used as the lead compound for further structure modification of the new low molecular weight PTP1B inhibitors with the N-containing heterocyclic skeleton. Copyright © 2016. Published by Elsevier Masson SAS.

  2. Data in support of fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effect in diabetic KKAy mice

    Directory of Open Access Journals (Sweden)

    Du-Qiang Luo

    2015-09-01

    Full Text Available This data article contains data related to the research article entitled “Fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effect in diabetic KKAy mice” in the Toxicology and Applied Pharmacology [1]. Fumosorinone (FU is a new inhibitor of protein phosphatase 1B inhibitor, which was isolated from insect pathogenic fungi Isaria fumosorosea. FU was found to inhibit PTP1B activity in our previous study [2]. PTP1B is the physiological antagonist of the insulin signalling pathway. Inhibition of PTP 1B may increase insulin sensitivity [3]. PTP1B has been considered promising as an insulin-sensitive drug target for the prevention and the treatment of insulin-based diseases [4]. We determined the effect of FU on the glucose consumption of IR HepG2 cells. FU caused significant enhancement in glucose consumption by insulin-resistant HepG2 cells compared with control cells.

  3. Magnolia officinalis Extract Contains Potent Inhibitors against PTP1B and Attenuates Hyperglycemia in db/db Mice

    Directory of Open Access Journals (Sweden)

    Jing Sun

    2015-01-01

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B is an established therapeutic target for type 2 diabetes mellitus (T2DM and obesity. The aim of this study was to investigate the inhibitory activity of Magnolia officinalis extract (ME on PTP1B and its anti-T2DM effects. Inhibition assays and inhibition kinetics of ME were performed in vitro. 3T3-L1 adipocytes and C2C12 myotubes were stimulated with ME to explore its bioavailability in cell level. The in vivo studies were performed on db/db mice to probe its anti-T2DM effects. In the present study, ME inhibited PTP1B in a reversible competitive manner and displayed good selectivity against PTPs in vitro. Furthermore, ME enhanced tyrosine phosphorylation levels of cellular proteins, especially the insulin-induced tyrosine phosphorylations of insulin receptor β-subunit (IRβ and ERK1/2 in a dose-dependent manner in stimulated 3T3-L1 adipocytes and C2C12 myotubes. Meanwhile, ME enhanced insulin-stimulated GLUT4 translocation. More importantly, there was a significant decrease in fasting plasma glucose level of db/db diabetic mice treated orally with 0.5 g/kg ME for 4 weeks. These findings indicated that improvement of insulin sensitivity and hypoglycemic effects of ME may be attributed to the inhibition of PTP1B. Thereby, we pioneered the inhibitory potential of ME targeted on PTP1B as anti-T2DM drug discovery.

  4. Fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effect in diabetic KKAy mice

    International Nuclear Information System (INIS)

    Liu, Zhi-Qin; Liu, Ting; Chen, Chuan; Li, Ming-Yan; Wang, Zi-Yu; Chen, Ruo-song; Wei, Gui-xiang; Wang, Xiao-yi; Luo, Du-Qiang

    2015-01-01

    Insulin resistance is a characteristic feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of the insulin signaling pathways, and its increased activity and expression are implicated in the pathogenesis of insulin resistance. Therefore, the inhibition of PTP1B is anticipated to become a potential therapeutic strategy to treat T2DM. Fumosorinone (FU), a new natural product isolated from insect fungi Isaria fumosorosea, was found to inhibit PTP1B activity in our previous study. Herein, the effects of FU on insulin resistance and mechanism in vitro and in vivo were investigated. FU increased the insulin-provoked glucose uptake in insulin-resistant HepG2 cells, and also reduced blood glucose and lipid levels of type 2 diabetic KKAy mice. FU decreased the expression of PTP1B both in insulin-resistant HepG2 cells and in liver tissues of diabetic KKAy mice. Furthermore, FU increased the phosphorylation of IRβ, IRS-2, Akt, GSK3β and Erk1/2 in insulin-resistant HepG2 cells, as well as the phosphorylation of IRβ, IRS-2, Akt in liver tissues of diabetic KKAy mice. These results showed that FU increased glucose uptake and improved insulin resistance by down-regulating the expression of PTP1B and activating the insulin signaling pathway, suggesting that it may possess antidiabetic properties. - Highlights: • Fumosorinone is a new PTP1B inhibitor isolated from insect pathogenic fungi. • Fumosorinone attenuated the insulin resistance both in vitro and in vivo. • Fumosorinone decreased the expression of PTP1B both in vitro and in vivo. • Fumosorinone activated the insulin signaling pathway both in vitro and in vivo

  5. Fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effect in diabetic KKAy mice

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhi-Qin [College of Life Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002 (China); College of Pharmaceutical Sciences, key laboratory of pharmaceutical quality control of Hebei province, Hebei University, Baoding 071002 (China); Liu, Ting; Chen, Chuan [College of Life Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002 (China); Li, Ming-Yan; Wang, Zi-Yu; Chen, Ruo-song; Wei, Gui-xiang; Wang, Xiao-yi [College of Pharmaceutical Sciences, key laboratory of pharmaceutical quality control of Hebei province, Hebei University, Baoding 071002 (China); Luo, Du-Qiang, E-mail: duqiangluo999@126.com [College of Life Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002 (China)

    2015-05-15

    Insulin resistance is a characteristic feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of the insulin signaling pathways, and its increased activity and expression are implicated in the pathogenesis of insulin resistance. Therefore, the inhibition of PTP1B is anticipated to become a potential therapeutic strategy to treat T2DM. Fumosorinone (FU), a new natural product isolated from insect fungi Isaria fumosorosea, was found to inhibit PTP1B activity in our previous study. Herein, the effects of FU on insulin resistance and mechanism in vitro and in vivo were investigated. FU increased the insulin-provoked glucose uptake in insulin-resistant HepG2 cells, and also reduced blood glucose and lipid levels of type 2 diabetic KKAy mice. FU decreased the expression of PTP1B both in insulin-resistant HepG2 cells and in liver tissues of diabetic KKAy mice. Furthermore, FU increased the phosphorylation of IRβ, IRS-2, Akt, GSK3β and Erk1/2 in insulin-resistant HepG2 cells, as well as the phosphorylation of IRβ, IRS-2, Akt in liver tissues of diabetic KKAy mice. These results showed that FU increased glucose uptake and improved insulin resistance by down-regulating the expression of PTP1B and activating the insulin signaling pathway, suggesting that it may possess antidiabetic properties. - Highlights: • Fumosorinone is a new PTP1B inhibitor isolated from insect pathogenic fungi. • Fumosorinone attenuated the insulin resistance both in vitro and in vivo. • Fumosorinone decreased the expression of PTP1B both in vitro and in vivo. • Fumosorinone activated the insulin signaling pathway both in vitro and in vivo.

  6. Cardiovascular effects of sodium glucose cotransporter 2 inhibitors

    Directory of Open Access Journals (Sweden)

    Santos Cavaiola T

    2018-04-01

    Full Text Available Tricia Santos Cavaiola, Jeremy Pettus Division of Endocrinology and Metabolism, University of California San Diego, San Diego, CA, USA Abstract: As the first cardiovascular (CV outcome trial of a glucose-lowering agent to demonstrate a reduction in the risk of CV events in patients with type 2 diabetes mellitus (T2DM, the EMPAgliflozin Removal of Excess Glucose: Cardiovascular OUTCOME Event Trial in Type 2 Diabetes Mellitus Patients (EMPA-REG OUTCOME® trial, which investigated the sodium glucose cotransporter 2 (SGLT2 inhibitor empagliflozin, has generated great interest among health care professionals. CV outcomes data for another SGLT2 inhibitor, canagliflozin, have been published recently in the CANagliflozin CardioVascular Assessment Study (CANVAS Program, as have CV data from the retrospective real-world study Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors (CVD-REAL, which compared SGLT2 inhibitors with other classes of glucose-lowering drugs. This review discusses the results of these three studies and, with a focus on EMPA-REG OUTCOME, examines the possible mechanisms by which SGLT2 inhibitors may reduce CV risk in patients with T2DM. Keywords: canagliflozin, cardiovascular outcomes, dapagliflozin, empagliflozin, mechanisms, sodium glucose cotransporter 2 inhibitors

  7. Substituted sodium phenylanthranylates as inhibitors of corrosion in chloride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Yu.I.; Fialkov, Yu.A.; Popova, L.I.; Ehndel' man, E.S.; Kuznetsova, I.G. (AN SSSR, Moscow. Inst. Fizicheskoj Khimii)

    The efficiency of corrosion protection of armco iron, zinc (Ts-O) aluminium (AB 000) and its alloys (.D16 and AMG6) with sodium phenylanthranylate derivatives in chloride buffer solutions (pH 7.4-8.08) are investigated. It has been ascertained that the introduction of sodium phenylanthranylate into phenyl radical in m- and p-position relative to the amino group of electron-seeking substitutes improves protective properties of an inhibitor. The inhibiting effect of phenylanthranylates and its dependence on electron structure enchances in zinc-aluminium-iron series and decreases in case of transition from pure aluminium to its alloys.

  8. Substituted sodium phenylanthranylates as inhibitors of corrosion in chloride solutions

    International Nuclear Information System (INIS)

    Kuznetsov, Yu.I.; Fialkov, Yu.A.; Popova, L.I.; Ehndel'man, E.S.; Kuznetsova, I.G.

    1982-01-01

    The efficiency of corrosion protoction of armco iron, zinc (Ts-O) aluminium (AB 000) and its alloys (.D16 and AMG6) with sodium phenylanthranylate derivatives in clloride buffer solutions (pH 7.4-8.08) are investigated. It has been ascertained that the introduction of sodium phenylantiranylate into phenyl radical in m- and p-position relative to the amino group of electron-seeking substitutes improves protective properties of an inhibitor. The inhibiting effect of phenylanthranylates and its dependence on electron structure enchances in zinc-aluminium-iron series and decreases in case of transition from pure aluminium to its alloys

  9. Cardiovascular effects of sodium glucose cotransporter 2 inhibitors

    Science.gov (United States)

    Cavaiola, Tricia Santos; Pettus, Jeremy

    2018-01-01

    As the first cardiovascular (CV) outcome trial of a glucose-lowering agent to demonstrate a reduction in the risk of CV events in patients with type 2 diabetes mellitus (T2DM), the EMPAgliflozin Removal of Excess Glucose: Cardiovascular OUTCOME Event Trial in Type 2 Diabetes Mellitus Patients (EMPA-REG OUTCOME®) trial, which investigated the sodium glucose cotransporter 2 (SGLT2) inhibitor empagliflozin, has generated great interest among health care professionals. CV outcomes data for another SGLT2 inhibitor, canagliflozin, have been published recently in the CANagliflozin CardioVascular Assessment Study (CANVAS) Program, as have CV data from the retrospective real-world study Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors (CVD-REAL), which compared SGLT2 inhibitors with other classes of glucose-lowering drugs. This review discusses the results of these three studies and, with a focus on EMPA-REG OUTCOME, examines the possible mechanisms by which SGLT2 inhibitors may reduce CV risk in patients with T2DM. PMID:29695924

  10. Synthesis and biological evaluation of some N-(3-(1H-tetrazol-5-yl) phenyl)acetamide derivatives as novel non-carboxylic PTP1B inhibitors designed through bioisosteric modulation.

    Science.gov (United States)

    Maheshwari, Neelesh; Karthikeyan, Chandrabose; Bhadada, Shraddha V; Sahi, Chandan; Verma, Amit K; Hari Narayana Moorthy, N S; Trivedi, Piyush

    2018-06-08

    Described herein is the synthesis and biological evaluation of a series of non-carboxylic inhibitors of Protein Tyrosine Phosphatase 1B designed using bioisosteric replacement strategy. Six N-(3-(1H-tetrazol-5-yl)phenyl)acetamide derivatives designed employing the aforementioned strategy were synthesized and screened for PTP1B inhibitory activity. Among the synthesized compounds, compound NM-03 exhibited the most potent inhibitory activity with IC 50 value of 4.48 µM. Docking studies with NM-03 revealed the key interactions with desired amino acids in the binding site of PTP1B. Furthermore, compound NM-03 also elicited good in vivo activity. Taken together, the results of this study establish N-(3-(1H-tetrazole-5-yl)phenyl)-2-(benzo[d]oxazol-2-ylthio)acetamide (NM-03) as a valuable lead molecule with great potential for PTP1B inhibitor development targeting diabetes. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Anxious moments for the protein tyrosine phosphatase PTP1B

    OpenAIRE

    Krishnan, Navasona; Tonks, Nicholas K.

    2015-01-01

    Chronic stress can lead to the development of anxiety and mood disorders. Thus, novel therapies for preventing adverse effects of stress are vitally important. Recently, the protein tyrosine phosphatase PTP1B was identified as a novel regulator of stress-induced anxiety. This opens up exciting opportunities to exploit PTP1B inhibitors as anxiolytics.

  12. A novel PTP1B inhibitor extracted from Ganoderma lucidum ameliorates insulin resistance by regulating IRS1-GLUT4 cascades in the insulin signaling pathway.

    Science.gov (United States)

    Yang, Zhou; Wu, Fan; He, Yanming; Zhang, Qiang; Zhang, Yuan; Zhou, Guangrong; Yang, Hongjie; Zhou, Ping

    2018-01-24

    Insulin resistance caused by the overexpression of protein tyrosine phosphatase 1 B (PTP1B) as well as the dephosphorylation of its target is one of the main causes of type 2 diabetes (T2D). A newly discovered proteoglycan, Fudan-Yueyang Ganoderma lucidum (FYGL) extracted from Ganoderma lucidum, was first reported to be capable of competitively inhibiting PTP1B activity in vitro in our previous work. In the present study, we sought to reveal the mechanism of PTP1B inhibition by FYGL at the animal and cellular levels. We found that FYGL can decrease blood glucose, reduce body weight and ameliorate insulin resistance in ob/ob mice. Decrease of PTP1B expression and increase of the phosphorylation of PTP1B targets in the insulin signaling pathway of skeletal muscles were observed. In order to clearly reveal the underlying mechanism of the hypoglycemic effect caused by FYGL, we further investigated the effects of FYGL on the PTP1B-involved insulin signaling pathway in rat myoblast L6 cells. We demonstrated that FYGL had excellent cell permeability by using a confocal laser scanning microscope and a flow cytometer. We found that FYGL had a positive effect on insulin-stimulated glucose uptake by using the 2-deoxyglucose (2-DG) method. FYGL could inhibit PTP1B expression at the mRNA level, phosphorylating insulin receptor substrate-1 (IRS1), as well as activating phosphatidylinositol-3 kinase (PI3K) and protein kinase B (Akt). Finally, FYGL increased the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and consequently up-regulated the expression of glucose transporter type 4 (GLUT4), promoting GLUT4 transportation to the plasma membrane in PTP1B-transfected L6 cells. Our study provides theoretical evidence for FYGL to be potentially used in T2D management.

  13. BPN, a marine-derived PTP1B inhibitor, activates insulin signaling and improves insulin resistance in C2C12 myotubes.

    Science.gov (United States)

    Xu, Qi; Luo, Jiao; Wu, Ning; Zhang, Renshuai; Shi, Dayong

    2018-01-01

    Insulin resistance is a key feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. Protein tyrosine phosphatase 1B (PTP1B) is a major negative regulator of insulin signaling cascade and has attracted intensive investigation in recent T2DM therapy study. BPN, a marine-derived bromophenol compound, was isolated from the red alga Rhodomela confervoides. This study investigated the effects of BPN on the insulin signaling pathway in insulin-resistant C2C12 myotubes by inhibiting PTP1B. Molecular docking study and analysis of small- molecule interaction with PTP1B all showed BPN inhibited PTP1B activity via binding to the catalytic site through hydrogen bonds. We then found that BPN permeated into C2C12 myotubes, on the one hand, activated insulin signaling in an insulin-independent manner in C2C12 cells; on the other hand, ameliorated palmitate-induced insulin resistance through augmenting insulin sensitivity. Moreover, our studies also showed that PTP1B inhibition by BPN increased glucose uptake in normal and insulin-resistant C2C12 myotubes through glucose transporter 4 (GLUT4) translocation. Taken together, BPN activates insulin signaling and alleviates insulin resistance and represents a potential candidate for further development as an antidiabetic agent. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Inhibition of PTP1B disrupts cell?cell adhesion and induces anoikis in breast epithelial cells

    OpenAIRE

    Hilmarsdottir, Bylgja; Briem, Eirikur; Halldorsson, Skarphedinn; Kricker, Jennifer; Ingthorsson, S?var; Gustafsdottir, Sigrun; M?landsmo, Gunhild M; Magnusson, Magnus K; Gudjonsson, Thorarinn

    2017-01-01

    Protein tyrosine phosphatase 1B (PTP1B) is a well-known inhibitor of insulin signaling pathways and inhibitors against PTP1B are being developed as promising drug candidates for treatment of obesity. PTP1B has also been linked to breast cancer both as a tumor suppressor and as an oncogene. Furthermore, PTP1B has been shown to be a regulator of cell adhesion and migration in normal and cancer cells. In this study, we analyzed the PTP1B expression in normal breast tissue, primary breast cells a...

  15. Punicalagin, a PTP1B inhibitor, induces M2c phenotype polarization via up-regulation of HO-1 in murine macrophages.

    Science.gov (United States)

    Xu, Xiaolong; Guo, Yuhong; Zhao, Jingxia; He, Shasha; Wang, Yan; Lin, Yan; Wang, Ning; Liu, Qingquan

    2017-09-01

    Current data have shown that punicalagin (PUN), an ellagitannin isolated from pomegranate, possesses anti-inflammatory and anti-oxidant properties; however, its direct targets have not yet been reported. This is the first report that PTP1B serves as a direct target of PUN, with IC 50 value of 1.04μM. Results from NPOI further showed that the K on and K off of PUN-PTP1B complex were 3.38e2M -1 s -1 and 4.13e-3s -1 , respectively. The active site Arg24 of PTP1B was identified as a key binding site of PUN by computation simulation and point mutation. Moreover, inhibition of PTP1B by PUN promoted an M2c-like macrophage polarization and enhanced anti-inflammatory cytokines expression, including IL-10 and M-CSF. Based on gene expression profile, we elucidated that PUN treatment significantly up-regulated 275 genes and down-regulated 1059 genes. M1-like macrophage marker genes, such as Tlr4, Irf1/2, Hmgb1, and Stat1 were down-regulated, while M2 marker genes, including Tmem171, Gpr35, Csf1, Il1rn, Cebpb, Fos, Vegfα, Slc11a1, and Bhlhe40 were up-regulated in PUN-treated macrophages. Hmox-1, a gene encoding HO-1 protein, was preferentially expressed with 16-fold change. Inhibition of HO-1 obviously restored PUN-induced M2 polarization and IL-10 secretion. In addition, phosphorylation of both Akt and STAT3 contributed to PUN-induced HO-1 expression. This study provided new insights into the mechanisms of PUN-mediated anti-inflammatory and anti-oxidant activities and provided new therapeutic strategies for inflammatory diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Downregulation of PTP1B and TC-PTP phosphatases potentiate dendritic cell-based immunotherapy through IL-12/IFNγ signaling.

    Science.gov (United States)

    Penafuerte, Claudia; Feldhammer, Matthew; Mills, John R; Vinette, Valerie; Pike, Kelly A; Hall, Anita; Migon, Eva; Karsenty, Gerard; Pelletier, Jerry; Zogopoulos, George; Tremblay, Michel L

    2017-01-01

    PTP1B and TC-PTP are highly related protein-tyrosine phosphatases (PTPs) that regulate the JAK/STAT signaling cascade essential for cytokine-receptor activation in immune cells. Here, we describe a novel immunotherapy approach whereby monocyte-derived dendritic cell (moDC) function is enhanced by modulating the enzymatic activities of PTP1B and TC-PTP. To downregulate or delete the activity/expression of these PTPs, we generated mice with PTP-specific deletions in the dendritic cell compartment or used PTP1B and TC-PTP specific inhibitor. While total ablation of PTP1B or TC-PTP expression leads to tolerogenic DCs via STAT3 hyperactivation, downregulation of either phosphatase remarkably shifts the balance toward an immunogenic DC phenotype due to hyperactivation of STAT4, STAT1 and Src kinase. The resulting increase in IL-12 and IFNγ production subsequently amplifies the IL-12/STAT4/IFNγ/STAT1/IL-12 positive autocrine loop and enhances the therapeutic potential of mature moDCs in tumor-bearing mice. Furthermore, pharmacological inhibition of both PTPs improves the maturation of defective moDCs derived from pancreatic cancer (PaC) patients. Our study provides a new advance in the use of DC-based cancer immunotherapy that is complementary to current cancer therapeutics.

  17. Harnessing insulin- and leptin-induced oxidation of PTP1B for therapeutic development.

    Science.gov (United States)

    Krishnan, Navasona; Bonham, Christopher A; Rus, Ioana A; Shrestha, Om Kumar; Gauss, Carla M; Haque, Aftabul; Tocilj, Ante; Joshua-Tor, Leemor; Tonks, Nicholas K

    2018-01-18

    The protein tyrosine phosphatase PTP1B is a major regulator of glucose homeostasis and energy metabolism, and a validated target for therapeutic intervention in diabetes and obesity. Nevertheless, it is a challenging target for inhibitor development. Previously, we generated a recombinant antibody (scFv45) that recognizes selectively the oxidized, inactive conformation of PTP1B. Here, we provide a molecular basis for its interaction with reversibly oxidized PTP1B. Furthermore, we have identified a small molecule inhibitor that mimics the effects of scFv45. Our data provide proof-of-concept that stabilization of PTP1B in an inactive, oxidized conformation by small molecules can promote insulin and leptin signaling. This work illustrates a novel paradigm for inhibiting the signaling function of PTP1B that may be exploited for therapeutic intervention in diabetes and obesity.

  18. Sodium Glucose Cotransporter 2 Inhibitors in the Treatment of Diabetes Mellitus : Cardiovascular and Kidney Effects, Potential Mechanisms, and Clinical Applications

    NARCIS (Netherlands)

    Heerspink, Hiddo J. L.; Perkins, Bruce A.; Fitchett, David H.; Husain, Mansoor; Cherney, David Z. I.

    2016-01-01

    Sodium-glucose cotransporter-2 (SGLT2) inhibitors, including empagliflozin, dapagliflozin, and canagliflozin, are now widely approved antihyperglycemic therapies. Because of their unique glycosuric mechanism, SGLT2 inhibitors also reduce weight. Perhaps more important are the osmotic diuretic and

  19. Natriuretic Hormones, Endogenous Ouabain, and Related Sodium Transport Inhibitors

    Directory of Open Access Journals (Sweden)

    John eHamlyn

    2014-12-01

    Full Text Available The work of deWardener and colleagues stimulated longstanding interest in natriuretic hormones (NH. In addition to the atrial peptides (APs, the circulation contains unidentified physiologically-relevant NHs. One NH is controlled by the central nervous system (CNS and likely secreted by the pituitary. Its circulating activity is modulated by salt intake and the prevailing sodium concentration of the blood and intracerebroventricular fluid, and contributes to postprandial and dehydration natriuresis. The other NH, mobilized by atrial stretch, promotes natriuresis by increasing the production of intrarenal dopamine and/or nitric oxide. Both NHs have short (<35 minutes circulating half lives, depress renotubular sodium transport, and neither requires the renal nerves. The search for NHs led to endogenous cardiotonic steroids (CTS including ouabain-, digoxin-, and bufadienolide-like materials. These CTS, given acutely in high nanomole to micromole amounts into the general or renal circulations, inhibit sodium pumps and are natriuretic. Among these CTS, only bufalin is cleared sufficiently rapidly to qualify for an NH-like role. Ouabain-like CTS are cleared slowly, and when given chronically in low daily nanomole amounts, promote sodium retention, augment arterial myogenic tone, reduce renal blood flow and glomerular filtration, suppress nitric oxide in the renal vasa recta, and increase sympathetic nerve activity and blood pressure. Moreover, lowering total body sodium raises circulating endogenous ouabain. Thus, ouabain-like CTS have physiological actions that, like aldosterone, support renal sodium retention and blood pressure. In conclusion, the mammalian circulation contains two non-AP NHs. Identification of the CNS NH should be a priority.

  20. Flavonolignans As a Novel Class of Sodium Pump Inhibitors

    Czech Academy of Sciences Publication Activity Database

    Kubala, M.; Čechová, P.; Geletičová, J.; Biler, M.; Štenclová, T.; Trouillas, P.; Biedermann, David

    2016-01-01

    Roč. 7, Mar 30 (2016), s. 115 ISSN 1664-042X R&D Projects: GA ČR(CZ) GA15-03037S Institutional support: RVO:61388971 Keywords : sodium pump * Na+/K+-ATPase * flavonolignans Subject RIV: CE - Biochemistry Impact factor: 4.134, year: 2016

  1. Reversal of sodium pump inhibitor induced vascular smooth muscle contraction with digibind. Stoichiometry and its implications.

    Science.gov (United States)

    Krep, H H; Graves, S W; Price, D A; Lazarus, M; Ensign, A; Soszynski, P A; Hollenberg, N K

    1996-01-01

    The possibility that a circulating sodium pump inhibitor contributes to the pathogenesis of volume-dependent hypertension via an action on vascular smooth muscle (VSM) is supported by multiple lines of investigation, but remains controversial. We had two goals in this study. The first was to compare the pattern of contractile response of rabbit aorta induced by two candidates, ouabain and a labile sodium pump inhibitor that we have identified in the peritoneal dialysate of volume-expanded hypertensive patients with chronic renal failure. Our second goal was to examine the ability of Digibind, a Fab fragment of antisera directed against digoxin, to reverse VSM contraction induced by both agents. Ouabain induced a concentration-dependent contraction, which was delayed in onset, was gradual, and reached a stable plateau after many hours. The labile sodium pump inhibitor induced a qualitatively similar series of responses. Digibind rapidly reversed the contractile responses to both sodium pump inhibitors, with a rate of relaxation that matched that induced by physical removal of the pump inhibitor from the bath. For ouabain, the Digibind:ouabain stoichiometry was highly predictable. When Digibind was present in a molar concentration equivalent to that of ouabain, or less, it had no effect. When the Digibind concentration was twice that of ouabain, complete relaxation occurred. Although the concentration:VSM response relationship for ouabain was steep, the concentration:effect interaction with Digibind was even more steep. The molar concentration of Digibind required to reverse the effects of the labile endogenous inhibitor from peritoneal dialysate was consistently lower than that for ouabain, which is compatible with either greater potency of the labile factor in VSM or greater affinity for Digibind. These findings are compatible with a role for one or more endogenous sodium pump inhibitors as the determinant of vascular smooth muscle tone in the volume

  2. Antidiabetic effect of polyphenolic extracts from selected edible plants as α-amylase, α -glucosidase and PTP1B inhibitors, and β pancreatic cells cytoprotective agents - a comparative study.

    Science.gov (United States)

    Zakłos-Szyda, Małgorzata; Majewska, Iwona; Redzynia, Małgorzata; Koziołkiewicz, Maria

    2015-01-01

    Type 2 diabetes mellitus, which is usually a result of wrong dietary habits and reduced physical activity, represents 85-95% of all diabetes cases and among other diet related diseases is the major cause of deaths. The disease is characterized mainly by hyperglycemia, which is associated with attenuated insulin sensitivity or beta cells dysfunction caused by multiple stimuli, including oxidative stress and loss of insulin secretion. Since polyphenols possess multiple biological activities and constitute an important part of the human diet, they have recently emerged as critical phytochemicals in type 2 diabetes prevention and treatment. Their hypoglycemic action results from their antioxidative effect involved in recovering of altered antioxidant defenses and restoring insulin secreting machinery in pancreatic cells, or abilities to inhibit the activity of carbohydrates hydrolyzing enzymes (α-amylase and α-glucosidase) or protein tyrosine phosphatase 1B (PTP1B), which is known as the major negative regulator in insulin signaling. This study investigates the total phenolic content (Folin-Ciocalteu and HPLC methods) and antioxidant capacity (ABTS) of 20 polyphenolic extracts obtained from selected edible plants, which were screened in terms of α -amylase, α - glucosidase and protein tyrosine phosphatase 1B inhibitors or protective agents against oxidative stress induced by tertbutylhydroperoxide (t-BOOH) in βTC3 pancreatic beta cells used as a model target for antidiabetes drugs. The study concludes that Chaenomeles japonica, Oenothera paradoxa and Viburnum opulus may be promising natural sources for active compounds with antidiabetic properties.

  3. Sodium phthalamates as corrosion inhibitors for carbon steel in aqueous hydrochloric acid solution

    International Nuclear Information System (INIS)

    Flores, Eugenio A.; Olivares, Octavio; Likhanova, Natalya V.; Dominguez-Aguilar, Marco A.; Nava, Noel; Guzman-Lucero, Diego; Corrales, Monica

    2011-01-01

    Highlights: → N-Alkyl-sodium phthalamates as corrosion inhibitors for industry in acidic medium. → Compounds behaved as mixed type inhibitors and followed Langmuir adsorption isotherm. → Efficiencies were proportional to aliphatic chain length and inhibitor concentration. → Iron complexes and chelates with phthalamates contributed to carbon steel protection. - Abstract: Three compounds of N-alkyl-sodium phthalamates were synthesized and tested as corrosion inhibitors for carbon steel in 0.5 M aqueous hydrochloric acid. Tests showed that inhibitor efficiencies were related to aliphatic chain length and dependent on concentration. N-1-n-tetradecyl-sodium phthalamate displayed moderate efficiency against uniform corrosion, 42-86% at 25 deg. C and 25-60% at 40 o C. Tests indicated that compounds behave as mixed type inhibitors where molecular adsorption on steel followed Langmuir isotherm, whereas thermodynamic suggested that a physisorption process occurred. XPS analysis confirmed film formation on surface, where Fe +2 complexes and Fe +2 chelates with phthalamates prevented steel from further corrosion.

  4. PTP1B is a negative regulator of interleukin 4–induced STAT6 signaling

    Science.gov (United States)

    Lu, Xiaoqing; Malumbres, Raquel; Shields, Benjamin; Jiang, Xiaoyu; Sarosiek, Kristopher A.; Natkunam, Yasodha

    2008-01-01

    Protein tyrosine phosphatase 1B (PTP1B) is a ubiquitously expressed enzyme shown to negatively regulate multiple tyrosine phosphorylation-dependent signaling pathways. PTP1B can modulate cytokine signaling pathways by dephosphorylating JAK2, TYK2, and STAT5a/b. Herein, we report that phosphorylated STAT6 may serve as a cytoplasmic substrate for PTP1B. Overexpression of PTP1B led to STAT6 dephosphorylation and the suppression of STAT6 transcriptional activity, whereas PTP1B knockdown or deficiency augmented IL-4–induced STAT6 signaling. Pretreatment of these cells with the PTK inhibitor staurosporine led to sustained STAT6 phosphorylation consistent with STAT6 serving as a direct substrate of PTP1B. Furthermore, PTP1B-D181A “substrate-trapping” mutants formed stable complexes with phosphorylated STAT6 in a cellular context and endogenous PTP1B and STAT6 interacted in an interleukin 4 (IL-4)–inducible manner. We delineate a new negative regulatory loop of IL-4–JAK-STAT6 signaling. We demonstrate that IL-4 induces PTP1B mRNA expression in a phosphatidylinositol 3-kinase–dependent manner and enhances PTP1B protein stability to suppress IL-4–induced STAT6 signaling. Finally, we show that PTP1B expression may be preferentially elevated in activated B cell–like diffuse large B-cell lymphomas. These observations identify a novel regulatory loop for the regulation of IL-4–induced STAT6 signaling that may have important implications in both neoplastic and inflammatory processes. PMID:18716132

  5. [Sodium Glucose Co-transporter Type 2 (SGLT2) Inhibitors in CKD].

    Science.gov (United States)

    Insalaco, Monica; Zanoli, Luca; Rastelli, Stefania; Lentini, Paolo; Rapisarda, Francesco; Fatuzzo, Pasquale; Castellino, Pietro; Granata, Antonio

    2015-01-01

    Among the new drugs used for the treatment of Diabetes Mellitus type 2, sodium-glucose cotransporter 2 (SGLT2) inhibitors represent a promising therapeutic option. Since their ability to lower glucose is proportional to GFR, their effect is reduced in patients with chronic kidney disease (CKD). The antidiabetic mechanism of these drugs is insulin-independent and, therefore, complimentary to that of others antihyperglicaemic agents. Moreover, SGLT2 inhibitors are able to reduce glomerular hyperfiltration, systemic and intraglomerular pressure and uric acid levels, with consequent beneficial effects on the progression of kidney disease in non diabetic patients as well. Only few studies have been performed to evaluate the effects of SGLT2 inhibitors in patients with CKD. Therefore, safety and efficacy of SGLT2 inhibitors should be better clarified in the setting of CKD. In this paper, we will review the use of SGLT2 inhibitors in diabetic patients, including those with CKD.

  6. Protein tyrosine phosphatase, PTP1B, expression and activity in rat corneal endothelial cells

    Science.gov (United States)

    Harris, Deshea L.

    2007-01-01

    Purpose The current studies were conducted to determine whether the protein tyrosine phosphatase, PTP1B, plays a role in regulating epidermal growth factor receptor (EGFR) Tyr992 phosphorylation and cell cycle entry in rat corneal endothelial cells. Methods Corneas were obtained from male Sprague-Dawley rats. PTP1B mRNA and protein expression were compared in confluent and subconfluent cells by RT-PCR and western blots. Immunocytochemistry was used to determine the subcellular localization of both PTP1B and EGFR following epidermal growth factor (EGF) stimulation. Western blots were used to analyze the time-dependent effect of EGF on phosphorylation of EGFR Tyr992 plus or minus CinnGEL 2Me, an inhibitor of PTP1B activity. The effect of PTP1B inhibition on cell cycle entry was determined by calculating the percent of Ki67-positive cells following EGF treatment. Results PTP1B mRNA expression was similar in confluent and subconfluent cells, but PTP1B protein was expressed at 3 fold higher levels in subconfluent cells. Positive staining for PTP1B was localized in vesicular structures below the plasma membrane. EGFR staining was located at cell-cell borders in untreated endothelium, but was mainly cytoplasmic by 15 min after EGF treatment. In control cultures, phosphorylation of EGFR Tyr992 peaked by 5 min following EGF stimulation and rapidly decreased to basal levels by 30 min. In cultures pretreated with CinnGEL 2Me, Tyr992 phosphorylation peaked 2 min following EGF addition and was consistently sustained at a higher level than controls until 60 min after treatment. By 18 h following EGF treatment, cultures pretreated with CinnGEL 2Me exhibited a 1.7 fold increase in the number of Ki67-positive cells compared with control cultures. Conclusions Comparison of PTP1B mRNA and protein levels indicates that PTP1B expression is regulated mainly at the protein level and is higher in subconfluent cells. PTP1B was located in vesicles below the plasma membrane. The fact that

  7. Modulation of the epithelial sodium channel (ENaC by bacterial metalloproteases and protease inhibitors.

    Directory of Open Access Journals (Sweden)

    Michael B Butterworth

    Full Text Available The serralysin family of metalloproteases is associated with the virulence of multiple gram-negative human pathogens, including Pseudomonas aeruginosa and Serratia marcescens. The serralysin proteases share highly conserved catalytic domains and show evolutionary similarity to the mammalian matrix metalloproteases. Our previous studies demonstrated that alkaline protease (AP from Pseudomonas aeruginosa is capable of activating the epithelial sodium channel (ENaC, leading to an increase in sodium absorption in airway epithelia. The serralysin proteases are often co-expressed with endogenous, intracellular or periplasmic inhibitors, which putatively protect the bacterium from unwanted or unregulated protease activities. To evaluate the potential use of these small protein inhibitors in regulating the serralysin induced activation of ENaC, proteases from Pseudomonas aeruginosa and Serratia marcescens were purified for characterization along with a high affinity inhibitor from Pseudomonas. Both proteases showed activity against in vitro substrates and could be blocked by near stoichiometric concentrations of the inhibitor. In addition, both proteases were capable of activating ENaC when added to the apical surfaces of multiple epithelial cells with similar slow activation kinetics. The high-affinity periplasmic inhibitor from Pseudomonas effectively blocked this activation. These data suggest that multiple metalloproteases are capable of activating ENaC. Further, the endogenous, periplasmic bacterial inhibitors may be useful for modulating the downstream effects of the serralysin virulence factors under physiological conditions.

  8. Inhibition of PTP1B disrupts cell-cell adhesion and induces anoikis in breast epithelial cells.

    Science.gov (United States)

    Hilmarsdottir, Bylgja; Briem, Eirikur; Halldorsson, Skarphedinn; Kricker, Jennifer; Ingthorsson, Sævar; Gustafsdottir, Sigrun; Mælandsmo, Gunhild M; Magnusson, Magnus K; Gudjonsson, Thorarinn

    2017-05-11

    Protein tyrosine phosphatase 1B (PTP1B) is a well-known inhibitor of insulin signaling pathways and inhibitors against PTP1B are being developed as promising drug candidates for treatment of obesity. PTP1B has also been linked to breast cancer both as a tumor suppressor and as an oncogene. Furthermore, PTP1B has been shown to be a regulator of cell adhesion and migration in normal and cancer cells. In this study, we analyzed the PTP1B expression in normal breast tissue, primary breast cells and the breast epithelial cell line D492. In normal breast tissue and primary breast cells, PTP1B is widely expressed in both epithelial and stromal cells, with highest expression in myoepithelial cells and fibroblasts. PTP1B is widely expressed in branching structures generated by D492 when cultured in 3D reconstituted basement membrane (3D rBM). Inhibition of PTP1B in D492 and another mammary epithelial cell line HMLE resulted in reduced cell proliferation and induction of anoikis. These changes were seen when cells were cultured both in monolayer and in 3D rBM. PTP1B inhibition affected cell attachment, expression of cell adhesion proteins and actin polymerization. Moreover, epithelial to mesenchymal transition (EMT) sensitized cells to PTP1B inhibition. A mesenchymal sublines of D492 and HMLE (D492M and HMLEmes) were more sensitive to PTP1B inhibition than D492 and HMLE. Reversion of D492M to an epithelial state using miR-200c-141 restored resistance to detachment induced by PTP1B inhibition. In conclusion, we have shown that PTP1B is widely expressed in the human breast gland with highest expression in myoepithelial cells and fibroblasts. Inhibition of PTP1B in D492 and HMLE affects cell-cell adhesion and induces anoikis-like effects. Finally, cells with an EMT phenotype are more sensitive to PTP1B inhibitors making PTP1B a potential candidate for further studies as a target for drug development in cancer involving the EMT phenotype.

  9. Inhibition of PTP1B disrupts cell–cell adhesion and induces anoikis in breast epithelial cells

    Science.gov (United States)

    Hilmarsdottir, Bylgja; Briem, Eirikur; Halldorsson, Skarphedinn; Kricker, Jennifer; Ingthorsson, Sævar; Gustafsdottir, Sigrun; Mælandsmo, Gunhild M; Magnusson, Magnus K; Gudjonsson, Thorarinn

    2017-01-01

    Protein tyrosine phosphatase 1B (PTP1B) is a well-known inhibitor of insulin signaling pathways and inhibitors against PTP1B are being developed as promising drug candidates for treatment of obesity. PTP1B has also been linked to breast cancer both as a tumor suppressor and as an oncogene. Furthermore, PTP1B has been shown to be a regulator of cell adhesion and migration in normal and cancer cells. In this study, we analyzed the PTP1B expression in normal breast tissue, primary breast cells and the breast epithelial cell line D492. In normal breast tissue and primary breast cells, PTP1B is widely expressed in both epithelial and stromal cells, with highest expression in myoepithelial cells and fibroblasts. PTP1B is widely expressed in branching structures generated by D492 when cultured in 3D reconstituted basement membrane (3D rBM). Inhibition of PTP1B in D492 and another mammary epithelial cell line HMLE resulted in reduced cell proliferation and induction of anoikis. These changes were seen when cells were cultured both in monolayer and in 3D rBM. PTP1B inhibition affected cell attachment, expression of cell adhesion proteins and actin polymerization. Moreover, epithelial to mesenchymal transition (EMT) sensitized cells to PTP1B inhibition. A mesenchymal sublines of D492 and HMLE (D492M and HMLEmes) were more sensitive to PTP1B inhibition than D492 and HMLE. Reversion of D492M to an epithelial state using miR-200c-141 restored resistance to detachment induced by PTP1B inhibition. In conclusion, we have shown that PTP1B is widely expressed in the human breast gland with highest expression in myoepithelial cells and fibroblasts. Inhibition of PTP1B in D492 and HMLE affects cell–cell adhesion and induces anoikis-like effects. Finally, cells with an EMT phenotype are more sensitive to PTP1B inhibitors making PTP1B a potential candidate for further studies as a target for drug development in cancer involving the EMT phenotype. PMID:28492548

  10. Flavonolignans as a Novel Class of Sodium Pump Inhibitors

    Directory of Open Access Journals (Sweden)

    Martin eKubala

    2016-03-01

    Full Text Available We examined the inhibitory effects of three flavonolignans and their dehydro- derivatives, taxifolin and quercetin on the activity of the Na+/K+-ATPase (NKA. The flavonolignans silychristin, dehydrosilychristin and dehydrosilydianin inhibited NKA with IC50 of 110 ± 40 μM, 38 ± 8 µM and 36 ± 14 µM, respectively. Using the methods of molecular modeling, we identified several possible binding sites for these species on NKA and proposed the possible mechanisms of inhibition. The binding to the extracellular- or cytoplasmic C-terminal sites can block the transport of cations through the plasma membrane, while the binding on the interface of cytoplasmic domains can inhibit the enzyme allosterically. Fluorescence spectroscopy experiments confirmed the interaction of these three species with the large cytoplasmic segment connecting transmembrane helices 4 and 5 (C45. The flavonolignans are distinct from the cardiac glycosides that are currently used in NKA treatment. Because their binding sites are different, the mechanism of inhibition is different as well as the range of active concentrations, one can expect that these new NKA inhibitors would exhibit also a different biomedical actions than cardiac glycosides.

  11. Discovery of aryl-tri-fluoroborates as potent sodium/iodide sym-porter (NIS) inhibitors

    International Nuclear Information System (INIS)

    Lecat-Guillet, N.; Ambroise, Y.

    2008-01-01

    The structure-based design of sodium/iodide sym-porter (NIS) inhibitors identified new active compounds. The organo-tri-fluoroborate shown was found to inhibit iodide uptake with an IC50 value of 0.4 μM on rat-derived thyroid cells. The biological activity is rationalized by the presence of the BF3 - ion as a minimal binding motif for substrate recognition at the iodide binding site. (authors)

  12. Discovery of aryl-tri-fluoroborates as potent sodium/iodide sym-porter (NIS) inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Lecat-Guillet, N.; Ambroise, Y. [CEA, DSV, Dept Bioorgan Chem and Isotop Labelling, Inst Biol and Technol, iBiTecS, F-91191 Gif Sur Yvette (France)

    2008-07-01

    The structure-based design of sodium/iodide sym-porter (NIS) inhibitors identified new active compounds. The organo-tri-fluoroborate shown was found to inhibit iodide uptake with an IC50 value of 0.4 {mu}M on rat-derived thyroid cells. The biological activity is rationalized by the presence of the BF3{sup -} ion as a minimal binding motif for substrate recognition at the iodide binding site. (authors)

  13. Sodium-Glucose linked transporter 2 (SGLT2) inhibitors--fighting diabetes from a new perspective.

    Science.gov (United States)

    Angelopoulos, Theodoros P; Doupis, John

    2014-06-01

    Sodium-Glucose linked transporter 2 (SGLT2) inhibitors are a new family of antidiabetic pharmaceutical agents whose action is based on the inhibition of the glucose reabsorption pathway, resulting in glucosuria and a consequent reduction of the blood glucose levels, in patients with type 2 diabetes mellitus. Apart from lowering both fasting and postprandial blood glucose levels, without causing hypoglycemia, SGLT2 inhibitors have also shown a reduction in body weight and the systolic blood pressure. This review paper explores the renal involvement in glucose homeostasis providing also the latest safety and efficacy data for the European Medicines Agency and U.S. Food and Drug Administration approved SGLT2 inhibitors, looking, finally, into the future of this novel antidiabetic category of pharmaceutical agents.

  14. Small-molecule inhibitors of sodium iodide sym-porter function

    International Nuclear Information System (INIS)

    Lecat-Guillet, N.; Merer, G.; Lopez, R.; Rousseau, B.; Ambroise, Y.; Pourcher, T.

    2008-01-01

    The Na + /l - sym-porter (NIS) mediates iodide uptake into thyroid follicular cells. Although NIS has been cloned and thoroughly studied at the molecular level, the biochemical processes involved in post-translational regulation of NIS are still unknown. The purpose of this study was to identify and characterize inhibitors of NIS function. These small organic molecules represent a starting point in the identification of pharmacological tools for the characterization of NIS trafficking and activation mechanisms. screening of a collection of 17020 drug-like compounds revealed new chemical inhibitors with potencies down to 40 nM. Fluorescence measurement of membrane potential indicates that these inhibitors do not act by disrupting the sodium gradient. They allow immediate and total iodide discharge from preloaded cells in accord with a specific modification of NIS activity, probably through distinct mechanisms. (authors)

  15. Small-molecule inhibitors of sodium iodide sym-porter function

    Energy Technology Data Exchange (ETDEWEB)

    Lecat-Guillet, N.; Merer, G.; Lopez, R.; Rousseau, B.; Ambroise, Y. [CEA, DSV, Dept Bioorgan Chem et Isotop Labelling, Inst Biol et Biotechnol iBiTecS, F-91191 Gif Sur Yvette (France); Pourcher, T. [Univ Nice Sophia Antipolis, Dept Biochem et Nucl Toxicol, F-06107 Nice (France)

    2008-07-01

    The Na{sup +}/l{sup -} sym-porter (NIS) mediates iodide uptake into thyroid follicular cells. Although NIS has been cloned and thoroughly studied at the molecular level, the biochemical processes involved in post-translational regulation of NIS are still unknown. The purpose of this study was to identify and characterize inhibitors of NIS function. These small organic molecules represent a starting point in the identification of pharmacological tools for the characterization of NIS trafficking and activation mechanisms. screening of a collection of 17020 drug-like compounds revealed new chemical inhibitors with potencies down to 40 nM. Fluorescence measurement of membrane potential indicates that these inhibitors do not act by disrupting the sodium gradient. They allow immediate and total iodide discharge from preloaded cells in accord with a specific modification of NIS activity, probably through distinct mechanisms. (authors)

  16. A specific pharmacophore model of sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors.

    Science.gov (United States)

    Tang, Chunlei; Zhu, Xiaoyun; Huang, Dandan; Zan, Xin; Yang, Baowei; Li, Ying; Du, Xiaoyong; Qian, Hai; Huang, Wenlong

    2012-06-01

    Sodium-dependent glucose co-transporter 2 (SGLT2) plays a pivotal role in maintaining glucose equilibrium in the human body, emerging as one of the most promising targets for the treatment of diabetes mellitus type 2. Pharmacophore models of SGLT2 inhibitors have been generated with a training set of 25 SGLT2 inhibitors using Discovery Studio V2.1. The best hypothesis (Hypo1(SGLT2)) contains one hydrogen bond donor, five excluded volumes, one ring aromatic and three hydrophobic features, and has a correlation coefficient of 0.955, cost difference of 68.76, RMSD of 0.85. This model was validated by test set, Fischer randomization test and decoy set methods. The specificity of Hypo1(SGLT2) was evaluated. The pharmacophore features of Hypo1(SGLT2) were different from the best pharmacophore model (Hypo1(SGLT1)) of SGLT1 inhibitors we developed. Moreover, Hypo1(SGLT2) could effectively distinguish selective inhibitors of SGLT2 from those of SGLT1. These results indicate that a highly predictive and specific pharmacophore model of SGLT2 inhibitors has been successfully obtained. Then Hypo1(SGLT2) was used as a 3D query to screen databases including NCI and Maybridge for identifying new inhibitors of SGLT2. The hit compounds were subsequently subjected to filtering by Lipinski's rule of five. And several compounds selected from the top ranked hits have been suggested for further experimental assay studies.

  17. Sodium-glucose cotransporter 2 inhibitors with insulin in type 2 diabetes: Clinical perspectives

    Directory of Open Access Journals (Sweden)

    Mathew John

    2016-01-01

    Full Text Available The treatment of type 2 diabetes is a challenging problem. Most subjects with type 2 diabetes have progression of beta cell failure necessitating the addition of multiple antidiabetic agents and eventually use of insulin. Intensification of insulin leads to weight gain and increased risk of hypoglycemia. Sodium-glucose cotransporter 2 (SGLT2 inhibitors are a class of antihyperglycemic agents which act by blocking the SGLT2 in the proximal tubule of the kidney. They have potential benefits in terms of weight loss and reduction of blood pressure in addition to improvements in glycemic control. Further, one of the SGLT2 inhibitors, empagliflozin has proven benefits in reducing adverse cardiovascular (CV outcomes in a CV outcome trial. Adding SGLT2 inhibitors to insulin in subjects with type 2 diabetes produced favorable effects on glycemic control without the weight gain and hypoglycemic risks associated with insulin therapy. The general risks of increased genital mycotic infections, urinary tract infections, volume, and osmosis-related adverse effects in these subjects were similar to the pooled data of individual SGLT2 inhibitors. There are subsets of subjects with type 2 diabetes who may have insulin deficiency, beta cell autoimmunity, or is prone to diabetic ketoacidosis. In these subjects, SGLT2 inhibitors should be used with caution to prevent the rare risks of ketoacidosis.

  18. Characterization and comparison of sodium-glucose cotransporter 2 inhibitors in pharmacokinetics, pharmacodynamics, and pharmacologic effects

    Directory of Open Access Journals (Sweden)

    Atsuo Tahara

    2016-03-01

    Full Text Available The sodium-glucose cotransporter (SGLT 2 offer a novel approach to treating type 2 diabetes by reducing hyperglycaemia via increased urinary glucose excretion. In the present study, the pharmacokinetic, pharmacodynamic, and pharmacologic properties of all six SGLT2 inhibitors commercially available in Japan were investigated and compared. Based on findings in normal and diabetic mice, the six drugs were classified into two categories, long-acting: ipragliflozin and dapagliflozin, and intermediate-acting: tofogliflozin, canagliflozin, empagliflozin, and luseogliflozin. Long-acting SGLT2 inhibitors exerted an antihyperglycemic effect with lower variability of blood glucose level via a long-lasting increase in urinary glucose excretion. In addition, ipragliflozin and luseogliflozin exhibited superiority over the others with respect to fast onset of pharmacological effect. Duration and onset of the pharmacologic effects seemed to be closely correlated with the pharmacokinetic properties of each SGLT2 inhibitor, particularly with respect to high distribution and long retention in the target organ, the kidney. While all six SGLT2 inhibitors were significantly effective in increasing urinary glucose excretion and reducing hyperglycemia, our findings suggest that variation in the quality of daily blood glucose control associated with duration and onset of pharmacologic effects of each SGLT2 inhibitor might cause slight differences in rates of improvement in type 2 diabetes.

  19. Sodium-glucose co-transporter type 2 inhibitors reduce evening home blood pressure in type 2 diabetes with nephropathy.

    Science.gov (United States)

    Takenaka, Tsuneo; Kishimoto, Miyako; Ohta, Mari; Tomonaga, Osamu; Suzuki, Hiromichi

    2017-05-01

    The effects of sodium-glucose co-transporter type 2 inhibitors on home blood pressure were examined in type 2 diabetes with nephropathy. The patients with diabetic nephropathy were screened from medical records in our hospitals. Among them, 52 patients who measured home blood pressure and started to take sodium-glucose co-transporter type 2 inhibitors were selected. Clinical parameters including estimated glomerular filtration rate, albuminuria and home blood pressure for 6 months were analysed. Sodium-glucose co-transporter type 2 inhibitors (luseogliflozin 5 mg/day or canagliflozin 100 mg/day) reduced body weight, HbA1c, albuminuria, estimated glomerular filtration rate and office blood pressure. Although sodium-glucose co-transporter type 2 inhibitors did not alter morning blood pressure, it reduced evening systolic blood pressure. Regression analyses revealed that decreases in evening blood pressure predicted decrements in albuminuria. The present data suggest that sodium-glucose co-transporter type 2 inhibitors suppress sodium overload during daytime to reduce evening blood pressure and albuminuria.

  20. Positioning of sodium-glucose cotransporter-2 inhibitors in national and international guidelines.

    Science.gov (United States)

    Morillas, Carlos

    2016-11-01

    Sodium-glucose cotransporter-2 inhibitors (SGLT2-i) selectively and reversibly inhibit sodium-glucose cotransporter-2 (SGLT2), promoting renal glucose excretion and reducing plasma glycaemia. By increasing renal glucose excretion, these drugs favour a negative energy balance, leading to weight loss. Their glucoselowering effect is independent of insulin. Although these drugs have only recently been developed, they have been included in all the main national and international guidelines since 2014. The present review summarises the most important recommendations on the use of SGLT2 in patients with DM2 contained in the most recently published guidelines and consensus statements. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  1. Sodium-glucose cotransporter 2 inhibitor use: A pharmaco-ergonomic qualification tool

    Directory of Open Access Journals (Sweden)

    Sanjay Kalra

    2017-01-01

    Full Text Available Pharmaco-ergonomics implies tailoring the drug therapy to an individual patient's requirement(s. The development of sodium-glucose cotransporter 2 inhibitor (SGLT2-i agents has impelled multiple clinical considerations, in the management of type-2 diabetes. This paper attempts to summarize the pharmaco-ergonomic considerations for these agents, in the form of an SGLT2-i qualification tool, based on a clinical score. This tool may serve as a simple and inexpensive practical guide, to optimize the risk-benefit considerations for SGLT2-i agents.

  2. Clinical potential of sodium-glucose cotransporter 2 inhibitors in the management of type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Kim Y

    2012-08-01

    Full Text Available Yoojin Kim, Ambika R BabuDivision of Endocrinology, John Stroger Jr Hospital of Cook County and Rush University, Chicago, IL, USABackground: The kidney plays an important role in glucose metabolism, and has been considered a target for therapeutic intervention. The sodium-glucose cotransporter type 2 (SGLT2 mediates most of the glucose reabsorption from the proximal renal tubule. Inhibition of SGLT2 leads to glucosuria and provides a unique mechanism to lower elevated blood glucose levels in diabetes. The purpose of this review is to explore the physiology of SGLT2 and discuss several SGLT2 inhibitors which have clinical data in patients with type 2 diabetes.Methods: We performed a PubMed search using the terms "SGLT2" and "SGLT2 inhibitor" through April 10, 2012. Published articles, press releases, and abstracts presented at national and international meetings were considered.Results: SGLT2 inhibitors correct a novel pathophysiological defect, have an insulin-independent action, are efficacious with glycosylated hemoglobin reduction ranging from 0.5% to 1.5%, promote weight loss, have a low incidence of hypoglycemia, complement the action of other antidiabetic agents, and can be used at any stage of diabetes. They are generally well tolerated. However, due to side effects, such as repeated urinary tract and genital infections, increased hematocrit, and decreased blood pressure, appropriate patient selection for drug initiation and close monitoring after initiation will be important. Results of ongoing clinical studies of the effect of SGLT2 inhibitors on diabetic complications and cardiovascular safety are crucial to determine the risk-benefit ratio. A recent decision by the Committee for Medicinal Products for Human Use of the European Medicines Agency has recommended approval of dapagliflozin for the treatment of type 2 diabetes as an adjunct to diet and exercise, in combination with other glucose-lowering medicinal products, including

  3. Sodium glucose co-transporter 2 (SGLT2) inhibitors: novel antidiabetic agents.

    Science.gov (United States)

    Washburn, William N

    2012-05-01

    Maintenance of glucose homeostasis in healthy individuals involves SGLT2 (sodium glucose co-transporter 2)-mediated recovery of glucose from the glomerular filtrate which otherwise would be excreted in urine. Clinical studies indicate that SGLT2 inhibitors provide an insulin-independent means to reduce the hyperglycemia that is the hallmark of type 2 diabetes mellitus (T2DM) with minimal risk of hypoglycemia. The pharmacophore common to the SGLT2 inhibitors currently in development is a diarylmethane C-glucoside which is discussed in this review. The focus is how this pharmacophore was further modified as inferred from the patents publishing from 2009 to 2011. The emphasis is on the strategy that each group employed to circumvent the constraints imposed by prior art and how the resulting SGLT2 potency and selectivity versus SGLT1 compared with that of the lead clinical compound dapagliflozin. SGLT2 inhibitors offer a new fundamentally different approach for treatment of diabetes. To date, the clinical results suggest that for non-renally impaired patients this class of inhibitors could be safely used at any stage of T2DM either alone or in combination with other marketed antidiabetic medications.

  4. Sodium glucose CoTransporter 2 (SGLT2) inhibitors: Current status and future perspective.

    Science.gov (United States)

    Madaan, Tushar; Akhtar, Mohd; Najmi, Abul Kalam

    2016-10-10

    Diabetes mellitus is a disease that affects millions of people worldwide and its prevalence is estimated to rise in the future. Billions of dollars are spent each year around the world in health expenditure related to diabetes. There are several anti-diabetic drugs in the market for the treatment of non-insulin dependent diabetes mellitus. In this article, we will be talking about a relatively new class of anti-diabetic drugs called sodium glucose co-transporter 2 (SGLT2) inhibitors. This class of drugs has a unique mechanism of action focusing on inhibition of glucose reabsorption that separates it from other classes. This article covers the mechanism of glucose reabsorption in the kidneys, the mechanism of action of SGLT2 inhibitors, several SGLT2 inhibitors currently available in the market as well as those in various phases of development, their individual pharmacokinetics as well as the discussion about the future role of SGLT2 inhibitors, not only for the treatment of diabetes, but also for various other diseases like obesity, hepatic steatosis, and cardiovascular disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Sodium glucose co-transporter 2 (SGLT2) inhibitors: new among antidiabetic drugs.

    Science.gov (United States)

    Opie, L H

    2014-08-01

    Type 2 diabetes is characterized by decreased insulin secretion and sensitivity. The available oral anti-diabetic drugs act on many different molecular sites. The most used of oral anti-diabetic agents is metformin that activates glucose transport vesicles to the cell surface. Others are: the sulphonylureas; agents acting on the incretin system; GLP-1 agonists; dipetidylpeptidase-4 inhibitors; meglinitide analogues; and the thiazolidinediones. Despite these many drugs acting by different mechanisms, glycaemic control often remains elusive. None of these drugs have a primary renal mechanism of action on the kidneys, where almost all glucose excreted is normally reabsorbed. That is where the inhibitors of glucose reuptake (sodium-glucose cotransporter 2, SGLT2) have a unique site of action. Promotion of urinary loss of glucose by SGLT2 inhibitors embodies a new principle of control in type 2 diabetes that has several advantages with some urogenital side-effects, both of which are evaluated in this review. Specific approvals include use as monotherapy, when diet and exercise alone do not provide adequate glycaemic control in patients for whom the use of metformin is considered inappropriate due to intolerance or contraindications, or as add-on therapy with other anti-hyperglycaemic medicinal products including insulin, when these together with diet and exercise, do not provide adequate glycemic control. The basic mechanisms are improved β-cell function and insulin sensitivity. When compared with sulphonylureas or other oral antidiabetic agents, SGLT2 inhibitors provide greater HbA1c reduction. Urogenital side-effects related to the enhanced glycosuria can be troublesome, yet seldom lead to discontinuation. On this background, studies are analysed that compare SGLT2 inhibitors with other oral antidiabetic agents. Their unique mode of action, unloading the excess glycaemic load, contrasts with other oral agents that all act to counter the effects of diabetic

  6. Dataset on the kinetics of the inhibition of PTP1B by the flavonoids and pheophytin A from Allophylus cominia.

    Science.gov (United States)

    Semaan, D G; Igoli, J O; Young, L; Marrero, E; Gray, A I; Rowan, E G

    2018-04-01

    The data presented in this article are related to the research article under the title "in vitro anti-diabetic activity of flavonoids and pheophytins from Allophylus cominia Sw. on PTP1B, DPPIV, alpha-glucosidase and alpha-amylase enzymes" (Semaan et al., 2017) [3]. This article defines the kinetics of inhibition of flavonoids and pheophytin A extracts from A. cominia which showed an inhibition of the PTP1B enzyme activity. The main reason to make these results public is to confirm that this study was followed up and no more experiments are needed, also to confirm that these compounds can be reported as PTP1B inhibitors.

  7. Macrophage fusion is controlled by the cytoplasmic protein tyrosine phosphatase PTP-PEST/PTPN12.

    Science.gov (United States)

    Rhee, Inmoo; Davidson, Dominique; Souza, Cleiton Martins; Vacher, Jean; Veillette, André

    2013-06-01

    Macrophages can undergo cell-cell fusion, leading to the formation of multinucleated giant cells and osteoclasts. This process is believed to promote the proteolytic activity of macrophages toward pathogens, foreign bodies, and extracellular matrices. Here, we examined the role of PTP-PEST (PTPN12), a cytoplasmic protein tyrosine phosphatase, in macrophage fusion. Using a macrophage-targeted PTP-PEST-deficient mouse, we determined that PTP-PEST was not needed for macrophage differentiation or cytokine production. However, it was necessary for interleukin-4-induced macrophage fusion into multinucleated giant cells in vitro. It was also needed for macrophage fusion following implantation of a foreign body in vivo. Moreover, in the RAW264.7 macrophage cell line, PTP-PEST was required for receptor activator of nuclear factor kappa-B ligand (RANKL)-triggered macrophage fusion into osteoclasts. PTP-PEST had no impact on expression of fusion mediators such as β-integrins, E-cadherin, and CD47, which enable macrophages to become fusion competent. However, it was needed for polarization of macrophages, migration induced by the chemokine CC chemokine ligand 2 (CCL2), and integrin-induced spreading, three key events in the fusion process. PTP-PEST deficiency resulted in specific hyperphosphorylation of the protein tyrosine kinase Pyk2 and the adaptor paxillin. Moreover, a fusion defect was induced upon treatment of normal macrophages with a Pyk2 inhibitor. Together, these data argue that macrophage fusion is critically dependent on PTP-PEST. This function is seemingly due to the ability of PTP-PEST to control phosphorylation of Pyk2 and paxillin, thereby regulating cell polarization, migration, and spreading.

  8. Dock/Nck facilitates PTP61F/PTP1B regulation of insulin signalling.

    Science.gov (United States)

    Wu, Chia-Lun; Buszard, Bree; Teng, Chun-Hung; Chen, Wei-Lin; Warr, Coral G; Tiganis, Tony; Meng, Tzu-Ching

    2011-10-01

    PTP1B (protein tyrosine phosphatase 1B) is a negative regulator of IR (insulin receptor) activation and glucose homoeostasis, but the precise molecular mechanisms governing PTP1B substrate selectivity and the regulation of insulin signalling remain unclear. In the present study we have taken advantage of Drosophila as a model organism to establish the role of the SH3 (Src homology 3)/SH2 adaptor protein Dock (Dreadlocks) and its mammalian counterpart Nck in IR regulation by PTPs. We demonstrate that the PTP1B orthologue PTP61F dephosphorylates the Drosophila IR in S2 cells in vitro and attenuates IR-induced eye overgrowth in vivo. Our studies indicate that Dock forms a stable complex with PTP61F and that Dock/PTP61F associate with the IR in response to insulin. We report that Dock is required for effective IR dephosphorylation and inactivation by PTP61F in vitro and in vivo. Furthermore, we demonstrate that Nck interacts with PTP1B and that the Nck/PTP1B complex inducibly associates with the IR for the attenuation of IR activation in mammalian cells. Our studies reveal for the first time that the adaptor protein Dock/Nck attenuates insulin signalling by recruiting PTP61F/PTP1B to its substrate, the IR.

  9. Role of sodium glucose cotransporter-2 inhibitors in type I diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Ahmadieh H

    2017-05-01

    Full Text Available Hala Ahmadieh,1 Nisrine Ghazal,2 Sami T Azar3 1Faculty of Medicine, Clinical Sciences Department, Beirut Arab University, 2Department of Endocrinology and Metabolism, American University of Beirut, Beirut, Lebanon; 3Department of Internal Medicine, Division of Endocrinology, American University of Beirut, New York, NY, USA Abstract: The burden of diabetes mellitus (DM in general has been extensively increasing over the past few years. Selective sodium glucose cotransporter-2 (SGLT2 inhibitors were extensively studied in type 2 DM and found to have sustained urinary glucose loss, improvement of glycemic control, in addition to their proven metabolic effects on weight, blood pressure, and cardiovascular benefits. Type 1 DM (T1D patients clearly depend on insulin therapy, which till today fails to achieve the optimal glycemic control and metabolic targets that are needed to prevent risk of complications. New therapies are obviously needed as an adjunct to insulin therapy in order to try to achieve optimal control in T1D. Many oral diabetic medications have been tried in T1D patients as an adjunct to insulin treatment and have shown conflicting results. Adjunctive use of SGLT2 inhibitors in addition to insulin therapies in T1D was found to have the potential to improve glycemic control along with decrease in the insulin doses, as has been shown in certain animal and short-term human studies. Furthermore, larger well-randomized studies are needed to better evaluate their efficacy and safety in patients with T1D. Euglycemic diabetic ketoacidosis incidences were found to be increased among users of SGLT2 inhibitors, although the incidence remains very low. Recent beneficial effects of ketone body production and this shift in fuel energetics have been suggested based on the findings of protective cardiovascular benefits associated with one of the SGLT2 inhibitors. Keywords: glycemic control, glycosylated hemoglobin, euglucemic diabetic ketoacidosis

  10. Sodium-glucose cotransporter 2 (SGLT-2) inhibitors for patients with Type 2 diabetes

    DEFF Research Database (Denmark)

    Røder, Michael Einar; Storgaard, Heidi; Rungby, Jørgen

    2016-01-01

    The sodium-glucose cotransporter 2 inhibitor (SGLT-2i)-class is efficacious as monotherapy and as add-on therapy with an expected lowering of the glycated haemoglobin (HbA1c) concentration of approximately 7 mmol/mol. Side effects relate to the mode of action, genital infections are the main...... problem. Extremely rare cases of ketoacidosis are reported, mostly in patients with Type 1 diabetes. One SGLT-2i, empagliflozin, has been shown to reduce cardiovascular mortality and progression of kidney disease in patients with Type 2 diabetes and cardiovascular disease. Outcome trials for other SGLT-2i...... are pending. SGLT-2i are now in guidelines as a possible second-line therapy or in case of metformin intolerance....

  11. Sodium-glucose cotransporter (SGLT)-2-inhibitorer til patienter med type 2-diabetes

    DEFF Research Database (Denmark)

    Røder, Michael Einar; Storgaard, Heidi; Rungby, Jørgen

    2016-01-01

    The sodium-glucose cotransporter 2 inhibitor (SGLT-2i)-class is efficacious as monotherapy and as add-on therapy with an expected lowering of the glycated haemoglobin (HbA1c) concentration of approximately 7 mmol/mol. Side effects relate to the mode of action, genital infections are the main...... problem. Extremely rare cases of ketoacidosis are reported, mostly in patients with Type 1 diabetes. One SGLT-2i, empagliflozin, has been shown to reduce cardiovascular mortality and progression of kidney disease in patients with Type 2 diabetes and cardiovascular disease. Outcome trials for other SGLT-2i...... are pending. SGLT-2i are now in guidelines as a possible second-line therapy or in case of metformin intolerance....

  12. Sodium

    Science.gov (United States)

    Table salt is a combination of two minerals - sodium and chloride Your body needs some sodium to work properly. It helps with the function ... in your body. Your kidneys control how much sodium is in your body. If you have too ...

  13. Differential cardiovascular profiles of sodium-glucose cotransporter 2 inhibitors: critical evaluation of empagliflozin

    Directory of Open Access Journals (Sweden)

    Sanon VP

    2017-05-01

    Full Text Available Vani P Sanon,1 Shalin Patel,1 Saurabh Sanon,2 Ruben Rodriguez,1 Son V Pham,1 Robert Chilton1 1Division of Cardiology, University of Texas Health Science Center at San Antonio, Audie L Murphy VA Hospital, San Antonio, TX, 2Interventional Cardiology-Structural Heart Disease, Cardiology Consultants at Baptist Heart and Vascular Institute, Pensacola, FL, USA Abstract: One of the most feared repercussions of type 2 diabetes mellitus is the risk of adverse cardiovascular outcomes. The current antidiabetic agents on the market have had difficulty in showing cardiovascular outcome improvement. The EMPA-REG OUTCOME trial studied the sodium-glucose cotransporter 2 inhibitor empagliflozin in type 2 diabetic patients at high risk of cardiovascular events. The trial results revealed a decrease in the composite primary end points of death from cardiovascular causes, nonfatal myocardial infarction, and nonfatal stroke in those taking empagliflozin vs placebo. Those taking the medication also had a significant decrease in death from any cause, death from cardiovascular cause, and hospitalization for heart failure. The EMPA-REG trial is paradigm shifting because it demonstrates a clear mortality benefit to cardiovascular outcomes with a low side-effect profile, in contrast to prior outcome studies of hypoglycemic agents. Further studies are required to better clarify the long-term safety and efficacy of this promising class of diabetic drugs. Keywords: SGLT2 inhibitors, diabetes, cardiovascular mortality, heart failure, hypertension

  14. Sodium-glucose co-transporter-2 inhibitors and euglycemic ketoacidosis: Wisdom of hindsight

    Directory of Open Access Journals (Sweden)

    Awadhesh Kumar Singh

    2015-01-01

    Full Text Available Sodium-glucose co-transporter-2 inhibitors (SGLT-2i are newly approved class of oral anti-diabetic drugs, in the treatment of type 2 diabetes, which reduces blood glucose through glucouresis via the kidney, independent, and irrespective of available pancreatic beta-cells. Studies conducted across their clinical development program found, a modest reduction in glycated hemoglobin ranging from −0.5 to −0.8%, without any significant hypoglycemia. Moreover, head-to-head studies versus active comparators yielded comparable efficacy. Interestingly, weight and blood pressure reduction were additionally observed, which was not only consistent but significantly superior to active comparators, including metformin, sulfonylureas, and dipeptydylpeptide-4 inhibitors. Indeed, these additional properties makes this class a promising oral anti-diabetic drug. Surprisingly, a potentially fatal unwanted side effect of diabetic ketoacidosis has been noted with its widespread use, albeit rarely. Nevertheless, this has created a passé among the clinicians. This review is an attempt to pool those ketosis data emerging with SGLT-2i, and put a perspective on its implicated mechanism.

  15. Blood pressure effects of sodium-glucose co-transport 2 (SGLT2) inhibitors.

    Science.gov (United States)

    Oliva, Raymond V; Bakris, George L

    2014-05-01

    Management of hypertension in diabetes is critical for reduction of cardiovascular mortality and morbidity. While blood pressure (BP) control has improved over the past two decades, the control rate is still well below 50% in the general population of patients with type 2 diabetes mellitus (T2DM). A new class of oral glucose-lowering agents has recently been approved; the sodium-glucose co-transporter 2 (SGLT2) inhibitors, which act by eliminating large amounts of glucose in the urine. Two agents, dapagliflozin and canagliflozin, are currently approved in the United States and Europe, and empagliflozin and ipragliflozin have reported Phase 3 trials. In addition to glucose lowering, SGLT2 inhibitors are associated with weight loss and act as osmotic diuretics, resulting in a lowering of BP. While not approved for BP-lowering, they may potentially aid BP goal achievement in people within 7-10 mm Hg of goal. It should be noted that the currently approved agents have side effects that include an increased incidence of genital infections, predominantly in women. The approved SGLT2 inhibitors have limited use based on kidney function and should be used only in those with an estimated glomerular filtration rate (eGFR) > 60 mL/min/1.73 m2 for dapagliflozin and ≥45 mL/min/1.73 m2 for canagliflozin. Cardiovascular outcome trials are ongoing with these agents and will be completed within the next 4-5 years. Copyright © 2014 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  16. Electrochemical evaluation of sodium metabisulfite as environmentally friendly inhibitor for corrosion of aluminum alloy 6061 in a chloride solution

    Energy Technology Data Exchange (ETDEWEB)

    Zaid, B., E-mail: zaidbachir@yahoo.com [Département de métallurgie, Division de Technologie du Combustible, Centre de Recherche Nucléaire de Draria CRND, BP. 43 Draria, Alger (Algeria); Maddache, N.; Saidi, D. [Département de métallurgie, Division de Technologie du Combustible, Centre de Recherche Nucléaire de Draria CRND, BP. 43 Draria, Alger (Algeria); Souami, N. [Centre de Recherche Nucléaire d’Alger CRNA, 2 Bd. Frantz Fanon, Alger (Algeria); Bacha, N. [Département de Mécanique, Université SAAD Dahleb, Blida (Algeria); Si Ahmed, A. [Im2np, UMR 7334 CNRS, Aix-Marseille Université, 13397 Marseille Cedex 20 (France)

    2015-04-25

    Highlights: • Sodium metabisulfite acts as cathodic-type inhibitor. • The polarization resistance increases with the inhibitor concentration. • The pit nucleation rate decreases with increasing inhibitor concentration. • The current rise linked to pit propagation drops as inhibitor content increases. • The reactions involved in the inhibition actions are pointed out. - Abstract: Inhibition properties of sodium metabisulfite (Na{sub 2}S{sub 2}O{sub 5}) on pitting corrosion of 6061 aluminum alloy, in 5 × 10{sup −2} M NaCl solution of pH near 7.2 at 298 K, are characterized using open circuit potential, polarization resistance, cyclic and chrono-amperometric polarization measurements. In addition, scanning electron microscopy coupled with energy dispersive spectroscopy and X-ray photoelectrons are employed. Sodium metabisulfite, which is well compatible with environmental requirements, seems to act as a cathodic-type corrosion inhibitor. The passivation range and the polarization resistance increase with Na{sub 2}S{sub 2}O{sub 5} concentration. The inhibition effects are also reflected through the substantial reduction of both the rate of pit nucleation and the current rise characterizing the pit propagation progress. The SEM–EDS and XPS analyses reveal the formation of a passive film, which contains sulfur atoms.

  17. Inhibition of protein tyrosine phosphatase (PTP1B) and α-glucosidase by geranylated flavonoids from Paulownia tomentosa.

    Science.gov (United States)

    Song, Yeong Hun; Uddin, Zia; Jin, Young Min; Li, Zuopeng; Curtis-Long, Marcus John; Kim, Kwang Dong; Cho, Jung Keun; Park, Ki Hun

    2017-12-01

    Protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase are important targets to treat obesity and diabetes, due to their deep correlation with insulin and leptin signalling, and glucose regulation. The methanol extract of Paulownia tomentosa fruits showed potent inhibition against both enzymes. Purification of this extract led to eight geranylated flavonoids (1-8) displaying dual inhibition of PTP1B and α-glucosidase. The isolated compounds were identified as flavanones (1-5) and dihydroflavonols (6-8). Inhibitory potencies of these compounds varied accordingly, but most of the compounds were highly effective against PTP1B (IC 50  = 1.9-8.2 μM) than α-glucosidase (IC 50  = 2.2-78.9 μM). Mimulone (1) was the most effective against PTP1B with IC 50  = 1.9 μM, whereas 6-geranyl-3,3',5,5',7-pentahydroxy-4'-methoxyflavane (8) displayed potent inhibition against α-glucosidase (IC 50  = 2.2 μM). All inhibitors showed mixed type Ι inhibition toward PTP1B, and were noncompetitive inhibitors of α-glucosidase. This mixed type behavior against PTP1B was fully demonstrated by showing a decrease in V max , an increase of K m , and K ik /K iv ratio ranging between 2.66 and 3.69.

  18. Dataset on the kinetics of the inhibition of PTP1B by the flavonoids and pheophytin A from Allophylus cominia

    Directory of Open Access Journals (Sweden)

    D.G. Semaan

    2018-04-01

    Full Text Available The data presented in this article are related to the research article under the title “in vitro anti-diabetic activity of flavonoids and pheophytins from Allophylus cominia Sw. on PTP1B, DPPIV, alpha-glucosidase and alpha-amylase enzymes” (Semaan et al., 2017 [3]. This article defines the kinetics of inhibition of flavonoids and pheophytin A extracts from A. cominia which showed an inhibition of the PTP1B enzyme activity. The main reason to make these results public is to confirm that this study was followed up and no more experiments are needed, also to confirm that these compounds can be reported as PTP1B inhibitors. Keywords: Flavonoids, Pheophytin, Inhibition, Kinetics, PTP1B enzyme

  19. Negative regulation of MAP kinase signaling in Drosophila by Ptp61F/PTP1B.

    Science.gov (United States)

    Tchankouo-Nguetcheu, Stéphane; Udinotti, Mario; Durand, Marjorie; Meng, Tzu-Ching; Taouis, Mohammed; Rabinow, Leonard

    2014-10-01

    PTP1B is an important negative regulator of insulin and other signaling pathways in mammals. However, the role of PTP1B in the regulation of RAS-MAPK signaling remains open to deliberation, due to conflicting evidence from different experimental systems. The Drosophila orthologue of mammalian PTP1B, PTP61F, has until recently remained largely uncharacterized. To establish the potential role of PTP61F in the regulation of signaling pathways in Drosophila and particularly to help resolve its fundamental function in RAS-MAPK signaling, we generated a new allele of Ptp61F as well as employed both RNA interference and overexpression alleles. Our results validate recent data showing that the activity of insulin and Abl kinase signaling is increased in Ptp61F mutants and RNA interference lines. Importantly, we establish negative regulation of the RAS/MAPK pathway by Ptp61F activity in whole animals. Of particular interest, our results document the modulation of hyperactive MAP kinase activity by Ptp61F alleles, showing that the phosphatase intervenes to directly or indirectly regulate MAP kinase itself.

  20. Natural Products as Lead Compounds for Sodium Glucose Cotransporter (SGLT) Inhibitors.

    Science.gov (United States)

    Blaschek, Wolfgang

    2017-08-01

    Glucose homeostasis is maintained by antagonistic hormones such as insulin and glucagon as well as by regulation of glucose absorption, gluconeogenesis, biosynthesis and mobilization of glycogen, glucose consumption in all tissues and glomerular filtration, and reabsorption of glucose in the kidneys. Glucose enters or leaves cells mainly with the help of two membrane integrated transporters belonging either to the family of facilitative glucose transporters (GLUTs) or to the family of sodium glucose cotransporters (SGLTs). The intestinal glucose absorption by endothelial cells is managed by SGLT1, the transfer from them to the blood by GLUT2. In the kidney SGLT2 and SGLT1 are responsible for reabsorption of filtered glucose from the primary urine, and GLUT2 and GLUT1 enable the transport of glucose from epithelial cells back into the blood stream.The flavonoid phlorizin was isolated from the bark of apple trees and shown to cause glucosuria. Phlorizin is an inhibitor of SGLT1 and SGLT2. With phlorizin as lead compound, specific inhibitors of SGLT2 were developed in the last decade and some of them have been approved for treatment mainly of type 2 diabetes. Inhibition of SGLT2 eliminates excess glucose via the urine. In recent times, the dual SGLT1/SGLT2 inhibitory activity of phlorizin has served as a model for the development and testing of new drugs exhibiting both activities.Besides phlorizin, also some other flavonoids and especially flavonoid enriched plant extracts have been investigated for their potency to reduce postprandial blood glucose levels which can be helpful in the prevention and supplementary treatment especially of type 2 diabetes. Georg Thieme Verlag KG Stuttgart · New York.

  1. Sodium-glucose cotransporter 2 inhibitors combined with dipeptidyl peptidase-4 inhibitors in the management of type 2 diabetes: a review of current clinical evidence and rationale

    Directory of Open Access Journals (Sweden)

    Yassin SA

    2017-03-01

    Full Text Available Sayf A Yassin,1 Vanita R Aroda2 1MedStar Union Memorial Hospital, Baltimore, 2MedStar Health Research Institute, Hyattsville, MD, USA Abstract: Type 2 diabetes mellitus (T2DM is a progressive and multifactorial cardiometabolic disorder. Almost half of adults with diabetes fail to achieve their recommended glucose control target. This has prompted some clinicians to advocate the use of more intensive initial therapy, including the use of combination therapy to target multiple physiologic defects in diabetes with the goal of achieving and sustaining glucose control. Numerous options exist for combining the various classes of glucose-lowering agents in the treatment of T2DM. This report reviews the mechanism, rationale, and evidence from clinical trials for combining two of the newer drug classes, namely, dipeptidyl peptidase-4 inhibitors and sodium-glucose cotransporter 2 inhibitors, and considers the possible role of such dual therapy in the management of T2DM. Keywords: sodium-glucose cotransporter 2 inhibitors, dipeptidyl peptidase-4 inhibitors, type 2 diabetes mellitus, combination therapy

  2. Identification of PTP1B and α-Glucosidase Inhibitory Serrulatanes from Eremophila spp. by Combined use of Dual High-Resolution PTP1B and α-Glucosidase Inhibition Profiling and HPLC-HRMS-SPE-NMR.

    Science.gov (United States)

    Wubshet, Sileshi G; Tahtah, Yousof; Heskes, Allison M; Kongstad, Kenneth T; Pateraki, Irini; Hamberger, Björn; Møller, Birger L; Staerk, Dan

    2016-04-22

    According to the International Diabetes Federation, type 2 diabetes (T2D) has reached epidemic proportions, affecting more than 382 million people worldwide. Inhibition of protein tyrosine phosphatase-1B (PTP1B) and α-glucosidase is a recognized therapeutic approach for management of T2D and its associated complications. The lack of clinical drugs targeting PTP1B and side effects of the existing α-glucosidase drugs, emphasize the need for new drug leads for these T2D targets. In the present work, dual high-resolution PTP1B and α-glucosidase inhibition profiles of Eremophila gibbosa, E. glabra, and E. aff. drummondii "Kalgoorlie" were used for pinpointing α-glucosidase and/or PTP1B inhibitory constituents directly from the crude extracts. A subsequent targeted high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy (HPLC-HRMS-SPE-NMR) analysis and preparative-scale HPLC isolation led to identification of 21 metabolites from the three species, of which 16 were serrulatane-type diterpenoids (12 new) associated with either α-glucosidase and/or PTP1B inhibition. This is the first report of serrulatane-type diterpenoids as potential α-glucosidase and/or PTP1B inhibitors.

  3. Nonclinical safety of the sodium-glucose cotransporter 2 inhibitor empagliflozin.

    Science.gov (United States)

    Bogdanffy, Matthew S; Stachlewitz, Robert F; van Tongeren, Susan; Knight, Brian; Sharp, Dale E; Ku, Warren; Hart, Susan Emeigh; Blanchard, Kerry

    2014-01-01

    Empagliflozin, a selective inhibitor of the renal tubular sodium-glucose cotransporter 2, was developed for treatment of type 2 diabetes mellitus. Nonclinical safety of empagliflozin was studied in a battery of tests to support global market authorization. Safety pharmacology studies indicated no effect of empagliflozin on measures of respiratory or central nervous system function in rats or cardiovascular safety in telemeterized dogs. In CD-1 mouse, Wistar Han rat, or beagle dogs up to 13, 26, or 52 weeks of treatment, respectively, empagliflozin exhibited a toxicity profile consistent with secondary supratherapeutic pharmacology related to glucose loss and included decreased body weight and body fat, increased food consumption, diarrhea, dehydration, decreased serum glucose and increases in other serum parameters reflective of increased protein catabolism, gluconeogenesis, and electrolyte imbalances, and urinary changes such as polyuria and glucosuria. Microscopic changes were consistently observed in kidney and included tubular nephropathy and interstitial nephritis (dog), renal mineralization (rat) and tubular epithelial cell karyomegaly, single cell necrosis, cystic hyperplasia, and hypertrophy (mouse). Empagliflozin was not genotoxic. Empagliflozin was not carcinogenic in female mice or female rats. Renal adenoma and carcinoma were induced in male mice only at exposures 45 times the maximum clinical dose. These tumors were associated with a spectrum of nonneoplastic changes suggestive of a nongenotoxic, cytotoxic, and cellular proliferation-driven mechanism. In male rats, testicular interstitial cell tumors and hemangiomas of the mesenteric lymph node were observed; both tumors are common in rats and are unlikely to be relevant to humans. These studies demonstrate the nonclinical safety of empagliflozin. © The Author(s) 2014.

  4. Minimally invasive monitoring of skeletal muscle hypermetabolism induced by the phosphodiesterase-III-inhibitor milrinone and sodium fluoride.

    Science.gov (United States)

    Schuster, Frank; Johannsen, Stephan; Roewer, Norbert; Anetseder, Martin

    2013-04-01

    We hypothesized that the phosphodiesterase-III-inhibitor milrinone and the non-specific G-protein activator sodium fluoride increase the skeletal muscular lactate levels as a sign of a hypermetabolic response. With approval of the local animal care committee Sprague-Dawley rats were killed and artificially perfused either with Ringer's solution or sodium fluoride 110 mM, while milrinone 1.32 mM or Ringer's solution at 1 μl/min was applied via microdialysis probes in both hind limbs. Lactate was measured spectrophotometrically in the dialysate. Baseline lactate levels before drug application did not differ between hind limbs. Local infusion of milrinone via microdialysis did not significantly increase intramuscular lactate concentrations compared with the Ringer control group. Muscular perfusion with sodium fluoride resulted in a significant increase of lactate and was potentiated by combination with local milrinone. Phosphodiesterase-III-inhibition alone does not significantly influence the lactate levels in skeletal muscle of sacrificed rats. Sodium fluoride infusion leads to an intramuscular lactate increase, which was further potentiated by local inhibition of phosphodiesterase-III. The fluoride-mediated hypermetabolic response following sodium fluoride could be a possible explanation for the observed myotoxic adverse effects in individuals treated by fluoride-containing agents. © 2012 The Authors. JPP © 2012. Royal Pharmaceutical Society.

  5. Protein Phosphotyrosine Phosphatase 1B (PTP1B) in Calpain-dependent Feedback Regulation of Vascular Endothelial Growth Factor Receptor (VEGFR2) in Endothelial Cells

    Science.gov (United States)

    Zhang, Yixuan; Li, Qiang; Youn, Ji Youn; Cai, Hua

    2017-01-01

    The VEGF/VEGFR2/Akt/eNOS/NO pathway is essential to VEGF-induced angiogenesis. We have previously discovered a novel role of calpain in mediating VEGF-induced PI3K/AMPK/Akt/eNOS activation through Ezrin. Here, we sought to identify possible feedback regulation of VEGFR2 by calpain via its substrate protein phosphotyrosine phosphatase 1B (PTP1B), and the relevance of this pathway to VEGF-induced angiogenesis, especially in diabetic wound healing. Overexpression of PTP1B inhibited VEGF-induced VEGFR2 and Akt phosphorylation in bovine aortic endothelial cells, while PTP1B siRNA increased both, implicating negative regulation of VEGFR2 by PTP1B. Calpain inhibitor ALLN induced VEGFR2 activation, which can be completely blocked by PTP1B overexpression. Calpain activation induced by overexpression or Ca/A23187 resulted in PTP1B cleavage, which can be blocked by ALLN. Moreover, calpain activation inhibited VEGF-induced VEGFR2 phosphorylation, which can be restored by PTP1B siRNA. These data implicate calpain/PTP1B negative feedback regulation of VEGFR2, in addition to the primary signaling pathway of VEGF/VEGFR2/calpain/PI3K/AMPK/Akt/eNOS. We next examined a potential role of PTP1B in VEGF-induced angiogenesis. Endothelial cells transfected with PTP1B siRNA showed faster wound closure in response to VEGF. Aortic discs isolated from PTP1B siRNA-transfected mice also had augmented endothelial outgrowth. Importantly, PTP1B inhibition and/or calpain overexpression significantly accelerated wound healing in STZ-induced diabetic mice. In conclusion, our data for the first time demonstrate a calpain/PTP1B/VEGFR2 negative feedback loop in the regulation of VEGF-induced angiogenesis. Modulation of local PTP1B and/or calpain activities may prove beneficial in the treatment of impaired wound healing in diabetes. PMID:27872190

  6. Sodium valproate, a histone deacetylase inhibitor, modulates the vascular endothelial growth inhibitor-mediated cell death in human osteosarcoma and vascular endothelial cells.

    Science.gov (United States)

    Yamanegi, Koji; Kawabe, Mutsuki; Futani, Hiroyuki; Nishiura, Hiroshi; Yamada, Naoko; Kato-Kogoe, Nahoko; Kishimoto, Hiromitsu; Yoshiya, Shinichi; Nakasho, Keiji

    2015-05-01

    The level of vascular endothelial growth inhibitor (VEGI) has been reported to be negatively associated with neovascularization in malignant tumors. The soluble form of VEGI is a potent anti-angiogenic factor due to its effects in inhibiting endothelial cell proliferation. This inhibition is mediated by death receptor 3 (DR3), which contains a death domain in its cytoplasmic tail capable of inducing apoptosis that can be subsequently blocked by decoy receptor 3 (DcR3). We investigated the effects of sodium valproate (VPA) and trichostatin A (TSA), histone deacetylase inhibitors, on the expression of VEGI and its related receptors in human osteosarcoma (OS) cell lines and human microvascular endothelial (HMVE) cells. Consequently, treatment with VPA and TSA increased the VEGI and DR3 expression levels without inducing DcR3 production in the OS cell lines. In contrast, the effect on the HMVE cells was limited, with no evidence of growth inhibition or an increase in the DR3 and DcR3 expression. However, VPA-induced soluble VEGI in the OS cell culture medium markedly inhibited the vascular tube formation of HMVE cells, while VEGI overexpression resulted in enhanced OS cell death. Taken together, the HDAC inhibitor has anti-angiogenesis and antitumor activities that mediate soluble VEGI/DR3-induced apoptosis via both autocrine and paracrine pathways. This study indicates that the HDAC inhibitor may be exploited as a therapeutic strategy modulating the soluble VEGI/DR3 pathway in osteosarcoma patients.

  7. Effect of dietary sodium on the Na-K ATPase inhibitor in patients with essential hypertension

    International Nuclear Information System (INIS)

    Ashida, T.; Kuramochi, M.; Kojima, S.

    1989-01-01

    To study the circulating humoral factor modifying transmembrane sodium transport, plasma was obtained from 12 patients with essential hypertension (EH) fed a high sodium diet (NaCl 15 to 17 g/d) for seven days and thereafter a low sodium diet (NaCl 2 to 3 g/d) for seven days. Ouabain-sensitive 86 Rb+ influx into the red blood cells (RBC) obtained from a healthy subject, and incubated with the plasma obtained during the high sodium diet was significantly lower than that incubated with the plasma obtained during the low sodium diet (3.74 +/- 0.26 v 3.97 +/- 0.30 nmol/10(8) cells, P less than .05). The changes in mean blood pressure from the high to low sodium diet showed a significant positive correlation with the changes in the ouabain-sensitive Rb influx into RBC in the plasma from the high to low sodium diet. These results suggest that a humoral factor modifying the sodium pump might be altered by sodium balance in EH, especially in salt-sensitive hypertension

  8. Effect of dietary sodium on the Na-K ATPase inhibitor in patients with essential hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Ashida, T.; Kuramochi, M.; Kojima, S.; Yoshimi, H.; Kawano, Y.; Kimura, G.; Abe, H.; Imanishi, M.; Yoshida, K.; Kawamura, M. (National Cardiovascular Center, Osaka (Japan))

    1989-07-01

    To study the circulating humoral factor modifying transmembrane sodium transport, plasma was obtained from 12 patients with essential hypertension (EH) fed a high sodium diet (NaCl 15 to 17 g/d) for seven days and thereafter a low sodium diet (NaCl 2 to 3 g/d) for seven days. Ouabain-sensitive {sup 86}Rb+ influx into the red blood cells (RBC) obtained from a healthy subject, and incubated with the plasma obtained during the high sodium diet was significantly lower than that incubated with the plasma obtained during the low sodium diet (3.74 +/- 0.26 v 3.97 +/- 0.30 nmol/10(8) cells, P less than .05). The changes in mean blood pressure from the high to low sodium diet showed a significant positive correlation with the changes in the ouabain-sensitive Rb influx into RBC in the plasma from the high to low sodium diet. These results suggest that a humoral factor modifying the sodium pump might be altered by sodium balance in EH, especially in salt-sensitive hypertension.

  9. sodium

    International Development Research Centre (IDRC) Digital Library (Canada)

    Les initiatives de réduction de la consommation de sel qui visent l'ensemble de la population et qui ciblent la teneur en sodium des aliments et sensibilisent les consommateurs sont susceptibles de réduire la consommation de sel dans toutes les couches de la population et d'améliorer la santé cardiovasculaire. Ce projet a ...

  10. Characterization and comparison of sodium-glucose cotransporter 2 inhibitors: Part 2. Antidiabetic effects in type 2 diabetic mice

    Directory of Open Access Journals (Sweden)

    Atsuo Tahara

    2016-07-01

    Full Text Available Previously we investigated the pharmacokinetic, pharmacodynamic, and pharmacologic properties of all six sodium-glucose cotransporter (SGLT 2 inhibitors commercially available in Japan using normal and diabetic mice. We classified the SGLT2 inhibitors with respect to duration of action as either long-acting (ipragliflozin and dapagliflozin or intermediate-acting (tofogliflozin, canagliflozin, empagliflozin, and luseogliflozin. In the present study, antidiabetic effects of repeated administration of these SGLT2 inhibitors in type 2 diabetic mice were investigated. When repeatedly administered for 4 weeks, all SGLT2 inhibitors significantly exhibited antihyperglycemic, antihyperinsulinemic, and pancreas-protective effects, as well as insulin resistance-improving effects. When compared at doses producing comparable reduction in hyperglycemia across all drugs, the antidiabetic effects of ipragliflozin and dapagliflozin were more potent than those of the other four drugs, but these differences among the six drugs were not statistically significant. Further, an oral glucose tolerance test performed after repeated administration demonstrated significant improvement in glucose tolerance only with ipragliflozin and dapagliflozin, implying improved insulin resistance and secretion. Taken together, these findings demonstrate that, although all SGLT2 inhibitors exert antidiabetic effects in type 2 diabetic mice, these pharmacologic effects might be slightly superior with the long-acting drugs, which are able to provide favorable blood glucose control throughout the day.

  11. Docking of oxalyl aryl amino benzoic acid derivatives into PTP1B

    Science.gov (United States)

    Verma, Neelam; Mittal, Minakshi; Verma, Raman kumar

    2008-01-01

    Protein Tyrosine Phosphatases (PTPs) that function as negative regulators of the insulin signaling cascade have been identified as novel targets for the therapeutic enhancement of insulin action in insulin resistant disease states. Reducing Protein Tyrosine Phosphatase1B (PTP1B) abundance not only enhances insulin sensitivity and improves glucose metabolism but also protects against obesity induced by high fat feeding. PTP1B inhibitors such as Formylchromone derivatives, 1, 2-Naphthoquinone derivatives and Oxalyl aryl amino benzoic derivatives may eventually find an important clinical role as insulin sensitizers in the management of Type-II Diabetes and metabolic syndrome. We have carried out docking of modified oxalyl aryl amino benzoic acid derivatives into three dimensional structure of PTP1B using BioMed CAChe 6.1. These compounds exhibit good selectivity for PTP1B over most of phosphatases in selectivity panel such as SHP-2, LAR, CD45 and TCPTP found in literature. This series of compounds identified the amino acid residues such as Gly220 and Arg221 are important for achieving specificity via H-bonding interactions. Lipophilic side chain of methionine in modified oxalyl aryl amino benzoic acid derivative [1b (a2, b2, c1, d)] lies in closer vicinity of hydrophobic region of protein consisted of Meth258 and Phe52 in comparison to active ligand. Docking Score in [1b (a2, b2, c1, d)] is -131.740Kcal/mol much better than active ligand score -98.584Kcal/mol. This information can be exploited to design PTP1B specific inhibitors. PMID:19238234

  12. Safety of Sodium-Glucose Co-Transporter 2 Inhibitors during Ramadan Fasting: Evidence, Perceptions and Guidelines

    Directory of Open Access Journals (Sweden)

    Salem A. Beshyah

    2016-06-01

    Full Text Available Sodium-glucose co-transporter 2 (SGLT2 inhibitors are a new glucose-lowering therapy for T2DM with documented benefits on blood glucose, hypertension, weight reduction and long term cardiovascular benefit. They have an inherent osmotic diuretic effect and lead to some volume loss and possible dehydration. There is some concern about the safety of using SGLT2 inhibitors in Muslim type 2 diabetes mellitus (T2DM patients during the fast during Ramadan. Currently, there is a dearth of research data to help guide physicians and reassure patients.  One study confirmed good glycemic control with less risk of hypoglycemia and no marked volume depletion. Data in the elderly and in combination with diuretics are reassuring of their safe to use in Ramadan in general. SGLT2 inhibitor-related diabetic ketoacidosis has not been reported during Ramadan and is unlikely to be relevant. Survey of physicians revealed that the majority felt that SGLT2 inhibitors are generally safe in T2DM patients during Ramadan fasting but should be discontinued in certain high risk patients. Some professional groups with interest in diabetes and Ramadan fasting included SGLT2 inhibitors in their guidelines on management of diabetes during Ramadan. They acknowledged the lack of trial data, recommended caution in high risk groups, advised regular monitoring and emphasized pre-Ramadan patients’ education. In conclusion, currently, knowledge, data and experience with SGLT2 inhibitors in Ramadan are limited. Nonetheless, stable patients with normal kidney function and low risk of dehydration may safely use the SGLT2 inhibitors therapy. Higher risk patients should be observed carefully and managed on individual basis.

  13. Acute renal failure with sodium-glucose-cotransporter-2 inhibitors: Analysis of the FDA adverse event report system database.

    Science.gov (United States)

    Perlman, A; Heyman, S N; Matok, I; Stokar, J; Muszkat, M; Szalat, A

    2017-12-01

    Sodium-glucose-cotransporter-2 (SGLT2) inhibitors have recently been approved for the treatment of type II diabetes mellitus (T2DM). It has been proposed that these agents could induce acute renal failure (ARF) under certain conditions. This study aimed to evaluate the association between SGLT2-inhibitors and ARF in the FDA adverse event report system (FAERS) database. We analyzed adverse event cases submitted to FAERS between January 2013 and September 2016. ARF cases were identified using a structured medical query. Medications were identified using both brand and generic names. During the period evaluated, 18,915 reports (out of a total of 3,832,015 registered in FAERS) involved the use of SGLT2-inhibitors. SGLT2-inhibitors were reportedly associated with ARF in 1224 of these cases (6.4%), and were defined as the "primary" or "secondary" cause of the adverse event in 96.8% of these cases. The proportion of reports with ARF among reports with SGLT2 inhibitor was almost three-fold higher compared to reports without these drugs (ROR 2.88, 95% CI 2.71-3.05, p SGLT2-inhibitors was significantly greater than the proportion of ARF among cases with T2DM without SGLT2-inhibitors (ROR 1.68, 95% CI 1.57-1.8, p SGLT2-inhibitors, canagliflozin was associated with a higher proportion of reports of renal failure (7.3%), compared to empagliflozin and dapagliflozin (4.7% and 4.8% respectively, p SGLT2-inhibitors are associated with an increase in the proportion of reports of ARF compared to other medications. SGLT2-inhibitor agents may differ from one another in their respective risk for ARF. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  14. Deletion of Protein Tyrosine Phosphatase 1B (PTP1B Enhances Endothelial Cyclooxygenase 2 Expression and Protects Mice from Type 1 Diabetes-Induced Endothelial Dysfunction.

    Directory of Open Access Journals (Sweden)

    David J Herren

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B dephosphorylates receptors tyrosine kinase and acts as a molecular brake on insulin signaling pathway. Conditions of metabolic dysfunction increase PTP1B, when deletion of PTP1B protects against metabolic disorders by increasing insulin signaling. Although vascular insulin signaling contributes to the control of glucose disposal, little is known regarding the direct role of PTP1B in the control of endothelial function. We hypothesized that metabolic dysfunctions increase PTP1B expression in endothelial cells and that PTP1B deletion prevents endothelial dysfunction in situation of diminished insulin secretion. Type I diabetes (T1DM was induced in wild-type (WT and PTP1B-deficient mice (KO with streptozotocin (STZ injection. After 28 days of T1DM, KO mice exhibited a similar reduction in body weight and plasma insulin levels and a comparable increase in glycemia (WT: 384 ± 20 vs. Ko: 432 ± 29 mg/dL, cholesterol and triglycerides, as WT mice. T1DM increased PTP1B expression and impaired endothelial NO-dependent relaxation, in mouse aorta. PTP1B deletion did not affect baseline endothelial function, but preserved endothelium-dependent relaxation, in T1DM mice. NO synthase inhibition with L-NAME abolished endothelial relaxation in control and T1DM WT mice, whereas L-NAME and the cyclooxygenases inhibitor indomethacin were required to abolish endothelium relaxation in T1DM KO mice. PTP1B deletion increased COX-2 expression and PGI2 levels, in mouse aorta and plasma respectively, in T1DM mice. In parallel, simulation of diabetic conditions increased PTP1B expression and knockdown of PTP1B increased COX-2 but not COX-1 expression, in primary human aortic endothelial cells. Taken together these data indicate that deletion of PTP1B protected endothelial function by compensating the reduction in NO bioavailability by increasing COX-2-mediated release of the vasodilator prostanoid PGI2, in T1DM mice.

  15. Protein tyrosine phosphatase-1B (PTP1B) helps regulate EGF-induced stimulation of S-phase entry in human corneal endothelial cells

    Science.gov (United States)

    Ishino, Yutaka; Zhu, Cheng; Harris, Deshea L.

    2008-01-01

    Purpose Human corneal endothelial cells (HCEC), particularly from older donors, only proliferate weakly in response to EGF. The protein tyrosine phosphatase, PTP1B, is known to negatively regulate EGF-induced signaling in several cell types by dephosphorylating the epidermal growth factor receptor (EGFR). The current studies were conducted to determine whether PTP1B plays a role in regulating cell cycle entry in HCEC in response to EGF stimulation. Methods Donor corneas were obtained from the National Disease Research Interchange and accepted for study based on established exclusion criteria. PTP1B was localized in the endothelium of ex vivo corneas and in cultured cells by immunocytochemistry. Western blot analysis verified PTP1B protein expression in HCEC and then compared the relative expression of EGFR and PTP1B in HCEC from young (60 years old). The effect of inhibiting the activity of PTP1B on S-phase entry was tested by comparing time-dependent BrdU incorporation in subconfluent HCEC incubated in the presence or absence of the PTP1B inhibitor, CinnGEL 2Me, before EGF stimulation. Results PTP1B was localized in a punctate pattern mainly within the cytoplasm of HCEC in ex vivo corneas and cultured cells. Western blots revealed the presence of three PTP1B-positive bands in HCEC and the control. Further western blot analysis showed no significant age-related difference in expression of EGFR (p=0.444>0.05); however, PTP1B expression was significantly higher in HCEC from older donors (p=0.024<0.05). Pre-incubation of HCEC with the PTP1B inhibitor significantly increased (p=0.019<0.05) the number of BrdU positive cells by 48 h after EGF stimulation. Conclusions Both immunolocalization and western blot studies confirmed that PTP1B is expressed in HCEC. Staining patterns strongly suggest that at least a subset of PTP1B is localized to the cytoplasm and most likely to the endoplasmic reticulum, the known site of EGFR/PTP1B interaction following EGF stimulation. PTP1B

  16. Sodium-glucose co-transporter 2 (SGLT2 inhibitors: a growing class of anti-diabetic agents

    Directory of Open Access Journals (Sweden)

    Eva M Vivian

    2014-12-01

    Full Text Available Although several treatment options are available to reduce hyperglycemia, only about half of individuals with diagnosed diabetes mellitus (DM achieve recommended glycemic targets. New agents that reduce blood glucose concentrations by novel mechanisms and have acceptable safety profiles are needed to improve glycemic control and reduce the complications associated with type 2 diabetes mellitus (T2DM. The renal sodium-glucose co-transporter 2 (SGLT2 is responsible for reabsorption of most of the glucose filtered by the kidney. Inhibitors of SGLT2 lower blood glucose independent of the secretion and action of insulin by inhibiting renal reabsorption of glucose, thereby promoting the increased urinary excretion of excess glucose. Canagliflozin, dapagliflozin, and empagliflozin are SGLT2 inhibitors approved as treatments for T2DM in the United States, Europe, and other countries. Canagliflozin, dapagliflozin, and empagliflozin increase renal excretion of glucose and improve glycemic parameters in patients with T2DM when used as monotherapy or in combination with other antihyperglycemic agents. Treatment with SGLT2 inhibitors is associated with weight reduction, lowered blood pressure, and a low intrinsic propensity to cause hypoglycemia. Overall, canagliflozin, dapagliflozin, and empagliflozin are well tolerated. Cases of genital infections and, in some studies, urinary tract infections have been more frequent in canagliflozin-, dapagliflozin-, and empagliflozin-treated patients compared with those receiving placebo. Evidence from clinical trials suggests that SGLT2 inhibitors are a promising new treatment option for T2DM.

  17. Sodium-glucose cotransporter-2 inhibitors and cardiovascular outcomes in type 2 diabetes mellitus: A systematic review

    Directory of Open Access Journals (Sweden)

    Ziad G Nasr

    2017-01-01

    Full Text Available Sodium-glucose cotransporter - 2 (SGLT2 inhibitors are a novel class of anti-diabetics proven to reduce blood pressure, blood glucose and body weight. However, the long-term cardiovascular (CV safety implications of these agents remain unclear. This systematic review aimed to evaluate the available clinical trial evidence pertaining to long-term cardiovascular safety of SGLT2 inhibitors. The databases EMBASE and MEDLINE were searched. Randomized controlled trials assessing CV safety of SGLT2 inhibitors compared with placebo or anti-diabetic medications were included. Two investigators independently extracted study data and completed risk of bias assessments (sequence generation, allocation concealment, blinding, incomplete outcome data, or selective outcome reporting and other biases. Outcomes included CV death, myocardial infarction, and stroke. A total of 464 studies were identified in the electronic search and 14 from other sources. Sixteen randomized clinical trials were included after full-text review. All studies reported at least one of the pre-defined outcomes (CV death, myocardial infarction, and stroke. Nineteen CV deaths were reported in SGLT2 inhibitors groups versus 10 CV deaths in placebo or other comparator arms; numerically higher in the dapagliflozin arms. The number of CV events was numerically higher in SGLT2 inhibitor groups than in other arms. Risk of bias assessment showed mixed results, with overall quality assessments deemed unclear for 6 of 16 studies (37.5%. Findings showed CV outcomes do occur in patients taking SGLT2 inhibitors yet the clinical significance remains unclear. These results can be considered hypothesis generating, as studies were limited by inadequate power and/or follow-up time. Future longitudinal studies are needed to further assess the efficacy and safety profiles of these new agents before they become widely adopted in clinical practice.

  18. The effects of sodium-glucose co-transporter 2 inhibitors in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Storgaard, Heidi; Gluud, Lise Lotte; Christensen, Mikkel

    2014-01-01

    INTRODUCTION: Sodium-glucose co-transporter 2 inhibitors (SGLT-2i) increase urinary glucose excretion through a reduced renal glucose reabsorption. We plan to perform a systematic review of SGLT-2i for treatment of type 2 diabetes. METHODS AND ANALYSIS: A systematic review with meta-analyses of r......INTRODUCTION: Sodium-glucose co-transporter 2 inhibitors (SGLT-2i) increase urinary glucose excretion through a reduced renal glucose reabsorption. We plan to perform a systematic review of SGLT-2i for treatment of type 2 diabetes. METHODS AND ANALYSIS: A systematic review with meta......-analyses of randomised clinical trials on SGLT-2i versus placebo, other oral glucose lowering drugs or insulin for patients with type 2 diabetes will be performed. The primary end point will be the glycated haemoglobin. Secondary end points will include changes in body weight, body mass index, fasting plasma glucose......, plasma cholesterol, kidney and liver blood tests, blood pressure and adverse events. Electronic (the Cochrane Library, MEDLINE, EMBASE and the Science Citation Index) and manual searches will be performed. Meta-analyses will be performed and the results presented as mean differences for continuous...

  19. Deficiency of PTP1B Attenuates Hypothalamic Inflammation via Activation of the JAK2-STAT3 Pathway in Microglia.

    Science.gov (United States)

    Tsunekawa, Taku; Banno, Ryoichi; Mizoguchi, Akira; Sugiyama, Mariko; Tominaga, Takashi; Onoue, Takeshi; Hagiwara, Daisuke; Ito, Yoshihiro; Iwama, Shintaro; Goto, Motomitsu; Suga, Hidetaka; Sugimura, Yoshihisa; Arima, Hiroshi

    2017-02-01

    Protein tyrosine phosphatase 1B (PTP1B) regulates leptin signaling in hypothalamic neurons via the JAK2-STAT3 pathway. PTP1B has also been implicated in the regulation of inflammation in the periphery. However, the role of PTP1B in hypothalamic inflammation, which is induced by a high-fat diet (HFD), remains to be elucidated. Here, we showed that STAT3 phosphorylation (p-STAT3) was increased in microglia in the hypothalamic arcuate nucleus of PTP1B knock-out mice (KO) on a HFD, accompanied by decreased Tnf and increased Il10 mRNA expression in the hypothalamus compared to wild-type mice (WT). In hypothalamic organotypic cultures, incubation with TNFα led to increased p-STAT3, accompanied by decreased Tnf and increased Il10 mRNA expression, in KO compared to WT. Incubation with p-STAT3 inhibitors or microglial depletion eliminated the differences in inflammation between genotypes. These data indicate an important role of JAK2-STAT3 signaling negatively regulated by PTP1B in microglia, which attenuates hypothalamic inflammation under HFD conditions. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Deficiency of PTP1B Attenuates Hypothalamic Inflammation via Activation of the JAK2-STAT3 Pathway in Microglia

    Directory of Open Access Journals (Sweden)

    Taku Tsunekawa

    2017-02-01

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B regulates leptin signaling in hypothalamic neurons via the JAK2-STAT3 pathway. PTP1B has also been implicated in the regulation of inflammation in the periphery. However, the role of PTP1B in hypothalamic inflammation, which is induced by a high-fat diet (HFD, remains to be elucidated. Here, we showed that STAT3 phosphorylation (p-STAT3 was increased in microglia in the hypothalamic arcuate nucleus of PTP1B knock-out mice (KO on a HFD, accompanied by decreased Tnf and increased Il10 mRNA expression in the hypothalamus compared to wild-type mice (WT. In hypothalamic organotypic cultures, incubation with TNFα led to increased p-STAT3, accompanied by decreased Tnf and increased Il10 mRNA expression, in KO compared to WT. Incubation with p-STAT3 inhibitors or microglial depletion eliminated the differences in inflammation between genotypes. These data indicate an important role of JAK2-STAT3 signaling negatively regulated by PTP1B in microglia, which attenuates hypothalamic inflammation under HFD conditions.

  1. PTP1B Inhibition Causes Rac1 Activation by Enhancing Receptor Tyrosine Kinase Signaling

    Directory of Open Access Journals (Sweden)

    Ayako Tsuchiya

    2014-04-01

    Full Text Available Background/Aims: The present study investigated the signaling pathway underlying Rac1 activation induced by the linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl-cyclopropyl]-octanoic acid (DCP-LA. Methods: Activity of protein tyrosine phosphatase 1B (PTP1B was assayed under cell-free conditions. Western blot was carried out to quantify phosphorylation of insulin receptor substrate-1 (IRS-1 and Akt in PC-12 cells. Rac1 activity was monitored in the föerster resonance energy transfer (FRET analysis using living and fixed PC-12 cells. Results: DCP-LA markedly suppressed PTP1B activity in a concentration (100 pM-100 µM-dependent manner. In the DCP-LA binding assay, fluorescein-conjugated DCP-LA produced a single fluorescent signal band at 60 kDa, corresponding to the molecule of PTP1B, and the signal was attenuated or abolished by co-treatment or pretreatment with non-conjugated DCP-LA. DCP-LA significantly enhanced nerve growth factor (NGF-stimulated phosphorylation of IRS-1 at Tyr1222 and Akt1/2 at Thr308/309 and Ser473/474 in PC-12 cells. In the FRET analysis, DCP-LA significantly enhanced NGF-stimulated Rac1 activation, which is abrogated by the phosphatidylinositol 3 kinase (PI3K inhibitor wortmannin, the 3-phosphoinositide-dependent protein kinase-1 (PDK1 inhibitor BX912, or the Akt inhibitor MK2206. Conclusion: The results of the present study show that DCP-LA-induced PTP1B inhibition, possibly through its direct binding, causes Rac1 activation by enhancing a pathway along a receptor tyrosine kinase (RTK/IRS-1/PI3K/Akt/Rac1 axis.

  2. The HSV-1 mechanisms of cell-to-cell spread and fusion are critically dependent on host PTP1B.

    Directory of Open Access Journals (Sweden)

    Jillian C Carmichael

    2018-05-01

    Full Text Available All herpesviruses have mechanisms for passing through cell junctions, which exclude neutralizing antibodies and offer a clear path to neighboring, uninfected cells. In the case of herpes simplex virus type 1 (HSV-1, direct cell-to-cell transmission takes place between epithelial cells and sensory neurons, where latency is established. The spreading mechanism is poorly understood, but mutations in four different HSV-1 genes can dysregulate it, causing neighboring cells to fuse to produce syncytia. Because the host proteins involved are largely unknown (other than the virus entry receptor, we were intrigued by an earlier discovery that cells infected with wild-type HSV-1 will form syncytia when treated with salubrinal. A biotinylated derivative of this drug was used to pull down cellular complexes, which were analyzed by mass spectrometry. One candidate was a protein tyrosine phosphatase (PTP1B, and although it ultimately proved not to be the target of salubrinal, it was found to be critical for the mechanism of cell-to-cell spread. In particular, a highly specific inhibitor of PTP1B (CAS 765317-72-4 blocked salubrinal-induced fusion, and by itself resulted in a dramatic reduction in the ability of HSV-1 to spread in the presence of neutralizing antibodies. The importance of this phosphatase was confirmed in the absence of drugs by using PTP1B-/- cells. Importantly, replication assays showed that virus titers were unaffected when PTP1B was inhibited or absent. Only cell-to-cell spread was altered. We also examined the effects of salubrinal and the PTP1B inhibitor on the four Syn mutants of HSV-1, and strikingly different responses were found. That is, both drugs individually enhanced fusion for some mutants and reduced fusion for others. PTP1B is the first host factor identified to be specifically required for cell-to-cell spread, and it may be a therapeutic target for preventing HSV-1 reactivation disease.

  3. The HSV-1 mechanisms of cell-to-cell spread and fusion are critically dependent on host PTP1B.

    Science.gov (United States)

    Carmichael, Jillian C; Yokota, Hiroki; Craven, Rebecca C; Schmitt, Anthony; Wills, John W

    2018-05-01

    All herpesviruses have mechanisms for passing through cell junctions, which exclude neutralizing antibodies and offer a clear path to neighboring, uninfected cells. In the case of herpes simplex virus type 1 (HSV-1), direct cell-to-cell transmission takes place between epithelial cells and sensory neurons, where latency is established. The spreading mechanism is poorly understood, but mutations in four different HSV-1 genes can dysregulate it, causing neighboring cells to fuse to produce syncytia. Because the host proteins involved are largely unknown (other than the virus entry receptor), we were intrigued by an earlier discovery that cells infected with wild-type HSV-1 will form syncytia when treated with salubrinal. A biotinylated derivative of this drug was used to pull down cellular complexes, which were analyzed by mass spectrometry. One candidate was a protein tyrosine phosphatase (PTP1B), and although it ultimately proved not to be the target of salubrinal, it was found to be critical for the mechanism of cell-to-cell spread. In particular, a highly specific inhibitor of PTP1B (CAS 765317-72-4) blocked salubrinal-induced fusion, and by itself resulted in a dramatic reduction in the ability of HSV-1 to spread in the presence of neutralizing antibodies. The importance of this phosphatase was confirmed in the absence of drugs by using PTP1B-/- cells. Importantly, replication assays showed that virus titers were unaffected when PTP1B was inhibited or absent. Only cell-to-cell spread was altered. We also examined the effects of salubrinal and the PTP1B inhibitor on the four Syn mutants of HSV-1, and strikingly different responses were found. That is, both drugs individually enhanced fusion for some mutants and reduced fusion for others. PTP1B is the first host factor identified to be specifically required for cell-to-cell spread, and it may be a therapeutic target for preventing HSV-1 reactivation disease.

  4. Sodium-Glucose Linked Transporter-2 Inhibitors in Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    L. Zanoli

    2015-01-01

    Full Text Available SGLT2 inhibitors are new antihyperglycaemic agents whose ability to lower glucose is directly proportional to GFR. Therefore, in chronic kidney disease (CKD the blood glucose lowering effect is reduced. Unlike many current therapies, the mechanism of action of SGLT2 inhibitors is independent of insulin action or beta-cell function. In addition, the mechanism of action of SGLT2 inhibitors is complementary and not alternative to other antidiabetic agents. SGLT2 inhibitors could be potentially effective in attenuating renal hyperfiltration and, consequently, the progression of CKD. Moreover, the reductions in intraglomerular pressure, systemic blood pressure, and uric acid levels induced by SGLT inhibition may potentially be of benefit in CKD subjects without diabetes. However, at present, only few clinical studies were designed to evaluate the effects of SGLT2 inhibitors in CKD. Consequently, safety and potential efficacy beyond blood glucose lowering should be better clarified in CKD. In this paper we provide an updated review of the use of SGLT2 inhibitors in clinical practice, with particular attention on subjects with CKD.

  5. TC-PTP and PTP1B: Regulating JAK-STAT signaling, controlling lymphoid malignancies.

    Science.gov (United States)

    Pike, Kelly A; Tremblay, Michel L

    2016-06-01

    Lymphoid malignancies are characterized by an accumulation of genetic lesions that act co-operatively to perturb signaling pathways and alter gene expression programs. The Janus kinases (JAK)-signal transducers and activators of transcription (STATs) pathway is one such pathway that is frequently mutated in leukemia and lymphoma. In response to cytokines and growth factors, a cascade of reversible tyrosine phosphorylation events propagates the JAK-STAT pathway from the cell surface to the nucleus. Activated STAT family members then play a fundamental role in establishing the transcriptional landscape of the cell. In leukemia and lymphoma, somatic mutations have been identified in JAK and STAT family members, as well as, negative regulators of the pathway. Most recently, inactivating mutations in the protein tyrosine phosphatase (PTP) genes PTPN1 (PTP1B) and PTPN2 (TC-PTP) were sequenced in B cell lymphoma and T cell acute lymphoblastic leukemia (T-ALL) respectively. The loss of PTP1B and TC-PTP phosphatase activity is associated with an increase in cytokine sensitivity, elevated JAK-STAT signaling, and changes in gene expression. As inactivation mutations in PTPN1 and PTPN2 are restricted to distinct subsets of leukemia and lymphoma, a future challenge will be to identify in which cellular contexts do they contributing to the initiation or maintenance of leukemogenesis or lymphomagenesis. As well, the molecular mechanisms by which PTP1B and TC-PTP loss co-operates with other genetic aberrations will need to be elucidated to design more effective therapeutic strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors from Natural Products: Discovery of Next-Generation Antihyperglycemic Agents.

    Science.gov (United States)

    Choi, Chang-Ik

    2016-08-27

    Diabetes mellitus is a chronic condition associated with the metabolic impairment of insulin actions, leading to the development of life-threatening complications. Although many kinds of oral antihyperglycemic agents with different therapeutic mechanisms have been marketed, their undesirable adverse effects, such as hypoglycemia, weight gain, and hepato-renal toxicity, have increased demand for the discovery of novel, safer antidiabetic drugs. Since the important roles of the sodium-glucose cotransporter 2 (SGLT2) for glucose homeostasis in the kidney were recently elucidated, pharmacological inhibition of SGLT2 has been considered a promising therapeutic target for the treatment of type 2 diabetes. Since the discovery of the first natural SGLT2 inhibitor, phlorizin, several synthetic glucoside analogs have been developed and introduced into the market. Furthermore, many efforts to find new active constituents with SGLT2 inhibition from natural products are still ongoing. This review introduces the history of research on the development of early-generation SGLT2 inhibitors, and recent progress on the discovery of novel candidates for SGLT2 inhibitor from several natural products that are widely used in traditional herbal medicine.

  7. Quality of methodological reporting of randomized clinical trials of sodium-glucose cotransporter-2 (sglt2 inhibitors

    Directory of Open Access Journals (Sweden)

    Hadeel Alfahmi

    2017-01-01

    Full Text Available Sodium-glucose cotransporter-2 (SGLT2 inhibitors are a new class of medicines approved recently for the treatment of type 2 diabetes. To improve the quality of randomized clinical trial (RCT reports, the Consolidated Standards of Reporting Trials (CONSORT statement for methodological features was created. For achieving our objective in this study, we assessed the quality of methodological reporting of RCTs of SGLT2 inhibitors according to the 2010 CONSORT statement. We reviewed and analyzed the methodology of SGLT2 inhibitors RCTs that were approved by the Food & Drug Administration (FDA. Of the 27 trials, participants, eligibility criteria, and additional analyses were reported in 100% of the trials. In addition, trial design, interventions, and statistical methods were reported in 96.3% of the trials. Outcomes were reported in 93.6% of the trials. Settings were reported in 85.2% of the trials. Blinding and sample size were reported in 66.7 and 59.3% of the trials, respectively. Sequence allocation and the type of randomization were reported in 63 and 74.1% of the trials, respectively. Besides those, a few methodological items were inadequate in the trials. Allocation concealment was inadequate in most of the trials. It was reported only in 11.1% of the trials. The majority of RCTs have high percentage adherence for more than half of the methodological items of the 2010 CONSORT statement.

  8. Sodium-Glucose Cotransporter 2 (SGLT2 Inhibitors from Natural Products: Discovery of Next-Generation Antihyperglycemic Agents

    Directory of Open Access Journals (Sweden)

    Chang-Ik Choi

    2016-08-01

    Full Text Available Diabetes mellitus is a chronic condition associated with the metabolic impairment of insulin actions, leading to the development of life-threatening complications. Although many kinds of oral antihyperglycemic agents with different therapeutic mechanisms have been marketed, their undesirable adverse effects, such as hypoglycemia, weight gain, and hepato-renal toxicity, have increased demand for the discovery of novel, safer antidiabetic drugs. Since the important roles of the sodium-glucose cotransporter 2 (SGLT2 for glucose homeostasis in the kidney were recently elucidated, pharmacological inhibition of SGLT2 has been considered a promising therapeutic target for the treatment of type 2 diabetes. Since the discovery of the first natural SGLT2 inhibitor, phlorizin, several synthetic glucoside analogs have been developed and introduced into the market. Furthermore, many efforts to find new active constituents with SGLT2 inhibition from natural products are still ongoing. This review introduces the history of research on the development of early-generation SGLT2 inhibitors, and recent progress on the discovery of novel candidates for SGLT2 inhibitor from several natural products that are widely used in traditional herbal medicine.

  9. Inhibitors

    Science.gov (United States)

    ... JM, and the Hemophilia Inhibitor Research Study Investigators. Validation of Nijmegen-Bethesda assay modifications to allow inhibitor ... webinars on blood disorders Language: English (US) Español (Spanish) File Formats Help: How do I view different ...

  10. Functional analysis of a missense mutation in the serine protease inhibitor SPINT2 associated with congenital sodium diarrhea.

    Directory of Open Access Journals (Sweden)

    Nicolas Faller

    Full Text Available Membrane-bound serine proteases play important roles in different biological processes. Their regulation by endogenous inhibitors is poorly understood. A Y163C mutation in the SPINT2 gene encoding the serine protease inhibitor Hepatocyte Growth Factor Inhibitor HAI-2 is associated with a congenital sodium diarrhea. The functional consequences of this mutation on HAI-2 activity and its physiological targets are unknown. We established a cellular assay in Xenopus laevis oocytes to study functional interactions between HAI-2 and candidate membrane-bound serine proteases expressed in the gastro-intestinal tract. We found that the wild-type form of HAI-2 is a potent inhibitor of nine gastro-intestinal serine proteases. The Y163C mutation in the second Kunitz domain of HAI-2 resulted in a complete loss of inhibitory activity on two intestinal proteases, prostasin and tmprss13. The effect of the mutation of the homologous Y68C in the first Kunitz domain of HAI-2 is consistent with a differential contribution of the two Kunitz domains of HAI-2 in the inhibition of serine proteases. By contrast to the Tyr to Cys, the Tyr to Ser substitution did not change the inhibitory potency of HAI-2, indicating that the thiol-group of the cysteine rather than the Tyr deletion is responsible for the HAI-2 loss of function. Our functional assay allowed us to identify membrane-bound serine proteases as cellular target for inhibition by HAI-2 wild type and mutants, and to better define the role of the Tyr in the second Kunitz domain in the inhibitory activity of HAI-2.

  11. Study of Antitumor Activity of Sodium Phenylbutyrate, Histon Deacetylase Inhibitor, on Ehrlich Carcinoma Model.

    Science.gov (United States)

    Fadeev, N P; Kharisov, R I; Kovan'ko, E G; Pustovalov, Yu I

    2015-09-01

    Antitumor activity of sodium phenylbutyrate was studied on 120 outbred female mice with transplanted Ehrlich ascites carcinoma. The animals received the drug in doses of 400, 800, and 1200 mg/kg with drinking water daily for 21 days. The antitumor effect was evaluated by tumor growth inhibition and lifespan prolongation. Phenylbutyrate in the dose of 800 mg/kg was most effective. The drug inhibited the tumor growth by 71%, prolonged the lifespan of animals by 28, and was low-toxic.

  12. Diabetic Ketoacidosis in a Patient with Type 2 Diabetes After Initiation of Sodium-Glucose Cotransporter 2 Inhibitor Treatment

    DEFF Research Database (Denmark)

    Storgaard, Heidi; Bagger, Jonatan I; Knop, Filip K

    2016-01-01

    Sodium-glucose cotransporter 2 inhibitors (SGLT2i) were recently introduced for the treatment of type 2 diabetes (T2D). SGLT2i lower plasma glucose by inhibiting the renal reuptake of glucose leading to glucosuria. Generally, these drugs are considered safe to use. However, recently, SGLT2i have...... been suggested to predispose to ketoacidosis. Here, we present a case of diabetic ketoacidosis (DKA) developed in an obese, poorly controlled male patient with T2D treated with the SGLT2i dapagliflozin. He was admitted with DKA 5 days after the initiation of treatment with the SGLT2i dapagliflozin...... 72 hr with insulin as the only glucose-lowering therapy. After 1 month, dapagliflozin was reintroduced as add-on to insulin with no recurrent signs of ketoacidosis. During acute illness or other conditions with increased insulin demands in diabetes, SGLT2i may predispose to the formation of ketone...

  13. The effects of sodium-glucose co-transporter 2 inhibitors in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Storgaard, Heidi; Gluud, Lise Lotte; Christensen, Mikkel

    2014-01-01

    INTRODUCTION: Sodium-glucose co-transporter 2 inhibitors (SGLT-2i) increase urinary glucose excretion through a reduced renal glucose reabsorption. We plan to perform a systematic review of SGLT-2i for treatment of type 2 diabetes. METHODS AND ANALYSIS: A systematic review with meta......-analyses of randomised clinical trials on SGLT-2i versus placebo, other oral glucose lowering drugs or insulin for patients with type 2 diabetes will be performed. The primary end point will be the glycated haemoglobin. Secondary end points will include changes in body weight, body mass index, fasting plasma glucose...... to the knowledge regarding the beneficial and harmful effects of SGLT-2i in patients with type 2 diabetes. We plan to publish the study irrespective of the results. RESULTS: The study will be disseminated by peer-review publication and conference presentation. TRIAL REGISTRATION NUMBER: PROSPERO CRD42014008960...

  14. Flozins, inhibitors of type 2 renal sodium-glucose co-transporter – not only antihyperglycemic drugs

    Directory of Open Access Journals (Sweden)

    Mizerski Grzegorz

    2015-09-01

    Full Text Available The kidneys play a crucial role in the regulation of the carbohydrate metabolism. In normal physiological conditions, the glucose that filters through the renal glomeruli is subsequently nearly totally reabsorbed in the proximal renal tubules. Two transporters are engaged in this process: sodium-glucose co-transporter type 1 (SGLT1, and sodium-glucose co-transporter type type 2 (SGLT2 - this being located in the luminal membrane of the renal tubular epithelial cells. It was found that the administration of dapagliflozin, a selective SGLT2 inhibitor, in patients with type 2 diabetes, is associated with the reduction of HbA1c concentration by 0.45-1.11%. Additional benefits from the treatment with dapagliflozin are the reduction of arterial blood pressure and a permanent reduction of body weight. This outcome is related to the effect of osmotic diuresis and to the considerable loss of the glucose load by way of urine excretion. Dapagliflozin may be successfully applied in type 2 diabetes monotherapy, as well as in combined therapy (including insulin, where it is equally effective as other oral anti-diabetic drugs. Of note: serious adverse effects of dapagliflozin administration are rarely observed. What is more, episodes of severe hypoglycaemia related with the treatment occur only sporadically, most often in the course of diabetes polytherapy. The most frequent effects of the SGLT2 inhibitors are inseparably associated with the mechanism of their action (the glucuretic effect, and cover urogenital infections with a mild clinical course. At present, clinical trials are being continued of the administration of several subsequent drugs from this group, the most advanced of these being the use of canagliflozin and empagliflozin.

  15. Tofogliflozin, a potent and highly specific sodium/glucose cotransporter 2 inhibitor, improves glycemic control in diabetic rats and mice.

    Science.gov (United States)

    Suzuki, Masayuki; Honda, Kiyofumi; Fukazawa, Masanori; Ozawa, Kazuharu; Hagita, Hitoshi; Kawai, Takahiro; Takeda, Minako; Yata, Tatsuo; Kawai, Mio; Fukuzawa, Taku; Kobayashi, Takamitsu; Sato, Tsutomu; Kawabe, Yoshiki; Ikeda, Sachiya

    2012-06-01

    Sodium/glucose cotransporter 2 (SGLT2) is the predominant mediator of renal glucose reabsorption and is an emerging molecular target for the treatment of diabetes. We identified a novel potent and selective SGLT2 inhibitor, tofogliflozin (CSG452), and examined its efficacy and pharmacological properties as an antidiabetic drug. Tofogliflozin competitively inhibited SGLT2 in cells overexpressing SGLT2, and K(i) values for human, rat, and mouse SGLT2 inhibition were 2.9, 14.9, and 6.4 nM, respectively. The selectivity of tofogliflozin toward human SGLT2 versus human SGLT1, SGLT6, and sodium/myo-inositol transporter 1 was the highest among the tested SGLT2 inhibitors under clinical development. Furthermore, no interaction with tofogliflozin was observed in any of a battery of tests examining glucose-related physiological processes, such as glucose uptake, glucose oxidation, glycogen synthesis, hepatic glucose production, glucose-stimulated insulin secretion, and glucosidase reactions. A single oral gavage of tofogliflozin increased renal glucose clearance and lowered the blood glucose level in Zucker diabetic fatty rats. Tofogliflozin also improved postprandial glucose excursion in a meal tolerance test with GK rats. In db/db mice, 4-week tofogliflozin treatment reduced glycated hemoglobin and improved glucose tolerance in the oral glucose tolerance test 4 days after the final administration. No blood glucose reduction was observed in normoglycemic SD rats treated with tofogliflozin. These findings demonstrate that tofogliflozin inhibits SGLT2 in a specific manner, lowers blood glucose levels by increasing renal glucose clearance, and improves pathological conditions of type 2 diabetes with a low hypoglycemic potential.

  16. Clinical risk factors predicting genital fungal infections with sodium-glucose cotransporter 2 inhibitor treatment: The ABCD nationwide dapagliflozin audit.

    Science.gov (United States)

    Thong, Ken Yan; Yadagiri, Mahender; Barnes, Dennis Joseph; Morris, David Stuart; Chowdhury, Tahseen Ahmad; Chuah, Ling Ling; Robinson, Anthony Michael; Bain, Stephen Charles; Adamson, Karen Ann; Ryder, Robert Elford John

    2018-02-01

    Treatment of type 2 diabetes with sodium-glucose cotransporter 2 (SGLT2) inhibitors may result in genital fungal infections. We investigated possible risk factors for developing such infections among patients treated with the SGLT2 inhibitor dapagliflozin. The Association of British Clinical Diabetologists (ABCD) collected data on patients treated with dapagliflozin in routine clinical practice from 59 diabetes centres. We assessed possible associations of patient's age, diabetes duration, body mass index, glycated haemoglobin, renal function, patient sex, ethnicity and prior genital fungal infection, urinary tract infection, urinary incontinence or nocturia, with the occurrence of ≥1 genital fungal infection within 26 weeks of treatment. 1049 out of 1116 patients (476 women, 573 men) were analysed. Baseline characteristics were, mean±SD, age 56.7±10.2years, BMI 35.5±6.9kg/m 2 and HbA 1c 9.4±1.5%. Only patient sex (13.2% women vs 3.3% men) and prior history of genital fungal infection (21.6% vs 7.3%) were found to be associated with occurrence of genital fungal infections after dapagliflozin treatment, adjusted OR 4.22 [95%CI 2.48,7.19], Prisks of developing genital fungal infections with dapagliflozin treatment. Copyright © 2017 Primary Care Diabetes Europe. All rights reserved.

  17. Improving the bioavailability and anticancer effect of the PCA-1/ALKBH3 inhibitor HUHS015 using sodium salt.

    Science.gov (United States)

    Mabuchi, Miyuki; Shimizu, Tadashi; Ueda, Masahiro; Sasakawa, Yuka; Nakao, Syuhei; Ueda, Yuko; Kawamura, Akio; Tsujikawa, Kazutake; Tanaka, Akito

    2015-01-01

    Prostate cancer antigen (PCA)-1/AlkB homologue 3 (ALKBH3) has been identified as a clinically significant factor and siRNA of PCA-1 inhibits DU145 proliferation both in vitro and in vivo. HUHS015 ( 1: ), a previous reported PCA-1 small-molecule inhibitor, was also effective without any obvious side-effects or toxicity. The potency of HUHS015, however, is not satisfying. We thought the reason is poor solubility of HUHS015 because insoluble material remained at the injection site after subcutaneous administration. To improve this inhibitor's solubility, we prepared various salts of HUHS015 and examined their solubility, which resulted in the selection of HUHS015 sodium salt ( 2: ) for further studies in vivo. Next, we compared the pharmacokinetics of 1: and 2: via several administration routes. We observed significant improvements in the pharmacokinetic parameters. For example, subcutaneous administration of 2: increased the area under the curve (AUC)0-24 by 8-fold compared to 1 and increased the suppressive effect on the proliferation of DU145 cells in a xenograft model. Copyright © 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  18. The effect of inhibitor sodium nitrate on pitting corrosion of dissimilar material weldment joint of stainless steel AISI 304 and mild steel SS 400

    Energy Technology Data Exchange (ETDEWEB)

    Hilca, B. R., E-mail: bangkithilca@yahoo.com; Triyono, E-mail: triyonomesin@uns.ac.id [Mechanical Engineering Department, Sebelas Maret University, Surakarta 57126 (Indonesia)

    2016-03-29

    This study experimentally evaluated the effect of Sodium Nitrate inhibitor (NaNO{sub 3}) of 0.1%, 0.3%, and 0.5% on NaCl 3.5% toward pitting corrosion of dissimilar metal welding joint between stainless steel AISI 304 and mild steel SS 400. Electrochemical corrosion was tested using potentiodynamic polarization. Further the Scanning Electron Microscope (SEM) conducted to analyze the specimen. Chemical composition analysis used Energy Dispersive X-ray Spectrometry (EDS). The highest efficiency of sodium nitrate for ER 308 attained 63.8% and 64.89%for ER 309L. The specimen surface which observed through SEM showed decrease of pitting corrosion respectively with the addition of sodium nitrate content as inhibitor.

  19. Role of sodium tungstate as a potential antiplatelet agent

    Directory of Open Access Journals (Sweden)

    Fernández-Ruiz R

    2015-05-01

    Full Text Available Rebeca Fernández-Ruiz,1,2 Marc Pino,3 Begoña Hurtado,4 Pablo García de Frutos,4 Carolina Caballo,3 Ginés Escolar,3 Ramón Gomis,1,2,5 Maribel Diaz-Ricart3 1Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS, Rosellón, Barcelona, 2Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, 3Hemotherapy–Hemostasis, Hospital Clínic, Universidad de Barcelona, IDIBAPS, Villarroel, Barcelona, 4Institutode Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Institut d’Investigacions Biomediques August Pi i Sunyer, Rosellón, Barcelona, 5Hospital Clinic, Universitat de Barcelona, Villarroel, Barcelona, Spain Purpose: Platelet inhibition is a key strategy in the management of atherothrombosis. However, the large variability in response to current strategies leads to the search for alternative inhibitors. The antiplatelet effect of the inorganic salt sodium tungstate (Na2O4W, a protein tyrosine phosphatase 1B (PTP1B inhibitor, has been investigated in this study.Methods: Wild-type (WT and PTP1B knockout (PTP1B-/- mice were treated for 1 week with Na2O4W to study platelet function with the platelet function analyzer PFA-100, a cone-and-plate analyzer, a flat perfusion chamber, and thrombus formation in vivo. Human blood aliquots were incubated with Na2O4W for 1 hour to measure platelet function using the PFA-100 and the annular perfusion chamber. Aggregometry and thromboelastometry were also performed.Results: In WT mice, Na2O4W treatment prolonged closure times in the PFA-100 and decreased the surface covered (%SC by platelets on collagen. Thrombi formed in a thrombosis mice model were smaller in animals treated with Na2O4W (4.6±0.7 mg vs 8.9±0.7 mg; P<0.001. Results with Na2O4W were similar to those in untreated PTP1B-/- mice (5.0±0.3 mg. Treatment of the PTP1B-/- mice with Na2O4W modified only

  20. Protein Phosphotyrosine Phosphatase 1B (PTP1B) in Calpain-dependent Feedback Regulation of Vascular Endothelial Growth Factor Receptor (VEGFR2) in Endothelial Cells: IMPLICATIONS IN VEGF-DEPENDENT ANGIOGENESIS AND DIABETIC WOUND HEALING.

    Science.gov (United States)

    Zhang, Yixuan; Li, Qiang; Youn, Ji Youn; Cai, Hua

    2017-01-13

    The VEGF/VEGFR2/Akt/eNOS/NO pathway is essential to VEGF-induced angiogenesis. We have previously discovered a novel role of calpain in mediating VEGF-induced PI3K/AMPK/Akt/eNOS activation through Ezrin. Here, we sought to identify possible feedback regulation of VEGFR2 by calpain via its substrate protein phosphotyrosine phosphatase 1B (PTP1B), and the relevance of this pathway to VEGF-induced angiogenesis, especially in diabetic wound healing. Overexpression of PTP1B inhibited VEGF-induced VEGFR2 and Akt phosphorylation in bovine aortic endothelial cells, while PTP1B siRNA increased both, implicating negative regulation of VEGFR2 by PTP1B. Calpain inhibitor ALLN induced VEGFR2 activation, which can be completely blocked by PTP1B overexpression. Calpain activation induced by overexpression or Ca/A23187 resulted in PTP1B cleavage, which can be blocked by ALLN. Moreover, calpain activation inhibited VEGF-induced VEGFR2 phosphorylation, which can be restored by PTP1B siRNA. These data implicate calpain/PTP1B negative feedback regulation of VEGFR2, in addition to the primary signaling pathway of VEGF/VEGFR2/calpain/PI3K/AMPK/Akt/eNOS. We next examined a potential role of PTP1B in VEGF-induced angiogenesis. Endothelial cells transfected with PTP1B siRNA showed faster wound closure in response to VEGF. Aortic discs isolated from PTP1B siRNA-transfected mice also had augmented endothelial outgrowth. Importantly, PTP1B inhibition and/or calpain overexpression significantly accelerated wound healing in STZ-induced diabetic mice. In conclusion, our data for the first time demonstrate a calpain/PTP1B/VEGFR2 negative feedback loop in the regulation of VEGF-induced angiogenesis. Modulation of local PTP1B and/or calpain activities may prove beneficial in the treatment of impaired wound healing in diabetes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Empagliflozin: a new sodium-glucose co-transporter 2 (SGLT2 inhibitor for the treatment of type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Joshua J Neumiller

    2014-06-01

    Full Text Available Type 2 diabetes is increasing in prevalence worldwide, and hyperglycemia is often poorly controlled despite a number of therapeutic options. Unlike previously available agents, sodium-glucose co-transporter 2 (SGLT2 inhibitors offer an insulin-independent mechanism for improving blood glucose levels, since they promote urinary glucose excretion (UGE by inhibiting glucose reabsorption in the kidney. In addition to glucose control, SGLT2 inhibitors are associated with weight loss and blood pressure reductions, and do not increase the risk of hypoglycemia. Empagliflozin is a selective inhibitor of SGLT2, providing dose-dependent UGE increases in healthy volunteers, with up to 90 g of glucose excreted per day. It can be administered orally, and studies of people with renal or hepatic impairment indicated empagliflozin needed no dose adjustment based on pharmacokinetics. In Phase II trials in patients with type 2 diabetes, empagliflozin provided improvements in glycosylated hemoglobin (HbA1c and other measures of glycemic control when given as monotherapy or add-on to metformin, as well as reductions in weight and systolic blood pressure. As add-on to basal insulin, empagliflozin not only improved HbA1c levels but also reduced insulin doses. Across studies, empagliflozin was generally well tolerated with a similar rate of hypoglycemia to placebo; however, patients had a slightly increased frequency of genital infections, but not urinary tract infections, versus placebo. Phase III studies have also reported a good safety profile along with significant improvements in HbA1c, weight and blood pressure, with no increased risk of hypoglycemia versus placebo. Based on available data, it appears that empagliflozin may be a useful option in a range of patients; however, clinical decisions will be better informed by the results of ongoing studies, in particular, a large cardiovascular outcome study (EMPA-REG OUTCOME™.

  2. Sodium Valproate, a Histone Deacetylase Inhibitor, Is Associated With Reduced Stroke Risk After Previous Ischemic Stroke or Transient Ischemic Attack

    Science.gov (United States)

    Brookes, Rebecca L.; Crichton, Siobhan; Wolfe, Charles D.A.; Yi, Qilong; Li, Linxin; Hankey, Graeme J.; Rothwell, Peter M.

    2018-01-01

    Background and Purpose— A variant in the histone deacetylase 9 (HDAC9) gene is associated with large artery stroke. Therefore, inhibiting HDAC9 might offer a novel secondary preventative treatment for ischemic stroke. The antiepileptic drug sodium valproate (SVA) is a nonspecific inhibitor of HDAC9. We tested whether SVA therapy given after ischemic stroke was associated with reduced recurrent stroke rate. Methods— Data were pooled from 3 prospective studies recruiting patients with previous stroke or transient ischemic attack and long-term follow-up: the South London Stroke Register, The Vitamins to Prevent Stroke Study, and the Oxford Vascular Study. Patients receiving SVA were compared with patients who received antiepileptic drugs other than SVA using survival analysis and Cox Regression. Results— A total of 11 949 patients with confirmed ischemic event were included. Recurrent stroke rate was lower in patient taking SVA (17 of 168) than other antiepileptic drugs (105 of 530; log-rank survival analysis P=0.002). On Cox regression, controlling for potential cofounders, SVA remained associated with reduced stroke (hazard ratio=0.44; 95% confidence interval: 0.3–0.7; P=0.002). A similar result was obtained when patients taking SVA were compared with all cases not taking SVA (Cox regression, hazard ratio=0.47; 95% confidence interval: 0.29–0.77; P=0.003). Conclusions— These results suggest that exposure to SVA, an inhibitor of HDAC, may be associated with a lower recurrent stroke risk although we cannot exclude residual confounding in this study design. This supports the hypothesis that HDAC9 is important in the ischemic stroke pathogenesis and that its inhibition, by SVA or a more specific HDAC9 inhibitor, is worthy of evaluation as a treatment to prevent recurrent ischemic stroke. PMID:29247141

  3. A 96-well automated method to study inhibitors of human sodium-dependent D-glucose transport.

    Science.gov (United States)

    Castaneda, Francisco; Kinne, Rolf K-H

    2005-12-01

    The sodium-dependent D-glucose transporter (SGLT) family is involved in glucose uptake via intestinal absorption (SGLT1) or renal reabsorption (SGLT1 and SGLT2). Current methods for the screening of inhibitors of SGLT transporters are complex, expensive and very labor intensive, and have not been applied to human SGLT transporters. The purpose of the present study was to develop an alternative 96-well automated method to study the activity of human SGLT1 and SGLT2. Chinese hamster ovary (CHO) Flp-In cells were stably transfected with pcDNA5-SGLT1 or pcDNA5-SGLT2 plasmid and maintained in hygromycin-selection Ham's F12 culture medium until hygromycin-resistant clones were developed. SGLT1 and SGLT2 gene expression was evaluated by relative real-time reverse transcription-polymerase chain reaction (RT-PCR) quantification, Western blotting, and immunocytochemical analysis. The clones with higher expression of SGLT1 and SGLT2 were used for transport studies using [14C]-methyl-alpha-D-glucopyranoside ([14C]AMG). The advantage of using the 96-well format is the low amount of radioactive compounds and inhibitory substances required, and its ability to establish reproducibility because repetition into the assay. This method represents an initial approach in the development of transport-based high-throughput screening in the search for inhibitors of glucose transport. The proposed method can easily be performed to yield quantitative data regarding key aspects of glucose membrane transport and kinetic studies of potential inhibitors of human SGLT1 and SGLT2.

  4. PTP1B targets the endosomal sorting machinery

    DEFF Research Database (Denmark)

    Stuible, Matthew; Abella, Jasmine V; Feldhammer, Matthew

    2010-01-01

    Dephosphorylation and endocytic down-regulation are distinct processes that together control the signaling output of a variety of receptor tyrosine kinases (RTKs). PTP1B can directly dephosphorylate several RTKs, but it can also promote activation of downstream pathways through largely unknown...... mechanisms. These positive signaling functions likely contribute to the tumor-promoting effect of PTP1B in mouse cancer models. Here, we have identified STAM2, an endosomal protein involved in sorting activated RTKs for lysosomal degradation, as a substrate of PTP1B. PTP1B interacts with STAM2 at defined...... phosphotyrosine sites, and knockdown of PTP1B expression augments STAM2 phosphorylation. Intriguingly, manipulating the expression and phosphorylation state of STAM2 did not have a general effect on epidermal growth factor (EGF)-induced EGF receptor trafficking, degradation, or signaling. Instead, phosphorylated...

  5. Effects of pancreatic digestive enzymes, sodium bicarbonate, and a proton pump inhibitor on steatorrhoea caused by pancreatic diseases.

    Science.gov (United States)

    Nakamura, T; Takebe, K; Kudoh, K; Ishii, M; Imamura, K; Kikuchi, H; Kasai, F; Tandoh, Y; Yamada, N; Arai, Y

    1995-01-01

    Forty-five patients with pancreatic steatorrhoea (27 with calcified pancreatitis, 13 with non-calcified pancreatitis, two with pancreaticoduodenectomy, one with total pancreatectomy, and two with pancreatic cancer) were divided into four groups and given the following medication for 2 to 4 weeks: 4 to 6 g/day of sodium bicarbonate (group I); 9 g/day of high-lipase pancreatin (lipase, 56,600 U/g, Fédération Internationale Pharmaceutique (FIP); group II); 12 to 24 tablets or 9.0 g of commercial pancreatic enzyme preparations (group III); or 50 mg of omeprazole (group IV). Faecal fat excretion was evaluated before and after drug administration. Faecal fat excretion was reduced by 2.9 g (range, 1.7 to 5.0 g) in group I; 8.8 g (range, 2.9 to 39.9 g) in group II; 10.8 g (range, 2.3 to 21.8 g) in group III; and 4.3 g (range, 3.6 to 5.6 g) in group IV. The pancreatic digestive enzyme preparation was more effective than sodium bicarbonate and agents that raise the pH of the upper small intestine (such as proton-pump inhibitors) in reducing faecal fat excretion. The results indicate that all of the preparations used are effective against mild pancreatic steatorrhoea. If the condition is more advanced, however, a massive dosage of pancreatic digestive enzyme and possibly the combined use of an agent to raise the pH of the upper small intestine are likely to be effective.

  6. Do sodium-glucose co-transporter-2 inhibitors prevent heart failure with a preserved ejection fraction by counterbalancing the effects of leptin? A novel hypothesis.

    Science.gov (United States)

    Packer, Milton

    2018-06-01

    Sodium-glucose co-transporter-2 (SGLT2) inhibitors reduce the risk of serious heart failure events in patients with type 2 diabetes, but little is known about mechanisms that might mediate this benefit. The most common heart failure phenotype in type 2 diabetes is obesity-related heart failure with a preserved ejection fraction (HFpEF). It has been hypothesized that the synthesis of leptin in this disorder leads to sodium retention and plasma volume expansion as well as to cardiac and renal inflammation and fibrosis. Interestingly, leptin-mediated neurohormonal activation appears to enhance the expression of SGLT2 in the renal tubules, and SGLT2 inhibitors exert natriuretic actions at multiple renal tubular sites in a manner that can oppose the sodium retention produced by leptin. In addition, SGLT2 inhibitors reduce the accumulation and inflammation of perivisceral adipose tissue, thus minimizing the secretion of leptin and its paracrine actions on the heart and kidneys to promote fibrosis. Such fibrosis probably contributes to the impairment of cardiac distensibility and glomerular function that characterizes obesity-related HFpEF. Ongoing clinical trials with SGLT2 inhibitors in heart failure are positioned to confirm or refute the hypothesis that these drugs may favourably influence the course of obesity-related HFpEF by their ability to attenuate the secretion and actions of leptin. © 2018 John Wiley & Sons Ltd.

  7. Euglycemic Diabetic Ketoacidosis with Elevated Acetone in a Patient Taking a Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitor.

    Science.gov (United States)

    Andrews, Tory J; Cox, Robert D; Parker, Christina; Kolb, James

    2017-02-01

    Sodium-glucose cotransporter-2 (SGLT2) inhibitor medications are a class of antihyperglycemic agents that increase urinary glucose excretion by interfering with the reabsorption of glucose in the proximal renal tubules. In May of 2015, the U.S. Food and Drug Administration released a warning concerning a potential increased risk of ketoacidosis and ketosis in patients taking these medications. We present a case of a 57-year-old woman with type 2 diabetes mellitus taking a combination of canagliflozin and metformin who presented with progressive altered mental status over the previous 2 days. Her work-up demonstrated a metabolic acidosis with an anion gap of 38 and a venous serum pH of 7.08. The serum glucose was 168 mg/dL. The urinalysis showed glucose > 500 mg/dL and ketones of 80 mg/dL. Further evaluation demonstrated an elevated serum osmolality of 319 mOsm/kg and an acetone concentration of 93 mg/dL. She was treated with intravenous insulin and fluids, and the metabolic abnormalities and her altered mental status resolved within 36 h. This was the first episode of diabetic ketoacidosis (DKA) for this patient. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Diabetic patients on SGLT2 inhibitor medications are at risk for ketoacidosis. Due to the renal glucose-wasting properties of these drugs, they may present with ketoacidosis with only mild elevations in serum glucose, potentially complicating the diagnosis. Acetone is one of the three main ketone bodies formed during DKA and it may be present at considerable concentrations, contributing to the serum osmolality. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Inhibitors of glutamate dehydrogenase block sodium-dependent glutamate uptake in rat brain membranes

    Directory of Open Access Journals (Sweden)

    Brendan S Whitelaw

    2013-09-01

    Full Text Available We recently found evidence for anatomic and physical linkages between the astroglial Na+-dependent glutamate transporters (GLT-1/EAAT2 and GLAST/EAAT1 and mitochondria. In these same studies, we found that the glutamate dehydrogenase (GDH inhibitor, epigallocatechin-monogallate (EGCG, inhibits both glutamate oxidation and Na+-dependent glutamate uptake in astrocytes. In the present study, we extend this finding by exploring the effects of EGCG on Na+-dependent L-[3H]-glutamate (Glu uptake in crude membranes (P2 prepared from rat brain cortex. In this preparation, uptake is almost exclusively mediated by GLT-1. EGCG inhibited L-[3H]-Glu uptake in cortical membranes with an IC50 value of 230 µM. We also studied the effects of two additional inhibitors of GDH, hexachlorophene (HCP and bithionol (BTH. Both of these compounds also caused concentration-dependent inhibition of glutamate uptake in cortical membranes. Pre-incubating with HCP for up to 15 min had no greater effect than that observed with no pre-incubation, showing that the effects occur rapidly. HCP decreased the Vmax for glutamate uptake without changing the Km, consistent with a non-competitive mechanism of action. EGCG, HCP, and BTH also inhibited Na+-dependent transport of D-[3H]-aspartate (Asp, a non-metabolizable substrate, and [3H]-γ-aminobutyric acid (GABA. In contrast to the forebrain, glutamate uptake in crude cerebellar membranes (P2 is likely mediated by GLAST (EAAT1. Therefore, the effects of these compounds were examined in cerebellar membranes. In this region, none of these compounds had any effect on uptake of either L-[3H]-Glu or D-[3H]-Asp, but they all inhibited [3H]-GABA uptake. Together these studies suggest that GDH is preferentially required for glutamate uptake in forebrain as compared to cerebellum, and GDH may be required for GABA uptake as well. They also provide further evidence for a functional linkage between glutamate transport and mitochondria.

  9. High doses of the histone deacetylase inhibitor sodium butyrate trigger a stress-like response.

    Science.gov (United States)

    Gagliano, Humberto; Delgado-Morales, Raul; Sanz-Garcia, Ancor; Armario, Antonio

    2014-04-01

    The hypothalamic-pituitary-adrenal (HPA) axis is activated by a wide range of stimuli, including drugs. Here we report that in male rats, a dose of sodium butyrate (NaBu) that is typically used to inhibit histone deacetylation (1200 mg/kg) increased the peripheral levels of HPA hormones and glucose. In a further experiment, we compared the effects of two different doses of NaBu (200 and 1200 mg/kg) and equimolar saline solutions on peripheral neuroendocrine markers and brain c-Fos expression to demonstrate a specific stress-like effect of NaBu that is not related to hypertonicity and to localise putatively involved brain areas. Only the high dose of NaBu increased the plasma levels of stress markers. The equimolar (hypertonic) saline solution also activated the HPA axis and the c-Fos expression in the paraventricular nucleus of the hypothalamus (PVN), a key area for the control of the HPA axis, but the effects were of a lower magnitude than those of NaBu. Regarding other brain areas, group differences in c-Fos expression were not observed in the medial prefrontal cortex or the medial amygdala, but they were observed in the central amygdala and the lateral ventral septum. However, only the latter area of the NaBu group showed enhanced c-Fos expression that was significantly higher than that after hypertonic saline. The present data indicate that high doses of NaBu appear to act as a pharmacological stressor, and this fact should be taken into account when using this drug to study the role of epigenetic processes in learning and emotional behaviour. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Response of copper deficient rats to inhibitors of renal sodium reabsorption

    Energy Technology Data Exchange (ETDEWEB)

    Noordewier, B.; Saari, J.T. (Northwestern College, Orange City, IA (United States) USDA/ARS, Grand Forks, ND (United States))

    1991-03-11

    This study examined the effects of furosemide (Furo), a Loop diuretic, and amiloride (Am), a potassium (K)-sparing diuretic, on the excretion of sodium (Na) and K in copper-adequate (CuAdeq) and copper-deficient (CuDef) rats. Weanling male Sprague Dawley rats were fed a CuDef or CuAdeq diet ad libitum and given deionized water to drink. After 5 weeks on the diets, rats were assigned to one of four treatment regimens: Furo, Am or Furo + Am. Rats were anesthetized and electrolyte excretion was measured in 2 {times} 15 min control periods followed by 3 {times} 15 min treatment periods. Furo increased Na excretion in a dose dependent manner in both the CuAdeq and the CuDef rats. The response of the CuAdeq rats was slightly greater than that of the CuDef rats in each of the 3 treatment groups in which Furo was given. K excretion following Furo increased to the same extent in the CuAdeq and CuDef rats. The natriuretic response to Am alone was slightly greater in the CuDef than the CuAdeq rats. The antikaliuretic response of the CuDef rats was similar to that of the CuAdeq rats whether Am was given alone or in combination with Furo. These data show that CuDef rats respond to Furo and Am in a manner which is similar to that of CuAdeq rats, this indicates that the sensitivity of the Na reabsorption mechanisms to inhibition by diuretics is not markedly affected by copper deficiency.

  11. Volatile phenolics in Teran PTP red wine

    Directory of Open Access Journals (Sweden)

    Helena BAŠA ČESNIK

    2016-04-01

    Full Text Available The volatile phenolics, 4-ethylphenol, 4-vinylphenol, 4-ethylguaiacol and 4-vinylguaiacol were quantified in Teran PTP wines that were produced in the Kras winegrowing district. The compounds were determined by using gas chromatography coupled with mass spectrometry after extraction with diethylether. Three years monitoring (2011, 2012, 2013 vintages showed that all four undesirable compounds were identified in Teran PTP wines, however their content did not influence significantly the sensory characteristics of the wine. The average contents gained over the three-year period (2011-2013; n=82 were 153±193 µg L-1 for 4-ethylphenol, 1265±682 µg L-1 for 4-vinylphenol, 69±94 µg L-1 for 4-ethylguaiacol and 128±106 µg L-1 for 4-vinylguaiacol. 7.3 % of samples showed contents of 4-ethylphenol above the odour threshold values. For 4-vinylphenol, 4-ethylguaiacol and 4-vinylguaiacol that percentage was 98.8 %, 25.6 % and 91.5 %, respectively.

  12. Concise synthesis and PTP1B inhibitory activity of (R)- and (S)-dihydroresorcylide.

    Science.gov (United States)

    Jiang, Cheng-Shi; Zhang, Li; Gong, Jing-Xu; Li, Jing-Ya; Yao, Li-Gong; Li, Jia; Guo, Yue-Wei

    2017-12-01

    The present study was designed to develop a concise synthetic route for macrolide, with the purpose of confirming the absolute configuration of natural dihydroresorcylide (1) and making it more easily accessible for biological evaluation. The absolute configuration of C-3 in natural 1 was revised to be R by comparison of the rotation sign of synthetic (R)- and (S)-1. The synthetic (R)-1 was found to be a novel highly specific PTP1B inhibitor with an IC 50 value of 17.06 μM.

  13. Serotonin suppresses β-casein expression via PTP1B activation in human mammary epithelial cells.

    Science.gov (United States)

    Chiba, Takeshi; Maeda, Tomoji; Sanbe, Atsushi; Kudo, Kenzo

    2016-04-22

    Serotonin (5-hydroxytriptamine, 5-HT) has an important role in milk volume homeostasis within the mammary gland during lactation. We have previously shown that the expression of β-casein, a differentiation marker in mammary epithelial cells, is suppressed via 5-HT-mediated inhibition of signal transduction and activator of transcription 5 (STAT5) phosphorylation in the human mammary epithelial MCF-12A cell line. In addition, the reduction of β-casein in turn was associated with 5-HT7 receptor expression in the cells. The objective of this study was to determine the mechanisms underlying the 5-HT-mediated suppression of β-casein and STAT5 phosphorylation. The β-casein level and phosphorylated STAT5 (pSTAT5)/STAT5 ratio in the cells co-treated with 5-HT and a protein kinase A (PKA) inhibitor (KT5720) were significantly higher than those of cells treated with 5-HT alone. Exposure to 100 μM db-cAMP for 6 h significantly decreased the protein levels of β-casein and pSTAT5 and the pSTAT5/STAT5 ratio, and significantly increased PTP1B protein levels. In the cells co-treated with 5-HT and an extracellular signal-regulated kinase1/2 (ERK) inhibitor (FR180294) or Akt inhibitor (124005), the β-casein level and pSTAT5/STAT5 ratio were equal to those of cells treated with 5-HT alone. Treatment with 5-HT significantly induced PTP1B protein levels, whereas its increase was inhibited by KT5720. In addition, the PTP1B inhibitor sc-222227 increased the expression levels of β-casein and the pSTAT5/STAT5 ratio. Our observations indicate that PTP1B directly regulates STAT5 phosphorylation and that its activation via the cAMP/PKA pathway downstream of the 5-HT7 receptor is involved in the suppression of β-casein expression in MCF-12A cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Benefits and Harms of Sodium-Glucose Co-Transporter 2 Inhibitors in Patients with Type 2 Diabetes

    DEFF Research Database (Denmark)

    Storgaard, Heidi; Gluud, Lise L; Bennett, Cathy

    2016-01-01

    OBJECTIVE: Sodium-glucose co-transporter 2 inhibitors (SGLT2-i) are a novel drug class for the treatment of diabetes. We aimed at describing the maximal benefits and risks associated with SGLT2-i for patients with type 2 diabetes. DESIGN: Systematic review and meta-analysis. DATA SOURCES AND STUDY......, ketoacidosis and CVD. Secondary outcomes were fasting plasma glucose, body weight, blood pressure, heart rate, lipids, liver function tests, creatinine and adverse events including infections. The quality of the evidence was assessed using GRADE. RESULTS: Meta-analysis of 34 RCTs with 9,154 patients showed...... to low quality evidence). Analysis of 12 RCTs found a beneficial effect of SGLT2-i on HbA1c compared with OAD (-0.20%, -0.28 to -0.13%; moderate quality evidence). CONCLUSION: This review includes a large number of patients with type 2 diabetes and found that SGLT2-i reduces HbA1c with a notable...

  15. Hemodynamic and renal implications of sodium-glucose cotransporter- 2 inhibitors in type 2 diabetes mellitus.

    Science.gov (United States)

    Tejedor Jorge, Alberto

    2016-11-01

    In DM2, there is increased expression of the proximal glucose transporter SGLT2. The increased glucose reabsorption from the urine to the proximal tubule and subsequently to the bloodstream, has three direct effects on the prognosis of patients with DM2: a) it increases the daily glucose load by raising the renal threshold for glucose, thus augmenting requirements for oral antidiabetics and insulin. This progressive increase occurs throughout the course of the disease and in parallel with the increase in renal mass (renal hypertrophy); b) because of the greater glucose reabsorption, glycosuria is lower than the level corresponding to glycaemia, decreasing the stimulus on the tubuloglomerular feedback system of the distal nephron. As a result, the glomerular vasodilation caused by hyperglycaemia is not arrested, maintaining glomerular hyperfiltration, and c) the excess glucose transported to the proximal tubular cells modifies their redox status, increasing local production of glycosylating products and activating local production of proinflammatory and profibrotic proliferative mediators. These mediators are responsible for the direct free radical damage to proximal tubular cells, for increased SGLT2 expression, increased production of collagen IV and extracellular matrix, and activation of monocyte/macrophages able to cause endothelial injury. The use of SGLT2 inhibitors not only reduces the reabsorption of glucose from the glomerular filtrate back into the circulationthus improving metabolic control in diabetesbut also restores tubuloglomerular feedback by increasing glycosuria and distal urinary flow. However, the most notable effect is due to inhibition of glucose entry to the proximal tubular cells. Glycosuria is toxic to the kidney: it harms glucosetransporting cells, that is, the proximal cells, which contain SGLT2. In animal models, SGLT2 inhibition reduces local production of oxygen-free radicals, the formation of mesangial matrix and collagen IV

  16. Ipragliflozin and other sodium-glucose cotransporter-2 (SGLT2) inhibitors in the treatment of type 2 diabetes: preclinical and clinical data.

    Science.gov (United States)

    Kurosaki, Eiji; Ogasawara, Hideaki

    2013-07-01

    Sodium-glucose cotransporter-2 (SGLT2) is expressed in the proximal tubules of the kidneys and plays a key role in renal glucose reabsorption. A novel class of antidiabetic medications, SGLT2-selective inhibitors attempt to improve glycemic control in diabetics by preventing glucose from being reabsorbed through SGLT2 and re-entering circulation. Ipragliflozin is an SGLT2 inhibitor in Phase 3 clinical development for the treatment of type 2 diabetes mellitus (T2DM). In this review, we summarize recent animal and human studies on ipragliflozin and other SGLT2 inhibitors including dapagliflozin, canagliflozin, empagliflozin, tofogliflozin, and luseogliflozin. These agents all show potent and selective SGLT2 inhibition in vitro and reduce blood glucose levels and HbA1c in both diabetic animal models and patients with T2DM. SGLT2 inhibitors offer several advantages over other classes of hypoglycemic agents. Due to their insulin-independent mode of action, SGLT2 inhibitors provide steady glucose control without major risk for hypoglycemia and may also reverse β-cell dysfunction and insulin resistance. Other favorable effects of SGLT2 inhibitors include a reduction in both body weight and blood pressure. SGLT2 inhibitors are safe and well tolerated and can easily be combined with other classes of antidiabetic medications to achieve tighter glycemic control. The long-term safety and efficacy of these agents are under evaluation. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Sodium-glucose cotransporter 2 (SGLT2) inhibitors and fracture risk in patients with type 2 diabetes mellitus: A meta-analysis.

    Science.gov (United States)

    Ruanpeng, Darin; Ungprasert, Patompong; Sangtian, Jutarat; Harindhanavudhi, Tasma

    2017-09-01

    Sodium-glucose cotransporter 2 (SGLT2) inhibitors could potentially alter calcium and phosphate homeostasis and may increase the risk of bone fracture. The current meta-analysis was conducted to investigate the fracture risk among patients with type 2 diabetes mellitus treated with SGLT2 inhibitors. Randomized controlled trials that compared the efficacy of SGLT2 inhibitors to placebo were identified. The risk ratios of fracture among patients who received SGLT2 inhibitors versus placebo were extracted from each study. Pooled risk ratios and 95% confidence intervals were calculated using a random-effect, Mantel-Haenszel analysis. A total of 20 studies with 8286 patients treated with SGLT2 inhibitors were included. The pooled risk ratio of bone fracture in patients receiving SGLT2 inhibitors versus placebo was 0.67 (95% confidence interval, 0.42-1.07). The pooled risk ratio for canagliflozin, dapagliflozin, and empagliflozin was 0.66 (95% confidence interval, 0.37-1.19), 0.84 (95% confidence interval, 0.22-3.18), and 0.57 (95% confidence interval, 0.20-1.59), respectively. Increased risk of bone fracture among patients with type 2 diabetes mellitus treated with SGLT2 inhibitors compared with placebo was not observed in this meta-analysis. However, the results were limited by short duration of treatment/follow-up and low incidence of the event of interest. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Metabolic and hemodynamic effects of sodium-dependent glucose cotransporter 2 inhibitors on cardio-renal protection in the treatment of patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Kashiwagi, Atsunori; Maegawa, Hiroshi

    2017-07-01

    The specific sodium-glucose cotransporter 2 inhibitors (SGLT2 inhibitors) inhibit glucose reabsorption in proximal renal tubular cells, and both fasting and postprandial glucose significantly decrease because of urinary glucose loss. As a result, pancreatic β-cell function and peripheral insulin action significantly improve with relief from glucose toxicity. Furthermore, whole-body energy metabolism changes to relative glucose deficiency and triggers increased lipolysis in fat cells, and fatty acid oxidation and then ketone body production in the liver during treatment with SGLT2 inhibitors. In addition, SGLT2 inhibitors have profound hemodynamic effects including diuresis, dehydration, weight loss and lowering blood pressure. The most recent findings on SGLT2 inhibitors come from results of the Empagliflozin, Cardiovascular Outcomes and Mortality in Type 2 Diabetes trial. SGLT2 inhibitors exert extremely unique and cardio-renal protection through metabolic and hemodynamic effects, with long-term durability on the reduction of blood glucose, bodyweight and blood pressure. Although a site of action of SGLT2 inhibitors is highly specific to inhibit renal glucose reabsorption, whole-body energy metabolism, and hemodynamic and renal functions are profoundly modulated during the treatment of SGLT2 inhibitors. Previous studies suggest multifactorial clinical benefits and safety concerns of SGLT2 inhibitors. Although ambivalent clinical results of this drug are still under active discussion, the present review summarizes promising recent evidence on the cardio-renal and metabolic benefits of SGLT2 inhibitors in the treatment of type 2 diabetes. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  19. Non toxic biodegradable cationic gemini surfactants as novel corrosion inhibitor for mild steel in hydrochloric acid medium and synergistic effect of sodium salicylate: Experimental and theoretical approach

    Energy Technology Data Exchange (ETDEWEB)

    Mobin, Mohammad, E-mail: drmmobin@hotmail.com; Aslam, Ruby; Aslam, Jeenat

    2017-04-15

    Two biodegradable, non toxic cationic gemini surfactants having ester linkage in the spacer namely, C{sub m}H{sub 2m+1}(CH{sub 3}){sub 2}N{sup +}(CH{sub 2}COOCH{sub 2}){sub 2}N{sup +}(CH{sub 3}){sub 2}C{sub m}H{sub 2m+1}.2Cl{sup -} (m-E2-m, m = 12, 14), were synthesized and characterized using elemental analysis, FT-IR and {sup 1}H-NMR. The corrosion inhibition performance of synthesized compounds separately and in combination with sodium salicylate (SS), along with the nature and stability of inhibitive film, for mild steel (MS) in 1 M HCl solution at 30–60 °C was evaluated using weight loss, potentiodynamic polarization, EIS, UV–visible spectroscopy, FTIR, SEM/EDAX, TGA and quantum chemical calculations. Results of the studies confirm m-E2-m as effective corrosion inhibitor for MS in HCl; the inhibition effect being synergistically strengthened in presence of SS. The synthesized compounds act as mixed type inhibitor and adsorb on MS surface in accordance with Langmuir adsorption isotherm. Experimentally measured inhibition efficiencies are correlated with the molecular parameters obtained using PM6 semi-empirical method. Empirical results are in good agreement with the theoretical predictions. - Graphical abstract: (a) Optimized geometry of studied inhibitors by PM6 method with (b) HOMO and (c) LUMO orbital occupation. - Highlights: • Environment friendly gemini surfactants were studied as corrosion inhibitor for MS. • Studied compounds act as good inhibitor for MS corrosion in 1 M HCl at 30–60 °C. • η of inhibitors is synergistically increased in presence of sodium salicylate. • The synthesized cationic gemini surfactants act as mixed-type inhibitor. • Experimentally obtained results are in good agreement with theoretical results.

  20. PTP1B Inhibitory and Anti-Inflammatory Effects of Secondary Metabolites Isolated from the Marine-Derived Fungus Penicillium sp. JF-55

    Directory of Open Access Journals (Sweden)

    Youn-Chul Kim

    2013-04-01

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B plays a major role in the negative regulation of insulin signaling, and is thus considered as an attractive therapeutic target for the treatment of diabetes. Bioassay-guided investigation of the methylethylketone extract of marine-derived fungus Penicillium sp. JF-55 cultures afforded a new PTP1B inhibitory styrylpyrone-type metabolite named penstyrylpyrone (1, and two known metabolites, anhydrofulvic acid (2 and citromycetin (3. Compounds 1 and 2 inhibited PTP1B activity in a dose-dependent manner, and kinetic analyses of PTP1B inhibition suggested that these compounds inhibited PTP1B activity in a competitive manner. In an effort to gain more biological potential of the isolated compounds, the anti-inflammatory effects of compounds 1–3 were also evaluated. Among the tested compounds, only compound 1 inhibited the production of NO and PGE2, due to the inhibition of the expression of iNOS and COX-2. Penstyrylpyrone (1 also reduced TNF-α and IL-1β production, and these anti-inflammatory effects were shown to be correlated with the suppression of the phosphorylation and degradation of IκB-α, NF-κB nuclear translocation, and NF-κB DNA binding activity. In addition, using inhibitor tin protoporphyrin (SnPP, an inhibitor of HO-1, it was verified that the inhibitory effects of penstyrylpyrone (1 on the pro-inflammatory mediators and NF-κB DNA binding activity were associated with the HO-1 expression. Therefore, these results suggest that penstyrylpyrone (1 suppresses PTP1B activity, as well as the production of pro-inflammatory mediators via NF-κB pathway, through expression of anti-inflammatory HO-1.

  1. PTP1B Inhibitory and Anti-Inflammatory Effects of Secondary Metabolites Isolated from the Marine-Derived Fungus Penicillium sp. JF-55

    Science.gov (United States)

    Lee, Dong-Sung; Jang, Jae-Hyuk; Ko, Wonmin; Kim, Kyoung-Su; Sohn, Jae Hak; Kang, Myeong-Suk; Ahn, Jong Seog; Kim, Youn-Chul; Oh, Hyuncheol

    2013-01-01

    Protein tyrosine phosphatase 1B (PTP1B) plays a major role in the negative regulation of insulin signaling, and is thus considered as an attractive therapeutic target for the treatment of diabetes. Bioassay-guided investigation of the methylethylketone extract of marine-derived fungus Penicillium sp. JF-55 cultures afforded a new PTP1B inhibitory styrylpyrone-type metabolite named penstyrylpyrone (1), and two known metabolites, anhydrofulvic acid (2) and citromycetin (3). Compounds 1 and 2 inhibited PTP1B activity in a dose-dependent manner, and kinetic analyses of PTP1B inhibition suggested that these compounds inhibited PTP1B activity in a competitive manner. In an effort to gain more biological potential of the isolated compounds, the anti-inflammatory effects of compounds 1–3 were also evaluated. Among the tested compounds, only compound 1 inhibited the production of NO and PGE2, due to the inhibition of the expression of iNOS and COX-2. Penstyrylpyrone (1) also reduced TNF-α and IL-1β production, and these anti-inflammatory effects were shown to be correlated with the suppression of the phosphorylation and degradation of IκB-α, NF-κB nuclear translocation, and NF-κB DNA binding activity. In addition, using inhibitor tin protoporphyrin (SnPP), an inhibitor of HO-1, it was verified that the inhibitory effects of penstyrylpyrone (1) on the pro-inflammatory mediators and NF-κB DNA binding activity were associated with the HO-1 expression. Therefore, these results suggest that penstyrylpyrone (1) suppresses PTP1B activity, as well as the production of pro-inflammatory mediators via NF-κB pathway, through expression of anti-inflammatory HO-1. PMID:23612372

  2. Targeting Type 2 Diabetes with C-Glucosyl Dihydrochalcones as Selective Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: Synthesis and Biological Evaluation.

    Science.gov (United States)

    Jesus, Ana R; Vila-Viçosa, Diogo; Machuqueiro, Miguel; Marques, Ana P; Dore, Timothy M; Rauter, Amélia P

    2017-01-26

    Inhibiting glucose reabsorption by sodium glucose co-transporter proteins (SGLTs) in the kidneys is a relatively new strategy for treating type 2 diabetes. Selective inhibition of SGLT2 over SGLT1 is critical for minimizing adverse side effects associated with SGLT1 inhibition. A library of C-glucosyl dihydrochalcones and their dihydrochalcone and chalcone precursors was synthesized and tested as SGLT1/SGLT2 inhibitors using a cell-based fluorescence assay of glucose uptake. The most potent inhibitors of SGLT2 (IC 50 = 9-23 nM) were considerably weaker inhibitors of SGLT1 (IC 50 = 10-19 μM). They showed no effect on the sodium independent GLUT family of glucose transporters, and the most potent ones were not acutely toxic to cultured cells. The interaction of a C-glucosyl dihydrochalcone with a POPC membrane was modeled computationally, providing evidence that it is not a pan-assay interference compound. These results point toward the discovery of structures that are potent and highly selective inhibitors of SGLT2.

  3. Sodium glucose co-transporter 2 inhibitors: blocking renal tubular reabsorption of glucose to improve glycaemic control in patients with diabetes.

    Science.gov (United States)

    Jabbour, S A; Goldstein, B J

    2008-08-01

    The kidney plays a central role in the regulation of plasma glucose levels, although until recently this has not been widely appreciated or considered a target for therapeutic intervention. The sodium glucose co-transporter type 2 (SGLT2) located in the plasma membrane of cells lining the proximal tubule mediates the majority of renal glucose reabsorption from the tubular fluid, which normally prevents the loss of glucose in the urine. Competitive inhibitors of SGLT2 that provoke the renal excretion of glucose have been discovered, thereby providing a unique mechanism to potentially lower the elevated blood glucose levels in patients with diabetes. To explore the physiology of SGLT2 action and discuss several SGLT2 inhibitors that have entered early clinical development. All publicly available data were identified by searching the internet for 'SGLT2' and 'SGLT2 inhibitor' through 1 November 2007. Published articles, press releases and abstracts presented at national and international meetings were considered. Sodium glucose co-transporter type 2 inhibition is a novel treatment option for diabetes, which has been studied in preclinical models and a few potent and selective SGLT2 inhibitors have been reported and are currently in clinical development. These agents appear to be safe and generally well tolerated, and will potentially be a beneficial addition to the growing battery of oral antihyperglycaemic agents.

  4. Evolution of the corrosion process of AA 2024-T3 in an alkaline NaCl solution with sodium dodecylbenzenesulfonate and lanthanum chloride inhibitors

    International Nuclear Information System (INIS)

    Zhou, Biner; Wang, Yishan; Zuo, Yu

    2015-01-01

    Highlights: • Inhibition effect of LaCl 3 and SDBS for AA 2024 in NaCl solution (pH 10) was studied. • At the beginning the active polarization behavior of the alloy changed to passivation. • The passive behavior gradually disappeared with time and pitting happened at S-phases. • The compounded inhibitors showed good inhibition but cannot totally inhibit pitting. • The adsorption of SDBS played the key role for inhibition to the corrosion process. - Abstract: The evolution of the corrosion process of AA 2024-T3 in 0.58 g L −1 NaCl solution (pH 10) with sodium dodecylbenzenesulfonate (SDBS) and lanthanum chloride inhibitors was studied with electrochemical and surface analysis methods. With the addition of the compounded LaCl 3 and SDBS inhibitors, in the early stage the polarization behavior of AA 2024-T3 changed from active corrosion to passivation, and both the general corrosion and pitting corrosion were inhibited. However, with the immersion time extended, the passive behavior gradually disappeared and pitting happened at the Cu-rich phases. After 24 h immersion, the compounded inhibitors still showed good inhibition for general corrosion, but the polarization curve again presented the characteristic similar to active polarization. The compounded inhibitors also inhibited the pitting corrosion to some extent. The acting mechanism of the inhibitors SDBS and La 3 Cl on the corrosion process of AA 2024-T3 in the test solution was discussed.

  5. PTP1B regulates Eph receptor function and trafficking

    OpenAIRE

    Nievergall, Eva; Janes, Peter W.; Stegmayer, Carolin; Vail, Mary E.; Haj, Fawaz G.; Teng, Shyh Wei; Neel, Benjamin G.; Bastiaens, Philippe I.; Lackmann, Martin

    2010-01-01

    Eph receptors orchestrate cell positioning during normal and oncogenic development. Their function is spatially and temporally controlled by protein tyrosine phosphatases (PTPs), but the underlying mechanisms are unclear and the identity of most regulatory PTPs are unknown. We demonstrate here that PTP1B governs signaling and biological activity of EphA3. Changes in PTP1B expression significantly affect duration and amplitude of EphA3 phosphorylation and biological function, whereas confocal ...

  6. Computational revelation of binding mechanisms of inhibitors to endocellular protein tyrosine phosphatase 1B using molecular dynamics simulations.

    Science.gov (United States)

    Yan, Fangfang; Liu, Xinguo; Zhang, Shaolong; Su, Jing; Zhang, Qinggang; Chen, Jianzhong

    2017-11-06

    Endocellular protein tyrosine phosphatase 1B (PTP1B) is one of the most promising target for designing and developing drugs to cure type-II diabetes and obesity. Molecular dynamics (MD) simulations combined with molecular mechanics generalized Born surface area (MM-GBSA) and solvated interaction energy methods were applied to study binding differences of three inhibitors (ID: 901, 941, and 968) to PTP1B, the calculated results show that the inhibitor 901 has the strongest binding ability to PTP1B among the current inhibitors. Principal component (PC) analysis was also carried out to investigate the conformational change of PTP1B, and the results indicate that the associations of inhibitors with PTP1B generate a significant effect on the motion of the WPD-loop. Free energy decomposition method was applied to study the contributions of individual residues to inhibitor bindings, it is found that three inhibitors can generate hydrogen bonding interactions and hydrophobic interactions with different residues of PTP1B, which provide important forces for associations of inhibitors with PTP1B. This research is expected to give a meaningfully theoretical guidance to design and develop of effective drugs curing type-II diabetes and obesity.

  7. Long-term efficacy and safety of sodium-glucose cotransporter-2 inhibitors as add-on to metformin treatment in the management of type 2 diabetes mellitus

    Science.gov (United States)

    Li, Jian; Gong, Yanping; Li, Chunlin; Lu, Yanhui; Liu, Yu; Shao, Yinghong

    2017-01-01

    Abstract Background: Drug intensification is often required for patients with type 2 diabetes mellitus on stable metformin therapy. Among the potential candidates for a combination therapy, sodium-glucose transporter-2 (SGLT2) inhibitors have shown promising outcomes. This meta-analysis was performed to compare the efficacy and safety of SGLT2 inhibitors with non-SGLT2 combinations as add-on treatment to metformin. Methods: Literature search was carried out in multiple electronic databases for the acquisition of relevant randomized controlled trials (RCTs) by following a priori eligibility criteria. After the assessment of quality of the included RCTs, meta-analyses of mean differences or odds ratios (OR) were performed to achieve overall effect sizes of the changes from baseline in selected efficacy and safety endpoints reported in the individual studies. Between-studies heterogeneity was estimated with between-studies statistical heterogeneity (I2) index. Results: Six RCTs fulfilled the eligibility criteria. SGLT2 inhibitors as add-on to metformin treatment reduced % HbA1c significantly more than non-SGLT2 combinations after 52 weeks (P = .002) as well as after 104 weeks (P SGLT2 inhibitors also reduced fasting plasma glucose levels, body weight, systolic, and diastolic blood pressures after 52 weeks and 104 weeks significantly (P SGLT2 combinations. Incidence of hypoglycemia was significantly lower (P = .02) but incidence of suspected or confirmed genital tract infections was significantly higher (P SGLT2 inhibitors treated in comparison with non-SGLT2 combinations. Conclusion: As add-on to metformin treatment, SGLT2 inhibitors are found significantly more efficacious than non-SGLT2 inhibitor combinations in the management of type 2 diabetes mellitus, although, SGLT2 inhibitor therapy is associated with significantly higher incidence of suspected or confirmed genital tract infections. PMID:28682870

  8. Overexpression of protein tyrosine phosphatase-alpha (PTP-alpha) but not PTP-kappa inhibits translocation of GLUT4 in rat adipose cells

    DEFF Research Database (Denmark)

    Cong, L N; Chen, H; Li, Y

    1999-01-01

    Protein tyrosine phosphatases (PTPases) are likely to play important roles in insulin action. We recently demonstrated that the nontransmembrane PTPase PTP1B can act as a negative modulator of insulin-stimulated translocation of GLUT4. We now examine the role of PTP-alpha and PTP-kappa (two...... of cell surface GLUT4 in response to insulin and a threefold decrease in insulin sensitivity when compared with control cells expressing only tagged GLUT4. Co-overexpression of PTP-alpha and PTP1B did not have additive effects, suggesting that these PTPases share common substrates. Cells overexpressing...

  9. THE UNCOVERING OF A NOVEL REGULATORY MECHANISM FOR PLD2: FORMATION OF A TERNARY COMPLEX WITH PROTEIN TYROSINE PHOSPHATASE PTP1B AND GROWTH FACTOR RECEPTOR-BOUND PROTEIN GRB2

    Science.gov (United States)

    Horn, Jeff; Lopez, Isabel; Miller, Mill; Gomez-Cambronero, Julian

    2011-01-01

    The regulation of PLD2 activation is poorly understood at present. Transient transfection of COS-7 with a mycPLD2 construct results in elevated levels of PLD2 enzymatic activity and tyrosyl phosphorylation. To investigate whether this phosphorylation affects PLD2 enzymatic activity, anti-myc immunoprecipitates were treated with recombinant protein tyrosine phosphatase PTP1B. Surprisingly, lipase activity and PY levels both increased over a range of PTP1B concentrations. These increases occurred in parallel to a measurable PTP1B-associated phosphatase activity. Inhibitor studies demonstrated that an EGF-receptor type kinase is involved in phosphorylation. In a COS-7 cell line created in the laboratory that stably expressed myc-PLD2, PTP1B induced a robust (>6-fold) augmentation of myc-PLD2 phosphotyrosine content. The addition of growth factor receptor-bound protein 2 (Grb2) to cell extracts also elevated PY levels of myc-PLD (>10-fold). Systematic co-immunoprecipitation-immunoblotting experiments pointed at a physical association between PLD2, Grb2 and PTP1B in both physiological conditions and in overexpressed cells. This is the first report of a demonstration of the mammalian isoform PLD2 existing in a ternary complex with a protein tyrosine phosphatase, PTP1b, and the docking protein Grb2 which greatly enhances tyrosyl phosphorylation of the lipase. PMID:15896299

  10. Drug-drug interactions with sodium-glucose cotransporters type 2 (SGLT2) inhibitors, new oral glucose-lowering agents for the management of type 2 diabetes mellitus.

    Science.gov (United States)

    Scheen, André J

    2014-04-01

    Inhibitors of sodium-glucose cotransporters type 2 (SGLT2) reduce hyperglycaemia by decreasing renal glucose threshold and thereby increasing urinary glucose excretion. They are proposed as a novel approach for the management of type 2 diabetes mellitus. They have proven their efficacy in reducing glycated haemoglobin, without inducing hypoglycaemia, as monotherapy or in combination with various other glucose-lowering agents, with the add-on value of promoting some weight loss and lowering arterial blood pressure. As they may be used concomitantly with many other drugs, we review the potential drug-drug interactions (DDIs) regarding the three leaders in the class (dapagliglozin, canagliflozin and empagliflozin). Most of the available studies were performed in healthy volunteers and have assessed the pharmacokinetic interferences with a single administration of the SGLT2 inhibitor. The exposure [assessed by peak plasma concentrations (Cmax) and area under the concentration-time curve (AUC)] to each SGLT2 inhibitor tested was not significantly influenced by the concomitant administration of other glucose-lowering agents or cardiovascular agents commonly used in patients with type 2 diabetes. Reciprocally, these medications did not influence the pharmacokinetic parameters of dapagliflozin, canagliflozin or empagliflozin. Some modest changes were not considered as clinically relevant. However, drugs that could specifically interfere with the metabolic pathways of SGLT2 inhibitors [rifampicin, inhibitors or inducers of uridine diphosphate-glucuronosyltransferase (UGT)] may result in significant changes in the exposure of SGLT2 inhibitors, as shown for dapagliflozin and canagliflozin. Potential DDIs in patients with type 2 diabetes receiving chronic treatment with an SGLT2 inhibitor deserve further attention, especially in individuals treated with several medications or in more fragile patients with hepatic and/or renal impairment.

  11. PTP1B deficiency improves hypothalamic insulin sensitivity resulting in the attenuation of AgRP mRNA expression under high-fat diet conditions.

    Science.gov (United States)

    Sugiyama, Mariko; Banno, Ryoichi; Mizoguchi, Akira; Tominaga, Takashi; Tsunekawa, Taku; Onoue, Takeshi; Hagiwara, Daisuke; Ito, Yoshihiro; Morishita, Yoshiaki; Iwama, Shintaro; Goto, Motomitsu; Suga, Hidetaka; Arima, Hiroshi

    2017-06-17

    Hypothalamic insulin receptor signaling regulates energy balance and glucose homeostasis via agouti-related protein (AgRP). While protein tyrosine phosphatase 1B (PTP1B) is classically known to be a negative regulator of peripheral insulin signaling by dephosphorylating both insulin receptor β (IRβ) and insulin receptor substrate, the role of PTP1B in hypothalamic insulin signaling remains to be fully elucidated. In the present study, we investigated the role of PTP1B in hypothalamic insulin signaling using PTP1B deficient (KO) mice in vivo and ex vivo. For the in vivo study, hypothalamic insulin resistance induced by a high-fat diet (HFD) improved in KO mice compared to wild-type (WT) mice. Hypothalamic AgRP mRNA expression levels were also significantly decreased in KO mice independent of body weight changes. In an ex vivo study using hypothalamic organotypic cultures, insulin treatment significantly increased the phosphorylation of both IRβ and Akt in the hypothalamus of KO mice compared to WT mice, and also significantly decreased AgRP mRNA expression levels in KO mice. While incubation with inhibitors of phosphatidylinositol-3 kinase (PI3K) had no effect on basal levels of Akt phosphorylation, these suppressed insulin induction of Akt phosphorylation to almost basal levels in WT and KO mice. The inhibition of the PI3K-Akt pathway blocked the downregulation of AgRP mRNA expression in KO mice treated with insulin. These data suggest that PTP1B acts on the hypothalamic insulin signaling via the PI3K-Akt pathway. Together, our results suggest a deficiency of PTP1B improves hypothalamic insulin sensitivity resulting in the attenuation of AgRP mRNA expression under HFD conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Mitochondrial permeability transition pore inhibitors prevent ethanol-induced neuronal death in mice.

    Science.gov (United States)

    Lamarche, Frederic; Carcenac, Carole; Gonthier, Brigitte; Cottet-Rousselle, Cecile; Chauvin, Christiane; Barret, Luc; Leverve, Xavier; Savasta, Marc; Fontaine, Eric

    2013-01-18

    Ethanol induces brain injury by a mechanism that remains partly unknown. Mitochondria play a key role in cell death processes, notably through the opening of the permeability transition pore (PTP). Here, we tested the effect of ethanol and PTP inhibitors on mitochondrial physiology and cell viability both in vitro and in vivo. Direct addition of ethanol up to 100 mM on isolated mouse brain mitochondria slightly decreased oxygen consumption but did not affect PTP regulation. In comparison, when isolated from ethanol-treated (two doses of 2 g/kg, 2 h apart) 7-day-old mouse pups, brain mitochondria displayed a transient decrease in oxygen consumption but no change in PTP regulation or H2O2 production. Conversely, exposure of primary cultured astrocytes and neurons to 20 mM ethanol for 3 days led to a transient PTP opening in astrocytes without affecting cell viability and to a permanent PTP opening in 10 to 20% neurons with the same percentage of cell death. Ethanol-treated mouse pups displayed a widespread caspase-3 activation in neurons but not in astrocytes and dramatic behavioral alterations. Interestingly, two different PTP inhibitors (namely, cyclosporin A and nortriptyline) prevented both ethanol-induced neuronal death in vivo and ethanol-induced behavioral modifications. We conclude that PTP opening is involved in ethanol-induced neurotoxicity in the mouse.

  13. An overview of the effect of sodium glucose cotransporter 2 inhibitor monotherapy on glycemic and other clinical laboratory parameters in type 2 diabetes patients

    Directory of Open Access Journals (Sweden)

    Wang Y

    2016-07-01

    Full Text Available Yaowen Wang,1 Xueting Hu,2 Xueying Liu,3 Zengqi Wang2 1Department of Clinical Laboratory, Weifang People’s Hospital, 2Department of Clinical Laboratory, Weifang Traditional Chinese Hospital, Weifang, 3Department of Clinical Laboratory, The Third Hospital of Jinan, Jinan, People’s Republic of China Objectives: We aimed to determine the effect of sodium glucose cotransporter 2 (SGLT2 inhibitor monotherapy on glycemic and other clinical laboratory parameters versus other antidiabetic medications or placebo therapy in patients with type 2 diabetes mellitus. In addition, we aimed to investigate the risk of diabetic ketoacidosis associated with SGLT2 inhibitor therapy and evaluate its weight-sparing ability. Design: Meta-analysis. Materials and methods: PubMed and MEDLINE were searched to identify eligible studies up to December 2015. Randomized controlled trials that assessed the efficacy and safety of SGLT2 inhibitor monotherapy versus placebo therapy or active control were considered. The Cochrane Collaboration Risk of Bias Tool was used to evaluate quality and bias. The mean ­difference was used to evaluate the glycemic and other clinical laboratory parameters for SGLT2 inhibitor intervention versus control by drugs or placebo. Similarly, the risk ratio was used to assess adverse events, and the I2 was used to evaluate heterogeneity. Results: SGLT2 inhibitors significantly decreased glycated hemoglobin (HbA1c (P<0.001, weight (P<0.001, and the low-density lipoprotein/high-density lipoprotein ratio (P=0.03 compared with placebo therapy. No statistically significant changes were found in fasting plasma glucose, 2-hour postprandial glucose, or lipid parameters. Significant changes in the uric acid level were found for SGLT2 inhibitors versus placebo therapy (P=0.005 or active control (P<0.001. Although no significant change in levels of ketones occurred (P=0.93, patients receiving SGLT2 inhibitors were at greater risk of increased ketone bodies

  14. [Sodium-glucose co-transporter-2 inhibitors: from the bark of apple trees and familial renal glycosuria to the treatment of type 2 diabetes mellitus].

    Science.gov (United States)

    Mauricio, Dídac

    2013-09-01

    The therapeutic armamentarium for the treatment of hyperglycemia in type 2 diabetes mellitus is still inadequate. We are currently witnessing the introduction of a new mode of hypoglycemic treatment through induction of glycosuria to decrease the availability of the metabolic substrate, i.e. glucose. Clinical trials have shown that sodium-glucose co-transporter-2 (SGLT2) inhibitors are as efficacious as other oral hypoglycemic drugs. This article discusses the basic features of this new treatment concept and the efficacy and safety of this new drug group. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  15. Protein tyrosine phosphatase-PEST (PTP-PEST) regulates mast cell-activating signals in PTP activity-dependent and -independent manners.

    Science.gov (United States)

    Motohashi, Satoru; Koizumi, Karen; Honda, Reika; Maruyama, Atsuko; Palmer, Helen E F; Mashima, Keisuke

    2014-01-01

    Aggregation of the high-affinity IgE receptor (FcεRI) in mast cells leads to degranulation and production of numerous cytokines and lipid mediators that promote allergic inflammation. Tyrosine phosphorylation of proteins in response to FcεRI aggregation has been implicated in mast cell activation. Here, we determined the role of PTP-PEST (encoded by PTPN12) in the regulation of mast cell activation using the RBL-2H3 rat basophilic leukemia cell line as a model. PTP-PEST expression was significantly induced upon FcεRI-crosslinking, and aggregation of FcεRI induced the phosphorylation of PTP-PEST at Ser39, thus resulting in the suppression of PTP activity. By overexpressing a phosphatase-dead mutant (PTP-PEST CS) and a constitutively active mutant (PTP-PEST SA) in RBL-2H3 cells, we showed that PTP-PEST decreased degranulation and enhanced IL-4 and IL-13 transcription in FcεRI-crosslinked RBL-2H3 cells, but PTP activity of PTP-PEST was not necessary for this regulation. However, FcεRI-induced TNF-α transcription was increased by the overexpression of PTP-PEST SA and suppressed by the overexpression of PTP-PEST CS. Taken together, these results suggest that PTP-PEST is involved in the regulation of FcεRI-mediated mast cell activation through at least two different processes represented by PTP activity-dependent and -independent pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Involvement of protein tyrosine phosphatases BcPtpA and BcPtpB in regulation of vegetative development, virulence and multi-stress tolerance in Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Qianqian Yang

    Full Text Available Tyrosine phosphorylation and dephosphorylation have emerged as fundamentally important mechanisms of signal transduction and regulation in eukaryotic cells, governing many processes, but little has been known about their functions in filamentous fungi. In this study, we deleted two putative protein tyrosine phosphatase (PTP genes (BcPTPA and BcPTPB in Botrytis cinerea, encoding the orthologs of Saccharomyces cerevisiae Ptp2 and Ptp3, respectively. Although BcPtpA and BcPtpB have opposite functions in conidiation, they are essential for sclerotial formation in B. cinerea. BcPTPA and BcPTPB deletion mutants ΔBcPtpA-10 and ΔBcPtpB-4 showed significantly increased sensitivity to osmotic and oxidative stresses, and to cell wall damaging agents. Inoculation tests showed that both mutants exhibited dramatically decreased virulence on tomato leaves, apples and grapes. In S. cerevisiae, it has been shown that Ptp2 and Ptp3 negatively regulate the high-osmolarity glycerol (HOG pathway and the cell wall integrity (CWI pathway. Although both BcPtpA and BcPtpB were able to inactive Hog1 and Mpk1 in S. cerevisiae, in contrast to S. cerevisiae, they positively regulate phosphorylation of BcSak1 (the homologue of Hog1 and BcBmp3 (the homologue of Mpk1 in B. cinerea under stress conditions. These results demonstrated that functions of PTPs in B. cinerea are different from those in S. cerevisiae, and BcPtpA and BcPtpB play important roles in regulation of vegetative development, virulence and in adaptation to oxidative, osmotic and cell-wall damage stresses in B. cinerea.

  17. PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice

    Science.gov (United States)

    Zinker, Bradley A.; Rondinone, Cristina M.; Trevillyan, James M.; Gum, Rebecca J.; Clampit, Jill E.; Waring, Jeffrey F.; Xie, Nancy; Wilcox, Denise; Jacobson, Peer; Frost, Leigh; Kroeger, Paul E.; Reilly, Regina M.; Koterski, Sandra; Opgenorth, Terry J.; Ulrich, Roger G.; Crosby, Seth; Butler, Madeline; Murray, Susan F.; McKay, Robert A.; Bhanot, Sanjay; Monia, Brett P.; Jirousek, Michael R.

    2002-01-01

    The role of protein-tyrosine phosphatase 1B (PTP1B) in diabetes was investigated using an antisense oligonucleotide in ob/ob and db/db mice. PTP1B antisense oligonucleotide treatment normalized plasma glucose levels, postprandial glucose excursion, and HbA1C. Hyperinsulinemia was also reduced with improved insulin sensitivity. PTP1B protein and mRNA were reduced in liver and fat with no effect in skeletal muscle. Insulin signaling proteins, insulin receptor substrate 2 and phosphatidylinositol 3 (PI3)-kinase regulatory subunit p50α, were increased and PI3-kinase p85α expression was decreased in liver and fat. These changes in protein expression correlated with increased insulin-stimulated protein kinase B phosphorylation. The expression of liver gluconeogenic enzymes, phosphoenolpyruvate carboxykinase, and fructose-1,6-bisphosphatase was also down-regulated. These findings suggest that PTP1B modulates insulin signaling in liver and fat, and that therapeutic modalities targeting PTP1B inhibition may have clinical benefit in type 2 diabetes. PMID:12169659

  18. PTP1B-dependent regulation of receptor tyrosine kinase signaling by the actin-binding protein Mena.

    Science.gov (United States)

    Hughes, Shannon K; Oudin, Madeleine J; Tadros, Jenny; Neil, Jason; Del Rosario, Amanda; Joughin, Brian A; Ritsma, Laila; Wyckoff, Jeff; Vasile, Eliza; Eddy, Robert; Philippar, Ulrike; Lussiez, Alisha; Condeelis, John S; van Rheenen, Jacco; White, Forest; Lauffenburger, Douglas A; Gertler, Frank B

    2015-11-01

    During breast cancer progression, alternative mRNA splicing produces functionally distinct isoforms of Mena, an actin regulator with roles in cell migration and metastasis. Aggressive tumor cell subpopulations express Mena(INV), which promotes tumor cell invasion by potentiating EGF responses. However, the mechanism by which this occurs is unknown. Here we report that Mena associates constitutively with the tyrosine phosphatase PTP1B and mediates a novel negative feedback mechanism that attenuates receptor tyrosine kinase signaling. On EGF stimulation, complexes containing Mena and PTP1B are recruited to the EGFR, causing receptor dephosphorylation and leading to decreased motility responses. Mena also interacts with the 5' inositol phosphatase SHIP2, which is important for the recruitment of the Mena-PTP1B complex to the EGFR. When Mena(INV) is expressed, PTP1B recruitment to the EGFR is impaired, providing a mechanism for growth factor sensitization to EGF, as well as HGF and IGF, and increased resistance to EGFR and Met inhibitors in signaling and motility assays. In sum, we demonstrate that Mena plays an important role in regulating growth factor-induced signaling. Disruption of this attenuation by Mena(INV) sensitizes tumor cells to low-growth factor concentrations, thereby increasing the migration and invasion responses that contribute to aggressive, malignant cell phenotypes. © 2015 Hughes, Oudin, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. Pharmacodynamics, efficacy and safety of sodium-glucose co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus.

    Science.gov (United States)

    Scheen, André J

    2015-01-01

    Inhibitors of sodium-glucose co-transporter type 2 (SGLT2) are proposed as a novel approach for the management of type 2 diabetes mellitus (T2DM). Several compounds are already available in many countries (dapagliflozin, canagliflozin, empagliflozin and ipragliflozin) and some others are in a late phase of development. The available SGLT2 inhibitors share similar pharmacokinetic characteristics, with a rapid oral absorption, a long elimination half-life allowing once-daily administration, an extensive hepatic metabolism mainly via glucuronidation to inactive metabolites, the absence of clinically relevant drug-drug interactions and a low renal elimination as parent drug. SGLT2 co-transporters are responsible for reabsorption of most (90 %) of the glucose filtered by the kidneys. The pharmacological inhibition of SGLT2 co-transporters reduces hyperglycaemia by decreasing renal glucose threshold and thereby increasing urinary glucose excretion. The amount of glucose excreted in the urine depends on both the level of hyperglycaemia and the glomerular filtration rate. Results of numerous placebo-controlled randomised clinical trials of 12-104 weeks duration have shown significant reductions in glycated haemoglobin (HbA1c), resulting in a significant increase in the proportion of patients reaching HbA1c targets, and a significant lowering of fasting plasma glucose when SGLT2 inhibitors were administered as monotherapy or in addition to other glucose-lowering therapies including insulin in patients with T2DM. In head-to-head trials of up to 2 years, SGLT2 inhibitors exerted similar glucose-lowering activity to metformin, sulphonylureas or sitagliptin. The durability of the glucose-lowering effect of SGLT2 inhibitors appears to be better; however, this remains to be more extensively investigated. The risk of hypoglycaemia was much lower with SGLT2 inhibitors than with sulphonylureas and was similarly low as that reported with metformin, pioglitazone or sitagliptin

  20. Receptor tyrosine phosphatase R-PTP-kappa mediates homophilic binding

    DEFF Research Database (Denmark)

    Sap, J; Jiang, Y P; Friedlander, D

    1994-01-01

    Receptor tyrosine phosphatases (R-PTPases) feature PTPase domains in the context of a receptor-like transmembrane topology. The R-PTPase R-PTP-kappa displays an extracellular domain composed of fibronectin type III motifs, a single immunoglobulin domain, as well as a recently defined MAM domain (Y...... not require PTPase activity or posttranslational proteolytic cleavage of the R-PTP-kappa protein and is calcium independent. The results suggest that R-PTPases may provide a link between cell-cell contact and cellular signaling events involving tyrosine phosphorylation....

  1. Sodium-glucose co-transporter-2 inhibitors, the latest residents on the block: Impact on glycaemic control at a general practice level in England.

    Science.gov (United States)

    Heald, Adrian H; Fryer, Anthony A; Anderson, Simon G; Livingston, Mark; Lunt, Mark; Davies, Mark; Moreno, Gabriela Y C; Gadsby, Roger; Young, Robert J; Stedman, Mike

    2018-03-08

    To determine, using published general practice-level data, how differences in Type 2 diabetes mellitus (T2DM) prescribing patterns relate to glycaemic target achievement levels. Multiple linear regression modelling was used to link practice characteristics and defined daily dose (DDD) of different classes of medication in 2015/2016 and changes between that year and the year 2014/2015 in medication to proportion of patients achieving target glycaemic control (glycated haemoglobin A1c [HbA1c] ≤58 mmol/mol [7.5%]) and proportion of patients at high glycaemic risk (HbA1c >86 mmol/mol [10.0%]) for practices in the National Diabetes Audit with >100 people with T2DM on their register. Overall, HbA1c outcomes were not different between the years studied. Although, in percentage terms, most practices increased their use of sodium-glucose co-transporter-2 (SGLT2) inhibitors (96%), dipeptidyl peptidase-4 (DPP-4) inhibitors (76%) and glucagon-like peptide 1 (GLP-1) analogues (53%), there was wide variation in the use of older and newer therapies. For example, 12% of practices used >200% of the national average for some newer agents. In cross-sectional analysis, greater prescribing of metformin and analogue insulin were associated with a higher proportion of patients achieving HbA1c ≤58 mmol/mol; the use of SGLT2 inhibitors and metformin was associated with a reduced proportion of patients with HbA1c >86 mol/mol; otherwise associations for sulphonylureas, GLP-1 analogues, SGLT2 inhibitors and DPP-4 inhibitors were neutral or negative. In year-on-year analysis there was ongoing deterioration in glycaemic control, which was offset to some extent by increased use of SGLT2 inhibitors and GLP-1 analogues, which were associated with a greater proportion of patients achieving HbA1c levels ≤58 mmol/mol and a smaller proportion of patients with HbA1c levels >86 mmol/mol. SGLT2 inhibitor prescribing was associated with significantly greater improvements than those found

  2. Diabetes and kidney disease: the role of sodium-glucose cotransporter-2 (SGLT-2) and SGLT-2 inhibitors in modifying disease outcomes.

    Science.gov (United States)

    Mende, Christian W

    2017-03-01

    Patients with type 2 diabetes (T2D) often have coexisting chronic kidney disease (CKD). However, healthy renal function is crucial in maintaining glucose homeostasis, assuring that almost all of the filtered glucose is reabsorbed by the sodium glucose cotransporters (SGLTs) SGLT-1 and SGLT-2. In diabetes, an increased amount of glucose is filtered by the kidneys and SGLT-2 is upregulated, leading to increased glucose absorption and worsening hyperglycemia. Prolonged hyperglycemia contributes to the development of CKD by inducing metabolic and hemodynamic changes in the kidneys. Due to the importance of SGLT-2 in regulating glucose levels, investigation into SGLT-2 inhibitors was initiated as a glucose-dependent mechanism to control hyperglycemia, and there are three agents currently approved for use in the United States: dapagliflozin, canagliflozin, and empagliflozin. SGLT-2 inhibitors have been shown to reduce glycated hemoglobin (A1C), weight, and blood pressure, which not only affects glycemic control, but may also help slow the progression of renal disease by impacting the underlying mechanisms of kidney injury. In addition, SGLT-2 inhibitors have shown reductions in albuminuria, uric acid, and an increase in magnesium. Caution is advised when prescribing SGLT-2 inhibitors to patients with moderately impaired renal function and those at risk for volume depletion and hypotension. Published data on slowing of the development, as well as progression of CKD, is a hopeful indicator for the possible renal protection potential of this drug class. This narrative review provides an in-depth discussion of the interplay between diabetes, SGLT-2 inhibitors, and factors that affect kidney function.

  3. Raman spectroscopic studies of the interaction of oxalic acid and sodium oxalate used as corrosion inhibitors with copper

    Science.gov (United States)

    Jeziorowski, H.; Moser, B.

    1985-09-01

    The Raman spectra of the liquid-solid interface recorded in situ show the formation of a salt complex of the inhibitor molecules and the copper ions. This suggests that this chemisorbed surface species produces the protective layer.

  4. Synthesis and Evaluation of Poly(Sodium 2-Acrylamido-2-Methylpropane Sulfonate-co-Styrene/Magnetite Nanoparticle Composites as Corrosion Inhibitors for Steel

    Directory of Open Access Journals (Sweden)

    Gamal A. El-Mahdy

    2014-01-01

    Full Text Available Self-stabilized magnetic polymeric composite nanoparticles of coated poly-(sodium 2-acrylamido-2-methylpropane sulfonate-co-styrene/magnetite (PAMPS-Na-co-St/Fe3O4 were prepared by emulsifier-free miniemulsion polymerization using styrene (St as a monomer, 2-acrylamido-2-methylpropane sulfonic acid sodium salt (AMPS-Na as an ionic comonomer, N,N-methylenebisacrylamide (MBA as crosslinker, hexadecane (HD as a hydrophobic solvent, and 2,2-azodiisobutyronitrile (AIBN as an initiator in the presence of hydrophobic oleic acid coated magnetite particles. Hydrophobic oleic acid coated magnetite particles with an average size of about 7-10 nm were prepared with the new modified water-based magnetite ferrofluid, synthesized by a chemical modified coprecipitation method. The morphology and the particle size distributions of the crosslinked PAMPS-Na-co-St/Fe3O4 composite were observed and analyzed by transmission electron microscopy (TEM. The average Fe3O4 content of PAMPS-Na-co-St/Fe3O4 was determined by thermogravimetric analysis (TGA. The inhibitory action of PAMPS-Na-co-St/Fe3O4 towards steel corrosion in 1 M HCl solutions has been investigated by polarization and electrochemical impedance spectroscopy (EIS methods. Polarization measurements indicate that PAMPS-Na-co-St/Fe3O4 acts as a mixed type-inhibitor and the inhibition efficiency increases with inhibitor concentration. The results of potentiodynamic polarization and EIS measurements clearly showed that the inhibition mechanism involves blocking of the steel surface by inhibitor molecules via adsorption.

  5. Determination of major sodium iodide symporter (NIS) inhibitors in drinking waters using ion chromatography with conductivity detector.

    Science.gov (United States)

    Cengiz, Mehmet Fatih; Bilgin, Ayse Kevser

    2016-02-20

    Goiter is an important health problem all over the world and iodine deficiency is its most common cause. Perchlorate, thiocyanate and nitrate (called as major NIS inhibitors) are known to competitively inhibit iodide uptake by the thyroid gland and thus, human exposure to major NIS inhibitors is a public health concern. In this study, an ion chromatographic method for the determination of most common NIS inhibitor ions in drinking waters was developed and validated. This is the first study where an analytical method is used for the determination of major NIS inhibitors in drinking water by an ion chromatography system in a single run. Chromatographic separations were achieved with an anion-exchange column and separated ions were identified by a conductivity detector. The method was found to be selective, linear, precise accurate and true for all of interested ions. The limits of the detections (LOD) were estimated at 0.003, 0.004 and 0.025mgL(-1) for perchlorate, thiocyanate and nitrate, respectively. Possible interference ions in drinking waters were examined for the best separation of NIS inhibitors. The excellent method validation data and proficiency test result (Z-score for nitrate: -0.1) of the FAPAS(®) suggested that the developed method could be applied for determination of NIS inhibitor residues in drinking waters. To evaluate the usefulness of the method, 75 drinking water samples from Antalya/Turkey were analyzed for NIS inhibitors. Perchlorate concentrations in the samples ranged from not detected (less than LOD) to 0.07±0.02mgL(-1) and the range of nitrate concentrations were found to be 3.60±0.01mgL(-1) and 47.42±0.40mgL(-1). No thiocyanate residues were detected in tested drinking water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Caged xanthones displaying protein tyrosine phosphatase 1B (PTP1B) inhibition from Cratoxylum cochinchinense.

    Science.gov (United States)

    Li, Zuo Peng; Lee, Hyeong-Hwan; Uddin, Zia; Song, Yeong Hun; Park, Ki Hun

    2018-08-01

    Four new caged xanthones (1-4) and two known compounds (5, 6) were isolated from the roots of Cratoxylum cochinchinense, a polyphenol rich plant, collected in China. The structures of the isolated compounds (1-6) were characterized by obtaining their detailed spectroscopic data. In particular, compounds 1 and 6 were fully identified by X-ray crystallographic data. The isolated compounds (1-6) were evaluated against protein tyrosine phosphatase 1B (PTP1B), which plays an important role in diabetes, obesity, and cancer. Among these compounds, 3, 4, and 6 displayed significant inhibition with IC 50 values of 76.3, 43.2, and 6.6 µM, respectively. A detailed kinetic study was conducted by determining K m , V max , and the ratio of K ik and K iv , which revealed that all the compounds behaved as competitive inhibitors. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. 4-Hydroxynonenal activates Src through a non-canonical pathway that involves EGFR/PTP1B

    Science.gov (United States)

    Zhang, Hongqiao; Forman, Henry Jay

    2015-01-01

    Src, a non-receptor protein tyrosine kinase involved in many biological processes, can be activated through both redox-dependent and independent mechanisms. 4-Hydroxy-2-nonenal (HNE) is a lipid peroxidation product that is increased in pathophysiological conditions associated with Src activation. This study examined how HNE activates human c-Src. In the canonical pathway Src activation is initiated by dephosphorylation of pTyr530 followed by conformational change that causes Src auto-phosphorylation at Tyr419 and its activation. HNE increased Src activation in both dose- and time-dependent manner, while it also increased Src phosphorylation at Tyr530 (pTyr530 Src), suggesting that HNE activated Src via a non-canonical mechanism. Protein tyrosine phosphatase 1B inhibitor (539741), at concentrations that increased basal pTyr530 Src, also increased basal Src activity and significantly reduced HNE-mediated Src activation. The EGFR inhibitor, AG1478, and EGFR silencing, abrogated HNE-mediated EGFR activation and inhibited basal and HNE-induced Src activity. In addition, AG1478 also eliminated the increase of basal Src activation by a PTP1B inhibitor. Taken together these data suggest that HNE can activate Src partly through a non-canonical pathway involving activation of EGFR and inhibition of PTP1B. PMID:26453921

  8. Steric Hindrance as a Basis for Structure-Based Design of Selective Inhibitors of Protein-Tyrosine Phosphatases

    DEFF Research Database (Denmark)

    Iversen, L. F.; Andersen, H. S.; Møller, K. B.

    2001-01-01

    Utilizing structure-based design, we have previously demonstrated that it is possible to obtain selective inhibitors of protein-tyrosine phosphatase 1B (PTP1B). A basic nitrogen was introduced into a general PTP inhibitor to form a salt bridge to Asp48 in PTP1B and simultaneously cause repulsion...... in PTPs containing an asparagine in the equivalent position [Iversen, L. F., et al. (2000) J. Biol. Chem. 275, 10300−10307]. Further, we have recently demonstrated that Gly259 in PTP1B forms the bottom of a gateway that allows easy access to the active site for a broad range of substrates, while bulky...... in accessibility to the active site among various PTPs. We show that a general, low-molecular weight PTP inhibitor can be developed into a highly selective inhibitor for PTP1B and TC-PTP by introducing a substituent, which is designed to address the region around residues 258 and 259. Detailed enzyme kinetic...

  9. α-Methyl artoflavanocoumarin from Juniperus chinensis exerts anti-diabetic effects by inhibiting PTP1B and activating the PI3K/Akt signaling pathway in insulin-resistant HepG2 cells.

    Science.gov (United States)

    Jung, Hee Jin; Seong, Su Hui; Ali, Md Yousof; Min, Byung-Sun; Jung, Hyun Ah; Choi, Jae Sue

    2017-12-01

    Diabetes mellitus is one of the greatest global health issues and much research effort continues to be directed toward identifying novel therapeutic agents. Insulin resistance is a challenging integrally related topic and molecules capable of overcoming it are of considerable therapeutic interest in the context of type 2 diabetes mellitus (T2DM). Protein tyrosine phosphatase 1B (PTP1B) negatively regulates insulin signaling transduction and is regarded a novel therapeutic target in T2DM. Here, we investigated the inhibitory effect of α-methyl artoflavanocoumarin (MAFC), a natural flavanocoumarin isolated from Juniperus chinensis, on PTP1B in insulin-resistant HepG2 cells. MAFC was found to potently inhibit PTP1B with an IC 50 of 25.27 ± 0.14 µM, and a kinetics study revealed MAFC is a mixed type PTP1B inhibitor with a K i value of 13.84 µM. Molecular docking simulations demonstrated MAFC can bind to catalytic and allosteric sites of PTP1B. Furthermore, MAFC significantly increased glucose uptake and decreased the expression of PTP1B in insulin-resistant HepG2 cells, down-regulated the phosphorylation of insulin receptor substrate (IRS)-1 (Ser307), and dose-dependently enhanced the protein levels of IRS-1, phosphorylated phosphoinositide 3-kinase (PI3K), Akt, and ERK1. These results suggest that MAFC from J. chinensis has therapeutic potential in T2DM by inhibiting PTP1B and activating insulin signaling pathways.

  10. Protein tyrosine phosphatase PTP1B is involved in hippocampal synapse formation and learning.

    Directory of Open Access Journals (Sweden)

    Federico Fuentes

    Full Text Available ER-bound PTP1B is expressed in hippocampal neurons, and accumulates among neurite contacts. PTP1B dephosphorylates ß-catenin in N-cadherin complexes ensuring cell-cell adhesion. Here we show that endogenous PTP1B, as well as expressed GFP-PTP1B, are present in dendritic spines of hippocampal neurons in culture. GFP-PTP1B overexpression does not affect filopodial density or length. In contrast, impairment of PTP1B function or genetic PTP1B-deficiency leads to increased filopodia-like dendritic spines and a reduction in mushroom-like spines, while spine density is unaffected. These morphological alterations are accompanied by a disorganization of pre- and post-synapses, as judged by decreased clustering of synapsin-1 and PSD-95, and suggest a dynamic synaptic phenotype. Notably, levels of ß-catenin-Tyr-654 phosphorylation increased ∼5-fold in the hippocampus of adult PTP1B(-/- (KO mice compared to wild type (WT mice and this was accompanied by a reduction in the amount of ß-catenin associated with N-cadherin. To determine whether PTP1B-deficiency alters learning and memory, we generated mice lacking PTP1B in the hippocampus and cortex (PTP1B(fl/fl-Emx1-Cre. PTP1B(fl/fl-Emx1-Cre mice displayed improved performance in the Barnes maze (decreased time to find and enter target hole, utilized a more efficient strategy (cued, and had better recall compared to WT controls. Our results implicate PTP1B in structural plasticity within the hippocampus, likely through modulation of N-cadherin function by ensuring dephosphorylation of ß-catenin on Tyr-654. Disruption of hippocampal PTP1B function or expression leads to elongation of dendritic filopodia and improved learning and memory, demonstrating an exciting novel role for this phosphatase.

  11. Histone deacetylase inhibitors SAHA and sodium butyrate block G1-to-S cell cycle progression in neurosphere formation by adult subventricular cells

    Directory of Open Access Journals (Sweden)

    Doughty Martin L

    2011-05-01

    Full Text Available Abstract Background Histone deacetylases (HDACs are enzymes that modulate gene expression and cellular processes by deacetylating histones and non-histone proteins. While small molecule inhibitors of HDAC activity (HDACi are used clinically in the treatment of cancer, pre-clinical treatment models suggest they also exert neuroprotective effects and stimulate neurogenesis in neuropathological conditions. However, the direct effects of HDACi on cell cycle progression and proliferation, two properties required for continued neurogenesis, have not been fully characterized in adult neural stem cells (NSCs. In this study, we examined the effects of two broad class I and class II HDACi on adult mouse NSCs, the hydroxamate-based HDACi suberoylanilide hydroxamic acid (vorinostat, SAHA and the short chain fatty acid HDACi sodium butyrate. Results We show that both HDACi suppress the formation of neurospheres by adult mouse NSCs grown in proliferation culture conditions in vitro. DNA synthesis is significantly inhibited in adult mouse NSCs exposed to either SAHA or sodium butyrate and inhibition is associated with an arrest in the G1 phase of the cell cycle. HDACi exposure also resulted in transcriptional changes in adult mouse NSCs. Cdk inhibitor genes p21 and p27 transcript levels are increased and associated with elevated H3K9 acetylation levels at proximal promoter regions of p21 and p27. mRNA levels for notch effector Hes genes and Spry-box stem cell transcription factors are downregulated, whereas pro-neural transcription factors Neurog1 and Neurod1 are upregulated. Lastly, we show HDAC inhibition under proliferation culture conditions leads to long-term changes in cell fate in adult mouse NSCs induced to differentiate in vitro. Conclusion SAHA and sodium butyrate directly regulate cdk inhibitor transcription to control cell cycle progression in adult mouse NSCs. HDAC inhibition results in G1 arrest in adult mouse NSCs and transcriptional changes

  12. Effect of Sodium-Glucose Co-Transporter 2 Inhibitor, Dapagliflozin, on Renal Renin-Angiotensin System in an Animal Model of Type 2 Diabetes.

    Science.gov (United States)

    Shin, Seok Joon; Chung, Sungjin; Kim, Soo Jung; Lee, Eun-Mi; Yoo, Young-Hye; Kim, Ji-Won; Ahn, Yu-Bae; Kim, Eun-Sook; Moon, Sung-Dae; Kim, Myung-Jun; Ko, Seung-Hyun

    2016-01-01

    Renal renin-angiotensin system (RAS) activation is one of the important pathogenic mechanisms in the development of diabetic nephropathy in type 2 diabetes. The aim of this study was to investigate the effects of a sodium-glucose co-transporter 2 (SGLT-2) inhibitor, dapagliflozin, on renal RAS in an animal model with type 2 diabetes. Dapagliflozin (1.0 mg/kg, OL-DA) or voglibose (0.6 mg/kg, OL-VO, diabetic control) (n = 10 each) was administered to Otsuka Long-Evans Tokushima Fatty (OLETF) rats for 12 weeks. We used voglibose, an alpha-glucosidase inhibitor, as a comparable counterpart to SGLT2 inhibitor because of its postprandial glucose-lowering effect without proven renoprotective effects. Control Long-Evans Tokushima Otsuka (LT) and OLETF (OL-C) rats received saline (n = 10, each). Changes in blood glucose, urine albumin, creatinine clearance, and oxidative stress were measured. Inflammatory cell infiltration, mesangial widening, and interstitial fibrosis in the kidney were evaluated by histological analysis. The effects of dapagliflozin on renal expression of the RAS components were evaluated by quantitative RT-PCR in renal tissue. After treatment, hyperglycemia and urine microalbumin levels were attenuated in both OL-DA and OL-VO rather than in the OL-C group (P renal RAS component expression, oxidative stress and interstitial fibrosis in OLETF rats. We suggest that, in addition to control of hyperglycemia, partial suppression of renal RAS with an SGLT2 inhibitor would be a promising strategy for the prevention of treatment of diabetic nephropathy.

  13. Influence of ferrocyanide inhibitors on the transport and crystrallization processes of sodium chloride in porous building materials

    NARCIS (Netherlands)

    Gupta, S.; Terheiden, K.H; Pel, L.; Sawdy - Heritage, A.M.

    2012-01-01

    Salt weathering leads to destruction of many valuable cultural heritage monuments and porous building materials. In order to reduce the impact of this, effective treatment methods are required. The use of crystallization inhibitors to mitigate salt damage has been proposed in the past; however, to

  14. Inhibition of protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase by xanthones from Cratoxylum cochinchinense, and their kinetic characterization.

    Science.gov (United States)

    Li, Zuo Peng; Song, Yeong Hun; Uddin, Zia; Wang, Yan; Park, Ki Hun

    2018-02-01

    Cratoxylum cochinchinense displayed significant inhibition against protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase, both of which are key target enzymes to attenuate diabetes and obesity. The compounds responsible for both enzymes inhibition were identified as twelve xanthones (1-12) among which compounds 1 and 2 were found to be new ones. All of them simultaneously inhibited PTP1B with IC 50 s of (2.4-52.5 µM), and α-glucosidase with IC 50 values of (1.7-72.7 µM), respectively. Cratoxanthone A (3) and γ-mangostin (7) were estimated to be most active inhibitors against both PTP1B (IC 50  = 2.4 µM for 3, 2.8 µM for 7) and α-glucosidase (IC 50  = 4.8 µM for 3, 1.7 µM for 7). In kinetic studies, all isolated xanthones emerged to be mixed inhibitors of α-glucosidase, whereas they behaved as competitive inhibitors of PTP1B. In time dependent experiments, compound 3 showed isomerization inhibitory behavior with following kinetic parameters: K i app  = 2.4 µM; k 5  = 0.05001 µM -1  S -1 and k 6  = 0.02076 µM -1  S -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Microtubule and Cell Contact Dependency of ER-bound PTP1B Localization in Growth Cones

    Science.gov (United States)

    Fuentes, Federico

    2009-01-01

    PTP1B is an ER-bound protein tyrosine phosphatase implied in the regulation of cell adhesion. Here we investigated mechanisms involved in the positioning and dynamics of PTP1B in axonal growth cones and evaluated the role of this enzyme in axons. In growth cones, PTP1B consistently localizes in the central domain, and occasionally at the peripheral region and filopodia. Live imaging of GFP-PTP1B reveals dynamic excursions of fingerlike processes within the peripheral region and filopodia. PTP1B and GFP-PTP1B colocalize with ER markers and coalign with microtubules at the peripheral region and redistribute to the base of the growth cone after treatment with nocodazole, a condition that is reversible. Growth cone contact with cellular targets is accompanied by invasion of PTP1B and stable microtubules in the peripheral region aligned with the contact axis. Functional impairment of PTP1B causes retardation of axon elongation, as well as reduction of growth cone filopodia lifetime and Src activity. Our results highlight the role of microtubules and cell contacts in the positioning of ER-bound PTP1B to the peripheral region of growth cones, which may be required for the positive role of PTP1B in axon elongation, filopodia stabilization, and Src activity. PMID:19158394

  16. PTP1B confers liver fibrosis by regulating the activation of hepatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Pei-Jie; Cai, Shuang-Peng; Yang, Yang; Li, Wan-Xia; Huang, Cheng; Meng, Xiao-Ming; Li, Jun, E-mail: lj@ahmu.edu.cn

    2016-02-01

    Liver fibrosis is a reversible wound-healing response to chronic hepatic injuries. Activation of hepatic stellate cells (HSCs) plays a pivotal role in the development of hepatic fibrosis. The currently accepted mechanism for the resolution of liver fibrosis is the apoptosis and inactivation of activated HSCs. Protein tyrosine phosphatase 1B (PTP1B), a prototype of non-receptor protein tyrosine phosphatase, is proved to be a vital modulator in cardiac fibrogenesis. However, the precise role of PTP1B on liver fibrosis and HSC activation is still unclear. Our study showed that the expression of PTP1B was elevated in fibrotic liver but reduced after spontaneous recovery. Moreover, stimulation of HSC-T6 cells with transforming growth factor-β1 (TGF-β1) resulted in a dose/time-dependent increase of PTP1B mRNA and protein. Co-incubation of HSC-T6 cells with PTP1B-siRNA inhibited the cell proliferation and activation induced by TGF-β1. Additionally, both mRNA and protein of PTP1B were dramatically decreased in inactivated HSCs after treated with adipogenic differentiation mixture (MDI). Over-expression of PTP1B hindered the inactivation of HSC-T6 cells induced by MDI. These observations revealed a regulatory role of PTP1B in liver fibrosis and implied PTP1B as a potential therapeutic target. - Highlights: • The expression of PTP1B in the fibrotic livers and recovery livers • The expression of PTP1B in activated and inactivated HSCs • Blockade of PTP1B inhibited the TGF-β1-induced proliferation and activation of HSCs. • Over-expression of PTP1B abolished the inactivation of HSCs induced by MDI.

  17. PTP1B confers liver fibrosis by regulating the activation of hepatic stellate cells

    International Nuclear Information System (INIS)

    Chen, Pei-Jie; Cai, Shuang-Peng; Yang, Yang; Li, Wan-Xia; Huang, Cheng; Meng, Xiao-Ming; Li, Jun

    2016-01-01

    Liver fibrosis is a reversible wound-healing response to chronic hepatic injuries. Activation of hepatic stellate cells (HSCs) plays a pivotal role in the development of hepatic fibrosis. The currently accepted mechanism for the resolution of liver fibrosis is the apoptosis and inactivation of activated HSCs. Protein tyrosine phosphatase 1B (PTP1B), a prototype of non-receptor protein tyrosine phosphatase, is proved to be a vital modulator in cardiac fibrogenesis. However, the precise role of PTP1B on liver fibrosis and HSC activation is still unclear. Our study showed that the expression of PTP1B was elevated in fibrotic liver but reduced after spontaneous recovery. Moreover, stimulation of HSC-T6 cells with transforming growth factor-β1 (TGF-β1) resulted in a dose/time-dependent increase of PTP1B mRNA and protein. Co-incubation of HSC-T6 cells with PTP1B-siRNA inhibited the cell proliferation and activation induced by TGF-β1. Additionally, both mRNA and protein of PTP1B were dramatically decreased in inactivated HSCs after treated with adipogenic differentiation mixture (MDI). Over-expression of PTP1B hindered the inactivation of HSC-T6 cells induced by MDI. These observations revealed a regulatory role of PTP1B in liver fibrosis and implied PTP1B as a potential therapeutic target. - Highlights: • The expression of PTP1B in the fibrotic livers and recovery livers • The expression of PTP1B in activated and inactivated HSCs • Blockade of PTP1B inhibited the TGF-β1-induced proliferation and activation of HSCs. • Over-expression of PTP1B abolished the inactivation of HSCs induced by MDI.

  18. Discovery and study of novel protein tyrosine phosphatase 1B inhibitors

    Science.gov (United States)

    Zhang, Qian; Chen, Xi; Feng, Changgen

    2017-10-01

    Protein tyrosine phosphatase 1B (PTP1B) is considered to be a target for therapy of type II diabetes and obesity. So it is of great significance to take advantage of a computer aided drug design protocol involving the structured-based virtual screening with docking simulations for fast searching small molecule PTP1B inhibitors. Based on optimized complex structure of PTP1B bound with specific inhibitor of IX1, structured-based virtual screening against a library of natural products containing 35308 molecules, which was constructed based on Traditional Chinese Medicine database@ Taiwan (TCM database@ Taiwan), was conducted to determine the occurrence of PTP1B inhibitors using the Lubbock module and CDOCKER module from Discovery Studio 3.1 software package. The results were further filtered by predictive ADME simulation and predictive toxic simulation. As a result, 2 good drug-like molecules, namely para-benzoquinone compound 1 and Clavepictine analogue 2 were identified ultimately with the dock score of original inhibitor (IX1) and the receptor as a threshold. Binding model analyses revealed that these two candidate compounds have good interactions with PTP1B. The PTP1B inhibitory activity of compound 2 hasn't been reported before. The optimized compound 2 has higher scores and deserves further study.

  19. Sodium-glucose co-transporter 2 inhibitors in addition to insulin therapy for management of type 2 diabetes mellitus: A meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Tang, Huilin; Cui, Wei; Li, Dandan; Wang, Tiansheng; Zhang, Jingjing; Zhai, Suodi; Song, Yiqing

    2017-01-01

    Given inconsistent trial results of sodium-glucose cotransporter 2 (SGLT2) inhibitors in addition to insulin therapy for treating type 2 diabetes mellitus (T2DM), a meta-analysis was performed to evaluate the efficacy and safety of this combination for T2DM by searching available randomized trials from PubMed, Embase, CENTRAL and ClinicalTrials.gov. Our meta-analysis included seven eligible placebo-controlled trials involving 4235 patients. Compared with placebo, SGLT2 inhibitor treatment was significantly associated with a mean reduction in HbA1c of -0.56%, fasting plasma glucose of -0.95 mmol/L, body weight of -2.63 kg and insulin dose of -8.79 IU, but an increased risk of drug-related adverse events by 36%, urinary tract infections by 29% and genital infections by 357%. No significant increase was observed in risk of overall adverse events [risk ratio (RR), 1.00], serious adverse events (RR, 0.90), adverse events leading to discontinuation (RR, 1.16), hypoglycaemia events (RR, 1.07) and severe hypoglycaemia events (RR, 1.24). No diabetic ketoacidosis events were reported. Further studies are needed to establish optimal combination type and dose. © 2016 John Wiley & Sons Ltd.

  20. HDAC inhibitors TSA and sodium butyrate enhanced the human IL-5 expression by altering histone acetylation status at its promoter region.

    Science.gov (United States)

    Han, Songyan; Lu, Jun; Zhang, Yu; Cheng, Cao; Li, Lin; Han, Liping; Huang, Baiqu

    2007-02-15

    The expression of IL-5 correlated tightly with the maturation and differentiation of eosinophils, and is considered as a cytokine responsible for allergic inflammation. We report here that inhibition of HDAC activity by Trichostatin A (TSA) and sodium butyrate (NaBu), the two specific HDAC inhibitors, resulted in the elevation of both endogenous and exogenous activity of IL-5 promoter. We demonstrated that both the mRNA expression and protein production of IL-5 were stimulated by TSA and NaBu treatments. ChIP assays showed that treatments of TSA and NaBu caused hyperacetylation of histones H3 and H4 on IL-5 promoter in Jurkat cells, which consequently promoted the exogenous luciferase activity driven by this promoter. Moreover, site-directed mutagenesis studies showed that the binding sites for transcription factors NFAT, GATA3 and YY1 on IL-5 promoter were critical for the effects of TSA and NaBu, suggesting that the transcriptional activation of IL-5 gene by these inhibitors was achieved by affecting HDAC function on IL-5 promoter via transcription factors. These data will contribute to elucidating the unique mechanism of IL-5 transcriptional control and to the therapy of allergic disorders related to IL-5.

  1. Experimental dissociation of the effects of prostaglandins on renal sodium and water reabsorption by cyclo-oxygenase inhibitors in the rat.

    Science.gov (United States)

    Bartoli, E; Branca, G F; Faedda, R; Olmeo, N A; Satta, A; Soggia, G

    1982-07-01

    1 The relative importance of the effect of prostaglandins on renal sodium and water reabsorption was assessed in rats. 2 Clearance experiments were performed on 24 anaesthetized rats divided into 3 groups. Each group was infused throughout either with Ringer solution at 9 ml/h (Protocol I), or at 3 ml/h (Protocol II) or with hypotonic fluid at 5 ml/h (Protocol III). Clearance periods were performed before and after intravenous injection of indomethacin (5 mg/kg) and then of aspirin (20 mg/kg). The natriuretic response to different degrees of volume expansion was not modified during the action of the inhibitors. 3 When baseline urine osmolality (Uosm) was high (Protocol II) no further increase occurred in the presence of prostaglandin inhibition. Conversely, Uosm rose from 771 +/- 134 to 1356 +/- 414 and from 575 +/- 245 to 841 +/- 407 mosm/kg (P less than 0.05) in Protocol I and Protocol III respectively, when antidiuretic hormone secretion was inhibited by the higher degree of volume expansion. 4 There was a significant correlation between the change in urine flow rate induced by cyclooxygenase inhibitors and the attendant variations in Na excretion, r = 0.42, n = 41, P less than 0.01. 5 Thus, prostaglandins affect Na loss during saline load as a side effect of their action on water permeability. They could play an important role in volume depletion by counterbalancing the large secretion rate of renal vasoconstrictors.

  2. Experimental dissociation of the effects of prostaglandins on renal sodium and water reabsorption by cyclo-oxygenase inhibitors in the rat.

    Science.gov (United States)

    Bartoli, E.; Branca, G. F.; Faedda, R.; Olmeo, N. A.; Satta, A.; Soggia, G.

    1982-01-01

    1 The relative importance of the effect of prostaglandins on renal sodium and water reabsorption was assessed in rats. 2 Clearance experiments were performed on 24 anaesthetized rats divided into 3 groups. Each group was infused throughout either with Ringer solution at 9 ml/h (Protocol I), or at 3 ml/h (Protocol II) or with hypotonic fluid at 5 ml/h (Protocol III). Clearance periods were performed before and after intravenous injection of indomethacin (5 mg/kg) and then of aspirin (20 mg/kg). The natriuretic response to different degrees of volume expansion was not modified during the action of the inhibitors. 3 When baseline urine osmolality (Uosm) was high (Protocol II) no further increase occurred in the presence of prostaglandin inhibition. Conversely, Uosm rose from 771 +/- 134 to 1356 +/- 414 and from 575 +/- 245 to 841 +/- 407 mosm/kg (P less than 0.05) in Protocol I and Protocol III respectively, when antidiuretic hormone secretion was inhibited by the higher degree of volume expansion. 4 There was a significant correlation between the change in urine flow rate induced by cyclooxygenase inhibitors and the attendant variations in Na excretion, r = 0.42, n = 41, P less than 0.01. 5 Thus, prostaglandins affect Na loss during saline load as a side effect of their action on water permeability. They could play an important role in volume depletion by counterbalancing the large secretion rate of renal vasoconstrictors. PMID:6809089

  3. Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice.

    Directory of Open Access Journals (Sweden)

    Naoto Terami

    Full Text Available Inhibition of sodium glucose cotransporter 2 (SGLT2 has been reported as a new therapeutic strategy for treating diabetes. However, the effect of SGLT2 inhibitors on the kidney is unknown. In addition, whether SGLT2 inhibitors have an anti-inflammatory or antioxidative stress effect is still unclear. In this study, to resolve these issues, we evaluated the effects of the SGLT2 inhibitor, dapagliflozin, using a mouse model of type 2 diabetes and cultured proximal tubular epithelial (mProx24 cells. Male db/db mice were administered 0.1 or 1.0 mg/kg of dapagliflozin for 12 weeks. Body weight, blood pressure, blood glucose, hemoglobin A1c, albuminuria and creatinine clearance were measured. Mesangial matrix accumulation and interstitial fibrosis in the kidney and pancreatic β-cell mass were evaluated by histological analysis. Furthermore, gene expression of inflammatory mediators, such as osteopontin, monocyte chemoattractant protein-1 and transforming growth factor-β, was evaluated by quantitative reverse transcriptase-PCR. In addition, oxidative stress was evaluated by dihydroethidium and NADPH oxidase 4 staining. Administration of 0.1 or 1.0 mg/kg of dapagliflozin ameliorated hyperglycemia, β-cell damage and albuminuria in db/db mice. Serum creatinine, creatinine clearance and blood pressure were not affected by administration of dapagliflozin, but glomerular mesangial expansion and interstitial fibrosis were suppressed in a dose-dependent manner. Dapagliflozin treatment markedly decreased macrophage infiltration and the gene expression of inflammation and oxidative stress in the kidney of db/db mice. Moreover, dapagliflozin suppressed the high-glucose-induced gene expression of inflammatory cytokines and oxidative stress in cultured mProx24 cells. These data suggest that dapagliflozin ameliorates diabetic nephropathy by improving hyperglycemia along with inhibiting inflammation and oxidative stress.

  4. Effects of diuretics on sodium-dependent glucose cotransporter 2 inhibitor-induced changes in blood pressure in obese rats suffering from the metabolic syndrome.

    Science.gov (United States)

    Rahman, Asadur; Kittikulsuth, Wararat; Fujisawa, Yoshihide; Sufiun, Abu; Rafiq, Kazi; Hitomi, Hirofumi; Nakano, Daisuke; Sohara, Eisei; Uchida, Shinichi; Nishiyama, Akira

    2016-05-01

    Experiments were carried out to investigate whether diuretics (hydrochlorothiazide + furosemide) impact on the effects of a sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor on glucose metabolism and blood pressure (BP) in metabolic syndrome SHR/NDmcr-cp(+/+) rats (SHRcp). Male 13-week-old SHRcp were treated with: vehicle; the SGLT2-inhibitor luseogliflozin (10 mg/kg per day); diuretics (hydrochlorothiazide; 10 mg/kg/day + furosemide; 5 mg/kg per day); or luseogliflozin + diuretics (n = 5-8 for each group) daily by oral gavage for 5 weeks. BP and glucose metabolism were evaluated by a telemetry system and oral glucose tolerance test, respectively. Vehicle-treated SHRcp developed nondipper type hypertension (dark vs. light-period mean arterial pressure: 148.6 ± 0.7 and 148.0 ± 0.7 mmHg, respectively, P = 0.2) and insulin resistance. Compared with vehicle-treated animals, luseogliflozin-treated rats showed an approximately 4000-fold increase in urinary excretion of glucose and improved glucose metabolism. Luseogliflozin also significantly decreased BP and turned the circadian rhythm of BP from a nondipper to dipper pattern (dark vs. light-period mean arterial pressure: 138.0 ± 1.6 and 132.0 ± 1.3 mmHg, respectively, P diuretics did not influence luseogliflozin-induced improvement of glucose metabolism and circadian rhythm of BP in SHRcp. These data suggest that a SGLT2 inhibitor elicits its beneficial effects on glucose metabolism and hypertension in study participants with metabolic syndrome undergoing treatment with diuretics.

  5. Regulated binding of PTP1B-like phosphatase to N-cadherin: control of cadherin-mediated adhesion by dephosphorylation of beta-catenin

    Science.gov (United States)

    1996-01-01

    Cadherins are a family of cell-cell adhesion molecules which play a central role in controlling morphogenetic movements during development. Cadherin function is regulated by its association with the actin containing cytoskeleton, an association mediated by a complex of cytoplasmic proteins, the catenins: alpha, beta, and gamma. Phosphorylated tyrosine residues on beta-catenin are correlated with loss of cadherin function. Consistent with this, we find that only nontyrosine phosphorylated beta-catenin is associated with N-cadherin in E10 chick retina tissue. Moreover, we demonstrate that a PTP1B-like tyrosine phosphatase associates with N-cadherin and may function as a regulatory switch controlling cadherin function by dephosphorylating beta-catenin, thereby maintaining cells in an adhesion-competent state. The PTP1B-like phosphatase is itself tyrosine phosphorylated. Moreover, both direct binding experiments performed with phosphorylated and dephosphorylated molecules, and treatment of cells with tyrosine kinase inhibitors indicate that the interaction of the PTP1B-like phosphatase with N-cadherin depends on its tyrosine phosphorylation. Concomitant with the tyrosine kinase inhibitor-induced loss of the PTP1B-like phosphatase from its association with N-cadherin, phosphorylated tyrosine residues are retained on beta-catenin, the association of N- cadherin with the actin containing cytoskeleton is lost and N-cadherin- mediated cell adhesion is prevented. Tyrosine phosphatase inhibitors also result in the accumulation of phosphorylated tyrosine residues on beta-catenin, loss of the association of N-cadherin with the actin- containing cytoskeleton, and prevent N-cadherin mediated adhesion, presumably by directly blocking the function of the PTP1B-like phosphatase. We previously showed that the binding of two ligands to the cell surface N-acetylgalactosaminylphosphotransferase (GalNAcPTase), the monoclonal antibody 1B11 and a proteoglycan with a 250-kD core protein

  6. The Function of PTP1B in Neuroendocrine Differentation of Prostate Cancer

    Science.gov (United States)

    2009-01-01

    AD_________________ Award Number: W81XWH-07-1-0061 TITLE: The Function of PTP1B in Neuroendocrine...The Function of PTP1B in Neuroendocrine Differentation of Prostate Cancer 5b. GRANT NUMBER W81XWH-07-1-0061 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...pathways that may be responsible for the neuroendocrine differentiation of prostate cancer cells, particularly the relationship of PTP1B to IL-8

  7. Cell Transformation by PTP1B Truncated Mutants Found in Human Colon and Thyroid Tumors.

    Science.gov (United States)

    Mei, Wenhan; Wang, Kemin; Huang, Jian; Zheng, Xinmin

    2016-01-01

    Expression of wild-type protein tyrosine phosphatase (PTP) 1B may act either as a tumor suppressor by dysregulation of protein tyrosine kinases or a tumor promoter through Src dephosphorylation at Y527 in human breast cancer cells. To explore whether mutated PTP1B is involved in human carcinogenesis, we have sequenced PTP1B cDNAs from human tumors and found splice mutations in ~20% of colon and thyroid tumors. The PTP1BΔE6 mutant expressed in these two tumor types and another PTP1BΔE5 mutant expressed in colon tumor were studied in more detail. Although PTP1BΔE6 revealed no phosphatase activity compared with wild-type PTP1B and the PTP1BΔE5 mutant, its expression induced oncogenic transformation of rat fibroblasts without Src activation, indicating that it involved signaling pathways independent of Src. The transformed cells were tumourigenic in nude mice, suggesting that the PTP1BΔE6 affected other molecule(s) in the human tumors. These observations may provide a novel therapeutic target for colon and thyroid cancer.

  8. Characterization of the C-terminal ER membrane anchor of PTP1B

    International Nuclear Information System (INIS)

    Anderie, Ines; Schulz, Irene; Schmid, Andreas

    2007-01-01

    The tyrosine phosphatase PTP1B is an important regulator of cell function. In living cells PTP1B activity is restricted to the vicinity of the endoplasmic reticulum (ER) by post-translational C-terminal attachment of PTP1B to the ER membrane network. In our study we investigated the membrane anchor of PTP1B by use of EGFP fusion proteins. We demonstrate that the membrane anchor of PTP1B cannot be narrowed down to a unique amino acid sequence with a defined start and stop point but rather is moveable within several amino acids. Removal of up to seven amino acids from the C-terminus, as well as exchange of single amino acids in the putative transmembrane sequence did not influence subcellular localization of PTP1B. With the method of bimolecular fluorescence complementation we could demonstrate dimerization of PTP1B in vivo. Homodimerization was, in contrast to other tail-anchored proteins, not dependent on the membrane anchor. Our data demonstrate that the C-terminal membrane anchor of PTP1B is formed by a combination of a single stretch transmembrane domain (TMD) followed by a tail. TMD and tail length are variable and there are no sequence-specific features. Our data for PTP1B are consistent with a concept that explains the ER membrane anchor of tail-anchored proteins as a physicochemical structure

  9. Effects of co-administration of dietary sodium arsenite and an NADPH oxidase inhibitor on the rat bladder epithelium

    International Nuclear Information System (INIS)

    Suzuki, Shugo; Arnold, Lora L.; Pennington, Karen L.; Kakiuchi-Kiyota, Satoko; Cohen, Samuel M.

    2009-01-01

    Arsenite (As III ), an inorganic arsenical, is a known human carcinogen, inducing tumors of the skin, urinary bladder and lung. It is metabolized to organic methylated arsenicals. Oxidative stress has been suggested as a mechanism for arsenic-induced carcinogenesis. Reactive oxygen species (ROS) can be important factors for carcinogenesis and tumor progression. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is known to produce intracellular ROS, therefore, we investigated the ability of apocynin (acetovanillone), an NADPH oxidase inhibitor, to inhibit the cytotoxicity and regenerative cell proliferation of arsenic in vitro and in vivo. Apocynin had similar effects in reducing the cytotoxicity of As III and dimethylarsinous acid (DMA III ) in rat urothelial cells in vitro. When tested at the same concentrations as apocynin, other antioxidants, such as L-ascorbate and N-acetylcysteine, did not inhibit As III -induced cytotoxicity but they were more effective at inhibiting DMA III -induced cytotoxicity compared with apocynin. In vivo, female rats were treated for 3 weeks with 100 ppm As III . Immunohistochemical staining for 8-hydroxy-2'-deoxyguanosine (8-OHdG) showed that apocynin reduced oxidative stress partially induced by As III treatment on rat urothelium, and significantly reduced the cytotoxicity of superficial cells detected by scanning electron microscopy (SEM). However, based on the incidence of simple hyperplasia and the bromodeoxyuridine (BrdU) labeling index, apocynin did not inhibit As III -induced urothelial cell proliferation. These data suggest that the NADPH oxidase inhibitor, apocynin, may have the ability to partially inhibit arsenic-induced oxidative stress and cytotoxicity of the rat bladder epithelium in vitro and in vivo. However, apocynin did not inhibit the regenerative cell proliferation induced by arsenite in a short-term study.

  10. PTP1B promotes aggressiveness of breast cancer cells by regulating PTEN but not EMT.

    Science.gov (United States)

    Liu, Xue; Chen, Qian; Hu, Xu-Gang; Zhang, Xian-Chao; Fu, Ti-Wei; Liu, Qing; Liang, Yan; Zhao, Xi-Long; Zhang, Xia; Ping, Yi-Fang; Bian, Xiu-Wu

    2016-10-01

    Metastasis is a complicated, multistep process and remains the major cause of cancer-related mortality. Exploring the molecular mechanisms underlying tumor metastasis is crucial for development of new strategies for cancer prevention and treatment. In this study, we found that protein tyrosine phosphatase 1B (PTP1B) promoted breast cancer metastasis by regulating phosphatase and tensin homolog (PTEN) but not epithelial-mesenchymal transition (EMT). By detecting PTP1B expression of the specimens from 128 breast cancer cases, we found that the level of PTP1B was higher in breast cancer tissues than the corresponding adjacent normal tissues. Notably, PTP1B was positively associated with lymph node metastasis (LNM) and estrogen receptor (ER) status. In vitro, disturbing PTP1B expression obviously attenuated cell migration and invasion. On the contrary, PTP1B overexpression significantly increased migration and invasion of breast cancer cells. Mechanistically, PTP1B knockdown upregulated PTEN, accompanied with an abatement of AKT phosphorylation and the expression of matrix metalloproteinase 2 (MMP2) and MMP7. Conversely, forced expression of PTP1B reduced PTEN and increased AKT phosphorylation as well as the expression of MMP2 and MMP7. Notably, neither EMT nor stemness of breast cancer cells was regulated by PTP1B. We also found that PTP1B acted as an independent prognostic factor and predicted poor prognosis in ER-positive breast cancer patients. Taken together, our findings provide advantageous evidence for the development of PTP1B as a potential therapeutic target for breast cancer, especially for ER-positive breast cancer patients.

  11. Sodium-Glucose Cotransporter 2 Inhibitor and a Low Carbohydrate Diet Affect Gluconeogenesis and Glycogen Content Differently in the Kidney and the Liver of Non-Diabetic Mice.

    Science.gov (United States)

    Atageldiyeva, Kuralay; Fujita, Yukihiro; Yanagimachi, Tsuyoshi; Mizumoto, Katsutoshi; Takeda, Yasutaka; Honjo, Jun; Takiyama, Yumi; Abiko, Atsuko; Makino, Yuichi; Haneda, Masakazu

    2016-01-01

    A low carbohydrate diet (LCHD) as well as sodium glucose cotransporter 2 inhibitors (SGLT2i) may reduce glucose utilization and improve metabolic disorders. However, it is not clear how different or similar the effects of LCHD and SGLT2i are on metabolic parameters such as insulin sensitivity, fat accumulation, and especially gluconeogenesis in the kidney and the liver. We conducted an 8-week study using non-diabetic mice, which were fed ad-libitum with LCHD or a normal carbohydrate diet (NCHD) and treated with/without the SGLT-2 inhibitor, ipragliflozin. We compared metabolic parameters, gene expression for transcripts related to glucose and fat metabolism, and glycogen content in the kidney and the liver among the groups. SGLT2i but not LCHD improved glucose excursion after an oral glucose load compared to NCHD, although all groups presented comparable non-fasted glycemia. Both the LCHD and SGLT2i treatments increased calorie-intake, whereas only the LCHD increased body weight compared to the NCHD, epididimal fat mass and developed insulin resistance. Gene expression of certain gluconeogenic enzymes was simultaneously upregulated in the kidney of SGLT2i treated group, as well as in the liver of the LCHD treated group. The SGLT2i treated groups showed markedly lower glycogen content in the liver, but induced glycogen accumulation in the kidney. We conclude that LCHD induces deleterious metabolic changes in the non-diabetic mice. Our results suggest that SGLT2i induced gluconeogenesis mainly in the kidney, whereas for LCHD it was predominantly in the liver.

  12. Therapeutic value of voltage-gated sodium channel inhibitors in breast, colorectal and prostate cancer: a systematic review

    Directory of Open Access Journals (Sweden)

    Fabiola eMartin

    2015-11-01

    Full Text Available Although survival rates of breast, colon and prostate cancers are improving, deaths from these tumors frequently occur due to metastasis. Voltage-gated Na+ channels (VGSCs are membrane proteins, which regulate membrane current and cellular migration during nervous system organogenesis. VGSCs are also expressed in fibroblasts, immune cells, glia and metastatic cancer cells. VGSCs regulate migration and invasion of breast, bowel and prostate cancer cells, suggesting that they may be novel anti-metastatic targets. We conducted a systematic review of clinical and preclinical studies testing the effects of VGSC-inhibiting drugs in cancer. 204 publications were identified, of which two human, two mouse and 20 in vitro publications were included. In the clinical studies, the effect of these drugs on survival and metastatic relapse is not clear. The 22 preclinical studies collectively suggest that several VGSC-inhibiting drugs inhibit cancer proliferation, migration and invasion. None of the human and only six of the preclinical studies directly investigated the effect of the drugs on VGSC activity. Studies were difficult to compare due to lack of standardized methodology and outcome measures. We conclude that the benefits of VGSC inhibitors require further investigation. Standardization of future studies and outcome measures should enable meaningful study comparisons.

  13. High-Throughput Screening and Quantitative Chemical Ranking for Sodium-Iodide Symporter Inhibitors in ToxCast Phase I Chemical Library.

    Science.gov (United States)

    Wang, Jun; Hallinger, Daniel R; Murr, Ashley S; Buckalew, Angela R; Simmons, Steven O; Laws, Susan C; Stoker, Tammy E

    2018-05-01

    Thyroid uptake of iodide via the sodium-iodide symporter (NIS) is the first step in the biosynthesis of thyroid hormones that are critical for health and development in humans and wildlife. Despite having long been a known target of endocrine disrupting chemicals such as perchlorate, information regarding NIS inhibition activity is still unavailable for the vast majority of environmental chemicals. This study applied a previously validated high-throughput approach to screen for NIS inhibitors in the ToxCast phase I library, representing 293 important environmental chemicals. Here 310 blinded samples were screened in a tiered-approach using an initial single-concentration (100 μM) radioactive-iodide uptake (RAIU) assay, followed by 169 samples further evaluated in multi-concentration (0.001 μM-100 μM) testing in parallel RAIU and cell viability assays. A novel chemical ranking system that incorporates multi-concentration RAIU and cytotoxicity responses was also developed as a standardized method for chemical prioritization in current and future screenings. Representative chemical responses and thyroid effects of high-ranking chemicals are further discussed. This study significantly expands current knowledge of NIS inhibition potential in environmental chemicals and provides critical support to U.S. EPA's Endocrine Disruptor Screening Program (EDSP) initiative to expand coverage of thyroid molecular targets, as well as the development of thyroid adverse outcome pathways (AOPs).

  14. The corrosion inhibition of aluminum and its copper alloys in 1.0 M H2SO4 solution using linear-sodium dodecyl benzene sulfonate as inhibitor

    International Nuclear Information System (INIS)

    Abd El Rehim, Sayed S.; Amin, Mohammed A.; Moussa, S.O.; Ellithy, Abdallah S.

    2008-01-01

    The corrosion inhibition of Al and its two copper alloys are the subject of tremendous technological importance due to the increased industrial applications of these materials. This paper reports the results of potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) measurements on the corrosion inhibition of Al (Al-2.5% Cu and Al-7.0% Cu) alloys in 1.0 M H 2 SO 4 solution carried out in different concentrations of linear-sodium dodecyl benzene sulfonate as an anionic surfactant (LAS) and temperature range from 10 to 60 deg. C. The data revealed that the inhibition efficiency increases with increasing surfactant concentration and time of immersion, and decreases with solution temperature. Energy dispersion X-ray (EDX) observations of the electrode surface confirmed the existence of LAS adsorbed film on the electrode surface. The surfactant acted mainly as cathodic inhibitor. Maximum inhibition efficiency of the surfactant is observed at concentration around its critical micelle concentration (CMC). The inhibition occurs through adsorption of the surfactant on the metal surface without modifying the mechanism of the corrosion process, which tested by UV-spectroscopy. The potential of zero charge (PZC) of aluminum and Al-7.0% Cu was studied by ac-impedance, and the mechanism of adsorption is discussed. The adsorption isotherm is described by Temkin adsorption isotherm. Thermodynamic functions for activation and adsorption process were determined

  15. Penostatin Derivatives, a Novel Kind of Protein Phosphatase 1B Inhibitors Isolated from Solid Cultures of the Entomogenous Fungus Isaria tenuipes

    Directory of Open Access Journals (Sweden)

    Yu-Peng Chen

    2014-01-01

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B is implicated as a negative regulator of insulin receptor (IR signaling and a potential drug target for the treatment of type II diabetes and other associated metabolic syndromes. Therefore, small molecular inhibitors of PTP1B can be considered as an attractive approach for the design of new therapeutic agents of type II diabetes diseases. In a continuing search for new protein phosphatase inhibitors from fungi, we have isolated a new compound, named penostatin J (1, together with three known ones, penostatin C (2, penostatin A (3, and penostatin B (4, from cultures of the entomogenous fungus Isaria tenuipes. The structure of penostatin J (1 was elucidated by extensive spectroscopic analysis. We also demonstrate for the first time that penostatin derivatives exhibit the best PTP1B inhibitory action. These findings suggest that penostatin derivatives are a potential novel kind of PTP1B inhibitors.

  16. Establishing MALDI-TOF as Versatile Drug Discovery Readout to Dissect the PTP1B Enzymatic Reaction.

    Science.gov (United States)

    Winter, Martin; Bretschneider, Tom; Kleiner, Carola; Ries, Robert; Hehn, Jörg P; Redemann, Norbert; Luippold, Andreas H; Bischoff, Daniel; Büttner, Frank H

    2018-07-01

    Label-free, mass spectrometric (MS) detection is an emerging technology in the field of drug discovery. Unbiased deciphering of enzymatic reactions is a proficient advantage over conventional label-based readouts suffering from compound interference and intricate generation of tailored signal mediators. Significant evolvements of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS, as well as associated liquid handling instrumentation, triggered extensive efforts in the drug discovery community to integrate the comprehensive MS readout into the high-throughput screening (HTS) portfolio. Providing speed, sensitivity, and accuracy comparable to those of conventional, label-based readouts, combined with merits of MS-based technologies, such as label-free parallelized measurement of multiple physiological components, emphasizes the advantages of MALDI-TOF for HTS approaches. Here we describe the assay development for the identification of protein tyrosine phosphatase 1B (PTP1B) inhibitors. In the context of this precious drug target, MALDI-TOF was integrated into the HTS environment and cross-compared with the well-established AlphaScreen technology. We demonstrate robust and accurate IC 50 determination with high accordance to data generated by AlphaScreen. Additionally, a tailored MALDI-TOF assay was developed to monitor compound-dependent, irreversible modification of the active cysteine of PTP1B. Overall, the presented data proves the promising perspective for the integration of MALDI-TOF into drug discovery campaigns.

  17. PTP1B Deficiency Enables the Ability of a High-Fat Diet to Drive the Invasive Character of PTEN-Deficient Prostate Cancers.

    Science.gov (United States)

    Labbé, David P; Uetani, Noriko; Vinette, Valérie; Lessard, Laurent; Aubry, Isabelle; Migon, Eva; Sirois, Jacinthe; Haigh, Jody J; Bégin, Louis R; Trotman, Lloyd C; Paquet, Marilène; Tremblay, Michel L

    2016-06-01

    Diet affects the risk and progression of prostate cancer, but the interplay between diet and genetic alterations in this disease is not understood. Here we present genetic evidence in the mouse showing that prostate cancer progression driven by loss of the tumor suppressor Pten is mainly unresponsive to a high-fat diet (HFD), but that coordinate loss of the protein tyrosine phosphatase Ptpn1 (encoding PTP1B) enables a highly invasive disease. Prostate cancer in Pten(-/-)Ptpn1(-/-) mice was characterized by increased cell proliferation and Akt activation, interpreted to reflect a heightened sensitivity to IGF-1 stimulation upon HFD feeding. Prostate-specific overexpression of PTP1B was not sufficient to initiate prostate cancer, arguing that it acted as a diet-dependent modifier of prostate cancer development in Pten(-/-) mice. Our findings offer a preclinical rationale to investigate the anticancer effects of PTP1B inhibitors currently being studied clinically for diabetes treatment as a new modality for management of prostate cancer. Cancer Res; 76(11); 3130-5. ©2016 AACR. ©2016 American Association for Cancer Research.

  18. Isolation and Characterization of Protein Tyrosine Phosphatase 1B (PTP1B Inhibitory Polyphenolic Compounds From Dodonaea viscosa and Their Kinetic Analysis

    Directory of Open Access Journals (Sweden)

    Zia Uddin

    2018-03-01

    Full Text Available Diabetes mellitus is one of a major worldwide concerns, regulated by either defects in secretion or action of insulin, or both. Insulin signaling down-regulation has been related with over activity of protein tyrosine phosphatase 1B (PTP1B enzyme, which has been a promising target for the treatment of diabetes mellitus. Herein, activity guided separation of methanol extract (95% of Dodonaea viscosa aerial parts afforded nine (1-9 polyphenolic compounds, all of them were identified through spectroscopic data including 2D NMR and HREIMS. Subsequently, their PTP1B inhibitory potentials were evaluated, in which all of the isolates exhibited significant dose-dependent inhibition with IC50 13.5–57.9 μM. Among them, viscosol (4 was found to be the most potent compound having IC50 13.5 μM. In order to unveil the mechanistic behavior, detailed kinetic study was carried out, in which compound 4 was observed as a reversible, and mixed type I inhibitor of PTP1B with inhibitory constant (Ki value of 4.6 μM. Furthermore, we annotated the major metabolites through HPLC-DAD-ESI/MS analysis, in which compounds 3, 6, 7, and 9 were found to be the most abundant metabolites in D. viscosa extract.

  19. Isolation and characterization of protein tyrosine phosphatase 1B (PTP1B) inhibitory polyphenolic compounds from Dodonaea viscosa and their kinetic analysis

    Science.gov (United States)

    Uddin, Zia; Song, Yeong Hun; Ullah, Mahboob; Li, Zuopeng; Kim, Jeong Yoon; Park, Ki Hun

    2018-03-01

    Diabetes mellitus is one of a major worldwide concerns, regulated by either defects in secretion or action of insulin, or both. Insulin signaling down-regulation has been related with over activity of protein tyrosine phosphatase 1B (PTP1B) enzyme, which has been a promising target for the treatment of diabetes mellitus. Herein, activity guided separation of methanol extract (95%) of Dodonaea viscosa aerial parts afforded nine (1-9) polyphenolic compounds, all of them were identified through spectroscopic data including 2D NMR and HREIMS. Subsequently, their PTP1B inhibitory potentials were evaluated, in which all of the isolates exhibited significant dose-dependent inhibition with IC50 13.5-57.9 μM. Among them, viscosol (4) was found to be the most potent compound having IC50 13.5 μM. In order to unveil the mechanistic behavior, detailed kinetic study was carried out, in which compound 4 was observed as a reversible, and mixed type I inhibitor of PTP1B with inhibitory constant (Ki) value of 4.6 μM. Furthermore, we annotated the major metabolites through HPLC-DAD-ESI/MS analysis, in which compounds 3, 6, 7 and 9 were found to be the most abundant metabolites in D.viscosa extract.

  20. Sex-Dependent Effects of the Histone Deacetylase Inhibitor, Sodium Valproate, on Reversal Learning After Developmental Arsenic Exposure

    Directory of Open Access Journals (Sweden)

    Christina R. Steadman Tyler

    2018-06-01

    Full Text Available Several studies have demonstrated that exposure to arsenic in drinking water adversely affects brain development and cognitive function in adulthood. While the mechanism by which arsenic induces adverse neurological outcomes remains elusive, studies suggest a link between reduced levels of histone acetylation and impaired performance on a variety of behavioral tasks following arsenic exposure. Using our developmental arsenic exposure (DAE paradigm, we have previously reported reduced histone acetylation and associated histone acetyltransferase enzyme expression in the frontal cortex of C57BL/6J adult male mice, with no changes observed in the female frontal cortex. In the present study, we sought to determine if DAE produced sex-dependent deficits in frontal cortical executive function using the Y-maze acquisition and reversal learning tasks, which are specific for assessing cognitive flexibility. Further, we tested whether the administration of valproic acid, a class I–IIa histone deacetylase inhibitor, was able to mitigate behavioral and biochemical changes resulting from DAE. As anticipated, DAE inhibited acquisition and reversal learning performance in adult male, but not female, mice. Valproate treatment for 2 weeks restored reversal performance in the male arsenic-exposed offspring, while not affecting female performance. Protein levels of HDACs 1, 2, and 5 were elevated following behavioral assessment but only in DAE male mice; restoration of appropriate HDAC levels occurred after valproate treatment and was concurrent with improved behavioral performance, particularly during reversal learning. Female frontal cortical levels of HDAC enzymes were not impacted by DAE or valproate treatment. Finally, mRNA expression levels of brain-derived neurotrophic factor, Bdnf, which has been implicated in the control of frontal cortical flexibility and is regulated by HDAC5, were elevated in DAE male mice and restored to normal levels following HDACi

  1. Protein Tyrosine Phosphatase 1B Inhibitors from the Roots of Cudrania tricuspidata

    Directory of Open Access Journals (Sweden)

    Tran Hong Quang

    2015-06-01

    Full Text Available A chemical investigation of the methanol extract from the roots of Cudrania tricuspidata resulted in the isolation of 16 compounds, including prenylated xanthones 1–9 and flavonoids 10–16. Their structures were identified by NMR spectroscopy and mass spectrometry and comparisons with published data. Compounds 1–9 and 13–16 significantly inhibited PTP1B activity in a dose dependent manner, with IC50 values ranging from 1.9–13.6 μM. Prenylated xanthones showed stronger PTP1B inhibitory effects than the flavonoids, suggesting that they may be promising targets for the future discovery of novel PTP1B inhibitors. Furthermore, kinetic analyses indicated that compounds 1 and 13 inhibited PTP1B in a noncompetitive manner; therefore, they may be potential lead compounds in the development of anti-obesity and -diabetic agents.

  2. The impact of JNK inhibitor D-JNKI-1 in a murine model of chronic colitis induced by dextran sulfate sodium

    Directory of Open Access Journals (Sweden)

    Kersting S

    2013-05-01

    significant. Conclusion: Administration of D-JNKI-1 resulted in a clinical attenuation of chronic DSS colitis, and a therapeutic effect of D-JNKI-1 must therefore be assumed. The decrease in CD4+ and CD8+ cells may reflect the influence of D-JNKI-1 on T-cell activation, differentiation, and migration. Keywords: c-Jun N-terminal kinase inhibitor, dextran sulfate sodium colitis, inflammatory bowel diseases, T cell, D-JNKI-1

  3. Ras-Induced and Extracellular Signal-Regulated Kinase 1 and 2 Phosphorylation-Dependent Isomerization of Protein Tyrosine Phosphatase (PTP)-PEST by PIN1 Promotes FAK Dephosphorylation by PTP-PEST ▿

    Science.gov (United States)

    Zheng, Yanhua; Yang, Weiwei; Xia, Yan; Hawke, David; Liu, David X.; Lu, Zhimin

    2011-01-01

    Protein tyrosine phosphatase (PTP)-PEST is a critical regulator of cell adhesion and migration. However, the mechanism by which PTP-PEST is regulated in response to oncogenic signaling to dephosphorylate its substrates remains unclear. Here, we demonstrate that activated Ras induces extracellular signal-regulated kinase 1 and 2-dependent phosphorylation of PTP-PEST at S571, which recruits PIN1 to bind to PTP-PEST. Isomerization of the phosphorylated PTP-PEST by PIN1 increases the interaction between PTP-PEST and FAK, which leads to the dephosphorylation of FAK Y397 and the promotion of migration, invasion, and metastasis of v-H-Ras-transformed cells. These findings uncover an important mechanism for the regulation of PTP-PEST in activated Ras-induced tumor progression. PMID:21876001

  4. Benefits and Harms of Sodium-Glucose Co-Transporter 2 Inhibitors in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis

    Science.gov (United States)

    Gluud, Lise L.; Bennett, Cathy; Grøndahl, Magnus F.; Christensen, Mikkel B.; Knop, Filip K.; Vilsbøll, Tina

    2016-01-01

    Objective Sodium-glucose co-transporter 2 inhibitors (SGLT2-i) are a novel drug class for the treatment of diabetes. We aimed at describing the maximal benefits and risks associated with SGLT2-i for patients with type 2 diabetes. Design Systematic review and meta-analysis. Data Sources and Study Selection We included double-blinded, randomised controlled trials (RCTs) evaluating SGLT2-i administered in the highest approved therapeutic doses (canagliflozin 300 mg/day, dapagliflozin 10 mg/day, and empagliflozin 25 mg/day) for ≥12 weeks. Comparison groups could receive placebo or oral antidiabetic drugs (OAD) including metformin, sulphonylureas (SU), or dipeptidyl peptidase 4 inhibitors (DPP-4-i). Trials were identified through electronic databases and extensive manual searches. Primary outcomes were glycated haemoglobin A1c (HbA1c) levels, serious adverse events, death, severe hypoglycaemia, ketoacidosis and CVD. Secondary outcomes were fasting plasma glucose, body weight, blood pressure, heart rate, lipids, liver function tests, creatinine and adverse events including infections. The quality of the evidence was assessed using GRADE. Results Meta-analysis of 34 RCTs with 9,154 patients showed that SGLT2-i reduced HbA1c compared with placebo (mean difference -0.69%, 95% confidence interval -0.75 to -0.62%). We downgraded the evidence to ‘low quality’ due to variability and evidence of publication bias (P = 0.015). Canagliflozin was associated with the largest reduction in HbA1c (-0.85%, -0.99% to -0.71%). There were no differences between SGLT2-i and placebo for serious adverse events. SGLT2-i increased the risk of urinary and genital tract infections and increased serum creatinine, and exerted beneficial effects on bodyweight, blood pressure, lipids and alanine aminotransferase (moderate to low quality evidence). Analysis of 12 RCTs found a beneficial effect of SGLT2-i on HbA1c compared with OAD (-0.20%, -0.28 to -0.13%; moderate quality evidence). Conclusion

  5. HD-PTP is a catalytically inactive tyrosine phosphatase due to a conserved divergence in its phosphatase domain.

    Directory of Open Access Journals (Sweden)

    Marie-Claude Gingras

    Full Text Available The HD-PTP protein has been described as a tumor suppressor candidate and based on its amino acid sequence, categorized as a classical non-transmembrane protein tyrosine phosphatase (PTP. To date, no HD-PTP phosphorylated substrate has been identified and controversial results concerning its catalytic activity have been recently reported.Here we report a rigorous enzymatic analysis demonstrating that the HD-PTP protein does not harbor tyrosine phosphatase or lipid phosphatase activity using the highly sensitive DiFMUP substrate and a panel of different phosphatidylinositol phosphates. We found that HD-PTP tyrosine phosphatase inactivity is caused by an evolutionary conserved amino acid divergence of a key residue located in the HD-PTP phosphatase domain since its back mutation is sufficient to restore the HD-PTP tyrosine phosphatase activity. Moreover, in agreement with a tumor suppressor activity, HD-PTP expression leads to colony growth reduction in human cancer cell lines, independently of its catalytic PTP activity status.In summary, we demonstrate that HD-PTP is a catalytically inactive protein tyrosine phosphatase. As such, we identify one residue involved in its inactivation and show that its colony growth reduction activity is independent of its PTP activity status in human cancer cell lines.

  6. Safety of Sodium-Glucose Cotransporter 2 Inhibitors (SGLT2-I During the Month of Ramadan in Muslim Patients with Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Alaaeldin Bashier

    2018-03-01

    Full Text Available Objectives: Sodium-glucose cotransporter 2 inhibitors (SGLT2-I are a new class of antidiabetic drugs that might increase the risk of dehydration and hypoglycemia, particularly during the month of Ramadan in which Muslims abstain from eating and drinking for 14–16 hours daily. We aimed to provide real-life evidence about the safety of SGLT2-I during Ramadan. Methods: All patients over the age of 18 years on SGLT2-I before Ramadan 2016 who would be fasting during Ramadan were included. Demographic data, detailed medical history including comorbidities and medication profile, and laboratory results were collected before and after Ramadan. We also conducted a phone interview to evaluate the frequency and severity of hypoglycemia and dehydration. Results: Of the total of 417 patients, 113 (27.0% experienced hypoglycemic events, and 93 of these (82.3% checked their blood glucose using a glucometer. Confirmed hypoglycemia (< 70 mg/dL was observed in 78 (83.8%. The hypoglycemic events were significantly more frequent in the SGLT2-I plus insulin-treated group than in those treated with SGLT2-I plus oral hypoglycemic agents group (p < 0.001. Confirmed hypoglycemic events were more frequent in those using SGLT2-I plus intensive insulin compared to those using SGLT2-I plus basal insulin (p = 0.020. Symptoms of dehydration were seen in 9.3% (n = 39 of the total population. We observed statistically significant reductions in glycated hemoglobin and weight by the end of Ramadan (p < 0.001. There were no significant changes in lipid profile and creatinine levels by the end of the study. Conclusions: The use of insulin in combination with SGLT2-I increases the risk of hypoglycemia during Ramadan. Hypoglycemic events were mild and did not require hospital admission. However, careful monitoring during prolonged fasting is warranted. No significant harmful effects on renal function result from treatment with SGLT2-I during Ramadan.

  7. Effects of antidiabetic drugs on the incidence of macrovascular complications and mortality in type 2 diabetes mellitus: a new perspective on sodium-glucose co-transporter 2 inhibitors.

    Science.gov (United States)

    Rahelić, Dario; Javor, Eugen; Lucijanić, Tomo; Skelin, Marko

    2017-02-01

    Elevated hemoglobin A 1c (HbA 1c ) values correlate with microvascular and macrovascular complications. Thus, patients with type 2 diabetes mellitus (T2DM) are at an increased risk of developing macrovascular events. Treatment of T2DM should be based on a multifactorial approach because of its evidence regarding reduction of macrovascular complications and mortality in T2DM. It is well known that intensive glucose control reduces the risk of microvascular complications in T2DM, but the effects of antidiabetic drugs on macrovascular complications and mortality in T2DM are less clear. The results of recent trials have demonstrated clear evidence that empagliflozin and liraglutide reduce cardiovascular (CV) and all-cause mortality in T2DM, an effect that is absent in other members of antidiabetic drugs. Empagliflozin is a member of a novel class of antidiabetic drugs, the sodium-glucose co-transporter 2 (SGLT2) inhibitors. Two ongoing randomized clinical trials involving other SGLT2 inhibitors, canagliflozin and dapagliflozin, will provide additional evidence of the beneficial effects of SGLT2 inhibitors in T2DM population. The aim of this paper is to systematically present the latest evidence regarding the usage of antidiabetic drugs, and the reduction of macrovascular complications and mortality. A special emphasis is put on the novel class of antidiabetic drugs, of SGLT2 inhibitors. Key messages Macrovascular complications and mortality are best clinical trial endpoints for evaluating the efficacy of antidiabetic drugs. The first antidiabetic drug that demonstrated a reduction in mortality in the treatment of type 2 diabetes mellitus (T2DM) was empagliflozin, a sodium-glucose co-transporter 2 (SGLT2) inhibitor. SGLT2 inhibitors are novel class of antidiabetic drugs that play a promising role in the treatment of T2DM.

  8. Integral Role of PTP1B in Adiponectin-Mediated Inhibition of Oncogenic Actions of Leptin in Breast Carcinogenesis

    Directory of Open Access Journals (Sweden)

    LaTonia Taliaferro-Smith

    2013-01-01

    Full Text Available The molecular effects of obesity are mediated by alterations in the levels of adipocytokines. High leptin level associated with obese state is a major cause of breast cancer progression and metastasis, whereas adiponectin is considered a “guardian angel adipocytokine” for its protective role against various obesity-related pathogenesis including breast cancer. In the present study, investigating the role of adiponectin as a potential inhibitor of leptin, we show that adiponectin treatment inhibits leptin-induced clonogenicity and anchorage-independent growth. Leptin-stimulated migration and invasion of breast cancer cells is also effectively inhibited by adiponectin. Analyses of the underlying molecular mechanisms reveal that adiponectin suppresses activation of two canonical signaling molecules of leptin signaling axis: extracellular signal-regulated kinase (ERK and Akt. Pretreatment of breast cancer cells with adiponectin protects against leptin-induced activation of ERK and Akt. Adiponectin increases expression and activity of the physiological inhibitor of leptin signaling, protein tyrosine phosphatase 1B (PTP1B, which is found to be integral to leptin-antagonist function of adiponectin. Inhibition of PTP1B blocks adiponectin-mediated inhibition of leptin-induced breast cancer growth. Our in vivo studies show that adenovirus-mediated adiponectin treatment substantially reduces leptin-induced mammary tumorigenesis in nude mice. Exploring therapeutic strategies, we demonstrate that treatment of breast cancer cells with rosiglitazone results in increased adiponectin expression and inhibition of migration and invasion. Rosiglitazone treatment also inhibits leptin-induced growth of breast cancer cells. Taken together, these data show that adiponectin treatment can inhibit the oncogenic actions of leptin through blocking its downstream signaling molecules and raising adiponectin levels could be a rational therapeutic strategy for breast

  9. Severe energy deficit upregulates leptin receptors, leptin signaling, and PTP1B in human skeletal muscle.

    Science.gov (United States)

    Perez-Suarez, Ismael; Ponce-González, Jesús Gustavo; de La Calle-Herrero, Jaime; Losa-Reyna, Jose; Martin-Rincon, Marcos; Morales-Alamo, David; Santana, Alfredo; Holmberg, Hans-Christer; Calbet, Jose A L

    2017-11-01

    In obesity, leptin receptors (OBR) and leptin signaling in skeletal muscle are downregulated. To determine whether OBR and leptin signaling are upregulated with a severe energy deficit, 15 overweight men were assessed before the intervention (PRE), after 4 days of caloric restriction (3.2 kcal·kg body wt -1 ·day -1 ) in combination with prolonged exercise (CRE; 8 h walking + 45 min single-arm cranking/day) to induce an energy deficit of ~5,500 kcal/day, and following 3 days of control diet (isoenergetic) and reduced exercise (CD). During CRE, the diet consisted solely of whey protein ( n = 8) or sucrose ( n = 7; 0.8 g·kg body wt -1 ·day -1 ). Muscle biopsies were obtained from the exercised and the nonexercised deltoid muscles and from the vastus lateralis. From PRE to CRE, serum glucose, insulin, and leptin were reduced. OBR expression was augmented in all examined muscles associated with increased maximal fat oxidation. Compared with PRE, after CD, phospho-Tyr 1141 OBR, phospho-Tyr 985 OBR, JAK2, and phospho-Tyr 1007/1008 JAK2 protein expression were increased in all muscles, whereas STAT3 and phospho-Tyr 705 STAT3 were increased only in the arms. The expression of protein tyrosine phosphatase 1B (PTP1B) in skeletal muscle was increased by 18 and 45% after CRE and CD, respectively ( P < 0.05). Suppressor of cytokine signaling 3 (SOCS3) tended to increase in the legs and decrease in the arm muscles (ANOVA interaction: P < 0.05). Myosin heavy chain I isoform was associated with OBR protein expression ( r  = -0.75), phospho-Tyr 985 OBR ( r  = 0.88), and phospho-Tyr 705 STAT3/STAT3 ( r = 0.74). In summary, despite increased PTP1B expression, skeletal muscle OBR and signaling are upregulated by a severe energy deficit with greater response in the arm than in the legs likely due to SOCS3 upregulation in the leg muscles. NEW & NOTEWORTHY This study shows that the skeletal muscle leptin receptors and their corresponding signaling cascade are upregulated in

  10. Identification of YB-1 as a regulator of PTP1B expression: implications for regulation of insulin and cytokine signaling

    Science.gov (United States)

    Fukada, Toshiyuki; Tonks, Nicholas K.

    2003-01-01

    Changes in expression of PTP1B, the prototypic protein tyrosine phosphatase, have been associated with various human diseases; however, the mechanisms by which PTP1B expression is regulated have not been defined. We have identified an enhancer sequence within the PTP1B promoter which serves as a binding site for the transcription factor Y box-binding protein-1 (YB-1). Overexpression of YB-1 resulted in increased levels of PTP1B. Furthermore, depletion of YB-1 protein, by expression of a specific antisense construct, led to an ∼70% decrease in expression of PTP1B, but no change in the level of its closest relative, TC-PTP. Expression of antisense YB-1 resulted in increased sensitivity to insulin and enhanced signaling through the cytokine receptor gp130, which was suppressed by re-expression of PTP1B. Finally, we observed a correlation between the expression of PTP1B and that of YB-1 in cancer cell lines and an animal model of type II diabetes. Our data reveal an important role for YB-1 as a regulator of PTP1B expression, and further highlight PTP1B as a critical regulator of insulin- and cytokine-mediated signal transduction. PMID:12554649

  11. Function of PTP1B in Neuroendocrine Differentiation of Prostate Cancer

    National Research Council Canada - National Science Library

    Huang, Jiaoti

    2008-01-01

    ... differentiation of prostate cancer cells, particularly the relationship of PTP1B to IL-8 signaling through its receptors CXCR1 and CXCR2, to IGF-1 receptor signaling through PI3 kinase/AKT/mTOR pathway...

  12. PTP1B Regulates Cortactin Tyrosine Phosphorylation by Targeting Tyr446*S⃞

    Science.gov (United States)

    Stuible, Matthew; Dubé, Nadia; Tremblay, Michel L.

    2008-01-01

    The emergence of protein-tyrosine phosphatase 1B (PTP1B) as a potential drug target for treatment of diabetes, obesity, and cancer underlies the importance of understanding its full range of cellular functions. Here, we have identified cortactin, a central regulator of actin cytoskeletal dynamics, as a substrate of PTP1B. A trapping mutant of PTP1B binds cortactin at the phosphorylation site Tyr446, the regulation and function of which have not previously been characterized. We show that phosphorylation of cortactin Tyr446 is induced by hyperosmolarity and potentiates apoptotic signaling during prolonged hyperosmotic stress. This study advances the importance of Tyr446 in the regulation of cortactin and provides a potential mechanism to explain the effects of PTP1B on processes including cell adhesion, migration, and tumorigenesis. PMID:18387954

  13. Clinical profile of patients with type 2 diabetes mellitus treated with sodium- glucose cotransporter-2 inhibitors and experience in real-world clinical practice in Spain.

    Science.gov (United States)

    Cuatrecasas, Gabriel; Goñi-Goicoechea, Fernando

    2016-11-01

    The main aim of the treatment of type 2 diabetes is overall control of cardiovascular risk factors. Almost 50% of patients with type 2 diabetes do not achieve glycaemic targets, and a much higher percentage do not achieve weight and blood pressure targets, despite the therapeutic arsenal that has appeared in the last decade for the treatment of this disease. In addition, antidiabetic secretatogues and insulin are associated with weight gain and an increased risk of hyperglycaemic episodes. Clinical practice guidelines recommend sodium-glucose cotransporter-2 inhibitors (SGLT2i) as an alternative in the same therapeutic step as the other options after initiation of metformin therapy. The present study reviews the most appropriate patient profile for SGLT2i therapy, based on their safety and efficacy demonstrated in controlled clinical trials. The article discusses which patients are at risk of experiencing the possible secondary effects due to the mechanism of action of this new therapeutic class, in whom SGLT2i should be used with caution. These considerations on the profile of patients suitable for SGLT2i therapy are contrasted with the results obtained in daily clinical practice, both in retrospective studies from other countries and from real-world experiences in Spain. This article presents a selection of studies performed in distinct centres with a minimum follow-up of 6 months and compares their results with those from clinical trials. SGLT2i are used in clinical practice in any therapeutic step and the efficacy results are very similar to those reported by controlled clinical trials, with a slightly higher proportion of genitourinary infections and a low dropout rate. Half the reported patients are diabetics receiving insulin therapy plus a gliflozin, showing the wide uptake of this therapeutic strategy by clinicians. SGLT2i are especially attractive due to their additional effectiveness in weight and blood pressure control and the possibility of using them

  14. Design of a trial evaluating myocardial cell protection with cariporide, an inhibitor of the transmembrane sodium-hydrogen exchanger: the Guard During Ischemia Against Necrosis (GUARDIAN trial

    Directory of Open Access Journals (Sweden)

    Schroeder John S

    2000-08-01

    Full Text Available Synopsis Background Direct myocardial cell protection in patients with unstable angina or evolving myocardial infarction (MI could prevent cell necrosis or reduce its extent, and minimize the risk of MI and death associated with percutaneous coronary interventions (PCIs and coronary artery bypass surgery. The myocardial NHE plays a critical role in mediating the progression of ischemia to necrosis by promoting intracellular accumulation of sodium and calcium in exchange for hydrogen. Blockage of the system in various experimental models of ischemia and reperfusion had a strong antinecrotic effect. The present paper describes a trial that was intended to investigate the potential clinical benefit of cariporide, a potent and selective inhibitor of the NHE, in a large spectrum of at-risk patients. Trial design The GUARDIAN trial was a multicenter, double-blind, randomized, four-arm trial that compared three cariporide dosages with placebo in patients with unstable angina and non-ST-segment elevation myocardial infarction (UA/NSTEMI and in patients undergoing a high-risk PCI or coronary artery bypass surgery. A total of 11 590 patients with one of the three possible entry diagnoses were enroled in 23 countries. The trial was designed as a combined phase 2/phase 3 study. The primary objective was to evaluate the efficacy of cariporide in reducing all-cause mortality and/or MI across the various entry populations 36 days after randomization. Three different doses of cariporide were compared with placebo. Secondary end-points were death or non-fatal MI at 10 days and 6 months, and cardiac events related to left ventricular dysfunction. The extent of MI was also assessed by peak elevation in creatinine kinase (CK-MB and a ratio of peak elevation to normal values. The sample size was driven by a total event rate of 1200 patients experiencing a primary end-point, powered to detect a 25% risk reduction in any of the three treatment groups compared with

  15. Coordinated Regulation of Insulin Signaling by the Protein Tyrosine Phosphatases PTP1B and TCPTP

    Science.gov (United States)

    Galic, Sandra; Hauser, Christine; Kahn, Barbara B.; Haj, Fawaz G.; Neel, Benjamin G.; Tonks, Nicholas K.; Tiganis, Tony

    2005-01-01

    The protein tyrosine phosphatase PTP1B is a negative regulator of insulin signaling and a therapeutic target for type 2 diabetes. Our previous studies have shown that the closely related tyrosine phosphatase TCPTP might also contribute to the regulation of insulin receptor (IR) signaling in vivo (S. Galic, M. Klingler-Hoffmann, M. T. Fodero-Tavoletti, M. A. Puryer, T. C. Meng, N. K. Tonks, and T. Tiganis, Mol. Cell. Biol. 23:2096-2108, 2003). Here we show that PTP1B and TCPTP function in a coordinated and temporally distinct manner to achieve an overall regulation of IR phosphorylation and signaling. Whereas insulin-induced phosphatidylinositol 3-kinase/Akt signaling was prolonged in both TCPTP−/− and PTP1B−/− immortalized mouse embryo fibroblasts (MEFs), mitogen-activated protein kinase ERK1/2 signaling was elevated only in PTP1B-null MEFs. By using phosphorylation-specific antibodies, we demonstrate that both IR β-subunit Y1162/Y1163 and Y972 phosphorylation are elevated in PTP1B−/− MEFs, whereas Y972 phosphorylation was elevated and Y1162/Y1163 phosphorylation was sustained in TCPTP−/− MEFs, indicating that PTP1B and TCPTP differentially contribute to the regulation of IR phosphorylation and signaling. Consistent with this, suppression of TCPTP protein levels by RNA interference in PTP1B−/− MEFs resulted in no change in ERK1/2 signaling but caused prolonged Akt activation and Y1162/Y1163 phosphorylation. These results demonstrate that PTP1B and TCPTP are not redundant in insulin signaling and that they act to control both common as well as distinct insulin signaling pathways in the same cell. PMID:15632081

  16. PTP-PEST controls EphA3 activation and ephrin-induced cytoskeletal remodelling.

    Science.gov (United States)

    Mansour, Mariam; Nievergall, Eva; Gegenbauer, Kristina; Llerena, Carmen; Atapattu, Lakmali; Hallé, Maxime; Tremblay, Michel L; Janes, Peter W; Lackmann, Martin

    2016-01-15

    Eph receptors and their corresponding membrane-bound ephrin ligands regulate cell positioning and establish tissue patterns during embryonic and oncogenic development. Emerging evidence suggests that assembly of polymeric Eph signalling clusters relies on cytoskeletal reorganisation and underlies regulation by protein tyrosine phosphatases (PTPs). PTP-PEST (also known as PTPN12) is a central regulator of actin cytoskeletal dynamics. Here, we demonstrate that an N-terminal fragment of PTP-PEST, generated through an ephrinA5-triggered and spatially confined cleavage mediated by caspase-3, attenuates EphA3 receptor activation and its internalisation. Isolation of EphA3 receptor signalling clusters within intact plasma membrane fragments obtained by detergent-free cell fractionation reveals that stimulation of cells with ephrin triggers effective recruitment of this catalytically active truncated form of PTP-PEST together with key cytoskeletal and focal adhesion proteins. Importantly, modulation of actin polymerisation using pharmacological and dominant-negative approaches affects EphA3 phosphorylation in a similar manner to overexpression of PTP-PEST. We conclude that PTP-PEST regulates EphA3 activation both by affecting cytoskeletal remodelling and through its direct action as a PTP controlling EphA3 phosphorylation, indicating its multifaceted regulation of Eph signalling. © 2016. Published by The Company of Biologists Ltd.

  17. The Role of PTP1B O-GlcNAcylation in Hepatic Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Yun Zhao

    2015-09-01

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B, which can directly dephosphorylate both the insulin receptor and insulin receptor substrate 1 (IRS-1, thereby terminating insulin signaling, reportedly plays an important role in insulin resistance. Accumulating evidence has demonstrated that O-GlcNAc modification regulates functions of several important components of insulin signal pathway. In this study, we identified that PTP1B is modified by O-GlcNAcylation at three O-GlcNAc sites (Ser104, Ser201, and Ser386. Palmitate acid (PA impaired the insulin signaling, indicated by decreased phosphorylation of both serine/threonine-protein kinase B (Akt and glycogen synthase kinase 3 beta (GSK3β following insulin administration, and upregulated PTP1B O-GlcNAcylation in HepG2 cells. Compared with the wild-type, intervention PTP1B O-GlcNAcylation by site-directed gene mutation inhibited PTP1B phosphatase activity, resulted in a higher level of phosphorylated Akt and GSK3β, recovered insulin sensitivity, and improved lipid deposition in HepG2 cells. Taken together, our research showed that O-GlcNAcylation of PTP1B can influence insulin signal transduction by modulating its own phosphatase activity, which participates in the process of hepatic insulin resistance.

  18. Association of PTP1B with Outcomes of Breast Cancer Patients Who Underwent Neoadjuvant Chemotherapy.

    Science.gov (United States)

    Rivera Franco, Monica M; Leon Rodriguez, Eucario; Martinez Benitez, Braulio; Villanueva Rodriguez, Luisa G; de la Luz Sevilla Gonzalez, Maria; Armengol Alonso, Alejandra

    2016-01-01

    PTP1B is involved in the oncogenesis of breast cancer. In addition, neoadjuvant therapy has been widely used in breast cancer; thus, a measurement to assess survival improvement could be pathological complete response (pCR). Our objective was to associate PTP1B overexpression with outcomes of breast cancer patients who underwent neoadjuvant chemotherapy. Forty-six specimens were included. Diagnostic biopsies were immunostained using anti-PTP1B antibody. Expression was categorized as negative (<5%) and overexpression (≥5%). Patients' responses were graded according to the Miller-Payne system. Sixty-three percent of patients overexpressed PTP1B. There was no significant association between PTP1B overexpression and pCR ( P = 0.2). However, when associated with intrinsic subtypes, overexpression was higher in human epidermal growth factor receptor 2-positive-enriched specimens ( P = 0.02). Ten-year progression-free survival showed no differences. Our preliminary results do not show an association between PTP1B over-expression and pCR; however, given the limited sample and heterogeneous treatment in our cohort, this hypothesis cannot be excluded.

  19. Association of PTP1B with Outcomes of Breast Cancer Patients who Underwent Neoadjuvant Chemotherapy

    Directory of Open Access Journals (Sweden)

    Monica M. Rivera Franco

    2016-01-01

    Full Text Available PTP1B is involved in the oncogenesis of breast cancer. In addition, neoadjuvant therapy has been widely used in breast cancer; thus, a measurement to assess survival improvement could be pathological complete response (pCR. Our objective was to associate PTP1B overexpression with outcomes of breast cancer patients who underwent neoadjuvant chemotherapy. Forty-six specimens were included. Diagnostic biopsies were immunostained using anti-PTP1B antibody. Expression was categorized as negative (<5% and overexpression (≥5%. Patients' responses were graded according to the Miller-Payne system. Sixty-three percent of patients overexpressed PTP1B. There was no significant association between PTP1B overexpression and pCR (P = 0.2. However, when associated with intrinsic subtypes, overexpression was higher in human epidermal growth factor receptor 2-positive-enriched specimens (P = 0.02. Ten-year progression-free survival showed no differences. Our preliminary results do not show an association between PTP1B overexpression and pCR; however, given the limited sample and heterogeneous treatment in our cohort, this hypothesis cannot be excluded.

  20. Immunogenicity of PtpA secreted during Mycobacterium avium ssp. paratuberculosis infection in cattle.

    Science.gov (United States)

    Bach, Eviatar; Raizman, Eran A; Vanderwal, Rich; Soto, Paolete; Chaffer, Marcelo; Keefe, Greg; Pogranichniy, Roman; Bach, Horacio

    2018-04-01

    Mycobacterium avium subsp. paratuberculosis (MAP) is the etiological agent of Johne's disease. To survive within host macrophages, the pathogen secretes a battery of proteins to interfere with the immunological response of the host. One of these proteins is tyrosine phosphate A (PtpA), which has been identified as a secreted protein critical for survival of its close relative M. tuberculosis within infected macrophages. In this study, the immune response to recombinant PtpA used as an antigen was investigated in a cohort of ∼1000 cows infected with MAP compared to negative control animals using ELISA. The sera from MAP-infected cows had significantly higher levels of antibodies against PtpA when compared to uninfected cows. The data presented here indicate that the antibodies produced against PtpA are sensitive enough to detect infected animals before the appearance of the disease symptoms. The use of PtpA as an antigen can be developed as an early diagnostic test. Moreover, PtpA is a candidate antigen for detection of humoral immune responses in cows infected with MAP. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Lack of evidence for a harmful effect of sodium-glucose co-transporter 2 (SGLT2) inhibitors on fracture risk among type 2 diabetes patients: a network and cumulative meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Tang, H L; Li, D D; Zhang, J J; Hsu, Y H; Wang, T S; Zhai, S D; Song, Y Q

    2016-12-01

    To evaluate the comparative effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on risk of bone fracture in patients with type 2 diabetes mellitus (T2DM). PubMed, EMBASE, CENTRAL and ClinicalTrials.gov were systematically searched from inception to 27 January 2016 to identify randomized controlled trials (RCTs) reporting the outcome of fracture in patients with T2DM treated with SGLT2 inhibitors. Pairwise and network meta-analyses, as well as a cumulative meta-analysis, were performed to calculate odds ratios (ORs) and 95% confidence intervals (CIs). A total of 38 eligible RCTs (10 canagliflozin, 15 dapagliflozin and 13 empagliflozin) involving 30 384 patients, with follow-ups ranging from 24 to 160 weeks, were included. The fracture event rates were 1.59% in the SGLT2 inhibitor groups and 1.56% in the control groups. The incidence of fracture events was similar among these three SGLT2 inhibitor groups. Compared with placebo, canagliflozin (OR 1.15; 95% CI 0.71-1.88), dapagliflozin (OR 0.68; 95% CI 0.37-1.25) and empagliflozin (OR 0.93; 95% CI 0.74-1.18) were not significantly associated with an increased risk of fracture. Our cumulative meta-analysis indicated the robustness of the null findings with regard to SGLT2 inhibitors. Our meta-analysis based on available RCT data does not support the harmful effect of SGLT2 inhibitors on fractures, although future safety monitoring from RCTs and real-world data with detailed information on bone health is warranted. © 2016 John Wiley & Sons Ltd.

  2. Regulation of tumor cell migration by protein tyrosine phosphatase (PTP)-proline-, glutamate-, serine-, and threonine-rich sequence (PEST)

    Science.gov (United States)

    Zheng, Yanhua; Lu, Zhimin

    2013-01-01

    Protein tyrosine phosphatase (PTP)–proline-, glutamate-, serine-, and threonine-rich sequence (PEST) is ubiquitously expressed and is a critical regulator of cell adhesion and migration. PTP-PEST activity can be regulated transcriptionally via gene deletion or mutation in several types of human cancers or via post-translational modifications, including phosphorylation, oxidation, and caspase-dependent cleavage. PTP-PEST interacts with and dephosphorylates cytoskeletal and focal adhesion-associated proteins. Dephosphorylation of PTP-PEST substrates regulates their enzymatic activities and/or their interaction with other proteins and plays an essential role in the tumor cell migration process. PMID:23237212

  3. Protein tyrosine phosphatase 1B (PTP1B) is required for cardiac lineage differentiation of mouse embryonic stem cells.

    Science.gov (United States)

    Eshkiki, Zahra Shokati; Ghahremani, Mohammad Hossein; Shabani, Parisa; Firuzjaee, Sattar Gorgani; Sadeghi, Asie; Ghanbarian, Hossein; Meshkani, Reza

    2017-01-01

    Protein tyrosine phosphatase 1B (PTP1B) has been shown to regulate multiple cellular events such as differentiation, cell growth, and proliferation; however, the role of PTP1B in differentiation of embryonic stem (ES) cells into cardiomyocytes remains unexplored. In the present study, we investigated the effects of PTP1B inhibition on differentiation of ES cells into cardiomyocytes. PTP1B mRNA and protein levels were increased during the differentiation of ES cells into cardiomyocytes. Accordingly, a stable ES cell line expressing PTP1B shRNA was established. In vitro, the number and size of spontaneously beating embryoid bodies were significantly decreased in PTP1B-knockdown cells, compared with the control cells. Decreased expression of cardiac-specific markers Nkx2-5, MHC-α, cTnT, and CX43, as assessed by real-time PCR analysis, was further confirmed by immunocytochemistry of the markers. The results also showed that PTP1B inhibition induced apoptosis in both differentiated and undifferentiated ES cells, as presented by increasing the level of cleaved caspase-3, cytochrome C, and cleaved PARP. Further analyses revealed that PTP1B inhibition did not change proliferation and pluripotency of undifferentiated ES cells. Taken together, the data presented here suggest that PTP1B is essential for proper differentiation of ES cells into cardiomyocytes.

  4. Phosphorylation-mediated regulation of the Staphylococcus aureus secreted tyrosine phosphatase PtpA.

    Science.gov (United States)

    Brelle, Solène; Baronian, Grégory; Huc-Brandt, Sylvaine; Zaki, Laila Gannoun; Cohen-Gonsaud, Martin; Bischoff, Markus; Molle, Virginie

    2016-01-15

    Due to the emergence of methicillin-resistant strains, Staphylococcus aureus has become as major public-health threat. Studies aimed at deciphering the molecular mechanism of virulence are thus required to identify new targets and develop efficient therapeutic agents. Protein phosphorylations are known to play key regulatory functions and their roles in pathogenesis are under intense scrutiny. Here we analyzed the protein tyrosine phosphatase PtpA of S. aureus, a member of the family of low molecular weight protein tyrosine phosphatases that are often secreted by pathogenic bacteria. We report for the first time that PtpA is phosphorylated in vitro by the S. aureus tyrosine kinase CapA1B2. A mass spectrometry approach allowed determining that Tyr122 and Tyr123 were the only two residues phosphorylated by this kinase. This result was confirmed by analysis of a double PtpA_Y122A/Y123A mutant that showed no phosphorylation by CapA1B2. Interestingly, PtpA phosphatase activity was abrogated in this mutant, suggesting a key regulatory function for these two tyrosine residues. This was further reinforced by the observation that CapA1B2-mediated phosphorylation significantly increased PtpA phosphatase activity. Moreover, we provide evidence that PtpA is secreted during growth of S. aureus. Together our results suggest that PtpA is an exported S. aureus signaling molecule controlled by tyrosine phosphorylation which may interfere with host cell signaling. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Sodium glucose co-transporter inhibitors for the management of diabetes mellitus: an opinion paper from the Endocrine and Metabolism Practice and Research Network of the American College of Clinical Pharmacy.

    Science.gov (United States)

    Clements, Jennifer N; Whitley, Heather P; D'Souza, Jennifer J; Gross, Benjamin; Hess, Rick; Reece, Sara; Gentry, Chad; Shealy, Kayce

    2015-01-01

    Type 2 diabetes mellitus (T2DM) carries a high prevalence in the United States and worldwide. Therefore, the number of medication classes being developed and studied has grown. The individualized management of diabetes is accomplished by evaluating a medication's efficacy, safety, and cost, along with the patient's preference and tolerance to the medication. Sodium glucose co-transporter 2 inhibitors are a new therapeutic class indicated for the treatment of diabetes and have a unique mechanism of action, independent of beta-cell function. The first agent approved by the Food and Drug Administration (FDA) was canagliflozin in March 2013. Two agents - dapagliflozin and empagliflozin - were FDA-approved in January and July 2014, respectively. A clear understanding of the new class is needed to identify its appropriate use in clinical practice. Members of the American College of Clinical Pharmacy Endocrine and Metabolism Practice and Research Network reviewed available literature regarding this therapeutic class. The article addresses the advantages, disadvantages, emerging role, and patient education for sodium glucose co-transporter 2 inhibitors. Key limitations for this article include limited access to clinical trial data not published by the pharmaceutical company and limited data on products produced outside the United States.

  6. Isothiazolidinone (IZD) as a phosphoryl mimetic in inhibitors of the Yersinia pestis protein tyrosine phosphatase YopH

    International Nuclear Information System (INIS)

    Kim, Sung-Eun; Bahta, Medhanit; Lountos, George T.; Ulrich, Robert G.; Burke, Terrence R. Jr; Waugh, David S.

    2011-01-01

    The first X-ray crystal structure of the Y. pestis protein tyrosine phosphatase YopH in complex with an isothiazolidinone-based lead-fragment compound is reported. Isothiazolidinone (IZD) heterocycles can act as effective components of protein tyrosine phosphatase (PTP) inhibitors by simultaneously replicating the binding interactions of both a phosphoryl group and a highly conserved water molecule, as exemplified by the structures of several PTP1B–inhibitor complexes. In the first unambiguous demonstration of IZD interactions with a PTP other than PTP1B, it is shown by X-ray crystallography that the IZD motif binds within the catalytic site of the Yersinia pestis PTP YopH by similarly displacing a highly conserved water molecule. It is also shown that IZD-based bidentate ligands can inhibit YopH in a nonpromiscuous fashion at low micromolar concentrations. Hence, the IZD moiety may represent a useful starting point for the development of YopH inhibitors

  7. Sodium Butyrate, a Histone Deacetylase Inhibitor, Reverses Behavioral and Mitochondrial Alterations in Animal Models of Depression Induced by Early- or Late-life Stress.

    Science.gov (United States)

    Valvassori, Samira S; Resende, Wilson R; Budni, Josiane; Dal-Pont, Gustavo C; Bavaresco, Daniela V; Réus, Gislaine Z; Carvalho, André F; Gonçalves, Cinara L; Furlanetto, Camila B; Streck, Emilio L; Quevedo, João

    2015-01-01

    The aim of the present study was to evaluate the effects of sodium butyrate on depressive-like behavior and mitochondrial alteration parameters in animal models of depression induced by maternal deprivation or chronic mild stress in Wistar rats. maternal deprivation was established by separating pups from their mothers for 3 h daily from postnatal day 1 to day 10. Chronic mild stress was established by water deprivation, food deprivation, restraint stress, isolation and flashing lights. Sodium butyrate or saline was administered twice a day for 7 days before the behavioral tests. Depressive behavior was evaluated using the forced swim test. The activity of tricarboxylic acid cycle enzymes (succinate dehydrogenase and malate dehydrogenase) and of mitochondrial chain complexes (I, II, II-III and IV) was measured in the striatum of rats. From these analyses it can be observed that sodium butyrate reversed the depressive-like behavior observed in both animal models of depression. Additionally, maternal deprivation and chronic mild stress inhibited mitochondrial respiratory chain complexes and increased the activity of tricarboxylic acid cycle enzymes. Sodium butyrate treatment reversed -maternal deprivation and chronic mild stress- induced dysfunction in the striatum of rats. In conclusion, sodium butyrate showed antidepressant effects in maternal deprivation and chronic mild stress-treated rats, and this effect can be attributed to its action on the neurochemical pathways related to depression.

  8. Impaired Integrin-mediated Adhesion and Signaling in Fibroblasts Expressing a Dominant-negative Mutant PTP1B

    Science.gov (United States)

    Arregui, Carlos O.; Balsamo, Janne; Lilien, Jack

    1998-01-01

    To investigate the role of nonreceptor protein tyrosine phosphatase 1B (PTP1B) in β1-integrin– mediated adhesion and signaling, we transfected mouse L cells with normal and catalytically inactive forms of the phosphatase. Parental cells and cells expressing the wild-type or mutant PTP1B were assayed for (a) adhesion, (b) spreading, (c) presence of focal adhesions and stress fibers, and (d) tyrosine phosphorylation. Parental cells and cells expressing wild-type PTP1B show similar morphology, are able to attach and spread on fibronectin, and form focal adhesions and stress fibers. In contrast, cells expressing the inactive PTP1B have a spindle-shaped morphology, reduced adhesion and spreading on fibronectin, and almost a complete absence of focal adhesions and stress fibers. Attachment to fibronectin induces tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin in parental cells and cells transfected with the wild-type PTP1B, while in cells transfected with the mutant PTP1B, such induction is not observed. Additionally, in cells expressing the mutant PTP1B, tyrosine phosphorylation of Src is enhanced and activity is reduced. Lysophosphatidic acid temporarily reverses the effects of the mutant PTP1B, suggesting the existence of a signaling pathway triggering focal adhesion assembly that bypasses the need for active PTP1B. PTP1B coimmunoprecipitates with β1-integrin from nonionic detergent extracts and colocalizes with vinculin and the ends of actin stress fibers in focal adhesions. Our data suggest that PTP1B is a critical regulatory component of integrin signaling pathways, which is essential for adhesion, spreading, and formation of focal adhesions. PMID:9813103

  9. Toward the identification of a reliable 3D-QSAR model for the protein tyrosine phosphatase 1B inhibitors

    Science.gov (United States)

    Wang, Fangfang; Zhou, Bo

    2018-04-01

    Protein tyrosine phosphatase 1B (PTP1B) is an intracellular non-receptor phosphatase that is implicated in signal transduction of insulin and leptin pathways, thus PTP1B is considered as potential target for treating type II diabetes and obesity. The present article is an attempt to formulate the three-dimensional quantitative structure-activity relationship (3D-QSAR) modeling of a series of compounds possessing PTP1B inhibitory activities using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques. The optimum template ligand-based models are statistically significant with great CoMFA (R2cv = 0.600, R2pred = 0.6760) and CoMSIA (R2cv = 0.624, R2pred = 0.8068) values. Molecular docking was employed to elucidate the inhibitory mechanisms of this series of compounds against PTP1B. In addition, the CoMFA and CoMSIA field contour maps agree well with the structural characteristics of the binding pocket of PTP1B active site. The knowledge of structure-activity relationship and ligand-receptor interactions from 3D-QSAR model and molecular docking will be useful for better understanding the mechanism of ligand-receptor interaction and facilitating development of novel compounds as potent PTP1B inhibitors.

  10. PTP1B, α-glucosidase, and DPP-IV inhibitory effects for chromene derivatives from the leaves of Smilax china L.

    Science.gov (United States)

    Zhao, Bing Tian; Le, Duc Dat; Nguyen, Phi Hung; Ali, Md Yousof; Choi, Jae-Sue; Min, Byung Sun; Shin, Heung Mook; Rhee, Hae Ik; Woo, Mi Hee

    2016-06-25

    Two new flavonoids, bismilachinone (11) and smilachinin (14), were isolated from the leaves of Smilax china L. together with 14 known compounds. Their structures were elucidated using spectroscopic methods. The PTP1B, α-glucosidase, and DPP-IV inhibitory activities of compounds 1-16 were evaluated at the molecular level. Among them, compounds 4, 7, and 10 showed moderate DPP-IV inhibitory activities with IC50 values of 20.81, 33.12, and 32.93 μM, respectively. Compounds 3, 4, 6, 11, 12, and 16 showed strong PTP1B inhibitory activities, with respective IC50 values of 7.62, 10.80, 0.92, 2.68, 9.77, and 24.17 μM compared with the IC50 value for the positive control (ursolic acid: IC50 = 1.21 μM). Compounds 2-7, 11, 12, 15, and 16 showed potent α-glucosidase inhibitory activities, with respective IC50 values of 8.70, 81.66, 35.11, 35.92, 7.99, 26.28, 11.28, 62.68, 44.32, and 70.12 μM. The positive control, acarbose, displayed an IC50 value of 175.84 μM. In the kinetic study for the PTP1B enzyme, compounds 6, 11, and 12 displayed competitive inhibition with Ki values of 3.20, 8.56, and 5.86 μM, respectively. Compounds 3, 4, and 16 showed noncompetitive inhibition with Ki values of 18.75, 5.95, and 22.86 μM, respectively. Molecular docking study for the competitive inhibitors (6, 11, and 12) radically corroborates the binding affinities and inhibition of PTP1B enzymes. These results indicated that the leaves of Smilax china L. may contain compounds with anti-diabetic activity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Experimental and Theoretical Study of the Movement of the Wpd Flexible Loop of Human Protein Tyrosine Phosphatase PTP1B in Complex with Halide Ions

    Science.gov (United States)

    Katz, Aline; Saenz-Méndez, Patricia; Cousido-Siah, Alexandra; Podjarny, Alberto D.; Ventura, Oscar N.

    2012-11-01

    Protein tyrosine phosphorylation is a post-translational modification mechanism, crucial for the regulation of nearly all aspects of cell life. This dynamic, reversible process is regulated by the balanced opposing activity of protein tyrosine kinases and protein tyrosine phosphatases. In particular, the protein tyrosine phosphatase 1B (PTP1B) is implicated in the regulation of the insulin-receptor activity, leptin-stimulated signal transduction pathways and other clinically relevant metabolic routes, and it has been found overexpressed or overregulated in human breasts, colon and ovary cancers. The WPD loop of the enzyme presents an inherent flexibility, and it plays a fundamental role in the enzymatic catalysis, turning it into a potential target in the design of new efficient PTP1B inhibitors. In order to determine the interactions that control the spatial conformation adopted by the WPD loop, complexes between the enzyme and halide ions (Br- and I- in particular) were crystallized and their crystallographic structure determined, and the collective movements of the aforementioned complexes were studied through Molecular Dynamics (MD) simulations. Both studies yielded concordant results, indicating the existence of a relationship between the identity of the ion present in the complex and the strength of the interactions it establishes with the surrounding protein residues.

  12. One bis-indole alkaloid-voacamine from Voacanga africana Stapf: biological activity evaluation of PTP1B in vitro utilizing enzymology method based on SPRi expriment.

    Science.gov (United States)

    Wang, Yan-Qiu; Li, Hong-Xiang; Liu, Xiao-Chun; Zhao, Jin-Shuang; Liu, Rong-Qiang; Huai, Wen-Ying; Ding, Wei-Jun; Zhang, Tian-E; Deng, Yun

    2018-05-31

    One known bis-indole alkaloid-voacamine was isolated from Voacanga africana Stapf and Surface Plasmon Resonance imaging (SPRi) exprement showed that this alkaloid could be combine with Protein Tyrosine Phosphatase1B (PTP1B). Then the PTP1B activity inhibition experiment display that the compound showed an outstanding promoting activity to PTP1B.

  13. Geometrical criteria for characterizing open and closed states of WPD-loop in PTP1B

    Science.gov (United States)

    Shinde, Ranajit Nivrutti; Elizabeth Sobhia, M.

    2012-06-01

    Distinctive movement of WPD-loop occurs during the catalysis of phosphotyrosine by protein tyrosine phosphatase 1B (PTP1B). This loop is in the "open" state in apo-form whereas it is catalytically competent in the "closed" state. During the closure of this loop, unique hydrogen bond interactions are formed between different residues of the PTP1B. Present study examines such interactions from the available 118 crystal structures of PTP1B. It gives insights into the five novel hydrogen bonds essentially formed in the "closed" loop structures. Additionally, the study provides distance ranges between the atoms involved in the hydrogen bonds. This information can be used as a geometrical criterion in the characterization of conformational state of the WPD-loop especially in the molecular dynamics simulations.

  14. PTP1B and SHP2 in POMC neurons reciprocally regulate energy balance in mice

    Science.gov (United States)

    Banno, Ryoichi; Zimmer, Derek; De Jonghe, Bart C.; Atienza, Marybless; Rak, Kimberly; Yang, Wentian; Bence, Kendra K.

    2010-01-01

    Protein tyrosine phosphatase 1B (PTP1B) and SH2 domain–containing protein tyrosine phosphatase–2 (SHP2) have been shown in mice to regulate metabolism via the central nervous system, but the specific neurons mediating these effects are unknown. Here, we have shown that proopiomelanocortin (POMC) neuron–specific deficiency in PTP1B or SHP2 in mice results in reciprocal effects on weight gain, adiposity, and energy balance induced by high-fat diet. Mice with POMC neuron–specific deletion of the gene encoding PTP1B (referred to herein as POMC-Ptp1b–/– mice) had reduced adiposity, improved leptin sensitivity, and increased energy expenditure compared with wild-type mice, whereas mice with POMC neuron–specific deletion of the gene encoding SHP2 (referred to herein as POMC-Shp2–/– mice) had elevated adiposity, decreased leptin sensitivity, and reduced energy expenditure. POMC-Ptp1b–/– mice showed substantially improved glucose homeostasis on a high-fat diet, and hyperinsulinemic-euglycemic clamp studies revealed that insulin sensitivity in these mice was improved on a standard chow diet in the absence of any weight difference. In contrast, POMC-Shp2–/– mice displayed impaired glucose tolerance only secondary to their increased weight gain. Interestingly, hypothalamic Pomc mRNA and α–melanocyte-stimulating hormone (αMSH) peptide levels were markedly reduced in POMC-Shp2–/– mice. These studies implicate PTP1B and SHP2 as important components of POMC neuron regulation of energy balance and point to what we believe to be a novel role for SHP2 in the normal function of the melanocortin system. PMID:20160350

  15. miR-338-3p functions as a tumor suppressor in gastric cancer by targeting PTP1B.

    Science.gov (United States)

    Sun, Feng; Yu, Mengchao; Yu, Jing; Liu, Zhijian; Zhou, Xinyan; Liu, Yanqing; Ge, Xiaolong; Gao, Haidong; Li, Mei; Jiang, Xiaohong; Liu, Song; Chen, Xi; Guan, Wenxian

    2018-05-09

    Gastric cancer (GC) is one of the most common malignant tumors and peritoneal metastasis is the primary cause for advanced GC's mortality. Protein-tyrosine phosphatase 1B (PTP1B) functions as an oncogene and involves in carcinogenesis and cancer dissemination. However, the function and regulation of PTP1B in GC remain poorly understood. In this study, we found that PTP1B was upregulated in GC tissues and overexpression of PTP1B in vitro promoted cell migration and prevented apoptosis. Then, we predicted that PTP1B was a target of miR-338-3p and we revealed an inverse correlation between miR-338-3p levels and PTP1B protein levels in GC tissues. Next, we verified that PTP1B was inhibited by miR-338-3p via direct targeting to its 3'-untranslated regions. Moreover, overexpression of miR-338-3p in vitro attenuated GC cell migration and promoted apoptosis, and these effects could be partially reversed by reintroduction of PTP1B. Finally, we established an orthotopic xenograft model and a peritoneal dissemination model of GC to demonstrate that miR-338-3p restrained tumor growth and dissemination in vivo by targeting PTP1B. Taken together, our results highlight that PTP1B is an oncogene and is negatively regulated by miR-338-3p in GC, which may provide new insights into novel molecular therapeutic targets for GC.

  16. Mechanisms underlying the inhibitory effects of arsenic compounds on protein tyrosine phosphatase (PTP)

    International Nuclear Information System (INIS)

    Rehman, Kanwal; Chen, Zhe; Wang, Wen Wen; Wang, Yan Wei; Sakamoto, Akira; Zhang, Yan Fang; Naranmandura, Hua; Suzuki, Noriyuki

    2012-01-01

    Arsenic binding to biomolecules is considered one of the major toxic mechanisms, which may also be related to the carcinogenic risks of arsenic in humans. At the same time, arsenic is also known to activate the phosphorylation-dependent signaling pathways including the epidermal growth factor receptor, the mitogen-activated protein kinase and insulin/insulin-like growth factor-1 pathways. These signaling pathways originate at the level of receptor tyrosine kinases whose phosphorylation status is regulated by opposing protein tyrosine phosphatase (PTP) activity. Reversible tyrosine phosphorylation, which is governed by the balanced action of protein tyrosine kinases and phosphatases, regulates important signaling pathways that are involved in the control of cell proliferation, adhesion and migration. In the present study, we have focused on the interaction of cellular PTPs with toxic trivalent arsenite (iAs III ) and its intermediate metabolites such as monomethylarsonous acid (MMA III ) and dimethylarsinous acid (DMA III ) in vitro, and then determined the arsenic binding site in PTP by the use of recombinant PTPs (e.g., PTP1B and CD45). Interestingly, the activities of PTP1B (cytoplasm-form) or CD45 (receptor-linked form) were observed to be strongly inhibited by both methylated metabolites (i.e., MMA III and DMA III ) but not by iAs III . Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) has clearly confirmed that the organic intermediate, DMA III directly bound to the active site cysteine residue of PTP1B (e.g., Cys215), resulting in inhibition of enzyme activity. These results suggest that arsenic exposure may disturb the cellular signaling pathways through PTP inactivation. Highlights: ► This study focused on the interaction of PTPs with trivalent arsenicals in vitro. ► We for the first time confirmed that DMA III strongly inhibited activity of PTP1B. ► DMA III directly bound to PTP1B, resulting in inhibition of

  17. PTP1B controls non-mitochondrial oxygen consumption by regulating RNF213 to promote tumour survival during hypoxia.

    Science.gov (United States)

    Banh, Robert S; Iorio, Caterina; Marcotte, Richard; Xu, Yang; Cojocari, Dan; Rahman, Anas Abdel; Pawling, Judy; Zhang, Wei; Sinha, Ankit; Rose, Christopher M; Isasa, Marta; Zhang, Shuang; Wu, Ronald; Virtanen, Carl; Hitomi, Toshiaki; Habu, Toshiyuki; Sidhu, Sachdev S; Koizumi, Akio; Wilkins, Sarah E; Kislinger, Thomas; Gygi, Steven P; Schofield, Christopher J; Dennis, James W; Wouters, Bradly G; Neel, Benjamin G

    2016-07-01

    Tumours exist in a hypoxic microenvironment and must limit excessive oxygen consumption. Hypoxia-inducible factor (HIF) controls mitochondrial oxygen consumption, but how/if tumours regulate non-mitochondrial oxygen consumption (NMOC) is unknown. Protein-tyrosine phosphatase-1B (PTP1B) is required for Her2/Neu-driven breast cancer (BC) in mice, although the underlying mechanism and human relevance remain unclear. We found that PTP1B-deficient HER2(+) xenografts have increased hypoxia, necrosis and impaired growth. In vitro, PTP1B deficiency sensitizes HER2(+) BC lines to hypoxia by increasing NMOC by α-KG-dependent dioxygenases (α-KGDDs). The moyamoya disease gene product RNF213, an E3 ligase, is negatively regulated by PTP1B in HER2(+) BC cells. RNF213 knockdown reverses the effects of PTP1B deficiency on α-KGDDs, NMOC and hypoxia-induced death of HER2(+) BC cells, and partially restores tumorigenicity. We conclude that PTP1B acts via RNF213 to suppress α-KGDD activity and NMOC. This PTP1B/RNF213/α-KGDD pathway is critical for survival of HER2(+) BC, and possibly other malignancies, in the hypoxic tumour microenvironment.

  18. Conformational Rigidity and Protein Dynamics at Distinct Timescales Regulate PTP1B Activity and Allostery.

    Science.gov (United States)

    Choy, Meng S; Li, Yang; Machado, Luciana E S F; Kunze, Micha B A; Connors, Christopher R; Wei, Xingyu; Lindorff-Larsen, Kresten; Page, Rebecca; Peti, Wolfgang

    2017-02-16

    Protein function originates from a cooperation of structural rigidity, dynamics at different timescales, and allostery. However, how these three pillars of protein function are integrated is still only poorly understood. Here we show how these pillars are connected in Protein Tyrosine Phosphatase 1B (PTP1B), a drug target for diabetes and cancer that catalyzes the dephosphorylation of numerous substrates in essential signaling pathways. By combining new experimental and computational data on WT-PTP1B and ≥10 PTP1B variants in multiple states, we discovered a fundamental and evolutionarily conserved CH/π switch that is critical for positioning the catalytically important WPD loop. Furthermore, our data show that PTP1B uses conformational and dynamic allostery to regulate its activity. This shows that both conformational rigidity and dynamics are essential for controlling protein activity. This connection between rigidity and dynamics at different timescales is likely a hallmark of all enzyme function. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Resveratrol inhibits PDGF receptor mitogenic signaling in mesangial cells: role of PTP1B

    Science.gov (United States)

    Venkatesan, Balachandar; Ghosh-Choudhury, Nandini; Das, Falguni; Mahimainathan, Lenin; Kamat, Amrita; Kasinath, Balakuntalam S.; Abboud, Hanna E.; Choudhury, Goutam Ghosh

    2008-01-01

    Mesangioproliferative glomerulonephritis is associated with overactive PDGF receptor signal transduction. We show that the phytoalexin resveratrol dose dependently inhibits PDGF-induced DNA synthesis in mesangial cells with an IC50 of 10 μM without inducing apoptosis. Remarkably, the increased SIRT1 deacetylase activity induced by resveratrol was not necessary for this inhibitory effect. Resveratrol significantly blocked PDGF-stimulated c-Src and Akt kinase activation, resulting in reduced cyclin D1 expression and attenuated pRb phosphorylation and cyclin-dependent kinase-2 (CDK2) activity. Furthermore, resveratrol inhibited PDGFR phosphorylation at the PI 3 kinase and Grb-2 binding sites tyrosine-751 and tyrosine-716, respectively. This deficiency in PDGFR phosphorylation resulted in significant inhibition of PI 3 kinase and Erk1/2 MAPK activity. Interestingly, resveratrol increased the activity of protein tyrosine phosphatase PTP1B, which dephosphorylates PDGF-stimulated phosphorylation at tyrosine-751 and tyrosine-716 on PDGFR with concomitant reduction in Akt and Erk1/2 kinase activity. PTP1B significantly inhibited PDGF-induced DNA synthesis without inducing apoptosis. These results for the first time provide evidence that the stilbene resveratrol targets PTP1B to inhibit PDGFR mitogenic signaling.—Venkatesan, B., Ghosh-Choudhury, N., Das, F., Mahimainathan, L., Kamat, A., Kasinath, B. S., Abboud, H. E., Choudhury, G. G. Resveratrol inhibits PDGF receptor mitogenic signaling in mesangial cells: role of PTP1B. PMID:18567737

  20. PTP1B triggers integrin-mediated repression of myosin activity and modulates cell contractility

    Directory of Open Access Journals (Sweden)

    Ana E. González Wusener

    2016-01-01

    Full Text Available Cell contractility and migration by integrins depends on precise regulation of protein tyrosine kinase and Rho-family GTPase activities in specific spatiotemporal patterns. Here we show that protein tyrosine phosphatase PTP1B cooperates with β3 integrin to activate the Src/FAK signalling pathway which represses RhoA-myosin-dependent contractility. Using PTP1B null (KO cells and PTP1B reconstituted (WT cells, we determined that some early steps following cell adhesion to fibronectin and vitronectin occurred robustly in WT cells, including aggregation of β3 integrins and adaptor proteins, and activation of Src/FAK-dependent signalling at small puncta in a lamellipodium. However, these events were significantly impaired in KO cells. We established that cytoskeletal strain and cell contractility was highly enhanced at the periphery of KO cells compared to WT cells. Inhibition of the Src/FAK signalling pathway or expression of constitutive active RhoA in WT cells induced a KO cell phenotype. Conversely, expression of constitutive active Src or myosin inhibition in KO cells restored the WT phenotype. We propose that this novel function of PTP1B stimulates permissive conditions for adhesion and lamellipodium assembly at the protruding edge during cell spreading and migration.

  1. PTP1B triggers integrin-mediated repression of myosin activity and modulates cell contractility

    Science.gov (United States)

    González Wusener, Ana E.; González, Ángela; Nakamura, Fumihiko; Arregui, Carlos O.

    2016-01-01

    ABSTRACT Cell contractility and migration by integrins depends on precise regulation of protein tyrosine kinase and Rho-family GTPase activities in specific spatiotemporal patterns. Here we show that protein tyrosine phosphatase PTP1B cooperates with β3 integrin to activate the Src/FAK signalling pathway which represses RhoA-myosin-dependent contractility. Using PTP1B null (KO) cells and PTP1B reconstituted (WT) cells, we determined that some early steps following cell adhesion to fibronectin and vitronectin occurred robustly in WT cells, including aggregation of β3 integrins and adaptor proteins, and activation of Src/FAK-dependent signalling at small puncta in a lamellipodium. However, these events were significantly impaired in KO cells. We established that cytoskeletal strain and cell contractility was highly enhanced at the periphery of KO cells compared to WT cells. Inhibition of the Src/FAK signalling pathway or expression of constitutive active RhoA in WT cells induced a KO cell phenotype. Conversely, expression of constitutive active Src or myosin inhibition in KO cells restored the WT phenotype. We propose that this novel function of PTP1B stimulates permissive conditions for adhesion and lamellipodium assembly at the protruding edge during cell spreading and migration. PMID:26700725

  2. Down-regulated expression of the protein-tyrosine phosphatase 1B (PTP1B) is associated with aggressive clinicopathologic features and poor prognosis in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Zheng, Long-Yi; Zhou, Dong-Xun; Lu, Jin; Zhang, Wen-Jun; Zou, Da-Jin

    2012-01-01

    Highlights: ► PTP1B protein showed decreased expression in 67.79% of the HCC patients. ► Low PTP1B expression predicts poor prognosis of HCC. ► Low PTP1B expression is correlated with expansion of OV6 + tumor-initiating cells. ► Down-regulation of PTP1B is associated with activation of Wnt/β-Catenin signaling. -- Abstract: The protein-tyrosine phosphatase 1B (PTP1B) is a classical non-transmembrane protein tyrosine phosphatase that plays a key role in metabolic signaling and can exert both tumor suppressing and tumor promoting effects in different cancers depending on the substrate involved and the cellular context. However, the expression level and function of PTP1B in hepatocellular carcinoma (HCC) remain unclear. In this study, PTP1B expression was detected by immunohistochemistry in normal liver tissue (n = 16) and hepatocellular carcinoma (n = 169). The correlations between PTP1B expression level and clinicopathologic features and patient survival were also analyzed. One hundred and eleven of 169 HCC patients (65.7%) had negative or low PTP1B expression in tumorous tissues, whereas normal tissues always expressed strong PTP1B. Decreased PTP1B expression was significantly associated with aggressive clinicopathologic features and poor prognosis. Immunohistochemistry also showed that low PTP1B expression level was correlated with high percentage of OV6 + tumor-initiating cells (T-ICs) and high frequency of nuclear β-Catenin expression in HCC specimens. Our findings demonstrate for the first time that the loss of inhibitory effect of PTP1B may contribute to progression and invasion of HCC through activation of Wnt/β-Catenin signaling and expansion of liver T-ICs. PTP1B may serve as a valuable prognostic biomarker and potential therapeutic target in HCC.

  3. Down-regulated expression of the protein-tyrosine phosphatase 1B (PTP1B) is associated with aggressive clinicopathologic features and poor prognosis in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Long-Yi [Department of Endocrinology, Changhai Hospital, 168 Changhai Road, Shanghai 200433 (China); Zhou, Dong-Xun [Department of Comprehensive Treatment II, Eastern Hepatobiliary Surgery Hospital, 225 Changhai Road, Shanghai 200438 (China); Lu, Jin [Department of Endocrinology, Changhai Hospital, 168 Changhai Road, Shanghai 200433 (China); Zhang, Wen-Jun [Department of Emergency, Changhai Hospital, 168 Changhai Road, Shanghai 200433 (China); Zou, Da-Jin, E-mail: dajinzou@hotmail.com [Department of Endocrinology, Changhai Hospital, 168 Changhai Road, Shanghai 200433 (China)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer PTP1B protein showed decreased expression in 67.79% of the HCC patients. Black-Right-Pointing-Pointer Low PTP1B expression predicts poor prognosis of HCC. Black-Right-Pointing-Pointer Low PTP1B expression is correlated with expansion of OV6{sup +} tumor-initiating cells. Black-Right-Pointing-Pointer Down-regulation of PTP1B is associated with activation of Wnt/{beta}-Catenin signaling. -- Abstract: The protein-tyrosine phosphatase 1B (PTP1B) is a classical non-transmembrane protein tyrosine phosphatase that plays a key role in metabolic signaling and can exert both tumor suppressing and tumor promoting effects in different cancers depending on the substrate involved and the cellular context. However, the expression level and function of PTP1B in hepatocellular carcinoma (HCC) remain unclear. In this study, PTP1B expression was detected by immunohistochemistry in normal liver tissue (n = 16) and hepatocellular carcinoma (n = 169). The correlations between PTP1B expression level and clinicopathologic features and patient survival were also analyzed. One hundred and eleven of 169 HCC patients (65.7%) had negative or low PTP1B expression in tumorous tissues, whereas normal tissues always expressed strong PTP1B. Decreased PTP1B expression was significantly associated with aggressive clinicopathologic features and poor prognosis. Immunohistochemistry also showed that low PTP1B expression level was correlated with high percentage of OV6{sup +} tumor-initiating cells (T-ICs) and high frequency of nuclear {beta}-Catenin expression in HCC specimens. Our findings demonstrate for the first time that the loss of inhibitory effect of PTP1B may contribute to progression and invasion of HCC through activation of Wnt/{beta}-Catenin signaling and expansion of liver T-ICs. PTP1B may serve as a valuable prognostic biomarker and potential therapeutic target in HCC.

  4. HF diets increase hypothalamic PTP1B and induce leptin resistance through both leptin-dependent and -independent mechanisms

    Science.gov (United States)

    White, Christy L.; Whittington, Amy; Barnes, Maria J.; Wang, Zhong; Bray, George A.; Morrison, Christopher D.

    2009-01-01

    Protein tyrosine phosphatase 1B (PTP1B) contributes to leptin resistance by inhibiting intracellular leptin receptor signaling. Mice with whole body or neuron-specific deletion of PTP1B are hypersensitive to leptin and resistant to diet-induced obesity. Here we report a significant increase in PTP1B protein levels in the mediobasal hypothalamus (P = 0.003) and a concomitant reduction in leptin sensitivity following 28 days of high-fat (HF) feeding in rats. A significant increase in PTP1B mRNA levels was also observed in rats chronically infused with leptin (3 μg/day icv) for 14 days (P = 0.01) and in leptin-deficient ob/ob mice infused with leptin (5 μg/day sc for 14 days; P = 0.003). When saline-infused ob/ob mice were placed on a HF diet for 14 days, an increase in hypothalamic PTP1B mRNA expression was detected (P = 0.001) despite the absence of circulating leptin. In addition, although ob/ob mice were much more sensitive to leptin on a low-fat (LF) diet, a reduction in this sensitivity was still observed following exposure to a HF diet. Taken together, these data indicate that hypothalamic PTP1B is specifically increased during HF diet-induced leptin resistance. This increase in PTP1B is due in part to chronic hyperleptinemia, suggesting that hyperleptinemia is one mechanism contributing to the development of leptin resistance. However, these data also indicate that leptin is not required for the increase in hypothalamic PTP1B or the development of leptin resistance. Therefore, additional, leptin-independent mechanisms must exist that increase hypothalamic PTP1B and contribute to leptin resistance. PMID:19017730

  5. Development of 1-Amino-4-(phenylamino)anthraquinone-2-sulfonate Sodium Derivatives as a New Class of Inhibitors of RANKL-Induced Osteoclastogenesis.

    Science.gov (United States)

    Lee, Chia-Chung; Chen, Chun-Liang; Liu, Fei-Lan; Chiou, Chung-Yu; Chen, Tsung-Chih; Wu, Cheng-Chi; Sun, Wei-Hsin; Chang, Deh-Ming; Huang, Hsu-Shan

    2016-05-01

    A series of 1-amino-4-(phenylamino)anthraquinone-2-sulfonate sodium derivatives was synthesized and evaluated for osteoclast inhibition using a TRAP-staining assay. Among them, two compounds, LCCY-13 and LCCY-15, dose-dependently suppressed receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. Moreover, the cytotoxicity assay on RAW264.7 cells suggested that the inhibition of osteoclastic bone resorption by these compounds was not a result of their cytotoxicity. Further, the inhibitory activities of compounds LCCY-13 and LCCY-15 were further confirmed by including specific inhibition of NFATc1 expression levels in nuclei using an immunofluorescent analysis. In addition, LCCY-13 and LCCY-15 also significantly attenuated the bone resorption activity of osteoclasts according to a pit formation assay. Thus, a new class of 1-amino-4-(phenylamino)anthraquinone-2-sulfonate sodium compounds might be considered as an essential lead structure for the further development of anti-resorptive agents. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. In vitro characterization of luseogliflozin, a potent and competitive sodium glucose co-transporter 2 inhibitor: Inhibition kinetics and binding studies

    Directory of Open Access Journals (Sweden)

    Saeko Uchida

    2015-05-01

    Full Text Available In this study, we evaluated an inhibition model of luseogliflozin on sodium glucose co-transporter 2 (SGLT2. We also analyzed the binding kinetics of the drug to SGLT2 protein using [3H]-luseogliflozin. Luseogliflozin competitively inhibited human SGLT2 (hSGLT2-mediated glucose uptake with a Ki value of 1.10 nM. In the absence of glucose, [3H]-luseogliflozin exhibited a high affinity for hSGLT2 with a Kd value of 1.3 nM. The dissociation half-time was 7 h, suggesting that luseogliflozin dissociates rather slowly from hSGLT2. These profiles of luseogliflozin might contribute to the long duration of action of this drug.

  7. A P387L variant in protein tyrosine phosphatase-1B (PTP-1B) is associated with type 2 diabetes and impaired serine phosphorylation of PTP-1B in vitro

    DEFF Research Database (Denmark)

    Echwald, Søren M; Riis, Helle Bach; Vestergaard, Henrik

    2002-01-01

    In the present study, we tested the hypothesis that variability in the protein tyrosine phosphatase-1B (PTP-1B) gene is associated with type 2 diabetes. Using single-strand conformational polymorphism analysis, we examined cDNA of PTP-1B from 56 insulin-resistant patients with type 2 diabetes.......0012). In summary, a rare P387L variant of the PTP-1B gene is associated with a 3.7 (CI 1.26-10.93, P = 0.02) genotype relative risk of type 2 diabetes in the examined population of Danish Caucasian subjects and results in impaired in vitro serine phosphorylation of the PTP-1B peptide....

  8. The Genetics of PTPN1 and Obesity: Insights from Mouse Models of Tissue-Specific PTP1B Deficiency

    Directory of Open Access Journals (Sweden)

    Ryan C. Tsou

    2012-01-01

    Full Text Available The protein tyrosine phosphatase PTP1B is a negative regulator of both insulin and leptin signaling and is involved in the control of glucose homeostasis and energy expenditure. Due to its prominent role in regulating metabolism, PTP1B is a promising therapeutic target for the treatment of human obesity and type 2 diabetes. The PTP1B protein is encoded by the PTPN1 gene on human chromosome 20q13, a region that shows linkage with insulin resistance, type 2 diabetes, and obesity in human populations. In this paper, we summarize the genetics of the PTPN1 locus and associations with metabolic disease. In addition, we discuss the tissue-specific functions of PTP1B as gleaned from genetic mouse models.

  9. Investigating the Impact of Asp181 Point Mutations on Interactions between PTP1B and Phosphotyrosine Substrate

    Science.gov (United States)

    Liu, Mengyuan; Wang, Lushan; Sun, Xun; Zhao, Xian

    2014-05-01

    Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of insulin and leptin signaling, which suggests that it is an attractive therapeutic target in type II diabetes and obesity. The aim of this research is to explore residues which interact with phosphotyrosine substrate can be affected by D181 point mutations and lead to increased substrate binding. To achieve this goal, molecular dynamics simulations were performed on wild type (WT) and two mutated PTP1B/substrate complexes. The cross-correlation and principal component analyses show that point mutations can affect the motions of some residues in the active site of PTP1B. Moreover, the hydrogen bond and energy decomposition analyses indicate that apart from residue 181, point mutations have influence on the interactions of substrate with several residues in the active site of PTP1B.

  10. Immunoreactivity of protein tyrosine phosphatase A (PtpA) in sera from sheep infected with Mycobacterium avium subspecies paratuberculosis.

    Science.gov (United States)

    Gurung, Ratna B; Begg, Douglas J; Purdie, Auriol C; Bach, Horacio; Whittington, Richard J

    2014-07-15

    Evasion of host defense mechanisms and survival inside infected host macrophages are features of pathogenic mycobacteria including Mycobacterium avium subspecies paratuberculosis, the causative agent of Johne's disease in ruminants. Protein tyrosine phosphatase A (PtpA) has been identified as a secreted protein critical for survival of mycobacteria within infected macrophages. The host may mount an immune response to such secreted proteins. In this study, the humoral immune response to purified recombinant M. avium subsp. paratuberculosis PtpA was investigated using sera from a cohort of sheep infected with M. avium subsp. paratuberculosis and compared with uninfected healthy controls. A significantly higher level of reactivity to PtpA was observed in sera collected from M. avium subspecies paratuberculosis infected sheep when compared to those from uninfected healthy controls. PtpA could be a potential candidate antigen for detection of humoral immune responses in sheep infected with M. avium subspecies paratuberculosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. PTP1B inhibitory secondary metabolites from marine-derived fungal strains Penicillium spp. and Eurotium sp.

    Science.gov (United States)

    Sohn, Jae Hak; Lee, Yu-Ri; Lee, Dong-Sung; Kim, Youn-Chul; Oh, Hyuncheol

    2013-09-28

    The selective inhibition of PTP1B has been widely recognized as a potential drug target for the treatment of type 2 diabetes and obesity. In the course of screening for PTP1B inhibitory fungal metabolites, the organic extracts of several fungal species isolated from marine environments were found to exhibit significant inhibitory effects, and the bioassay-guided investigation of these extracts resulted in the isolation of fructigenine A (1), cyclopenol (2), echinulin (3), flavoglaucin (4), and viridicatol (5). The structures of these compounds were determined mainly by analysis of NMR and MS data. These compounds inhibited PTP1B activity with 50% inhibitory concentration values of 10.7, 30.0, 29.4, 13.4, and 64.0 micrometer, respectively. Furthermore, the kinetic analysis of PTP1B inhibition by compounds 1 and 5 suggested that compound 1 inhibited PTP1B activity in a noncompetitive manner, whereas compound 5 inhibited PTP1B activity in a competitive manner.

  12. Effect of Sodium-Glucose Cotransport-2 Inhibitors on Blood Pressure in People With Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of 43 Randomized Control Trials With 22 528 Patients.

    Science.gov (United States)

    Mazidi, Mohsen; Rezaie, Peyman; Gao, Hong-Kai; Kengne, Andre Pascal

    2017-05-25

    The sodium-glucose cotransporter 2 (SGLT2) inhibitors are a class of oral hypoglycemic agents. We undertake a systematic review and meta-analysis of prospective studies to determine the effect of SGLT2 on blood pressure (BP) among individuals with type 2 diabetes mellitus. PubMed-Medline, Web of Science, Cochrane Database, and Google Scholar databases were searched to identify trial registries evaluating the impact of SGLT2 on BP. Random-effects models meta-analysis was used for quantitative data synthesis. The meta-analysis indicated a significant reduction in systolic BP following treatment with SGLT2 (weighted mean difference -2.46 mm Hg [95% CI -2.86 to -2.06]). The weighted mean differences for the effect on diastolic BP was -1.46 mm Hg (95% CI -1.82 to -1.09). In these subjects the weighted mean difference effects on serum triglycerides and total cholesterol were -2.08 mg/dL (95% CI -2.51 to -1.64) and 0.77 mg/dL (95% CI 0.33-1.21), respectively. The weighted mean differences for the effect of SGLT2 on body weight was -1.88 kg (95% CI -2.11 to -1.66) across all studies. These findings were robust in sensitivity analyses. Treatment with SGLT2 glucose cotransporter inhibitors therefore has beneficial off-target effects on BP in patients with type 2 diabetes mellitus and may also be of value in improving other cardiometabolic parameters including lipid profile and body weight in addition to their expected effects on glycemic control. However, our findings should be interpreted with consideration for the moderate statistical heterogeneity across the included studies. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  13. Effectiveness of Sodium-Glucose Cotransporter-2 Inhibitor as an Add-on Drug to GLP-1 Receptor Agonists for Glycemic Control of a Patient with Prader-Willi Syndrome: A Case Report.

    Science.gov (United States)

    Horikawa, Yukio; Enya, Mayumi; Komagata, Makie; Hashimoto, Ken-Ichi; Kagami, Masayo; Fukami, Maki; Takeda, Jun

    2018-02-01

    Diabetes patients with Prader-Willi syndrome (PWS) are obese because of hyperphagia; weight control by dietary modification and medicine is required for glycemic control. There are several recent reports showing the effectiveness of GLP-1 receptor agonists (GLP-1RAs) for diabetes treatment in PWS. A 36-year-old Japanese male patient was diagnosed with PWS at 10 years of age. At age 16 years, he was diagnosed with diabetes and began to take several kinds of oral hypoglycemic agents. At age 29 years, his BMI was 39.1 kg/m 2 and he was referred to our department for diabetes and obesity treatment. In the present case, the HbA1c was not improved by GLP-1RAs despite a 28-kg BW reduction, which included a 9-kg loss of muscle. Apprehensive of further loss of muscle mass, basal insulin of insulin glargine was administered in addition to GLP-1RAs. Immediately after the addition of tofogliflozin, a sodium-glucose cotransporter-2 (SGLT2) inhibitor, the patient's HbA1c decreased dramatically with only about an additional 3% BW reduction. We note an improvement in our case of lipid deposition in the pancreas confirmed by abdominal CT after the improvement of HbA1c. It is unknown whether this improvement of fatty pancreas was a cause or an effect of the improved glycemic control in the present case. This finding clearly supports the effectiveness of combining SGLT2 inhibitors with GLP-1RAs for treatment of patients with PWS and non-alcoholic fatty pancreas disease.

  14. Antidiabetic Bis-Maltolato-OxoVanadium(IV: Conversion of inactive trans- to bioactive cis-BMOV for possible binding to target PTP-1B

    Directory of Open Access Journals (Sweden)

    Thomas Scior

    2008-11-01

    Full Text Available Thomas Scior1, Hans-Georg Mack2, José Antonio Guevara García3, Wolfhard Koch41Departamento de Farmacia. Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Colonia San Manuel, Puebla, Mexico; 2Institut für Physikalische Chemie, Universität Tübingen, Tübingen, Germany; 3Laboratorio de Investigación en Bioinorgánica y Biorremediación (LIByB. Departamento de Ciencias Básicas, Ingeniería y Tecnología, Universidad Autónoma de Tlaxcala, Apizaco, Tlaxcala, Mexico; 4Facultad de Estudios Superiores Zaragoza (FESZ, Universidad Nacional Autónoma de México (UNAM, Colonia Ejército de Oriente, Delegación Iztapalapa, Mexico City, MexicoAbstract: The postulated transition of Bis-Maltolato-OxoVanadium(IV (BMOV from its inactive trans- into its cis-aquo-BMOV isomeric form in solution was simulated by means of computational molecular modeling. The rotational barrier was calculated with DFT – B3LYP under a stepwise optimization protocol with STO-3G, 3-21G, 3-21G*, and 6-31G ab initio basis sets. Our computed results are consistent with reports on the putative molecular mechanism of BMOV triggering the insulin-like cellular response (insulin mimetic as a potent inhibitor of the protein tyrosine phosphatase-1B (PTP-1B. Initially, trans-BMOV is present in its solid dosage form but in aqueous solution, and during oral administration, it is readily converted into a mixture of “open-type” and “closed-type” complexes of cis-aquo-BMOV under equilibrium conditions. However, in the same measure as the “closed-type” complex binds to the cytosolic PTP-1B, it disappears from solution, and the equilibrium shifts towards the “closed-type” species. In full accordance, the computed binding mode of cis-BMOV is energetically favored over sterically hindered trans-BMOV. In view of our earlier report on prodrug hypothesis of vanadium organic compounds the present results suggest that cis-BMOV is the bioactive species

  15. Activation of Src kinase by protein-tyrosine phosphatase-PEST in osteoclasts: comparative analysis of the effects of bisphosphonate and protein-tyrosine phosphatase inhibitor on Src activation in vitro.

    Science.gov (United States)

    Chellaiah, Meenakshi A; Schaller, Michael D

    2009-08-01

    PTP-PEST is involved in the regulation of sealing ring formation in osteoclasts. In this article, we have shown a regulatory role for PTP-PEST on dephosphorylation of c-Src at Y527 and phosphorylation at Y418 in the catalytic site. Activation of Src in osteoclasts by over-expression of PTP-PEST resulted in the phosphorylation of cortactin at Y421 and WASP at Y294. Also enhanced as a result, is the interaction of Src, cortactin, and Arp2 with WASP. Moreover, the number of osteoclasts displaying sealing ring and bone resorbing activity was increased in response to PTP-PEST over-expression as compared with control osteoclasts. Cells expressing constitutively active-Src (527YDeltaF) simulate the effects mediated by PTP-PEST. Treatment of osteoclasts with a bisphosphonate alendronate or a potent PTP inhibitor PAO decreased the activity and phosphorylation of Src at Y418 due to reduced dephosphorylation state at Y527. Therefore, Src-mediated phosphorylation of cortactin and WASP as well as the formation of WASP.cortactin.Arp2 complex and sealing ring were reduced in these osteoclasts. Similar effects were observed in osteoclasts treated with an Src inhibitor PP2. We have shown that bisphosphonates could modulate the function of osteoclasts by inhibiting downstream signaling mediated by PTP-PEST/Src, in addition to its effect on the inhibition of the post-translational modification of small GTP-binding proteins such as Rab, Rho, and Rac as shown by others. The promising effects of the inhibitors PP2 and PAO on osteoclast function suggest a therapeutic approach for patients with bone metastases and osteoporosis as an alternative to bisphosphonates.

  16. Lysophosphatidic acid modulates the association of PTP1B with N-cadherin/catenin complex in SKOV3 ovarian cancer cells.

    Science.gov (United States)

    Huang, Ruby Yun-Ju; Wen, Chen-Chen; Liao, Chih-Kai; Wang, Shu-Huei; Chou, Liang-Yin; Wu, Jiahn-Chun

    2012-09-01

    LPA (lysophosphatidic acid) is a natural phospholipid that plays important roles in promoting cancer cell proliferation, invasion and metastases. We previously reported that LPA induces ovarian cancer cell dispersal and disruption of AJ (adherens junction) through the activation of SFK (Src family kinases). In this study, we have investigated the regulatory mechanisms during the early phase of LPA-induced cell dispersal. An in vitro model of the ovarian cancer cell line SKOV3 for cell dispersal was used. LPA induces rapid AJ disruption by increasing the internalization of N-cadherin-β-catenin. By using immunoprecipitations, LPA was shown to induce increased tyrosine phosphorylation of β-catenin and alter the balance of β-catenin-bound SFK and PTP1B (phosphotyrosine phosphatase 1B). The altered balance of tyrosine kinase/phosphatase correlated with a concomitant disintegration of the β-catenin-α-catenin, but not the β-catenin-N-cadherin complex. This disintegration of β-catenin from α-catenin and the cell dispersal caused by LPA can be rescued by blocking SFK activity with the chemical inhibitor, PP2. More importantly, PP2 also restores the level of PTP1B bound to β-catenin. We propose that LPA signalling alters AJ stability by changing the dynamics of tyrosine kinase/phosphatase bound to AJ proteins. This work provides further understanding of the early signalling events regulating ovarian cancer cell dispersal and AJ disruption induced by LPA. © The Author(s) Journal compilation © 2012 International Federation for Cell Biology.

  17. The cyclin-dependent kinase inhibitor flavopiridol disrupts sodium butyrate-induced p21WAF1/CIP1 expression and maturation while reciprocally potentiating apoptosis in human leukemia cells.

    Science.gov (United States)

    Rosato, Roberto R; Almenara, Jorge A; Cartee, Leanne; Betts, Vicki; Chellappan, Srikumar P; Grant, Steven

    2002-02-01

    Interactions between the cyclin-dependent kinase inhibitor flavopiridol (FP) and the histone deacetylase inhibitor sodium butyrate (SB) have been examined in human leukemia cells (U937) in relation to differentiation and apoptosis. Whereas 1 mM of SB or 100 nM of FP minimally induced apoptosis (4% and 10%, respectively) at 24 h, simultaneous exposure of U937 cells to these agents dramatically increased cell death (e.g., approximately 60%), reflected by both morphological and Annexin/propidium iodide-staining features, procaspase 3 activation, and poly(ADP-ribose) polymerase cleavage. Similar interactions were observed in human promyelocytic (HL-60), B-lymphoblastic (Raji), and T-lymphoblastic (Jurkat) leukemia cells. Coadministration of FP opposed SB-mediated accumulation of cells in G0G1 and differentiation, reflected by reduced CD11b expression, but instead dramatically increased procaspase-3, procaspase-8, Bid, and poly(ADP-ribose) polymerase cleavage, as well as mitochondrial damage (e.g., loss of mitochondrial membrane potential and cytochrome c release). FP also blocked SB-related p21WAF1-CIP1 induction through a caspase-independent mechanism and triggered the caspase-mediated cleavage of p27KIP1 and retinoblastoma protein. The latter event was accompanied by a marked reduction in retinoblastoma protein/E2F1 complex formation. However, FP did not modify the extent of SB-associated acetylation of histones H3 and H4. Treatment of cells with FP/SB also resulted in the caspase-mediated cleavage of Bcl-2 and caspase-independent down-regulation of Mcl-1. Levels of cyclins A, D1, and E, and X-linked inhibitor of apoptosis also declined in SB/FP-treated cells. Finally, FP/SB coexposure potently induced apoptosis in two primary acute myelogenous leukemia samples. Together, these findings demonstrate that FP, when combined with SB, induces multiple perturbations in cell cycle and apoptosis regulatory proteins, which oppose leukemic cell differentiation but instead

  18. TC-PTP directly interacts with connexin43 to regulate gap junction intercellular communication

    Science.gov (United States)

    Li, Hanjun; Spagnol, Gaelle; Naslavsky, Naava; Caplan, Steve; Sorgen, Paul L.

    2014-01-01

    ABSTRACT Protein kinases have long been reported to regulate connexins; however, little is known about the involvement of phosphatases in the modulation of intercellular communication through gap junctions and the subsequent downstream effects on cellular processes. Here, we identify an interaction between the T-cell protein tyrosine phosphatase (TC-PTP, officially known as PTPN2) and the carboxyl terminus of connexin43 (Cx43, officially known as GJA1). Two cell lines, normal rat kidney (NRK) cells endogenously expressing Cx43 and an NRK-derived cell line expressing v-Src with temperature-sensitive activity, were used to demonstrate that EGF and v-Src stimulation, respectively, induced TC-PTP to colocalize with Cx43 at the plasma membrane. Cell biology experiments using phospho-specific antibodies and biophysical assays demonstrated that the interaction is direct and that TC-PTP dephosphorylates Cx43 residues Y247 and Y265, but does not affect v-Src. Transfection of TC-PTP also indirectly led to the dephosphorylation of Cx43 S368, by inactivating PKCα and PKCδ, with no effect on the phosphorylation of S279 and S282 (MAPK-dependent phosphorylation sites). Dephosphorylation maintained Cx43 gap junctions at the plaque and partially reversed the channel closure caused by v-Src-mediated phosphorylation of Cx43. Understanding dephosphorylation, along with the well-documented roles of Cx43 phosphorylation, might eventually lead to methods to modulate the regulation of gap junction channels, with potential benefits for human health. PMID:24849651

  19. Potent water extracts of Indonesian medicinal plants against PTP1B

    Directory of Open Access Journals (Sweden)

    Azis Saifudin

    2016-01-01

    Conclusions: In contrast to the mainstream solvents currently used in modern herbal manufactures especially Jamu medicine in Indonesia, pure-water-extracted materials should be reconsidered and could be reemerged for future studies and for the manufacture of herbal medicines. In addition, the activity of Jamu components should be confirmed that their antidiabetes and antiobesity activities could be through the inhibition of PTP1B.

  20. Analisis Laporan Keuangan Guna Menilai Kinerja PTP. Nusantara III (Persero) Medan

    OpenAIRE

    Donny Hendrawan S

    2011-01-01

    The main purpose of this research is to know how the evaluation of finance performance in PTP. Nusantara III (PERSERO) Medan. The writer restricts the evaluation of finance performance based on judgments letter of pulic company minister number : KEP-100/MBU/2002 that is about evaluation of public company performance. The finance ratios those are used in this research are Return on Equity (ROE), Return on Investment (ROI), Cash Ratio, Current Ratio, Collection Periods, Inventory Turn Over, Tot...

  1. Low sodium diet (image)

    Science.gov (United States)

    ... for you. Look for these words on labels: low-sodium, sodium-free, no salt added, sodium-reduced, ... for you. Look for these words on labels: low-sodium, sodium-free, no salt added, sodium-reduced, ...

  2. IRE1α links Nck1 deficiency to attenuated PTP1B expression in HepG2 cells.

    Science.gov (United States)

    Li, Hui; Li, Bing; Larose, Louise

    2017-08-01

    PTP1B, a prototype of the non-receptor subfamily of the protein tyrosine phosphatase superfamily, plays a key role in regulating intracellular signaling from various receptor and non-receptor protein tyrosine kinases. Previously, we reported that silencing Nck1 in human hepatocellular carcinoma HepG2 cells enhances basal and growth factor-induced activation of the PI3K-Akt pathway through attenuating PTP1B expression. However, the underlying mechanism by which Nck1 depletion represses PTP1B expression remains unclear. In this study, we found that silencing Nck1 attenuates PTP1B expression in HepG2 cells through down-regulation of IRE1α. Indeed, we show that silencing Nck1 in HepG2 cells leads to decreased IRE1α expression and signaling. Accordingly, IRE1α depletion using siRNA in HepG2 cells enhances PI3K-dependent basal and growth factor-induced Akt activation, reproducing the effects of silencing Nck1 on activation of this pathway. In addition, depletion of IRE1α also leads to reduced PTP1B expression, which was rescued by ectopic expression of IRE1α in Nck1-depleted cells. Mechanistically, we found that silencing either Nck1 or IRE1α in HepG2 cells decreases PTP1B mRNA levels and stability. However, despite miR-122 levels, a miRNA targeting PTP1B 3' UTR and inducing PTP1B mRNA degradation in HepG2 cells, are increased in both Nck1- and IRE1α-depleted HepG2 cells, a miR-122 antagomir did not rescue PTP1B expression in these cells. Overall, this study highlights an important role for Nck1 in fine-tuning IRE1α expression and signaling that regulate PTP1B expression and subsequent activation of the PI3K-Akt pathway in HepG2 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Antiobesity and Antidiabetes Effects of a Cudrania tricuspidata Hydrophilic Extract Presenting PTP1B Inhibitory Potential

    Directory of Open Access Journals (Sweden)

    Dae Hoon Kim

    2016-01-01

    Full Text Available Diabetes and obesity represent the major health problems and the most age-related metabolic diseases. Protein-tyrosine phosphatase 1B (PTP1B has emerged as an important regulator of insulin signal transduction and is regarded as a pharmaceutical target for metabolic disorders. To find novel natural materials presenting therapeutic activities against diabetes and obesity, we screened various herb extracts using a chip screening allowing the determination of PTP1B inhibitory effects of the tested compounds using insulin receptor (IR as the substrate. Cudrania tricuspidata leaves (CTe had a strong inhibitory effect on PTP1B activity and substantially inhibited fat accumulation in 3T3-L1 cells. CTe was orally administrated to diet-induced obesity (DIO mice once daily for 3 weeks after which changes in glucose, insulin metabolism, and fat accumulation were examined. Hepatic enzyme markers (aspartate aminotransferase, AST, and alanine aminotransferase, ALT and total fat mass and triglyceride levels decreased in CTe-treated mice, whereas body weight and total cholesterol concentration slightly decreased. CTe increased the phosphorylation of IRS-1 and Akt in liver tissue. Furthermore, CTe treatment significantly lowered blood glucose levels and improved insulin secretion in DIO mice. Our results strongly suggest that CTe may represent a promising therapeutic substance against diabetes and obesity.

  4. Antiobesity and Antidiabetes Effects of a Cudrania tricuspidata Hydrophilic Extract Presenting PTP1B Inhibitory Potential

    Science.gov (United States)

    Kim, Dae Hoon; Lee, Sooung; Chung, Youn Wook; Kim, Byeong Mo; Kim, Hanseul; Kim, Kunhong; Yang, Kyung Mi

    2016-01-01

    Diabetes and obesity represent the major health problems and the most age-related metabolic diseases. Protein-tyrosine phosphatase 1B (PTP1B) has emerged as an important regulator of insulin signal transduction and is regarded as a pharmaceutical target for metabolic disorders. To find novel natural materials presenting therapeutic activities against diabetes and obesity, we screened various herb extracts using a chip screening allowing the determination of PTP1B inhibitory effects of the tested compounds using insulin receptor (IR) as the substrate. Cudrania tricuspidata leaves (CTe) had a strong inhibitory effect on PTP1B activity and substantially inhibited fat accumulation in 3T3-L1 cells. CTe was orally administrated to diet-induced obesity (DIO) mice once daily for 3 weeks after which changes in glucose, insulin metabolism, and fat accumulation were examined. Hepatic enzyme markers (aspartate aminotransferase, AST, and alanine aminotransferase, ALT) and total fat mass and triglyceride levels decreased in CTe-treated mice, whereas body weight and total cholesterol concentration slightly decreased. CTe increased the phosphorylation of IRS-1 and Akt in liver tissue. Furthermore, CTe treatment significantly lowered blood glucose levels and improved insulin secretion in DIO mice. Our results strongly suggest that CTe may represent a promising therapeutic substance against diabetes and obesity. PMID:26989693

  5. Edaravone protects osteoblastic cells from dexamethasone through inhibiting oxidative stress and mPTP opening.

    Science.gov (United States)

    Sun, Wen-xiao; Zheng, Hai-ya; Lan, Jun

    2015-11-01

    Existing evidences have emphasized an important role of oxidative stress in dexamethasone (Dex)-induced osteoblastic cell damages. Here, we investigated the possible anti-Dex activity of edaravone in osteoblastic cells, and studied the underlying mechanisms. We showed that edaravone dose-dependently attenuated Dex-induced death and apoptosis of established human or murine osteoblastic cells. Further, Dex-mediated damages to primary murine osteoblasts were also alleviated by edaravone. In osteoblastic cells/osteoblasts, Dex induced significant oxidative stresses, tested by increased levels of reactive oxygen species and lipid peroxidation, which were remarkably inhibited by edaravone. Meanwhile, edaravone repressed Dex-induced mitochondrial permeability transition pore (mPTP) opening, or mitochondrial membrane potential reduction, in osteoblastic cells/osteoblasts. Significantly, edaravone-induced osteoblast-protective activity against Dex was alleviated with mPTP inhibition through cyclosporin A or cyclophilin-D siRNA. Together, we demonstrate that edaravone protects osteoblasts from Dex-induced damages probably through inhibiting oxidative stresses and following mPTP opening.

  6. Superoxide anion radicals induce IGF-1 resistance through concomitant activation of PTP1B and PTEN

    Science.gov (United States)

    Singh, Karmveer; Maity, Pallab; Krug, Linda; Meyer, Patrick; Treiber, Nicolai; Lucas, Tanja; Basu, Abhijit; Kochanek, Stefan; Wlaschek, Meinhard; Geiger, Hartmut; Scharffetter-Kochanek, Karin

    2015-01-01

    The evolutionarily conserved IGF-1 signalling pathway is associated with longevity, metabolism, tissue homeostasis, and cancer progression. Its regulation relies on the delicate balance between activating kinases and suppressing phosphatases and is still not very well understood. We report here that IGF-1 signalling in vitro and in a murine ageing model in vivo is suppressed in response to accumulation of superoxide anions () in mitochondria, either by chemical inhibition of complex I or by genetic silencing of -dismutating mitochondrial Sod2. The -dependent suppression of IGF-1 signalling resulted in decreased proliferation of murine dermal fibroblasts, affected translation initiation factors and suppressed the expression of α1(I), α1(III), and α2(I) collagen, the hallmarks of skin ageing. Enhanced led to activation of the phosphatases PTP1B and PTEN, which via dephosphorylation of the IGF-1 receptor and phosphatidylinositol 3,4,5-triphosphate dampened IGF-1 signalling. Genetic and pharmacologic inhibition of PTP1B and PTEN abrogated -induced IGF-1 resistance and rescued the ageing skin phenotype. We thus identify previously unreported signature events with , PTP1B, and PTEN as promising targets for drug development to prevent IGF-1 resistance-related pathologies. PMID:25520316

  7. The Phosphatase PTP-PEST/PTPN12 Regulates Endothelial Cell Migration and Adhesion, but Not Permeability, and Controls Vascular Development and Embryonic Viability*

    Science.gov (United States)

    Souza, Cleiton Martins; Davidson, Dominique; Rhee, Inmoo; Gratton, Jean-Philippe; Davis, Elaine C.; Veillette, André

    2012-01-01

    Protein-tyrosine phosphatase (PTP)-PEST (PTPN12) is ubiquitously expressed. It is essential for normal embryonic development and embryonic viability in mice. Herein we addressed the involvement of PTP-PEST in endothelial cell functions using a combination of genetic and biochemical approaches. By generating primary endothelial cells from an inducible PTP-PEST-deficient mouse, we found that PTP-PEST is not needed for endothelial cell differentiation and proliferation or for the control of endothelial cell permeability. Nevertheless, it is required for integrin-mediated adhesion and migration of endothelial cells. PTP-PEST-deficient endothelial cells displayed increased tyrosine phosphorylation of Cas, paxillin, and Pyk2, which were previously also implicated in integrin functions. By eliminating PTP-PEST in endothelial cells in vivo, we obtained evidence that expression of PTP-PEST in endothelial cells is required for normal vascular development and embryonic viability. Therefore, PTP-PEST is a key regulator of integrin-mediated functions in endothelial cells seemingly through its capacity to control Cas, paxillin, and Pyk2. This function explains at least in part the essential role of PTP-PEST in embryonic development and viability. PMID:23105101

  8. Hidden Sodium

    Centers for Disease Control (CDC) Podcasts

    2013-03-04

    In this podcast, learn about reducing sodium intake by knowing what to eat and the main sources of sodium in the diet. It's important for a healthy lifestyle.  Created: 3/4/2013 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 3/4/2013.

  9. Dietary sodium

    DEFF Research Database (Denmark)

    Graudal, Niels

    2015-01-01

    The 2013 Institute of Medicine (IOM) report "Sodium Intake in Populations: Assessment of Evidence" did not support the current recommendations of the IOM and the American Heart Association (AHA) to reduce daily dietary sodium intake to below 2,300 mg. The report concluded that the population...

  10. Deficiency in Protein Tyrosine Phosphatase PTP1B Shortens Lifespan and Leads to Development of Acute Leukemia.

    Science.gov (United States)

    Le Sommer, Samantha; Morrice, Nicola; Pesaresi, Martina; Thompson, Dawn; Vickers, Mark A; Murray, Graeme I; Mody, Nimesh; Neel, Benjamin G; Bence, Kendra K; Wilson, Heather M; Delibegović, Mirela

    2018-01-01

    Protein tyrosine phosphatase PTP1B is a critical regulator of signaling pathways controlling metabolic homeostasis, cell proliferation, and immunity. In this study, we report that global or myeloid-specific deficiency of PTP1B in mice decreases lifespan. We demonstrate that myeloid-specific deficiency of PTP1B is sufficient to promote the development of acute myeloid leukemia. LysM-PTP1B -/- mice lacking PTP1B in the innate myeloid cell lineage displayed a dysregulation of bone marrow cells with a rapid decline in population at midlife and a concomitant increase in peripheral blood blast cells. This phenotype manifested further with extramedullary tumors, hepatic macrophage infiltration, and metabolic reprogramming, suggesting increased hepatic lipid metabolism prior to overt tumor development. Mechanistic investigations revealed an increase in anti-inflammatory M2 macrophage responses in liver and spleen, as associated with increased expression of arginase I and the cytokines IL10 and IL4. We also documented STAT3 hypersphosphorylation and signaling along with JAK-dependent upregulation of antiapoptotic proteins Bcl2 and BclXL. Our results establish a tumor suppressor role for PTP1B in the myeloid lineage cells, with evidence that its genetic inactivation in mice is sufficient to drive acute myeloid leukemia. Significance: This study defines a tumor suppressor function for the protein tyrosine phosphatase PTP1B in myeloid lineage cells, with evidence that its genetic inactivation in mice is sufficient to drive acute myeloid leukemia. Cancer Res; 78(1); 75-87. ©2017 AACR . ©2017 American Association for Cancer Research.

  11. Inhibition of PTP1B Restores IRS1-Mediated Hepatic Insulin Signaling in IRS2-Deficient Mice

    Science.gov (United States)

    González-Rodríguez, Águeda; Gutierrez, Jose A. Mas; Sanz-González, Silvia; Ros, Manuel; Burks, Deborah J.; Valverde, Ángela M.

    2010-01-01

    OBJECTIVE Mice with complete deletion of insulin receptor substrate 2 (IRS2) develop hyperglycemia, impaired hepatic insulin signaling, and elevated gluconeogenesis, whereas mice deficient for protein tyrosine phosphatase (PTP)1B display an opposing hepatic phenotype characterized by increased sensitivity to insulin. To define the relationship between these two signaling pathways in the regulation of liver metabolism, we used genetic and pharmacological approaches to study the effects of inhibiting PTP1B on hepatic insulin signaling and expression of gluconeogenic enzymes in IRS2−/− mice. RESEARCH DESIGN AND METHODS We analyzed glucose homeostasis and insulin signaling in liver and isolated hepatocytes from IRS2−/− and IRS2−/−/PTP1B−/− mice. Additionally, hepatic insulin signaling was assessed in control and IRS2−/− mice treated with resveratrol, an antioxidant present in red wine. RESULTS In livers of hyperglycemic IRS2−/− mice, the expression levels of PTP1B and its association with the insulin receptor (IR) were increased. The absence of PTP1B in the double-mutant mice restored hepatic IRS1-mediated phosphatidylinositol (PI) 3-kinase/Akt/Foxo1 signaling. Moreover, resveratrol treatment of hyperglycemic IRS2−/− mice decreased hepatic PTP1B mRNA and inhibited PTP1B activity, thereby restoring IRS1-mediated PI 3-kinase/Akt/Foxo1 signaling and peripheral insulin sensitivity. CONCLUSIONS By regulating the phosphorylation state of IR, PTB1B determines sensitivity to insulin in liver and exerts a unique role in the interplay between IRS1 and IRS2 in the modulation of hepatic insulin action. PMID:20028942

  12. Asperentin B, a New Inhibitor of the Protein Tyrosine Phosphatase 1B.

    Science.gov (United States)

    Wiese, Jutta; Aldemir, Hülya; Schmaljohann, Rolf; Gulder, Tobias A M; Imhoff, Johannes F

    2017-06-21

    In the frame of studies on secondary metabolites produced by fungi from deep-sea environments we have investigated inhibitors of enzymes playing key roles in signaling cascades of biochemical pathways relevant for the treatment of diseases. Here we report on a new inhibitor of the human protein tyrosine phosphatase 1B (PTP1B), a target in the signaling pathway of insulin. A new asperentin analog is produced by an Aspergillus sydowii strain isolated from the sediment of the deep Mediterranean Sea. Asperentin B ( 1 ) contains an additional phenolic hydroxy function at C-6 and exhibits an IC 50 value against PTP1B of 2 μM in vitro, which is six times stronger than the positive control, suramin. Interestingly, asperentin ( 2 ) did not show any inhibition of this enzymatic activity. Asperentin B ( 1 ) is discussed as possible therapeutic agents for type 2 diabetes and sleeping sickness.

  13. Liver-Specific Deletion of Protein-Tyrosine Phosphatase 1B (PTP1B) Improves Metabolic Syndrome and Attenuates Diet-Induced Endoplasmic Reticulum Stress

    Science.gov (United States)

    Delibegovic, Mirela; Zimmer, Derek; Kauffman, Caitlin; Rak, Kimberly; Hong, Eun-Gyoung; Cho, You-Ree; Kim, Jason K.; Kahn, Barbara B.; Neel, Benjamin G.; Bence, Kendra K.

    2009-01-01

    OBJECTIVE—The protein tyrosine phosphatase PTP1B is a negative regulator of insulin signaling; consequently, mice deficient in PTP1B are hypersensitive to insulin. Because PTP1B−/− mice have diminished fat stores, the extent to which PTP1B directly regulates glucose homeostasis is unclear. Previously, we showed that brain-specific PTP1B−/− mice are protected against high-fat diet–induced obesity and glucose intolerance, whereas muscle-specific PTP1B−/− mice have increased insulin sensitivity independent of changes in adiposity. Here we studied the role of liver PTP1B in glucose homeostasis and lipid metabolism. RESEARCH DESIGN AND METHODS—We analyzed body mass/adiposity, insulin sensitivity, glucose tolerance, and lipid metabolism in liver-specific PTP1B−/− and PTP1Bfl/fl control mice, fed a chow or high-fat diet. RESULTS—Compared with normal littermates, liver-specific PTP1B−/− mice exhibit improved glucose homeostasis and lipid profiles, independent of changes in adiposity. Liver-specific PTP1B−/− mice have increased hepatic insulin signaling, decreased expression of gluconeogenic genes PEPCK and G-6-Pase, enhanced insulin-induced suppression of hepatic glucose production, and improved glucose tolerance. Liver-specific PTP1B−/− mice exhibit decreased triglyceride and cholesterol levels and diminished expression of lipogenic genes SREBPs, FAS, and ACC. Liver-specific PTP1B deletion also protects against high-fat diet–induced endoplasmic reticulum stress response in vivo, as evidenced by decreased phosphorylation of p38MAPK, JNK, PERK, and eIF2α and lower expression of the transcription factors C/EBP homologous protein and spliced X box-binding protein 1. CONCLUSIONS—Liver PTP1B plays an important role in glucose and lipid metabolism, independent of alterations in adiposity. Inhibition of PTP1B in peripheral tissues may be useful for the treatment of metabolic syndrome and reduction of cardiovascular risk in addition to

  14. Residue 259 in protein-tyrosine phosphatase PTP1B and PTPα determines the flexibility of glutamine 262

    DEFF Research Database (Denmark)

    Peters, Günther H.j.; Iversen, L.F.; Andersen, H.S.

    2004-01-01

    To study the flexibility of the substrate-binding site and in particular of Gln262, we have performed adiabatic conformational search and molecular dynamics simulations on the crystal structure of the catalytic domain of wild-type protein-tyrosine phosphatase (PTP) 1B, a mutant PTP1B(R47V),(D48N...... and second step of the phosphate hydrolysis. Analyses of the trajectories revealed that in the cysteine-phosphor complex of PTP1B, Gln262 oscillates freely between the bound phosphate group and Gly259 frequently forming, as observed in the crystal structure, a hydrogen bond with the backbone oxygen of Gly259...... around Gln262 and the active site Cys215 reveals that the probability of finding a water molecule correctly positioned for catalysis is much larger in PTP1B than in PTP1B(R47V),(D48N),(M258C),(G259Q) and PTPalpha, in accordance with experiments....

  15. The effect of chemical anti-inhibitors on fibrinolytic enzymes and inhibitors

    DEFF Research Database (Denmark)

    Sidelmann, Johannes Jakobsen; Jespersen, J; Kluft, C

    1997-01-01

    proteases. We studied the influence of chemical anti-inhibitors (chloramine T, flufenamate, sodium lauryl sulfate, and methylamine) on fibrinolytic serine proteases and fibrinolytic enzyme inhibitors using the physiological substrate fibrin as plasmin substrate. Low concentrations of chloramine T (0.01 mmol......%) and plasminogen activators (apparent recovery > 200%). Sodium lauryl sulfate eliminates the major fibrinolytic enzyme inhibitors, but increases the activity of plasmin (apparent recovery > 200%) and plasminogen activator, urokinase type (apparent recovery 130%). Methylamine affects only plasmin inhibition. We...

  16. Anti-inflammatory effects of the selective phosphodiesterase 3 inhibitor, cilostazol, and antioxidants, enzymatically-modified isoquercitrin and α-lipoic acid, reduce dextran sulphate sodium-induced colorectal mucosal injury in mice.

    Science.gov (United States)

    Kangawa, Yumi; Yoshida, Toshinori; Abe, Hajime; Seto, Yoshiki; Miyashita, Taishi; Nakamura, Michi; Kihara, Tohru; Hayashi, Shim-Mo; Shibutani, Makoto

    2017-04-04

    Developing effective treatments and preventing inflammatory bowel disease (IBD) are urgent challenges in improving patients' health. It has been suggested that platelet activation and reactive oxidative species generation are involved in the pathogenesis of IBD. We examined the inhibitory effects of a selective phosphodiesterase-3 inhibitor, cilostazol (CZ), and two antioxidants, enzymatically modified isoquercitrin (EMIQ) and α-lipoic acid (ALA), against dextran sulphate sodium (DSS)-induced colitis. BALB/c mice were treated with 0.3% CZ, 1.5% EMIQ, and 0.2% ALA in their feed. Colitis was induced by administering 5% DSS in drinking water for 8days. The inhibitory effects of these substances were evaluated by measuring relevant clinical symptoms (faecal blood, diarrhoea, and body weight loss), colon length, plasma cytokine and chemokine levels, whole genome gene expression, and histopathology. Diarrhoea was suppressed by each treatment, while CZ prevented shortening of the colon length. All treatment groups exhibited decreased plasma levels of interleukin (IL)-6 and tumour necrosis factor (TNF)-α compared with the DSS group. Microarray analysis showed that cell adhesion, cytoskeleton regulation, cell proliferation, and apoptosis, which might be related to inflammatory cell infiltration and mucosal healing, were affected in all the groups. DSS-induced mucosal injuries such as mucosal loss, submucosal oedema, and inflammatory cell infiltration in the distal colon were prevented by CZ or antioxidant treatment. These results suggest that anti-inflammatory effects of these agents reduced DSS-induced mucosal injuries in mice and, therefore, may provide therapeutic benefits in IBD. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Combination of the sodium-glucose cotransporter-2 inhibitor empagliflozin with orlistat or sibutramine further improves the body-weight reduction and glucose homeostasis of obese rats fed a cafeteria diet

    Directory of Open Access Journals (Sweden)

    Vickers SP

    2014-07-01

    Full Text Available Steven P Vickers,1 Sharon C Cheetham,1 Katie R Headland,1 Keith Dickinson,1 Rolf Grempler,2 Eric Mayoux,2 Michael Mark,2 Thomas Klein2 1RenaSci, BioCity Nottingham, Nottingham, UK; 2Boehringer Ingelheim Pharma, Biberach an der Riss, Germany Abstract: The present study assessed the potential of the sodium glucose-linked transporter (SGLT-2 inhibitor empagliflozin to decrease body weight when administered alone or in combination with the clinically effective weight-loss agents orlistat and sibutramine in obese rats fed a cafeteria diet. Female Wistar rats were exposed to a cafeteria diet to induce obesity. Empagliflozin was dosed once daily (10, 30, and 60 mg/kg for 28 days. Combination studies were subsequently performed using a submaximal empagliflozin dose (10 mg/kg with either sibutramine or orlistat. Body weight, food, and water intake were recorded daily. The effect of drug treatment on glucose tolerance, relevant plasma parameters, and carcass composition was determined. Empagliflozin dose-dependently reduced body weight, plasma leptin, and body fat though increased urinary glucose excretion. The combination of empagliflozin and orlistat significantly reduced body weight compared to animals treated with either drug alone, and significantly improved glucose tolerance, plasma insulin, and leptin compared to vehicle-treated controls. The effect of sibutramine to improve glycemic control in an oral glucose-tolerance test was also significantly increased, with empagliflozin and combination treatment leading to a reduction in carcass fat greater than that observed with either drug alone. These data demonstrate that empagliflozin reduces body weight in cafeteria-fed obese rats. In combination studies, empagliflozin further improved the body-weight or body-fat loss of animals in comparison to orlistat or sibutramine alone. Such studies may indicate improved strategies for the treatment of obese patients with prediabetes or type 2 diabetes. Keywords

  18. Combination of the sodium-glucose cotransporter-2 inhibitor empagliflozin with orlistat or sibutramine further improves the body-weight reduction and glucose homeostasis of obese rats fed a cafeteria diet.

    Science.gov (United States)

    Vickers, Steven P; Cheetham, Sharon C; Headland, Katie R; Dickinson, Keith; Grempler, Rolf; Mayoux, Eric; Mark, Michael; Klein, Thomas

    2014-01-01

    The present study assessed the potential of the sodium glucose-linked transporter (SGLT)-2 inhibitor empagliflozin to decrease body weight when administered alone or in combination with the clinically effective weight-loss agents orlistat and sibutramine in obese rats fed a cafeteria diet. Female Wistar rats were exposed to a cafeteria diet to induce obesity. Empagliflozin was dosed once daily (10, 30, and 60 mg/kg) for 28 days. Combination studies were subsequently performed using a submaximal empagliflozin dose (10 mg/kg) with either sibutramine or orlistat. Body weight, food, and water intake were recorded daily. The effect of drug treatment on glucose tolerance, relevant plasma parameters, and carcass composition was determined. Empagliflozin dose-dependently reduced body weight, plasma leptin, and body fat though increased urinary glucose excretion. The combination of empagliflozin and orlistat significantly reduced body weight compared to animals treated with either drug alone, and significantly improved glucose tolerance, plasma insulin, and leptin compared to vehicle-treated controls. The effect of sibutramine to improve glycemic control in an oral glucose-tolerance test was also significantly increased, with empagliflozin and combination treatment leading to a reduction in carcass fat greater than that observed with either drug alone. These data demonstrate that empagliflozin reduces body weight in cafeteria-fed obese rats. In combination studies, empagliflozin further improved the body-weight or body-fat loss of animals in comparison to orlistat or sibutramine alone. Such studies may indicate improved strategies for the treatment of obese patients with prediabetes or type 2 diabetes.

  19. Sodium Oxybate

    Science.gov (United States)

    ... or give your sodium oxybate to anyone else; selling or sharing it is against the law. Store ... dehydrogenase deficiency (an inherited condition in which certain substances build up in the body and cause retardation ...

  20. Sodium Azide

    Science.gov (United States)

    ... Exposure to a large amount of sodium azide by any route may cause these other health effects as well: Convulsions Low blood pressure Loss of consciousness Lung injury Respiratory failure leading to death Slow heart rate ...

  1. Ptp1b deletion in pro-opiomelanocortin neurons increases energy expenditure and impairs endothelial function via TNF-α dependent mechanisms.

    Science.gov (United States)

    Bruder-Nascimento, Thiago; Kennard, Simone; Antonova, Galina; Mintz, James D; Bence, Kendra K; Belin de Chantemèle, Eric J

    2016-06-01

    Protein tyrosine phosphatase 1b (Ptp1b) is a negative regulator of leptin and insulin-signalling pathways. Its targeted deletion in proopiomelanocortin (POMC) neurons protects mice from obesity and diabetes by increasing energy expenditure. Inflammation accompanies increased energy expenditure. Therefore, the present study aimed to determine whether POMC-Ptp1b deletion increases energy expenditure via an inflammatory process, which would impair endothelial function. We characterized the metabolic and cardiovascular phenotypes of Ptp1b+/+ and POMC-Ptp1b-/- mice. Clamp studies revealed that POMC-Ptp1b deletion reduced body fat and increased energy expenditure as evidenced by a decrease in feed efficiency and an increase in oxygen consumption and respiratory exchange ratio. POMC-Ptp1b deletion induced a 2.5-fold increase in plasma tumour necrosis factor α (TNF-α) levels and elevated body temperature. Vascular studies revealed an endothelial dysfunction in POMC-Ptp1b-/- mice. Nitric oxide synthase inhibition [N-nitro-L-arginine methyl ester (L-NAME)] reduced relaxation to a similar extent in Ptp1b+/+ and POMC-Ptp1b-/- mice. POMC-Ptp1b deletion decreased ROS-scavenging enzymes [superoxide dismutases (SODs)] whereas it increased ROS-generating enzymes [NADPH oxidases (NOXs)] and cyclooxygenase-2 (COX-1) expression, in aorta. ROS scavenging or NADPH oxidase inhibition only partially improved relaxation whereas COX-2 inhibition and thromboxane-A2 (TXA2) antagonism fully restored relaxation in POMC-Ptp1b-/- mice Chronic treatment with the soluble TNF-α receptor etanercept decreased body temperature, restored endothelial function and reestablished aortic COX-2, NOXs and SOD expression to their baseline levels in POMC-Ptp1b-/- mice. However, etanercept promoted body weight gain and decreased energy expenditure in POMC-Ptp1b-/- mice. POMC-Ptp1b deletion increases plasma TNF-α levels, which contribute to body weight regulation via increased energy expenditure and impair

  2. A novel redox-based switch: LMW-PTP oxidation enhances Grb2 binding and leads to ERK activation

    International Nuclear Information System (INIS)

    Giannoni, Elisa; Raugei, Giovanni; Chiarugi, Paola; Ramponi, Giampietro

    2006-01-01

    Low molecular weight-PTP has been reported as a redox-sensitive protein during both platelet-derived growth factor and integrin signalling. In response to oxidation the phosphatase undergoes a reversible inactivation, which in turn leads to the increase in tyrosine phosphorylation of its substrates and the properly executed anchorage-dependent proliferation program. Here, we report that an exogenous oxidative stress enhances LMW-PTP tyrosine phosphorylation, through oxidation/inactivation of the enzyme, thus preventing its auto-dephosphorylation activity. In particular, we observed a selective hyper-phosphorylation of Tyr132, that acts as a docking site for the adaptor protein Grb2. The redox-dependent enhancement of Grb2 recruitment to LMW-PTP ultimately leads to an improvement of ERK activation, likely triggering a prosurvival signal against the oxidant environment

  3. Receptor tyrosine phosphatase R-PTP-alpha is tyrosine-phosphorylated and associated with the adaptor protein Grb2

    DEFF Research Database (Denmark)

    Su, J; Batzer, A; Sap, J

    1994-01-01

    Receptor tyrosine phosphatases (R-PTPases) have generated interest because of their suspected involvement in cellular signal transduction. The adaptor protein Grb2 has been implicated in coupling receptor tyrosine kinases to Ras. We report that a ubiquitous R-PTPase, R-PTP-alpha, is tyrosine......-phosphorylated and associated in vivo with the Grb2 protein. This association can be reproduced in stably and transiently transfected cells, as well as in vitro using recombinant Grb2 protein. Association requires the presence of an intact SH2 domain in Grb2, as well as tyrosine phosphorylation of R-PTP-alpha. This observation...... links a receptor tyrosine phosphatase with a key component of a central cellular signalling pathway and provides a basis for addressing R-PTP-alpha function....

  4. Steered Molecular Dynamics for Investigating the Interactions Between Insulin Receptor Tyrosine Kinase (IRK) and Variants of Protein Tyrosine Phosphatase 1B (PTP1B).

    Science.gov (United States)

    Nguyen, Hung; Do, Nhat; Phan, Tuyn; Pham, Tri

    2018-02-01

    The aim of this study is to use steered molecular dynamics to investigate the dissociation process between IRK and PTP1Bs for wild type and five mutants (consisting of p.D181E, p.D181A, p.Q262A, p.D181A-Y46F, and p.D181A-Q262A). The gained results are observed not only the unbinding mechanism of IRK-PTP1B complexes came from pulling force profile, number of hydrogen bonds, and interaction energy between IRK and PTP1Bs but also described PTP1B's point mutations could variably change its binding affinity towards IRK. Additionally, the binding free energy calculated by Molecular Mechanics/Poisson-Boltzmann Surface Area (MM-PBSA) is also revealed that electrostatic energy and polar solvation energy mainly made up the binding free energy of PTP1B-IRK complexes.

  5. Enteric-coated mycophenolate sodium.

    Science.gov (United States)

    Gabardi, Steven; Tran, Jennifer L; Clarkson, Michael R

    2003-11-01

    To review the pharmacology, pharmacokinetics, efficacy, and safety of mycophenolate sodium. Primary literature was obtained via a MEDLINE search (1966-June 2003). Abstracts were obtained from the manufacturer and included in the analysis. All studies and abstracts evaluating mycophenolate sodium in solid organ transplantation were considered for inclusion. English-language studies and abstracts were selected for inclusion, but were limited to those consisting of human subjects. Mycophenolate sodium, a mycophenolic acid prodrug, is an inhibitor of T-lymphocyte proliferation. Mycophenolic acid reduces the incidence of acute rejection in renal transplantation. Mycophenolate sodium is enteric coated and has been suggested as a potential method to reduce the gastrointestinal adverse events seen with mycophenolate mofetil. Both mycophenolate mofetil and mycophenolate sodium have been shown to be therapeutically equivalent at decreasing the incidence of allograft rejection and loss. The frequency of adverse events is similar between both compounds, with the most common events being diarrhea and leukopenia. Mycophenolate sodium is effective in preventing acute rejection in renal transplant recipients. At doses of 720 mg twice daily, the efficacy and safety profiles are similar to those of mycophenolate mofetil 1000 mg twice daily. Mycophenolate sodium has been approved in Switzerland; approval in the US is pending.

  6. ER-bound protein tyrosine phosphatase PTP1B interacts with Src at the plasma membrane/substrate interface.

    Directory of Open Access Journals (Sweden)

    Melisa C Monteleone

    Full Text Available PTP1B is an endoplasmic reticulum (ER anchored enzyme whose access to substrates is partly dependent on the ER distribution and dynamics. One of these substrates, the protein tyrosine kinase Src, has been found in the cytosol, endosomes, and plasma membrane. Here we analyzed where PTP1B and Src physically interact in intact cells, by bimolecular fluorescence complementation (BiFC in combination with temporal and high resolution microscopy. We also determined the structural basis of this interaction. We found that BiFC signal is displayed as puncta scattered throughout the ER network, a feature that was enhanced when the substrate trapping mutant PTP1B-D181A was used. Time-lapse and co-localization analyses revealed that BiFC puncta did not correspond to vesicular carriers; instead they localized at the tip of dynamic ER tubules. BiFC puncta were retained in ventral membrane preparations after cell unroofing and were also detected within the evanescent field of total internal reflection fluorescent microscopy (TIRFM associated to the ventral membranes of whole cells. Furthermore, BiFC puncta often colocalized with dark spots seen by surface reflection interference contrast (SRIC. Removal of Src myristoylation and polybasic motifs abolished BiFC. In addition, PTP1B active site and negative regulatory tyrosine 529 on Src were primary determinants of BiFC occurrence, although the SH3 binding motif on PTP1B also played a role. Our results suggest that ER-bound PTP1B dynamically interacts with the negative regulatory site at the C-terminus of Src at random puncta in the plasma membrane/substrate interface, likely leading to Src activation and recruitment to adhesion complexes. We postulate that this functional ER/plasma membrane crosstalk could apply to a wide array of protein partners, opening an exciting field of research.

  7. Isoprenylated phenolic compounds with PTP1B inhibition from Morus alba.

    Science.gov (United States)

    Huang, Qing-Hua; Lei, Chun; Wang, Pei-Pei; Li, Jing-Ya; Li, Jia; Hou, Ai-Jun

    2017-10-01

    Two new Diels-Alder adducts, albasins A and B (1 and 2), one new isoprenylated 2-arylbenzofuran, albasin C (3), one new isoprenylated flavone, albasin D (4), together with sixteen known phenolic compounds, were isolated from the root bark of Morus alba. Their structures were elucidated by extensive spectroscopic analysis, including NMR, MS, and ECD data. All the new compounds and most of the known ones showed significant inhibitory effects on PTP1B in vitro with IC 50 values ranging from 0.57 to 7.49μM. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. New 5-deoxyflavonoids and their inhibitory effects on protein tyrosine phosphatase 1B (PTP1B) activity

    DEFF Research Database (Denmark)

    Nguyen, Phi Hung; Dao, Trong Tuan; Kim, Jayeon

    2011-01-01

    .9 ± 1.6 to 19.2 ± 1.1 μM), while compounds (3, 5, and 9) with 2,2-dimethylpyrano ring showed less inhibitory effect (IC₅₀ 22.6 ± 2.3 to 72.9 ± 9.7 μM). These results suggest that prenyl and methoxy groups may be responsible for the increase on the activity of 5-deoxyflavonoids against PTP1B......, but the presence of 2,2-dimethylpyrano ring on the B ring may be induced the decrease of PTP1B inhibitory activity....

  9. Dynamin and PTP-PEST cooperatively regulate Pyk2 dephosphorylation in osteoclasts

    Science.gov (United States)

    Eleniste, Pierre P.; Du, Liping; Shivanna, Mahesh; Bruzzaniti, Angela

    2012-01-01

    Bone loss is caused by the dysregulated activity of osteoclasts which degrade the extracellular bone matrix. The tyrosine kinase Pyk2 is highly expressed in osteoclasts, and mice lacking Pyk2 exhibit an increase in bone mass, in part due to impairment of osteoclast function. Pyk2 is activated by phosphorylation at Y402 following integrin activation, but the mechanisms leading to Pyk2 dephosphorylation are poorly understood. In the current study, we examined the mechanism of action of the dynamin GTPase on Pyk2 dephosphorylation. Our studies reveal a novel mechanism for the interaction of Pyk2 with dynamin, which involves the binding of Pyk2’s FERM domain with dynamin’s plextrin homology domain. In addition, we demonstrate that the dephosphorylation of Pyk2 requires dynamin’s GTPase activity and is mediated by the tyrosine phosphatase PTP-PEST. The dephosphorylation of Pyk2 by dynamin and PTP-PEST may be critical for terminating outside-in integrin signaling, and for stabilizing cytoskeletal reorganization during osteoclast bone resorption. PMID:22342188

  10. Protein Tyrosine Phosphatase 1B (PTP1B): A Potential Target for Alzheimer's Therapy?

    Science.gov (United States)

    Vieira, Marcelo N N; Lyra E Silva, Natalia M; Ferreira, Sergio T; De Felice, Fernanda G

    2017-01-01

    Despite significant advances in current understanding of mechanisms of pathogenesis in Alzheimer's disease (AD), attempts at drug development based on those discoveries have failed to translate into effective, disease-modifying therapies. AD is a complex and multifactorial disease comprising a range of aberrant cellular/molecular processes taking part in different cell types and brain regions. As a consequence, therapeutics for AD should be able to block or compensate multiple abnormal pathological events. Here, we examine recent evidence that inhibition of protein tyrosine phosphatase 1B (PTP1B) may represent a promising strategy to combat a variety of AD-related detrimental processes. Besides its well described role as a negative regulator of insulin and leptin signaling, PTB1B recently emerged as a modulator of various other processes in the central nervous system (CNS) that are also implicated in AD. These include signaling pathways germane to learning and memory, regulation of synapse dynamics, endoplasmic reticulum (ER) stress and microglia-mediated neuroinflammation. We propose that PTP1B inhibition may represent an attractive and yet unexplored therapeutic approach to correct aberrant signaling pathways linked to AD.

  11. Retracted: Addition of a single methyl group to a small molecule sodium channel inhibitor introduces a new mode of gating modulation, by L Wang, SG Zellmer, DM Printzenhoff and NA Castle. British Journal of Pharmacology, volume 172(20): 4905-4918, published in October 2015; DOI 10.1111/bph.13259.

    Science.gov (United States)

    2018-07-01

    The above article, published by the British Journal of Pharmacology in October 2015 (https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1111/bph.13259), has been retracted by agreement between the authors, the journal Editor in Chief and John Wiley & Sons Limited. The retraction has been agreed owing to the discovery of errors in the chemical structure of the synthetic compounds generated. The corrected structure is now available in the article PF-06526290 can both enhance and inhibit conduction through voltage gated sodium channels by L Wang, SG Zellmer, DM Printzenhoff and NA Castle, 2018, https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1111/bph.14338. Reference Wang L, Zellmer SG, Printzenhoff DM, Castle NA (2015). Addition of a single methyl group to a small molecule sodium channel inhibitor introduces a new mode of gating modulation. Br J Pharmacol 172: 4905-4918. https://doi.org/10.1111/bph.13259. © 2018 The British Pharmacological Society.

  12. Knocking down amygdalar PTP1B in diet-induced obese rats improves insulin signaling/action, decreases adiposity and may alter anxiety behavior.

    Science.gov (United States)

    Mendes, Natalia Ferreira; Castro, Gisele; Guadagnini, Dioze; Tobar, Natalia; Cognuck, Susana Quiros; Elias, Lucila Leico Kagohara; Boer, Patricia Aline; Prada, Patricia Oliveira

    2017-05-01

    Protein tyrosine phosphatase 1B (PTP1B) has been extensively implicated in the regulation of body weight, food intake, and energy expenditure. The role of PTP1B appears to be cell and brain region dependent. Herein, we demonstrated that chronic high-fat feeding enhanced PTP1B expression in the central nucleus of the amygdala (CeA) of rats compared to rats on chow. Knocking down PTP1B with oligonucleotide antisense (ASO) decreased its expression and was sufficient to improve the anorexigenic effect of insulin through IR/Akt signaling in the CeA. ASO treatment reduces body weight, fat mass, serum leptin levels, and food intake and also increases energy expenditure, without altering ambulatory activity. These changes were explained, at least in part, by the improvement of insulin sensitivity in the CeA, decreasing NPY and enhancing oxytocin expression. There was a slight decline in fasting blood glucose and serum insulin levels possibly due to leanness in rats treated with ASO. Surprisingly, the elevated plus maze test revealed an anxiolytic behavior after reduction of PTP1B in the CeA. Thus, the present study highlights the deleterious role that the amygdalar PTP1B has on energy homeostasis in obesity states. The reduction of PTP1B in the CeA may be a strategy for the treatment of obesity, insulin resistance and anxiety disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Protein tyrosine phosphatase 1B (PTP1B) is dispensable for IgE-mediated cutaneous reaction in vivo.

    Science.gov (United States)

    Yang, Ting; Xie, Zhongping; Li, Hua; Yue, Lei; Pang, Zheng; MacNeil, Adam J; Tremblay, Michel L; Tang, Jin-Tian; Lin, Tong-Jun

    2016-01-01

    Mast cells play a critical role in allergic reactions. The cross-linking of FcεRI-bound IgE with multivalent antigen initiates a cascade of signaling events leading to mast cell activation. It has been well-recognized that cross linking of FcεRI mediates tyrosine phosphorylation. However, the mechanism involved in tyrosine dephosphorylation in mast cells is less clear. Here we demonstrated that protein tyrosine phosphatase 1B (PTP1B)-deficient mast cells showed increased IgE-mediated phosphorylation of the signal transducer and activator of transcription 5 (STAT5) and enhanced production of CCL9 (MIP-1γ) and IL-6 in IgE-mediated mast cells activation in vitro. However, IgE-mediated calcium mobilization, β-hexaosaminidase release (degranulation), and phosphorylation of IκB and MAP kinases were not affected by PTP1B deficiency. Furthermore, PTP1B deficient mice showed normal IgE-dependent passive cutaneous anaphylaxis and late phase cutaneous reactions in vivo. Thus, PTP1B specifically regulates IgE-mediated STAT5 pathway, but is redundant in influencing mast cell function in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Lipoic Acid Decreases the Viability of Breast Cancer Cells and Activity of PTP1B and SHP2.

    Science.gov (United States)

    Kuban-Jankowska, Alicja; Gorska-Ponikowska, Magdalena; Wozniak, Michal

    2017-06-01

    Protein tyrosine phosphatases PTP1B and SHP2 are potential targets for anticancer therapy, because of the essential role they play in the development of tumors. PTP1B and SHP2 are overexpressed in breast cancer cells, thus inhibition of their activity can be potentially effective in breast cancer therapy. Lipoic acid has been previously reported to inhibit the proliferation of colon, breast and thyroid cancer cells. We investigated the effect of alpha-lipoic acid (ALA) and its reduced form of dihydrolipoic acid (DHLA) on the viability of MCF-7 cancer cells and on the enzymatic activity of PTP1B and SHP2 phosphatases. ALA and DHLA decrease the activity of PTP1B and SHP2, and have inhibitory effects on the viability and proliferation of breast cancer cells. ALA and DHLA can be considered as potential agents for the adjunctive treatment of breast cancer. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  15. EGCG evokes Nrf2 nuclear translocation and dampens PTP1B expression to ameliorate metabolic misalignment under insulin resistance condition.

    Science.gov (United States)

    Mi, Yashi; Zhang, Wentong; Tian, Haoyu; Li, Runnan; Huang, Shuxian; Li, Xingyu; Qi, Guoyuan; Liu, Xuebo

    2018-03-01

    As a major nutraceutical component of green tea (-)-epigallocatechin-3-gallate (EGCG) has attracted interest from scientists due to its well-documented antioxidant and antiobesity bioactivities. In the current study, we aimed to investigate the protective effect of EGCG on metabolic misalignment and in balancing the redox status in mice liver and HepG2 cells under insulin resistance condition. Our results indicated that EGCG accelerates the glucose uptake and evokes IRS-1/Akt/GLUT2 signaling pathway via dampening the expression of protein tyrosine phosphatase 1B (PTP1B). Consistently, ectopic expression of PTP1B by Ad-PTP1B substantially impaired EGCG-elicited IRS-1/Akt/GLUT2 signaling pathway. Moreover, EGCG co-treatment stimulated nuclear translocation of Nrf2 by provoking P13K/AKT signaling pathway and thus modulated the downstream expressions of antioxidant enzymes such as HO-1 and NQO-1 in HepG2 cells. Furthermore, knockdown Nrf2 by small interfering RNA (siRNA) notably enhanced the expression of PTP1B and blunt EGCG-stimulated glucose uptake. Consistent with these results, in vivo study revealed that EGCG supplement significantly ameliorated high-fat and high-fructose diet (HFFD)-triggered insulin resistance and oxidative stress by up-regulating the IRS-1/AKT and Keap1/Nrf2 transcriptional pathways. Administration of an appropriate chemopreventive agent, such as EGCG, could potentially serve as an additional therapeutic intervention in the arsenal against obesity.

  16. Impaired insulin signaling and spatial learning in middle-aged rats: The role of PTP1B.

    Science.gov (United States)

    Kuga, Gabriel Keine; Muñoz, Vitor Rosetto; Gaspar, Rafael Calais; Nakandakari, Susana Castelo Branco Ramos; da Silva, Adelino Sanchez Ramos; Botezelli, José Diego; Leme, José Alexandre Curiacos de Almeida; Gomes, Ricardo José; de Moura, Leandro Pereira; Cintra, Dennys Esper; Ropelle, Eduardo Rochete; Pauli, José Rodrigo

    2018-04-01

    The insulin and Brain-Derived Neurotrophic Factor (BDNF) signaling in the hippocampus promotes synaptic plasticity and memory formation. On the other hand, aging is related to the cognitive decline and is the main risk factor for Alzheimer's Disease (AD). The Protein-Tyrosine Phosphatase 1B (PTP1B) is related to several deleterious processes in neurons and emerges as a promising target for new therapies. In this context, our study aims to investigate the age-related changes in PTP1B content, insulin signaling, β-amyloid content, and Tau phosphorylation in the hippocampus of middle-aged rats. Young (3 months) and middle-aged (17 months) Wistar rats were submitted to Morris-water maze (MWM) test, insulin tolerance test, and molecular analysis in the hippocampus. Aging resulted in increased body weight, and insulin resistance and decreases learning process in MWM. Interestingly, the middle-aged rats have higher levels of PTP-1B, lower phosphorylation of IRS-1, Akt, GSK3β, mTOR, and TrkB. Also, the aging process increased Tau phosphorylation and β-amyloid content in the hippocampus region. In summary, this study provides new evidence that aging-related PTP1B increasing, contributing to insulin resistance and the onset of the AD. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Potential of Polygonum cuspidatum Root as an Antidiabetic Food: Dual High-Resolution α-Glucosidase and PTP1B Inhibition Profiling Combined with HPLC-HRMS and NMR for Identification of Antidiabetic Constituents.

    Science.gov (United States)

    Zhao, Yong; Chen, Martin Xiaoyong; Kongstad, Kenneth Thermann; Jäger, Anna Katharina; Staerk, Dan

    2017-06-07

    The worldwide increasing incidence of type 2 diabetes has fueled an intensified search for food and herbal remedies with preventive and/or therapeutic properties. Polygonum cuspidatum Siebold & Zucc. (Polygonaceae) is used as a functional food in Japan and South Korea, and it is also a well-known traditional antidiabetic herb used in China. In this study, dual high-resolution α-glucosidase and protein-tyrosine phosphatase 1B (PTP1B) inhibition profiling was used for the identification of individual antidiabetic constituents directly from the crude ethyl acetate extract and fractions of P. cuspidatum. Subsequent preparative-scale HPLC was used to isolate a series of α-glucosidase inhibitors, which after HPLC-HRMS and NMR analysis were identified as procyanidin B2 3,3″-O-digallate (3) and (-)-epicatechin gallate (5) with IC 50 values of 0.42 ± 0.02 and 0.48 ± 0.0004 μM, respectively, as well as a series of stilbene analogues with IC 50 value in the range from 6.05 ± 0.05 to 116.10 ± 2.04 μM. In addition, (trans)-emodin-physcion bianthrone (15b) and (cis)-emodin-physcion bianthrone (15c) were identified as potent PTP1B inhibitors with IC 50 values of 2.77 ± 1.23 and 7.29 ± 2.32 μM, respectively. These findings show that P. cuspidatum is a potential functional food for management of type 2 diabetes.

  18. Regulation of the Src Kinase-associated Phosphoprotein 55 Homologue by the Protein Tyrosine Phosphatase PTP-PEST in the Control of Cell Motility*

    Science.gov (United States)

    Ayoub, Emily; Hall, Anita; Scott, Adam M.; Chagnon, Mélanie J.; Miquel, Géraldine; Hallé, Maxime; Noda, Masaharu; Bikfalvi, Andreas; Tremblay, Michel L.

    2013-01-01

    PTP-PEST is a cytosolic ubiquitous protein tyrosine phosphatase (PTP) that contains, in addition to its catalytic domain, several protein-protein interaction domains that allow it to interface with several signaling pathways. Among others, PTP-PEST is a key regulator of cellular motility and cytoskeleton dynamics. The complexity of the PTP-PEST interactome underscores the necessity to identify its interacting partners and physiological substrates in order to further understand its role in focal adhesion complex turnover and actin organization. Using a modified yeast substrate trapping two-hybrid system, we identified a cytosolic adaptor protein named Src kinase-associated phosphoprotein 55 homologue (SKAP-Hom) as a novel substrate of PTP-PEST. To confirm PTP-PEST interaction with SKAP-Hom, in vitro pull down assays were performed demonstrating that the PTP catalytic domain and Proline-rich 1 (P1) domain are respectively binding to the SKAP-Hom Y260 and Y297 residues and its SH3 domain. Subsequently, we generated and rescued SKAP-Hom-deficient mouse embryonic fibroblasts (MEFs) with WT SKAP-Hom, SKAP-Hom tyrosine mutants (Y260F, Y260F/Y297F), or SKAP-Hom SH3 domain mutant (W335K). Given the role of PTP-PEST, wound-healing and trans-well migration assays were performed using the generated lines. Indeed, SKAP-Hom-deficient MEFs showed a defect in migration compared with WT-rescued MEFs. Interestingly, the SH3 domain mutant-rescued MEFs showed an enhanced cell migration corresponding potentially with higher tyrosine phosphorylation levels of SKAP-Hom. These findings suggest a novel role of SKAP-Hom and its phosphorylation in the regulation of cellular motility. Moreover, these results open new avenues by which PTP-PEST regulates cellular migration, a hallmark of metastasis. PMID:23897807

  19. The Nonreceptor Protein Tyrosine Phosphatase PTP1B Binds to the Cytoplasmic Domain of N-Cadherin and Regulates the Cadherin–Actin Linkage

    Science.gov (United States)

    Balsamo, Janne; Arregui, Carlos; Leung, TinChung; Lilien, Jack

    1998-01-01

    Cadherin-mediated adhesion depends on the association of its cytoplasmic domain with the actin-containing cytoskeleton. This interaction is mediated by a group of cytoplasmic proteins: α-and β- or γ- catenin. Phosphorylation of β-catenin on tyrosine residues plays a role in controlling this association and, therefore, cadherin function. Previous work from our laboratory suggested that a nonreceptor protein tyrosine phosphatase, bound to the cytoplasmic domain of N-cadherin, is responsible for removing tyrosine-bound phosphate residues from β-catenin, thus maintaining the cadherin–actin connection (Balsamo et al., 1996). Here we report the molecular cloning of the cadherin-associated tyrosine phosphatase and identify it as PTP1B. To definitively establish a causal relationship between the function of cadherin-bound PTP1B and cadherin-mediated adhesion, we tested the effect of expressing a catalytically inactive form of PTP1B in L cells constitutively expressing N-cadherin. We find that expression of the catalytically inactive PTP1B results in reduced cadherin-mediated adhesion. Furthermore, cadherin is uncoupled from its association with actin, and β-catenin shows increased phosphorylation on tyrosine residues when compared with parental cells or cells transfected with the wild-type PTP1B. Both the transfected wild-type and the mutant PTP1B are found associated with N-cadherin, and recombinant mutant PTP1B binds to N-cadherin in vitro, indicating that the catalytically inactive form acts as a dominant negative, displacing endogenous PTP1B, and rendering cadherin nonfunctional. Our results demonstrate a role for PTP1B in regulating cadherin-mediated cell adhesion. PMID:9786960

  20. Test Your Sodium Smarts

    Science.gov (United States)

    ... You may be surprised to learn how much sodium is in many foods. Sodium, including sodium chloride ... foods with little or no salt. Test your sodium smarts by answering these 10 questions about which ...

  1. A novel strategy for the development of selective active-site inhibitors of the protein tyrosine phosphatase-like proteins islet-cell antigen 512 (IA-2) and phogrin (IA-2 beta)

    DEFF Research Database (Denmark)

    Drake, P.G.; Peters, Günther H.j.; Andersen, H.S.

    2003-01-01

    into highly selective and potent inhibitors of PTP1B. However. since wild-type IA-2 and IA-2beta lack conventional PTP activity, a novel strategy was designed whereby catalytically active species were generated by 'back-mutating key non-consensus catalytic region residues to those of PTP1B. These mutants were...... then used as tools with which to test the potency and selectivity of OBA and a variety of its derivatives. Catalytically competent IA-2 and IA-2beta species were generated by 'back-mutation' of only three key residues (equivalent to Tyr(46). Asp(181) and Ala(217) using the human PTP1B numbering) to those...... of PTP1B. Importantly, enzyme kinetic analyses indicated that the overall fold of both mutant and wild-type IA-2 and IA-2beta was similar to that of classic PTPs. In particular, one derivative of OBA, namely 7-(1,1-dioxo-1H-benzo[d]isothiazol-3-yloxy-methyl) -2-(oxalylamino)-4,7-dihydro-5H-thieno [2,3-c...

  2. An expanded allosteric network in PTP1B by multitemperature crystallography, fragment screening, and covalent tethering.

    Science.gov (United States)

    Keedy, Daniel A; Hill, Zachary B; Biel, Justin T; Kang, Emily; Rettenmaier, T Justin; Brandao-Neto, Jose; Pearce, Nicholas M; von Delft, Frank; Wells, James A; Fraser, James S

    2018-06-07

    Allostery is an inherent feature of proteins, but it remains challenging to reveal the mechanisms by which allosteric signals propagate. A clearer understanding of this intrinsic circuitry would afford new opportunities to modulate protein function. Here we have identified allosteric sites in protein tyrosine phosphatase 1B (PTP1B) by combining multiple-temperature X-ray crystallography experiments and structure determination from hundreds of individual small-molecule fragment soaks. New modeling approaches reveal 'hidden' low-occupancy conformational states for protein and ligands. Our results converge on allosteric sites that are conformationally coupled to the active-site WPD loop and are hotspots for fragment binding. Targeting one of these sites with covalently tethered molecules or mutations allosterically inhibits enzyme activity. Overall, this work demonstrates how the ensemble nature of macromolecular structure, revealed here by multitemperature crystallography, can elucidate allosteric mechanisms and open new doors for long-range control of protein function. © 2018, Keedy et al.

  3. Effectiveness of Chlorinated Water, Sodium Hypochlorite, Sodium ...

    African Journals Online (AJOL)

    This study evaluated the efficacy of chlorinated water, sodium hypochlorite solution, sodium chloride solution and sterile distilled water in eliminating pathogenic bacteria on the surfaces of raw vegetables. Lettuce vegetables were dipped in different concentrations of chlorinated water, sodium hypochlorite solution, sodium ...

  4. SGLT2 inhibitors.

    Science.gov (United States)

    Dardi, I; Kouvatsos, T; Jabbour, S A

    2016-02-01

    Diabetes mellitus is a serious health issue and an economic burden, rising in epidemic proportions over the last few decades worldwide. Although several treatment options are available, only half of the global diabetic population achieves the recommended or individualized glycemic targets. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of antidiabetic agents with a novel insulin-independent action. SGLT2 is a transporter found in the proximal renal tubules, responsible for the reabsorption of most of the glucose filtered by the kidney. Inhibition of SGLT2 lowers the blood glucose level by promoting the urinary excretion of excess glucose. Due to their insulin-independent action, SGLT2 inhibitors can be used with any degree of beta-cell dysfunction or insulin resistance, related to a very low risk of hypoglycemia. In addition to improving glycemic control, SGLT2 inhibitors have been associated with a reduction in weight and blood pressure when used as monotherapy or in combination with other antidiabetic agents in patients with type 2 diabetes mellitus (T2DM). Treatment with SGLT2 inhibitors is usually well tolerated; however, they have been associated with an increased incidence of urinary tract and genital infections, although these infections are usually mild and easy to treat. SGLT2 inhibitors are a promising new option in the armamentarium of drugs for patients with T2DM. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Role of PTP1B in POMC neurons during chronic high-fat diet: sex differences in regulation of liver lipids and glucose tolerance.

    Science.gov (United States)

    Aberdein, Nicola; Dambrino, Robert J; do Carmo, Jussara M; Wang, Zhen; Mitchell, Laura E; Drummond, Heather A; Hall, John E

    2018-03-01

    Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of leptin receptor signaling and may contribute to leptin resistance in diet-induced obesity. Although PTP1B inhibition has been suggested as a potential weight loss therapy, the role of specific neuronal PTP1B signaling in cardiovascular and metabolic regulation and the importance of sex differences in this regulation are still unclear. In this study, we investigated the impact of proopiomelanocortin (POMC) neuronal PTP1B deficiency in cardiometabolic regulation in male and female mice fed a high-fat diet (HFD). When compared with control mice (PTP1B flox/flox ), male and female mice deficient in POMC neuronal PTP1B (PTP1B flox/flox /POMC-Cre) had attenuated body weight gain (males: -18%; females: -16%) and fat mass (males: -33%; female: -29%) in response to HFD. Glucose tolerance was improved by 40%, and liver lipid accumulation was reduced by 40% in PTP1B/POMC-Cre males but not in females. When compared with control mice, deficiency of POMC neuronal PTP1B did not alter mean arterial pressure (MAP) in male or female mice (males: 112 ± 1 vs. 112 ± 1 mmHg in controls; females: 106 ± 3 vs. 109 ± 3 mmHg in controls). Deficiency of POMC neuronal PTP1B also did not alter MAP response to acute stress in males or females compared with control mice (males: Δ32 ± 0 vs. Δ29 ± 4 mmHg; females: Δ22 ± 2 vs. Δ27 ± 4 mmHg). These data demonstrate that POMC-specific PTP1B deficiency improved glucose tolerance and attenuated diet-induced fatty liver only in male mice and attenuated weight gain in males and females but did not enhance the MAP and HR responses to a HFD or to acute stress.

  6. PTP-PEST targets a novel tyrosine site in p120 catenin to control epithelial cell motility and Rho GTPase activity

    Science.gov (United States)

    Espejo, Rosario; Jeng, Yowjiun; Paulucci-Holthauzen, Adriana; Rengifo-Cam, William; Honkus, Krysta; Anastasiadis, Panos Z.; Sastry, Sarita K.

    2014-01-01

    ABSTRACT Tyrosine phosphorylation is implicated in regulating the adherens junction protein, p120 catenin (p120), however, the mechanisms are not well defined. Here, we show, using substrate trapping, that p120 is a direct target of the protein tyrosine phosphatase, PTP-PEST, in epithelial cells. Stable shRNA knockdown of PTP-PEST in colon carcinoma cells results in an increased cytosolic pool of p120 concomitant with its enhanced tyrosine phosphorylation and decreased association with E-cadherin. Consistent with this, PTP-PEST knockdown cells exhibit increased motility, enhanced Rac1 and decreased RhoA activity on a collagen substrate. Furthermore, p120 localization is enhanced at actin-rich protrusions and lamellipodia and has an increased association with the guanine nucleotide exchange factor, VAV2, and cortactin. Exchange factor activity of VAV2 is enhanced by PTP-PEST knockdown whereas overexpression of a VAV2 C-terminal domain or DH domain mutant blocks cell motility. Analysis of point mutations identified tyrosine 335 in the N-terminal domain of p120 as the site of PTP-PEST dephosphorylation. A Y335F mutant of p120 failed to induce the ‘p120 phenotype’, interact with VAV2, stimulate cell motility or activate Rac1. Together, these data suggest that PTP-PEST affects epithelial cell motility by controlling the distribution and phosphorylation of p120 and its availability to control Rho GTPase activity. PMID:24284071

  7. Increased PTP1B expression and phosphatase activity in colorectal cancer results in a more invasive phenotype and worse patient outcome.

    Science.gov (United States)

    Hoekstra, Elmer; Das, Asha M; Swets, Marloes; Cao, Wanlu; van der Woude, C Janneke; Bruno, Marco J; Peppelenbosch, Maikel P; Kuppen, Peter J K; Ten Hagen, Timo L M; Fuhler, Gwenny M

    2016-04-19

    Cell signaling is dependent on the balance between phosphorylation of proteins by kinases and dephosphorylation by phosphatases. This balance if often disrupted in colorectal cancer (CRC), leading to increased cell proliferation and invasion. For many years research has focused on the role of kinases as potential oncogenes in cancer, while phosphatases were commonly assumed to be tumor suppressive. However, this dogma is currently changing as phosphatases have also been shown to induce cancer growth. One of these phosphatases is protein tyrosine phosphatase 1B (PTP1B). Here we report that the expression of PTP1B is increased in colorectal cancer as compared to normal tissue, and that the intrinsic enzymatic activity of the protein is also enhanced. This suggests a role for PTP1B phosphatase activity in CRC formation and progression. Furthermore, we found that increased PTP1B expression is correlated to a worse patient survival and is an independent prognostic marker for overall survival and disease free survival. Knocking down PTP1B in CRC cell lines results in a less invasive phenotype with lower adhesion, migration and proliferation capabilities. Together, these results suggest that inhibition of PTP1B activity is a promising new target in the treatment of colorectal cancer and the prevention of metastasis.

  8. Sodium in diet

    Science.gov (United States)

    Diet - sodium (salt); Hyponatremia - sodium in diet; Hypernatremia - sodium in diet; Heart failure - sodium in diet ... Too much sodium in the diet may lead to: High blood pressure in some people A serious buildup of fluid in people with heart failure , cirrhosis of ...

  9. Quadruple high-resolution α-glucosidase/α-amylase/PTP1B/radical scavenging profiling combined with high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for identification of antidiabetic constituents in crude root bark of Morus alba L.

    Science.gov (United States)

    Zhao, Yong; Kongstad, Kenneth Thermann; Jäger, Anna Katharina; Nielsen, John; Staerk, Dan

    2018-06-29

    In this paper, quadruple high-resolution α-glucosidase/α-amylase/PTP1B/radical scavenging profiling combined with HPLC-HRMS-SPE-NMR were used for studying the polypharmacological properties of crude root bark extract of Morus alba L. This species is used as an anti-diabetic principle in many traditional treatment systems around the world, and the crude ethyl acetate extract of M. alba root bark was found to inhibit α-glucosidase, α-amylase and protein-tyrosine phosphatase 1B (PTP1B) with IC 50 values of 1.70 ± 0.72, 5.16 ± 0.69, and 5.07 ± 0.68 μg/mL as well as showing radical scavenging activity equaling a TEAC value of (3.82 ± 0.14) × 10 4  mM per gram extract. Subsequent investigation of the crude extract using quadruple high-resolution α-glucosidase/α-amylase/PTP1B/radical scavenging profiling provided a quadruple biochromatogram that allowed direct correlation of the HPLC peaks with one or more of the tested bioactivities. This was used to target subsequent HPLC-HRMS-SPE-NMR analysis towards peaks representing bioactive analytes, and led to identification of a new Diels-Alder adduct named Moracenin E as well as a series of Diels-Alder adducts and isoprenylated flavonoids as potent α-glucosidase and α-amylase inhibitors with IC 50 values in the range of 0.60-27.15 μM and 1.22-69.38 μM, respectively. In addition, these compounds and two 2-arylbenzofurans were found to be potent PTP1B inhibitors with IC 50 values ranging from 4.04 to 21.67 μM. The high-resolution radical scavenging profile also revealed that almost all of the compounds possess radical scavenging activity. In conclusion the quadruple high-resolution profiling method presented here allowed a detailed profiling of individual constituents in crude root bark extract of M. alba, and the method provides a general tool for detailed mapping of bioactive constituents in polypharmacological herbal remedies. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Inhibitor chymotrypsynowy nasion wiechliny łąkowej (Poa pratensis [Chymotrypsin inhibitor from Poa pratensis seeds

    Directory of Open Access Journals (Sweden)

    I. Lorenc-Kubis

    2015-01-01

    Full Text Available A chymotrypsin inhibitor was isolated from Poa pratensis seeds. The inhibitor showed also antytriptic activity. It is a termostable protein, soluble in water, sodium chloride, but insoluble in 5% trichloracetic acid and 0.15 M sulphosalicylic acid.

  11. Fucosterol activates the insulin signaling pathway in insulin resistant HepG2 cells via inhibiting PTP1B.

    Science.gov (United States)

    Jung, Hyun Ah; Bhakta, Himanshu Kumar; Min, Byung-Sun; Choi, Jae Sue

    2016-10-01

    Insulin resistance is a characteristic feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. This study investigated the modulatory effects of fucosterol on the insulin signaling pathway in insulin-resistant HepG2 cells by inhibiting protein tyrosine phosphatase 1B (PTP1B). In addition, molecular docking simulation studies were performed to predict binding energies, the specific binding site of fucosterol to PTP1B, and to identify interacting residues using Autodock 4.2 software. Glucose uptake was determined using a fluorescent D-glucose analogue and the glucose tracer 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxyglucose, and the signaling pathway was detected by Western blot analysis. We found that fucosterol enhanced insulin-provoked glucose uptake and conjointly decreased PTP1B expression level in insulin-resistant HepG2 cells. Moreover, fucosterol significantly reduced insulin-stimulated serine (Ser307) phosphorylation of insulin receptor substrate 1 (IRS1) and increased phosphorylation of Akt, phosphatidylinositol-3-kinase, and extracellular signal- regulated kinase 1 at concentrations of 12.5, 25, and 50 µM in insulin-resistant HepG2 cells. Fucosterol inhibited caspase-3 activation and nuclear factor kappa B in insulin-resistant hepatocytes. These results suggest that fucosterol stimulates glucose uptake and improves insulin resistance by downregulating expression of PTP1B and activating the insulin signaling pathway. Thus, fucosterol has potential for development as an anti-diabetic agent.

  12. Early growth response-1 negative feedback regulates skeletal muscle postprandial insulin sensitivity via activating Ptp1b transcription.

    Science.gov (United States)

    Wu, Jing; Tao, Wei-Wei; Chong, Dan-Yang; Lai, Shan-Shan; Wang, Chuang; Liu, Qi; Zhang, Tong-Yu; Xue, Bin; Li, Chao-Jun

    2018-03-15

    Postprandial insulin desensitization plays a critical role in maintaining whole-body glucose homeostasis by avoiding the excessive absorption of blood glucose; however, the detailed mechanisms that underlie how the major player, skeletal muscle, desensitizes insulin action remain to be elucidated. Herein, we report that early growth response gene-1 ( Egr-1) is activated by insulin in skeletal muscle and provides feedback inhibition that regulates insulin sensitivity after a meal. The inhibition of the transcriptional activity of Egr-1 enhanced the phosphorylation of the insulin receptor (InsR) and Akt, thus increasing glucose uptake in L6 myotubes after insulin stimulation, whereas overexpression of Egr-1 decreased insulin sensitivity. Furthermore, deletion of Egr-1 in the skeletal muscle improved systemic insulin sensitivity and glucose tolerance, which resulted in lower blood glucose levels after refeeding. Mechanistic analysis demonstrated that EGR-1 inhibited InsR phosphorylation and glucose uptake in skeletal muscle by binding to the proximal promoter region of protein tyrosine phosphatase-1B (PTP1B) and directly activating transcription. PTP1B knockdown largely restored insulin sensitivity and enhanced glucose uptake, even under conditions of EGR-1 overexpression. Our results indicate that EGR-1/PTP1B signaling negatively regulates postprandial insulin sensitivity and suggest a potential therapeutic target for the prevention and treatment of excessive glucose absorption.-Wu, J., Tao, W.-W., Chong, D.-Y., Lai, S.-S., Wang, C., Liu, Q., Zhang, T.-Y., Xue, B., Li, C.-J. Early growth response-1 negative feedback regulates skeletal muscle postprandial insulin sensitivity via activating Ptp1b transcription.

  13. Ferulic acid attenuates diabetes-induced cognitive impairment in rats via regulation of PTP1B and insulin signaling pathway.

    Science.gov (United States)

    Wang, Hao; Sun, Xiaoxu; Zhang, Ning; Ji, Zhouye; Ma, Zhanqiang; Fu, Qiang; Qu, Rong; Ma, Shiping

    2017-12-01

    Cognitive impairment has been recognized as a typical characteristic of neurodegenerative disease in diabetes mellitus (DM) and this cognitive dysfunction may be a risk factor for Alzheimer's disease (AD). Ferulic acid, a phenolic compound commonly found in a range of plants, has emerged various properties including anti-inflammatory and neuroprotective effects. In the present study, the protective activities and relevant mechanisms of ferulic acid were evaluated in diabetic rats with cognitive deficits, which were induced by a high-glucose-fat (HGF) diet and low dose of streptozotocin (STZ). It was observed that ferulic acid significantly increased body weight and decreased blood glucose levels. Meanwhile, ferulic acid could markedly ameliorate spatial memory of diabetic rats in Morris water maze (MWM) and decrease AD-like pathologic changes (Aβ deposition and Tau phosphorylation) in the hippocampus, which might be correlated with the inhibition of inflammatory cytokines release and reduction of protein tyrosine phosphatase 1B (PTP1B) expression. Moreover, the levels of brain insulin signal molecules p-IRS, p-Akt and p-GSK3β were also investigated. We found that ferulic acid administration restored the alterations in insulin signaling. In conclusion, ferulic acid exhibited beneficial effects on diabetes-induced cognition lesions, which was involved in the regulation of PTP1B and insulin signaling pathway. We suppose that PTP1B inhibition may represent a promising approach to correct abnormal signaling linked to diabetes-induced cognitive impairment. Copyright © 2017. Published by Elsevier Inc.

  14. Aglaiabbrevins A-D, New Prenylated Bibenzyls from the Leaves of Aglaia abbreviata with Potent PTP1B Inhibitory Activity.

    Science.gov (United States)

    Sun, Pan; Jiang, Chang-Sheng; Zhang, Yi; Liu, Ai-Hong; Liang, Tong-Jun; Li, Jia; Guo, Yue-Wei; Jiang, Jian-Mei; Mao, Shui-Chun; Wang, Bin

    2017-01-01

    Four new prenylated bibenzyls, named aglaiabbrevins A-D (2, 4-6), were isolated from the leaves of Aglaia abbreviata, along with two known related analogues, 3,5-dihydroxy-2-[3,7-dimethyl-2(E),6-octadienyl]bibenzyl (7) and 3,5-dihydroxy-2-(3-methyl-2-butenyl)bibenzyl (8). The structures of the new compounds were elucidated on the basis of extensive spectroscopic experiments, mainly one and two dimensional (1D- and 2D)-NMR, and the absolute configuration of 5 was determined by the measurement of specific rotation. The isolated compounds were evaluated for their protein tyrosine phosphatase-1B (PTP1B) inhibitory activity. The results showed that compounds 5-7 exhibited more potent PTP1B inhibitory effects with IC 50 values of 2.58±0.52, 2.44±0.35, and 2.23±0.14 µM, respectively, than the positive control oleanolic acid (IC 50 =2.74±0.20 µM). On the basis of the data obtained, these bibenzyls with the longer C-2 prenyl groups may be considered as potential lead compounds for the development of new anti-obesity and anti-diabetic agents. Also, the PTP1B inhibitory effects for prenylated bibenzyls are being reported for the first time.

  15. Sodium technology handbook

    International Nuclear Information System (INIS)

    2005-09-01

    This document was published as a textbook for the education and training of personnel working for operations and maintenances of sodium facilities including FBR plants and those engaged in R and D activities related to sodium technology. This handbook covers the following technical areas. Properties of sodium. Compatibilities of sodium with materials. Thermalhydraulics and structural integrity. Sodium systems and components. Sodium instrumentations. Sodium handling technology. Sodium related accident evaluation and countermeasures for FBRs. Operation, maintenance and repair technology of sodium facilities. Safety measures related to sodium. Laws, regulations and internal rules related to sodium. The plannings and discussions of the handbook were made in the Sodium Technology Education Committee organized in O-arai Engineering Center consisting of the representatives of the related departments including Tsuruga headquarters. Experts in various departments participated in writing individual technical subjects. (author)

  16. The sodium coolant

    International Nuclear Information System (INIS)

    Rodriguez, G.

    2004-01-01

    The sodium is the best appropriate coolant for the fast neutrons reactors technology. Thus the fast neutrons reactors development is intimately bound to the sodium technology. This document presents the sodium as a coolant point of view: atomic structure and characteristics, sodium impacts on the fast neutron reactors technology, chemical properties of the sodium and the consequences, quality control in a nuclear reactor, sodium treatment. (A.L.B.)

  17. Evidence for weak genetic recombination at the PTP2 locus of Nosema ceranae.

    Science.gov (United States)

    Gómez-Moracho, Tamara; Bartolomé, Carolina; Martín-Hernández, Raquel; Higes, Mariano; Maside, Xulio

    2015-04-01

    The microsporidian Nosema ceranae is an emergent pathogen that threatens the health of honeybees and other pollinators all over the world. Its recent rapid spread across a wide variety of host species and environments demonstrated an enhanced ability of adaptation, which seems to contradict the lack of evidence for genetic recombination and the absence of a sexual stage in its life cycle. Here we retrieved fresh data of the patterns of genetic variation at the PTP2 locus in naturally infected Apis mellifera colonies, by means of single genome amplification. This technique, designed to prevent the formation of chimeric haplotypes during polymerase chain reaction (PCR), provides more reliable estimates of the diversity levels and haplotype structure than standard PCR-cloning methods. Our results are consistent with low but significant rates of recombination in the history of the haplotypes detected: estimates of the population recombination rate are of the order of 30 and support recent evidence for unexpectedly high levels of variation of the parasites within honeybee colonies. These observations suggest the existence of a diploid stage at some point in the life cycle of this parasite and are relevant for our understanding of the dynamics of its expanding population. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Myopic (HD-PTP, PTPN23) selectively regulates synaptic neuropeptide release.

    Science.gov (United States)

    Bulgari, Dinara; Jha, Anupma; Deitcher, David L; Levitan, Edwin S

    2018-02-13

    Neurotransmission is mediated by synaptic exocytosis of neuropeptide-containing dense-core vesicles (DCVs) and small-molecule transmitter-containing small synaptic vesicles (SSVs). Exocytosis of both vesicle types depends on Ca 2+ and shared secretory proteins. Here, we show that increasing or decreasing expression of Myopic (mop, HD-PTP, PTPN23), a Bro1 domain-containing pseudophosphatase implicated in neuronal development and neuropeptide gene expression, increases synaptic neuropeptide stores at the Drosophila neuromuscular junction (NMJ). This occurs without altering DCV content or transport, but synaptic DCV number and age are increased. The effect on synaptic neuropeptide stores is accounted for by inhibition of activity-induced Ca 2+ -dependent neuropeptide release. cAMP-evoked Ca 2+ -independent synaptic neuropeptide release also requires optimal Myopic expression, showing that Myopic affects the DCV secretory machinery shared by cAMP and Ca 2+ pathways. Presynaptic Myopic is abundant at early endosomes, but interaction with the endosomal sorting complex required for transport III (ESCRT III) protein (CHMP4/Shrub) that mediates Myopic's effect on neuron pruning is not required for control of neuropeptide release. Remarkably, in contrast to the effect on DCVs, Myopic does not affect release from SSVs. Therefore, Myopic selectively regulates synaptic DCV exocytosis that mediates peptidergic transmission at the NMJ.

  19. Liquid sodium pool fires

    Energy Technology Data Exchange (ETDEWEB)

    Casselman, C [DSN/SESTR, Centre de Cadarache, Saint-Paul-lez-Durance (France)

    1979-03-01

    Experimental sodium pool combustion results have led to a definition of the combustion kinetics, and have revealed the hazards of sodium-concrete contact reactions and the possible ignition of organic matter (paint) by hydration of sodium peroxide aerosols. Analysis of these test results shows that the controlling mechanism is sodium evaporation diffusion. (author)

  20. Liquid sodium pool fires

    International Nuclear Information System (INIS)

    Casselman, C.

    1979-01-01

    Experimental sodium pool combustion results have led to a definition of the combustion kinetics, and have revealed the hazards of sodium-concrete contact reactions and the possible ignition of organic matter (paint) by hydration of sodium peroxide aerosols. Analysis of these test results shows that the controlling mechanism is sodium evaporation diffusion. (author)

  1. Dissociation of VE-PTP from VE-cadherin is required for leukocyte extravasation and for VEGF-induced vascular permeability in vivo

    Science.gov (United States)

    Broermann, Andre; Winderlich, Mark; Block, Helena; Frye, Maike; Rossaint, Jan; Zarbock, Alexander; Cagna, Giuseppe; Linnepe, Ruth; Schulte, Dörte; Nottebaum, Astrid Fee

    2011-01-01

    We have recently shown that vascular endothelial protein tyrosine phosphatase (VE-PTP), an endothelial membrane protein, associates with VE-cadherin and is required for optimal VE-cadherin function and endothelial cell contact integrity. The dissociation of VE-PTP from VE-cadherin is triggered by vascular endothelial growth factor (VEGF) and by the binding of leukocytes to endothelial cells in vitro, suggesting that this dissociation is a prerequisite for the destabilization of endothelial cell contacts. Here, we show that VE-cadherin/VE-PTP dissociation also occurs in vivo in response to LPS stimulation of the lung or systemic VEGF stimulation. To show that this dissociation is indeed necessary in vivo for leukocyte extravasation and VEGF-induced vascular permeability, we generated knock-in mice expressing the fusion proteins VE-cadherin-FK 506 binding protein and VE-PTP-FRB* under the control of the endogenous VE-cadherin promoter, thus replacing endogenous VE-cadherin. The additional domains in both fusion proteins allow the heterodimeric complex to be stabilized by a chemical compound (rapalog). We found that intravenous application of the rapalog strongly inhibited VEGF-induced (skin) and LPS-induced (lung) vascular permeability and inhibited neutrophil extravasation in the IL-1β inflamed cremaster and the LPS-inflamed lung. We conclude that the dissociation of VE-PTP from VE-cadherin is indeed required in vivo for the opening of endothelial cell contacts during induction of vascular permeability and leukocyte extravasation. PMID:22025303

  2. Roux-en-Y gastric bypass surgery suppresses hypothalamic PTP1B protein level and alleviates leptin resistance in obese rats.

    Science.gov (United States)

    Liu, Jia-Yu; Mu, Song; Zhang, Shu-Ping; Guo, Wei; Li, Qi-Fu; Xiao, Xiao-Qiu; Zhang, Jun; Wang, Zhi-Hong

    2017-09-01

    The present study aimed to explore the effect of Roux-en-Y gastric bypass (RYGB) surgery on protein tyrosine phosphatase 1B (PTP1B) expression levels and leptin activity in hypothalami of obese rats. Obese rats induced by a high-fat diet (HFD) that underwent RYGB (n=11) or sham operation (SO, n=9), as well as an obese control cohort (Obese, n=10) and an additional normal-diet group (ND, n=10) were used. Food efficiency was measured at 8 weeks post-operation. Plasma leptin levels were evaluated and hypothalamic protein tyrosine phosphatase 1B (PTP1B) levels and leptin signaling activity were examined at the genetic and protein levels. The results indicated that food efficiency was typically lower in RYGB rats compared with that in the Obese and SO rats. In the RYGB group, leptin receptor expression and proopiomelanocortin was significantly higher, while Neuropeptide Y levels were lower than those in the Obese and SO groups. Furthermore, the gene and protein expression levels of PTP1B in the RYGB group were lower, while levels of phosphorylated signal transducer and activator of transcription 3 protein were much higher compared with those in the Obese and SO groups. In conclusion, RYGB surgery significantly suppressed hypothalamic PTP1B protein expression. PTP1B regulation may partially alleviate leptin resistance.

  3. Replacement inhibitors for tank farm cooling coil systems

    International Nuclear Information System (INIS)

    Hsu, T.C.

    1995-01-01

    Sodium chromate has been an effective corrosion inhibitor for the cooling coil systems in Savannah River Site (SRS) waste tanks for over 40 years. Due to their age and operating history, cooling coils occasionally fail allowing chromate water to leak into the environment. When the leaks spill 10 lbs. or more of sodium chromate over a 24-hr period, the leak incidents are classified as Unusual Occurrences (UO) per CERCLA (Comprehensive Environmental Response, Compensation and Liability Act). The cost of reporting and cleaning up chromate spills prompted High Level Waste Engineering (HLWE) to initiate a study to investigate alternative tank cooling water inhibitor systems and the associated cost of replacement. Several inhibitor systems were investigated as potential alternatives to sodium chromate. All would have a lesser regulatory impact, if a spill occurred. However, the conversion cost is estimated to be $8.5 million over a period of 8 to 12 months to convert all 5 cooling systems. Although each of the alternative inhibitors examined is effective in preventing corrosion, there is no inhibitor identified that is as effective as chromate. Assuming 3 major leaks a year (the average over the past several years), the cost of maintaining the existing inhibitor was estimated at $0.5 million per year. Since there is no economic or regulatory incentive to replace the sodium chromate with an alternate inhibitor, HLWE recommends that sodium chromate continue to be used as the inhibitor for the waste tank cooling systems

  4. Small liquid sodium leaks

    International Nuclear Information System (INIS)

    Dufresne, J.; Rochedereux, Y.; Antonakas, D.; Casselman, C.; Malet, J.C.

    1986-05-01

    Usually, pessimistic considerations inassessing the safety of secondary sodium loops in LMFBR reactor lead to assume guillotine rupture releasing a large amount of sodium estimate the consequences of large sodium fires. In order to reduce these consequences, one has to detect the smallest leak as soon as possible and to evaluate the future of an initial small leak. Analysis of the relationship between crack size and sodium outflow rate; Analysis of a sodium pipe with a small open crack

  5. Cardiovascular mortality and morbidity in patients with type 2 diabetes following initiation of sodium-glucose co-transporter-2 inhibitors versus other glucose-lowering drugs (CVD-REAL Nordic)

    DEFF Research Database (Denmark)

    Birkeland, Kåre I.; Jørgensen, Marit E.; Carstensen, Bendix

    2017-01-01

    , and atrial fibrillation. We also assessed incidence of severe hypoglycaemia. Findings Matched SGLT2 inhibitor (n=22 830) and other glucose-lowering drug (n=68 490) groups were well balanced at baseline, with a mean follow-up of 0·9 (SD 4·1) years (80 669 patient-years) and mean age of 61 (12·0) years; 40...... with the results of clinical trials in patients at high cardiovascular risk. Funding AstraZeneca....

  6. Myeloid protein tyrosine phosphatase 1B (PTP1B deficiency protects against atherosclerotic plaque formation in the ApoE−/− mouse model of atherosclerosis with alterations in IL10/AMPKα pathway

    Directory of Open Access Journals (Sweden)

    D. Thompson

    2017-08-01

    Conclusions: Here we demonstrate that inhibiting the activity of PTP1B specifically in myeloid lineage cells protects against atherosclerotic plaque formation, under atherogenic conditions, in an ApoE−/− mouse model of atherosclerosis. Our findings suggest for the first time that macrophage PTP1B targeting could be a therapeutic target for atherosclerosis treatment and reduction of CVD risk.

  7. Cloning and characterization of R-PTP-kappa, a new member of the receptor protein tyrosine phosphatase family with a proteolytically cleaved cellular adhesion molecule-like extracellular region

    DEFF Research Database (Denmark)

    Jiang, Y P; Wang, H; D'Eustachio, P

    1993-01-01

    We describe a new member of the receptor protein tyrosine phosphatase family, R-PTP-kappa, cDNA cloning predicts that R-PTP-kappa is synthesized from a precursor protein of 1,457 amino acids. Its intracellular domain displays the classical tandemly repeated protein tyrosine phosphatase homology, ...

  8. Metabolic inhibitors as stimulating factors for citric acid production

    International Nuclear Information System (INIS)

    Adham, N.Z.; Ahmed, E.M.; Refai, H.A.E.

    2008-01-01

    The effect of some metabolic inhibitors on citric acid (CA) production by Aspergillus niger in cane molasses medium was investigated. Addition of 0.01-0.1 mM iodoacetic acid and sodium arsenate, 0.05-1.0 mM sodium malonate, 0.01 mM sodium azide, 0.01-0.05 mM sodium fluoride, 0.1-1.0 mM EDTA stimulated CA production (5-49%). Higher concentrations (10 mM) of iodoacetic acid, sodium malonate and 0.5 mM sodium azide caused a complete inhibition of fungal growth, Iodoacetic acid, sodium arsenate and sodium fluoride (0.2 mM) caused a remarkable inhibition of CA production. The implications of those preliminary functions was discussed. (author)

  9. Extraction and PTP1B inhibitory activity of bromophenols from the marine red alga Symphyocladia latiuscula

    Science.gov (United States)

    Liu, Xu; Li, Xiaoming; Gao, Lixin; Cui, Chuanming; Li, Chunshun; Li, Jia; Wang, Bingui

    2011-05-01

    Previously, we had characterized several structurally interesting brominated phenols from the marine red alga Symphyocladia latiuscula collected from various sites. However, Phytochemical investigations on this species collected from the Weihai coastline of Shandong Province remains blank. Therefore, we characterized the chemical constituents of individuals of this species collected from the region. Eight bromophenols were isolated and identified. Using detailed spectroscopic techniques and comparisons with published data, these compounds were identified as 2,3-dibromo-4,5-dihydroxybenzyl methyl ether ( 1), 3,5-dibromo-4-hydroxybenzoic acid ( 2), 2,3,6-tribromo-4,5-dihydroxymethylbenzene ( 3), 2,3,6-tribromo-4,5-dihydroxybenzaldehyde ( 4), 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether ( 5), bis(2,3,6-tribromo-4,5-dihydroxyphenyl)methane ( 6), 1,2-bis(2,3,6-tribromo-4,5-dihydroxyphenyl)-ethane ( 7), and 1-(2,3,6-tribromo-4,5-dihydroxybenzyl)-pyrrolidin-2-one ( 8). Among these compounds, 1 and 2 were isolated for the first time from S. latiuscula. Each compound was evaluated on the ability to inhibit protein tyrosine phosphatase 1B (PTP1B), which is a potential therapeutic target in the treatment of type 2 diabetes. Bromophenols 5, 6, and 7 showed strong activities with IC50 values of 3.9, 4.3, and 3.5 μmol/L, respectively. This study provides further evidence that bromophenols are predominant among the chemical constituents of Symphyocladia, and that some of these compounds may be candidates for the development of anti-diabetes drugs.

  10. MVP-Associated Filamin A Mutations Affect FlnA-PTPN12 (PTP-PEST) Interactions.

    Science.gov (United States)

    Duval, Damien; Labbé, Pauline; Bureau, Léa; Le Tourneau, Thierry; Norris, Russell A; Markwald, Roger R; Levine, Robert; Schott, Jean-Jacques; Mérot, Jean

    2015-09-08

    Although the genetic basis of mitral valve prolapse (MVP) has now been clearly established, the molecular and cellular mechanisms involved in the pathological processes associated to a specific mutation often remain to be determined. The FLNA gene (encoding Filamin A; FlnA) was the first gene associated to non-syndromic X-linked myxomatous valvular dystrophy, but the impacts of the mutations on its function remain un-elucidated. Here, using the first repeats (1-8) of FlnA as a bait in a yeast two-hybrid screen, we identified the tyrosine phosphatase PTPN12 (PTP-PEST) as a specific binding partner of this region of FlnA protein. In addition, using yeast two-hybrid trap assay pull down and co-immunoprecipitation experiments, we showed that the MVP-associated FlnA mutations (G288R, P637Q, H743P) abolished FlnA/PTPN12 interactions. PTPN12 is a key regulator of signaling pathways involved in cell-extracellular matrix (ECM) crosstalk, cellular responses to mechanical stress that involve integrins, focal adhesion transduction pathways, and actin cytoskeleton dynamics. Interestingly, we showed that the FlnA mutations impair the activation status of two PTPN12 substrates, the focal adhesion associated kinase Src, and the RhoA specific activating protein p190RhoGAP. Together, these data point to PTPN12/FlnA interaction and its weakening by FlnA mutations as a mechanism potentially involved in the physiopathology of FlnA-associated MVP.

  11. MVP-Associated Filamin A Mutations Affect FlnA-PTPN12 (PTP-PEST Interactions

    Directory of Open Access Journals (Sweden)

    Damien Duval

    2015-09-01

    Full Text Available Although the genetic basis of mitral valve prolapse (MVP has now been clearly established, the molecular and cellular mechanisms involved in the pathological processes associated to a specific mutation often remain to be determined. The FLNA gene (encoding Filamin A; FlnA was the first gene associated to non-syndromic X-linked myxomatous valvular dystrophy, but the impacts of the mutations on its function remain un-elucidated. Here, using the first repeats (1–8 of FlnA as a bait in a yeast two-hybrid screen, we identified the tyrosine phosphatase PTPN12 (PTP-PEST as a specific binding partner of this region of FlnA protein. In addition, using yeast two-hybrid trap assay pull down and co-immunoprecipitation experiments, we showed that the MVP-associated FlnA mutations (G288R, P637Q, H743P abolished FlnA/PTPN12 interactions. PTPN12 is a key regulator of signaling pathways involved in cell-extracellular matrix (ECM crosstalk, cellular responses to mechanical stress that involve integrins, focal adhesion transduction pathways, and actin cytoskeleton dynamics. Interestingly, we showed that the FlnA mutations impair the activation status of two PTPN12 substrates, the focal adhesion associated kinase Src, and the RhoA specific activating protein p190RhoGAP. Together, these data point to PTPN12/FlnA interaction and its weakening by FlnA mutations as a mechanism potentially involved in the physiopathology of FlnA-associated MVP.

  12. Acetaldehyde dissociates the PTP1B–E-cadherin–β-catenin complex in Caco-2 cell monolayers by a phosphorylation-dependent mechanism

    Science.gov (United States)

    Sheth, Parimal; Seth, Ankur; Atkinson, Katherine J.; Gheyi, Tarun; Kale, Gautam; Giorgianni, Francesco; Desiderio, Dominic M.; Li, Chunying; Naren, Anjaparavanda; Rao, Radhakrishna

    2006-01-01

    Interactions between E-cadherin, β-catenin and PTP1B (protein tyrosine phosphatase 1B) are crucial for the organization of AJs (adherens junctions) and epithelial cell–cell adhesion. In the present study, the effect of acetaldehyde on the AJs and on the interactions between E-cadherin, β-catenin and PTP1B was determined in Caco-2 cell monolayers. Treatment of cell monolayers with acetaldehyde induced redistribution of E-cadherin and β-catenin from the intercellular junctions by a tyrosine phosphorylation-dependent mechanism. The PTPase activity associated with E-cadherin and β-catenin was significantly reduced and the interaction of PTP1B with E-cadherin and β-catenin was attenuated by acetaldehyde. Acetaldehyde treatment resulted in phosphorylation of β-catenin on tyrosine residues, and abolished the interaction of β-catenin with E-cadherin by a tyrosine kinase-dependent mechanism. Protein binding studies showed that the treatment of cells with acetaldehyde reduced the binding of β-catenin to the C-terminal region of E-cadherin. Pairwise binding studies using purified proteins indicated that the direct interaction between E-cadherin and β-catenin was reduced by tyrosine phosphorylation of β-catenin, but was unaffected by tyrosine phosphorylation of E-cadherin-C. Treatment of cells with acetaldehyde also reduced the binding of E-cadherin to GST (glutathione S-transferase)–PTP1B. The pairwise binding study showed that GST–E-cadherin-C binds to recombinant PTP1B, but this binding was significantly reduced by tyrosine phosphorylation of E-cadherin. Acetaldehyde increased the phosphorylation of β-catenin on Tyr-331, Tyr-333, Tyr-654 and Tyr-670. These results show that acetaldehyde induces disruption of interactions between E-cadherin, β-catenin and PTP1B by a phosphorylation-dependent mechanism. PMID:17087658

  13. Synthesis and characterization of PTP/[Fe(CN){sub 3}(dien)]·H{sub 2}O nanocomposite; study of electrical, thermal and photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Moosvi, Syed Kazim; Majid, Kowsar, E-mail: kowsarmajid@rediffmail.com; Ara, Tabassum

    2016-10-20

    Highlights: • Synthesis of PTP nanocomposite with photoadduct via in-situ chemical polymerisation. • Photoadduct and its nanocomposite are characterized by UV–Vis, FTIR, XRD, and SEM characterisation techniques. • Enhanced thermal stability of nanocomposite as compared to pure PTP. • Nanocomposite exhibit non-linear I–V behaviour. • Improved electrical properties and photocatalytic activity of nanocomposite as compared to pure PTP. - Abstract: Polythiophene/[Fe(CN){sub 3}(dien)]·H{sub 2}O nanocomposite was synthesised by oxidative chemical polymerisation method. Photoadduct was synthesised by irradiating an equimolar mixture of potassium ferricyanide and diethylenetriamine which was then reduced to nanosize by high energy ball mill. The reduction of photoadduct to nanosize was confirmed from XRD. Nanocomposite of PTP with photoadduct was then prepared by oxidative chemical polymerisation using FeCl{sub 3} as oxidant. The successful synthesis of nanocomposite was confirmed from FTIR, XRD and SEM. TGA revealed higher thermal stability of nanocomposite as compared to pure PTP. I–V characteristics plotted on a log–log scale showed two distinct power law regions in case of nanocomposite. At lower voltages, the transport mechanism follows Ohm’s law. At higher voltages, the mechanism is consistent with space charge-limited emission. Furthermore, nanocomposite shows enhanced conductivity as compared to pure PTP. From dielectric studies, an appreciable high value of dielectric constant (4.4 × 10{sup 6} at 100 Hz) and ac conductivity (2.1 × 10{sup 9} S/m at 300 kHz) of nanocomposite was obtained. This indicates the possible application of this nanocomposite in charge storage devices. The photocatalytic activity of the materials was studied against the methyl orange (MO) dye under UV–Vis light and 76% degradation of MO dye was achieved in presence of nanocomposite in just 2 h, hence indicating its better photocatalytic efficiency. Results thus

  14. Synthesis and characterization of PTP/[Fe(CN)_3(dien)]·H_2O nanocomposite; study of electrical, thermal and photocatalytic properties

    International Nuclear Information System (INIS)

    Moosvi, Syed Kazim; Majid, Kowsar; Ara, Tabassum

    2016-01-01

    Highlights: • Synthesis of PTP nanocomposite with photoadduct via in-situ chemical polymerisation. • Photoadduct and its nanocomposite are characterized by UV–Vis, FTIR, XRD, and SEM characterisation techniques. • Enhanced thermal stability of nanocomposite as compared to pure PTP. • Nanocomposite exhibit non-linear I–V behaviour. • Improved electrical properties and photocatalytic activity of nanocomposite as compared to pure PTP. - Abstract: Polythiophene/[Fe(CN)_3(dien)]·H_2O nanocomposite was synthesised by oxidative chemical polymerisation method. Photoadduct was synthesised by irradiating an equimolar mixture of potassium ferricyanide and diethylenetriamine which was then reduced to nanosize by high energy ball mill. The reduction of photoadduct to nanosize was confirmed from XRD. Nanocomposite of PTP with photoadduct was then prepared by oxidative chemical polymerisation using FeCl_3 as oxidant. The successful synthesis of nanocomposite was confirmed from FTIR, XRD and SEM. TGA revealed higher thermal stability of nanocomposite as compared to pure PTP. I–V characteristics plotted on a log–log scale showed two distinct power law regions in case of nanocomposite. At lower voltages, the transport mechanism follows Ohm’s law. At higher voltages, the mechanism is consistent with space charge-limited emission. Furthermore, nanocomposite shows enhanced conductivity as compared to pure PTP. From dielectric studies, an appreciable high value of dielectric constant (4.4 × 10"6 at 100 Hz) and ac conductivity (2.1 × 10"9 S/m at 300 kHz) of nanocomposite was obtained. This indicates the possible application of this nanocomposite in charge storage devices. The photocatalytic activity of the materials was studied against the methyl orange (MO) dye under UV–Vis light and 76% degradation of MO dye was achieved in presence of nanocomposite in just 2 h, hence indicating its better photocatalytic efficiency. Results thus obtained indicate the

  15. New sesquiterpenoids from the edible mushroom Pleurotus cystidiosus and their inhibitory activity against α-glucosidase and PTP1B.

    Science.gov (United States)

    Tao, Qiao-Qiao; Ma, Ke; Bao, Li; Wang, Kai; Han, Jun-Jie; Zhang, Jin-Xia; Huang, Chen-Yang; Liu, Hong-Wei

    2016-06-01

    Nine new sesquiterpenoids, clitocybulol derivatives, clitocybulols G-O (1-9) and three known sesquiterpenoids, clitocybulols C-E (10-12), were isolated from the solid culture of the edible fungus Pleurotus cystidiosus. The structures of compounds 1-12 were determined by spectroscopic methods. The absolute configurations of compounds 1-9 were assigned via the circular dichroism (CD) data analysis. Compounds 1, 6 and 10 showed moderate inhibitory activity against protein tyrosine phosphatase-1B (PTP1B) with IC50 values of 49.5, 38.1 and 36.0μM, respectively. Copyright © 2016. Published by Elsevier B.V.

  16. Sodium Ferric Gluconate Injection

    Science.gov (United States)

    Sodium ferric gluconate injection is used to treat iron-deficiency anemia (a lower than normal number of ... are also receiving the medication epoetin (Epogen, Procrit). Sodium ferric gluconate injection is in a class of ...

  17. Naproxen sodium overdose

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/002507.htm Naproxen sodium overdose To use the sharing features on this page, please enable JavaScript. Naproxen sodium is a nonsteroidal anti-inflammatory drug (NSAID) used ...

  18. Sodium hydroxide poisoning

    Science.gov (United States)

    Sodium hydroxide is a very strong chemical. It is also known as lye and caustic soda. This ... poisoning from touching, breathing in (inhaling), or swallowing sodium hydroxide. This article is for information only. Do ...

  19. Sodium pumping: pump problems

    International Nuclear Information System (INIS)

    Guer, M.; Guiton, P.

    Information on sodium pumps for LMFBR type reactors is presented concerning ring pump design, pool reactor pump design, secondary pumps, sodium bearings, swivel joints of the oscillating annulus, and thermal shock loads

  20. Docusate Sodium and Pregnancy

    Science.gov (United States)

    ... a risk of miscarriage. Can use of docusate sodium during pregnancy cause birth defects? Few studies have been done to look at the possible risks of docusate sodium during pregnancy. However, the available studies show that when used ...

  1. Sodium carbonate poisoning

    Science.gov (United States)

    Sodium carbonate (known as washing soda or soda ash) is a chemical found in many household and industrial products. This article focuses on poisoning due to sodium carbonate. This article is for information only. Do NOT ...

  2. ELTA: Citatrademark: Sodium measurement

    International Nuclear Information System (INIS)

    Mauvais, O.

    2002-01-01

    ELTA is pleased to present its last model of Sodium analyzers: CITA 2340: Automatically controlled sodium meter, integrating more automation and performances results respecting costs and wastes reduction. (authors)

  3. Liquid sodium technology research

    International Nuclear Information System (INIS)

    Kim, W.C.; Lee, Y.W.; Nam, H.Y.; Chun, S.Y.; Kim, J.; Won, S.Y.

    1982-01-01

    This report describes the technology of impurity control and measurement of liquid sodium, problems associated with material degradation and change of heat transfer characteristics in liquid sodium, and the conceptual design of multipurpose sodium test loop. Discussion and the subsequent analysis are also made with regard to the test results for the sodium-H 2 0 reaction and its effects on the system. (author)

  4. Four new neolignans isolated from Eleutherococcus senticosus and their protein tyrosine phosphatase 1B inhibitory activity (PTP1B).

    Science.gov (United States)

    Zhang, Le; Li, Ban-Ban; Li, Hao-Ze; Meng, Xiao; Lin, Xin; Jiang, Yi-Yu; Ahn, Jong-Seog; Cui, Long

    2017-09-01

    Four new compounds, erythro-7'E-4-hydroxy-3,3'-dimethoxy-8,5'-oxyneoligna-7'-ene-7,9-diol-9'-al (1), (7S,8S)-4-hydroxy-3,1',3'-trimethoxy-4',7-epoxy-8,5'-neolign-9-ol (5), (7S,8S,7'E)-5-hydroxy-3,3'-dimethoxy-4',7-epoxy-8,5'-neolign-7'-ene-9,9'-diol (6) and (7S,8S,7'E)-5-hydroxy-3,3',9'-trimethoxy-4'-7-epoxy-8,5'-neolign-7'-ene-9-ol (7). Along with four known compounds (2-4, 8) were isolated from the EtOAc-soluble extract of Eleutherococcus senticosus. Their structures were elucidated on the basis of spectroscopic and physicochemical analyses. All the compounds were evaluated for in vitro inhibitory activity against PTP1B, VHR and PP1. Among them, compounds 1-4 and 6-8 were found to exhibit selective inhibitory activity on PTP1B with IC 50 values ranging from 17.2±1.6 to 32.7±1.2μM. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Clinical and experimental applications of sodium phenylbutyrate.

    Science.gov (United States)

    Iannitti, Tommaso; Palmieri, Beniamino

    2011-09-01

    Histone acetyltransferase and histone deacetylase are enzymes responsible for histone acetylation and deacetylation, respectively, in which the histones are acetylated and deacetylated on lysine residues in the N-terminal tail and on the surface of the nucleosome core. These processes are considered the most important epigenetic mechanisms for remodeling the chromatin structure and controlling the gene expression. Histone acetylation is associated with gene activation. Sodium phenylbutyrate is a histone deacetylase inhibitor that has been approved for treatement of urea cycle disorders and is under investigation in cancer, hemoglobinopathies, motor neuron diseases, and cystic fibrosis clinical trials. Due to its characteristics, not only of histone deacetylase inhibitor, but also of ammonia sink and chemical chaperone, the interest towards this molecule is growing worldwide. This review aims to update the current literature, involving the use of sodium phenylbutyrate in experimental studies and clinical trials.

  6. Sodium sieving in children

    NARCIS (Netherlands)

    Rusthoven, Esther; Krediet, Raymond T.; Willems, Hans L.; Monnens, Leo A.; Schröder, Cornelis H.

    2005-01-01

    Sodium sieving is a consequence of dissociation between the amount of water and sodium transported over the peritoneal membrane. This dissociation occurs in the presence of aquaporin-mediated water transport. Sieving of sodium can be used as a rough measure for aquaporin-mediated water transport.

  7. Selective Inhibition of PTP1B by Vitalboside A from Syzygium cumini Enhances Insulin Sensitivity and Attenuates Lipid Accumulation Via Partial Agonism to PPARγ: In Vitro and In Silico Investigation.

    Science.gov (United States)

    Thiyagarajan, Gopal; Muthukumaran, Padmanaban; Sarath Kumar, Baskaran; Muthusamy, Velusamy Shanmuganathan; Lakshmi, Baddireddi Subhadra

    2016-08-01

    Although antidiabetic drugs show good insulin-sensitizing property for T2DM, they also exhibit undesirable side-effects. Partial peroxisome proliferator-activated receptor γ agonism with protein tyrosine phosphatase 1B inhibition is considered as an alternative therapeutic approach toward the development of a safe insulin sensitizer. Bioactivity-based fractionation and purification of Syzygium cumini seeds led to the isolation and identification of bifunctional Vitalboside A, which showed antidiabetic and anti-adipogenic activities, as measured by glucose uptake in L6 and 3T3-L1 adipocytes and Nile red assay. A non-competitive allosteric inhibition of protein tyrosine phosphatase 1B by Vitalboside A was observed, which was confirmed by docking studies. Inhibitor studies with wortmannin and genistein showed an IRTK- and PI3K-dependent glucose uptake. A PI3K/AKT-dependent activation of GLUT4 translocation and an inactivation of GSK3β were observed, confirming its insulin-sensitizing potential. Vitalboside A exhibited partial transactivation of peroxisome proliferator-activated receptor γ with an increase in adiponectin secretion, which was confirmed using docking analysis. Vitalboside A is a bifunctional molecule derived from edible plant showing inhibition of PTP1B and partial agonism to peroxisome proliferator-activated receptor γ which could be a promising therapeutic agent in the management of obesity and diabetes. © 2016 John Wiley & Sons A/S.

  8. Inhibition of RhoA GTPase and the subsequent activation of PTP1B protects cultured hippocampal neurons against amyloid β toxicity

    Directory of Open Access Journals (Sweden)

    Rodriguez-Tebar Alfredo

    2011-02-01

    Full Text Available Abstract Background Amyloid beta (Aβ is the main agent responsible for the advent and progression of Alzheimer's disease. This peptide can at least partially antagonize nerve growth factor (NGF signalling in neurons, which may be responsible for some of the effects produced by Aβ. Accordingly, better understanding the NGF signalling pathway may provide clues as to how to protect neurons from the toxic effects of Aβ. Results We show here that Aβ activates the RhoA GTPase by binding to p75NTR, thereby preventing the NGF-induced activation of protein tyrosine phosphatase 1B (PTP1B that is required for neuron survival. We also show that the inactivation of RhoA GTPase and the activation of PTP1B protect cultured hippocampal neurons against the noxious effects of Aβ. Indeed, either pharmacological inhibition of RhoA with C3 ADP ribosyl transferase or the transfection of cultured neurons with a dominant negative form of RhoA protects cultured hippocampal neurons from the effects of Aβ. In addition, over-expression of PTP1B also prevents the deleterious effects of Aβ on cultured hippocampal neurons. Conclusion Our findings indicate that potentiating the activity of NGF at the level of RhoA inactivation and PTP1B activation may represent a new means to combat the noxious effects of Aβ in Alzheimer's disease.

  9. Report of sodium cavitation

    International Nuclear Information System (INIS)

    Murai, Hitoshi; Shima, Akira; Oba, Toshisaburo; Kobayashi, Ryoji; Hashimoto, Hiroyuki

    1975-01-01

    The damage of components for LMFBRs due to sodium cavitation is serious problem. This report summarizes the following items, (1) mechanism of the incipience of sodium cavitation, (2) damage due to sodium cavitation, (3) detection method for sodium cavitation, and (4) estimation method for sodium cavitation by the comparison with water cavitation. Materials were collected from the reports on liquid metal cavitation, sodium cavitation and water cavitation published from 1965 to now. The mechanism of the incipience of sodium cavitation cavitation parameters (mean location, distributed amount or occurrence aspect and stability), experiment of causing cavitation with Venturi tube, and growth of bubbles within superheated sodium. The sodium cavitation damage was caused by magnetostriction vibration method and with Venturi tube. The state of damage was investigated with the cavitation performance of a sodium pump, and the damage was examined in view of the safety of LMFBR plants. Sodium cavitation was detected with acoustic method, radiation method, and electric method. The effect of physical property of liquid on incipient cavitation was studied. These are thermodynamic effect based on quasistatic thermal equilibrium condition and the effect of the physical property of liquid based on bubble dynamics. (Iwase, T.)

  10. Sodium safety manual

    International Nuclear Information System (INIS)

    Hayes, D.J.; Gardiner, R.L.

    1980-09-01

    The sodium safety manual is based upon more than a decade of experience with liquid sodium at Berkeley Nuclear Laboratories (BNL). It draws particularly from the expertise and experience developed in the course of research work into sodium fires and sodium water reactions. It draws also on information obtained from the UKAEA and other sodium users. Many of the broad principles will apply to other Establishments but much of the detail is specific to BNL and as a consequence its application at other sites may well be limited. Accidents with sodium are at best unpleasant and at worst lethal in an extremely painful way. The object of this manual is to help prevent sodium accidents. It is not intended to give detailed advice on specific precautions for particular situations, but rather to set out the overall strategy which will ensure that sodium activities will be pursued safely. More detail is generally conveyed to staff by the use of local instructions known as Sodium Working Procedures (SWP's) which are not reproduced in this manual although a list of current SWP's is included. Much attention is properly given to the safe design and operation of larger facilities; nevertheless evidence suggests that sodium accidents most frequently occur in small-scale work particularly in operations associated with sodium cleaning and special care is needed in all such cases. (U.K.)

  11. Dialysate sodium and sodium gradient in maintenance hemodialysis: a neglected sodium restriction approach?

    OpenAIRE

    Munoz Mendoza, Jair; Sun, Sumi; Chertow, Glenn M.; Moran, John; Doss, Sheila; Schiller, Brigitte

    2011-01-01

    Background. A higher sodium gradient (dialysate sodium minus pre-dialysis plasma sodium) during hemodialysis (HD) has been associated with sodium loading; however, its role is not well studied. We hypothesized that a sodium dialysate prescription resulting in a higher sodium gradient is associated with increases in interdialytic weight gain (IDWG), blood pressure (BP) and thirst.

  12. SGLT2 inhibitors: molecular design and potential differences in effect.

    Science.gov (United States)

    Isaji, Masayuki

    2011-03-01

    The physiological and pathological handling of glucose via sodium-glucose cotransporter-2 (SGLT2) in the kidneys has been evolving, and SGLT2 inhibitors have been focused upon as a novel drug for treating diabetes. SGLT2 inhibitors enhance renal glucose excretion by inhibiting renal glucose reabsorption. Consequently, SGLT2 inhibitors reduce plasma glucose insulin independently and improve insulin resistance in diabetes. To date, various SGLT2 inhibitors have been developed and evaluated in clinical studies. The potency and positioning of SGLT2 inhibitors as an antidiabetic drug are dependent on their characteristic profile, which induces selectivity, efficacy, pharmacokinetics, and safety. This profile decides which SGLT2 inhibitors can be expected for application of the theoretical concept of reducing renal glucose reabsorption for the treatment of diabetes. I review the structure and advancing profile of various SGLT2 inhibitors, comparing their similarities and differences, and discuss the expected SGLT2 inhibitors for an emerging category of antidiabetic drugs.

  13. [Syk inhibitors].

    Science.gov (United States)

    Kimura, Yukihiro; Chihara, Kazuyasu; Takeuchi, Kenji; Sada, Kiyonao

    2013-07-01

    Non-receptor type of protein-tyrosine kinase Syk (spleen tyrosine kinase) was isolated in the University of Fukui in 1991. Syk is known to be essential for the various physiological functions, especially in hematopoietic lineage cells. Moreover, ectopic expression of Syk by epigenetic changes is reported to cause retinoblastoma. Recently, novel Syk inhibitors were developed and its usefulness has been evaluated in the treatment of allergic rhinitis, rheumatoid arthritis, and idiopathic thrombocytopenic purpura. In this review, we will summarize the history, structure, and function of Syk, and then describe the novel Syk inhibitors and their current status. Furthermore, we will introduce our findings of the adaptor protein 3BP2 (c-Abl SH3 domain-binding protein-2), as a novel target of Syk.

  14. Syk inhibitors.

    Science.gov (United States)

    Chihara, Kazuyasu; Kimura, Yukihiro; Honjo, Chisato; Takeuchi, Kenji; Sada, Kiyonao

    2013-01-01

    Non-receptor type of protein-tyrosine kinase Syk (spleen tyrosine kinase) was isolated in University of Fukui in 1991. Syk is most highly expressed by haemopoietic cells and known to play crucial roles in the signal transduction through various immunoreceptors of the adaptive immune response. However, recent reports demonstrate that Syk also mediates other biological functions, such as innate immune response, osteoclast maturation, platelet activation and cellular adhesion. Moreover, ectopic expression of Syk by epigenetic changes is reported to cause retinoblastoma. Because of its critical roles on the cellular functions, the development of Syk inhibitors for clinical use has been desired. Although many candidate compounds were produced, none of them had progressed to clinical trials. However, novel Syk inhibitors were finally developed and its usefulness has been evaluated in the treatment of allergic rhinitis, rheumatoid arthritis and idiopathic thrombocytopenic purpura. In this review, we will summarize the history, structure and function of Syk, and then the novel Syk inhibitors and their current status. In addition, we will introduce our research focused on the functions of Syk on Dectin-1-mediated mast cell activation.

  15. Inhibition of Sodium Benzoate on Stainless Steel in Tropical Seawater

    International Nuclear Information System (INIS)

    Seoh, S. Y.; Senin, H. B.; Nik, W. N. Wan; Amin, M. M.

    2007-01-01

    The inhibition of sodium benzoate for stainless steel controlling corrosion was studied in seawater at room temperature. Three sets of sample have been immersed in seawater containing sodium benzoate with the concentrations of 0.3M, 0.6M and 1.0M respectively. One set of sample has been immersed in seawater without adding any sodium benzoate. It was found that the highest corrosion rate was observed for the stainless steel with no inhibitor was added to the seawater. As the concentration of sodium benzoate being increased, the corrosion rate is decreases. Results show that by the addition of 1.0M of sodium benzoate in seawater samples, it giving ≥ 90% efficiencies

  16. Solubilities of sodium nitrate, sodium nitrite, and sodium aluminate in simulated nuclear waste

    International Nuclear Information System (INIS)

    Reynolds, D.A.; Herting, D.L.

    1984-09-01

    Solubilities were determined for sodium nitrate, sodium nitrite, and sodium aluminate in synthetic nuclear waste liquor. Solubilities were determined as a function of temperature and solution composition (concentrations of sodium hydroxide, sodium nitrate, sodium nitrite, and sodium aluminate). Temperature had the greatest effect on the solubilities of sodium nitrate and sodium nitrite and a somewhat lesser effect on sodium aluminate solubility. Hydroxide had a great effect on the solubilities of all three salts. Other solution components had minor effects. 2 references, 8 figures, 11 tables

  17. Sodium aerosol recovering device

    International Nuclear Information System (INIS)

    Fujimori, Koji; Ueda, Mitsuo; Tanaka, Kazuhisa.

    1997-01-01

    A main body of a recovering device is disposed in a sodium cooled reactor or a sodium cooled test device. Air containing sodium aerosol is sucked into the main body of the recovering device by a recycling fan and introduced to a multi-staged metal mesh filter portion. The air about against each of the metal mesh filters, and the sodium aerosol in the air is collected. The air having a reduced sodium aerosol concentration circulates passing through a recycling fan and pipelines to form a circulation air streams. Sodium aerosol deposited on each of the metal mesh filters is scraped off periodically by a scraper driving device to prevent clogging of each of the metal filters. (I.N.)

  18. [Sodium intake during pregnancy].

    Science.gov (United States)

    Delemarre, F M; Franx, A; Knuist, M; Steegers, E A

    1999-10-23

    International studies have yielded contradictory results on efficacy of a sodium-restricted diet during pregnancy in preventing and curing hypertension of pregnancy. In the Netherlands three studies have been performed to investigate the value of dietary sodium restriction in pregnancy; they concerned epidemiology, prevention and treatment. Midwives often prescribed this dietary intervention. Urinary sodium excretion was not related to blood pressure changes in pregnancy. Dietary sodium restriction from the third month of pregnancy onwards did not reduce the incidence of pregnancy-induced hypertension. Maternal side effects were a decreased intake of nutrients, decreased maternal weight gain, lowered plasma volume and stimulation of the renin-angiotensin-aldosterone system. A dietary sodium restriction in women with early symptoms of pregnancy-induced hypertension showed no therapeutic effect on blood pressure. There is no place for dietary sodium restriction in the prevention or treatment of hypertension in pregnancy.

  19. Sodium fire protection

    International Nuclear Information System (INIS)

    Raju, C.; Kale, R.D.

    1979-01-01

    Results of experiments carried out with sodium fires to develop extinguishment techniques are presented. Characteristics, ignition temperature, heat evolution and other aspects of sodium fires are described. Out of the powders tested for extinguishment of 10 Kg sodium fires, sodium bi-carbonate based dry chemical powder has been found to be the best extinguisher followed by large sized vermiculite and then calcium carbonate powders distributed by spray nozzles. Powders, however, do not extinguish large fires effectively due to sodium-concrete reaction. To control large scale fires in a LMFBR, collection trays with protective cover have been found to cause oxygen starvation better than flooding with inert gas. This system has an added advantage in that there is no damage to the sodium facilities as has been in the case of powders which often contain chlorine compounds and cause stress corrosion cracking. (M.G.B.)

  20. Sodium fire suppression

    Energy Technology Data Exchange (ETDEWEB)

    Malet, J C [DSN/SESTR, Centre de Cadarache, Saint-Paul-lez-Durance (France)

    1979-03-01

    Ignition and combustion studies have provided valuable data and guidelines for sodium fire suppression research. The primary necessity is to isolate the oxidant from the fuel, rather than to attempt to cool the sodium below its ignition temperature. Work along these lines has led to the development of smothering tank systems and a dry extinguishing powder. Based on the results obtained, the implementation of these techniques is discussed with regard to sodium fire suppression in the Super-Phenix reactor. (author)

  1. Sodium fire suppression

    International Nuclear Information System (INIS)

    Malet, J.C.

    1979-01-01

    Ignition and combustion studies have provided valuable data and guidelines for sodium fire suppression research. The primary necessity is to isolate the oxidant from the fuel, rather than to attempt to cool the sodium below its ignition temperature. Work along these lines has led to the development of smothering tank systems and a dry extinguishing powder. Based on the results obtained, the implementation of these techniques is discussed with regard to sodium fire suppression in the Super-Phenix reactor. (author)

  2. Sodium fill of FFTF

    International Nuclear Information System (INIS)

    Waldo, J.B.; Greenwell, R.K.; Keasling, T.A.; Collins, J.R.; Klos, D.B.

    1980-02-01

    With construction of the Fast Flux Test Facility (FFTF) completed, the first major objective in the startup program was to fill the sodium systems. A sodium fill sequence was developed to match construction completion, and as systems became available, they were inerted, preheated, and filled with sodium. The secondary sodium systems were filled first while dry refueling system testing was in progress in the reactor vessel. The reactor vessel and the primary loops were filled last. This paper describes the methods used and some of the key results achieved for this major FFTF objective

  3. Fires of sodium installations

    International Nuclear Information System (INIS)

    Hajek, L.; Tlalka, R.

    1984-01-01

    A survey is presented of the literature dealing with fires of sodium installations between 1974 and 1981. Also described are three experimental fires of ca 50 kg of sodium in an open area, monitored by UJV Rez. The experimental conditions of the experiments are described and a phenomenological description is presented of the course of the fires. The experiments showed a relationship between wind velocity in the area surrounding the fire and surface temperature of the sodium flame. Systems analysis methods were applied to sodium area, spray and tube fires. (author)

  4. Myeloid protein tyrosine phosphatase 1B (PTP1B) deficiency protects against atherosclerotic plaque formation in the ApoE-/- mouse model of atherosclerosis with alterations in IL10/AMPKα pathway.

    Science.gov (United States)

    Thompson, D; Morrice, N; Grant, L; Le Sommer, S; Ziegler, K; Whitfield, P; Mody, N; Wilson, H M; Delibegović, M

    2017-08-01

    Cardiovascular disease (CVD) is the most prevalent cause of mortality among patients with Type 1 or Type 2 diabetes, due to accelerated atherosclerosis. Recent evidence suggests a strong link between atherosclerosis and insulin resistance due to impaired insulin receptor (IR) signaling. Moreover, inflammatory cells, in particular macrophages, play a key role in pathogenesis of atherosclerosis and insulin resistance in humans. We hypothesized that inhibiting the activity of protein tyrosine phosphatase 1B (PTP1B), the major negative regulator of the IR, specifically in macrophages, would have beneficial anti-inflammatory effects and lead to protection against atherosclerosis and CVD. We generated novel macrophage-specific PTP1B knockout mice on atherogenic background (ApoE -/- /LysM-PTP1B). Mice were fed standard or pro-atherogenic diet, and body weight, adiposity (echoMRI), glucose homeostasis, atherosclerotic plaque development, and molecular, biochemical and targeted lipidomic eicosanoid analyses were performed. Myeloid-PTP1B knockout mice on atherogenic background (ApoE -/- /LysM-PTP1B) exhibited a striking improvement in glucose homeostasis, decreased circulating lipids and decreased atherosclerotic plaque lesions, in the absence of body weight/adiposity differences. This was associated with enhanced phosphorylation of aortic Akt, AMPKα and increased secretion of circulating anti-inflammatory cytokine interleukin-10 (IL-10) and prostaglandin E2 (PGE 2 ), without measurable alterations in IR phosphorylation, suggesting a direct beneficial effect of myeloid-PTP1B targeting. Here we demonstrate that inhibiting the activity of PTP1B specifically in myeloid lineage cells protects against atherosclerotic plaque formation, under atherogenic conditions, in an ApoE -/- mouse model of atherosclerosis. Our findings suggest for the first time that macrophage PTP1B targeting could be a therapeutic target for atherosclerosis treatment and reduction of CVD risk.

  5. Visibility in sodium fume

    International Nuclear Information System (INIS)

    Hughes, G.W.; Anderson, N.R.

    1971-01-01

    The appearance of sodium fume of unknown concentration and the effects of short term exposure on unprotected workers is described. The molecular extinction coefficient of sodium fume is calculated from which light transmission data, and a rapid method for the estimation of the fume concentration is proposed. (author)

  6. Sodium outleakage detection

    International Nuclear Information System (INIS)

    Casselman, C.

    1979-01-01

    Effective detection of outleakage from sodium facilities permits timely intervention capable of limiting the consequences of such leakage. Two types of detection systems are described: local and overall detection. The use of two independent systems in sodium facilities is recommended. (author)

  7. Annular sodium flowsensor

    International Nuclear Information System (INIS)

    Kaiser, W.C.; Brewer, J.; Forster, G.A.

    1983-01-01

    This paper describes a unique eddy-current type liquid sodium flowsensor, designed as a joint effort between Argonne National Laboratory and Kaman Instrumentation Corp. Test results are included for operation of the flowsensor mounted on a sodium test loop whose configuration simulates the actual operating conditions, except for the magnetic field of the ALIP

  8. Total-body sodium and sodium excess

    International Nuclear Information System (INIS)

    Aloia, J.F.; Cohn, S.H.; Abesamis, C.; Babu, T.; Zanzi, I.; Ellis, K.

    1980-01-01

    Total-body levels of sodium (TBNa), chlorine (TBCI), calcium (TBCa), and potassium (TBK) were measured by neutron activation and analysis of results by whole body counting in 66 postmenopausal women. The relationship between TBNa, and TBCl, TBK, and TBCa on the one hand, and height and weight on the other, were found to compare with those previously reported. The hypothesis that TBNa and TBCl are distributed normally could not be rejected. The sodium excess (Na/sub es/) is defined as the sodium that is present in excess of that associated with the extracellular fluid (chlorine) space; the Na/sub es/ approximates nonexchangeable bone sodium. In these 66 postmenopausal women, and in patients with different endocrinopathies previously described, the values on Na/sub es/ did not differ from the normal values except in the thyrotoxicosis patients, where they were decreased. A close relationship between Na/sub es/ and TBCa was maintained in the endocrinopathies studied. This relationship was found in conditions accompanied by either an increment or a loss of skeletal mass. It appears that the NA/sub es/ value is primarily dependent upon the calcium content of bone

  9. Alternative translation initiation of Caveolin-2 desensitizes insulin signaling through dephosphorylation of insulin receptor by PTP1B and causes insulin resistance.

    Science.gov (United States)

    Kwon, Hayeong; Jang, Donghwan; Choi, Moonjeong; Lee, Jaewoong; Jeong, Kyuho; Pak, Yunbae

    2018-06-01

    Insulin resistance, defined as attenuated sensitivity responding to insulin, impairs insulin action. Direct causes and molecular mechanisms of insulin resistance have thus far remained elusive. Here we show that alternative translation initiation (ATI) of Caveolin-2 (Cav-2) regulates insulin sensitivity. Cav-2β isoform yielded by ATI desensitizes insulin receptor (IR) via dephosphorylation by protein-tyrosine phosphatase 1B (PTP1B), and subsequent endocytosis and lysosomal degradation of IR, causing insulin resistance. Blockage of Cav-2 ATI protects against insulin resistance by preventing Cav-2β-PTP1B-directed IR desensitization, thereby normalizing insulin sensitivity and glucose uptake. Our findings show that Cav-2β is a negative regulator of IR signaling, and identify a mechanism causing insulin resistance through control of insulin sensitivity via Cav-2 ATI. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Astragalus Polysaccharide Improves Palmitate-Induced Insulin Resistance by Inhibiting PTP1B and NF-κB in C2C12 Myotubes

    Directory of Open Access Journals (Sweden)

    Yong Li

    2012-06-01

    Full Text Available We investigated the effects of Astragalus polysaccharide (APS on palmitate-induced insulin resistance in C2C12 skeletal muscle myotubes. Palmitate-reduced glucose uptake was restored by APS. APS prevented palmitate-induced C2C12 myotubes from impaired insulin signaling by inhibiting Ser307 phosphorylation of insulin receptor substrate-1 (IRS-1 and increasing Ser473 phosphorylation of Akt. Moreover, the increases in protein-tyrosine phosphatase-1B (PTP1B protein level and NF-κB activation associated with palmitate treatment were also prevented by APS. However the treatment with APS didn’t change AMP-activated protein kinase (AMPK activation in palmitate-induced myotubes. The results of the present study suggest that Astragalus polysaccharide inhibits palmitate-induced insulin resistance in C2C12 myotubes by inhibiting expression of PTP1B and regulating NF-κB but not AMPK pathway.

  11. Eicosapentaenoic acid abolishes inhibition of insulin-induced mTOR phosphorylation by LPS via PTP1B downregulation in skeletal muscle.

    Science.gov (United States)

    Wei, Hong-Kui; Deng, Zhao; Jiang, Shu-Zhong; Song, Tong-Xing; Zhou, Yuan-Fei; Peng, Jian; Tao, Ya-Xiong

    2017-01-05

    Dietary n-3 polyunsaturated fatty acids (n-3 PUFAs) increase insulin signaling in skeletal muscle. In the current study, we investigated the effect of eicosapentaenoic acid (EPA) on insulin-induced mammalian target of rapamycin (mTOR) phosphorylation in myotubes. We showed that EPA did not affect basal and insulin-induced mTOR phosphorylation in myotubes. However, EPA abolished lipopolysaccharide (LPS) -induced deficiency in insulin signaling (P  0.05). In myotubes, LPS stimulated PTP1B expression via NF-κB and activation protein-1 (AP1). Pre-incubation of 50 μM EPA prevented the LPS-induced activation of AP1 and NF-κΒ as well as PTP1B expression (P < 0.05). Interestingly, incubation of peroxisome proliferator-activated receptor γ (PPARγ) antagonist (GW9662) prior to EPA treatment, the effect of EPA on insulin-induced mTOR phosphorylation was blocked. Accordingly, EPA did not inhibit the LPS-induced activation of AP1 or NF-κΒ as well as PTP1B expression when incubation of GW9662 prior to EPA treatment. The in vivo study showed that EPA prevented LPS-induced PTPT1B expression and a decrease in insulin-induced mTOR phosphorylation in muscle of mice. In summary, EPA abolished LPS inhibition of insulin-induced mTOR phosphorylation in myotubes, and one of the key mechanisms was to inhibit AP1 and NF-κB activation and PTP1B transcription. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Neuroprotective effect of hydroxy safflor yellow A against cerebral ischemia-reperfusion injury in rats: putative role of mPTP.

    Science.gov (United States)

    Ramagiri, Sruthi; Taliyan, Rajeev

    2016-01-01

    Hydroxy safflor yellow A (HSYA) has been translated clinically for cardiovascular diseases. HSYA is also greatly acknowledged for its protective effects against cerebral ischemic-reperfusion (I/R) injury. Although the precise mechanism of cerebral I/R injury is not fully understood, oxygen-derived free radicals and mitochondrial permeability transition pore (mPTP) opening during I/R injury are widely recognized as an important contributor to neuronal injury. Thus, we speculated that the neuroprotective effects of HSYA against cerebral I/R injury may be associated with mPTP modulation. Induction of I/R injury was achieved by 60 min of middle cerebral artery occlusion, followed by reperfusion for 24 h. For behavior and cognitive assessment, neurological scoring (NSS), rotarod, and Y-maze task were performed. Oxidative damage was measured in terms of markers such as malondialdehyde, reduced glutathione, and catalase levels and cerebral infarct volumes were quantified using 2,3,5-triphenyl tetrazolinium chloride staining. I/R injury-induced inflammation was determined using tumor necrosis factor-α (TNF-α) levels. Animals exposed to I/R injury showed neurological severity, functional and cognitive disability, elevated oxidative markers, and TNF-α levels along with large infarct volumes. HSYA treatment during onset of reperfusion ameliorated performance in NSS, rotarod and Y-maze attenuated oxidative damage, TNF-α levels, and infarction rate. However, treatment with carboxyatractyloside, an mPTP opener, 20 min before HSYA, attenuated the protective effect of HSYA. Our study confirmed that protective effect of HSYA may be conferred through its free radical scavenger action followed by inhibiting the opening of mPTP during reperfusion and HSYA might act as a promising therapeutic agent against cerebral I/R injury.

  13. Design and implementation of flexible TWDM-PON with PtP WDM overlay based on WSS for next-generation optical access networks

    Science.gov (United States)

    Wu, Bin; Yin, Hongxi; Qin, Jie; Liu, Chang; Liu, Anliang; Shao, Qi; Xu, Xiaoguang

    2016-09-01

    Aiming at the increasing demand of the diversification services and flexible bandwidth allocation of the future access networks, a flexible passive optical network (PON) scheme combining time and wavelength division multiplexing (TWDM) with point-to-point wavelength division multiplexing (PtP WDM) overlay is proposed for the next-generation optical access networks in this paper. A novel software-defined optical distribution network (ODN) structure is designed based on wavelength selective switches (WSS), which can implement wavelength and bandwidth dynamical allocations and suits for the bursty traffic. The experimental results reveal that the TWDM-PON can provide 40 Gb/s downstream and 10 Gb/s upstream data transmission, while the PtP WDM-PON can support 10 GHz point-to-point dedicated bandwidth as the overlay complement system. The wavelengths of the TWDM-PON and PtP WDM-PON are allocated dynamically based on WSS, which verifies the feasibility of the proposed structure.

  14. Docking analysis targeted to the whole enzyme: an application to the prediction of inhibition of PTP1B by thiomorpholine and thiazolyl derivatives.

    Science.gov (United States)

    Ganou, C A; Eleftheriou, P Th; Theodosis-Nobelos, P; Fesatidou, M; Geronikaki, A A; Lialiaris, T; Rekka, E A

    2018-02-01

    PTP1b is a protein tyrosine phosphatase involved in the inactivation of insulin receptor. Since inhibition of PTP1b may prolong the action of the receptor, PTP1b has become a drug target for the treatment of type II diabetes. In the present study, prediction of inhibition using docking analysis targeted specifically to the active or allosteric site was performed on 87 compounds structurally belonging to 10 different groups. Two groups, consisting of 15 thiomorpholine and 10 thiazolyl derivatives exhibiting the best prediction results, were selected for in vitro evaluation. All thiomorpholines showed inhibitory action (with IC 50 = 4-45 μΜ, Ki = 2-23 μM), while only three thiazolyl derivatives showed low inhibition (best IC 50 = 18 μΜ, Ki = 9 μΜ). However, free binding energy (E) was in accordance with the IC 50 values only for some compounds. Docking analysis targeted to the whole enzyme revealed that the compounds exhibiting IC 50 values higher than expected could bind to other peripheral sites with lower free energy, E o , than when bound to the active/allosteric site. A prediction factor, E- (Σ Eo × 0.16), which takes into account lower energy binding to peripheral sites, was proposed and was found to correlate well with the IC 50 values following an asymmetrical sigmoidal equation with r 2 = 0.9692.

  15. Sulfone-stabilized carbanions for the reversible covalent capture of a posttranslationally-generated cysteine oxoform found in protein tyrosine phosphatase 1B (PTP1B).

    Science.gov (United States)

    Parsons, Zachary D; Ruddraraju, Kasi Viswanatharaju; Santo, Nicholas; Gates, Kent S

    2016-06-15

    Redox regulation of protein tyrosine phosphatase 1B (PTP1B) involves oxidative conversion of the active site cysteine thiolate into an electrophilic sulfenyl amide residue. Reduction of the sulfenyl amide by biological thiols regenerates the native cysteine residue. Here we explored fundamental chemical reactions that may enable covalent capture of the sulfenyl amide residue in oxidized PTP1B. Various sulfone-containing carbon acids were found to react readily with a model peptide sulfenyl amide via attack of the sulfonyl carbanion on the electrophilic sulfur center in the sulfenyl amide. Both the products and the rates of these reactions were characterized. The results suggest that capture of a peptide sulfenyl amide residue by sulfone-stabilized carbanions can slow, but not completely prevent, thiol-mediated generation of the corresponding cysteine-containing peptide. Sulfone-containing carbon acids may be useful components in the construction of agents that knock down PTP1B activity in cells via transient covalent capture of the sulfenyl amide oxoform generated during insulin signaling processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Inhibitory Activity of Iron Chelators ATA and DFO on MCF-7 Breast Cancer Cells and Phosphatases PTP1B and SHP2.

    Science.gov (United States)

    Kuban-Jankowska, Alicja; Sahu, Kamlesh K; Gorska-Ponikowska, Magdalena; Tuszynski, Jack A; Wozniak, Michal

    2017-09-01

    Rapidly-dividing cancer cells have higher requirement for iron compared to non-transformed cells, making iron chelating a potential anticancer strategy. In the present study we compared the anticancer activity of uncommon iron chelator aurintricarboxylic acid (ATA) with the known deferoxamine (DFO). We investigated the impact of ATA and DFO on the viability and proliferation of MCF-7 cancer cells. Moreover we performed enzymatic activity assays and computational analysis of the ATA and DFO effects on pro-oncogenic phosphatases PTP1B and SHP2. ATA and DFO decrease the viability and proliferation of breast cancer cells, but only ATA considerably reduces the activity of PTP1B and SHP2 phosphatases. Our studies indicated that ATA strongly inactivates and binds in the PTP1B and SHP2 active site, interacting with arginine residue essential for enzyme activity. We confirmed that iron chelating can be considered as a potential strategy for the adjunctive treatment of breast cancer. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  17. Sirt1 negatively regulates FcεRI-mediated mast cell activation through AMPK- and PTP1B-dependent processes.

    Science.gov (United States)

    Li, Xian; Lee, Youn Ju; Jin, Fansi; Park, Young Na; Deng, Yifeng; Kang, Youra; Yang, Ju Hye; Chang, Jae-Hoon; Kim, Dong-Young; Kim, Jung-Ae; Chang, Young-Chae; Ko, Hyun-Jeong; Kim, Cheorl-Ho; Murakami, Makoto; Chang, Hyeun Wook

    2017-07-25

    Sirt1, a key regulator of metabolism and longevity, has recently been implicated in the regulation of allergic reactions, although the underlying mechanism remains unclear. Here we show that Sirt1 negatively regulates FcεRI-stimulated mast cell activation and anaphylaxis through two mutually regulated pathways involving AMP-activated protein kinase (AMPK) and protein tyrosine phosphatase 1B (PTP1B). Mast cell-specific knockout of Sirt1 dampened AMPK-dependent suppression of FcεRI signaling, thereby augmenting mast cell activation both in vitro and in vivo. Sirt1 inhibition of FcεRI signaling also involved an alternative component, PTP1B, which attenuated the inhibitory AMPK pathway and conversely enhanced the stimulatory Syk pathway, uncovering a novel role of this phosphatase. Moreover, a Sirt1 activator resveratrol stimulated the inhibitory AMPK axis, with reciprocal suppression of the stimulatory PTP1B/Syk axis, thus potently inhibiting anaphylaxis. Overall, our results provide a molecular explanation for the beneficial role of Sirt1 in allergy and underscore a potential application of Sirt1 activators as a new class of anti-allergic agents.

  18. Therapeutic effects of the allosteric protein tyrosine phosphatase 1B inhibitor KY-226 on experimental diabetes and obesity via enhancements in insulin and leptin signaling in mice

    Directory of Open Access Journals (Sweden)

    Yuma Ito

    2018-05-01

    Full Text Available The anti-diabetic and anti-obesity effects of the allosteric protein tyrosine phosphatase 1B (PTP1B inhibitor 4-(biphenyl-4-ylmethylsulfanylmethyl-N-(hexane-1-sulfonylbenzoylamide (KY-226 were pharmacologically evaluated. KY-226 inhibited human PTP1B activity (IC50 = 0.28 μM, but did not exhibit peroxisome proliferator-activated receptor γ (PPARγ agonist activity. In rodent preadipocytes (3T3-L1, KY-226 up to 10 μM had no effects on adipocyte differentiation, whereas pioglitazone, a PPARγ agonist, markedly promoted it. In human hepatoma-derived cells (HepG2, KY-226 (0.3–10 μM increased the phosphorylated insulin receptor (pIR produced by insulin. In db/db mice, the oral administration of KY-226 (10 and 30 mg/kg/day, 4 weeks significantly reduced plasma glucose and triglyceride levels as well as hemoglobin A1c values without increasing body weight gain, while pioglitazone exerted similar effects with increases in body weight gain. KY-226 attenuated plasma glucose elevations in the oral glucose tolerance test. KY-226 also increased pIR and phosphorylated Akt in the liver and femoral muscle. In high-fat diet-induced obese mice, the oral administration of KY-226 (30 and 60 mg/kg/day, 4 weeks decreased body weight gain, food consumption, and fat volume gain with increases in phosphorylated STAT3 in the hypothalamus. In conclusion, KY-226 exerted anti-diabetic and anti-obesity effects by enhancing insulin and leptin signaling, respectively. Keywords: PTP1B inhibitor, Diabetes, Obesity, Allosteric inhibitor, db/db mouse

  19. Sesquiterpenoids with PTP1B Inhibitory Activity and Cytotoxicity from the Edible Mushroom Pleurotus citrinopileatus.

    Science.gov (United States)

    Tao, Qiao-Qiao; Ma, Ke; Bao, Li; Wang, Kai; Han, Jun-Jie; Wang, Wen-Zhao; Zhang, Jin-Xia; Huang, Chen-Yang; Liu, Hong-Wei

    2016-05-01

    One new perhydrobenzannulated 5,5-spiroketal sesquiterpene, pleurospiroketal F (1), as well as six new modified bisabolene sesquiterpenes pleurotins A-F (2-7) were isolated from solid-state fermentation of Pleurotus citrinopileatus. The structures of compounds 1-7 were determined by NMR and MS spectroscopic analysis. The absolute configuration of 1 was determined by X-ray diffraction analysis, while the absolute configurations of 3-7 were assigned using the in situ dimolybdenum circular dichroism method and circular dichroism data comparison. Protein tyrosine phosphatase 1B plays a crucial role as a negative regulator of the insulin-dependent signal cascades. Therefore, the protein tyrosine phosphatase 1B inhibitor can be used for treating type 2 diabetes mellitus and obesity. Compounds 2 and 6 showed moderate inhibitory effects on protein tyrosine phosphatase 1B with IC50 s of 32.1 µM and 30.5 µM, respectively. The kinetic study confirmed compound 2 to be a noncompetitive inhibitor. Compounds 1-7 did not show cytotoxic activity against cancer cell lines (IC50 > 50 µM). Georg Thieme Verlag KG Stuttgart · New York.

  20. Methodology for Extraction of Remaining Sodium of Used Sodium Containers

    International Nuclear Information System (INIS)

    Jung, Minhwan; Kim, Jongman; Cho, Youngil; Jeong, Jiyoung

    2014-01-01

    Sodium used as a coolant in the SFR (Sodium-cooled Fast Reactor) reacts easily with most elements due to its high reactivity. If sodium at high temperature leaks outside of a system boundary and makes contact with oxygen, it starts to burn and toxic aerosols are produced. In addition, it generates flammable hydrogen gas through a reaction with water. Hydrogen gas can be explosive within the range of 4.75 vol%. Therefore, the sodium should be handled carefully in accordance with standard procedures even though there is a small amount of target sodium remainings inside the containers and drums used for experiment. After the experiment, all sodium experimental apparatuses should be dismantled carefully through a series of draining, residual sodium extraction, and cleaning if they are no longer reused. In this work, a system for the extraction of the remaining sodium of used sodium drums has been developed and an operation procedure for the system has been established. In this work, a methodology for the extraction of remaining sodium out of the used sodium container has been developed as one of the sodium facility maintenance works. The sodium extraction system for remaining sodium of the used drums was designed and tested successfully. This work will contribute to an establishment of sodium handling technology for PGSFR. (Prototype Gen-IV Sodium-cooled Fast Reactor)

  1. Sodium transport through the cerebral sodium-glucose transporter exacerbates neuron damage during cerebral ischaemia.

    Science.gov (United States)

    Yamazaki, Yui; Harada, Shinichi; Wada, Tetsuyuki; Yoshida, Shigeru; Tokuyama, Shogo

    2016-07-01

    We recently demonstrated that the cerebral sodium-glucose transporter (SGLT) is involved in postischaemic hyperglycaemia-induced exacerbation of cerebral ischaemia. However, the associated SGLT-mediated mechanisms remain unclear. Thus, we examined the involvement of cerebral SGLT-induced excessive sodium ion influx in the development of cerebral ischaemic neuronal damage. [Na+]i was estimated according to sodium-binding benzofuran isophthalate fluorescence. In the in vitro study, primary cortical neurons were prepared from fetuses of ddY mice. Primary cortical neurons were cultured for 5 days before each treatment with reagents, and these survival rates were assessed using biochemical assays. In in vivo study, a mouse model of focal ischaemia was generated using middle cerebral artery occlusion (MCAO). In these experiments, treatment with high concentrations of glucose induced increment in [Na+]i, and this phenomenon was suppressed by the SGLT-specific inhibitor phlorizin. SGLT-specific sodium ion influx was induced using a-methyl-D-glucopyranoside (a-MG) treatments, which led to significant concentration-dependent declines in neuronal survival rates and exacerbated hydrogen peroxide-induced neuronal cell death. Moreover, phlorizin ameliorated these effects. Finally, intracerebroventricular administration of a-MG exacerbated the development of neuronal damage induced by MCAO, and these effects were ameliorated by the administration of phlorizin. Hence, excessive influx of sodium ions into neuronal cells through cerebral SGLT may exacerbate the development of cerebral ischaemic neuronal damage. © 2016 Royal Pharmaceutical Society.

  2. Final report on the safety assessment of potassium silicate, sodium metasilicate, and sodium silicate.

    Science.gov (United States)

    Elmore, Amy R

    2005-01-01

    Potassium Silicate, Sodium Metasilicate, and Sodium Silicate combine metal cations with silica to form inorganic salts used as corrosion inhibitors in cosmetics. Sodium Metasilicate also functions as a chelating agent and Sodium Silicate as a buffering and pH adjuster. Sodium Metasilicate is currently used in 168 formulations at concentrations ranging from 13% to 18%. Sodium Silicate is currently used in 24 formulations at concentrations ranging from 0.3% to 55%. Potassium Silicate and Sodium Silicate have been reported as being used in industrial cleaners and detergents. Sodium Metasilicate is a GRAS (generally regarded as safe) food ingredient. Aqueous solutions of Sodium Silicate species are a part of a chemical continuum of silicates based on an equilibrium of alkali, water, and silica. pH determines the solubility of silica and, together with concentration, determines the degree of polymerization. Sodium Silicate administered orally is readily absorbed from the alimentary canal and excreted in the urine. The toxicity of these silicates has been related to the molar ratio of SiO2/Na2O and the concentration being used. The Sodium Metasilicate acute oral LD50 ranged from 847 mg/kg in male rats to 1349.3 mg/kg in female rats and from 770 mg/kg in female mice to 820 mg/kg in male mice. Gross lesions of variable severity were found in the oral cavity, pharynx, esophagus, stomach, larynx, lungs, and kidneys of dogs receiving 0.25 g/kg or more of a commercial detergent containing Sodium Metasilicate; similar lesions were also seen in pigs administered the same detergent and dose. Male rats orally administered 464 mg/kg of a 20% solution containing either 2.0 or 2.4 to 1.0 ratio of sodium oxide showed no signs of toxicity, whereas doses of 1000 and 2150 mg/kg produced gasping, dypsnea, and acute depression. Dogs fed 2.4 g/kg/day of Sodium Silicate for 4 weeks had gross renal lesions but no impairment of renal function. Dermal irritation of Potassium Silicate, Sodium

  3. Sodium oxide aerosol filtration

    Energy Technology Data Exchange (ETDEWEB)

    Duverger de Cuy, G [DSN/SESTR, Centre de Cadarache, Saint-Paul-lez-Durance (France)

    1979-03-01

    In the scope of the sodium aerosol trapping research effort by the CEA/DSN, the retention capacity and yield were measured for very high efficiency fiberglass filters and several types of prefilters (cyclone agglomerator, fabric prefilters, water scrubbers). (author)

  4. Sodium oxide aerosol filtration

    International Nuclear Information System (INIS)

    Duverger de Cuy, G.

    1979-01-01

    In the scope of the sodium aerosol trapping research effort by the CEA/DSN, the retention capacity and yield were measured for very high efficiency fiberglass filters and several types of prefilters (cyclone agglomerator, fabric prefilters, water scrubbers). (author)

  5. Sodium distiller II

    International Nuclear Information System (INIS)

    Goncalves, A.C.; Castro, P.M. e; Torres, A.R.; Correa, S.M.

    1990-01-01

    A sodium distiller allows the evaluation of the sodium purity, contained in plants and circuits of Fast Reactors. The sodium distillers of the IEN Reactor's Department was developed initially as a prototype, for the testing of the distillation process and in a second step, as a equipment dedicated to attendance the operation of these circuits. This last one was build in stainless steel, with external heat, rotating crucible of nickel for four samples, purge system for pipe cleaning and a sight glass that permits the observation of the distillation during all the operation. The major advantage of this equipment is the short time to do a distillation operation, which permits its routine utilization. As a consequence of the development of the distillers and its auxiliary systems an important amount of new information was gathered concerning components and systems behaviour under high temperature, vacuum and sodium. (author)

  6. Sodium hypochlorite poisoning

    Science.gov (United States)

    ... that can cause choking and serious breathing problems. Symptoms of sodium hypochlorite poisoning may include: Burning, red eyes Chest pain Coma Coughing (from the fumes) Delirium Gagging sensation Low blood pressure Pain in the ...

  7. SGLT2 Inhibitors and the Diabetic Kidney.

    Science.gov (United States)

    Fioretto, Paola; Zambon, Alberto; Rossato, Marco; Busetto, Luca; Vettor, Roberto

    2016-08-01

    Diabetic nephropathy (DN) is the most common cause of end-stage renal disease worldwide. Blood glucose and blood pressure control reduce the risk of developing this complication; however, once DN is established, it is only possible to slow progression. Sodium-glucose cotransporter 2 (SGLT2) inhibitors, the most recent glucose-lowering oral agents, may have the potential to exert nephroprotection not only through improving glycemic control but also through glucose-independent effects, such as blood pressure-lowering and direct renal effects. It is important to consider, however, that in patients with impaired renal function, given their mode of action, SGLT2 inhibitors are less effective in lowering blood glucose. In patients with high cardiovascular risk, the SGLT2 inhibitor empagliflozin lowered the rate of cardiovascular events, especially cardiovascular death, and substantially reduced important renal outcomes. Such benefits on DN could derive from effects beyond glycemia. Glomerular hyperfiltration is a potential risk factor for DN. In addition to the activation of the renin-angiotensin-aldosterone system, renal tubular factors, including SGLT2, contribute to glomerular hyperfiltration in diabetes. SGLT2 inhibitors reduce sodium reabsorption in the proximal tubule, causing, through tubuloglomerular feedback, afferent arteriole vasoconstriction and reduction in hyperfiltration. Experimental studies showed that SGLT2 inhibitors reduced hyperfiltration and decreased inflammatory and fibrotic responses of proximal tubular cells. SGLT2 inhibitors reduced glomerular hyperfiltration in patients with type 1 diabetes, and in patients with type 2 diabetes, they caused transient acute reductions in glomerular filtration rate, followed by a progressive recovery and stabilization of renal function. Interestingly, recent studies consistently demonstrated a reduction in albuminuria. Although these data are promising, only dedicated renal outcome trials will clarify whether

  8. Liquid sodium oxygenmeter

    International Nuclear Information System (INIS)

    Jakes, D.; Fresl, M.; Svoboda, V.

    1979-02-01

    The results of test runs of two design varieties of liquid sodium oxygenmeter in sodium loops are described. The accuracy and sensitivity are discussed reached using this instrument within 1 and 10 p.p.m. of oxygen concentration. A change in the used reference system is proposed based on practical experiences and thermochemical calculations. Ceramic electrolyte corrosion is analysed and the possible interpretation of the corrosion effect on the galvanic cell electromotive force is suggested. (author)

  9. Too Much Sodium

    Centers for Disease Control (CDC) Podcasts

    This podcast is based on the February 2012 CDC Vital Signs report. Ninety percent of Americans age two and older eat too much sodium which can increase your risk for high blood pressure and often leads to heart disease and stroke, two leading causes of death in the US. Learn several small steps you can take to reduce the amount of sodium in your diet.

  10. Sodium fires and its extinguishment

    International Nuclear Information System (INIS)

    Mikhedov, V.G.

    1979-01-01

    The fire safety problems of NPP with sodium coolants in USSR are presented. The design of sodium reactors is made with premises with sodium coolants being hermetic and filled with nitrogen. Some engineering solutions of fire safety including design, elaboration and choice of construction and protection materials are presented. Some theoretical aspects of sodium burning are presented as well as methods of sodium fire extinguishing methods including the use of powder

  11. SGLT2 Inhibitors May Predispose to Ketoacidosis.

    Science.gov (United States)

    Taylor, Simeon I; Blau, Jenny E; Rother, Kristina I

    2015-08-01

    Sodium glucose cotransporter 2 (SGLT2) inhibitors are antidiabetic drugs that increase urinary excretion of glucose, thereby improving glycemic control and promoting weight loss. Since approval of the first-in-class drug in 2013, data have emerged suggesting that these drugs increase the risk of diabetic ketoacidosis. In May 2015, the Food and Drug Administration issued a warning that SGLT2 inhibitors may lead to ketoacidosis. Using PubMed and Google, we conducted Boolean searches including terms related to ketone bodies or ketoacidosis with terms for SGLT2 inhibitors or phlorizin. Priority was assigned to publications that shed light on molecular mechanisms whereby SGLT2 inhibitors could affect ketone body metabolism. SGLT2 inhibitors trigger multiple mechanisms that could predispose to diabetic ketoacidosis. When SGLT2 inhibitors are combined with insulin, it is often necessary to decrease the insulin dose to avoid hypoglycemia. The lower dose of insulin may be insufficient to suppress lipolysis and ketogenesis. Furthermore, SGLT2 is expressed in pancreatic α-cells, and SGLT2 inhibitors promote glucagon secretion. Finally, phlorizin, a nonselective inhibitor of SGLT family transporters decreases urinary excretion of ketone bodies. A decrease in the renal clearance of ketone bodies could also increase the plasma ketone body levels. Based on the physiology of SGLT2 and the pharmacology of SGLT2 inhibitors, there are several biologically plausible mechanisms whereby this class of drugs has the potential to increase the risk of developing diabetic ketoacidosis. Future research should be directed toward identifying which patients are at greatest risk for this side effect and also to optimizing pharmacotherapy to minimize the risk to patients.

  12. Development of sodium technology

    International Nuclear Information System (INIS)

    Hwang, Sung Tai; Nam, H. Y.; Choi, Y. D.

    2000-05-01

    The objective of present study is to produce the experimental data for development and verification of computer codes for development of LMR and to develop the preliminary technologies for the future large scale verification experiments. A MHD experimental test loop has been constructed for the quantitative analysis of the effect of magnetic field on the sodium flow and experiments are carried out for three EM pumps. The previous pressure drop correlations are evaluated using the experimental data obtained from the pressure drop experiment in a 19-pin fuel assembly with wire spacer. An dimensionless variable is proposed to describe the amplitude and frequency of the fluctuation of free surface using the experimental data obtained from free surface experimental apparatus and an empirical correlation is developed using this dimensionless variable. An experimental test loop is constructed to measure the flow characteristics in IHX shell side and the local pressure drop in fuel assembly, and to test the vibration behaviour of fuel pins due to flow induced vibration. The sodium two-phase flow measuring technique using the electromagnetic flowmeter is developed and the sodium differential pressure drop measuring technique using the method of direct contact of sodium and oil is established. The work on the analysis of sodium fire characteristics and produce data for vlidation of computer code is performed. Perfect reopen time of self plugged leak path was observed to be about 130 minutes after water leak initiation. Reopen shape of a specimen appeared to be double layer of circular type, and reopen size of this specimen surface was about 2mm diameter on sodium side. In small water leakage experiments, the following correlation equation about the reopen time between sodium temperature and initial leak rate was obtained, τ c = δ·g -0.83 ·10 (3570/T Na -3.34) , in 400-500 deg C of liquid sodium atmosphere. The characteristics of pressure propagation and gas flow, and

  13. Development of sodium technology

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Tai; Nam, H Y; Choi, Y D [and others

    2000-05-01

    The objective of present study is to produce the experimental data for development and verification of computer codes for development of LMR and to develop the preliminary technologies for the future large scale verification experiments. A MHD experimental test loop has been constructed for the quantitative analysis of the effect of magnetic field on the sodium flow and experiments are carried out for three EM pumps. The previous pressure drop correlations are evaluated using the experimental data obtained from the pressure drop experiment in a 19-pin fuel assembly with wire spacer. An dimensionless variable is proposed to describe the amplitude and frequency of the fluctuation of free surface using the experimental data obtained from free surface experimental apparatus and an empirical correlation is developed using this dimensionless variable. An experimental test loop is constructed to measure the flow characteristics in IHX shell side and the local pressure drop in fuel assembly, and to test the vibration behaviour of fuel pins due to flow induced vibration. The sodium two-phase flow measuring technique using the electromagnetic flowmeter is developed and the sodium differential pressure drop measuring technique using the method of direct contact of sodium and oil is established. The work on the analysis of sodium fire characteristics and produce data for vlidation of computer code is performed. Perfect reopen time of self plugged leak path was observed to be about 130 minutes after water leak initiation. Reopen shape of a specimen appeared to be double layer of circular type, and reopen size of this specimen surface was about 2mm diameter on sodium side. In small water leakage experiments, the following correlation equation about the reopen time between sodium temperature and initial leak rate was obtained, {tau}{sub c} = {delta}{center_dot}g{sup -0.83}{center_dot}10{sup (3570/T{sub Na}-3.34)}, in 400-500 deg C of liquid sodium atmosphere. The characteristics

  14. SGLT-2 Inhibitors and Cardiovascular Risk

    DEFF Research Database (Denmark)

    Cavender, Matthew A; Norhammar, Anna; Birkeland, Kåre I

    2018-01-01

    BACKGROUND: Prior studies found patients treated with sodium-glucose co-transporter-2 inhibitors (SGLT-2i) had lower rates of death and heart failure (HF). Whether the benefits of SGLT-2i vary based upon the presence of cardiovascular disease (CVD) is unknown. OBJECTIVES: This study sought...... to determine the association between initiation of SGLT-2i therapy and HF or death in patients with and without CVD. METHODS: The CVD-REAL (Comparative Effectiveness of Cardiovascular Outcomes in New Users of SGLT-2 Inhibitors) study was a multinational, observational study in which adults with type 2 diabetes...... evidence regarding the benefit of SGLT-2i in patients without established CVD. (Comparative Effectiveness of Cardiovascular Outcomes in New Users of SGLT-2 Inhibitors [CVD-REAL]; NCT02993614)....

  15. Action of insecticidal N-alkylamides at site 2 of the voltage-sensitive sodium channel

    International Nuclear Information System (INIS)

    Ottea, J.A.; Payne, G.T.; Soderlund, D.M.

    1990-01-01

    Nine synthetic N-alkylamides were examined as inhibitors of the specific binding of [ 3 H]batrachotoxinin A 20α-benzoate ([ 3 H]BTX-B) to sodium channels and as activators of sodium uptake in mouse brain synaptoneurosomes. In the presence of scorpion (Leiurus quinquestriatus) venom, the six insecticidal analogues were active as both inhibitors of [ 3 H]BTX-B binding and stimulators of sodium uptake. These findings are consistent with an action of these compounds at the alkaloid activator recognition site (site 2) of the voltage-sensitive sodium channel. The three noninsecticidal N-alkylamides also inhibited [ 3 H]BTX-B binding but were ineffective as activators of sodium uptake. Concentration-response studies revealed that some of the insecticidal amides also enhanced sodium uptake through a second, high-affinity interaction that does not involve site 2, but this secondary effect does not appear to be correlated with insecticidal activity. The activities of N-alkylamides as sodium channel activators were influenced by the length of the alkenyl chain and the location of unsaturation within the molecule. These results further define the actions of N-alkylamides on sodium channels and illustrate the significance of the multiple binding domains of the sodium channel as target sites for insect control agents

  16. Discovery of non-peptidic small molecule inhibitors of cyclophilin D as neuroprotective agents in Aβ-induced mitochondrial dysfunction

    Science.gov (United States)

    Park, Insun; Londhe, Ashwini M.; Lim, Ji Woong; Park, Beoung-Geon; Jung, Seo Yun; Lee, Jae Yeol; Lim, Sang Min; No, Kyoung Tai; Lee, Jiyoun; Pae, Ae Nim

    2017-10-01

    Cyclophilin D (CypD) is a mitochondria-specific cyclophilin that is known to play a pivotal role in the formation of the mitochondrial permeability transition pore (mPTP).The formation and opening of the mPTP disrupt mitochondrial homeostasis, cause mitochondrial dysfunction and eventually lead to cell death. Several recent studies have found that CypD promotes the formation of the mPTP upon binding to β amyloid (Aβ) peptides inside brain mitochondria, suggesting that neuronal CypD has a potential to be a promising therapeutic target for Alzheimer's disease (AD). In this study, we generated an energy-based pharmacophore model by using the crystal structure of CypD—cyclosporine A (CsA) complex and performed virtual screening of ChemDiv database, which yielded forty-five potential hit compounds with novel scaffolds. We further tested those compounds using mitochondrial functional assays in neuronal cells and identified fifteen compounds with excellent protective effects against Aβ-induced mitochondrial dysfunction. To validate whether these effects derived from binding to CypD, we performed surface plasmon resonance (SPR)—based direct binding assays with selected compounds and discovered compound 29 was found to have the equilibrium dissociation constants (KD) value of 88.2 nM. This binding affinity value and biological activity correspond well with our predicted binding mode. We believe that this study offers new insights into the rational design of small molecule CypD inhibitors, and provides a promising lead for future therapeutic development.

  17. Sodium fire tests for investigating the sodium leak in Monju

    International Nuclear Information System (INIS)

    Seino, Hiroshi; Miyahara, Shinya; Miyake, Osamu; Tanabe, Hiromi

    1996-01-01

    As a part of the work for investigating the sodium leak accident which occurred in Monju on December 8, 1995, three tests, (1) sodium leak test, (2) sodium fire test-I, and (3) sodium fire test-II, were carried out at OEC/PNC. Main objectives of these tests are to confirm leak and burning behavior of sodium from the damaged thermometer, and effects of the sodium fire on integrity of the surrounding structure, etc. The main conclusions obtained from the tests are shown as below. 1) Average sodium leak rate obtained from the sodium leak test was about 50 g/sec. This was equivalent to the value estimated from level change in the sodium overflow tank in the Monju accident. 2) Observation from video cameras in the sodium fire tests revealed that in early stages of sodium leak, sodium dropped down out of the flexible tube of thermometer in drips. This dripping and burning were expanded in range as sodium splashed on the duct. 3) Though, in the sodium fire test-I, there was a decrease of about 1 mm at a thickness of the burning pan in the vicinity in just under in the leak point, there were completely no crack and failure. In the meantime, in the sodium fire test-II the six open holes were found in the floor liner. By this liner failure, the reaction between sodium and concrete might take place. At present, while the detailed evaluation on the sodium fire test-II has been mainly carried out, the investigation for clarifying the cause of the liner failure has been also carried out. (author)

  18. The combustion of sodium

    International Nuclear Information System (INIS)

    Newman, R.N.

    1978-01-01

    The burning rates of sodium in the form of vapour jets, droplets, sprays and unconfined and confined pools have been reviewed. Attention has been paid to assessing the value of models in the various combustion modes. Additional models have been constructed for the descriptions of laminar and turbulent vapour jets, stationary droplets, forced convection over ambient pool fires together with correlations for peak pressures in confined pool environments. Where appropriate experiments with sodium have not been conducted, the likely behaviour is predicted by comparison with the burning of other fuels, particularly in the field of large free ambient fires. Some areas where further knowledge is required are highlighted. (author)

  19. Sodium cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hokkyo, N; Inoue, K; Maeda, H

    1968-11-21

    In a sodium cooled fast neutron reactor, an ultrasonic generator is installed at a fuel assembly hold-down mechanism positioned above a blanket or fission gas reservoir located above the core. During operation of the reactor an ultrsonic wave of frequency 10/sup 3/ - 10/sup 4/ Hz is constantly transmitted to the core to resonantly inject the primary bubble with ultrasonic energy to thereby facilitate its growth. Hence, small bubbles grow gradually to prevent the sudden boiling of sodium if an accident occurs in the cooling system during operation of the reactor.

  20. Too Much Sodium

    Centers for Disease Control (CDC) Podcasts

    2012-02-07

    This podcast is based on the February 2012 CDC Vital Signs report. Ninety percent of Americans age two and older eat too much sodium which can increase your risk for high blood pressure and often leads to heart disease and stroke, two leading causes of death in the US. Learn several small steps you can take to reduce the amount of sodium in your diet.  Created: 2/7/2012 by Centers for Disease Control and Prevention (CDC).   Date Released: 2/7/2012.

  1. Effect of some metabolic inhibitors on citric acid production Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, P.K.; Bhatt, C.S.; Viswanathan, L.

    1983-09-01

    Stationary cultures of Aspergillus niger grown on a synthetic medium have been used to study the effect of some metabolic inhibitors on citric acid production. Addition of 0.05 to 1 mM sodium malonate or 0.01 to 0.1 mM potassium ferricyanide, iodoacetate, sodium azide, soldium arsenate or sodium fluoride stimulated citric acid production (3.6 to 45%), but not total titratable acids. Addition of higher concentrations (0.2 to 10 mM) of later inhibitors caused a marked inhibition of fungal growth and citric acid production. The implications of these preliminary findings are discussed. (Refs. 25).

  2. Optimization of extraction parameters of PTP1β (protein tyrosine phosphatase 1β), inhibitory polyphenols, and anthocyanins from Zea mays L. using response surface methodology (RSM).

    Science.gov (United States)

    Hwang, Seung Hwan; Kwon, Shin Hwa; Wang, Zhiqiang; Kim, Tae Hyun; Kang, Young-Hee; Lee, Jae-Yong; Lim, Soon Sung

    2016-08-26

    Protein tyrosine phosphatase expressed in insulin-sensitive tissues (such as liver, muscle, and adipose tissue) has a key role in the regulation of insulin signaling and pathway activation, making protein tyrosine phosphatase a promising target for the treatment of type 2 diabetes mellitus and obesity and response surface methodology (RSM) is an effective statistical technique for optimizing complex processes using a multi-variant approach. In this study, Zea mays L. (Purple corn kernel, PCK) and its constituents were investigated for protein tyrosine phosphatase 1β (PTP1β) inhibitory activity including enzyme kinetic study and to improve total yields of anthocyanins and polyphenols, four extraction parameters, including temperature, time, solid-liquid ratio, and solvent volume, were optimized by RSM. Isolation of seven polyphenols and five anthocyanins was achieved by PTP1β assay. Among them, cyanidin-3-(6"malonylglucoside) and 3'-methoxyhirsutrin showed the highest PTP1β inhibition with IC50 values of 54.06 and 64.04 μM, respectively and 4.52 mg gallic acid equivalent/g (GAE/g) of total polyphenol content (TPC) and 43.02 mg cyanidin-3-glucoside equivalent/100 g (C3GE/100g) of total anthocyanin content (TAC) were extracted at 40 °C for 8 h with a 33 % solid-liquid ratio and a 1:15 solvent volume. Yields were similar to predictions of 4.58 mg GAE/g of TPC and 42.28 mg C3GE/100 g of TAC. These results indicated that PCK and 3'-methoxyhirsutrin and cyanidin-3-(6"malonylglucoside) might be active natural compounds and could be apply by optimizing of extraction process using response surface methodology.

  3. In vitro anti-diabetic activity of flavonoids and pheophytins from Allophylus cominia Sw . on PTP1B, DPPIV, alpha-glucosidase and alpha-amylase enzymes.

    Science.gov (United States)

    Semaan, D G; Igoli, J O; Young, L; Marrero, E; Gray, A I; Rowan, E G

    2017-05-05

    Ethno-botanical information from diabetic patients in Cuba led to the identification of Allophylus cominia as a possible source of new drugs for the treatment of type 2 diabetes mellitus (T2-DM). Chemical characterization of the extracts from A. cominia was carried out using chromatographic and spectroscopic methods. The extracts were tested for their activity on PTP1B, DPPIV, α-glucosidase enzymes and α-amylase. The flavonoid rich fractions from A. cominia inhibited DPPIV enzyme (75.3±2.33%) at 30µg/ml and produced a concentration-dependent inhibition against DPPIV with a Ki value of 2.6µg/ml. At 30µg/ml, flavonoids and pheophytins extracts significantly inhibited PTP1B enzyme (100±2.6% and 68±1% respectively). The flavonoids, pheophytin A and pheophytin B fractions showed significant concentration-dependent inhibition against PTP1B with Ki values of 3µg/ml, 0.64µg/ml and 0.88µg/ml respectively. At 30µg/ml, the flavonoid fraction significantly inhibited α-glucosidase enzyme (86±0.3%) in a concentration-dependent pattern with a Ki value of 2µg/ml. None of the fractions showed significant effects on α-amylase. Fatty acids, tannins, pheophytins A and B, and a mixture of flavonoids were detected in the methanolic extract from A. cominia. The identified flavonoids were mearnsitrin, quercitrin, quercetin-3-alloside, and naringenin-7-glucoside. The pharmacological effects of the extracts from A. cominia earlier observed in experimental diabetic models was confirmed in this study. Thus a new drug or formulation for the treatment of T2-DM could be developed from A. cominia. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  4. Liraglutide Exerts Antidiabetic Effect via PTP1B and PI3K/Akt2 Signaling Pathway in Skeletal Muscle of KKAy Mice

    Directory of Open Access Journals (Sweden)

    Wenjun Ji

    2014-01-01

    Full Text Available Background. Liraglutide (a glucagon-like peptide 1 analog was used for the treatment of type 2 diabetes (T2DM which could produce glucose-dependent insulin secretion. Aim. The aim was to investigate whether liraglutide could improve myofibril and mitochondria injury in skeletal muscle and the mechanisms in diabetic KKAy mice. Method. We divided the male KKAy mice into 2 groups: liraglutide group (250 μg/kg/day liraglutide subcutaneous injection and model group; meanwhile, the male C57BL/6J mice were considered as the control. After 6 weeks, the ultrastructure of skeletal muscle was observed by electron microscope. The gene expressions of protein tyrosine phosphatase 1B (PTP1B, phosphatidylinositol 3-kinase (PI3K, and glucose transporter type 4 (GLUT4 were determined by real-time PCR. The protein levels of the above molecules and phospho-Akt2 (p-Akt2 were measured by Western blot. Results. Liraglutide significantly ameliorated the injury of mitochondria by increasing the number (+441% and the area (+113% of mitochondria and mitochondrial area/100 µm2 (+396% in skeletal muscle of KKAy mice. The results of real-time PCR and Western blot showed that liraglutide downregulated PTP1B while it upregulated PI3K and GLUT4 (P<0.01. The protein level of p-Akt2/Akt2 was also increased (P<0.01. Conclusion. These results revealed that liraglutide could improve myofibril and mitochondria injury in skeletal muscle against T2DM via PTP1B and PI3K/Akt2 signaling pathway.

  5. Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis.

    Science.gov (United States)

    Zhou, Hao; Zhang, Ying; Hu, Shunying; Shi, Chen; Zhu, Pingjun; Ma, Qiang; Jin, Qinhua; Cao, Feng; Tian, Feng; Chen, Yundai

    2017-08-01

    The cardiac microvascular system, which is primarily composed of monolayer endothelial cells, is the site of blood supply and nutrient exchange to cardiomyocytes. However, microvascular ischemia/reperfusion injury (IRI) following percutaneous coronary intervention is a woefully neglected topic, and few strategies are available to reverse such pathologies. Here, we studied the effects of melatonin on microcirculation IRI and elucidated the underlying mechanism. Melatonin markedly reduced infarcted area, improved cardiac function, restored blood flow, and lower microcirculation perfusion defects. Histological analysis showed that cardiac microcirculation endothelial cells (CMEC) in melatonin-treated mice had an unbroken endothelial barrier, increased endothelial nitric oxide synthase expression, unobstructed lumen, reduced inflammatory cell infiltration, and less endothelial damage. In contrast, AMP-activated protein kinase α (AMPKα) deficiency abolished the beneficial effects of melatonin on microvasculature. In vitro, IRI activated dynamin-related protein 1 (Drp1)-dependent mitochondrial fission, which subsequently induced voltage-dependent anion channel 1 (VDAC1) oligomerization, hexokinase 2 (HK2) liberation, mitochondrial permeability transition pore (mPTP) opening, PINK1/Parkin upregulation, and ultimately mitophagy-mediated CMEC death. However, melatonin strengthened CMEC survival via activation of AMPKα, followed by p-Drp1 S616 downregulation and p-Drp1 S37 upregulation, which blunted Drp1-dependent mitochondrial fission. Suppression of mitochondrial fission by melatonin recovered VDAC1-HK2 interaction that prevented mPTP opening and PINK1/Parkin activation, eventually blocking mitophagy-mediated cellular death. In summary, this study confirmed that melatonin protects cardiac microvasculature against IRI. The underlying mechanism may be attributed to the inhibitory effects of melatonin on mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis via activation

  6. Sodium fluxes in sweet pepper exposed to varying sodium concentrations

    NARCIS (Netherlands)

    Blom-Zandstra, M.; Vogelzang, S.A.; Veen, B.W.

    1998-01-01

    The sodium transport and distribution of sweet pepper (Capsicum annuum L.) under saline conditions were studied after transferring the plants to a sodium-free nutrient solution. Sodium stress up to 60 mM did not affect the growth of sweet pepper, as it appears able to counteract the unfavourable

  7. Hydration status regulates sodium flux and inflammatory pathways through epithelial sodium channel (ENaC) in the skin.

    Science.gov (United States)

    Xu, Wei; Hong, Seok Jong; Zeitchek, Michael; Cooper, Garry; Jia, Shengxian; Xie, Ping; Qureshi, Hannan A; Zhong, Aimei; Porterfield, Marshall D; Galiano, Robert D; Surmeier, D James; Mustoe, Thomas A

    2015-03-01

    Although it is known that the inflammatory response that results from disruption of epithelial barrier function after injury results in excessive scarring, the upstream signals remain unknown. It has also been observed that epithelial disruption results in reduced hydration status and that the use of occlusive dressings that prevent water loss from wounds decreases scar formation. We hypothesized that hydration status changes sodium homeostasis and induces sodium flux in keratinocytes, which result in activation of pathways responsible for keratinocyte-fibroblast signaling and ultimately lead to activation of fibroblasts. Here, we demonstrate that perturbations in epithelial barrier function lead to increased sodium flux in keratinocytes. We identified that sodium flux in keratinocytes is mediated by epithelial sodium channels (ENaCs) and causes increased secretion of proinflammatory cytokines, which activate fibroblast via the cyclooxygenase 2 (COX-2)/prostaglandin E2 (PGE2) pathway. Similar changes in signal transduction and sodium flux occur by increased sodium concentration, which simulates reduced hydration, in the media in epithelial cultures or human ex vivo skin cultures. Blockade of ENaC, prostaglandin synthesis, or PGE2 receptors all reduce markers of fibroblast activation and collagen synthesis. In addition, employing a validated in vivo excessive scar model in the rabbit ear, we demonstrate that utilization of either an ENaC blocker or a COX-2 inhibitor results in a marked reduction in scarring. Other experiments demonstrate that the activation of COX-2 in response to increased sodium flux is mediated through the PIK3/Akt pathway. Our results indicate that ENaC responds to small changes in sodium concentration with inflammatory mediators and suggest that the ENaC pathway is a potential target for a strategy to prevent fibrosis.

  8. Sodium hydride precipitation in sodium cold traps

    International Nuclear Information System (INIS)

    McPheeters, C.C.; Raue, D.J.

    1979-10-01

    A series of experiments have been performed to test a calculational model for precipitation of NaH in sodium cold traps. The calculational model, called ACTMODEL, is a computer simulation that uses the system geometry and operating conditions as input to calculate a mass transfer coefficient and the distribution of NaH in a cold trap. The ACTMODEL was tested using an analytical cold trap (ACT) that is simple and essentially one-dimensional. The ACT flow and temperature profile may be controlled at any desired condition. The ACT was analyzed destructively after each test to measure the actual NaH distribution. Excellent agreement was obtained between the ACTMODEL simulations and the experiments

  9. Sodium hydride precipitation in sodium cold traps

    International Nuclear Information System (INIS)

    McPheeters, C.C.; Raue, D.J.

    1980-06-01

    A series of experiments have been performed to test a calculational model for precipitation of NaH in sodium cold traps. The calculational model, called ACTMODEL, is a computer simulation that uses the system geometry and operating conditions as input to calculate a mass-transfer coefficient and the distribution of NaH in a cold trap. The ACTMODEL was tested using an analytical cold trap (ACT) that is simple and essentially one-dimensional. The ACT flow and temperature profile can be controlled at any desired condition. The ACT was analyzed destructively after each test to measure the actual NaH distribution. Excellent agreement was obtained between the ACTMODEL simulations and the experiments. Mass-transfer coefficients ranging upward from 6 x 10 -5 m/s were measured in both packless and packed traps. As much as a fourfold increase in precipitation surface area was observed with increasing amount of NaH deposited. 11 figures, 2 tables

  10. Thermophysical properties of sodium

    International Nuclear Information System (INIS)

    Harant, M.

    1978-01-01

    Substitution, inverse and substitution inverse relations in form of regression polynomials were used in calculating saturation pressure and density for thermodynamic and transport properties determination of sodium. Program UNISOAUT/A3 was used in calculating regression polynomials coefficients. (J.P.)

  11. Extinction of sodium fires

    International Nuclear Information System (INIS)

    Malet, J.C.; Spagna, F.

    1989-01-01

    This paper presents how, starting from a knowledge of sodium ignition and burning, principles for extinction (smothering catch trays, leak recuperation systems, powders) can be developed. These techniques applied in Superphenix 1 and PEC reactors have been tested in the ESMERALDA experimental program which is a joint French/Italian project. (author)

  12. Decomposition of Sodium Tetraphenylborate

    International Nuclear Information System (INIS)

    Barnes, M.J.

    1998-01-01

    The chemical decomposition of aqueous alkaline solutions of sodium tetraphenylborate (NaTPB) has been investigated. The focus of the investigation is on the determination of additives and/or variables which influence NaTBP decomposition. This document describes work aimed at providing better understanding into the relationship of copper (II), solution temperature, and solution pH to NaTPB stability

  13. Sodium purification in Rapsodie

    International Nuclear Information System (INIS)

    Giraud, B.

    1968-01-01

    This report is one of a series of publications presenting the main results of tests carried out during the start-up of the first french fast neutron reactor: Rapsodie. The article presents the sodium purification techniques used in the reactor cooling circuits both from the constructional point of view and with respect to results obtained during the first years working. (author) [fr

  14. The medical sodium chloride

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.

    2002-01-01

    In the institute was investigated the chemical composition of rock salt of some deposits of Tajikistan and was show the presence in it admixture of ions of Ca 2 + , Mg 2 + a nd SO 2 - a nd absence of heavy metals, ammonium salts, iron, potassium and arsenic. Was elaborated the fundamental instrument-technologic scheme of sodium chloride receiving

  15. Creep in sodium

    International Nuclear Information System (INIS)

    Charnock, W.; Cordwell, J.E.

    1978-03-01

    Available information on the creep of austenitic, ferritic and Alloy-800 type steels in liquid sodium is critically reviewed. Creep properties of stainless steels can be affected by element transfer and corrosion. At reactor structural component temperatures environmental effects are likely to be less important than changes due to thermal ageing. At high clad temperatures (700 0 C) decarburisation may cause the loss of strength and ductility in unstabilised steels while cavity formation may cause embrittlement in stabilised steels. The properties of Alloy 800 are, in some experiments, found to deteriorate while in others they are enhanced. This may be a consequence of the metallurgical complexity of the material or arise from the nature of the various techniques employed. Low alloy ferritic steels tend to decarburise in sodium at temperatures greater than 500 0 C and this leads to loss of strength and an increase in ductility. High alloy ferritics are immune to this effect and appear to be able to tolerate a degree of carburisation. Although intergranular cracking may be enhanced in liquid sodium the mechanical consequences are not significant and evidence for the existence of an embrittlement effect not associated with element transfer or corrosion is weak. Stress and strain may enhance element transfer at crack tips. However in real cracks the gettering or supply action of the crack faces conditions the chemistry of the cracks in sodium and protects the crack tip from element transfer. Thus creep crack extension rates should be independent of changes in bulk coolant chemistry. (author)

  16. Effect of protocatechuic acid on insulin responsiveness and inflammation in visceral adipose tissue from obese individuals: possible role for PTP1B.

    Science.gov (United States)

    Ormazabal, Paulina; Scazzocchio, Beatrice; Varì, Rosaria; Santangelo, Carmela; D'Archivio, Massimo; Silecchia, Gianfranco; Iacovelli, Annunziata; Giovannini, Claudio; Masella, Roberta

    2018-05-16

    The occurrence of chronic inflammation in visceral adipose tissue (VAT) in obese subjects precipitates the development of insulin resistance and type 2 diabetes (T2D). Anthocyanins and their main metabolite protocatechuic acid (PCA) have been demonstrated to stimulate insulin signaling in human adipocytes. The aim of this study was to investigate whether PCA is able to modulate insulin responsiveness and inflammation in VAT from obese (OB) and normal weight (NW) subjects. VATs obtained from NW and OB subjects were incubated or not (control) with 100 μM PCA for 24 h. After incubation, tissues untreated and treated with PCA were acutely stimulated with insulin (20 nM, 20 min). PTP1B, p65 NF-κB, phospho-p65 NF-κB, IRS-1, IRβ, Akt, GLUT4 as well as basal and insulin-stimulated Tyr-IRS-1 and Ser-Akt phosphorylations were assessed by Western blotting in NW- and OB-VAT. Samples were assessed for PTP1B activity and adipocytokine secretion. PCA restored insulin-induced phosphorylation in OB-VAT by increasing phospho-Tyr-IRS-1 and phospho-Ser-Akt after insulin stimulation as observed in NW-VAT (p < 0.05). PTP1B activity was lower in OB-VAT treated with PCA with respect to untreated (p < 0.05). Compared to non-treated tissues, PCA reduced phospho-p65 NF-κB and IL-6 in OB-VAT, and IL-1β in NW-VAT (p < 0.05); and increased adiponectin secretion in NW-VAT (p < 0.05). PCA restores the insulin responsiveness of OB-VAT by increasing IRS-1 and Akt phosphorylation which could be related with the lower PTP1B activity found in PCA-treated OB-VAT. Furthermore, PCA diminishes inflammation in VAT. These results support the beneficial role of an anthocyanin-rich diet against inflammation and insulin resistance in obesity.

  17. Camellianols A-G, Barrigenol-like Triterpenoids with PTP1B Inhibitory Effects from the Endangered Ornamental Plant Camellia crapnelliana.

    Science.gov (United States)

    Xiong, Juan; Wan, Jiang; Ding, Jie; Wang, Pei-Pei; Ma, Guang-Lei; Li, Jia; Hu, Jin-Feng

    2017-11-22

    Seven new naturally occurring barrigenol-like compounds, camellianols A-G (1-7), and 10 known triterpenoids were isolated from the twigs and leaves of the cultivated endangered ornamental plant Camellia crapnelliana. According to the ECD octant rule for saturated cyclohexanones, the absolute configurations of camellianols D (4) and E (5) were defined. The backbones of the remaining new isolates are assumed to have the same absolute configuration as compounds 4, 5, and harpullone (12). Compounds 2, 3, 9, 10, 13, and 16 exhibited inhibitory effects on the protein tyrosine phosphatase 1B (PTP1B) enzyme, with IC 50 values less than 10 μM.

  18. Magterpenoids A-C, Three Polycyclic Meroterpenoids with PTP1B Inhibitory Activity from the Bark of Magnolia officinalis var. biloba.

    Science.gov (United States)

    Li, Chuan; Li, Chuang-Jun; Ma, Jie; Chen, Fang-You; Li, Li; Wang, Xiao-Liang; Ye, Fei; Zhang, Dong-Ming

    2018-06-15

    Magterpenoid A (1), possessing a rare 4,6,11-trioxatricyclo[5.3.1.0 1,5 ]undecane framework with an irregular monoterpenoid moiety, magterpenoid B (2), with an unprecedented 6/6/6/6 polycyclic skeleton, and magterpenoid C (3), a novel terpenoid quinone with a C6-C3 unit, were isolated from the bark of Magnolia officinalis var. biloba. Plausible biogenetic pathways of 1-3 are presented. Compounds 1 and 3 exhibited significant PTP1B inhibitory activities with IC 50 values of 1.44 and 0.81 μM, respectively.

  19. Technology for sodium purity control

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ji Young; Kim, B. H.; Kim, T. J. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-10-01

    When sodium is used as heat transfer fluid, the plugging in coolant flow, the corrosion of structure material and the transfer of radioactive material caused by the impurities in sodium are worth considerable. Accordingly, these impurities must be monitored and controlled continuously by sodium purification devices in the heat transfer system which sodium is used as coolant. Sodium purification loop was constructed for the purpose of accumulating the technology for purity control of the coolant, developing and verifying further efficient instruments for sodium purification. The plugging meter and the cold trap is used as the implement for measuring and controlling the oxygen and the hydrogen, the main impurities in sodium coolant. They are capable of excellent performance as the implements which could detect and monitor the impurities to the concentration limit required for nuclear reactor. Sodium purification loop could be used variably according to the experimental purpose. 18 refs., 34 figs., 8 tabs. (Author)

  20. The effect of histone deacetylase inhibitors on AHSP expression

    Science.gov (United States)

    Ziari, Katayoun; Ranjbaran, Reza; Nikouyan, Negin

    2018-01-01

    Alpha-hemoglobin stabilizing protein (AHSP) is a molecular chaperone that can reduce the damage caused by excess free α-globin to erythroid cells in patients with impaired β-globin chain synthesis. We assessed the effect of sodium phenylbutyrate and sodium valproate, two histone deacetylase inhibitors (HDIs) that are being studied for the treatment of hemoglobinopathies, on the expression of AHSP, BCL11A (all isoforms), γ-globin genes (HBG1/2), and some related transcription factors including GATA1, NFE2, EKLF, KLF4, and STAT3. For this purpose, the K562 cell line was cultured for 2, 4, and 6 days in the presence and absence of sodium phenylbutyrate and sodium valproate. Relative real-time qRT-PCR analysis of mRNA levels was performed to determine the effects of the two compounds on gene expression. Expression of all target mRNAs increased significantly (p sodium valproate had a more considerable effect than sodium phenylbutyrate (p sodium valproate after 6 days. Both compounds repressed the expression of BCL11A (-XL, -L, -S) and up-regulated GATA1, NFE2, EKLF, KLF4, STAT3, AHSP, and γ-globin genes expression. Moreover, sodium valproate showed a stronger effect on repressing BCL11A and escalating the expression of other target genes. The findings of this in vitro experiment could be considered in selecting drugs for clinical use in patients with β-hemoglobinopathies. PMID:29389946

  1. Slicing sodium from bakery products

    NARCIS (Netherlands)

    Noort, M.

    2012-01-01

    The need for sodium reduction in our diet is clear to consumers, dieticians and food manufacturers. As sodium concentration has a strengthening effect on gluten, sodium reduction decreases dough mixing tolerance, dough resistance and induces dough stickiness. In particular, the latter may cause

  2. Safety measuring for sodium handling

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ji Young; Jeong, K C; Kim, T J; Kim, B H; Choi, J H

    2001-09-01

    This is the report for the safety measures of sodium handling. These contents are prerequisites for the development of sodium technology and thus the workers participate in sodium handling and experiments have to know them perfectly. As an appendix, the relating parts of the laws are presented.

  3. SGLT2 inhibitors: are they safe?

    Science.gov (United States)

    Filippas-Ntekouan, Sebastian; Filippatos, Theodosios D; Elisaf, Moses S

    2018-01-01

    Sodium-glucose linked transporter type 2 (SGLT2) inhibitors are a relatively new class of antidiabetic drugs with positive cardiovascular and kidney effects. The aim of this review is to present the safety issues associated with SGLT2 inhibitors. Urogenital infections are the most frequently encountered adverse events, although tend to be mild to moderate and are easily manageable with standard treatment. Although no increased acute kidney injury risk was evident in the major trials, the mechanism of action of these drugs requires caution when they are administered in patients with extracellular volume depletion or with drugs affecting renal hemodynamics. Canagliflozin raised the risk of amputations and the rate of fractures in the CANVAS trial, although more data are necessary before drawing definite conclusions. The risk of euglycemic diabetic ketoacidosis seems to be minimal when the drugs are prescribed properly. Regarding other adverse events, SGLT2 inhibitors do not increase the risk of hypoglycemia even when co-administered with insulin, but a decrease in the dose of sulphonylureas may be needed. The available data do not point to a causative role of SGLT2 inhibitors on malignancy risk, however, these drugs should be used with caution in patients with known hematuria or history of bladder cancer. SGLT2 inhibitors seem to be safe and effective in the treatment of diabetes but more studies are required to assess their long-term safety.

  4. Intracellular sodium hydrogen exchange inhibition and clinical myocardial protection.

    Science.gov (United States)

    Mentzer, Robert M; Lasley, Robert D; Jessel, Andreas; Karmazyn, Morris

    2003-02-01

    Although the mechanisms underlying ischemia/reperfusion injury remain elusive, evidence supports the etiologic role of intracellular calcium overload and oxidative stress induced by reactive oxygen species. Activation of the sodium hydrogen exchanger (NHE) is associated with intracellular calcium accumulation. Inhibition of the NHE-1 isoform may attenuate the consequences of this injury. Although there is strong preclinical and early clinical evidence that NHE inhibitors may be cardioprotective, definitive proof of this concept in humans awaits the results of ongoing clinical trials.

  5. Relationship between plasma growth hormone concentration and cellular sodium transport in acromegaly

    Energy Technology Data Exchange (ETDEWEB)

    Herlitz, H.; Jonsson, O.; Bengtsson, B.-Aa. (Departments of Nephrology, Urology and Endocrinology, University of Goeteborg, Goeteborg (Sweden))

    1992-01-01

    We investigated the relationship between mean plasma growth hormone (GH) concentration and cellular sodium transport in untreated and treated acromegaly. Seventeen patients (age 55 [+-] 3 years) with active acromegaly were studied with respect to plasma GH (mean of 24 h GH profile) and erythrocyte electrolyte content as well as transmembrane sodium transport. The patients were reinvestigated two weeks after successful surgery (N = 14) and again after one year (N = 13). Erythrocyte electrolytes were analyzed by flame photometry and sodium influx and efflux rate constant determined by in vitro incubation using a modified Keyne's formula. In patients with active acromegaly there was a significant positive correlation between IGF-1 and cellular sodium transport, while GH tended to show a negative relatonship to the same parameter. After successful treatment, both IGF-1 and GH disclosed a positive relationship to cellular sodium transport. After one year, a significant increase in erythrocyte sodium content was seen in the patients compared to the preoperative situation. In conclusion, if this is a generalized phenomonen the results are compatible with a sodium-retaining effect of GH via stimulation of transmembrane sodium transport. In active acromegaly this may be counteracted by a sodium transport inhibitor giving the reverse relationship between GH and cellular sodium transport. (au).

  6. Specialists' meeting on sodium fires

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, F A; Kuznetsova, R I [eds.

    1989-07-01

    The four sessions of the meeting covered the following topics: 1. general approach to fast reactor safety, standards of fire safety, maximum design basis accidents for sodium leaks and fires, status of sodium fires in different countries; 2. physical and chemical processes during combustion of sodium and its interaction with structural and technological materials and methods for structural protection; 3. methods of sodium fires extinguishing and measures for localizing aerosol combustion products, organization of fire fighting procedures, instruction and training of fire personnel; 4. elimination of the consequences of sodium fires.

  7. Specialists' meeting on sodium fires

    International Nuclear Information System (INIS)

    Kozlov, F.A.; Kuznetsova, R.I.

    1989-01-01

    The four sessions of the meeting covered the following topics: 1. general approach to fast reactor safety, standards of fire safety, maximum design basis accidents for sodium leaks and fires, status of sodium fires in different countries; 2. physical and chemical processes during combustion of sodium and its interaction with structural and technological materials and methods for structural protection; 3. methods of sodium fires extinguishing and measures for localizing aerosol combustion products, organization of fire fighting procedures, instruction and training of fire personnel; 4. elimination of the consequences of sodium fires

  8. Development of Sodium Technology

    International Nuclear Information System (INIS)

    Choi, Jong Hyun; Nam, H. Y.; Kim, T. J.; Jeong, K. C.; Park, J. H.; Kim, B. H.; Jeong, J. Y.; Kim, J. M.; Choi, B. H.; Kim, B. S.

    2003-02-01

    The basic P and ID and fabrication method for IHTS simplification experiment were prepared for the experimental apparatus. In order to investigate the later phase of a SWR event, an experimental apparatus was designed and manufactured. The 620 data set have been obtained in the experiment of free surface fluctuation and an experimental correlation for the critical gas entertainment condition is additionally developed. For development of water into sodium leak detection technology, the properties from leak noises were extracted, and the tools for analyzing acoustic noises were constructed. The state-of-the-art on the flow and differential pressure measuring techniques in the piping system is investigated to develop new techniques which are applicable to high temperature sodium flow environment. The plan for the minimization of errors in temperature measurement was drawn up by analysing the error factors in temperature measurement. And the countermeasures for the minimization of errors in temperature measurement due to complex heat transfer were prepared

  9. Sodium conducting polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Skaarup, S.; West, K. (eds.)

    1989-04-01

    This section deals with the aspects of ionic conduction in general as well as specific experimental results obtained for sodium systems. The conductivity as a function of temperature and oxygen/metal ratio are given for the systems NaI, NaCF/sub 3/SO/sub 3/ and NaClO/sub 4/ plus polyethylene oxide. Attempts have been made to produce mixed phase solid electrolytes analogous to the lithium systems that have worked well. These consist of mixtures of polymer and a solid electrolyte. The addition of both nasicon and sodium beta alumina unexpectedly decreases the ionic conductivity in contrast to the lithium systems. Addition of the nonconducting silica AEROSIL in order to increase the internal surface area has the effect of retarding the phase transition at 60 deg. C, but does not enhance the conductivity. (author) 23 refs.

  10. Wushenziye Formula Improves Skeletal Muscle Insulin Resistance in Type 2 Diabetes Mellitus via PTP1B-IRS1-Akt-GLUT4 Signaling Pathway.

    Science.gov (United States)

    Tian, Chunyu; Chang, Hong; La, Xiaojin; Li, Ji-An

    2017-01-01

    Background. Wushenziye formula (WSZYF) is an effective traditional Chinese medicine in the treatment of type 2 diabetes mellitus (T2DM). Aim. This study aimed to identify the effects and underlying mechanisms of WSZYF on improving skeletal muscle insulin resistance in T2DM. Methods. An animal model of T2DM was induced by Goto-Kakizaki diabetes prone rats fed with high fat and sugar for 4 weeks. Insulin resistance model was induced in skeletal muscle cell. Results. In vivo , WSZYF improved general conditions and decreased significantly fasting blood glucose, glycosylated serum protein, glycosylated hemoglobin, insulin concentration, and insulin resistance index of T2DM rats. In vitro , WSZYF enhanced glucose consumption in insulin resistance model of skeletal muscle cell. Furthermore, WSZYF affected the expressions of molecules in regulating T2DM, including increasing the expressions of p-IRS1, p-Akt, and GLUT4, reducing PTP1B expression. Conclusion . These findings displayed the potential of WSZYF as a new drug candidate in the treatment of T2DM and the antidiabetic mechanism of WSZYF is probably mediated through modulating the PTP1B-IRS1-Akt-GLUT4 signaling pathway.

  11. Combination of PKCε Activation and PTP1B Inhibition Effectively Suppresses Aβ-Induced GSK-3β Activation and Tau Phosphorylation.

    Science.gov (United States)

    Kanno, Takeshi; Tsuchiya, Ayako; Tanaka, Akito; Nishizaki, Tomoyuki

    2016-09-01

    Glycogen synthase kinase-3β (GSK-3β) is a key element to phosphorylate tau and form neurofibrillary tangles (NFTs) found in tauopathies including Alzheimer's disease (AD). A current topic for AD therapy is focused upon how to prevent tau phosphorylation. In the present study, PKCε activated Akt and inactivated GSK-3β by directly interacting with each protein. Inhibition of protein tyrosine phosphatase 1B (PTP1B), alternatively, caused an enhancement in the tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1), allowing activation of Akt through a pathway along an IRS-1/phosphatidylinositol 3 kinase (PI3K)/3-phosphoinositide-dependent protein kinase-1 (PDK1)/Akt axis, to phosphorylate and inactivate GSK-3β. Combination of PKCε activation and PTP1B inhibition more sufficiently activated Akt and inactivated GSK-3β than each independent treatment, to suppress amyloid β (Aβ)-induced tau phosphorylation and ameliorate spatial learning and memory impairment in 5xFAD transgenic mice, an animal model of AD. This may represent an innovative strategy for AD therapy.

  12. Wushenziye Formula Improves Skeletal Muscle Insulin Resistance in Type 2 Diabetes Mellitus via PTP1B-IRS1-Akt-GLUT4 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Chunyu Tian

    2017-01-01

    Full Text Available Background. Wushenziye formula (WSZYF is an effective traditional Chinese medicine in the treatment of type 2 diabetes mellitus (T2DM. Aim. This study aimed to identify the effects and underlying mechanisms of WSZYF on improving skeletal muscle insulin resistance in T2DM. Methods. An animal model of T2DM was induced by Goto-Kakizaki diabetes prone rats fed with high fat and sugar for 4 weeks. Insulin resistance model was induced in skeletal muscle cell. Results. In vivo, WSZYF improved general conditions and decreased significantly fasting blood glucose, glycosylated serum protein, glycosylated hemoglobin, insulin concentration, and insulin resistance index of T2DM rats. In vitro, WSZYF enhanced glucose consumption in insulin resistance model of skeletal muscle cell. Furthermore, WSZYF affected the expressions of molecules in regulating T2DM, including increasing the expressions of p-IRS1, p-Akt, and GLUT4, reducing PTP1B expression. Conclusion. These findings displayed the potential of WSZYF as a new drug candidate in the treatment of T2DM and the antidiabetic mechanism of WSZYF is probably mediated through modulating the PTP1B-IRS1-Akt-GLUT4 signaling pathway.

  13. Rapid Identification of Flavonoid Constituents Directly from PTP1B Inhibitive Extract of Raspberry (Rubus idaeus L.) Leaves by HPLC-ESI-QTOF-MS-MS.

    Science.gov (United States)

    Li, Zhuan-Hong; Guo, Han; Xu, Wen-Bin; Ge, Juan; Li, Xin; Alimu, Mireguli; He, Da-Jun

    2016-01-01

    Many potential health benefits of raspberry (Rubus idaeus L.) leaves were attributed to polyphenolic compounds, especially flavonoids. In this study, the methanol extract of R. idaeus leaves showed significant protein tyrosine phosphatase-1B (PTP1B) inhibitory activity with IC50 value of 3.41 ± 0.01 µg mL(-1) Meanwhile, a rapid and reliable method, employed high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry, was established for structure identification of flavonoids from PTP1B inhibitive extract of R. idaeus leaves using accurate mass measurement and characteristic fragmentation patterns. A total of 16 flavonoids, including 4 quercetin derivatives, 2 luteolin derivatives, 8 kaempferol derivatives and 2 isorhamnetin derivatives, were identified. Compounds 3: and 4: , Compounds 6: and 7: and Compounds 15: and 16: were isomers with different aglycones and different saccharides. Compounds 8: , 9: and 10: were isomers with the same aglycone and the same saccharide but different substituent positions. Compounds 11: and 12: were isomers with the same aglycone but different saccharides. Compounds 2: , 8: , 9: and 10: possessed the same substituent saccharide of glycuronic acid. Most of them were reported inR. idaeus for the first time. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Rapid Identification of Flavonoid Constituents Directly from PTP1B Inhibitive Extract of Raspberry (Rubus idaeus L.) Leaves by HPLC–ESI–QTOF–MS-MS

    Science.gov (United States)

    Li, Zhuan-Hong; Guo, Han; Xu, Wen-Bin; Ge, Juan; Li, Xin; Alimu, Mireguli; He, Da-Jun

    2016-01-01

    Many potential health benefits of raspberry (Rubus idaeus L.) leaves were attributed to polyphenolic compounds, especially flavonoids. In this study, the methanol extract of R. idaeus leaves showed significant protein tyrosine phosphatase-1B (PTP1B) inhibitory activity with IC50 value of 3.41 ± 0.01 µg mL−1. Meanwhile, a rapid and reliable method, employed high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry, was established for structure identification of flavonoids from PTP1B inhibitive extract of R. idaeus leaves using accurate mass measurement and characteristic fragmentation patterns. A total of 16 flavonoids, including 4 quercetin derivatives, 2 luteolin derivatives, 8 kaempferol derivatives and 2 isorhamnetin derivatives, were identified. Compounds 3 and 4, Compounds 6 and 7 and Compounds 15 and 16 were isomers with different aglycones and different saccharides. Compounds 8, 9 and 10 were isomers with the same aglycone and the same saccharide but different substituent positions. Compounds 11 and 12 were isomers with the same aglycone but different saccharides. Compounds 2, 8, 9 and 10 possessed the same substituent saccharide of glycuronic acid. Most of them were reported in R. idaeus for the first time. PMID:26896347

  15. Effect of Calcium Nitrate and Sodium Nitrite on the Rebar Corrosion of Medium Carbon Steel in Seawater and Cassava Fluid

    OpenAIRE

    Adamu, M; Umoru, LE; Ige, OO

    2014-01-01

    Inhibitors are regularly used as one of the principal prevention and control techniques in reinforcement corrosion. Hence this study investigates the effect of calcium nitrate and sodium nitrite inhibitors on the rebar corrosion of medium carbon steel in seawater and cassava fluid with a view to determining inhibitive potentials of the different inhibitors in the two media. Gravimetric and voltametric techniques were employed in this study and a total of forty-five corrosion coupons of differ...

  16. Inhibitive Effect of Butyltin Trichloride on Dissolution and Localized Corrosion of Aluminium in Sodium Hydroxide and Hydrochloric Acid

    OpenAIRE

    Mourad, M.Y.; Ibrahim, E.H.; Seliman, S.A.

    1990-01-01

    The dissolution of aluminium in sodium hydroxide and hydrochloric acid in the presence of butyltin trichloride as corrosion inhibitor has been studied by hydrogen evolution and thermometric methods. Experimental findings indicate that the inhibition effect of butyltin trichloride takes place through an adsorption mechanism following the Frumkin's isotherm. Butyltin trichloride acts as a weakly adsorbed inhibitor in NaOH and as a strongly adsorbed inhibitor in hydrochloric acid medium. Wile...

  17. A study on sodium-concrete reaction

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jae Heum; Min, Byong Hun [Suwon University, Suwon (Korea, Republic of)

    1997-07-01

    A small sodium-concrete reaction facility was designed, manufactured and installed. this facility has been operated under inert gas(N{sub 2}) with different experimental variables such as sodium injection temperature, injection amount of sodium, aging period of concrete, sodium reservoir temperature. As a result, it was found that sodium injection temperature and injected amount of sodium has little effect on sodium-concrete reaction. However, sodium reservoir temperature and aging period of concrete has relatively high impact on sodium-concrete reaction. Sodium-concrete reaction model has also been developed and compared with experimental results. (Author) 51 refs., 16 tabs., 64 figs.

  18. Sodium characterization during the starting period of a sodium loop

    International Nuclear Information System (INIS)

    Lievens, F.; Parmentier, C.; Soenen, M.

    1976-01-01

    A sodium loop for analytical chemistry studies has been built by S.C.K./C.E.N. at Mol Belgium. Its first working period was used to test analytical methods, to characterize the sodium and to define the operating parameters of the loop. This report covers the working parameters of the loop, the characterization of the filling sodium and its purity evolution during the first working period of the loop

  19. Hemodynamic and neuroendocrine responses to changes in sodium intake in compensated heart failure

    DEFF Research Database (Denmark)

    Damgaard, Morten; Norsk, Peter; Gustafsson, Finn

    2005-01-01

    inhibitors and beta-adrenoreceptor blockers. Therefore, we determined the hemodynamic and neuroendocrine responses to 1 wk of a low-sodium diet (70 mmol/day) and 1 wk of a high-sodium diet (250 mmol/day) in 12 HF patients and 12 age-matched controls in a randomized, balanced fashion. During steady......-state conditions, hemodynamic and neuroendocrine examinations were performed at rest and during bicycle exercise. In seated HF patients, high sodium intake increased body weight (1.6 +/- 0.4%), plasma volume (9 +/- 2%), cardiac index (14 +/- 6%), and stroke volume index (21 +/- 5%), whereas mean arterial pressure...

  20. SGLT2 Inhibitors: Benefit/Risk Balance.

    Science.gov (United States)

    Scheen, André J

    2016-10-01

    Inhibitors of sodium-glucose cotransporters type 2 (SGLT2) reduce hyperglycemia by increasing urinary glucose excretion. They have been evaluated in patients with type 2 diabetes treated with diet/exercise, metformin, dual oral therapy or insulin. Three agents are available in Europe and the USA (canagliflozin, dapagliflozin, empagliflozin) and others are commercialized in Japan or in clinical development. SGLT2 inhibitors reduce glycated hemoglobin, with a minimal risk of hypoglycemia. They exert favorable effects beyond glucose control with consistent body weight, blood pressure, and serum uric acid reductions. Empagliflozin showed remarkable reductions in cardiovascular/all-cause mortality and in hospitalization for heart failure in patients with previous cardiovascular disease. Positive renal outcomes were also shown with empagliflozin. Mostly reported adverse events are genital mycotic infections, while urinary tract infections and events linked to volume depletion are rather rare. Concern about a risk of ketoacidosis and bone fractures has been recently raised, which deserves caution and further evaluation.

  1. Corrosion Inhibition of Mild Steel in Hydrochloric Acid by Sodium Lauryl Sulfate (SLS

    Directory of Open Access Journals (Sweden)

    Atul Kumar

    2008-01-01

    Full Text Available Effect of Sodium Lauryl Sulfate (SLS, a surfactant on corrosion of mild steel in 1 M hydrochloric acid was studied using three techniques namely: weight loss, electrochemical polarization and metallurgical research microscopy. Results obtained reveal that SLS is good inhibitor and shows very good corrosion inhibition efficiency (IE. The IE was found to vary with concentration of inhibitor and temperature. The electrochemical polarization result revealed that SLS is anodic in nature.

  2. Corrosion Inhibition of Mild Steel in Hydrochloric Acid by Sodium Lauryl Sulfate (SLS)

    OpenAIRE

    Atul Kumar

    2008-01-01

    Effect of Sodium Lauryl Sulfate (SLS), a surfactant on corrosion of mild steel in 1 M hydrochloric acid was studied using three techniques namely: weight loss, electrochemical polarization and metallurgical research microscopy. Results obtained reveal that SLS is good inhibitor and shows very good corrosion inhibition efficiency (IE). The IE was found to vary with concentration of inhibitor and temperature. The electrochemical polarization result revealed that SLS is anodic in nature.

  3. Intravitreal flomoxef sodium in rabbits.

    Science.gov (United States)

    Mochizuki, K; Torisaki, M; Yamashita, Y; Komatsu, M; Tanahashi, T

    1993-01-01

    We studied the intraocular concentration of flomoxef sodium in nonvitrectomized and vitrectomized eyes of albino rabbits after intravenous administration of 100 mg/kg flomoxef sodium. The concentration of flomoxef sodium in the vitreous body was undetectable (flomoxef sodium was investigated with ophthalmoscopy, electroretinography (ERG) and light microscopy after intravitreal injection of 200, 500, 1,000 and 2,000 micrograms flomoxef sodium in albino and pigmented rabbits. No ERG changes were induced with 200 micrograms. Other higher doses caused transient ERG changes. After the 200-micrograms injection, the intravitreal concentration decreased exponentially, the half-life being 4.4 h. The antibacterial activity, broad coverage and low intravitreal toxicity of flomoxef sodium suggest that this compound may be used to treat bacterial endophthalmitis.

  4. Double sodium rubidium molybdates

    International Nuclear Information System (INIS)

    Mokhoseev, M.V.; Khal'baeva, K.M.; Khajkina, E.G.; Ogurtsov, A.M.

    1990-01-01

    According to ceramic technique double sodium-rubidium molybdates of the compositions Rb 2-x Na x MoO 4 (0.5≤x≤0.67) and Na 3 Rb(MoO 4 ) 2 have been prepared. It is ascertained that Rb 2-x Na x MoO 4 is crystallized in glaserite structural type (trigonal crystal system, sp.gr. P3m1, Z=2) and melts incongruently at 640 deg C. Na 3 Rb(MoO 4 ) 2 at room temperature is unstable and gradually decomposes into Na 2 MoO 4 and Rb 2-x Na x MoO 4

  5. The various sodium purification techniques

    International Nuclear Information System (INIS)

    Courouau, J.L.; Masse, F.; Rodriguez, G.; Latge, C.; Redon, B.

    1997-01-01

    In the framework of sodium waste treatment, the sodium purification phase plays an essential role in the chain of operations leading to the transformation of the active sodium, considered as waste, into a stable sodium salt. The objectives of the purification operations are: To keep a low impurity level, particularly a low concentration in oxygen and hydrogen, in order to allow its transfer to a processing plant, and in order to avoid risks of plugging and/or corrosion in sodium facilities; To reduce the sodium activity in order to limit the dose rate close to the facilities, and in order to reduce the activity of the liquid and gaseous effluents. After a recall of the different kind of impurities that can be present in sodium, and of the different purification methods that could be associated with, the following points are highlighted: (i) Oxygen and hydrogen purification needs, and presentation of some selection criteria for a purification unit adapted to a sodium processing plant, as well as 2 cold trap concepts that are in accordance with these criteria: PSICHOS and PIRAMIDE. (ii) Tritium reduction in a bulk of liquid sodium by swamping, isotopic exchange, or permeation throughout a membrane. (iii) Caesium trapping on carbonaceous matrix. The main matrices used at present are R.V.C. (Reticulated Vitreous Carbon) and Actitex/Pica products. Tests in the laboratory and on an experimental device have demonstrated the performances of these materials, which are able to reduce sodium activity in Cs 134 and Cs 137 to very low values. The sodium purification processes as regards to the hydrogen, oxygen and caesium, that are aimed at facilitating the subsequent treatment of sodium, are therefore mastered operations. Regarding the operations associated with the reduction of the tritium activity, the methods are in the process of being qualified, or to be qualified. (author)

  6. Physical properties of liquid sodium

    International Nuclear Information System (INIS)

    Alberdi Primicia, J.; Martinez Piquer, T.A.

    1977-01-01

    The molten sodium has been the more accepted coolant for the first generation of FBR, by this reason the knowledge of its technology is needed for the development of the next LMFBR. A series of necessary data for designing sodium liquid systems are given. Tables and graphics about the most important physical sodium properties between 1200-1400 degC are gathered. The results have been obtained from equations that relate the properties with temperature using a Fortran IV program. (author) [es

  7. Carbon transport in sodium systems

    International Nuclear Information System (INIS)

    Martin Espigares, M.; Lapena, J.; La Torre, M. de

    1983-01-01

    Carbon activities in dynamic non isothermal sodium system are determined using an equilibratium method. Foils of Fe-18 w% Cr-8 W% Ni alloy with low carbon content (in the as received condition) are exposed to dynamic liquid sodium in the temperature range between 450 0 C and 700 0 C. The analysis was used to evaluate the carburization-decarburization behaviour of type 304 stainless steel exposed to sodium. (author)

  8. Are SGLT2 inhibitors reasonable antihypertensive drugs and renoprotective?

    Science.gov (United States)

    Lovshin, J A; Gilbert, R E

    2015-06-01

    By eliminating glucose in the urine, the sodium-glucose-linked cotransporter-2 (SGLT2) inhibitors act as osmotic diuretics to lower blood pressure in addition to reducing plasma glucose and assisting with weight loss. While not approved as antihypertensive agents, the ability of this new class of antihyperglycemic agents to lower blood pressure is not insubstantial, and while not used primarily for this indication, they may assist diabetic individuals in attaining currently recommended blood pressure targets. In addition to lowering systemic pressure, preclinical and exploratory human studies suggest that SGLT2 inhibitors may also lower intraglomerular pressure, potentially reducing the rate of GFR decline in patients with diabetic nephropathy. However, given the lack of clinically meaningful endpoint data, the use of SGLT2 inhibitors, primarily, as either antihypertensive or renoprotective agents would, at present, be premature. Fortunately, further insight will be garnered from large, randomized controlled trials that will assess the effects of various SGLT2 inhibitors on cardiovascular and renal outcomes.

  9. Sodium waste technology: A summary report

    International Nuclear Information System (INIS)

    Abrams, C.S.; Witbeck, L.C.

    1987-01-01

    The Sodium Waste Technology (SWT) Program was established to resolve long-standing issues regarding disposal of sodium-bearing waste and equipment. Comprehensive SWT research programs investigated a variety of approaches for either removing sodium from sodium-bearing items, or disposal of items containing sodium residuals. The most successful of these programs was the design, test, and the production operation of the Sodium Process Demonstration Facility at ANL-W. The technology used was a series of melt-drain-evaporate operations to remove nonradioactive sodium from sodium-bearing items and then converting the sodium to storable compounds

  10. Effects of topical flurbiprofen sodium, diclofenac sodium, ketorolac ...

    African Journals Online (AJOL)

    To evaluate corneal sensitivity by using the Cochet-Bonnet® esthesiometer in normal canine eyes at different time points following instillation of three different topical non-steroidal anti-inflammatory drugs (flurbiprofen sodium 0.03%, diclofenac sodium 0.1% and ketorolac tromethamine 0.5%) and benzalkonium chloride ...

  11. A Simple Quantitative Synthesis: Sodium Chloride from Sodium Carbonate.

    Science.gov (United States)

    Gold, Marvin

    1988-01-01

    Describes a simple laboratory procedure for changing sodium carbonate into sodium chloride by adding concentrated HCl to cause the reaction and then evaporating the water. Claims a good stoichiometric yield can be obtained in one three-hour lab period. Suggests using fume hood for the reaction. (ML)

  12. Cavitation erosion in sodium flow, sodium cavitation tunnel testing

    International Nuclear Information System (INIS)

    Courbiere, Pierre.

    1981-04-01

    The high-volume sodium flows present in fast neutron reactors are liable to induce cavitation phenomena in various portion of the sodium lines and pumps. The absence of sufficient data in this area led the C.E.A. to undertake an erosion research program in cavitating sodium flow. This paper discusses the considerations leading to the definition and execution of sodium cavitation erosion tests, and reviews the tests run with 400 0 C sodium on various steel grades: 316, 316 L, 316 Ti (Z8CNDT17-12), Poral (Z3CND18-12), 304 L and LN2 - clad 316 L (Ni coating-clad 316 L). Acoustic detection and signal processing methods were used with an instrument package designed and implemented at the Cadarache Nuclear Research Center

  13. Cadherin 2/4 signaling via PTP1B and catenins is crucial for nucleokinesis during radial neuronal migration in the neocortex.

    Science.gov (United States)

    Martinez-Garay, Isabel; Gil-Sanz, Cristina; Franco, Santos J; Espinosa, Ana; Molnár, Zoltán; Mueller, Ulrich

    2016-06-15

    Cadherins are crucial for the radial migration of excitatory projection neurons into the developing neocortical wall. However, the specific cadherins and the signaling pathways that regulate radial migration are not well understood. Here, we show that cadherin 2 (CDH2) and CDH4 cooperate to regulate radial migration in mouse brain via the protein tyrosine phosphatase 1B (PTP1B) and α- and β-catenins. Surprisingly, perturbation of cadherin-mediated signaling does not affect the formation and extension of leading processes of migrating neocortical neurons. Instead, movement of the cell body and nucleus (nucleokinesis) is disrupted. This defect is partially rescued by overexpression of LIS1, a microtubule-associated protein that has previously been shown to regulate nucleokinesis. Taken together, our findings indicate that cadherin-mediated signaling to the cytoskeleton is crucial for nucleokinesis of neocortical projection neurons during their radial migration. © 2016. Published by The Company of Biologists Ltd.

  14. Rhodomollacetals A-C, PTP1B Inhibitory Diterpenoids with a 2,3:5,6-Di-seco-grayanane Skeleton from the Leaves of Rhododendron molle.

    Science.gov (United States)

    Zhou, Junfei; Sun, Na; Zhang, Hanqi; Zheng, Guijuan; Liu, Junjun; Yao, Guangmin

    2017-10-06

    Three novel diterpenoids with an unprecedented 2,3:5,6-di-seco-grayanane carbon skeleton, rhodomollacetals A-C (1-3), are isolated from the leaves of Rhododendron molle. Their structures are elucidated by comprehensive spectroscopic techniques and single-crystal X-ray diffraction. Rhodomollacetal A (1) possesses a novel cis/cis/cis/cis-fused 6/6/6/6/5 pentacyclic ring system, featuring an unprecedented 11,13,18-trioxa-pentacyclo [8.7.1.1 5,8 .0 2,8 .0 12,17 ]nonadecane scaffold. Compounds 2 and 3 have a rare 4-oxatricyclo[7.2.1.0 1,6 ]dodecane moiety and a 2,3-dihydro-4H-pyran-4-one unit. Compounds 1-3 showed moderate PTP1B inhibitory activities, and their molecular dockings were investigated.

  15. UVB-induced nuclear translocation of TC-PTP by AKT/14-3-3σ axis inhibits keratinocyte survival and proliferation.

    Science.gov (United States)

    Kim, Mihwa; Morales, Liza D; Baek, Minwoo; Slaga, Thomas J; DiGiovanni, John; Kim, Dae Joon

    2017-10-31

    Understanding protein subcellular localization is important to determining the functional role of specific proteins. T-cell protein tyrosine phosphatase (TC-PTP) contains bipartite nuclear localization signals (NLSI and NLSII) in its C-terminus. We previously have demonstrated that the nuclear form of TC-PTP (TC45) is mainly localized to the cytoplasm in keratinocytes and it is translocated to the nucleus following UVB irradiation. Here, we report that TC45 is translocated by an AKT/14-3-3σ-mediated mechanism in response to UVB exposure, resulting in increased apoptosis and decreased keratinocyte proliferation. We demonstrate that UVB irradiation increased phosphorylation of AKT and induced nuclear translocation of 14-3-3σ and TC45. However, inhibition of AKT blocked nuclear translocation of TC45 and 14-3-3σ. Site-directed mutagenesis of 14-3-3σ binding sites within TC45 showed that a substitution at Threonine 179 (TC45/T179A) effectively blocked UVB-induced nuclear translocation of ectopic TC45 due to the disruption of the direct binding between TC45 and 14-3-3σ. Overexpression of TC45/T179A in keratinocytes resulted in a decrease of UVB-induced apoptosis which corresponded to an increase in nuclear phosphorylated STAT3, and cell proliferation was higher in TC45/T179A-overexpressing keratinocytes compared to control keratinocytes following UVB irradiation. Furthermore, deletion of TC45 NLSII blocked its UVB-induced nuclear translocation, indicating that both T179 and NLSII are required. Taken together, our findings suggest that AKT and 14-3-3σ cooperatively regulate TC45 nuclear translocation in a critical step of an early protective mechanism against UVB exposure that signals the deactivation of STAT3 in order to promote keratinocyte cell death and inhibit keratinocyte proliferation.

  16. Chronic sleep fragmentation during the sleep period induces hypothalamic endoplasmic reticulum stress and PTP1b-mediated leptin resistance in male mice.

    Science.gov (United States)

    Hakim, Fahed; Wang, Yang; Carreras, Alba; Hirotsu, Camila; Zhang, Jing; Peris, Eduard; Gozal, David

    2015-01-01

    Sleep fragmentation (SF) is highly prevalent and may constitute an important contributing factor to excessive weight gain and the metabolic syndrome. Increased endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) leading to the attenuation of leptin receptor signaling in the hypothalamus leads to obesity and metabolic dysfunction. Mice were exposed to SF and sleep control (SC) for varying periods of time during which ingestive behaviors were monitored. UPR pathways and leptin receptor signaling were assessed in hypothalami. To further examine the mechanistic role of ER stress, changes in leptin receptor (ObR) signaling were also examined in wild-type mice treated with the ER chaperone tauroursodeoxycholic acid (TUDCA), as well as in CHOP-/+ transgenic mice. Fragmented sleep in male mice induced increased food intake starting day 3 and thereafter, which was preceded by increases in ER stress and activation of all three UPR pathways in the hypothalamus. Although ObR expression was unchanged, signal transducer and activator of transcription 3 (STAT3) phosphorylation was decreased, suggesting reduced ObR signaling. Unchanged suppressor of cytokine signaling-3 (SOCS3) expression and increases in protein-tyrosine phosphatase 1B (PTP1B) expression and activity emerged with SF, along with reduced p-STAT3 responses to exogenous leptin. SF-induced effects were reversed following TUDCA treatment and were absent in CHOP -/+ mice. SF induces hyperphagic behaviors and reduced leptin signaling in hypothalamus that are mediated by activation of ER stress, and ultimately lead to increased PTP1B activity. ER stress pathways are therefore potentially implicated in SF-induced weight gain and metabolic dysfunction, and may represent a viable therapeutic target. © 2014 Associated Professional Sleep Societies, LLC.

  17. The experimental sodium facility NAVA

    International Nuclear Information System (INIS)

    Langenbrunner, H.; Grunwald, G.; May, R.

    1976-01-01

    Within the framework of preparations for the introduction of sodium cooled fast breeder reactors an experimental sodium facility was installed at the Central Institute of Nuclear Research at Rossendorf. Design, engineering aspects and operation of this facility are described; operating experience is briefly discussed. (author)

  18. Sodium as a reactor coolant

    International Nuclear Information System (INIS)

    Cesar, S.B.G.

    1989-01-01

    This work is related to the use of sodium as a reactor coolant, to the advantages and problems related to its use, its mechanical, thermophysics, eletronical, magnetic and nuclear properties. It is mainly a bibliographic review, with the aim of gathering the necessary information to persons initiating in the study of sodium and also as reference source. (author) [pt

  19. Recent progress in sodium technology

    Energy Technology Data Exchange (ETDEWEB)

    Hallett, W. J.

    1963-10-15

    Progress over the past year in U. S. laboratories studying some of the materials and engineering problems that must be resolved in bringing the technology of sodium to an economically and technically attractive point is reviewed. The status of sodium cooled power reactors in the U. S. is described. (P.C.H.)

  20. Method of processing waste sodium

    International Nuclear Information System (INIS)

    Shimoyashiki, Shigehiro; Takahashi, Kazuo.

    1982-01-01

    Purpose: To enable safety store of waste sodium in the form of intermetallic compounds. Method: Waste sodium used in a reactor is mixed with molten metal under an inert gas atmosphere and resulted intermetallic compounds are stored in a closely sealed container to enable quasi-permanent safety store as inert compound. Used waste sodium particularly, waste sodium in the primary system containing radioactive substances is charged in a waste sodium melting tank having a heater on the side, the tank is evacuated by a vacuum pump and then sealed with gaseous argon supplied from a gaseous argon tank, and waste sodium is melted under heating. The temperature and the amount of the liquid are measured by a thermometer and a level meter respectively. While on the other hand, molten metal such as Sn, Pb and Zn having melting point above 300 0 C are charged in a metal melting tank and heated by a heater. The molten sodium and the molten metals are charged into a mixing tank and agitated to mix by an induction type agitator. Sodium vapors in the tank are collected by traps. The air in the tank is replaced with gaseous argon. The molten mixture is closely sealed in a drum can and cooled to solidify for safety storage. (Seki, T.)

  1. Techniques for extinguishing sodium fires

    International Nuclear Information System (INIS)

    Raju, Chander; Kale, R.D.

    1979-02-01

    The experimental work done to evaluate the performance of commercially available fire extinguishants and powders for sodium fires is described. Dry chemical powder with sodium bicarbonate base was found very effective. Another effective method of extinghishing fire by using perforated covered tray is also discussed. (auth.)

  2. [Euglycemic ketoacidosis : a complication of SGLT2 inhibitors].

    Science.gov (United States)

    Mizuno, Aki; Lolachi, Sanaz; Pernet, Alain

    2017-05-31

    Sodium-glucose cotransporter 2 (SGLT2) inhibitors constitute a new category of oral antidiabetics recently indicated for the treatment of type 2 diabetes. Their mechanism of action (inhibition of renal reabsorption of glucose) and the fact that they do not induce hypoglycemia (as monotherapy) make their clinical use interesting. Various adverse events have however been reported regarding these drugs with the euglycemic ketoacidosis being the most serious. In this article we aim to review the possible mechanism of this side effect and recommendations for use of SGLT2 inhibitors by means of a case report.

  3. Friction and wear in sodium

    International Nuclear Information System (INIS)

    Hoffman, N.J.; Droher, J.J.

    1973-01-01

    In the design of a safe and reliable sodium-cooled reactor one of the more important problem areas is that of friction and wear of components immersed in liquid sodium or exposed to sodium vapor. Sodium coolant at elevated temperatures may severely affect most oxide-bearing surface layers which provide corrosion resistance and, to some extent, lubrication and surface hardness. Consequently, accelerated deterioration may be experienced on engaged-motion contact surfaces, which could result in unexpected reactor shutdown from component malfunction or failure due to galling and seizure. An overall view of the friction and wear phenomena encountered during oscillatory rubbing of surfaces in high-temperature, liquid-sodium environments is presented. Specific data generated at the Liquid Metal Engineering Center (LMEC) on this subject is also presented. (U.S.)

  4. Sodium sampling and impurities determination

    International Nuclear Information System (INIS)

    Docekal, J.; Kovar, C.; Stuchlik, S.

    1980-01-01

    Samples may be obtained from tubes in-built in the sodium facility and further processed or they are taken into crucibles, stored and processed later. Another sampling method is a method involving vacuum distillation of sodium, thus concentrating impurities. Oxygen is determined by malgamation, distillation or vanadium balance methods. Hydrogen is determined by the metal diaphragm extraction, direct extraction or amalgamation methods. Carbon is determined using dry techniques involving burning a sodium sample at 1100 degC or using wet techniques by dissolving the sample with an acid. Trace amounts of metal impurities are determined after dissolving sodium in ethanol. The trace metals are concentrated and sodium excess is removed. (M.S.)

  5. Toxicology of plutonium-sodium

    International Nuclear Information System (INIS)

    Hackett, P.L.

    1982-01-01

    Scenarios for liquid-metal fast breeder reactor (LMFBR) accidents predict the loss of sodium coolant, with subsequent core melt-down and release of mixed sodium-fuel aerosols [Na-(PuU)O 2 ] into the environment. Studies in other laboratories demonstrated that mixed aerosols of Na 2 O-PuO 2 were more readily transported from the lung than PuO 2 aerosols. We therefore devised a continuous aerosol-generating system for animal exposures in which laser-generated fuel aerosols were swept through sodium vapor to form sodium-fuel aerosols. These fuel and sodium-fuel aerosols were compared with regard to their physicochemical properties and their biological behavior following inhalation studies in rats and dogs

  6. Leak detector of liquid sodium

    International Nuclear Information System (INIS)

    Himeno, Yoshiaki.

    1975-01-01

    Object: To arrange a cable core connected to a leakage current detector on the outer wall of piping for liquid sodium, devices or the like and apply a voltage to said core and outer wall to quickly and securely detect the leakage of liquid sodium. Structure: A cable, which is composed of metal coating formed of metal material (copper, steel, stainless, etc.) which is apt to be corroded by reaction products of liquid sodium with water and oxygen in air, and metal oxide (such as magnesium oxide, beryllium oxide, aluminum oxide) as an electric insulator is arranged on the outer wall of pipes or devices. In the event sodium is leaked from the pipes or devices, said metal coating and the insulator are corroded, and the leakage of sodium is sensed by a leakage current detector through the core in the cable. (Kamimura, M.)

  7. Sodium ionization detector and sensor

    International Nuclear Information System (INIS)

    Hrizo, J.; Bauerle, J.E.

    1979-01-01

    Work conducted on a basic technology development effort with the Westinghouse Sodium Ionization Detector (SID) sensor is reported. Included are results obtained for three task areas: (1) On-line operational response testing - in-situ calibration techniques; (2) Performance-reliability characteristics of aged filaments; and (3) Evaluation of chemical interference effects. The results showed that a calibrator filament coated with a sodium compound, when activated, does supply the necessary sodium atoms to provide a valid operational in-situ test. The life time of new Cr 2 0 3 -protected SID sensor filaments can be extended by operating at a reduced temperature. However, there also is a reduction in the sensitivity. Non-sodium species, such as products from a smoldering fire and organic aerosols, produce an interference response from the sensor comparable to a typical sodium response

  8. Targeting sodium channels in cardiac arrhythmia

    NARCIS (Netherlands)

    Remme, Carol Ann; Wilde, Arthur A. M.

    2014-01-01

    Cardiac voltage-gated sodium channels are responsible for proper electrical conduction in the heart. During acquired pathological conditions and inherited sodium channelopathies, altered sodium channel function causes conduction disturbances and ventricular arrhythmias. Although the clinical,

  9. Synthesis and characterization of sodium alkoxides

    Indian Academy of Sciences (India)

    Unknown

    technique and IR spectroscopy. The elemental ... for maintenance or disposal, need to be cleaned free of sodium for the ... scenario on sodium removal using different alcohols are ... ethoxide and sodium n-propoxide by KBr pellet method.

  10. Evolutionary primacy of sodium bioenergetics

    Directory of Open Access Journals (Sweden)

    Wolf Yuri I

    2008-04-01

    Full Text Available Abstract Background The F- and V-type ATPases are rotary molecular machines that couple translocation of protons or sodium ions across the membrane to the synthesis or hydrolysis of ATP. Both the F-type (found in most bacteria and eukaryotic mitochondria and chloroplasts and V-type (found in archaea, some bacteria, and eukaryotic vacuoles ATPases can translocate either protons or sodium ions. The prevalent proton-dependent ATPases are generally viewed as the primary form of the enzyme whereas the sodium-translocating ATPases of some prokaryotes are usually construed as an exotic adaptation to survival in extreme environments. Results We combine structural and phylogenetic analyses to clarify the evolutionary relation between the proton- and sodium-translocating ATPases. A comparison of the structures of the membrane-embedded oligomeric proteolipid rings of sodium-dependent F- and V-ATPases reveals nearly identical sets of amino acids involved in sodium binding. We show that the sodium-dependent ATPases are scattered among proton-dependent ATPases in both the F- and the V-branches of the phylogenetic tree. Conclusion Barring convergent emergence of the same set of ligands in several lineages, these findings indicate that the use of sodium gradient for ATP synthesis is the ancestral modality of membrane bioenergetics. Thus, a primitive, sodium-impermeable but proton-permeable cell membrane that harboured a set of sodium-transporting enzymes appears to have been the evolutionary predecessor of the more structurally demanding proton-tight membranes. The use of proton as the coupling ion appears to be a later innovation that emerged on several independent occasions. Reviewers This article was reviewed by J. Peter Gogarten, Martijn A. Huynen, and Igor B. Zhulin. For the full reviews, please go to the Reviewers' comments section.

  11. Methods in the treatment of sodium wastes

    International Nuclear Information System (INIS)

    Rodriguez, G.

    1997-01-01

    In the domain of sodium waste processing, we have followed a logical route that has enabled us to propose a global method with respect to sodium wastes. This approach has led to: The choice of only those sodium processes using water; The development of sodium purification methods; The development of methods for cutting metallic wastes soiled by or filled with sodium; The transformation of the resulting sodium hydroxide into ultimate solid wastes for surface storage. (author)

  12. Tables of thermodynamic properties of sodium

    International Nuclear Information System (INIS)

    Fink, J.K.

    1982-06-01

    The thermodynamic properties of saturated sodium, superheated sodium, and subcooled sodium are tabulated as a function of temperature. The temperature ranges are 380 to 2508 K for saturated sodium, 500 to 2500 K for subcooled sodium, and 400 to 1600 K for superheated sodium. Tabulated thermodynamic properties are enthalpy, heat capacity, pressure, entropy, density, instantaneous thermal expansion coefficient, compressibility, and thermal pressure coefficient. Tables are given in SI units and cgs units

  13. Microorganisms having enhanced tolerance to inhibitors and stress

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Steven D.; Yang, Shihui

    2014-07-29

    The present invention provides genetically modified strains of microorganisms that display enhanced tolerance to stress and/or inhibitors such as sodium acetate and vanillin. The enhanced tolerance can be achieved by increasing the expression of a protein of the Sm-like superfamily such as a bacterial Hfq protein and a fungal Sm or Lsm protein. Further, the present invention provides methods of producing alcohol from biomass materials by using the genetically modified microorganisms of the present invention.

  14. Role of aquaporin and sodium channel in pleural water movement.

    Science.gov (United States)

    Jiang, Jinjun; Hu, Jie; Bai, Chunxue

    2003-12-16

    The role of the ENaC sodium channel and aquaporin-1 (AQP1) water channel on pleural fluid dynamics in mice was investigated. 0.25 ml of hypertonic or isosmolar fluid was infused into the pleural space in anesthetized wildtype and AQP1 null mice. Pleural fluid was sampled at specified times to quantify the osmolality and volume. The sodium channel activator terbutaline increased isosmolar fluid clearance by 90% while the sodium channel inhibitor amiloride decreased it by 15%, but had no effect on osmotically driven water transport. AQP1 deletion significantly decreased osmotic water transport in pleural space by twofold, but it had no effect on isosmolar fluid clearance. Pretreatment with dexamethasone increased pleural osmotic fluid entry by 25%, while intravenous injection of HgCl2 decreased osmotic pleural water movement by 43%. These results provided evidence for a role of a sodium channel in pleural fluid absorption; AQP1 plays a major role in osmotic liquid transport but it does not affect isosmolar fluid clearance.

  15. Allosteric Inhibition of SHP2: Identification of a Potent, Selective, and Orally Efficacious Phosphatase Inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Fortanet, Jorge Garcia; Chen, Christine Hiu-Tung; Chen, Ying-Nan P.; Chen, Zhouliang; Deng, Zhan; Firestone, Brant; Fekkes, Peter; Fodor, Michelle; Fortin, Pascal D.; Fridrich, Cary; Grunenfelder, Denise; Ho, Samuel; Kang, Zhao B.; Karki, Rajesh; Kato, Mitsunori; Keen, Nick; LaBonte, Laura R.; Larrow, Jay; Lenoir, Francois; Liu, Gang; Liu, Shumei; Lombardo, Franco; Majumdar, Dyuti; Meyer, Matthew J.; Palermo, Mark; Perez, Lawrence; Pu, Minying; Ramsey, Timothy; Sellers, William R.; Shultz, Michael D.; Stams, Travis; Towler, Christopher; Wang, Ping; Williams, Sarah L.; Zhang, Ji-Hu; LaMarche, Matthew J. (Novartis)

    2016-09-08

    SHP2 is a nonreceptor protein tyrosine phosphatase (PTP) encoded by the PTPN11 gene involved in cell growth and differentiation via the MAPK signaling pathway. SHP2 also purportedly plays an important role in the programmed cell death pathway (PD-1/PD-L1). Because it is an oncoprotein associated with multiple cancer-related diseases, as well as a potential immunomodulator, controlling SHP2 activity is of significant therapeutic interest. Recently in our laboratories, a small molecule inhibitor of SHP2 was identified as an allosteric modulator that stabilizes the autoinhibited conformation of SHP2. A high throughput screen was performed to identify progressable chemical matter, and X-ray crystallography revealed the location of binding in a previously undisclosed allosteric binding pocket. Structure-based drug design was employed to optimize for SHP2 inhibition, and several new protein–ligand interactions were characterized. These studies culminated in the discovery of 6-(4-amino-4-methylpiperidin-1-yl)-3-(2,3-dichlorophenyl)pyrazin-2-amine (SHP099, 1), a potent, selective, orally bioavailable, and efficacious SHP2 inhibitor.

  16. The effect of histone deacetylase inhibitors on AHSP expression.

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Okhovat

    Full Text Available Alpha-hemoglobin stabilizing protein (AHSP is a molecular chaperone that can reduce the damage caused by excess free α-globin to erythroid cells in patients with impaired β-globin chain synthesis. We assessed the effect of sodium phenylbutyrate and sodium valproate, two histone deacetylase inhibitors (HDIs that are being studied for the treatment of hemoglobinopathies, on the expression of AHSP, BCL11A (all isoforms, γ-globin genes (HBG1/2, and some related transcription factors including GATA1, NFE2, EKLF, KLF4, and STAT3. For this purpose, the K562 cell line was cultured for 2, 4, and 6 days in the presence and absence of sodium phenylbutyrate and sodium valproate. Relative real-time qRT-PCR analysis of mRNA levels was performed to determine the effects of the two compounds on gene expression. Expression of all target mRNAs increased significantly (p < 0.05, except for the expression of BCL11A, which was down-regulated (p < 0.05 in the cells treated with both compounds relative to the levels measured for untreated cells. The findings indicated that sodium valproate had a more considerable effect than sodium phenylbutyrate (p < 0.0005 on BCL11A repression and the up-regulation of other studied genes. γ-Globin and AHSP gene expression continuously increased during the culture period in the treated cells, with the highest gene expression observed for 1 mM sodium valproate after 6 days. Both compounds repressed the expression of BCL11A (-XL, -L, -S and up-regulated GATA1, NFE2, EKLF, KLF4, STAT3, AHSP, and γ-globin genes expression. Moreover, sodium valproate showed a stronger effect on repressing BCL11A and escalating the expression of other target genes. The findings of this in vitro experiment could be considered in selecting drugs for clinical use in patients with β-hemoglobinopathies.

  17. Corrosion inhibitors for neutral aqueous media based on the products on sugar cane processing. 1.Furfural derivatives as inhibitors

    International Nuclear Information System (INIS)

    Ledovskikh, V.M.; Kamekho Khinnebra, Kh.Kh.

    1993-01-01

    A series of carboxy-, nitrogen- and nitroderivaties of furfural - the main product of sugar cane processing (furancasboxylic acid, 5-nitrofurancarboxylic acid and its salts, furfurine, furfurylamine) was studied as inhibitors of iron and copper, corrosion in aqueous-salt media. Nitrofuroates of sodium and ammonium, which decelerate anode process, intensity cathode one and provide the stable passive state, are considered to be the most effective

  18. Water simulation of sodium reactors

    International Nuclear Information System (INIS)

    Grewal, S.S.; Gluekler, E.L.

    1981-01-01

    The thermal hydraulic simulation of a large sodium reactor by a scaled water model is examined. The Richardson Number, friction coefficient and the Peclet Number can be closely matched with the water system at full power and the similarity is retained for buoyancy driven flows. The simulation of thermal-hydraulic conditions in a reactor vessel provided by a scaled water experiment is better than that by a scaled sodium test. Results from a correctly scaled water test can be tentatively extrapolated to a full size sodium system