Sample records for ptiv complex ions

  1. Pt(IV) complexes as prodrugs for cisplatin. (United States)

    Shi, Yi; Liu, Shu-An; Kerwood, Deborah J; Goodisman, Jerry; Dabrowiak, James C


    The antitumor effects of platinum(IV) complexes, considered prodrugs for cisplatin, are believed to be due to biological reduction of Pt(IV) to Pt(II), with the reduction products binding to DNA and other cellular targets. In this work we used pBR322 DNA to capture the products of reduction of oxoplatin, c,t,c-[PtCl(2)(OH)(2)(NH(3))(2)], 3, and a carboxylate-modified analog, c,t,c-[PtCl(2)(OH)(O(2)CCH(2)CH(2)CO(2)H)(NH(3))(2)], 4, by ascorbic acid (AsA) or glutathione (GSH). Since carbonate plays a significant role in the speciation of platinum complexes in solution, we also investigated the effects of carbonate on the reduction/DNA-binding process. In pH 7.4 buffer in the absence of carbonate, both 3 and 4 are reduced by AsA to cisplatin (confirmed using ((195))Pt NMR), which binds to and unwinds closed circular DNA in a manner consistent with the formation of the well-known 1, 2 intrastrand DNA crosslink. However, when GSH is used as the reducing agent for 3 and 4, ((195))Pt NMR shows that cisplatin is not produced in the reaction medium. Although the Pt(II) products bind to closed circular DNA, their effect on the mobility of Form I DNA is different from that produced by cisplatin. When physiological carbonate is present in the reduction medium, ((13))C NMR shows that Pt(II) carbonato complexes form which block or impede platinum binding to DNA. The results of the study vis-à-vis the ability of the Pt(IV) complexes to act as prodrugs for cisplatin are discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. In vitro antitumour and antibacterial studies of some Pt(IV) dithiocarbamate complexes (United States)

    Manav, N.; Mishra, A. K.; Kaushik, N. K.


    A few Pt(IV) complexes of the type [Pt(L) 2Cl 2] [where L = morpholine dithiocarbamate (L 1), aniline dithiocarbamate (L 2), N-(methyl, cyclohexyl) dithiocarbamate (L 3) and N-(ethyl, cyclohexyl) dithiocarbamate (L 4)] were synthesized. The complexes have been characterized by elemental analysis, molar conductance, IR, electronic, 1H and 13C NMR spectroscopic studies. The ligands found to act in monobasic bidentate fashion. Cyclicvoltammetric studies, antibacterial and in vitro antitumour studies were also carried out.

  3. Antiproliferative Pt(IV) complexes: synthesis, biological activity, and quantitative structure-activity relationship modeling. (United States)

    Gramatica, Paola; Papa, Ester; Luini, Mara; Monti, Elena; Gariboldi, Marzia B; Ravera, Mauro; Gabano, Elisabetta; Gaviglio, Luca; Osella, Domenico


    Several Pt(IV) complexes of the general formula [Pt(L)2(L')2(L'')2] [axial ligands L are Cl-, RCOO-, or OH-; equatorial ligands L' are two am(m)ine or one diamine; and equatorial ligands L'' are Cl- or glycolato] were rationally designed and synthesized in the attempt to develop a predictive quantitative structure-activity relationship (QSAR) model. Numerous theoretical molecular descriptors were used alongside physicochemical data (i.e., reduction peak potential, Ep, and partition coefficient, log Po/w) to obtain a validated QSAR between in vitro cytotoxicity (half maximal inhibitory concentrations, IC50, on A2780 ovarian and HCT116 colon carcinoma cell lines) and some features of Pt(IV) complexes. In the resulting best models, a lipophilic descriptor (log Po/w or the number of secondary sp3 carbon atoms) plus an electronic descriptor (Ep, the number of oxygen atoms, or the topological polar surface area expressed as the N,O polar contribution) is necessary for modeling, supporting the general finding that the biological behavior of Pt(IV) complexes can be rationalized on the basis of their cellular uptake, the Pt(IV)-->Pt(II) reduction, and the structure of the corresponding Pt(II) metabolites. Novel compounds were synthesized on the basis of their predicted cytotoxicity in the preliminary QSAR model, and were experimentally tested. A final QSAR model, based solely on theoretical molecular descriptors to ensure its general applicability, is proposed.

  4. Prediction of logP for Pt(II) and Pt(IV) complexes: Comparison of statistical and quantum-chemistry based approaches. (United States)

    Tetko, Igor V; Varbanov, Hristo P; Galanski, Markus; Talmaciu, Mona; Platts, James A; Ravera, Mauro; Gabano, Elisabetta


    The octanol/water partition coefficient, logP, is one of the most important physico-chemical parameters for the development of new metal-based anticancer drugs with improved pharmacokinetic properties. This study addresses an issue with the absence of publicly available models to predict logP of Pt(IV) complexes. Following data collection and subsequent development of models based on 187 complexes from literature, we validate new and previously published models on a new set of 11 Pt(II) and 35 Pt(IV) complexes, which were kept blind during the model development step. The error of the consensus model, 0.65 for Pt(IV) and 0.37 for Pt(II) complexes, indicates its good accuracy of predictions. The lower accuracy for Pt(IV) complexes was attributed to experimental difficulties with logP measurements for some poorly-soluble compounds. This model was developed using general-purpose descriptors such as extended functional groups, molecular fragments and E-state indices. Surprisingly, models based on quantum-chemistry calculations provided lower prediction accuracy. We also found that all the developed models strongly overestimate logP values for the three complexes measured in the presence of DMSO. Considering that DMSO is frequently used as a solvent to store chemicals, its effect should not be overlooked when logP measurements by means of the shake flask method are performed. The final models are freely available at

  5. Structural and chelation behaviors of new Ru(II), Pt(IV) and Ir(III) gatifloxacin drug complexes: Spectroscopic characterizations (United States)

    Alghamdi, Mohammed T.; Alsibaai, A. A.; El-Shahawi, M. S.; Refat, Moamen S.


    The interaction between gatifloxacin drug (GAT) with some transition metals (Ru(III), Pt(IV) and Ir(III)) yield the complexes of formulas [Ru(GAT-NH4)(Cl)3(H2O)2], [Pt(GAT-NH4)2(Cl)4]·3H2O and [Ir(GAT-NH4)2(Cl)2(H2O)2]·Cl·2H2O at pH = 7-8. The composition of the GAT complexes was confirmed by elemental data. The IR frequencies reveal the coordination of the GAT with metal ions and the coordination mode of the sbnd N atom of 3-methylpiperazinyl moiety to metal. XRD pattern show isomorphism among the complexes with similar chelation behavior. Scanning electron microscope (SEM) and transmission electron microscopy (TEM) were used to identify the particle size of GAT complexes. The thermal data reveals that various steps of decomposition of the complexes to form their metal oxide as final product. The electronic spectra and the magnetic susceptibility values reveal that the coordination and geometry of Ru3+, Pt4+ and Ir3+ complexes possess distorted octahedral geometry with six number of coordination. Thermodynamic parameters (E*, ΔS*, ΔH* and ΔG*) were calculated from TG curves dependent on Coats-Redfern and Horowitz-Metzeger non-isothermal methods.

  6. Synthesis of Reusable Silica Nanosphere-Supported Pt(IV) Complex for Formation of Disulfide Bonds in Peptides. (United States)

    Hou, Xiaonan; Zhao, Xiaowei; Zhang, Yamei; Han, Aiying; Huo, Shuying; Shen, Shigang


    Some peptide-based drugs, including oxytocin, vasopressin, ziconotide, pramlintide, nesiritide, and octreotide, contain one intramolecular disulfide bond. A novel and reusable monodispersed silica nanosphere-supported Pt(IV) complex (SiO₂@TPEA@Pt(IV)); TPEA: N-[3-(trimethoxysilyl)propyl]ethylenediamine) was synthesized via a four-step procedure and was used for the formation of intramolecular disulfide bonds in peptides. Transmission electron microscopy (TEM) and chemical mapping results for the Pt(II) intermediates and for SiO₂@TPEA@Pt(IV) show that the silica nanospheres possess a monodisperse spherical structure and contain uniformly-distributed Si, O, C, N, Cl, and Pt. The valence state of Pt on the silica nanospheres was characterized by X-ray photoelectron spectroscopy (XPS). The Pt(IV) loaded on SiO₂@TPEA@Pt(IV) was 0.15 mmol/g, as determined by UV-VIS spectrometry. The formation of intramolecular disulfides in six dithiol-containing peptides of variable lengths by the use of SiO₂@TPEA@Pt(IV) was investigated, and the relative oxidation yields were determined by high-performance liquid chromatography (HPLC). In addition, peptide 1 (Ac-CPFC-NH₂) was utilized to study the reusability of SiO₂@TPEA@Pt(IV). No significant decrease in the relative oxidation yield was observed after ten reaction cycles. Moreover, the structure of SiO₂@TPEA@Pt(IV) after being used for ten cycles was determined to be similar to its initial one, demonstrating the cycling stability of the complex.

  7. Synthesis of Reusable Silica Nanosphere-Supported Pt(IV Complex for Formation of Disulfide Bonds in Peptides

    Directory of Open Access Journals (Sweden)

    Xiaonan Hou


    Full Text Available Some peptide-based drugs, including oxytocin, vasopressin, ziconotide, pramlintide, nesiritide, and octreotide, contain one intramolecular disulfide bond. A novel and reusable monodispersed silica nanosphere-supported Pt(IV complex (SiO2@TPEA@Pt(IV; TPEA: N-[3-(trimethoxysilylpropyl]ethylenediamine was synthesized via a four-step procedure and was used for the formation of intramolecular disulfide bonds in peptides. Transmission electron microscopy (TEM and chemical mapping results for the Pt(II intermediates and for SiO2@TPEA@Pt(IV show that the silica nanospheres possess a monodisperse spherical structure and contain uniformly-distributed Si, O, C, N, Cl, and Pt. The valence state of Pt on the silica nanospheres was characterized by X-ray photoelectron spectroscopy (XPS. The Pt(IV loaded on SiO2@TPEA@Pt(IV was 0.15 mmol/g, as determined by UV-VIS spectrometry. The formation of intramolecular disulfides in six dithiol-containing peptides of variable lengths by the use of SiO2@TPEA@Pt(IV was investigated, and the relative oxidation yields were determined by high-performance liquid chromatography (HPLC. In addition, peptide 1 (Ac-CPFC-NH2 was utilized to study the reusability of SiO2@TPEA@Pt(IV. No significant decrease in the relative oxidation yield was observed after ten reaction cycles. Moreover, the structure of SiO2@TPEA@Pt(IV after being used for ten cycles was determined to be similar to its initial one, demonstrating the cycling stability of the complex.

  8. Cytotoxic Pt(IV and Ru(II complexes containing a biologically relevant edda-type ligand: A comparative study of their thermal properties

    Directory of Open Access Journals (Sweden)

    Mihajlović-Lalić Ljiljana E.


    Full Text Available The thermal behaviour of a Pt(IV and a Ru(II complex coordinated to O,O'-di-n-butyl-(S,S-ethylenediamine-N,N'-di-2-(3-cyclohexylpropanoate has been investigated using thermogravimetry (TG and differential scanning calorimetry (DSC. The study included investigation of the thermal decomposition of these complexes in the temperature range of 30 to 590°C and evaluation of activation energy for the first decomposition steps. For both metal complexes, broad DSC peaks indicated complex thermal transformation processes. The two-step decomposition of the Pt(IV complex started at 175 and ended at about 418°C, leaving elemental platinum as a final residue. On the other hand, the Ru(II analogue decomposed in three stages. Thermal degradation was evident beginning at 144°C and suggested the decomposition of a coordinated ligand as dominant process. For this complex, the proposed final residue was RuO2. Kinetic parameters for the first decomposition step were obtained by means of multi-heating rates method, in this case the Kissinger-Akahira-Sunose (KAS method. The mean activation energy calculated for 0.2 < α < 0.8 were 122.0 kJ mol−1 for the Pt(IV and 118.9 kJ mol−1 for the Ru(II complex and decreased constantly, characteristic of a multi-step process. [Projekat Ministarstva nauke Republike Srbije, br. 172035, 172055 i br. 172018

  9. The binding assessment with human serum albumin of novel six-coordinate Pt(IV) complexes, containing bidentate nitrogen donor/methyl ligands. (United States)

    Yousefi, Reza; Taheri-Kafrani, Asghar; Nabavizadeh, Sayed Masoud; Pouryasin, Zahra; Shahsavani, Mohammad Bagher; Khoshaman, Kazem; Rashidi, Mehdi


    The interactions between platinum complexes and human serum albumin (HSA) play crucial roles in the distribution, metabolism, and activity of platinum-based anticancer drugs. Octahedral platinum (IV) complexes represent a significant class of anticancer agents that display molecular pharmacological properties different from cisplatin. In this study, the interaction between two Pt(IV) complexes with the general formula [Pt(X)2Me2 (tbu2bpy)], where tbu2bpy = 4,4'-ditert-butyl-2,2'-bipyridine, with two leaving groups of X = Cl (Com1) or Br (Com2), and HSA were investigated, using Ultraviolet-Visible (UV-Vis) spectroscopy, fluorescence spectroscopy, circular dichroism (CD) and molecular docking simulation. The spectroscopic and thermodynamic data revealed that the HSA/Pt(IV) complexes interactions were spontaneous process and Com2 demonstrated stronger interaction and binding constant in comparison with Com1. Also, the results suggest approximately similar structural alteration of HSA in the presence of these Pt complexes. Molecular docking revealed that both Pt(IV) complexes bind with HSA in subdomain IB, literally the same as each other. This study suggests that variation in the leaving group, displaying differing departure rate, has no significant contribution in denaturing prosperities of the Pt(IV) complexes against HSA.

  10. Experimental investigations of the hydrothermal geochemistry of platinum and palladium: IV. The stoichiometry of Pt(IV) and Pd(II) chloride complexes at 100 to 300°C (United States)

    Gammons, C. H.


    A technique based on the common ion effect was used to obtain information on the stoichiometry of the Pt(IV) and Pd(II) chloride complexes at elevated temperature. The solubility of AgCl(s) was measured in solutions of fixed mHCl and varying ΣPt(IV) or ΣPd(II) concentration. Parallel experiments were conducted at Me/Cl mole ratios (Me = Pt or Pd) of 0.0-0.5 for mHCl = 0.03-3.0, at T = 100, 200, and 300°C. The average Cl ligand numbers for Pt ranged from 4.2 to 5.8, with the majority of values > 5. These results are adequately explained by a mixture of the simple monomeric species PtCl 62t-, PtCl 5-, and PtCl 40. The temperature dependence of the equilibrium constant for the dissociation reaction PtCl 62- = PtCl 5- + Cl - was obtained: log K = 2.40(±0.25) - 1278/ T, K (valid to 573 K), which is in good agreement with published low temperature data. The neutral PtCl 40 species may become important at 300°C and low chloride concentrations (0.016 m HCl). Extrapolation of existing data indicates that the Pt(IV) chloride complexes are stable with respect to Pt(II) chloride complexes over a range of ƒO 2-pH conditions which narrows quickly with increase in temperature. Nonetheless, PtCl 62- may be the dominant form of dissolved Pt in highly oxidized brines to at least 100°C. The average Cl ligand numbers for palladium ranged from 2.164 to 2.83, and were insensitive to temperature. These results could be explained by a mixture of PdCl 2 and PdCl 3-. However, this is in disagreement with published experimental data which indicate that PdCl 4-2 is the predominant form of aqueous Pd at high chloride concentrations. An alternate explanation is that a significant quantity of the total aqueous Pd was present as polynuclear complexes, due to the very high Pd/Cl ratios of the experiments. Insufficient data exist to discriminate between these two hypotheses.

  11. Conjugation of Vitamin E Analog α-TOS to Pt(IV) Complexes for Dual-Targeting Anticancer Therapy (United States)

    Suntharalingam, Kogularamanan; Song, Ying


    We report two platinum(IV) complexes conjugated with a vitamin E analog, α-tocopherol succinate (α-TOS). One of the conjugates displays the activity of both cisplatin and αTOS in cancer cells, causing damage to DNA and mitochondria simultaneously. Accordingly, it serves as promising dual-targeting anticancer agent. PMID:24452361

  12. High catalytic activity of heteropolynuclear cyanide complexes containing cobalt and platinum ions: visible-light driven water oxidation. (United States)

    Yamada, Yusuke; Oyama, Kohei; Gates, Rachel; Fukuzumi, Shunichi


    A near-stoichiometric amount of O2 was evolved as observed in the visible-light irradiation of an aqueous buffer (pH 8) containing [Ru(II) (2,2'-bipyridine)3 ] as a photosensitizer, Na2 S2 O8 as a sacrificial electron acceptor, and a heteropolynuclear cyanide complex as a water-oxidation catalyst. The heteropolynuclear cyanide complexes exhibited higher catalytic activity than a polynuclear cyanide complex containing only Co(III) or Pt(IV) ions as C-bound metal ions. The origin of the synergistic effect between Co and Pt ions is discussed in relation to electronic and local atomic structures of the complexes.

  13. Experimental investigations of the hydrothermal geochemistry of platinum and palladium: V. Equilibria between platinum metal, Pt(II), and Pt(IV) chloride complexes at 25 to 300°C (United States)

    Gammons, Christopher H.


    The solubility of metallic Pt in HCl solutions was determined at 200 to 300°C at oxidation states buffered near the aqueous Pt(II)/Pt(IV) boundary. Equilibrium constants were obtained for the following disproportionation reactions: log K, 200° 250° 300°C 2PtCl 42- = PtCl 42- + Pt(s) + 2Cl - 1.47 1.70 1.54 (a) 2PtCl 3- = PtCl 5- + Pt(s) + Cl - 1.77 1.74 1.37 (b) with experimental uncertainties of approximately ±0.20 log units. These results are found to be in good agreement with previously published estimates for reaction at 60 to 152.5°C. The data indicate that the relative stability of the Pt(II) and Pt(IV) chloride complexes does not change appreciably with temperature. This is in contrast to previous work in the Au(0)/Au(I)/Au(III) system which demonstrates that the Au(I) chloride complexes are unstable with respect to Au (III) at low temperature, but become the dominant aqueous species at 300°C. Pt(IV) chloride complexes are unlikely to be important in high temperature hydrothermal fluids, as unrealistically high aqueous platinum concentrations are required to stabilize these species relative to Pt(II). In contrast, thermodynamic calculations suggest that Pt(IV) chloride or hydroxychloride complexes may be the dominant form of dissolved platinum in low temperature brines that are strongly oxidized (e.g., seawater). In oxygenated, Cl-rich solutions, the solubility of Pt is extremely high at pH < 6, such that the mobility of this metal will most likely be limited by surface adsorption reactions and/ or its abundance and rate of dissolution in the enclosing rock or soil. At neutral to alkaline pH, calculated solubilities are much lower, and saturation with Pt oxide phases may occur, as has recently been described in nature.

  14. Water wafers: structure and melting of a hydrate inclusion compound of a neutral Pt(IV) complex with 1-methylcytosinato ligands (United States)

    Randaccio, Lucio; Zangrando, Ennio; Cesàro, Attilio; Holthenrich, Dagmar; Lippert', Bernhard


    The characterization by X-ray analysis of the trans, trans, trans-[bis(1-methylcytosinate, N4)bis(ammine)bis(hydroxo)platinum(IV)] octahydrate complex (I) reveals an unexpected crystal packing. The neutral complex molecule is hosted by layers, totally built up by water molecules which do not exhibit a direct coordination to metal ions. These corrugated layers are made by puckered eight- and planar four-membered rings of water molecules, held together by hydrogen bonds with an ordered proton arrangement.

  15. Internal heavy atom effect of Au(III) and Pt(IV) on hypocrellin A for enhanced in vitro photodynamic therapy of cancer. (United States)

    Zhou, Lin; Ge, Xuefeng; Liu, Jihua; Zhou, Jiahong; Wei, Shaohua; Li, Fuyou; Shen, Jian


    Hypocrellin A (HA), an a natural perylene quinine photosensitizers (PSs), can chelate with heavy metal ions, including Au(III) and Pt(IV), to form a 1:2 complex, which exhibits enhanced (1)O2 generation quantum yield through the increased intersystem crossing efficiency mediated by internal heavy atom effect. Besides, the chelate process greatly improved the water solubility of HA. Comparative studies with HA and complexes have demonstrated that the heavy-atom effect on HA molecules enhances the efficiency of in vitro photodynamic (PDT) efficacy.

  16. Adsorption properties of Ag(I), Au(III), Pd(II) and Pt(IV) ions on commercial 717 anion-exchange resin

    Institute of Scientific and Technical Information of China (English)

    LIU Peng; LIU Guang-feng; CHEN Da-lin; CHENG Shao-yi; TANG Ning


    The adsorption properties of the four precious metal ions (Ag(Ⅰ),Au(Ⅲ),Pd(Ⅱ) and Pt(Ⅳ)) on the commercial Cl--form 717 strongly basic anion-exchange resin were studied in detail.The effects of the contact time,solution acidity,and concentrations of Cl~- and Pb~(2+) ions on the adsorption properties were studied by the batch method.Then,the column method was conducted under the optimized adsorption conditions (pH=3.0).The effects of the sample loading flow rate and the length-to-diameter ratios of the columns were investigated.The precious metal ions adsorbed could not be eluted completely after the saturated adsorption because the precious metal ions were found to be reduced to their metallic states during the adsorption process.So,it is recommended that the commercial Cl~--form 717 strongly basic anion-exchange resin should be decomposed directly to recovery the precious metals after the saturated adsorption.


    Institute of Scientific and Technical Information of China (English)


    Polymeric ester thiourea resin (PDTU-I) is a new kind of chelating resin with functional atoms S, N and O, so it is an excellent adsorbent for noble metal ions. In batch testes, the adsorption capacities of PDTU-I for Pt(IV) and Pd(II) increase with the increase of contact time, temperature and initial concentration of metal ions. The adsorption data fit Boyd’s diffusion equation of liquid film, Langmuir adsorption isotherm and Freundlich adsorption isotherm. The maximum adsorption capacities calculated by Langmuir equation are 2.54mmol/g for Pt(IV) and 4.88mmol/g for Pd(II). According to FTIR and XPS results, functional groups of PDTU-I coordinate with noble metal ions in the adsorption process.

  18. On the stability and biological behavior of cyclometallated Pt(IV) complexes with halido and aryl ligands in the axial positions. (United States)

    Escolà, Anna; Crespo, Margarita; López, Concepción; Quirante, Josefina; Jayaraman, Anusha; Polat, Ibrahim H; Badía, Josefa; Baldomà, Laura; Cascante, Marta


    A series of cyclometallated platinum(IV) compounds (3a, 3a' and 3b') with a meridional [C,N,N'] terdentate ligand, featuring an halido and an aryl group in the axial positions has been evaluated for electrochemical reduction and preliminary biological behavior against a panel of human adenocarcinoma (A-549 lung, HCT-116 colon, and MCF-7 breast) cell lines and the normal bronquial epithelial BEAS-2B cells. Cathodic reduction potentials (shifting from -1.463 to -1.570V) reveal that the platinum(IV) compounds under study would be highly reluctant to be reduced in a biological environment. Actually ascorbic acid was not able to reduce complex 3a', the most prone to be reduced according its reduction potential, over a period of one week. These results suggest an intrinsic activity for the investigated platinum(IV) complexes (3a, 3a' and 3b'), which exhibit a remarkable cytotoxicity effectiveness (with IC50 values in the low micromolar range), even greater than that of cisplatin. The IC50 for A-549 lung cells and clog P values were found to follow the same trend: 3b'>3a'>3a. However, no correlation was observed between reduction potential and in vitro activity. As a representative example, cyclometallated platinum(IV) compound 3a', exercise its antiproliferative activity directly over non-microcytic A-549 lung cancer cells through a mixture of cell cycle arrest (13% arrest at G1 phase and 46% arrest at G2 phase) and apoptosis induction (increase of early apoptosis by 30 times with regard to control). To gain further insights into the mode of action of the investigated platinum(IV) complexes, drug uptake, cathepsin B inhibition and ROS generation were also evaluated. Interestingly an increased ROS generation could be related with the antiproliferative activity of the cyclometallated platinum(IV) series under study in the cisplatin-resistant A-549 lung and HCT-116 cancer cell lines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Platinum Complexes-Induced Cardiotoxicity of Isolated, Perfused Rat Heart: Comparison of Pt(II) and Pt(IV) Analogues Versus Cisplatin. (United States)

    Misic, Miroslav M; Jakovljevic, Vladimir L; Bugarcic, Zivadin D; Zivkovic, Vladimir I; Srejovic, Ivan M; Barudzic, Nevena S; Djuric, Dragan M; Novokmet, Slobodan S


    We have compared the cardiotoxicity of five platinum complexes in a model of isolated rat heart using the Langendorff technique. These effects were assessed via coronary flow (CF) and cardiac functional parameters. cis-Diamminedichloroplatinum(II) (cisplatin, CDDP), dichloro-(1,2-diaminocyclohexane)platinum(II) (Pt((II))DACHCl2), dichloro-(ethylenediamine)platinum(II) (Pt((II))ENCl2), tetrachloro-(1,2-diaminocyclohexane)platinum(IV) (Pt((IV))DACHCl4) and tetrachloro-(ethylenediamine)platinum(IV) (Pt((II))ENCl4) were perfused at increasing concentrations of 10(-8), 10(-7), 10(-6), 10(-5) and 10(-4) M during 30 min. In this paper, we report that cisplatin-induced dose-dependent effects on cardiac contractility and coronary flow both manifested as decrease in cardiac contractile force (dP/dt)max, heart rate and significant reduction in CF. Pt((II))ENCl2, Pt((IV))ENCl2 and Pt((IV))DACHCl4 did induce dose-dependent response only in case of CF. Our results could be also important for better understanding dose-dependent side effects of potential metal-based anticancer drugs.

  20. A novel flow-injection method for the determination of Pt(IV) in environmental samples based on chemiluminescence reaction of lucigenin and biosorption. (United States)

    Malejko, Julita; Godlewska-Zyłkiewicz, Beata; Kojło, Anatol


    A new flow-injection chemiluminescence method (FI-CL) was developed for the determination of trace amounts of Pt(IV). The method is based on the quenching effect of the analyte on CL emission generated by lucigenin in alkaline solution. Application of a column filled with an algae Chlorella vulgaris immobilized on Cellex-T resin allowed to preconcentrate and separate the Pt(IV) ions from complex environmental samples, such as road dust. The developed method is simple and does not require sophisticated instrumentation. It is also characterized by a very low limit of detection (0.1ngmL(-1)), good sensitivity and precision (RSD<3%). The accuracy of the presented method was confirmed by analysis of a certified reference material of tunnel dust (BCR-723). The content of Pt in road dust samples collected in Białystok (Poland) in 2009 determined by the evaluated method was 351.8+/-54.6ngg(-1) and was higher than in samples collected in years 2000 and 2003.

  1. A series of Nano-sized metal ion – thiouracil complexes, tem, spectral, γ- irradiation, molecular modelingand biological studies

    Directory of Open Access Journals (Sweden)

    Khlood Saad Abou- Melha


    Full Text Available VO(II, Ni(II, Pd(II, Pt(IV and UO2(II complexes were prepared using H5L ligand (C21H15N9S2O3S2. All the prepared complexes are deliberately discussed using different tools(IR, Uv-Vis, 1HNMR, ESR 13CNMR, TGA, TEM, XRD.The octadentate is the main mod of ligand donation, as a neural or trinegativetowards the metal ion. This is verified using molecular modeling as a theoretical tool assert on the stereo structure of the ligand proposed leads to the donation mod. The structural formulas of the complexes were varied in between four to six coordination no. except the VO(II complex is five. Most investigated complexes are thermally unstable due to the presence of crystal water occluded the coordinating crystal. All the spin Hamiltonian parameters as well as molecular orbital parameters were calculated for VO(II complex. XRD patterns were investigated to calculate the particle size of each compound and display their nanosized by distinguish values. TEM scenes are also supporting the XRD data. Finally the biological activities were carried out on different bacteria as well as on fungi. The toxic effect was observed especially with Gram positive bacterium (Bacillus subtilis. Also, the effect on DNA degradation was recorded and display a complete degradation by the use of Pt(IV and Pd(II complexes. Whereas, a partial degradation was observed with Ni(II and UO2(II complexes. But, there is no effect observed with the use of ligand and VO(II complex.

  2. Using Ion Exchange Chromatography to Separate and Quantify Complex Ions (United States)

    Johnson, Brian J.


    Ion exchange chromatography is an important technique in the separation of charged species, particularly in biological, inorganic, and environmental samples. In this experiment, students are supplied with a mixture of two substitution-inert complex ions. They separate the complexes by ion exchange chromatography using a "flash"…

  3. Using Ion Exchange Chromatography to Separate and Quantify Complex Ions (United States)

    Johnson, Brian J.


    Ion exchange chromatography is an important technique in the separation of charged species, particularly in biological, inorganic, and environmental samples. In this experiment, students are supplied with a mixture of two substitution-inert complex ions. They separate the complexes by ion exchange chromatography using a "flash"…

  4. Platinum(IV) complexes with some derivatives of 5-methyl-5-(4-pyridyl) hydantoin. Synthesis, study and comparative pharmacological investigation. (United States)

    Bakalova, A; Buyukliev, R; Ivanova, Z; Momekov, G; Ivanov, D


    3 Pt(IV) complexes with 3-ethyl-5-methyl-5-(4-pyridyl)hydantoin (4), 3-propyl-5-methyl-5-(4-pyridyl)hydantoin (5) and 3-benzyl-5-methyl-5-(4-pyridyl)hydantoin (6) with general formulae cis-[Pt(L)2Cl4] were synthesized. The novel compounds were characterized by elemental analysis, IR, 1H, 13C, NMR spectra in solid state and in solution. The studies showed that the ligands coordinate to the platinum ions in a monodentate manner through the nitrogen atom from the pyridine ring. The cytotoxic activity in vitro of newly synthesized complexes as well as their previously prepared analogous of Pt(IV) with other derivatives like 3-amino-5-methyl-5-(4-pyridyl)hydantoin (1), 5-methyl-5-(4-pyridyl)hydantoin (2), 3,5-dimethyl-5-(4-pyridyl)hydantoin (3) was screened against a panel of human tumor cell lines. The tested compounds displayed cytotoxic activity which was invariably superior with the Pt(IV) complex with 3-benzyl-5-methyl-5-(4-pyridyl)hydantoin (6) causing 50% inhibition of cellular viability at micromolar concentration, though the activity of the other studied Pt(IV) complexes proved to greatly decrease in the order 5-4-3-2-1. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Complex Ion Dynamics in Carbonate Lithium-Ion Battery Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Mitchell T.; Bhatia, Harsh; Gyulassy, Attila G.; Draeger, Erik W.; Pascucci, Valerio; Bremer, Peer-Timo; Lordi, Vincenzo; Pask, John E.


    Li-ion battery performance is strongly influenced by ionic conductivity, which depends on the mobility of the Li ions in solution, and is related to their solvation structure. In this work, we have performed first-principles molecular dynamics (FPMD) simulations of a LiPF6 salt solvated in different Li-ion battery organic electrolytes. We employ an analytical method using relative angles from successive time intervals to characterize complex ionic motion in multiple dimensions from our FPMD simulations. We find different characteristics of ionic motion on different time scales. We find that the Li ion exhibits a strong caging effect due to its strong solvation structure, while the counterion, PF6– undergoes more Brownian-like motion. Our results show that ionic motion can be far from purely diffusive and provide a quantitative characterization of the microscopic motion of ions over different time scales.

  6. Oxidative Stress Induced by Pt(IV) Pro-drugs Based on the Cisplatin Scaffold and Indole Carboxylic Acids in Axial Position (United States)

    Tolan, Dina; Gandin, Valentina; Morrison, Liam; El-Nahas, Ahmed; Marzano, Cristina; Montagner, Diego; Erxleben, Andrea


    The use of Pt(IV) complexes as pro-drugs that are activated by intracellular reduction is a widely investigated approach to overcome the limitations of Pt(II) anticancer agents. A series of ten mono- and bis-carboxylated Pt(IV) complexes with axial indole-3-acetic acid (IAA) and indole-3-propionic acid (IPA) ligands were synthesized and characterized by elemental analysis, ESI-MS, FT-IR, 1H and 195Pt NMR spectroscopy. Cellular uptake, DNA platination and cytotoxicity against a panel of human tumor cell lines were evaluated. All the complexes are able to overcome cisplatin-resistance and the most potent complex, cis,cis,trans-[Pt(NH3)2Cl2(IPA)(OH)] was on average three times more active than cisplatin. Mechanistic studies revealed that the trend in cytotoxicity of the Pt(IV) complexes is primarily consistent with their ability to accumulate into cancer cells and to increase intracellular basal reactive oxygen species levels, which in turn results in the loss of mitochondrial membrane potential and apoptosis induction. The role of the indole acid ligand as a redox modulator is discussed.

  7. Synthesis and Characterization of New Schiff Bases Derived from N (1-Substituted Isatin with Dithiooxamide and Their Co(II, Ni(II, Cu(II, Pd(II, and Pt(IV Complexes

    Directory of Open Access Journals (Sweden)

    Ahlam J. Abdul-Ghani


    Full Text Available Three new Schiff bases of N-substituted isatin LI, LII, and LIII = Schiff base of N-acetylisatin, N-benzylisatin, and N-benzoylisatin, respectively, and their metal complexes C1a,b=[Co2(LI2Cl3]Cl, C2=[Ni(LI2Cl2]0.4BuOH, C3=[CuLICl(H2O]Cl⋅0.5BuOH, C4=[Pd(LI2Cl]Cl, C5=[Pt(L12Cl2]Cl2⋅1.8EtOH.H2O, C6a=[CoLIICl]Cl⋅0.4H2O⋅0.3DMSO, C6b=[CoLIICl]Cl⋅0.3H2O⋅0.1BuOH,C7=[NiLIICl2], C8=[CuLII]Cl2⋅H2O00000, C9=[Pd(LII2]Cl2, C10=[Pt(LII2.5Cl]Cl3, C11a=[Co(LIII]C12⋅H2O, C11b=[Co(LIII]Cl2⋅0.2H2O, and C12=[Ni(LIII2]Cl2, C13=[Ni(LIII2]Cl2 were reported. The complexes were characterized by elemental analyses, metal and chloride content, spectroscopic methods, magnetic moments, conductivity measurements, and thermal studies. Some of these compounds were tested as antibacterial and antifungal agents against Staphylococcus aureus, Proteus vulgaris, Candida albicans, and Aspergillus niger.

  8. Synthesis, Characterization, and Cytotoxicity of the First Oxaliplatin Pt(IV Derivative Having a TSPO Ligand in the Axial Position

    Directory of Open Access Journals (Sweden)

    Salvatore Savino


    Full Text Available The first Pt(IV derivative of oxaliplatin carrying a ligand for TSPO (the 18-kDa mitochondrial translocator protein has been developed. The expression of the translocator protein in the brain and liver of healthy humans is usually low, oppositely to steroid-synthesizing and rapidly proliferating tissues, where TSPO is much more abundant. The novel Pt(IV complex, cis,trans,cis-[Pt(ethanedioatoCl{2-(2-(4-(6,8-dichloro-3-(2-(dipropylamino-2-oxoethylimidazo[1,2-a]pyridin-2-ylphenoxyacetate-ethanolato}(1R,2R-DACH] (DACH = diaminocyclohexane, has been fully characterized by spectroscopic and spectrometric techniques and tested in vitro against human MCF7 breast carcinoma, U87 glioblastoma, and LoVo colon adenocarcinoma cell lines. In addition, affinity for TSPO (IC50 = 18.64 nM, cellular uptake (ca. 2 times greater than that of oxaliplatin in LoVo cancer cells, after 24 h treatment, and perturbation of cell cycle progression were investigated. Although the new compound was less active than oxaliplatin and did not exploit a synergistic proapoptotic effect due to the presence of the TSPO ligand, it appears to be promising in a receptor-mediated drug targeting context towards TSPO-overexpressing tumors, in particular colorectal cancer (IC50 = 2.31 μM after 72 h treatment.

  9. Synthesis, Characterization, and Cytotoxicity of the First Oxaliplatin Pt(IV) Derivative Having a TSPO Ligand in the Axial Position (United States)

    Savino, Salvatore; Denora, Nunzio; Iacobazzi, Rosa Maria; Porcelli, Letizia; Azzariti, Amalia; Natile, Giovanni; Margiotta, Nicola


    The first Pt(IV) derivative of oxaliplatin carrying a ligand for TSPO (the 18-kDa mitochondrial translocator protein) has been developed. The expression of the translocator protein in the brain and liver of healthy humans is usually low, oppositely to steroid-synthesizing and rapidly proliferating tissues, where TSPO is much more abundant. The novel Pt(IV) complex, cis,trans,cis-[Pt(ethanedioato)Cl{2-(2-(4-(6,8-dichloro-3-(2-(dipropylamino)-2-oxoethyl)imidazo[1,2-a]pyridin-2-yl)phenoxy)acetate)-ethanolato}(1R,2R-DACH)] (DACH = diaminocyclohexane), has been fully characterized by spectroscopic and spectrometric techniques and tested in vitro against human MCF7 breast carcinoma, U87 glioblastoma, and LoVo colon adenocarcinoma cell lines. In addition, affinity for TSPO (IC50 = 18.64 nM), cellular uptake (ca. 2 times greater than that of oxaliplatin in LoVo cancer cells, after 24 h treatment), and perturbation of cell cycle progression were investigated. Although the new compound was less active than oxaliplatin and did not exploit a synergistic proapoptotic effect due to the presence of the TSPO ligand, it appears to be promising in a receptor-mediated drug targeting context towards TSPO-overexpressing tumors, in particular colorectal cancer (IC50 = 2.31 μM after 72 h treatment). PMID:27347942

  10. Endogenous ion channel complexes: the NMDA receptor. (United States)

    Frank, René A W


    Ionotropic receptors, including the NMDAR (N-methyl-D-aspartate receptor) mediate fast neurotransmission, neurodevelopment, neuronal excitability and learning. In the present article, the structure and function of the NMDAR is reviewed with the aim to condense our current understanding and highlight frontiers where important questions regarding the biology of this receptor remain unanswered. In the second part of the present review, new biochemical and genetic approaches for the investigation of ion channel receptor complexes will be discussed.

  11. A further insight into the biosorption mechanism of Pt(IV by infrared spectrometry

    Directory of Open Access Journals (Sweden)

    Xu Zhenling


    Full Text Available Abstract Background Platinum nanomaterial is one of the significant noble metal catalysts, and the interaction of platinum with microbe is one of the key factors in influencing the size and the distribution of the platinum nanoparticles on the microbial biomass. Some properties of Pt(IV adsorption and reduction by resting cells of Bacillus megatherium D01 biomass have once been investigated, still the mechanism active in the platinum biosorption remains to be seen and requires further elucidating. Result A further insight into the biosorption mechanism of Pt(IV onto resting cells of Bacillus megatherium D02 biomass on a molecular level has been obtained. The image of scanning electron microscopy (SEM of the D02 biomass challenged with Pt(IV displayed a clear distribution of bioreduced platinum particles with sizes of nanometer scale on the biomass. The state of Pt(IV bioreduced to elemental Pt(0 examined via X-ray photoelectron spectroscopy (XPS suggested that the biomass reduces the Pt(IV to Pt(II followed by a slower reduction to Pt(0. The analysis of glucose content in the hydrolysates of D02 biomass for different time intervals using ultraviolet-visible (UV-vis spectrophotometry indicated that certain reducing sugars occur in the hydrolyzed biomass and that the hydrolysis of polysaccharides of the biomass is a rapid process. The infrared (IR spectrometry on D02 biomass and that challenged with Pt(IV, and on glucose and that reacted with Pt(IV demonstrated that the interaction of the biomass with Pt(IV seems to be through oxygenous or nitrogenous chemical functional groups on the cell wall biopolymers; that the potential binding sites for Pt species include hydroxyl of saccharides, carboxylate anion and carboxyl of amino acid residues, peptide bond, etc.; and that the free monosaccharic group bearing hemiacetalic hydroxyl from the hydrolyzed biomass behaving as an electron donor, in situ reduces the Pt(IV to Pt(0. And moreover, the binding of

  12. Kinetics and mechanism of reactions of the drug tiopronin with platinum(IV) complexes. (United States)

    Huo, Shuying; Shi, Hongmei; Liu, Dongzhi; Shen, Shigang; Zhang, Jiong; Song, Changying; Shi, Tiesheng


    Tiopronin, a synthetic thiol-containing drug being used in treatments of cystinuria and certain types of rare arthritis, is also a hepatoprotective and a detoxifying agent. Many analytical methods have been developed based on its redox chemistry with metal ions/complexes, but the kinetic and mechanistic aspects are poorly understood. In this work, the oxidation of tiopronin by cisplatin prodrug and a model compound, cis-[Pt(NH3)2Cl4] and trans-[PtCl2(CN)4](2-), was investigated. The oxidation kinetics was followed by a stopped-flow spectrophotometer over a wide pH range under the pseudo first-order conditions of [Tiopronin]≫[Pt(IV)]. Time-resolved spectra were also recorded for both Pt(IV) complexes, enabling to establish an overall second-order rate law: -d[Pt(IV)]/dt=k'[Tiopronin][Pt(IV)], where k' pertains to observed second-order rate constants. Under the kinetic conditions, tiopronin was oxidized to form the tiopronin-disulfide exclusively as identified by mass spectrometry. A reaction mechanism was proposed, involving parallel reductions of the Pt(IV) complexes by the three protolytic tiopronin species as rate-determining steps. The rate constants for the rate-determining steps were derived. The fully deprotonated tiopronin is about 4×10(4) more reactive than its corresponding thiol form for both Pt(IV) complexes; the huge reactivity difference orchestrates closely with the fact that the nucleophilicity of thiolate is much higher than the corresponding thiol. Hence, the attack of the sulfur atom in thiol/thiolate of tiopronin on the axially-coordinated chloride in the Pt(IV) complexes is nucleophilic in nature in the rate-determining steps, resulting in a bridge formation and a subsequent bridged electron-transfer. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Photolysis and thermolysis of platinum(IV) 2,2'-bipyridine complexes lead to identical platinum(II)-DNA adducts. (United States)

    Loup, Christophe; Tesouro Vallina, Ana; Coppel, Yannick; Létinois, Ulla; Nakabayashi, Yasuo; Meunier, Bernard; Lippert, Bernhard; Pratviel, Geneviève


    Two Pt(IV) and two Pt(II) complexes containing a 2,2'-bipyridine ligand were treated with a short DNA oligonucleotide under light irradiation at 37°C or in the dark at 37 and 50°C. Photolysis and thermolysis of the Pt(IV) complexes led to spontaneous reduction of the Pt(IV) to the corresponding Pt(II) complexes and to binding of Pt(II) 2,2'-bipyridine complexes to N7 of guanine. When the reduction product was [Pt(bpy)Cl(2)], formation of bis-oligonucleotide adducts was observed, whereas [Pt(bpy)(MeNH(2))Cl](+) gave monoadducts, with chloride ligands substituted in both cases. Neither in the dark nor under light irradiation was the reductive elimination process of these Pt(IV) complexes accompanied by oxidative DNA damage. This work raises the question of the stability of photoactivatable Pt(IV) complexes toward moderate heating conditions.

  14. Ten metal complexes of vitamin B3/niacin: Spectroscopic, thermal, antibacterial, antifungal, cytotoxicity and antitumor studies of Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Pd(II), Cd(II), Pt(IV) and Au(III) complexes (United States)

    Al-Saif, Foziah A.; Refat, Moamen S.


    Ten coordination compounds, namely Mn(NA)2Cl2·4H2O (1), Fe(NA)Cl3(H2O)2 (2), Co(NA)2(NO3)2·6H2O (3), Ni(NA)Cl2·5H2O (4), Cu(NA)Cl2·3H2O (5), Zn(NA)(NO3)2·H2O (6), Pd(NA)2Cl2·H2O (7), Cd(NA)Cl2·H2O (8), Pt(NA)2Cl4·5H2O (9) and Au(NA)Cl3 (10) were obtained by the reactions of the corresponding transition metal salts with vitamin B3/niacin (NA) in the presence of 1:4 (v:v) distilled water: methanol solvent at 70 °C for about 30 min, and their suggested structures were determined by elemental analyses, molar conductivity, (infrared, UV-vis) spectra, effective magnetic moment in Bohr magnetons, electron spin resonance (ESR), thermal analysis (TG), X-ray powder diffraction (XRD) as well as scanning electron microscopy (SEM). The results revealed that in complexes 1, 3, 7, and 9 both of two NA ligand coordinates one metal ion to form four or six coordinated structures, while in compound 10, one NA ligand coordinate to Au+++ ion to form a square-planar geometry with N-bonded pyridine ligand is suggested, and (2, 4, 5, 6 and, 8) complexes have 1:1 structures. Antimicrobial and antitumor activities were assessment against some kind of (G+ and G-) bacteria, fungi and breast carcinoma cells (MCF-7-cell line).

  15. Metal Ion Selectivity of Kojate Complexes: A Theoretical Study

    Directory of Open Access Journals (Sweden)

    Sarita Singh


    Full Text Available Density functional calculations have been performed on four-coordinate kojate complexes of selected divalent metal ions in order to determine the affinity of the metal ions for the kojate ion. The complexation reactions are characterized by high energies, showing that they are highly exothermic. It is found that Ni(II exhibits the highest affinity for the kojate ion, and this is attributed to the largest amount of charge transfer from the ligand to the metal ion. The Ni(II complex has distorted square planar structure. The HOMOs and LUMOs of the complexes are also discussed. All complexes display a strong band at ~1500 cm−1 corresponding to the stretching frequency of the weakened carbonyl bond. Comparison of the complexation energies for the two steps shows that most of the complexation energy is realized in the first step. The energy released in the second step is about one-third that of the first step.

  16. Electron Capture Dissociation of Trivalent Metal Ion-Peptide Complexes

    National Research Council Canada - National Science Library

    Flick, Tawnya G; Donald, William A; Williams, Evan R


    .... ECD of these doubly charged complexes containing MT results in significantly higher electron capture efficiency and sequence coverage than peptide-divalent metal ion complexes that have the same net charge...

  17. Studies on the photoactivation of two cytotoxic trans,trans,trans-diazidodiaminodihydroxo-Pt(IV) complexes. (United States)

    Westendorf, Aron F; Bodtke, Anja; Bednarski, Patrick J


    Light-activation of metal ion complexes to cytotoxic species is of interest due to the potential use in anticancer therapy. Two platinum complexes, trans,trans,trans-[Pt(IV)(N(3))(2)(OH)(2)(NH(3))(2)] (3) and trans,trans,trans-[Pt(IV)(N(3))(2)(OH)(2)(py)(NH(3))] (4) were irradiated with either UV (λ = 366 nm) or white fluorescent light and the various photochemical and photobiological phenomena were characterized. HPLC coupled to UV/Vis and MS detection was used to identify photochemical species resulting from irradiation of 4 with UV and white light. These studies showed that various Pt(IV) and Pt(II) products formed during the photolysis. The mass spectra of Pt(IV) complexes showed Pt ions in both the positive as well as the negative mode while Pt(II) complexes resulted in only positively charged Pt(III) ions. Since cellular DNA is considered to be a key target for platinum antitumor drugs, the irreversible platination of calf thymus DNA by the photoactivated Pt(IV) complexes was followed by Atomic Adsorption spectrometry (AAS). The effect of adding chloride or biological reducing agents glutathione (GSH) and ascorbic acid on the rates of DNA platination where also studied. Upon activation by light, both compounds show similar binding behaviour to DNA, but the rates of DNA platination for 3 were faster than for 4. Both chloride and GSH protected DNA from platination by the photoactivated compounds; consistent with the trapping of reactive aqua-Pt species. The presence of ascorbate increased the level of platinum bound to DNA for photoactivated 4 but not for 3. Without photoactivation, little or no DNA platination was observed, either with or without ascorbate or GSH. Cytotoxicity studies with two human cancer cell lines underline the photochemotherapeutic potential of these compounds. Striking is the increase in cytotoxic potency with the replacement of an ammine by a pyridine ligand.

  18. Synthesis and Characterization of Templated Ion Exchange Resins for the Selective Complexation of Actinide Ions

    Energy Technology Data Exchange (ETDEWEB)

    Uy, O. Manual


    The purpose of this research is to develop a polymeric extractant for the selective complexation of uranyl ions (and subsequently other actinyl and actinide ions) from aqueous solutions (lakes, streams, waste tanks and even body fluids). Chemical insights into what makes a good complexation site will be used to synthesize reagents tailor-made for the complexation of uranyl and other actinide ions. These insights, derived from studies of molecular recognition include ion coordination number and geometry, ionic size and ionic shape, as well as ion to ligand thermodynamic affinity. Selectivity for a specific actinide ion will be obtained by providing the polymers with cavities lined with complexing ligands so arranged as to match the charge, coordination number, coordination geometry, and size of the actinide metal ion. These cavity-containing polymers will be produced by using a specific ion (or surrogate) as a template around which monomeric complexing ligands will be polymerized. The complexing ligands will be ones containing functional groups known to form stable complexes with a specific ion and less stable complexes with other cations. Prior investigator's approaches for making templated resins for metal ions have had marginal success. We have extended and amended these methodologies in our work with Pb(II) and uranyl ion, by changing the order of the steps, by the inclusion of sonication, by using higher complex loading, and the selection of functional groups with better complexation constants. This has resulted in significant improvements to selectivity. The unusual shape of the uranyl ion suggests that this approach will result in even greater selectivities than already observed for Pb(II). Preliminary data obtained for uranyl templated polymers shows unprecedented selectivity and has resulted in the first ion selective electrode for uranyl ion.

  19. Traveling-wave ion mobility mass spectrometry of protein complexes

    DEFF Research Database (Denmark)

    Salbo, Rune; Bush, Matthew F; Naver, Helle


    The collision cross-section (Ω) of a protein or protein complex ion can be measured using traveling-wave (T-wave) ion mobility (IM) mass spectrometry (MS) via calibration with compounds of known Ω. The T-wave Ω-values depend strongly on instrument parameters and calibrant selection. Optimization...

  20. Plans for ions in the injector complex

    CERN Document Server

    Manglunki, D


    The heavy ion beams required during the HL-LHC era will imply significant modifications to the existing injector chain. We review the various options, highlighting the importance of an early definition of the future needs and keeping in mind the compatibility with the rest of the future CERN physics programme.

  1. Production and sympathetic cooling of complex molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chaobo


    This thesis reports on experimental and theoretical studies of the sympathetic cooling of complex molecular ions demonstrating that this general method for cooling atomic and molecular ions is reliable and efficient. For this purpose, complex molecular ions and barium ions have been confined simultaneously in a linear Paul trap. The complex molecular ions are generated in an electrospray ionization system and transferred to the trap via a 2 m long octopole ion guide. These molecular ions are pre-cooled by room temperature helium buffer gas so that they can be captured by the trap. The atomic barium ions are loaded from a barium evaporator oven and are laser-cooled by a 493 nm cooling laser and a 650 nm repumping laser. Due to the mutual Coulomb interaction among these charged particles, the kinetic energy of the complex molecular ions can be reduced significantly. In our experiments we have demonstrated the sympathetic cooling of various molecules (CO{sub 2}, Alexa Fluor 350, glycyrrhetinic acid, cytochrome c) covering a wide mass range from a few tens to 13000 amu. In every case the molecular ions could be cooled down to millikelvin temperatures. Photo-chemical reactions of the {sup 138}Ba{sup +} ions in the ({sup 2}P{sub 1/2}) excited state with gases such as O{sub 2}, CO{sub 2}, or N{sub 2}O, could be observed. If the initial {sup 138}Ba{sup +} ion ensemble is cold, the produced {sup 138}BaO{sup +} ions are cold as well, with a similar temperature as the laser-cooled barium ions (a few tens of millikelvin). The back-reaction of {sup 138}BaO{sup +} ions with neutral CO to {sup 138}Ba{sup +} is possible and was observed in our experiments as well. A powerful molecular dynamics (MD) simulation program has been developed. With this program dynamic properties of ion ensembles, such as sympathetic interactions or heating effects, have been investigated and experimental results have been analyzed to obtain, for example, ion numbers and temperatures. Additionally, the

  2. A new ion mobility-linear ion trap instrument for complex mixture analysis. (United States)

    Donohoe, Gregory C; Maleki, Hossein; Arndt, James R; Khakinejad, Mahdiar; Yi, Jinghai; McBride, Carroll; Nurkiewicz, Timothy R; Valentine, Stephen J


    A new instrument that couples a low-pressure drift tube with a linear ion trap mass spectrometer is demonstrated for complex mixture analysis. The combination of the low-pressure separation with the ion trapping capabilities provides several benefits for complex mixture analysis. These include high sensitivity, unique ion fragmentation capabilities, and high reproducibility. Even though the gas-phase separation and the mass measurement steps are each conducted in an ion filtering mode, detection limits for mobility-selected peptide ions are in the tens of attomole range. In addition to ion separation, the low-pressure drift tube can be used as an ion fragmentation cell yielding mobility-resolved fragment ions that can be subsequently analyzed by multistage tandem mass spectrometry (MS(n)) methods in the ion trap. Because of the ion trap configuration, these methods can be comprised of any number (limited by ion signal) of collision-induced dissociation (CID) and electron transfer dissociation (ETD) processes. The high reproducibility of the gas-phase separation allows for comparison of two-dimensional ion mobility spectrometry (IMS)-MS data sets in a pixel-by-pixel fashion without the need for data set alignment. These advantages are presented in model analyses representing mixtures encountered in proteomics and metabolomics experiments.

  3. Disordered complex systems using cold gases and trapped ions

    CERN Document Server

    De, A S; Lewenstein, M; Ahufinger, V; Pons, M L; Sanpera, A; De, Aditi Sen; Sen, Ujjwal; Lewenstein, Maciej; Ahufinger, Veronica; Pons, Marisa Ll.; Sanpera, Anna


    We report our research on disordered complex systems using cold gases and trapped ions, and address the possibility of using complex systems for quantum information processing. Two simple paradigmatic models of disordered complex systems are revisited here. The first one corresponds to a short range disordered Ising Hamiltonian (spin glasses), which can be implemented with a Bose-Fermi (Bose-Bose) mixture in a disordered optical lattice. The second model we address here is a long range disordered Hamiltonian, characteristic of neural networks (Hopfield model), which can be implemented in a chain of trapped ions with appropriately designed interactions.

  4. Platinum(IV) Carboxylate Prodrug Complexes as Versatile Platforms for Targeted Chemotherapy. (United States)

    Ong, Jun Xiang; Yap, Siew Qi; Wong, Daniel Yuan Qiang; Chin, Chee Fei; Ang, Wee Han


    Kinetically-inert Pt(IV) carboxylate complexes have emerged in recent years as candidates for the development of next-generation platinum anticancer drugs. Being native prodrugs of clinically-important Pt(II) chemotherapeutic agents, the Pt(IV) scaffold can be exploited to incorporate additional functionalities while keeping the Pt(II) pharmacophore intact. This mini-review examines recent work performed to illuminate the mechanism of Pt(IV) prodrug activation and their use as versatile platforms for targeted chemotherapy.

  5. [Thermodynamic characteristics of nucleic acid complexes with silver ions]. (United States)

    Minasian, K A; Poletaev, A I; Borob'ev, A F


    By means of mixing reaction calorimetry the enthalpy of the complexes formation between Ag+ ions and DNA and dsRNA was measured. It was shown that Ag+ ions are able to form two types of complexes (I and II) with dsRNA. Using the method of the competitive reaction with chloride ions the stability constants of complex formation were obtained for dsRNA-Ag+ complexes for different temperatures. These measurements gave the delta H and delta S values for both complexes: delta HI = -74,9 +/- 7,1 kjouls/mol, delta SI = -100.0 +/- 25.0 jouls/mol deg; delta HII = -39,8 +/- 4,2 kjouls/mol, delta SII = +2 +/- 14 jouls/mol deg. The calorimetric results of delta H determination are the same within the limits of experimental errors. The enthalpy term of dsRNA-Ag+ complexes proved to bring the main contribution into the free energy of complex formation.

  6. Complex of heavy magnetic ions and luminescent silicon nanoparticles (United States)

    Hoang, Tuan

    We study the optical properties of luminescent silicon nanoparticles in the presence of magnetic ions of iron or erbium in solution and electric biasing. Upon the introduction of the ions under zero biasing, the luminescence is enhanced to by 50%. The peak position of the nanoparticle's spectrum shifts by 10 nm. The enhancement remains stable even outside of the solvent, and under exposure to an ionizing environment, with electric eld as high as 8 MV/m exceeding the breakdown eld value of solution. We attribute the enhancement and spectral change to the formation of complex between the silicon nanoparticles and the ions. We compare these results with the computational study that was done in our group using density functional theory. The calculations yield two stable con gurations that such ion-particle complex could form, with binding energy of 0:49 eV between the ion and the nanoparticle. The complexes promise diverse applications in magnetic/optical imaging, spatially programmable deposition, spin-based memories and transistors, infrared communications, ltration, as well as interplanetary and interstellar observation and modeling.

  7. Current Status of the Daejeon Ion Accelerator Complex at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Sung-Ryul; Chang, Dae-Sik; Hwang, Churl-Kew; Lee, Seok-Kwan; Jin, Jeong-Tae; Oh, Byung-Hoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    The Daejeon ion accelerator complex (DIAC) is being constructed at Korea atomic energy research institute (KAERI) in order to fulfill an increasing demand for heavy ion beam facilities for various purposes including structural material study, biological research and nanomaterial treatment. The accelerators in the DIAC are designed to produce heavy ion beams with energies up to 1 MeV/u and beam currents up to 300 μA. [1–4] In this article, current status of the DIAC construction is presented and discussed. The DIAC facilities are designed to handle stable non-radioactive beams. According to user demand, the separated two ECR sources (i.e., an 18 GHz KEK – the high energy accelerator research organization ECR ion source with a metal oven and a 14.5 GHz KAERI ECR ion source) together with low energy beam transport line (LEBT) can supply linacs with both metal and non-metal ions. From the successful full-power test results, we confirmed that the IH and RFQ linacs work properly and then they are ready to accelerate heavy ions up to 1.09 MeV/nucleon. Since all tests and reorganization of the integrated control system were successful, it is supposed that the DIAC is now ready for beam tuning. Presently, construction of radiation shielded walls and radiation safety licensing are now in progress.

  8. Dimeric Complexes of Tryptophan with M2+ Metal Ions

    NARCIS (Netherlands)

    Dunbar, R. C.; Steill, J. D.; Polfer, N. C.; Oomens, J.


    IRMPD spectroscopy using the FELIX free electron laser and a Fourier transform ICR mass spectrometer was used to characterize the structures of electrosprayed dimer complexes M(2+)Trp(2) of tryptophan with a series of eight doubly charged metal ions, including alkaline earths Ca, Sr, and Ba, and tra

  9. Design, synthesis and biological evaluation of a novel series of glycosylated platinum(iv) complexes as antitumor agents. (United States)

    Wang, Qingpeng; Huang, Zhonglv; Ma, Jing; Lu, Xiaolin; Zhang, Li; Wang, Xin; George Wang, Peng


    A new series of glycosylated Pt(iv) complexes were designed, synthesized and evaluated for antitumor activities in vitro and in vivo. The incorporation of glycosyl groups to the Pt(iv) system has much influence on the antitumor abilities. Four lead compounds with activities comparable or even superior to cisplatin and oxaliplatin are screened out. These Pt(iv) complexes could be reduced to release Pt(ii) complexes and cause the death of tumour cells. The apoptosis-inducing properties of these compounds are similar to cisplatin. The accumulation of the glycosylated Pt(iv) complexes in cells and DNA is higher than cisplatin and oxaliplatin. The in vivo assay demonstrates that the tested compounds inhibit the growth of HepG2 tumors with low toxicity.

  10. [Applications of metal ions and their complexes in medicine I]. (United States)

    Nagy, László; Csintalan, Gabriella; Kálmán, Eszter; Sipos, Pál; Szvetnik, Attila


    The "inorganic medical chemistry" is a rapidly developing field with enormous potential for applications, which offers new possibilities to the pharmaceutical industry. For example, the titanocene dichloride is already in clinical use, and antimetastatic activity of a range of Ru(III) complexes is also well established. There are ways to minimize the toxicity of Gd(III) complexes and therefore they can be safely injected as MRI contrast agents. The so called "ligand design" allows paramagnetic ions to be targeted to specific organs. Such designed ligands also enable the targeting of radiodiagnostic (99mTc) and radiotherapeutic (186Re) isotopes. There is a significant progress in understanding the coordination chemistry and biochemistry of metal ion(s) containing complexes such as Au antiarthritic and Bi antiulcer drugs. Further, currently developing areas include Mn (SOD mimics), V (insulin mimics), Ru (NO scavengers), Ln-based photosensitizers, metal-targeted organic agents and the Fe overload. The expanding knowledge of the role of metals in biochemistry is expected to provide scope for the design of new drugs in many other areas too, for example neuropharmaceutical and antiaffective agents. Progress in coordination chemistry is strongly dependent on understanding not only the thermodynamics of reactions, but also the kinetics of metal complexes under biologically relevant conditions.

  11. Superconducting racetrack booster for the ion complex of MEIC

    Energy Technology Data Exchange (ETDEWEB)

    Filatov, Yu [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); Moscow Inst. of Physics and Technology (MIPT), Moscow (Russian Federation); Kondratenko, A. M. [Science and Technique Laboratory ' Zaryad' , 630090, Novosibirsk, Russia; Kondratenko, M. A. [Science and Technique Laboratory ' Zaryad' , 630090, Novosibirsk, Russia; Kovalenko, A. [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lin, Fanglei [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Morozov, Vasiliy S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)


    The current design of the Medium-energy Electron-Ion Collider (MEIC) project at Jefferson lab features a single 8 GeV/c figure-8 booster based on super-ferric magnets. Reducing the circumference of the booster by switching to a racetrack design may improve its performance by limiting the space charge effect and lower its cost. We consider problems of preserving proton and deuteron polarizations in a superconducting racetrack booster. We show that using magnets based on hollow high-current NbTi composite superconducting cable similar to those designed at JINR for the Nuclotron guarantees preservation of the ion polarization in a racetrack booster up to 8 GeV/c. The booster operation cycle would be a few seconds that would improve the operating efficiency of the MEIC ion complex.

  12. Complexation-induced supramolecular assembly drives metal-ion extraction. (United States)

    Ellis, Ross J; Meridiano, Yannick; Muller, Julie; Berthon, Laurence; Guilbaud, Philippe; Zorz, Nicole; Antonio, Mark R; Demars, Thomas; Zemb, Thomas


    Combining experiment with theory reveals the role of self-assembly and complexation in metal-ion transfer through the water-oil interface. The coordinating metal salt Eu(NO3)3 was extracted from water into oil by a lipophilic neutral amphiphile. Molecular dynamics simulations were coupled to experimental spectroscopic and X-ray scattering techniques to investigate how local coordination interactions between the metal ion and ligands in the organic phase combine with long-range interactions to produce spontaneous changes in the solvent microstructure. Extraction of the Eu(3+)-3(NO3(-)) ion pairs involves incorporation of the "hard" metal complex into the core of "soft" aggregates. This seeds the formation of reverse micelles that draw the water and "free" amphiphile into nanoscale hydrophilic domains. The reverse micelles interact through attractive van der Waals interactions and coalesce into rod-shaped polynuclear Eu(III) -containing aggregates with metal centers bridged by nitrate. These preorganized hydrophilic domains, containing high densities of O-donor ligands and anions, provide improved Eu(III) solvation environments that help drive interfacial transfer, as is reflected by the increasing Eu(III) partitioning ratios (oil/aqueous) despite the organic phase approaching saturation. For the first time, this multiscale approach links metal-ion coordination with nanoscale structure to reveal the free-energy balance that drives the phase transfer of neutral metal salts.

  13. Infrared spectroscopy of nonclassical ions and their complexes

    Energy Technology Data Exchange (ETDEWEB)

    Boo, Doo Wan [Univ. of California, Berkeley, CA (United States)


    This thesis describes an infrared spectroscopic study on the structures and dynamics of the nonclassical ions and their complexes, using ion trap vibrational predissociation spectroscopy. Chapter One provides an introduction to the experimental apparatus used in this work. Chapter Two describes the previous theoretical and experimental works on the carbonium ion CH5+ and infrared spectroscopic and theoretical works on CH5+. CH5+ was predicted to scramble constantly without possessing a stable structure. In Chapter Three, the infrared spectroscopy for the molecular hydrogen solvated carbonium ions CH5+(H2)n (n=1-6) in the frequency region of 2700-4200 cm-1 are presented and compared with the results of ab initio molecular dynamics simulation on CH5+(H2)n (n=0-3). The results suggested that the scrambling of CH5+ slowed down considerably by the stabilization effects of the solvent H2 molecules, and it was completely frozen out when the first three H2 molecules were bound to the core CH5+. Chapter Four presents the complete infrared spectra for the solvated carbonium ions, CH5+(A)x(B)y (A,B=H2, Ar, N2, CH4;x,y=0-5) in the frequency region of 2500-3200 cm-1. As the binding affinities of the solvent molecules and the number of the solvent molecules in the clusters increased, the scrambling of CH5+ slowed down substantially. The structures of the solvated carbonium ions and the evidence for rapid proton transfer in CH5+(CH4) were also presented. Chapter Five presents the vib-rotational spectrum for the H-H stretching mode of the silanium ion SiH5+. The results suggested that Si

  14. The Effect of Complex Formation upon the Redox Potentials of Metallic Ions. Cyclic Voltammetry Experiments. (United States)

    Ibanez, Jorge G.; And Others


    Describes experiments in which students prepare in situ soluble complexes of metal ions with different ligands and observe and estimate the change in formal potential that the ion undergoes upon complexation. Discusses student formation and analysis of soluble complexes of two different metal ions with the same ligand. (CW)

  15. The Effect of Complex Formation upon the Redox Potentials of Metallic Ions. Cyclic Voltammetry Experiments. (United States)

    Ibanez, Jorge G.; And Others


    Describes experiments in which students prepare in situ soluble complexes of metal ions with different ligands and observe and estimate the change in formal potential that the ion undergoes upon complexation. Discusses student formation and analysis of soluble complexes of two different metal ions with the same ligand. (CW)

  16. Potentiation of mitochondrial dysfunction in tumor cells by conjugates of metabolic modulator dichloroacetate with a Pt(IV) derivative of oxaliplatin. (United States)

    Zajac, Juraj; Kostrhunova, Hana; Novohradsky, Vojtech; Vrana, Oldrich; Raveendran, Raji; Gibson, Dan; Kasparkova, Jana; Brabec, Viktor


    The molecular and cellular mechanisms of enhanced toxic effects in tumor cells of the Pt(IV) derivatives of antitumor oxaliplatin containing axial dichloroacetate (DCA) ligands were investigated. DCA ligands were chosen because DCA has shown great potential as an apoptosis sensitizer and anticancer agent reverting the Wartburg effect. In addition, DCA reverses mitochondrial changes in a wide range of cancers, promoting tumor cell apoptosis in a mitochondrial-dependent pathway. We demonstrate that (i) the transformation of oxaliplatin to its Pt(IV) derivatives containing axial DCA ligands markedly enhances toxicity in cancer cells and helps overcome inherent and acquired resistance to cisplatin and oxaliplatin; (ii) a significant fraction of the intact molecules of DCA conjugates with Pt(IV) derivative of oxaliplatin accumulates in cancer cells where it releases free DCA; (iii) mechanism of biological action of the Pt(IV) derivatives of oxaliplatin containing DCA ligands is connected with the effects of DCA released in cancer cells from the Pt(IV) prodrugs on mitochondria and metabolism of glucose; (iv) treatments with the Pt(IV) derivatives of oxaliplatin containing DCA ligands activate an autophagic response in human colorectal cancer cells; (v) the toxic effects in cancer cells of the Pt(IV) derivatives of oxaliplatin containing DCA ligands can be potentiated if cells are treated with these prodrugs in combination with 5-fluorouracil. These properties of the Pt(IV) derivatives of oxaliplatin containing DCA ligands provide opportunities for further development of new platinum-based agents with the capability of killing cancer cells resistant to conventional antitumor platinum drugs used in the clinic.

  17. Light emission of a polyfluorene derivative containing complexed europium ions. (United States)

    Turchetti, Denis Augusto; Nolasco, Mariela Martins; Szczerbowski, Daiane; Carlos, Luís Dias; Akcelrud, Leni Campos


    The photophysical properties of a new alternating copolymer containing fluorene, terpyridine, and complexed sites with trivalent europium (Eu(3+)) ions (LaPPS66Eu) were investigated, using the non-complexed backbone (LaPPS66) and a low molecular weight compound of similar chemical structure of the ligand/Eu(3+) site (LaPPS66M) as a model compound. The analogous gadolinium complex (LaPPS66Gd) was also synthesized to determine the triplet state of the complex. (1)H and (13)C nuclear magnetic resonance (NMR) analysis, Fourier transform infrared (FT-IR) spectroscopy, inductively coupled plasma optical emission spectroscopy (ICP-OES), elemental analyses, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) characterized the chemical structure and thermal properties of the synthesized materials. A level of Eu(3+) insertion of 37% (molar basis) in the polymer backbone was achieved. The photoluminescence studies were performed in the solid state showing the occurrence of polymer-to-Eu(3+) energy transfer brought about by the spectral overlap between the absorption spectra of the Eu(3+) complex and the emission of the polymer backbone. A detailed theoretical photoluminescence study performed using time-dependent DFT (TD-DFT) calculations and the recently developed LUMPAC luminescence package is also presented. The high accuracy of the theoretical calculations was achieved on comparison with the experimental values. Aiming at a deeper level of understanding of the photoluminescence process, the ligand-to-Eu(3+) intramolecular energy transfer and back-transfer rates were predicted. The complexed materials showed a dominant pathway involving the energy transfer between the triplet of the dbm (dibenzoylmethane) ligand and the (5)D1 and (5)D0 Eu(3+) levels.

  18. Complex permittivity and complex permeability of Sr ions substituted Ba ferrite at X-band

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Charanjeet [Department of Electronics Technology, Guru Nanak Dev University, Amritsar, Punjab (India); Bindra Narang, S. [Department of Electronics Technology, Guru Nanak Dev University, Amritsar, Punjab (India)], E-mail:; Hudiara, I.S. [Department of Electronics Technology, Guru Nanak Dev University, Amritsar, Punjab (India); Sudheendran, K.; James Raju, K.C. [School of Physics, Central University Hyderabad, Andhra Pradesh (India)


    M-type hexagonal ferrite composition, Ba{sub (1-x)}Sr{sub x}Fe{sub 12}O{sub 19} (x=0.0, 0.2, 0.4, 0.6, 0.8 and 1.0), was prepared by a two route ceramic method. Complex permittivity ({epsilon}'-j{epsilon}'') and complex permeability ({mu}'-j{mu}'') have been measured using a network analyzer from 8.2 to 12.4 GHz X-ray diffraction confirmed the M-type hexagonal structure and a scanned electron micrograph was used to analyze the grain size distribution of ferrite. Substitution of Sr{sup 2+} ions causes an increase in porosity that deteriorates the electromagnetic and microstructural properties in the doped samples. Both dielectric constant and dielectric loss are enhanced in comparison to the permeability and magnetic loss over the entire frequency region. This is due to a resistivity variation and the formation of Fe{sup 2+} ions, which increases the hopping mechanism between Fe{sup 2+} and Fe{sup 3+} ions.

  19. Ion mobility mass spectrometry of peptide, protein, and protein complex ions using a radio-frequency confining drift cell. (United States)

    Allen, Samuel J; Giles, Kevin; Gilbert, Tony; Bush, Matthew F


    Ion mobility mass spectrometry experiments enable the characterization of mass, assembly, and shape of biological molecules and assemblies. Here, a new radio-frequency confining drift cell is characterized and used to measure the mobilities of peptide, protein, and protein complex ions. The new drift cell replaced the traveling-wave ion mobility cell in a Waters Synapt G2 HDMS. Methods for operating the drift cell and determining collision cross section values using this experimental set up are presented within the context of the original instrument control software. Collision cross sections for 349 cations and anions are reported, 155 of which are for ions that have not been characterized previously using ion mobility. The values for the remaining ions are similar to those determined using a previous radio-frequency confining drift cell and drift tubes without radial confinement. Using this device under 2 Torr of helium gas and an optimized drift voltage, denatured and native-like ions exhibited average apparent resolving powers of 14.2 and 16.5, respectively. For ions with high mobility, which are also low in mass, the apparent resolving power is limited by contributions from ion gating. In contrast, the arrival-time distributions of low-mobility, native-like ions are not well explained using only contributions from ion gating and diffusion. For those species, the widths of arrival-time distributions are most consistent with the presence of multiple structures in the gas phase.

  20. Non-centrosymmetric behavior of a clay film ion-exchanged with chiral metal complexes. (United States)

    Suzuki, Yasutaka; Matsunaga, Ryoya; Sato, Hisako; Kogure, Toshihiro; Yamagishi, Akihiko; Kawamata, Jun


    SHG measurements on a highly transparent clay film ion-exchanged with chiral metal complexes revealed that the mono-molecular layer of the chiral complexes in an interlayer space acquired a non-centrosymmetric character.

  1. Inherited neuronal ion channelopathies: new windows on complex neurological diseases. (United States)

    Catterall, William A; Dib-Hajj, Sulayman; Meisler, Miriam H; Pietrobon, Daniela


    Studies of genetic forms of epilepsy, chronic pain, and migraine caused by mutations in ion channels have given crucial insights into molecular mechanisms, pathogenesis, and therapeutic approaches to complex neurological disorders. Gain-of-function missense mutations in the brain type-I sodium channel Na(V)1.1 are a primary cause of generalized epilepsy with febrile seizures plus. Loss-of-function mutations in Na(V)1.1 channels cause severe myoclonic epilepsy of infancy, an intractable childhood epilepsy. Studies of a mouse model show that this disease is caused by selective loss of sodium current and excitability of GABAergic inhibitory interneurons, which leads to hyperexcitability, epilepsy, and ataxia. Mutations in the peripheral sodium channel Na(V)1.7 cause familial pain syndromes. Gain-of-function mutations cause erythromelalgia and paroxysmal extreme pain disorder as a result of hyperexcitability of sensory neurons, whereas loss-of-function mutations cause congenital indifference to pain because of attenuation of action potential firing. These experiments have defined correlations between genotype and phenotype in chronic pain diseases and focused attention on Na(V)1.7 as a therapeutic target. Familial hemiplegic migraine is caused by mutations in the calcium channel, Ca(V)2.1, which conducts P/Q-type calcium currents that initiate neurotransmitter release. These mutations increase activation at negative membrane potentials and increase evoked neurotransmitter release at cortical glutamatergic synapses. Studies of a mouse genetic model show that these gain-of-function effects lead to cortical spreading depression, aura, and potentially migraine. Overall, these experiments indicate that imbalance in the activity of excitatory and inhibitory neurons is an important underlying cause of these diseases.

  2. Ion-polyether coordination complexes: crystalline ionic conductors for clean energy storage. (United States)

    Bruce, Peter G


    Ion-polyether complexes are the solid state analogues of crown ether and cryptand complexes. They represent a fascinating class of coordination compounds in their own right, with the ability to support ionic conductivity and the potential to be used as electrolytes in all-solid-state rechargeable lithium batteries. Here the recent discovery of ionic conductivity in crystalline ion-polyether complexes, when for 30 years such materials were considered to be insulators, is described, along with their closely related structural chemistry.

  3. Multiheteromacrocycles that Complex Metal Ions. Sixth Progress Report, 1 May 1979-30 April 1980 (United States)

    Cram, D. J.


    Objective is to design synthesize, and evaluate cyclic and polycyclic host organic compounds for their abilities to complex and lipophilize guest metal ions, their complexes, and their clusters. Host organic compounds consist of strategically placed solvating, coordinating, and ion-pairing sites tied together by covalent bonds through hydrocarbon units around cavities shaped to be occupied by guest metal ions or by metal ions plus their ligands. Specificity in complexation is sought by matching the following properties of host and guest: cavity and metal ion sizes; geometric arrangements of binding sites; number of binding sites; character of binding sites; and valences. During this period, hemispherands based on an aryloxy or cyclic urea unit, spherands based on aryloxyl units only, and their complexes with alkali metals and alkaline earths were investigated. An attempt to separate {sup 6}Li and {sup 7}Li by gel permeation chromatography of lithiospherium chloride failed. (DLC)

  4. Mechanistic information on the reductive elimination from cationic trimethylplatinum(IV) complexes to form carbon-carbon bonds. (United States)

    Procelewska, Joanna; Zahl, Achim; Liehr, Günter; van Eldik, Rudi; Smythe, Nicole A; Williams, B Scott; Goldberg, Karen I


    Cationic complexes of the type fac-[(L(2))Pt(IV)Me(3)(pyr-X)][OTf] (pyr-X = 4-substituted pyridines; L(2) = diphosphine, viz., dppe = bis(diphenylphosphino)ethane and dppbz = o-bis(diphenylphosphino)benzene; OTf = trifluoromethanesulfonate) undergo C-C reductive elimination reactions to form [L(2)Pt(II)Me(pyr-X)][OTf] and ethane. Detailed studies indicate that these reactions proceed by a two-step pathway, viz., initial reversible dissociation of the pyridine ligand from the cationic complex to generate a five-coordinate Pt(IV) intermediate, followed by irreversible concerted C-C bond formation. The reaction is inhibited by pyridine. The highly positive values for DeltaS()(obs) = +180 +/- 30 J K(-1) mol(-1), DeltaH(obs) = 160 +/- 10 kJ mol(-1), and DeltaV()(obs) = +16 +/- 1 cm(3) mol(-1) can be accounted for in terms of significant bond cleavage and/or partial reduction from Pt(IV) to Pt(II) in going from the ground to the transition state. These cationic complexes have provided the first opportunity to carry out detailed studies of C-C reductive elimination from cationic Pt(IV) complexes in a variety of solvents. The absence of a significant solvent effect for this reaction provides strong evidence that the C-C reductive coupling occurs from an unsaturated five-coordinate Pt(IV) intermediate rather than from a six-coordinate Pt(IV) solvento species.

  5. Unravelling the complexities of vascular smooth muscle ion channels

    DEFF Research Database (Denmark)

    Jepps, Thomas A


    Which ion channel is the most important for regulating vascular tone? Which one is responsible for controlling the resting membrane potential or repolarization? Which channels are recruited by different intracellular signalling pathways or change in certain vascular diseases? Many different ion...... to off-target effects. As cardiovascular diseases are expected to increase worldwide to epidemic proportions, ion channel research and the hunt for the next major therapeutic target to treat different vascular diseases has never been more important. However, I believe that the question we should now...

  6. Complexation Between Borate ion and Hydroxyl Groups of Phenol-Formaldehyde Resol Resin

    Institute of Scientific and Technical Information of China (English)


    The complexation reaction between borate ions and phenol-formaldehyde resol resin in aqueous solution was studied by pH measurement, small model molecules and infrared spectroscopy.The results show that the complexation can proceed completely and rapidly at room temperature.Borate ion attacks phenol hydroxyl groups and adjacent position hydroxymethyl groups on the phenol ring of the resin, and forms the coordinate bond between boron atom in borate ion and oxygen atom in the hydroxyl groups. The complexation is a quantitative reaction. The complex is a six member ring containing two oxygens and one boron. The complexation can release hydrogen ions resulting in the decreasing pH in the resin solution.

  7. UV and IR spectroscopy of cold 1,2-dimethoxybenzene complexes with alkali metal ions. (United States)

    Inokuchi, Yoshiya; Boyarkin, Oleg V; Ebata, Takayuki; Rizzo, Thomas R


    We report UV photodissociation (UVPD) and IR-UV double-resonance spectra of 1,2-dimethoxybenzene (DMB) complexes with alkali metal ions, M(+)·DMB (M = Li, Na, K, Rb, and Cs), in a cold, 22-pole ion trap. The UVPD spectrum of the Li(+) complex shows a strong origin band. For the K(+)·DMB, Rb(+)·DMB, and Cs(+)·DMB complexes, the origin band is very weak and low-frequency progressions are much more extensive than that of the Li(+) ion. In the case of the Na(+)·DMB complex, spectral features are similar to those of the K(+), Rb(+), and Cs(+) complexes, but vibronic bands are not resolved. Geometry optimization with density functional theory indicates that the metal ions are bonded to the oxygen atoms in all the M(+)·DMB complexes. For the Li(+) complex in the S(0) state, the Li(+) ion is located in the same plane as the benzene ring, while the Na(+), K(+), Rb(+), and Cs(+) ions are located off the plane. In the S(1) state, the Li(+) complex has a structure similar to that in the S(0) state, providing the strong origin band in the UV spectrum. In contrast, the other complexes show a large structural change in the out-of-plane direction upon S(1)-S(0) excitation, which results in the extensive low-frequency progressions in the UVPD spectra. For the Na(+)·DMB complex, fast charge transfer occurs from Na(+) to DMB after the UV excitation, making the bandwidth of the UVPD spectrum much broader than that of the other complexes and producing the photofragment DMB(+) ion.

  8. Using Metal Complex Ion-Molecule Reactions in a Miniature Rectilinear Ion Trap Mass Spectrometer to Detect Chemical Warfare Agents (United States)

    Graichen, Adam M.; Vachet, Richard W.


    The gas-phase reactions of a series of coordinatively unsaturated [Ni(L)n]y+ complexes, where L is a nitrogen-containing ligand, with chemical warfare agent (CWA) simulants in a miniature rectilinear ion trap mass spectrometer were investigated as part of a new approach to detect CWAs. Results show that upon entering the vacuum system via a poly(dimethylsiloxane) (PDMS) membrane introduction, low concentrations of several CWA simulants, including dipropyl sulfide (simulant for mustard gas), acetonitrile (simulant for the nerve agent tabun), and diethyl phosphite (simulant for nerve agents sarin, soman, tabun, and VX), can react with metal complex ions generated by electrospray ionization (ESI), thereby providing a sensitive means of detecting these compounds. The [Ni(L)n]2+ complexes are found to be particularly reactive with the simulants of mustard gas and tabun, allowing their detection at low parts-per-billion (ppb) levels. These detection limits are well below reported exposure limits for these CWAs, which indicates the applicability of this new approach, and are about two orders of magnitude lower than electron ionization detection limits on the same mass spectrometer. The use of coordinatively unsaturated metal complexes as reagent ions offers the possibility of further tuning the ion-molecule chemistry so that desired compounds can be detected selectively or at even lower concentrations.

  9. Effects of Lability of Metal Complex on Free Ion Measurement Using DMT

    NARCIS (Netherlands)

    Weng, L.P.; Riemsdijk, van W.H.; Temminghoff, E.J.M.


    Very low concentrations of free metal ion in natural samples can be measured using the Donnan membrane technique (DMT) based on ion transport kinetics. In this paper, the possible effects of slow dissociation of metal complexes on the interpretation of kinetic DMT are investigated both theoretically

  10. Complex decay patterns in atomic core photoionization disentangled by ion-recoil measurements

    Energy Technology Data Exchange (ETDEWEB)

    Guillemin, Renaud; Bomme, Cedric; Marin, Thierry; Journel, Loic; Marchenko, Tatiana; Kushawaha, Rajesh K.; Piancastelli, Maria Novella; Simon, Marc [Universite Pierre et Marie Curie, Universite Paris 06, Laboratoire de Chimie Physique Matiere et Rayonement, 11 rue Pierre et Marie Curie, FR-75231 Paris Cedex 05 (France); Centre National de la Recherche Scientifique, Laboratoire de Chimie Physique Matiere et Rayonement (UMR7614), 11 rue Pierre et Marie Curie, FR-75231 Paris Cedex 05 (France); Trcera, Nicolas [Synchrotron SOLEIL, l' Orme des Merisiers, Saint-Aubin, BP 48, FR-91192 Gif-sur-Yvette Cedex (France)


    Following core 1s ionization and resonant excitation of argon atoms, we measure the recoil energy of the ions due to momentum conservation during the emission of Auger electrons. We show that such ion momentum spectroscopy can be used to disentangle to some degree complex decay patterns, involving both radiative and nonradiative decays.

  11. Metal Cation Binding to Gas-Phase Pentaalanine: Divalent Ions Restructure the Complex

    NARCIS (Netherlands)

    Dunbar, R. C.; Steill, J. D.; Polfer, N. C.; Oomens, J.


    Ion-neutral complexes of pentaalalanine with several singly- and doubly charged metal ions are examined using conformation analysis by infrared multiple photon dissociation (IRMPD) spectroscopy and density functional theory (DFT) computations. The infrared spectroscopy in the 1500-1800 cm(-1) region

  12. Metal Cation Binding to Gas-Phase Pentaalanine: Divalent Ions Restructure the Complex

    NARCIS (Netherlands)

    Dunbar, R.C.; Steill, J.D.; Polfer, N.C.; Oomens, J.


    Ion-neutral complexes of pentaalalanine with several singly- and doubly charged metal ions are examined using conformation analysis by infrared multiple photon dissociation (IRMPD) spectroscopy and density functional theory (DFT) computations. The infrared spectroscopy in the 1500-1800 cm(-1) region

  13. Controlled Synthesis of a Novel Heteropolymetallic Complex with Selectively Incorporated Lanthanide(III) Ions


    Debroye, Elke; Ceulemans, Matthias; Vander Elst, Luce; Laurent, Sophie; Muller, Robert N.; Parac-Vogt, Tatjana


    A novel synthetic strategy toward a heteropolymetallic lanthanide complex with selectively incorporated gadolinium and europium ions is outlined. Luminescence and relaxometric measurements suggest possible applications in bimodal (magnetic resonance/optical) imaging.

  14. Coordination of cassava starch to metal ions and thermolysis of resulting complexes

    Directory of Open Access Journals (Sweden)

    Piotr Tomasik


    Full Text Available Cassava starch formed Werner-type complexes with ions of metals from the transition groups. This was proven by conductivity and electron paramagnetic resonance measurements. The coordination of starch to central metal ions influenced the thermal decomposition of starch. As a rule complexes started to decompose at lower temperature than did starch. On the other hand, the decomposition proceeded at a lower rate than the decomposition of non-coordinated starch.


    Institute of Scientific and Technical Information of China (English)

    XU Kang; DENG Zhenghua; WAN Guoxiang


    Poly ( oligoether methacrylate- co- acrylonitrile ) s, P ( MEOn- AN ), with oligoether pendants of different lengths were synthesized and the ion conduction property of their Li-salt complexes was studied as the function of polymer structure. At proper copolymer composition, lithium concentration and pendant length, the ion conductivity reaches 7.0×10-5S/cm at ambient temperature, together with improved mechanical strength. The ion transport in the polymer media is assisted by segmental relaxation ,which is confirmed both by the consistency between ion conductivity and Tg and by the study of TSC.

  16. Synthesis of novel calixcrown derivatives with selective complexation towards cesium ions

    Institute of Scientific and Technical Information of China (English)

    Lu Zhang; Juan Du; Li Hua Yuan; Dong Zhang; Gui Ping Dan; Yuan You Yang; Wen Feng


    A series of novel calix [4]arenecrown-6 derivatives with an alkenyl loop of various sizes 5-8 were synthesized via intramolecular ring closing olefin metathesis and characterized by 1H NMR, 13C NMR and ESI-HRMS. Their complexation property towards cesium ion was studied by 'H NMR technique. Two-phase extraction of alkali metal ions using UV-vis spectroscopy revealed remarkably different extractabilities. These results indicate that the complexation capacities towards cesium ions can be tuned and controlled through cooperative regulation of the strain of the loop and conformational change of calixcrown skelton.

  17. Characterization of inclusion complexes of organic ions with hydrophilic hosts by ion transfer voltammetry with solvent polymeric membranes. (United States)

    Olmos, José Manuel; Laborda, Eduardo; Ortuño, Joaquín Ángel; Molina, Ángela


    The quantitative characterization of inclusion complexes formed in aqueous phase between organic ions and hydrophilic hosts by ion-transfer voltammetry with solvent polymeric membrane ion sensors is studied, both in a theoretical and experimental way. Simple analytical solutions are presented for the determination of the binding constant of the complex from the variation with the host concentration of the electrochemical signal. These solutions are valid for any voltammetric technique and for solvent polymeric membrane ion sensors comprising one polarisable interface (1PI) and also, for the first time, two polarisable interfaces (2PIs). Suitable experimental conditions and data analysis procedures are discussed and applied to the study of the interactions of a common ionic liquid cation (1-octyl-3-metyl-imidazolium) and an ionisable drug (clomipramine) with two hydrophilic cyclodextrins: α-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin. The experimental study is performed via square wave voltammetry with 2PIs and 1PI solvent polymeric membranes and in both cases the electrochemical experiments enable the detection of inclusion complexes and the determination of the corresponding binding constant.

  18. Studies on fluoride complexing of hexavalent actinides using a fluoride ion selective electrode

    Energy Technology Data Exchange (ETDEWEB)

    Sawant, R.M.; Chaudhuri, N.K.; Rizvi, G.H.; Patil, S.K.


    Complex formation between actinide(VI) and fluoride ions in aqueous solutions was investigated using a fluoride ion selective electrode (F-ISE). As fairly high acidity used to suppress hydrolysis of the actinide(VI) ions, significant liquid junction potentials (Esub(j)) existed in the system. An iterative procedure was developed for computing free hydrogen ion concentration (Hsup(+)) as it could not be measured directly, using data obtained with F-ISE. Esub(j) values were estimated from known (Hsup(+)) and the stability constants of fluoride complexes of actinide(VI) ions were calculated following King and Gallagher's method using a computer program. The stability constants were found to follow the order U(VI) > Np(VI) > Pu(VI). (author). 18 refs.; 3 figs.; 9 tables.

  19. Effects of lability of metal complex on free ion measurement using DMT. (United States)

    Weng, Liping; Van Riemsdijk, Willem H; Temminghoff, Erwin J M


    Very low concentrations of free metal ion in natural samples can be measured using the Donnan membrane technique (DMT) based on ion transport kinetics. In this paper, the possible effects of slow dissociation of metal complexes on the interpretation of kinetic DMT are investigated both theoretically and experimentally. The expressions of the lability parameter, Lgrangian , were derived for DMT. Analysis of new experimental studies using synthetic solution containing NTA as the ligand and Cu(2+) ions shows that when the ionic strength is low (DMT measurement. In natural waters, dissolved organic matter (DOM) is the most important source of ligands that complex metals. By comparing the fraction of labile species measured using other dynamic sensors (DGT, GIME) in several freshwaters, it is concluded that in most waters ion transport in DMT is controlled by diffusion in the membrane. Only in very soft waters (DMT. In this case, neglecting this effect may lead to an underestimation of the free metal ion concentration measured.

  20. Process for the displacement of cyanide ions from metal-cyanide complexes (United States)

    Smith, Barbara F.; Robinson, Thomas W.


    The present invention relates to water-soluble polymers and the use of such water-soluble polymers in a process for the displacement of the cyanide ions from the metal ions within metal-cyanide complexes. The process waste streams can include metal-cyanide containing electroplating waste streams, mining leach waste streams, mineral processing waste streams, and related metal-cyanide containing waste streams. The metal ions of interest are metals that give very strong complexes with cyanide, mostly iron, nickel, and copper. The physical separation of the water-soluble polymer-metal complex from the cyanide ions can be accomplished through the use of ultrafiltration. Once the metal-cyanide complex is disrupted, the freed cyanide ions can be recovered for reuse or destroyed using available oxidative processes rendering the cyanide nonhazardous. The metal ions are released from the polymer, using dilute acid, metal ion oxidation state adjustment, or competing chelating agents, and collected and recovered or disposed of by appropriate waste management techniques. The water-soluble polymer can then be recycled. Preferred water-soluble polymers include polyethyleneimine and polyethyleneimine having a catechol or hydroxamate group.

  1. Biotin-tagged platinum(iv) complexes as targeted cytostatic agents against breast cancer cells. (United States)

    Muhammad, Nafees; Sadia, Nasreen; Zhu, Chengcheng; Luo, Cheng; Guo, Zijian; Wang, Xiaoyong


    A biotin-guided platinum(IV) complex is highly cytotoxic against breast cancer cells but hypotoxic against mammary epithelial cells. The mono-biotinylated Pt(IV) complex is superior to the di-biotinylated one and hence a promising drug candidate for the targeted therapy of breast cancer.

  2. Equilibrium of hydroxyl complex ions in Pb2+-H2O system

    Institute of Scientific and Technical Information of China (English)

    WANG Yun-yan; CHAI Li-yuan; CHANG Hao; PENG Xiao-yu; SHU Yu-de


    The thermodynamics equilibrium principle was used to construct the diagrams for the concentration of complex ions (pc) vs pH, the distribution ratio of lead hydroxyl complex ions (αn) vs pH, and the conditional solubility product of Pb(OH)2 vs pH in the Pb2+-H2O system. The relationship between the equilibrium concentration of each kind of lead hydroxyl complex ions in equilibrium with Pb(OH)2(s) and pH value was shown in the system. The minimum solubility of lead is at the pH value of 10.096-10.997. The distribution ratio of each kind of the lead hydroxyl complex ions is determined as a function of the pH value and the total lead concentration ([Pb]T). The diagram for the conditional solubility product, pKSP vs pH, shows that each kind of lead hydroxyl complex ions existing in the system is dependent upon an optimized pH value at the established concentration of [Pb]T, and that pKSP reaches the minimum at the pH value of 10.3-11.2. The results can provide a theoretical basis for removing lead ions from wastewater by the neutralization and hydrolyzation technology.

  3. Baseline scheme for polarization preservation and control in the MEIC ion complex

    Energy Technology Data Exchange (ETDEWEB)

    Derbenev, Yaroslav S. [Jefferson Lab, Newport News, VA (United States); Lin, Fanglei [Jefferson Lab, Newport News, VA (United States); Morozov, Vasiliy [Jefferson Lab, Newport News, VA (United States); Zhang, Yuhong [Jefferson Lab, Newport News, VA (United States); Kondratenko, Anatoliy [Science and Technique Laboratory Zaryad, Novosibirsk (Russian Federation); Kondratenko, M. A. [Science and Technique Laboratory Zaryad, Novosibirsk (Russian Federation); Filatov, Yury [MIPT, Dolgoprudny, Moscow (Russian Federation)


    The scheme for preservation and control of the ion polarization in the Medium-energy Electron-Ion Collider (MEIC) has been under active development in recent years. The figure-8 configuration of the ion rings provides a unique capability to control the polarization of any ion species including deuterons by means of "weak" solenoids rotating the particle spins by small angles. Insertion of "weak" solenoids into the magnetic lattices of the booster and collider rings solves the problem of polarization preservation during acceleration of the ion beam. Universal 3D spin rotators designed on the basis of "weak" solenoids allow one to obtain any polarization orientation at an interaction point of MEIC. This paper presents the baseline scheme for polarization preservation and control in the MEIC ion complex.

  4. Lifetimes and stabilities of familiar explosives molecular adduct complexes during ion mobility measurements (United States)

    McKenzie, Alan; DeBord, John Daniel; Ridgeway, Mark; Park, Melvin; Eiceman, Gary; Fernandez-Lima, Francisco


    Trapped ion mobility spectrometry coupled to mass spectrometry (TIMS-MS) was utilized for the separation and identification of familiar explosives in complex mixtures. For the first time, molecular adduct complex lifetimes, relative stability, binding energies and candidate structures are reported for familiar explosives. Experimental and theoretical results showed that the adduct size and reactivity, complex binding energy and the explosive structure tailors the stability of the molecular adduct complex. TIMS flexibility to adapt the mobility separation as a function of the molecular adduct complex stability (i.e., short or long IMS experiments / low or high IMS resolution) permits targeted measurements of explosives in complex mixtures with higher confidence levels. PMID:26153567

  5. Complexity analysis of the glutamic acid ion-exchanged wastewater

    Institute of Scientific and Technical Information of China (English)

    林艳; 王瑞明; 徐国华; 王腾飞; 井瑞洁


    In this paper,the glutamic acid ion-exchanged wastewater has been studied.Kjeldahl determination method,Fehling reagent.muffle furnace method.and so on were used.It can be sure that the wastewater's COD is 50250 mg/L.and total solids is contains:glutamic acid 0.3%:total reducing sugar 0.414%;fat 0.4274%;ammonium sulphate 10.0758%;microbial protein 0.8045%;ash 0.27%:others 1.4683%.

  6. Complexometric determination: Part I - EDTA and complex formation with the Cu2+ ion

    Directory of Open Access Journals (Sweden)

    Rajković Miloš B.


    Full Text Available Compounds forming very stable complexes - chelates, have a wide field of application in analytical chemistry. The most famous group of these compounds are complexons. Complexons represent organic polyaminocarbonic acids as for example ethylenediaminetetraacetic acid (EDTA and its salts. The EDTA molecule has six coordinative sites. It is a hexadentate ligands i.e. it has two binding nitrogen atoms and four oxygen atoms from carboxyl groups and it forms complexes with almost all metal ions. EDTA as a tetraprotonic acid, H4Y disociates through four steps, yielding the ions HsY-, H2Y2-, HY3- and Y4-. Which of the EDTA forms will be encountered in a solution, depends on the pH. Due to the poor solubility of EDTA in pure water, as well as in most organic solvents, the disodium salt of EDTA Na2H2Y-2H2O, under the commercial name complexon III, is utilized for analytical determinations. In water, EDTA forms soluble, stabile chelate complexes with all cations, at the molar ratio 1:1, regardless of the charge of the metal ion. In contrast to other equilibria, which are mainly defined by Le Chatellier's principle, equilibria related to metal-EDTA complex formation are also dependent on the influence of the secondary equilibria of EDTA complex formation. Complexing reactions, which are equilibrium reactions, are simultaneously influenced by the following factors: solution pH and the presence of complexing agents which may also form a stabile complex with metal ions. The secondary reaction influence may be viewed and monitored through conditional stability constants. In the first part of the paper, the reaction of the formation of the Cu2+-ion complex with EDTA is analyzed beginning from the main reaction through various influences of secondary reactions on the complex Cu2+-EDTA: pH effect, complexation effect and hydrolysis effect. The equations are given for conditional stability constants, which include equilibrium reactions under actual conditions.

  7. Influence of reducing agents on the cytotoxic activity of platinum(IV) complexes: induction of G2/M arrest, apoptosis and oxidative stress in A2780 and cisplatin resistant A2780cis cell lines. (United States)

    Pichler, Verena; Göschl, Simone; Schreiber-Brynzak, Ekaterina; Jakupec, Michael A; Galanski, Markus; Keppler, Bernhard K


    The concept of Pt(IV) prodrug design is one advanced strategy to increase the selectivity for cancer cells and to reduce systemic toxicity in comparison to established platinum-based chemotherapy. Pt(IV) complexes are thought to be activated by reduction via physiological reductants, such as ascorbic acid or glutathione. Nevertheless, only few investigations on the link between the reduction rate, which is influenced by the reductant, and the ligand sphere of the Pt(IV) metal centre have been performed so far. Herein, we investigated a set of Pt(IV) compounds with varying rates of reduction with respect to their cytotoxicity and drug accumulation in A2780 and A2780cis ovarian cancer cell lines, their influence on the cell cycle, efficiency of triggering apoptosis, and ability to interfere with plasmid DNA (pUC19). The effects caused by Pt(IV) compounds were compared without or with extracellularly added ascorbic acid and glutathione (or its precursor N-acetylcysteine) to gain understanding of the impact of increased levels of the reductant on the activity of such complexes. Our results demonstrate that reduction is required prior to plasmid interaction. Furthermore, the rate of reduction is crucial for the efficiency of this set of Pt(IV) compounds. The substances that are reduced least likely showed similar performances, whereas the fastest reducing substance was negatively affected by an increased extracellular level of reducing agents, with reduced cytotoxicity and lower efficiency in inducing apoptosis and G2/M arrest. These results confirm the connection between reduction and activity, and prove the strong impact of the reduction site on the activity of Pt(IV) complexes.

  8. Infrared Multiple-Photon Dissociation Spectroscopy of Tripositive Ions: Lanthanum-Tryptophan Complexes

    NARCIS (Netherlands)

    Verkerk, U. H.; Zhao, J. F.; Saminathan, I. S.; Lau, J. K. C.; Oomens, J.; Hopkinson, A. C.; Siu, K. W. M.


    Collision-induced charge disproportionation limits the stability of triply charged metal ion complexes and has thus far prevented successful acquisition of their gas-phase IR spectra. This has curtailed our understanding of the structures of triply charged metal complexes in the gas phase and in bio

  9. Polymorphism of DNA-anionic liposome complexes reveals hierarchy of ion-mediated interactions. (United States)

    Liang, Hongjun; Harries, Daniel; Wong, Gerard C L


    Self-assembled DNA delivery systems based on anionic lipids (ALs) complexed with DNA mediated by divalent cations have been recently introduced as an alternative to cationic lipid-DNA complexes because of their low cytotoxicity. We investigate AL-DNA complexes induced by different cations by using synchrotron small angle x-ray scattering and confocal microscopy to show how different ion-mediated interactions are expressed in the self-assembled structures and phase behavior of AL-DNA complexes. The governing interactions in AL-DNA systems are complex: divalent ions can mediate strong attractions between different combinations of the components (such as DNA-DNA and membrane-membrane). Moreover, divalent cations can coordinate non-electrostatically with lipids and modify the resultant membrane structure. We find that at low membrane charge densities AL-DNA complexes organize into a lamellar structure of alternating DNA and membrane layers crosslinked by ions. At high membrane charge densities, a new phase with no analog in cationic lipid-DNA systems is observed: DNA is expelled from the complex, and a lamellar stack of membranes and intercalated ions is formed. For a subset of the ionic species, high ion concentrations generate an inverted hexagonal phase comprised of DNA strands wrapped by ion-coated lipid tubes. A simple theoretical model that takes into account the electrostatic and membrane elastic contributions to the free energy shows that this transition is consistent with an ion-induced change in the membrane spontaneous curvature, c0. Moreover, the crossover between the lamellar and inverted hexagonal phases occurs at a critical c0 that agrees well with experimental values.

  10. Crystallographic structure of ubiquitin in complex with cadmium ions

    Directory of Open Access Journals (Sweden)

    Cheung Peter


    Full Text Available Abstract Background Ubiquitination plays a critical role in regulating many cellular processes, from DNA repair and gene transcription to cell cycle and apoptosis. It is catalyzed by a specific enzymatic cascade ultimately leading to the conjugation of ubiquitin to lysine residues of the target protein that can be the ubiquitin molecule itself and to the formation of poly-ubiquitin chains. Findings We present the crystal structure at 3.0 Å resolution of bovine ubiquitin crystallized in presence of cadmium ions. Two molecules of ubiquitin are present in the asymmetric unit. Interestingly this non-covalent dimeric arrangement brings Lys-6 and Lys-63 of each crystallographically-independent monomer in close contact with the C-terminal ends of the other monomer. Residues Leu-8, Ile-44 and Val-70 that form a hydrophobic patch at the surface of the Ub monomer are trapped at the dimer interface. Conclusions The structural basis for signalling by poly-Ub chains relies on a visualization of conformations of alternatively linked poly-Ub chains. This arrangement of ubiquitin could illustrate how linkages involving Lys-6 or Lys-63 of ubiquitin are produced in the cell. It also details how ubiquitin molecules can specifically chelate cadmium ions.

  11. Spectrophotometric study of neptunium (VI) complexation by nitrate ions; Etude par spectrophotometrie de la complexation du neptunium au degre d'oxydation (VI) par les ions nitrates

    Energy Technology Data Exchange (ETDEWEB)

    Pochon, P. [CEA/VALRHO - site de Marcoule, Dept. de Recherche en Retraitement et en Vitrification (DRRV), 30 - Marcoule (France)]|[Conservatoire National des Arts et Metiers (CNAM), 75 - Paris (France)]|[Centre Regional Associe de Lyon, 69 (France)


    Neptunium(VI) complexation by nitrate ions was investigated by visible and near-infrared spectrophotometry, a technique suitable for observing the appearance and evolution of the species in solution. In the absence of reference spectra for Np(VI) nitrate- complexes, mathematical (factor analysis) tools were used to interpret the spectra. These chemo-metric techniques were first tested and validated on a simpler chemical system: Np(VI)complexation by the SiW{sub 11}O{sub 39}{sup 8-} anion. The test media used to investigate Np(VI) nitrate- complexes generally contain nitrate and perchlorate salts at high concentrations (high ionic strength). Media effects arising from the presence of cations, acidity or the perchlorate ion concentration are therefore significant, and no doubt account for the scattered values of the complexation constants published in the literature. The evolution of the neptunium spectra according to the parameters of the reaction medium illustrated these effects and allowed them to be quantified by a global 'perturbation constant'. In order to minimize the spectrum modifications due to media effects, the neptunium nitrate-complexes were studied at constant ionic strength in weak acidic media (2{sup -1}{sub H2O}) in the presence of sodium salts. The bulk formation constants and the spectrum of the NpO{sub 2}(NO{sub 3}){sup +} complex were determined for ionic strength values of 2.2, 4, 6 and 8{sup -1}{sub H2O}. The constants remained on the same order of magnitude regardless of the ionic strength; the thermodynamic constant {beta}{sub 1}{sup 0} determined from them according to specific interaction theory is thus probably of little significance. Conversely, the bulk constants can be corrected for the effects of the perchlorate ions by taking the global 'perturbation constant' into account. (author)

  12. Stoichiometry of the KCNQ1 - KCNE1 ion channel complex. (United States)

    Nakajo, Koichi; Ulbrich, Maximilian H; Kubo, Yoshihiro; Isacoff, Ehud Y


    The KCNQ1 voltage-gated potassium channel and its auxiliary subunit KCNE1 play a crucial role in the regulation of the heartbeat. The stoichiometry of KCNQ1 and KCNE1 complex has been debated, with some results suggesting that the four KCNQ1 subunits that form the channel associate with two KCNE1 subunits (a 42 stoichiometry), while others have suggested that the stoichiometry may not be fixed. We applied a single molecule fluorescence bleaching method to count subunits in many individual complexes and found that the stoichiometry of the KCNQ1 - KCNE1 complex is flexible, with up to four KCNE1 subunits associating with the four KCNQ1 subunits of the channel (a 44 stoichiometry). The proportion of the various stoichiometries was found to depend on the relative expression densities of KCNQ1 and KCNE1. Strikingly, both the voltage-dependence and kinetics of gating were found to depend on the relative densities of KCNQ1 and KCNE1, suggesting the heart rhythm may be regulated by the relative expression of the auxiliary subunit and the resulting stoichiometry of the channel complex.

  13. Novel platinum(IV) complexes induce rapid tumor cell death in vitro. (United States)

    Kaludjerović, Goran N; Miljković, Djordje; Momcilović, Miljana; Djinović, Vesna M; Mostarica Stojković, Marija; Sabo, Tibor J; Trajković, Vladimir


    The anticancer activity of platinum complexes has been known since the discovery of classical Pt(II)-based drug cisplatin. However, Pt(IV) complexes have greater inertness than corresponding Pt(II) complexes, thus allowing the oral administration and reducing the toxicity associated with platinum-based chemotherapy. Here, we describe the in vitro antitumor activity of some novel Pt(IV)-based agents against mouse fibrosarcoma L929 cells and human astrocytoma U251 cells. The cytotoxicity of 2 Pt(IV) complexes with bidentate ethylenediamine-N,N'-di-3-propanoato esters was found to be markedly higher than that of their Pt(II) counterparts and comparable to the antitumor action of cisplatin. In contrast to cisplatin, which caused oxidative stress-independent apoptotic cell death of tumor cells, these Pt(IV) complexes induced oxygen radical-mediated tumor cell necrosis. Importantly, the cytotoxic action of novel Pt(IV) complexes was markedly more rapid than that of cisplatin, indicating their potential usefulness in anticancer therapy.

  14. Initiating Molecular Growth in the Interstellar Medium via Dimeric Complexes of Observed Ions and Molecules (United States)

    Bera, Partha P.; Head-Gordon, Martin; Lee, Timothy J.


    A feasible initiation step for particle growth in the interstellar medium (ISM) is simulated by means of ab quantum chemistry methods. The systems studied are dimer ions formed by pairing nitrogen containing small molecules known to exist in the ISM with ions of unsaturated hydrocarbons or vice versa. Complexation energies, structures of ensuing complexes and electronic excitation spectra of the encounter complexes are estimated using various quantum chemistry methods. Moller-Plesset perturbation theory (MP2, Z-averaged perturbation theory (ZAP2), coupled cluster singles and doubles with perturbative triples corrections (CCSD(T)), and density functional theory (DFT) methods (B3LYP) were employed along with the correlation consistent cc-pVTZ and aug-cc-pVTZ basis sets. Two types of complexes are predicted. One type of complex has electrostatic binding with moderate (7-20 kcal per mol) binding energies, that are nonetheless significantly stronger than typical van der Waals interactions between molecules of this size. The other type of complex develops strong covalent bonds between the fragments. Cyclic isomers of the nitrogen containing complexes are produced very easily by ion-molecule reactions. Some of these complexes show intense ultraviolet visible spectra for electronic transitions with large oscillator strengths at the B3LYP, omegaB97, and equations of motion coupled cluster (EOM-CCSD) levels. The open shell nitrogen containing carbonaceous complexes especially exhibit a large oscillator strength electronic transition in the visible region of the electromagnetic spectrum.

  15. Soft plasma electrolysis with complex ions for optimizing electrochemical performance (United States)

    Kamil, Muhammad Prisla; Kaseem, Mosab; Ko, Young Gun


    Plasma electrolytic oxidation (PEO) was a promising surface treatment for light metals to tailor an oxide layer with excellent properties. However, porous coating structure was generally exhibited due to excessive plasma discharges, restraining its performance. The present work utilized ethylenediaminetetraacetic acid (EDTA) and Cu-EDTA complexing agents as electrolyte additives that alter the plasma discharges to improve the electrochemical properties of Al-1.1Mg alloy coated by PEO. To achieve this purpose, PEO coatings were fabricated under an alternating current in silicate electrolytes containing EDTA and Cu-EDTA. EDTA complexes were found to modify the plasma discharging behaviour during PEO that led to a lower porosity than that without additives. This was attributed to a more homogeneous electrical field throughout the PEO process while the coating growth would be maintained by an excess of dissolved Al due to the EDTA complexes. When Cu-EDTA was used, the number of discharge channels in the coating layer was lower than that with EDTA due to the incorporation of Cu2O and CuO altering the dielectric behaviour. Accordingly, the sample in the electrolyte containing Cu-EDTA constituted superior corrosion resistance to that with EDTA. The electrochemical mechanism for excellent corrosion protection was elucidated in the context of equivalent circuit model. PMID:28281672

  16. Soft plasma electrolysis with complex ions for optimizing electrochemical performance (United States)

    Kamil, Muhammad Prisla; Kaseem, Mosab; Ko, Young Gun


    Plasma electrolytic oxidation (PEO) was a promising surface treatment for light metals to tailor an oxide layer with excellent properties. However, porous coating structure was generally exhibited due to excessive plasma discharges, restraining its performance. The present work utilized ethylenediaminetetraacetic acid (EDTA) and Cu-EDTA complexing agents as electrolyte additives that alter the plasma discharges to improve the electrochemical properties of Al-1.1Mg alloy coated by PEO. To achieve this purpose, PEO coatings were fabricated under an alternating current in silicate electrolytes containing EDTA and Cu-EDTA. EDTA complexes were found to modify the plasma discharging behaviour during PEO that led to a lower porosity than that without additives. This was attributed to a more homogeneous electrical field throughout the PEO process while the coating growth would be maintained by an excess of dissolved Al due to the EDTA complexes. When Cu-EDTA was used, the number of discharge channels in the coating layer was lower than that with EDTA due to the incorporation of Cu2O and CuO altering the dielectric behaviour. Accordingly, the sample in the electrolyte containing Cu-EDTA constituted superior corrosion resistance to that with EDTA. The electrochemical mechanism for excellent corrosion protection was elucidated in the context of equivalent circuit model.

  17. Stability constants of the Europium complexes with the chloride ions; Constantes de estabilidad de los complejos del europio con los iones cloruro

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez R, M.; Solache R, M.; Rojas H, A. [Instituto Nacional de Investigaciones Nucleares, Departamento de Quimica, A.P. 18-1027, C.P. 11801 Mexico D.F. (Mexico)


    The stability constants of lanthanides complexes with chloride ions which were determined at the same ionic force but in different media, are significantly different. It does not exist a systematic study over these stability constants. The purpose of this work is to determine the stability constants of the europium complexes with chloride ions at 303 K, by the solvents extraction method. (Author)

  18. Theoretical and Experimental Study of Complex Ions from Reactions of Al+ (Cu+) with Amine Molecules

    Institute of Scientific and Technical Information of China (English)

    HU,Zheng-Fa; LUO,Li; HU,Yi-Hua


    The gas phase reactions of metal ions (Al+,Cu+) with amine molecules [CH3NH2=MA,(CH3)2NH=DMA]were investigated using a laser ablation-molecular beam method.The directly associated product complex ions,Al+-MA and Al+-DMA,and the dehydrogenation product ions,Cu+(CH2NH) and Cu+(C2H5N),as well as hydrated ion Cu+(NC2H5·H2O),have been obtained and recorded from the reactions of the metal ions and organic amine molecules,and density functional theory (B3LYP) calculations have been performed to reveal the optimized geometry,energefics,and reaction mechanism of the title reactions with basis set 6-311+G(d,p) adopted.

  19. Fluorescent zinc-terpyridine complex containing coordinated peroxo counter ion in aqueous medium

    Indian Academy of Sciences (India)

    S Kapoor; M S Sastry


    We describe a mixed ligand-zinc (10) complex containing coordinated peroxo ion and 2,2'2"-terpyridine and exhibiting fluorescence in the visible region (473 nm) on excitation at 390 nm in aqueous medium at room temperature. We also discuss the unusual phenomenon of enhancement of this fluorescence intensity on addition of some transition metal ions (35, 310, 40 and 39 electronic configurations).

  20. Travelling-wave ion mobility mass spectrometry and negative ion fragmentation of hybrid and complex N-glycans. (United States)

    Harvey, David J; Scarff, Charlotte A; Edgeworth, Matthew; Pagel, Kevin; Thalassinos, Konstantinos; Struwe, Weston B; Crispin, Max; Scrivens, James H


    Nitrogen collisional cross sections (CCSs) of hybrid and complex glycans released from the glycoproteins IgG, gp120 (from human immunodeficiency virus), ovalbumin, α1-acid glycoprotein and thyroglobulin were measured with a travelling-wave ion mobility mass spectrometer using dextran as the calibrant. The utility of this instrument for isomer separation was also investigated. Some isomers, such as Man3 GlcNAc3 from chicken ovalbumin and Man3 GlcNAc3 Fuc1 from thyroglobulin could be partially resolved and identified by their negative ion fragmentation spectra obtained by collision-induced decomposition (CID). Several other larger glycans, however, although existing as isomers, produced only asymmetric rather than separated arrival time distributions (ATDs). Nevertheless, in these cases, isomers could often be detected by plotting extracted fragment ATDs of diagnostic fragment ions from the negative ion CID spectra obtained in the transfer cell of the Waters Synapt mass spectrometer. Coincidence in the drift times of all fragment ions with an asymmetric ATD profile in this work, and in the related earlier paper on high-mannose glycans, usually suggested that separations were because of conformers or anomers, whereas symmetrical ATDs of fragments showing differences in drift times indicated isomer separation. Although some significant differences in CCSs were found for the smaller isomeric glycans, the differences found for the larger compounds were usually too small to be analytically useful. Possible correlations between CCSs and structural types were also investigated, and it was found that complex glycans tended to have slightly smaller CCSs than high-mannose glycans of comparable molecular weight. In addition, biantennary glycans containing a core fucose and/or a bisecting GlcNAc residue fell on different mobility-m/z trend lines to those glycans not so substituted with both of these substituents contributing to larger CCSs. Copyright © 2016 John Wiley & Sons

  1. Metal ion coordination, conditional stability constants, and solution behavior of chelating surfactant metal complexes. (United States)

    Svanedal, Ida; Boija, Susanne; Almesåker, Ann; Persson, Gerd; Andersson, Fredrik; Hedenström, Erik; Bylund, Dan; Norgren, Magnus; Edlund, Håkan


    Coordination complexes of some divalent metal ions with the DTPA (diethylenetriaminepentaacetic acid)-based chelating surfactant 2-dodecyldiethylenetriaminepentaacetic acid (4-C12-DTPA) have been examined in terms of chelation and solution behavior. The headgroup of 4-C12-DTPA contains eight donor atoms that can participate in the coordination of a metal ion. Conditional stability constants for five transition metal complexes with 4-C12-DTPA were determined by competition measurements between 4-C12-DTPA and DTPA, using electrospray ionization mass spectrometry (ESI-MS). Small differences in the relative strength between the coordination complexes of DTPA and 4-C12-DTPA indicated that the hydrocarbon tail only affected the chelating ability of the headgroup to a limited extent. The coordination of Cu(2+) ions was investigated in particular, using UV-visible spectroscopy. By constructing Job's plots, it was found that 4-C12-DTPA could coordinate up to two Cu(2+) ions. Surface tension measurements and NMR diffusometry showed that the coordination of metal ions affected the solution behavior of 4-C12-DTPA, but there were no specific trends between the studied divalent metal complexes. Generally, the effects of the metal ion coordination could be linked to the neutralization of the headgroup charge of 4-C12-DTPA, and the resulting reduced electrostatic repulsions between adjacent surfactants in micelles and monolayers. The pH vs concentration plots, on the other hand, showed a distinct difference between 4-C12-DTPA complexes of the alkaline earth metals and the transition metals. This was explained by the difference in coordination between the two groups of metal ions, as predicted by the hard and soft acid and base (HSAB) theory.

  2. Microwave Hydrothermal Synthesis of Terbium Ions Complexed with Porous Graphene for Effective Absorbent for Organic Dye. (United States)

    Chen, Keqin; Gao, Hui; Bai, Bowei; Liu, Wenjing; Li, Xiaolong


    A luminescent terbium ions/reduced graphene oxide complex (Tb-RGO) was successfully and rapidly synthesized by the microwave hydrothermal reaction via the interactions between terbium ions and the active oxygen functional groups of graphene oxide. The as-prepared material was porous stacked by multilayer graphene in all directions. Thus, the resulting product owed the high specific surface area, high adsorption capacity and ultra-fast adsorption rate. Combined with the characteristic photoluminescence derived from terbium ions, the material has potential applications in biosensing and environmental protection.

  3. Microwave Hydrothermal Synthesis of Terbium Ions Complexed with Porous Graphene for Effective Absorbent for Organic Dye (United States)

    Chen, Keqin; Gao, Hui; Bai, Bowei; Liu, Wenjing; Li, Xiaolong


    A luminescent terbium ions/reduced graphene oxide complex (Tb-RGO) was successfully and rapidly synthesized by the microwave hydrothermal reaction via the interactions between terbium ions and the active oxygen functional groups of graphene oxide. The as-prepared material was porous stacked by multilayer graphene in all directions. Thus, the resulting product owed the high specific surface area, high adsorption capacity and ultra-fast adsorption rate. Combined with the characteristic photoluminescence derived from terbium ions, the material has potential applications in biosensing and environmental protection.

  4. Complex dielectric function of ion implantation amorphized SiC determined by spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Lohner, T.; Zolnai, Z.; Petrik, P.; Battistig, G.; Koos, A.; Osvath, Z.; Fried, M. [Research Institute for Technical Physics and Materials Science, Konkoly Thege Miklos ut 29-33, 1121 Budapest (Hungary); Garcia Lopez, J.; Morilla, Y. [Centro Nacional de Aceleradores, Av. Thomas A. Edison 7, 41092 Sevilla (Spain)


    Measuring with a spectroscopic ellipsometer we determined the complex dielectric function of completely amorphous silicon carbide prepared by ion implantation. 860 keV Ni{sup +} ions were implanted into single crystalline 4H-SiC to produce thick amorphized layer. Ion beam analysis was applied to assess total amorphization. For this purpose {sup 4}He{sup +} ion beam of 3.5 MeV was selected taking the advantage that the scattering cross section of carbon at this energy at 165 detection angle is about six times larger than the Rutherford type. Atomic force microscopy was performed to characterize the roughness of the ion-implanted surfaces. Multiple energy Ar{sup +} implantation was used to produce homogeneous amorphous layer. The Tauc-Lorentz model was applied for the evaluation of the ellipsometric results. The implantation-induced swelling was obtained through the measurement of the step height across the masked and implanted areas. Comparison was made among the complex dielectric functions of amorphized SiC studied by us and by different research groups. It is found that the complex dielectric functions of amorphized SiC differ considerably if different ion implantation conditions were applied. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Counter-ion complexes for enhanced drug loading in nanocarriers: Proof-of-concept and beyond. (United States)

    Günday Türeli, Nazende; Türeli, Akif E; Schneider, Marc


    Enhanced drug loading is an important prerequisite of nanomedicines, to reach administration dose while reducing the amount of excipient. Considering biocompatible and biodegradable polymers such as PLGA, pH dependent solubility characteristics along with limited organic solvent solubility of the drug hampers nanoparticle (NP) preparation. To improve loading of such molecules, a method based on using counter ions for complex formation is proposed. Formed complex alters the intrinsic solubility of active substance via electrostatic interaction without chemical modification. A proof-of-concept study was conducted with sodium dodecyl sulfate as counter-ion to fluoroquinolone antibiotic ciprofloxacin. Complex formation resulted in suppressed pH dependent solubility over pH 1.2-9.0 and an additional -80 fold increase in organic solubility was achieved. In consequence, NPs prepared by microjet reactor technology have shown enhanced drug loading efficiencies (-78%) and drug loading of 14%. Moreover, the counter-ion concept was also demonstrated with another class of antibiotics, water soluble aminoglycosides gentamycin and tobramycin. In addition, the counter ion was substituted by degradable excipients such as phosphatidic acid derivatives. Successful implementation has proven the counter-ion concept to be a platform concept that can be successfully implemented for a variety of active substances and counter-ions to enhance drug loading in nanocarriers. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Effects of complexing compounds on sorption of metal ions to cement

    Energy Technology Data Exchange (ETDEWEB)

    Loevgren, Lars [Umeaa Univ. (Sweden). Inorganic chemistry


    This present report is a literature review addressing the effects of complexing ligands on the sorption of radionuclides to solid materials of importance for repositories of radioactive waste. Focus is put on laboratory studies of metal ion adsorption to cement in presence of chelating agents under strongly alkaline conditions. As background information, metal sorption to different mineral and cement phases in ligand free systems is described. Furthermore, surface complexation model (SCM) theories are introduced. According to surface complexation theories these interactions occur at specific binding sites at the particle/water interface. Adsorption of cationic metals is stronger at high pH, and the adsorption of anions occurs preferentially at low pH. The adsorption of ions to mineral surfaces is a result of both chemical bonding and electrostatic attraction between the ions and charged mineral surfaces. By combining uptake data with spectroscopic information the sorption can be explained on a molecular level by structurally sound surface complexation models. Most of the metal sorption studies reviewed are dealing with minerals exhibiting oxygen atoms at their surfaces, mainly oxides of Fe(II,III) and Al(III), and aluminosilicates. Investigations of radionuclides are focused on clay minerals, above all montmorillonite and illite. Which mechanism that is governing the metal ion adsorption to a given mineral is to a large extent depending on the metal adsorbed. For instance, sorption of Ni to montmorillonite can occur by formation of inner-sphere mononuclear surface complexes located at the edges of montmorillonite platelets and by formation of a Ni phyllosilicate phase parallel to montmorillonite layers. Also metal uptake to cement materials can occur by different mechanisms. Cationic metals can both be attached to cement (calcium silicate hydrate, CSH) and hardened cement paste (HCP) by formation of inner-sphere complexes at specific surface sites and by

  7. Metal ions removal from wastewater or washing water from contaminated soil by ultrafiltration-complexation. (United States)

    Molinari, Raffaele; Gallo, Saverio; Argurio, Pietro


    In the present paper a process for removal of ions from wastewater or from washing water of contaminated soil by using the weakly basic water-soluble polymer polyethylenimine (PEI) as chelating agent and the Cu(2+) ion as model in combination with an ultrafiltration process was investigated. The complexing agent was preliminarily tested to establish the best operative conditions of the process. Next, ultrafiltration tests by using five different membranes were realised to check membrane performance like flux and rejection. Finally, the possibility for recovering and recycling the polymer was tested in order to obtain an economically sustainable process. Obtained results showed that complexation conditions depends on pH: indeed, at a pH>6 PEI-Cu(2+) complexes are formed, while at pHultrafiltration process (PAUF) very interesting for metal ion removal from waters.

  8. Bismuth induced enhanced green emission from terbium ions and their complex in thin films. (United States)

    Kaur, Gagandeep; Kumar, Brijesh; Verma, R K; Rai, S B


    Bismuth nanoparticles (NPs) have been prepared by the pulsed laser ablation technique using the third harmonics of a Nd-YAG laser. UV-absorption and TEM micrographs show Bi NPs of spherical shape with the average particle size ranging from 15 to 20 nm. These NPs were dispersed with Tb(3+) ions and their complex with salicylic acid (Sal) in polyvinyl alcohol to obtain thin films. The influence of Bi NPs on the emissive properties of Tb(3+) ions and the [Tb(Sal)3(phen)] complex has been studied by luminescence spectroscopy using 266 nm and 355 nm as excitation wavelengths. The luminescence intensity of Tb(3+) ions complexed with Sal in the thin polymer films increased significantly as compared to the Tb(3+) ions in the presence of Bi NPs on excitation at 355 nm. However, terbium ions in the case of the [Tb(Sal)3(phen)] complex together with NPs show an intense and extended emission spectrum in the 375-700 nm range for transitions arising from (5)D3 and (5)D4 levels to different (7)F(J) levels on 266 nm excitation. The luminescence enhancement has also been supported by lifetime measurements.

  9. Theoretical investigation of the optical and EPR parameters for VO 2+ion in some complexes (United States)

    Kalfaoğlu, Emel; Karabulut, Bünyamin


    The molecular orbital coefficients and the EPR parameters of trisodium citrate dihydrate, sodium hydrogen oxalate monohydrate, potassium d-gluconate monohydrate and L-Alanine vanadyl complexes are calculated theoretically. Two d-d transition spectra and EPR parameters for the VO2+ complex are calculated theoretically by using crystal-field theory. The calculated g and A paramaters have indicated that paramagnetic center is axially symmetric. Having the relations of g∥A⊥ for VO2+ ions, it can be concluded that VO2+ ions are located in distorted octahedral sites (C4v) elongated along the z-axis and the ground state of the paramagnetic electron is dxy.

  10. New complexes of heteroaromatic N-oxides with europium, uranyl and zinc ions

    Institute of Scientific and Technical Information of China (English)

    Zbigniew Hnatejko


    New solid complexes of europium,uranyl and zinc ions with N-oxides of 4-chloro-2,6-dimethylpyridine,quinoline and 4-methoxyquinaldinic acid in presence different anions were obtained and characterized by elemental and TG analyses,IR and luminescence spectra.The compounds are crystalline,hydrated or anhydrous salts with colours typical of metal ions.Thermal studies showed that in hydrated salts lattice or coordination water molecules are present.A role of different anions in the formation of various types of the complexes is presented.

  11. EPR study of complex formation between copper (II) ions and sympathomimetic amines in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Preoteasa, E.A. [Inst. of Atomic Physics, IFIN, Bucharest (Romania); Duliu, O.G.; Grecu, V.V. [Bucharest, Univ. (Romania). Dept. of Atomic and Nuclear Physics


    The complex formation between sympathomimetic amines (SA): adrenaline (AD), noradrenaline (NA), dopamine (DA), ephedrine (ED) and p-tyramine (pTA), and Cu(II) ion in aqueous solution has been studied by X-band EPR at room temperature. Excepting pTA, all investigated SA yielded two types of complexes in different pH domains. All complexes consistent with a ligand fields having a distorted octahedral symmetry, i.e., hexacoordination of Cu(II). The covalence coefficient calculated from the isotropic g and A values has shown strong ionic sigma-type ligand bonds. A structural model with the Cu(II) ion bound by four catecholic O(hydroxy) atoms for the low pH complexes of AD, NA and DA is proposed. For the high pH complexes of the former compounds as well as for both Ed complexes, the authors suppose Cu(II) bound by two N (amino) and two O (hydroxy) atoms. The spectra are consistent to water binding on the longitudinal octahedron axis in all compounds excepting the high pH complex of Ed, where OH2- ions are bound. Possible implications for the SA-cell receptors interactions are discussed.

  12. Microcalorimetric study on host-guest complexation of naphtho-15-crown-5 with four ions of alkaline earth metal

    Institute of Scientific and Technical Information of China (English)

    SONG Ming-zhi; ZHU Lan-ying; GAO Xi-ke; DOU Jian-min; SUN De-zhi


    Thermodynamic parameters of complexation of naphto- 15-crown-5 with four alkaline earth ions in aqueous media was determined using titration microcalorimetry at 298.15 K. The stability of the complexes, thermal effect and entropy effect of the complexation is discussed on the basis of the guest ions structure and the solvent effect. The stability constants tendency to vary with ion radius was interpreted. Complex of naphtha-15-crown-5 with calcium ion is very stable due to the synergism of static electric interaction and size selectivity between the host and the guest.

  13. A new entry to asymmetric platinum(IV) complexes via oxidative chlorination. (United States)

    Ravera, Mauro; Gabano, Elisabetta; Pelosi, Giorgio; Fregonese, Federico; Tinello, Stefano; Osella, Domenico


    Pt(IV) complexes are usually prepared by oxidation of the corresponding Pt(II) counterparts, typically using hydrogen peroxide or chlorine. A different way to synthesize asymmetrical Pt(IV) compounds is the oxidative chlorination of Pt(II) counterparts with N-chlorosuccinimide. The reaction between cisplatin cis-[PtCl2(NH3)2], carboplatin, cis-[PtCl2(dach)] and cis-[Pt(cbdc)(dach)] (cbdc = cyclobutane-1,1'-dicarboxylato; dach = cyclohexane-1R,2R-diamine) with N-chlorosuccinimide in ethane-1,2-diol was optimized to produce the asymmetric Pt(IV) octahedral complexes [PtA2Cl(glyc)X2] (A2 = 2 NH3 or dach; glyc = 2-hydroxyethanolato; X2 = 2 Cl or cbdc) in high yield and purity. The X-ray crystal structure of the [Pt(cbdc)Cl(dach)(glyc)] complex is also reported. Moreover, the oxidation method proved to be versatile enough to produce other mixed Pt(IV) derivatives varying the reaction medium. The two trichlorido complexes easily undergo a pH-dependent hydrolysis reaction, whereas the dicarboxylato compounds are stable enough to allow further coupling reactions for drug targeting and delivery via the glyc reactive pendant. Therefore, the coupling reaction between the [Pt(cbdc)Cl(dach)(glyc)] and a model carboxylic acid, a model amine, and selectively protected amino acids is reported.

  14. Investigation of complexing ability of ionites with various groups to some heavy and transition metal ions

    Directory of Open Access Journals (Sweden)

    Yedil Yergozhin


    Full Text Available The physico-chemical and complexing properties of the sorbent based on chloromethylated styrene and divinylbenzene copolymer with nicotinamide groups and copolymers based on metacryloilaminobenzene acids with 2-methyl-5-vinylpyridineisomers are studied. By potentiometric titration method the constant of polyelectrolytes functional groups ionization, the composition and strength of the resulting complexes with ions of some heavy and transition metals are determined.

  15. Focused ion beam techniques for fabricating geometrically-complex components and devices.

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Thomas Michael; Adams, David Price; Hodges, V. Carter; Vasile, Michael J.


    We have researched several new focused ion beam (FIB) micro-fabrication techniques that offer control of feature shape and the ability to accurately define features onto nonplanar substrates. These FIB-based processes are considered useful for prototyping, reverse engineering, and small-lot manufacturing. Ion beam-based techniques have been developed for defining features in miniature, nonplanar substrates. We demonstrate helices in cylindrical substrates having diameters from 100 {micro}m to 3 mm. Ion beam lathe processes sputter-define 10-{micro}m wide features in cylindrical substrates and tubes. For larger substrates, we combine focused ion beam milling with ultra-precision lathe turning techniques to accurately define 25-100 {micro}m features over many meters of path length. In several cases, we combine the feature defining capability of focused ion beam bombardment with additive techniques such as evaporation, sputter deposition and electroplating in order to build geometrically-complex, functionally-simple devices. Damascene methods that fabricate bound, metal microcoils have been developed for cylindrical substrates. Effects of focused ion milling on surface morphology are also highlighted in a study of ion-milled diamond.

  16. Polarographic Determination of Composition and Thermodynamic Stability Constant of a Complex Metal Ion. (United States)

    Marin, Dolores; Mendicuti, Francisco


    Describes a laboratory experiment designed to encourage laboratory cooperation among individual undergraduate students or groups. Notes each student contributes results individually and the exchange of data is essential to obtain final results. Uses the polarographic method for determining complex metal ions. (MVL)


    When tentatively identifying compounds in complex mixtures using mass spectral libraries, multiple matches or no plausible matches due to a high level of chemical noise or interferences can occur. Worse yet, most analytes are not in the libraries. In each case, Ion Composition El...

  18. Multiheteromacrocycles that Complex Metal Ions. Fourth Progress Report, 1 May 1977 -- 30 April 1978 (United States)

    Cram, D. J.


    Results are reported in a program to design, synthesize, and evaluate polycyclic host organic compounds for their abilities to complex and lipophilize guest metal ions. Work during the reporting period was devoted to synthesis and study of cyclohexametaphenylenes and cyclic phosphine oxides. (JRD)

  19. Metal Ion Complexes with HisGly: Comparison with PhePhe and PheGly

    NARCIS (Netherlands)

    Dunbar, R.C.; Oomens, J.; Berden, G.; Lau, J.K.C.; Verkerk, U.H.; Hopkinson, A.C.; Siu, K.W.M.


    Gas-phase complexes of five metal ions with the dipeptide HisGly have been characterized by DFT computations and by infrared multiple photon dissociation spectroscopy (IRMPD) using the free electron laser FELIX. Fine agreement is found in all five cases between the predicted IR spectral features of

  20. Pesticides Curbing Soil Fertility: Effect of Complexation of Free Metal Ions

    KAUST Repository

    Kaur, Sukhmanpreet


    Researchers have suggested that the reason behind infertility is pernicious effect of broad spectrum pesticides on non target, beneficial microorganism of soil. Here, studying the chelating effect of selective organophosphate and carbamate pesticides with essential metal ions, at all possible combinations of three different pH (4 ± 0.05, 7 ± 0.05 and 9 ± 0.05) and three different temperatures (15 ± 0.5°C, 30 ± 0.5°C and 45 ± 0.5°C), shows very fast rate of reaction which further increases with increase of pH and temperature. Carbonyl oxygen of carbamate and phosphate oxygen of organophosphate were found to be common ligating sites among all the complexes. Formed metal complexes were found to be highly stable and water insoluble on interaction with essential metal ions in solvent medium as well as over silica. Density functional theory (DFT) calculations not only reinforced the experimental observations, but, after a wide computational conformational analysis, unraveled the nature of the high stable undesired species that consist of pesticides complexed by metal ions from the soil. All in all, apart from the direct toxicity of pesticides, the indirect effect by means of complexation of free metal ions impoverishes the soil.

  1. Synthesis and ion-binding studies of platinum(Ⅱ) phenanthroline complexes containing crown ether moiety

    Institute of Scientific and Technical Information of China (English)


    Two new benzo-[15]-crown-5 attached phenanthroline platinum(Ⅱ) complexes with the general formula Pt(phen)X2, where X = Cl (1), C≡CC6H5 (2) have been synthesized, and their absorption and luminescence response towards metal ions have been studied.

  2. Sustained release of antibiotic complexed by multivalent ion: in vitro and in vivo study for the treatment of peritonitis. (United States)

    Na, Seung Yeon; Oh, Se Heang; Kim, Tae Ho; Yoon, Jin A; Lee, In Soo; Lee, Jin Ho


    The main aims of this study are (i) the development of an antibiotic complexed with multivalent ion, which can allow sustained release of the antibiotic without any additional matrix or difficult process and (ii) the feasibility study of the ion-complexed antibiotic as a therapeutic technique for peritonitis treatment. An ion-complexed antibiotic is prepared by simple mixing of two aqueous solutions containing an ionized (water-soluble) drug (tetracycline) and a multivalent counter ionic compound. The ion-complexed antibiotic shows a continuous release of the antibiotic up to 21 days, and thus prolonged anti-bacterial effect by gradual ionic exchange between the multivalent ions in the complex and same-charged monovalent ions in surrounding medium. From the in vivo animal study using a cecum perforated peritonitis mouse model, the ion-complexed antibiotic group shows sufficient anti-bacterial effect and thus effectively treat the peritonitis because of the extermination of the contaminated enteric bacteria in the peritoneum during wound healing of injury cecum (by the sustained release of antibiotic from the ion complex). These results suggest that the ion-complexed antibiotic system may be promising for the effective treatment of the peritonitis caused by frequent gastrointestinal defect in clinical fields. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. H4octapa: highly stable complexation of lanthanide(III) ions and copper(II). (United States)

    Kálmán, Ferenc Krisztián; Végh, Andrea; Regueiro-Figueroa, Martín; Tóth, Éva; Platas-Iglesias, Carlos; Tircsó, Gyula


    The acyclic ligand octapa(4-) (H4octapa = 6,6'-((ethane-1,2-diylbis((carboxymethyl)azanediyl))bis(methylene))dipicolinic acid) forms stable complexes with the Ln(3+) ions in aqueous solution. The stability constants determined for the complexes with La(3+), Gd(3+), and Lu(3+) using relaxometric methods are log KLaL = 20.13(7), log KGdL = 20.23(4), and log KLuL = 20.49(5) (I = 0.15 M NaCl). High stability constants were also determined for the complexes formed with divalent metal ions such as Zn(2+) and Cu(2+) (log KZnL = 18.91(3) and log KCuL = 22.08(2)). UV-visible and NMR spectroscopic studies and density functional theory (DFT) calculations point to hexadentate binding of the ligand to Zn(2+) and Cu(2+), the donor atoms of the acetate groups of the ligand remaining uncoordinated. The complexes formed with the Ln(3+) ions are nine-coordinated thanks to the octadentate binding of the ligand and the presence of a coordinated water molecule. The stability constants of the complexes formed with the Ln(3+) ions do not change significantly across the lanthanide series. A DFT investigation shows that this is the result of a subtle balance between the increased binding energies across the 4f period, which contribute to an increasing complex stability, and the parallel increase of the absolute values of the hydration free energies of the Ln(3+) ions. In the case of the [Ln(octapa)(H2O)](-) complexes the interaction between the amine nitrogen atoms of the ligand and the Ln(3+) ions is weakened along the lanthanide series, and therefore the increased electrostatic interaction does not overcome the increasing hydration energies. A detailed kinetic study of the dissociation of the [Gd(octapa)(H2O)](-) complex in the presence of Cu(2+) shows that the metal-assisted pathway is the main responsible for complex dissociation at pH 7.4 and physiological [Cu(2+)] concentration (1 μM).

  4. T-wave ion mobility-mass spectrometry: basic experimental procedures for protein complex analysis. (United States)

    Michaelevski, Izhak; Kirshenbaum, Noam; Sharon, Michal


    Ion mobility (IM) is a method that measures the time taken for an ion to travel through a pressurized cell under the influence of a weak electric field. The speed by which the ions traverse the drift region depends on their size: large ions will experience a greater number of collisions with the background inert gas (usually N(2;)) and thus travel more slowly through the IM device than those ions that comprise a smaller cross-section. In general, the time it takes for the ions to migrate though the dense gas phase separates them, according to their collision cross-section (Omega). Recently, IM spectrometry was coupled with mass spectrometry and a traveling-wave (T-wave) Synapt ion mobility mass spectrometer (IM-MS) was released. Integrating mass spectrometry with ion mobility enables an extra dimension of sample separation and definition, yielding a three-dimensional spectrum (mass to charge, intensity, and drift time). This separation technique allows the spectral overlap to decrease, and enables resolution of heterogeneous complexes with very similar mass, or mass-to-charge ratios, but different drift times. Moreover, the drift time measurements provide an important layer of structural information, as Omega is related to the overall shape and topology of the ion. The correlation between the measured drift time values and Omega is calculated using a calibration curve generated from calibrant proteins with defined cross-sections(1). The power of the IM-MS approach lies in its ability to define the subunit packing and overall shape of protein assemblies at micromolar concentrations, and near-physiological conditions(1). Several recent IM studies of both individual proteins(2,3) and non-covalent protein complexes(4-9), successfully demonstrated that protein quaternary structure is maintained in the gas phase, and highlighted the potential of this approach in the study of protein assemblies of unknown geometry. Here, we provide a detailed description of IMS

  5. Characterization of surfactant effects on the visible spectroscopy of lanthanide metal ion-triphenylmethane dye complexes

    Energy Technology Data Exchange (ETDEWEB)

    Klopf, G.J.


    To better define the mechanism responsible for sensitization, the interactions of representative cationic, anionic, and nonionic surfactants with several lanthanide metal ion-triphenylmethane dye complexes, particularly the gadolinium (Gd/sup +3/)-Chromeazurol S (CAS) complex, were characterized. Only cationic surfactants induced sensitization when added to the Gd/sup +3/-CAS complex. Sensitization induced by cetylpyridinium chloride (CPC) occurred at submicellar concentrations and was attributed to the formation of a 1:2:4 Gd/sup +3/-CAS-CPC ternary complex. Additional ternary complexes evidently form if excess CAS is present. Mechanisms are proposed for the sensitization of the reaction by quaternary compounds and by anionic surfactants. Although both micellar and submicellar concentrations were considered, adding the nonionic surfactant Triton X-100 to the Gd/sup +3/-CAS complex had little effect.

  6. Lifetimes and stabilities of familiar explosive molecular adduct complexes during ion mobility measurements. (United States)

    McKenzie-Coe, Alan; DeBord, John Daniel; Ridgeway, Mark; Park, Melvin; Eiceman, Gary; Fernandez-Lima, Francisco


    Trapped ion mobility spectrometry coupled to mass spectrometry (TIMS-MS) was utilized for the separation and identification of familiar explosives in complex mixtures. For the first time, molecular adduct complex lifetimes, relative stability, binding energies and candidate structures are reported for familiar explosives. Experimental and theoretical results showed that the adduct size and reactivity, complex binding energy and the explosive structure tailor the stability of the molecular adduct complex. The flexibility of TIMS to adapt the mobility separation as a function of the molecular adduct complex stability (i.e., short or long IMS experiments/low or high IMS resolution) permits targeted measurements of explosives in complex mixtures with high confidence levels.

  7. Platinum(IV) complexes conjugated with phenstatin analogue as inhibitors of microtubule polymerization and reverser of multidrug resistance. (United States)

    Huang, Xiaochao; Huang, Rizhen; Gou, Shaohua; Wang, Zhimei; Liao, Zhixin; Wang, Hengshan


    Pt(IV) complexes comprising a phenstatin analogue, as dual-targeting Pt(IV) prodrug, were designed and synthesized. They were found not only to carry the DNA binding platinum warhead into the tumor cells, but also to have a small molecular unit to inhibit tubulin polymerization. In vitro evaluation results revealed that Pt(IV) complexes showed better and more potent activity against the test human cancer cells including cisplatin resistant cell lines than their corresponding Pt(II) counterparts. In addition, the Pt(IV) derivative of cisplatin, complex 10, exhibited highly selective inhibition in human cancer cells and displayed no obvious toxicity to two human normal cell lines, respectively. Mechanism study suggested that complex 10 induced cell-cycle arrest at the G2/M phase and caused apoptotic cell death of human lung cancer NCI-H460 cells through the mitochondrial mediated pathway. Moreover, complex 10 effectively inhibited the tumor growth in the NCI-H460 xenograft model. Copyright © 2017. Published by Elsevier Ltd.

  8. Complexation of Nickel Ions by Boric Acid or (Poly)borates. (United States)

    Graff, Anais; Barrez, Etienne; Baranek, Philippe; Bachet, Martin; Bénézeth, Pascale


    An experiment based on electrochemical reactions and pH monitoring was performed in which nickel ions were gradually formed by oxidation of a nickel metal electrode in a solution of boric acid. Based on the experimental results and aqueous speciation modeling, the evolution of pH showed the existence of significant nickel-boron complexation. A triborate nickel complex was postulated at high boric acid concentrations when polyborates are present, and the equilibrium constants were determined at 25, 50 and 70 °C. The calculated enthalpy and entropy at 25 °C for the formation of the complex from boric acid and Ni(2+) ions are respectively equal to (65.6 ± 3.1) kJ·mol(-1) and (0.5 ± 11.1) J·K(-1)·mol(-1). The results of this study suggest that complexation of nickel ions by borates can significantly enhance the solubility of nickel metal and nickel oxide depending on the concentration of boric acid and pH. First principles calculations were investigated and tend to show that the complex is thermodynamically stable and the nickel cation in solution should interact more strongly with the [Formula: see text] than with boric acid.

  9. Computational study of organo-cesium complexes and the possibility of lanthanide/actinide ions substitution (United States)

    Rabanal-León, Walter A.; Martinez-Ariza, Guillermo; Roberts, Sue A.; Hulme, Christopher; Arratia-Pérez, Ramiro


    Relativistic DFT calculations suggest that two organo-cesium complexes studied herein afford large HOMO-LUMO gaps of around 2.4 eV with the PBE xc-functional, which accounts for their stability. Energy decomposition studies suggest these two complexes are largely ionic with about 20% covalency. However, when the Cs+ ions are substituted by the isoelectronic La3+ and Th4+, their predicted ionicity decreases significantly. The significant increase in covalence indicates that employing Ugi reaction cascades that afford tetramic acid-based organo-cesium complexes may be extended to La3+ and Th4+ organometallics.

  10. Imaging and structural studies of DNA–protein complexes and membrane ion channels

    KAUST Repository

    Marini, M.


    In bio-imaging by electron microscopy, damage of the sample and limited contrast are the two main hurdles for reaching high image quality. We extend a new preparation method based on nanofabrication and super-hydrophobicity to the imaging and structural studies of nucleic acids, nucleic acid-protein complexes (DNA/Rad51 repair protein complex) and neuronal ion channels (gap-junction, K+ and GABA(A) channels) as paradigms of biological significance and increasing complexity. The preparation method is based on the liquid phase and is compatible with physiological conditions. Only in the very last stage, samples are dried for TEM analysis. Conventional TEM and high-resolution TEM (HRTEM) were used to achieve a resolution of 3.3 and 1.5 angstrom, respectively. The EM dataset quality allows the determination of relevant structural and metrological information on the DNA structure, DNA-protein interactions and ion channels, allowing the identification of specific macromolecules and their structure.

  11. Status of IH and RFQ linacs in the Daejeon Ion Accelerator Complex at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Sung Ryul; Chang, Dae Sik; Hwang, Churl Kew; Lee, Seok Kwan; Jin, Jeong Tae; Oh, Byung Hoon [KAERI, Daejeon (Korea, Republic of)


    The Daejeon ion accelerator complex (DIAC) is being built at Korea atomic energy research institute (KAERI) in order to fulfill an increasing demand for heavy ion beam facilities for various purposes including structural material study, biological research and nanomaterial treatment. Based on devices of the Tokai radioactive ion accelerator complex (TRIAC) given from the high energy accelerator research organization (KEK), Japan, the dedicated accelerators in the DIAC are designed to produce stable heavy ion beams with energies up to 1 MeV/u and beam currents up to 300 μA. In this article, recent construction status of the DIAC are presented and discussed. From the successful full-power test results, we confirmed that the IH and RFQ linacs work properly and then they are ready to accelerate heavy ions up to 1.09 MeV/nucleon. The construction of lead shields on DIAC devices is now in progress, and the beam tuning and test will be done soon until the end of this year.

  12. Multiheteromacrocycles that Complex Metal Ions. Ninth Progress Report (includes results of last three years), 1 May 1980 -- 30 April 1983 (United States)

    Cram, D. J.


    The overall objective of this research is to design, synthesize, and evaluate cyclic and polycyclic host organic compounds for the abilities to complex and lipophilize guest metal ions, their complexes, and their clusters. Host organic compounds consist of strategically placed solvating, coordinating, and ion-pairing sites tied together by covalent bonds through hydrocarbon units around cavities shaped to be occupied by guest metal ions, or by metal ions plus their ligands. Specificity in complexation is sought by matching the following properties of host and guest: cavity and metal ion sizes; geometric arrangements of binding sites; numbers of binding sites; characters of binding sites; and valences. The hope is to synthesize new classes of compounds useful in the separation of metal ions, their complexes, and their clusters.

  13. Chitosan-praseodymium complex for adsorption of fluoride ions from water

    Institute of Scientific and Technical Information of China (English)

    Eny Kusrini; Nofrijon Sofyan; Nyoman Suwartha; Gefin Yesya; Cindy Rianti Priadi


    Engineering of chitosan by praseodymium has been investigated to improve the adsorption properties as well as physical characteristics of chitosan. Modification of chitosan changes the original properties of chitosan so that it can be more suitable for ad-sorption of fluoride ions. In this study, chitosan-praseodymium (Chi-Pr) was synthesized by impregnation method. The Chi-Pr com-plex was characterized by scanning electron microscopic-energy dispersive X-ray spectroscopy (SEM-EDX), Fourier transform in-frared (FTIR) and employed as an adsorbent for removal of fluorides ions from water in the batch system. The variables such as con-tact time, concentration of Pr, adsorbent dose, initial concentration of fluoride ions, and competitor anions were studied. The adsorp-tion efficiency of fluoride ions (η) with increasing Pr loading into chitosan (5 wt.%, 10 wt.%, 15 wt.%, 20 wt.% and 25 wt.%) were 35.5%, 56.1%, 72.0%, 68.5% and 62.5%, respectively. The Chi-Pr (15 wt.%) complex had the highest fluoride removal efficiency (72.0%). The experimental data fitted well to the Langmuir isotherm with maximum adsorption capacity (qmax) of 15.87 mg/g and an equilibrium constant (kL) of 0.15 mg. Kinetic study revealed that the adsorption of fluoride ions from water followed pseudo-second-order model with a maximum adsorption capacity (q2) of 8.20 mg/g and a rate constant (k2) of 0.01 g/mg·min. Ad-sorption efficiency of fluoride ions in the simulated drinking water was diminished with the changes in pH levels. The presence of Pr3+in chitosan increased chitosan's performance as an adsorbent for adsorption of fluoride ions.

  14. Construction and Ion Exchange Properties of Supramolecular Complexes with Organic Ligands and Metal Ions

    Institute of Scientific and Technical Information of China (English)

    SUN; WeiYin


    Supramolecular architectures with specific topologies such as closed threedimensional molecular cages present a large range of applications in material science, medicine and chemical technology.1,2 In the past decades, a number of such frameworks, e.g. M6L4, M12L8 and M18L6, have been synthesized by assembly of organic ligands with transitional metal salts.3-5 However, the M3L2 type cage-like complexes are not well known up to now.6,7 We report herein the generation of M3L2 type cages by tripodal ligands and various metal salts, and the anion exchange, molecular recognition properties of these metallosupramolecular cages.  ……

  15. Construction and Ion Exchange Properties of Supramolecular Complexes with Organic Ligands and Metal Ions

    Institute of Scientific and Technical Information of China (English)

    SUN WeiYin; FAN Jian


    @@ Supramolecular architectures with specific topologies such as closed threedimensional molecular cages present a large range of applications in material science, medicine and chemical technology.1,2 In the past decades, a number of such frameworks, e.g. M6L4, M12L8 and M18L6, have been synthesized by assembly of organic ligands with transitional metal salts.3-5 However, the M3L2 type cage-like complexes are not well known up to now.6,7 We report herein the generation of M3L2 type cages by tripodal ligands and various metal salts, and the anion exchange, molecular recognition properties of these metallosupramolecular cages.

  16. Spectrofluorimetric determination of doxepin hydrochloride in commercial dosage forms via ion pair complexation with alizarin red S

    National Research Council Canada - National Science Library

    Rahman, Nafisur; Khatoon, Asma


    .... It is based on the formation of ion-pair complex between doxepin and alizarin red S at pH 3.09. The ion pair complex was extracted in dichloromethane and the fluorescence intensity was measured at 560 nm after excitation at 490 nm...

  17. Determination of the stability constant of Np(V) fluoride complex using a fluoride ion selective electrode

    Energy Technology Data Exchange (ETDEWEB)

    Sawant, R.M.; Rizvi, G.H.; Chaudhuri, N.K.; Patil, S.K. (Bhabha Atomic Research Centre, Bombay (India). Radiochemistry Div.)


    Fluoride complexing of Np(V) was studied using fluoride ion selective electrode (F-ISE). Free fluoride ion concentrations in the presence of Np(V) were measured at 0.1 and 0.01M ionic strength. The data were used to calculate the stability constant of the fluoride complex of Np(V) and the values obtained are reported.

  18. Quantitative measurement of the reduction of platinum(IV) complexes using X-ray absorption near-edge spectroscopy (XANES). (United States)

    Hall, Matthew D; Daly, Helen L; Zhang, Jenny Z; Zhang, Mei; Alderden, Rebecca A; Pursche, Daniel; Foran, Garry J; Hambley, Trevor W


    The platinum(II) drugs cisplatin, carboplatin and oxaliplatin are usefully employed against a range of malignancies, but toxicities and resistance have spurred the search for improved analogs. This has included investigation of the platinum(IV) oxidation state, which provides greater kinetic inertness. It is generally accepted that Pt(IV) complexes must be reduced to Pt(II) for activation. As such, the ability to monitor reduction of Pt(IV) complexes is critical to guiding the design of candidates, and providing mechanistic understanding. Here we report in full that the white line height of X-ray absorption near-edge spectra (XANES) of Pt complexes, normalized to the post-edge minima, can be used to quantitatively determine the proportion of each oxidation state in a mixture. A series of Pt(IV) complexes based on the Pt(II) complexes cisplatin and transplatin were prepared with chlorido, acetato or hydroxido axial ligands, and studies into their reduction potential and cytotoxicity against A2780 human ovarian cancer cells were performed, demonstrating the relationship between reduction potential and cytotoxicity. Analysis of white line height demonstrated a clear and consistent difference between Pt(II) (1.52 ± 0.05) and Pt(IV) (2.43 ± 0.19) complexes. Reduction of Pt(IV) complexes over time in cell growth media and A2780 cells was observed by XANES, and shown to correspond with their reduction potentials and cytotoxicities. We propose that this method is useful for monitoring reduction of metal-based drug candidates in complex biological systems.

  19. Experimental Gas-Phase Thermochemistry for Alkane Reductive Elimination from Pt(IV)

    NARCIS (Netherlands)

    Couzijn, Erik P. A.; Kobylianskii, Ilia J.; Moret, Marc-Etienne; Chen, Peter


    The gas-phase reactivity of the [(NN)(PtMe3)-Me-IV](+) (NN = alpha-diimine) complex 1 and its acetonitrile adduct has been investigated by tandem mass spectrometry. The only observed reaction from the octahedral d(6) complex 1 center dot MeCN is the simple dissociation of the coordinated solvent mol

  20. Experimental Gas-Phase Thermochemistry for Alkane Reductive Elimination from Pt(IV)

    NARCIS (Netherlands)

    Couzijn, Erik P. A.; Kobylianskii, Ilia J.; Moret, Marc-Etienne; Chen, Peter


    The gas-phase reactivity of the [(NN)(PtMe3)-Me-IV](+) (NN = alpha-diimine) complex 1 and its acetonitrile adduct has been investigated by tandem mass spectrometry. The only observed reaction from the octahedral d(6) complex 1 center dot MeCN is the simple dissociation of the coordinated solvent

  1. Structural Information Inference from Lanthanoid Complexing Systems: Photoluminescence Studies on Isolated Ions (United States)

    Greisch, Jean Francois; Harding, Michael E.; Chmela, Jiri; Klopper, Willem M.; Schooss, Detlef; Kappes, Manfred M.


    The application of lanthanoid complexes ranges from photovoltaics and light-emitting diodes to quantum memories and biological assays. Rationalization of their design requires a thorough understanding of intramolecular processes such as energy transfer, charge transfer, and non-radiative decay involving their subunits. Characterization of the excited states of such complexes considerably benefits from mass spectrometric methods since the associated optical transitions and processes are strongly affected by stoichiometry, symmetry, and overall charge state. We report herein spectroscopic measurements on ensembles of ions trapped in the gas phase and soft-landed in neon matrices. Their interpretation is considerably facilitated by direct comparison with computations. The combination of energy- and time-resolved measurements on isolated species with density functional as well as ligand-field and Franck-Condon computations enables us to infer structural as well as dynamical information about the species studied. The approach is first illustrated for sets of model lanthanoid complexes whose structure and electronic properties are systematically varied via the substitution of one component (lanthanoid or alkali,alkali-earth ion): (i) systematic dependence of ligand-centered phosphorescence on the lanthanoid(III) promotion energy and its impact on sensitization, and (ii) structural changes induced by the substitution of alkali or alkali-earth ions in relation with structures inferred using ion mobility spectroscopy. The temperature dependence of sensitization is briefly discussed. The focus is then shifted to measurements involving europium complexes with doxycycline an antibiotic of the tetracycline family. Besides discussing the complexes' structural and electronic features, we report on their use to monitor enzymatic processes involving hydrogen peroxide or biologically relevant molecules such as adenosine triphosphate (ATP).

  2. Ion channels generating complex spikes in cartwheel cells of the dorsal cochlear nucleus. (United States)

    Kim, Yuil; Trussell, Laurence O


    Cartwheel cells are glycinergic interneurons that modify somatosensory input to the dorsal cochlear nucleus. They are characterized by firing of mixtures of both simple and complex action potentials. To understand what ion channels determine the generation of these two types of spike waveforms, we recorded from cartwheel cells using the gramicidin perforated-patch technique in brain slices of mouse dorsal cochlear nucleus and applied channel-selective blockers. Complex spikes were distinguished by whether they arose directly from a negative membrane potential or later during a long depolarization. Ca(2+) channels and Ca(2+)-dependent K(+) channels were major determinants of complex spikes. Onset complex spikes required T-type and possibly R-type Ca(2+) channels and were shaped by BK and SK K(+) channels. Complex spikes arising later in a depolarization were dependent on P/Q- and L-type Ca(2+) channels as well as BK and SK channels. BK channels also contributed to fast repolarization of simple spikes. Simple spikes featured an afterdepolarization that is probably the trigger for complex spiking and is shaped by T/R-type Ca(2+) and SK channels. Fast spikes were dependent on Na(+) channels; a large persistent Na(+) current may provide a depolarizing drive for spontaneous activity in cartwheel cells. Thus the diverse electrical behavior of cartwheel cells is determined by the interaction of a wide variety of ion channels with a prominent role played by Ca(2+).

  3. Application of the hybrid complexation-ultrafiltration process for metal ion removal from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Jianxian [College of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China) and College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)], E-mail:; Ye Hongqi [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Hu Zhongyu [College of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China)


    Complexation-ultrafiltration process was investigated for mercury and cadmium removal from aqueous solutions by using poly(acrylic acid) sodium salt (PAASS) as a complexing agent. The kinetics of complexation reactions of PAASS with the metal ions were studied under a large excess PAASS and pH 5.5. It takes 25 and 50 min for mercury and cadmium to get the complexation equilibrium, respectively, and the reaction kinetics can be described by a pseudo-first-order equation. Effects of various operating parameters such as loading ratios, pH values, etc. on metal rejection coefficients (R) were investigated. In the process of concentration, membrane fluxes decline slowly and R values are about 1. The concentrated retentates were used further for the decomplexation. The decomplexation ratio of mercury-PAASS complex is about 30%, whereas that of cadmium-PAASS complex reaches 93.5%. After the decomplexation, diafiltration experiments were carried out at pH 2.5. Cadmium can be diafiltrated satisfactorily from the retentate, but for mercury it is the contrary. Selective separation of the both metal ions was studied from a binary solution at pH 5. When mercury, cadmium and PAASS concentrations are 30, 30 and 40 mg L{sup -1}, respectively, mercury is retained by ultrafiltration while almost all cadmium passes through the membrane.

  4. Application of the hybrid complexation-ultrafiltration process for metal ion removal from aqueous solutions. (United States)

    Zeng, Jianxian; Ye, Hongqi; Hu, Zhongyu


    Complexation-ultrafiltration process was investigated for mercury and cadmium removal from aqueous solutions by using poly(acrylic acid) sodium salt (PAASS) as a complexing agent. The kinetics of complexation reactions of PAASS with the metal ions were studied under a large excess PAASS and pH 5.5. It takes 25 and 50 min for mercury and cadmium to get the complexation equilibrium, respectively, and the reaction kinetics can be described by a pseudo-first-order equation. Effects of various operating parameters such as loading ratios, pH values, etc. on metal rejection coefficients (R) were investigated. In the process of concentration, membrane fluxes decline slowly and R values are about 1. The concentrated retentates were used further for the decomplexation. The decomplexation ratio of mercury-PAASS complex is about 30%, whereas that of cadmium-PAASS complex reaches 93.5%. After the decomplexation, diafiltration experiments were carried out at pH 2.5. Cadmium can be diafiltrated satisfactorily from the retentate, but for mercury it is the contrary. Selective separation of the both metal ions was studied from a binary solution at pH 5. When mercury, cadmium and PAASS concentrations are 30, 30 and 40 mg L(-1), respectively, mercury is retained by ultrafiltration while almost all cadmium passes through the membrane.

  5. Colorimetric and luminescent bifunctional iridium(III) complexes for the sensitive recognition of cyanide ions (United States)

    Chen, Xiudan; Wang, Huili; Li, Jing; Hu, Wenqin; Li, Mei-Jin


    Two new cyclometalated iridium(III) complexes [(ppy)2Irppz]Cl (1) and [(ppy)2Irbppz]Cl (2) (where ppy = 2-phenylpyridine, ppz = 4,7-phenanthrolino-5,6:5,6-pyrazine, bppz = 2.3-di-2-pyridylpyrazine), were designed and synthesized. The structure of [(ppy)2Irppz]Cl was determined by single crystal X-ray diffraction. Their photophysical properties were also studied. This kind of complexes could coordinate with Cu2 +, the photoluminescence (PL) of the complex was quenched, and the color changed from orange-red to green. The forming M-Cu (M: complexes 1 and 2) ensemble could be further utilized as a colorimetric and emission "turn-on" bifunctional detection for CN-, especially for complex 1-Cu2 + showed a high sensitivity toward CN- with a limit of diction is 97 nM. Importantly, this kind of iridium(III) complexes shows a unique recognition of cyanide ions over other anions which makes it an eligible sensing probe for cyanide ions.

  6. Charge Inversion of Phospholipids by Dimetal Complexes for Positive Ion-Mode Electrospray Ionization Mass Spectrometry Analysis

    DEFF Research Database (Denmark)

    Svane, Simon; Gorshkov, Vladimir; Kjeldsen, Frank


    Phospholipids are vital constituents of living cells, as they are involved in signaling and membrane formation. Mass spectrometry analysis of many phospholipids is preferentially performed in the negative ion-mode because of their acidic nature. Here we have studied the potential of a digallium...... phosphates and phosphatidic acid bound to {LGa2}(5+) were between 2.5- and 116-fold higher than that of the unmodified lipids in the negative ion-mode. Native phosphoinositide ions yielded upon CID in the negative ion-mode predominantly product ions due to losses of H3PO4, PO3(-) and H2O. In comparison, CID...... and dizinc complex to charge-invert a range of different types of phospholipids and measured their ion yield and fragmentation behavior in positive ion-mode tandem mass spectrometry. The dimetal complexes bind specifically the phosphate groups of phospholipids and add an excess of up to three positive...

  7. Treatment of nickel-ammonia complex ion-containing ammonia nitrogen wastewater

    Institute of Scientific and Technical Information of China (English)

    MIN Xiao-bo; ZHOU Min; CHAI Li-yuan; WANG Yun-yan; SHU Yu-de


    Air stripping was adopted to treat nickel ammonia complex ion-containing wastewater in order to remove nickel and ammonia simultaneously in one technological process. The relationship among pH, the concentration of nickel ammonia complex ion and total ammonia concentration was analyzed theoretically. Influence of pH value, water temperature, airflow rate and time on air stripping was studied in detail by static experiment in laboratory. The results show that at pH 11, temperature of 60 ℃ and airflow rate of 0.12 m~3/h, NH_3 and Ni~(2+) concentrations remained in wastewater are less than 2 and 0.2 mg/L, respectively, after blowing for 75 min, which reaches the standard of the state discharge. When the tail gas is absorbed by 0.5 mol/L H_2SO_4 in order to avoid the secondary pollution, the absorption rate can achieve 70%.

  8. Magnetic anisotropy in surface-supported single-ion lanthanide complexes

    CERN Document Server

    Stoll, Paul; Rolf, Daniela; Nickel, Fabian; Xu, Qingyu; Hartmann, Claudia; Umbach, Tobias R; Kopprasch, Jens; Ladenthin, Janina N; Schierle, Enrico; Weschke, Eugen; Czekelius, Constantin; Kuch, Wolfgang; Franke, Katharina J


    Single-ion lanthanide-organic complexes can provide stable magnetic moments with well-defined orientation for spintronic applications on the atomic level. Here, we show by a combined experimental approach of scanning tunneling microscopy and X-ray absorption spectroscopy that dysprosium-tris(1,1,1-trifluoro-4-(2-thienyl)-2,4butanedionate) (Dy(tta)$_3$) complexes deposited on a Au(111) surface undergo a molecular distortion, resulting in distinct crystal field symmetry imposed on the Dy ion. This leads to an easy-axis magnetization direction in the ligand plane. Furthermore, we show that tunneling electrons hardly couple to the spin excitations, which we ascribe to the shielded nature of the $4f$ electrons.

  9. Removal of heavy metal ions from water by complexation-assisted ultrafiltration. (United States)

    Trivunac, Katarina; Stevanovic, Slavica


    Toxic heavy metals in air, soil and water are global problems that are growing threat to the environment. Therefore, the removal and separation of toxic and environmentally relevant heavy metal ions are a technological challenge with respect to industrial and environmental application. A promising process for the removal of heavy metal ions from aqueous solutions involves bonding the metals to a bonding agent (such as macromolecular species), and then separating the loaded agents from wastewater by separation processes such as membrane filtration. The choice of water-soluble macroligands remains important for developing this technology. The effects of type of complexing agent, pH value and applied pressure on retention coefficients of Zn(II) and Cd(II) complexes were investigated. At best operating conditions (pH=9.0, p=300kPa) using diethylaminoethyl cellulose, the removal of Cd(2+) and Zn(2+) was more than 95% and 99%, respectively.

  10. Superhalogens: A Bridge between Complex Metal Hydrides and Li Ion Batteries. (United States)

    Jena, Puru


    Complex metal hydrides and Li ion batteries play an integral role in the pursuit of clean and sustainable energy. The former stores hydrogen and can provide a clean energy solution for the transportation industry, while the latter can store energy harnessed from the sun and the wind. However, considerable materials challenges remain in both cases, and research for finding solutions has traditionally followed parallel paths. In this Perspective, I show that there is a common link between these two seemingly disparate fields that can be unveiled by studying the electronic structure of the anions in complex metal hydrides and in electrolytes of Li ion batteries; they are both superhalogens. I demonstrate that considerable progress made in our understanding of superhalogens in the past decade can provide solutions to some of the materials challenges in both of these areas.

  11. Minimally complex ion traps as modules for quantum communication and computing (United States)

    Nigmatullin, Ramil; Ballance, Christopher J.; de Beaudrap, Niel; Benjamin, Simon C.


    Optically linked ion traps are promising as components of network-based quantum technologies, including communication systems and modular computers. Experimental results achieved to date indicate that the fidelity of operations within each ion trap module will be far higher than the fidelity of operations involving the links; fortunately internal storage and processing can effectively upgrade the links through the process of purification. Here we perform the most detailed analysis to date on this purification task, using a protocol which is balanced to maximise fidelity while minimising the device complexity and the time cost of the process. Moreover we ‘compile down’ the quantum circuit to device-level operations including cooling and shuttling events. We find that a linear trap with only five ions (two of one species, three of another) can support our protocol while incorporating desirable features such as global control, i.e. laser control pulses need only target an entire zone rather than differentiating one ion from its neighbour. To evaluate the capabilities of such a module we consider its use both as a universal communications node for quantum key distribution, and as the basic repeating unit of a quantum computer. For the latter case we evaluate the threshold for fault tolerant quantum computing using the surface code, finding acceptable fidelities for the ‘raw’ entangling link as low as 83% (or under 75% if an additional ion is available).

  12. Soft Landing of Complex Ions for Studies in Catalysis and Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Laskin, Julia; Johnson, Grant E.; Prabhakaran, Venkateshkumar


    Immobilization of complex molecules and clusters on supports plays an important role in a variety of disciplines including materials science, catalysis and biochemistry. In particular, deposition of clusters on surfaces has attracted considerable attention due to their non-scalable, highly size-dependent properties. The ability to precisely control the composition and morphology of clusters and small nanoparticles on surfaces is crucial for the development of next generation materials with rationally tailored properties. Soft- and reactive landing of ions onto solid or liquid surfaces introduces unprecedented selectivity into surface modification by completely eliminating the effect of solvent and sample contamination on the quality of the film. The ability to select the mass-to-charge ratio of the precursor ion, its kinetic energy and charge state along with precise control of the size, shape and position of the ion beam on the deposition target makes soft-landing an attractive approach for surface modification. High-purity uniform thin films on surfaces generated using mass-selected ion deposition facilitate understanding of critical interfacial phenomena relevant to catalysis, energy generation and storage, and materials science. Our efforts have been directed toward understanding charge retention by soft-landed metal and metal-oxide cluster ions, which may affect both their structure and reactivity. Specifically, we have examined the effect of the surface on charge retention by both positively and negatively charged cluster ions. We found that the electronic properties of the surface play an important role in charge retention by cluster cations. Meanwhile, the electron binding energy is a key factor determining charge retention by cluster anions. These findings provide the scientific foundation for the rational design of interfaces for advanced catalysts and energy storage devices. Further optimization of electrode-electrolyte interfaces for applications in

  13. The Study on the Noncovalent Complexes of Silver Ion with Xanthone Diglycosides by Electrospray Ionization with Tandem Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)


    The silver ionic complexes of xanthone glycosides were studied by ESI-MS/MS in the positive ion mode. The fragmentation pathways of silver ionic complexes under collisioninduced dissociation (CID) were investigated and the differences in MS/MS spectra of different silver ionic complexes of xanthones were correlated to the characterization of saccharide and the coordination pattern of silver ion with xanthones, including the glycosilation position and linkage type of disaccharide (1-2 and 1-6 linkages).

  14. Gas Phase Reactions of Ions Derived from Anionic Uranyl Formate and Uranyl Acetate Complexes (United States)

    Perez, Evan; Hanley, Cassandra; Koehler, Stephen; Pestok, Jordan; Polonsky, Nevo; Van Stipdonk, Michael


    The speciation and reactivity of uranium are topics of sustained interest because of their importance to the development of nuclear fuel processing methods, and a more complete understanding of the factors that govern the mobility and fate of the element in the environment. Tandem mass spectrometry can be used to examine the intrinsic reactivity (i.e., free from influence of solvent and other condensed phase effects) of a wide range of metal ion complexes in a species-specific fashion. Here, electrospray ionization, collision-induced dissociation, and gas-phase ion-molecule reactions were used to create and characterize ions derived from precursors composed of uranyl cation (UVIO2 2+) coordinated by formate or acetate ligands. Anionic complexes containing UVIO2 2+ and formate ligands fragment by decarboxylation and elimination of CH2=O, ultimately to produce an oxo-hydride species [UVIO2(O)(H)]-. Cationic species ultimately dissociate to make [UVIO2(OH)]+. Anionic complexes containing acetate ligands exhibit an initial loss of acetyloxyl radical, CH3CO2•, with associated reduction of uranyl to UVO2 +. Subsequent CID steps cause elimination of CO2 and CH4, ultimately to produce [UVO2(O)]-. Loss of CH4 occurs by an intra-complex H+ transfer process that leaves UVO2 + coordinated by acetate and acetate enolate ligands. A subsequent dissociation step causes elimination of CH2=C=O to leave [UVO2(O)]-. Elimination of CH4 is also observed as a result of hydrolysis caused by ion-molecule reaction with H2O. The reactions of other anionic species with gas-phase H2O create hydroxyl products, presumably through the elimination of H2.

  15. Extractive Spectrophotometric Determination of Fluconazole by Ion-pair Complex Formation with Bromocresol Green

    Institute of Scientific and Technical Information of China (English)

    JALALI,Fahimeh; RAJABI,Mohammad J.


    An extraction-spectrophotometric method for the determination of trace amounts of fluconazole was described.Fluconazole was effectively extracted as a 1 : 1 ion-pair complex with bromocresole green (BCG) at pH 3.0 into chloroform, followed by spectrophotometric determination at 420 nm. Beer's law was obeyed over the range of 4-procedure was applied to the determination of fluconazole in pharmaceutical preparations as well as its recovery from a blood serum sample.

  16. Transition Metal Ion Complexes of Schiff-bases. Synthesis, Characterization and Antibacterial Properties


    Chohan, Zahid H.; Munawar, Asifa; Supuran, Claudiu T


    Some novel transition metal [Co(II), Cu(II), Ni(II) and Zn(II)] complexes of substituted pyridine Schiff-bases have been prepared and characterized by physical, spectral and analytical data. The synthesized Schiff-bases act as deprotonated tridentate for the complexation reaction with Co(II), Ni(II) and Zn(II) ions. The new compounds, possessing the general formula [M(L)2] where [M=Co(II), Cu(II), Ni(II) and Zn(II) and HL=HL1, HL2, HL3 and HL4] show an octahedral geometry. In order to evaluat...

  17. Prolonged anti-bacterial activity of ion-complexed doxycycline for the treatment of osteomyelitis. (United States)

    Oh, Se Heang; Nam, Bo Ra; Lee, In Soo; Lee, Jin Ho


    The main purposes of the present study are the fabrication of an ion-complexed antibiotic which allows for the continuous release of the drug for sufficient periods of time without any additional matrix leading to unfavorable tissue responses, and the feasibility study of the ion-complexed antibiotic as a therapeutic system for osteomyelitis using an animal model. An ion-complexed doxycycline (icDX) as an antibiotic was prepared by simple mixing of positively charged doxycycline hyclate (DX) and negatively charged multivalent Na2HPO4 (2Na(+) HPO4(2-)) aqueous solutions. The icDX showed a controlled release of the DX up to 6 weeks. From the in vivo feasibility study using an osteomyelitis rat model, the icDX group showed a more effective therapeutic effect for the osteomyelitis, at 3 and 6 weeks, compared to the non-treated control and free DX groups. This was due to the sustained release of DX from the icDX in the osteomyelitis bone (medullary cavity) without migration. These findings suggest that the icDX may be a promising local delivery system in the clinical field for the treatment of the osteomyelitis.

  18. Atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry for complex thiophenic mixture analysis

    KAUST Repository

    Hourani, Nadim


    Rationale Polycyclic aromatic sulfur heterocycles (PASHs) are detrimental species for refining processes in petroleum industry. Current mass spectrometric Methods that determine their composition are often preceded by derivatization and dopant addition approaches. Different ionization Methods have different impact on the molecular assignment of complex PASHs. The analysis of such species under atmospheric pressure chemical ionization (APCI) is still considered limited due to uncontrolled ion generation with low- and high-mass PASHs. Methods The ionization behavior of a model mixture of five selected PASH standards was investigated using an APCI source with nitrogen as the reagent gas. A complex thiophenic fraction was separated from a vacuum gas oil (VGO) and injected using the same method. The samples were analyzed using Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). RESULTS PASH model analytes were successfully ionized and mainly [M + H]+ ions were produced. The same ionization pattern was observed for the real thiophenic sample. It was found that S1 class species were the major sulfur-containing species found in the VGO sample. These species indicated the presence of alkylated benzothiophenic (BT), dibenzothiophenic (DBT) and benzonaphthothiophenic (BNT) series that were detected by APCI-FTICR MS. CONCLUSIONS This study provides an established APCI-FTICR MS method for the analysis of complex PASHs. PASHs were detected without using any derivatization and without fragmentation. The method can be used for the analysis of S-containing crude oil samples. © 2013 John Wiley & Sons, Ltd.

  19. Uv Photofragmentation Spectroscopy of Model Lignin-Alkali Ion Complexes: Extending Lignomics Into the Spectroscopic Regime (United States)

    Dean, Jacob C.; Burke, Nicole L.; Hopkins, John R.; Redwine, James; Biswas, Bidyut; Ramachandran, P. V.; McLuckey, Scott A.; Zwier, Timothy S.


    Lignin is a heteroaromatic biopolymer that is an essential component in the cell wall of plants. The structural and chemical properties of lignin provide plants with macroscopic structural rigidity, and protection against microbial invasion leading to subsequent cell wall degradation. For this reason, lignin presents a major inhibition to the efficient harvesting of biomass. Given the variability of lignin composition and structure among species, environment, etc., the field of "lignomics" seeks to "sequence" lignin oligomers into constituent unit types (H, G, S) and linkages. This is predominantly done by means of tandem mass-spectrometry, by first generating a library of characteristic fragmentation pathways built from collision-induced dissociation of model dilignol ions, and applying them to the interpretation of fragmentation in larger ions. While these methods have proven powerful, UV photofragmentation spectroscopy of lignin ions cooled in a 22-pole cold ion trap provides an alternative approach to lignomics based on fragmentation following resonant UV excitation. This approach serves as a complimentary method to pure MSn-based methods with the potential for unveiling dissociation pathways only accessed by UV excitation. Further, the multichromophoric nature of lignin enables site-selectivity for the energy imparted into the molecule/ion when differentiation of the site absorptions may be possible. IR spectroscopy of the cold ions can be used for detailed analysis of the preferred conformations and binding sites of metal cations. UV spectroscopy and photofragmentation mass spectrometry has been carried out on the model (G-type) β-O-4 and β-β dilignol linkages complexed with Li+ and Na+. The UV spectral signatures were found to vary between dilignols and metal complexes, and unique photofragmentation pathways were observed among the four complexes. IR spectroscopy in the OH stretch region was used as a probe of the conformation and binding preferences. In

  20. Binary and ternary complexes of some inner transition metal ions with amino acids and acetyl acetone (United States)

    Abu-Eittah, R. H.; Abdou, M. M.; Salem, M. B.


    The stability constants of the 1:1 and 1:2 (whenever possible) complexes formed between La3+, Ce3+, Th4+ and the amino acid anions L-alaninate, L-phenylalaninate and L-histidinate were determined by potentiometric titration in aqueous solution (25± 1 ^circC, I = 0.1 M KCl) and compared together with the constants previously determined. The various formation degree of the resulting M(L) and M(L)2 were determined. In order to relate the formation degree of M(L) and M(L)2 with the basicity of the amino acid anion (L^-), the acidity constants of the protonated amino acids, H2L^+, were also measured. The main results of this work prove that Th4+ ion forms the strongest complex with the studied amino acids. It is the only ion which forms a 1:2 complex. The heterocyclic ring of histidine plays a significant role in complexing with the studied metal ions as is clearly seen from the distribution of the degree of formation of the different complexes. The stability constants of the 1:1:1, 1:2:1 and 1:1:2 complexes formed between La3+, Ce3+, Th4+ and the anions L-alaninate, L-phenylalaninate and L-histidinate together with the acetyl acetonate ion were also determined following the same experimental set up used in the study of the simple complexes. The mixed-ligand complexes turned out to be very much stronger than the simple ligand complexes. Formation of a mixed ligand complex can be considered as a type of senergism. Les constantes de stabilité des complexes 1:1 et 2:2 (lorsque cela est possible) formés entre La3+, Ce3+, Th4+ et les anions aminoacides L-alaninate, L-phénylalaninate et L-histidinate ont été déterminées par dosage potentiométrique en solution aqueuse (25± 1 ^circC, I = 0,1 M KCl), et comparées à celles de la littérature. Les différents degrés de formation de M(L) et M(L)2 ont été quantifiés. Pour mettre en évidence la relation entre le degré de formation de M(L) et M(L)2 et la basicité des anions aminoacides (L^-), les constantes d

  1. Metal ion complexation by ionizable crown ethers. Final report, January 1, 1988--June 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, R.A.


    During the report period a variety of new lipophilic ionizable crown ethers with pendent proton-ionizable groups has been synthesized. The ligands possess one or more ionizable group (carboxylic acid, phosphonic acid monoethyl ester, para-nitrophenol, phosphonic acid) attached to crown ether, monoazacrown ether or diazacrown ether frameworks. These novel chelating agents have either pendent or inward-facing proton-ionizable groups. Such lipophilic proton-ionizable crown ethers are designed for use in multiphase metal ion separations (solvent extraction, liquid membrane transport). In addition a series of proton-ionizable crown ethers without lipophilic groups was prepared to study how structural variations within the ligand influence metal ion complexation in homogeneous media as assessed by NMR spectroscopy or titration calorimetry. A third class of new metal ion-complexing agents is a series of lipophilic acyclic polyether dicarboxylic acids. Competitive solvent extractions of alkali metal and alkaline earth cations and of the mixed species have been conducted to reveal the influence of ring size, nature and attachment site of the lipophilic group, sidearm length, and proton-ionizable group identity and location upon the selectivity and efficiency of metal ion complexation. In addition to such studies of structural variation within the lipophilic proton-ionizable crown ether, the effect of changing the organic solvent and variation of the stripping conditions have been assessed. The influence of structural variations within lipophilic acyclic polyether dicarboxylic acids upon competitive solvent extraction of alkaline earth cations has been probed. Also a new chromogenic, di-ionizable crown ether with extremely high selectivity for Hg{sup 2+} has been discovered.

  2. Synthesis and characterization of new 2-cyano-2-(p-tolyl-hydrazono)-thioacetamide metal complexes and a study on their antimicrobial activities (United States)

    El-Shwiniy, W. H.; Sadeek, S. A.


    2-Cyano-2-(p-tolyl-hydrazono)-thioacetamide (Cthta) reacted with V(IV), Zr(IV), Pd(II), Pt(IV), Ce(IV) and U(VI) in acetone as a solvent at room temperature to form a solid complexes with characteristic color for metal ion. The molar ratio for all synthesized complexes is M:Cthta = 1:2 which was established from the results of chemical analysis. The isolated complexes have been characterized with their melting points, elemental analysis, magnetic properties, conductance measurements, mass, IR, UV-Vis. and 1H NMR spectroscopic methods and thermal analyses. The results supported the formation of the complexes and indicated that the Cthta reacts as a bidentate ligand. The thermogravimetric and infrared spectroscopic data confirmed the presence of water in the composition of the complexes. The molar conductance values of all complexes in (DMSO) were found in the range 150.71-328.85 S cm2 mol-1 at room temperature. The magnetic moments of the complexes were measured at room temperature. The kinetic parameters of thermogravimetric and its differential have been evaluated by using Coats Redfern (CR) and Horowitz-Metzeger (HM) methods. The ligand as well as their metal complexes were also evaluated for their antibacterial and antifungal activities.

  3. Effect of swift heavy Kr ions on complex permittivity of silicon PIN diode (United States)

    Li, Yun; Su, Ping; Yang, Zhimei; Ma, Yao; Gong, Min


    The complex permittivity has been researched on silicon PIN diodes irradiated by 2150 MeV heavy Kr ions in this article. The difference of complex permittivity spectra from 1 to 10^7 Hz between irradiated and unirradiated were observed and discussed. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics were measured at room temperature (300 K) to study the change of electrical properties in diode after irradiation. Deep level transient spectroscopy (DLTS) was used to investigate damages caused by 2150 MeV heavy Kr ions in diode. Two extra electron traps were observed, which were located at EC-0.31 eV and EC-0.17 eV. It indicated that new defects have been formed in PIN diode during irradiation. A comparison of the results illustrated that not only the carrier density but also the recombination of electron-hole pair have important influences on the properties of complex permittivity. These results offer a further indication of the mechanism about the complex permittivity property of semiconductor device, which could help to make the applications for the semiconductor device controlled by electric signals come true in the fields of optoelectronic integrated circuits, plasma antenna and so on.

  4. Synthesis and in vitro anticancer activity of octahedral platinum(IV) complexes with cyclohexyl-functionalized ethylenediamine-N,N'-diacetate-type ligands. (United States)

    Lazić, Jelena M; Vucićević, Ljubica; Grgurić-Sipka, Sanja; Janjetović, Kristina; Kaluderović, Goran N; Misirkić, Maja; Gruden-Pavlović, Maja; Popadić, Dusan; Paschke, Reinhard; Trajković, Vladimir; Sabo, Tibor J


    The present study describes the synthesis and anticancer activity of novel octahedral Pt(IV) complexes with cyclohexyl functionalized ethylenediamine-N,N'-diacetate-type ligands. Molecular mechanics calculations and density functional theory analysis revealed that s-cis is the preferred geometry of these Pt(IV) complexes with tetradentate-coordinated (S,S)-ethylenediamine-N,N'-di-2-(3-cyclohexyl)propanoate. The viability of cancer cell lines (U251 human glioma, C6 rat glioma, L929 mouse fibrosarcoma, and B16 human melanoma) was assessed by measuring mitochondrial dehydrogenase activity and lactate dehydrogenase release. Cell-cycle distribution, oxidative stress, caspase activation, and induction of autophagy were analyzed by flow cytometry using appropriate fluorescent reporter dyes. The cytotoxic activity of novel Pt(IV) complexes against various cancer cell lines (IC(50) range: 1.9-8.7 microM) was higher than that of cisplatin (IC(50) range: 10.9-67.0 microM) and proceeded through completely different mechanisms. Cisplatin induced caspase-dependent apoptosis associated with the cytoprotective autophagic response. In contrast, the new Pt(IV) complexes caused rapid, caspase-independent, oxidative stress-mediated non-apoptotic cell death characterized by massive cytoplasmic vacuolization, cell membrane damage, and the absence of protective autophagy.

  5. Prophage induction and mutagenicity of a series of anti-tumour platinum(II) and platinum(IV) co-ordination complexes

    NARCIS (Netherlands)

    Mattern, I.E.; Cocchiarella, L.; Kralingen, C.G. van; Lohman, P.H.M.


    Eleven platinum compounds with nitrogen donor ligands, previously tested for anti-tumour activity were studied for induction of prophage lambda and for mutagenicity in the Ames assay, with various strains of Salmonella. The compounds included cis and trans isomers of Pt(II) and Pt(IV) complexes and

  6. Separation Studies of Pd(II from Acidic Chloride Solutions of Pt(IV, Ni(II and Rh(III by Using 4-Aroyl-3-Phenyl-5-Isoxazolones

    Directory of Open Access Journals (Sweden)

    Koduru Janardhan Reddy


    Full Text Available This study examined the effect influence of various factors on the extraction of Pd(II to develop a new liquid-liquid extraction mechanism for the selective separation of palladium(II from its acidic chloride solutions using 4-aroyl-3-phenyl-5-isoxazolones (HA, such as 3-phenyl-4-(4-fluorobenzoyl-5- isoxazolone (HFBPI, 3-phenyl-4-benzoyl-5-isoxazolone (HPBI and 3-phenyl-4- (4-toluoyl-5-isoxazolone (HTPI. The extraction strength of Pd(II with HA were in the following order: HFBPI > HPBI > HTPI, which is opposite to that observed with their pKa values. HPBI was used to separate Pd(II from Pt(IV, Ni(II and Rh(III metal ions and calculated their separation factors (S.F. were followed in the order: Pd/Ni (40±0.4 > Pd/Pt (25±0.2 > Pd/Rh (15±0.3 > Rh/Ni (2.7±0.3 > Pt/Ni ≈ Rh/Pt (1.7±0.2. The loading and striping of Pd(II (1.12×10-4 mol L-1 were also examined using 1.0×10-3 mol L-1 HPBI in CHCl3 and 1.0 mol L-1 HCl, respectively. The results demonstrated that the maximum (97.5% extraction and desorption (89% of metal required at least 3.0 cycles. The developed method was applied successfully to the separation of palladium from synthetic water samples.

  7. [Determination of residual aluminium Ion in Huoxiang Zhengqi pellets by GFAAS with EDTA complexation extraction]. (United States)

    Wang, Xue-Na; Ran, Cong-Cong; Li, Qing-Lian; Du, Chao-Hui; Jiang, Ye


    To establish an EDTA complexation extraction pretreatment combining with GFAAS method for the determination of residual aluminium ion in Huoxiang zhengqi pellets without digestive treatment, systematical investigation was made on sample preparation, and EDTA was used for the complexation extraction of residual aluminium ion in samples. The pH, concentration and volume of extraction solution, the temperature and time of microwave extraction, and graphite furnace temperature program were investigated. The results were compared with the microwave digestion. It was showed that, 0.1 g of sample weight was added in 20 mL 0.05 mol x L(-1) EDTA solution (pH 3.5), followed by heating at 150 degrees C for 10 min in the microwave extraction device. The determination of GFAAS was performed at optimized detection wavelength (257.4 nm) as well as graphite furnace temperature program, the detection limits and quantification limits were 2.37 μg x L(-1) and 7.89 μg x L(-1), respectively. The precision (RSD) was less than 2.3%. The average recovery was 96.9% -101%. The present method is easy, rapid and accurate for the determination of residual aluminium ion in Huoxiang zhengqi pellets.

  8. Advances in Understanding of Swift Heavy-Ion Tracks in Complex Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Maik; Devanathan, Ram; Toulemonde, Marcel; Trautmann, Christina


    Tracks produced by swift heavy ions in ceramics are of interest for fundamental science as well as for applications covering different fields such as nanotechnology or fission-track dating of minerals. In the case of pyrochlores with general formula A2B2O7, the track structure and radiation sensitivity shows a clear dependence on the composition. Ion irradiated Gd2Zr2O7, e.g., retains its crystallinity while amorphous tracks are produced in Gd2Ti2O7. Tracks in Ti-containing compositions have a complex morphology consisting of an amorphous core surrounded by a shell of a disordered, defect-fluorite phase. The size of the amorphous core decreases with decreasing energy loss and with increasing Zr content, while the shell thickness seems to be similar over a wide range of energy loss values. The large data set and the complex track structure has made pyrochlore an interesting model system for a general theoretical description of track formation including thermal spike calculations (providing the spatial and temporal evolution of temperature around the ion trajectory) and molecular dynamics (MD) simulations (describing the response of the atomic system).Recent MD advances consider the sudden temperature increase by inserting data from the thermal spike. The combination allows the reproduction of the core-shell track characteristic and sheds light on the early stages of track formation including recrystallization of the molten material produced by the thermal spike.

  9. Complexation of mercury(II) ions with humic acids in tundra soils (United States)

    Vasilevich, R. S.; Beznosikov, V. A.; Lodygin, E. D.; Kondratenok, B. M.


    The interaction mechanisms of mercury(II) ions with preparations of humic acids (HAs) isolated from organic horizons of surface-gleyed soils (Haplic Stagnosol (Gelic, Siltic)) of shrub tundra and hydromorphic peat gley soils (Histic Cryosol (Reductaquic, Siltic)) of moss-lichen tundra have been studied. The particular features of the interactions between the mercury(II) ions and the HAs are related to the molecular structure of the HAs, the mercury concentration range, and the environmental parameters. The fixation of mercury(II) ions into stable coordination compounds is most efficient in the pH range of 2.5-3.5. At the element concentrations below 0.50 μmol/dm3, the main complexing sites of HAs are their peripheral aminoacid functional groups. Pyrocatechol, salicylate, and phenolic groups from the nuclear moiety of molecules interact in the concentration range of 0.0005-0.50 mmol/dm3; the physical sorption of mercury hydroxo complexes by the surface of HAs is the main process occurring in the system.

  10. Platinum(iv) N-heterocyclic carbene complexes: their synthesis, characterisation and cytotoxic activity. (United States)

    Bouché, M; Dahm, G; Wantz, M; Fournel, S; Achard, T; Bellemin-Laponnaz, S


    Platinum(ii) N-heterocyclic carbene complexes have been oxidized by bromine or iodobenzene dichloride to provide the fully characterised corresponding platinum(iv) NHC complexes. Antiproliferative activities of Pt(iv) NHC complexes were assayed against several cancer cell lines and the results were correlated with respect to their stability. Mechanistic investigations revealed that mitochondrial dysfunction and ROS production were associated with the cytotoxic process induced by these compounds.

  11. Electrochemical methods for the determination of the diffusion coefficient of ionophores and ionophore-ion complexes in plasticized PVC membranes. (United States)

    Bodor, Sándor; Zook, Justin M; Lindner, Erno; Tóth, Klára; Gyurcsányi, Róbert E


    The diffusion coefficients of active components in ion-selective membranes have a decisive influence on the life-time and detection limit of the respective ion-selective electrodes, as well as influencing the rate of polarization and relaxation processes of electrically perturbed ion sensors. Therefore, the rational design of mass transport controlled ion-selective electrodes with sub-nanomolar detection limits requires reliable data on the diffusion coefficients. We have implemented electrochemical methods for the quantitative assessment of both the diffusion coefficients of free ionophores and ion-ionophore complexes. The diffusion coefficients of the pH-sensitive chromoionophore ETH 5294 and the calcium-selective ionophore ETH 5234 were determined in plasticized PVC membranes with different PVC to plasticizer ratios. The diffusion coefficient of the free chromoionophore determined by a chronoamperometric method was validated with optical methods for a variety of membrane compositions. The calcium-selective ionophore ETH 5234 was used as a model compound to assess the diffusion coefficient of the ion-ionophore complex calculated from the time required for the complexes to cross a freshly prepared membrane during potentiometric ion-breakthrough experiments. The difference between the diffusion coefficients of the free ionophore ETH 5234 and the ion-ionophore complex was found to be significant and correlated well with the geometry of the respective species.

  12. Metal ion complex formation in small lakes of the Western Siberian Arctic zone (United States)

    Kremleva, Tatiana; Dinu, Marina


    The paper is based on joint investigation of the Tyumen State University (Russia, Tyumen) and the Geochemistry and Analytical Chemistry Vernadsky Institute of Russian Academy of Sciences (Moscow, Russia) during 2012-2014 period. It presents the results of research of chemical composition of about 70 small lakes located in the area of tundra and northern taiga of West Siberia (Russia, Yamal-Nenets and Khanty-Mansi Autonomous Districts of the Tyumen region). The investigation includes determination of different parameters of natural water samples: • content of trace elements (Al, Fe, Mn, Cr, Cu, Ni, Zn, Cd, Co, Pb, etc., total more than 60 elements) by emission method with an inductively coupled plasma (ICP-MS) using mass spektrometrometre Element 2 equipment; • content of inorganic and total carbon (TIC and TC) by elemental analysis and the difference between the total and inorganic carbon gives the organic carbon content (TOC); • pH value by potentiometric method; • content of basic ions (Na+, Ca2+, K+, Mg2+, NH4+, Cl-, SO42-, NO3-, PO43-) by ion chromatography. Determination of the chemical composition of samples was conducted in the accredited laboratory according to standard procedures with regular quality control of results. Heavy metals in natural waters can exist in various forms: free (hydrated) ions bound in complexes with organic or inorganic ligands, as well as in the form of suspensions. The form of metal existence has a significant influence on their availability to transport in aquatic organisms. Metal ions associated in stable complexes with organic substances are considered less toxic. From the previous investigations state that the most stable complexes are ligands with organic ions Fe3+, Al3+. The main conclusion of the present research states that if the total content of aluminum, iron and manganese ions (meq/dm3) is equal to or greater than the concentration of dissolved organic carbon (TOC, mg/dm3) in lakes water other heavy metals will


    National Research Council Canada - National Science Library

    Kidani, Yoshinori; Naga, Shinobu; Koike, Hisashi


    In the presence of Co(III) mixed ligand complexes with acetylacetonate, and oxinate and monomethyloxinate ions, the authors attempted to employ high performance liquid chromatography, HPLC, for the separation and purification...

  14. Preparation, structural characterization and biological evaluation of L-tyrosinate metal ion complexes (United States)

    Refat, Moamen S.; El-Korashy, Sabry A.; Ahmed, Ahmed S.


    The complexes formed between different metal ions and biological molecules like amino acids play an important role in human life. Sn(II), Sn(IV), Zn(II), Cd(II), Hg(II), Cr(III), Fe(III), La(III), ZrO(II) and UO 2(II) complexes are synthesized with L-tyrosine (tyr). These complexes are characterized by elemental analysis, molar conductance, magnetic measurements, mass, IR, UV-vis and 1H NMR spectra as well as thermogravimetric analysis (TGA/DTG). It has been found from the elemental analysis and the thermal studies that the ligand behaves as bidentate ligand forming chelates with 1:3 (metal:ligand) stoichiometry for trivalent metals and 1:2 for divalent and tetravalent metals. The molar conductance measurements of the complexes in DMSO indicate that the complexes are non-electrolyte. The activation energies and other kinetic parameters were calculated from the Coats-Redfern and Horowitz-Metzger equations. The biological activities of the metal complexes have also been studied against different bacteria and fungi.

  15. Phase diagram of Ni2+ ions complexes with polyU×polyA×polyU

    Directory of Open Access Journals (Sweden)

    Usenko E. L.


    Full Text Available Aim. To investigate Ni2+ ion effect on the conformational equilibrium of the three-stranded polynucleotide polyU×polyA×polyU and to ascertain thermodynamic parameters of the metal complex formation. Methods. The differential UV spectroscopy and thermal denaturation. Results. Dependences of conformational transition (Tm of poly U×polyA×polyU (A2U on Ni2+ ion con- centration (up to 0.001 M under conditions close to physiological ones (0.1 M Na+, pH 7 were obtained. At [Ni2+] < 3×10–4 M two branches are observed in the phase diagram, corresponding to A2U → polyA×polyU (AU + polyU (3→2 and AU→polyA + polyU (2→1 transitions. Only A2U→polyU + polyA + polyU (3→1 transition is realized at higher Ni2+ concentrations and upon A2U heating. Effective binding constants are determined for Ni2+ ions with AU (850 M–1 and A2U (1300 M–1 as well as 3→2 transition enthalpy (DH3→2 = 4±1 kcal/mol×triplet. Conclusions. By the equilibrium binding theory the thermodynamic nature of (Tm2→3 different behavior in the phase diagram of AU in the presence of Mg2+ and Ni2+ ions was determined. A larger difference of the magnesium affinity to A2U and AU as compared with that to AU and poly A results in (Tm2→3 decrease whereas the opposite ratio of Ni2+ ion binding constants induces its increasing

  16. Synthesis and Characteristic Study on Complexes of Europium(Ⅲ) and Maleic Acid Doped with Non-Fluorescent Ions

    Institute of Scientific and Technical Information of China (English)


    Complex of europium (Ⅲ) with maleic acid, and binuclear complexes of europium(Ⅲ)with maleic acid doped with non-fluorescent ions gadolinium, lanthanum and yttrium, were synthesized. The compositions and structures of complexes were characterized with elemental analysis, single crystal X-ray diffraction, IR and DSC-TG. Fluorescent properties were studied with fluorescence spectrum. The results indicated that the strongest fluorescent complexes were obtained when the ratio of europium and non-fluorescent ion was 8: 2. The order of Eu3+ fluorescence strengthened by three doped rare earths was Gd3+>La3+>Y3+.

  17. Multiheteromacrocycles that Complex Metal Ions. Second Progress Report, 1 May 1975 -- 30 April 1976 (United States)

    Cram, D. J.


    Objective is to develop cyclic and polycyclic host organic compounds to complex and lipophilize metal ions. Macrorings were synthesized: (OCH{sub 2} CH{sub 2} O CH{sub 2}COCH{sub 2} COCH{sub 2}){sub 2} and (OCH{sub 2} CH{sub 2} O CH{sub 2} COCH{sub 2} COCH{sub 2}){sub 3}. The smaller ring complexes divalent metals 10{sup 1+9} times better than the open-chain model CH{sub 3} O CH{sub 2} CO CH{sub 2} COCH{sub 2} O CH{sub 3}, and the order in which metal ions are complexed is Cu{sup 2+}, UO{sub 2}{sup 2+} greater than Ni{sup 2+} greater than Fe{sup 2+}, Co{sup 2+}, Zn{sup 2+}, Cd{sup 2+} greater than Mn{sup 2+}. The UO{sub 2}{sup 2+} and Cu{sup 2+} complexes were isolated and characterized. The larger ring complexes trivalent metals 10{sup 0.9-1.7} times better than the open- chain model compound, and the order is La{sup 3+}, Ce{sup 3+} greater than Cr{sup 3+}. Five other macrocycles were also synthesized, and their binding constants with Na, K, NH{sub 4}, and Cs picrates were measured. Six compounds containing one macroring and two inward-pointing ArOH or ArOCH{sub 3} groups were also prepared and tested for binding of Li, Na, K, Rb, and NH{sub 4} picrates. Racemic compounds containing two binaphthyls and its sulfur analog were prepared. Cage-shaped multiheteromacrocycles containing ten O ligand sites or four S and six O ligand sites were prepared and the binding capability of the first compound for picrates studied. Two ring systems with phosphonate ester groups were also prepared. (DLC)

  18. Influence of nitrate ions on the physicochemical behavior of neptunium; Etude de la complexation du neptunium+6 par les ions nitrate: approche chimiometrique

    Energy Technology Data Exchange (ETDEWEB)

    Pochon, P.; Moisy, Ph.; Blanc, P. [CEA Valrho, (DCC/DRRV/SEMP), 30 - Marcoule (France)


    The aim of this work was to acquire data on Np(VI) nitrate-complexes, particularly concerning their stability in nitric acid media, to gain a closer understanding of neptunium behavior in the PUREX process used for spent nuclear fuel reprocessing. Due to their very poor stability and the importance of physico-chemical mechanisms in concentrated solutions (media effects), the published data concerning these complexes are subject to considerable debate. A visible and near-infrared spectrophotometric study of Np(VI) nitrate-complexes was therefore undertaken to observe and quantify the influence of nitrate ions on the physicochemical behavior of neptunium, and to estimate the magnitude of the media effects in order to propose a constant of complexation by nitrate ions that is independent of the composition of the reaction medium (i.e. a thermodynamic constant). In the absence of reliable spectra for neptunium in nitric acid media, the spectrophotometric data were processed by principal components analysis and factor analysis mathematical method. The ionic strength of the solutions was adjusted by adding perchlorate salts (perchlorate ions were considered to have little or no complexing properties). The influence of the type of cation (H{sup +}, Li{sup +}, Na{sup +}, Ba{sup 2+}, Mg{sup 2+}) and the perchlorate ion concentration was observed on the neptunium(VI) spectra in nitric and perchloric media. In the presence of nitrate ions, the spectrum modifications in case of substitution of one cation by another were comparable to those observed for major nitrate ion concentration variations. Similarly, the extent of the spectrum modifications for the same nitrate ion concentration variation depended on the proton concentration. Weak spectrum modifications were also observed when the perchlorate ion concentration varied. They were quantified by a 'perturbation constant' {beta}* calculated in the same way as a complexation constant ({beta}* = 0.023 in the molal

  19. Features of the complexation of octadecane-2,4-dione and lanthanide ions in Langmuir monolayers (United States)

    Sokolov, M. E.; Repina, I. N.; Raitman, O. A.; Kolokolov, F. A.; Panyushkin, V. T.


    Monolayers of octadecane-2,4-dione on the surfaces of EuCl3 and TbCl3 solutions in the concentration range of 1 × 10-4 to 5 × 10-3 M at pH 5.8 are studied. It is found that the limiting area of octadecane-2,4-dione molecule in a monolayer dependence on Eu3+ and Tb3+ concentration is of extreme nature. The formation of complex compounds in the ligand monolayer is postulated, and structures are proposed for these compounds at different concentrations of metal ions.

  20. Infrared Spectroscopy of Metal Ion Complexes: Models for Metal Ligand Interactions and Solvation (United States)

    Duncan, Michael


    Weakly bound complexes of the form M^+-Lx (M=Fe, Ni, Co, etc.; L=CO2, C2H2, H2O, benzene, N2) are prepared in supersonic molecular beams by laser vaporization in a pulsed-nozzle cluster source. These species are mass analyzed and size-selected in a reflectron time-of-flight mass spectrometer. Clusters are photodissociated at infrared wavelengths with a Nd:YAG pumped infrared optical parametric oscillator/amplifier (OPO/OPA) laser or with a tunable infrared free-electron laser. M^+-(CO2)x complexes absorb near the free CO2 asymmetric stretch near 2349 cm-1 but with an interesting size dependent variation in the resonances. Small clusters have blue-shifted resonances, while larger complexes have additional bands due to surface CO2 molecules not attached to the metal. M^+(C2H2)n complexes absorb near the C-H stretches in acetylene, but resonances in metal complexes are red-shifted with repect to the isolated molecule. Ni^+ and Co^+ complexes with acetylene undergo intracluster cyclization reactions to form cyclobutadiene. Transition metal water complexes are studied in the O-H stretch region, and partial rotational structure can be measured. M^+(benzene) and M^+(benzene)2 ions (M=V, Ti, Al) represent half-sandwich and sandwich species, whose spectra are measured near the free benzene modes. These new IR spectra and their assignments will be discussed as well as other new IR spectra for similar complexes.

  1. Stereospecific ligands and their complexes. Part XVII. Synthesis and characterization of ethylenediamine-N,N‧-di-S,S-2-(3-methyl)butanoic acid and its platinum(IV) complex with bromido ligands. Crystal structure of s-cis-[PtBr2(S,S-eddv)]·H2O (United States)

    Stojković, Danijela Lj.; Jevtić, Verica V.; Radić, Gordana P.; Potočňák, Ivan; Trifunović, Srećko R.


    The synthesis of novel platinum(IV) complex of formula [PtBr2(S,S-eddv)]·H2O (S,S-eddv = ethylenediamine-N,N‧-di-S,S-2-(3-methyl)butanoate ion) is reported. The complex has been obtained by direct reaction of potassium-hexabromidoplatinate(IV) with neutralized ethylenediamine-N,N‧-di-S,S-2-(3-methyl)butanoic acid (H2-S,S-eddv). The ligand and complex were characterized by elemental analysis, infrared, 1H and 13C NMR spectroscopy. The spectroscopically predicted geometrical configuration of the obtained complex was confirmed by X-ray analyses of the crystal structure of the s-cis-[PtBr2(S,S-eddv)]·H2O. The asymmetric unit of the complex contains three crystallographically independent s-cis-[PtBr2(S,S-eddv)] and water molecules. The Pt(IV) atom in each complex molecule exhibits a distorted octahedral coordination geometry, built up by two cis-coordinated bromido ligands and one cis-N,N‧ and trans-O,O‧ coordinated S,S-eddv ligand (configuration index: OC-6-33). In the crystal structure, intermolecular N-H⋯O hydrogen bonds are found between the complex and water molecules.

  2. Multiscale approach to radiation damage induced by ion beams: complex DNA damage and effects of thermal spikes

    CERN Document Server

    Surdutovich, E; Solov'yov, A V


    We present the latest advances of the multiscale approach to radiation damage caused by irradiation of a tissue with energetic ions and report the most recent advances in the calculations of complex DNA damage and the effects of thermal spikes on biomolecules. The multiscale approach aims to quantify the most important physical, chemical, and biological phenomena taking place during and following irradiation with ions and provide a better means for clinically-necessary calculations with adequate accuracy. We suggest a way of quantifying the complex clustered damage, one of the most important features of the radiation damage caused by ions. This method can be used for the calculation of irreparable DNA damage. We include thermal spikes, predicted to occur in tissue for a short time after ion's passage in the vicinity of the ions' tracks in our previous work, into modeling of the thermal environment for molecular dynamics analysis of ubiquitin and discuss the first results of these simulations.

  3. Formation and dynamics of "waterproof" photoluminescent complexes of rare earth ions in crowded environment. (United States)

    Ignatova, Tetyana; Blades, Michael; Duque, Juan G; Doorn, Stephen K; Biaggio, Ivan; Rotkin, Slava V


    Understanding behavior of rare-earth ions (REI) in crowded environments is crucial for several nano- and bio-technological applications. Evolution of REI photoluminescence (PL) in small compartments inside a silica hydrogel, mimic to a soft matter bio-environment, has been studied and explained within a solvation model. The model uncovered the origin of high PL efficiency to be the formation of REI complexes, surrounded by bile salt (DOC) molecules. Comparative study of these REI-DOC complexes in bulk water solution and those enclosed inside the hydrogel revealed a strong correlation between an up to 5×-longer lifetime of REIs and appearance of the DOC ordered phase, further confirmed by dynamics of REI solvation shells, REI diffusion experiments and morphological characterization of microstructure of the hydrogel.

  4. The molecular structure of the isopoly complex ion, decavanadate (V10O286-) (United States)

    Evans, H.T.


    The structure of the decavanadate ion V10O286- has been found by a determination of the crystal structure of K2Zn2V10O28?? 16H2O. The soluble, orange crystals are triclinic with space group P1 and have a unit cell with a = 10.778 A, b = 11.146 A, c = 8.774 A, ?? = 104?? 57???, ?? = 109?? 3???', and ?? = 65?? 0??? (Z = 1). The structure was solved from a three-dimensional Patterson map based on 5143 Weissenberg-film data. The full-matrix, least-squares refinement gave R = 0.094 and ?? for V-O bond lengths of 0.008 A. The unit cell contains one V10O286- unit, two Zn(H2O)62+ groups, two K+ ions, and four additional water molecules. The decavanadate ion is an isolated group of ten condensed VO6 octahedra, six in a rectangular 2 x 3 array sharing edges, and four more, two fitted in above and two below by sharing sloping edges. The structure, which is based on a sodium-chloride-like arrangement of V and O atoms, has a close relationship to other isopoly complex molybdates, niobates, and tantalates. Strong distortions in the VO6 octahedra are analogous to square-pyramid and other special coordination features known in other vanadate structures.

  5. Binding of scandium ions to metalloporphyrin-flavin complexes for long-lived charge separation. (United States)

    Kojima, Takahiko; Kobayashi, Ryosuke; Ishizuka, Tomoya; Yamakawa, Shinya; Kotani, Hiroaki; Nakanishi, Tatsuaki; Ohkubo, Kei; Shiota, Yoshihito; Yoshizawa, Kazunari; Fukuzumi, Shunichi


    A porphyrin-flavin-linked dyad and its zinc and palladium complexes (MPor-Fl: 2-M, M=2 H, Zn, and Pd) were newly synthesized and the X-ray crystal structure of 2-Pd was determined. The photodynamics of 2-M were examined by femto- and nanosecond laser flash photolysis measurements. Photoinduced electron transfer (ET) in 2-H2 occurred from the singlet excited state of the porphyrin moiety (H2 Por) to the flavin (Fl) moiety to produce the singlet charge-separated (CS) state (1) (H2 Por(.+) -Fl(.-) ), which decayed through back ET (BET) to form (3) [H2 Por]*-Fl with rate constants of 1.2×10(10) and 1.2×10(9)  s(-1) , respectively. Similarly, photoinduced ET in 2-Pd afforded the singlet CS state, which decayed through BET to form (3) [PdPor]*Fl with rate constants of 2.1×10(11) and 6.0×10(10)  s(-1) , respectively. The rate constant of photoinduced ET and BET of 2-M were related to the ET and BET driving forces by using the Marcus theory of ET. One and two Sc(3+) ions bind to the flavin moiety to form the Fl-Sc(3+) and Fl-(Sc(3+) )2 complexes with binding constants of K1 =2.2×10(5)  M(-1) and K2 =1.8×10(3)  M(-1) , respectively. Other metal ions, such as Y(3+) , Zn(2+) , and Mg(2+) , form only 1:1 complexes with flavin. In contrast to 2-M and the 1:1 complexes with metal ions, which afforded the short-lived singlet CS state, photoinduced ET in 2-Pd⋅⋅⋅Sc(3+) complexes afforded the triplet CS state ((3) [PdPor(.+) -Fl(.-) (Sc(3+) )2 ]), which exhibited a remarkably long lifetime of τ=110 ms (kBET =9.1 s(-1) ).

  6. Mapping of second-nearest-neighbor fluoride ions of orthorhombic Gd 3+-Ag + complexes in CaF 2 (United States)

    Nakata, R.; Den Hartog, H. W.

    The ENDOR technique is applied to determine the positions of 24 second-nearest-neighbor F - ions around an orthorhombic Gd 3+-Ag + complex in CaF 2 crystals. Experimental ENDOR data of the second-nearest-neighbor F - ions are analyzed by using the usual spin Hamiltonian and a least-squares fitting method. The best fits of the experimental results give superhyperfine (shf) constants and the F - directions ( K, L, M) with respect to the Gd 3+ ion, from which the distance between the second-nearest-neighbor F - ion and the Gd 3+ ion is determined by assuming that the hyperfine interaction is due to the classical dipole-dipole interaction. The displacements of the F - ions are estimated and compared with the theoretical values calculated by Bijvank and den Hartog on the basis of a polarizable point charge model.

  7. Spectrophotometric Determination of Gemifloxacin Mesylate in Pharmaceutical Formulations Through Ion-Pair Complex Formation

    Directory of Open Access Journals (Sweden)

    Marothu Vamsi Krishna


    Full Text Available Four simple and sensitive ion-pairing spectrophotometric methods have been described for the assay of gemifloxacin mesylate (GFX either in pure form or in pharmaceutical formulations. The developed methods involve formation of colored chloroform extractable ion-pair complexes of the drug with safranin O (SFN O and methylene blue (MB in basic medium; Napthol blue 12BR (NB 12BR and azocaramine G (AG in acidic medium. The extracted complexes showed absorbance maxima at 525, 650, 620 and 540 nm for SFN O, MB, NB 12BR and AG, respectively.Beer's law is obeyed in the concentration ranges 3-15, 4-20, 2-10 and 2-10 μg/mL with molar absorptivity of 2.81 × 104, 2.20 x 104, 4.02 × 104 and 4.15 × 104 L mole−1 cm−1 and relative standard deviation of 0.077, 0.104, 0.080 and 0.103% for SFN O, MB, NB 12BR and AG, respectively. These methods have been successfully applied for the assay of drug in pharmaceutical formulations. No interference was observed from common pharmaceutical adjuvants. Results of analysis were validated statistically and through recovery studies.

  8. Potentiometric and spectrofluorimetric studies on complexation of tenoxicam with some metal ions. (United States)

    Mohamed, Horria A; Wadood, Hanaa M A; Farghaly, Othman A


    The interaction of tenoxicam with six metal ions, viz. Fe(III), Bi(III), Sb(III), Cr(III), Cd(II) and Al(III) was studied using potentiometric and fluorimetric methods. In the potentiometric method the ionization constant of the ligand and stability constants of the complexes formed have been tabulated at 25+/-0.1 degrees C, ionic strength of NaNO3 in 50% (v/v) aqueous acetonitrile solution was 0.05 mol x dm(-3). Complexes of 1:1 and/or 1:2 and/or 1:3 metal to ligand ratios are formed. The fluorescence of tenoxicam in the presence and absence of the metal ions was studied. The drug can be determined fluorimetrically in 0.5 M HNO3 at an emission wavelength of 450 nm (excitation at 350 nm). The linear range is 0.040-0.2 microg/ml in the absence of Al(III) and 0.016-0.1 microg/ml in the presence of Al(III). Tenoxicam was determined by the proposed method in tablet, suppository and injection. The recovery percent ranged from 98.16 to 102.22%. The effect of 2-aminopyridine on the recovery of tenoxicam was also investigated.

  9. Effect of formaldehyde on Cu(II) removal from synthetic complexed solutions by ion exchange. (United States)

    Juang, Ruey-Shin; Lin, Su-Hsia; Kao, Hsiang-Chien; Theng, Ming-Huei


    The effect of formaldehyde (HCHO) on the ion exchange of Cu(II) from an equimolar EDTA (ethylenediaminetetraacetic acid, H(4)L) solution with a strong-base Amberlite IRA-400 resin was studied. Experiments were conducted as a function of the initial concentration of Cu(II) (0.5-10 mM), solution pH (1.0-6.0), HCHO concentration (0-6 vol%), and temperature (15-35 degrees C). It was shown that the amount of exchange of Cu(II), which exists in the form of complexed anions CuL(2-), increased with increasing solution pH and reached a plateau at an equilibrium pH (pH(e)) of 3.5. However, the amount of exchange decreased with increasing HCHO concentration up to 3 vol% but then slightly decreased with a further increase in HCHO concentration. Such effect of added HCHO was determined by the following two factors: the competitive exchange of HCOO(-) anions and the enhanced exchange of Cu(I) in the form of complexed anions CuL(3-). The exchange isotherm obtained at a fixed pH(e) could be well described by the Langmuir equation. The isosteric enthalpy change for the present ion exchange process was also evaluated and discussed.

  10. Transport of receptors, receptor signaling complexes and ion channels via neuropeptide-secretory vesicles

    Institute of Scientific and Technical Information of China (English)

    Bo Zhao; Hai-Bo Wang; Ying-Jin Lu; Jian-Wen Hu; Lan Bao; Xu Zhang


    Stimulus-induced exocytosis of large dense-core vesicles(LDCVs)leads to discharge of neuropeptides and fusion of LDCV membranes with the plasma membrane. However, the contribution of LDCVs to the properties of the neuronal membrane remains largely unclear. The present study found that LDCVs were associated with multiple receptors, channels and signaling molecules, suggesting that neuronal sensitivity is modulated by an LDCV-mediated mechanism. Liquid chromatography-mass spectrometry combined with immunoblotting of subcellular fractions identified 298 proteins in LDCV membranes purified from the dorsal spinal cord, including Gprotein-coupled receptors, Gproteins and other signaling molecules, ion channels and trafficking-related proteins. Morphological assays showed that δ-opioid receptor 1(DORI), β2 adrenergic receptor(AR), Gα12,voltage-gated calcium channel a2δ1subunit and P2X purinoceptor 2 were localized in substance P(SP)-positive LDCVs in small-diameter dorsal root ganglion neurons, whereas β1 AR, Wnt receptor frizzled 8 and dishevelled 1 were present in SP-negative LDCVs.Furthermore, DOR1/α12/Gβ1γ5/phospholipase C β2 complexes were associated with LDCVs. Blockade of the DOR1/Gαi2 interaction largely abolished the LDCV localization of Gαi2 and impaired stimulation-induced surface expression of Gαi2. Thus, LDCVs serve as carriers of receptors, ion channels and preassembled receptor signaling complexes, enabling a rapid, activity-dependent modulation of neuronal sensitivity.

  11. Core-Shell Coating Silicon Anode Interfaces with Coordination Complex for Stable Lithium-Ion Batteries. (United States)

    Zhou, Jinqiu; Qian, Tao; Wang, Mengfan; Xu, Na; Zhang, Qi; Li, Qun; Yan, Chenglin


    In situ core-shell coating was used to improve the electrochemical performance of Si-based anodes with polypyrrole-Fe coordination complex. The vast functional groups in the organometallic coordination complex easily formed hydrogen bonds when in situ modifying commercial Si nanoparticles. The incorporation of polypyrrole-Fe resulted in the conformal conductive coating surrounding each Si nanoparticle, not only providing good electrical connection to the particles but also promoting the formation of a stable solid-electrolyte-interface layer on the Si electrode surface, enhancing the cycling properties. As an anode material for Li-ion batteries, modified silicon powders exhibited high reversible capacity (3567 mAh/g at 0.3 A/g), good rate property (549.12 mAh/g at 12 A/g), and excellent cycling performance (reversible capacity of 1500 mAh/g after 800 cycles at 1.2 A/g). The constructed novel concept of core-shell coating Si particles presented a promising route for facile and large-scale production of Si-based anodes for extremely durable Li-ion batteries, which provided a wide range of applications in the field of energy storage of the renewable energy derived from the solar energy, hydropower, tidal energy, and geothermal heat.

  12. Effective Ion Mobility Peak Width as a New Isomeric Descriptor for the Untargeted Analysis of Complex Mixtures Using Ion Mobility-Mass Spectrometry (United States)

    Farenc, Mathilde; Paupy, Benoit; Marceau, Sabrina; Riches, Eleanor; Afonso, Carlos; Giusti, Pierre


    Ion mobility coupled with mass spectrometry was proven to be an efficient way to characterize complex mixtures such as petroleum samples. However, the identification of isomeric species is difficult owing to the molecular complexity of petroleum and no availability of standard molecules. This paper proposes a new simple indicator to estimate the isomeric content of highly complex mixtures. This indicator is based on the full width at half maximum (FWHM) of the extracted ion mobility peak measured in millisecond or square angstrom that is corrected for instrumental factors such as ion diffusion. This value can be easily obtained without precisely identifying the number of isomeric species under the ion mobility peaks. Considering the Boduszynski model, the ion mobility profile for a particular elemental composition is expected to be a continuum of various isomeric species. The drift time-dependent fragmentation profile was studied and confirmed this hypothesis, a continuous evolution of the fragmentation profile showing that the larger alkyl chain species were detected at higher drift time values. This new indicator was proven to be a fast and efficient method to compare vacuum gas oils for which no difference was found using other analytical techniques.

  13. Speciation of phytate ion in aqueous solution. Alkali metal complex formation in different ionic media. (United States)

    De Stefano, Concetta; Milea, Demetrio; Pettignano, Alberto; Sammartano, Silvio


    The acid-base properties of phytic acid [ myo-inositol 1,2,3,4,5,6-hexakis(dihydrogen phosphate)] (H(12)Phy; Phy(12-)=phytate anion) were studied in aqueous solution by potentiometric measurements ([H+]-glass electrode) in lithium and potassium chloride aqueous media at different ionic strengths (0iodide (Et(4)NI; e.g., at I=0.5 mol L(-1), log K(3)(H)=11.7, 8.0, 9.1, and 9.1 in Et(4)NI, LiCl, NaCl and KCl, respectively; the protonation constants in Et(4)NI and NaCl were already reported), owing to the strong interactions occurring between the phytate and alkaline cations present in the background salt. We explained this in terms of complex formation between phytate and alkali metal ions. Experimental evidence allows us to consider the formation of 13 mixed proton-metal-ligand complexes, M(j)H(i)Phy((12-i-j)-), (M+ =Li+, Na+, K+), with jstability of alkali metal complexes follows the trend Li+ > or =Na+K+. Some measurements were also performed at constant ionic strength (I=0.5 mol L(-1)), using different mixtures of Et(4)NI and alkali metal chlorides, in order to confirm the formation of hypothesized and calculated metal-proton-ligand complex species and to obtain conditional protonation constants in these multi-component ionic media.

  14. Photo-induced reactions in the ion-molecule complex Mg+-OCNC2H5 (United States)

    Sun, Ju-Long; Liu, Haichuan; Han, Ke-Li; Yang, Shihe


    Ion-molecule complexes of magnesium cation with ethyl isocyanate were produced in a laser-ablation supersonic expansion nozzle source. Photo-induced reactions in the 1:1 complexes have been studied in the spectral range of 230-410 nm. Photodissociation mass spectrometry revealed the persistent product Mg+ from nonreactive quenching throughout the entire wavelength range. As for the reactive channels, the photoproducts, Mg+OCN and C2H5+, were produced only in the blue absorption band of the complex with low yields. The action spectrum of Mg+(OCNC2H5) consists of two pronounced peaks on the red and blue sides of the Mg+ 32P←32S atomic transition. The ground state geometry of Mg+-OCNC2H5 was fully optimized at B3LYP/6-31+G** level by using GAUSSIAN 98 package. The calculated absorption spectrum of the complex using the optimized structure of its ground state agrees well with the observed action spectrum. Photofragment branching fractions of the products are almost independent of the photolysis photon energy for the 3Px,y,z excitations. The very low branching ratio of reactive products to nonreactive fragment suggests that evaporation is the main relaxation pathway in the photo-induced reactions of Mg+(OCNC2H5).

  15. Laser Quenching and Ion Sulphidizing Complex Surface Treat Technology for Diesel Engine Cylinder

    Institute of Scientific and Technical Information of China (English)

    XIE Zhaoqian; ZENG Qingqiang; HUANG Huayuan; Cai Zhihai; ZHAO Yuqiang


    In order to solve the problem of wear-out-failure of diesel engine cylinder,the laser-quenching and low temperature ion sulfurizing complex surface treatment technology was operated on the surface of 42MnCr52 steel.And the tribological properties of the complex layer were investigated.The experimental results indicated that the complex layer was composed of soft surface sulphide layer and sub-surface laserquenching harden layer,and showed excellent friction-reduction and wear-resistance performance at high temperature.The synergistic effect of the complex layer resulted in 20% increase in hardness,10% reduction in friction coefficient and 50% reduction in wear weight loss,respectively,compared with those of the standard samples.The bench-test further demonstrated that this technology can improve the lubricating condition between cylinder and piston ring,and reduce both abnormity wear when the lubricating oil is deficiency at the time of start-up and sticking wear at high temperature during the operating period,and then prolong the service life of engine.

  16. Thermochemical study of the processes of complexation of cobalt(II) ions with L-histidine in aqueous solution (United States)

    Gorboletova, G. G.; Metlin, A. A.


    Thermal effects of the complexation of cobalt(II) ions with L-histidine at 298.15 K and several values of the ionic strength against the background of KNO3 are determined by means of direct calorimetry. The standard thermodynamic characteristics of the reactions of complexation in the aqueous solution have been calculated.

  17. Oxidation of 5'-dGMP, 5'-dGDP, and 5'-dGTP by a platinum(IV) complex. (United States)

    Kipouros, Ioannis; Fica-Contreras, Sebastian Matias; Bowe, Gregory Joon Kee; Choi, Sunhee


    We previously reported that a Pt(IV) complex, [Pt(IV)(dach)Cl4] [trans-d,l-1,2-diaminocyclohexanetetrachloroplatinum(IV)] binds to the N7 of 5'-dGMP (deoxyguanosine-5'-monophosphate) at a relatively fast rate and oxidizes it to 8-oxo-5'-dGMP. Here, we further studied the kinetics of the oxidation of 5'-dGMP by the Pt(IV) complex. The electron transfer rate constants between 5'-dGMP and Pt(IV) in [H8-5'-dGMP-Pt(IV)] and [D8-5'-dGMP-Pt(IV)] were similar, giving a small value of the kinetic isotope effect (KIE: 1.2 ± 0.2). This small KIE indicates that the deprotonation of H8 in [H8-5'-dGMP-Pt(IV)] is not involved in the rate-determining step in the electron transfer between guanine (G) and Pt(IV). We also studied the reaction of 5'-dGDP (deoxyguanosine-5'-diphosphate) and 5'-dGTP (deoxyguanosine-5'-triphosphate) with the Pt(IV) complex. Our results showed that [Pt(IV)(dach)Cl4] oxidized 5'-dGDP and 5'-dGTP to 8-oxo-5'-dGDP and 8-oxo-5'-dGTP, respectively, by the same mechanism and kinetics as for 5'-dGMP. The Pt(IV) complex binds to N7 followed by a two-electron inner sphere electron transfer from G to Pt(IV). The reaction was catalyzed by Pt(II) and occurred faster at higher pH. The electron transfer was initiated by either an intramolecular nucleophilic attack by any of the phosphate groups or an intermolecular nucleophilic attack by free OH(-) in the solution. The rates of reactions for the three nucleotides followed the order: 5'-dGMP > 5'-dGDP > 5'-dGTP, indicating that the bulkier the phosphate groups are, the slower the reaction is, due to the larger steric hindrance and rotational barrier of the phosphate groups.

  18. Computational probes into the conceptual basis of silver ion chromatography: I. Silver(I) ion complexes of unsaturated fatty acids and esters

    NARCIS (Netherlands)

    Damyanova, B.; Momtchilova, S.; Bakalova, S.; Zuilhof, H.; Christie, W.W.; Kaneti, J.


    Silver ion chromatography of unsaturated fatty acid derivatives can be described satisfactorily by the suggestion of Ag(I) complexation with more than a single bonding site of esters of the 18:1, 18:2, etc. series (that is, one, two, etc. methylene-interrupted double bonds in the C18 hydrocarbon cha

  19. Redox chemistry in thin layers of organometallic complexes prepared using ion soft landing. (United States)

    Peng, Wen-Ping; Johnson, Grant E; Fortmeyer, Ivy C; Wang, Peng; Hadjar, Omar; Cooks, R Graham; Laskin, Julia


    Soft landing (SL) of mass-selected ions is used to transfer catalytically-active metal complexes complete with organic ligands from the gas phase onto an inert surface. This is part of an effort to prepare materials with defined active sites and thus achieve molecular design of surfaces in a highly controlled way. Solution-phase electrochemical studies have shown that V(IV)O(salen) reacts in the presence of acid to form V(V)O(salen)(+) and the deoxygenated V(III)(salen)(+) complex-a key intermediate in the four electron reduction of O(2) by vanadium-salen. In this work, the V(V)O(salen)(+) and [Ni(II)(salen) + H](+) complexes were generated by electrospray ionization and mass-selected before being deposited onto an inert fluorinated self-assembled monolayer (FSAM) surface on gold. A time dependence study after ion deposition showed loss of O from V(V)O(salen)(+) forming V(III)(salen)(+) over a four-day period, indicating a slow interfacial reduction process. Similar results were obtained when other protonated molecules were co-deposited with V(V)O(salen)(+) on the FSAM surface. In all these experiments oxidation of the V(III)(salen)(+) product occurred upon exposure to oxygen or to air. The cyclic regeneration of V(V)O(salen)(+) upon exposure to molecular oxygen and its subsequent reduction to V(III)(salen)(+) in vacuum completes the catalytic cycle of O(2) reduction by the immobilized vanadium-salen species. Moreover, our results represent the first evidence of formation of reactive organometallic complexes on substrates in the absence of solvent. Remarkably, deoxygenation of the oxo-vanadium complex, previously observed only in highly acidic non-aqueous solvents, occurs on the surface in the UHV environment using an acid which is deposited into the inert monolayer. This acid can be a protonated metal complex, e.g. [Ni(II)(salen) + H](+), or an organic acid such as protonated diaminododecane.

  20. Synthesis, DFT calculations and cytotoxic investigation of platinum complexes with 3-thiolanespiro-5‧-hydantoin and 4-thio-1H-tetrahydropyranespiro-5‧-hydantoin (United States)

    Bakalova, Adriana; Buyukliev, Rossen; Momekov, Georgi


    Two organic compounds - 3-thiolanespiro-5‧-hydantoin, 4-thio-1H-tetrahydropyranespiro-5‧-hydantoin and four new Pt(II) and Pt(IV) complexes with general formulas cis-[Pt(L)2Cl2] and cis-[Pt(L)2Cl4] were synthesized. The obtained compounds were characterized by elemental analysis, IR, 1H, 13C NMR spectroscopy. The hybrid DFT calculations were used for optimization of the structure geometries of the ligand (L1) and its Pt(II) complex (1). The calculated structural parameters such as bond lengths and angles are in good agreement with the experimental data for similar hydantoins and their platinum complexes. The obtained results showed that the geometry of the complex (1) is plane square and the bounding of the L1 with platinum ion is realized by sulfur atom from thiolane ring. The complexes were tested for cytotoxicity in vitro on four human tumor cell lines. The tested compounds exerted concentration-dependent cytotoxic effects against some of the tumor cell lines.

  1. Spectrophotometric determination of platinum(IV) in alloys, complexes, environmental, and pharmaceutical samples using 4-[N,N-(diethyl)amino] benzaldehyde thiosemicarbazone. (United States)

    Naik, P Parameshwara; Karthikeyan, J; Shetty, A Nityananda


    4-[N,N-(Diethyl)amino] benzaldehyde thiosemicarbazone (DEABT) is proposed as an analytical reagent for the spectrophotometric determination of platinum(IV). The DEABT forms 1:2 yellow complex with Pt(IV), which is sparingly soluble in water and completely soluble in water-ethanol-DMF medium. The Pt(IV)-DEABT complex shows maximum absorbance at 405 nm. Beer's law is valid up to 7.80 μg cm(-3), and optimum concentration range for the determination of platinum(IV) is 0.48-7.02 μg cm(-3). The molar absorptivity and Sandell's sensitivity of the method are found to be 1.755 × 10(4) dm(3) mol(-1) cm(-1) and 0.0012 μg cm(-2), respectively. The relative error and coefficient of variation (n=6) for the method does not exceed ± 0.43% and 0.35%, respectively. Since the method tolerates a number of metal ions commonly associated with platinum, it can be employed for the determination of platinum in environmental samples, pharmaceutical samples, alloys, catalysts, and complexes. The method is rapid as the Pt(IV)-DEABT complex is soluble in water-ethanol-DMF medium and not requiring any time consuming extraction method for the complex.

  2. The preparation of polyelectrolyte complexes carboxymethyl chitosan(CMC)-pectin by reflux method as a Pb (II) metal ion adsorbent (United States)

    Hastuti, Budi; Mudasir, Siswanta, Dwi; Triyono


    Aim of this research is to synthesized a chemically stable polyelectrolyte complexs carboxymetyl chitosan CMC-pectin as Pb(II) ion adsorbent by reflux method. During synthesis process, the optimum mass ratio of CMC and pectin was pre-determined and the active groups of the CMC-pectin complex was characterized by using IR spectrofotometer. Finally, adsorption capacity of the adsorbent material for Pb (II) ions was studied under optimum condition, i.e. adsorbent mass, contact time, and pH. Result shows that CMC could be succesfully combined with pectin to produce CMC-pectin complex. The optimum mass ratio CMC: pectin to form the polyelectrolyte complexs CMC-pectin was 70% : 30%. The active groups identified in the CMC-pectin complex was a hydroxyl (OH) and carboxylate (-COOH) groups. The optimum conditions for Pb (II) ion absoprtion was 10 mg of the adsorbent mass, 75 min of contact time, and pH 5. This material can be effectively used as adsorbents for Pb (II) ions, where up to 91% Pb (II) metal ions was adsorbed from aqueous solution and the adsorption capacity of the adsorbent was 41.63 mg/g.

  3. Chelating DTPA amphiphiles: ion-tunable self-assembly structures and gadolinium complexes. (United States)

    Moghaddam, Minoo J; de Campo, Liliana; Kirby, Nigel; Drummond, Calum J


    A series of chelating amphiphiles and their gadolinium (Gd(III)) metal complexes have been synthesized and studied with respect to their neat and lyotropic liquid crystalline phase behavior. These amphiphiles have the ability to form ion-tunable self-assembly nanostructures and their associated Gd(III) complexes have potential as magnetic resonance imaging (MRI) contrast enhancement agents. The amphiphiles are composed of diethylenetriaminepentaacetic acid (DTPA) chelates conjugated to one or two oleyl chain(s) (DTPA-MO and DTPA-BO), or isoprenoid-type chain(s) of phytanyl (DTPA-MP and DTPA-BP). The thermal phase behavior of the neat amphiphiles was examined by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and cross polarizing optical microscopy (POM). Self-assembly of neat amphiphiles and their associated Gd complexes, as well as their lyotropic phase behavior in water and sodium acetate solutions of different ionic strengths, were examined by POM and small and wide angle X-ray scattering (SWAXS). All neat amphiphiles exhibited lamellar structures. The non-complexed amphiphiles showed a variety of lyotropic phases depending on the number and nature of the hydrophobic chain in addition to the ionic state of the hydration. Upon hydration with increased Na-acetate concentration and the subtle changes in the effective headgroup size, the interfacial curvature of the amphiphile increased, altering the lyotropic liquid crystalline structures towards higher order mesophases such as the gyroid (Ia3d) bicontinuous cubic phase. The chelation of Gd with the DTPA amphiphiles resulted in lamellar crystalline structures for all the neat amphiphiles. Upon hydration with water, the Gd-complexed mono-conjugates formed micellar or vesicular self-assemblies, whilst the bis-conjugates transformed only partially into lyotropic liquid crystalline mesophases.

  4. Multi-scale simulation of structural heterogeneity of swift-heavy ion tracks in complex oxides (United States)

    Wang, Jianwei; Lang, Maik; Ewing, Rodney C.; Becker, Udo


    Tracks formed by swift-heavy ion irradiation, 2.2 GeV Au, of isometric Gd2Ti2O7 pyrochlore and orthorhombic Gd2TiO5 were modeled using the thermal-spike model combined with a molecular-dynamics simulation. The thermal-spike model was used to calculate the energy dissipation over time and space. Using the time, space, and energy profile generated from the thermal-spike model, the molecular-dynamics simulations were performed to model the atomic-scale evolution of the tracks. The advantage of the combination of these two methods, which uses the output from the continuum model as an input for the atomistic model, is that it provides a means of simulating the coupling of the electronic and atomic subsystems and provides simultaneously atomic-scale detail of the track structure and morphology. The simulated internal structure of the track consists of an amorphous core and a shell of disordered, but still periodic, domains. For Gd2Ti2O7, the shell region has a disordered pyrochlore with a defect fluorite structure and is relatively thick and heterogeneous with different degrees of disordering. For Gd2TiO5, the disordered region is relatively small as compared with Gd2Ti2O7. In the simulation, ‘facets’, which are surfaces with definite crystallographic orientations, are apparent around the amorphous core and more evident in Gd2TiO5 along [010] than [001], suggesting an orientational dependence of the radiation response. These results show that track formation is controlled by the coupling of several complex processes, involving different degrees of amorphization, disordering, and dynamic annealing. Each of the processes depends on the mass and energy of the energetic ion, the properties of the material, and its crystallographic orientation with respect to the incident ion beam.

  5. Luminescence from the ligand to metal charge transfer state of the neptunyl (V) ion and its complexes in solution

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, Rebecca; Sykes, Daniel; Faulkner, Stephen [University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford (United Kingdom); Natrajan, Louise S; Livens, Francis R [Centre for Radiochemistry Research, School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Taylor, Robin J, E-mail: [Central Laboratory, National Nuclear Laboratory, Sellafield, Seascale, Cumbria, CA20 1PG (United Kingdom)


    The photophysical properties of the neptunyl (V) ion in aqueous solution have been studied using time-resolved luminescence spectroscopy. While any f-f transitions in emission are too weak to detect using available technology, the ligand to metal charge transfer state is emissive in the visible part of the spectrum. Both the aquo ion and its complexes with bidentate ligands exhibit biexponential decay kinetics, which can be rationalised by slow exchange on the timescale of the experiment.

  6. Isomer separation and gas-phase configurations of organoruthenium anticancer complexes: ion mobility mass spectrometry and modeling. (United States)

    Williams, Jonathan P; Bugarcic, Tijana; Habtemariam, Abraha; Giles, Kevin; Campuzano, Iain; Rodger, P Mark; Sadler, Peter J


    We have used ion mobility-mass spectrometry combined with molecular modeling for the separation and configurational analysis of three low-molecular-weight isomeric organoruthenium anticancer complexes containing ortho-, meta-, or para-terphenyl arene ligands. The isomers were separated using ion mobility based on traveling-wave technology and the experimentally determined collision cross sections were compared to theoretical calculations. Excellent agreement was observed between the experimentally and theoretically derived measurements.

  7. Colorimetric determination of sildenafil citrate (Viagra) through ion-associate complex formation. (United States)

    Amin, Alaa S; Moustafa, Moustafa E; El-Dosoky, Reham


    A simple, quick, accurate, and sensitive colorimetric method is described for the determination of sildenafil citrate (SLD). The method is based on the reaction of SLD with Congo Red, Sudan II, and Gentian Violet in buffered aqueous solutions at pH 2.5, 6.5, and 11.0, respectively, to give highly colored soluble ion-associate complex species; the colored products are quantitated colorimetrically at 523, 554, and 569 nm, respectively. The various experimental conditions were optimized. The stoichiometric ratio was found to be 1:1 for all ion associates; the calculated logarithmic stability constants were 8.51, 7.79, and 5.58, respectively. Beer's law was obeyed over the concentration range of 0.2-7.0 microg/mL, whereas the Ringbom optimum concentration range was 0.4-6.5 microg/mL. Values for molar absorptivity, Sandell sensitivity, and detection and quantification limits were also calculated. The proposed method was successfully applied to the determination of SLD in Viagra tablets and in serum samples by using the technique of standard additions with mean accuracy values of 100.06 +/- 1.14, 99.87 +/- 0.70, and 99.86 +/- 0.97% for Viagra tablets and 99.88 +/- 0.60, 99.90 +/- 0.90, and 100.24 +/- 0.80% for serum samples, respectively.

  8. Carboxylated dithiafulvenes and tetrathiafulvalene vinylogues: synthesis, electronic properties, and complexation with zinc ions

    Directory of Open Access Journals (Sweden)

    Yunfei Wang


    Full Text Available A class of carboxyl and carboxylate ester-substituted dithiafulvene (DTF derivatives and tetrathiafulvalene vinylogues (TTFVs has been synthesized and their electronic and electrochemical redox properties were characterized by UV–vis spectroscopic and cyclic voltammetric analyses. The carboxyl-TTFV was applied as a redox-active ligand to complex with Zn(II ions, forming a stable Zn-TTFV coordination polymer. The structural, electrochemical, and thermal properties of the coordination polymer were investigated by infrared spectroscopy, cyclic voltammetry, powder X-ray diffraction, and differential scanning calorimetric analyses. Furthermore, the microscopic porosity and surface area of the Zn-TTFV coordination polymer were measured by nitrogen gas adsorption analysis, showing a BET surface of 148.2 m2 g−1 and an average pore diameter of 10.2 nm.

  9. Complexes of 3dn Metal Ions with Thiosemicarbazones: Synthesis and Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Tudor Rosu


    Full Text Available The chelating behavior of the thiosemicarbazone derivatives of 2-hydroxy-8-R-tricyclo[,7]tridecane-13-one (where R = H, CH3, C6H5 towards Co(II, Ni(II and Cu(II has been investigated by elemental analysis, molar conductivity measurements, UV-VIS, IR, ESR spectroscopy and thermal studies. It was deduced from the experiments performed that the ligands coordinate to metal ions in different ways – neutral bidentate or mononegative bidentate – depending on the nature of R. Also, if metal acetates are used instead of metal chlorides, the ligands coordinate in a mononegative bidentate fashion, regardless of the nature of R or the thiosemicarbazone type ligand. The antimicrobial activity of the ligands and of the complexes towards samples of Acinetobacter boumanii, Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa was determined.

  10. Stimulated emission and exciton complex in some insulator crystals irradiated by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Kazuie E-mail:; Kaneko, Junichi; Sharma, Sumit; Itoh, Noriaki


    Excitation-density dependent luminescence, its decay curves, and time-resolved spectra were measured for ion irradiated {alpha}-alumina, RbI and CsCl at various temperatures and with a time resolution of 100 ps. Contrary to the usual results of scintillation research, we found that some insulator crystals show excitation-density enhanced stimulated emission through distant interaction between excited states (excitons) and through photons emitted, and found a new 100 ps-lived luminescence band. The manner of excitation-density and temperature dependence of the luminescence efficiency and decay rate of this new band suggests the formation of the exciton complex and further of the electron-hole plasma.

  11. Charge inversion of phospholipids by dimetal complexes for positive ion-mode electrospray ionization mass spectrometry analysis. (United States)

    Svane, Simon; Gorshkov, Vladimir; Kjeldsen, Frank


    Phospholipids are vital constituents of living cells, as they are involved in signaling and membrane formation. Mass spectrometry analysis of many phospholipids is preferentially performed in the negative ion-mode because of their acidic nature. Here we have studied the potential of a digallium and dizinc complex to charge-invert a range of different types of phospholipids and measured their ion yield and fragmentation behavior in positive ion-mode tandem mass spectrometry. The dimetal complexes bind specifically the phosphate groups of phospholipids and add an excess of up to three positive charges per phosphate group. Three different phosphoinositide phosphates (mono-, di-, and triphosphorylated inositides), a phosphatidic acid, a phosphatidylcholine, a phosphatidylethanolamine, and a phosphatidylglycerol were investigated. The intensities obtained in positive ion-mode of phosphoinositide phosphates and phosphatidic acid bound to {LGa2}(5+) were between 2.5- and 116-fold higher than that of the unmodified lipids in the negative ion-mode. Native phosphoinositide ions yielded upon CID in the negative ion-mode predominantly product ions due to losses of H3PO4, PO3(-) and H2O. In comparison, CID spectra of {LGa2}(5+)-bound phosphoinositides generally resulted in fragment ions corresponding to loss of the full diglyceride chain as well as the remaining headgroup bound to {LGa2}(5+) as the most abundant peaks. A number of signature fragment ions of moderate abundance were observed that allowed for distinction between the three regioisomers of 1,2-di(9Z-octadecenoyl)-sn-glycero-3-[phosphoinositol-x,y-bisphosphate] (PI(3,4)P2, PI(3,5)P2, PI(4,5)P2).

  12. Phosphorescent Chemosensor Based on Iridium(III) Complex for the Selective Detection of Cu(II) Ion in Aqueous Acetonitrile

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyebin; Li, Yinan; Hyun, Myungho [Pusan National Univ., Busan (Korea, Republic of)


    Iridium(III) complex 1 containing two cyclo-metalating 2-phenylpyridine (ppy) ligands and one 2,2'-bipyridine ligand tethered with two DPA moieties by a methylene linker was prepared. Iridium(III) complex 1 was found to form 1:2 complex selectively with Cu(II) ion with the Stern-Volmer constant of 5.8 Χ 10{sup 4} M{sup -1}. Cu(II) ion has two sides. In one side, Cu(II) ion is an important cofactor in nearly 20 metalloenzymes and an essential micronutrient for all living systems. But, in other side, Cu(II) ion is one of significant metal pollutants and toxic to living cells if present in slightly high concentrations, causing neurodegenerative diseases such as Menkes and Wilson's disease. In this instance, the selective detection of Cu(II) ion in environment and in living systems is very important. Consequently, various fluorescent chemosensors for the highly sensitive and selective detection of Cu (II) ion have been developed.

  13. Hydrophobic ion pairing of an insulin-sodium deoxycholate complex for oral delivery of insulin

    Directory of Open Access Journals (Sweden)

    Sun S


    Full Text Available Shaoping Sun1–3, Na Liang2, Yoshiaki Kawashima3, Dengning Xia2, Fude Cui21School of Chemistry and Material Science, Heilongjiang University, Harbin, 2School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China; 3School of Pharmaceutical Science, Aichi Gakuin University, Nissin, JapanAbstract: Insulin was complexed with sodium deoxycholate to form an insulin-sodium deoxycholate complex (Ins-SD-Comp using an hydrophobic ion pairing method in aqueous phase to enhance the liposolubility of insulin. In order to obtain the maximal complexation efficiency, the molar ratio of sodium deoxycholate to insulin was found. The zeta potential method was used to confirm the optimal ratio for formation of Ins-SD-Comp. The structural characteristics of Ins-SD-Comp were assessed using the Fourier transform infrared method. The apparent partition coefficient of insulin increased upon the formation of Ins-SD-Comp. Based on the preliminary study, Ins-SD-Comp was encapsulated into poly(lactide-co-glycolide (PLGA nanoparticles using an emulsion solvent diffusion method. The maximal encapsulation efficiency of Ins-SD-Comp into PLGA nanoparticles was 93.6% ± 2.81%, drug loading was about 4.8% ± 0.32%, and the mean diameter of the nanoparticles was 278 ± 13 nm. Biological activity and in vivo results revealed that the bioactivity of insulin was not destroyed during the preparation process. Ins-SD-Comp-loaded PLGA nanoparticles have the potential to reduce serum glucose levels and increase the oral bioavailability of insulin.Keywords: insulin complex, sodium deoxycholate, nanoparticles, zeta potential, oral bioavailability

  14. A surface complexation and ion exchange model of Pb and Cd competitive sorption on natural soils (United States)

    Serrano, Susana; O'Day, Peggy A.; Vlassopoulos, Dimitri; García-González, Maria Teresa; Garrido, Fernando


    The bioavailability and fate of heavy metals in the environment are often controlled by sorption reactions on the reactive surfaces of soil minerals. We have developed a non-electrostatic equilibrium model (NEM) with both surface complexation and ion exchange reactions to describe the sorption of Pb and Cd in single- and binary-metal systems over a range of pH and metal concentration. Mineralogical and exchange properties of three different acidic soils were used to constrain surface reactions in the model and to estimate surface densities for sorption sites, rather than treating them as adjustable parameters. Soil heterogeneity was modeled with >FeOH and >SOH functional groups, representing Fe- and Al-oxyhydroxide minerals and phyllosilicate clay mineral edge sites, and two ion exchange sites (X - and Y -), representing clay mineral exchange. An optimization process was carried out using the entire experimental sorption data set to determine the binding constants for Pb and Cd surface complexation and ion exchange reactions. Modeling results showed that the adsorption of Pb and Cd was distributed between ion exchange sites at low pH values and specific adsorption sites at higher pH values, mainly associated with >FeOH sites. Modeling results confirmed the greater tendency of Cd to be retained on exchange sites compared to Pb, which had a higher affinity than Cd for specific adsorption on >FeOH sites. Lead retention on >FeOH occurred at lower pH than for Cd, suggesting that Pb sorbs to surface hydroxyl groups at pH values at which Cd interacts only with exchange sites. The results from the binary system (both Pb and Cd present) showed that Cd retained in >FeOH sites decreased significantly in the presence of Pb, while the occupancy of Pb in these sites did not change in the presence of Cd. As a consequence of this competition, Cd was shifted to ion exchange sites, where it competes with Pb and possibly Ca (from the background electrolyte). Sorption on >SOH

  15. Synthesis of Pure and Pt-Doped ZnO Particles Through Aerosol Route Using Nitrate and PDDA-Pt(IV) Complex Solution%利用浮质方法将硝酸盐和PDDA-Pt(IV)复合溶液合成纯净及Pt掺杂的ZnO颗粒

    Institute of Scientific and Technical Information of China (English)

    V.M.Djinovic; L.T.; Maneieb; G.A.; Bogdanovic; P.J.; Vulie; G.; del; Rosario; T.J.; Sabo; O.B.; Milosevie


    @@ Pure and Pt-doped ZnO nanophase particles were synthesized using the ultrasonic spray pyrolysis. Particles were obtained through decomposition of zincnitrate and new developed Pt(IV) complex with 1,3-propylenediamine-N,N'-diacetate ligand (pdda) belonging to the tetradentate class.

  16. Use of multiple singular value decompositions to analyze complex intracellular calcium ion signals

    CERN Document Server

    Martinez, Josue G; Burghardt, Robert C; Barhoumi, Rola; Carroll, Raymond J; 10.1214/09-AOAS253


    We compare calcium ion signaling ($\\mathrm {Ca}^{2+}$) between two exposures; the data are present as movies, or, more prosaically, time series of images. This paper describes novel uses of singular value decompositions (SVD) and weighted versions of them (WSVD) to extract the signals from such movies, in a way that is semi-automatic and tuned closely to the actual data and their many complexities. These complexities include the following. First, the images themselves are of no interest: all interest focuses on the behavior of individual cells across time, and thus, the cells need to be segmented in an automated manner. Second, the cells themselves have 100$+$ pixels, so that they form 100$+$ curves measured over time, so that data compression is required to extract the features of these curves. Third, some of the pixels in some of the cells are subject to image saturation due to bit depth limits, and this saturation needs to be accounted for if one is to normalize the images in a reasonably unbiased manner. ...

  17. Use of multiple singular value decompositions to analyze complex intracellular calcium ion signals

    KAUST Repository

    Martinez, Josue G.


    We compare calcium ion signaling (Ca(2+)) between two exposures; the data are present as movies, or, more prosaically, time series of images. This paper describes novel uses of singular value decompositions (SVD) and weighted versions of them (WSVD) to extract the signals from such movies, in a way that is semi-automatic and tuned closely to the actual data and their many complexities. These complexities include the following. First, the images themselves are of no interest: all interest focuses on the behavior of individual cells across time, and thus, the cells need to be segmented in an automated manner. Second, the cells themselves have 100+ pixels, so that they form 100+ curves measured over time, so that data compression is required to extract the features of these curves. Third, some of the pixels in some of the cells are subject to image saturation due to bit depth limits, and this saturation needs to be accounted for if one is to normalize the images in a reasonably un-biased manner. Finally, the Ca(2+) signals have oscillations or waves that vary with time and these signals need to be extracted. Thus, our aim is to show how to use multiple weighted and standard singular value decompositions to detect, extract and clarify the Ca(2+) signals. Our signal extraction methods then lead to simple although finely focused statistical methods to compare Ca(2+) signals across experimental conditions.

  18. Negative ion photoelectron spectroscopy of the copper-aspartic acid anion and its hydrated complexes (United States)

    Li, Xiang; Wang, Haopeng; Bowen, Kit H.; Martínez, Ana; Salpin, Jean-Yves; Schermann, Jean-Pierre


    Negative ions of copper-aspartic acid Cu(Asp)- and its hydrated complexes have been produced in the gas phase and studied by anion photoelectron spectroscopy. The vertical detachment energies (VDE) of Cu(Asp)- and Cu(Asp)-(H2O)1,2 were determined to be 1.6, 1.95, and 2.20 eV, respectively. The spectral profiles of Cu(Asp)-(H2O)1 and Cu(Asp)-(H2O)2 closely resembled that of Cu(Asp)-, indicating that hydration had not changed the structure of Cu(Asp)- significantly. The successive shifts to higher electron binding energies by the spectra of the hydrated species provided measures of their stepwise solvation energies. Density functional calculations were performed on anionic Cu(Asp)- and on its corresponding neutral. The agreement between the calculated and measured VDE values implied that the structure of the Cu(Asp)- complex originated with a zwitterionic form of aspartic acid in which a copper atom had inserted into the N-H bond.

  19. The complex ion structure of warm dense carbon measured by spectrally resolved x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, D.; Barbrel, B.; Falcone, R. W. [Department of Physics, University of California, Berkeley, California 94720 (United States); Vorberger, J. [Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden (Germany); Helfrich, J.; Frydrych, S.; Ortner, A.; Otten, A.; Roth, F.; Schaumann, G.; Schumacher, D.; Siegenthaler, K.; Wagner, F.; Roth, M. [Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße 9, 64289 Darmstadt (Germany); Gericke, D. O.; Wünsch, K. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Bachmann, B.; Döppner, T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Bagnoud, V.; Blažević, A. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); and others


    We present measurements of the complex ion structure of warm dense carbon close to the melting line at pressures around 100 GPa. High-pressure samples were created by laser-driven shock compression of graphite and probed by intense laser-generated x-ray sources with photon energies of 4.75 keV and 4.95 keV. High-efficiency crystal spectrometers allow for spectrally resolving the scattered radiation. Comparing the ratio of elastically and inelastically scattered radiation, we find evidence for a complex bonded liquid that is predicted by ab-initio quantum simulations showing the influence of chemical bonds under these conditions. Using graphite samples of different initial densities we demonstrate the capability of spectrally resolved x-ray scattering to monitor the carbon solid-liquid transition at relatively constant pressure of 150 GPa. Showing first single-pulse scattering spectra from cold graphite of unprecedented quality recorded at the Linac Coherent Light Source, we demonstrate the outstanding possibilities for future high-precision measurements at 4th Generation Light Sources.

  20. Truly incomplete and complex exchanges in prematurely condensed chromosomes of human fibroblasts exposed in vitro to energetic heavy ions (United States)

    Wu, Honglu; Durante, Marco; Furusawa, Yoshiya; George, Kerry; Kawata, Tetsuya; Cucinotta, Francis A.


    Confluent human fibroblast cells (AG1522) were irradiated with gamma rays, 490 MeV/nucleon silicon ions, or iron ions at either 200 or 500 MeV/nucleon. The cells were allowed to repair at 37 degrees C for 24 h after exposure, and a chemically induced premature chromosome condensation (PCC) technique was used to condense chromosomes in the G2 phase of the cell cycle. Incomplete and complex exchanges were analyzed in the irradiated samples. To verify that chromosomal breaks were truly unrejoined, chromosome aberrations were analyzed using a combination of whole-chromosome specific probes and probes specific for the telomere region of the chromosome. Results showed that the frequency of unrejoined chromosome breaks was higher after irradiation with the heavy ions of high LET, and consequently the ratio of incomplete to complete exchanges increased steadily with LET up to 440 keV/microm, the highest LET included in the present study. For samples exposed to 200 MeV/nucleon iron ions, chromosome aberrations were analyzed using the multicolor FISH (mFISH) technique, which allows identification of both complex and truly incomplete exchanges. Results of the mFISH study showed that 0.7 and 3 Gy iron ions produced similar ratios of complex to simple exchanges and incomplete to complete exchanges; these ratios were higher than those obtained after exposure to 6 Gy gamma rays. After 0.7 Gy of iron ions, most complex aberrations were found to involve three or four chromosomes, which is a likely indication of the maximum number of chromosome domains traversed by a single iron-ion track.

  1. Ion-Pair Complexation with Dibenzo[21]Crown-7 and Dibenzo[24]Crown-8 bis-Urea Receptors. (United States)

    Mäkelä, Toni; Kiesilä, Anniina; Kalenius, Elina; Rissanen, Kari


    Synthesis and ion-pair complexation properties of novel ditopic bis-urea receptors based on dibenzo[21]crown-7 (R(1) ) and dibenzo[24]crown-8 (R(2) ) scaffolds have been studied in the solid state, solution, and gas phase. In a 4:1 CDCl3 /[D6 ]DMSO solution, both receptors clearly show positive heterotropic cooperativity toward halide anions when complexed with Rb(+) or Cs(+) , with the halide affinity increasing in order I(-) complexes of both receptors have higher halide affinities compared to the caesium complexes. However, Rb(+) and Cs(+) complexes of R(2) show stronger affinities toward all the studied anions compared to the corresponding cationic complexes of R(1) . Similar selectivity of the receptors toward the studied ion pairs was also observed also in the gas phase by competition experiments with mass spectrometry. A total of eight crystal structures with different rubidium and caesium halides and oxyanions were obtained in addition to the crystal structure of R(2) ⋅BaCl2 . The selectivity observed in solution and in the gas phase is explainable by the conformational differences observed in the crystal structures of ion-pair complexes with R(1) and R(2) . In the solid state, R(1) has an open conformation due to the asymmetric crown-ether scaffold, whereas R(2) has a compact, folded conformation. Computational studies of the ion-pair complexes of R(2) show that the interaction energies of the complexes increase in the order CsI

  2. Prediction of the pKa's of aqueous metal ion +2 complexes. (United States)

    Jackson, Virgil E; Felmy, Andrew R; Dixon, David A


    Aqueous metal ions play an important role in many areas of chemistry. The acidities of [Be(H2O)4](2+), [M(H2O)6](2+), M = Mg(2+), Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), and Hg(2+), and [M(H2O)n](2+), M = Ca(2+) and Sr(2+), n = 7 and 8, complexes have been predicted using density functional theory, second-order Møller-Plesset perturbation theory (MP2), and coupled cluster CCSD(T) theory in the gas phase. pKa's in aqueous solution were predicted by using self-consistent reaction field (SCRF) calculations with different solvation models. The most common binding motif of the majority of the metal +2 complexes is coordination number (CN) 6, with each hexaaquo cluster having reasonably high symmetry for the best arrangement of the water molecules in the first solvation shell. Be(2+) is tetracoordinated, but a second solvation shell of 8 waters is needed to predict the pKa. The Ca(2+) and Sr(2+) aquo clusters have a coordination number of 7 or 8 as found in terms of the energy of the reaction M(H2O)7(2+) + H2O → M(H2O)8(2+) and the pKa values. The calculated geometries are in reasonable agreement with experiment. The SCRF calculations with the conductor-like screening model (COSMO), and the conductor polarized continuum model (CPCM) using COSMO-RS radii, consistently agree best with experiment at the MP2/aug-cc-pVDZ and CCSD(T)/aug-cc-pVDZ levels of theory. The CCSD(T) level provides the most accurate pKa's, and the MP2 level also provides reliable predictions. Our predictions were used to elucidate the properties of metal +2 ion complexes. The pKa predictions provide confirmation of the size of the first solvation shell sizes. The calculations show that it is still difficult to predict pKa's using this cluster/implicit solvent approach to better than 1 pKa unit.

  3. Quantitative investigations of cation complexation of photochromic 8-benzothiazole-substituted benzopyran: towards metal-ion sensors. (United States)

    Zakharova, Marianna I; Coudret, Christophe; Pimienta, Véronique; Micheau, Jean Claude; Delbaere, Stéphanie; Vermeersch, Gaston; Metelitsa, Anatoly V; Voloshin, Nikolai; Minkin, Vladimir I


    The photochromic, thermochromic and metallochromic behaviour of a series of three spiro[indoline-8-(benzothiazol-2-yl)-benzopyrans] has been investigated. The thermodynamic and kinetic parameters of their thermal equilibrium between the ring-closed (spiro) and ring-opened (merocyanine) isomeric forms have been determined using UV-Vis absorption and (1)H NMR spectroscopies. By adding Co(ii) and Ni(ii) ions in acetonitrile solution, 1 : 1 and 1 : 2 metal : merocyanine complexes are formed simultaneously. Using appropriate numerical methods, the kinetic analysis of the complexation allowed us to determine accurately key thermodynamic and spectroscopic parameters of the metal complexes. Results showed that the complexation strength is very sensitive to the size of the indoline nitrogen substituent. Complexation can be reversed by shining white light on the coloured complexes which regenerates the inactive spiropyran form, and releases the metallic ion; hence, these systems display fully reversible negative photochromism. The Zn(ii) complexes exhibit intense fluorescence in the 600-800 nm wavelength range. All these behaviours make these spiropyrans bearing benzothiazole heterocycles promising building blocks for the future construction of photodynamic chemosensors for transition metal ions.

  4. Electrospray droplet exposure to organic vapors: metal ion removal from proteins and protein complexes. (United States)

    DeMuth, J Corinne; McLuckey, Scott A


    The exposure of aqueous nanoelectrospray droplets to various organic vapors can dramatically reduce sodium adduction on protein ions in positive ion mass spectra. Volatile alcohols, such as methanol, ethanol, and isopropanol lead to a significant reduction in sodium ion adduction but are not as effective as acetonitrile, acetone, and ethyl acetate. Organic vapor exposure in the negative ion mode, on the other hand, has essentially no effect on alkali ion adduction. Evidence is presented to suggest that the mechanism by which organic vapor exposure reduces alkali ion adduction in the positive mode involves the depletion of alkali metal ions via ion evaporation of metal ions solvated with organic molecules. The early generation of metal/organic cluster ions during the droplet desolvation process results in fewer metal ions available to condense on the protein ions formed via the charged residue mechanism. These effects are demonstrated with holomyoglobin ions to illustrate that the metal ion reduction takes place without detectable protein denaturation, which might be revealed by heme loss or an increase in charge state distribution. No evidence is observed for denaturation with exposure to any of the organic vapors evaluated in this work.

  5. Enhancement effect of some phosphorylated compounds on fluorescence of quinazoline-based chelating ligand complexed with gallium ion

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Junko; Yamada, Hiroshi; Yajima, Takehiko [Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510 (Japan); Fukushima, Takeshi, E-mail: [Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510 (Japan)


    The chelating ligand, 2,4-[bis-(2,4-dihydroxybenzylidene)]-dihydrazinoquinazoline (DBHQ) can form a fluorescence complex with Ga{sup 3+} ions. The fluorescence intensity of the obtained DBHQ-Ga{sup 3+} complex increases in the presence of some phosphorylated compounds. The addition of phosphorylated serine and tyrosine, pyridoxal-5'-phosphate (PLP), and glucose-6-phosphate (G6P) leads to an increase in the fluorescence quantum yield (phi) of the complex by 1.38-1.59 times, while the addition of serine, tyrosine, pyridoxal, and glucose leads to a small increase in phi (1.02-1.04). This is the first report on the fluorescence enhancement effect of phosphorylated compounds on a Ga{sup 3+} ion complex.

  6. A sandwich complex with axial symmetry for harnessing the anisotropy in a prolate erbium(III) ion. (United States)

    Le Roy, Jennifer J; Korobkov, Ilia; Murugesu, Muralee


    A mononuclear Er(III) sandwich type complex, [Li(DME)3][Er(III)(COT")2], was isolated using 1,4-bis(trimethylsilyl)cyclooctatetraenyl dianion (COT"). Remarkably, this low-symmetry complex exhibits magnet-like behavior of magnetic remanence and coercivity in the hysteresis loops up to 8 K with an energy barrier (Ueff) of 187(1) K, thus making this molecule a unique single-ion magnet.

  7. Developing strongly luminescent platinum(IV) complexes: facile synthesis of bis-cyclometalated neutral emitters. (United States)

    Juliá, Fabio; Bautista, Delia; González-Herrero, Pablo


    A straightforward, one-pot procedure has been developed for the synthesis of bis-cyclometalated chloro(methyl)platinum(IV) complexes with a wide variety of heteroaromatic ligands of the 2-arylpyridine type. The new compounds exhibit phosphorescent emissions in the blue to orange colour range and represent the most efficient Pt(IV) emitters reported to date, with quantum yields up to 0.81 in fluid solutions at room temperature.

  8. Fabrication of Chitosan-complexed Electrode and Evaluation of Its Efficiency in Removal of Copper Ion from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Yoon Young-Chan


    Full Text Available In this study, we fabricated chitosan/PVA/activated carbon complexed electrode to remove copper ion from aqueous solution. The prepared composite electrode was analyzed by BET and SEM to investigate its physicochemical properties. Electrochemical properties of prepared composite electrodes were analyzed via cyclic voltammetry. Adsorption performance of copper ion on chitosan composite complexed electrodes was evaluated. Almost similar pore size distribution results were observed in the series of ACP not included electrodes while observed differences in pore size distribution for the ACP included one. Cyclic voltammetry results exhibited that oxidation-reduction reaction does not occur in a potential range of -1.0 ~ 1.0 V. The amount of copper ion during adsroption reaction is increase according to increase of adsorption potential to 1.0 V.

  9. Complex formation of 2-(o-hydroxyphenyl)-benzoxazole and 2-(o-hydroxyphenyl)-benzothiazole with beryllium ions

    Energy Technology Data Exchange (ETDEWEB)

    Gladilovich, D.B.; Stolyarov, K.P. (Leningradskij Gosudarstvennyj Univ. (USSR))


    Using spectrophotometric and luminescence methods the interaction of beryllium ions With 2-(0-hydroxyphenyl)-benzoxazole and 2-(0-hydroxyphenyl)-benzothiazole has been studied. The formation of at least three BeL/sup +/, Be(OH)L and BeL/sub 2/ complexes (where L=singly charged anion of ligand) is established.

  10. Effects of transition metal ion identity and π-cation interactions in metal-bis(peptide) complexes containing phenylalanine. (United States)

    Utley, Brandon; Angel, Laurence A


    Electrospray ionization-tandem mass spectrometry was used to study the effects of the metal ion identity and π-cation interactions on the dissociation pathways of metal-bis(peptide) complexes, where the metal is either Mn(2+), Co(2+), Ni(2+), Cu(2+), or Zn(2+); and the peptide is either FGGF, GGGG, GF, or GG, where G is glycine and F is phenylalanine. The [(FGGF)(FGGF-H) + M(2+)](+) and [(GGGG)(GGGG-H) + M(2+)](+) complexes dissociated by losing one FGGF or GGGG, respectively. Relative binding affinities were measured using the crossover points, where the parent and product ions were equal in ion abundance and a normalized-collision energy scale. The results indicate the relative binding affinities for FGGF and GGGG follow the same order with respect to the transition metal ion identity: Cu(2+) < Ni(2+) < Mn(2+) ≈ Zn(2+) < Co(2+), and the π-cation interactions in the FGGF complex have a measureable stabilizing effect. In contrast, the main fragmentation channels of [(GF)(GF-H) + M(2+)]+ and [(GG)(GG-H) + M(2+)](+) are loss of CO(2) and 2CO(2) with the [(GF)(GF-H) + M(2+)](+) complex also exhibiting cinnamic acid ,GF, residual glycine, cinnamate and styrene loss.

  11. Structural insights into complete metal ion coordination from ternary complexes of B family RB69 DNA polymerase. (United States)

    Xia, Shuangluo; Wang, Mina; Blaha, Gregor; Konigsberg, William H; Wang, Jimin


    We have captured a preinsertion ternary complex of RB69 DNA polymerase (RB69pol) containing the 3' hydroxyl group at the terminus of an extendable primer (ptO3') and a nonhydrolyzable 2'-deoxyuridine 5'-α,β-substituted triphosphate, dUpXpp, where X is either NH or CH(2), opposite a complementary templating dA nucleotide residue. Here we report four structures of these complexes formed by three different RB69pol variants with catalytically inert Ca(2+) and four other structures with catalytically competent Mn(2+) or Mg(2+). These structures provide new insights into why the complete divalent metal-ion coordination complexes at the A and B sites are required for nucleotidyl transfer. They show that the metal ion in the A site brings ptO3' close to the α-phosphorus atom (Pα) of the incoming dNTP to enable phosphodiester bond formation through simultaneous coordination of both ptO3' and the nonbridging Sp oxygen of the dNTP's α-phosphate. The coordination bond length of metal ion A as well as its ionic radius determines how close ptO3' can approach Pα. These variables are expected to affect the rate of bond formation. The metal ion in the B site brings the pyrophosphate product close enough to Pα to enable pyrophosphorolysis and assist in the departure of the pyrophosphate. In these dUpXpp-containing complexes, ptO3' occupies the vertex of a distorted metal ion A coordination octahedron. When ptO3' is placed at the vertex of an undistorted, idealized metal ion A octahedron, it is within bond formation distance to Pα. This geometric relationship appears to be conserved among DNA polymerases of known structure.

  12. DFT modeling on the suitable crown ether architecture for complexation with Cs⁺ and Sr²⁺ metal ions. (United States)

    Boda, Anil; Ali, Sk Musharaf; Shenoi, Madhav R K; Rao, Hanmanth; Ghosh, Sandip K


    Crown ether architectures were explored for the inclusion of Cs(+) and Sr(2+) ions within nano-cavity of macrocyclic crown ethers using density functional theory (DFT) modeling. The modeling was undertaken to gain insight into the mechanism of the complexation of Cs(+) and Sr(2+) ion with this ligand experimentally. The selectivity of Cs(+) and Sr(2+) ions for a particular size of crown ether has been explained based on the fitting and binding interaction of the guest ions in the narrow cavity of crown ethers. Although, Di-Benzo-18-Crown-6 (DB18C6) and Di-Benzo-21-Crown-7 (DB21C7) provide suitable host architecture for Sr(2+) and Cs(+) ions respectively as the ion size match with the cavity of the host, but consideration of binding interaction along with the cavity matching both DB18C6 and DB21C7 prefers Sr(2+) ion. The calculated values of binding enthalpy of Cs metal ion with the crown ethers were found to be in good agreement with the experimental results. The gas phase binding enthalpy for Sr(2+) ion with crown ether was higher than Cs metal ion. The ion exchange reaction between Sr and Cs always favors the selection of Sr metal ion both in the gas and in micro-solvated systems. The gas phase selectivity remains unchanged in micro-solvated phase. We have demonstrated the effect of micro-solvation on the binding interaction between the metal ions (Cs(+) and Sr(2+)) and the macrocyclic crown ethers by considering micro-solvated metal ions up to eight water molecules directly attached to the metal ion and also by considering two water molecules attached to metal-ion-crown ether complexes. A metal ion exchange reaction involving the replacement of strontium ion in metal ion-crown ether complexes with cesium ion contained within a metal ion-water cluster serves as the basis for modeling binding preferences in solution. The calculated O-H stretching frequency of H(2)O molecule in micro-solvated metal ion-crown complexes is more red-shifted in comparison to hydrated

  13. Sensitization effects of supramolecular assemblies on the luminescence of terbium-ion prulifloxacin complexes

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hong; Yi Chongyue; Li Xue; Fang Fang [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Yang Yajiang, E-mail: [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)


    Luminescence enhancement of terbium-ion prulifloxacin complexes (Tb(III)-PUFX) in supramolecular hydrogels formed by assembly of 1,3:2,4-di-O-benzylidene-D-sorbitol (DBS) was investigated by steady-state fluorescence, varying temperature fluorescence and time-resolved fluorescence. The luminescence images show that Tb(III)-PUFX were dispersed in the DBS gels. The luminescence intensity of Tb(III)-PUFX in the DBS gels was significantly increased in comparison with that in corresponding aqueous solutions. The varying temperature fluorescent spectra show that the luminescence intensity of Tb(III)-PUFX decreased with an increase in the temperature. This implies that the luminescence enhancement of Tb(III)-PUFX is related to the dissociation and the formation of the DBS assemblies. Time-resolved fluorescence measurements show slower rotational motion in DBS gels in comparison with that in the corresponding aqueous solutions. This may be ascribed to a unique microstructure of three-dimensional network formed by DBC aggregates, resulting in deactivation of the nonradiative relaxation. The images of field emission scanning electron microscopy and polarized optical microscopy indicate that the morphology of the DBS assemblies was not influenced upon addition of Tb(III)-PUFX to the DBS gels.

  14. Determination of Boron Trifluoride in Boron Trifluoride Complex by Fluoride Ion Selective Electrode

    Institute of Scientific and Technical Information of China (English)

    郎五可; 张卫江; 唐银; 徐姣; 张雷


    A method was proposed to determine boron trifluoride in boron trifluoride complex using fluoride ion selective electrode(ISE). Hydroxide was chosen to mask aluminum for the determination of 0.01—0.1 mol/L of fluoride. The simulation indicated that the permissible aluminum masked at a certain pH value was limited and hardly related to F-concentration and boric acid. It is better to control pH value below 11.5 and the aluminum con-centration within 0.025 mol/L to minimize the interference of hydroxide to the fluoride ISE. The decomposition conditions of boron trifluoride by aluminum chloride were investigated. It is found that the F-detection ratio will approach 1.0 if the Al/F molar ratio is 0.3—0.7 and aluminum concentration is no more than 0.02 mol/L when heated at 80℃ for 10 min. In one word, hydroxide is quite fit to mask aluminum for samples which contain high content of fluoride and aluminum and the BF3 content can be successfully determined by this method.

  15. Vibrational analysis of ferrocyanide complex ion based on density functional force field

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Kyung; Lee, Choong Keun; Lee, Nam Soo [Chungbuk National Univ., Cheongju (Korea, Republic of); Lee, Sang Ho [The University of Michigan, Ann Arbor (United States)


    Vibrational properties of ferrocyanide complex ion, [Fe(CN){sub 6}]{sup 4-}, have been studied based on the force constants obtained from the density functional calculations at B3LYP/6-31G level by means of the normal mode analysis using new bond angle and linear angle internal coordinates recently developed. Vibrations of ferrocyanide were manipulated by twenty-three symmetry force constants. The angled bending deformations of C-Fe-C, the linear bending deformations of Fe-C{identical_to}N and the stretching vibrations of Fe-C have been quantitatively assigned to the calculated frequencies. The force constants in the internal coordinates employed in the modified Urey-Bradley type potential were evaluated on the density functional force field applied, and better interaction force constants in the internal coordinates have been proposed. The valence force constants in the general quadratic valence force field were also given. The stretch-stretch interaction and stretch-bending interaction constants are not sensitive to the geometrical displacement in the valence force field.

  16. Tuning the electrical properties of the heart by differential trafficking of KATP ion channel complexes (United States)

    Arakel, Eric C.; Brandenburg, Sören; Uchida, Keita; Zhang, Haixia; Lin, Yu-Wen; Kohl, Tobias; Schrul, Bianca; Sulkin, Matthew S.; Efimov, Igor R.; Nichols, Colin G.; Lehnart, Stephan E.; Schwappach, Blanche


    ABSTRACT The copy number of membrane proteins at the cell surface is tightly regulated. Many ion channels and receptors present retrieval motifs to COPI vesicle coats and are retained in the early secretory pathway. In some cases, the interaction with COPI is prevented by binding to 14-3-3 proteins. However, the functional significance of this antagonism between COPI and 14-3-3 in terminally differentiated cells is unknown. Here, we show that ATP-sensitive K+ (KATP) channels, which are composed of Kir6.2 and SUR1 subunits, are stalled in the Golgi complex of ventricular, but not atrial, cardiomyocytes. Upon sustained β-adrenergic stimulation, which leads to activation of protein kinase A (PKA), SUR1-containing channels reach the plasma membrane of ventricular cells. We show that PKA-dependent phosphorylation of the C-terminus of Kir6.2 decreases binding to COPI and, thereby, silences the arginine-based retrieval signal. Thus, activation of the sympathetic nervous system releases this population of KATP channels from storage in the Golgi and, hence, might facilitate the adaptive response to metabolic challenges. PMID:24569881

  17. Quantum chemical study of inner-sphere complexes of trivalent lanthanide and actinide ions on the corundum (110) surface

    Energy Technology Data Exchange (ETDEWEB)

    Polly, R.; Schimmelpfennig, B.; Rabung, T.; Kupcik, T.; Klenze, R.; Geckeis, H. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Nukleare Entsorgung (INE); Floersheimer, M. [Hochschule RheinMain, Ruesselsheim (Germany). Fachbereich Ingenieurwissenschaften


    Sorption plays a major role in the safety assessment of nuclear waste disposal. In the present theoretical study we focused on understanding the interaction of trivalent lanthanides and actinides (La{sup 3+}, Eu{sup 3+} and Cm{sup 3+}) with the corundum (110) surface. Optimization of the structures were carried out using density functional theory with different basis sets. Additionally, Moeller-Plesset perturbation theory of second order was used for single point energy calculations. We studied the structure of different inner-sphere complexes depending on the surface deprotonation and the number of water molecules in the first coordination shell. The most likely structure of the inner-sphere complex (tri- or tetradentate) was predicted. For the calculations we used a cluster model for the surface. By deprotonating the cluster a chemical environment at elevated pH values was mimicked. Our calculations predict the highest stability for a tetradentate inner-sphere surface complexes with five water molecules remaining in the first coordination sphere of the metal ions. The formation of the inner-sphere complexes is favored when a coordination takes place with at most one deprotonated surface aluminol group located beneath the inner-sphere complex. The mutual interaction between sorbing metal ions at the surface is studied as well. The minimal possible distance between two inner-sphere sorbed metal ions at the surface was determined to be 530 pm. (orig.)

  18. Liquid-liquid extraction of ion-association complexes of cobalt(II-4-(2-pyridylazoresorcinol with ditetrazolium salts

    Directory of Open Access Journals (Sweden)

    Divarova Vidka V.


    Full Text Available The formation and liquid-liquid extraction of ion-association complexes between Co(II-4-(2-Pyridylazoresorcinol (PAR anionic chelates and cations of three ditetrazolium chlorides were studied: Blue Tetrazolium chloride (BTC, Neotetrazolium chloride (NTC and Nitro Blue Tetrazolium chloride (NBT. The optimum conditions for the formation and solvent extraction of the ion-association comlpex chelates were determined. It has been found that in the systems of Co(II-PAR-DTS, the reactants are reacted in molar ratios 1:2:1 and the general formula of complexes was suggested. The extraction equilibria were investigated and quantitatively characterized by the equilibrium constants and the recovery factors. The analytical characteristics of the complexes were calculated.

  19. A G-pentaplex-based assay for Cs(+) ions in aqueous solution using a luminescent Ir(III) complex. (United States)

    Lin, Sheng; Yang, Chao; Mao, Zhifeng; He, Bingyong; Wang, Yi-Tao; Leung, Chung-Hang; Ma, Dik-Lung


    A series of 5 randomly designed in-house cyclometalated Ir(III) complexes were examined for their application in G-pentaplex probes and the "proof-of-principle" concept in G-pentaplex-based Cs(+) ions detection. The G-pentaplex-forming sequence (DNA1, 5'-T(iG)4T-3', where iG=isoguanine) is present in single strand DNA form ab initio, however, the addition of Cs(+) ions lead to formation of the intermolecular G-pentaplex structure which is identified by the novel Ir(III) complex 1 afterward and produce an enhanced luminescence signal for Cs(+) ions monitoring. To the best of our knowledge, this is the first G-pentaplex probe and also the first G-pentaplex-based label-free detection platform for Cs(+) ions reported in the literature. The monitoring of spiked Cs(+) ions in natural water samples demonstrates the potential application and technical sound of this "proof-of-principle" concept sensing platform.

  20. Simultaneous and sensitive analysis of aliphatic carboxylic acids by ion-chromatography using on-line complexation with copper(II) ion. (United States)

    Kemmei, Tomoko; Kodama, Shuji; Yamamoto, Atsushi; Inoue, Yoshinori; Hayakawa, Kazuichi


    A new approach to ion chromatography is proposed to improve the UV detection of aliphatic carboxylic acids separated by anion-exchange chromatography. When copper(II) ion added to the mobile phase, it forms complexes with carboxylic acids that can be detected at 240 nm. The absorbance was found to increase with increasing copper(II) ion concentration. The retention times of α-hydroxy acids were also found to depend on the copper(II) ion concentration. Addition of acetonitrile to the mobile phase improved the separation of aliphatic carboxylic acids. The detection limits of the examined carboxylic acids (formate, glycolate, acetate, lactate, propionate, 3-hydroxypropionate, n-butyrate, isobutyrate, n-valerate, isovalerate, n-caproate) calculated at S/N=3 ranged from 0.06 to 3 μM. The detector signal was linear over three orders of magnitude of carboxylic acid concentration. The proposed method was successfully applied to analyze aliphatic carboxylic acids in rainwater and bread.

  1. Isolation and characterization of the tertiary amine Alamine 304 hydrochioride. Its application on the extraction of Co(II, Au(III and Pt(IV

    Directory of Open Access Journals (Sweden)

    López-Delgado, Aurora


    Full Text Available Amine Alamine 304 dissolved in xylene reacts with hydrochloric acid to form the amine chloride (R3NH+Cl- and the amine dichloride (R3NH2Cl2. The former compound was isolated and characterized by chemical analysis, X-ray powder diffraction, infrared spectroscopy and scanning electron microscopy. Lattice parameters of the isolated amine chloride were determined and refined by least-square numerical treatment (monoclinic cell, with a = 29.017(4 Å, b = 14.564(7 Å, c = 5.043(1 Å, b = 95.68(3 ° and V = 2,120 Å3. The amine chloride is a potential anion-exchanger with metals, thus data on the liquid-liquid extraction of Co(II, Au(III and Pt(IV are also reported.

    La amina Alamine 304 disuelta en xileno reacciona con el ácido clorhídrico para formar el cloruro de la amina (R3NH+Cl- y el dicloruro de amina (R3NH2Cl2. El primero de estos compuestos se aisló y caracterizó mediante análisis químico, difracción de rayos X, espectroscopia de IR y microscopía electrónica de barrido. Se determinaron y refinaron los parámetros de red del cloruro de amina (monoclínico, a = 29,017(4 Å, b = 14,564(7 Å, c = 5,043(1 Å, b = 95,68(3 ° y V = 2.120 Å3. El cloruro de amina actúa como un intercambiador aniónico con ciertos metales, por lo que se incluyen datos sobre la extracción líquido-líquido de Co(II, Au(III y Pt(IV.

  2. Redox-inactive metal ions promoted the catalytic reactivity of non-heme manganese complexes towards oxygen atom transfer. (United States)

    Choe, Cholho; Yang, Ling; Lv, Zhanao; Mo, Wanling; Chen, Zhuqi; Li, Guangxin; Yin, Guochuan


    Redox-inactive metal ions can modulate the reactivity of redox-active metal ions in a variety of biological and chemical oxidations. Many synthetic models have been developed to help address the elusive roles of these redox-inactive metal ions. Using a non-heme manganese(II) complex as the model, the influence of redox-inactive metal ions as a Lewis acid on its catalytic efficiency in oxygen atom transfer was investigated. In the absence of redox-inactive metal ions, the manganese(II) catalyst is very sluggish, for example, in cyclooctene epoxidation, providing only 9.9% conversion with 4.1% yield of epoxide. However, addition of 2 equiv. of Al(3+) to the manganese(II) catalyst sharply improves the epoxidation, providing up to 97.8% conversion with 91.4% yield of epoxide. EPR studies of the manganese(II) catalyst in the presence of an oxidant reveal a 16-line hyperfine structure centered at g = 2.0, clearly indicating the formation of a mixed valent di-μ-oxo-bridged diamond core, Mn(III)-(μ-O)2-Mn(IV). The presence of a Lewis acid like Al(3+) causes the dissociation of this diamond Mn(III)-(μ-O)2-Mn(IV) core to form monomeric manganese(iv) species which is responsible for improved epoxidation efficiency. This promotional effect has also been observed in other manganese complexes bearing various non-heme ligands. The findings presented here have provided a promising strategy to explore the catalytic reactivity of some di-μ-oxo-bridged complexes by adding non-redox metal ions to in situ dissociate those dimeric cores and may also provide clues to understand the mechanism of methane monooxygenase which has a similar diiron diamond core as the intermediate.

  3. Direct Dynamics Simulation of Dissociation of the [CH3--I--OH]- Ion-Molecule Complex

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Jing; McClellan, Miranda; Sun, Rui; Kohale, Swapnil C.; Govind, Niranjan; Hase, William L.


    Direct dynamics simulations were used to study dissociation of the [CH3--I--OH]- complex ion, which was observed in a previous study of the OH- + CH3I gas phase reaction (J. Phys. Chem. A 2013, 117, 7162). Restricted B97-1 simulations were performed to study dissociation at 65, 75 and 100 kcal/mol and the [CH3--I--OH]- ion dissociated exponentially, in accord with RRKM theory. For these energies the major dissociation products are CH3I + OH-, CH2I- + H2O, and CH3OH + I-. Unrestricted B97-1 and restricted and unrestricted CAM-B3LYP simulations were also performed at 100 kcal/mol to compare with the restricted B97-1 results. The {CH3I + OH-}:{CH2I- + H2O}:{CH3OH + I-} product ratio is 0.72 : 0.15 : 0.13, 0.81 : 0.05 : 0.14, 0.71 : 0.19 : 0.10 , and 0.83 : 0.13 : 0.04 for the restricted B97-1, unrestricted B97-1, restricted CAM-B3LYP, and unrestricted CAM-B3LYP simulations, respectively. Other product channels found are CH2 + I- + H2O, CH2 + I-(H2O), CH4 + IO-, CH3 - + IOH, and CH3 + IOH-. The CH3 - + IOH singlet products are only given by the restricted B97-1 simulation and the lower energy CH3 + IOH- doublet products are only formed by the unrestricted B97-1 simulation. Also studied were the direct and indirect atomic-level mechanisms for forming CH3I + OH-, CH2I- + H2O, and CH3OH + I-. The majority of CH3I + OH- were formed through a direct mechanism. For both CH2I- + H2O and CH3OH + I-, the direct mechanism is overall more important than the indirect mechanisms, with the round-about like mechanism the most important indirect mechanism at high excitation energies. Mechanism comparisons between the B97-1 and CAM-B3LYP simulations showed that formation of the CH3OH---I- complex is favored for the B97-1 simulations, while formation of the HO----HCH2I complex is favored for the CAM-B3LYP simulations. The unrestricted simulations give a higher percentage of indirect mechanisms than the restricted simulations. The possible role of the self-interaction error in the

  4. Coordination kinetics of different metal ions with the amidoximated polyacrylonitrile nanofibrous membranes and catalytic behaviors of their complexes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fu; Dong, Yong Chun; Kang, Wei Min; Cheng, Bowen; Qu, Xiang; Cui, Guixin [School of Textiles, Tianjin Polytechnic University, Tianjin (China)


    Two transition metal ions (Fe{sup 3+} and Cu{sup 2+}) and a rare earth metal ion (Ce{sup 3+}) were selected to coordinate with amidoximated polyacrylonitrile (PAN) nanofibrous membrane for preparing three metal modified PAN nanofibrous membrane complexes (M-AO-n-PANs, M = Fe, Cu, or Ce) as the heterogeneous Fenton catalysts for the dye degradation in water under visible irradiation. The coordination kinetics of three metal ions with modified PAN nanofibrous membranes was studied and the catalytic properties of the resulting complexes were also compared. The results indicated that increasing metal ion concentrations in solution or higher coordination temperature led to a significant increase in metal content, particularly in Fe and Cu contents of the complexes. Their coordination process could be described using Langmuir isotherm and pseudo-second-order kinetic equations. Moreover, Fe-AO-n-PAN had the best photocatalytic efficiency for the dye degradation in acidic medium, but a lower photocatalytic activity than Cu-AO-n-PAN in alkali medium.

  5. Examination of the Coordination Sphere of AlIII in Trifluoromethyl-Heteroarylalkenolato Complex Ions by Gas-Phase IRMPD Spectroscopy and Computational Modelling

    NARCIS (Netherlands)

    Bruckmann, L.; Tyrra, W.; Mathur, S.; G. Berden,; Oomens, J.; Meijer, Ajhm; Schafer, M.


    A series of aluminium complex ions with trifluoromethyl-heteroarylalkenolato (TMHA) ligands are studied by gas-phase infrared multiphoton-dissociation (IRMPD) spectroscopy and computational modelling. The selected series of aluminium TMHA complex ions are promising species for the initial study of i

  6. Examination of the coordination sphere of AlIII in trifluoromethyl-heteroarylalkenolato complex ions by gas-phase IRMPD spectroscopy and computational modelling

    NARCIS (Netherlands)

    L. Brueckmann; W. Tyrra; S. Mathur; G. Berden; J. Oomens; A.J.H.M. Meijer; M. Schaefer


    A series of aluminium complex ions with trifluoromethyl-heteroarylalkenolato (TMHA) ligands are studied by gas-phase infrared multiphoton-dissociation (IRMPD) spectroscopy and computational modelling. The selected series of aluminium TMHA complex ions are promising species for the initial study of i

  7. Ion mobility-mass spectrometry of charge-reduced protein complexes reveals general trends in the collisional ejection of compact subunits. (United States)

    Bornschein, Russell E; Ruotolo, Brandon T


    Multiprotein complexes have been shown to play critical roles across a wide range of cellular functions, but most probes of protein quaternary structure are limited in their ability to analyze complex mixtures and polydisperse structures using small amounts of total protein. Ion mobility-mass spectrometry offers a solution to many of these challenges, but relies upon gas-phase measurements of intact multiprotein complexes, subcomplexes, and subunits that correlate well with solution structures. The greatest bottleneck in such workflows is the generation of representative subcomplexes and subunits. Collisional activation of complexes can act to produce product ions reflective of protein complex composition, but such product ions are typically challenging to interpret in terms of their relationship to solution structure due to their typically string-like conformations following activation and subsequent dissociation. Here, we used ion-ion chemistry to perform a broad survey of the gas-phase dissociation of charge-reduced protein complex ions, revealing general trends associated with the collisional ejection of compact, rather than unfolded, protein subunits. Furthermore, we also discover peptide and co-factor dissociation channels that dominate the product ion populations generated for such charge reduced complexes. We assess both sets of observations and discuss general principles that can be extended to the analysis of protein complex ions having unknown structures.

  8. Separation and Detection of Lanthanide Ions with Nitrilotri (methylenephosphonic) Acid as Complexing Agent and Eluent by IPC

    Institute of Scientific and Technical Information of China (English)


    A mixture containing eleven lanthanide ions was separated and detected on an anion-exchange co-lumn by ion chromatography with indirect photometry detection (IPC).An aqueous solution of 1.5×10-2mol/L nitrilotri(methylenephosphonic) acid and 2.5×10-3mol/L tiron was used as the eluent in which the former served as complexing agent and eluent,the latter played as color reagent and eluent.The effects of acidity,concentration and composition of eluent on the retention behavior of the analytes and detection sensitivity are discussed.

  9. Tandem mass spectrometry and density functional theory of RDX fragmentation pathways: Role of ion-molecule complexes in loss of NO3 and lack of molecular ion peak. (United States)

    Jeilani, Yassin A; Duncan, Kameron A; Newallo, Domnique S; Thompson, Albert N; Bose, Nripendra K


    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is an explosive compound that finds a wide range of military and civilian applications. RDX has been a target in environmental matrices by gas chromatography/tandem mass spectrometry (GC/MS/MS). MS/MS in negative chemical ionization (NCI) mode of RDX provides important fragmentation patterns that are useful for structural elucidation. The fragmentation patterns are needed for proper identification of precursor and product ions in analytical methods that depend on MS/MS approaches for a reliable identification of RDX. This study focuses on the MS fragmentation mechanisms of RDX in NCI mode using both MS/MS and density functional theory (DFT). The DFT studies were performed at the B3LYP/6-311G(d,p) level of theory. The DFT results showed that NCI of RDX leads to the formation of an anion-molecule complex that was energetically more stable than the RDX anion. The fragmentation proceeds through two pathways, leading to the loss of NO(2) and NO(3). The loss of NO(3) takes place in an anion-molecule complex leading to the formation of characteristic nitroso group fragment ions. Using the fragmentation schemes, important ion structures are proposed including structures for m/z 160, 129, 102, and 86. The results demonstrate the importance of both charge-induced and charge-remote dissociations in RDX pathways. The ion structures identified along the pathways could be used as targets in analytical methods for reliable identification purposes. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Ion Accumulation Approaches for Increasing Sensitivity and Dynamic Range in the Analysis of Complex Samples

    Energy Technology Data Exchange (ETDEWEB)

    Belov, Mikhail E.; Ibrahim, Yehia M.; Smith, Richard D.


    EXTERNAL ACCUMULATION OF IONS FOR FTICR DETECTION The need for higher mass accuracy and precision in analysis of e.g. biological compounds is now commonly addressed by storing charged particles in an ion trap using a superposition of the constant static magnetic and spatially inhomogeneous electric fields, often referred to as Penning trap. The Penning trap has been successfully employed in Fourier Transform Ion Cyclotron Resonance (FTICR) MS instrumentation. Since its inception in 1973,1 FTICR has been the subject of multiple reviews,2-9 several journal issues10,11 and books12,13 that give a full-range technical introduction to both single ion and more populated ion clouds (a group of ions who’s motion is to some extent influenced by the other ions in the cloud) behavior in combined magnetic and electric fields, subsequent signal processing, and technique applications. Principles and design of geometric and electrical configurations of ICR traps have been also reviewed.14 The reader is referred to these publications for more information. Herein, we will give a brief overview of the ion cloud behavior in the superimposed magnetic and electric fields, with an emphasis on ICR trap design, and highlight FTICR performance improvements due to accumulation of ions in another trap external to FTICR.

  11. Thermodynamics of the complexation between salicylaldehyde thiosemicarbazone with Cu2+ ion in methanol +1,4-dioxane binary solutions

    Directory of Open Access Journals (Sweden)

    Biswas Rashmidipta


    Full Text Available The complexation reaction between salicylaldehyde thiosemicarbazone, abbreviated as STSC, with Cu2+ ion was studied in the binary mixtures of methanol + 1,4-dioxane binary by using UV-Visible spectrophotometric and conductometric methods at different temperatures. The formation constants (Kf for the 1:1 complex, Cu2+-STSC, were calculated from computer fitting of the absorbance and molar conductance data against various mole ratios (cM:cL or cL:cM in different binary solvent mixtures. A non-linear correlation was observed for the variation of logKf for the complex against the solvent compositions. Various thermodynamic parameters (ΔH, ΔS and ΔG for the formation of Cu2+-STSC complex were also determined from the temperature dependence of the stability constants (Kf. The results showed that the complexation reaction is affected by the nature and composition of the mixed solvents.

  12. Femtomole level photoelectrochemical aptasensing for mercury ions using quercetin-copper(II) complex as the DNA intercalator. (United States)

    Li, Hongbo; Xue, Yan; Wang, Wei


    An ultrasensitive and selective photoelectrochemical (PEC) aptasensor for mercury ions was first fabricated based on perylene-3, 4, 9, 10-tetracarboxylic acid/graphene oxide (PTCA/GO) heterojunction using quercetin-copper(II) complex intercalated into the poly(dT)-poly(dA) duplexes. Both the PTCA/GO heterojunction and the quercetin-copper(II) complex are in favor of the sensitivity for the fabricated PEC aptasensor due to band alignment and strong reduction capability, respectively. And they efficiently promote the separation of photoexcited carriers and enhance the photocurrent. The formation of thymine-Hg(2+)-thymine coordination chemistry resulted in the dehybridization of poly(dT)-poly(dA) duplexes and then the intercalator quercetin-copper(II) complex broke away from the surface of the PEC aptasensor. As the concentration of mercury ions increased, the photocurrent gradually decreased. The electrode response for mercury ions detection was in the linear range from 0.01 pmol L(-1) to 1.00 pmol L(-1) with the detection limit of 3.33 fmol L(-1). The label-free PEC aptasensor has excellent performances with ultrasensitivity and good selectivity besides the advantage of economic and facile fabrication. The strategy of quercetin-copper(II) complex as a novel DNA intercalator paves a new way to improve the performances for PEC sensors. © 2013 Published by Elsevier B.V.

  13. Multistimuli-Responsive, Moldable Supramolecular Hydrogels Cross-Linked by Ultrafast Complexation of Metal Ions and Biopolymers. (United States)

    Sun, Zhifang; Lv, Fucong; Cao, Lujie; Liu, Lin; Zhang, Yi; Lu, Zhouguang


    A new type of multistimuli-responsive hydrogels cross-linked by metal ions and biopolymers is reported. By mixing the biopolymer chitosan (CS) with a variety of metal ions at the appropriate pH values, we obtained a series of transparent and stable hydrogels within a few seconds through supramolecular complexation. In particular, the CS-Ag hydrogel was chosen as the model and the gelation mechanism was revealed by various measurements. It was found that the facile association of Ag(+) ions with amino and hydroxy groups in CS chains promoted rapid gel-network formation. Interestingly, the CS-Ag hydrogel exhibits sharp phase transitions in response to multiple external stimuli, including pH value, chemical redox reactions, cations, anions, and neutral species. Furthermore, this soft matter showed a remarkable moldability to form shape-persistent, free-standing objects by a fast in situ gelation procedure.

  14. Structural analysis of ruthenium-arene complexes using ion mobility mass spectrometry, collision-induced dissociation, and DFT. (United States)

    Czerwinska, Izabella; Far, Johann; Kune, Christopher; Larriba-Andaluz, Carlos; Delaude, Lionel; De Pauw, Edwin


    Ion mobility mass spectrometry (IM-MS) and collision-induced dissociation (CID) techniques were used to investigate the influence of the phosphine ligand on the physicochemical properties of [RuCl2(p-cymene)(PCy3)] (), [RuCl2(p-cymene)(PPh3)] (), and [RuCl2(p-cymene)(PTA)] () in the gas phase (PTA is 1,3,5-triaza-7-phosphaadamantane). Electrospray ionization of complexes and led to the corresponding [RuCl(p-cymene)(PR3)](+) ions via the dissociation of a chlorido ligand, whereas RAPTA-C () afforded two molecular ions by in-source oxidation ([Ru(III)Cl2(p-cymene)(PTA)](+)) or protonation ([RuCl2(p-cymene)(PTA+H)](+)). Control experiments showed that the balance between these two ionization paths was strongly influenced by the nature of the solvent used for infusion. Collision cross sections (CCSs) of the four molecular ions accurately reflected the variations of steric bulk inferred from the Tolman steric parameters (θ) of the phosphine ligands. Moreover, DFT calculations combined with a model based on the kinetic theory of gases (the trajectory method of the IMoS software) afforded reliable CCS predictions. The almost two times higher dipole moment of [RuCl2(p-cymene)(PTA+H)](+) (μ = 13.75 D) compared to [Ru(III)Cl2(p-cymene)(PTA)](+) (μ = 7.18 D) was held responsible for increased ion-induced dipole interactions with a polarizable drift gas such as N2. Further experiments with He and CO2 confirmed that increasing the polarizability of the buffer gas improved the separation between the two molecular ions derived from complex . The fragmentation patterns of complexes were determined by CID. The sequence of collision voltages at which 50% of a precursor ion dissociates (V50) recorded for the molecular ions derived from compounds was in good agreement with simple electronic considerations based on the donor strength of the phosphine ligand. Thus, the CCS and V50 parameters used to determine the shape and stability of ionic species in the gas phase are complementary

  15. A Manganese(V)-Oxo Complex: Synthesis by Dioxygen Activation and Enhancement of Its Oxidizing Power by Binding Scandium Ion. (United States)

    Hong, Seungwoo; Lee, Yong-Min; Sankaralingam, Muniyandi; Vardhaman, Anil Kumar; Park, Young Jun; Cho, Kyung-Bin; Ogura, Takashi; Sarangi, Ritimukta; Fukuzumi, Shunichi; Nam, Wonwoo


    A mononuclear non-heme manganese(V)-oxo complex, [Mn(V)(O)(TAML)](-) (1), was synthesized by activating dioxygen in the presence of olefins with weak allylic C-H bonds and characterized structurally and spectroscopically. In mechanistic studies, the formation rate of 1 was found to depend on the allylic C-H bond dissociation energies (BDEs) of olefins, and a kinetic isotope effect (KIE) value of 16 was obtained in the reactions of cyclohexene and cyclohexene-d10. These results suggest that a hydrogen atom abstraction from the allylic C-H bonds of olefins by a putative Mn(IV)-superoxo species, which is formed by binding O2 by a high-spin (S = 2) [Mn(III)(TAML)](-) complex, is the rate-determining step. A Mn(V)-oxo complex binding Sc(3+) ion, [Mn(V)(O)(TAML)](-)-(Sc(3+)) (2), was also synthesized in the reaction of 1 with Sc(3+) ion and then characterized using various spectroscopic techniques. The binding site of the Sc(3+) ion was proposed to be the TAML ligand, not the Mn-O moiety, probably due to the low basicity of the oxo group compared to the basicity of the amide carbonyl group in the TAML ligand. Reactivity studies of the Mn(V)-oxo intermediates, 1 and 2, in oxygen atom transfer and electron-transfer reactions revealed that the binding of Sc(3+) ion at the TAML ligand of Mn(V)-oxo enhanced its oxidizing power with a positively shifted one-electron reduction potential (ΔEred = 0.70 V). This study reports the first example of tuning the second coordination sphere of high-valent metal-oxo species by binding a redox-inactive metal ion at the supporting ligand site, thereby modulating their electron-transfer properties as well as their reactivities in oxidation reactions.

  16. New complexes of cobalt(II) ions with pyridinecarboxylic acid N-oxides and 4,4‧-byp (United States)

    Hnatejko, Zbigniew; Dutkiewicz, Grzegorz; Kubicki, Maciej; Lis, Stefan


    This paper reports a study concerning the isolation and characterization of mixed ligand complexes of the Co(II) ions with pyridinecarboxylic acids N-oxides (picolinic (PNO), nicotinic (NNO) and isonicotinic (INO)), [Co(PNO)2(4,4'-byp)]·6H2O 1, [Co(NNO)(4,4'-byp)NO3]·8H2O 2 and [Co(INO)(4,4'-byp)NO3]·7H2O 3; (4,4'-byp = 4,4'-bipyridine). The complexes 2 and 3 were prepared by the hydrothermal synthesis. The structures of the complexes were elucidated on the basis of elemental analysis, thermal decomposition, IR and mass spectroscopy. IR spectra show that N-oxides act as bidentate ligands, in which both the N-oxide and the carboxylate groups are involved in coordination. In 2 and 3 the Co(II) ion exists in the same coordination environment. For 1, the X-ray crystal structure has been determined and it turned out that it contains the coordination polymers, created by the chains of Co ions joined by 4,4'-byp ligands. The Co(II) ion occupies the center of symmetry in the space group C2/c. This ion is coordinated by two nitrogen atoms (from two 4,4'-byp ligands) and four oxygen atoms from two PNO anions. The extensive network of hydrogen bonds involving six different water molecules connects the one-dimensional polymers into three-dimensional crystal structure.

  17. Stability of Rare Earth Ion-N,N′-bis(2′-Pyridine)methyl-1,10-Phenanthroline-2,9-Dimethanmine Binary Complexes

    Institute of Scientific and Technical Information of China (English)

    刘天府; 王中明; 林华宽; 朱守荣; 徐猛; 陈云悌


    The stability constants of binary complexes Ln-L (Ln=La3+, Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, Ho3+, L=N, N′-bis(2′-pyridine)methyl-1,10-phenanthroline-2,9- dimethanamine) were determined by pH potentiometric titration method at 25±0.1 ℃ in 0.1 mol*L-1 NaClO4. The probable structures of the corresponding complexes were proposed. The influence of the metal ions to the stability of binary complexes and the stability difference between the complexes of rare earth ion and the corresponding complexes of Co2+, Ni2+, Cu2+ ions were discussed. The stability constants of the corresponding binary complex of radioactive Pm3+ ion were estimated by linear regression.

  18. Infrared Spectroscopy of Gas-Phase M(+)(CO2)n (M = Co, Rh, Ir) Ion-Molecule Complexes. (United States)

    Iskra, Andreas; Gentleman, Alexander S; Kartouzian, Aras; Kent, Michael J; Sharp, Alastair P; Mackenzie, Stuart R


    The structures of gas-phase M(+)(CO2)n (M = Co, Rh, Ir; n = 2-15) ion-molecule complexes have been investigated using a combination of infrared resonance-enhanced photodissociation (IR-REPD) spectroscopy and density functional theory. The results provide insight into fundamental metal ion-CO2 interactions, highlighting the trends with increasing ligand number and with different group 9 ions. Spectra have been recorded in the region of the CO2 asymmetric stretch around 2350 cm(-1) using the inert messenger technique and their interpretation has been aided by comparison with simulated infrared spectra of calculated low-energy isomeric structures. All vibrational bands in the smaller complexes are blue-shifted relative to the asymmetric stretch in free CO2, consistent with direct binding to the metal center dominated by charge-quadrupole interactions. For all three metal ions, a core [M(+)(CO2)2] structure is identified to which subsequent ligands are less strongly bound. No evidence is observed in this size regime for complete activation or insertion reactions.

  19. Environmental effects on the structure of metal ion-DOTA complexes: An ab initio study of radiopharmaceutical metals.

    Energy Technology Data Exchange (ETDEWEB)

    Lau, E Y; Lightstone, F C; Colvin, M E


    Quantum mechanical calculations were performed to study the differences between the important radiopharmaceutical metals yttrium (Y) and indium (In) bound by DOTA and modified DOTA molecules. Energies were calculated at the MP2/6-31+G(d)//HF/6-31G(d) levels, using effective core potentials on the Y and In ions. Although the minimum energy structures obtained are similar for both metal ion-DOTA complexes, changes in coordination and local environment significantly affect the geometries and energies of these complexes. Coordination by a single water molecule causes a change in the coordination number and a change in the position of the metal ion in In-DOTA; but, Y-DOTA is hardly affected by water coordination. When one of the DOTA carboxylates is replaced by an amide, the coordination energy for the amide arm shows a large variation between the Y and In ions. Optimizations including water and guandinium moieties to approximate the effects of antibody binding indicate a large energy cost for the DOTA-chelated In to adopt the ideal conformation for antibody binding.

  20. Monovalent metal ions play an essential role in catalysis and intersubunit communication in the tryptophan synthase bienzyme complex. (United States)

    Woehl, E U; Dunn, M F


    This investigation shows that the alpha 2 beta 2 tryptophan synthase bienzyme complex from Salmonella typhimurium is subject to monovalent metal ion activation. The effects of the monovalent metal ions Na+ and K+ were investigated using rapid scanning stopped-flow (RSSF), single-wavelength stopped-flow (SWSF), and steady-state techniques. RSSF measurements of individual steps in the reaction of L-serine and indole to give L-trytophan (the beta-reaction) as well as the reaction of 3-indole-D-glycerol 3'-phosphate (IGP) with L-serine (the alpha beta-reaction) demonstrate that monovalent metal ions such as Na+ and K+ change the distribution of intermediates in both the transient and steady states. Therefore the metal ion effect alters relative ground-state energies and the relative positions of ground- and transition-state energies. The RSSF spectra and SWSF time courses show that the turnover of indole is significantly reduced in the absence of either Na+ or K+. The alpha-aminoacrylate Schiff base species, E(A-A), is in a less active state in the absence of monovalent metal ions. Na+ decreases the steady-state rate of IGP cleavage (the alpha-reaction) to about 30% of the value obtained in the absence of metal ions. Steady-state investigations show that in the absence of monovalent metal ions the alpha- and alpha beta-reactions have the same activity. Na+ binding gives a 30-fold stimulation of the alpha-reaction when the beta-site is in the E(A-A) form.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Isothermal titration calorimetry study of a bistable supramolecular system: reversible complexation of cryptand[2.2.2] with potassium ions. (United States)

    del Rosso, Maria G; Ciesielski, Artur; Colella, Silvia; Harrowfield, Jack M; Samorì, Paolo


    Isothermal titration calorimetry (ITC) is used to investigate the thermodynamics of the complexation of potassium ions by 1,10-diaza-4,7,13,16,21,24-hexaoxabicyclo[8.8.8]hexacosane (cryptand[2.2.2]) in aqueous solution. By changing the pH of the solution it was possible to trigger the reversible complexation/decomplexation of the cryptand in consecutive in situ experiments and to assess for the first time the use of ITC to monitor the thermodynamics of a bistable system. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Temperature and dose dependence of defect complex formation with ion implanted Mn/Fe in ZnO

    CERN Document Server

    Mølholt, T E; Gunnlaugsson, H P; Bharuth-Ram, K; Fanciulli, M; Gíslason, H P; Johnston, K; Kobayashi, Y; Langouche, G; Masenda, H; Naidoo, D; Ólafsson, S; Sielemann, R; Weyer, G


    57Fe Mössbauer spectroscopy following ion implantation of radioactive 57Mn+ ( T1/2=85.4 s) has been applied to study the formation of Fe/Mn implantation-induced defects in ZnO at temperatures between 319 and 390 K. The formation of ferric iron–vacancy complexes is found to depend strongly on the implanted dose and to be faster and more efficient at higher temperatures. The results at these temperatures suggest the mobility of the Zn vacancy, together with vacancy trapping at the substitutional Mn/Fe impurities are responsible for the formation of Fe–VZn complexes

  3. Host–guest complexes of mixed glycol-bipyridine cryptands: prediction of ion selectivity by quantum chemical calculations, part V

    Directory of Open Access Journals (Sweden)

    Svetlana Begel


    Full Text Available The selectivity of the cryptands [2.2.bpy] and [2.bpy.bpy] for the endohedral complexation of alkali, alkaline-earth and earth metal ions was predicted on the basis of the DFT (B3LYP/LANL2DZp calculated structures and complex-formation energies. The cavity size in both cryptands lay between that for [2.2.2] and [bpy.bpy.bpy], such that the complexation of K+, Sr2+ and Tl3+ is most favorable. While the [2.2.bpy] is moderately larger, preferring Rb+ complexation and demonstrating equal priority for Sr2+ and Ba2+, the slightly smaller [2.bpy.bpy] yields more stable cryptates with Na+ and Ca2+. Although the CH2-units containing molecular bars fixed at the bridgehead nitrogen atoms determine the flexibility of the cryptands, the twist angles associated with the bipyridine and glycol building blocks also contribute considerably.

  4. Complexation of Nd(III) with tetraborate ion and its effect on actinide (III) solubility in WIPP brine

    Energy Technology Data Exchange (ETDEWEB)

    Borkowski, Marian [Los Alamos National Laboratory; Richmann, Michael K [Los Alamos National Laboratory; Reed, Donald T [Los Alamos National Laboratory; Yongliang, Xiong [SNL


    The potential importance of tetraborate complexation on lanthanide(III) and actinide(III) solubility is recognized in the literature but a systematic study of f-element complexation has not been performed. In neodymium solubility studies in WIPP brines, the carbonate complexation effect is not observed since tetraborate ions form a moderately strong complex with neodymium(III). The existence of these tetraborate complexes was established for low and high ionic strength solutions. Changes in neodymium(III) concentrations in undersaturation experiments were used to determine the neodymium with tetraborate stability constants as a function of NaCl ionic strength. As very low Nd(III) concentrations have to be measured, it was necessary to use an extraction pre-concentration step combined with ICP-MS analysis to extend the detection limit by a factor of 50. The determined Nd(III) with borate stability constants at infinite dilution and 25 C are equal to log {beta}{sub 1} = 4.55 {+-} 0.06 using the SIT approach, equal to log {beta}{sub 1} = 4.99 {+-} 0.30 using the Pitzer approach, with an apparent log {beta}{sub 1} = 4.06 {+-} 0.15 (in molal units) at I = 5.6 m NaCl. Pitzer ion-interaction parameters for neodymium with tetraborate and SIT interaction coefficients were also determined and reported.

  5. Complexation of Nd(III) with tetraborate ion and its effect on actinide(III) solubility in WIPP brine

    Energy Technology Data Exchange (ETDEWEB)

    Borkowski, M.; Richmann, M.; Reed, D.T. [Earth and Environmental Sciences Div., Los Alamos National Lab., Carlsbad Operations, NM (United States); Xiong, Y. [Sandia National Labs., Carlsbad Program Group, Carlsbad, NM (United States)


    The potential importance of tetraborate complexation on lanthanide(III) and actinide(III) solubility is recognized in the literature but a systematic study of f-element complexation has not been performed. In neodymium solubility studies in WIPP brines, the carbonate complexation effect is not observed since tetraborate ions form a moderately strong complex with neodymium(III). The existence of these tetraborate complexes was established for low and high ionic strength solutions. Changes in neodymium(III) concentrations in undersaturation experiments were used to determine the neodymium with tetraborate stability constants as a function of NaCl ionic strength. As very low Nd(III) concentrations have to be measured, it was necessary to use an extraction pre-concentration step combined with ICP-MS analysis to extend the detection limit by a factor of 50. The determined Nd(III) with borate stability constants at infinite dilution and 25 C are equal to log {beta}{sub 1} = 4.55 {+-} 0.06 using the SIT approach, equal to log {beta}{sub 1} = 4.99 {+-} 0.30 using the Pitzer approach, with an apparent log {beta}{sub 1} = 4.06 {+-} 0.15 (in molal units) at I = 5.6 m NaCl. Pitzer ion-interaction parameters for neodymium with tetraborate and SIT interaction coefficients were also determined and reported. (orig.)

  6. Preliminary studies on identification of inorganic species in complex mixtures by electrospray mass spectrometry in the counter ion mode

    Energy Technology Data Exchange (ETDEWEB)

    Mollah, Sahana


    Suppression of mass spectral peaks due to matrix problem is a major hurdle to overcome during identification work. So far, preliminary studies have been done in investigating solutions containing various percentages of nitric and hydrochloric acid. Since other anions would also be present in real samples, also needed to be examined is how the extent of suppression of metal complexes by Cl{sup {minus}} compares with suppression by other anions such as PO{sub 4}{sup 3{minus}} or SO{sub 4}{sup 2{minus}}. If suppression of other anions is as severe as that of the chloride ion, then it would be virtually impossible to analyze unknown samples containing large amount of such anions by direct infusion electrospray mass spectrometry. It seems like a separation step is needed to separate these matrix anions from the metal complexes prior to putting the solution through the electrospray. However, separation of inorganic complexes can be difficult and has not been studied thoroughly as LC separation of bioorganic compounds. Both zinc and copper chloro complexes have been observed to be more tolerant to higher amount of chloride ion present in a solution compared to the group I and II metal chloro complexes. Other transition metals including the lanthanide complexes need to be examined more intensively to see how they fare against other transition metal complexes. So far, only preliminary work has been done in identifying inorganic species in solutions using both ICP-MS and ES-MS. The solution contained a number of metals but only one major anion, NO{sub 3}{sup {minus}}. Therefore, complex solutions containing a number of anions and metals can be examined to see if identification is still feasible. This identification work can be continued on into investigating real samples.

  7. Synthesis, characterization and antibacterial activity of new complexes of some lanthanide ions with 15-crown-5 and 18-crown-6

    Directory of Open Access Journals (Sweden)

    Hussein Al-Amery


    Full Text Available Complexes of some lanthanide picrates (Ln3+ = Pr3+, Nd3+ and Dy3+ with 15-crown-5 and 18-crown-6 were synthesized and characterized by elemental analysis, ICP-AES, FTIR, 1H-NMR, 13C-NMR and UV-Visible spectrophotometric methods, thermal analysis (TGA & DTG, magnetic susceptibility , molar conductance and melting points. Also an in-vitro study on pathogenic gram positive (Staphylococcus aureus and pathogenic gram negative bacteria (Escherichia coli, Salmonella and pseudomonas aeruginosa was performed and the results were compared to those of a broad spectrum antibiotic (Chloramphinicol. The complexes of 15-crown-5 have the general formula [Ln(15C52(Pic]Pic2.nH2O where (Ln3+ = Nd3+ and Dy3+, (Pic = Picrate anion and (n = 2 or 4 except for Pr3+ complex which has the formula [Pr(15C5]Pic3.H2O , the 18-crown-6 complexes have the general formula [Ln(18C6]Pic3 where (Ln3+ = Pr3+ and Nd3+ except for Dy3+ complex which has the formula [Dy(18C6(Pic]Pic2.3H2O. In 15-crown-5 complexes both Nd3+ and Dy3+ were coordinated with two 15-crown-5 ligands and one picrate anion through its phenolic oxygen and the oxygen of it’s ortho nitro group, except for Pr3+ which was coordinated with only one 15-crown-5 ligand leaving three picrate anions as counter ions. In 18-crown-6 complexes both Pr3+ and Nd3+ were coordinated with one 18-crown-6 ligand leaving all the three picrate anions as counter ions outside the coordination sphere, except for the Dy3+ complex which was coordinated with one 18-crown-6 ligand and one picrate anion.

  8. Synthesis, structural characterization and biological studies of some nalidixic acid-metal complexes: Metalloantibiotic complexes of some divalent and trivalent metal ions (United States)

    Al-Khodir, Fatima A. I.; Refat, Moamen S.


    This article describes the synthesis, characterization, computational and biological assessments of some divalent and trivalent metal (Ca(II), Fe(III), Pd(II) and Au(III)) complexes of nalidixic acid (nixH). The structures of these complexes were assigned using elemental analyses and spectral measurements e.g., IR, Raman, 1H NMR, 13C NMR and electronic techniques. These results indicated that, nalidixic acid reacts as a bidentate ligand bound to the metal ion through the oxygen atoms of carbonyl and carboxylate groups. The molar conductance measurements of the complexes in DMSO correspond to be non-electrolyte nature. Thus, these complexes may be formulated as [Ca(nix)(Cl)(H2O)3]. H2O, [Fe(nix)(Cl)2(H2O)2]·3H2O, [Pd(nix)(Cl)(H2O)] and [Au(nix)(Cl)2]. Base on the Coats-Redfern and Horowitz-Metzeger methods, the kinetic thermodynamic parameters (E∗, ΔS∗, ΔH∗ and ΔG∗) of the thermal decomposition reactions have been calculated from thermogravimetric curves of TG and DTG. The nano-scale range of the nalidixic acid complexes have been discussed using X-ray powder diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM) analyzer. The computational studies for the synthesized complexes have been estimated.

  9. Effect of −′ fusion on metal ion complexation of porphycene

    Indian Academy of Sciences (India)

    Tridib Sarma; Pradeepta K Panda


    Complexation of −′ fused -extended porphycene, namely dinaphthoporphycene was carried out successfully with copper(II) and its solid state structure shows a square-type planar N4-coordination core. The photophysical and electrochemical properties of this complex, along with the nickel(II) complex were also investigated. Further, electronic paramagnetic resonance (EPR) analysis of this complex is also reported.

  10. Synthesis of diorganoplatinum(IV) complexes by the Ssbnd S bond cleavage with platinum(II) complexes (United States)

    Niroomand Hosseini, Fatemeh; Rashidi, Mehdi; Nabavizadeh, S. Masoud


    Reaction of [PtR2(NN)] (R = Me, p-MeC6H4 or p-MeOC6H4; NN = 2,2‧-bipyridine, 4,4‧-dimethyl-2,2‧-bipyridine, 1,10-phenanthroline or 2,9-dimethyl-1,10-phenanthroline) with MeSSMe gives the platinum(IV) complexes cis,trans-[PtR2(SMe)2(NN)]. They are characterized by NMR spectroscopy and elemental analysis. The geometries and the nature of the frontier molecular orbitals of Pt(IV) complexes containing Ptsbnd S bonds are studied by means of the density functional theory.

  11. Alkali Metal Ion Complexes with Phosphates, Nucleotides, Amino Acids, and Related Ligands of Biological Relevance. Their Properties in Solution. (United States)

    Crea, Francesco; De Stefano, Concetta; Foti, Claudia; Lando, Gabriele; Milea, Demetrio; Sammartano, Silvio


    Alkali metal ions play very important roles in all biological systems, some of them are essential for life. Their concentration depends on several physiological factors and is very variable. For example, sodium concentrations in human fluids vary from quite low (e.g., 8.2 mmol dm(-3) in mature maternal milk) to high values (0.14 mol dm(-3) in blood plasma). While many data on the concentration of Na(+) and K(+) in various fluids are available, the information on other alkali metal cations is scarce. Since many vital functions depend on the network of interactions occurring in various biofluids, this chapter reviews their complex formation with phosphates, nucleotides, amino acids, and related ligands of biological relevance. Literature data on this topic are quite rare if compared to other cations. Generally, the stability of alkali metal ion complexes of organic and inorganic ligands is rather low (usually log K  Na(+) > K(+) > Rb(+) > Cs(+). For example, for citrate it is: log K ML = 0.88, 0.80, 0.48, 0.38, and 0.13 at 25 °C and infinite dilution. Some considerations are made on the main aspects related to the difficulties in the determination of weak complexes. The importance of the alkali metal ion complexes was also studied in the light of modelling natural fluids and in the use of these cations as probes for different processes. Some empirical relationships are proposed for the dependence of the stability constants of Na(+) complexes on the ligand charge, as well as for correlations among log K values of NaL, KL or LiL species (L = generic ligand).

  12. Multifrequency EPR Spectroscopy: A Toolkit for the Characterization of Mono- and Di-nuclear Metal Ion Centers in Complex Biological Systems (United States)

    Hanson, Graeme R.

    Metalloenzymes are ubiquitous in nature containing complex metal ion cofactors intimately involved in the enzymes' biological function. The application of multifrequency continuous wave and orientation selective pulsed EPR in conjunction with computer simulation and density functional theory calculations has proven to be a powerful toolkit for the geometric and electronic structural characterization of these metal ion cofactors in the resting enzyme, enzyme-substrate and -product complexes, which in turn provides a detailed understanding of the enzymes' catalytic mechanism. In this chapter, a brief description of the multifrequency EPR toolkit used to structurally (geometric and electronic) characterize metal ion binding sites in complex biological systems and its application in the structural characterization of (i) molybdenum containing enzymes and model complexes, (ii) mono- and di-nuclear copper(II) cyclic peptide complexes (marine and synthetic analogues) and (iii) dinuclear metal ion centers in purple acid phosphatases will be presented.

  13. New class of scorpionate: tris(tetrazolyl)-iron complex and its different coordination modes for alkali metal ions. (United States)

    Park, Ka Hyun; Lee, Kang Mun; Go, Min Jeong; Choi, Sung Ho; Park, Hyoung-Ryun; Kim, Youngjo; Lee, Junseong


    We report formation of a new metallascorpionate ligand, [FeL3](3-) (IPtz), containing a Fe core and three 5-(2-hydroxyphenyl)-1H-tetrazole (LH2) ligands. It features two different binding sites, oxygen and nitrogen triangles, which consist of three oxygen or nitrogen donors from tetrazole. The binding affinities of the complex for three alkali metal ions were studied using UV spectrophotometry titrations. All three alkali metal ions show high affinities and binding constants (>3 × 10(6) M(-1)), based on the 1:1 binding isotherms to IPtz. The coordination modes of the alkali metals and IPtz in the solid were studied using X-ray crystallography; two different electron-donor sites show different coordination numbers for Li(+), Na(+), and K(+) ions. The oxygen triangles have the κ(2) coordination mode with Li(+) and κ(3) coordination mode with Na(+) and K(+) ions, whereas the nitrogen triangles show κ(3) coordination with K(+) only. The different binding affinities of IPtz in the solid were manipulated using multiple metal precursors. A Fe-K-Zn trimetallic complex was constructed by assembly of an IPtz ligand, K, and Zn precursors and characterized using X-ray crystallography. Oxygen donors are coordinated with the K ion via the κ(3) coordination mode, and nitrogen donors are coordinated with Zn metal by κ(3) coordination. The solid-state structure was confirmed to be a honeycomb coordination polymer with a one-dimensional infinite metallic array, i.e., -(K-K-Fe-Zn-Fe-K)n-.

  14. Examination of the coordination sphere of Al(III) in trifluoromethyl-heteroarylalkenolato complex ions by gas-phase IRMPD spectroscopy and computational modelling. (United States)

    Brückmann, Lisa; Tyrra, Wieland; Mathur, Sanjay; Berden, Giel; Oomens, Jos; Meijer, Anthony J H M; Schäfer, Mathias


    A series of aluminium complex ions with trifluoromethyl-heteroarylalkenolato (TMHA) ligands are studied by gas-phase infrared multiphoton-dissociation (IRMPD) spectroscopy and computational modelling. The selected series of aluminium TMHA complex ions are promising species for the initial study of intrinsic binding characteristics of Al(III) cations in the gas phase as corresponding molecular ions. They are readily available for examination by (+) and (-) electrospray ionization mass spectrometry (ESI-MS) by spraying of [Al(3+)⋅(L(-))(3)] solutions. The complex ions under investigation contain trivalent Al(3+) cations with two chelating anionic enolate ligands, [Al(3+)⋅(L(-))(2)](+), providing insights in the nature of the heteroatom-Al bonds. Additionally, the structure of a deprotonated benzimidazole ligand, L(-,) and an anionic complex ion of Al(III) with two doubly deprotonated benzimidazole ligands, [Al(3+)⋅(L(2-))(2)](-), are examined by (-)ESI-IRMPD spectroscopy. Experimental and computational results are highly consistent and allow a reliable identification of the ion structures. In all complex ions examined the planar TMHA ligands are oriented perpendicular to each other around the metal ion, leading to a tetrahedral coordination sphere in which aluminium interacts with the enolate oxygen and heteroaryl nitrogen atoms available in each of the bidentate ligands.

  15. Change of ion exchange properties of ampholyte VPK in the form of metal complexes during irradiation. 3. Irradiation of VPK in the form of nickel complexes

    Energy Technology Data Exchange (ETDEWEB)

    Tabakova, S.V.; Kiseleva, E.D.


    Change of physicochemical properties of ampholyte VPK at different filling with nickel ions irradiated in the (2-10)x10W Gr dose range is studied. Stable components formed in the resin phase are shown to protect the carboxyl group from decomposition; joint break an heterocycle oxidation with formation of weakly dissociating oxygroups up to 4.5 mg-eq./g increase here. Formation of very strong bonds in the ampholyte structure is stated to produce some protective effect on free, unbound in the complex COOH-groups.

  16. Utility of Charge Transfer and Ion-Pair Complexation for Spectrophotometric Determination of Eletriptan Hydrobromide in Pure and Dosage Forms

    Directory of Open Access Journals (Sweden)

    Ayman A. Gouda


    Full Text Available Three simple, sensitive, and accurate spectrophotometric methods have been developed for the determination of eletriptan hydrobromide (ELT in pure and dosage forms. The first two methods are based on charge transfer complex formation between ELT and chromogenic reagents quinalizarin (Quinz and alizarin red S (ARS producing charge transfer complexes which showed an absorption maximum at 569 and 533 nm for Quinz and ARS, respectively. The third method is based on the formation of ion-pair complex between ELT with molybdenum(V-thiocyanate inorganic complex in hydrochloric acid medium followed by extraction of the colored ion-pair with dichloromethane and measured at 470 nm. Different variables affecting the reactions were studied and optimized. Beer's law is obeyed in the concentration ranges 2.0–18, 1.0–8.0, and 2.0–32 μg mL−1 for Quinz, ARS, and Mo(V-thiocyanate, respectively. The molar absorptivity, Sandell sensitivity, detection, and quantification limits are also calculated. The correlation coefficients were ≥0.9994 with a relative standard deviation (R.S.D%. of ≤0.925. The proposed methods were successfully applied for simultaneous determination of ELT in tablets with good accuracy and precision and without interferences from common additives, and the validity is assessed by applying the standard addition technique, which is compared with those obtained using the reported method.

  17. Tunicate-Inspired Gallic Acid/Metal Ion Complex for Instant and Efficient Treatment of Dentin Hypersensitivity. (United States)

    Prajatelistia, Ekavianty; Ju, Sung-Won; Sanandiya, Naresh D; Jun, Sang Ho; Ahn, Jin-Soo; Hwang, Dong Soo


    Dentin hypersensitivity is sharp and unpleasant pains caused by exposed dentinal tubules when enamel outside of the tooth wears away. The occlusion of dentinal tubules via in situ remineralization of hydroxyapatite is the best method to alleviate the symptoms caused by dentin hypersensitivity. Commercially available dental desensitizers are generally effective only on a specific area and are relatively toxic, and their performance usually depends on the skill of the clinician. Here, a facile and efficient dentin hypersensitivity treatment with remarkable aesthetic improvement inspired by the tunicate-self-healing process is reported. As pyrogallol groups in tunicate proteins conjugate with metal ions to heal the torn body armor of a tunicate, the ingenious mechanism by introducing gallic acid (GA) as a cheap, abundant, and edible alternative to the pyrogallol groups of the tunicate combined with a varied daily intake of metal ion sources is mimicked. In particular, the GA/Fe(3+) complex exhibits the most promising results, to the instant ≈52% blockage in tubules within 4 min and ≈87% after 7 d of immersion in artificial saliva. Overall, the GA/metal ion complex-mediated coating is facile, instant, and effective, and is suggested as an aesthetic solution for treating dentin hypersensitivity.

  18. Trapping of muscle relaxant methocarbamol degradation product by complexation with copper(II) ion: Spectroscopic and quantum chemical studies (United States)

    Mansour, Ahmed M.; Shehab, Ola R.


    Structural properties of methocarbamol (Mcm) were extensively studied both experimentally and theoretically using FT IR, 1H NMR, UV-Vis., geometry optimization, Mulliken charge, and molecular electrostatic potential. Stability arises from hyper-conjugative interactions, charge delocalization and H-bonding was analyzed using natural bond orbital (NBO) analysis. Mcm was decomposed in ethanol/water mixture at 80 °C to guaifenesin [(RS)-3-(2-methoxyphenoxy)propane-1,2-diol] and carbamate ion [NH2COO-], where the degradation mechanism was explained by trapping the carbamate ion via the complexation with copper(II) ion. The structure of the isolated complex ([Cu(NH2COO)2(H2O)]ṡ4H2O) was elucidated by spectral, thermal, and magnetic tools. Electronic spectra were discussed by TD-DFT and the descriptions of frontier molecular orbitals and the relocations of the electron density were determined. Calculated g-tensor values showed best agreement with experimental values from EPR when carried out using both the B3LYP and B3PW91 functional.

  19. Overcoming Statistical Complexity: Selective Coordination of Three Different Metal Ions to a Ligand with Three Different Coordination Sites. (United States)

    Akine, Shigehisa; Matsumoto, Takashi; Nabeshima, Tatsuya


    In general, it is difficult to selectively introduce different metal ions at specific positions of a cluster-like structure. This is mainly due to statistical problems as well as the reversibility of the formation of coordination bonds. To overcome this statistical problem, we used a carefully designed ligand, H6 L, which can accommodate three different kinds of metal ions in three types of coordination sites. The complex [LNiZn2La](3+), which contains three different metals, was quantitatively obtained by a stepwise procedure, but different products were obtained when the metal ions were added in a different order. However, equilibration studies indicated that this complex was almost solely formed among 54 (=3×3×3H2) possible products upon heating; the formation efficiency (ca. 100%) was significantly higher than the statistical probability (2.47%). Such carefully designed ligands should be useful for the synthesis multimetallic systems, which are of interest because of the interplay between the different metals.

  20. Determination of copper(I) and copper(II) ions after complexation with bicinchoninic acid by CE. (United States)

    Basheer, Chanbasha; Lee, Hian Kee


    A facile, sensitive, and selective method was developed for the simultaneous separation and determination of copper(I) [Cu(+)] and copper(II) [Cu(2+)] ions using CE with direct UV detection. The copper ions were complexed with a 1.5 mM bicinchoninic acid disodium salt solution at pH 8.7 prior to analysis. Acetate buffer (2 mM) was used as the CE running buffer. Parameters affecting CE separation such as sample pH, applied voltage, concentration of complexing agent, nature of the buffer solution, and interferences by other metal ions, were evaluated. The LODs for Cu(+) and Cu(2+) were 3.0 and 2.5 microg/mL (S/N = 3), respectively. The developed method allows the simultaneous determination of Cu(+) and Cu(2+) in less than 5 min with RSDs of between 5.3 and 9.5% for migration time and between 3.4 and 9.7% for peak areas, respectively. At optimum conditions, the percentage recoveries of Cu(+) and Cu(2+) were found to be 99.4 and 99.5%.

  1. Silver release and antimicrobial properties of PMMA films doped with silver ions, nano-particles and complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lyutakov, O., E-mail: [Department of Solid State Engineering, Institute of Chemical Technology, Prague (Czech Republic); Goncharova, I. [Department of Analytical Chemistry, Institute of Chemical Technology, Prague (Czech Republic); Rimpelova, S. [Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague (Czech Republic); Kolarova, K.; Svanda, J.; Svorcik, V. [Department of Solid State Engineering, Institute of Chemical Technology, Prague (Czech Republic)


    Materials prepared on the base of bioactive silver compounds have become more and more popular due to low microbial resistance to silver. In the present work, the efficiency of polymethylmethacrylate (PMMA) thin films doped with silver ions, nanoparticles and silver–imidazole polymer complex was studied by a combination of AAS, XPS and AFM techniques. The biological activities of the proposed materials were discussed in view of the rate of silver releasing from the polymer matrix. Concentrations of Ag active form were estimated by its ability to interact with L-cysteine using electronic circular dichroism spectroscopy. Rates of the released silver were compared with the biological activity in dependence on the form of embedded silver. Antimicrobial properties of doped polymer films were studied using two bacterial strains: Staphylococcus epidermidis and Escherichia coli. It was found that PMMA films doped with Ag{sup +} had greater activity than those doped with nanoparticles and silver–imidazole polymeric complexes. However, the antimicrobial efficiency of Ag{sup +} doped films was only short-term. Contrary, the antimicrobial activity of silver–imidazole/PMMA films increased in time of sample soaking. - Highlights: • PMMA thin films doped with silver ions, nanoparticles (AgNPs) and silver–imidazole helical complexes (AgIm) were studied. • Silver release from doped polymer films and its biological activity were estimated. • Antimicrobial properties of doped polymer films were also studied. • Ag ions doped films showed the strongest antimicrobial activity, which quickly disappeared. • AgIm and AgNPs doped films showed more stable antimicrobial properties. • AgIm complexes conserve their structure after addition into polymer and after leaching.

  2. Structure effect of molybdenum (5) complexes on its activity in appearance of catalytic polarographic currents of chlorate- and perchlorate ions

    Energy Technology Data Exchange (ETDEWEB)

    Zajtsev, P.M.; Zhdanov, S.I.; Dergacheva, E.N.; Savchenko, E.N.; Nikolaeva, T.D. (Vsesoyuznyj Nauchno-Issledovatel' skij Inst. Khimicheskikh Reaktivov i Osobo Chistykh Veshchestv, Moscow (USSR))


    Polarographic behaviour and reactivity of synthesized molybdenum (5) in reactions, conditioning catalytic currents of ClO/sub 3//sup -/ and ClO/sub 4//sup -/ have been studied. Their comparison with similar characteristics for molybdenum (5) appearing in the process of Mo (6) solution polarography is made. For the purpose a salt of molybdenum (5) in H/sub 2/SO/sub 4/, HCl and HClO/sub 4/ solutions have been synthesized by electrochemical and chemical ways. It has been established that in reactions conditioning catalytic currents of chlorate- and perchlorate-ions the preservation of structure of Mo (6) complex in the Mo (5) complex formed, i.e. processes of Mo (5) complex ageing, plays a very significant role.

  3. [4 + 2] cycloadditions of N-alkenyl iminium ions: structurally complex heterocycles from a three-component Diels-Alder reaction sequence. (United States)

    Sarkar, Nihar; Banerjee, Abhisek; Nelson, Scott G


    N-Alkenyl iminium ions serve as conduits to three-component [4 + 2] cycloaddition reactions accessing structurally and stereochemically diverse piperidine derivatives. These cationic 2-azadienes participate in endo- or exo-selective [4 + 2] cycloadditions with electron-rich and neutral alkene dienophiles to generate a tetrahydropyridinium ion as the initial cycloadduct. In situ nucleophilic addition to the cycloaddition-derived iminium ion completes the three-component coupling sequence and affords a versatile synthesis of structurally complex piperidines.

  4. Removal of fluoride ion from aqueous solution by a cerium-poly(hydroxamic acid) resin complex. (United States)

    Haron, M J; Yunus, W M


    A cerium-loaded poly(hydroxamic acid) chelating ion exchanger was used for fluoride ion removal from aqueous solution. The resin was effective in decreasing the fluoride concentration from 5 mM down to 0.001 mM in acidic pH between 3 and 6. The sorption followed a Langmuir model with a maximum capacity of 0.5 mmol/g. The removal is accomplished by an anion exchange mechanism. The rate constant for the sorption was found to be 9.6 x 10(-2) min-1. A column test shows that the fluoride ion was retained on the column until breakthrough point and the fluoride sorbed in the column can be eluted with 0.1 M NaOH. The column can be reused after being condition with hydrochloric acid at pH 4. The resin was tested and found to be effective for removal of fluoride from actual industrial wastewater.

  5. Variation in viscosity and ion conductivity of a polymer–salt complex exposed to gamma irradiation

    Indian Academy of Sciences (India)

    Sujata Tarafdar; S K De; Sujit Manna; Udayan De; Pradyot Nanda


    We study changes in microstructure and resulting changes in the properties of PEO(1 − )–NH4 ClO4 () samples where = 0.18, when irradiated with gamma doses varying up to 50 kGy. Viscosities of aqueous solutions of the irradiated samples give an idea of the change in molecular weight and show correlation with ion conductivity. On the whole, there is a chain scission on irradiation, though there is evidence of some cross-linking at higher doses. The ion conductivity shows a strong increase for an irradiation of 35 kGy. DSC studies indicate a decrease in crystallinity with gamma dose.

  6. Quantifying the binding strength of salicylaldoxime-uranyl complexes relative to competing salicylaldoxime-transition metal ion complexes in aqueous solution: a combined experimental and computational study. (United States)

    Mehio, Nada; Ivanov, Alexander S; Williams, Neil J; Mayes, Richard T; Bryantsev, Vyacheslav S; Hancock, Robert D; Dai, Sheng


    The design of new ligands and investigation of UO2(2+) complexations are an essential aspect of reducing the cost of extracting uranium from seawater, improving the sorption efficiency for uranium and the selectivity for uranium over competing ions (such as the transition metal cations). The binding strengths of salicylaldoxime-UO2(2+) complexes were quantified for the first time and compared with the binding strengths of salicylic acid-UO2(2+) and representative amidoxime-UO2(2+) complexes. We found that the binding strengths of salicylaldoxime-UO2(2+) complexes are ∼2-4 log β2 units greater in magnitude than their corresponding salicylic acid-UO2(2+) and representative amidoxime-UO2(2+) complexes; moreover, the selectivity of salicylaldoxime towards the UO2(2+) cation over competing Cu(2+) and Fe(3+) cations is far greater than those reported for salicylic acid and glutarimidedioxime in the literature. The higher UO2(2+) selectivity can likely be attributed to the different coordination modes observed for salicylaldoxime-UO2(2+) and salicylaldoxime-transition metal complexes. Density functional theory calculations indicate that salicylaldoxime can coordinate with UO2(2+) as a dianion species formed by η(2) coordination of the aldoximate and monodentate binding of the phenolate group. In contrast, salicylaldoxime coordinates with transition metal cations as a monoanion species via a chelate formed between phenolate and the oxime N; the complexes are stabilized via hydrogen bonding interactions between the oxime OH group and phenolate. By coupling the experimentally determined thermodynamic constants and the results of theoretical computations, we are able to derive a number of ligand design principles to further improve the UO2(2+) cation affinity, and thus further increase the selectivity of salicylaldoxime derivatives.

  7. Surface-Induced Dissociation of Protein Complexes in a Hybrid Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jing; Zhou, Mowei; Gilbert, Joshua D.; Wolff, Jeremy J.; Somogyi, Árpád; Pedder, Randall E.; Quintyn, Royston S.; Morrison, Lindsay J.; Easterling, Michael L.; Paša-Tolić, Ljiljana; Wysocki, Vicki H.


    Mass spectrometry continues to develop as a valuable tool in the analysis of proteins and protein complexes. In protein complex mass spectrometry studies, surface-induced dissociation (SID) has been successfully applied in quadrupole time-of-flight (Q-TOF) instruments. SID provides structural information on non-covalent protein complexes that is complementary to other techniques. However, the mass resolution of Q-TOF instruments can limit the information that can be obtained for protein complexes by SID. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provides ultrahigh resolution and ultrahigh mass accuracy measurements. In this study, an SID device was designed and successfully installed in a hybrid FT-ICR instrument in place of the standard gas collision cell. The SID-FT-ICR platform has been tested with several protein complex systems (homooligomers, a heterooligomer, and a protein-ligand complex, ranging from 53 kDa to 85 kDa), and the results are consistent with data previously acquired on Q-TOF platforms, matching predictions from known protein interface information. SID fragments with the same m/z but different charge states are well-resolved based on distinct spacing between adjacent isotope peaks, and the addition of metal cations and ligands can also be isotopically resolved with the ultrahigh mass resolution available in FT-ICR.

  8. Synthesis, physico-chemical characterization and biological activity of 2-aminobenzimidazole complexes with different metal ions

    Directory of Open Access Journals (Sweden)

    Podunavac-Kuzmanović Sanja O.


    Full Text Available Complexes of 2-aminobenzimidazole (L with nitrates of cobalt(II nickel(II, copper (II, zinc(II and silver(I were synthesized. The molar ratio metal:ligand in the reaction of the complex formation was 1:2. It should be noticed, that the reaction of all the metal salts yielded bis(ligand complexes of the general formula M(L2(NO32 × nH2O (M=Co, Ni Cu, Zn or Ag; n=0, 1, 2 or 6. The complexes were characterized by elemental analysis of the metal, molar conductivity, magnetic susceptibility measurements and IR spectra. Co(II, Ni(II and Cu(II complexes behave as non-electrolytes, whilst Zn(II and Ag(I are 1:1 electrolytes. Cu(II complex has a square-planar stereochemistry, Ag(I complex is linear, whilst the Co(II, Ni(II and Zn(II complexes have a tetrahedral configuration. In all the complexes ligand is coordinated by participation of the pyridine nitrogen of the benzimidazole ring. The antimicrobial activity of the ligand and its complexes against Pseudomonas aeruginosa, Bacillus sp. Staphylococcus aureus and Saccharomyces cerevisiae was investigated. The effect of metal on the ligand antimicrobial activity is discussed.

  9. Gas Phase Reactions of Ions Derived from Anionic Uranyl Formate and Uranyl Acetate Complexes (United States)

    Perez, Evan; Hanley, Cassandra; Koehler, Stephen; Pestok, Jordan; Polonsky, Nevo; Van Stipdonk, Michael


    The gas-phase oxidation of doubly protonated peptides containing neutral basic residues to various products, including [M + H + O]+, [M - H]+, and [M - H - NH3]+, is demonstrated here via ion/ion reactions with periodate. It was previously demonstrated that periodate anions are capable of oxidizing disulfide bonds and methionine, tryptophan, and S-alkyl cysteine residues. However, in the absence of these easily oxidized sites, we show here that systems containing neutral basic residues can undergo oxidation. Furthermore, we show that these neutral basic residues primarily undergo different types of oxidation (e.g., hydrogen abstraction) reactions than those observed previously (i.e., oxygen transfer to yield the [M + H + O]+ species) upon gas-phase ion/ion reactions with periodate anions. This chemistry is illustrated with a variety of systems, including a series of model peptides, a cell-penetrating peptide containing a large number of unprotonated basic sites, and ubiquitin, a roughly 8.6 kDa protein.

  10. Two-step flash light sintering process for enhanced adhesion between copper complex ion/silane ink and a flexible substrate

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Eun-Beom; Joo, Sung-Jun [Department of Mechanical Convergence Engineering, Hanyang University, Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Ahn, Heejoon [Department of Organic and Nano Engineering, Hanyang University, Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Kim, Hak-Sung, E-mail: [Department of Mechanical Convergence Engineering, Hanyang University, Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul 133-791 (Korea, Republic of)


    A copper complex ion ink (including copper nanoparticles, a copper precursor and a silane coupling agent) was synthesized to enhance the adhesion between the copper pattern and a polyimide (PI) substrate. Oxygen plasma treatment was performed on the polyimide substrate to initiate a chemical reaction between the complex ion ink and the polyimide. Then, a two-step flash light sintering method (consisting of preheating and main sintering) was used to sinter the copper complex ion ink. The copper complex ion patterns were characterized as a function of the weight fraction of silane coupling agent using scanning electron microscopy (SEM), a four-point probe method and adhesion testing. In addition, a bending fatigue test was performed to evaluate the reliability of the conductive copper pattern under cyclic bending. The copper pattern fabricated with copper complex ion ink containing 3 wt% silane coupling agent exhibited the highest adhesion level (5B), the lowest resistivity (7.6 μΩ·cm) and a low resistance change (18%) after the bending fatigue test. The two-step sintering method used to enhance the adhesion between the copper complex ion ink and polyimide substrate was also studied using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). - Highlights: • The copper complex ion ink with copper nanoparticles and copper precursor was fabricated. • The copper complex ion ink was sintered by two-step flash light sintering method. • The sintered copper pattern exhibited the highest adhesion level (5B). • The resistivity of sintered copper pattern was 7.6 μΩ·cm.

  11. Theoretical investigation of the optical and EPR parameters for VO{sup 2+}ion in some complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kalfaoglu, Emel [OndokuzMay Latin-Small-Letter-Dotless-I s University, Faculty of Sciences, Department of Physics, 55139 Kurupelit-Samsun (Turkey); Karabulut, Buenyamin, E-mail: [OndokuzMay Latin-Small-Letter-Dotless-I s University, Faculty of Sciences, Department of Physics, 55139 Kurupelit-Samsun (Turkey)


    The molecular orbital coefficients and the EPR parameters of trisodium citrate dihydrate, sodium hydrogen oxalate monohydrate, potassium d-gluconate monohydrate and L-Alanine vanadyl complexes are calculated theoretically. Two d-d transition spectra and EPR parameters for the VO{sup 2+} complex are calculated theoretically by using crystal-field theory. The calculated g and A paramaters have indicated that paramagnetic center is axially symmetric. Having the relations of g{sub Parallel-To } Left-Pointing-Angle-Bracket g{sub Up-Tack } Left-Pointing-Angle-Bracket g{sub e} and A{sub Parallel-To } Right-Pointing-Angle-Bracket A{sub Up-Tack} for VO{sup 2+} ions, it can be concluded that VO{sup 2+} ions are located in distorted octahedral sites (C{sub 4v}) elongated along the z-axis and the ground state of the paramagnetic electron is d{sub xy}. - Highlights: Black-Right-Pointing-Pointer The EPR parameters and molecular orbital coefficients are calculated theoretically. Black-Right-Pointing-Pointer The g and A values of all complexes are found to be nearly axially symmetric. Black-Right-Pointing-Pointer The ground state of the paramagnetic electron is d{sub xy.}.

  12. In silico identification and characterization of the ion transport specificity for P-type ATPases in the Mycobacterium tuberculosis complex

    Directory of Open Access Journals (Sweden)

    Novoa-Aponte Lorena


    Full Text Available Abstract Background P-type ATPases hydrolyze ATP and release energy that is used in the transport of ions against electrochemical gradients across plasma membranes, making these proteins essential for cell viability. Currently, the distribution and function of these ion transporters in mycobacteria are poorly understood. Results In this study, probabilistic profiles were constructed based on hidden Markov models to identify and classify P-type ATPases in the Mycobacterium tuberculosis complex (MTBC according to the type of ion transported across the plasma membrane. Topology, hydrophobicity profiles and conserved motifs were analyzed to correlate amino acid sequences of P-type ATPases and ion transport specificity. Twelve candidate P-type ATPases annotated in the M. tuberculosis H37Rv proteome were identified in all members of the MTBC, and probabilistic profiles classified them into one of the following three groups: heavy metal cation transporters, alkaline and alkaline earth metal cation transporters, and the beta subunit of a prokaryotic potassium pump. Interestingly, counterparts of the non-catalytic beta subunits of Hydrogen/Potassium and Sodium/Potassium P-type ATPases were not found. Conclusions The high content of heavy metal transporters found in the MTBC suggests that they could play an important role in the ability of M. tuberculosis to survive inside macrophages, where tubercle bacilli face high levels of toxic metals. Finally, the results obtained in this work provide a starting point for experimental studies that may elucidate the ion specificity of the MTBC P-type ATPases and their role in mycobacterial infections.

  13. Halide ions complex and deprotonate dipicolinamides and isophthalamides: assessment by mass spectrometry and UV-visible spectroscopy. (United States)

    Carasel, I Alexandru; Yamnitz, Carl R; Winter, Rudolph K; Gokel, George W


    The F(-), Cl(-), and Br(-) binding selectivity of bis(p-nitroanilide)s of dipicolinic and isophthalic acids was studied by using competitive electrospray mass spectrometry and UV-Visible spectroscopy. Both hosts prefer binding Cl(-) over either F(-) or Br(-). Host deprotonation was observed to some extent in all experiments in which the host was exposed to halide ions. When F(-) was present, host deprotonation was often the major process, whereas little deprotonation was observed by Cl(-) or Br(-), which preferred complexation. A solution of either host changed color when mixed with a F(-), H(2)PO(4)(-), di- or triphenylacetate solution.

  14. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs. (United States)

    Johnstone, Timothy C; Suntharalingam, Kogularamanan; Lippard, Stephen J


    The platinum drugs, cisplatin, carboplatin, and oxaliplatin, prevail in the treatment of cancer, but new platinum agents have been very slow to enter the clinic. Recently, however, there has been a surge of activity, based on a great deal of mechanistic information, aimed at developing nonclassical platinum complexes that operate via mechanisms of action distinct from those of the approved drugs. The use of nanodelivery devices has also grown, and many different strategies have been explored to incorporate platinum warheads into nanomedicine constructs. In this Review, we discuss these efforts to create the next generation of platinum anticancer drugs. The introduction provides the reader with a brief overview of the use, development, and mechanism of action of the approved platinum drugs to provide the context in which more recent research has flourished. We then describe approaches that explore nonclassical platinum(II) complexes with trans geometry or with a monofunctional coordination mode, polynuclear platinum(II) compounds, platinum(IV) prodrugs, dual-threat agents, and photoactivatable platinum(IV) complexes. Nanoparticles designed to deliver platinum(IV) complexes will also be discussed, including carbon nanotubes, carbon nanoparticles, gold nanoparticles, quantum dots, upconversion nanoparticles, and polymeric micelles. Additional nanoformulations, including supramolecular self-assembled structures, proteins, peptides, metal-organic frameworks, and coordination polymers, will then be described. Finally, the significant clinical progress made by nanoparticle formulations of platinum(II) agents will be reviewed. We anticipate that such a synthesis of disparate research efforts will not only help to generate new drug development ideas and strategies, but also will reflect our optimism that the next generation of approved platinum cancer drugs is about to arrive.

  15. Spectrophotometric study of the charge-transfer and ion-pair complexation of methamphetamine with some acceptors (United States)

    Shahdousti, Parvin; Aghamohammadi, Mohammad; Alizadeh, Naader


    The charge-transfer (CT) complexes of methamphetamine (MPA) as a n-donor with several acceptors including bromocresolgreen (BCG), bromocresolpurple (BCP), chlorophenolred (CPR), picric acid (PIC), and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) have been studied spectrophotometrically in chloroform solutions in order to obtain some information about their stoichiometry and stability of complexation. The oscillator strengths, transition dipole moments and resonance energy of the complex in the ground state for all complexes have been calculated. Vertical ionization potential of MPA and electron affinity of acceptors were determined by ab initio calculation. The acceptors were also used to utilize a simple and sensitive extraction-spectrophotometric method for the determination of MPA. The method is based on the formation of 1:1 ion-pair association complexes of MPA with BCG, BCP and PIC in chloroform medium. Beer's plots were obeyed in a general concentration range of 0.24-22 μg ml -1 for the investigated drug with different acceptors. The proposed methods were applied successfully for the determination of MAP in pure and abuse drug with good accuracy and precision.

  16. Metal-ion interactions with sugars. The crystal structure and FTIR study of an SrCl2-fructose complex. (United States)

    Guo, Jianyu; Zhang, Xiangmin


    The single-crystal structure of SrCl2 x 2C6H12O6 x 3H2O was determined with Mr = 572.88, a = 16.252, b = 7.941(2), c = 10.751(3) angstroms, beta = 127.652(4) degrees, V = 1098.5(6) angstroms3, C2, Z = 2, mu = 0.71073 angstroms and R = 0.0296 for 1998 observed reflections. The fructose moiety of the complex exists as a beta-d-pyranose. The strontium atom is surrounded by eight oxygen atoms, which are arranged in symmetry-related pairs that are derived from four sugar and two water molecules. Three nonvicinal hydroxyl groups of fructose are involved in strontium binding. All the hydroxyl groups and water molecules are involved in forming an extensive hydrogen-bond network. The Sr-fructose complex is isostructural with the Ca-fructose complex, and the crystal structures and FTIR spectra of the two complexes are compared in this article. The O-H, C-O, and C-O-H vibrations are shifted, and the relative intensities changed in the complexes IR spectra, which indicate sugar metalation. By studying the metal-binding properties of fructose, it is hoped that such would aid in the understanding of the structural chemistry of metal ions interacting with saccharides, as an actual biological system, and thereby aid in the interpretation of some particular biological processes.

  17. Synthesis, Characterization and Spectral Studies of Noble Heterobinuclear Complexes of Transition Metal Ions and their Biological Activity

    Directory of Open Access Journals (Sweden)

    Netra Pal Singh


    Full Text Available Some noble heterobinuclear complexes of transition metal ions with bis(salicylaldehydemalonyl-dihydrazone in the presence of 5-nitroindazole Cu(II / Ni(II- chloride of the type [ML1M‘L2Cl2] or [ML1FeL2Cl2]Cl, where M = Ni(II, Cu(II and M' = Mn(II, Co(II, have been prepared. All the complexes have been characterized by IR, UV vis and EPR spectroscopy, elemental analysis, magnetic moment and molar conductance measurement. Spectral studies and magnetic moment measurement in DMF suggest the covalent nature of the complexes, except the [ML1FeL2Cl2]Cl complex which is 1:1 electrolyte. An octahedral geometry is proposed for M‘ and square planer for M for the heterobinuclear complexes. The low value of magnetic moment and overlapping EPR signals are due to spin crossover since both of the metals have unpaired electrons with same molecular symmetry. The lowering of the magnetic moment has been discussed. The biological activity (antifungal and antibacterial of the represented compounds has been studied.

  18. Upscaling Radionuclide Retardation?Linking the Surface Complexation and Ion Exchange Mechanistic Approach to a Linear Kd Approach

    Energy Technology Data Exchange (ETDEWEB)

    Zavarin, M; Carle, S; Maxwell, R


    The LLNL near-field hydrologic source term (HST) model is based on a mechanistic approach to radionuclide retardation-that is, a thermodynamic description of chemical processes governing retardation in the near field, such as aqueous speciation, surface complexation, ion exchange, and precipitation The mechanistic approach allows for radionuclide retardation to vary both in space and time as a function of the complex reaction chemistry of the medium. This level of complexity is necessary for near-field HST transport modeling because of the non-linear reaction chemistry expected close to the radiologic source. Large-scale Corrective Action Unit (CAU) models-into which the near-field HST model results feed-require that the complexity of the mechanistic approach be reduced to a more manageable form (e.g. Linear, Langmuir, or Freundlich sorption isotherms, etc). The linear sorption isotherm (or K{sub d}) approach is likely the most simple approach for large-scale CAU models. It may also be the most appropriate since the reaction chemistry away from the near field is expected to be less complex and relatively steady state. However, if the radionuclide retardation approaches in near-field HST and large-scale CAU models are different, they must be proved consistent. In this report, we develop a method to link the near-field HST and large-scale CAU model radionuclide retardation approaches.


    Directory of Open Access Journals (Sweden)

    Maciej Thomas


    Full Text Available The article presents the issues concerning physical and chemical parameters of raw sewage from the production of printed circuit boards and the composition of the bath used technology in terms of meeting the requirements for the introduction of treated wastewater into surface waters, ground or the municipal sewage system. Showed test results for the removal of organic compounds and ions complexed copper (II and tin (II and (IV using coagulants containing ions of Fe (II and Fe (III. The studies showed the high efficiency of removal of organic compounds and tin compounds. Explained the possible causes of the difficulties of precipitation complexed copper ions (II.

  20. Anticancer and DNA binding activities of platinum (IV) complexes; importance of leaving group departure rate. (United States)

    Pouryasin, Zahra; Yousefi, Reza; Nabavizadeh, S Masoud; Rashidi, Mehdi; Hamidizadeh, Peyman; Alavianmehr, Mohammad-Mehdi; Moosavi-Movahedi, Ali Akbar


    The two six-coordinate Pt(IV) complexes, containing bidentate nitrogen donor/methyl ligands with general formula [Pt(X)2Me2((t)bu2bpy)], where (t)bu2bpy = 4,4'-ditert-butyl-2,2'-bipyridine and X = Cl (C1) or Br (C2), serving as the leaving groups were synthesized for evaluation of their anticancer activities and DNA binding properties. To examine anticancer activities of the synthetic complexes, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and ethidium bromide/acridine orange (EB/AO) staining method were performed. The binding properties of these complexes to DNA and purine nucleotides were examined, using different spectroscopic techniques. These complexes demonstrated significant anticancer activities against three cancer cell lines Jurkat, K562, and MCF-7. On the basis of the results of EB/AO staining, C1 and C2 were also capable to induce apoptosis in cancer cells. These complexes comprise halide leaving groups, displaying different departure rates; accordingly, they demonstrated slightly dissimilar anticancer activity and significantly different DNA/purine nucleotide binding properties. The results of DNA interaction studies of these complexes suggest a mixed-binding mode, comprising partial intercalation and groove binding. Overall, the results presented herein indicate that the newly synthesized Pt(IV) complexes are promising class of the potential anticancer agents which can be considered as molecular templates in designing novel platinum anticancer drugs. This study also highlights the importance of leaving group in anticancer activity and DNA binding properties of Pt(IV) complexes.

  1. Sensitization of visible and NIR emitting lanthanide(III) ions in noncentrosymmetric complexes of hexafluoroacetylacetone and unsubstituted monodentate pyrazole. (United States)

    Ahmed, Zubair; Iftikhar, K


    A series of highly volatile eight-coordinate air and moisture stable lanthanide complexes of the type [Ln(hfaa)3(L)2] (Ln = Pr (1), Nd (2), Eu (3), Gd (4), Tb (5), Dy (6), Ho (7), Er (8), Tm (9), and Yb (10); hfaa = anion of hexafluoroacetylacetone and L = pyrazole) have been synthesized and characterized by elemental analysis, IR, ESI-MS(+), and NMR studies. Single-crystal X-ray structures have been determined for the Eu(III) and Dy(III) complexes. These complexes crystallize in the monoclinic space group P2(1)/c. The lanthanide ion in each of these complexes is eight-coordinate with six oxygen atoms from three hfaa and two N-atoms from two pyrazole units, forming a coordination polyhedron best describable as a distorted square antiprism. The NMR spectra reveal that both the pyrazole units remain attached to the metal in solution and the β-diketonate and pyrazole protons are shifted in opposite directions in the case of paramagnetic complexes. The lanthanide-induced chemical shifts are dipolar in nature. The hypersensitive transitions of Nd(III), Ho(III), and Er(III) are sensitive to the environment (solvent), which is reflected by the oscillator strength and band shape of these transitions. The band shape due to the hypersensitive transition of Nd(III) in noncoordinating chloroform and dichloromethane is similar to those of the typical eight-coordinate Nd(III) β-diketonate complexes. The quantum yield and lifetime of Pr(III), Eu(III), Tb(III), Dy(III), and Tm(III) in visible and Pr(III), Nd(III), Dy(III), Ho(III), Er(III) Tm(III), and Yb(III) in the NIR region are sizable. The environment around these metal ions is asymmetric, which leads to increased radiative rates and luminescence efficiencies. The quantum yield of the complexes reveal that ligand-to-metal energy transfer follows the order Eu(III) > Tb(III) ≫ Pr(III) > Dy(III) > Tm(III). Both ligands (hfaa and pyrazole) are good sensitizers for all the visible and NIR emitters effectively, except for Tb

  2. Synthesis and Defect Structure Analysis of Complex Oxides for Li-Ion Battery Electrodes (United States)

    Hao, Xiaoguang

    Lithium-ion batteries have attracted increased attention for energy storage development due to the vast demand from portable electronics, (hybrid) electric vehicles and future power grids. The research in this dissertation is focused on the development of oxide electrodes for lithium-ion batteries with high power density and improved stability. One of the promising cathodes for lithium-ion batteries is lithium manganospinel (LiMn2O4). However, this compound suffers from manganese dissolution and a Jahn-Teller distortion due to Mn3+, especially in oxygen deficient LiMn2O4-delta. Hydrothermal based synthesis methods were developed to eliminate oxygen vacancies to enable high power in cathodes composed of nano-sized spinel particles. The relationship between oxygen defects and the capacity fading mechanism was demonstrated, and collapse of the mechanical structure was identified in defect-rich LiMn 2O4-delta. Next, the nickel substituted manganospinel, LiNi0.5Mn 1.5O4 shows unexpected high voltage side reactions. To overcome this drawback, a thin and chemically inert titanate was used as an artificial SEI (solid electrolyte interface) coating to prohibit transition-metal dissolution and parasitic side reactions, which led to a 200% improvement of the capacity retention at 55°C and negligible polarization losses. Finally, the spinel-structured lithium titanate (Li 4Ti5O12) is introduced as an anode material for lithium-ion batteries due to its higher operating potential and excellent structural stability compared to current graphite anodes. However, the poor electronic conductivity and low lithium diffusion coefficient hinder its wide application. Given these advantages, a facile, low-cost solution method is explored to synthesize nano-sized titanates. Rapid charge/ discharge was achieved up to rates of 100 C (36 second charge/ discharge) due to a shorter lithium mean-free path and better contact between the active material and conductive agents.

  3. Late transition metal m-or chemistry and D6 metal complex photoeliminations

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, Paul [Univ. of Missouri, Columbia, MO (United States)


    With the goal of understanding and controlling photoreductive elimination reactions from d6 transition metal complexes as part of a solar energy storage cycle we have investigated the photochemistry of Pt(IV) bromo, chloro, hydroxo, and hydroperoxo complexes. Photoreductive elimination reactions occur for all of these complexes and appear to involve initial Pt-Br, Pt-Cl, or Pt-O bond fission. In the case of Pt-OH bond fission, the subsequent chemistry can be controlled through hydrogen bonding to the hydroxo group.

  4. A comparative study of chelating and cationic ion exchange resins for the removal of palladium(II) complexes from acidic chloride media. (United States)

    Hubicki, Zbigniew; Wołowicz, Anna


    The increasing demand for palladium for technological application requires the development of ion exchange chromatography. Recently ion exchange chromatography has developed largely as a result of new types of ion exchangers available on the market of which two types are widely applied. One of them are selective (chelating) and modified ion exchangers and the other one are liquid exchangers. Two types of ion exchange resins such as chelating (Lewatit TP 214, Purolite S 920) and cationic (Chelite S, Duolite GT 73) ion exchangers are used for the recovery of palladium(II) complexes from chloride media (0.1-2.0M HCl-1.0M NaCl-0.0011 M Pd(II); 0.1-2.0M HCl-2.0M NaCl-0.0011M Pd(II)). The influence of concentration of hydrochloric acid, sodium chloride as well as the phase contact time on the degree of recovery of palladium(II) complexes was studied. Moreover, the amount of palladium(II) chlorocomplexes sorbed onto ion exchangers, the working ion exchange capacities and the weight and bed distribution coefficients were calculated in order to judge which of two types of resins possesses the best performance towards palladium(II) complexes.

  5. Complex impedance and conductivity of agar-based ion-conducting polymer electrolytes (United States)

    Nwanya, A. C.; Amaechi, C. I.; Udounwa, A. E.; Osuji, R. U.; Maaza, M.; Ezema, F. I.


    Agar-based electrolyte standing films with different salts and weak acids as ion and proton conductors were prepared and characterized by X-ray diffraction, UV-visible spectrophotometry, photoluminescence emission spectroscopy and electrochemical impedance spectroscopy. The salts used are lithium perchlorate (LiClO4) and potassium perchlorate (KClO4), while the weak acids used are acetic acid (CH3COOH) and lactic acid (C3H6O3). The values of the ion conductivity obtained for the agar-based polymer films are 6.54 × 10-8, 9.12 × 10-8, 3.53 × 10-8, 2.24 × 10-8 S/cm for the agar/acetic acid, agar/lactic acid, agar/LiClO4 and agar/KClO4 polymer films, respectively. As a function of temperature, the ion conductivity exhibits an Arrhenius behavior and the estimated activation energy is ≈0.1 eV for all the samples. The samples depicted high values of dielectric permittivity toward low frequencies which is due mostly to electrode polarization effect. The samples showed very high transparency (85-98 %) in the visible region, and this high transparency is one of the major requirements for application in electrochromic devices (ECD). The values of conductivity and activation energy obtained indicate that the electrolytes are good materials for application in ECD.

  6. Kinetic simulation of complex decomposition as a tool for the ion chromatographic determination of elemental speciation of less inert metal ions. (United States)

    Winter, Christian; Seubert, Andreas


    Species decomposition is an often occurring artefact during the chromatographic determination of elemental speciation. The decomposition follows a simple path to lower coordinated compounds. Therefore a simulation is developed for those decomposition reactions. The simulation separates the isochronal processes of the separation itself and the ongoing reaction and delivers thermodynamic and kinetic information about the species present in the original sample. This shifts the boundaries of separation based elemental speciation to less inert metal ions which are typically not analyzable by this approach. The less inert gallium monooxalato complex [GaOx](+) is used as example for testing the simulation software as this complex decomposes only to Ga(3+) and both species are retained on cation exchange columns. We extracted thermodynamic and kinetic information from flow rate experiments by the analysis of the peak areas in the chromatogram. The results show that some of our assumptions such as the irreversibility under the applied chromatographic conditions are not ultimately true, but good accordance of simulation and measured data was achieved.

  7. Using low-frequency IR spectra for the unambiguous identification of metal ion-ligand coordination sites in purpose-built complexes. (United States)

    Varga, Gábor; Csendes, Zita; Peintler, Gábor; Berkesi, Ottó; Sipos, Pál; Pálinkó, István


    One of the aims of our long-term research is the identification of metal ion-ligand coordination sites in bioinspired metal ion-C- or N-protected amino acid (histidine, tyrosine, cysteine or cystine) complexes immobilised on the surface of chloropropylated silica gel or Merrifield resin. In an attempt to reach this goal, structurally related, but much simpler complexes have been prepared and their metal ion-ligand vibrations were determined from their low-frequency IR spectra. The central ions were Mn(II), Co(II), Ni(II) or Cu(II) and the ligands (imidazole, isopropylamine, monosodium malonate) were chosen to possess only one-type of potential donor group. The low-frequency IR spectra were taken of the complexes for each ion-ligand combination and the typical metal ion-functional group vibration bands were selected and identified. The usefulness of the obtained assignments is demonstrated on exemplary immobilised metal ion-protected amino acid complexes.

  8. A [Cyclentetrakis(methylene)]tetrakis[2-hydroxybenzamide]Ligand That Complexes and Sensitizes Lanthanide(III) Ions

    Energy Technology Data Exchange (ETDEWEB)

    D' Aleo, Anthony; Xu, Jide; Do, King; Muller, Gilles; Raymond, Kenneth N.


    The synthesis of a cyclen derivative containing four isophthalamide groups (L{sup 1}) is described. The spectroscopic properties of the Ln(III) complexes of L{sup 1} (Ln = Gd, Tb, Yb, Eu) reveal changes of the UV/visible absorption, circular dichroism absorption, luminescence and circularly polarized luminescence properties. It is shown that at least two metal complex species are present in solution, whose relative amounts are pH dependent. When at pH > 8.0, an intense long lived emission is observed (for [L{sup 1}Tb] and [L{sup 1}Yb]) while at pH < 8.0, a weaker, shorter-lived species predominates. Unconventional Ln(III) emitters (Pr, Nd, Sm, Dy and Tm) were sensitized in basic solution, both in the visible and in the near infra-red, to measure the emission of these ions.


    Directory of Open Access Journals (Sweden)

    Ludmila Kiriyak


    Full Text Available The polarographic catalytic current in acid solutions of Mo(VI, 2,3-dihydroxybenzaldehyde (2,3-DHBA and chlorate ions has been investigated. The scheme of reactions taking place in the solutions and on the electrode has been elaborated. The increase of the catalytic current is explained by the formation of the active intermediate complex [Mo(V×2,3-DHBA (ClO3-]. The rate constant of formation for the active intermediate complex K = 2.5 × 106 mol-1 × dm3 × s-1, the activation energy of reaction Ea=14.0 kcal×mol-1 and the activation entropy ∆Sa¹= -28.3 e.u. have also been determined.

  10. Complexation induced phase separation: preparation of composite membranes with a nanometer thin dense skin loaded with metal ions

    KAUST Repository

    Villalobos Vazquez de la Parra, Luis Francisco


    We present the development of a facile phase-inversion method for forming asymmetric membranes with a precise high metal ion loading capacity in only the dense layer. The approach combines the use of macromolecule-metal intermolecular complexes to form the dense layer of asymmetric membranes with nonsolvent-induced phase separation to form the porous support. This allows the independent optimization of both the dense layer and porous support while maintaining the simplicity of a phase-inversion process. Moreover, it facilitates control over (i) the thickness of the dense layer throughout several orders of magnitude—from less than 15 nm to more than 6 μm, (ii) the type and amount of metal ions loaded in the dense layer, (iii) the morphology of the membrane surface, and (iv) the porosity and structure of the support. This simple and scalable process provides a new platform for building multifunctional membranes with a high loading of well-dispersed metal ions in the dense layer.

  11. Complexation-induced phase separation: preparation of composite membranes with a nanometer-thin dense skin loaded with metal ions. (United States)

    Villalobos, Luis Francisco; Karunakaran, Madhavan; Peinemann, Klaus-Viktor


    We present the development of a facile phase-inversion method for forming asymmetric membranes with a precise high metal ion loading capacity in only the dense layer. The approach combines the use of macromolecule-metal intermolecular complexes to form the dense layer of asymmetric membranes with nonsolvent-induced phase separation to form the porous support. This allows the independent optimization of both the dense layer and porous support while maintaining the simplicity of a phase-inversion process. Moreover, it facilitates control over (i) the thickness of the dense layer throughout several orders of magnitude from less than 15 nm to more than 6 μm, (ii) the type and amount of metal ions loaded in the dense layer, (iii) the morphology of the membrane surface, and (iv) the porosity and structure of the support. This simple and scalable process provides a new platform for building multifunctional membranes with a high loading of well-dispersed metal ions in the dense layer.

  12. Complexing of niobium (5) ions with benzoylphenylhydroxylamine and lumogallion in the presence of cetylpyridinium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Pilipenko, A.T.; Patratij, Yu.V.; Zul' figarov, O.S. (AN Ukrainskoj SSR, Kiev. Inst. Kolloidnoj Khimii i Khimii Vody; Chernovitskij Meditsinskij Inst. (Ukrainian SSR))


    Optimal conditions of formation and extraction by chloroform of different-ligand niobium complex with benzoylphenylhydroxylamine, lumogallion (LG) in the presence of cetylpyridinium chloride (CP) were clarified. It is shown that CP causes transformation of quinonehydrazone into hydroxy-azo-form of the dye by means of interaction with the LG through sulfogroup. It was assumed that CP interaction through hydroxy groups is possible in a different ligand complex. This fact makes conditions for decrease of detection limit and increase of contrast of the reaction of formation of different-ligand niobium complex.

  13. General synthesis of transition metal oxides hollow nanospheres/nitrogen-doped graphene hybrids via metal-ammine complex chemistry for high performance lithium ion batteries. (United States)

    Chen, Jiayuan; Wu, Xiaofeng; Gong, Yan; Wang, Pengfei; Li, Wenhui; Mo, Shengpeng; Peng, Shengpan; Tan, Qiangqiang; Chen, Yunfa


    We present a general and facile synthesis strategy, on the basis of metal-ammine complex chemistry, in synthesizing hollow transition metal oxides (Co3O4, NiO, CuO-Cu2O and ZnO)/nitrogen-doped graphene hybrids, potentially applied in high performance lithium ion batteries. The oxygen-containing functional groups of graphene oxide play a prerequisite role in the formation of hollow transition metal oxides on graphene nanosheets, and a significant hollowing process occurs only when forming metal (Co2+, Ni2+, Cu2+, or Zn2+)-ammine complex ions. Moreover, the hollowing process is well correlated with complexing capacity between metal ions and NH3 molecules. The significant hollowing process occurs for strong metal-ammine complex ions including Co2+, Ni2+, Cu2+, and Zn2+ ions, and no hollow structures formed for weak and/or non-complex Mn2+ and Fe3+ ions. Simultaneously, this novel strategy can also achieve the directly doping of nitrogen atoms into graphene framework. When used as anodic materials, the electrochemical performance of two typical hollow Co3O4 or NiO/nitrogen-doped graphene hybrids are evaluated. It is demonstrated that these unique nanostructed hybrids, in contrast with the bare counterparts, solid transition metal oxides/nitrogen-doped graphene hybrids, perform the significantly improved specific capacity, superior rate capability and excellent capacity retention. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids. (United States)

    Eisenberg, Bob; Hyon, Yunkyong; Liu, Chun


    Ionic solutions are mixtures of interacting anions and cations. They hardly resemble dilute gases of uncharged noninteracting point particles described in elementary textbooks. Biological and electrochemical solutions have many components that interact strongly as they flow in concentrated environments near electrodes, ion channels, or active sites of enzymes. Interactions in concentrated environments help determine the characteristic properties of electrodes, enzymes, and ion channels. Flows are driven by a combination of electrical and chemical potentials that depend on the charges, concentrations, and sizes of all ions, not just the same type of ion. We use a variational method EnVarA (energy variational analysis) that combines Hamilton's least action and Rayleigh's dissipation principles to create a variational field theory that includes flow, friction, and complex structure with physical boundary conditions. EnVarA optimizes both the action integral functional of classical mechanics and the dissipation functional. These functionals can include entropy and dissipation as well as potential energy. The stationary point of the action is determined with respect to the trajectory of particles. The stationary point of the dissipation is determined with respect to rate functions (such as velocity). Both variations are written in one Eulerian (laboratory) framework. In variational analysis, an "extra layer" of mathematics is used to derive partial differential equations. Energies and dissipations of different components are combined in EnVarA and Euler-Lagrange equations are then derived. These partial differential equations are the unique consequence of the contributions of individual components. The form and parameters of the partial differential equations are determined by algebra without additional physical content or assumptions. The partial differential equations of mixtures automatically combine physical properties of individual (unmixed) components. If a new

  15. Stoichiometry of the KCNQ1 − KCNE1 ion channel complex

    National Research Council Canada - National Science Library

    Koichi Nakajo; Maximilian H. Ulbrich; Yoshihiro Kubo; Ehud Y. Isacoff; Lily Yeh Jan


    .... The stoichiometry of KCNQ1 and KCNE1 complex has been debated, with some results suggesting that the four KCNQ1 subunits that form the channel associate with two KCNE1 subunits (a 4∶2 stoichiometry...

  16. Single-ion magnet behaviour in mononuclear and two-dimensional dicyanamide-containing cobalt(ii) complexes. (United States)

    Switlicka-Olszewska, Anna; Palion-Gazda, Joanna; Klemens, Tomasz; Machura, Barbara; Vallejo, Julia; Cano, Joan; Lloret, Francesc; Julve, Miguel


    Three cobalt(ii) complexes of formulae [Co(dca)2(bim)4] (), [Co(dca)2(bim)2]n () and [Co(dca)2(bmim)2]n () [dca = dicyanamide, bim = 1-benzylimidazole and bmim = 1-benzyl-2-methylimidazole] were prepared and structurally analyzed by single-crystal X-ray crystallography. Compound is a mononuclear species where the cobalt(ii) ion is six-coordinate with four bim molecules in the equatorial positions [Co-Nbim = 2.1546(15) and 2.1489(15) Å] and two trans-positioned dca ligands [Co-Ndca = 2.1575(18) Å] in the axial sites of a somewhat distorted octahedral surrounding. The structures of and consist of two-dimensional grids of cobalt(ii) ions where each metal atom is linked to the other four metal centres by single dca bridges exhibiting the μ1,5-dca coordination mode [Co-Ndca = 2.190(3)-2.220(3) () and 2.127(3)-2.153(3) Å ()]. Two trans-coordinated bim ()/bmim () molecules achieve the six-coordination around each cobalt(ii) ion [Co-Nbim = 2.128(3)-2.134(4) Å () and Co-Nbmim = 2.156(3)-2.163(39) Å ()]. The values of the cobalt-cobalt separation through the single dca bridges are 8.927(2) and 8.968(2) Å in and 8.7110(5) and 8.7158(5) Å in . Magnetic susceptibility measurements for in the temperature range of 2.0-300 K reveal that these compounds behave as magnetically isolated high-spin cobalt(ii) ions with a significant orbital contribution to the magnetic moment. Alternating current (ac) magnetic susceptibility measurements for show a frequency dependence of out-of-phase susceptibility under static applied fields in the range of 500-2500 G, a feature which is characteristic of the single-ion magnet behaviour (SIM) of the Co(ii) ion in them. The values of the energy barrier for the magnetic relaxation (Ea) are 5.45-7.74 (), 4.53-9.24 () and 11.48-15.44 cm(-1) (). They compare well with those previously reported for the analogous dca-bridged 2D compound [Co(dca)2(atz)2]n () (Ea = 5.1 cm(-1) under an applied static field of 1000 G), which was the subject of a

  17. Hetero-bimetallic Complex of a 2D Coordination Network Constructed by Sodium Ion and p-Sulfonatothiacalix[4]arene

    Institute of Scientific and Technical Information of China (English)


    A 2D coordination polymer built by sodium ion and water-soluble p-sulfonato thiacalix(4)arene of trivalent yttrium complex [Na(H2O)2Y(H2O)6(DMF) (p-sulfonatothiaca lix(4)arene)]·9H2O is reported.The complex belongs to the monoclinic system, space group P21/c, with a =16.703(3),b = 17.819(4), c = 17.357(4)(A), β= 106.23(3)°,Z= 4,V= 4960.0(17)(A)3, Mr = 1304.08,Dc = 1.746 g/cm3,μ= 1.624 mm-1, F(000) = 2688, the final R = 0.0398 and wR = 0.1132 for 7534 observed reflections with I>2σ(I).One yttrium(Ⅲ) ion is coordinated by the thiacalixarene ligand via the sulfonato group, and also ligated by an oxygen atom of a DMF molecule occupying the cavity of thiacalixarene and six aqua ligands.

  18. Microsatellite marker development by multiplex ion torrent PGM sequencing: a case study of the endangered Odorrana narina complex of frogs. (United States)

    Igawa, Takeshi; Nozawa, Masafumi; Nagaoka, Mai; Komaki, Shohei; Oumi, Shohei; Fujii, Tamotsu; Sumida, Masayuki


    The endangered Ryukyu tip-nosed frog Odorrana narina and its related species, Odorrana amamiensis, Odorrana supranarina, and Odorrana utsunomiyaorum, belong to the family Ranidae and are endemically distributed in Okinawa (O. narina), Amami and Tokunoshima (O. amamiensis), and Ishigaki and Iriomote (O. supranarina and O. utsunomiyaorum) Islands. Because of varying distribution patterns, this species complex is an intrinsic model for speciation and adaptation. For effective conservation and molecular ecological studies, further genetic information is needed. For rapid, cost-effective development of several microsatellite markers for these and 2 other species, we used next-generation sequencing technology of Ion Torrent PGM™. Distribution patterns of repeat motifs of microsatellite loci in these modern frog species (Neobatrachia) were similarly skewed. We isolated and characterized 20 new microsatellite loci of O. narina and validated cross-amplification in the three-related species. Seventeen, 16, and 13 loci were cross-amplified in O. amamiensis, O. supranarina, and O. utsunomiyaorum, respectively, reflecting close genetic relationships between them. Mean number of alleles and expected heterozygosity of newly isolated loci varied depending on the size of each inhabited island. Our findings suggested the suitability of Ion Torrent PGM™ for microsatellite marker development. The new markers developed for the O. narina complex will be applicable in conservation genetics and molecular ecological studies.

  19. A novel isotachophoresis of cobalt and copper complexes by metal ion substitution reaction in a continuous moving chelation boundary. (United States)

    Zhang, Wei; Chen, Jian-Feng; Fan, Liu-Yin; Cao, Cheng-Xi; Ren, Ji-Cun; Li, Si; Shao, Jing


    A novel separation mode of isotachophoresis (ITP) was advanced for the study on the continuous moving chelation boundary (MCB) formed with EDTA and two metal ions of Co(II) and Cu(II). The experiments were performed systemically. The relevant results indicated that: (1) there were three boundaries in the whole system, viz., a sharp MCB, a wide moving substitution boundary (MSB) and a sharp complex boundary (CB); (2) within the MSB, an ion substitution reaction occurred between [Co-EDTA](2-) and Cu(II), and the reaction resulted in the release of Co(II) and EDTA from [Co-EDTA](2-) and the binding of Cu(II) with the released EDTA due to log K(Cu(II)) (= 18.80) > log K(Co(II)) (= 16.31); (3) because of the novel ITP mode induced by the MSB as well as the merging of the MCB and CB, the original low concentration Co(II) and Cu(II) were chemically separated as two characteristic coloured zones of pink [Co-EDTA](2-) and blue [Cu-EDTA](2-), and the sensitivities for detection of the two metal ions were greatly enhanced. The quantitative analyses of the zone composition by ICP-AES and UV-vis spectrophotometry supported the mechanism of the novel separation mode induced by the MSB. The further theoretical and experimental results indicated that the separation mode was a novel ITP relied on moving reaction boundary (MRB), rather than a classic ITP based on the moving boundary system developed about 60 years ago. These findings provide guidance for the development of the MRB and the MCB-based ITP separation of metal ions in environmental and biological matrices.

  20. Influence of Humic Acid Complexation with Metal Ions on Extracellular Electron Transfer Activity. (United States)

    Zhou, Shungui; Chen, Shanshan; Yuan, Yong; Lu, Qin


    Humic acids (HAs) can act as electron shuttles and mediate biogeochemical cycles, thereby influencing the transformation of nutrients and environmental pollutants. HAs commonly complex with metals in the environment, but few studies have focused on how these metals affect the roles of HAs in extracellular electron transfer (EET). In this study, HA-metal (HA-M) complexes (HA-Fe, HA-Cu, and HA-Al) were prepared and characterized. The electron shuttle capacities of HA-M complexes were experimentally evaluated through microbial Fe(III) reduction, biocurrent generation, and microbial azoreduction. The results show that the electron shuttle capacities of HAs were enhanced after complexation with Fe but were weakened when using Cu or Al. Density functional theory calculations were performed to explore the structural geometry of the HA-M complexes and revealed the best binding sites of the HAs to metals and the varied charge transfer rate constants (k). The EET activity of the HA-M complexes were in the order HA-Fe > HA-Cu > HA-Al. These findings have important implications for biogeochemical redox processes given the ubiquitous nature of both HAs and various metals in the environment.

  1. Gas-phase metalloprotein complexes interrogated by ion mobility-mass spectrometry (United States)

    Faull, Peter A.; Korkeila, Karoliina E.; Kalapothakis, Jason M.; Gray, Andrew; McCullough, Bryan J.; Barran, Perdita E.


    Gas-phase biomolecular structure may be explored through a number of analytical techniques. Ion mobility-mass spectrometry (IM-MS) continues to prove itself as a sensitive and reliable bioanalytical tool for gas-phase structure determination due to intense study and development over the past 15 years. A vast amount of research interest, especially in protein and peptide conformational studies has generated a wealth of structural information for biological systems from small peptides to megadalton-sized biomolecules. In this work, linear low field IM-MS has been used to study gas-phase conformations and determine rotationally averaged collision cross-sections of three metalloproteins--cytochrome c, haemoglobin and calmodulin. Measurements have been performed on the MoQToF, a modified QToF 1 instrument (Micromass UK Ltd., Manchester, UK) modified in house. Gas-phase conformations and cross-sections of multimeric cytochrome c ions of the form [xM + nH+]n+ for x = 1-3 (monomer to trimer) have been successfully characterised and measured. We believe these to be the first reported collision cross-sections of higher order multimeric cytochrome c. Haemoglobin is investigated to obtain structural information on the associative mechanism of tetramer formation. Haemoglobin molecules, comprising apo- and holo-monomer chains, dimer and tetramer are transferred to the gas phase under a range of solution conditions. Structural information on the proposed critical intermediate, semi-haemoglobin, is reported. Cross-sections of the calcium binding protein calmodulin have been obtained under a range of calcium-bound conditions. Metalloprotein collision cross-sections from ion mobility measurements are compared with computationally derived values from published NMR and X-ray crystallography structural data. Finally we consider the change in the density of the experimentally measured rotationally averaged collision cross-section for compact geometries of the electrosprayed proteins.

  2. Glycosylated Platinum(IV) Complexes as Substrates for Glucose Transporters (GLUTs) and Organic Cation Transporters (OCTs) Exhibited Cancer Targeting and Human Serum Albumin Binding Properties for Drug Delivery. (United States)

    Ma, Jing; Wang, Qingpeng; Huang, Zhonglv; Yang, Xiande; Nie, Quandeng; Hao, Wenpei; Wang, Peng George; Wang, Xin


    Glycosylated platinum(IV) complexes were synthesized as substrates for GLUTs and OCTs for the first time, and the cytotoxicity and detailed mechanism were determined in vitro and in vivo. Galactoside Pt(IV), glucoside Pt(IV), and mannoside Pt(IV) were highly cytotoxic and showed specific cancer-targeting properties in vitro and in vivo. Glycosylated platinum(IV) complexes 5, 6, 7, and 8 (IC50 0.24-3.97 μM) had better antitumor activity of nearly 166-fold higher than the positive controls cisplatin (1a), oxaliplatin (3a), and satraplatin (5a). The presence of a hexadecanoic chain allowed binding with human serum albumin (HSA) for drug delivery, which not only enhanced the stability of the inert platinum(IV) prodrugs but also decreased their reduction by reductants present in human whole blood. Their preferential accumulation in cancer cells compared to noncancerous cells (293T and 3T3 cells) suggested that they were potentially safe for clinical therapeutic use.

  3. Redox-inactive metal ions modulate the reactivity and oxygen release of mononuclear non-haem iron(III)-peroxo complexes. (United States)

    Bang, Suhee; Lee, Yong-Min; Hong, Seungwoo; Cho, Kyung-Bin; Nishida, Yusuke; Seo, Mi Sook; Sarangi, Ritimukta; Fukuzumi, Shunichi; Nam, Wonwoo


    Redox-inactive metal ions that function as Lewis acids play pivotal roles in modulating the reactivity of oxygen-containing metal complexes and metalloenzymes, such as the oxygen-evolving complex in photosystem II and its small-molecule mimics. Here we report the synthesis and characterization of non-haem iron(III)-peroxo complexes that bind redox-inactive metal ions, (TMC)Fe(III)-(μ,η(2):η(2)-O2)-M(n+) (M(n+) = Sr(2+), Ca(2+), Zn(2+), Lu(3+), Y(3+) and Sc(3+); TMC, 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane). We demonstrate that the Ca(2+) and Sr(2+) complexes showed similar electrochemical properties and reactivities in one-electron oxidation or reduction reactions. However, the properties and reactivities of complexes formed with stronger Lewis acidities were found to be markedly different. Complexes that contain Ca(2+) or Sr(2+) ions were oxidized by an electron acceptor to release O2, whereas the release of O2 did not occur for complexes that bind stronger Lewis acids. We discuss these results in the light of the functional role of the Ca(2+) ion in the oxidation of water to dioxygen by the oxygen-evolving complex.

  4. Luminescent single-ion magnets from Lanthanoid(III) complexes with monodentate ketone ligands

    Energy Technology Data Exchange (ETDEWEB)

    Kanetomo, Takuya; Ishida, Takayuki, E-mail: [Department of Engineering Science, The University of Electro-Communications, Tokyo (Japan)


    We synthesized [Ln{sup III}(hfac){sub 3}(H{sub 2}O)(L)] (abbreviated as Ln-L; Ln = Gd, Tb, Eu; L = DTBK (di-t-butyl ketone), BP (benzophenone)), in which the carbonyl oxygen atom was coordinated to the Ln ion center, despite of such bulky substituents. Their crystal structures were determined by means of X-ray diffraction study. Gd-DTBK is completely isomorphous to the di-t-butyl nitroxide derivative and accordingly can be regarded as a model with the ligand spin masked. The ac magnetic susceptibility measurements on Tb-DTBK and -BP showed frequency dependence, characteristic of single-ion magnets. They also displayed photoluminescence in the solid state at room temperature. The quantum yields of the luminescence of Tb-DTBK and -BP (λ{sub ex} = 360 nm) were improved to 57 and 35%, respectively, from that of the starting material [TbI{sup III}(hfac){sub 3}(H{sub 2}O){sub 2}] (28% at λ{sub ex} = 370 nm). Similarly, the quantum yields for Eu-DTBK and -BP were 8 and 15%, respectively, with λ{sub ex} = 400 nm, while that of the starting material [EuI{sup III}(hfac){sub 3}(H{sub 2}O){sub 2}] was 4% at λ{sub ex}=400 nm.

  5. The T-shaped KrI2(ion-pair states) van der Waals complexes (United States)

    Baturo, V. V.; Kevorkyants, R.; Lukashov, S. S.; Poretsky, S. A.; Pravilov, A. M.; Zhironkin, A. I.


    The T-shaped KrI2(E0g+) van der Waals complexes have been observed and studied for the first time. Analysis of the luminescence excitation spectra as well as luminescence spectra themselves in the spectral ranges, where the I2(E0g+ → B0u+, D0u+ → X0g+, β1g → A1u and D‧2g → A‧2u) transitions can occur, has been carried out. Branching ratios of the iodine molecule state formation and vibronic level population, as well as the potential parameters of the KrI2(E,vE = 0-8, nE) complexes have been determined. Binding energies of the KrI2(X0g+,vX = 0, nX = 0 and B0u+, vB = 19, nB = 0) complexes have been also estimated.

  6. Use of Manganese(II)-Schiff Base Complexes for Carrying Polar Organometallics and Inorganic Ion Pairs. (United States)

    Gallo, Emma; Solari, Euro; Floriani, Carlo; Chiesi-Villa, Angiola; Rizzoli, Corrado


    This report concerns the carrier properties of [Mn(acacen)]-derived compounds toward polar organometallics, inorganic ion pairs, and salts. Such properties are the consequence of Mn(II) behaving as a Lewis acid and the O&arcraise;O bite of the bidentate Schiff base ligand toward alkali cations. The starting compounds, which occur in a dimeric form, [Mn(acac-L-en)](2) [L' = CH(2)CH(2) (1); L" = C(6)H(10) (2); L"' = R,R-C(6)H(10) (3)] have been synthesized either via a metathesis reaction from MnCl(2) or using [Mn(3)Mes(6)]. The reaction of 1-3 with lithium organometallics allowed the isolation of [Mn(acac-L-en)(R)Li(DME)] [R = Me, L = L' (4); R = Ph, L = L' (5); R = Mes, L = L' (6); R = Me, L = L" (7); R = Me, L = L"' (8)] as metalated forms, where the alkyl or aryl group is sigma-bonded to Mn(II), while the lithium cation is anchored to the Schiff base ligand. The metalated forms 4-8 react with PhCHO to give the corresponding lithium alkoxide, which remains bound in its ion-pair form to the [Mn(acacen)] skeleton in [Mn(2)(acac-L'-en)(2)Li(2)(OCH(Ph)Me)(2)](n)() (9). The use of 8, which has a chiral bridge across two nitrogen atoms, did not lead to a significant asymmetric induction in the reaction with PhCHO, because of the long separation between the lithium cation and the stereogenic center. The metalated form 4 was able to transfer the methyl group to the nitrile function to give the corresponding lithium-imide which then remains bonded to [Mn(acacen)] as the ion pair in a dimeric structure, as revealed for [Mn(2)(acac-L'-en)(2)Li(2)(DME){N=C(Ph)Me}(2)](n)() (10). Their reaction with 1 appears to depend on the steric bulkiness of the alkyl group in NaOR, resulting in either monomeric adducts, i.e. in [Mn(acac-L'-en)(2,6-Bu(t)(2)C(6)H(3)O)Na(DME)(2)] (11.2DME), or polymeric structures, like in [Mn(acac-L'-en)Na(DME)(&mgr;-OEt)](n)() (13). All the dimeric units reported in this paper show a slight antiferromagnetic coupling between the two Mn(II) assisted by

  7. Conformation Switching in Gas-Phase Complexes of Histidine with Alkaline Earth Ions

    NARCIS (Netherlands)

    Dunbar, R. C.; Hopkinson, A. C.; Oomens, J.; Siu, C. K.; Siu, K. W. M.; Steill, J. D.; Verkerk, U. H.; Zhao, J. F.


    Infrared multiple photon dissociation spectroscopy of gas-phase doubly charged alkaline earth complexes of histidine reveals a transition from dominance of the zwitterion (salt bridge, SB) conformation with Ba2+ to substantial presence of the canonical (charge-solvated, CS) conformation with Ca2+. T

  8. Structural diversity in binuclear complexes of alkaline earth metal ions with 4,6-diacetylresorcinol (United States)

    Shebl, Magdy; Khalil, Saied M. E.; Taha, A.; Mahdi, M. A. N.


    A new series of binuclear and mixed-ligand complexes with the general formula: [M 2(LO)yClz]; where M = Mg(II), Ca(II), Sr(II) and Ba(II); H2L = 4,6-diacetylresorcinol, the secondary ligand L' = acetylacetone (acac), 8-hydroxyquinoline (8-HQ) or 2,2'-bipyridyl (Bipy), n = 0-2, m = 1, 2, x = 0, 1, 2, 4, y = 0, 2, 4, 5 and z = 0-2; have been synthesized. They have been characterized by the analytical and spectral methods (IR, 1H NMR and mass) as well as TGA and molar conductivity measurements. The spectroscopic and conductance data suggested that the H2L ligand behaves as a neutral, monobasic or dibasic tetradentate ligand, depending on the basicity of the secondary ligand, through the two phenolic and two carbonyl groups. Binuclear octahedral geometry has been assigned to all of the prepared complexes in various molar ratios 2:2; 2:2:2; 1:2:1 and 1:2:4 (L:M:L'). Molecular orbital calculations were performed for the ligands and their complexes using Hyperchem 7.52 program on the bases of PM3 level and the results were correlated with the experimental data. The ligand and some of its alkaline metal(II) complexes showed antibacterial activity towards some of Gram-positive and Gram-negative bacteria, yeast (Candida albicans) and fungus (Aspergillus fumigatus).

  9. Computational probes into the basis of silver ion chromatography. II. Silver(I)-olefin complexes

    NARCIS (Netherlands)

    Kaneti, J.; Smet, de L.C.P.M.; Boom, R.M.; Zuilhof, H.; Sudhölter, E.J.R.


    Alkene complexes of silver(I) are studied by four computational methodologies: ab initio RHF, MP2, and MP4 computations, and density functional B3LYP computations, with a variety of all-electron and effective core potential basis sets. Methodological studies indicate that MP2/SBK(d) computations can

  10. Monitoring transport phenomena of paramagnetic metal-ion complexes inside catalyst bodies with magnetic resonance imaging

    NARCIS (Netherlands)

    Bergwerff, J.A.; Lysova, A.A.; Espinosa Alonso, L.|info:eu-repo/dai/nl/304837342; Koptyug, I.V.; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397


    An indirect magnetic resonance imaging (MRI) method has been developed to determine in a noninvasive manner the distribution of paramagnetic Co2+ complexes inside Co/Al2O3 catalyst extrudates after impregnation with Co2+/citrate solutions of different pH and citrate concentrations. UV/Vis/NIR

  11. New 14-membered octaazamacrocyclic complexes of divalent transition metal ions with their antimicrobial and spectral studies (United States)

    Singh, D. P.; Kumar, Krishan; Sharma, Chetan


    A novel series of macrocyclic complexes of the type [M(C 18H 14N 10S 2)X 2]; where M = Co(II), Ni(II), Cu(II), Zn(II) and Cd(II); X = Cl -, NO 3-, CH 3COO - has been synthesized by [2+2] condensation of thiocarbohydrazide and isatin in the presence of divalent metal salts in methanolic medium. The complexes have been characterized with the help of elemental analyses, conductance measurements, magnetic measurements, electronic, NMR and infrared spectral studies. The low value of molar conductance indicates them to be non-electrolytes. On the basis of various studies a distorted octahedral geometry may be proposed for all of these complexes. These metal complexes were also tested for their in vitro antimicrobial activities against some Gram-positive bacteria viz. Staphylococcus aureus, Bacillus subtilis, and some Gram-negative bacteria Escherichia coli, Pseudomonas aeruginosa and some fungal strains Aspergillus niger, Aspergillus flavus (molds), Candida albicans, Saccharomyces cerevisiae (yeasts). The results obtained were compared with standard antibiotic: Ciprofloxacin and the standard antifungal drug: Amphotericin-B.

  12. Versatile chemical transformations of benzoxazole based ligands on complexation with 3d-metal ions. (United States)

    Iasco, Olga; Novitchi, Ghenadie; Jeanneau, Erwann; Tommasino, Jean Bernard; Roques, Nans; Luneau, Dominique


    Two benzoxazoles derivative ligands were synthesized from the condensation of 3,5-di-tert-butyl-o-benzoquinone (DTBBQ) with ethanolamine or 1,3-diamino-2-hydroxypropane in methanol. Condensation of DTBBQ with ethanolamine gives the expected 5,7-di-tert-butyl-2-methylenhydroxylbenzoxazole (HL1) while with 1,3-diamino-2-hydroxypropane it gives (2-hydroxyethyl-2-{2,4-bis(1,1-dimethylethyl)-1-phenol-6 amino}-2{5,7-di-tert-butyl-benzoxazole}) (H(2)L2) with only one benzoxazole ring instead of the symmetric bis-benzoxazole derivative. The structure of HL1 and H(2)L2 were confirmed by NMR-spectroscopy and X-ray diffraction on a single crystal for HL1. The reaction of HL1 with CuCl(2) gives a mononuclear [Cu(II)(HL1)(2)Cl(2)] (1) complex for which the crystal structure shows that HL1 is preserved. In contrast, upon reaction with nickel(II), cobalt(II), and manganese(II) H(2)L2 is further oxidized and transformed in new ligands HL3 in mononuclear complexes [M(II)(L3)(2)] (M = Ni(II) (2); M = Co(II) (3)) and H(2)L4 in tetranuclear complex [Mn(II)(4)(HL4)(4)Cl(4)] (4) as found from the crystal structures of complexes 2-4. Electrochemical studies for complexes 2 and 3 evidence complicated redox properties. [Mn(II)(4)(HL4)(4)Cl(4)] (4) has a cubane-like structure with a "4 + 2" fashion The magnetic susceptibility of 4 is well fitted considering one Mn---Mn interaction J(a)(Mn(II)-Mn(II)) = -0.50(1) cm(-1) with g = 2.00(7).

  13. Free molecular collision cross section calculation methods for nanoparticles and complex ions with energy accommodation

    Energy Technology Data Exchange (ETDEWEB)

    Larriba, Carlos, E-mail:; Hogan, Christopher J.


    The structures of nanoparticles, macromolecules, and molecular clusters in gas phase environments are often studied via measurement of collision cross sections. To directly compare structure models to measurements, it is hence necessary to have computational techniques available to calculate the collision cross sections of structural models under conditions matching measurements. However, presently available collision cross section methods contain the underlying assumption that collision between gas molecules and structures are completely elastic (gas molecule translational energy conserving) and specular, while experimental evidence suggests that in the most commonly used background gases for measurements, air and molecular nitrogen, gas molecule reemission is largely inelastic (with exchange of energy between vibrational, rotational, and translational modes) and should be treated as diffuse in computations with fixed structural models. In this work, we describe computational techniques to predict the free molecular collision cross sections for fixed structural models of gas phase entities where inelastic and non-specular gas molecule reemission rules can be invoked, and the long range ion-induced dipole (polarization) potential between gas molecules and a charged entity can be considered. Specifically, two calculation procedures are described detail: a diffuse hard sphere scattering (DHSS) method, in which structures are modeled as hard spheres and collision cross sections are calculated for rectilinear trajectories of gas molecules, and a diffuse trajectory method (DTM), in which the assumption of rectilinear trajectories is relaxed and the ion-induced dipole potential is considered. Collision cross section calculations using the DHSS and DTM methods are performed on spheres, models of quasifractal aggregates of varying fractal dimension, and fullerene like structures. Techniques to accelerate DTM calculations by assessing the contribution of grazing gas

  14. Complexation humic substances of soils with metal ions as the main way migration of matals from soil to water (United States)

    Dinu, Marina


    Organic matter (OM) of natural waters can bind with the ions metals (IM) entering the system, thus reducing their toxic properties. OM in water consists predominantly (up to 80%) of humic acids (HA), represented by highmolecular, dyed, polyfunctional compounds. The natural-climatic zones feature various ratios of fulvic (FA) and humic acids. An important specific feature of metals as contamination elements is the fact that when they occur in the environment, their potential toxicity and bioavailability depend significantly on their speciation. In recent years, lakes have been continuously enriched in hazardous elements such as Pb, Cd, Al, and Cr on a global (regional) basis. The most important organic ligands are humic matter (HM) washed out from soils in water and metals occur in natural waters as free ions, simple complexes with inorganic and organic ligands, and mineral and organic particles of molecules and ions sorbed on the surface. The occurrence of soluble metal forms in natural waters depends on the presence of organic and inorganic anions. However, direct determinations are rather difficult. The goal was the calculation and analysis of the forms of metals in the system catchment basin, based on the chemical composition of the water body and the structural features of soil humic substances (HS).We used the following analytical techniques - leaching of humic substances from soil and sample preparation (Orlov DS, 1985), the functional characteristics of humic substances - spectral analysis methods, the definition of conditional stability constants of complexes - electrochemical methods of analysis. Our results show thet HAs of selected soil types are different in functions, and these differences effect substantially the complexing process. When analyzing the results obtained in the course of spectrometric investigation of HMs in selected soil types, we determined the following main HA characteristics: (1) predominance of oxygen bearing groups in HM of the

  15. Atomic absorption spectroscopic, conductometric and colorimetric methods for determination of fluoroquinolone antibiotics using ammonium reineckate ion-pair complex formation (United States)

    Ragab, Gamal H.; Amin, Alaa S.


    Three accurate, rapid and simple atomic absorption spectrometric, conductometric and colorimetric methods were developed for the determination of norfloxacin (NRF), ciprofloxacin (CIP), ofloxacin (OFL) and enrofloxacin (ENF). The proposed methods depend upon the reaction of ammonium reineckate with the studied drugs to form stable precipitate of ion-pair complexes, which was dissolved in acetone. The pink coloured complexes were determined either by AAS or colorimetrically at λmax 525 nm directly using the dissolved complex. Using conductometric titration, the studied drugs could be evaluated in 50% (v/v) acetone in the range 5.0-65, 4.0-48, 5.0-56 and 6.0-72 μg ml -1 of NRF, CPF, OFL and ENF, respectively. The optimizations of various experimental conditions were described. The results obtained showed good recoveries of 99.15±1.15, 99.30±1.40, 99.60±1.50, and 99.00±1.25% with relative standard deviations of 0.81, 1.06, 0.97, and 0.69% for NRF, CPF, OFL, and ENF, respectively. Applications of the proposed methods to representative pharmaceutical formulations are successfully presented.

  16. Complex Korteweg-de Vries equation and Nonlinear dust-acoustic waves in a magnetoplasma with a pair of trapped ions

    CERN Document Server

    Misra, A P


    The nonlinear propagation of dust-acoustic (DA) waves in a magnetized dusty plasma with a pair of trapped ions is investigated. Starting from a set of hydrodynamic equations for massive dust fluids as well as kinetic Vlasov equations for ions, and applying the reductive perturbation technique, a Korteweg-de Vries (KdV)-like equation with a complex coefficient of nonlinearity is derived, which governs the evolution of small-amplitude DA waves in plasmas. The complex coefficient arises due to vortex-like distributions of both positive and negative ions. An analytical as well as numerical solution of the KdV equation are obtained and analyzed with the effects of external magnetic field, the dust pressure as well as different mass and temperatures of positive and negative ions.

  17. Complex Metal Hydrides for hydrogen storage and solid-state ion conductors

    DEFF Research Database (Denmark)

    Payandeh GharibDoust, SeyedHosein

    and electricity in batteries. However, both hydrogen and electricity must be stored in a very dense way to be useful, e.g. for mobile applications. Complex metal hydrides have high hydrogen density and have been studied during the past twenty years in hydrogen storage systems. Moreover, they have shown high ionic...... conductivities which promote their application as solid electrolytes in batteries. This dissertation presents the synthesis and characterization of a variety of complex metal hydrides and explores their hydrogen storage properties and ionic conductivity. Five halide free rare earth borohydrides RE(BH4)3, (RE...... = La, Ce, Pr, Nd, Er) have been synthesized, which pave the way for studying the polymorphic transition in these compounds, obtaining new bimetallic borohydrides and designing new reactive hydride composites with improved hydrogen storage capacities. Two novel polymorphs of Pr(BH4)3 are identified...

  18. Metalloselenonein, the selenium analogue of metallothionein: synthesis and characterization of its complex with copper ions.


    Oikawa, T; Esaki, N; Tanaka, H.; Soda, K


    We used an automated peptide synthesizer to produce a peptide, metalloselenonein, that contains selenocysteine residues substituted for all cysteine residues in Neurospora crassa copper metallothionein. Metalloselenonein binds 3 mol of Cu(I) per mol. This adduct shows a broad absorption band between 230 and 400 nm and a fluorescence band at 395 nm, which can be attributed to copper-selenolate coordination. The circular dichroism spectrum of the copper-metalloselenonein complex shows a positiv...

  19. Ion microprobe (SHRIMP dates complex granulite from Santa Catarina, southern Brazil

    Directory of Open Access Journals (Sweden)



    Full Text Available Complex polymetamorphic granulites have been dated in the Santa Catarina granulite complex of southern Brazil through SHRIMP study of zircon. This complex is dominated by intermediate-acid plutonic rocks and contains small volumes of mafic and ultramafic rocks, and minor quartzite and banded iron formation. Porphyroblasts of orthopyroxene, clinopyroxene and plagioclase in mafic and acid rocks are interpreted as magmatic remnants in a volumetrically dominant granoblastic aggregate (M1 of the same minerals and hornblende. Hornblende formed during a later M2 metamorphic event constitutes rims around pyroxene, but the hornblende is also rimmed by granoblastic simplectites of orthopyroxene, clinopyroxene, hornblende and plagioclase in a second granulite facies event (M3. Chlorite and epidote occur in shear zones (M4. This granulite terrain is part of a Neoproterozoic craton, because it was little affected by the Brasiliano Cycle. The two granulite-facies events (M1 and M3 are dated by U/Pb zircon SHRIMP at about 2.68 and 2.17 Ga, while the magmatic protoliths formed at about 2.72 Ga. The amphibolite facies event (M2 probably occurred close to the 2.17 Ga granulitic metamorphism.

  20. Kinetics of ion flotation of Co(II)-EDTA complexes from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, Mohamed A. [Atomic Energy Authority, Cairo (Egypt). Egypt Second Research Reactor; Rashad, Ghada M.; Mahmoud, Mamdoh R. [Atomic Energy Authority, Cairo (Egypt). Nuclear Chemistry Dept.


    The flotation kinetics of Co(II)-EDTA complexes from aqueous solutions using cetylpyridinium chloride (CPyCl) is studied and discussed in the present work. The effects of many variables on the ultimate recovery and the flotation rate are investigated. The data obtained from solutions of different pH values showed that Co(II)-EDTA complexes are successfully floated at pH 7.8. While at pH 3.4 and 11.2, both the ultimate recovery and the flotation rate are dependent on the concentration of CPyCl. Flotation of Co(II)-EDTA at different air flow rates, CPyCl concentrations and ionic strength showed that the ultimate recovery and the flotation rate are markedly affected. The other parameters (cobalt, EDTA and ethanol concentrations) had no effect on the ultimate recovery, while significantly affected the flotation rate. At the optimum conditions (Co(II):EDTA = 1:1; CPyCl:Co(II) = 4:1; pH7.8; G = 25 cm{sup 3}/min), removals more than 99% are achieved for radiocobalt. The classical first-order and the second-order kinetic models are used throughout the work to analyze the experimental kinetic data. At all the studied parameters, the kinetic data of Co(II)-EDTA complexes are better fitted to the classical first-order model.

  1. Spectroscopic studies of Cr{sup 3+} ions doped in poly(vinylalcohol) complexed polyethylene glycol polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Rao, T. Rajavardhana; Raju, Ch. Linga, E-mail: [Department of Physics, Acharya Nagarjuna University, Guntur 522 510 (India); Brahmam, K. Veera [Advanced Systems Laboratory, Kanchanbagh, Hyderabad 500 058 (India)


    Polymer films of Poly(vinylalcohol) (PVA) complexed with Polyethylene glycol (PEG) with different dopant concentrations of Cr{sup 3+} ions are prepared by solution cast technique. Electron paramagnetic resonance (EPR), Optical absorption and FT-IR studies have been carried out on the polymer films. The EPR spectra of the entire samples exhibit resonance signal at g ≈1.97 which is attributed to the isolated Cr{sup 3+} pairs. The temperature variation EPR studies show that the population of spin-levels participating in the resonance decreases with an increase in temperature, which is in accordance with the Boltzmann Law. The paramagnetic susceptibilities (X) have been calculated from the EPR data at different temperatures. The linewidth of the g ≈1.97 resonance signal has been found to be decreasing with an increase in temperature, which confirms the pairing mechanism between Cr{sup 3+} ions. The Optical absorption spectrum of chromium ions in (PVA+PEG) polymer films exhibits three bands, corresponding to the d-d transitions {sup 4}A{sub 2g}(F)→{sup 4}T{sub 1g}(F), {sup 4}A{sub 2g}(F)→{sup 4}T{sub 2g}(F) and {sup 4}A{sub 2g}(F)→{sup 2}T{sub 1g}(G), in the order of decreasing energy. The crystal field parameter Dq and the Racah interelectronic repulsion parameters B and C have been evaluated. From the ultraviolet absorption edges, Optical band gap (E{sub opt}) and Urbach (ΔE) energies are evaluated. FT-IR spectrum exhibits few bands which are attributed to O-H, CH, C=C and C=O groups of stretching and bending vibrations.

  2. Complexation of divalent metal ions with diols in the presence of anion auxiliary ligands: zinc-induced oxidation of ethylene glycol to glycolaldehyde by consecutive hydride ion and proton shifts. (United States)

    Ruttink, Paul J A; Dekker, Lennard J M; Luider, Theo M; Burgers, Peter C


    Ternary complexes of the type AH•••M(2+)•••L(-) (AH = diol, including diethylene and triethylene glycol, M = Ca, Mn, Fe, Co, Ni, Cu and Zn and auxiliary anion ligand L(-)  = CH(3)COO(-), HCOO(-) and Cl(-)) have been generated in the gas phase by MALDI and ESI, and their dissociation characteristics have been obtained. Use of the auxiliary ligands enables the complexation of AH with the divalent metal ion without AH becoming deprotonated, although A(-)•••M(2+) is often also generated in the ion source or after MS/MS. For M = Ca, dissociation occurs to AH + M(2+)•••L(-) and/or to A(-)•••M(2+) + LH, the latter being produced from the H-shifted isomer A(-) •••M(2+)•••LH. For a given ligand L(-), the intensity ratio of these processes can be interpreted (barring reverse energy barriers) in terms of the quantity PA(A(-)) - Ca(aff) (A(-)), where PA is the proton affinity and Ca(aff) is the calcium ion affinity. Deuterium labeling shows that the complex ion HOCH(2)CH(2) OH•••Zn(2+)•••(-)OOCCH(3), in addition to losing acetic acid (60 Da), also eliminates glycolaldehyde (HOCH(2)CH=O, also 60 Da); it is proposed that these reactions commence with a hydride ion shift to produce the ion-dipole complex HOCH(2)CHOH(+)••• HZnOOCCH(3), which then undergoes proton transfer and dissociation to HOCH(2)CH=O + HZn(+)•••O = C(OH)CH(3). In this reaction, ethylene glycol is oxidized by consecutive hydride ion and proton shifts. A minor process leads to loss of the isomeric species HOCH=CHOH.

  3. A preorganized metalloreceptor for alkaline earth ions showing calcium versus magnesium selectivity in water: biological activity of selected metal complexes. (United States)

    Amatori, Stefano; Ambrosi, Gianluca; Fanelli, Mirco; Formica, Mauro; Fusi, Vieri; Giorgi, Luca; Macedi, Eleonora; Micheloni, Mauro; Paoli, Paola; Rossi, Patrizia


    The N,N'-bis[(3-hydroxy-4-pyron-2-yl)methyl]-N,N'-dimethylethylendiamine (Malten = L) forms the highly stable [CuH(-2)L] species in water, in which the converging maltol oxygen atoms form an electron-rich area able to host hard metal ions. When considering the alkaline earth series (AE), the [Cu(H(-2)L)] species binds all metal ions, with the exception of Mg(2+), exhibiting the relevant property to discriminate Ca(2+) versus Mg(2+) at physiological pH 7.4; the binding of the AE metal is visible to the naked eye. The stability constant values of the trinuclear [AE{Cu(H(-2)L)}2](2+) species formed reach the maximum for Ca(2+) (log K=7.7). Ca(2+) also forms a tetranuclear [Ca{Cu(H(-2)L)}]2(4+) species at a high Ca(2+) concentration. Tri- and tetranuclear calcium complexes show blue- and pink-colored crystals, respectively. [Cu(H(-2)L)] is the most active species in inducing DNA alterations. The DNA damages are compatible with its hydrolytic cleavages.

  4. Synthesis And Characterization Of An Ion Imprinted Polymer For Cadmium Using Quinaldic Acid As Complexing Agent And Applying By Microwave

    Directory of Open Access Journals (Sweden)



    Full Text Available Abstract A Cd2 Ion Imprinted Polymer Cd-IIP has been synthesized by copolymerizaton of cadmium ion quinaldic acid complexing agent 4-vynil pyridine monomer dimethyl sulfoxide solvent ethyleneglycoldimethacrylate EGDMA cross-linker and 22-azobis-isobutyronitrile AIBN initiator. Polymerization was conducted using a microwave at a temperature of 70 oC with heating times of 45 minutes. The template Cd2 was removed by leaching the template with ethanol and 4 M HCl washed by aquabidest and dried in an oven at the temperature of 60oC. The polymer particles imprinted and nonimprinted were characterized using fourir transform infrared FTIR spectroscopy scanning electron microscopy SEM and energy dispersive spectroscopy EDS. The result showed that using heating time 45 minutes at temperature 70 oC the particle morphology is viewed like as the large homogeneous. So the imprinted polymer had bands at 3483 cm-1 1726 cm-1 and 1155 cm-1 indicating the presence of OH CO and C-O respectively.

  5. Enhanced Brightness of Eu3+ Complex in Organic Electroluminescent Devices by Using Another Rare-Earth Ion

    Institute of Scientific and Technical Information of China (English)

    白峰; 邓振波; 高新; 李勇; 徐怡庄; 吴瑾光


    Rare-earth ions Tb3+ and La3+ were used as a bridge to improve the energy transfer from the polymer to an Eu complex. The material Tb(La)0.5Eu0.5 (BSA)3phen was synthesized and used as the emission layer in the device:ITO/PVK:Tb(La)0.5Eu0.5 (BSA)3phen/Alq/Al. The two device were compared in detail and it was found that the device using La0.5Eu0.5 (BSA)3phen as the emission material had better monochromatic characteristics with the maximal brightness of 102cd/m2 and the colour coordinates x = 0.55 and y = 0.36.

  6. Cyclopiazonic Acid Is Complexed to a Divalent Metal Ion When Bound to the Sarcoplasmic Reticulum Ca2+-ATPase

    DEFF Research Database (Denmark)

    Laursen, Mette; Bublitz, Maike; Moncoq, Karine;


    Abstract: We have determined the structure of the sarco(endo) plasmic reticulum Ca2+-ATPase (SERCA) in an E2.P-i-like form stabilized as a complex with MgF42-, an ATP analog, adenosine 5'-(beta,gamma-methylene) triphosphate (AMPPCP), and cyclopiazonic acid (CPA). The structure determined at 2.......5 angstrom resolution leads to a significantly revised model of CPA binding when compared with earlier reports. It shows that a divalent metal ion is required for CPA binding through coordination of the tetramic acid moiety at a characteristic kink of the M1 helix found in all P-type ATPase structures, which...... is expected to be part of the cytoplasmic cation access pathway. Our model is consistent with the biochemical data on CPA function and provides new measures in structure-based drug design targeting Ca2+-ATPases, e. g. from pathogens. We also present an extended structural basis of ATP modulation pinpointing...

  7. Complex-forming organic ligands in cloud-point extraction of metal ions: a review. (United States)

    Pytlakowska, K; Kozik, V; Dabioch, M


    Cloud-point extraction (CPE), an easy, safe, environmentally friendly, rapid and inexpensive methodology for preconcentration and separation of trace metals from aqueous solutions has recently become an attractive area of research and an alternative to liquid-liquid extraction. Moreover, it provides results comparable to those obtained with other separation techniques and has a greater potential to be explored in improving detection limits and other analytical characteristics over other methods. A few reviews have been published covering different aspects of the CPE procedure and its relevant applications, such as the phenomenon of clouding, the application in the extraction of trace inorganic and organic materials, as well as pesticides and protein substrates from different sources, or incorporation of CPE into an FIA system. This review focuses on general properties of the most frequently used organic ligands in cloud-point extraction and on literature data (from 2000 to 2012) concerning the use of modern techniques in determination of metal ions' content in various materials. The article is divided according to the class of organic ligands to be used in CPE.

  8. Spectroscopic and structural studies of the Schiff base 3-methoxy-N-salicylidene-o-amino phenol complexes with some transition metal ions and their antibacterial, antifungal activities (United States)

    Abo-Aly, M. M.; Salem, A. M.; Sayed, M. A.; Abdel Aziz, A. A.


    Spectroscopic (IR, Raman, NMR, UV-visible, and ESR), and structural studies of the ligand 3-methoxy-N-salicylidene-o-amino phenol (H2L) and its synthesized complexes with some transition metal ions (Mn(II), Co(II), Ni(II)), Cu(II) and Zn(II)) were recorded and analyzed. The magnetic properties and thermal gravimetric analysis (TGA and DTA) were also measured for the complexes. The metal complexes were found to have The structural formula MLṡH2O and the metal ions Mn(II), Co(II), Ni(II)) and Zn(II) were found to form tetrahedral complexes with the ligand whereas Cu(II) formed a square planar one. Antimicrobial activity of the ligand and its complexes were also investigated and discussed.

  9. Use of ion mobility mass spectrometry and a collision cross-section algorithm to study an organometallic ruthenium anticancer complex and its adducts with a DNA oligonucleotide. (United States)

    Williams, Jonathan P; Lough, Julie Ann; Campuzano, Iain; Richardson, Keith; Sadler, Peter J


    We report the development of an enhanced algorithm for the calculation of collision cross-sections in combination with Travelling-Wave ion mobility mass spectrometry technology and its optimisation and evaluation through the analysis of an organoruthenium anticancer complex [(eta6-biphenyl)Ru(II)(en)Cl]+. Excellent agreement was obtained between the experimentally determined and theoretically determined collision cross-sections of the complex and its major product ion formed via collision-induced dissociation. Collision cross-sections were also experimentally determined for adducts of this ruthenium complex with the single-stranded oligonucleotide hexamer d(CACGTG). Ion mobility tandem mass spectrometry measurements have allowed the binding sites for ruthenium on the oligonucleotide to be determined.

  10. Spectrophotometric Determination of Some Fluoroquinolone Antibacterials through Charge-transfer and Ion-pair Complexation Reactions

    Energy Technology Data Exchange (ETDEWEB)

    El-Brashy, Amina Mohamed; El-Sayed Metwally Mohamed; El-Sepai, Fawzi Abdallah [University of Mansoura, Mansoura (Egypt)


    Two simple, rapid and sensitive spectrophotometric methods for the determination of three fluoroquinolones, namely levofloxacin, norfloxacin and ciprofloxacin have been performed either in pure form or in their tablets. In the first method, levofloxacin and norfloxacin are directly treated with bromocresol green (BCG) in dichloromethane while ciprofloxacin is allowed to react with the same dye in aqueous acidic buffer. Highly yellow colored complex species were formed instantaneously in case of levofloxacin and norfloxacin or after extraction into dichloromethane for ciprofloxacin. The formed complexes are quantified spectrophotometrically at their absorption maxima at 411 nm for levofloxacin and 412 nm for norfloxacin and ciprofloxacin. The second method involves the reaction of levofloxacin with {rho}-chloranilic acid ({rho}-CA) and norfloxacin with tetracyanoethylene (TCNE) in acetonitrile to give complexes with maximum absorbance at 521 and 333 nm for the two drugs, respectively. Adopting the first procedure, calibration graphs were linear over the range 1- 20 {mu}g mL{sup .1} with mean percentage recoveries of 100.41 {+-} 0.72, 99.99 {+-} 0.54 and 100.23 {+-} 0.91 for the three drugs, respectively. For the second procedure, the concentration ranges were 15-250 {mu}g mL{sup .1} for levofloxacin using {rho}-CA and 0.8-16 {mu}g mL{sup .1} for norfloxacin using TCNE with mean percentage recoveries of 99.88 {+-} 0.45 and 100.26 {+-} 0.68 for the two drugs, respectively. The proposed methods were successfully applied to determine these drugs in their tablet formulations and the results compared favorably to that of reference methods. The proposed methods are recommended for quality control and routine analysis

  11. Metalloselenonein, the selenium analogue of metallothionein: synthesis and characterization of its complex with copper ions. (United States)

    Oikawa, T; Esaki, N; Tanaka, H; Soda, K


    We used an automated peptide synthesizer to produce a peptide, metalloselenonein, that contains selenocysteine residues substituted for all cysteine residues in Neurospora crassa copper metallothionein. Metalloselenonein binds 3 mol of Cu(I) per mol. This adduct shows a broad absorption band between 230 and 400 nm and a fluorescence band at 395 nm, which can be attributed to copper-selenolate coordination. The circular dichroism spectrum of the copper-metalloselenonein complex shows a positive band around 245 nm attributable to asymmetry in metal coordination. PMID:1826562

  12. Permeability of Plant Young Root Endodermis to Cu Ions and Cu-Citrate Complexes in Corn and Soybean. (United States)

    Fu, Yanzhao; Lei, Wenrui; Shen, Zhenguo; Luo, Chunling


    The non-selective apoplastic passage of Cu and Cu-citrate complexes into the root stele of monocotyledonous corn and dicotyledonous soybean was investigated using an inorganic-salt-precipitation technique. Either Cu ions or Cu-citrate complexes were drawn into root through the apoplast from the root growth medium, and K4[Fe(CN)6] was subsequently perfused through xylem vessels or the entire root cross section. Based on microscopic identification of the reddish-brown precipitates of copper ferrocyanide in the cell walls of the xylem of corn and soybean roots, Cu(2+) passed through the endodermal barrier into the xylem of both species. When the solution containing 200 μM CuSO4 and 400 μM sodium citrate (containing 199.98 μM Cu-citrate, 0.02 μM Cu(2+)) was drawn via differential pressure gradients into the root xylem while being perfused with K4[Fe(CN)6] through the entire root cross-section, reddish-brown precipitates were observed in the walls of the stele of soybean, but not corn root. However, when a CuSO4 solution containing 0.02 or 0.2 μM free Cu(2+) was used, no reddish-brown precipitates were detected in the stele of either of the two plants. Results indicated that endodermis was permeable to Cu-citrate complexes in primary roots of soybean, but not corn. The permeability of the endodermal barrier to the Cu-citrate complex may vary between dicotyledonous and monocotyledonous plants, which has considerable implications for chelant-enhanced phytoextraction.

  13. Synthesis, Metal Ion Complexation and Computational Studies of Thio Oxocrown Ethers

    Directory of Open Access Journals (Sweden)

    Ahmet Yıldız


    Full Text Available The synthesis of some thio-oxocrown ether ligands, B1 (1,4-dithio-12-crown-4, B2 (1,7-dithio-12-crown-4, B3 (1,7-dithio-15-Crown-5, B4 (1,7-dithio-18-crown-6, B5 (1,10-dithio-18-crown-6, B6 (1,10-dithio-21-crown-7, under mild conditions, were reported. The ligands were characterized by FT-IR, 1H NMR and GC-MS spectroscopy. The formation of 1:1 ligand complexes with a variety of metal salts (Ag+, Ca+2, K+, Na+, Mg+2, Zn+2 and Fe+2 were investigated by a conductometric method in a 1:1 dioxane–water system at 25 °C, and the complexation constants (Ke = (ΛMAm -Λ / ((Λ-ΛMaΛbAm [L] and free energy (∆Go= - RT lnKe values are calculated. Details of the specific molecular interactions between the ligands and metals were proposed. We also performed DFT calculations to explain their geometrical properties, charges and frontier molecular orbitals.

  14. Influence of Equilibration Time in Solution on the Inclusion/Exclusion Topology Ratio of Host-Guest Complexes Probed by Ion Mobility and Collision-Induced Dissociation. (United States)

    Carroy, Glenn; Daxhelet, Charlotte; Lemaur, Vincent; De Winter, Julien; De Pauw, Edwin; Cornil, Jérôme; Gerbaux, Pascal


    Host-guest complexes are formed by the creation of multiple noncovalent bonds between a large molecule (the host) and smaller molecule(s) or ion(s) (the guest(s)). Ion-mobility separation coupled with mass spectrometry nowadays represents an ideal tool to assess whether the host-guest complexes, when transferred to the gas phase upon electrospray ionization, possess an exclusion or inclusion nature. Nevertheless, the influence of the solution conditions on the nature of the observed gas-phase ions is often not considered. In the specific case of inclusion complexes, kinetic considerations must be taken into account beside thermodynamics; the guest ingression within the host cavity can be characterized by slow kinetics, which makes the complexation reaction kinetically driven on the timescale of the experiment. This is particularly the case for the cucurbituril family of macrocyclic host molecules. Herein, we selected para-phenylenediamine and cucurbit[6]uril as a model system to demonstrate, by means of ion mobility and collision-induced dissociation measurements, that the inclusion/exclusion topology ratio varies as a function of the equilibration time in solution prior to the electrospray process.

  15. Potentiometric studies on the complex formation of some Ln(III) ions with 4-nitrocatechol

    Energy Technology Data Exchange (ETDEWEB)

    Bhuyan, B.C.; Dubey, S.N. (Kurukshetra Univ. (India). Dept. of Chemistry)


    The interaction of La(III), Ce(III), Pr(III), Nd(III), Sm(III), Gd(III), Tb(III), Dy(III), Ho(III) and Y(III) with 4-nitrocatechol has been investigated potentiometrically in aqueous medium at 25deg and at ionic strengths of 0.05, 0.1, 0.15 and 0.2M (KNO/sub 3/). The proton-ligand formation constants and metal-ligand formation constants have been calculated using the Calvin-Bjerrum titration technique as modified by Irving and Rossotti. The thermodynamic formation constants have also been determined. The order of stabilities of the lanthanide complexes with the above ligand is found to be: La(III) < Ce(III) approximately Pr(III) < Nd(III) < Sm(III) < Gd(III) < Y(III) < Tb(III) < Dy(III) < Ho(III).

  16. Formation of metal complex ions from amino acid in the presence of Li+, Na+ and K+ by electrospray ionization: metal replacement of hydrogen in the ligands. (United States)

    Jang, Soonmin; Song, Min Ju; Kim, Hyunsik; Choi, Sung-Seen


    Alkali metal cations easily form complexes with proteins in biological systems; understanding amino acid clusters with these cations can provide useful insight into their behaviors at the molecular level including diagnosis and therapy of related diseases. For the purpose of characterization of basic interaction between amino acids and alkali metal, each of the 20 naturally occurring amino acids were ionized in the presence of lithium, sodium and potassium cations by electrospray ionization, and the resulting product ions were analyzed. We focus our attention on the gas phase alkali metal ion-proton exchanged complexes in current study, specifically complexes with serine, threonine, asparagine and glutamine, which share characteristic pattern unlike other amino acids. All amino acids generated [M + H](+) and [M + Na](+) ions, where M stands for the neutral amino acid. Serine, threonine, asparagine and glutamine generated cluster ions of [nM - nH + (n + 1)Na](+) and [nM - (n - 1)H + (n - 1)Na + K](+) , where n = 1-7. While the (M - H + Li) and (M - H + K) species were not observed, the neutral (M - H + Na) species formed by proton-sodium cation exchange had a highly stable cyclic structure with ketone and amine ligand sites, suggesting that (M - H + Na) serves as a building block in cluster ion formation. Cluster ion intensity distributions of [nM - nH + (n + 1)Na](+) and [nM - (n - 1)H + (n - 1)Na + K](+) showed a magic number at n = 3 and 4, respectively. Extensive B3LYP-DFT quantum mechanical calculations were carried out to elucidate the geometry and energy of the cluster ions, and they provided a reasonable explanation for the stability and structure of the cluster ions. Copyright © 2011 John Wiley & Sons, Ltd.

  17. Metal Ions in Unusual Valency States. (United States)

    Sellers, Robin M.


    Discusses reactivity of metal ions with the primary products of water radiolysis, hyper-reduced metal ions, zero-valent metal ions, unstable divalent ions from the reduction of bivalent ions, hyper-oxidized metal ions, and metal complexes. (CS)

  18. Analytical characterization of complex, biotechnological feedstocks by pH gradient ion exchange chromatography for purification process development. (United States)

    Kröner, Frieder; Hanke, Alexander T; Nfor, Beckley K; Pinkse, Martijn W H; Verhaert, Peter D E M; Ottens, Marcel; Hubbuch, Jürgen


    The accelerating growth of the market for proteins and the growing interest in new, more complex molecules are bringing new challenges to the downstream process development of these proteins. This results in a demand for faster, more cost efficient, and highly understood downstream processes. Screening procedures based on high-throughput methods are widely applied nowadays to develop purification processes for proteins. However, screening highly complex biotechnological feedstocks, such as complete cell lysates containing target proteins often expressed with a low titre, is still very challenging. In this work we demonstrate a multidimensional, analytical screening approach based on pH gradient ion exchange chromatography (IEC), gel electrophoresis and protein identification via mass spectrometry to rationally characterize a biotechnological feedstock for the purpose of purification process development. With this very simple characterization strategy a two-step purification based on consecutive IEC operations was rapidly laid out for the purification of a diagnostic protein from a cell lysate reaching a purity of ∼80%. The target protein was recombinantly produced using an insect cell expression system. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Spectrophotometric determination of benzydamine HCl, levamisole HCl and mebeverine HCl through ion-pair complex formation with methyl orange (United States)

    El-Didamony, Akram M.


    A simple, rapid and sensitive spectrophotometric method has been proposed for the assay of benzydamine HCl (BENZ), levamisole HCl (LEV) and mebeverine HCl (MBV) in bulk and pharmaceutical formulations. The method based on the reaction of the selected drugs with methyl orange (MO) in buffered aqueous solution at pH 3.6. The formed yellow ion-pair complexes were extracted with dichloromethane and measured quantitatively with maximum absorption at 422 nm. The analytical parameters and their effects on the reported systems are investigated. The extracts are intensely colored and very stable at room temperature. The calibration graphs were linear over the concentration range of 2-10 μg ml -1 for BENZ, 6-24 μg ml -1 for LEV and 4-14 μg ml -1 for MBV. The stoichiometry of the reaction was found to be 1:1 in all cases and the conditional stability constant ( Kf) of the complexes have been calculated. The proposed method was successfully extended to pharmaceutical preparations-tablets. Excipients used as additive in commercial formulations did not interfere in the analysis. The proposed method can be recommended for quality control and routine analysis where time, cost effectiveness and high specificity of analytical technique are of great importance.

  20. Cooperation of divalent ions and thiamin diphosphate in regulation of the function of pig heart pyruvate dehydrogenase complex. (United States)

    Czerniecki, J; Czygier, M


    The role of Mg2+, Ca2+, and Mn2+ in regulation of purified pig heart pyruvate dehydrogenase complex (PDC) containing endogenous thiamin diphosphate (TDP) was studied. It was found that the effects of the cations depended on the presence of exogenous TDP. In the absence of added TDP, the divalent cations led to a shortening of a lag phase of the PDC reaction and a strong reduction of the Km value for pyruvate. The relative efficiency of the three types of ions are presented as follows: Mn2+>Ca2+>Mg2+. The other sources claim that in the presence of exogenous TDP, which alone strongly increased the affinity of PDC for pyruvate, any significant additional effects of the cations were not observed. However, Mg2+, Ca2+, and Mn2+ decreased the Km value for CoA in both cases, the absence and presence of exogenous TDP, in approximately a similar extent (about twofold). The affinity of PDC for NAD+ seems to be not sensitive to the presence of the divalent cations. The data obtained suggest that Mg2+, Ca2+, and Mn2+ can cooperate with TDP as positive regulatory effectors of pig heart PDC on the level of pyruvate dehydrogenase and lipoamide acetyltransferase components of the complex.

  1. Thermodynamic and structural properties in complexing media; Comportement chimique du protactinium (V) en presence d'ions sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Di Giandomenico, M.V


    Protactinium is experiencing a renewal of interest in the frame of long-term energy production. Modelling the behaviour of this element in the geosphere requires thermodynamic and structural data relevant to environmental conditions. Now deep clayey formation are considered for the disposal of radioactive waste and high values of natural sulphate contents have been determined in pore water in equilibrium with clay surface. Because of its tendency to polymerisation, hydrolysis and sorption on all solid supports, the equilibria constants relative to monomer species were determined at tracer scale (ca. 10 - 12 M) with {sup 233}Pa. The complexation constants of Pa(V) and sulphate ions were calculated starting from a systematic study of the apparent distribution coefficient D in the system TTA/Toluene/H{sub 2}O/Na{sub 2}SO{sub 4}/HClO{sub 4}/NaClO{sub 4} and as a function of ionic strength, temperature, free sulphate, protons and chelatant concentration. First of all, the interaction between free species H{sup +}, SO{sub 4}{sup -}, Na{sup +} leads to the formation of HSO{sub 4}{sup -} and NaSO{sub 4}{sup -}, for which concentrations depend upon the related thermodynamic constants. For this purpose a computer code was developed in order to determine all free species concentration. This iterative code takes into account the influence of temperature and ionic strength (SIT modelling) on thermodynamic constants. The direct measure of Pa(V) in the organic and aqueous phase by g-spectrometry had conducted to estimate the apparent distribution coefficient D as function of free sulphate ions. Complexation constants have been determined after a mathematical treatment of D. The extrapolation of these constants at zero ionic strength have been realized by SIT modelling at different temperatures. Besides, enthalpy and entropy values were calculated. Parallelly, the structural study of Pa(V) was performed using 231 Pa. XANES and EXAFS spectra show unambiguously the absence of the

  2. Solution structure investigation of Ru(II) complex ion pairs: quantitative NOE measurements and determination of average interionic distances. (United States)

    Zuccaccia, C; Bellachioma, G; Cardaci, G; Macchioni, A


    The structure of the Ru(II) ion pairs trans-[Ru(COMe)[(pz(2))CH(2)](CO)(PMe(3))(2)]X (X(-) = BPh(4)(-), 1a; BPh(3)Me(-), 1b; BPh(3)(n-Bu)(-), 1c; BPh(3)(n-Hex)(-), 1d; B(3, 5-(CF(3))(2)(C(6)H(3)))(4)(-), 1e; PF(6)(-), 1f; and BF(4)(-), 1g; pz = pyrazol-1-yl-ring) was investigated in solution from both a qualitative (chloroform-d, methylene chloride-d(2), nithromethane-d(3)) and quantitative (methylene chloride-d(2)) point of view by performing 1D- and 2D-NOE NMR experiments. In particular, the relative anion-cation localization (interionic structure) was qualitatively determined by (1)H-NOESY and (19)F, (1)H-HOESY (heteronuclear Overhauser effect spectroscopy) NMR experiments. The counteranion locates close to the peripheral protons of the bispyrazolyl ligand independent of its nature and that of the solvent. In complexes 1c and 1d bearing unsymmetrical counteranions, the aliphatic chain points away from the metal center as indicated by the absence of NOE between the terminal Me group and any cationic protons. An estimation of the average interionic distances in solution was obtained by the quantification of the NOE build-up versus the mixing time under the assumption that the interionic and intramolecular correlation times (tau(c)) are the same. Such an assumption was checked by the experimental measurements of tau(c) from both the dipolar contribution to the carbon-13 longitudinal relaxation time T(DD-1)and the comparison of the intramolecular and interionic cross relaxation rate constant (sigma) dependence on the temperature. Both the methodologies indicate that anion and cation have comparable tau(c) values. The determined correlation time values were compared with those obtained for the neutral trans-[Ru(COMe)[(pz(2))BH(2)](CO)(PMe(3))(2)] complex (2), isosteric with the cation of 1. They were significantly shorter (approximately 3.8 times), indicating that the main contribution to dipolar relaxation processes comes from the overall ion pair rotation. As a

  3. Fluorescence and cofluorescence enhancement of Tb(Ⅲ) complexes with pyromellitic acid by M (M =Gd,La,Ca,and Sr ions)

    Institute of Scientific and Technical Information of China (English)

    WANG Zhengxiang; CHEN Hong; SHU Wangen; ZHAO Dongbai; ZHOU Zhongcheng


    Fluorescence and cofluorescence properties of Tb(Ⅲ) solid complexes were studied using pyromellitic acid (PMA) as ligand and fluorescence inert ions as doping elements. The cofluorescence enhancement, a result of ligand sensitized fluorescence, was observed in Tb(Ⅲ) solid complexes doped with fluorescent inert ions La(Ⅲ), Gd(Ⅲ), Ca(Ⅲ), and Sr(Ⅲ). The effect of the type and content of doping elements on fluorescence enhancement was studied, and optimum conditions were determined. The results show that Gd (La, Ca, Sr) has clear cofluorescence effect in solid complex Tb-M-PMA system, and in present work, rare earth complex fluorescent powder that emits bright green fluorescence at ultraviolet excitation was obtained, which had potential application as fluorescent anti-counterfeit ink.

  4. Design and synthesis of a new terbium complex-based luminescent probe for time-resolved luminescence sensing of zinc ions. (United States)

    Ye, Zhiqiang; Xiao, Yunna; Song, Bo; Yuan, Jingli


    Luminescent probes/chemosensors based on lanthanide complexes have shown great potentials in various bioassays due to their unique long-lived luminescence property for eliminating short-lived autofluorescence with time-resolved detection mode. In this work, we designed and synthesized a new dual-chelating ligand {4'-[N,N-bis(2-picolyl)amino]methylene-2,2':6',2'-terpyridine-6,6'-diyl} bis(methylenenitrilo) tetrakis(acetic acid) (BPTTA), and investigated the performance of its Tb(3+) complex (BPTTA-Tb(3+)) for the time-resolved luminescence sensing of Zn(2+) ions in aqueous media. Weakly luminescent BPTTA-Tb(3+) can rapidly react with Zn(2+) ions to display remarkable luminescence enhancement with high sensitivity and selectivity, and such luminescence response can be realized repeatedly. Laudably, the dose-dependent luminescence enhancement shows a good linear response to the concentration of Zn(2+) ions with a detection limit of 4.1 nM. To examine the utility of the new probe for detecting intracellular Zn(2+) ions, the performance of BPTTA-Tb(3+) in the time-resolved luminescence imaging of Zn(2+) ions in living HeLa cells was investigated. The results demonstrated the applicability of BPTTA-Tb(3+) as a probe for the time-resolved luminescence sensing of intracellular Zn(2+) ions.

  5. Metal ion determinants of conantokin dimerization as revealed in the X-ray crystallographic structure of the Cd(2+)/Mg (2+)-con-T[K7gamma] complex. (United States)

    Cnudde, Sara E; Prorok, Mary; Castellino, Francis J; Geiger, James H


    Predatory sea snails from the Conus family produce a variety of venomous small helical peptides called conantokins that are rich in gamma-carboxyglutamic acid (Gla) residues. As potent and selective antagonists of the N-methyl-D: -aspartate receptor, these peptides are potential therapeutic agents for a variety of neurological conditions. The two most studied members of this family of peptides are con-G and con-T. Con-G has Gla residues at sequence positions 3, 4, 7, 10, and 14, and requires divalent cation binding to adopt a helical conformation. Although both Ca(2+) and Mg(2+) can fulfill this role, Ca(2+) induces dimerization of con-G, whereas the Mg(2+)-complexed peptide remains monomeric. A variant of con-T, con-T[K7gamma] (gamma is Gla), contains Gla residues at the same five positions as in con-G and behaves very similarly with respect to metal ion binding and dimerization; each peptide binds two Ca(2+) ions and two Mg(2+) ions per helix. To understand the difference in metal ion selectivity, affinity, and the dependence on Ca(2+) for dimer formation, we report here the structure of the monomeric Cd(2+)/Mg(2+)-con-T[K7gamma] complex, and, by comparison with the previously published con-T[K7gamma]/Ca(2+) dimer structure, we suggest explanations for both metal ion binding site specificity and metal-ion-dependent dimerization.

  6. The characterization of secondary lithium-ion battery degradation when operating complex, ultra-high power pulsed loads (United States)

    Wong, Derek N.

    The US Navy is actively developing all electric fleets, raising serious questions about what is required of onboard power supplies in order to properly power the ship's electrical systems. This is especially relevant when choosing a viable power source to drive high power propulsion and electric weapon systems in addition to the conventional loads deployed aboard these types of vessels. Especially when high pulsed power loads are supplied, the issue of maintaining power quality becomes important and increasingly complex. Conventionally, a vessel's electrical power is generated using gas turbine or diesel driven motor-generator sets that are very inefficient when they are used outside of their most efficient load condition. What this means is that if the generator is not being utilized continuously at its most efficient load capacity, the quality of the output power may also be effected and fall outside of the acceptable power quality limits imposed through military standards. As a solution to this potential problem, the Navy has proposed using electrochemical storage devices since they are able to buffer conventional generators when the load is operating below the generator's most efficient power level or able to efficiently augment a generator when the load is operating in excess of the generator's most efficient power rating. Specifically, the US Navy is interested in using commercial off-the-shelf (COTS) lithium-ion batteries within an intelligently controlled energy storage module that could act as either a prime power supply for on-board pulsed power systems or as a backup generator to other shipboard power systems. Due to the unique load profile of high-rate pulsed power systems, the implementation of lithium-ion batteries within these complex systems requires them to be operated at very high rates and the effects these things have on cell degradation has been an area of focus. There is very little published research into the effects that high power transient

  7. Differential effects of zinc and magnesium ions on mineralization activity of phosphatidylserine calcium phosphate complexes. (United States)

    Wu, Licia N Y; Genge, Brian R; Wuthier, Roy E


    Mg(2+) and Zn(2+) are present in the mineral of matrix vesicles (MVs) and biological apatites, and are known to influence the onset and progression of mineral formation by amorphous calcium phosphate (ACP) and hydroxyapatite (HAP). However, neither has been studied systematically for its effect on mineral formation by phosphatidylserine-Ca(2+)-Pi complexes (PS-CPLX), an important constituent of the MV nucleation core. Presented here are studies on the effects of increasing levels of Mg(2+) and Zn(2+) on the process of mineral formation, either when present in synthetic cartilage lymph (SCL), or when incorporated during the formation of PS-CPLX. Pure HAP and PS-CPLX proved to be powerful nucleators, but ACP took much longer to induce mineral formation. In SCL, Mg(2+) and Zn(2+) had significantly different inhibitory effects on the onset and amount of mineral formation; HAP and PS-CPLX were less affected than ACP. Mg(2+) and Zn(2+) caused similar reductions in the rate and length of rapid mineral formation, but Zn(2+) was a more potent inhibitor on a molar basis. When incorporated into PS-CPLX, Mg(2+) and Zn(2+) caused significantly different effects than when present in SCL. Even low, subphysiological levels of Mg(2+) altered the inherent structure of PS-CPLX and markedly reduced its ability to induce and propagate mineral formation. Incorporated Zn(2+) caused significantly less effect, low (<20 microM) levels causing almost no inhibition. Levels of Zn(2+) present in MVs do not appear to inhibit their nucleational activity.

  8. Factors Affecting the Efficiency of Excited-States Interactions of Complexes between Some Visible Light-Emitting Lanthanide Ions and Cyclophanes Containing Spirobiindanol Phosphonates

    Directory of Open Access Journals (Sweden)

    M. S. Attia


    Full Text Available The efficiency of excited-states interactions between lanthanide ions Tb3+ and Eu3+ and some new cyclophanes (I, II, and III has been studied in different media. High luminescence quantum yield values for terbium and europium complexes in DMSO and PMMA were obtained. The photophysical properties of the green and red emissive Tb3+ and Eu3+ complexes have been elucidated, respectively.

  9. Spectrophotometeric determination of trace amounts of Al3+ ion in water samples after cloud point extraction using quinizarin as a complexing agent. (United States)

    Shokrollahi, Ardeshir; Aghaei, Roghayeh


    In this study, cloud point extraction was used for the preconcentration of Al(3+) ion after the complex formation with 1,4-dihydroxy-9,10-anthraquinone (Quinizarin [QUIN]), and subsequent analysis by spectrophotometeric method, using Triton X-114 as surfactant. The optimal extraction and reaction conditions were studied (i.e., pH = 5.5, 0.1 mM QUIN, Triton X-114 = 0.1% (w/v)), and the analytical characteristics of the method (e.g., limit of detection, linear range, preconcentration, and enrichment factors) were obtained. Linearity was obeyed in the range of 3.33-166.67 ng ml(-1) of Al(3+) ion. The detection limit of the method was 2.09 ng ml(-1) for Al(3+) ion. The interference effect of some anions and cations was also tested. The method was applied to determine Al(3+) ion in water samples.

  10. Diglycolamide-functionalized calix[4]arenes showing unusual complexation of actinide ions in room temperature ionic liquids: role of ligand structure, raiolytic stability, emission spectroscopy, and thermodynamic studies

    NARCIS (Netherlands)

    Mohapatra, Prasanta K.; Sengupta, A.; Iqbal, M.; Huskens, Jurriaan; Verboom, Willem


    Diglycolamide-functionalized calix[4]arenes (C4DGAs) with varying structural modifications were evaluated for actinide complexation from their extraction behavior toward actinide ions such as UO22+, Pu4+, PuO22+, and Am3+ in the room temperature ionic liquid (RTIL) 1-n-octyl-3-methylimidazolium

  11. Spectrophotometric Study of Ternary Complex Forming Systems of Some Lanthanide Metal Ions with Eriochrome Cyanine R in Presence of Cetylpyridinium Bromide for Microdetermination

    Directory of Open Access Journals (Sweden)

    A. S. Dhepe


    Full Text Available Study of coordination compounds of lanthanide elements has received a great attention due to growing applications in science and technology. Number of chromogenic reagents form water soluble colored complexes with lanthanides. Eriochrome cyanine R (ECR a member of triphenylmethane type of dye has been reported to form green colored complexes with lanthanides and has been used for microdetermination of these metal ions. Addition of cationic surfactant, Cetylpyridinium bromide (CPB, a cationic surfactant sensitizes the color reactions of Gd(III, Tb(III, Dy(III, Ho(III and Lu(III with ECR. Formation of water soluble, highly colored ternary complexes with a considerable bathochromic shift of about 50 nm in presence of surfactant has been observed. Optimum reaction conditions and other analytical parameters were also evaluated. Stoichiometric ratio 1:3:3 of Ln: ECR: CPB are responsible for the observed rise in molar absorptivity and sensitivity. Beer’s law was obeyed between 0.50 to 13.00 ppm. Effective photometric range and molar absorptivity of these ternary complexes have been calculated. Effect of some common interfering ions on determination of these lanthanide metal ions was studied. A simple, rapid and highly sensitive spectrophotometeric method has been proposed for the determination of metal ions understudy.

  12. Evidence of interlipidic ion-pairing in anion-induced DNA release from cationic amphiphile-DNA complexes. Mechanistic implications in transfection. (United States)

    Bhattacharya, S; Mandal, S S


    Complex formation of DNA with a number of cationic amphiphiles has been examined using fluorescence, gel electrophoresis, and chemical nuclease digestion. Here we have addressed the status of both DNA and lipid upon complexation with each other. DNA upon binding with cationic amphiphiles changes its structure in such a way that it loses the ability to intercalate and becomes resistant to nuclease digestion. Fluorescence anisotropy measurements due to 1, 6-diphenylhexatriene (DPH) doped in cationic liposomes demonstrated that upon complexation with DNA, the resulting complexes still retain lamellar organizations with modest enhancement in thermal stabilities. The lipid-DNA complexation is most effective only when the complexation was carried out at or around the phase transition temperatures of the cationic lipid employed in the complexation with DNA. The release of DNA from cationic lipid-DNA complexes could be induced by several anionic additives. Determination of fluorescence anisotropies (due to DPH) as a function of temperature clearly demonstrates that the addition of equivalent amounts of anionic amphiphile into cationic lipid-DNA complexes leads to the ion-pairing of the amphiphiles, the melting profiles of which are virtually the same as those obtained in the absence of DNA. In this process DNA gets released from its complexes with cationic lipids and regains its natural intercalation ability, movement, and staining ability on agarose gel and also the sensitivities toward nuclease digestion. This clearly suggests that combination of ion-pairing and hydrophobic interactions between cationic and anionic amphiphiles is stronger than the electrostatic forces involved in the cationic lipid-DNA complexation. It is further revealed that the DNA release by anions is most efficient from the cationic lipid-DNA complexes at or around the Tm of the cationic lipid used in DNA complexation. This explains why more effective DNA delivery is achieved with cationic lipids

  13. A Photoactivatable Platinum(IV) Complex Targeting Genomic DNA and Histone Deacetylases. (United States)

    Kasparkova, Jana; Kostrhunova, Hana; Novakova, Olga; Křikavová, Radka; Vančo, Ján; Trávníček, Zdeněk; Brabec, Viktor


    We report toxic effects of a photoactivatable platinum(IV) complex conjugated with suberoyl-bis-hydroxamic acid in tumor cells. The conjugate exerts, after photoactivation, two functions: activity as both a platinum(II) anticancer drug and histone deacetylase (HDAC) inhibitor in cancer cells. This approach relies on the use of a Pt(IV) pro-drug, acting by two independent mechanisms of biological action in a cooperative manner, which can be selectively photoactivated to a cytotoxic species in and around a tumor, thereby increasing selectivity towards cancer cells. These results suggest that this strategy is a valuable route to design new platinum agents with higher efficacy for photodynamic anticancer chemotherapy.

  14. The preparation and characterization of trans-platinum(IV) complexes with unusually high cytotoxicity. (United States)

    Cubo, Leticia; Hambley, Trevor W; Sanz Miguel, Pablo J; Carnero, Amancio; Navarro-Ranninger, Carmen; Quiroga, Adoración G


    The physical and biological properties have been determined for three Pt(IV) complexes with trans amine ligands: trans,trans,trans-[PtCl(2)(OH)(2)(dimethylamine)(isopropylamine)] (1(IV)), trans,trans,trans-[PtCl(2)(OH)(2)(dimethylamine)(methylamine)] (2(IV)) and trans,trans,trans-[PtCl(2)(OH)(2)(isopropylamine)(methylamine)] (3(IV)). The crystal structures of 2(IV) and 3(IV) reveal substantial strain resulting from repulsion between the amine ligands and the chlorido and hydroxido ligands. All three complexes have reduction potentials in the range -666 to -770 mV, values usually associated with high resistance to reduction and low cytotoxicity. However, the complexes all demonstrate surprisingly high cytotoxicity with values and trends that closely follow those seen for the Pt(II) congeners of these complexes. These results are consistent with more rapid reduction of the Pt(IV) complexes than would be expected based on the reduction potentials, perhaps associated with the trans arrangement of the chlorido ligands.

  15. Complexity

    CERN Document Server

    Gershenson, Carlos


    The term complexity derives etymologically from the Latin plexus, which means interwoven. Intuitively, this implies that something complex is composed by elements that are difficult to separate. This difficulty arises from the relevant interactions that take place between components. This lack of separability is at odds with the classical scientific method - which has been used since the times of Galileo, Newton, Descartes, and Laplace - and has also influenced philosophy and engineering. In recent decades, the scientific study of complexity and complex systems has proposed a paradigm shift in science and philosophy, proposing novel methods that take into account relevant interactions.

  16. A control on hydrophobic and hydrophilic interactions between HEWL and metal Schiff-base complexes comprising of different metal ions and ligands

    Energy Technology Data Exchange (ETDEWEB)

    Koley Seth, Banabithi; Ray, Aurkie; Basu, Samita, E-mail:


    The structural effects of different copper(II) and nickel(II) Schiff base complexes on hen egg white lysozyme (HEWL) have been investigated through steady state and time resolved absorption and fluorescence, and circular dichroism spectroscopy. The Schiff base ligands with N{sub 4} donor atoms show both hydrophobic and hydrophilic interactions, however hydrophilic interaction prevails with ligands having N{sub 2}O{sub 2} donor atoms. Variation of metal ions from Cu{sup 2+} to Ni{sup 2+} with each type of Schiff base ligand increases the probability of hydrophilic over hydrophobic interactions, which supports their significance in regulating the binding affinity between HEWL and metal complexes. On photo-excitation the complexes comprising of Cu{sup 2+} ion instead of Ni{sup 2+} ion and ligands with N{sub 4} donor system rather than N{sub 2}O{sub 2} donor system, increases the probability of intersystem crossing to populate the corresponding triplet state as observed from laser flash photolysis study. The better binding affinity of nickel complexes with different selectivities compared to copper complexes towards HEWL emphasizes the potentiality of less explored nickel complexes in drug–protein interactions. - Highlights: • Ni{sup II} and Cu{sup II} -Schiff base complexes bind hen egg white lysozyme spontaneously. • Both hydrophobic and hydrophilic interactions are effective for N{sub 4} ligands. • For N{sub 2}O{sub 2} ligands the hydrophilic is predominant over hydrophobic interaction. • Binding affinity and selectivity of Ni{sup II}-complexes are better than Cu{sup II}-complexes. • Replacement of Cu{sup 2+} by Ni{sup 2+} in a ligand enhances chance of hydrophilic interaction.

  17. Complexes of polydopamine-modified clay and ferric ions as the framework for pollutant-absorbing supramolecular hydrogels. (United States)

    Huang, Shu; Yang, Liping; Liu, Ming; Phua, Si Lei; Yee, Wu Aik; Liu, Wanshuang; Zhou, Rui; Lu, Xuehong


    Clay-based functional hydrogels were facilely prepared via a bioinspired approach. Montmorillonite (clay) was exfoliated into single layers in water and then coated with a thin layer of polydopamine (PDOPA) via in situ polymerization of dopamine under basic aqueous conditions. When a small amount of ferric salt was added into aqueous suspensions of the polydopamine-coated clay (D-clay), D-clay and Fe(3+) ions could rapidly self-assemble into three-dimensional networks through the formation of coordination bonds. Consequently, supramolecular hydrogels were formed at very low D-clay contents. Rheological measurements show that the D-clay/Fe(3+) hydrogels exhibit fairly elastic response in low stain range, and have self-healing capability upon removal of applied large stress. More importantly, the hydrogels can be used as adsorbents to effectively remove Rhodamine 6G (Rh6G), an organic pollutant, from water. UV-vis absorption spectra of the Rh6G-loaded hydrogels show bands related to π-π stacking interactions between the aromatic moieties of PDOPA and Rh6G, confirming the formation of PDOPA/Rh6G complex on the surface of D-clay.

  18. Development of complex hydride-based all-solid-state lithium ion battery applying low melting point electrolyte (United States)

    Suzuki, Shohei; Kawaji, Jun; Yoshida, Koji; Unemoto, Atsushi; Orimo, Shin-ichi


    A thermally durable all-solid-state lithium ion battery composed of a complex hydride, oxide electrolytes, and LiNi1/3Mn1/3Co1/3O2 active material is developed. This battery exhibits a discharge capacity of 56 mAh g-1, and the tenth capacity retention ratio is 29% at 150 °C owing to the large contact resistance between the electrolyte layer and the composite positive electrode layer. This large contact resistance is reduced by introducing an adhesive layer comprised of a mixture of LiBH4 and LiNH2 that is easily melted by thermal treatment and fills the voids and pores at the interface between the two layers. As a result, repeated charge-discharge cycles are successfully demonstrated at 150 °C with a high discharge capacity and discharge capacity retention ratio. The first discharge capacity is enhanced to 114 mAh g-1 and the capacity retention ratio at the tenth cycle is improved to 71%. These results demonstrate that using an adhesive layer is an effective measure to reduce the contact resistance and thereby enhance the performance of the battery.

  19. A Novel Coated Graphite Rod Th(IV Ion Selective Electrode Based On Thorium Oxinate Complex and Its Application

    Directory of Open Access Journals (Sweden)

    Abeer M. El-Saied


    Full Text Available Preparation, characterization, and application of a novel coated graphite rod thorium selective electrode based on thorium 8-hydroxyquinolate [thorium oxinate, Th(C9H6NO4.2H2O] complex ionophore as a sensing material, dioctylphthalate (DOP as a solvent mediator, and PVC as a matrix have been developed. The coated graphite rod electrode exhibits a linear Nernstian response over the concentration range 5x10-6 - 1x10-1 mol l-1 of Th(IV ions, with a calibration slope of 15.5 ± 0.5 mV/concentration decade and a detection limit of 1.6x10-6 mol l-1. It has a fast response time and can be used for a period of two months without any divergence in potentials. The proposed electrode reveals a good selectivity for Th(IV cation over a varity of other cations and could be used in the pH range of (3 - 5. The sensor was successfully applied in the determination of thorium in real (monazite sand sample. The average recovery obtained is ranging from 97.0 to 93.4% with standard deviation of 1.5% (n=8.

  20. A new ion imprinted polymer based on Ru(III)-thiobarbituric acid complex for solid phase extraction of ruthenium(III) prior to its determination by ETAAS. (United States)

    Zambrzycka, Elżbieta; Godlewska-Żyłkiewicz, Beata


    A new ruthenium ion imprinted polymer was prepared from the Ru(III) 2-thiobarbituric acid complex (the template), methacrylic acid or acrylamide (the functional monomers), and ethylene glycol dimethacrylate (the cross-linking agent) using 2,2'-azobisisobutyronitrile as the radical initiator. The ion imprinted polymer was characterized and used as a selective sorbent for the solid phase extraction of Ru(III) ions. The effects of type of functional monomer, sample volume, solution pH and flow rate on the extraction efficiency were studied in the dynamic mode. Ru(III) ion was quantitatively retained on the sorbents in the pH range from 3.5 to 10, and can be eluted with 4 mol L(-1) aqueous ammonia. The affinity of Ru(III) for the ion imprinted polymer based on the acrylamide monomer is weaker than that for the polymer based on the methacrylic acid monomer, which therefore was used in interference studies and in analytical applications. Following extraction of Ru(III) ions with the imprint and their subsequent elution from the polymer with aqueous ammonia, Ru(III) was detected by electrothermal atomic absorption spectrometry with a detection limit of 0.21 ng mL(-1). The method was successfully applied to the determination of trace amounts of Ru(III) in water, waste, road dust and platinum ore (CRM SARM 76) with a reproducibility (expressed as RSD) below 6.4 %. FigureThe new ion imprinted polymer was prepared and used for the separation of ruthenium from water and most complex environmental samples, such as road dust and platinum ore (CRM SARM 76) prior ETAAS determination.

  1. Syntheses, crystal structures, electronic spectra and magnetic properties of two ion-pair charge transfer complexes based on [Ni(mnt)2]- (United States)

    Xu, Xiao-Yi; Chen, Xuan-Rong; Yang, Qing-Cheng; Xue, Chen; Tao, Jian-Qing; Liu, Jian-Lan; Ren, Xiao-Ming


    Two new bimetallic ion-pair complexes 1 and 2 with general formula [M(phen)3][Ni(mnt)2]2 (phen = 1, 10-phenanthroline, mnt2- = maleonitriledithiolate; M = Ni2+, Fe2+ for 1 and 2), have been prepared and characterized by IR, elemental analysis, single crystal X-ray diffraction, UV-vis-NIR spectra and magnetic measurements. The structural determination reveals that the crystals of two ion-pair complexes, with monoclinic space group C2/c, have similar cell parameters and the [M(phen)3]2+ cations and the [Ni(mnt)2]- anions are packed by forming alternate layers. Thermogravimetric (TG) analyses revealed that 1 and 2 are thermally stable up to ∼170 °C. UV-vis-NIR spectra discloses that two complexes exhibit sizable absorption in near-IR region because of ion-pair charge transfer (IPCT) transitions in 1 and 2. Investigation of the magnetic properties 1 shows Curie-Weiss-type paramagnetic behavior in the temperature range 2-400 K. For 2, the paramagnetic behavior above ∼40 K indicated the [Fe(phen)3]2+ ion has a low-spin state and the weak Curie-Weiss type tail below 40 K results from a trace amount of paramagnetic [Ni(mnt)2]- species.

  2. Potentiometric and UV Spectral Studies of Binary and Ternary Complexes of Some Metal Ions with N-Acetylcysteine and Amino Acids

    Directory of Open Access Journals (Sweden)

    Shaesta Quyoom


    Full Text Available The formation constants of the binary 1:1 and 1:2 complexes of Cu(II, Zn(II, Cd(II, Hg(II, and Pb(II with N-acetylcysteine (NAC and 1:1:1 ternary complexes of the said metal ions with NAC as a primary ligand and some biologically important amino acids as secondary ligands have been determined potentiometrically in aqueous medium. Acid dissociation constants of the ligands used and the formation constants of the binary and the ternary complexes were determined at 25 °C and in ionic strength I=0.1 mol dm-3 (KNO3.The formation constants of the 1:1 complexes were found to be higher than 1:2 complexes and the metal ions follow the order Hg(II >Cu(II >Cd(II >Zn(II. In addition UV-spectral studies of the NAC-Metal (II complexes have also been conducted at appropriate pH values to give further information about the structural nature of NAC- Metal (II complexes in aqueous medium.

  3. Ion recognition: application of symmetric and asymmetric schiff bases and their complexes for the fabrication of cationic and anionic membrane sensors to determine ions in real samples. (United States)

    Faridbod, Farnoush; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Norouzi, Parviz


    Schiff base compounds refer to the branch of supra-molecules and can be used as sensing material in the construction of potentiometric ion selective electrodes (ISEs). This relatively modern field has been subject to extensive research in the period of 1999-2007 when more than 100 ISEs employing Schiff bases were constructed. The quantitative high-throughput detection of 29 cations and 7 anions has been demonstrated in various scientific branches, such as biomedicine, pharmacy, biochemistry, pharmacology, environmental chemistry, food technology, and agriculture. This review discusses Schiff base compounds and their applications in the design and development of ion selective sensors and microsensors.

  4. Complex

    African Journals Online (AJOL)


    Schiff bases and their complex compounds have been studied for their .... establishing coordination of the N–(2 – hydroxybenzyl) - L - α - valine Schiff base ..... (1967); “Spectrophotometric Identification of Organic Compounds”, Willey, New.

  5. Zinc naphthalenedicarboxylate coordination complex: A promising anode material for lithium and sodium-ion batteries with good cycling stability. (United States)

    Fei, Hailong; Feng, Wenjing; Xu, Tan


    It is important to discover new, cheap and environmental friendly electrode materials with high capacity and good cycling stability for lithium and sodium-ion batteries. Zinc 1,4-naphthalenedicarboxylate was firstly found to be stable anode materials for lithium and sodium-ion batteries. The discharge capacity can be up to 468.9mAhg(-1) after 100 cycles at a current density of 100mAg(-1) for lithium-ion batteries, while the second discharge capacity of 320.7mAhg(-1) was achieved as anode materials for sodium-ion batteries. A possible electrochemical reaction mechanism was discussed.

  6. Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. (United States)

    Shen, Laifa; Yu, Le; Yu, Xin-Yao; Zhang, Xiaogang; Lou, Xiong Wen David


    Despite the significant advancement in preparing metal oxide hollow structures, most approaches rely on template-based multistep procedures for tailoring the interior structure. In this work, we develop a new generally applicable strategy toward the synthesis of mixed-metal-oxide complex hollow spheres. Starting with metal glycerate solid spheres, we show that subsequent thermal annealing in air leads to the formation of complex hollow spheres of the resulting metal oxide. We demonstrate the concept by synthesizing highly uniform NiCo2O4 hollow spheres with a complex interior structure. With the small primary building nanoparticles, high structural integrity, complex interior architectures, and enlarged surface area, these unique NiCo2O4 hollow spheres exhibit superior electrochemical performances as advanced electrode materials for both lithium-ion batteries and supercapacitors. This approach can be an efficient self-templated strategy for the preparation of mixed-metal-oxide hollow spheres with complex interior structures and functionalities.

  7. Stability Constants of Mixed Ligand Complexes of Transition Metal(II Ions with Salicylidene-4-methoxyaniline as Primary Ligand and 5-Bromosalicylidene-4-nitroaniline as Secondary Ligand

    Directory of Open Access Journals (Sweden)

    N. G. Nadkarni


    Full Text Available Binary and ternary complexes of the type M-Y and M-X-Y [M = Mn(II, Ni(II, Cu(II and Zn(II; X = salicylidene-4-methoxyaniline and Y=5-bromosalicylidene-4-nitroaniline] have been examined pH-metrically at 27±0.5 °C and at constant ionic strength, μ= 0.1 M (KCl in 75 : 25(v/v 1,4-dioxne-water medium. The stability constants for binary (M-Y and ternary (M-X-Y systems were calculated. The relative stability (Δ log KT values of the ternary complexes with corresponding binary complexes for all the metal(II ions in the present study found to be negative indicating that ternary 1:1:1 (M-X-Y complexes are less stable than binary 1:1 (M-Y complexes. In the ternary system studied, the order of stability constants of mixed ligand complexes with respect to the metal ions was found to be Cu(II > NI(II > Mn(II > Zn(II; which is same as in the corresponding binary (M-Y systems.

  8. Studies of complex fragment emission in heavy ion reactions. Progress report, January 1, 1990--August 5, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Charity, R.J.; Sobotka, L.G.


    Our work involves the study of intermediate energy heavy-ion nuclear reactions. This work has two foci. On the one hand, we desire to learn about the properties of nuclear matter under abnormal conditions, in this energy domain, predominately low densities. This purpose runs abreast of the second, which is the study of the relevant reaction mechanisms. The two objectives are inexorably linked because our experimental laboratory for studying nuclear matter properties is a dynamic one. We are forced to ask how nuclear matter properties, such as phase transitions, are reflected in the dynamics of the reactions. It may be that irrefutable information about nuclear matter will not be extracted from the reaction work. Nevertheless, we are compelled to undertake this effort not only because it is the only game in town and as yet we do not know that information cannot be extracted, but also because of our second objective. The process leads to an understanding of the reaction mechanism themselves and therefore to the response characteristics of finite, perhaps non-equilibrium, strongly interacting systems. Our program has been: To study energy, mass, and angular momentum deposition by studying incomplete fusion reactions. To gain confidence that we understand how highly excited systems decompose by studying all emissions from the highly excited systems. To push these kinds of studies into the intermediate energy domain, with excitation function studies. And attempt to learn about the dynamics of the decays using particle-particle correlations. In the last effort, we have decided to focus on simple systems, where we believe, definitive statements are possible. These avenues of research share a common theme, large complex fragment production.

  9. Thermodynamic Study of the Ion-Pair Complexation Equilibria of Dye and Surfactant by Spectral Titration and Chemometric Analysis

    Directory of Open Access Journals (Sweden)

    Hakimeh Abbasi Awal


    Full Text Available Surfactant-dye interactions are very important in chemical and dyeing processes. The dyes interact strongly with surfactant and show new spectrophotometric properties, so the UV-vis absorption spectrophotometric method has been used to study this process and extract some thermodynamic parameters. In this work, the association equilibrium between ionic dyes and ionic surfactant were studied by analyzing spectrophotometric data using chemometric methods. Methyl orange and crystal violet were selected as a model of cationic and anionic dyes respectively. Also sodium dodecyl sulphate and cetyltrimethylammonium bromide were selected as anionic and cationic surfactant, respectively. Hard model methods such as target transform fitting (TTF classical multi-wavelength fitting and soft model method such as multivariate curve resolution (MCR were used to analyze data that were recorded as a function of surfactant concentration in premicellar and postmicellar regions. Hard model methods were used to resolve data using ion-pair model in premicellar region in order to extract the concentration and spectral profiles of individual components and also related thermodynamic parameters. The equilibrium constants and other thermodynamic parameters of interaction of dyes with surfactants were determined by studying the dependence of their absorption spectra on the temperature in the range 293–308 K at concentrations of 5 × 10−6 M and 8 × 10−6 M for dye crystal violet and methyl orange, respectively. In postmicellar region, the MCR-ALS method was applied for resolving data and getting the spectra and concentration profiles in complex mixtures of dyes and surfactants.

  10. Two new complexes of Lanthanide(III) ion with the N3O2-donor Schiff base ligand: Synthesis, crystal structure, and magnetic properties (United States)

    Gao, Xu-Sheng; Jiang, Xia; Yao, Cheng


    Two rare earth coordination complexes, [Dy(DAPBH)NO3(H2O)2]ṡ(NO3)2 (1), La(DAPBH)(NO3)3 (2) (where DAPBH = 2, 6-diacetylpyridine benzoyhydrazone), have been synthesized and characterized. Single crystal structural analysis revealed that the Dy3+ ion is nine-coordinated with three N-atoms and two O-atoms from pentadentate DAPBH ligand, two O-atoms from one nitrate and other two O-atoms from two water molecules, and the coordination sphere features as a capped tetragonal antiprism in 1, while the La3+ ion is bound to six O atoms from three nitrate counter ions, three N-atoms and two O-atoms from a pentadentate DAPBH ligand to form a tricapped tetragonal antiprism coordination geometry in 2. Variable-temperature magnetic susceptibility measurements showed the existence of weak antiferromagnetic interaction in 1.

  11. Structural study of the uranyl and rare earth complexation functionalized by the CMPO; Etude structurale de la complexation de l'uranyle et des ions lanthanides par des calixarenes fonctionnalises par le CMPO

    Energy Technology Data Exchange (ETDEWEB)

    Cherfa, S


    In view of reducing the volume of nuclear waste solutions, a possible way is to extract simultaneously actinide and lanthanide ions prior to their ulterior separation.. Historically, the two extractant families used for nuclear waste reprocessing are the phosphine oxides and the CMPO (Carbamoyl Methyl Phosphine Oxide). For a better understanding of the complexes formed during extraction, we undertook structural studies of the complexes formed between uranyl and lanthanide (III) ions and the two classes of ligands cited above. These studies have been performed by X-ray diffraction on single crystals. Recently, a new type of extractants of lanthanide (III) and actinide (III) ions has been developed. When the Organic macrocycle called calixarene (an oligomeric compound resulting from the poly-condensation of phenolic units) is functionalized by a CMPO ligand, the extracting power, in terms of yield and selectivity towards lightest lanthanides, is greatly enhanced compared to the one measured for the single CMPO. Our X-ray diffraction studies allowed us to characterise, in terms of stoichiometry and monodentate or bidentate coordination mode of the CMPO functions, the complexes of calix[4]arene-CMPO (with four phenolic units) with lanthanide nitrates and uranyl. These different steps of characterisation enabled us to determine the correlation between the structures of the complexes and both selectivity and exacerbation of the extracting power measured in the liquid phase. (author)

  12. New Insight in Copper-Ion Binding to Human Islet Amyloid: The Contribution of Metal-Complex Speciation To Reveal the Polypeptide Toxicity. (United States)

    Magrì, Antonio; La Mendola, Diego; Nicoletti, Vincenzo Giuseppe; Pappalardo, Giuseppe; Rizzarelli, Enrico


    Type-2 diabetes (T2D) is considered to be a potential threat on a global level. Recently, T2D has been listed as a misfolding disease, such as Alzheimer's and Parkinson's diseases. Human islet amyloid polypeptide (hIAPP) is a molecule cosecreted in pancreatic β cells and represents the main constituent of an aggregated amyloid found in individuals affected by T2D. The trace-element serum level is significantly influenced during the development of diabetes. In particular, the dys-homeostasis of Cu(2+) ions may adversely affect the course of the disease. Conflicting results have been reported on the protective role played by complex species formed by Cu(2+) ions with hIAPP or its peptide fragments in vitro. The histidine (His) residue at position 18 represents the main binding site for the metal ion, but contrasting results have been reported on other residues involved in metal-ion coordination, in particular those toward the N or C terminus. Sequences that encompass regions 17-29 and 14-22 were used to discriminate between the two models of the hIAPP coordination mode. Due to poor solubility in water, poly(ethylene glycol) (PEG) derivatives were synthesized. A peptide fragment that encompasses the 17-29 region of rat amylin (rIAPP) in which the arginine residue at position 18 was substituted by a histidine residue was also obtained to assess that the PEG moiety does not alter the peptide secondary structure. The complex species formed by Cu(2+) ions with Ac-PEG-hIAPP(17-29)-NH2 , Ac-rIAPP(17-29)R18H-NH2 , and Ac-PEG-hIAPP(14-22)-NH2 were studied by using potentiometric titrations coupled with spectroscopic methods (UV/Vis, circular dichroism, and EPR). The combined thermodynamic and spectroscopic approach allowed us to demonstrate that hIAPP is able to bind Cu(2+) ions starting from the His18 imidazole nitrogen atom toward the N-terminus domain. The stability constants of copper(II) complexes with Ac-PEG-hIAPP(14-22)-NH2 were used to simulate the different

  13. Mass spectrometric analysis of the interactions between CP12, a chloroplast protein, and metal ions: a possible regulatory role within a PRK/GAPDH/CP12 complex. (United States)

    Delobel, Arnaud; Graciet, Emmanuelle; Andreescu, Simona; Gontero, Brigitte; Halgand, Frédéric; Laprévote, Olivier


    The small chloroplast protein CP12 plays the role of a protein linker in the assembly process of a PRK/GAPDH/CP12 complex that is involved in CO2 assimilation in photosynthetic organisms. The redox state of CP12 regulates its role as a protein linker. Only the oxidized protein, with two disulfide bonds, is active in complex formation. Several observations indicating that CP12 might bind a metal ion led us to screen the binding of different metal ions on oxidized or reduced CP12 using non-covalent electrospray ionization mass spectrometry (ESI-MS) experiments. The oxidized protein bound specifically Cu2+ and Ni2+ (Kd of 26+/-1 microM and 11+/-1 microM, respectively); other cations such as Fe2+ and Zn2+ did not bind, while cations such as Cd2+ formed non-specific adducts to CP12. Similar results were obtained for metal ions on screening with the reduced CP12. Interestingly, the present results suggest that Cu2+ catalyzes the re-formation of the disulfide bonds of the reduced CP12, leading to recovery of the fully oxidized CP12 that is then able to bind a Cu2+ ion. Finally the high similarity between CP12 and copper chaperones from Arabidopsis thaliana, as judged by hydrophobic cluster analysis, provides additional evidence for the relevance of metal binding for the in vivo situation. The findings that CP12 is able to bind a metal ion, and that Cu2+ catalyzes the oxidation of the thiol groups of CP12, are new characteristics of this protein that may prove to be important in the regulation of the assembly process of the PRK/GAPDH/CP12 complex.

  14. Optimization of Co2+ ions removal from water solutions via polymer enhanced ultrafiltration with application of PVA and sulfonated PVA as complexing agents. (United States)

    Uzal, Niğmet; Jaworska, Agnieszka; Miśkiewicz, Agnieszka; Zakrzewska-Trznadel, Grażyna; Cojocaru, Corneliu


    The paper presents the results of the studies of UF-complexation process applied for the removal of Co(2+) ions from water solutions. As binding agents for cobalt ions, the PVA polymer (M(w)=10,000) and its sulfonated form, synthesized in the laboratory, have been used. The method of experimental design and response surface methodology have been employed to find out the optimal conditions for the complexation process and to evaluate the interaction between the input variables, i.e., initial cobalt concentration, pH and amount of the polymer used, expressed as a polymer/Co(2+) ratio r. The data collected by the designed experiments showed that sulfonation of polymer has improved significantly the binding ability of PVA. The optimal conditions of cobalt ions complexation established by response surface model for non-sulfonated PVA polymer have been found to be as follows: the initial concentration of Co(2+)=5.70 mg L(-1), the ratio between polymer and metal ions, r=8.58 and pH=5.93. The removal efficiency of Co(2+) in these conditions was 31.81%. For sulfonated PVA polymer, the optimal conditions determined are as follows: initial concentration of [Co(2+)](0)=10 mg L(-1), r=1.2 and pH=6.5. For these conditions, a removal efficiency of 99.98% has been determined. The experiments showed that Co(2+) removal ability of sulfonated PVA was much higher than its non-sulfonated precursor. Although the polymer concentrations used in the tests with sulfonated PVA were approximately ten times lower than the non-sulfonated one, the removal efficiency of cobalt ions was significantly higher.

  15. Ortho-hydroxyl effect and proton transfer via ion-neutral complex: the fragmentation study of protonated imine resveratrol analogues in mass spectrometry. (United States)

    Yue, Lei; Li, Jing; Xie, Xiaodong; Guo, Cheng; Yin, Xinchi; Yin, Qi; Chen, Yinjuan; Pan, Yuanjiang; Ding, Chuanfan


    The fragmentation pathways of protonated imine resveratrol analogues in the gas-phase were investigated by electrospray ionization-tandem mass spectrometry. Benzyl cations were formed in the imine resveratrol analogues that had an ortho-hydroxyl group on the benzene ring A. The specific elimination of the quinomethane neutral, CH2  = C6 H4  = O, from the two isomeric ions [M1 + H](+) and [M3 + H](+) via the corresponding ion-neutral complexes was observed. The fragmentation pathway for the related meta-isomer, ion [M2 + H](+) and the other congeners was not observed. Accurate mass measurements and additional experiments carried out with a chlorinated analogue and the trideuterated isotopolog of M1 supported the overall interpretation of the fragmentation phenomena observed. It is very helpful for understanding the intriguing roles of ortho-hydroxyl effect and ion-neutral complexes in fragmentation reactions and enriching the knowledge of the gas-phase chemistry of the benzyl cation. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Prediction of (195) Pt NMR chemical shifts of dissolution products of H2 [Pt(OH)6 ] in nitric acid solutions by DFT methods: how important are the counter-ion effects? (United States)

    Tsipis, Athanassios C; Karapetsas, Ioannis N


    (195) Pt NMR chemical shifts of octahedral Pt(IV) complexes with general formula [Pt(NO3 )n (OH)6 - n ](2-) , [Pt(NO3 )n (OH2 )6 - n ](4 - n) (n = 1-6), and [Pt(NO3 )6 - n  - m (OH)m (OH2 )n ](-2 + n - m) formed by dissolution of platinic acid, H2 [Pt(OH)6 ], in aqueous nitric acid solutions are calculated employing density functional theory methods. Particularly, the gauge-including atomic orbitals (GIAO)-PBE0/segmented all-electron relativistically contracted-zeroth-order regular approximation (SARC-ZORA)(Pt) ∪ 6-31G(d,p)(E)/Polarizable Continuum Model computational protocol performs the best. Excellent second-order polynomial plots of δcalcd ((195) Pt) versus δexptl ((195) Pt) chemical shifts and δcalcd ((195) Pt) versus the natural atomic charge QPt are obtained. Despite of neglecting relativistic and spin orbit effects the good agreement of the calculated δ (195) Pt chemical shifts with experimental values is probably because of the fact that the contribution of relativistic and spin orbit effects to computed σ(iso) (195) Pt magnetic shielding of Pt(IV) coordination compounds is effectively cancelled in the computed δ (195) Pt chemical shifts, because the relativistic corrections are expected to be similar in the complexes and the proper reference standard used. To probe the counter-ion effects on the (195) Pt NMR chemical shifts of the anionic [Pt(NO3 )n (OH)6 - n ](2-) and cationic [Pt(NO3 )n (OH2 )6 - n ](4 - n) (n = 0-3) complexes we calculated the (195) Pt NMR chemical shifts of the neutral (PyH)2 [Pt(NO3 )n (OH)6 - n ] (n = 1-6; PyH = pyridinium cation, C5 H5 NH(+) ) and [Pt(NO3 )n (H2 O)6 - n ](NO3 )4 - n (n = 0-3) complexes. Counter-anion effects are very important for the accurate prediction of the (195) Pt NMR chemical shifts of the cationic [Pt(NO3 )n (OH2 )6 - n ](4 - n) complexes, while counter-cation effects are less important for the anionic [Pt(NO3 )n (OH)6

  17. Coordination Nature of 4-Mercaptoaniline to Sn(II Ion: Formation of a One Dimensional Coordination Polymer and Its Decomposition to a Mono Nuclear Sn(IV Complex

    Directory of Open Access Journals (Sweden)

    Eon S. Burkett


    Full Text Available The coordination of the bifunctional ligand 4-mercaptoaniline with aqueo us tin(II metal ion was studied. A coordination polymer was synthesized when an aqueous solution of SnCl2 was treated with 4-MA. The crystalline material is stable under atmospheric conditions retaining its oxidation state. However, when submerged in a solution saturated with oxygen, the compound oxidizes to a mononuclear tin(IV complex. Both the compounds were characterized by single crystal X-ray diffraction studies. Although the structure of the tin(IV complex was previously reported, crystal structure of this compound was redetermined.

  18. Thermodynamics of the formation of complexes of copper(II) ions and glycylglycine in aqueous solutions at 298 K according to calorimetry data (United States)

    Kochergina, L. A.; Emel'yanov, A. V.


    Heat effects of the interaction between glycylglycine and copper(II) nitrate solutions are measured by direct calorimetry at a [metal] : [ligand] ratio of 1 : 5 and at different pH values of the solution. The measurements are made at a temperature of 298.15 K and ionic strengths of 0.25, 0.50, and 0.75. KNO3 is used as a background electrolyte. The thermodynamic characteristics of complex formation by the peptide and copper(II) ions in aqueous solutions are determined. Standard enthalpies of the formation of complex particles in aqueous solutions are calculated.

  19. Critical assessment of electron spin resonance studies on Cu(I)-NO complexes in Cu-ZSM-5 zeolites prepared by solid- and liquid-state ion exchange. (United States)

    Umamaheswari, V; Hartmann, Martin; Pöppl, Andreas


    Cu(I)-NO adsorption complexes were formed over Cu-ZSM-5 zeolites prepared by (i) solid-state ion exchange of NH(4)-ZSM-5 with CuCl and (ii) liquid-state ion exchange of ZSM-5 with Cu(CH(3)COO)(2). Electron spin resonance spectroscopy revealed the formation of two different Cu(I)-NO species A and B in both systems, whose spin Hamiltonian parameters are comparable with those already reported for the Cu(I)-NO species formed over 66% Cu(II) liquid-state ion-exchanged Cu-ZSM-5 materials. The population of the species A and B differs for the two systems studied. Formation of species B is more favored in the solid-state ion-exchanged Cu-ZSM-5 when compared to the liquid-state exchanged zeolite. The X-, Q- and W-band electron spin resonance spectra recorded at 6 and 77 K reveal the presence of a rigid geometry of the adsorption complexes at 6 K and a dynamic complex structure at higher temperatures such as 77 K. This is indicated by the change in the spin Hamiltonian parameters of the formed Cu(I)-NO species in both the liquid- and solid-state ion-exchanged Cu-ZSM-5 zeolites from 6 to 77 K. Possible models for the motional effects found at elevated temperatures are discussed. The temperature dependence of the electron spin phase memory time measured by two-pulse electron spin-echo experiments indicates, likewise, the onset of a motional process of the adsorbed NO molecules at temperatures above 10 K. The studies support previous assignments where the NO complexes are formed at two different Cu(I) cationic sites in the ZSM-5 framework and highlight that multifrequency electron spin resonance experiments at low temperatures are essential for reliable determination of the spin Hamiltonian parameters of the formed adsorption complexes for further comparison with Cu(I)-NO complex structures predicted by quantum chemical calculations.

  20. Sensitive and selective spectrophotometric assay of piroxicam in pure form, capsule and human blood serum samples via ion-pair complex formation. (United States)

    Alizadeh, Nina; Keyhanian, Fereshteh


    A simple, accurate and highly sensitive spectrophotometric method has been developed for the rapid determination of piroxicam (PX) in pure and pharmaceutical formulations. The proposed method involves formation of stable yellow colored ion-pair complexes of the amino derivative (basic nitrogen) of PX with three sulphonphthalein acid dyes namely; bromocresol green (BCG), bromothymol blue (BTB), bromophenol blue (BPB) in acidic medium. The colored species exhibited absorption maxima at 438, 429 and 432 nm with molar absorptivity values of 9.400×10(3), 1.218×10(3) and 1.02×10(4) L mol(-1) cm(-1) for PX-BCG, PX-BTB and PX-BPB complexes, respectively. The effect of optimum conditions via acidity, reagent concentration, time and solvent were studied. The reactions were extremely rapid at room temperature and the absorbance values remained constant for 48h. Beer's law was obeyed with a good correlation coefficient in the concentration ranges 1-100 μg mL(-1) for BCG, BTB complexes and 1-95 μg mL(-1) for BPB complex. The composition ratio of the ion-pair complexes were found to be 1:1 in all cases as established by Job's method. No interference was observed from common additives and excipients which may be present in the pharmaceutical preparations. The proposed method was successfully applied for the determination of PX in capsule and human blood serum samples with good accuracy and precision.

  1. Sensitive and selective spectrophotometric assay of piroxicam in pure form, capsule and human blood serum samples via ion-pair complex formation (United States)

    Alizadeh, Nina; Keyhanian, Fereshteh


    A simple, accurate and highly sensitive spectrophotometric method has been developed for the rapid determination of piroxicam (PX) in pure and pharmaceutical formulations. The proposed method involves formation of stable yellow colored ion-pair complexes of the amino derivative (basic nitrogen) of PX with three sulphonphthalein acid dyes namely; bromocresol green (BCG), bromothymol blue (BTB), bromophenol blue (BPB) in acidic medium. The colored species exhibited absorption maxima at 438, 429 and 432 nm with molar absorptivity values of 9.400 × 103, 1.218 × 103 and 1.02 × 104 L mol-1 cm-1 for PX-BCG, PX-BTB and PX-BPB complexes, respectively. The effect of optimum conditions via acidity, reagent concentration, time and solvent were studied. The reactions were extremely rapid at room temperature and the absorbance values remained constant for 48 h. Beer’s law was obeyed with a good correlation coefficient in the concentration ranges 1-100 μg mL-1 for BCG, BTB complexes and 1-95 μg mL-1 for BPB complex. The composition ratio of the ion-pair complexes were found to be 1:1 in all cases as established by Job’s method. No interference was observed from common additives and excipients which may be present in the pharmaceutical preparations. The proposed method was successfully applied for the determination of PX in capsule and human blood serum samples with good accuracy and precision.

  2. Structural criteria for the rational design of selective ligands. 2. Effect of alkyl substitution on metal ion complex stability with ligands bearing ethylene-bridged ether donors

    Energy Technology Data Exchange (ETDEWEB)

    Hay, B.P.; Zhang, D.; Rustad, J.R. [Pacific Northwest National Laboratory, Richland, WA (United States)


    A novel approach is presented for the application and interpretation of molecular methanics calculations in ligand structural design. The methodology yields strain energies that (i) provide a yardstick for the measurements of ligand binding site organization for metal ion complexation and (ii) allow the comparison of any two ligands independent of either the number and type of donor atoms or the identity of the metal ion. Application of this methodology is demonstrated in a detailed examination of the influence of alkyl substitution on the structural organization of ethylene-bridged, bidentate, ether donor ligands for the alkali and alkaline earth cations. Nine cases are examined, including the unsubstituted ethylene bridge (dimethoxyethane), all possible arrangements of individual alkyl groups (monoalkylation, gem-dialkylation, meso-dialkylation, d,l-dialkylation, trialkylation, and tetraalkylation), and both cis and trans attachments of the cyclohexyl group. The calculated degree of binding site organization for metal ion complexation afforded by these connecting structures is shown to correlate with known changes in complex stability caused by alkyl substitution of crown ether macrocycles.

  3. Synthesis and Characterization of Electroresponsive Materials with Applications In: Part I. Second Harmonic Generation. Part II. Organic-Lanthanide Ion Complexes for Electroluminescence and Optical Amplifiers. (United States)

    Claude, Charles


    Materials for optical waveguides were developed from two different approaches, inorganic-organic composites and soft gel polymers. Inorganic-organic composites were developed from alkoxysilane and organically modified silanes based on nonlinear optical chromophores. Organically modified silanes based on N-((3^' -trialkoxysilyl)propyl)-4-nitroaniline were synthesized and sol-gelled with trimethoxysilane. After a densification process at 190^circC with a corona discharge, the second harmonic of the film was measured with a Nd:YAG laser with a fundamental wavelength of 1064nm, d_{33} = 13pm/V. The decay of the second harmonic was expressed by a stretched bi-exponential equation. The decay time (tau _2) was equal to 3374 hours, and was comparable to nonlinear optical systems based on epoxy/Disperse Orange 1. The processing temperature of the organically modified silane was limited to 200^circC due to the decomposition of the organic chromophore. Soft gel polymers were synthesized and characterized for the development of optical waveguides with dc-electrical field assisted phase-matching. Polymers based on 4-nitroaniline terminated poly(ethylene oxide-co-propylene oxide) were shown to exhibit second harmonic generation that were optically phase-matched in an electrical field. The optical signals were stable and reproducible. Siloxane polymers modified with 1-mercapto-4-nitrobenzene and 1-mercapto-4-methylsulfonylstilbene nonlinear optical chromophores were synthesized. The physical and the linear and nonlinear optical properties of the polymers were characterized. Waveguides were developed from the polymers which were optically phase -matched and had an efficiency of 8.1%. The siloxane polymers exhibited optical phase-matching in an applied electrical field and can be used with a semiconductor laser. Organic lanthanide ion complexes for electroluminescence and optical amplifiers were synthesized and characterized. The complexes were characterized for their thermal and


    Institute of Scientific and Technical Information of China (English)

    LU Hong; FANG Shibi; JIANG Yingyan


    A kind of copolymer of acrylic acid and vinylpyridine was synthesized and the fluorescent properties of the complexes of the copolymer with Eu3+ or Tb3+ were studied. It was found that the fluorescence intensity of the complexes of the copolymer with Eu3+ was 20 times as high as that of the complexes of polyacrylic acid with Eu3+ and twice as high as that of the complexes of polyvinylpyridine with Eu3+. The effects of the composition of the copolymer and the content of Eu3+ or Tb3+ in the complexes were studied.The fluorescence lifetime of the complexes was measured and it was found that two or more kinds of energy transfer mechanism existed.

  5. Spectrophotometric determination of molybdenum by extraction of its thiosulphate complex. (United States)

    Yatirajam, V; Ram, J


    A simple and rapid spectrophotometric determination of molybdenum is described. The molybdenum thiosulphate complex is extracted into isoamyl alcohol from 1.0-1.5M hydrochloric acid containing 36-40 mg of Na(2)S(2)O(3).5H(2)O per ml. The absorbance at lambda(max) = 475 nm obeys Beer's law over the range 0-32 microg of Mo per ml of solvent phase. Up to 5 mg/ml of Ti(IV), V(V), Cr(VI), Fe(III), Co(II), Ni(II), U(VI), W(VI), Sb(III), 1 mg/ml of Cu(II), Sn(II), Bi(V) and 10 microg/ml of Pt(IV) and Pd(II) do not interfere. Large amounts of complexing agents interfere. The method has been applied to analysis of synthetic and industrial samples.

  6. Extractive spectrophotometric determination of five selected drugs by ion-pair complex formation with bromothymol blue in pure form and pharmaceutical preparations

    Directory of Open Access Journals (Sweden)

    Sneha G. Nair


    Full Text Available Simple, precise, selective, and expeditious spectrophotometric methods have been developed for the determination of itopride (ITO, midodrine (MID, diclofenac (DIC, mesalamine (MES, and sumatriptan (SUM in their pure form as well as in pharmaceutical preparations. The method was based on ion-pair complex formation between the drugs and anionic dye, bromothymol blue in an acidic medium (pH 2.0–4.0. The yellow colored complexes formed were quantitatively extracted into chloroform and measured at 411, 410, 413, 412, and 414 nm wavelength for ITO, MID, DIC, MES, and SUM, respectively. Beer’s law was obeyed in the concentration range of 3.0–30 µg/mL for ITO, 1.0–20 µg/mL for MID, 1.5–40 µg/mL for DIC, 1.2–12 µg/mL for MES, and 0.5–15 µg/mL for SUM. The stoichiometry of the complexes formed between the drugs and the dye was 1:1 as determined by Job’s method of continuous variation. The association constant (KIP of the ion-pair complexes formed was evaluated using Benesi–Hildebrand equation. Limit of detection, limit of quantification, and Sandell’s sensitivity of the methods were also estimated. The proposed methods were successfully employed for the determination of these drugs in their pharmaceutical dosage forms.

  7. Hyperpolarized 89Y NMR spectroscopic detection of yttrium ion and DOTA macrocyclic ligand complexation: pH dependence and Y-DOTA intermediates (United States)

    Ferguson, Sarah; Kiswandhi, Andhika; Niedbalski, Peter; Parish, Christopher; Kovacs, Zoltan; Lumata, Lloyd

    Dissolution dynamic nuclear polarization (DNP) is a rapidly emerging physics technique used to enhance the signal strength in nuclear magnetic resonance (NMR) and imaging (MRI) experiments for nuclear spins such as yttrium-89 by >10,000-fold. One of the most common and stable MRI contrast agents used in the clinic is Gd-DOTA. In this work, we have investigated the binding of the yttrium and DOTA ligand as a model for complexation of Gd ion and DOTA ligand. The macrocyclic ligand DOTA is special because its complexation with lanthanide ions such as Gd3+ or Y3+ is highly pH dependent. Using this physics technology, we have tracked the complexation kinetics of hyperpolarized Y-triflate and DOTA ligand in real-time and detected the Y-DOTA intermediates. Different kinds of buffers were used (lactate, acetate, citrate, oxalate) and the pseudo-first order complexation kinetic calculations will be discussed. The authors would like to acknowledge the support by US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  8. Replacement of glycine 232 by aspartic acid in the KdpA subunit broadens the ion specificity of the K(+)-translocating KdpFABC complex. (United States)

    Schrader, M; Fendler, K; Bamberg, E; Gassel, M; Epstein, W; Altendorf, K; Dröse, S


    Replacement of glycine residue 232 with aspartate in the KdpA subunit of the K(+)-translocating KdpFABC complex of Escherichia coli leads to a transport complex that has reduced affinity for K(+) and has lost the ability to discriminate Rb(+) ions (, J. Biol. Chem. 270:6678-6685). This glycine residue is the first in a highly conserved GGG motif that was aligned with the GYG sequence of the selectivity filter (P- or H5-loop) of K(+) channels (, Nature. 371:119-122). Investigations with the purified and reconstituted KdpFABC complex using the potential sensitive fluorescent dye DiSC(3)(5) and the "caged-ATP/planar bilayer method" confirm the altered ion specificity observed in uptake measurements with whole cells. In the absence of cations a transient current was observed in the planar bilayer measurements, a phenomenon that was previously observed with the wild-type enzyme and with another kdpA mutant (A:Q116R) and most likely represents the movement of a protein-fixed charge during a conformational transition. After addition of K(+) or Rb(+), a stationary current could be observed, representing the continuous pumping activity of the KdpFABC complex. In addition, DiSC(3)(5) and planar bilayer measurements indicate that the A:G232D Kdp-ATPase also transports Na(+), Li(+), and H(+) with a reduced rate. Similarities to mutations in the GYG motif of K(+) channels are discussed. PMID:10920013

  9. Potentiometric studies on ternary complexes involving some divalent transition metal ions, gallic acid and biologically abundant aliphatic dicarboxylic acids in aqueous solutions

    Directory of Open Access Journals (Sweden)

    Abdelatty Mohamed Radalla


    Full Text Available Formation of binary and ternary complexes of the divalent transition metal ions, Cu2+, Ni2+, Co2+ and Zn2+ with gallic acid and the biologically important aliphatic dicarboxylic acids (adipic, succinic, malic, malonic, maleic, tartaric and oxalic acids were investigated by means of the potentiometric technique at 25 °C and I = 0.10 mol dm−3 NaNO3. The acid-base properties of the ligands were investigated and discussed. The acidity constants of gallic acid and aliphatic dicarboxylic acids were determined and used for determining the stability constants of the binary and ternary complexes formed in the aqueous medium under the above experimental conditions. The formation of the different 1:1 and 1:2 binary complexes and 1:1:1 ternary complexes are inferred from the corresponding potentiometric pH-metric titration curves. The ternary complex formation was found to occur in a stepwise manner. The stability constants of these binary and ternary systems were calculated. The values of Δ log K, percentage of relative stabilization (%R.S. and log X were evaluated and discussed. The concentration distribution of the various complex species formed in solution was evaluated and discussed. The mode of chelation of ternary complexes formed was ascertained by conductivity measurements.

  10. Chemical cross-linking of the urease complex from Helicobacter pylori and analysis by Fourier transform ion cyclotron resonance mass spectrometry and molecular modeling (United States)

    Carlsohn, Elisabet; Ångström, Jonas; Emmett, Mark R.; Marshall, Alan G.; Nilsson, Carol L.


    Chemical cross-linking of proteins is a well-established method for structural mapping of small protein complexes. When combined with mass spectrometry, cross-linking can reveal protein topology and identify contact sites between the peptide surfaces. When applied to surface-exposed proteins from pathogenic organisms, the method can reveal structural details that are useful in vaccine design. In order to investigate the possibilities of applying cross-linking on larger protein complexes, we selected the urease enzyme from Helicobacter pylori as a model. This membrane-associated protein complex consists of two subunits: [alpha] (26.5 kDa) and [beta] (61.7 kDa). Three ([alpha][beta]) heterodimers form a trimeric ([alpha][beta])3 assembly which further associates into a unique dodecameric 1.1 MDa complex composed of four ([alpha][beta])3 units. Cross-linked peptides from trypsin-digested urease complex were analyzed by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and molecular modeling. Two potential cross-linked peptides (present in the cross-linked sample but undetectable in [alpha], [beta], and native complex) were assigned. Molecular modeling of urease [alpha][beta] complex and trimeric urease units ([alpha][beta])3 revealed a linkage site between the [alpha]-subunit and the [beta]-subunit, and an internal cross-linkage in the [beta]-subunit.

  11. A theoretical analysis of the extraction of heterocyclic organic compounds from an organic phase using chemically mediated electrochemically modulated complexation in ion exchange polymer beads

    Energy Technology Data Exchange (ETDEWEB)

    Ozekin, K.; Noble, R.D.; Koval, C.A.


    A cyclical electrochemical process for the removal of heterocyclic organic compounds (pollutants) from an organic solvent using an ion-exchange polymer is analyzed. In this analysis, there are three main steps: In the first step, the polymer beads containing the active form of the complexing agent are contacted with the contaminated (feed) hydrocarbon phase. The pollutant diffuses into the beads and binds with the complexing agent which is in the reduced state. It is a fast reversible reaction. For the second step, the beads which contain a pollutant are contacted with a waste (receiving) phase and a chemical mediator is then used to oxidize the complexing agent and to reduce its affinity towards the pollutant so that it can be released. The oxidation of the complexing agent is an irreversible reaction. This is a moving boundary problem with countercurrent diffusion. For each mole of mediator that goes into the bead, one mole of pollutant exits since each complexing agent binds one pollutant. In the third step, the waste hydrocarbon phase is removed and a second chemical mediator is then used to reduce the complexing agent. The reduction of the complexing agent is also an irreversible reaction. Partial differential equations are used to analyze this process. 26 refs., 9 figs.

  12. A Schiff base complex of Zn(II) as a neutral carrier for highly selective PVC membrane sensors for the sulfate ion. (United States)

    Shamsipur, M; Yousefi, M; Hosseini, M; Ganjali, M R; Sharghi, H; Naeimi, H


    Novel polymeric membrane (PME) and coated graphite (CGE) sulfate-selective electrodes based on a recently synthesized Schiff base complex of Zn(II) were prepared. The electrodes reveal a Nernstian behavior over wide SO4(2-) ion concentration ranges (5.0 x 10(-5)-1.0 x 10(-1) M for PME and 1.0 x 10(-7)-1.0 x 10(-1) M for CGE) and very low detection limits (2.8 x 10(-5) M for PME and 8.5 x 10(-8) M for CGE). The potentiometric response is independent of the pH of the solution in the pH range 3.0-7.0. The electrodes manifest advantages of low resistance, very fast response, and, most importantly, good selectivities relative to a wide variety of other anions. In fact, the selectivity behavior of the proposed SO4(2) ion-selective electrodes shows a great improvement compared to the previously reported electrodes for sulfate ion. The electrodes can be used for at least 3 months without any appreciable divergence in potentials. The electrodes were used as an indicator electrode in the potentiometric titration of sulfate and barium ions and in the determination of iron in ferrous sulfate tablets.

  13. Visualization of Fluoride Ions In Vivo Using a Gadolinium(III)-Coumarin Complex-Based Fluorescence/MRI Dual-Modal Probe. (United States)

    Wang, Yue; Song, Renfeng; Feng, Huan; Guo, Ke; Meng, Qingtao; Chi, Haijun; Zhang, Run; Zhang, Zhiqiang


    A new Gadolinium(III)-coumarin complex, DO3A-Gd-CA, was designed and prepared as a dual-modal probe for simultaneous fluorescence and relaxivity responses to fluoride ions (F(-)) in aqueous media and mice. DO3A-Gd-CA was designed by using Gd(III) center as an MRI signal output unit and fluoride binding site, and the 4-(diethylamino)-coumarin-3-carboxylic acid (CA) as a fluorescence reporter. Upon the addition of fluoride ions to the solution of DO3A-Gd-CA, the liberation of the coordinated CA ligand led to a 5.7-fold fluorescence enhancement and a 75% increase in the longitudinal relaxivity (r₁). The fluorescent detection limit for fluoride ions was determined to be 8 μM based on a 3σ/slope. The desirable features of the proposed DO3A-Gd-CA, such as high sensitivity and specificity, reliability at physiological pH and low cytotoxicity enable its application in visualization of fluoride ion in mice. The successful in vivo imaging indicates that DO3A-Gd-CA could be potentially used in biomedical diagnosis fields.

  14. Evaluation of Stability of Complexes of Inner Transition Metal Ions with 2-Oxo-1-pyrrolidine Acetamide and Role of Systematic Errors

    Directory of Open Access Journals (Sweden)

    Sangita Sharma


    Full Text Available BEST FIT models were used to study the complexation of inner transition metal ions like Y(III, La(III, Ce(III, Pr(III, Nd(III, Sm(III, Gd(III, Dy(III and Th(IV with 2-oxo-1-pyrrolidine acetamide at 30 °C in 10%, 20, 30, 40, 50% and 60% v/v dioxane-water mixture at 0.2 M ionic strength. Irving Rossotti titration method was used to get titration data. Calculations were carried out with PKAS and BEST Fortran IV computer programs. The expected species like L, LH+, ML, ML2 and ML(OH3, were obtained with SPEPLOT. Stability of complexes has increased with increasing the dioxane content. The observed change in stability can be explained on the basis of electrostatic effects, non electrostatic effects, solvating power of solvent mixture, interaction between ions and interaction of ions with solvents. Effect of systematic errors like effect of dissolved carbon dioxide, concentration of alkali, concentration of acid, concentration of ligand and concentration of metal have also been explained here.

  15. Cobalt(III) complexes of [3(5)] adamanzane, 1,5,9,13-tetraazabicyclo[7.7.3]nonadecane. Report of an inert, chelate hydrogen carbonate ion. (United States)

    Broge, L; Søtofte, I; Olsen, C E; Springborg, J


    Three cobalt(III) complexes of the macrocyclic tetraamine [3(5)]adamanzane (1,5,9,13-tetraazabicyclo[7.7.3]nonadecane) were isolated as salts. The X-ray crystal structures were solved for the compounds [Co([3(5)]adz)(CO(3))]AsF(6) (1b), [Co([3(5)]adz)(HCO(3))]ZnBr(4).H(2)O (2a), and [Co([3(5)]adz)(SO(4))]AsF(6).H(2)O (3a). The coordination geometry around the cobalt(III) ion is a distorted octahedron with the inorganic ligands at cis-positions. Complex 2 is the second example of a cobalt(III) complex for which the X-ray structure shows a chelate binding mode of the hydrogen carbonate entity. The pK(a) value of the [Co([3(5)]adz)(HCO(3))](2+) ion (2) was determined spectrophotometrically to be 0.27 (25 degrees C, I = 5.0 M). The protonation appears to occur at the noncoordinated carbonyl oxygen atom of the carbonate group, with hydrogen bonding to the crystal water molecule. Evidence is presented for this oxygen atom as the site of protonation in solution as well. In 5.0 M CF(3)SO(3)H a slow reaction of the carbonato complex, quantitatively yielding the [Co([3(5)]adz)(H(2)O)(2)](3+) ion, was observed. k(obs) = 7.9(1) x 10(-)(6) s(-)(1) at 25 degrees C.

  16. Unambiguous characterization of analytical markers in complex, seized opiate samples using an enhanced ion mobility trace detector-mass spectrometer. (United States)

    Liuni, Peter; Romanov, Vladimir; Binette, Marie-Josée; Zaknoun, Hafid; Tam, Maggie; Pilon, Pierre; Hendrikse, Jan; Wilson, Derek J


    Ion mobility spectroscopy (IMS)-based trace-compound detectors (TCDs) are powerful and widely implemented tools for the detection of illicit substances. They combine high sensitivity, reproducibility, rapid analysis time, and resistance to dirt with an acceptable false alarm rate. The analytical specificity of TCD-IMS instruments for a given analyte depends strongly on a detailed knowledge of the ion chemistry involved, as well as the ability to translate this knowledge into field-robust analytical methods. In this work, we introduce an enhanced hybrid TCD-IMS/mass spectrometer (TCD-IMS/MS) that combines the strengths of ion-mobility-based target compound detection with unambiguous identification by tandem MS. Building on earlier efforts along these lines (Kozole et al., Anal. Chem. 2011, 83, 8596-8603), the current instrument is capable of positive and negative-mode analyses with tightly controlled gating between the IMS and MS modules and direct measurement of ion mobility profiles. We demonstrate the unique capabilities of this instrument using four samples of opium seized by the Canada Border Services Agency (CBSA), consisting of a mixture of opioid alkaloids and other naturally occurring compounds typically found in these samples. Although many analytical methods have been developed for analyzing naturally occurring opiates, this is the first detailed ion mobility study on seized opium samples. This work demonstrates all available analytical modes for the new IMS-MS system including "single-gate", "dual-gate", MS/MS, and precursor ion scan methods. Using a combination of these modes, we unambiguously identify all signals in the IMS spectra, including previously uncharacterized minor peaks arising from compounds that are common in raw opium.

  17. Metal complexes of triazine - Schiff bases: Spectroscopic and thermodynamic studies of complexation of some divalent metal ions with 3-(a-acetylethylidenehydrazino-5,6-diphenyl-1,2,4-triazine

    Directory of Open Access Journals (Sweden)

    A. TAHA


    Full Text Available Metal complexes of some divalent metal ions (Co, Ni, Cu and Zn with 3-(a-acetylethylidenehydrazino-5,6-diphenyl-1,2,4-triazine (AHDT as a Schiff-base have been investigated potentiometrically and spectrophotometrically and found to have the stoichiometric formulae 1:1 and 1:2 (M:L. The formation constants of the proton-ligand and metal-ligand complexes have been determined potentiometrically at different temperatures (10, 20, 30, 40 and 50°C at an ionic strength of 0.1 M KNO3 in 75% (v/v dioxane-water solution. The standard thermodynamic parameters, viz. DG°, DH°, and DS°, for the proton-ligand and the stepwise metal-ligand complexes have been evaluated.

  18. Whimsicality of multi-mode Hasegawa space-charge waves in a complex plasma containing collision-dominated electrons and streaming ions (United States)

    Lee, Myoung-Jae; Jung, Young-Dae


    The influence of collision-dominated electrons on multi-mode Hasegawa space-charge waves are investigated in a complex plasma containing streaming ions. The dispersion relation for the multi-mode Hasegawa space-charge wave propagating in a cylindrical waveguide filled with dusty plasma containing collision-dominated electrons and streaming ions is derived by using the fluid equations and Poisson’s equation which lead to a Bessel equation. By the boundary condition, the roots of the Bessel function would characterize the property of space-charge wave propagation. It is found that two solutions exist for wave frequency, which are affected by the radius of waveguide and the roots of the Bessel function. The damping and growing modes are found to be enhanced by an increase of the radius. However, an increase of electron collision frequency would suppress the damping and the growing modes of the propagating space-charge wave in a cylindrical waveguide plasma.

  19. Stabilisation of tetravalent cerium in perchloric acid medium and measurement of the stability constants of its fluoride complexes using ion selective potentiometry. (United States)

    Sawant, R M; Rastogi, R K; Mahajan, M A; Chaudhuri, N K


    The stability constants of the fluoride complexes of cerium(IV) in 1 M (HClO(4), NaClO(4)) medium have been measured potentiometrically using a fluoride ion-selective electrode. Quantitative oxidation of cerium to its tetravalent state and its stabilisation in the perchlorate medium were accomplished by oxidation with AgO followed by quick addition of a known amount of fluoride ion. This procedure ensures stability of the oxidation state and prevents hydrolysis and polymerisation of Ce(IV). Logarithms of the average values of beta(1), beta(2), beta(3) and beta(4) were estimated to be 7.57+/-0.04, 14.50+/-0.03, 20.13+/-0.37 and 24.14+/-0.10 respectively.

  20. Micellar effect on the sensitivity of spectrophotometric Mo(VI) determination based on the formation of gallic acid complex providing evidence for the polyoxoanion structure of molybdate ions

    Energy Technology Data Exchange (ETDEWEB)

    Tascioglu, Senay [Department of Chemistry, Faculty of Arts and Sciences, Gazi University, Ankara (Turkey)]. E-mail:; Sendil, Olcay [Department of Chemistry, Faculty of Arts and Sciences, Gazi University, Ankara (Turkey); Beyreli, Sivekar [Department of Chemistry, Faculty of Arts and Sciences, Gazi University, Ankara (Turkey)


    In this study effects of anionic (sodium dodecyl sulfate, SDS), cationic (cetyltrimethylammonium bromide, CTAB) and nonionic (Triton X-100, TX100) micelles on the sensitivity of spectrophotometric molybdenum(VI) (Mo) determination based on the formation of a binary complex with gallic acid (GA) were investigated. Micellar CTAB was found to enhance the formation of Mo-GA complex. SDS micelles exerted an inhibitory effect while TX100 micelles had no effect on the complex formation. By the optimization of experimental conditions, the determination limit of the method suggested in the literature was lowered from 5.2 x 10{sup -5} to 4.6 x 10{sup -6} and to 5.7 x 10{sup -7} M, in the absence and presence of CTAB, respectively. The mechanism of the effect of CTAB was investigated by spectrophotometric titrations and it was concluded that CTAB did not form a ternary complex with Mo and GA. The stoichiometry of the complex, deduced from the results of spectrophotometric titrations, provided evidence for the formation of para-Mo{sub 7}O{sub 4} {sup 6-} polyanions at pH 4.5, indicating to the formation of a charge transfer complex between these ions and GA in micellar medium.

  1. Highly enantioselective asymmetric autocatalysis using chiral ruthenium complex-ion-exchanged synthetic hectorite as a chiral initiator. (United States)

    Kawasaki, Tsuneomi; Omine, Toshiki; Suzuki, Kenta; Sato, Hisako; Yamagishi, Akihiko; Soai, Kenso


    The synthetic hectorite containing intercalated chiral Delta- and Lambda-tris(1,10-phenanthroline)ruthenium(II) ions acts as a heterogeneous chiral catalyst in the enantioselective addition of diisopropylzinc to pyrimidine-5-carbaldehyde to afford, in combination with asymmetric autocatalytic amplification of enantiomeric excess, 5-pyrimidyl alkanol with high enantiomeric excess.

  2. 4d → 4f resonance in photoabsorption of cerium ion Ce3+ and endohedral cerium in fullerene complex {\\rm{Ce}}@{{{\\rm{C}}}_{82}}^{+} (United States)

    Schrange-Kashenock, G.


    The theoretical investigation of the single-photoionization spectra in the 4d-resonance region (120-150 eV) for the ionic cerium Ce3+ and cerium in the endohedral complex {{Ce}}@{{{{C}}}82}+ (in practice, {{{Ce}}}3+@{{{{C}}}82}2-) is presented. The fullerene cage is modeled by ab initio spherical jellium shell with an accurate account for the real distribution of carbon electron density. The oscillator strengths are calculated within the multiconfiguration Dirac-Fock (MCDF) approach for phototransitions from the outermost shells of the ion Ce3+ with and without the influence of the potential generated by a fullerene cage. It is shown that the integrated oscillator strengths have the main contribution from the Ce3+ 4d → 4f (ten possible from the phototransitions {}2F{7/2,5/2}\\to {}2D{3/2,5/2},{}2F{5/2,7/2},{}2G{5/2,7/2}) resonance photoexcitations. The corresponding precise MCDF values for the oscillator strengths and the transition energies are presented for the first time. It is demonstrated that the resonance {f}4d\\to 4f oscillator strengths are slightly affected by the presence of the cage potential, despite the fact that the spectral levels structure is changed when the effect of this potential is included. The Auger 4d -1 decay from the cerium free ion Ce3+ and the encapsulated endohedral ion Ce3+@ are considered within the two-step model and the corresponding Lorentzian profiles are presented. This model clearly reveals the correspondence of the complex resonance profile in the Ce3+ photoabsorption to the fine structure of ion energy levels. The smoothing of the resonance profile in the photoabsorption of the endohedral system {{Ce}}@{{{{C}}}82}+ compared with the free ion Ce3+ is attributed to increasing the linewidths of the Auger transitions. This increase is estimated from the relevant experiment (Müller et al 2008 Phys. Rev. Lett. 101 133001) to be strong; as at least three times the value for an isolated ion. The presence of the confining fullerene

  3. New dinuclear copper(II) and zinc(II) complexes for the investigation of sugar-metal ion interactions. (United States)

    Bera, Manindranath; Patra, Ayan


    We have studied the binding interactions of biologically important carbohydrates (D-glucose, D-xylose and D-mannose) with the newly synthesized five-coordinate dinuclear copper(II) complex, [Cu(2)(hpnbpda)(μ-OAc)] (1) and zinc(II) complex, [Zn(2)(hpnbpda)(μ-OAc)] (2) [H(3)hpnbpda=N,N'-bis(2-pyridylmethyl)-2-hydroxy-1,3-propanediamine-N,N'-diacetic acid] in aqueous alkaline solution. The complexes 1 and 2 are fully characterized both in solid and solution using different analytical techniques. A geometrical optimization was made of the ligand H(3)hpnbpda and the complexes 1 and 2 by molecular mechanics (MM+) method in order to establish the stable conformations. All carbohydrates bind to the metal complexes in a 1:1 molar ratio. The binding events have been investigated by a combined approach of FTIR, UV-vis and (13)C NMR spectroscopic techniques. UV-vis spectra indicate a significant blue shift of the absorption maximum of complex 1 during carbohydrate coordination highlighting the sugar binding ability of complex 1. The apparent binding constants of the substrate-bound copper(II) complexes have been determined from the UV-vis titration experiments. The binding ability and mode of binding of these sugar substrates with complex 2 are indicated by their characteristic coordination induced shift (CIS) values in (13)C NMR spectra for carbon atoms C1, C2, and C3 of sugar substrates.

  4. Effect of fermented non-starch polysaccharide complexes on sorption of heavy metal ions in biological systems

    Directory of Open Access Journals (Sweden)

    L. E. Glagoleva


    Full Text Available Hydrolytic action enzyme for modification of nonstarch polysaccharide complexes was developed and studied their influence on sorption activity in relation to heavy metals in biosystem.

  5. In situ preparation of powder and the sorption behaviors of molecularly imprinted polymers through the complexation between polymer ion of methyl methacrylate/acrylic acid and Ca++ ion. (United States)

    Chough, Sung Hyo; Park, Kwang Ho; Cho, Seung Jin; Park, Hye Ryoung


    Molecularly imprinted polymer (MIP) powders were prepared using a simple complexation strategy between the polymer carboxylate groups and template molecule followed by metal cation cross-linking of residual polymer carboxylates. Polymer powders were formed in situ by templating carboxylic acid containing polymers with 4-ethylaniline (4-EA), followed by addition of an aqueous CaCl2 solution. The solution remained homogeneous. The powders were prepared by precipitation by slowly adding a non-solvent, H2O, to the mixture. The resulting particles were very porous with uptake capacity that approached the theoretical value. We suggest two types of complexes are formed between the template, 4-EA, and polymer. The isolated entry type forms well defined cavities for the template with high specific selectivity, while the adjacent entry type forms wider binding sites without specific sorption for isomeric molecules. To evaluate conditions for forming materials with high affinity and selectivity, three MIPs were prepared containing 0.5, 1.0, and 1.5 equivalents of template to the base polymer. The MIP containing 0.5 eq showed higher specific selectivity to 4-EA, but the MIP containing 1.5 eq had noticeably lower selectivity. The lower selectivity is attributed to poorly formed binding sites with little selective sorption to any isomer when the higher ratio of template was used. However at the lower ratio of template the isolated entry is preferably formed to produce well defined binding cavities with higher selectivity to template.

  6. Electrophilic substitution reactions in heterocycles complexed to exchange-inert metal ions. (Ethylenediamine)cobalt(III) complexes of imidazole and histidine

    Energy Technology Data Exchange (ETDEWEB)

    Rowan-Gordon, N.; Nguyenpho, A.A.; Mondon-Konan, E. (American Univ., Washington, DC (United States)); Turner, A.H.; Butcher, R.J.; Okonkwo, A.S.; Hayden, H.H. (Howard Univ., Washington, DC (United States)); Storm, C.B. (Los Alamos National Lab., NM (United States))


    (Ethylenediamine)cobalt(III) complexes of imidazole and histidine are nitrated under mild conditions with a standard HNO{sub 3}-H{sub 2}SO{sub 4} nitrating mixture. In contrast to the more robust pentaamminecobalt(III) complexes, the nitrated imidazole ligand readily dissociates, providing an excellent synthetic route to a variety of nitroimidazoles. Pyridine coordinated to either Co(NH{sub 3}){sub 5}{sup 3+} or Co(en){sub 2}Cl{sup 2+} is not nitrated, even under conditions that destroy the complex. The difference in reactivity is evidently a reflection of the Co(III) d electron interaction with the lowest unoccupied molecular orbital (LUMO) of the ligand. The nucleophilic displacement of a nitro group by chloride in a coordinated nitroimidazole is also observed.

  7. Development of a system for monitoring the shape, position, and intensity of the extracted relativistic ion beam at the Nuclotron-M accelerator complex at JINR (United States)

    Vasilev, S. E.; Vishnevskiy, A. V.; Kadykov, M. G.; Makankin, A. M.; Tyutyunnikov, S. I.; Shurygin, A. A.


    Test samples of detectors and electronics for them constructed for the purpose of monitoring the "intense" relativistic ion beams extracted from the accelerator of the Nuclotron-M accelerator complex in real time are described. The system was tested in a series of acceleration runs with deuteron beams with an intensity of up to 1010 1/s and beams of carbon nuclei. The system allows one to perform multiple measurements of the two-dimensional distribution of the beam intensity in the plane perpendicular to it and the beam position in this plane during the beam dump and measure the two-dimensional distribution of the target irradiation dose after each beam dump.

  8. Combinatorial computational chemistry approach for materials design: applications in deNOx catalysis, Fischer-Tropsch synthesis, lanthanoid complex, and lithium ion secondary battery. (United States)

    Koyama, Michihisa; Tsuboi, Hideyuki; Endou, Akira; Takaba, Hiromitsu; Kubo, Momoji; Del Carpio, Carlos A; Miyamoto, Akira


    Computational chemistry can provide fundamental knowledge regarding various aspects of materials. While its impact in scientific research is greatly increasing, its contributions to industrially important issues are far from satisfactory. In order to realize industrial innovation by computational chemistry, a new concept "combinatorial computational chemistry" has been proposed by introducing the concept of combinatorial chemistry to computational chemistry. This combinatorial computational chemistry approach enables theoretical high-throughput screening for materials design. In this manuscript, we review the successful applications of combinatorial computational chemistry to deNO(x) catalysts, Fischer-Tropsch catalysts, lanthanoid complex catalysts, and cathodes of the lithium ion secondary battery.


    Institute of Scientific and Technical Information of China (English)

    王强; 魏世强


    采用离子交换平衡法研究了在不同酸度、离子强度、温度条件下胡敏酸(HA)与Mn2+络合反应稳定性和热力学特征.结果表明,在相同离子强度、反应温度条件下,随着pH的升高,HA与Mn2+络合反应稳定常数增大;络合反应配位数在pH 3.0~5.0范围内随着pH的升高而增加,在5.0~7.0范围内随着pH的升高而降低;离子强度增加,HA与Mn2+络合反应表观稳定常数增加,离子强度从0.00升至0.10 mol L-1,HA与Mn2+络合反应配位数增加,但离子强度从0.10 mol L-1继续上升至0.15 mol L-1,配位数呈现下降的趋势;胡敏酸络合Mn2+标准自由能变△Gθm、焓变△Hθm、熵变△Sθm在298.2K、308.2K温度下均为负值,反应是自发进行的放热反应,较低的温度有利于反应的进行.%Humic acid (HA) was extracted from surface soil under evergreen broadleaf forest in Jingyun Mountains of China. Effects of acidity, ion strength and temperature on stability and thermodynamics of the complex reaction between the humic acid and Mn2+ ion were studied using the ion-exchange equilibrium method. Results showed that its stability constant increased with increasing pH when ion strength and temperature remained unchanged, and with increasing ion strength, as well. Ligancy of the complex reaction increased with pH rising from 3.0 to 5.0, but decreased with pH rising further up from 5.0 and 7.0, and increased as well with ion strength rising from 0. 00 to 0. 10 mol L-1 but decreased, too,with ion strength rising further from 0.10 to 0.15 mol L-1.The thermodynamic parameters of the complex reaction, including standard free energy change ΔGθm, standard enthalpy change ΔHθm, and entropy change ΔSθm, were all negative when the temperature fell within the range from 298.2 to 308.2K, suggesting that the complex reaction is a kind of exothermic one processing spontaneously and keeping it lower in temperature favors process of the reaction.

  10. Mapping the UV Photophysics of Platinum Metal Complexes Bound to Nucleobases (United States)

    Sen, Ananya; Dessent, Caroline


    We report the first UV laser spectroscopic study of isolated gas-phase complexes of Platinum metal complex anions bound to a nucleobase as model systems for exploring at the molecular level the key photophysical processes involved in photodynamic therapy. Spectra of the PtIV CN 6 2 - • Uracil and PtII CN 4 2 - • Uracil complexes were acquired across the 220 -320 nm range using mass-selective photodepletion and photofragment action spectroscopy. The spectra of both complexes reveal prominent UV absorption bands that we assign primarily to excitation of the Uracil π - π * localized chromophore. Distinctive UV photofragments are observed for the complexes, with PtIV CN 6 2 - • Uracil photoexcitation resulting in complex fission, while PtII CN 4 2 - • Uracil photoexcitation initiates a nucleobase proton-transfer reaction across 4.4 -5.2 eV and electron detachment above 5.2 eV. The observed photofragments are consistent with ultrafast decay of a Uracil localized excited state back to the electronic ground state followed by intramolecular vibrational relaxation and ergodic complex fragmentation. In addition, we present recent results to explore how the photophysics of the Platinum complex-nucleobase clusters evolves as a function of nucleobase. Results are presented for PtII CN 4 2 - • Uracil complexed to Cytosine, Thymine and Adenine, reveal distinctive decay dynamics which we attribute to the intrinsic decay dynamics of the nucleobase. JPC. Lett. 2014, 5, 3281 to 3285 and PCCP 2014, 16, 15490 to 15500.

  11. Unsymmetrical Schiff base (ON) ligand on complexation with some transition metal ions: Synthesis, spectral characterization, antibacterial, fluorescence and thermal studies (United States)

    Ali, Omyma A. M.; El-Medani, Samir M.; Abu Serea, Maha R.; Sayed, Abeer S. S.


    A series of eight metal Schiff base complexes were synthesized by the thermal reaction of Cu(II), Ni(II), Fe(III), Co(II), Zn(II), Hg(II), La(III) or Sm(III) with a Schiff base "L" produced by the condensation of furfuraldehyde and 1,2-diaminobenzene. These compounds were characterized by elemental analysis, UV-Vis, FT-IR, molar conductance, mass spectrometry, thermal and fluorescence studies. The studies suggested the coordination of the ligand L to metal through azomethine imine nitrogen and furan oxygen atoms of Schiff base moiety. Thermogravimetric (TG/DTG) analyses data were studied and indicated high stability for all complexes and suggested the presence of lattice and/or coordinated water molecules in the complexes. Coats-Redfern method has been used to calculate the kinetic and thermodynamic parameters of the metal complexes. The spectral and thermal analysis reveal that all complexes have octahedral geometry except Cu(II) and Ni(II) complexes which can attain a square planner arrangements. The ligand and its complexes exhibited intraligand (π-π∗) fluorescence and can potentially serve as photoactive materials. Both the ligand and its complexes have been screened for antibacterial activities.

  12. Unsymmetrical Schiff base (ON) ligand on complexation with some transition metal ions: synthesis, spectral characterization, antibacterial, fluorescence and thermal studies. (United States)

    Ali, Omyma A M; El-Medani, Samir M; Abu Serea, Maha R; Sayed, Abeer S S


    A series of eight metal Schiff base complexes were synthesized by the thermal reaction of Cu(II), Ni(II), Fe(III), Co(II), Zn(II), Hg(II), La(III) or Sm(III) with a Schiff base "L" produced by the condensation of furfuraldehyde and 1,2-diaminobenzene. These compounds were characterized by elemental analysis, UV-Vis, FT-IR, molar conductance, mass spectrometry, thermal and fluorescence studies. The studies suggested the coordination of the ligand L to metal through azomethine imine nitrogen and furan oxygen atoms of Schiff base moiety. Thermogravimetric (TG/DTG) analyses data were studied and indicated high stability for all complexes and suggested the presence of lattice and/or coordinated water molecules in the complexes. Coats-Redfern method has been used to calculate the kinetic and thermodynamic parameters of the metal complexes. The spectral and thermal analysis reveal that all complexes have octahedral geometry except Cu(II) and Ni(II) complexes which can attain a square planner arrangements. The ligand and its complexes exhibited intraligand (π-π(∗)) fluorescence and can potentially serve as photoactive materials. Both the ligand and its complexes have been screened for antibacterial activities.

  13. Luminescent Behavior of Ru(II) Polypyridyl Morpholine Complexes, Synthesis, Characterization, DNA, Protein Binding, Sensor Effect of Ions/Solvents and Docking Studies. (United States)

    Vuradi, Ravi Kumar; Putta, Venkat Reddy; Nancherla, Deepika; Sirasani, Satyanarayana


    New three ruthenium (II) polypyridyl complexes [Ru(phen)2mpip](2+)(1) {mpip = 2-(4-morpholinophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline}, (phen = 1,10-Phenanthrolene), [Ru(bpy)2mpip](2+)(2) (bpy = 2,2'bipyridyl), [Ru(dmb)2mpip](2+)(3) (dmb = 4, 4-dimethyl 2, 2'-bipyridine) have been synthesized and characterized by spectral studies IR, UV-vis, (1)H, (13)C-NMR, mass and elemental analysis. The binding properties of these three complexes towards calf-thymus DNA (CT-DNA) have been investigated by UV-Vis spectroscopy, different fluorescence methods and viscosity measurements, indicating that all the complexes bind to CT-DNA by means of intercalation, but with different binding affinities. Sensor effect of ions/solvents and BSA (Bovine Serum Albumin) binding studies of these complexes were also studied. Docking studies also reveals that complexes will bind in between base pairs (Intercalate) of DNA and gives information about the binding strength.

  14. Metal ion complexes of N,N'-bis(2-pyridylmethyl)-1,3-diaminopropane-N,N'-diacetic acid, H2bppd. (United States)

    Kissel, Daniel S; Florián, Jan; McLauchlan, Craig C; Herlinger, Albert W


    A higher yield synthesis of N,N'-bis(2-pyridylmethyl)-1,3-diaminopropane-N,N'-diacetic acid (H2bppd) and its complexation of trivalent metal ions (Al(III), Ga(III), In(III)) and selected lanthanides (Ln(III)) are reported. H2bppd and the metal-bppd(2-) complexes, isolated as hexafluorophosphate salts, were characterized by elemental analysis, mass spectrometry, IR, and (1)H and (13)C NMR spectroscopy. [Ga(bppd)]PF6, [Ga(C19H22N4O4)]PF6, was crystallized as colorless needles by slow evaporation from anhydrous methanol; its molecular structure was solved by direct X-ray crystallography methods. The compound crystallized in the monoclinic space group P21/c, with a = 9.6134(2) Å, b = 20.2505(4) Å, c = 11.6483(3) Å, β = 97.520(1)(o), and Z = 4. Ga is coordinated in a distorted octahedral geometry provided by a N4O2 donor atom set with cis-monodentate acetate groups and cis-2-pyridylmethyl N atoms. Quantum mechanical calculations were performed for the three possible geometric isomers of a pseudo-octahedral metal-bppd(2-) complex with five different metal ions. The results indicate, that in aqueous solution, the stability of the trans-O,O isomer is similar to that of the cis-O,O; cis-Npy,Npy isomer but is greater than that of the trans-Npy,Npy isomer. Calculations for a six-coordinate La(III)-bppd(2-) complex converge to a structure with a very large Npy-La-Npy bond angle (146.4°), a high metal charge (2.28 au), and a high solvation free energy (-79.4 kcal/mol). The most stable geometric arrangement for bppd(2-) around the larger La(III) is best described as an open nestlike structure with space available for additional ligands. IR spectroscopy was used to investigate the nature of the H2bppd-metal complexes isolated in the solid state and the binding modes of the carboxylate functionalities. The spectra indicate that fully deprotonated [M(bppd)](+) complexes as well as partially protonated complexes [M(Hbppd)Cl](+) were isolated. The (1)H and (13)C assignments for

  15. Ion-Conducting Polymer Electrolyte Based on Poly (Ethylene Glycol Complexed with Mg(CH3COO2– Application as an Electrochemical Cell

    Directory of Open Access Journals (Sweden)

    Anji Reddy Polu


    Full Text Available A new Mg2+ -ion conducting polymer electrolyte based on Poly (ethylene glycol complexed with Mg(CH3COO2 has been prepared using solution-cast technique. DSC, Composition-dependent conductivity at different temperatures, dielectric studies, and transference number measurements have been performed to characterize the polymer electrolytes. The DSC measurements show decrease in melting point with increase in salt concentration. Out of five different compositions studied, the 85PEG: 15Mg(CH3COO2 polymer-salt complex showed the highest conductivity with σ = 1.07 x 10-6 S/cm at room temperature (30°C. The transport number measurements have shown that the electrolyte is an ionic conductor. Using the electrolyte, an electrochemical cell with the configuration Mg/(PEG+Mg(CH3 COO2/(I2 +C+electrolyte has been fabricated and its discharge characteristics studied.

  16. Spectroscopic capture and reactivity of a low-spin cobalt(IV)-oxo complex stabilized by binding redox-inactive metal ions. (United States)

    Hong, Seungwoo; Pfaff, Florian F; Kwon, Eunji; Wang, Yong; Seo, Mi-Sook; Bill, Eckhard; Ray, Kallol; Nam, Wonwoo


    High-valent cobalt-oxo intermediates are proposed as reactive intermediates in a number of cobalt-complex-mediated oxidation reactions. Herein we report the spectroscopic capture of low-spin (S=1/2) Co(IV)-oxo species in the presence of redox-inactive metal ions, such as Sc(3+), Ce(3+), Y(3+), and Zn(2+), and the investigation of their reactivity in C-H bond activation and sulfoxidation reactions. Theoretical calculations predict that the binding of Lewis acidic metal ions to the cobalt-oxo core increases the electrophilicity of the oxygen atom, resulting in the redox tautomerism of a highly unstable [(TAML)Co(III)(O˙)](2-) species to a more stable [(TAML)Co(IV)(O)(M(n+))] core. The present report supports the proposed role of the redox-inactive metal ions in facilitating the formation of high-valent metal-oxo cores as a necessary step for oxygen evolution in chemistry and biology.

  17. Atmospheric pressure laser-induced acoustic desorption chemical ionization Fourier transform ion cyclotron resonance mass spectrometry for the analysis of complex mixtures. (United States)

    Nyadong, Leonard; McKenna, Amy M; Hendrickson, Christopher L; Rodgers, Ryan P; Marshall, Alan G


    We present a novel nonresonant laser-based matrix-free atmospheric pressure ionization technique, atmospheric pressure laser-induced acoustic desorption chemical ionization (AP/LIAD-CI). The technique decouples analyte desorption from subsequent ionization by reagent ions generated from a corona discharge initiated in ambient air or in the presence of vaporized toluene as a CI dopant at room temperature. Analyte desorption is initiated by a shock wave induced in a titanium foil coated with electrosprayed sample, irradiated from the rear side by high-energy laser pulses. The technique enables facile and independent optimization of the analyte desorption, ionization, and sampling events, for coupling to any mass analyzer with an AP interface. Moreover, the generated analyte ions are efficiently thermalized by collisions with atmospheric gases, thereby reducing fragmentation. We have coupled AP/LIAD-CI to ultrahigh-resolution FT-ICR MS to generate predominantly [M + H](+) or M(+•) ions to resolve and identify thousands of elemental compositions from organic mixtures as complex as petroleum crude oil distillates. Finally, we have optimized the AP/LIAD CI process and investigated ionization mechanisms by systematic variation of placement of the sample, placement of the corona discharge needle, discharge current, gas flow rate, and inclusion of toluene as a dopant.

  18. Structural characterization and complex impedance studies on fast ion conducting mixed system (SbI3)–(Ag2CrO4)1−

    Indian Academy of Sciences (India)

    S Austin Suthanthiraraj; S Sarojini


    This paper deals with preparation and physico-chemical characterization of a new mixed system, (SbI3)–(Ag2CrO4)1− (0.1 ≤ ≤ 0.9), undertaken with a view to evaluate silver ion transport properties and identify those fast ion conducting compositions. Polycrystalline samples of various compositions were synthesized by rapid melt-quenching method. Powder X-ray diffraction (XRD) analysis in conjunction with differential scanning calorimetry (DSC) and electrical transport evaluation involving silver ionic transport number and temperaturedependent electrical complex impedance measurements were carried out in order to identify the different phases responsible for the conduction mechanism. Realization of a fast ionic conductivity value of 3.2 × 10-2 S cm-1 in the case of the composition, (SbI3)0.3–(Ag2CrO4)0.7, at room temperature due to silver ion transport has been discussed in terms of observed structural and thermal characteristics. A detailed analysis of conductivity spectra pertaining to the best conducting system, (SbI3)0.3–(Ag2CrO4)0.7, has also been presented.

  19. Thermodynamic study on the complexation of Trivalent actinide and lanthanide cation by N-donor ligands in homogeneous conditions; Etude thermodynamique de la complexation des ions actinide (III) et lanthanide (III) par des ligands polyazotes en milieu homogene

    Energy Technology Data Exchange (ETDEWEB)

    Miguirditchian, M


    Polydentate N-donor ligands, alone or combined with a synergic acid, may selectively extract minor actinides(III) from lanthanide(III) ions, allowing to develop separation processes of long-live radioelements. The aim of the researches carried out during this thesis was to better understand the chemical mechanisms of the complexation of f-elements by Adptz, a tridentate N-donor ligand, in homogeneous conditions. A thermodynamic approach was retained in order to estimate, from an energetic point of view, the influence of the different contributions to the reaction, and to acquire a complete set of thermodynamic data on this reaction. First, the influence of the nature of the cation on the thermodynamics was considered. The stability constants of the 1/1 complexes were systematically determined by UV-visible spectrophotometry for every lanthanide ion (except promethium) and for yttrium in a mixed solvent methanol/water in volume proportions 75/25%. The thermodynamic parameters ({delta}H{sup 0} {delta}{sup S}) of complexation were estimated by the van't Hoff method and by micro-calorimetry. The trends of the variations across the lanthanide series are compared with similar studies. The same methods were applied to the study of three actinide(III) cations: plutonium, americium and curium. The comparison of these values with those obtained for the lanthanides highlights the increase of stability of these complexes by a factor of 20 in favor of the actinide cations. This gap is explained by a more exothermic reaction and is associated, in the data interpretation, to a higher covalency of the actinide(III)-nitrogen bond. Then, the influence of the change of solvent composition on the thermodynamic of complexation was studied. The thermodynamic parameters of the complexation of europium(III) by Adptz were determined for several fractions of methanol. The stability of the complex formed increases with the percentage of methanol in the mixed solvent, owing to an

  20. Magnetic Interactions in the Copper Complex (L-Aspartato)(1,10-phenanthroline)copper(II) Hydrate. An Exchange-Coupled Extended System with Two Dissimilar Copper Ions. (United States)

    Brondino, Carlos D.; Calvo, Rafael; Atria, Ana María; Spodine, Evgenia; Nascimento, Otaciro R.; Peña, Octavio


    We report EPR measurements in single-crystal samples at the microwave frequencies 9.8 and 34.3 GHz and magnetic susceptibility measurements in polycrystalline samples for the ternary complex of copper with aspartic acid and phenanthroline, (L-aspartato)(1,10-phenanthroline)copper(II) hydrate. The crystal lattice of this compound is composed of two dissimilar copper ions identified as Cu(A) and Cu(B), which are in two types of copper chains called A and B, respectively, running parallel to the b crystal axis. The copper ions in the A chains are connected by the aspartic acid molecule, and those in the B chains by a chemical path that involves a carboxylate bridge and a hydrogen bond. Both chains are held together by a complex network of hydrogen bonds and by hydrophobic interactions between aromatic amines. Magnetic susceptibility data indicate a Curie-Weiss behavior in the studied temperature range (2-300 K). The EPR spectra at 9.8 GHz display a single exchange collapsed resonance for any magnetic field orientation, in the so-called strong exchange regime. Those at 34.3 GHz are within the so-called weak exchange regime and display two resonances which belong to each type of copper ion chain. The decoupling of the spectra at 34.3 GHz using a theory based on Anderson's model for the case of two weakly exchange coupled spins S = (1)/(2) allows one to obtain the angular variation of the squares of the g-factor and the peak-to-peak line width of each resonance. This model also allows one to evaluate the exchange parameter |J(AB)/k| = 2.7(6) mK associated with the chemical path connecting dissimilar copper ions. The line width data obtained for each component of the spectra at 34.3 GHz are analyzed in terms of a model based on Kubo and Tomita's theory, to obtain the exchange parameters |J(A)/k| = 0.77(2) K and |J(B)/k| = 1.44(2) K associated with the chemical paths connecting the similar copper ions of types A and B, respectively.

  1. Complexity of the microstructure evolution for optimization cBN growth in a four-step ion-assisted deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Wong, S.F. [Department of Applied Physics and Materials Research Centre, Hong Kong Polytechnic University, Kowloon, Hong Kong (China)]. E-mail:; Ong, C.W. [Department of Applied Physics and Materials Research Centre, Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Pang, G.K.H. [Department of Applied Physics and Materials Research Centre, Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Li, Q. [Department of Physics, Chinese University of Hong Kong, Shatin, New Territory, Hong Kong (China); Lau, W.M. [Department of Physics, Chinese University of Hong Kong, Shatin, New Territory, Hong Kong (China)


    The changes in microstructure of a specially prepared boron nitride (BN) film as a function of film depth were studied by high resolution transmission electron microscopy (HRTEM) and other materials analysis tools. These changes were then correlated to the changes in processing parameters during film growth. The analyzed film was fabricated by the four-step ion-assisted deposition procedure known to be effective in film-stress engineering for the formation and retention of a thick cubic BN (cBN) layer with a three-step buffer-layer deposition. In this deposition, the energy of the ions assisting cBN formation was increased stepwise from 200 to 280, and then to 360 eV [S.F. Wong, C. W. Ong, G.K.H. Pang, K.Z. Baba-Kishi, W. M. Lau, J. Vac. Sci. Technol. A 22 (2004) 676]. The nominal thickness of the cBN layer was 650 nm and that for each of the three buffer layers was about 160 nm. Both the HRTEM and electron diffraction results confirmed that the top cBN layer, with a thickness of 643 nm, consisted of cBN grains with a preferred orientation of their c-axis along the film growth direction. In comparison, the three-step buffer layer deposition yielded complex and intriguing microstructures. In the first buffer layer adjacent to the substrate, grains containing sp{sup 2} planes with a preferred orientation of their basal planes parallel to the film growth direction were the main constituents. The increase of ion energy from 200 to 280 eV for the formation of the second buffer layer first led to an enrichment of the concentration of these sp{sup 2} grains with the preferred orientation. Then, bending of some of the sp{sup 2} planes into curved microstructures was evident. The microstructure became very complex and displayed multiple phases including some amorphous structures. The presence of a cBN-like phase was indeed detected by electron energy loss spectroscopy. This complex microstructure persisted until it was replaced by the cBN structure, without abrupt change

  2. Spectral, magnetic and biological studies of 1,4-dibenzoyl-3-thiosemicarbazide complexes with some first row transition metal ions

    Indian Academy of Sciences (India)

    Nand K Singh; Saty B Singh; Anuraag Shrivastav; Sukh M Singh


    The ligand 1,4-dibenzoyl-3-thiosemicarbazide (DBtsc) forms complexes [M(DBtsc-H)(SCN)] [M = Mn(II), Co(II) or Zn(II)], [M(DBtscH)(SCN)(H2O)] [M = Ni(II) or Cu(II)], [M(DBtsc-H)Cl] [M = Co(II), Ni(II), Cu(II) or Zn(II)] and [Mn(DBtsc)Cl2], which have been characterized by elemental analyses, magnetic susceptibility measurements, UV/Vis, IR, 1H and 13C NMR and FAB mass spectral data. Room temperature ESR spectra of the Mn(II) and Cu(II) complexes yield values, characteristic of tetrahedral and square planar complexes respectively. DBtsc and its soluble complexes have been screened against several bacteria, fungi and tumour cell lines.

  3. Effects of alkaline earth metal ion complexation on amino acid zwitterion stability: Results from infrared action spectroscopy

    NARCIS (Netherlands)

    Bush, M. F.; Oomens, J.; Saykally, R. J.; Williams, E. R.


    The structures of isolated alkaline earth metal cationized amino acids are investigated using infrared multiple photon dissociation (IRMPD) spectroscopy and theory. These results indicate that arginine, glutamine, proline, serine, and valine all adopt zwitterionic structures when complexed with diva

  4. Effect of adsorbed metals ions on the transport of Zn- and Ni-EDTA complexes in a sand and gravel aquifer (United States)

    Kent, D.B.; Davis, J.A.; Anderson, L.C.D.; Rea, B.A.; Coston, J.A.


    Adsorption, complexation, and dissolution reactions strongly influenced the transport of metal ions complexed with ethylenediaminetetraacetic acid (EDTA) in a predominantly quartz-sand aquifer during two tracer tests conducted under mildly reducing conditions at pH 5.8 to 6.1. In tracer test M89, EDTA complexes of zinc (Zn) and nickel (Ni), along with excess free EDTA, were injected such that the lower portion of the tracer cloud traveled through a region with adsorbed manganese (Mn) and the upper portion of the tracer cloud traveled through a region with adsorbed Zn. In tracer test S89, Ni- and Zn-EDTA complexes, along with excess EDTA complexed with calcium (Ca), were injected into a region with adsorbed Mn. The only discernable chemical reaction between Ni-EDTA and the sediments was a small degree of reversible adsorption leading to minor retardation. In the absence of adsorbed Zn, the injected Zn was displaced from EDTA complexes by iron(III) [Fe(III)] dissolved from the sediments. Displacement of Zn by Fe(III) on EDTA became increasingly thermodynamically favorable with decreasing total EDTA concentration. The reaction was slow compared to the time-scale of transport. Free EDTA rapidly dissolved aluminum (Al) from the sediments, which was subsequently displaced slowly by Fe. In the portion of tracer cloud M89 that traveled through the region contaminated with adsorbed Zn, little displacement of Zn complexed with EDTA was observed, and Al was rapidly displaced from EDTA by Zn desorbed from the sediments, in agreement with equilibrium calculations. In tracer test S89, desorption of Mn dominated over the more thermodynamically favorable dissolution of Al oxyhydroxides. Comparison with results from M89 suggests that dissolution of Al oxyhydroxides in coatings on these sediment grains by Ca-EDTA was rate-limited whereas that by free EDTA reached equilibrium on the time-scale of transport. Rates of desorption are much faster than rates of dissolution of Fe

  5. Metal-ion interactions with carbohydrates. Crystal structure and FT-IR study of the SmCl3-ribose complex. (United States)

    Lu, Yan; Guo, Jianyu


    A single-crystal of SmCl3.C5H10O5.5H2O was obtained from methanol-water solution and its structure determined by X-ray. Two forms of the complex as a pair of anomers and related conformers were found in the single-crystal in a disordered state. One ligand is alpha-D-ribopyranose in the 4C1 conformation and the other one is beta-D-ribopyranose. The anomeric ratio is 1:1. Both ligands provide three hydroxyl groups in ax-eq-ax orientation for coordination. The Sm3+ ion is nine-coordinated with five Sm-O bonds from water molecules, three Sm-O bonds from hydroxyl groups of the D-ribopyranose and one Sm-Cl bond. The hydroxyl groups, water molecules and chloride ions form an extensive hydrogen-bond network. The IR spectral C-C, O-H, C-O, and C-O-H vibrations were observed to be shifted in the complex and the IR results are in accord with those of X-ray diffraction.

  6. Spectrophotometric determination of some anti-tussive and anti-spasmodic drugs through ion-pair complex formation with thiocyanate and cobalt(II) or molybdenum(V) (United States)

    El-Shiekh, Ragaa; Zahran, Faten; El-Fetouh Gouda, Ayman Abou


    Two rapid, simple and sensitive extractive specrophotometric methods has been developed for the determination of anti-tussive drugs, e.g., dextromethorphan hydrobromide (DEX) and pipazethate hydrochloride (PiCl) and anti-spasmodic drugs, e.g., drotaverine hydrochloride (DvCl) and trimebutine maleate (TM) in bulk and in their pharmaceutical formulations. The proposed methods depend upon the reaction of cobalt(II)-thiocyanate (method A) and molybdenum(V)-thiocyanate ions (method B) with the cited drugs to form stable ion-pair complexes which extractable with an n-butnol-dichloromethane solvent mixture (3.5:6.5) and methylene chloride for methods A and B, respectively. The blue and orange red color complexes are determined either colorimetrically at λmax 625 nm (using method A) and 467 or 470 nm for (DEX and PiCl) or (DvCl and TM), respectively (using method B). The concentration range is 20-400 and 2.5-50 μg mL -1 for methods A and B, respectively. The proposed method was successfully applied for the determination of the studied drugs in pure and in pharmaceutical formulations applying the standard additions technique and the results obtained in good agreement well with those obtained by the official method.

  7. Cyclopiazonic Acid Is Complexed to a Divalent Metal Ion When Bound to the Sarcoplasmic Reticulum Ca2+-ATPase

    DEFF Research Database (Denmark)

    Laursen, Mette; Bublitz, Maike; Moncoq, Karine


    .5 angstrom resolution leads to a significantly revised model of CPA binding when compared with earlier reports. It shows that a divalent metal ion is required for CPA binding through coordination of the tetramic acid moiety at a characteristic kink of the M1 helix found in all P-type ATPase structures, which...... is expected to be part of the cytoplasmic cation access pathway. Our model is consistent with the biochemical data on CPA function and provides new measures in structure-based drug design targeting Ca2+-ATPases, e. g. from pathogens. We also present an extended structural basis of ATP modulation pinpointing...

  8. Alkali-metal ion coordination in uranyl(VI) poly-peroxo complexes in solution, inorganic analogues to crown-ethers. Part 2. Complex formation in the tetramethyl ammonium-, Li(+)-, Na(+)- and K(+)-uranyl(VI)-peroxide-carbonate systems. (United States)

    Zanonato, Pier Luigi; Szabó, Zoltán; Vallet, Valerie; Di Bernardo, Plinio; Grenthe, Ingmar


    The constitution and equilibrium constants of ternary uranyl(vi) peroxide carbonate complexes [(UO2)p(O2)q(CO3)r](2(p-q-r)) have been determined at 0 °C in 0.50 M MNO3, M = Li, K, and TMA (tetramethyl ammonium), ionic media using potentiometric and spectrophotometric data; (17)O NMR data were used to determine the number of complexes present. The formation of cyclic oligomers, "[(UO2)(O2)(CO3)]n", n = 4, 5, 6, with different stoichiometries depending on the ionic medium used, suggests that Li(+), Na(+), K(+) and TMA ions act as templates for the formation of uranyl peroxide rings where the uranyl-units are linked by μ-η(2)-η(2) bridged peroxide-ions. The templating effect is due to the coordination of the M(+)-ions to the uranyl oxygen atoms, where the coordination of Li(+) results in the formation of Li[(UO2)(O2)(CO3)]4(7-), Na(+) and K(+) in the formation of Na/K[(UO2)(O2)(CO3)]5(9-) complexes, while the large tetramethyl ammonium ion promotes the formation of two oligomers, TMA[(UO2)(O2)(CO3)]5(9-) and TMA[(UO2)(O2)(CO3)]6(11-). The NMR spectra demonstrate that the coordination of Na(+) in the five- and six-membered oligomers is significantly stronger than that of TMA(+); these observations suggest that the templating effect is similar to the one observed in the synthesis of crown-ethers. The NMR experiments also demonstrate that the exchange between TMA[(UO2)(O2)(CO3)]5(9-) and TMA[(UO2)(O2)(CO3)]6(11-) is slow on the (17)O chemical shift time-scale, while the exchange between TMA[(UO2)(O2)(CO3)]6(11-) and Na[(UO2)(O2)(CO3)]6(11-) is fast. There was no indication of the presence of large clusters of the type identified by Burns and Nyman (M. Nyman and P. C. Burns, Chem. Soc. Rev., 2012, 41, 7314-7367) and possible reasons for this and the implications for the synthesis of large clusters are briefly discussed.

  9. Mixed ligand complexation of some transition metal ions in solution and solid state: Spectral characterization, antimicrobial, antioxidant, DNA cleavage activities and molecular modeling (United States)

    Shobana, Sutha; Dharmaraja, Jeyaprakash; Selvaraj, Shanmugaperumal


    Equilibrium studies of Ni(II), Cu(II) and Zn(II) mixed ligand complexes involving a primary ligand 5-fluorouracil (5-FU; A) and imidazoles viz., imidazole (him), benzimidazole (bim), histamine (hist) and L-histidine (his) as co-ligands(B) were carried out pH-metrically in aqueous medium at 310 ± 0.1 K with I = 0.15 M (NaClO4). In solution state, the stoichiometry of MABH, MAB and MAB2 species have been detected. The primary ligand(A) binds the central M(II) ions in a monodentate manner whereas him, bim, hist and his co-ligands(B) bind in mono, mono, bi and tridentate modes respectively. The calculated Δ log K, log X and log X' values indicate higher stability of the mixed ligand complexes in comparison to binary species. Stability of the mixed ligand complex equilibria follows the Irving-Williams order of stability. In vitro biological evaluations of the free ligand(A) and their metal complexes by well diffusion technique show moderate activities against common bacterial and fungal strains. Oxidative cleavage interaction of ligand(A) and their copper complexes with CT DNA is also studied by gel electrophoresis method in the presence of oxidant. In vitro antioxidant evaluations of the primary ligand(A), CuA and CuAB complexes by DPPH free radical scavenging model were carried out. In solid, the MAB type of M(II)sbnd 5-FU(A)sbnd his(B) complexes were isolated and characterized by various physico-chemical and spectral techniques. Both the magnetic susceptibility and electronic spectral analysis suggest distorted octahedral geometry. Thermal studies on the synthesized mixed ligand complexes show loss of coordinated water molecule in the first step followed by decomposition of the organic residues subsequently. XRD and SEM analysis suggest that the microcrystalline nature and homogeneous morphology of MAB complexes. Further, the 3D molecular modeling and analysis for the mixed ligand MAB complexes have also been carried out.

  10. Numerical Modeling of Complex Targets for High-Energy- Density Experiments with Ion Beams and other Drivers (United States)

    Koniges, Alice; Liu, Wangyi; Lidia, Steven; Schenkel, Thomas; Barnard, John; Friedman, Alex; Eder, David; Fisher, Aaron; Masters, Nathan


    We explore the simulation challenges and requirements for experiments planned on facilities such as the NDCX-II ion accelerator at LBNL, currently undergoing commissioning. Hydrodynamic modeling of NDCX-II experiments include certain lower temperature effects, e.g., surface tension and target fragmentation, that are not generally present in extreme high-energy laser facility experiments, where targets are completely vaporized in an extremely short period of time. Target designs proposed for NDCX-II range from metal foils of order one micron thick (thin targets) to metallic foam targets several tens of microns thick (thick targets). These high-energy-density experiments allow for the study of fracture as well as the process of bubble and droplet formation. We incorporate these physics effects into a code called ALE-AMR that uses a combination of Arbitrary Lagrangian Eulerian hydrodynamics and Adaptive Mesh Refinement. Inclusion of certain effects becomes tricky as we must deal with non-orthogonal meshes of various levels of refinement in three dimensions. A surface tension model used for droplet dynamics is implemented in ALE-AMR using curvature calculated from volume fractions. Thick foam target experiments provide information on how ion beam induced shock waves couple into kinetic energy of fluid flow. Although NDCX-II is not fully commissioned, experiments are being conducted that explore material defect production and dynamics.

  11. Surface complex formation between aliphatic nitrile molecules and transition metal atoms for thermally stable lithium-ion batteries. (United States)

    Kim, Young-Soo; Lee, Hochun; Song, Hyun-Kon


    Non-flammability of electrolyte and tolerance of cells against thermal abuse should be guaranteed for widespread applications of lithium-ion batteries (LIBs). As a strategy to improve thermal stability of LIBs, here, we report on nitrile-based molecular coverage on surface of cathode active materials to block or suppress thermally accelerated side reactions between electrode and electrolyte. Two different series of aliphatic nitriles were introduced as an additive into a carbonate-based electrolyte: di-nitriles (CN-[CH2]n-CN with n = 2, 5, and 10) and mono-nitriles (CH3-[CH2]m-CN with m = 2, 5, and 10). On the basis of the strong interaction between the electronegativity of nitrile functional groups and the electropositivity of cobalt in LiCoO2 cathode, aliphatic mono- and di-nitrile molecules improved the thermal stability of lithium ion cells by efficiently protecting the surface of LiCoO2. Three factors, the surface coverage θ, the steric hindrance of aliphatic moiety within nitrile molecule, and the chain polarity, mainly affect thermal tolerance as well as cell performances at elevated temperature.

  12. Synthesis, spectral characterization and eukaryotic DNA degradation of thiosemicarbazones and their platinum(IV) complexes (United States)

    Al-Hazmi, G. A.; El-Metwally, N. M.; El-Gammal, O. A.; El-Asmy, A. A.


    The condensation products of acetophenone (or its derivatives), salicylaldehyde and o-hydroxy- p-methoxybenzophenone with thiosemicarbazide and ethyl- or phenyl-thiosemicarbazide are the investigated thiosemicarbazones. Their reactions with H 2PtCl 6 produced Pt(IV) complexes characterized by elemental, thermal, mass, IR and electronic spectral studies. The coordination modes were found mononegative bidentate in the acetophenone derivatives and binegative tridentate in the salicylaldehyde derivatives. The complexes were analyzed thermogravimetrically and found highly stable. Some ligands and their complexes were screened against Sarcina sp. and E. coli using the cup-diffusion technique. [Pt( oHAT)(OH)Cl] shows higher activity against E. coli than the other compounds. The degradation power of the tested compounds on the calf thymus DNA supports their selectivity against bacteria and not against the human or related eukaryotic organisms.


    Directory of Open Access Journals (Sweden)

    L.N. Tolkacheva


    Full Text Available Complex formation between Al3+ and ethylenediamine - N,N`-disuccinic acid (H4L was studied at 25°C against the background of 0.1, 0.5, 1.0 N solutions of KNO3 by potentiometry and mathematical modeling. The extrapolation of concentration constants to zero ionic strength was used to calculate the thermodynamic constants of the formation of the AlL–, AlHL complexes using an equation with one individual parameter (logβ0 = 16.27 ± 0.07, 9.19 ± 0.2 respectively.

  14. Gas-Phase Analysis of the Complex of Fibroblast GrowthFactor 1 with Heparan Sulfate: A Traveling Wave Ion Mobility Spectrometry (TWIMS) and Molecular Modeling Study (United States)

    Zhao, Yuejie; Singh, Arunima; Xu, Yongmei; Zong, Chengli; Zhang, Fuming; Boons, Geert-Jan; Liu, Jian; Linhardt, Robert J.; Woods, Robert J.; Amster, I. Jonathan


    Fibroblast growth factors (FGFs) regulate several cellular developmental processes by interacting with cell surface heparan proteoglycans and transmembrane cell surface receptors (FGFR). The interaction of FGF with heparan sulfate (HS) is known to induce protein oligomerization, increase the affinity of FGF towards its receptor FGFR, promoting the formation of the HS-FGF-FGFR signaling complex. Although the role of HS in the signaling pathways is well recognized, the details of FGF oligomerization and formation of the ternary signaling complex are still not clear, with several conflicting models proposed in literature. Here, we examine the effect of size and sulfation pattern of HS upon FGF1 oligomerization, binding stoichiometry and conformational stability, through a combination of ion mobility (IM) and theoretical modeling approaches. Ion mobility-mass spectrometry (IMMS) of FGF1 in the presence of several HS fragments ranging from tetrasaccharide (dp4) to dodecasaccharide (dp12) in length was performed. A comparison of the binding stoichiometry of variably sulfated dp4 HS to FGF1 confirmed the significance of the previously known high-affinity binding motif in FGF1 dimerization, and demonstrated that certain tetrasaccharide-length fragments are also capable of inducing dimerization of FGF1. The degree of oligomerization was found to increase in the presence of dp12 HS, and a general lack of specificity for longer HS was observed. Additionally, collision cross-sections (CCSs) of several FGF1-HS complexes were calculated, and were found to be in close agreement with experimental results. Based on the (CCSs) a number of plausible binding modes of 2:1 and 3:1 FGF1-HS are proposed.

  15. Gas-Phase Analysis of the Complex of Fibroblast GrowthFactor 1 with Heparan Sulfate: A Traveling Wave Ion Mobility Spectrometry (TWIMS) and Molecular Modeling Study (United States)

    Zhao, Yuejie; Singh, Arunima; Xu, Yongmei; Zong, Chengli; Zhang, Fuming; Boons, Geert-Jan; Liu, Jian; Linhardt, Robert J.; Woods, Robert J.; Amster, I. Jonathan


    Fibroblast growth factors (FGFs) regulate several cellular developmental processes by interacting with cell surface heparan proteoglycans and transmembrane cell surface receptors (FGFR). The interaction of FGF with heparan sulfate (HS) is known to induce protein oligomerization, increase the affinity of FGF towards its receptor FGFR, promoting the formation of the HS-FGF-FGFR signaling complex. Although the role of HS in the signaling pathways is well recognized, the details of FGF oligomerization and formation of the ternary signaling complex are still not clear, with several conflicting models proposed in literature. Here, we examine the effect of size and sulfation pattern of HS upon FGF1 oligomerization, binding stoichiometry and conformational stability, through a combination of ion mobility (IM) and theoretical modeling approaches. Ion mobility-mass spectrometry (IMMS) of FGF1 in the presence of several HS fragments ranging from tetrasaccharide (dp4) to dodecasaccharide (dp12) in length was performed. A comparison of the binding stoichiometry of variably sulfated dp4 HS to FGF1 confirmed the significance of the previously known high-affinity binding motif in FGF1 dimerization, and demonstrated that certain tetrasaccharide-length fragments are also capable of inducing dimerization of FGF1. The degree of oligomerization was found to increase in the presence of dp12 HS, and a general lack of specificity for longer HS was observed. Additionally, collision cross-sections (CCSs) of several FGF1-HS complexes were calculated, and were found to be in close agreement with experimental results. Based on the (CCSs) a number of plausible binding modes of 2:1 and 3:1 FGF1-HS are proposed.

  16. The formation of copper sulphide semiconductors inside Langmuir–Blodgett films of Cu(II) ion complexes

    NARCIS (Netherlands)

    Werkman, P.J.; Wieringa, R.H.; Schouten, A.J.


    The fabrication of layers of copper sulphide within multilayers of copper complexes of the amphiphile 4-(10,12-pentacosadiynamido methyl pyridine, by diffusion of H2S into the multilayers, was studied by UV–VIS spectroscopy. XPS measurements revealed that copper sulphides can be synthesised which di

  17. Mixed ligand complexes of essential metal ions with L-glutamine and succinic acid in SLS-water mixtures

    Directory of Open Access Journals (Sweden)

    Bindu Hima Gandham


    Full Text Available Speciation of mixed ligand complexes of Co(II, Ni(II and Cu(II with L-glutamine and succinic acid was studied in varying amounts (0.0-2.5% w/v of sodium lauryl sulphate in aqueous solutions maintaining an ionic strength of 0.16 mol L-1 (NaCl at 303.0 K. Titrations were carried out in the presence of different relative concentrations (M : L : X = 1 : 2 : 2, 1 : 4 : 2, 1 : 2 : 4 of metal (M to L-glutamine (L to succinic acid (X with sodium hydroxide. Stability constants of ternary complexes were refined with MINIQUAD75. The best-fit chemical models were selected based on statistical parameters and residual analysis. The species detected were ML2X, MLX, MLXH and MLXH2 for Co(II, Ni(II and Cu(II. Extra stability of ternary complexes compared to their binary complexes was believed to be due to electrostatic interactions of the side chains of ligands, charge neutralization, chelate effect, stacking interactions and hydrogen bonding. The species distribution with pH at different compositions of SLS and plausible equilibria for the formation of species were also presented.

  18. Probing the magnetic superexchange couplings between terminal CuII ions in heterotrinuclear bis(oxamidato type complexes

    Directory of Open Access Journals (Sweden)

    Mohammad A. Abdulmalic


    Full Text Available The reaction of one equivalent of [n-Bu4N]2[Ni(opboR2] with two equivalents of [Cu(pmdta(X2] afforded the heterotrinuclear CuIINiIICuII containing bis(oxamidato type complexes [Cu2Ni(opboR2(pmdta2]X2 (R = Me, X = NO3– (1; R = Et, X = ClO4– (2; R = n-Pr, X = NO3– (3; opboR2 = o-phenylenebis(NR-substituted oxamidato; pmdta = N,N,N’,N”,N”-pentamethyldiethylenetriamine. The identities of the heterotrinuclear complexes 1–3 were established by IR spectroscopy, elemental analysis and single-crystal X-ray diffraction studies, which revealed the cationic complex fragments [Cu2Ni(opboR2(pmdta2]2+ as not involved in any further intermolecular interactions. As a consequence thereof, the complexes 1–3 possess terminal paramagnetic [Cu(pmdta]2+ fragments separated by [NiII(opboR2]2– bridging units representing diamagnetic SNi = 0 states. The magnetic field dependence of the magnetization M(H of 1–3 at T = 1.8 K has been determined and is shown to be highly reproducible with the Brillouin function for an ideal paramagnetic spin = 1/2 system, verifying experimentally that no magnetic superexchange couplings exists between the terminal paramagnetic [Cu(pmdta]2+ fragments. Susceptibility measurements versus temperature of 1–3 between 1.8–300 K were performed to reinforce the statement of the absence of magnetic superexchange couplings in these three heterotrinuclear complexes.

  19. [Development of metal ions analysis by ion chromatography]. (United States)

    Yu, Hong; Wang, Yuxin


    Analysis of metal ions by ion chromatography, including cation-exchange ion chromatography, anion-exchange ion chromatography and chelation ion chromatography, is reviewed. The cation-exchange ion chromatography is a main method for the determination of metal ions. Stationary phases in cation-exchange ion chromatography are strong acid cation exchanger (sulfonic) and weak acid cation exchanger (carboxylic). Alkali metal ions, alkaline earth metal ions, transition metal ions, rare earth metal ions, ammonium ions and amines can be analyzed by cation-exchange ion chromatography with a suitable detector. The anion-exchange ion chromatography is suitable for the separation and analysis of alkaline earth metal ions, transition metal ions and rare earth metal ions. The selectivity for analysis of metal ions with anion-exchange ion chromatography is good. Simultaneous determination of metal ions and inorganic anions can be achieved using anion-exchange ion chromatography. Chelation ion chromatography is suitable for the determination of trace metal ions in complex matrices. A total of 125 references are cited.

  20. A density functional study on magnetic exchange interaction between Mn(II) ion and nitronyl nitroxide radical in trans- and cis-metal-radical complexes

    Institute of Scientific and Technical Information of China (English)

    WEI; Haiyan; WANG; Fan; CHEN; Zhida


    The magneto-structural correlation between a Mn(II) ion, coordinated in an octahedral environment, and two nitronyl nitroxide radical ligands in trans- and cis-metal-radical complexes is investigated by the broken symmetry (BS) approach within density functional theory (DFT). The dependences of coupling constants J on three structural parameters: (i) bond angle(∈) (Mn-O-N (nitroxide)); (ii) rotating angle(∈), defined by the nitronyl nitroxide radical plane rotating around the axial Mn-O (nitroxide); (iii) bond distance R (Mn-O (nitroxide)) are directly calculated. Our calculations showed that both trans- and cis-Mn(II)-radical complexes behave a stronger antiferromagnetic interaction, consistent with experiments. In view of molecular orbital theory, the direct exchanges, including σ-type and π-type exchanges, are responsible for the magnetic exchange pathways. There is a preferable linear correlation between the calculated coupling constants J and the overlap integral squares between the local magnetic orbitals at the various rotating angle(∈) at the fixed bond angle(∈) and bond distance R, in both trans- and cis-Mn(II)- radical complexes.

  1. Removal of cobalt ions from aqueous solutions by polymer assisted ultrafiltration using experimental design approach. part 1: optimization of complexation conditions. (United States)

    Cojocaru, Corneliu; Zakrzewska-Trznadel, Grazyna; Jaworska, Agnieszka


    The polymer assisted ultrafiltration process combines the selectivity of the chelating agent with the filtration ability of the membrane acting in synergy. Such hybrid process (complexation-ultrafiltration) is influenced by several factors and therefore the application of experimental design for process optimization using a reduced number of experiments is of great importance. The present work deals with the investigation and optimization of cobalt ions removal from aqueous solutions by polymer enhanced ultrafiltration using experimental design and response surface methodological approach. Polyethyleneimine has been used as chelating agent for cobalt complexation and the ultrafiltration experiments were carried out in dead-end operating mode using a flat-sheet membrane made from regenerated cellulose. The aim of this part of experiments was to find optimal conditions for cobalt complexation, i.e. the influence of initial concentration of cobalt in feed solution, polymer/metal ratio and pH of feed solution, on the rejection efficiency and binding capacity of the polymer. In this respect, the central compositional design has been used for planning the experiments and for construction of second-order response surface models applicable for predictions. The analysis of variance has been employed for statistical validation of regression models. The optimum conditions for maximum rejection efficiency of 96.65% has been figured out experimentally by gradient method and was found to be as follows: [Co(2+)](0)=65 mg/L, polymer/metal ratio=5.88 and pH 6.84.

  2. Uncovering the stoichiometry of Pyrococcus furiosus RNase P, a multi-subunit catalytic ribonucleoprotein complex, by surface-induced dissociation and ion mobility mass spectrometry. (United States)

    Ma, Xin; Lai, Lien B; Lai, Stella M; Tanimoto, Akiko; Foster, Mark P; Wysocki, Vicki H; Gopalan, Venkat


    We demonstrate that surface-induced dissociation (SID) coupled with ion mobility mass spectrometry (IM-MS) is a powerful tool for determining the stoichiometry of a multi-subunit ribonucleoprotein (RNP) complex assembled in a solution containing Mg(2+). We investigated Pyrococcus furiosus (Pfu) RNase P, an archaeal RNP that catalyzes tRNA 5' maturation. Previous step-wise, Mg(2+)-dependent reconstitutions of Pfu RNase P with its catalytic RNA subunit and two interacting protein cofactor pairs (RPP21⋅RPP29 and POP5⋅RPP30) revealed functional RNP intermediates en route to the RNase P enzyme, but provided no information on subunit stoichiometry. Our native MS studies with the proteins showed RPP21⋅RPP29 and (POP5⋅RPP30)2 complexes, but indicated a 1:1 composition for all subunits when either one or both protein complexes bind the cognate RNA. These results highlight the utility of SID and IM-MS in resolving conformational heterogeneity and yielding insights on RNP assembly.

  3. A chemical approach for site-specific identification of NMR signals from protein side-chain NH{sub 3}{sup +} groups forming intermolecular ion pairs in protein–nucleic acid complexes

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Kurtis M. [University of Texas Health Science Center at Houston, Department of NanoMedicine and Biomedical Engineering and Institute of Molecular Medicine (United States); Nguyen, Dan; Esadze, Alexandre; Zandrashvili, Levani [University of Texas Medical Branch, Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics (United States); Gorenstein, David G. [University of Texas Health Science Center at Houston, Department of NanoMedicine and Biomedical Engineering and Institute of Molecular Medicine (United States); Iwahara, Junji, E-mail:, E-mail: [University of Texas Medical Branch, Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics (United States)


    Protein–nucleic acid interactions involve intermolecular ion pairs of protein side-chain and DNA or RNA phosphate groups. Using three protein–DNA complexes, we demonstrate that site-specific oxygen-to-sulfur substitution in phosphate groups allows for identification of NMR signals from the protein side-chain NH{sub 3}{sup +} groups forming the intermolecular ion pairs. A characteristic change in their {sup 1}H and {sup 15}N resonances upon this modification (i.e., substitution of phosphate to phosphorodithioate) can represent a signature of an intermolecular ion pair. Hydrogen-bond scalar coupling between protein side-chain {sup 15}N and DNA phosphorodithiaote {sup 31}P nuclei provides direct confirmation of the intermolecular ion pair. The same approach is likely applicable to protein–RNA complexes as well.

  4. Field-induced single-ion magnetic behaviour in a highly luminescent Er{sup 3+} complex

    Energy Technology Data Exchange (ETDEWEB)

    Coutinho, J.T. [Solid State Group, UCQR, IST/CTN, Instituto Superior Técnico, UTL, Estrada Nacional 10, km 139.7, 2695-066 Bobadela LRS (Portugal); Pereira, L.C.J., E-mail: [Solid State Group, UCQR, IST/CTN, Instituto Superior Técnico, UTL, Estrada Nacional 10, km 139.7, 2695-066 Bobadela LRS (Portugal); Martín-Ramos, P. [CEMDRX, Physics Department, Universidade de Coimbra, Rua Larga, P-3004-516 Coimbra (Portugal); Higher Polytechnic School of Huesca, University of Zaragoza, Carretera Cuarte, s/n, 22071 Huesca (Spain); Ramos Silva, M. [CEMDRX, Physics Department, Universidade de Coimbra, Rua Larga, P-3004-516 Coimbra (Portugal); Zheng, Y.X.; Liang, X. [State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Ye, H.Q. [Materials Research Institute and School of Physics and Astronomy Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Peng, Y. [Materials Research Institute and School of Biological and Chemical, Sciences, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Baker, P.J. [Materials Research Institute and School of Physics and Astronomy Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Wyatt, P.B. [Materials Research Institute and School of Biological and Chemical, Sciences, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Gillin, W.P. [Materials Research Institute and School of Physics and Astronomy Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China)


    The magnetic properties of a perfluorinated Er{sup 3+} complex, with record luminescent properties, have been investigated. [Er(F-TPIP){sub 3}] displays thermally activated slow relaxation of the magnetisation under an applied H{sub DC} field of 500 Oe. The effective relaxation barrier E{sub eff} is found to be 26.8 K (18.6 cm{sup −1}). At zero static field, efficient quantum tunnelling of the magnetization occurs. - Highlights: • Under DC field, slow relaxation of magnetisation occurs with a barrier of 27 K. • Efficient quantum tunnelling of magnetization is displayed at zero static field. • The lifetime value of the {sup 4}I{sub 13/2} multiplet is τ = 0.28 ms. • [Er(F-TPIP){sub 3}] complex can be considered a multifunctional material.

  5. Superposition model analysis of nickel(II) ions in trigonal bipyramidal complexes exhibiting huge zero field splitting (aka 'giant magnetic anisotropy') (United States)

    Rudowicz, Czesław; Açıkgöz, Muhammed; Gnutek, Paweł


    Potential single-ion magnet Ni2+ systems: [Ni(Me6tren)Cl](ClO4) and [Ni(Me6tren)Br](Br) reveal unusually high zero field splitting (ZFS). The ZFS parameter (ZFSP) Dexpt = -120 to -180 cm-1 was determined indirectly by high-magnetic field, high-frequency electron magnetic resonance (HMF-EMR). Modeling ZFSPs using the density functional theory (DFT) codes predicts D values: -100 to -200 cm-1. Such ZFSP values may seem controversial in view of the D values usually not exceeding several tens of cm-1 for Ni2+ ions. To corroborate or otherwise these results and elucidate the origin of the huge ZFS (named inappropriately as 'giant uniaxial magnetic anisotropy') and respective wavefunctions, we have undertaken semiempirical modeling based on the crystal field (CF) and spin Hamiltonians (SH) theory. In this paper, a feasibility study is carried out to ascertain if superposition model (SPM) calculations may yield such huge D values for these Ni2+ systems. Using crystal structure data for [Ni(Me6tren)Cl](ClO4) and [Ni(Me6tren)Br](Br) as well as taking into account the Jahn-Teller distortions of five-fold coordinated Ni-complexes revealed by DFT geometry optimization, the ZFSPs are predicted for several structural models and wide ranges of model parameters. The results indicate that in the presence of the Jahn-Teller distortions, the SPM-predicted ZFSP D may achieve the observed magnitudes, whereas the positive as well as negative D-signs are obtainable. Further studies based on SPM calculations of CF parameters and diagonalization of the Hamiltonian (Hfree ion + HCF) will allow considering the wavefunctions compositions and thus actual origin of the splitting between the ground and first excited state.

  6. Novel Fragmentation Pathways of Anionic Adducts of Steroids Formed by Electrospray Anion Attachment Involving Regioselective Attachment, Regiospecific Decompositions, Charge-Induced Pathways, and Ion-Dipole Complex Intermediates (United States)

    Rannulu, Nalaka S.; Cole, Richard B.


    The analysis of several bifunctional neutral steroids, 5-α-pregnane diol (5-α-pregnane-3α-20βdiol), estradiol (3,17α-dihydroxy-1,3,5(10)-estratriene), progesterone (4-pregnene-3,20-dione), lupeol (3β-hydroxy-20(29)-lupene), pregnenolone (5-pregnen-3β-ol-20-one), and pregnenolone acetate (5-pregnen-3β-ol-20-one acetate) was accomplished by negative ion electrospray mass spectrometry (ESI-MS) employing adduct formation with various anions: fluoride, bicarbonate, acetate, and chloride. Fluoride yielded higher abundances of anionic adducts and more substantial abundances of deprotonated molecules compared with other investigated anions. Collision-induced dissociation (CID) of precursor [M + anion]- adducts of these steroids revealed that fluoride adduct [M + F]- precursors first lose HF to produce [M - H]- and then undergo consecutive decompositions to yield higher abundances of structurally-informative product ions than the other tested anions. In addition to charge-remote fragmentations, the majority of CID pathways of estradiol are deduced to occur via charge-induced fragmentation. Most interestingly, certain anions exhibit preferential attachment to a specific site on these bifunctional steroid molecules, which we are calling "regioselective anion attachment." Regioselective anion attachment is evidenced by subsequent regiospecific decomposition. Regioselective attachment of fluoride (and acetate) anions to low (and moderate) acidity functional groups of pregnenolone, respectively, is demonstrated using deuterated compounds. Moreover, the formation of unique intermediate ion-dipole complexes leading to novel fragmentation pathways of fluoride adducts of pregnenolone acetate, and bicarbonate adducts of d4-pregnenolone, are also discussed.

  7. Lithium ion intercalation in partially crystalline TiO 2 electrodeposited on platinum from aqueous solution of titanium(IV) oxalate complexes (United States)

    Dziewoński, Paweł Marek; Grzeszczuk, Maria

    Starting from the aqueous solution of titanium(IV) oxalate complexes and controlling electrochemical conditions using a cyclic voltammetry (CV) method, the thin layers of TiO 2 on platinum were obtained, which after additional heat treatment, at 450 °C, were still of amorphous nature. The amorphous state of the samples, containing an admixture of crystalline anatase, was confirmed by Raman spectroscopy and by a variety of electrochemical techniques. The new electrochemical procedure allows preparing the oxide with different morphologies. By the comparison with the peroxotitanium route, the oxalate precursor method offers the possibility of the synthesis of amorphous TiO 2 at higher temperatures that is the essential key for the cycling stability of the oxide if one is used as an anode material in lithium ion batteries. The results from cycling voltammetry revealed that electrodeposited TiO 2 reversibly and fast intercalates lithium ions due to its high internal surface area. Therefore, the nanostructural morphology facilitates lithium ion intercalation which was monitored and confirmed in all electrochemical testing. The specific capacity of the TiO 2 approaches the value of 145 mAh g -1 at 8 C-rate in the best case. From the electrochemical impedance spectroscopy (EIS) measurements in connection with SEM investigations, it was concluded that Li + diffusion is the finite space process and its rate is depending on the size of the crystallites building the oxide films. Evaluated values of the D-coefficients are of the order of 10 -14 cm 2 s -1.

  8. Response of the Cu(II) ion selective electrode to Cu titration in artificial and natural shore seawater and in the measurement of the Cu complexation capacity. (United States)

    Rivera-Duarte, Ignacio; Zirino, Alberto


    The Orion 94-29 Cu(II) jalpaite ion selective electrode (Cu-ISE) was used to measure both the concentration of the aqueous free Cu(II) ion ([Cu(II)aq]) and its changes due to additions of Cu, in artificial seawater (ASW) and in seawater from San Diego Bay, CA. The range of free copper ion (i.e., pCu, -log [Cu(II)aq]) determined in seawater samples from the San Diego Bay area (11.3-12.6, 11.9 +/- 0.4, average +/- SD) is consistent with that previously reported for estuarine and coastal areas (10.9-14.1). The changes in [Cu(II)aq] as a result of the additions of Cu were used to determine the Cu complexation capacity (Cu-CC), which has a measured range (2.7 x 10(-8)-2.0 x 10(-7) M; 7.6 x 10(-8) +/- 4.8 x 10(-8) M) comparable to the range of values previously reported for estuarine and coastal zones (i.e., L1+L2, 1.1 x 10(-8)-2.0 x 10(-7) M). The narrow range of pCu at the Cu-CC (pCuCu-CC, 11.1-11.9, 11.5 +/- 0.2) indicates the predominant role of the Cu-CC in regulating the concentration of ambient Cu(II)aq to a level < or =1 x 10(-11) M Cu(II)aq. These results attest to the capability of the Cu-ISE to measure pCu and Cu-CC in aquatic coastal environments with relatively high total Cu concentrations and organic loads, such as those from heavily used coasts and bays.

  9. Application of a metal ion-imprinted polymer based on salen-Cu complex to flow injection preconcentration and FAAS determination of copper. (United States)

    Walas, Stanisław; Tobiasz, Anna; Gawin, Marta; Trzewik, Bartosz; Strojny, Marcin; Mrowiec, Halina


    A new Cu(II)-imprinted polymer (Cu-IIP) for preconcentration of copper by liquid-solid extraction via flow injection technique has been proposed. Cu-IIP was obtained by copolymerization of salen-Cu(II) complex with styrene and divinylbenzene using suspension polymerization technique. Granules fraction of 60-80 microm in diameter was used as a microcolumn packing. Cu(II) sorption was proved to be the most effective from solutions of pH 7, whereas similar elution effectiveness was observed when applying as eluents hydrochloric or nitric acid in the concentration range of 0.5-10% (v/v). The system exhibited good long-term stability and acid resistance. Batch sorbent capacity was found to be 0.11 mmol g(-1) of a dry polymer. Enrichment factor (EF) for 30 s loading time was 16. Preconcentration of Cu(II) and potentially interfering metal ions is strongly pH dependent. Examination of Cu(II) sorption in the presence of Pb(II), Cd(II), Zn(II) and Ag(I) showed significant influence of cadmium and zinc ions only and that was for the interferent concentrations above 0.5 mg L(-1) (Cu-IIP mass of ca. 35 mg). The interference effect was reduced with the sorbent mass increase. Fe(III) and Mn(II) ions, present in treated tap water in relatively high concentrations, did not interfere. Effective pH adjusting of the loaded solution in on-line mode, when applying diluted Clark-Lubs buffering solution, allowed accurate copper determination in tap water (compared to graphite furnace atomic absorption spectrometry, GFAAS) using standard addition or combination calibration method.

  10. Evaluation and application of static headspace-multicapillary column-gas chromatography-ion mobility spectrometry for complex sample analysis. (United States)

    Denawaka, Chamila J; Fowlis, Ian A; Dean, John R


    An evaluation of static headspace-multicapillary column-gas chromatography-ion mobility spectrometry (SHS-MCC-GC-IMS) has been undertaken to assess its applicability for the determination of 32 volatile compounds (VCs). The key experimental variables of sample incubation time and temperature have been evaluated alongside the MCC-GC variables of column polarity, syringe temperature, injection temperature, injection volume, column temperature and carrier gas flow rate coupled with the IMS variables of temperature and drift gas flow rate. This evaluation resulted in six sets of experimental variables being required to separate the 32 VCs. The optimum experimental variables for SHS-MCC-GC-IMS, the retention time and drift time operating parameters were determined; to normalise the operating parameters, the relative drift time and normalised reduced ion mobility for each VC were determined. In addition, a full theoretical explanation is provided on the formation of the monomer, dimer and trimer of a VC. The optimum operating condition for each VC calibration data was obtained alongside limit of detection (LOD) and limit of quantitation (LOQ) values. Typical detection limits ranged from 0.1ng bis(methylthio)methane, ethylbutanoate and (E)-2-nonenal to 472ng isovaleric acid with correlation coefficient (R(2)) data ranging from 0.9793 (for the dimer of octanal) through to 0.9990 (for isobutyric acid). Finally, the developed protocols were applied to the analysis of malodour in sock samples. Initial work involved spiking an inert matrix and sock samples with appropriate concentrations of eight VCs. The average recovery from the inert matrix was 101±18% (n=8), while recoveries from the sock samples were lower, that is, 54±30% (n=8) for sock type 1 and 78±24% (n=6) for sock type 2. Finally, SHS-MCC-GC-IMS was applied to sock malodour in a field trial based on 11 volunteers (mixed gender) over a 3-week period. By applying the SHS-MCC-GC-IMS database, four VCs were

  11. Sensitive Determination of Uranium in Natural Waters Using UV-Vis Spectrometry After Preconcentration by Ion-Imprinted Polymer-Ternary Complexes. (United States)

    Bicim, Tulin; Yaman, Mehmet


    The main purpose of this study was to achieve a substantial increase in the sensitivity of the uranium determination using UV-Vis spectrometry. To achieve this goal, ion-imprinted polymers were prepared for the uranyl (imprint) ion by the formation of a ternary (salicylaldoxime and 4-vinylpyridine) complex in 2-methoxy ethanol (porogen) following copolymerization with methacrylic acid. The synthesized polymers were characterized by FTIR analysis and thermogravimetric analysis. In the preconcentration step, the optimal pH was determined to be between values of 3.5 and 6.5. The adsorbed UO2(2+) was completely eluted by 10 mL of 3.0 mol L(-1) HClO4. The developed method was applied to uranium (VI) determination in natural water samples. By using the initial volume of 500 mL and final volume of 5 mL, a concentration of 1 μg L(-1) can be determined by applying the developed method in this study.

  12. The Influence of Nitrate Salts and Complex Metal Ion to Regio-Selective Synthesis of 2-Nitro-5,10,15,20-Tetra-(4-Methoxyphenyl)Porphyrinato Metal

    Institute of Scientific and Technical Information of China (English)


    A series of 2-nitro-5,10,15,20-tetra(4-methoxyphenyl) porphyrinato metals were regioselectively synthesized with nitrate salts as nitrating reagent in acetic acid/acetic anhydride for preparation of 2-substituted porphyrin. The influence of nitrate salts and complex metal ion to the reaction were investigated. The extent of 2-nitration increased with the electronegativity of the central metal. When Cu(NO3)2·3H2O was used as nitrating reagent, almost quantitative yields of 2 nitro porphyrin were obtained in the case of Cu(Ⅱ) or Ni(Ⅱ) chelates, while Zn(Ⅱ) or Mn(Ⅲ) chelates gave 50% and 30% yields respectively. If Zn(NO3)2·10H2O was used as nitrating agent, no product was found for Cu(Ⅱ) or Ni(Ⅱ) chelates, 12% was found for Zn(Ⅱ) chelates. The other metal ion and nitrate salts were also found in quite different influence.

  13. A novel ammonia complex-assisted ion-exchange strategy to fabricate heterostructured PdO/TiO2 nanorods with enhanced photocatalytic activities (United States)

    Shi, Liang; Han, Qian; Cao, Lixin; Zhao, Fenghuan; Xia, Chenghui; Dong, Bohua; Xi, Yaoning


    Heterojunctions have been often employed to improve the photocatalytic behavior of titania-based materials. Herein, we propose a novel strategy to fabricate PdO/TiO2 heterostructured nanorods, as PdO was proved to be an efficient co-catalyst in photocatalytic reactions. Primarily, ammonia complex-assisted ion-exchange method was used to store Pd(II) ions in protonated titanate nanotubes, as which cannot be replaced by metallic cations via traditional route. Then, PdO/TiO2 heterojunctions formed through calcination in air, as nanotubes dehydrated and shrank into nanorods. X-ray diffraction, Raman spectra, and X-ray photoelectron spectroscopy were used to demonstrate the formation of PdO component, and transmission electron microscopy was employed to prove the successful connection between TiO2 nanorods and PdO nanoparticles. Moreover, inductive coupled plasma proved excellent compositional gradient of Pd(II) in the PdO/TiO2 heterostructured nanorods. In the present work, the photocatalytic activities of PdO/TiO2 heterostructured nanorods were investigated by decoloring several dyes under UV illumination. Our research revealed appropriate PdO loading (1.0 wt%) enhanced photocatalytic performance compared with bare TiO2 nanorods, where PdO/TiO2 heterojunctions were responsible for the prohibitive photogenerated carries recombination.

  14. Comparative analysis of three-dimensional structures of homodimers of uridine phosphorylase from Salmonella typhimurium in the unligated state and in a complex with potassium ion (United States)

    Lashkov, A. A.; Zhukhlistova, N. E.; Gabdulkhakov, A. G.; Mikhailov, A. M.


    The spatial organization of the homodimer of unligated uridine phosphorylase from Salmonella typhimurium ( St UPh) was determined with high accuracy. The structure was refined at 1.80 Å resolution to R work = 16.1% and R free = 20.0%. The rms deviations for the bond lengths, bond angles, and chiral angles are 0.006 Å, 1.042°, and 0.071°, respectively. The coordinate error estimated by the Luzzati plot is 0.166 Å. The coordinate error based on the maximum likelihood is 0.199 Å. A comparative analysis of the spatial organization of the homodimer in two independently refined structures and the structure of the homodimer St UPh in the complex with a K+ ion was performed. The substrate-binding sites in the homodimers StUPhs in the unligated state were found to act asynchronously. In the presence of a potassium ion, the three-dimensional structures of the subunits in the homodimer are virtually identical, which is apparently of importance for the synchronous action of both substrate-binding sites. The atomic coordinates of the refined structure of the homodimer and structure factors have been deposited in the Protein Data Bank (PDB ID code 3DPS).

  15. Comparative analysis of three-dimensional structures of homodimers of uridine phosphorylase from Salmonella typhimurium in the unligated state and in a complex with potassium ion

    Energy Technology Data Exchange (ETDEWEB)

    Lashkov, A. A.; Zhukhlistova, N. E.; Gabdulkhakov, A. G.; Mikhailov, A. M., E-mail: [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)


    The spatial organization of the homodimer of unligated uridine phosphorylase from Salmonella typhimurium (St UPh) was determined with high accuracy. The structure was refined at 1.80 A resolution to R{sub work} = 16.1% and R{sub free} = 20.0%. The rms deviations for the bond lengths, bond angles, and chiral angles are 0.006 A, 1.042{sup o}, and 0.071{sup o}, respectively. The coordinate error estimated by the Luzzati plot is 0.166 A. The coordinate error based on the maximum likelihood is 0.199 A. A comparative analysis of the spatial organization of the homodimer in two independently refined structures and the structure of the homodimer St UPh in the complex with a K{sup +} ion was performed. The substrate-binding sites in the homodimers StUPhs in the unligated state were found to act asynchronously. In the presence of a potassium ion, the three-dimensional structures of the subunits in the homodimer are virtually identical, which is apparently of importance for the synchronous action of both substrate-binding sites. The atomic coordinates of the refined structure of the homodimer and structure factors have been deposited in the Protein Data Bank (PDB ID code 3DPS).

  16. In situ synthesis of twelve dialkyltartrate-boric acid complexes and two polyols-boric acid complexes and their applications as chiral ion-pair selectors in nonaqueous capillary electrophoresis. (United States)

    Wang, Li-Juan; Yang, Juan; Yang, Geng-Liang; Chen, Xing-Guo


    In this paper, twelve dialkyltartrate-boric acid complexes and two polyols-boric acid complexes were in situ synthesized by the reaction of different dialkyltartrates or polyols with boric acid in methanol containing triethylamine. All of the twelve dialkyltartrate-boric acid complexes were found to have relatively good chiral separation performance in nonaqueous capillary electrophoresis (NACE). Their chiral recognition effects in terms of both enantioselectivity (α) and resolution (R(s)) were similar when the number of carbon atoms was below six in the alkyl group of alcohol moiety. The dialkyltartrates containing alkyl groups of different structures but the same number of carbon atoms, i.e. one of straight chain and one of branched chain, also provided similar chiral recognition effects. Furthermore, it was demonstrated for the first time that two methanol insoluble polyols, D-mannitol and D-sorbitol, could react with boric acid to prepare chiral ion-pair selectors using methanol as the solvent medium. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Uranyl complexation by chloride ions. Formation of a tetrachlorouranium(VI) complex in room temperature ionic liquids [Bmim][Tf2N] and [MeBu3N][Tf2N]. (United States)

    Sornein, M-O; Cannes, C; Le Naour, C; Lagarde, G; Simoni, E; Berthet, J-C


    The tetrachlorouranium(VI) complex is formed in [Bmim][Tf2N] and [MeBu3N][Tf2N] from a uranium(VI) solution in the presence of a stoichiometric quantity of chloride ions. The [UVIO2Cl4]2- absorption and emission spectra show bands splitting in comparison with the [UVIO2]2+ spectra, as observed in the solid state, organic solvents, and chloroaluminate-based ionic liquids. The fluorescence lifetime of [UO2Cl4]2- in [MeBu3N][Tf2N] is 0.7 +/- 0.1 mus. The reduction potential of this complex is -1.44 and -1.8 V vs Ag/Ag+ respectively in [Bmim][Tf2N] and [MeBu3N][Tf2N] and does not depend on the chloride concentration. The mechanism proposed for the redox process is a monoelectronic reduction to form [UVO2Cl4]3-, followed by a chemical reaction. The tetrachlorouranium(V) complex seems more stable in [Bmim][Tf2N] than in [MeBu3N][Tf2N]. The electrochemical analysis put in evidence specific interactions of the ionic liquid cation with the uranium anionic species.

  18. The addition of a second lanthanide ion to increase the luminescence of europium(III) macrocyclic complexes

    Energy Technology Data Exchange (ETDEWEB)

    Bromm, A.J. Jr.; Vallarino, L.M. [Virginia Commonwealth Univ., Richmond, VA (United States). Dept. of Chemistry; Leif, R.C. [Newport Instruments, San Diego, CA (United States); Quagliano, J.R. [Los Alamos National Lab., NM (United States)


    At present, the microscopic visualization of luminescent labels containing lanthanide(III) ions, primarily europium(III), as light-emitting centers is best performed with time-gated instrumentation, which by virtually eliminating the background fluorescence results in an improved signal to noise ratio. However, the use of the europium(III) macrocycle, Quantum Dye{trademark}, in conjunction with the strong luminescence enhancing effect (cofluorescence) of yttrium(III) or gadolinium(III), can eliminate the need for such specialized instrumentation. In the presence of Gd(III), the luminescence of the Eu(III)-macrocycles can be conveniently observed with conventional fluorescence instrumentation at previously unattainable low levels. The Eu(III) {sup 5}D{sub 0} {r_arrow} {sup 7}F{sub 2} emission of the Eu(III)-macrocycles was observed as an extremely sharp band with a maximum at 619 nm and a clearly resolved characteristic pattern. At very low Eu(III)-macrocycle concentrations, another sharp emission was detected at 614 nm, arising from traces of Eu(III) present in even the purest commercially available gadolinium products. Discrimination of the resolved emissions of the Eu(III)-macrocycle and Eu(III) contaminant should provide a means to further lower the limit of detection of the Eu(III)-macrocycle.

  19. High-resolution structure of the N-terminal endonuclease domain of the Lassa virus L polymerase in complex with magnesium ions.

    Directory of Open Access Journals (Sweden)

    Gregor D Wallat

    Full Text Available Lassa virus (LASV causes deadly hemorrhagic fever disease for which there are no vaccines and limited treatments. LASV-encoded L polymerase is required for viral RNA replication and transcription. The functional domains of L-a large protein of 2218 amino acid residues-are largely undefined, except for the centrally located RNA-dependent RNA polymerase (RdRP motif. Recent structural and functional analyses of the N-terminal region of the L protein from lymphocytic choriomeningitis virus (LCMV, which is in the same Arenaviridae family as LASV, have identified an endonuclease domain that presumably cleaves the cap structures of host mRNAs in order to initiate viral transcription. Here we present a high-resolution crystal structure of the N-terminal 173-aa region of the LASV L protein (LASV L173 in complex with magnesium ions at 1.72 Å. The structure is highly homologous to other known viral endonucleases of arena- (LCMV NL1, orthomyxo- (influenza virus PA, and bunyaviruses (La Crosse virus NL1. Although the catalytic residues (D89, E102 and K122 are highly conserved among the known viral endonucleases, LASV L endonuclease structure shows some notable differences. Our data collected from in vitro endonuclease assays and a reporter-based LASV minigenome transcriptional assay in mammalian cells confirm structural prediction of LASV L173 as an active endonuclease. The high-resolution structure of the LASV L endonuclease domain in complex with magnesium ions should aid the development of antivirals against lethal Lassa hemorrhagic fever.

  20. High-resolution structure of the N-terminal endonuclease domain of the Lassa virus L polymerase in complex with magnesium ions. (United States)

    Wallat, Gregor D; Huang, Qinfeng; Wang, Wenjian; Dong, Haohao; Ly, Hinh; Liang, Yuying; Dong, Changjiang


    Lassa virus (LASV) causes deadly hemorrhagic fever disease for which there are no vaccines and limited treatments. LASV-encoded L polymerase is required for viral RNA replication and transcription. The functional domains of L-a large protein of 2218 amino acid residues-are largely undefined, except for the centrally located RNA-dependent RNA polymerase (RdRP) motif. Recent structural and functional analyses of the N-terminal region of the L protein from lymphocytic choriomeningitis virus (LCMV), which is in the same Arenaviridae family as LASV, have identified an endonuclease domain that presumably cleaves the cap structures of host mRNAs in order to initiate viral transcription. Here we present a high-resolution crystal structure of the N-terminal 173-aa region of the LASV L protein (LASV L173) in complex with magnesium ions at 1.72 Å. The structure is highly homologous to other known viral endonucleases of arena- (LCMV NL1), orthomyxo- (influenza virus PA), and bunyaviruses (La Crosse virus NL1). Although the catalytic residues (D89, E102 and K122) are highly conserved among the known viral endonucleases, LASV L endonuclease structure shows some notable differences. Our data collected from in vitro endonuclease assays and a reporter-based LASV minigenome transcriptional assay in mammalian cells confirm structural prediction of LASV L173 as an active endonuclease. The high-resolution structure of the LASV L endonuclease domain in complex with magnesium ions should aid the development of antivirals against lethal Lassa hemorrhagic fever.

  1. DNA-gelatin complex coacervation, UCST and first-order phase transition of coacervate to anisotropic ion gel in 1-methyl-3-octylimidazolium chloride ionic liquid solutions. (United States)

    Rawat, Kamla; Aswal, V K; Bohidar, H B


    Study of kinetics of complex coacervation occurring in aqueous 1-octyl-3-methylimidazolium chloride ionic liquid solution of low charge density polypeptide (gelatin A) and 200 base pair DNA, and thermally activated coacervate into anisotropic gel transition, is reported here. Associative interaction between DNA and gelatin A (GA) having charge ratio (DNA:GA = 16:1) and persistence length ratio (5:1) was studied at fixed DNA (0.005% (w/v)) and varying GA concentration (C(GA) = 0-0.25% (w/v)). The interaction profile was found to be strongly hierarchical and revealed three distinct binding regions: (i) Region I showed DNA-condensation (primary binding) for C(GA) coacervation. (iii) Region III (0.15 coacervate was found to be protein concentration specific in Raman studies. The binding profile of DNA-GA complex with IL concentration revealed optimum IL concentration (=0.05% (w/v)) was required to maximize the interactions. Small angle neutron scattering (SANS) data of coacervates gave static structure factor profiles, I(q) versus wave vector q, that were remarkably similar and invariant of protein concentration. This data could be split into two distinct regions: (i) for 0.0173 coacervate phase resided close to the gelation state of the protein. Thus, on a heating-cooling cycle (heating to 50 °C followed by cooling to 20 °C), the heterogeneous coacervate exhibited an irreversible first-order phase transition to an anisotropic ion gel. This established a coacervate-ion gel phase diagram having a well-defined UCST.

  2. Dinuclear Pt(II)-bisphosphonate complexes: a scaffold for multinuclear or different oxidation state platinum drugs. (United States)

    Piccinonna, Sara; Margiotta, Nicola; Pacifico, Concetta; Lopalco, Antonio; Denora, Nunzio; Fedi, Serena; Corsini, Maddalena; Natile, Giovanni


    Geminal bisphosphonates (BPs), used in the clinic for the treatment of hypercalcaemia and skeletal metastases, have been also exploited for promoting the specific accumulation of platinum antitumor drugs in bone tissue. In this work, the platinum dinuclear complex [{Pt(en)}(2)(μ-AHBP-H(2))](+) (1) (the carbon atom bridging the two phosphorous atoms carrying a 2-ammonioethyl and a hydroxyl group, AHBP-H(2)) has been used as scaffold for the synthesis of a Pt(II) trinuclear complex, [{Pt(en)}(3)(μ-AHBP)](+) (2), and a Pt(IV) adamantane-shaped dinuclear complex featuring an oxo-bridge, [{Pt(IV)(en)Cl}(2)(μ-O)(μ-AHBP-H(2))](+) (3) (X-ray structure). Compound 2 undergoes a reversible, pH dependent, rearrangement with a neat switch point around pH = 5.4. Compound 3 undergoes a one-step electrochemical reduction at E(pc) = -0.84 V affording compound 1. Such a potential is far lower than that of glutathione (-0.24 V), nevertheless compound 3 can undergo chemical reduction to 1 by GSH, most probably through a different (inner-sphere) mechanism. In vitro cytotoxicity of the new compounds, tested against murine glioma (C6) and human cervix (HeLa) and hepatoma (HepG2) cell lines, has shown that, while the Pt(IV) dimer 3 is inactive up to a concentration of 50 μM, the two Pt(II) polynuclear compounds 1 and 2 have a cytotoxicity comparable to that of cisplatin with the trinuclear complex 2 generally more active than the dinuclear complex 1.

  3. Complexation of heavy metals by phytochelatins: voltammetric study of the binding of Cd2+ and Zn2+ ions by the phytochelatin (gamma-Glu-Cys)3Gly assisted by multivariate curve resolution. (United States)

    Cruz, Boris H; Díaz-Cruz, José Manuel; Ariño, Cristina; Esteban, Miquel


    The complexation of Cd2+, Zn2+, and both together with the phytochelatin (gamma-Glu-Cys)3Gly is studied by differential pulse polarography, and data are analyzed by multivariate curve resolution by alternating least squares (MCR-ALS). MCR-ALS yields the respective unitary voltammograms and concentration profiles of the resolved components, which contain information on the relative stabilities and stoichiometries of the formed complexes. The analysis of these results shows, for the Cd2+/(gamma-Glu-Cys)3Gly system, the presence of different kinds of bound Cd2+. For the Zn2+/ (gamma-Glu-Cys)3Gly system, the poor definition of the reduction signals of the complexes prevents a clear discrimination among differently bound Zn2+ ions. Atentative complexation/ electrochemical model is proposed for when both metal ions, Cd2+ and Zn2+, compete toward complexation, and some of the corresponding equilibrium constants are estimated.

  4. Trans-platinum(II)/(IV) Complexes with Acetylpyridine Ligands as Antivascular Agents in vitro: Cytotoxic and Antiangiogenic Potential. (United States)

    Lana, Filipović; Sandra, Aranđelović; Ana, Krivokuća; Radmila, Janković; Biljana, Dojčinović; Siniša, Radulović


    In vitro biological studies of four trans-platinum complexes of structural formulas trans-[PtCl2(n-acetylpyridine)2] (n = 3 or 4, complex 1 or 2) and [Pt(n-acetylpyridine)2Cl4] (n = 3 or 4, complex 3 or 4) were performed in human endothelial EA.hy 926 cells, in order to evaluate and compare their cytotoxic and antiangiogenic potential. MTT results revealed that trans-Pt(II) complexes exhibited significantly lower IC50 values: 4.0±0.9 μM (1) and 2.1±0.0 μM (2), than cisplatin (27.7±1.3 μM). Combinational drug treatment with N-Acetyl-L-cysteine and L-buthioninesulfoximine strongly counteracted effect of 1 and 2, while the same treatment rather enhanced cytotoxicity of Pt(IV) analogues. ICP-MS results suggested that differential endothelial toxicity of cisplatin and trans-platinum complexes correlated to the differences in their cellular accumulation, rather than to the different affinity of DNA binding. Intracellular accumulation of complexes (ng Pt/106 cells) for 24 h treatment, decreased in order: 1>2>4>3>CDDP, while ratio of DNA binding (pg Pt/μg DNA) decreased as following: 2>1>CDDP>4>3. FACS/Annexin-V-FITC analysis, and morphological study demonstrated that the enhanced cytotoxic and apoptotic potential (18.1%) of complex 2 was related to its highest affinity to bind nuclear DNA. Pt(IV) complexes exhibited the lowest reactivity to cellular DNA and proteins. Regardless of their antiproliferative action, 1-4 at subtoxic concentrations demonstrated in vitro inhibitory effect on tubulogenesis and matrix metalloproteinases (MMPs) 2 and 9 gelatinolitic activity, while 1 and 2 additionally downregulated MMP-2 gene expression.

  5. Negative Ion Photoelectron Spectroscopy Reveals Remarkable Noninnocence of Ligands in Nickel Bis(dithiolene) Complexes [Ni(dddt)2](-) and [Ni(edo)2](.). (United States)

    Liu, Xing; Hou, Gao-Lei; Wang, Xuefeng; Wang, Xue-Bin


    [Ni(dddt)2](-) (dddt = 5,6-dihydro-1,4-dithiine-2,3-dithiolate) and [Ni(edo)2](-) (edo = 5,6-dihydro-1,4-dioxine-2,3-dithiolate) are two donor-type nickel bis(dithiolene) complexes, with the tendency of donating low binding energy electrons. These two structurally similar complexes differ only with respect to the outer atoms in the ligand framework where the former has four S atoms while the latter has four O atoms. Herein, we report a negative ion photoelectron spectroscopy (NIPES) study on these two complexes to probe the electronic structures of the anions and their corresponding neutrals. The NIPE spectra exhibit the adiabatic electron detachment energy (ADE) or, equivalently, the electron affinity (EA) of the neutral [Ni(L)2](0) to be relatively low for this type of complexes, 2.780 and 2.375 eV for L = dddt and edo, respectively. The 0.4 eV difference in ADEs shows a significant substitution effect for sulfur in dddt by oxygen in edo, i.e., noninnocence of the ligands, which has decreased the electronic stability of [Ni(edo)2](-) by lowering its electron binding energy by ∼0.4 eV. The observed substitution effect on gas-phase EA values correlates well with the measured redox potentials for [Ni(dddt)2](-/0) and [Ni(edo)2](-/0) in solutions. The singlet-triplet splitting (ΔEST) of [Ni(dddt)2](0) and [Ni(edo)2](0) is also determined from the spectra to be 0.57 and 0.53 eV, respectively. Accompanying DFT calculations and molecular orbital (MO) composition analyses show significant ligand contributions to the redox MOs and allow the components of the orbitals involved in each electronic transition and spectral assignments to be identified.

  6. Synthesis, Spectral Analysis and Preliminary in Vitro Evaluation of Some Tetrapyrrolic Complexes with 3d Metal Ions

    Directory of Open Access Journals (Sweden)

    Radu Socoteanu


    Full Text Available In this paper, two tetrapyrrolic complexes, Zn(II-5-(3-hydroxyphenyl-10,15,20-tris-(4-acetoxy-3-methoxyphenylporphyrin and Cu(II-5-(3-hydroxyphenyl-10,15,20-tris-(4-acetoxy-3-methoxyphenylporphyrin were synthesized, and characterized from a spectral and biological point of view. The study provided data concerning the behavior of identical external substituents vs. two different core insertions. Some of the properties of the proposed tetrapyrrolic structures were highlighted, having photodynamic therapy of cancer as a targeted biomedical application. Elemental analysis, NMR, FTIR and UV-Vis data in various solvents were provided. A preliminary in vitro study on normal and cancer cultured cells was carried out for biocompatibility assessment in dark conditions. The preliminary in vitro study performed on human peripheral mononuclear cells exposed to tetrapyrrolic compounds (2 µM showed that the proposed compounds had a convenient cytotoxic profile on human normal peripheral blood mononuclear cells under dark conditions. Meanwhile, the investigated compounds reduced the number of metabolically active breast tumor MCF-7 cells, with the exception of Zn(II complex-containing a symmetrical ligand. Accordingly, preliminary in vitro data suggest that the proposed tetrapyrrolic compounds are good candidates for PDT, as they limit tumor expansion even under dark conditions, whilst sparing normal cells.

  7. An ion-pair principle for enantioseparations of basic analytes by nonaqueous capillary electrophoresis using the di-n-butyl L-tartrate-boric acid complex as chiral selector. (United States)

    Wang, Li-Juan; Liu, Xiu-Feng; Lu, Qie-Nan; Yang, Geng-Liang; Chen, Xing-Guo


    A chiral recognition mechanism of ion-pair principle has been proposed in this study. It rationalized the enantioseparations of some basic analytes using the complex of di-n-butyl l-tartrate and boric acid as the chiral selector in methanolic background electrolytes (BGEs) by nonaqueous capillary electrophoresis (NACE). An approach of mass spectrometer (MS) directly confirmed that triethylamine promoted the formation of negatively charged di-n-butyl l-tartrate-boric acid complex chiral counter ion with a complex ratio of 2:1. And the negatively charged counter ion was the real chiral selector in the ion-pair principle enantioseparations. It was assumed that triethylamine should play its role by adjusting the apparent acidity (pH*) of the running buffer to a higher value. Consequently, the effects of various basic electrolytes including inorganic and organic ones on the enantioseparations in NACE were investigated. The results showed that most of the basic electrolytes tested were favorable for the enantioseparations of basic analytes using di-n-butyl l-tartrate-boric acid complex as the chiral ion-pair selector. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Acid phosphatase complex from the freshwater snail Viviparus viviparus L. under standard conditions and intoxication by cadmium ions. (United States)

    Tsvetkov, I L; Popov, A P; Konichev, A S


    Acid phosphatases differing in both subcellular localization and substrate specificity were isolated for the first time from the liver of the freshwater snail Viviparus viviparus L. by preparative isoelectrofocusing. One of five characterized phosphatases is highly specific to ADP and the others can hydrolyze (at variable rate) a series of natural substrates. A scheme is proposed for the involvement of the studied phosphatases in carbohydrate metabolism. We have also studied some peculiarities