WorldWideScience

Sample records for ptf weekly sn

  1. EVIDENCE FOR A COMPACT WOLF-RAYET PROGENITOR FOR THE TYPE Ic SUPERNOVA PTF 10vgv

    Energy Technology Data Exchange (ETDEWEB)

    Corsi, A. [LIGO laboratory, California Institute of Technology, MS 100-36, Pasadena, CA 91125 (United States); Ofek, E. O.; Gal-Yam, A.; Arcavi, I.; Ben-Ami, S.; Rabinak, I. [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Frail, D. A. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801 (United States); Poznanski, D. [School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Mazzali, P. A. [INAF-Osservatorio Astronomico, vicolo dellOsservatorio, 5, I-35122 Padova (Italy); Kulkarni, S. R.; Kasliwal, M. M.; Horesh, A. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Cenko, S. B.; Filippenko, A. V.; Kleiser, I. K. W.; Silverman, J. M. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Fox, D. B.; Howell, J. L. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Nakar, E. [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Sari, R., E-mail: corsi@caltech.edu [Racah Institute for Physics, Hebrew University, Jerusalem 91904 (Israel); and others

    2012-03-15

    We present the discovery of PTF 10vgv, a Type Ic supernova (SN) detected by the Palomar Transient Factory, using the Palomar 48 inch telescope (P48). R-band observations of the PTF 10vgv field with P48 probe the SN emission from its very early phases (about two weeks before R-band maximum) and set limits on its flux in the week prior to the discovery. Our sensitive upper limits and early detections constrain the post-shock-breakout luminosity of this event. Via comparison to numerical (analytical) models, we derive an upper-limit of R {approx}< 4.5 R{sub Sun} (R {approx}< 1 R{sub Sun }) on the radius of the progenitor star, a direct indication in favor of a compact Wolf-Rayet star. Applying a similar analysis to the historical observations of SN 1994I yields R {approx}< 1/4 R{sub Sun} for the progenitor radius of this SN.

  2. THE SUBLUMINOUS AND PECULIAR TYPE Ia SUPERNOVA PTF 09dav

    International Nuclear Information System (INIS)

    Sullivan, M.; Ofek, E. O.; Blake, S.; Podsiadlowski, P.; Kasliwal, M. M.; Cooke, J.; Quimby, R.; Kulkarni, S. R.; Nugent, P. E.; Thomas, R. C.; Poznanski, D.; Howell, D. A.; Arcavi, I.; Gal-Yam, A.; Hook, I. M.; Mazzali, P.; Bildsten, L.; Bloom, J. S.; Cenko, S. B.; Law, N.

    2011-01-01

    PTF 09dav is a peculiar subluminous Type Ia supernova (SN) discovered by the Palomar Transient Factory (PTF). Spectroscopically, it appears superficially similar to the class of subluminous SN1991bg-like SNe, but it has several unusual features which make it stand out from this population. Its peak luminosity is fainter than any previously discovered SN1991bg-like SN Ia (M B ∼ -15.5), but without the unusually red optical colors expected if the faint luminosity were due to extinction. The photospheric optical spectra have very unusual strong lines of Sc II and Mg I, with possible Sr II, together with stronger than average Ti II and low velocities of ∼6000 km s -1 . The host galaxy of PTF09dav is ambiguous. The SN lies either on the extreme outskirts (∼41 kpc) of a spiral galaxy or in an very faint (M R ≥ -12.8) dwarf galaxy, unlike other 1991bg-like SNe which are invariably associated with massive, old stellar populations. PTF 09dav is also an outlier on the light-curve-width-luminosity and color-luminosity relations derived for other subluminous SNe Ia. The inferred 56 Ni mass is small (0.019 ± 0.003 M sun ), as is the estimated ejecta mass of 0.36 M sun . Taken together, these properties make PTF 09dav a remarkable event. We discuss various physical models that could explain PTF 09dav. Helium shell detonation or deflagration on the surface of a CO white dwarf can explain some of the features of PTF 09dav, including the presence of Sc and the low photospheric velocities, but the observed Si and Mg are not predicted to be very abundant in these models. We conclude that no single model is currently capable of explaining all of the observed signatures of PTF 09dav.

  3. PTF12os and iPTF13bvn: Two stripped-envelope supernovae from low-mass progenitors in NGC 5806

    International Nuclear Information System (INIS)

    Fremling, C.; Sollerman, J.; Taddia, F.; Ergon, M.; Fraser, M.

    2016-01-01

    Context. In this paper, we investigate two stripped-envelope supernovae (SNe) discovered in the nearby galaxy NGC 5806 by the (intermediate) Palomar Transient Factory [(i)PTF]. These SNe, designated PTF12os/SN 2012P and iPTF13bvn, exploded within ~520 days of one another at a similar distance from the host-galaxy center. We classify PTF12os as a Type IIb SN based on our spectral sequence; iPTF13bvn has previously been classified as Type Ib having a likely progenitor with zero age main sequence (ZAMS) mass below ~17 M ⊙ . Because of the shared and nearby host, we are presented with a unique opportunity to compare these two SNe. Aims. Our main objective is to constrain the explosion parameters of iPTF12os and iPTF13bvn, and to put constraints on the SN progenitors. We also aim to spatially map the metallicity in the host galaxy, and to investigate the presence of hydrogen in early-time spectra of both SNe. Methods. We present comprehensive datasets collected on PTF12os and iPTF13bvn, and introduce a new automatic reference-subtraction photometry pipeline (FPipe) currently in use by the iPTF. We perform a detailed study of the light curves (LCs) and spectral evolution of the SNe. The bolometric LCs are modeled using the hydrodynamical code hyde. We analyze early spectra of both SNe to investigate the presence of hydrogen; for iPTF13bvn we also investigate the regions of the Paschen lines in infrared spectra. We perform spectral line analysis of helium and iron lines to map the ejecta structure of both SNe. We use nebular models and late-time spectroscopy to constrain the ZAMS mass of the progenitors. We also perform image registration of ground-based images of PTF12os to archival HST images of NGC 5806 to identify a potential progenitor candidate. Results. We find that our nebular spectroscopy of iPTF13bvn remains consistent with a low-mass progenitor, likely having a ZAMS mass of ~12M ⊙ . Our late-time spectroscopy of PTF12os is consistent with a ZAMS mass of ~15

  4. iPTF17cw: An Engine-driven Supernova Candidate Discovered Independent of a Gamma-Ray Trigger

    International Nuclear Information System (INIS)

    Corsi, A.; Palliyaguru, N. T.; Cenko, S. B.; Singer, L. P.; Kutyrev, A.; Kasliwal, M. M.; Kulkarni, S. R.; Blagorodnova, N.; Kupfer, T.; Vedantham, H.; Quimby, R.; Frail, D. A.; Goldstein, A. M.; Connaughton, V.; Perley, D. A.; Copperwheat, C. M.; Piascik, A. S.; Steele, I. A.; Fremling, C.; Taddia, F.

    2017-01-01

    We present the discovery, classification, and radio-to-X-ray follow-up observations of iPTF17cw, a broad-lined (BL) type Ic supernova (SN) discovered by the intermediate Palomar Transient Factory (iPTF). Although it is unrelated to the gravitational wave trigger, this SN was discovered as a happy by-product of the extensive observational campaign dedicated to the follow-up of Advanced LIGO event GW 170104. The spectroscopic properties and inferred peak bolometric luminosity of iPTF17cw are most similar to the gamma-ray-burst (GRB)-associated SN, SN 1998bw, while the shape of the r -band light curve is most similar to that of the relativistic SN, SN 2009bb. Karl G. Jansky Very Large Array (VLA) observations of the iPTF17cw field reveal a radio counterpart ≈10 times less luminous than SN 1998bw, and with a peak radio luminosity comparable to that of SN 2006aj/GRB 060218 and SN 2010bh/GRB 100316D. Our radio observations of iPTF17cw imply a relativistically expanding outflow. However, further late-time observations with the VLA in its most extended configuration are needed to confirm fading of the iPTF17cw radio counterpart at all frequencies. X-ray observations carried out with Chandra reveal the presence of an X-ray counterpart with a luminosity similar to that of SN 2010bh/GRB 100316D. Searching the Fermi catalog for possible γ -rays reveals that GRB 161228B is spatially and temporally compatible with iPTF17cw. The similarity to SN 1998bw and SN 2009bb, the radio and X-ray detections, and the potential association with GRB 161228B all point to iPTF17cw being a new candidate member of the rare sample of optically discovered engine-driven BL-Ic SNe associated with relativistic ejecta.

  5. iPTF17cw: An Engine-driven Supernova Candidate Discovered Independent of a Gamma-Ray Trigger

    Energy Technology Data Exchange (ETDEWEB)

    Corsi, A.; Palliyaguru, N. T. [Department of Physics and Astronomy, Texas Tech University, Box 1051, Lubbock, TX 79409-1051 (United States); Cenko, S. B.; Singer, L. P.; Kutyrev, A. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kasliwal, M. M.; Kulkarni, S. R.; Blagorodnova, N.; Kupfer, T.; Vedantham, H. [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Quimby, R. [Department of Astronomy/Mount Laguna Observatory, San Diego State University, San Diego, CA 92182 (United States); Frail, D. A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Goldstein, A. M.; Connaughton, V. [Universities Space Research Association, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Perley, D. A.; Copperwheat, C. M.; Piascik, A. S.; Steele, I. A. [Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool, L3 5RF (United Kingdom); Fremling, C.; Taddia, F., E-mail: alessandra.corsi@ttu.edu [Oskar Klein Centre, Department of Astronomy, Stockholm University, Albanova University Centre, SE-106 91 Stockholm (Sweden); and others

    2017-09-20

    We present the discovery, classification, and radio-to-X-ray follow-up observations of iPTF17cw, a broad-lined (BL) type Ic supernova (SN) discovered by the intermediate Palomar Transient Factory (iPTF). Although it is unrelated to the gravitational wave trigger, this SN was discovered as a happy by-product of the extensive observational campaign dedicated to the follow-up of Advanced LIGO event GW 170104. The spectroscopic properties and inferred peak bolometric luminosity of iPTF17cw are most similar to the gamma-ray-burst (GRB)-associated SN, SN 1998bw, while the shape of the r -band light curve is most similar to that of the relativistic SN, SN 2009bb. Karl G. Jansky Very Large Array (VLA) observations of the iPTF17cw field reveal a radio counterpart ≈10 times less luminous than SN 1998bw, and with a peak radio luminosity comparable to that of SN 2006aj/GRB 060218 and SN 2010bh/GRB 100316D. Our radio observations of iPTF17cw imply a relativistically expanding outflow. However, further late-time observations with the VLA in its most extended configuration are needed to confirm fading of the iPTF17cw radio counterpart at all frequencies. X-ray observations carried out with Chandra reveal the presence of an X-ray counterpart with a luminosity similar to that of SN 2010bh/GRB 100316D. Searching the Fermi catalog for possible γ -rays reveals that GRB 161228B is spatially and temporally compatible with iPTF17cw. The similarity to SN 1998bw and SN 2009bb, the radio and X-ray detections, and the potential association with GRB 161228B all point to iPTF17cw being a new candidate member of the rare sample of optically discovered engine-driven BL-Ic SNe associated with relativistic ejecta.

  6. EARLY RADIO AND X-RAY OBSERVATIONS OF THE YOUNGEST NEARBY TYPE Ia SUPERNOVA PTF 11kly (SN 2011fe)

    International Nuclear Information System (INIS)

    Horesh, Assaf; Kulkarni, S. R.; Carpenter, John; Kasliwal, Mansi M.; Ofek, Eran O.; Fox, Derek B.; Quimby, Robert; Gal-Yam, Avishay; Cenko, S. Bradley; De Bruyn, A. G.; Kamble, Atish; Wijers, Ralph A. M. J.; Van der Horst, Alexander J.; Kouveliotou, Chryssa; Podsiadlowski, Philipp; Sullivan, Mark; Maguire, Kate; Howell, D. Andrew; Nugent, Peter E.; Gehrels, Neil

    2012-01-01

    On 2011 August 24 (UT) the Palomar Transient Factory (PTF) discovered PTF11kly (SN 2011fe), the youngest and most nearby Type Ia supernova (SN Ia) in decades. We followed this event up in the radio (centimeter and millimeter bands) and X-ray bands, starting about a day after the estimated explosion time. We present our analysis of the radio and X-ray observations, yielding the tightest constraints yet placed on the pre-explosion mass-loss rate from the progenitor system of this supernova. We find a robust limit of M-dot ∼ -8 (w/100 km s -1 ) M sun yr -1 from sensitive X-ray non-detections, as well as a similar limit from radio data, which depends, however, on assumptions about microphysical parameters. We discuss our results in the context of single-degenerate models for SNe Ia and find that our observations modestly disfavor symbiotic progenitor models involving a red giant donor, but cannot constrain systems accreting from main-sequence or sub-giant stars, including the popular supersoft channel. In view of the proximity of PTF11kly and the sensitivity of our prompt observations, we would have to wait for a long time (a decade or longer) in order to more meaningfully probe the circumstellar matter of SNe Ia.

  7. SUPERNOVA PTF 09UJ: A POSSIBLE SHOCK BREAKOUT FROM A DENSE CIRCUMSTELLAR WIND

    International Nuclear Information System (INIS)

    Ofek, E. O.; Neill, J. D.; Kulkarni, S. R.; Forster, K.; Kasliwal, M. M.; Law, N.; Martin, C.; Quimby, R. M.; Rabinak, I.; Arcavi, I.; Waxman, E.; Gal-Yam, A.; Cenko, S. B.; Bloom, J. S.; Filippenko, A. V.; Poznanski, D.; Nugent, P. E.; Jacobsen, J.; Bildsten, L.; Howell, D. A.

    2010-01-01

    Type-IIn supernovae (SNe IIn), which are characterized by strong interaction of their ejecta with the surrounding circumstellar matter (CSM), provide a unique opportunity to study the mass-loss history of massive stars shortly before their explosive death. We present the discovery and follow-up observations of an SN IIn, PTF 09uj, detected by the Palomar Transient Factory (PTF). Serendipitous observations by Galaxy Evolution Explorer (GALEX) at ultraviolet (UV) wavelengths detected the rise of the SN light curve prior to the PTF discovery. The UV light curve of the SN rose fast, with a timescale of a few days, to a UV absolute AB magnitude of about -19.5. Modeling our observations, we suggest that the fast rise of the UV light curve is due to the breakout of the SN shock through the dense CSM (n ∼ 10 10 cm -3 ). Furthermore, we find that prior to the explosion the progenitor went through a phase of high mass-loss rate (∼0.1 M sun yr -1 ) that lasted for a few years. The decay rate of this SN was fast relative to that of other SNe IIn.

  8. A multi-wavelength investigation of the radio-loud supernova PTF11qcj and its circumstellar environment

    Energy Technology Data Exchange (ETDEWEB)

    Corsi, A. [Department of Physics, The George Washington University, 725 21st St, NW, Washington, DC 20052 (United States); Ofek, E. O.; Gal-Yam, A.; Xu, D. [Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel); Frail, D. A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Kulkarni, S. R.; Horesh, A.; Carpenter, J.; Arcavi, I.; Cao, Y.; Mooley, K.; Sesar, B. [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Fox, D. B. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Kasliwal, M. M. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Sullivan, M.; Maguire, K.; Pan, Y.-C. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Cenko, S. B. [NASA Goddard Space Flight Center, Code 685, Greenbelt, MD 20771 (United States); Sternberg, A. [Max-Planck-Institut fur Astrophysik, D-85741 Garching (Germany); Bersier, D., E-mail: corsi@gwu.edu [Astrophysics Research Institute, Liverpool John Moores University, Liverpool (United Kingdom); and others

    2014-02-10

    We present the discovery, classification, and extensive panchromatic (from radio to X-ray) follow-up observations of PTF11qcj, a supernova (SN) discovered by the Palomar Transient Factory (PTF). Our observations with the Karl G. Jansky Very Large Array show that this event is radio-loud: PTF11qcj reached a radio peak luminosity comparable to that of the famous gamma-ray-burst-associated SN 1998bw (L {sub 5} {sub GHz} ≈ 10{sup 29} erg s{sup –1} Hz{sup –1}). PTF11qcj is also detected in X-rays with the Chandra Observatory, and in the infrared band with Spitzer. Our multi-wavelength analysis probes the SN interaction with circumstellar material. The radio observations suggest a progenitor mass-loss rate of ∼10{sup –4} M {sub ☉} yr{sup –1} × (v{sub w} /1000 km s{sup –1}), and a velocity of ≈0.3-0.5 c for the fastest moving ejecta (at ≈10 days after explosion). However, these estimates are derived assuming the simplest model of SN ejecta interacting with a smooth circumstellar wind, and do not account for possible inhomogeneities in the medium and asphericity of the explosion. The radio data show deviations from such a simple model, as well as a late-time re-brightening. The X-ray flux from PTF11qcj is compatible with the high-frequency extrapolation of the radio synchrotron emission (within the large uncertainties). A light echo from pre-existing dust is in agreement with our infrared data. Our pre-explosion data from the PTF suggest that a precursor eruption of absolute magnitude M{sub r} ≈ –13 mag may have occurred ≈2.5 yr prior to the SN explosion. Overall, PTF11qcj fits the expectations from the explosion of a Wolf-Rayet star. Precursor eruptions may be a feature characterizing the final pre-explosion evolution of such stars.

  9. Early Observations of the Type Ia Supernova iPTF 16abc: A Case of Interaction with Nearby, Unbound Material and/or Strong Ejecta Mixing

    Science.gov (United States)

    Miller, A. A.; Cao, Y.; Piro, A. L.; Blagorodnova, N.; Bue, B. D.; Cenko, S. B.; Dhawan, S.; Ferretti, R.; Fox, O. D.; Fremling, C.; Goobar, A.; Howell, D. A.; Hosseinzadeh, G.; Kasliwal, M. M.; Laher, R. R.; Lunnan, R.; Masci, F. J.; McCully, C.; Nugent, P. E.; Sollerman, J.; Taddia, F.; Kulkarni, S. R.

    2018-01-01

    Early observations of Type Ia supernovae (SNe Ia) provide a unique probe of their progenitor systems and explosion physics. Here we report the intermediate Palomar Transient Factory (iPTF) discovery of an extraordinarily young SN Ia, iPTF 16abc. By fitting a power law to our early light curve, we infer that first light for the SN, that is, when the SN could have first been detected by our survey, occurred only 0.15{+/- }0.070.15 days before our first detection. In the ∼24 hr after discovery, iPTF 16abc rose by ∼2 mag, featuring a near-linear rise in flux for ≳ 3 days. Early spectra show strong C II absorption, which disappears after ∼7 days. Unlike the extensively observed Type Ia SN 2011fe, the {(B-V)}0 colors of iPTF 16abc are blue and nearly constant in the days after explosion. We show that our early observations of iPTF 16abc cannot be explained by either SN shock breakout and the associated, subsequent cooling or the SN ejecta colliding with a stellar companion. Instead, we argue that the early characteristics of iPTF 16abc, including (i) the rapid, near-linear rise, (ii) the nonevolving blue colors, and (iii) the strong C II absorption, are the result of either ejecta interaction with nearby, unbound material or vigorous mixing of radioactive 56Ni in the SN ejecta, or a combination of the two. In the next few years, dozens of very young normal SNe Ia will be discovered, and observations similar to those presented here will constrain the white dwarf explosion mechanism.

  10. PTF11mnb: First analog of supernova 2005bf. Long-rising, double-peaked supernova Ic from a massive progenitor

    Science.gov (United States)

    Taddia, F.; Sollerman, J.; Fremling, C.; Karamehmetoglu, E.; Quimby, R. M.; Gal-Yam, A.; Yaron, O.; Kasliwal, M. M.; Kulkarni, S. R.; Nugent, P. E.; Smadja, G.; Tao, C.

    2018-01-01

    Aims: We study PTF11mnb, a He-poor supernova (SN) whose light curves resemble those of SN 2005bf, a peculiar double-peaked stripped-envelope (SE) SN, until the declining phase after the main peak. We investigate the mechanism powering its light curve and the nature of its progenitor star. Methods: Optical photometry and spectroscopy of PTF11mnb are presented. We compared light curves, colors and spectral properties to those of SN 2005bf and normal SE SNe. We built a bolometric light curve and modeled this light curve with the SuperNova Explosion Code (SNEC) hydrodynamical code explosion of a MESA progenitor star and semi-analytic models. Results: The light curve of PTF11mnb turns out to be similar to that of SN 2005bf until 50 d when the main (secondary) peaks occur at -18.5 mag. The early peak occurs at 20 d and is about 1.0 mag fainter. After the main peak, the decline rate of PTF11mnb is remarkably slower than what was observed in SN 2005bf, and it traces well the 56Co decay rate. The spectra of PTF11mnb reveal a SN Ic and have no traces of He unlike in the case of SN Ib 2005bf, although they have velocities comparable to those of SN 2005bf. The whole evolution of the bolometric light curve is well reproduced by the explosion of a massive (Mej = 7.8 M⊙), He-poor star characterized by a double-peaked 56Ni distribution, a total 56Ni mass of 0.59 M⊙, and an explosion energy of 2.2 × 1051 erg. Alternatively, a normal SN Ib/c explosion (M(56Ni) = 0.11 M⊙, EK = 0.2 × 1051 erg, Mej = 1 M⊙) can power the first peak while a magnetar, with a magnetic field characterized by B = 5.0 × 1014 G, and a rotation period of P = 18.1 ms, provides energy for the main peak. The early g-band light curve can be fit with a shock-breakout cooling tail or an extended envelope model from which a radius of at least 30 R⊙ is obtained. Conclusions: We presented a scenario where PTF11mnb was the explosion of a massive, He-poor star, characterized by a double-peaked 56Ni

  11. PTF 12gzk—A rapidly declining, high-velocity type Ic radio supernova

    Energy Technology Data Exchange (ETDEWEB)

    Horesh, Assaf; Kulkarni, Shrinivas R. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Corsi, Alessandra [Department of Physics, The George Washington University, 725 21st Street, NW, Washington, DC 20052 (United States); Frail, Dale A. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801 (United States); Cenko, S. Bradley [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Ben-Ami, Sagi; Gal-Yam, Avishay; Yaron, Ofer; Arcavi, Iair; Ofek, Eran O. [Department of Particle Physics and Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Kasliwal, Mansi M. [Carnegie Institution for Science, Department of Terrestrial Magnetism, 5241 Broad Branch Road, Washington, DC 20008 (United States)

    2013-11-20

    Only a few cases of Type Ic supernovae (SNe) with high-velocity ejecta (≥0.2 c) have been discovered and studied. Here, we present our analysis of radio and X-ray observations of the Type Ic SN PTF 12gzk. The radio emission declined less than 10 days after explosion, suggesting SN ejecta expanding at high velocity (∼0.3 c). The radio data also indicate that the density of the circumstellar material (CSM) around the supernova is lower by a factor of ∼10 than the CSM around normal Type Ic SNe. PTF 12gzk may therefore be an intermediate event between a 'normal' SN Ic and a gamma-ray-burst-SN-like event. Our observations of this rapidly declining radio SN at a distance of 58 Mpc demonstrates the potential to detect many additional radio SNe, given the new capabilities of the Very Large Array (improved sensitivity and dynamic scheduling), which are currently missed, leading to a biased view of radio SNe Ic. Early optical discovery followed by rapid radio observations would provide a full description of the ejecta velocity distribution and CSM densities around stripped massive star explosions as well as strong clues about the nature of their progenitor stars.

  12. PTF 12gzk—A rapidly declining, high-velocity type Ic radio supernova

    International Nuclear Information System (INIS)

    Horesh, Assaf; Kulkarni, Shrinivas R.; Corsi, Alessandra; Frail, Dale A.; Cenko, S. Bradley; Ben-Ami, Sagi; Gal-Yam, Avishay; Yaron, Ofer; Arcavi, Iair; Ofek, Eran O.; Kasliwal, Mansi M.

    2013-01-01

    Only a few cases of Type Ic supernovae (SNe) with high-velocity ejecta (≥0.2 c) have been discovered and studied. Here, we present our analysis of radio and X-ray observations of the Type Ic SN PTF 12gzk. The radio emission declined less than 10 days after explosion, suggesting SN ejecta expanding at high velocity (∼0.3 c). The radio data also indicate that the density of the circumstellar material (CSM) around the supernova is lower by a factor of ∼10 than the CSM around normal Type Ic SNe. PTF 12gzk may therefore be an intermediate event between a 'normal' SN Ic and a gamma-ray-burst-SN-like event. Our observations of this rapidly declining radio SN at a distance of 58 Mpc demonstrates the potential to detect many additional radio SNe, given the new capabilities of the Very Large Array (improved sensitivity and dynamic scheduling), which are currently missed, leading to a biased view of radio SNe Ic. Early optical discovery followed by rapid radio observations would provide a full description of the ejecta velocity distribution and CSM densities around stripped massive star explosions as well as strong clues about the nature of their progenitor stars.

  13. Optical photometry and spectroscopy of the low-luminosity, broad-lined Ic supernova iPTF15dld

    DEFF Research Database (Denmark)

    Pian, E.; Tomasella, L.; Cappellaro, E.

    2017-01-01

    Core-collapse stripped-envelope supernova (SN) explosions reflect the diversity of physical parameters and evolutionary paths of their massive star progenitors. We have observed the Type Ic SN iPTF15dld (z = 0.047), reported by the Palomar Transient Factory. Spectra were taken starting 20 rest-frame...

  14. DISAPPEARANCE OF THE PROGENITOR OF SUPERNOVA iPTF13bvn

    Energy Technology Data Exchange (ETDEWEB)

    Folatelli, Gastón; Bersten, Melina C. [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Instituto de Astrofísica de La Plata (IALP), CONICET, Paseo del Bosque S/N, B1900FWA La Plata (Argentina); Van Dyk, Schuyler D. [IPAC/Caltech, Mailcode 100-22, Pasadena, CA 91125 (United States); Kuncarayakti, Hanindyo; Pignata, Giuliano; Hamuy, Mario [Millennium Institute of Astrophysics (MAS), Santiago (Chile); Maeda, Keiichi; Nomoto, Ken’ichi; Quimby, Robert M. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Zheng, WeiKang; Filippenko, Alexei V.; Clubb, Kelsey I. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Smith, Nathan [Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Elias-Rosa, Nancy [INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Foley, Ryan J. [Astronomy Department, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801 (United States); Miller, Adam A., E-mail: gaston.folatelli@ipmu.jp [Jet Propulsion Laboratory, 4800 Oak Grove Drive, MS 169-506, Pasadena, CA 91109 (United States)

    2016-07-10

    Supernova (SN) iPTF13bvn in NGC 5806 was the first Type Ib SN to have been tentatively associated with a progenitor in pre-explosion images. We performed deep ultraviolet (UV) and optical Hubble Space Telescope observations of the SN site ∼740 days after explosion. We detect an object in the optical bands that is fainter than the pre-explosion object. This dimming is likely not produced by dust absorption in the ejecta; thus, our finding confirms the connection of the progenitor candidate with the SN. The object in our data is likely dominated by the fading SN, implying that the pre-SN flux is mostly due to the progenitor. We compare our revised pre-SN photometry with previously proposed models. Although binary progenitors are favored, models need to be refined. In particular, to comply with our deep UV detection limit, any companion star must be less luminous than a late-O star or substantially obscured by newly formed dust. A definitive progenitor characterization will require further observations to disentangle the contribution of a much fainter SN and its environment.

  15. PTF 10fqs: A LUMINOUS RED NOVA IN THE SPIRAL GALAXY MESSIER 99

    International Nuclear Information System (INIS)

    Kasliwal, Mansi M.; Kulkarni, Shri R.; Quimby, Robert M.; Ofek, Eran O.; Arcavi, Iair; Gal-Yam, Avishay; Green, Yoav; Yaron, Ofer; Nugent, Peter; Jacobsen, Janet; Poznanski, Dovi; Fox, Derek B.; Howell, Jacob L.; Bradley Cenko, S.; Kleiser, Io; Bloom, Joshua S.; Miller, Adam; Li Weidong; Filippenko, Alexei V.; Starr, Dan

    2011-01-01

    The Palomar Transient Factory (PTF) is systematically charting the optical transient and variable sky. A primary science driver of PTF is building a complete inventory of transients in the local universe (distance less than 200 Mpc). Here, we report the discovery of PTF 10fqs, a transient in the luminosity 'gap' between novae and supernovae. Located on a spiral arm of Messier 99, PTF 10fqs has a peak luminosity of M r = -12.3, red color (g - r = 1.0), and is slowly evolving (decayed by 1 mag in 68 days). It has a spectrum dominated by intermediate-width Hα (∼930 km s -1 ) and narrow calcium emission lines. The explosion signature (the light curve and spectra) is overall similar to that of M85 OT2006-1, SN 2008S, and NGC 300 OT. The origin of these events is shrouded in mystery and controversy (and in some cases, in dust). PTF 10fqs shows some evidence of a broad feature (around 8600 A) that may suggest very large velocities (∼10,000 km s -1 ) in this explosion. Ongoing surveys can be expected to find a few such events per year. Sensitive spectroscopy, infrared monitoring, and statistics (e.g., disk versus bulge) will eventually make it possible for astronomers to unravel the nature of these mysterious explosions.

  16. Strong late-time circumstellar interaction in the peculiar supernova iPTF14hls

    Science.gov (United States)

    Andrews, Jennifer E.; Smith, Nathan

    2018-06-01

    We present a moderate-resolution spectrum of the peculiar Type II supernova (SN) iPTF14hls taken on day 1153 after discovery. This spectrum reveals the clear signature of shock interaction with dense circumstellar material (CSM). We suggest that this CSM interaction may be an important clue for understanding the extremely unusual photometric and spectroscopic evolution seen over the first 600 d of iPTF14hls. The late-time spectrum shows a double-peaked intermediate-width H α line indicative of expansion speeds around 1000 km s-1, with the double-peaked shape hinting at a disc-like geometry in the CSM. If the CSM were highly asymmetric, perhaps in a disc or torus that was ejected from the star 3-6 yr prior to explosion, the CSM interaction could have been overrun and hidden below the SN ejecta photosphere from a wide range of viewing angles. In that case, CSM interaction luminosity would have been thermalized well below the photosphere, potentially sustaining the high luminosity without exhibiting the traditional observational signatures of strong CSM interaction (narrow H α emission and X-rays). Variations in density structure of the CSM could account for the multiple rebrightenings of the light curve. We propose that a canonical 1 × 1051 erg explosion energy with enveloped CSM interaction as seen in some recent SNe, rather than an entirely new explosion mechanism, may be adequate to explain the peculiar evolution of iPTF14hls.

  17. THE DETECTION RATE OF EARLY UV EMISSION FROM SUPERNOVAE: A DEDICATED GALEX/PTF SURVEY AND CALIBRATED THEORETICAL ESTIMATES

    Energy Technology Data Exchange (ETDEWEB)

    Ganot, Noam; Gal-Yam, Avishay; Ofek, Eran O.; Sagiv, Ilan; Waxman, Eli; Lapid, Ofer [Department of Particle Physics and Astrophysics, Faculty of Physics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Kulkarni, Shrinivas R.; Kasliwal, Mansi M. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Ben-Ami, Sagi [Smithsonian Astrophysical Observatory, Harvard-Smithsonian Ctr. for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chelouche, Doron; Rafter, Stephen [Physics Department, Faculty of Natural Sciences, University of Haifa, 31905 Haifa (Israel); Behar, Ehud; Laor, Ari [Physics Department, Technion Israel Institute of Technology, 32000 Haifa (Israel); Poznanski, Dovi; Nakar, Ehud; Maoz, Dan [School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel); Trakhtenbrot, Benny [Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse 27 Zurich 8093 (Switzerland); Neill, James D.; Barlow, Thomas A.; Martin, Christofer D., E-mail: noam.ganot@gmail.com [California Institute of Technology, 1200 East California Boulevard, MC 278-17, Pasadena, CA 91125 (United States); Collaboration: ULTRASAT Science Team; WTTH consortium; GALEX Science Team; Palomar Transient Factory; and others

    2016-03-20

    The radius and surface composition of an exploding massive star, as well as the explosion energy per unit mass, can be measured using early UV observations of core-collapse supernovae (SNe). We present the first results from a simultaneous GALEX/PTF search for early ultraviolet (UV) emission from SNe. Six SNe II and one Type II superluminous SN (SLSN-II) are clearly detected in the GALEX near-UV (NUV) data. We compare our detection rate with theoretical estimates based on early, shock-cooling UV light curves calculated from models that fit existing Swift and GALEX observations well, combined with volumetric SN rates. We find that our observations are in good agreement with calculated rates assuming that red supergiants (RSGs) explode with fiducial radii of 500 R{sub ⊙}, explosion energies of 10{sup 51} erg, and ejecta masses of 10 M{sub ⊙}. Exploding blue supergiants and Wolf–Rayet stars are poorly constrained. We describe how such observations can be used to derive the progenitor radius, surface composition, and explosion energy per unit mass of such SN events, and we demonstrate why UV observations are critical for such measurements. We use the fiducial RSG parameters to estimate the detection rate of SNe during the shock-cooling phase (<1 day after explosion) for several ground-based surveys (PTF, ZTF, and LSST). We show that the proposed wide-field UV explorer ULTRASAT mission is expected to find >85 SNe per year (∼0.5 SN per deg{sup 2}), independent of host galaxy extinction, down to an NUV detection limit of 21.5 mag AB. Our pilot GALEX/PTF project thus convincingly demonstrates that a dedicated, systematic SN survey at the NUV band is a compelling method to study how massive stars end their life.

  18. Interpreting the Strongly Lensed Supernova iPTF16geu: Time Delay Predictions, Microlensing, and Lensing Rates

    Energy Technology Data Exchange (ETDEWEB)

    More, Anupreeta; Oguri, Masamune; More, Surhud [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), University of Tokyo, Chiba 277-8583 (Japan); Suyu, Sherry H. [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Lee, Chien-Hsiu, E-mail: anupreeta.more@ipmu.jp [Subaru Telescope, National Astronomical Observatory of Japan, 650 North Aohoku Place, Hilo, HI 96720 (United States)

    2017-02-01

    We present predictions for time delays between multiple images of the gravitationally lensed supernova, iPTF16geu, which was recently discovered from the intermediate Palomar Transient Factory (iPTF). As the supernova is of Type Ia where the intrinsic luminosity is usually well known, accurately measured time delays of the multiple images could provide tight constraints on the Hubble constant. According to our lens mass models constrained by the Hubble Space Telescope F814W image, we expect the maximum relative time delay to be less than a day, which is consistent with the maximum of 100 hr reported by Goobar et al. but places a stringent upper limit. Furthermore, the fluxes of most of the supernova images depart from expected values suggesting that they are affected by microlensing. The microlensing timescales are small enough that they may pose significant problems to measure the time delays reliably. Our lensing rate calculation indicates that the occurrence of a lensed SN in iPTF is likely. However, the observed total magnification of iPTF16geu is larger than expected, given its redshift. This may be a further indication of ongoing microlensing in this system.

  19. VizieR Online Data Catalog: PTF 12dam & iPTF 13dcc follow-up (Vreeswijk+, 2017)

    Science.gov (United States)

    Vreeswijk, P. M.; Leloudas, G.; Gal-Yam, A.; De Cia, A.; Perley, D. A.; Quimby, R. M.; Waldman, R.; Sullivan, M.; Yan, L.; Ofek, E. O.; Fremling, C.; Taddia, F.; Sollerman, J.; Valenti, S.; Arcavi, I.; Howell, D. A.; Filippenko, A. V.; Cenko, S. B.; Yaron, O.; Kasliwal, M. M.; Cao, Y.; Ben-Ami, S.; Horesh, A.; Rubin, A.; Lunnan, R.; Nugent, P. E.; Laher, R.; Rebbapragada, U. D.; Wozniak, P.; Kulkarni, S. R.

    2017-08-01

    Spectroscopic follow-up observations of PTF 12dam were performed with the Kast Spectrograph at the Lick 3m Shane telescope, and the Low Resolution Imaging Spectrograph (LRIS) at the Keck-I 10m telescope (on Mauna Kea, Hawaii) on 2012 May 20, 21, and 22. The full spectroscopic sequence of PTF 12dam will be presented by R. M. Quimby et al. (2016, in preparation). PTF 12dam was imaged with the Palomar Oschin 48 inch (P48) (i)PTF survey telescope in the Mould R filter, the Palomar 60 inch (P60) and CCD camera in Johnson B and Sloan Digital Sky Survey (SDSS) gri, the Las Cumbres Observatory Global Telescope Network (LCOGT) in SDSS r, and LRIS mounted on the 10m Keck-I telescope in Rs. iPTF 13dcc has not had any exposure in the literature yet. It was flagged as a transient source on 2013 August 29. Spectroscopic follow-up observations spanning 2013 Nov 26 to 2014 Jan 16 were performed with the Double Spectrograph (DBSP) at the Palomar 200 inch (P200), LRIS at Keck-I, and the Inamori-Magellan Areal Camera & Spectrograph (IMACS) at the Magellan Baade telescope, showing iPTF 13dcc to be an SLSN at z=0.4305. iPTF 13dcc was imaged with the P48 Oschin (i)PTF survey telescope in the Mould R filter, the P60 in SDSS gri, the 4.3m Discovery Channel Telescope (DCT, at Lowell Observatory, Arizona) with the Large Monolithic Imager (LMI) in SDSS ri, and finally with the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) Wide-Field Camera using filter F625W (under program GO-13858; P.I. A. De Cia). (3 data files).

  20. Analysis list: Ptf1a [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Ptf1a Embryo,Pancreas + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/P...tf1a.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Ptf1a.5.tsv http://dbarchive.biosciencedbc....jp/kyushu-u/mm9/target/Ptf1a.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Ptf1a.Embryo.tsv,http://dbarchive.bioscience...dbc.jp/kyushu-u/mm9/colo/Ptf1a.Pancreas.tsv http://dbarchive.bioscience...dbc.jp/kyushu-u/mm9/colo/Embryo.gml,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Pancreas.gml ...

  1. iPTF13bvn: The first evidence of a binary progenitor for a type Ib supernova

    Energy Technology Data Exchange (ETDEWEB)

    Bersten, Melina C.; Folatelli, Gastón; Nomoto, Ken' ichi; Quimby, Robert [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Benvenuto, Omar G. [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, B1900FWA La Plata (Argentina); Kuncarayakti, Hanindyo [Millennium Institute of Astrophysics, Casilla 36-D, Santiago (Chile); Srivastav, Shubham; Anupama, G. C.; Sahu, Devendra K., E-mail: melina.bersten@ipmu.jp [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India)

    2014-10-01

    The recent detection in archival Hubble Space Telescope images of an object at the location of supernova (SN) iPTF13bvn may represent the first direct evidence of the progenitor of a Type Ib SN. The object's photometry was found to be compatible with a Wolf-Rayet pre-SN star mass of ≈11 M {sub ☉}. However, based on hydrodynamical models, we show that the progenitor had a pre-SN mass of ≈3.5 M {sub ☉} and that it could not be larger than ≈8 M {sub ☉}. We propose an interacting binary system as the SN progenitor and perform evolutionary calculations that are able to self-consistently explain the light curve shape, the absence of hydrogen, and the pre-SN photometry. We further discuss the range of allowed binary systems and predict that the remaining companion is a luminous O-type star of significantly lower flux in the optical than the pre-SN object. A future detection of such a star may be possible and would provide the first robust identification of a progenitor system for a Type Ib SN.

  2. PTF13efv—AN OUTBURST 500 DAYS PRIOR TO THE SNHUNT 275 EXPLOSION AND ITS RADIATIVE EFFICIENCY

    Energy Technology Data Exchange (ETDEWEB)

    Ofek, E. O.; Strotjohann, N.-L.; Rubin, A.; Gal-Yam, A.; Yaron, O. [Benoziyo Center for Astrophysics and the Helen Kimmel Center for Planetary Science, Weizmann Institute of Science, 76100 Rehovot (Israel); Cenko, S. B. [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD, 20771 (United States); Shaviv, N. J. [Racah Institute of Physics, The Hebrew University, 91904 Jerusalem (Israel); Duggan, G.; Kulkarni, S. R.; Cao, Y. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Sullivan, M. [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Nugent, P. E. [Computational Cosmology Center, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Kasliwal, M. M. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena CA 91101 (United States); Sollerman, J.; Fransson, C. [Department of Astronomy, The Oskar Klein Centre, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm (Sweden); Filippenko, A. V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Perley, D. A. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Laher, R. [Spitzer Science Center, MS 314-6, California Institute of Technology, Pasadena, CA 91125 (United States)

    2016-06-10

    The progenitors of some supernovae (SNe) exhibit outbursts with super-Eddington luminosities prior to their final explosions. This behavior is common among SNe IIn, but the driving mechanisms of these precursors are not yet well-understood. SNHunt 275 was announced as a possible new SN during 2015 May. Here we report on pre-explosion observations of the location of this event by the Palomar Transient Factory (PTF) and report the detection of a precursor about 500 days prior to the 2015 May activity (PTF 13efv). The observed velocities in the 2015 transient and its 2013 precursor absorption spectra are low (1000–2000 km s{sup −1}), so it is not clear yet if the recent activity indeed marks the final disruption of the progenitor. Regardless of the nature of this event, we use the PTF photometric and spectral observations, as well as Swift -UVOT observations, to constrain the efficiency of the radiated energy relative to the total kinetic energy of the precursor. We find that, using an order-of-magnitude estimate and under the assumption of spherical symmetry, the ratio of the radiated energy to the kinetic energy is in the range of 4 × 10{sup −2} to 3.4 × 10{sup 3}.

  3. Patient Treatment File (PTF)

    Data.gov (United States)

    Department of Veterans Affairs — This database is part of the National Medical Information System (NMIS). The Patient Treatment File (PTF) contains a record for each inpatient care episode provided...

  4. THE PROGENITOR OF SUPERNOVA 2011dh/PTF11eon IN MESSIER 51

    Energy Technology Data Exchange (ETDEWEB)

    Van Dyk, Schuyler D. [Spitzer Science Center/Caltech, Pasadena CA 91125 (United States); Li, Weidong; Cenko, S. Bradley; Silverman, Jeffrey M.; Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Kasliwal, Mansi M.; Horesh, Assaf; Ofek, Eran O.; Quimby, Robert M.; Kulkarni, Shrinivas R. [Astronomy Department, California Institute of Technology, Pasadena, CA 91125 (United States); Kraus, Adam L. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Arcavi, Iair; Gal-Yam, Avishay; Yaron, Ofer; Polishook, David, E-mail: vandyk@ipac.caltech.edu [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel)

    2011-11-10

    We have identified a luminous star at the position of supernova (SN) 2011dh/PTF11eon, in pre-SN archival, multi-band images of the nearby, nearly face-on galaxy Messier 51 (M51) obtained by the Hubble Space Telescope with the Advanced Camera for Surveys. This identification has been confirmed, to the highest available astrometric precision, using a Keck-II adaptive-optics image. The available early-time spectra and photometry indicate that the SN is a stripped-envelope, core-collapse Type IIb, with a more compact progenitor (radius {approx} 10{sup 11} cm) than was the case for the well-studied SN IIb 1993J. We infer that the extinction to SN 2011dh and its progenitor arises from a low Galactic foreground contribution, and that the SN environment is of roughly solar metallicity. The detected object has absolute magnitude M{sup 0}{sub V} Almost-Equal-To -7.7 and effective temperature {approx}6000 K. The star's radius, {approx}10{sup 13} cm, is more extended than what has been inferred for the SN progenitor. We speculate that the detected star is either an unrelated star very near the position of the actual progenitor, or, more likely, the progenitor's companion in a mass-transfer binary system. The position of the detected star in a Hertzsprung-Russell diagram is consistent with an initial mass of 17-19 M{sub Sun }. The light of this star could easily conceal, even in the ultraviolet, the presence of a stripped, compact, very hot ({approx}10{sup 5} K), nitrogen-rich Wolf-Rayet star progenitor.

  5. Low-Cost Planar PTF Sensors for the Identity Verification of Smartcard Holders

    NARCIS (Netherlands)

    Henderson, N.J.; Papakostas, T.V.; White, N.M.; Hartel, Pieter H.

    The properties of mechanical flexibility, low-cost and planar geometry make polymer thick film (PTF) sensors attractive for embedded smartcard biometrics. PTF piezoelectric and piezoresistive pressure sensors are investigated for their potential to capture spatial human characteristics. However, it

  6. SN 2013fs and SN 2013fr: exploring the circumstellar-material diversity in Type II supernovae

    Science.gov (United States)

    Bullivant, Christopher; Smith, Nathan; Williams, G. Grant; Mauerhan, Jon C.; Andrews, Jennifer E.; Fong, Wen-Fai; Bilinski, Christopher; Kilpatrick, Charles D.; Milne, Peter A.; Fox, Ori D.; Cenko, S. Bradley; Filippenko, Alexei V.; Zheng, WeiKang; Kelly, Patrick L.; Clubb, Kelsey I.

    2018-05-01

    We present photometry and spectroscopy of SN 2013fs and SN 2013fr in the first ˜100 d post-explosion. Both objects showed transient, relatively narrow H α emission lines characteristic of SNe IIn, but later resembled normal SNe II-P or SNe II-L, indicative of fleeting interaction with circumstellar material (CSM). SN 2013fs was discovered within 8 h of explosion; one of the earliest SNe discovered thus far. Its light curve exhibits a plateau, with spectra revealing strong CSM interaction at early times. It is a less luminous version of the transitional SN IIn PTF11iqb, further demonstrating a continuum of CSM interaction intensity between SNe II-P and SNe IIn. It requires dense CSM within 6.5 × 1014 cm of the progenitor, from a phase of advanced pre-SN mass loss beginning shortly before explosion. Spectropolarimetry of SN 2013fs shows little continuum polarization (˜0.5 per cent, consistent with zero), but noticeable line polarization during the plateau phase. SN 2013fr morphed from an SN IIn at early times to an SN II-L. After the first epoch, its narrow lines probably arose from host-galaxy emission, but the bright, narrow H α emission at early times may be intrinsic to the SN. As for SN 2013fs, this would point to a short-lived phase of strong CSM interaction if proven to be intrinsic, suggesting a continuum between SNe IIn and SNe II-L. It is a low-velocity SN II-L like SN 2009kr, but more luminous. SN 2013fr also developed an infrared excess at later times, due to warm CSM dust that requires a more sustained phase of strong pre-SN mass loss.

  7. VizieR Online Data Catalog: PTF stellar rotation periods for Pleiades members (Covey+, 2016)

    Science.gov (United States)

    Covey, K. R.; Agueros, M. A.; Law, N. M.; Liu, J.; Ahmadi, A.; Laher, R.; Levitan, D.; Sesar, B.; Surace, J.

    2018-02-01

    We monitored the Pleiades using time allocated to two PTF Key Projects: the PTF/M-dwarfs survey (Law et al. 2011ASPC..448.1367L, 2012ApJ...757..133L) and the PTF Open Cluster Survey (POCS; Agueros et al. 2011ApJ...740..110A; Douglas et al. 2014, J/ApJ/795/161). PTF was a time-domain experiment using the robotic 48-inch Samuel Oschin (P48) telescope at Palomar Observatory, CA, and involved real-time data-reduction and transient-detection pipelines and a dedicated follow-up telescope. The PTF infrastructure is described in Law et al. (2009PASP..121.1395L); we focus here on the components associated with the P48, which we used to conduct our monitoring campaign. The P48 is equipped with the CFH12K mosaic camera, which was significantly modified to optimize its performance on this telescope. The camera has 11 working CCDs, which cover a 7.26 square degree field of view with 92 megapixels at 1" sampling (Rahmer et al. 2008SPIE.7014E..4YR). Under typical observing conditions (1.1" seeing), it delivers 2" full-width half-maximum images that reach a 5σ limiting R~21 mag in 60 s (Law et al. 2010SPIE.7735E..3ML). (2 data files).

  8. Program Specificity for Ptf1a in Pancreas versus Neural Tube Development Correlates with Distinct Collaborating Cofactors and Chromatin Accessibility

    Science.gov (United States)

    Meredith, David M.; Borromeo, Mark D.; Deering, Tye G.; Casey, Bradford H.; Savage, Trisha K.; Mayer, Paul R.; Hoang, Chinh; Tung, Kuang-Chi; Kumar, Manonmani; Shen, Chengcheng; Swift, Galvin H.

    2013-01-01

    The lineage-specific basic helix-loop-helix transcription factor Ptf1a is a critical driver for development of both the pancreas and nervous system. How one transcription factor controls diverse programs of gene expression is a fundamental question in developmental biology. To uncover molecular strategies for the program-specific functions of Ptf1a, we identified bound genomic regions in vivo during development of both tissues. Most regions bound by Ptf1a are specific to each tissue, lie near genes needed for proper formation of each tissue, and coincide with regions of open chromatin. The specificity of Ptf1a binding is encoded in the DNA surrounding the Ptf1a-bound sites, because these regions are sufficient to direct tissue-restricted reporter expression in transgenic mice. Fox and Sox factors were identified as potential lineage-specific modifiers of Ptf1a binding, since binding motifs for these factors are enriched in Ptf1a-bound regions in pancreas and neural tube, respectively. Of the Fox factors expressed during pancreatic development, Foxa2 plays a major role. Indeed, Ptf1a and Foxa2 colocalize in embryonic pancreatic chromatin and can act synergistically in cell transfection assays. Together, these findings indicate that lineage-specific chromatin landscapes likely constrain the DNA binding of Ptf1a, and they identify Fox and Sox gene families as part of this process. PMID:23754747

  9. Specification of spatial identities of cerebellar neuron progenitors by ptf1a and atoh1 for proper production of GABAergic and glutamatergic neurons.

    Science.gov (United States)

    Yamada, Mayumi; Seto, Yusuke; Taya, Shinichiro; Owa, Tomoo; Inoue, Yukiko U; Inoue, Takayoshi; Kawaguchi, Yoshiya; Nabeshima, Yo-Ichi; Hoshino, Mikio

    2014-04-02

    In the cerebellum, the bHLH transcription factors Ptf1a and Atoh1 are expressed in distinct neuroepithelial regions, the ventricular zone (VZ) and the rhombic lip (RL), and are required for producing GABAergic and glutamatergic neurons, respectively. However, it is unclear whether Ptf1a or Atoh1 is sufficient for specifying GABAergic or glutamatergic neuronal fates. To test this, we generated two novel knock-in mouse lines, Ptf1a(Atoh1) and Atoh1(Ptf1a), that are designed to express Atoh1 and Ptf1a ectopically in the VZ and RL, respectively. In Ptf1a(Atoh1) embryos, ectopically Atoh1-expressing VZ cells produced glutamatergic neurons, including granule cells and deep cerebellar nuclei neurons. Correspondingly, in Atoh1(Ptf1a) animals, ectopically Ptf1a-expressing RL cells produced GABAergic populations, such as Purkinje cells and GABAergic interneurons. Consistent results were also obtained from in utero electroporation of Ptf1a or Atoh1 into embryonic cerebella, suggesting that Ptf1a and Atoh1 are essential and sufficient for GABAergic versus glutamatergic specification in the neuroepithelium. Furthermore, birthdating analyses with BrdU in the knock-in mice or with electroporation studies showed that ectopically produced fate-changed neuronal types were generated at temporal schedules closely simulating those of the wild-type RL and VZ, suggesting that the VZ and RL share common temporal information. Observations of knock-in brains as well as electroporated brains revealed that Ptf1a and Atoh1 mutually negatively regulate their expression, probably contributing to formation of non-overlapping neuroepithelial domains. These findings suggest that Ptf1a and Atoh1 specify spatial identities of cerebellar neuron progenitors in the neuroepithelium, leading to appropriate production of GABAergic and glutamatergic neurons, respectively.

  10. iPTF14yb: The First Discovery of a Gamma-Ray Burst Afterglow Independent of a High-Energy Trigger

    Science.gov (United States)

    Cenko, S. Bradley; Urban, Alex L.; Perley, Daniel A.; Horesh, Assaf; Corsi, Alessandra; Fox, Derek B.; Cao, Yi; Kasliwal, Mansi M.; Lien, Amy; Arcavi, Iair; hide

    2015-01-01

    We report here the discovery by the Intermediate Palomar Transient Factory (iPTF) of iPTF14yb, a luminous (Mr >> -27.8 mag), cosmological (redshift 1.9733), rapidly fading optical transient. We demonstrate, based on probabilistic arguments and a comparison with the broader population, that iPTF14yb is the optical afterglow of the long-duration gamma-ray burst GRB 140226A. This marks the first unambiguous discovery of a GRB afterglow prior to (and thus entirely independent of) an associated high-energy trigger. We estimate the rate of iPTF14yb-like sources (i.e., cosmologically distant relativistic explosions) based on iPTF observations, inferring an all-sky value of Rrel = 610/yr (68% confidence interval of 110-2000/yr). Our derived rate is consistent (within the large uncertainty) with the all-sky rate of on-axis GRBs derived by the Swift satellite. Finally, we briefly discuss the implications of the nondetection to date of bona fide "orphan" afterglows (i.e., those lacking detectable high-energy emission) on GRB beaming and the degree of baryon loading in these relativistic jets.

  11. Ectopic expression of Ptf1a induces spinal defects, urogenital defects, and anorectal malformations in Danforth's short tail mice.

    Directory of Open Access Journals (Sweden)

    Kei Semba

    Full Text Available Danforth's short tail (Sd is a semidominant mutation on mouse chromosome 2, characterized by spinal defects, urogenital defects, and anorectal malformations. However, the gene responsible for the Sd phenotype was unknown. In this study, we identified the molecular basis of the Sd mutation. By positional cloning, we identified the insertion of an early transposon in the Sd candidate locus approximately 12-kb upstream of Ptf1a. We found that insertion of the transposon caused overexpression of three neighboring genes, Gm13344, Gm13336, and Ptf1a, in Sd mutant embryos and that the Sd phenotype was not caused by disruption of an as-yet-unknown gene in the candidate locus. Using multiple knockout and knock-in mouse models, we demonstrated that misexpression of Ptf1a, but not of Gm13344 or Gm13336, in the notochord, hindgut, cloaca, and mesonephros was sufficient to replicate the Sd phenotype. The ectopic expression of Ptf1a in the caudal embryo resulted in attenuated expression of Cdx2 and its downstream target genes T, Wnt3a, and Cyp26a1; we conclude that this is the molecular basis of the Sd phenotype. Analysis of Sd mutant mice will provide insight into the development of the spinal column, anus, and kidney.

  12. The Prdm13 histone methyltransferase encoding gene is a Ptf1a-Rbpj downstream target that suppresses glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube

    DEFF Research Database (Denmark)

    Hanotel, Julie; Bessodes, Nathalie; Thélie, Aurore

    2014-01-01

    The basic helix-loop-helix (bHLH) transcriptional activator Ptf1a determines inhibitory GABAergic over excitatory glutamatergic neuronal cell fate in progenitors of the vertebrate dorsal spinal cord, cerebellum and retina. In an in situ hybridization expression survey of PR domain containing genes...... encoding putative chromatin-remodeling zinc finger transcription factors in Xenopus embryos, we identified Prdm13 as a histone methyltransferase belonging to the Ptf1a synexpression group. Gain and loss of Ptf1a function analyses in both frog and mice indicates that Prdm13 is positively regulated by Ptf1a...

  13. A retrotransposon insertion in the 5' regulatory domain of Ptf1a results in ectopic gene expression and multiple congenital defects in Danforth's short tail mouse.

    Directory of Open Access Journals (Sweden)

    Francesca Lugani

    Full Text Available Danforth's short tail mutant (Sd mouse, first described in 1930, is a classic spontaneous mutant exhibiting defects of the axial skeleton, hindgut, and urogenital system. We used meiotic mapping in 1,497 segregants to localize the mutation to a 42.8-kb intergenic segment on chromosome 2. Resequencing of this region identified an 8.5-kb early retrotransposon (ETn insertion within the highly conserved regulatory sequences upstream of Pancreas Specific Transcription Factor, 1a (Ptf1a. This mutation resulted in up to tenfold increased expression of Ptf1a as compared to wild-type embryos at E9.5 but no detectable changes in the expression levels of other neighboring genes. At E9.5, Sd mutants exhibit ectopic Ptf1a expression in embryonic progenitors of every organ that will manifest a developmental defect: the notochord, the hindgut, and the mesonephric ducts. Moreover, at E 8.5, Sd mutant mice exhibit ectopic Ptf1a expression in the lateral plate mesoderm, tail bud mesenchyme, and in the notochord, preceding the onset of visible defects such as notochord degeneration. The Sd heterozygote phenotype was not ameliorated by Ptf1a haploinsufficiency, further suggesting that the developmental defects result from ectopic expression of Ptf1a. These data identify disruption of the spatio-temporal pattern of Ptf1a expression as the unifying mechanism underlying the multiple congenital defects in Danforth's short tail mouse. This striking example of an enhancer mutation resulting in profound developmental defects suggests that disruption of conserved regulatory elements may also contribute to human malformation syndromes.

  14. Precursors prior to type IIn supernova explosions are common: Precursor rates, properties, and correlations

    Energy Technology Data Exchange (ETDEWEB)

    Ofek, Eran O.; Steinbok, Aviram; Arcavi, Iair; Gal-Yam, Avishay; Tal, David; Ben-Ami, Sagi; Yaron, Ofer [Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel); Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Shaviv, Nir J. [Racah Institute of Physics, The Hebrew University, 91904 Jerusalem (Israel); Kulkarni, Shrinivas R. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Nugent, Peter E. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Kasliwal, Mansi M. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Cenko, S. Bradley [Astrophysics Science Division, NASA/Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Laher, Russ; Surace, Jason [Spitzer Science Center, California Institute of Technology, M/S 314-6, Pasadena, CA 91125 (United States); Bloom, Joshua S.; Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Silverman, Jeffrey M. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States)

    2014-07-10

    There is a growing number of Type IIn supernovae (SNe) which present an outburst prior to their presumably final explosion. These precursors may affect the SN display, and are likely related to poorly charted phenomena in the final stages of stellar evolution. By coadding Palomar Transient Factory (PTF) images taken prior to the explosion, here we present a search for precursors in a sample of 16 Type IIn SNe. We find five SNe IIn that likely have at least one possible precursor event (PTF 10bjb, SN 2010mc, PTF 10weh, SN 2011ht, and PTF 12cxj), three of which are reported here for the first time. For each SN we calculate the control time. We find that precursor events among SNe IIn are common: at the one-sided 99% confidence level, >50% of SNe IIn have at least one pre-explosion outburst that is brighter than 3 × 10{sup 7} L{sub ☉} taking place up to 1/3 yr prior to the SN explosion. The average rate of such precursor events during the year prior to the SN explosion is likely ≳ 1 yr{sup –1}, and fainter precursors are possibly even more common. Ignoring the two weakest precursors in our sample, the precursors rate we find is still on the order of one per year. We also find possible correlations between the integrated luminosity of the precursor and the SN total radiated energy, peak luminosity, and rise time. These correlations are expected if the precursors are mass-ejection events, and the early-time light curve of these SNe is powered by interaction of the SN shock and ejecta with optically thick circumstellar material.

  15. The hydrogen-poor superluminous supernova iPTF 13ajg and its host galaxy in absorption and emission

    Energy Technology Data Exchange (ETDEWEB)

    Vreeswijk, Paul M.; Gal-Yam, Avishay; De Cia, Annalisa; Rubin, Adam; Yaron, Ofer; Tal, David; Ofek, Eran O. [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 7610001 (Israel); Savaglio, Sandra [Max Planck Institute for Extraterrestrial Physics, D-85748 Garching bei München (Germany); Quimby, Robert M. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8583 (Japan); Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Cenko, S. Bradley; Filippenko, Alexei V.; Clubb, Kelsey I. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Perley, Daniel A.; Cao, Yi [Astronomy Department, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Taddia, Francesco; Sollerman, Jesper; Leloudas, Giorgos [Department of Astronomy, The Oskar Klein Center, Stockholm University, AlbaNova 10691 Stockholm (Sweden); Arcavi, Iair [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Kasliwal, Mansi M., E-mail: paul.vreeswijk@weizmann.ac.il [The Observatories, Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); and others

    2014-12-10

    We present imaging and spectroscopy of a hydrogen-poor superluminous supernova (SLSN) discovered by the intermediate Palomar Transient Factory, iPTF 13ajg. At a redshift of z = 0.7403, derived from narrow absorption lines, iPTF 13ajg peaked at an absolute magnitude of M {sub u,} {sub AB} = –22.5, one of the most luminous supernovae to date. The observed bolometric peak luminosity of iPTF 13ajg is 3.2 × 10{sup 44} erg s{sup –1}, while the estimated total radiated energy is 1.3 × 10{sup 51} erg. We detect narrow absorption lines of Mg I, Mg II, and Fe II, associated with the cold interstellar medium in the host galaxy, at two different epochs with X-shooter at the Very Large Telescope. From Voigt profile fitting, we derive the column densities log N(Mg I) =11.94 ± 0.06, log N(Mg II) =14.7 ± 0.3, and log N(Fe II) =14.25 ± 0.10. These column densities, as well as the Mg I and Mg II equivalent widths of a sample of hydrogen-poor SLSNe taken from the literature, are at the low end of those derived for gamma-ray bursts (GRBs) whose progenitors are also thought to be massive stars. This suggests that the environments of hydrogen-poor SLSNe and GRBs are different. From the nondetection of Fe II fine-structure absorption lines, we derive a lower limit on the distance between the supernova and the narrow-line absorbing gas of 50 pc. The neutral gas responsible for the absorption in iPTF 13ajg exhibits a single narrow component with a low velocity width, ΔV = 76 km s{sup –1}, indicating a low-mass host galaxy. No host galaxy emission lines are detected, leading to an upper limit on the unobscured star formation rate (SFR) of SFR{sub [O} {sub II]}<0.07M{sub ⊙}yr{sup −1}. Late-time imaging shows the iPTF 13ajg host galaxy to be faint, with g {sub AB} ≈ 27.0 and R {sub AB} ≥ 26.0 mag, corresponding to M {sub B,} {sub Vega} ≳ –17.7 mag.

  16. DISCOVERY AND REDSHIFT OF AN OPTICAL AFTERGLOW IN 71 deg2: iPTF13bxl AND GRB 130702A

    International Nuclear Information System (INIS)

    Singer, Leo P.; Brown, Duncan A.; Bradley Cenko, S.; Gehrels, Neil; McEnery, Julie; Kasliwal, Mansi M.; Mulchaey, John; Perley, Daniel A.; Kulkarni, S. R.; Bellm, Eric; Barlow, Tom; Cao, Yi; Horesh, Assaf; Ofek, Eran O.; Arcavi, Iair; Nugent, Peter E.; Bloom, Joshua S.; Corsi, Alessandra; Frail, Dale A.; Masci, Frank J.

    2013-01-01

    We report the discovery of the optical afterglow of the γ-ray burst (GRB) 130702A, identified upon searching 71 deg 2 surrounding the Fermi Gamma-ray Burst Monitor (GBM) localization. Discovered and characterized by the intermediate Palomar Transient Factory, iPTF13bxl is the first afterglow discovered solely based on a GBM localization. Real-time image subtraction, machine learning, human vetting, and rapid response multi-wavelength follow-up enabled us to quickly narrow a list of 27,004 optical transient candidates to a single afterglow-like source. Detection of a new, fading X-ray source by Swift and a radio counterpart by CARMA and the Very Large Array confirmed the association between iPTF13bxl and GRB 130702A. Spectroscopy with the Magellan and Palomar 200 inch telescopes showed the afterglow to be at a redshift of z = 0.145, placing GRB 130702A among the lowest redshift GRBs detected to date. The prompt γ-ray energy release and afterglow luminosity are intermediate between typical cosmological GRBs and nearby sub-luminous events such as GRB 980425 and GRB 060218. The bright afterglow and emerging supernova offer an opportunity for extensive panchromatic follow-up. Our discovery of iPTF13bxl demonstrates the first observational proof-of-principle for ∼10 Fermi-iPTF localizations annually. Furthermore, it represents an important step toward overcoming the challenges inherent in uncovering faint optical counterparts to comparably localized gravitational wave events in the Advanced LIGO and Virgo era

  17. Simulation of herbicide degradation in different soils by use of Pedo-transfer functions (PTF) and non-linear kinetics.

    Science.gov (United States)

    von Götz, N; Richter, O

    1999-03-01

    The degradation behaviour of bentazone in 14 different soils was examined at constant temperature and moisture conditions. Two soils were examined at different temperatures. On the basis of these data the influence of soil properties and temperature on degradation was assessed and modelled. Pedo-transfer functions (PTF) in combination with a linear and a non-linear model were found suitable to describe the bentazone degradation in the laboratory as related to soil properties. The linear PTF can be combined with a rate related to the temperature to account for both soil property and temperature influence at the same time.

  18. Stripped-envelope supernova SN 2004dk is now interacting with hydrogen-rich circumstellar material

    Science.gov (United States)

    Mauerhan, Jon C.; Filippenko, Alexei V.; Zheng, WeiKang; Brink, Thomas; Graham, Melissa L.; Shivvers, Isaac; Clubb, Kelsey

    2018-05-01

    The dominant mechanism and time scales over which stripped-envelope supernovae (SNe) progenitor stars shed their hydrogen envelopes are uncertain. Observations of Type Ib and Ic SNe at late phases could reveal the optical signatures of interaction with distant circumstellar material (CSM) providing important clues on the origin of the necessary pre-SN mass loss. We report deep late-time optical spectroscopy of the Type Ib explosion SN 2004dk 4684 days (13 years) after discovery. We detect strong Hα emission with an intermediate line width of ˜400 km s-1 and luminosity ˜2.5 × 1039 erg s-1, signaling that the SN blast wave has caught up with the hydrogen-rich CSM lost by the progenitor system. The line luminosity is the highest ever reported for a SN at this late stage. Prominent emission features of He I, Fe, and Ca are also detected. The spectral characteristics are consistent with CSM energized by the forward shock, and resemble the late-time spectra of the persistently interacting Type IIn SNe 2005ip and 1988Z. We suggest that the onset of interaction with H-rich CSM was associated with a previously reported radio rebrightening at ˜1700 days. The data indicate that the mode of pre-SN mass loss was a relatively slow dense wind that persisted millennia before the SN, followed by a short-lived Wolf-Rayet phase that preceded core-collapse and created a cavity within an extended distribution of CSM. We also present new spectra of SNe 2014C, PTF11iqb, and 2009ip, all of which also exhibit continued interaction with extended CSM distributions.

  19. DISCOVERY, PROGENITOR AND EARLY EVOLUTION OF A STRIPPED ENVELOPE SUPERNOVA iPTF13bvn

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yi; Horesh, Assaf; Kulkarni, S. R. [Astronomy Department, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Kasliwal, Mansi M. [The Observatories, Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Arcavi, Iair; Gal-Yam, Avishay; Gorbikov, Evgeny; Ofek, Eran O.; Yaron, Ofer [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Hancock, Paul [Sydney Institute for Astronomy (SIfA), School of Physics, The University of Sydney, NSW 2006 (Australia); Valenti, Stefano; Graham, Melissa; Howell, D. Andrew [Las Cumbres Observatory Global Telescope Network, Goleta, CA 93117 (United States); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Sand, David [Department of Physics, Texas Tech University, Lubbock, TX 79409 (United States); Silverman, Jeffrey M.; Wheeler, J. Craig; Marion, G. H. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Walker, Emma S. [Department of Physics, Yale University, New Haven, CT 06511-8499 (United States); Mazzali, Paolo, E-mail: ycao@astro.caltech.edu [INAF-Padova Astronomical Observatory, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); and others

    2013-09-20

    The intermediate Palomar Transient Factory reports our discovery of a young supernova, iPTF13bvn, in the nearby galaxy, NGC 5806 (22.5 Mpc). Our spectral sequence in the optical and infrared suggests a Type Ib classification. We identify a blue progenitor candidate in deep pre-explosion imaging within a 2σ error circle of 80 mas (8.7 pc). The candidate has an M{sub B} luminosity of –5.52 ± 0.39 mag and a B – I color of 0.25 ± 0.25 mag. If confirmed by future observations, this would be the first direct detection for a progenitor of a Type Ib. Fitting a power law to the early light curve, we find an extrapolated explosion date around 0.6 days before our first detection. We see no evidence of shock cooling. The pre-explosion detection limits constrain the radius of the progenitor to be smaller than a few solar radii. iPTF13bvn is also detected in centimeter and millimeter wavelengths. Fitting a synchrotron self-absorption model to our radio data, we find a mass-loading parameter of 1.3×10{sup 12} g cm{sup –1}. Assuming a wind velocity of 10{sup 3} km s{sup –1}, we derive a progenitor mass-loss rate of 3 × 10{sup –5} M {sub ☉} yr{sup –1}. Our observations, taken as a whole, are consistent with a Wolf-Rayet progenitor of the supernova iPTF13bvn.

  20. DISCOVERY AND REDSHIFT OF AN OPTICAL AFTERGLOW IN 71 deg{sup 2}: iPTF13bxl AND GRB 130702A

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Leo P.; Brown, Duncan A. [LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Bradley Cenko, S.; Gehrels, Neil; McEnery, Julie [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Kasliwal, Mansi M.; Mulchaey, John [Observatories of the Carnegie Institution for Science, 813 Santa Barbara St, Pasadena, CA 91101 (United States); Perley, Daniel A.; Kulkarni, S. R.; Bellm, Eric; Barlow, Tom; Cao, Yi; Horesh, Assaf [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Ofek, Eran O.; Arcavi, Iair [Benoziyo Center for Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Nugent, Peter E.; Bloom, Joshua S. [Department of Astronomy, University of California Berkeley, B-20 Hearst Field Annex 3411, Berkeley, CA 94720-3411 (United States); Corsi, Alessandra [George Washington University, Corcoran Hall, Washington, DC 20052 (United States); Frail, Dale A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Masci, Frank J., E-mail: lsinger@caltech.edu [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); and others

    2013-10-20

    We report the discovery of the optical afterglow of the γ-ray burst (GRB) 130702A, identified upon searching 71 deg{sup 2} surrounding the Fermi Gamma-ray Burst Monitor (GBM) localization. Discovered and characterized by the intermediate Palomar Transient Factory, iPTF13bxl is the first afterglow discovered solely based on a GBM localization. Real-time image subtraction, machine learning, human vetting, and rapid response multi-wavelength follow-up enabled us to quickly narrow a list of 27,004 optical transient candidates to a single afterglow-like source. Detection of a new, fading X-ray source by Swift and a radio counterpart by CARMA and the Very Large Array confirmed the association between iPTF13bxl and GRB 130702A. Spectroscopy with the Magellan and Palomar 200 inch telescopes showed the afterglow to be at a redshift of z = 0.145, placing GRB 130702A among the lowest redshift GRBs detected to date. The prompt γ-ray energy release and afterglow luminosity are intermediate between typical cosmological GRBs and nearby sub-luminous events such as GRB 980425 and GRB 060218. The bright afterglow and emerging supernova offer an opportunity for extensive panchromatic follow-up. Our discovery of iPTF13bxl demonstrates the first observational proof-of-principle for ∼10 Fermi-iPTF localizations annually. Furthermore, it represents an important step toward overcoming the challenges inherent in uncovering faint optical counterparts to comparably localized gravitational wave events in the Advanced LIGO and Virgo era.

  1. VizieR Online Data Catalog: Imaging observations of iPTF 13ajg (Vreeswijk+, 2014)

    Science.gov (United States)

    Vreeswijk, P. M.; Savaglio, S.; Gal-Yam, A.; De Cia, A.; Quimby, R. M.; Sullivan, M.; Cenko, S. B.; Perley, D. A.; Filippenko, A. V.; Clubb, K. I.; Taddia, F.; Sollerman, J.; Leloudas, G.; Arcavi, I.; Rubin, A.; Kasliwal, M. M.; Cao, Y.; Yaron, O.; Tal, D.; Ofek, E. O.; Capone, J.; Kutyrev, A. S.; Toy, V.; Nugent, P. E.; Laher, R.; Surace, J.; Kulkarni, S. R.

    2017-08-01

    iPTF 13ajg was imaged with the Palomar 48 inch (P48) Oschin iPTF survey telescope equipped with a 12kx8k CCD mosaic camera (Rahmer et al. 2008SPIE.7014E..4YR) in the Mould R filter, the Palomar 60 inch and CCD camera (Cenko et al. 2006PASP..118.1396C) in Johnson B and Sloan Digital Sky Survey (SDSS) gri, the 2.56 m Nordic Optical Telescope (on La Palma, Canary Islands) with the Andalucia Faint Object Spectrograph and Camera (ALFOSC) in SDSS ugriz, the 4.3 m Discovery Channel Telescope (at Lowell Observatory, Arizona) with the Large Monolithic Imager (LMI) in SDSS r, and with LRIS (Oke et al. 1995PASP..107..375O) and the Multi-Object Spectrometer for Infrared Exploration (MOSFIRE; McLean et al. 2012SPIE.8446E..0JM), both mounted on the 10 m Keck-I telescope (on Mauna Kea, Hawaii), in g and Rs with LRIS and J and Ks with MOSFIRE. (1 data file).

  2. Pulsational Pair-instability Model for Superluminous Supernova PTF12dam:Interaction and Radioactive Decay

    Energy Technology Data Exchange (ETDEWEB)

    Tolstov, Alexey; Nomoto, Ken’ichi; Blinnikov, Sergei; Quimby, Robert [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Sorokina, Elena [Sternberg Astronomical Institute, M.V.Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Baklanov, Petr, E-mail: alexey.tolstov@ipmu.jp [Institute for Theoretical and Experimental Physics (ITEP), 117218 Moscow (Russian Federation)

    2017-02-01

    Being a superluminous supernova, PTF12dam can be explained by a {sup 56}Ni-powered model, a magnetar-powered model, or an interaction model. We propose that PTF12dam is a pulsational pair-instability supernova, where the outer envelope of a progenitor is ejected during the pulsations. Thus, it is powered by a double energy source: radioactive decay of {sup 56}Ni and a radiative shock in a dense circumstellar medium. To describe multicolor light curves and spectra, we use radiation-hydrodynamics calculations of the STELLA code. We found that light curves are well described in the model with 40 M {sub ⊙} ejecta and 20–40 M {sub ⊙} circumstellar medium. The ejected {sup 56}Ni mass is about 6 M {sub ⊙}, which results from explosive nucleosynthesis with large explosion energy (2–3)×10{sup 52} erg. In comparison with alternative scenarios of pair-instability supernova and magnetar-powered supernova, in the interaction model, all the observed main photometric characteristics are well reproduced: multicolor light curves, color temperatures, and photospheric velocities.

  3. PTF11kx: A Type Ia Supernova with Hydrogen Emission Persisting after 3.5 Years

    Energy Technology Data Exchange (ETDEWEB)

    Graham, M. L. [Department of Astronomy, University of Washington, Box 351580, U.W., Seattle, WA 98195-1580 (United States); Harris, C. E.; Nugent, P. E.; Kasen, D.; Filippenko, A. V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Fox, O. D. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Silverman, J. M. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States)

    2017-07-10

    The optical transient PTF11kx exhibited both the characteristic spectral features of Type Ia supernovae (SNe Ia) and the signature of ejecta interacting with circumstellar material (CSM) containing hydrogen, indicating the presence of a nondegenerate companion. We present an optical spectrum at 1342 days after peak from Keck Observatory, in which the broad component of H α emission persists with a similar profile as in early-time observations. We also present Spitzer IRAC detections obtained 1237 and 1818 days after peak, and an upper limit from Hubble Space Telescope ultraviolet imaging at 2133 days. We interpret our late-time observations in the context of published results—and reinterpret the early-time observations—in order to constrain the CSM’s physical parameters and to compare to theoretical predictions for recurrent-nova systems. We find that the CSM’s radial extent may be several times the distance between the star and the CSM’s inner edge, and that the CSM column density may be two orders of magnitude lower than previous estimates. We show that the H α luminosity decline is similar to other SNe with CSM interaction and demonstrate how our infrared photometry is evidence for newly formed, collisionally heated dust. We create a model for PTF11kx’s late-time CSM interaction and find that X-ray reprocessing by photoionization and recombination cannot reproduce the observed H α luminosity, suggesting that the X-rays are thermalized and that H α radiates from collisional excitation. Finally, we discuss the implications of our results regarding the progenitor scenario and the geometric properties of the CSM for the PTF11kx system.

  4. SN 2010jl: Optical to hard X-ray observations reveal an explosion embedded in a ten solar mass cocoon

    International Nuclear Information System (INIS)

    Ofek, Eran O.; Gal-Yam, Avishay; Arcavi, Iair; Zoglauer, Andreas; Boggs, Steven E.; Barriére, Nicolas M.; Reynolds, Stephen P.; Fryer, Chris L.; Even, Wesley; Harrison, Fiona A.; Kulkarni, Shrinivas R.; Bellm, Eric; Grefenstette, Brian; Cenko, S. Bradley; Bloom, Joshua S.; Filippenko, Alexei V.; Christensen, Finn; Craig, William W.; Hailey, Charles J.; Laher, Russ

    2014-01-01

    Some supernovae (SNe) may be powered by the interaction of the SN ejecta with a large amount of circumstellar matter (CSM). However, quantitative estimates of the CSM mass around such SNe are missing when the CSM material is optically thick. Specifically, current estimators are sensitive to uncertainties regarding the CSM density profile and the ejecta velocity. Here we outline a method to measure the mass of the optically thick CSM around such SNe. We present new visible-light and X-ray observations of SN 2010jl (PTF 10aaxf), including the first detection of an SN in the hard X-ray band using NuSTAR. The total radiated luminosity of SN 2010jl is extreme—at least 9 × 10 50 erg. By modeling the visible-light data, we robustly show that the mass of the circumstellar material within ∼10 16 cm of the progenitor of SN 2010jl was in excess of 10 M ☉ . This mass was likely ejected tens of years prior to the SN explosion. Our modeling suggests that the shock velocity during shock breakout was ∼6000 km s –1 , decelerating to ∼2600 km s –1 about 2 yr after maximum light. Furthermore, our late-time NuSTAR and XMM spectra of the SN presumably provide the first direct measurement of SN shock velocity 2 yr after the SN maximum light—measured to be in the range of 2000-4500 km s –1 if the ions and electrons are in equilibrium, and ≳ 2000 km s –1 if they are not in equilibrium. This measurement is in agreement with the shock velocity predicted by our modeling of the visible-light data. Our observations also show that the average radial density distribution of the CSM roughly follows an r –2 law. A possible explanation for the ≳ 10 M ☉ of CSM and the wind-like profile is that they are the result of multiple pulsational pair instability events prior to the SN explosion, separated from each other by years.

  5. Nebular phase observations of the Type-Ib supernova iPTF13bvn favour a binary progenitor

    Science.gov (United States)

    Kuncarayakti, H.; Maeda, K.; Bersten, M. C.; Folatelli, G.; Morrell, N.; Hsiao, E. Y.; González-Gaitán, S.; Anderson, J. P.; Hamuy, M.; de Jaeger, T.; Gutiérrez, C. P.; Kawabata, K. S.

    2015-07-01

    Aims: We present and analyse late-time observations of the Type-Ib supernova with possible pre-supernova progenitor detection, iPTF13bvn, which were done ~300 days after the explosion. We discuss them in the context of constraints on the supernova's progenitor. Previous studies have proposed two possible natures for the progenitor of the supernova, i.e. a massive Wolf-Rayet star or a lower-mass star in a close binary system. Methods: Our observations show that the supernova has entered the nebular phase, with the spectrum dominated by Mg I]λλ4571, [O I]λλ6300, 6364, and [Ca II]λλ7291, 7324 emission lines. We measured the emission line fluxes to estimate the core oxygen mass and compared the [O I]/[Ca II] line ratio with other supernovae. Results.The core oxygen mass of the supernova progenitor was estimated to be ≲0.7 M⊙, which implies initial progenitor mass that does not exceed ~15-17 M⊙.Since the derived mass is too low for a single star to become a Wolf-Rayet star, this result lends more support to the binary nature of the progenitor star of iPTF13bvn. The comparison of [O I]/[Ca II] line ratio with other supernovae also shows that iPTF13bvn appears to be in close association with the lower mass progenitors of stripped-envelope and Type-II supernovae. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the US National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU); Chilean Telescope Time Allocation Committee proposal CN2014A-91.

  6. Cross-Matching Source Observations from the Palomar Transient Factory (PTF)

    Science.gov (United States)

    Laher, Russ; Grillmair, C.; Surace, J.; Monkewitz, S.; Jackson, E.

    2009-01-01

    Over the four-year lifetime of the PTF project, approximately 40 billion instances of astronomical-source observations will be extracted from the image data. The instances will correspond to the same astronomical objects being observed at roughly 25-50 different times, and so a very large catalog containing important object-variability information will be the chief PTF product. Organizing astronomical-source catalogs is conventionally done by dividing the catalog into declination zones and sorting by right ascension within each zone (e.g., the USNOA star catalog), in order to facilitate catalog searches. This method was reincarnated as the "zones" algorithm in a SQL-Server database implementation (Szalay et al., MSR-TR-2004-32), with corrections given by Gray et al. (MSR-TR-2006-52). The primary advantage of this implementation is that all of the work is done entirely on the database server and client/server communication is eliminated. We implemented the methods outlined in Gray et al. for a PostgreSQL database. We programmed the methods as database functions in PL/pgSQL procedural language. The cross-matching is currently based on source positions, but we intend to extend it to use both positions and positional uncertainties to form a chi-square statistic for optimal thresholding. The database design includes three main tables, plus a handful of internal tables. The Sources table stores the SExtractor source extractions taken at various times; the MergedSources table stores statistics about the astronomical objects, which are the result of cross-matching records in the Sources table; and the Merges table, which associates cross-matched primary keys in the Sources table with primary keys in the MergedSoures table. Besides judicious database indexing, we have also internally partitioned the Sources table by declination zone, in order to speed up the population of Sources records and make the database more manageable. The catalog will be accessible to the public

  7. THE PTF ORION PROJECT: A POSSIBLE PLANET TRANSITING A T-TAURI STAR

    International Nuclear Information System (INIS)

    Van Eyken, Julian C.; Ciardi, David R.; Von Braun, Kaspar; Kane, Stephen R.; Plavchan, Peter; Akeson, Rachel L.; Beichman, Charles A.; Gelino, Dawn M.; Bender, Chad F.; Mahadevan, Suvrath; Brown, Timothy M.; Fulton, Benjamin J.; Shporer, Avi; Crepp, Justin R.; Howard, Andrew W.; Marcy, Geoffrey W.; Howell, Steve B.; Szkody, Paula; Boden, Andrew F.; Hoard, D. W.

    2012-01-01

    We report observations of a possible young transiting planet orbiting a previously known weak-lined T-Tauri star in the 7-10 Myr old Orion-OB1a/25-Ori region. The candidate was found as part of the Palomar Transient Factory (PTF) Orion project. It has a photometric transit period of 0.448413 ± 0.000040 days, and appears in both 2009 and 2010 PTF data. Follow-up low-precision radial velocity (RV) observations and adaptive optics imaging suggest that the star is not an eclipsing binary, and that it is unlikely that a background source is blended with the target and mimicking the observed transit. RV observations with the Hobby-Eberly and Keck telescopes yield an RV that has the same period as the photometric event, but is offset in phase from the transit center by ≈ – 0.22 periods. The amplitude (half range) of the RV variations is 2.4 km s –1 and is comparable with the expected RV amplitude that stellar spots could induce. The RV curve is likely dominated by stellar spot modulation and provides an upper limit to the projected companion mass of M p sin i orb ∼ Jup ; when combined with the orbital inclination, i orb , of the candidate planet from modeling of the transit light curve, we find an upper limit on the mass of the planetary candidate of M p ∼ Jup . This limit implies that the planet is orbiting close to, if not inside, its Roche limiting orbital radius, so that it may be undergoing active mass loss and evaporation.

  8. THE PTF ORION PROJECT: A POSSIBLE PLANET TRANSITING A T-TAURI STAR

    Energy Technology Data Exchange (ETDEWEB)

    Van Eyken, Julian C.; Ciardi, David R.; Von Braun, Kaspar; Kane, Stephen R.; Plavchan, Peter; Akeson, Rachel L.; Beichman, Charles A.; Gelino, Dawn M. [NASA Exoplanet Science Institute, California Institute of Technology, 770 South Wilson Avenue, M/S 100-22, Pasadena, CA 91125 (United States); Bender, Chad F.; Mahadevan, Suvrath [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Brown, Timothy M.; Fulton, Benjamin J.; Shporer, Avi [Las Cumbres Observatory Global Telescope, Goleta, CA 93117 (United States); Crepp, Justin R. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Howard, Andrew W.; Marcy, Geoffrey W. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Howell, Steve B. [NASA Ames Research Center, M/S 244-30, Moffett Field, CA 94035 (United States); Szkody, Paula [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Boden, Andrew F. [Caltech Optical Observatories, California Institute of Technology, Pasadena, CA 91125 (United States); Hoard, D. W., E-mail: vaneyken@ipac.caltech.edu [Spitzer Science Center, M/S 220-6, California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA 91125 (United States); and others

    2012-08-10

    We report observations of a possible young transiting planet orbiting a previously known weak-lined T-Tauri star in the 7-10 Myr old Orion-OB1a/25-Ori region. The candidate was found as part of the Palomar Transient Factory (PTF) Orion project. It has a photometric transit period of 0.448413 {+-} 0.000040 days, and appears in both 2009 and 2010 PTF data. Follow-up low-precision radial velocity (RV) observations and adaptive optics imaging suggest that the star is not an eclipsing binary, and that it is unlikely that a background source is blended with the target and mimicking the observed transit. RV observations with the Hobby-Eberly and Keck telescopes yield an RV that has the same period as the photometric event, but is offset in phase from the transit center by Almost-Equal-To - 0.22 periods. The amplitude (half range) of the RV variations is 2.4 km s{sup -1} and is comparable with the expected RV amplitude that stellar spots could induce. The RV curve is likely dominated by stellar spot modulation and provides an upper limit to the projected companion mass of M{sub p}sin i{sub orb} {approx}< 4.8 {+-} 1.2 M{sub Jup}; when combined with the orbital inclination, i{sub orb}, of the candidate planet from modeling of the transit light curve, we find an upper limit on the mass of the planetary candidate of M{sub p} {approx}< 5.5 {+-} 1.4 M{sub Jup}. This limit implies that the planet is orbiting close to, if not inside, its Roche limiting orbital radius, so that it may be undergoing active mass loss and evaporation.

  9. Detection of a Type IIn Supernova in Optical Follow-up Observations of IceCube Neutrino Events

    OpenAIRE

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.

    2015-01-01

    The IceCube neutrino observatory pursues a follow-up program selecting interesting neutrino events in real-time and issuing alerts for electromagnetic follow-up observations. In 2012 March, the most significant neutrino alert during the first three years of operation was issued by IceCube. In the follow-up observations performed by the Palomar Transient Factory (PTF), a Type IIn supernova (SN IIn) PTF12csy was found 0.degrees 2 away from the neutrino alert direction, with an error radius of 0...

  10. Whisker and Hillock formation on Sn, Sn-Cu and Sn-Pb electrodeposits

    International Nuclear Information System (INIS)

    Boettinger, W.J.; Johnson, C.E.; Bendersky, L.A.; Moon, K.-W.; Williams, M.E.; Stafford, G.R.

    2005-01-01

    High purity bright Sn, Sn-Cu and Sn-Pb layers, 3, 7 and 16 μm thick were electrodeposited on phosphor bronze cantilever beams in a rotating disk apparatus. Beam deflection measurements within 15 min of plating proved that all electrodeposits had in-plane compressive stress. In several days, the surfaces of the Sn-Cu deposits, which have the highest compressive stress, develop 50 μm contorted hillocks and 200 μm whiskers, pure Sn deposits develop 20 μm compact conical hillocks, and Sn-Pb deposits, which have the lowest compressive stress, remain unchanged. The differences between the initial compressive stresses for each alloy and pure Sn is due to the rapid precipitation of Cu 6 Sn 5 or Pb particles, respectively, within supersaturated Sn grains produced by electrodeposition. Over longer time, analysis of beam deflection measurements indicates that the compressive stress is augmented by the formation of Cu 6 Sn 5 on the bronze/Sn interface, while creep of the electrodeposit tends to decrease the compressive stress. Uniform creep occurs for Sn-Pb because it has an equi-axed grain structure. Localized creep in the form of hillocks and whiskers occurs for Sn and Sn-Cu because both have columnar structures. Compact hillocks form for the Sn deposits because the columnar grain boundaries are mobile. Contorted hillocks and whiskers form for the Sn-Cu deposits because the columnar grain boundary motion is impeded

  11. Premaximum observations of the type Ia SN 1990N

    International Nuclear Information System (INIS)

    Leibundgut, B.; Kirshner, R.P.; Filippenko, A.V.; Shields, J.C.; Foltz, C.B.; Phillips, M.M.; Sonneborn, G.

    1991-01-01

    Spectroscopic and photometric observations of SN 1990N were obtained at ultraviolet and optical wavelengths, beginning 14 days before maximum light. The early observations reveal important differences from spectra of SN Ia's around maximum light. Photometry and spectroscopy obtained after maximum show that SN 1990N is a typical SN Ia and that most of the observed differences are due to the early epoch of the observations. The most significant characteristics are (1) the high velocities of Ca and Si up to 22,000 km/s; (2) the presence of Co and Fe 2 weeks before maximum; and (3) the more rapid increase in the UV flux compared to the optical. The most popular models for white dwarf deflagration that have provided the standard interpretation for SN Ia's at maximum light do not reproduce the high velocities of Ca II and Si II lines observed in SN 1990N. 37 refs

  12. Growth of intermetallics between Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layered structures

    International Nuclear Information System (INIS)

    Horváth, Barbara; Illés, Balázs; Shinohara, Tadashi

    2014-01-01

    Intermetallic growth mechanisms and rates are investigated in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. An 8–10 μm thick Sn surface finish layer was electroplated onto a Cu substrate with a 1.5–2 μm thick Ni or Ag barrier layer. In order to induce intermetallic layer growth, the samples were aged in elevated temperatures: 50 °C and 125 °C. Intermetallic layer growth was checked by focused ion beam–scanning ion microscope. The microstructures and chemical compositions of the intermetallic layers were observed with a transmission electron microscope. It has been found that Ni barrier layers can effectively block the development of Cu 6 Sn 5 intermetallics. The intermetallic growth characteristics in the Sn/Cu and Sn/Ni/Cu systems are very similar. The intermetallic layer grows towards the Sn layer and forms a discrete layer. Differences were observed only in the growth gradients and surface roughness of the intermetallic layer which may explain the different tin whiskering properties. It was observed that the intermetallic layer growth mechanisms are completely different in the Ag barrier layers compared to the Ni layers. In the case of Sn/Ag/Cu systems, the Sn and Cu diffused through the Ag layer, formed Cu 6 Sn 5 intermetallics mainly at the Sn/Ag interface and consumed the Ag barrier layer. - Highlights: • Intermetallic growth was characterised in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. • Intermetallic growth rates and roughness are similar in the Sn/Cu and Sn/Ni/Cu systems. • Sn/Ni/Cu system contains the following intermetallic layer structure Sn–Ni3Sn4–Ni3Sn2–Ni3Sn–Ni. • In the case of Sn/Ag/Cu systems the Sn and Cu diffusion consumes the Ag barrier layer. • When Cu reaches the Sn/Ag interface a large amount of Cu 6 Sn 5 forms above the Ag layer

  13. Type Ibn Supernovae Show Photometric Homogeneity and Spectral Diversity at Maximum Light

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinzadeh, Griffin; Arcavi, Iair; McCully, Curtis; Howell, D. Andrew [Las Cumbres Observatory, 6740 Cortona Dr Ste 102, Goleta, CA 93117-5575 (United States); Valenti, Stefano [Department of Physics, University of California, 1 Shields Ave, Davis, CA 95616-5270 (United States); Johansson, Joel [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel); Sollerman, Jesper; Fremling, Christoffer; Karamehmetoglu, Emir [Oskar Klein Centre, Department of Astronomy, Stockholm University, Albanova University Centre, SE-106 91 Stockholm (Sweden); Pastorello, Andrea; Benetti, Stefano; Elias-Rosa, Nancy [INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Cao, Yi; Duggan, Gina; Horesh, Assaf [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Mail Code 249-17, Pasadena, CA 91125 (United States); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Clubb, Kelsey I.; Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Corsi, Alessandra [Department of Physics, Texas Tech University, Box 41051, Lubbock, TX 79409-1051 (United States); Fox, Ori D., E-mail: griffin@lco.global [Space Telescope Science Institute, 3700 San Martin Dr, Baltimore, MD 21218 (United States); and others

    2017-02-20

    Type Ibn supernovae (SNe) are a small yet intriguing class of explosions whose spectra are characterized by low-velocity helium emission lines with little to no evidence for hydrogen. The prevailing theory has been that these are the core-collapse explosions of very massive stars embedded in helium-rich circumstellar material (CSM). We report optical observations of six new SNe Ibn: PTF11rfh, PTF12ldy, iPTF14aki, iPTF15ul, SN 2015G, and iPTF15akq. This brings the sample size of such objects in the literature to 22. We also report new data, including a near-infrared spectrum, on the Type Ibn SN 2015U. In order to characterize the class as a whole, we analyze the photometric and spectroscopic properties of the full Type Ibn sample. We find that, despite the expectation that CSM interaction would generate a heterogeneous set of light curves, as seen in SNe IIn, most Type Ibn light curves are quite similar in shape, declining at rates around 0.1 mag day{sup −1} during the first month after maximum light, with a few significant exceptions. Early spectra of SNe Ibn come in at least two varieties, one that shows narrow P Cygni lines and another dominated by broader emission lines, both around maximum light, which may be an indication of differences in the state of the progenitor system at the time of explosion. Alternatively, the spectral diversity could arise from viewing-angle effects or merely from a lack of early spectroscopic coverage. Together, the relative light curve homogeneity and narrow spectral features suggest that the CSM consists of a spatially confined shell of helium surrounded by a less dense extended wind.

  14. Comparison of the electrochemical performance of mesoscopic Cu2Sb, SnSb and Sn/SnSb alloy powders

    International Nuclear Information System (INIS)

    Zhang Ge; Huang Kelong; Liu Suqin; Zhang Wei; Gong Benli

    2006-01-01

    Cu 2 Sb, SnSb and Sn/SnSb mesoscopic alloy powders were prepared by chemical reduction, respectively. The crystal structures and particle morphology of Cu 2 Sb, SnSb and Sn/SnSb were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM). The electrochemical performances of the Cu 2 Sb, SnSb and Sn/SnSb electrodes were investigated by galvanostatic charge and discharge cycling and electrochemical impedance spectroscopy (EIS). The results showed the first charge and discharge capacities of SnSb and Sn/SnSb were higher than Cu 2 Sb, but after 15 cycles, the charge capacity fading rates of Cu 2 Sb, Sn/SnSb and Sn/SnSb were 26.16%, 55.33% and 47.39%, respectively. Cu 2 Sb had a better cycle performance, and Sn/SnSb multiphase alloy was prior to pure SnSb due to the existence of excessive Sn in Sn/SnSb system

  15. SN Refsdal

    DEFF Research Database (Denmark)

    Kelly, P. L.; Brammer, G.; Selsing, J.

    2016-01-01

    (SNe), and we find strong evidence for a broad H-alpha P-Cygni profile in the HST grism spectrum at the redshift (z = 1.49) of the spiral host galaxy. SNe IIn, powered by circumstellar interaction, could provide a good match to the light curve of SN Refsdal, but the spectrum of a SN IIn would not show...... in the rest frame, provide additional evidence that supports the SN 1987A-like classification. In comparison with other examples of SN 1987A-like SNe, SN Refsdal has a blue B-V color and a high luminosity for the assumed range of potential magnifications. If SN Refsdal can be modeled as a scaled version of SN...

  16. The high-temperature modification of LuAgSn and high-pressure high-temperature experiments on DyAgSn, HoAgSn, and YbAgSn

    Energy Technology Data Exchange (ETDEWEB)

    Heying, B.; Rodewald, U.C.; Hermes, W.; Schappacher, F.M.; Riecken, J.F.; Poettgen, R. [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Heymann, G.; Huppertz, H. [Muenchen Univ. (Germany). Dept. fuer Chemie und Biochemie; Sebastian, C.P. [Max-Planck-Institut fuer Chemische Physik Fester Stoffe, Dresden (Germany)

    2008-02-15

    The high-temperature modification of LuAgSn was obtained by arc-melting an equiatomic mixture of the elements followed by quenching the melt on a water-cooled copper crucible. HT-LuAgSn crystallizes with the NdPtSb-type structure, space group P6{sub 3}mc: a = 463.5(1), c = 723.2(1) pm, wR2 = 0.0270, 151 F{sup 2}, and 11 variables. The silver and tin atoms build up two-dimensional, puckered [Ag{sub 3}Sn{sub 3}] networks (276 pm Ag-Sn) that are charge-balanced and separated by the lutetium atoms. The Ag-Sn distances between the [Ag{sub 3}Sn{sub 3}] layers of 294 pm are much longer. Single crystals of isotypic DyAgSn (a = 468.3(1), c = 734.4(1) pm, wR2 = 0.0343, 411 F{sup 2}, and 11 variables) and HoAgSn (a = 467.2(1), c = 731.7(2) pm, wR2 = 0.0318, 330 F{sup 2}, and 11 variables) were obtained from arc-melted samples. Under high-pressure (up to 12.2 GPa) and high-temperature (up to 1470 K) conditions, no transitions to a ZrNiAl-related phase have been observed for DyAgSn, HoAgSn, and YbAgSn. HT-TmAgSn shows Curie-Weiss paramagnetism with {mu}{sub eff} = 7.53(1) {mu}{sub B}/Tm atom and {theta}P = -15.0(5) K. No magnetic ordering was evident down to 3 K. HT-LuAgSn is a Pauli paramagnet. Room-temperature {sup 119}Sn Moessbauer spectra of HT-TmAgSn and HT-LuAgSn show singlet resonances with isomer shifts of 1.78(1) and 1.72(1) mm/s, respectively. (orig.)

  17. VizieR Online Data Catalog: Absorption velocities for 21 super-luminous SNe Ic (Liu+, 2017)

    Science.gov (United States)

    Liu, Y.-Q.; Modjaz, M.; Bianco, F. B.

    2018-04-01

    We have collected the spectra of all available super-luminous supernovae (SLSNe) Ic that have a date of maximum light published before April of 2016. These SLSNe Ic were mainly discovered and observed by the All-Sky Automated Survey for Supernovae (ASAS-SN), the Catalina Real-Time Transient Survey, the Dark Energy Survey (DES), the Hubble Space Telescope Cluster Supernova Survey, the Pan-STARRS1 Medium Deep Survey (PS1), the Public ESO Spectroscopic Survey of Transient Objects (PESSTO), the Intermediate Palomar Transient Factory (iPTF) as well as the Palomar Transient Factory (PTF), and the Supernova Legacy Survey (SNLS). See table 1. (2 data files).

  18. RAPIDLY RISING TRANSIENTS IN THE SUPERNOVA—SUPERLUMINOUS SUPERNOVA GAP

    Energy Technology Data Exchange (ETDEWEB)

    Arcavi, Iair; Howell, D. Andrew [Las Cumbres Observatory Global Telescope, 6740 Cortona Dr., Suite 102, Goleta, CA 93111 (United States); Wolf, William M. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Bildsten, Lars; McCully, Curtis; Valenti, Stefano [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Leloudas, Giorgos; Gal-Yam, Avishay; Katz, Boaz [Department of Particle Physics and Astrophysics, The Weizmann Institute of Science, Rehovot, 76100 (Israel); Hardin, Delphine; Astier, Pierre; Balland, Cristophe [LPNHE, CNRS-IN2P3 and University of Paris VI and VII, F-75005 Paris (France); Prajs, Szymon; Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Perley, Daniel A. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Svirski, Gilad [Racah Institute for Physics, The Hebrew University, Jerusalem 91904 (Israel); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Lidman, Chris [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); Carlberg, Ray G. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H8 (Canada); Conley, Alex, E-mail: iarcavi@lcogt.net [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309-389 (United States); and others

    2016-03-01

    We present observations of four rapidly rising (t{sub rise} ≈ 10 days) transients with peak luminosities between those of supernovae (SNe) and superluminous SNe (M{sub peak} ≈ −20)—one discovered and followed by the Palomar Transient Factory (PTF) and three by the Supernova Legacy Survey. The light curves resemble those of SN 2011kl, recently shown to be associated with an ultra-long-duration gamma-ray burst (GRB), though no GRB was seen to accompany our SNe. The rapid rise to a luminous peak places these events in a unique part of SN phase space, challenging standard SN emission mechanisms. Spectra of the PTF event formally classify it as an SN II due to broad Hα emission, but an unusual absorption feature, which can be interpreted as either high velocity Hα (though deeper than in previously known cases) or Si ii (as seen in SNe Ia), is also observed. We find that existing models of white dwarf detonations, CSM interaction, shock breakout in a wind (or steeper CSM), and magnetar spin down cannot readily explain the observations. We consider the possibility that a “Type 1.5 SN” scenario could be the origin of our events. More detailed models for these kinds of transients and more constraining observations of future such events should help to better determine their nature.

  19. Pseudomorphic GeSiSn, SiSn and Ge layers in strained heterostructures

    Science.gov (United States)

    Timofeev, V. A.; Nikiforov, A. I.; Tuktamyshev, A. R.; Mashanov, V. I.; Loshkarev, I. D.; Bloshkin, A. A.; Gutakovskii, A. K.

    2018-04-01

    The GeSiSn, SiSn layer growth mechanisms on Si(100) were investigated and the kinetic diagrams of the morphological GeSiSn, SiSn film states in the temperature range of 150 °C-450 °C at the tin content from 0% to 35% were built. The phase diagram of the superstructural change on the surface of Sn grown on Si(100) in the annealing temperature range of 0 °C-850 °C was established. The specular beam oscillations were first obtained during the SiSn film growth from 150 °C to 300 °C at the Sn content up to 35%. The transmission electron microscopy and x-ray diffractometry data confirm the crystal perfection and the pseudomorphic GeSiSn, SiSn film state, and also the presence of smooth heterointerfaces between GeSiSn or SiSn and Si. The photoluminescence for the multilayer periodic GeSiSn/Si structures in the range of 0.6-0.8 eV was detected. The blue shift with the excitation power increase is observed suggesting the presence of a type II heterostructure. The creation of tensile strained Ge films, which are pseudomorphic to the underlying GeSn layer, is confirmed by the results of the formation and analysis of the reciprocal space map in the x-ray diffractometry. The tensile strain in the Ge films reached the value in the range of 0.86%-1.5%. The GeSn buffer layer growth in the Sn content range from 8% to 12% was studied. The band structure of heterosystems based on pseudomorphic GeSiSn, SiSn and Ge layers was calculated and the valence and conduction band subband position dependences on the Sn content were built. Based on the calculation, the Sn content range in the GeSiSn, SiSn, and GeSn layers, which corresponds to the direct bandgap GeSiSn, SiSn, and Ge material, was obtained.

  20. Reference Data for the Density, Viscosity, and Surface Tension of Liquid Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn Eutectic Alloys

    Science.gov (United States)

    Dobosz, Alexandra; Gancarz, Tomasz

    2018-03-01

    The data for the physicochemical properties viscosity, density, and surface tension obtained by different experimental techniques have been analyzed for liquid Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn eutectic alloys. All experimental data sets have been categorized and described by the year of publication, the technique used to obtain the data, the purity of the samples and their compositions, the quoted uncertainty, the number of data in the data set, the form of data, and the temperature range. The proposed standard deviations of liquid eutectic Al-Zn, Ag-Sn, Bi-Sn, Cu-Sn, and Sn-Zn alloys are 0.8%, 0.1%, 0.5%, 0.2%, and 0.1% for the density, 8.7%, 4.1%, 3.6%, 5.1%, and 4.0% for viscosity, and 1.0%, 0.5%, 0.3%, N/A, and 0.4% for surface tension, respectively, at a confidence level of 95%.

  1. Supernovae 2016bdu and 2005gl, and their link with SN 2009ip-like transients: another piece of the puzzle

    DEFF Research Database (Denmark)

    Pastorello, A.; Kochanek, C. S.; Fraser, M.

    2018-01-01

    Supernova (SN) 2016bdu is an unusual transient resembling SN 2009ip. SN 2009ip-like events are characterized by a long-lasting phase of erratic variability which ends with two luminous outbursts a few weeks apart. The second outburst is significantly more luminous (about 3 mag) than the first. In...

  2. Effective conversion of irinotecan to SN-38 after intratumoral drug delivery to an intracranial murine glioma model in vivo. Laboratory investigation.

    Science.gov (United States)

    Wang, Weijun; Ghandi, Alex; Liebes, Leonard; Louie, Stan G; Hofman, Florence M; Schönthal, Axel H; Chen, Thomas C

    2011-03-01

    Irinotecan (CPT-11), a topoisomerase I inhibitor, is a cytotoxic agent with activity against malignant gliomas and other tumors. After systemic delivery, CPT-11 is converted to its active metabolite, SN-38, which displays significantly higher cytotoxic potency. However, the achievement of therapeutically effective plasma levels of CPT-11 and SN-38 is seriously complicated by variables that affect drug metabolism in the liver. Thus the capacity of CPT-11 to be converted to the active SN38 intratumorally in gliomas was addressed. For in vitro studies, 2 glioma cell lines, U87 and U251, were tested to determine the cytotoxic effects of CPT-11 and SN-38 in a dose-dependent manner. In vivo studies were performed by implanting U87 intracranially into athymic/nude mice. For a period of 2 weeks, SN-38, CPT-11, or vehicle was administered intratumorally by means of an osmotic minipump. One series of experiments measured the presence of SN-38 or CPT-11 in the tumor and surrounding brain tissues after 2 weeks' exposure to the drug. In a second series of experiments, after 2 weeks' exposure to the drug, the animals were maintained, in the absence of drug, until death. The survival curves were then calculated. The results show that the animals that had CPT-11 delivered intratumorally by the minipump expressed SN-38 in vivo. Furthermore, both CPT-11 and SN-38 accumulated at higher levels in tumor tissues compared with uninvolved brain. Intratumoral delivery of CPT-11 or SN-38 extended the average survival time of tumor-bearing animals from 22 days to 46 and 65 days, respectively. These results demonstrate that intratumorally administered CPT-11 can be effectively converted to SN-38 and this method of drug delivery is effective in extending the survival time of animals bearing malignant gliomas.

  3. HIGHLY VARIABLE EXTINCTION AND ACCRETION IN THE JET-DRIVING CLASS I-TYPE YOUNG STAR PTF 10nvg (V2492 Cyg, IRAS 20496+4354)

    Energy Technology Data Exchange (ETDEWEB)

    Hillenbrand, Lynne A.; Carpenter, John M.; Muirhead, Philip S.; Crepp, Justin R. [Astronomy Department, California Institute of Technology, Pasadena, CA 91125 (United States); Miller, Adam A.; Cenko, S. Bradley; Silverman, Jeffrey M.; Bloom, Joshua S.; Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Covey, Kevin R. [Department of Astronomy, Cornell University, 226 Space Sciences Building, Ithaca, NY 14853 (United States); Fischer, William J. [Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States)

    2013-03-15

    We report extensive new photometry and spectroscopy of the highly variable young stellar object PTF 10nvg (also known as IRAS 20496+4354 and V2492 Cyg), including optical and near-infrared time-series data as well as mid-infrared and millimeter data. Following the previously reported 2010 rise to R{sub PTF} {approx}<13.{sup m}5 and subsequent fade, during 2011 and 2012 the source underwent additional episodes of brightening, followed by several magnitude dimming events including prolonged faint states at R{sub PTF} {approx}> 20{sup m}. The observed high-amplitude variations are largely consistent with extinction changes ({Delta}A{sub V} up to 30 mag) having a {approx}220 day quasi-periodic signal. However, photometry measured when the source was near maximum brightness in mid-2010 as well as in late-2012 does not phase well to this period. Spectral evolution includes not only changes in the spectral slope but also correlated variation in the prominence of TiO/VO/CO bands and atomic line emission, as well as anti-correlated variation in forbidden line emission which, along with H{sub 2}, dominates optical and infrared spectra at faint epochs. Notably, night-to-night variations in several forbidden doublet strengths and ratios are observed. High-dispersion spectra were obtained in a variety of photometric states and reveal time-variable line profiles. Neutral and singly ionized atomic species are likely formed in an accretion flow and/or impact while the origin of zero-velocity atomic Li I {lambda}6707 in emission is unknown. Forbidden lines, including several rare species, exhibit blueshifted emission profiles and likely arise from an outflow/jet. Several of these lines are also seen spatially offset from the continuum source position, presumably in a shocked region of an extended jet. Blueshifted absorption components of the Na I D doublet, K I {lambda}{lambda}7665, 7669 doublet, and the O I 7774 triplet, as well as blueshifted absorption components seen against

  4. Isomer shifts and chemical bonding in crystalline Sn(II) and Sn(IV) compounds

    International Nuclear Information System (INIS)

    Terra, J.; Guenzburger, D.

    1991-01-01

    First-principles self-consistent Local Density calculations of the electronic structure of clusters representing Sn(II) (SnO, SnF 2 , SnS, SnSe) and Sn(IV) (SnO 2 , SnF 4 ) crystalline compounds were performed. Values of the electron density at the Sn nucleus were obtained and related to measured values of the Moessbauer Isomer Shifts reported in the literature. The nuclear parameter of 119 Sn derived was ΔR/R=(1.58±0.14)x10 -4 . The chemical bonding in the solids was analysed and related to the electron densities obtained. (author)

  5. Design of lead-free candidate alloys for high-temperature soldering based on the Au–Sn system

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hattel, Jesper Henri; Hald, John

    2010-01-01

    of the Au–Sn binary system were explored in this work. Furthermore, the effects of thermal aging on the microstructure and microhardness of these promising Au–Sn based ternary alloys were investigated. For this purpose, the candidate alloys were aged at a lower temperature, 150°C for up to 1week...

  6. States in 118Sn from 117Sn(d,p) 118Sn at 12 MeV

    International Nuclear Information System (INIS)

    Frota-Pessoa, E.

    1983-01-01

    118 Sn energy levels up to = 5.2 MeV excitation energy are studied in the reaction 117 Sn (d,p) 118 Sn. Deuterons had a bombarding energy of 12 MeV. The protons were analized by a magnetic spectrograph. The detector was nuclear emulsion and the resolution in energy about 10 KeV. The distorted-wave analysis was used to determine l values and spectroscopic strengths. Centers of gravity and the sums of reduced spectroscopic factors are presented for the levels when it was possible to determine the S' value. 66 levels of excitation energy were found which did not appear in previous 117 Sn (d,p) reactions. 40 levels were not found previously in any reaction giving 118 Sn. The results are compared with the known ones. (Author) [pt

  7. Effects of interlayer Sn-Sn lone pair interaction on the band gap of bulk and nanosheet SnO

    Science.gov (United States)

    Umezawa, Naoto; Zhou, Wei

    2015-03-01

    Effects of interlayer lone-pair interactions on the electronic structure of SnO are firstly explored by the density-functional theory. Our comprehensive study reveals that the band gap of SnO opens as increase in the interlayer Sn-Sn distance. The effect is rationalized by the character of band edges which consists of bonding and anti-bonding states from interlayer lone pair interactions. The band edges for several nanosheets and strained double-layer SnO are estimated. We conclude that the double-layer SnO is a promising material for visible-light driven photocatalyst for hydrogen evolution. This work is supported by the Japan Science and Technology Agency (JST) Precursory Research for Embryonic Science and Technology (PRESTO) program.

  8. Oxidation of Pb-Sn and Pb-Sn-In alloys

    International Nuclear Information System (INIS)

    Sluzewski, D.A.; Chang, Y.A.; Marcotte, V.C.

    1990-01-01

    Air oxidized Pb-Sn and Pb-Sn-In single phase alloys have been studied with scanning Auger microscopy. Line scans across grain boundaries combined with argon ion sputter etching revealed grain boundary oxidation. In the Pb-Sn samples, tin is preferentially oxidized with the grain boundary regions having a much higher percentage of tin oxide than the bulk surface oxide. In the Pb-Sn-In alloys, both tin and indium are preferentially oxidized with the grain boundary regions being enriched with tin and indium oxides

  9. Analyses of the Sn IX-Sn XII spectra in the EUV region

    International Nuclear Information System (INIS)

    Churilov, S S; Ryabtsev, A N

    2006-01-01

    The Sn IX-Sn XII spectra excited in a vacuum spark have been analysed in the 130-160 A wavelength region. The analysis was based on the energy parameter extrapolation in the isonuclear Sn VI-VIII and Sn XIII-XIV sequence. 266 spectral lines belonging to the 4d m -(4d m-1 4f+4p 5 4d m+1 ) (m=6-3) transition arrays were classified in the Sn IX-Sn XII spectra for the first time. All 18 level energies of the 4d 3 configuration and 39 level energies of the strongly interacting 4d 2 4f and 4p 5 4d 4 configurations were established in the Sn XII spectrum. The energy differences between the majority of the 4d m levels and about 40 levels of the 4d m-1 4f+4p 5 4d m+1 configurations were determined in each of the Sn IX, Sn X and Sn XI spectra (m=6-4). As a result, all intense lines were classified in the 130-140 A region relevant to the extreme ultraviolet (EUV) lithography. It was shown that the most of the intense lines in the 2% bandwidth at 135 A belong to the transitions in the Sn XI-Sn XIII spectra

  10. Rod-like hierarchical Sn/SnOx@C nanostructures with enhanced lithium storage properties

    Science.gov (United States)

    Yang, Juan; Chen, Sanmei; Tang, Jingjing; Tian, Hangyu; Bai, Tao; Zhou, Xiangyang

    2018-03-01

    Rod-like hierarchical Sn/SnOx@C nanostructures have been designed and synthesized via calcining resorcinol-formaldehyde (RF) resin coated Sn-based metal-organic frameworks. The rod-like hierarchical Sn/SnOx@C nanostructures are made of a great number of carbon-wrapped primary Sn/SnOx nanospheres of 100-200 nm in diameter. The as-prepared hierarchical Sn/SnOx@C nanocomposite manifests a high initial reversible capacity of 1177 mAh g-1 and remains 1001 mAh g-1 after 240 cycles at a current density of 200 mA g-1. It delivers outstanding high-rate performance with a reversible capacity of 823 mAh g-1 even at a high current density of 1000 mA g-1. The enhanced electrochemical performances of the Sn/SnOx@C electrode are mainly attributed to the synergistic effect of the unique hierarchical micro/nanostructures and the protective carbon layer.

  11. Synthesis, characterization and photocatalytic performance of SnS nanofibers and SnSe nanofibers derived from the electrospinning-made SnO{sub 2} nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Li; Li, Dan; Dong, Xiangting; Ma, Qianli; Yu, Wensheng; Wang, Xinlu; Yu, Hui; Wang, Jinxian; Liu, Guixia, E-mail: dongxiangting888@163.com [Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun (China)

    2017-11-15

    SnO{sub 2} nanofibers were fabricated by calcination of the electrospun PVP/SnCl{sub 4} composite nanofibers. For the first time, SnS nanofibers and SnSe nanofibers were successfully synthesized by double crucible sulfurization and selenidation methods via inheriting the morphology of SnO{sub 2} nanofibers used as precursors, respectively. X-ray diffraction (XRD) analysis shows SnS nanofibers and SnSe nanofibers are respectively pure orthorhombic phase with space group of Pbnm and Cmcm. Scanning electron microscope (SEM) observation indicates that the diameters of SnS nanofibers and SnSe nanofibers are respectively 140.54±12.80 nm and 96.52±14.17 nm under the 95 % confidence level. The photocatalytic activities of samples were studied by using rhodamine B (Rh B) as degradation agent. When SnS or SnSe nanofibers are employed as the photocatalysts, the respective degradation rates of Rh B solution under the ultraviolet light irradiation after 200 min irradiation are 92.55 % and 92.86 %. The photocatalytic mechanism and formation process of SnS and SnSe nanofibers are also provided. More importantly, this preparation technique is of universal significance to prepare other metal chalcogenides nanofibers. (author)

  12. Sn-In-Ag phase equilibria and Sn-In-(Ag)/Ag interfacial reactions

    International Nuclear Information System (INIS)

    Chen Sinnwen; Lee Wanyu; Hsu Chiaming; Yang Chingfeng; Hsu Hsinyun; Wu Hsinjay

    2011-01-01

    Research highlights: → Thermodynamic models of Sn-In and Sn-In-Ag are developed using the CALPHAD approach. → Reaction layer in the Sn-In-(Ag)/Ag couples at 100 deg. C is thinner than those at 25 deg. C, 50 deg. C, and 75 deg. C. → Reactions in the Sn-20 wt%In-2.8 wt%Ag/Ag couples are faster than those in the Sn-20 wt%In/Ag couples. - Abstract: Experimental verifications of the Sn-In and Sn-In-Ag phase equilibria have been conducted. The experimental measurements of phase equilibria and thermodynamic properties are used for thermodynamic modeling by the CALPHAD approach. The calculated results are in good agreement with experimental results. Interfacial reactions in the Sn-In-(Ag)/Ag couples have been examined. Both Ag 2 In and AgIn 2 phases are formed in the Sn-51.0 wt%In/Ag couples reacted at 100 and 150 deg. C, and only the Ag 2 In phase is formed when reacted at 25, 50 and 75 deg. C. Due to the different growth rates of different reaction phases, the reaction layer at 100 deg. C is thinner than those at 25 deg. C, 50 deg. C, and 75 deg. C. In the Sn-20.0 wt%In/Ag couples, the ζ phase is formed at 250 deg. C and ζ/AgIn 2 phases are formed at 125 deg. C. Compared with the Sn-20 wt%In/Ag couples, faster interfacial reactions are observed in the Sn-20.0 wt%In-2.8 wt%Ag/Ag couples, and minor Ag addition to Sn-20 wt%In solder increases the growth rates of the reaction phases.

  13. Magnetic behaviour of cerium in Ce2 Sn5 and Ce3 Sn7, surstructures of Ce Sn3

    International Nuclear Information System (INIS)

    Stunault, A.

    1988-07-01

    The compound studied, Ce 2 Sn 5 and Ce 3 Sn 7 are both orthorhombic, surstructure of cubic Ce Sn 3 . Magnetic susceptibility measurements show in both compounds an antiferromagnetic order at low temperature and magnetization shows a high anisotropy. Magnetization densities are determined by polarized neutron diffraction. The cerium site which has two Ce atoms as nearest neighbourgs carries all the magnetism in both structures. For Ce 2 Sn 5 moments are directed as the high magnetization axis and structure is modulated. Ce 3 Sn 7 presents a simple antiferromagnetic order but moment are directed as low magnetization axis. Various transitions towards a ferromagnetic order are presented. Results are interpreted by measuring the difference between energy levels of crystalline field. A model of crystalline field and isotrope exchange agrees well with Ce 3 Sn 7 , but for Ce 2 Sn 7 it is necessary to reduce the magnetic moment which is typical of the Kondo effect [fr

  14. Ethanol electrooxidation on Pt-Sn and Pt-Sn-W bulk alloys

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, D.M. dos; Hahn, F.; Leger, J.M.; Kokoh, K.B. [Universite de Poitiers, Poitiers Cedex (France). Centre National de la Recherche Scientifique (CNRS). Equipe Electrocatalyse; Tremiliosi-Filho, G. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Inst. de Quimica

    2008-07-01

    Ethanol oxidation has been studied on Pt-Sn and Pt-Sn-W electrodes prepared in an arc-melting furnace. Different electrochemical techniques like cyclic voltammetry and chronoamperometry were used to evaluate the catalytic activity of these materials. The electro-oxidation process was also investigated by in situ infrared reflectance spectroscopy in order to determine adsorbed intermediates and reaction products. Experimental results indicated that Pt-Sn and Pt-Sn-W alloys are able to oxidize ethanol mainly to acetaldehyde and acetic acid. Adsorbed CO was also detected, demonstrating the viability of splitting the C-C bond in the ethanol molecule during the oxidation process. The adsorbed CO was further oxidized to CO{sub 2}.This reaction product was clearly detected by SNIFTIRS. Pt-Sn-W catalyst showed a better electrochemical performance than Pt-Sn that, in it turn, is better than Pt-alone. (author)

  15. Ultraviolet emission from low resistance Cu2SnS3/SnO2 and CuInS2/Sn:In2O3 nanowires

    Directory of Open Access Journals (Sweden)

    E. Karageorgou

    2014-11-01

    Full Text Available SnO2 and Sn:In2O3 nanowires were grown on Si(001, and p-n junctions were fabricated in contact with p-type Cu2S which exhibited rectifying current–voltage characteristics. Core-shell Cu2SnS3/SnO2 and CuInS2/Sn:In2O3 nanowires were obtained by depositing copper and post-growth processing under H2S between 100 and 500 °C. These consist mainly of tetragonal rutile SnO2 and cubic bixbyite In2O3. We observe photoluminescence at 3.65 eV corresponding to band edge emission from SnO2 quantum dots in the Cu2SnS3/SnO2 nanowires due to electrostatic confinement. The Cu2SnS3/SnO2 nanowires assemblies had resistances of 100 Ω similar to CuInS2/In2O3 nanowires which exhibited photoluminescence at 3.0 eV.

  16. Low-temperature processed SnO{sub 2} compact layer for efficient mesostructure perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Jinxia; Xiong, Qiu; Feng, Bingjie; Xu, Yang; Zhang, Jun; Wang, Hao, E-mail: nanoguy@126.com

    2017-01-01

    Highlights: • Low-temperature processed 70 nm cl-SnO{sub 2} device exhibits maximum PCE. • Champion PSC after SnCl{sub 4} treatment acquires PCE of 15.07%. • Cl-SnO{sub 2} PSC via SnCl{sub 4} treatment exhibits superior stability to cl-TiO{sub 2} based PSC. - Abstract: SnO{sub 2} nanoparticle film has been synthesized via low- temperature (∼180 °C) solution-processing and proposed as compact layer in mesostructure perovskite-type solar cell (PSC). Low-temperature processed SnO{sub 2} compact layer (cl-SnO{sub 2}) brings perfect crystal-lattice and band-gap matching between electron selective layer and FTO substrate and close interface-contact between cl-SnO{sub 2} and mesoporous TiO{sub 2} layer (mp-TiO{sub 2}), which contributes to suppressing carrier recombination and optimizing device performance. In varied thickness cells, 70 nm cl-SnO{sub 2} device exhibits maximum power conversion efficiency (PCE). In order to further restrain photoelectron recombination and improve the photovoltaic performance, the surface modification of cl-SnO{sub 2} by SnCl{sub 4} aqueous solution has been carried out. The recombination behavior in the cell interior is greatly retarded via SnCl{sub 4} treatment and champion PSC after SnCl{sub 4} treatment has acquire PCE of 15.07%, which is higher than PCE of cl-TiO{sub 2} based PSC fabricated with same mp-TiO{sub 2} and perovskite procedures (13.3%). The stability of cl-SnO{sub 2} PSC via SnCl{sub 4} treatment has also been measured and its PCE reduces to 13.0% after 2 weeks in air.

  17. Phase diagram of SnTe-CdSe cross-section of SnTe+CdSe reversible SnSe+CdTe ternary reciprocal system

    International Nuclear Information System (INIS)

    Dubrovin, I.V.; Budennaya, L.D.; Mizetskaya, I.B.; Sharkina, Eh.V.

    1986-01-01

    Phase equilibrium diagram of SnTe-CdSe cross-section of Sn, Cd long Te, Se ternary reciprocal system is investigated using the methods of differential thermal, X-ray phase, and microstructural analyses. Maximum length of solid solutions on the base of SnTe corresponds to approximately 14 mol.% at 1050 K and approximately 3 mol.% of CdSe at 670 K. Region of solid solutions on the base of CdSe corresponds to less than 1 mol.% of SnTe at room temperature. SnTe-CdSe cross-section is not a quasibinar one. Equilibrium is shifted to the left in the SnTe+CdSe reversible SnSe+CdTe reciprocal system

  18. 70 °C synthesis of high-Sn content (25%) GeSn on insulator by Sn-induced crystallization of amorphous Ge

    Energy Technology Data Exchange (ETDEWEB)

    Toko, K., E-mail: toko@bk.tsukuba.ac.jp; Oya, N.; Suemasu, T. [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Saitoh, N.; Yoshizawa, N. [Electron Microscope Facility, TIA, AIST, 16-1 Onogawa, Tsukuba 305-8569 (Japan)

    2015-02-23

    Polycrystalline GeSn thin films are fabricated on insulating substrates at low temperatures by using Sn-induced crystallization of amorphous Ge (a-Ge). The Sn layer stacked on the a-Ge layer (100-nm thickness each) had two roles: lowering the crystallization temperature of a-Ge and composing GeSn. Slow annealing at an extremely low temperature of 70 °C allowed for a large-grained (350 nm) GeSn layer with a lattice constant of 0.590 nm, corresponding to a Sn composition exceeding 25%. The present investigation paves the way for advanced electronic optical devices integrated on a flexible plastic substrate as well as on a Si platform.

  19. Controlling the antibacterial activity of CuSn thin films by varying the contents of Sn

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yujin; Park, Juyun; Kim, Dong-Woo; Kim, Hakjun; Kang, Yong-Cheol, E-mail: yckang@pknu.ac.kr

    2016-12-15

    Highlights: • We deposit CuSn thin films on a Si substrate with various Cu/Sn ratio. • Antibacterial activities of CuSn thin films increased as the ratio of Cu and the contact time increased. • XPS was utilized to assign the chemical environment of CuSn thin films before and after antibacterial test. - Abstract: We investigated antibacterial activity of CuSn thin films against Gram positive Staphylococcus aureus (S. aureus). CuSn thin films with different Cu to Sn ratios were deposited on Si(100) by radio frequency (RF) magnetron sputtering method using Cu and Sn metal anodes. The film thickness was fixed at 200 nm by varying the sputtering time and RF power on the metal targets. The antibacterial test was conducted in various conditions such as different contact times and Cu to Sn ratios in the CuSn films. The antibacterial activities of CuSn thin films increased as the ratio of Cu and the contact time between the film and bacteria suspension increased execpt in the case of CuSn-83. The oxidation states of Cu and Sn and the chemical composition of CuSn thin films before and after the antibacterial test were investigated by X-ray photoelectron spectroscopy (XPS). When the contact time was fixed, the Cu species was further oxidized as the RF power on Cu target increased. The intensity of Sn 3d decreased with increasing Cu ratio. When the sample was fixed, the peak intensity of Sn 3d decreased as the contact time increased due to the permeation of Sn into the cell.

  20. Spectral and ion emission features of laser-produced Sn and SnO2 plasmas

    Science.gov (United States)

    Hui, Lan; Xin-Bing, Wang; Du-Luo, Zuo

    2016-03-01

    We have made a detailed comparison of the atomic and ionic debris, as well as the emission features of Sn and SnO2 plasmas under identical experimental conditions. Planar slabs of pure metal Sn and ceramic SnO2 are irradiated with 1.06 μm, 8 ns Nd:YAG laser pulses. Fast photography employing an intensified charge coupled device (ICCD), optical emission spectroscopy (OES), and optical time of flight emission spectroscopy are used as diagnostic tools. Our results show that the Sn plasma provides a higher extreme ultraviolet (EUV) conversion efficiency (CE) than the SnO2 plasma. However, the kinetic energies of Sn ions are relatively low compared with those of SnO2. OES studies show that the Sn plasma parameters (electron temperature and density) are lower compared to those of the SnO2 plasma. Furthermore, we also give the effects of the vacuum degree and the laser pulse energy on the plasma parameters. Project supported by the National Natural Science Foundation of China (Grant No. 11304235) and the Director Fund of WNLO, China.

  1. Two transitional type Ia supernovae located in the Fornax cluster member NGC 1404: SN 2007on and SN 2011iv

    Science.gov (United States)

    Gall, C.; Stritzinger, M. D.; Ashall, C.; Baron, E.; Burns, C. R.; Hoeflich, P.; Hsiao, E. Y.; Mazzali, P. A.; Phillips, M. M.; Filippenko, A. V.; Anderson, J. P.; Benetti, S.; Brown, P. J.; Campillay, A.; Challis, P.; Contreras, C.; Elias de la Rosa, N.; Folatelli, G.; Foley, R. J.; Fraser, M.; Holmbo, S.; Marion, G. H.; Morrell, N.; Pan, Y.-C.; Pignata, G.; Suntzeff, N. B.; Taddia, F.; Robledo, S. Torres; Valenti, S.

    2018-03-01

    We present an analysis of ultraviolet (UV) to near-infrared observations of the fast-declining Type Ia supernovae (SNe Ia) 2007on and 2011iv, hosted by the Fornax cluster member NGC 1404. The B-band light curves of SN 2007on and SN 2011iv are characterised by Δm15 (B) decline-rate values of 1.96 mag and 1.77 mag, respectively. Although they have similar decline rates, their peak B- and H-band magnitudes differ by 0.60 mag and 0.35 mag, respectively. After correcting for the luminosity vs. decline rate and the luminosity vs. colour relations, the peak B-band and H-band light curves provide distances that differ by 14% and 9%, respectively. These findings serve as a cautionary tale for the use of transitional SNe Ia located in early-type hosts in the quest to measure cosmological parameters. Interestingly, even though SN 2011iv is brighter and bluer at early times, by three weeks past maximum and extending over several months, its B - V colour is 0.12 mag redder than that of SN 2007on. To reconcile this unusual behaviour, we turn to guidance from a suite of spherical one-dimensional Chandrasekhar-mass delayed-detonation explosion models. In this context, 56Ni production depends on both the so-called transition density and the central density of the progenitor white dwarf. To first order, the transition density drives the luminosity-width relation, while the central density is an important second-order parameter. Within this context, the differences in the B - V colour evolution along the Lira regime suggest that the progenitor of SN 2011iv had a higher central density than SN 2007on. The photometry tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A58

  2. Fabrication of textured SnO2 transparent conductive films using self-assembled Sn nanospheres

    Science.gov (United States)

    Fukumoto, Michitaka; Nakao, Shoichiro; Hirose, Yasushi; Hasegawa, Tetsuya

    2018-06-01

    We present a novel method to fabricate textured surfaces on transparent conductive SnO2 films by processing substrates through a bottom-up technique with potential for industrially scalable production. The substrate processing consists of three steps: deposition of precursor Sn films on glass substrates, formation of a self-assembled Sn nanosphere layer with reductive annealing, and conversion of Sn to SnO2 by oxidative annealing. Ta-doped SnO2 films conformally deposited on the self-assembled nanospherical SnO2 templates exhibited attractive optical and electrical properties, namely, enhanced haze values and low sheet resistances, for applications as transparent electrodes in photovoltaics.

  3. Ordered CoSn-type ternary phases in Co3Sn3-xGex

    DEFF Research Database (Denmark)

    Allred, Jared M.; Jia, Shuang; Bremholm, Martin

    2012-01-01

    . By taking advantage of the chemical differences between the two crystallographically inequivalent Sn sites in the structure, we observe ordered ternary phases, nominally Co3SnGe2 and Co3Sn2Ge. The electron count and unit cell configuration remain unchanged from CoSn; these observations thus help to clarify...

  4. Growth of highly textured SnS on mica using an SnSe buffer layer

    International Nuclear Information System (INIS)

    Wang, S.F.; Fong, W.K.; Wang, W.; Surya, C.

    2014-01-01

    We report the growth of SnS thin films on mica substrates by molecular beam epitaxy. Excellent 2D layered structure and strong (001) texture were observed with a record low rocking curve full width at half maximum of ∼ 0.101° for the SnS(004) diffraction. An interface model is used to investigate the nucleation of SnS on mica which indicates the co-existence of six pairs of lateral growth orientations and is in excellent agreement with the experimental Φ-scan measurements indicating 12 peaks separated by 30° from each other. To control the lateral growth of the SnS epilayers we investigate the utilization of a thin SnSe buffer layer deposited on the mica substrate prior to the growth of the SnS thin film. The excellent lattice match between SnSe and mica enhances the alignment of the nucleation of SnS and suppresses the minor lateral orientations along the mica[110] direction and its orthogonal axis. Detailed low-frequency noise measurement was performed to characterize the trap density in the films and our results clearly demonstrate substantial reduction in the density of the localized states in the SnS epilayer with the use of an SnSe buffer layer. - Highlights: • A record low rocking curve FWHM for deposited SnS on mica • Investigation of the nucleation of SnS on mica using the interface model • Investigation of nucleation mechanism by phi-scan measurement • Grain boundary formation from crystallites of various nucleation orientations • Suppression of nucleation orientations using an SnSe buffer layer

  5. Electrical and optical properties of SnEuTe and SnSrTe films

    Science.gov (United States)

    Ishida, Akihiro; Tsuchiya, Takuro; Yamada, Tomohiro; Cao, Daoshe; Takaoka, Sadao; Rahim, Mohamed; Felder, Ferdinand; Zogg, Hans

    2010-06-01

    The SnTe, Sn1-xEuxTe and Sn1-xSrxTe (x<0.06) films were prepared by hot wall epitaxy. The ternary alloy films prepared in cation rich condition had hole concentration around 1×1019 cm-3 with high mobility exceeding 2000 cm2/V s at room temperature. Optical transmission spectra were also measured in the temperature range from 100 to 400 K and compared with theoretical calculations. Optical transmission spectra of the SnTe were simulated successfully assuming bumped band edge structures. A band inversion model was proposed for the Sn1-xEuxTe and Sn1-xSrxTe systems, and the optical transmission spectra were also simulated successfully assuming the band inversion model.

  6. Laser soldering of Sn-Ag-Cu and Sn-Zn-Bi lead-free solder pastes

    Science.gov (United States)

    Takahashi, Junichi; Nakahara, Sumio; Hisada, Shigeyoshi; Fujita, Takeyoshi

    2004-10-01

    It has reported that a waste of an electronics substrate including lead and its compound such as 63Sn-37Pb has polluted the environment with acid rain. For that environment problem the development of lead-free solder alloys has been promoted in order to find out the substitute for Sn-Pb solders in the United States, Europe, and Japan. In a present electronics industry, typical alloys have narrowed down to Sn-Ag-Cu and Sn-Zn lead-free solder. In this study, solderability of Pb-free solder that are Sn-Ag-Cu and Sn-Zn-Bi alloy was studied on soldering using YAG (yttrium aluminum garnet) laser and diode laser. Experiments were peformed in order to determine the range of soldering parameters for obtaining an appropriate wettability based on a visual inspection. Joining strength of surface mounting chip components soldered on PCB (printed circuit board) was tested on application thickness of solder paste (0.2, 0.3, and 0.4 mm). In addition, joining strength characteristics of eutectic Sn-Pb alloy and under different power density were examined. As a result, solderability of Sn-Ag-Cu (Pb-free) solder paste are equivalent to that of coventional Sn-Pb solder paste, and are superior to that of Sn-Zn-Bi solder paste in the laser soldering method.

  7. SUPER-LUMINOUS TYPE Ic SUPERNOVAE: CATCHING A MAGNETAR BY THE TAIL

    International Nuclear Information System (INIS)

    Inserra, C.; Smartt, S. J.; Jerkstrand, A.; Fraser, M.; Wright, D.; Smith, K.; Chen, T.-W.; Kotak, R.; Nicholl, M.; Valenti, S.; Pastorello, A.; Benetti, S.; Bresolin, F.; Kudritzki, R. P.; Burgett, W. S.; Chambers, K. C.; Flewelling, H.; Botticella, M. T.; Ergon, M.; Fynbo, J. P. U.

    2013-01-01

    We report extensive observational data for five of the lowest redshift Super-Luminous Type Ic Supernovae (SL-SNe Ic) discovered to date, namely, PTF10hgi, SN2011ke, PTF11rks, SN2011kf, and SN2012il. Photometric imaging of the transients at +50 to +230 days after peak combined with host galaxy subtraction reveals a luminous tail phase for four of these SL-SNe. A high-resolution, optical, and near-infrared spectrum from xshooter provides detection of a broad He I λ10830 emission line in the spectrum (+50 days) of SN2012il, revealing that at least some SL-SNe Ic are not completely helium-free. At first sight, the tail luminosity decline rates that we measure are consistent with the radioactive decay of 56 Co, and would require 1-4 M ☉ of 56 Ni to produce the luminosity. These 56 Ni masses cannot be made consistent with the short diffusion times at peak, and indeed are insufficient to power the peak luminosity. We instead favor energy deposition by newborn magnetars as the power source for these objects. A semi-analytical diffusion model with energy input from the spin-down of a magnetar reproduces the extensive light curve data well. The model predictions of ejecta velocities and temperatures which are required are in reasonable agreement with those determined from our observations. We derive magnetar energies of 0.4 ∼ 51 erg) ∼ ej (M ☉ ) ∼< 8.6. The sample of five SL-SNe Ic presented here, combined with SN 2010gx—the best sampled SL-SNe Ic so far—points toward an explosion driven by a magnetar as a viable explanation for all SL-SNe Ic.

  8. SN 2009E

    DEFF Research Database (Denmark)

    Pastorello...[], A.; Pumo, M.L.; Navasardyan, H.

    2012-01-01

    . In this paper we investigate the properties of SN 2009E, which exploded in a relatively nearby spiral galaxy (NGC 4141) and that is probably the faintest 1987A-like supernova discovered so far. We also attempt to characterize this subgroup of core-collapse supernovae with the help of the literature and present...... observations which started about 2 months after the supernova explosion, highlight significant differences between SN 2009E and the prototypical SN 1987A. Modelling the data of SN 2009E allows us to constrain the explosion parameters and the properties of the progenitor star, and compare the inferred estimates...... 2009E ejected about 0.04 M⊙ of 56Ni, which is the smallest 56Ni mass in our sample of 1987A-like events. Modelling the observations with a radiation hydrodynamics code, we infer for SN 2009E a kinetic plus thermal energy of about 0.6 foe, an initial radius of ~7 × 1012 cm and an ejected mass of ~19 M...

  9. SPECTROSCOPIC OBSERVATIONS OF SN 2012fr: A LUMINOUS, NORMAL TYPE Ia SUPERNOVA WITH EARLY HIGH-VELOCITY FEATURES AND A LATE VELOCITY PLATEAU

    International Nuclear Information System (INIS)

    Childress, M. J.; Scalzo, R. A.; Sim, S. A.; Tucker, B. E.; Yuan, F.; Schmidt, B. P.; Cenko, S. B.; Filippenko, A. V.; Silverman, J. M.; Contreras, C.; Hsiao, E. Y.; Phillips, M.; Morrell, N.; Jha, S. W.; McCully, C.; Anderson, J. P.; De Jaeger, T.; Forster, F.; Benetti, S.; Bufano, F.

    2013-01-01

    We present 65 optical spectra of the Type Ia SN 2012fr, 33 of which were obtained before maximum light. At early times, SN 2012fr shows clear evidence of a high-velocity feature (HVF) in the Si II λ6355 line that can be cleanly decoupled from the lower velocity ''photospheric'' component. This Si II λ6355 HVF fades by phase –5; subsequently, the photospheric component exhibits a very narrow velocity width and remains at a nearly constant velocity of ∼12,000 km s –1 until at least five weeks after maximum brightness. The Ca II infrared triplet exhibits similar evidence for both a photospheric component at v ≈ 12,000 km s –1 with narrow line width and long velocity plateau, as well as an HVF beginning at v ≈ 31,000 km s –1 two weeks before maximum. SN 2012fr resides on the border between the ''shallow silicon'' and ''core-normal'' subclasses in the Branch et al. classification scheme, and on the border between normal and high-velocity Type Ia supernovae (SNe Ia) in the Wang et al. system. Though it is a clear member of the ''low velocity gradient'' group of SNe Ia and exhibits a very slow light-curve decline, it shows key dissimilarities with the overluminous SN 1991T or SN 1999aa subclasses of SNe Ia. SN 2012fr represents a well-observed SN Ia at the luminous end of the normal SN Ia distribution and a key transitional event between nominal spectroscopic subclasses of SNe Ia.

  10. Efficacy of the LiSN & Learn auditory training software: randomized blinded controlled study

    Directory of Open Access Journals (Sweden)

    Sharon Cameron

    2012-09-01

    Full Text Available Children with a spatial processing disorder (SPD require a more favorable signal-to-noise ratio in the classroom because they have difficulty perceiving sound source location cues. Previous research has shown that a novel training program - LiSN & Learn - employing spatialized sound, overcomes this deficit. Here we investigate whether improvements in spatial processing ability are specific to the LiSN & Learn training program. Participants were ten children (aged between 6;0 [years;months] and 9;9 with normal peripheral hearing who were diagnosed as having SPD using the Listening in Spatialized Noise - Sentences test (LiSN-S. In a blinded controlled study, the participants were randomly allocated to train with either the LiSN & Learn or another auditory training program - Earobics - for approximately 15 min per day for twelve weeks. There was a significant improvement post-training on the conditions of the LiSN-S that evaluate spatial processing ability for the LiSN & Learn group (P=0.03 to 0.0008, η 2=0.75 to 0.95, n=5, but not for the Earobics group (P=0.5 to 0.7, η 2=0.1 to 0.04, n=5. Results from questionnaires completed by the participants and their parents and teachers revealed improvements in real-world listening performance post-training were greater in the LiSN & Learn group than the Earobics group. LiSN & Learn training improved binaural processing ability in children with SPD, enhancing their ability to understand speech in noise. Exposure to non-spatialized auditory training does not produce similar outcomes, emphasizing the importance of deficit-specific remediation.

  11. Preparation, deformation, and failure of functional Al-Sn and Al-Sn-Pb nanocrystalline alloys

    Science.gov (United States)

    Noskova, N. I.; Vil'Danova, N. F.; Filippov, Yu. I.; Churbaev, R. V.; Pereturina, I. A.; Korshunov, L. G.; Korznikov, A. V.

    2006-12-01

    Changes in the structure, hardness, mechanical properties, and friction coefficient of Al-30% Sn, Al-15% Sn-25% Pb, and Al-5% Sn-35% Pb (wt %) alloys subjected to severe plastic deformation by equal-channel angular pressing (with a force of 40 tonne) and by shear at a pressure of 5 GPa have been studied. The transition into the nanocrystalline state was shown to occur at different degrees of plastic deformation. The hardness exhibits nonmonotonic variations, namely, first it increases and subsequently decreases. The friction coefficient of the Al-30% Sn, Al-15% Sn-25% Pb, and Al-5% Sn-35% Pb alloys quenched from the melt was found to be 0.33; the friction coefficients of these alloys in the submicrocrystalline state (after equal-channel angular pressing) equal 0.24, 0.32, and 0.35, respectively. The effect of disintegration into nano-sized powders was found to occur in the Al-15% Sn-25% Pb, and Al-5% Sn-35% Pb alloys after severe plastic deformation to ɛ = 6.4 and subsequent short-time holding.

  12. Study of neutron-deficient Sn isotopes

    International Nuclear Information System (INIS)

    Auger, G.

    1982-05-01

    The formation of neutron deficient nuclei by heavy ion reactions is investigated. The experimental technique is presented, and the results obtained concerning Sn et In isotopes reported: first excited states of 106 Sn, high spin states in 107 Sn and 107 In; Yrast levels of 106 Sn, 107 Sn, 108 Sn; study of neutron deficient Sn and In isotopes formed by the desintegration of the compound nucleus 112 Xe. All these results are discussed [fr

  13. Electrochemical properties of Ti-Ni-Sn materials predicted by {sup 119}Sn Mössbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ladam, A., E-mail: alix.ladam@univ-montp2.fr; Aldon, L.; Lippens, P.-E.; Olivier-Fourcade, J.; Jumas, J.-C. [Université de Montpellier, Institut Charles Gerhardt, UMR 5253 CNRS (France); Cenac-Morthe, C. [CNES, Service DCT/TV/El (France)

    2016-12-15

    The electrochemical activity of TiNiSn, TiNi {sub 2}Sn and Ti {sub 6}Sn {sub 5} compounds considered as negative electrode materials for Li-ion batteries has been predicted from the isomer shift- Hume-Rothery electronic density correlation diagram. The ternary compounds were obtained from solid-state reactions and Ti {sub 6}Sn {sub 5} by ball milling. The {sup 119}Sn Mössbauer parameters were experimentally determined and used to evaluate the Hume-Rothery electronic density [e {sub av}]. The values of [e {sub av}] are in the region of Li-rich Li-Sn alloys for Ti {sub 6}Sn {sub 5} and outside this region for the ternary compounds, suggesting that the former compound is electrochemically active but not the two latter ones. Electrochemical tests were performed for these different materials confirming this prediction. The close values of [e {sub av}] for Ti {sub 6}Sn {sub 5} and Li-rich Li-Sn alloys indicate that the observed good capacity retention could be related to small changes in the global structures during cycling.

  14. Theoretical study of electronic structures and spectroscopic properties of Ga 3Sn, GaSn 3, and their ions

    Science.gov (United States)

    Zhu, Xiaolei

    2007-01-01

    Ground and excited states of mixed gallium stannide tetramers (Ga 3Sn, Ga 3Sn +, Ga 3Sn -, GaSn 3, GaSn 3+, and GaSn 3-) are investigated employing the complete active space self-consistent-field (CASSCF), density function theory (DFT), and the coupled-cluster single and double substitution (including triple excitations) (CCSD(T)) methods. The ground states of Ga 3Sn, Ga 3Sn +, and Ga 3Sn - are found to be the 2A 1, 3B 1, and 1A 1 states in C2v symmetry with a planar quadrilateral geometry, respectively. The ground states of GaSn 3 and GaSn 3- is predicted to be the 2A 1 and 1A 1 states in C2v point group with a planar quadrilateral structure, respectively, while the ground state of GaSn 3+ is the 1A 1 state with ideal triangular pyramid C3v geometry. Equilibrium geometries, vibrational frequencies, binding energies, electron affinities, ionization energies, and other properties of Ga 3Sn and GaSn 3 are computed and discussed. The anion photoelectron spectra of Ga 3Sn - and GaSn 3- are also predicted. It is interesting to find that the amount of charge transfer between Ga and Sn 2 atoms in the 1A 1 state of GaSn 3+ greatly increases upon electron ionization from the 2A 1 state of GaSn 3, which may be caused by large geometry change. On the other hand, the results of the low-lying states of Ga 3Sn and GaSn 3 are compared with those of Ga 3Si and GaSi 3.

  15. Electro-oxidation of Ethanol on Carbon Supported PtSn and PtSnNi Catalysts

    Directory of Open Access Journals (Sweden)

    Nur Hidayati

    2016-03-01

    Full Text Available Even though platinum is known as an active electro-catalyst for ethanol oxidation at low temperatures (< 100 oC, choosing the electrode material for ethanol electro-oxidation is a crucial issue. It is due to its property which easily poisoned by a strong adsorbed species such as CO. PtSn-based electro-catalysts have been identified as better catalysts for ethanol electro-oxidation. The third material is supposed to improved binary catalysts performance. This work presents a study of the ethanol electro-oxidation on carbon supported Pt-Sn and Pt-Sn-Ni catalysts. These catalysts were prepared by alcohol reduction. Nano-particles with diameters between 2.5-5.0 nm were obtained. The peak of (220 crystalline face centred cubic (fcc Pt phase for PtSn and PtSnNi alloys was repositioned due to the presence of Sn and/or Ni in the alloy. Furthermore, the modification of Pt with Sn and SnNi improved ethanol and CO electro-oxidation. Copyright © 2016 BCREC GROUP. All rights reserved Received: 10th November 2015; Revised: 1st February 2016; Accepted: 1st February 2016 How to Cite: Hidayati, N., Scott, K. (2016. Electro-oxidation of Ethanol on Carbon Supported PtSn and PtSnNi Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 10-20. (doi:10.9767/bcrec.11.1.394.10-20 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.394.10-20

  16. CONSTRUÇÕES BINOMINAIS DO TIPO SN1 DE SN2

    Directory of Open Access Journals (Sweden)

    Karen Sampaio Braga Alonso

    2017-04-01

    Full Text Available Este artigo tem por objetivo investigar a flutuação de sentido quantidade-qualidade licenciada pelo uso de construtos binominais do tipo SN1 de SN2, como xícara de chá, no Português do Brasil.A pesquisa é baseada na perspectiva teórica da Linguística Funcional Centrada no Uso (BYBEE, 2010; BARLOW E KEMMER, 2000; TOMASELLO, 2003, TRAUGOTT, 2008 e busca descrever as propriedades morfossintáticas, semântico-pragmáticas e cognitivas dos usos das construções que favorecem uma leitura ora qualitativa ora quantitativa, no que se refere à relação entre SN1 e SN2.

  17. SnO and SnO·CoO nanocomposite as high capacity anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Das, B., E-mail: bijoy822000@gmail.com; Reddy, M.V.; Chowdari, B.V.R, E-mail: phychowd@nus.edu.sg

    2016-02-15

    Highlights: • The preparation methods are simple, low cost and can be scaled up for large production. • SnO is cheap, non-toxic and eco-friendly. • SnO shows high reversible capacity (Theoretical reversible capacity: 875 mA h g{sup −1}). • We showed high reversible capacity and columbic efficiency for SnO and SnO based composites. • We addressed the capacity degradation by introducing secondary phase (CoO and CNT etc.) - Abstract: We prepared SnO nanoparticles (SnO–S) and SnO·CoO nanocomposites (SnO·CoO–B) as anodes for lithium ion batteries (LIBs) by chemical and ball-milling approaches, respectively. They are characterized by X-ray diffraction and TEM techniques. The Li- storage performance are evaluated by galvanostatic cycling and cyclic voltammetry. The SnO–S and SnO·CoO–B showed improved cycling performance due to their finite particle size (i.e. nano-size) and presence of secondary phase (CoO). Better cycling stability is noticed for SnO·CoO–B with the expense of their reversible capacity. Also, addition of carbon nanotubes (CNT) to SnO–S further improved the cycling performance of SnO–S. When cycled at 60 mA g{sup −1}, the first-cycle reversible capacities of 635, 590 and 460 (±10) mA h g{sup −1} are noticed for SnO–S, SnO@CNT and SnO·CoO–B, respectively. The capacity fading observed are 3.7 and 1.8 mA h g{sup −1} per cycle for SnO–S and SnO@CNT, respectively; whereas 1–1.2 mA h g{sup −1} per cycle for SnO·CoO–B. All the samples show high coulombic efficiency, 96–98% in the range of 5–50 cycles.

  18. Sn powder as reducing agents and SnO2 precursors for the synthesis of SnO2-reduced graphene oxide hybrid nanoparticles.

    Science.gov (United States)

    Chen, Mingxi; Zhang, Congcong; Li, Lingzhi; Liu, Yu; Li, Xichuan; Xu, Xiaoyang; Xia, Fengling; Wang, Wei; Gao, Jianping

    2013-12-26

    A facile approach to prepare SnO2/rGO (reduced graphene oxide) hybrid nanoparticles by a direct redox reaction between graphene oxide (GO) and tin powder was developed. Since no acid was used, it is an environmentally friendly green method. The SnO2/rGO hybrid nanoparticles were characterized by ultraviolet-visible spectroscopy, Raman spectroscopy, thermogravimetric analysis, X-ray diffraction analysis, and X-ray photoelectron spectroscopy. The microstructure of the SnO2/rGO was observed with scanning electron microscopy and transmission electron microscopy. The tin powder efficiently reduced GO to rGO, and the Sn was transformed to SnO2 nanoparticles (∼45 nm) that were evenly distributed on the rGO sheets. The SnO2/rGO hybrid nanoparticles were then coated on an interdigital electrode to fabricate a humidity sensor, which have an especially good linear impedance response from 11% to 85% relative humidity.

  19. Behavior of Sn atoms in GeSn thin films during thermal annealing: Ex-situ and in-situ observations

    Science.gov (United States)

    Takase, Ryohei; Ishimaru, Manabu; Uchida, Noriyuki; Maeda, Tatsuro; Sato, Kazuhisa; Lieten, Ruben R.; Locquet, Jean-Pierre

    2016-12-01

    Thermally induced crystallization processes for amorphous GeSn thin films with Sn concentrations beyond the solubility limit of the bulk crystal Ge-Sn binary system have been examined by X-ray photoelectron spectroscopy, grazing incidence X-ray diffraction, and (scanning) transmission electron microscopy. We paid special attention to the behavior of Sn before and after recrystallization. In the as-deposited specimens, Sn atoms were homogeneously distributed in an amorphous matrix. Prior to crystallization, an amorphous-to-amorphous phase transformation associated with the rearrangement of Sn atoms was observed during heat treatment; this transformation is reversible with respect to temperature. Remarkable recrystallization occurred at temperatures above 400 °C, and Sn atoms were ejected from the crystallized GeSn matrix. The segregation of Sn became more pronounced with increasing annealing temperature, and the ejected Sn existed as a liquid phase. It was found that the molten Sn remains as a supercooled liquid below the eutectic temperature of the Ge-Sn binary system during the cooling process, and finally, β-Sn precipitates were formed at ambient temperature.

  20. A facile inexpensive route for SnS thin film solar cells with SnS{sub 2} buffer

    Energy Technology Data Exchange (ETDEWEB)

    Gedi, Sreedevi [School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Republic of Korea (Korea, Republic of); Solar Photovoltaic Laboratory, Department of Physics, Sri Venkateswasra University, Tirupati 517 502 (India); Minna Reddy, Vasudeva Reddy, E-mail: drmvasudr9@gmail.com [School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Republic of Korea (Korea, Republic of); Solar Photovoltaic Laboratory, Department of Physics, Sri Venkateswasra University, Tirupati 517 502 (India); Pejjai, Babu [School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Republic of Korea (Korea, Republic of); Solar Photovoltaic Laboratory, Department of Physics, Sri Venkateswasra University, Tirupati 517 502 (India); Jeon, Chan-Wook [School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Republic of Korea (Korea, Republic of); Park, Chinho, E-mail: chpark@ynu.ac.kr [School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Republic of Korea (Korea, Republic of); Ramakrishna Reddy, K.T., E-mail: ktrkreddy@gmail.com [Solar Photovoltaic Laboratory, Department of Physics, Sri Venkateswasra University, Tirupati 517 502 (India)

    2016-05-30

    Graphical abstract: PYS spectra of SnS/SnS{sub 2} interface and the related band diagram. - Highlights: • A low cost SnS solar cell is developed using chemical bath deposition. • We found E{sub I} & χ of SnS (5.3 eV & 4.0 eV) and SnS{sub 2} (6.9 eV & 4.1 eV) films from PYS. • Band offsets of 0.1 eV (E{sub c}) and 1.6 eV (E{sub v}) are estimated for SnS/SnS{sub 2} junction. • SnS based solar cell showed a conversion efficiency of 0.51%. - Abstract: Environment-friendly SnS based thin film solar cells with SnS{sub 2} as buffer layer were successfully fabricated from a facile inexpensive route, chemical bath deposition (CBD). Layer studies revealed that as-grown SnS and SnS{sub 2} films were polycrystalline; (1 1 1)/(0 0 1) peaks as the preferred orientation; 1.3 eV/2.8 eV as optical band gaps; and showed homogeneous microstructure with densely packed grains respectively. Ionization energy and electron affinity values were found by applying photoemission yield spectroscopy (PYS) to the CBD deposited SnS and SnS{sub 2} films for the first time. These values obtained as 5.3 eV and 4.0 eV for SnS films; 6.9 eV and 4.1 eV for SnS{sub 2} films. The band alignment of SnS/SnS{sub 2} junction showed TYPE-II heterostructure. The estimated conduction and valance band offsets were 0.1 eV and 1.6 eV respectively. The current density–voltage (J–V) measurements of the cell showed open circuit voltage (V{sub oc}) of 0.12 V, short circuit current density (J{sub sc}) of 10.87 mA cm{sup −2}, fill factor (FF) of 39% and conversion efficiency of 0.51%.

  1. The 7SK snRNP associates with the little elongation complex to promote snRNA gene expression.

    Science.gov (United States)

    Egloff, Sylvain; Vitali, Patrice; Tellier, Michael; Raffel, Raoul; Murphy, Shona; Kiss, Tamás

    2017-04-03

    The 7SK small nuclear RNP (snRNP), composed of the 7SK small nuclear RNA (snRNA), MePCE, and Larp7, regulates the mRNA elongation capacity of RNA polymerase II (RNAPII) through controlling the nuclear activity of positive transcription elongation factor b (P-TEFb). Here, we demonstrate that the human 7SK snRNP also functions as a canonical transcription factor that, in collaboration with the little elongation complex (LEC) comprising ELL, Ice1, Ice2, and ZC3H8, promotes transcription of RNAPII-specific spliceosomal snRNA and small nucleolar RNA (snoRNA) genes. The 7SK snRNA specifically associates with a fraction of RNAPII hyperphosphorylated at Ser5 and Ser7, which is a hallmark of RNAPII engaged in snRNA synthesis. Chromatin immunoprecipitation (ChIP) and chromatin isolation by RNA purification (ChIRP) experiments revealed enrichments for all components of the 7SK snRNP on RNAPII-specific sn/snoRNA genes. Depletion of 7SK snRNA or Larp7 disrupts LEC integrity, inhibits RNAPII recruitment to RNAPII-specific sn/snoRNA genes, and reduces nascent snRNA and snoRNA synthesis. Thus, through controlling both mRNA elongation and sn/snoRNA synthesis, the 7SK snRNP is a key regulator of nuclear RNA production by RNAPII. © 2017 The Authors.

  2. Effect of Sn addition on the microstructure and superelasticity in Ti-Nb-Mo-Sn alloys.

    Science.gov (United States)

    Zhang, D C; Yang, S; Wei, M; Mao, Y F; Tan, C G; Lin, J G

    2012-09-01

    Ti-7.5Nb-4Mo-xSn (x=0-4at%) alloys were developed as the biomedical materials. The effect of the Sn content on the microstructure and superelasticity of the alloys was investigated. It is found that Sn is a strong stabilizer of the β phase, which is effective in suppressing the formation of α″ and ω phases in the alloys. Moreover, the Sn addition has a significant impact on the mechanical properties of the alloys. With the increase of Sn addition, the yield stress of the alloys increase, but their elastic modulus, the fracture strength and the ductility decrease, and the deformation mode of the alloys changes from (322) twining to α″ transformation and then to slip. The Ti-7.5Nb-4Mo-1Sn and Ti-7.5Nb-4Mo-3Sn alloys exhibit a good superelasticity with a high σ(SIM) due to the relatively high athermal ω phases containing or the solution hardening at room temperature. Under the maximum strain of 5%, Ti-7.5Nb-4Mo-3Sn (at%) alloy exhibits higher super elastic stability than that of Ti-7.5Nb-4Mo-1Sn alloy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Fabrication of high crystalline SnS and SnS2 thin films, and their switching device characteristics

    Science.gov (United States)

    Choi, Hyeongsu; Lee, Jeongsu; Shin, Seokyoon; Lee, Juhyun; Lee, Seungjin; Park, Hyunwoo; Kwon, Sejin; Lee, Namgue; Bang, Minwook; Lee, Seung-Beck; Jeon, Hyeongtag

    2018-05-01

    Representative tin sulfide compounds, tin monosulfide (SnS) and tin disulfide (SnS2) are strong candidates for future nanoelectronic devices, based on non-toxicity, low cost, unique structures and optoelectronic properties. However, it is insufficient for synthesizing of tin sulfide thin films using vapor phase deposition method which is capable of fabricating reproducible device and securing high quality films, and their device characteristics. In this study, we obtained highly crystalline SnS thin films by atomic layer deposition and obtained highly crystalline SnS2 thin films by phase transition of the SnS thin films. The SnS thin film was transformed into SnS2 thin film by annealing at 450 °C for 1 h in H2S atmosphere. This phase transition was confirmed by x-ray diffractometer and x-ray photoelectron spectroscopy, and we studied the cause of the phase transition. We then compared the film characteristics of these two tin sulfide thin films and their switching device characteristics. SnS and SnS2 thin films had optical bandgaps of 1.35 and 2.70 eV, and absorption coefficients of about 105 and 104 cm‑1 in the visible region, respectively. In addition, SnS and SnS2 thin films exhibited p-type and n-type semiconductor characteristics. In the images of high resolution-transmission electron microscopy, SnS and SnS2 directly showed a highly crystalline orthorhombic and hexagonal layered structure. The field effect transistors of SnS and SnS2 thin films exhibited on–off drain current ratios of 8.8 and 2.1 × 103 and mobilities of 0.21 and 0.014 cm2 V‑1 s‑1, respectively. This difference in switching device characteristics mainly depends on the carrier concentration because it contributes to off-state conductance and mobility. The major carrier concentrations of the SnS and SnS2 thin films were 6.0 × 1016 and 8.7 × 1013 cm‑3, respectively, in this experiment.

  4. Efficacy of the LiSN & Learn Auditory Training Software: randomized blinded controlled study

    Directory of Open Access Journals (Sweden)

    Sharon Cameron

    2012-01-01

    Full Text Available Background: Children with a spatial processing disorder (SPD require a more favorable signal-to-noise ratio in the classroom because they have difficulty perceiving sound source location cues. Previous research has shown that a novel training program - LiSN & Learn - employing spatialized sound, overcomes this deficit. Here we investigate whether improvements in spatial processing ability are specific to the LiSN & Learn training program. Materials and methods: Participants were ten children (aged between 6;0 [years;months] and 9;9 with normal peripheral hearing who were diagnosed as having SPD using the Listening in Spatialized Noise – Sentences Test (LISN-S. In a blinded controlled study, the participants were randomly allocated to train with either the LiSN & Learn or another auditory training program – Earobics - for approximately 15 minutes per day for twelve weeks. Results: There was a significant improvement post-training on the conditions of the LiSN-S that evaluate spatial processing ability for the LiSN & Learn group (p=0.03 to 0.0008, η2=0.75 to 0.95, n=5, but not for the Earobics group (p=0.5 to 0.7, η2=0.1 to 0.04, n=5. Results from questionnaires completed by the participants and their parents and teachers revealed improvements in real-world listening performance post-training were greater in the LiSN & Learn group than the Earobics group. Conclusions: LiSN & Learn training improved binaural processing ability in children with SPD, enhancing their ability to understand speech in noise. Exposure to non-spatialized auditory training does not produce similar outcomes, emphasizing the importance of deficit-specific remediation.

  5. Rational design of Sn/SnO{sub 2}/porous carbon nanocomposites as anode materials for sodium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaojia [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Li, Xifei, E-mail: xfli2011@hotmail.com [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Center for Advanced Energy Materials and Devices, Xi’an University of Technology, Xi’an 710048 (China); Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071 (China); Fan, Linlin; Yu, Zhuxin; Yan, Bo; Xiong, Dongbin; Song, Xiaosheng; Li, Shiyu [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Adair, Keegan R. [Nanomaterials and Energy Lab., Department of Mechanical and Materials Engineering, Western University, London, Ontario N6A 5B9 (Canada); Li, Dejun, E-mail: dejunli@mail.tjnu.edu.cn [Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Sun, Xueliang, E-mail: xsun9@uwo.ca [Nanomaterials and Energy Lab., Department of Mechanical and Materials Engineering, Western University, London, Ontario N6A 5B9 (Canada); Tianjin International Joint Research Centre of Surface Technology for Energy Storage Materials, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China)

    2017-08-01

    Highlights: • Sn/SnO{sub 2}/porous carbon nanocomposites are rationally designed via a facile strategy. • The porous carbon mitigates the volume change and poor conductivity of Sn/SnO{sub 2}. • The nanocomposites exhibit the enhanced sodium storage performance. - Abstract: Sodium-ion batteries (SIBs) have successfully attracted considerable attention for application in energy storage, and have been proposed as an alternative to lithium ion batteries (LIBs) due to the abundance of sodium resources and low price. Sn has been deemed as a promising anode material in SIBs which holds high theoretical specific capacity of 845 mAh g{sup −1}. In this work we design nanocomposite materials consisting of porous carbon (PC) with SnO{sub 2} and Sn (Sn/SnO{sub 2}/PC) via a facile reflux method. Served as an anode material for SIBs, the Sn/SnO{sub 2}/PC nanocomposite delivers the primary discharge and charge capacities of 1148.1 and 303.0 mAh g{sup −1}, respectively. Meanwhile, it can preserve the discharge capacity approximately of 265.4 mAh g{sup −1} after 50 cycles, which is much higher than those of SnO{sub 2}/PC (138.5 mAh g{sup −1}) and PC (92.2 mAh g{sup −1}). Furthermore, the Sn/SnO{sub 2}/PC nanocomposite possesses better cycling stability with 77.8% capacity retention compared to that of SnO{sub 2}/PC (61.88%) over 50 cycles. Obviously, the Sn/SnO{sub 2}/PC composite with excellent electrochemical performance shows the great possibility of application in SIBs.

  6. Hierarchical Graphene-Encapsulated Hollow SnO2@SnS2 Nanostructures with Enhanced Lithium Storage Capability.

    Science.gov (United States)

    Xu, Wangwang; Xie, Zhiqiang; Cui, Xiaodan; Zhao, Kangning; Zhang, Lei; Dietrich, Grant; Dooley, Kerry M; Wang, Ying

    2015-10-14

    Complex hierarchical structures have received tremendous attention due to their superior properties over their constitute components. In this study, hierarchical graphene-encapsulated hollow SnO2@SnS2 nanostructures are successfully prepared by in situ sulfuration on the backbones of hollow SnO2 spheres via a simple hydrothermal method followed by a solvothermal surface modification. The as-prepared hierarchical SnO2@SnS2@rGO nanocomposite can be used as anode material in lithium ion batteries, exhibiting excellent cyclability with a capacity of 583 mAh/g after 100 electrochemical cycles at a specific current of 200 mA/g. This material shows a very low capacity fading of only 0.273% per cycle from the second to the 100th cycle, lower than the capacity degradation of bare SnO2 hollow spheres (0.830%) and single SnS2 nanosheets (0.393%). Even after being cycled at a range of specific currents varied from 100 mA/g to 2000 mA/g, hierarchical SnO2@SnS2@rGO nanocomposites maintain a reversible capacity of 664 mAh/g, which is much higher than single SnS2 nanosheets (374 mAh/g) and bare SnO2 hollow spheres (177 mAh/g). Such significantly improved electrochemical performance can be attributed to the unique hierarchical hollow structure, which not only effectively alleviates the stress resulting from the lithiation/delithiation process and maintaining structural stability during cycling but also reduces aggregation and facilitates ion transport. This work thus demonstrates the great potential of hierarchical SnO2@SnS2@rGO nanocomposites for applications as a high-performance anode material in next-generation lithium ion battery technology.

  7. In situ 119Sn Moessbauer spectroscopy used to study lithium insertion in c-Mg2Sn

    International Nuclear Information System (INIS)

    Aldon, L.; Ionica, C. M.; Lippens, P. E.; Larcher, D.; Tarascon, J.-M.; Olivier-Fourcade, J.; Jumas, J.-C.

    2006-01-01

    The electrochemical reactions of Li with c-Mg 2 Sn have been investigated by in situ Moessbauer spectroscopy of 119 Sn and X-ray diffraction. The lithiation transforms initially c-Mg 2 Sn part into Li x Mg 2 Sn alloy (x 2 MgSn ternary alloy. In situ Moessbauer spectroscopy provides valuable information on local environment of tin and swelling behavior and cracking of the particles during discharge and charge processes.

  8. iPTF SEARCH FOR AN OPTICAL COUNTERPART TO GRAVITATIONAL-WAVE TRANSIENT GW150914

    Energy Technology Data Exchange (ETDEWEB)

    Kasliwal, M. M.; Cao, Y.; Barlow, T.; Bellm, E.; Cook, D.; Duggan, G. E.; Kulkarni, S. R.; Lunnan, R. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Cenko, S. B.; Singer, L. P. [Astrophysics Science Division, NASA Goddard Space Flight Center, Code 661, Greenbelt, MD 20771 (United States); Corsi, A.; Palliyaguru, N. [Texas Tech University, Physics Department, Lubbock, TX 79409-1051 (United States); Bhalerao, V. [Inter-University Centre for Astronomy and Astrophysics (IUCAA), Post Bag 4, Ganeshkhind, Pune 411007 (India); Ferretti, R. [The Oskar Klein Centre, Department of Physics, Stockholm University, SE-106 91 Stockholm (Sweden); Frail, D. A. [National Radio Astronomy Observatory, Socorro, NM (United States); Horesh, A.; Manulis, I. [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel); Kendrick, R. [Lockheed Martin Space Systems Company, Palo Alto, CA (United States); Laher, R. [Spitzer Science Center, California Institute of Technology, M/S 314-6, Pasadena, CA 91125 (United States); Masci, F. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); and others

    2016-06-20

    The intermediate Palomar Transient Factory (iPTF) autonomously responded to and promptly tiled the error region of the first gravitational-wave event GW150914 to search for an optical counterpart. Only a small fraction of the total localized region was immediately visible in the northern night sky, due both to Sun-angle and elevation constraints. Here, we report on the transient candidates identified and rapid follow-up undertaken to determine the nature of each candidate. Even in the small area imaged of 126 deg{sup 2}, after extensive filtering, eight candidates were deemed worthy of additional follow-up. Within two hours, all eight were spectroscopically classified by the Keck II telescope. Curiously, even though such events are rare, one of our candidates was a superluminous supernova. We obtained radio data with the Jansky Very Large Array and X-ray follow-up with the Swift satellite for this transient. None of our candidates appear to be associated with the gravitational-wave trigger, which is unsurprising given that GW150914 came from the merger of two stellar-mass black holes. This end-to-end discovery and follow-up campaign bodes well for future searches in this post-detection era of gravitational waves.

  9. Stable and metastable equilibria in PbSe + SnI2=SnSe + PbI2

    International Nuclear Information System (INIS)

    Odin, I.N.; Grin'ko, V.V.; Kozlovskij, V.F.; Demidova, E.D.

    2003-01-01

    T-x-y phase diagrams of the PbSe + SnI 2 =SnSe + PbI 2 mutual system (stable states) are plotted for the first time. It is shown that melt, solid solutions on the base of components of the mutual system and phase on the base of Sn 2 SeI 4 take part in phase equilibria. Transformations in the PbSe + SnI 2 =SnSe + PbI 2 mutual system leading to crystallization of metastable polytype modifications of lead iodides and metastable ternary compound forming in PbSe-PbI 2 system are investigated for the first time [ru

  10. Band Alignments, Valence Bands, and Core Levels in the Tin Sulfides SnS, SnS2, and Sn2S3: Experiment and Theory

    OpenAIRE

    Whittles, TJ; Burton, LA; Skelton, JM; Walsh, A; Veal, TD; Dhanak, VR

    2016-01-01

    Tin sulfide solar cells show relatively poor efficiencies despite attractive photovoltaic properties, and there is difficulty in identifying separate phases, which are also known to form during Cu2ZnSnS4 depositions. We present X-ray photoemission spectroscopy (XPS) and inverse photoemission spectroscopy measurements of single crystal SnS, SnS2, and Sn2S3, with electronic-structure calculations from density functional theory (DFT). Differences in the XPS spectra of the three phases, including...

  11. Comparative study of SnS recrystallization in molten CdI{sub 2}, SnCl{sub 2}and KI

    Energy Technology Data Exchange (ETDEWEB)

    Timmo, Kristi; Kauk-Kuusik, Marit; Pilvet, Maris; Mikli, Valdek; Kaerber, Erki; Raadik, Taavi; Leinemann, Inga; Altosaar, Mare; Raudoja, Jaan [Department of Materials Science, Tallinn University of Technology, Tallinn (Estonia)

    2016-01-15

    In the present study, the recrystallization of polycrystalline SnS in different molten salts CdI{sub 2}, SnCl{sub 2} and KI as flux materials are presented. The recrystallization and growth of polycrystalline material in molten salts produces unique SnS monograin powders usable in monograin layer solar cells. XRD and Raman analysis revealed that single phase SnS powder can be obtained in KI at 740 C and in SnCl{sub 2} at 500 C. Long time heating of SnS in molten CdI{sub 2} was accompanied by chemical interaction between SnS and CdI{sub 2} that resulted in a mixture of CdS and Sn{sub 2}S{sub 3} crystals. SEM images showed that morphology of crystals can be controlled by the nature of the flux materials: needle-like Sn{sub 2}S{sub 3} together with round edged crystals of CdS in CdI{sub 2}, flat crystals of SnS with smooth surfaces in SnCl{sub 2} and well-formed SnS crystals with rounded edges in KI had been formed. The temperatures of phase transitions and/or the interactions of SnS and flux materials were determined by differential thermal analysis. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. PROTEUS-SN User Manual

    Energy Technology Data Exchange (ETDEWEB)

    Shemon, Emily R. [Argonne National Lab. (ANL), Argonne, IL (United States); Smith, Micheal A. [Argonne National Lab. (ANL), Argonne, IL (United States); Lee, Changho [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-16

    PROTEUS-SN is a three-dimensional, highly scalable, high-fidelity neutron transport code developed at Argonne National Laboratory. The code is applicable to all spectrum reactor transport calculations, particularly those in which a high degree of fidelity is needed either to represent spatial detail or to resolve solution gradients. PROTEUS-SN solves the second order formulation of the transport equation using the continuous Galerkin finite element method in space, the discrete ordinates approximation in angle, and the multigroup approximation in energy. PROTEUS-SN’s parallel methodology permits the efficient decomposition of the problem by both space and angle, permitting large problems to run efficiently on hundreds of thousands of cores. PROTEUS-SN can also be used in serial or on smaller compute clusters (10’s to 100’s of cores) for smaller homogenized problems, although it is generally more computationally expensive than traditional homogenized methodology codes. PROTEUS-SN has been used to model partially homogenized systems, where regions of interest are represented explicitly and other regions are homogenized to reduce the problem size and required computational resources. PROTEUS-SN solves forward and adjoint eigenvalue problems and permits both neutron upscattering and downscattering. An adiabatic kinetics option has recently been included for performing simple time-dependent calculations in addition to standard steady state calculations. PROTEUS-SN handles void and reflective boundary conditions. Multigroup cross sections can be generated externally using the MC2-3 fast reactor multigroup cross section generation code or internally using the cross section application programming interface (API) which can treat the subgroup or resonance table libraries. PROTEUS-SN is written in Fortran 90 and also includes C preprocessor definitions. The code links against the PETSc, METIS, HDF5, and MPICH libraries. It optionally links against the MOAB library and

  13. GeSn growth kinetics in reduced pressure chemical vapor deposition from Ge2H6 and SnCl4

    Science.gov (United States)

    Aubin, J.; Hartmann, J. M.

    2018-01-01

    We have investigated the low temperature epitaxy of high Sn content GeSn alloys in a 200 mm industrial Reduced Pressure - Chemical Vapor Deposition tool from Applied Materials. Gaseous digermane (Ge2H6) and liquid tin tetrachloride (SnCl4) were used as the Ge and Sn precursors, respectively. The impact of temperature (in the 300-350 °C range), Ge2H6 and SnCl4 mass-flows on the GeSn growth kinetics at 100 Torr has been thoroughly explored. Be it at 300 °C or 325 °C, a linear GeSn growth rate increase together with a sub-linear Sn concentration increase occurred as the SnCl4 mass-flow increased, irrespective of the Ge2H6 mass flow (fixed or varying). The Sn atoms seemed to catalyze H desorption from the surface, resulting in higher GeSn growth rates for high SnCl4 mass-flows (in the 4-21 nm min-1 range). The evolution of the Sn content x with the F (SnCl4) 2 ·/F (Ge2H6) mass-flow ratio was fitted by x2/(1 - x) = n ·F (SnCl4) 2 ·/F (Ge2H6), with n = 0.25 (325 °C) and 0.60 (300 °C). We have otherwise studied the impact of temperature, in the 300-350 °C range, on the GeSn growth kinetics. The GeSn growth rate exponentially increased with the temperature, from 15 up to 32 nm min-1. The associated activation energy was low, i.e. Ea = 10 kcal mol-1. Meanwhile, the Sn content decreased linearly as the growth temperature increased, from 15% at 300 °C down to 6% at 350 °C.

  14. HPLC method for determination of SN-38 content and SN-38 entrapment efficiency in a novel liposome-based formulation, LE-SN38.

    Science.gov (United States)

    Xuan, Tong; Zhang, J Allen; Ahmad, Imran

    2006-05-03

    A simple HPLC method was developed for quantification of SN-38, 7-ethyl-10-hydroxycamptothecin, in a novel liposome-based formulation (LE-SN38). The chromatographic separation was achieved on an Agilent Zorbax SB-C18 (4.6 mmx250 mm, 5 microm) analytical column using a mobile phase consisting of a mixture of NaH2PO4 (pH 3.1, 25 mM) and acetonitrile (50:50, v/v). SN-38 was detected at UV wavelength of 265 nm and quantitatively determined using an external calibration method. The limit of detection (LOD) and limit of quantitation (LOQ) were found to be 0.05 and 0.25 microg/mL, respectively. The individual spike recovery of SN-38 ranged from 100 to 101%. The percent of relative standard deviation (%R.S.D.) of intra-day and inter-day analyses were less than 1.6%. The method validation results confirmed that the method is specific, linear, accurate, precise, robust and sensitive for its intended use. The current method was successfully applied to the determination of SN-38 content and drug entrapment efficiency in liposome-based formulation, LE-SN38 during early stage formulation development.

  15. Aging effects on the microstructure, surface characteristics and wettability of Cu pretinned with Sn-Pb solders

    Energy Technology Data Exchange (ETDEWEB)

    Linch, Heidi Sue [Univ. of California, Berkeley, CA (United States)

    1993-11-01

    This study investigates effects of aging in air and argon at 170 C on Cu coupons which were pretinned with 75Sn-25Pb, 8Sn-92Pb, and 5Sn-95Pb solders. Coatings were applied using electroplating or hot dipping techniques. The coating thickness was controlled between 3 to 3μm and the specimens were aged for 0 hours, 2 hours, 24 hours and 2 weeks. Wetting balance tests were used to evaluate the wettability of the test specimens. Microstructural development was evaluated using X-ray diffraction, energy dispersive X-ray and Auger spectroscopy, as well as optical and scanning electron microscopy. The wetting behavior of the test specimens is interpreted with respect to observed microstructural changes and as a function of aging time, solder composition, and processing conditions.

  16. In Situ High-Resolution Transmission Electron Microscopy (TEM) Observation of Sn Nanoparticles on SnO2 Nanotubes Under Lithiation.

    Science.gov (United States)

    Cheong, Jun Young; Chang, Joon Ha; Kim, Sung Joo; Kim, Chanhoon; Seo, Hyeon Kook; Shin, Jae Won; Yuk, Jong Min; Lee, Jeong Yong; Kim, Il-Doo

    2017-12-01

    We trace Sn nanoparticles (NPs) produced from SnO2 nanotubes (NTs) during lithiation initialized by high energy e-beam irradiation. The growth dynamics of Sn NPs is visualized in liquid electrolytes by graphene liquid cell transmission electron microscopy. The observation reveals that Sn NPs grow on the surface of SnO2 NTs via coalescence and the final shape of agglomerated NPs is governed by surface energy of the Sn NPs and the interfacial energy between Sn NPs and SnO2 NTs. Our result will likely benefit more rational material design of the ideal interface for facile ion insertion.

  17. Lithium insertion mechanism in SnS2

    International Nuclear Information System (INIS)

    Lefebvre-Devos, I.; Olivier-Fourcade, J.; Jumas, J.C.; Lavela, P.

    2000-01-01

    We study lithium insertion in SnS 2 by means of 119 Sn Moessbauer spectroscopy, x-ray absorption spectroscopy at Sn L I,III , and S K edges, and theoretical electronic structures (calculated in the density-functional theory framework). An insertion mechanism is derived according to the Li amount. It shows the influence of the SnS 2 -layered structure on the Sn reduction, particularly the possibility of an intermediate oxidation state between Sn IV and Sn II , which is not observed during Li insertion in three-dimensional sulfides

  18. Sandwich-like C@SnO2/Sn/void@C hollow spheres as improved anode materials for lithium ion batteries

    Science.gov (United States)

    Wang, Huijun; Jiang, Xinya; Chai, Yaqin; Yang, Xia; Yuan, Ruo

    2018-03-01

    As lithium ion batteries (LIBs) anode, SnO2 suffers fast capacity fading due to its large volume expansion during discharge/charge process. To overcome the problem, sandwich-like C@SnO2/Sn/void@C hollow spheres (referred as C@SnO2/Sn/void@C HSs) are prepared by in-situ polymerization and carbonization, using hollow SnO2 as self-template and dopamine as carbon source. The C@SnO2/Sn/void@C HSs possesses the merits of hollow and core/void/shell structure, so that they can accommodate the volume change under discharge/charge process, shorten the transmission distance of Li ions, own more contact area for the electrolyte. Thanks to these advantages, C@SnO2/Sn/void@C HSs display excellent electrochemical performance as anode materials for LIBs, which deliver a high capacity of 786.7 mAh g-1 at the current density of 0.5 A g-1 after 60 cycles. The simple synthesis method for C@SnO2/Sn/void@C HSs with special structure will provide a promising method for preparing other anode materials for LIBs.

  19. Sn surface-enriched Pt-Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation

    KAUST Repository

    Zhu, Haibo

    2014-12-01

    A new one pot, surfactant-free, synthetic route based on the surface organometallic chemistry (SOMC) concept has been developed for the synthesis of Sn surface-enriched Pt-Sn nanoparticles. Bu3SnH selectively reacts with [Pt]-H formed in situ at the surface of Pt nanoparticles, Pt NPs, obtained by reduction of K2PtCl4 by LiB(C2H5)3H. Chemical analysis, 1H MAS and 13C CP/MAS solid-state NMR as well as two-dimensional double-quantum (DQ) and triple-quantum (TQ) experiments show that organo-tin moieties Sn(n-C4H9) are chemically linked to the surface of Pt NPs to produce, in fine, after removal of most of the n-butyl fragment, bimetallic Pt-Sn nanoparticles. The Sn(n-CH2CH2CH2CH3) groups remaining at the surface are believed to stabilize the as-synthesized Pt-Sn NPs, enabling the bimetallic NPs to be well dispersed in THF. Additionally, the Pt-Sn nanoparticles can be supported on MgAl2O4 during the synthesis of the nanoparticles. Some of the Pt-Sn/MgAl2O4 catalyst thus prepared exhibits high activity in PROX of CO and an extremely high selectivity and stability in propane dehydrogenation to propylene. The enhanced activity in propane dehydrogenation is associated with the high concentration of inactive Sn at the surface of Pt nanoparticles which ”isolates” the active Pt atoms. This conclusion is confirmed by XRD, NMR, TEM, and XPS analysis.

  20. Microstructural investigation and SnO nanodefects in spray-pyrolyzed SnO2 thin films

    DEFF Research Database (Denmark)

    Thanachayanont, Chanchana; Yordsri, Visittapong; Boothroyd, Chris

    2011-01-01

    Spray pyrolysis is one of the most cost-effective methods to prepare SnO2 films due to its ability to deposit large uniform area, low fabrication cost, simplicity and low deposition temperature. Conventionally, scanning electron microscopy (SEM) and X-Ray Diffraction (XRD) are routinely used...... diffraction (CBED). It was found that large grain-size vertically-aligned columnar SnO2 grains were formed after a few layers of small grain-size randomly oriented SnO2 grains. Moreover, CBED showed the presence of SnO nanodefects that had not been reported before and could not be detected by SEM or XRD....

  1. Fluid sensitive nanoscale switching with quantum levitation controlled by $\\alpha$-Sn/$\\beta$-Sn phase transition

    OpenAIRE

    Boström, Mathias; Dou, Maofeng; Malyi, Oleksandr I.; Parashar, Prachi; Parsons, Drew F.; Brevik, Iver; Persson, Clas

    2018-01-01

    We analyze the Lifshitz pressure between silica and tin separated by a liquid mixture of bromobenzene and chlorobenzene. We show that the phase transition from semimetallic α−Sn to metallic β−Sn can switch Lifshitz forces from repulsive to attractive. This effect is caused by the difference in dielectric functions of α−Sn and β−Sn, giving both attractive and repulsive contributions to the total Lifshitz pressure in different frequency regions controlled by the composition of the intervening l...

  2. 99mTc bone scanning agents preparation and chemical analysis of Tc(Sn)pyrophosphate, Tc(Sn)MDP and Tc(Sn)HMDP

    International Nuclear Information System (INIS)

    Kroesbergen, J.

    1986-01-01

    This thesis describes a comparison of the preparation, composition and properties of three bone scanning agents: 99m Tc(Sn)pyrophosphate, 99m Tc(Sn)MDP and 99m Tc(Sn)HMDP. This study has been performed for two reasons: First to investigate the preparation and composition of the radiopharmaceuticals as a function of experimental conditions. Together with previously reported results for 99m Tc(Sn)EHDP, obtained in a similar way, this enables to use well-defined preparations of the bone scanning agents. Secondly to gain an insight in the mechanism in which the agents behave 'in vivo'. Because the 'in vivo' process is too complicated to study directly, it seemed more appropriate to perform 'in vitro' investigations as simplifications of the 'in vivo' situation. 304 refs.; 26 figs.; 31 tabs

  3. SnSAG5 is an alternative surface antigen of Sarcocystis neurona strains that is mutually exclusive to SnSAG1.

    Science.gov (United States)

    Crowdus, Carolyn A; Marsh, Antoinette E; Saville, Willliam J; Lindsay, David S; Dubey, J P; Granstrom, David E; Howe, Daniel K

    2008-11-25

    Sarcocystis neurona is an obligate intracellular parasite that causes equine protozoal myeloencephalitis (EPM). Previous work has identified a gene family of paralogous surface antigens in S. neurona called SnSAGs. These surface proteins are immunogenic in their host animals, and are therefore candidate molecules for development of diagnostics and vaccines. However, SnSAG diversity exists in strains of S. neurona, including the absence of the major surface antigen gene SnSAG1. Instead, sequence for an alternative SnSAG has been revealed in two of the SnSAG1-deficient strains. Herein, we present data characterizing this new surface protein, which we have designated SnSAG5. The results indicated that the protein encoded by the SnSAG5 sequence is indeed a surface-associated molecule that has characteristics consistent with the other SAGs identified in S. neurona and related parasites. Importantly, Western blot analyses of a collection of S. neurona strains demonstrated that 6 of 13 parasite isolates express SnSAG5 as a dominant surface protein instead of SnSAG1. Conversely, SnSAG5 was not detected in SnSAG1-positive strains. One strain, which was isolated from the brain of a sea otter, did not express either SnSAG1 or SnSAG5. Genetic analysis with SnSAG5-specific primers confirmed the presence of the SnSAG5 gene in Western blot-positive strains, while also suggesting the presence of a novel SnSAG sequence in the SnSAG1-deficient, SnSAG5-deficient otter isolate. The findings provide further indication of S. neurona strain diversity, which has implications for diagnostic testing and development of vaccines against EPM as well as the population biology of Sarcocystis cycling in the opossum definitive host.

  4. Electronic and magnetic properties of rare earth-Sn3 compounds for 119Sn Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Sanchez, J.P.; Friedt, J.M.; Shenoy, G.K.; Percheron, A.; Achard, J.C.

    1975-01-01

    The electronic and magnetic properties of RESn 3 compounds (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Yb) have been investigated using the 23.8keV Moessbauer resonance of 119 Sn. The isomer shifts and quadrupole interactions are nearly the same in all compounds. The transferred magnetic fields and their orientation with respect to the principal electric field gradient axis at various Sn sites in the magnetically ordered state of RESn 3 (RE=Pr, Nd, Sm, Eu, Gd) have been utilized to get information about the magnetic structure. An evaluation of the transferred fields in PrSn 3 and NdSn 3 shows that the spin density at the Sn nucleus is nearly the same in both compounds [fr

  5. The tin-rich copper lithium stannides: Li3Cu6Sn4 and Li2CuSn2

    International Nuclear Information System (INIS)

    Fuertauer, Siegfried; Flandorfer, Hans; Effenberger, Herta S.

    2015-01-01

    The Sn rich ternary intermetallic compounds Li 3 Cu 6 Sn 4 (CSD-427097) and Li 2 CuSn 2 (CSD-427098) were synthesized from the pure elements by induction melting and annealing at 400 C. Structural investigations were performed by powder- and single-crystal XRD. Li 3 Cu 6 Sn 4 crystallizes in space group P6/mmm; it is structurally related to but not isotypic with MgFe 6 Ge 6 (a = 5.095(2) Aa, c = 9.524(3) Aa; wR 2 = 0.059; 239 unique F 2 -values, 17 free variables). Li 3 Cu 6 Sn 4 is characterized by two sites with a mixed Cu:Sn occupation. In contrast to all other Cu-Li-Sn compounds known so far, any mixed occupation was found for Cu-Li pairs only. In addition, one Li site is only half occupied. The second Sn rich phase is Li 2 CuSn 2 (space group I4 1 /amd, a = 4.4281(15) Aa, c = 19.416(4) Aa; wR 2 = 0.033; 213 unique F 2 -values, 12 atom free variables); it is the only phase in the Cu-Li-Sn system which is noted for full ordering. Both crystal structures exhibit 3D-networks which host Li atoms in channels. They are important for understanding the lithiation mechanism in Cu-Sn electrodes for Li-ion batteries.

  6. SN REFSDAL: CLASSIFICATION AS A LUMINOUS AND BLUE SN 1987A-LIKE TYPE II SUPERNOVA

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, P. L.; Filippenko, A. V.; Graham, M. L. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Brammer, G.; Strolger, L.-G.; Riess, A. G. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Selsing, J.; Hjorth, J.; Christensen, L. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Foley, R. J. [Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, IL 61801 (United States); Rodney, S. A. [Department of Physics and Astronomy, University of South Carolina, 712 Main St., Columbia, SC 29208 (United States); Treu, T. [University of California, Los Angeles, CA 90095 (United States); Steidel, C. C.; Strom, A.; Zitrin, A. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Schmidt, K. B.; McCully, C. [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States); Bradač, M. [University of California, Davis, 1 Shields Avenue, Davis, CA 95616 (United States); Jha, S. W. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Graur, O., E-mail: pkelly@astro.berkeley.edu [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States); and others

    2016-11-10

    We have acquired Hubble Space Telescope (HST) and Very Large Telescope near-infrared spectra and images of supernova (SN) Refsdal after its discovery as an Einstein cross in fall 2014. The HST light curve of SN Refsdal has a shape consistent with the distinctive, slowly rising light curves of SN 1987A-like SNe, and we find strong evidence for a broad H α P-Cygni profile and Na I D absorption in the HST grism spectrum at the redshift ( z = 1.49) of the spiral host galaxy. SNe IIn, largely powered by circumstellar interaction, could provide a good match to the light curve of SN Refsdal, but the spectrum of a SN IIn would not show broad and strong H α and Na I D absorption. From the grism spectrum, we measure an H α expansion velocity consistent with those of SN 1987A-like SNe at a similar phase. The luminosity, evolution, and Gaussian profile of the H α emission of the WFC3 and X-shooter spectra, separated by ∼2.5 months in the rest frame, provide additional evidence that supports the SN 1987A-like classification. In comparison with other examples of SN 1987A-like SNe, photometry of SN Refsdal favors bluer B - V and V - R colors and one of the largest luminosities for the assumed range of potential magnifications. The evolution of the light curve at late times will provide additional evidence about the potential existence of any substantial circumstellar material. Using MOSFIRE and X-shooter spectra, we estimate a subsolar host-galaxy metallicity (8.3 ± 0.1 dex and <8.4 dex, respectively) near the explosion site.

  7. Preparation of PtSnCu/C and PtSn/C electrocatalysts and activation by dealloying processes for ethanol electrooxidation; Preparacao de eletrocatalisadores PtSnCu/C e PtSn/C e ativacao por processos de dealloying para aplicacao na oxidacao eletroquuimica do etanol

    Energy Technology Data Exchange (ETDEWEB)

    Crisafulli, Rudy

    2013-06-01

    PtSnCu/C (with different Pt:Sn:Cu atomic ratios) and PtSn/C (50:50) electrocatalysts were prepared by borohydride (BR) and alcohol-reduction (AR) processes using H{sub 2}PtCl{sub 6}.6H{sub 2}O, SnCl{sub 2}.2H{sub 2}O and CuCl{sub 2}.2H{sub 2}O as metal sources, NaBH{sub 4} and ethylene glycol as reducing agents, 2-propanol and ethylene glycol/water as solvents and carbon black as support. In a further step, these electrocatalysts were activated by chemical (CD) and electrochemical (ED) dealloying processes through acid treatment and thin porous coating technique, respectively. These materials were characterized by energy dispersive X-ray, Xray diffraction, transmission electron microscopy, line scan energy dispersive Xray and cyclic voltammetry. Electrochemical studies for ethanol electro-oxidation were performed by cyclic voltammetry, chronoamperometry and in single Direct Ethanol Fuel Cell using Membrane Electrode Assembly (MEA). The anodic effluents were analysed by gas chromatography. The X-ray diffractograms of the as-synthesized electrocatalysts showed the typical face-centered cubic structure (FCC) of platinum and its alloys. After dealloying, the X-ray diffractograms showed that the Pt FCC structure was preserved. The crystallite sizes of the assynthesized electrocatalysts were in the range of <=2 nm to 3 nm and after dealloying there were no significant variations in sizes. The energy dispersive Xray analysis of the as-synthesized electrocatalysts showed a Pt:Sn and Pt:Sn:Cu atomic ratios similar to the nominal values. After chemical and electrochemical dealloying of the electrocatalysts the ranged Pt:Sn and Pt:Sn:Cu atomic ratios showed that Cu and Sn atoms were removed. However, chemical dealloying process proved to be more efficient for removing Cu and electrochemical dealloying for removing Sn. The line scan energy dispersive X-ray analysis showed that acid and electrochemical treatments were efficient to dealloying Cu and/or Sn superficial atoms of

  8. Polarographic determination of Sn (II) and total Sn in PYRO and MDP radiopharmaceutical kits

    International Nuclear Information System (INIS)

    Sebastian, Maria V.A.; Lugon, Marcelo Di M.V.; Silva, Jose L. da; Fukumori, Neuza T.O.; Pereira, Nilda P.S. de; Silva, Constancia P.G. da; Matsuda, Margareth M.N.

    2007-01-01

    A sensitive, alternative method to atom absorption spectrometry, fluorimetry or potentiometry for the evaluation of tin(II) ions (0.1- 10 mg) and total tin in radiopharmaceutical kits was investigated. Differential pulse polarography was chosen. The supporting electrolyte was H 2 SO 4 3 mol L -1 and HCl 3 mol L -1 solution. The potential was swept from -250 to -800 mV vs Ag/AgCl/saturated KCl, using a dropping mercury electrode with 1 s drop time, 50 mV s -1 scan rate, -50 mV pulse amplitude, 40 ms pulse time and 10 mV step amplitude. Pure nitrogen was used to deaerate the polarographic cell solution for 5 min, before and after each sample introduction. Oxidation of Sn(II) was made in the same sample vial by adding H 2 O 2 (hydrogen peroxide) 10 mol L -1 , at 37 deg C, in order to quantify the total Sn. The calibration curve for Sn(II) and Sn(IV) was obtained in the concentration range of 0-10 ppm from a 1000 ppm standard solution. The detection limit of Sn(II) is 0.5 ppm and for Sn(IV) is 0.6 ppm. Differential pulse polarography was performed in the pyrophosphate (PYRO) and methylenediphosphonic acid (MDP) radiopharmaceutical kits, containing 2 mg and 1 mg of SnCl 2 .2H 2 O per vial, respectively. The described method for determination of stannous ion (Sn(II)), is selective, reproducible and adequate to be used in the quality control of lyophilized reagents and it shall be performed for other cold kits produced at IPEN. (author)

  9. Internal friction behavior of liquid Bi-Sn alloys

    International Nuclear Information System (INIS)

    Wu Aiqing; Guo Lijun; Liu Changsong; Jia Erguang; Zhu Zhengang

    2005-01-01

    Pure Bi and Sn and four Bi-Sn alloys distributed on the entire concentration range were selected for internal-friction investigation over a wide temperature range. There exist two peaks in the plots of internal friction versus temperature for liquid Sn, Bi-Sn60 and Bi-Sn90 alloys, one peak being located at about 480 - bar Cand another at about 830 - bar C. Only a single internal-friction peak at about 830 - bar C occurs in liquid Bi-Sn43 (eutectic composition). No internal-friction peak appears in liquid Bi-Sn20 alloy and pure Bi. The height of the internal-friction peaks depends on the content of Sn. The present finding suggests that Sn-rich Bi-Sn alloys may inherit the internal-friction behaviors of pure Sn, whereas Bi-rich Bi-Sn alloy seems to be like pure Bi. The position of the internal-friction peaks is frequency dependent, which resembles the internal-friction feature in structure transition in solids

  10. Internal friction behavior of liquid Bi-Sn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wu Aiqing [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Guo Lijun [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Liu Changsong [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Jia Erguang [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Zhu Zhengang [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China)]. E-mail: zgzhu@issp.ac.cn

    2005-12-01

    Pure Bi and Sn and four Bi-Sn alloys distributed on the entire concentration range were selected for internal-friction investigation over a wide temperature range. There exist two peaks in the plots of internal friction versus temperature for liquid Sn, Bi-Sn60 and Bi-Sn90 alloys, one peak being located at about 480{sup -}bar Cand another at about 830{sup -}bar C. Only a single internal-friction peak at about 830{sup -}bar C occurs in liquid Bi-Sn43 (eutectic composition). No internal-friction peak appears in liquid Bi-Sn20 alloy and pure Bi. The height of the internal-friction peaks depends on the content of Sn. The present finding suggests that Sn-rich Bi-Sn alloys may inherit the internal-friction behaviors of pure Sn, whereas Bi-rich Bi-Sn alloy seems to be like pure Bi. The position of the internal-friction peaks is frequency dependent, which resembles the internal-friction feature in structure transition in solids.

  11. Phase Equilibria of the Ternary Sn-Pb-Co System at 250°C and Interfacial Reactions of Co with Sn-Pb Alloys

    Science.gov (United States)

    Wang, Chao-hong; Kuo, Chun-yi; Yang, Nian-cih

    2015-11-01

    The isothermal section of the ternary Sn-Pb-Co system at 250°C was experimentally determined through a series of the equilibrated Sn-Pb-Co alloys of various compositions. The equilibrium phases were identified on the basis of compositional analysis. For the Sn-Co intermetallic compounds (IMCs), CoSn3, CoSn2, CoSn and Co3Sn2, the Pb solubility was very limited. There exist five tie-triangle regions. The Co-Pb system involves one monotectic reaction, so the phase separation of liquid alloys near the Co-Pb side occurred prior to solidification. The immiscibility field was also determined. Additionally, interfacial reactions between Co and Sn-Pb alloys were conducted. The reaction phase for the Sn-48 at.%Pb and Sn-58 at.%Pb at 250°C was CoSn3 and CoSn2, respectively. Both of them were simultaneously formed in the Sn-53 at.%Pb/Co. The formed IMCs were closely associated to the phase equilibria relationship of the liquid-CoSn3-CoSn2 tie-triangle. Furthermore, with increasing temperatures, the phase formed in equilibrium with Sn-37 wt.%Pb was found to transit from CoSn3 to CoSn2 at 275°C. We propose a simple method of examining the phase transition temperature in the interfacial reactions to determine the boundaries of the liquid-CoSn3-CoSn2 tie-triangles at different temperatures.

  12. STRESS a SN survey at ESO

    Science.gov (United States)

    Botticella, M. T.

    We performed the Southern inTermediate Redshift ESO Supernova Search (STRESS), a survey specifically designed to measure the rate of both SNe Ia and CC SNe, in order to obtain a direct comparison of the high redshift and local rates and to investigate the dependence of the rates on specific galaxy properties, most notably their colour. We found that the type Ia SN rate, at mean redshift z = 0.3, is 0.22+0.10+0.16-0.08-0.14 h270 SNu, while the CC SN rate, at z = 0.21, is 0.82+0.31+0.300.24-0.26 h270 SNu. The quoted errors are the statistical and systematic uncertainties. With respect to the local value, the CC SN rate at z = 0.2 is higher by a factor of ˜ 2, whereas the type Ia SN rate remains almost constant. We also measured the SN rates in the red and blue galaxies and found that the SN Ia rate seems to be constant in galaxies of different colour, whereas the CC SN rate seems to peak in blue galaxies, as in the local Universe. Finally we exploited the link between SFH and SN rates to predict the evolutionary behaviour of the SN rates and compare it with the path indicated by observations.

  13. Sn whiskers removed by energy photo flashing

    International Nuclear Information System (INIS)

    Jiang, N.; Yang, M.; Novak, J.; Igor, P.; Osterman, M.

    2012-01-01

    Highlights: ► Sn whiskers were sintered by intense light flashing (Photosintering). ► Photosintering can effectively eliminate Sn whiskers. ► Photosintering would not damage electronic devices. ► Photosintering is a very promising approach to improve Sn-based electronic surface termination. - Abstract: Sn whiskers have been known to be the major issue resulting in electronic circuit shorts. In this study, we present a novel energy photo flashing approach (photosintering) to shorten and eliminate Sn whiskers. It has been found that photosintering is very effective to modify and remove Sn whiskers; only a sub-millisecond duration photosintering can amazingly get rid of over 90 vol.% of Sn whiskers. Moreover, this photosintering approach has also been proved to cause no damages to electronic devices, suggesting it is a potentially promising way to improve Sn-based electronic surface termination.

  14. Li2SnO3 derived secondary Li-Sn alloy electrode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, D.W.; Zhang, S.Q.; Jin, Y.; Yi, T.H.; Xie, S.; Chen, C.H.

    2006-01-01

    As a possible high-capacity Li-ion battery anode material, Li 2 SnO 3 was prepared via a solid-state reaction route and a sol-gel route, separately. Its electrochemical performance was tested in coin-type cells with metallic Li as the counter electrode. The results show that the sol-gel derived Li 2 SnO 3 has uniform nano-sized particles (200-300 nm) and can deliver a better reversible capacity (380 mAh/g after 50 cycles in the voltage window of 0-1 V) than that from the solid-state reaction route. The characterizations by means of galvanostatic cycling, cyclic voltammetry and ex situ X-ray diffraction indicate that the electrochemical process of the Li 2 SnO 3 lithiation proceeds with an initial structural reduction of the composite oxide into Sn-metal and Li 2 O followed by a reversible Li-Sn alloy formation in the Li 2 O matrix. Due to the buffer role of the Li 2 O matrix, the reversibility of the secondary Li-Sn alloy electrode is largely secured

  15. Improving cycle stability of SnS anode for sodium-ion batteries by limiting Sn agglomeration

    Science.gov (United States)

    Wang, Wenhui; Shi, Liang; Lan, Danni; Li, Quan

    2018-02-01

    Flower-like SnS nanostructures are obtained by a simple solvothermal method for anode applications in Na-ion batteries. We show experimental evidence of progressive Sn agglomeration and crystalline Na2S enrichment at the end of de-sodiation process of the SnS electrode, both of which contribute to the capacity decay of the electrode upon repeated cycles. By replacing the commonly adopted acetylene black conductive additive with multi-wall carbon nanotubes (MWCNT), the cycle stability of the SnS electrode is largely improved, which correlates well with the observed suppression of both Sn agglomeration and Na2S enrichment at the end of de-sodiation cycle. A full cell is assembled with the SnS/MWCNT anode and the P2-Na2/3Ni1/3Mn1/2Ti1/6O2 cathode. An initial energy density of 262 Wh/kg (normalized to the total mass of cathode and anode) is demonstrated for the full cell, which retains 71% of the first discharge capacity after 40 cycles.

  16. Interfacial Bonding Energy on the Interface between ZChSnSb/Sn Alloy Layer and Steel Body at Microscale

    Directory of Open Access Journals (Sweden)

    Jianmei Wang

    2017-09-01

    Full Text Available To investigate the performance of bonding on the interface between ZChSnSb/Sn and steel body, the interfacial bonding energy on the interface of a ZChSnSb/Sn alloy layer and the steel body with or without Sn as an intermediate layer was calculated under the same loadcase using the molecular dynamics simulation software Materials Studio by ACCELRYS, and the interfacial bonding energy under different Babbitt thicknesses was compared. The results show that the bonding energy of the interface with Sn as an intermediate layer is 10% larger than that of the interface without a Sn layer. The interfacial bonding performances of Babbitt and the steel body with Sn as an intermediate layer are better than those of an interface without a Sn layer. When the thickness of the Babbitt layer of bushing is 17.143 Å, the interfacial bonding energy reaches the maximum, and the interfacial bonding performance is optimum. These findings illustrate the bonding mechanism of the interfacial structure from the molecular level so as to ensure the good bonding properties of the interface, which provides a reference for the improvement of the bush manufacturing process from the microscopic point of view.

  17. Interfacial Bonding Energy on the Interface between ZChSnSb/Sn Alloy Layer and Steel Body at Microscale.

    Science.gov (United States)

    Wang, Jianmei; Xia, Quanzhi; Ma, Yang; Meng, Fanning; Liang, Yinan; Li, Zhixiong

    2017-09-25

    To investigate the performance of bonding on the interface between ZChSnSb/Sn and steel body, the interfacial bonding energy on the interface of a ZChSnSb/Sn alloy layer and the steel body with or without Sn as an intermediate layer was calculated under the same loadcase using the molecular dynamics simulation software Materials Studio by ACCELRYS, and the interfacial bonding energy under different Babbitt thicknesses was compared. The results show that the bonding energy of the interface with Sn as an intermediate layer is 10% larger than that of the interface without a Sn layer. The interfacial bonding performances of Babbitt and the steel body with Sn as an intermediate layer are better than those of an interface without a Sn layer. When the thickness of the Babbitt layer of bushing is 17.143 Å, the interfacial bonding energy reaches the maximum, and the interfacial bonding performance is optimum. These findings illustrate the bonding mechanism of the interfacial structure from the molecular level so as to ensure the good bonding properties of the interface, which provides a reference for the improvement of the bush manufacturing process from the microscopic point of view.

  18. Electronic structure and isomer shifts of Sn halides

    International Nuclear Information System (INIS)

    Terra, J.; Guenzburger, D.

    1988-01-01

    The all-electron first-principles Discrete Variational method was employed to study the electronic structure of SnF 4 , SnCl 4 , SnBr 4 and SnI 4 . Values of the electronic density at the Sn nucleus were derived and related to 119 Sn Isomer Shifts to obtain the nuclear constant Δ 2 >. Differences in values of ρ(o) area discussed in terms of the chemical bonding between Sn and halogen atoms. (author) [pt

  19. 195Pt and 119Sn Knight shifts of U3Pt3Sn4

    International Nuclear Information System (INIS)

    Kojima, K.; Takabatake, T.; Harada, A.; Hihara, T.

    1995-01-01

    The 195 Pt and 119 Sn Knight shifts in U 3 Pt 3 Sn 4 have been measured in the temperature range 4.2-298K. They exhibit Curie-Weiss like behaviors above about 50K and remain constant below about 10K. This suggests that the deviation of χ(T) from the modified Curie-Weiss law is an intrinsic property of U 3 Pt 3 Sn 4 . ((orig.))

  20. Solid Liquid Interdiffusion Bonding of (Pb, Sn)Te Thermoelectric Modules with Cu Electrodes Using a Thin-Film Sn Interlayer

    Science.gov (United States)

    Chuang, T. H.; Lin, H. J.; Chuang, C. H.; Yeh, W. T.; Hwang, J. D.; Chu, H. S.

    2014-12-01

    A (Pb, Sn)Te thermoelectric element plated with a Ni barrier layer and a Ag reaction layer has been joined with a Cu electrode coated with Ag and Sn thin films using a solid-liquid interdiffusion bonding method. This method allows the interfacial reaction between Ag and Sn such that Ag3Sn intermetallic compounds form at low temperature and are stable at high temperature. In this study, the bonding strength was about 6.6 MPa, and the specimens fractured along the interface between the (Pb, Sn)Te thermoelectric element and the Ni barrier layer. Pre-electroplating a film of Sn with a thickness of about 1 μm on the thermoelectric element and pre-heating at 250°C for 3 min ensures the adhesion between the thermoelectric material and the Ni barrier layer. The bonding strength is thus increased to a maximal value of 12.2 MPa, and most of the fractures occur inside the thermoelectric material. During the bonding process, not only the Ag3Sn intermetallics but also Cu6Sn5 forms at the Ag3Sn/Cu interface, which transforms into Cu3Sn with increases in the bonding temperature or bonding time.

  1. Fluid-sensitive nanoscale switching with quantum levitation controlled by α -Sn/β -Sn phase transition

    Science.gov (United States)

    Boström, Mathias; Dou, Maofeng; Malyi, Oleksandr I.; Parashar, Prachi; Parsons, Drew F.; Brevik, Iver; Persson, Clas

    2018-03-01

    We analyze the Lifshitz pressure between silica and tin separated by a liquid mixture of bromobenzene and chlorobenzene. We show that the phase transition from semimetallic α -Sn to metallic β -Sn can switch Lifshitz forces from repulsive to attractive. This effect is caused by the difference in dielectric functions of α -Sn and β -Sn , giving both attractive and repulsive contributions to the total Lifshitz pressure in different frequency regions controlled by the composition of the intervening liquid mixture. In this way, one may be able to produce phase-transition-controlled quantum levitation in a liquid medium.

  2. α-Sn and β-Sn precipitates in annealed epitaxial Si0.95Sn0.05

    DEFF Research Database (Denmark)

    Fyhn, M.F.; Chevallier, J.; Larsen, A.N.

    1999-01-01

    -Sn and beta-Sn crystallites. The presence of alpha-Sn at temperatures far above the bulk alpha beta transition temperature is explained by interface and pressure effects; the latter is likely to be due to the difference in thermal expansion of the precipitates and the matrix.......-temperature molecular-beam epitaxy on Si (001) and relaxed Si1-xGex substrates. Two different phases of solid Sn were identified in the annealed layers: the semiconductor phase, alpha-Sn, and the metallic phase beta-Sn The precipitates were found to consist of either only beta-Sn or to contain crystallites of both...... solid Sn phases. The orientations, the sizes and the relative number densities of the alpha-Sn and beta-Sn crystallites were investigated. in situ heating and cooling experiments were performed in the transmission electron microscope to study the melting and solidification characteristics of the alpha...

  3. Preparation of PtSnCu/C and PtSn/C electrocatalysts and activation by dealloying processes for ethanol electrooxidation

    International Nuclear Information System (INIS)

    Crisafulli, Rudy

    2013-01-01

    PtSnCu/C (with different Pt:Sn:Cu atomic ratios) and PtSn/C (50:50) electrocatalysts were prepared by borohydride (BR) and alcohol-reduction (AR) processes using H 2 PtCl 6 .6H 2 O, SnCl 2 .2H 2 O and CuCl 2 .2H 2 O as metal sources, NaBH 4 and ethylene glycol as reducing agents, 2-propanol and ethylene glycol/water as solvents and carbon black as support. In a further step, these electrocatalysts were activated by chemical (CD) and electrochemical (ED) dealloying processes through acid treatment and thin porous coating technique, respectively. These materials were characterized by energy dispersive X-ray, Xray diffraction, transmission electron microscopy, line scan energy dispersive Xray and cyclic voltammetry. Electrochemical studies for ethanol electro-oxidation were performed by cyclic voltammetry, chronoamperometry and in single Direct Ethanol Fuel Cell using Membrane Electrode Assembly (MEA). The anodic effluents were analysed by gas chromatography. The X-ray diffractograms of the as-synthesized electrocatalysts showed the typical face-centered cubic structure (FCC) of platinum and its alloys. After dealloying, the X-ray diffractograms showed that the Pt FCC structure was preserved. The crystallite sizes of the assynthesized electrocatalysts were in the range of PtSnCu/C (50:40:10) AR/ED > PtSnCu/C (50:10:40) BR/CD. PtSn/C (50:50) BR/CD, PtSnCu/C (50:10:40) BR/CD, PtSnCu/C (50:40:10) AR/CD electrocatalysts and Pt/C BASF, PtSn/C (75:25) BASF commercial electrocatalysts were tested in single Direct Ethanol Fuel Cell. The results showed the following performance for ethanol electro-oxidation: PtSn/C (50:50) BR/CD > PtSnCu/C (50:40:10) AR/CD > PtSnCu/C > PtSn/C (75:25) BASF > PtSnCu/C (50:10:40) BR/CD > Pt/C BASF. (author)

  4. Anomalous temperature behavior of Sn impurities

    International Nuclear Information System (INIS)

    Haskel, D.; Shechter, H.; Stern, E.A.; Newville, M.; Yacoby, Y.

    1993-01-01

    Sn impurities in Pb and Ag hosts have been investigated by Moessbauer effect and in Pb by x-ray-absorption fine-structure (XAFS) studies. The Sn atoms are dissolved up to at least 2 at. % in Pb and up to at least 8 at. % in Ag for the temperature ranges investigated. The concentration limit for Sn-Sn interactions is 1 at. % for Pb and 2 at. % for Ag as determined experimentally by lowering the Sn concentration until no appreciable change occurs in the Moessbauer effect. XAFS measurements verify that the Sn impurities in Pb are dissolved and predominantly at substitutional sites. For both hosts the temperature dependence of the spectral intensities of isolated Sn impurities below a temperature T 0 is as expected for vibrating about a lattice site. Above T 0 the Moessbauer spectral intensity exhibits a greatly increased rate of drop-off with temperature without appreciable broadening. This drop-off is too steep to be explained by ordinary anharmonic effects and can be explained by a liquidlike rapid hopping of the Sn, localized about a lattice site. Higher-entropy-density regions of radii somewhat more than an atomic spacing surround such impurities, and can act as nucleation sites for three-dimensional melting

  5. Effect of Sn Composition in Ge1- x Sn x Layers Grown by Using Rapid Thermal Chemical Vapor Deposition

    Science.gov (United States)

    Kil, Yeon-Ho; Kang, Sukill; Jeong, Tae Soo; Shim, Kyu-Hwan; Kim, Dae-Jung; Choi, Yong-Dae; Kim, Mi Joung; Kim, Taek Sung

    2018-05-01

    The Ge1- x Sn x layers were grown by using rapid thermal chemical-vapor deposition (RTCVD) on boron-doped p-type Si (100) substrates with Sn compositions up to x = 0.83%. In order to obtain effect of the Sn composition on the structural and the optical characteristics, we utilized highresolution X-ray diffraction (HR-XRD), etch pit density (EPD), atomic force microscopy (AFM), Raman spectroscopy, and photocurrent (PC) spectra. The Sn compositions in the Ge1- x Sn x layers were found to be of x = 0.00%, 0.51%, 0.65%, and 0.83%. The root-mean-square (RMS) of the surface roughness of the Ge1- x Sn x layer increased from 2.02 nm to 3.40 nm as the Sn composition was increased from 0.51% to 0.83%, and EPD was on the order of 108 cm-2. The Raman spectra consist of only one strong peak near 300 cm-1, which is assigned to the Ge-Ge LO peaks and the Raman peaks shift to the wave number with increasing Sn composition. Photocurrent spectra show near energy band gap peaks and their peak energies decrease with increasing Sn composition due to band-gap bowing in the Ge1- x Sn x layer. An increase in the band gap bowing parameter was observed with increasing Sn composition.

  6. Synthesis, Characterization, and Photocatalytic Activity of Zn-Doped SnO2/Zn2SnO4 Coupled Nanocomposites

    Directory of Open Access Journals (Sweden)

    Tiekun Jia

    2014-01-01

    Full Text Available Zn-doped SnO2/Zn2SnO4 nanocomposites were prepared via a two-step hydrothermal synthesis method. The as-prepared samples were characterized by X-ray diffraction (XRD, field-emission scanning electron microscopy (FESEM, transmission electron microscopy (TEM, UV-vis diffuse reflection spectroscopy, and adsorption-desorption isotherms. The results of FESEM and TEM showed that the as-prepared Zn-doped SnO2/Zn2SnO4 nanocomposites are composed of numerous nanoparticles with the size ranging from 20 nm to 50 nm. The specific surface area of the as-prepared Zn-doped SnO2/Zn2SnO4 nanocomposites is estimated to be 71.53 m2/g by the Brunauer-Emmett-Teller (BET method. The photocatalytic activity was evaluated by the degradation of methylene blue (MB, and the resulting showed that Zn-doped SnO2/Zn2SnO4 nanocomposites exhibited excellent photocatalytic activity due to their higher specific surface area and surface charge carrier transfer.

  7. The recruitment of the U5 snRNP to nascent transcripts requires internal loop 1 of U5 snRNA.

    Science.gov (United States)

    Kim, Rebecca; Paschedag, Joshua; Novikova, Natalya; Bellini, Michel

    2012-12-01

    In this study, we take advantage of the high spatial resolution offered by the nucleus and lampbrush chromosomes of the amphibian oocyte to investigate the mechanisms that regulate the intranuclear trafficking of the U5 snRNP and its recruitment to nascent transcripts. We monitor the fate of newly assembled fluorescent U5 snRNP in Xenopus oocytes depleted of U4 and/or U6 snRNAs and demonstrate that the U4/U6.U5 tri-snRNP is not required for the association of U5 snRNP with Cajal bodies, splicing speckles, and nascent transcripts. In addition, using a mutational analysis, we show that a non-functional U5 snRNP can associate with nascent transcripts, and we further characterize internal loop structure 1 of U5 snRNA as a critical element for licensing U5 snRNP to target both nascent transcripts and splicing speckles. Collectively, our data support the model where the recruitment of snRNPs onto pre-mRNAs is independent of spliceosome assembly and suggest that U5 snRNP may promote the association of the U4/U6.U5 tri-snRNP with nascent transcripts.

  8. Oxidation and reduction kinetics of eutectic SnPb, InSn, and AuSn: a knowledge base for fluxless solder bonding applications

    DEFF Research Database (Denmark)

    Kuhmann, Jochen Friedrich; Preuss, A.; Adolphi, B.

    1998-01-01

    : (1) SnPb; (2) InSn; (3) AuSn. The studies of the oxidation kinetics show that the growth of the native oxide, which covers the solder surfaces from the start of all soldering operations is self-limiting. The rate of oxidation on the molten, metallic solder surfaces is significantly reduced...... and reduction kinetics, are applied to flip-chip (FC) bonding experiments in vacuum with and without the injection of H2. Wetting in vacuum is excellent but the self-alignment during flip-chip soldering is restricted. The desired, perfectly self-aligned FC-bonds have been only achieved, using evaporated...

  9. Zn{sub 2}SnO{sub 4}-SnO{sub 2} heterojunction nanocomposites for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li Bihui; Luo Lijuan; Xiao Ting; Hu Xiaoyan [Institute of Nano-science and Technology, Central China Normal University, Wuhan, 430079 (China); Lu Lu; Wang, Jianbo [Department of Physics, Wuhan University, Wuhan 430072 (China); Tang Yiwen, E-mail: ywtang@phy.ccnu.edu.cn [Institute of Nano-science and Technology, Central China Normal University, Wuhan, 430079 (China)

    2011-02-03

    Graphical abstract: Display Omitted Research highlights: > The ZTO-SnO{sub 2} based DSSC shows superior photovoltaic performance than single phase ZTO or Pm-ZTO-SnO{sub 2} (physical mixture of ZTO and SnO{sub 2} nanoparticles having the same ZTO/SnO{sub 2} composition) based DSSC. > The obvious improvement in the photovoltaic performance is mainly ascribed to the efficient injected electrons transfer between the two materials via heterojunctions and consequent suppress the recombination. - Abstract: Zn{sub 2}SnO{sub 4}-SnO{sub 2} heterojunction nanocomposites (ZTO-SnO{sub 2}) with high mass amount of ZTO were synthesized by a two-step technique. The route involves firstly the synthesis of monodispersed ZnSn(OH){sub 6} nanocubes with a 50-60 nm edge length as precursors by simple coprecipitation of Na{sub 2}SnO{sub 3}.3H{sub 2}O and ZnCl{sub 2} aqueous solution, assisted by ultrasonic treatment and then followed by calcination of the precursors at 800 deg. C under N{sub 2} atmosphere. The as-synthesized nanoparticles were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Heterojunction between ZTO and SnO{sub 2} nanoparticle was confirmed by the electron energy loss spectroscopy (EELS) elemental mapping and high-resolution TEM (HRTEM). The photovoltaic performance of the ZTO-SnO{sub 2} based DSSC was examined by measuring the J-V curves both in dark and under illumination. The results show that the ZTO-SnO{sub 2} based DSSC exhibits superior photovoltaic performance as compared to the single phase ZTO based DSSCs. Under illumination of AM 1.5 simulated sunlight (100 mW/cm{sup 2}), the open circuit voltage of the cell based on ZTO-SnO{sub 2} is 706 mV, the short-current density is 2.85 mA/cm{sup 2}, and the efficiency is 1.29% which is increased by 43% from 0.90% to 1.29% compared with pure ZTO. The formation of the heterojunctions between ZTO and SnO{sub 2} nanoparticles is believed to reduce

  10. Physical properties of some Sn-based melts

    Directory of Open Access Journals (Sweden)

    Ilinykh N.

    2011-05-01

    Full Text Available The physical properties (viscosity, density, electroresistivity and magnetic susceptibility of pure tin, copper, silver, some binary (Sn - Ag, Sn - Cu, Sn - Bi, Sn - Zn and ternary (Sn-Ag-Cu, Sn-BiAg, Sn-Bi-Zn alloys with near eutectic compositions are investigated in wide temperature ranges. The irreversible decrease of viscosity in pure tin melt is discovered at 820 °С during heating. The similar anomaly with the following hysteresis of dynamic viscosity was fixed for binary and ternary alloys but at higher temperatures – 900 °С and 950 °С respectively. For all the systems it was shown that the alloys with eutectic compositions differ significantly in their electric and magnetic properties from hypo- and hypereutectic ones. Qualitative and quantitative metallographic analysis for Sn-3.8wt.%Ag-0.7wt.%Cu samples, heated low and above characteristic temperatures, showed the influence of melt overheating on crystallization kinetics.

  11. Spliceosomal small nuclear RNAs of Tetrahymena thermophila and some possible snRNA-snRNA base-pairing interactions

    DEFF Research Database (Denmark)

    Orum, H; Nielsen, Henrik; Engberg, J

    1991-01-01

    We have identified and characterized the full set of spliceosomal small nuclear RNAs (snRNAs; U1, U2, U4, U5 and U6) from the ciliated protozoan Tetrahymena thermophila. With the exception of U4 snRNA, the sizes of the T. thermophila snRNAs are closely similar to their metazoan homologues. The T....... thermophila snRNAs all have unique 5' ends, which start with an adenine residue. In contrast, with the exception of U6, their 3' ends show some size heterogeneity. The primary sequences of the T. thermophila snRNAs contain the sequence motifs shown, or proposed, to be of functional importance in other...

  12. The interfacial free energy of solid Sn on the boundary interface with liquid Cd-Sn eutectic solution

    International Nuclear Information System (INIS)

    Saatci, B; Cimen, S; Pamuk, H; Guenduez, M

    2007-01-01

    Equilibrated grain boundary groove shapes for solid Sn in equilibrium with Cd-Sn liquid were directly observed after annealing a sample at the eutectic temperature for about 8 days. The thermal conductivities of the solid phase, K S , and the liquid phase, K L , for the groove shapes were measured. From the observed groove shapes, the Gibbs-Thomson coefficients were obtained with a numerical method, using the measured G, K S and K L values. The solid-liquid interfacial energy of solid Sn in equilibrium with Cd-Sn liquid was determined from the Gibbs-Thomson equation. The grain boundary energy for solid Sn was also calculated from the observed groove shapes

  13. Microstructural evolution and tensile properties of Sn-Ag-Cu mixed with Sn-Pb solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fengjiang [Department of Materials Science and Engineering and Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65401 (United States); O' Keefe, Matthew [Department of Materials Science and Engineering and Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65401 (United States)], E-mail: mjokeefe@mst.edu; Brinkmeyer, Brandon [Department of Materials Science and Engineering and Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65401 (United States)

    2009-05-27

    The effect of incorporating eutectic Sn-Pb solder with Sn-3.0Ag-0.5Cu (SAC) Pb-free solder on the microstructure and tensile properties of the mixed alloys was investigated. Alloys containing 100, 75, 50, 25, 20, 15, 10, 5 and 0 wt% SAC, with the balance being Sn-37Pb eutectic solder alloy, were prepared and characterized. Optical and scanning electron microscopy were used to analyze the microstructures while 'mini-tensile' test specimens were fabricated and tested to determine mechanical properties at the mm length scale, more closely matching that of the solder joints. Microstructural analysis indicated that a Pb-rich phase formed and was uniformly distributed at the boundary between the Sn-rich grains or between the Sn-rich and the intermetallic compounds in the solder. Tensile results showed that mixing of the alloys resulted in an increase in both the yield and the ultimate tensile strength compared to the original solders, with the 50% SAC-50% Sn-Pb mixture having the highest measured strength. Initial investigations indicate the formation and distribution of a Pb-rich phase in the mixed solder alloys as the source of the strengthening mechanism.

  14. α-Eleostearic acid-containing triglycerides for a continuous assay to determine lipase sn-1 and sn-3 regio-preference.

    Science.gov (United States)

    El Alaoui, Meddy; Soulère, Laurent; Noiriel, Alexandre; Queneau, Yves; Abousalham, Abdelkarim

    2017-08-01

    Lipases are essentially described as sn-1 and sn-3 regio-selective. Actually few methods are available to measure this lipase regio-selectivity, moreover they require chiral chromatography analysis or specific derivations which are discontinuous and time consuming. In this study we describe a new, convenient, sensitive and continuous spectrophotometric method to screen lipases regio-selectivity using synthetic triglycerides (TG) containing α-eleostearic acid (9Z, 11E, 13E-octadecatrienoic acid) either at the sn-1 position [1-α-eleostearoyl-2,3-octadecyl-sn-glycerol (sn-EOO)] or at the sn-3 position [1,2-octadecyl-3-α-eleostearoyl-sn-glycerol (sn-OOE)] and coated onto the wells of microtiter plates. A non-hydrolysable ether bond, with a non UV-absorbing alkyl chain, was introduced at the other sn positions to prevent acyl chain migration during TG synthesis or lipolysis. The synthesis of TG containing α-eleostearic acid was performed from S-glycidol in six steps to obtain sn-EOO and in five steps to sn-OOE. The α-eleostearic acid conjugated triene constitutes an intrinsic chromophore and, consequently, confers the strong UV absorption properties of this free fatty acid as well as of the TG harboring it. The lipase activity on coated sn-EOO or sn-OOE was measured by the increase in the absorbance at 272nm due to the transition of α-eleostearic acid from the adsorbed to the soluble state. Human and porcine pancreatic lipases, guinea pig pancreatic lipase related protein 2, Thermomyces lanuginosus lipase, Candida antarctica lipase A and Candida antarctica lipase B were all used to validate the assay. This continuous high-throughput screening method could determine directly without any processes after lipolysis the regio-selectivity of various lipases. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Spectroscopic Classification of SN 2018nt as a Reddened Type Ia Supernova

    Science.gov (United States)

    Vinko, J.; Szeged, U.; Wheeler, J. C.

    2018-02-01

    An optical spectrum (range 360-700 nm) of SN 2018nt (K2 C16-0043), was obtained with the "Low Resolution Spectrograph-2" (LRS2) on the 10m Hobby-Eberly Telescope at McDonald Observatory by S. Odewahn on 2018 Feb 05.20 UT. The spectrum is consistent with that of a heavily reddened Type Ia supernova (with Av > 2 mag) about 3 weeks after maximum light.

  16. SEARCH FOR PRECURSOR ERUPTIONS AMONG TYPE IIB SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Strotjohann, Nora L.; Ofek, Eran O.; Gal-Yam, Avishay; Yaron, Ofer [Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel); Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Kulkarni, Shrinivas R.; Cao, Yi [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Shaviv, Nir J. [School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540 (United States); Fremling, Christoffer; Sollerman, Jesper [The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-10691 Stockholm (Sweden); Kasliwal, Mansi M. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Nugent, Peter E. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Arcavi, Iair [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93111 (United States); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Laher, Russ; Surace, Jason [Spitzer Science Center, California Institute of Technology, M/S 314-6, Pasadena, CA 91125 (United States)

    2015-10-01

    The progenitor stars of several Type IIb supernovae (SNe) show indications of extended hydrogen envelopes. These envelopes might be the outcome of luminous energetic pre-explosion events, so-called precursor eruptions. We use the Palomar Transient Factory (PTF) pre-explosion observations of a sample of 27 nearby SNe IIb to look for such precursors during the final years prior to the SN explosion. No precursors are found when combining the observations in 15-day bins, and we calculate the absolute-magnitude-dependent upper limit on the precursor rate. At the 90% confidence level, SNe IIb have on average <0.86 precursors as bright as an absolute R-band magnitude of −14 in the final 3.5 years before the explosion and <0.56 events over the final year. In contrast, precursors among SNe IIn have a ≳5 times higher rate. The kinetic energy required to unbind a low-mass stellar envelope is comparable to the radiated energy of a few-weeks-long precursor that would be detectable for the closest SNe in our sample. Therefore, mass ejections, if they are common in such SNe, are radiatively inefficient or have durations longer than months. Indeed, when using 60-day bins, a faint precursor candidate is detected prior to SN 2012cs (∼2% false-alarm probability). We also report the detection of the progenitor of SN 2011dh that does not show detectable variability over the final two years before the explosion. The suggested progenitor of SN 2012P is still present, and hence is likely a compact star cluster or an unrelated object.

  17. RAPIDLY DECAYING SUPERNOVA 2010X: A CANDIDATE '.Ia' EXPLOSION

    International Nuclear Information System (INIS)

    Kasliwal, Mansi M.; Kulkarni, S. R.; Quimby, Robert M.; Ofek, Eran O.; Gal-Yam, Avishay; Yaron, Ofer; Sternberg, Assaf; Arcavi, Iair; Nugent, Peter; Poznanski, Dovi; Jacobsen, Janet; Howell, D. Andrew; Sullivan, Mark; Rich, Douglas J.; Burke, Paul F.; Brimacombe, Joseph; Milisavljevic, Dan; Fesen, Robert; Bildsten, Lars; Shen, Ken

    2010-01-01

    We present the discovery, photometric, and spectroscopic follow-up observations of SN 2010X (PTF 10bhp). This supernova decays exponentially with τ d = 5 days and rivals the current recordholder in speed, SN 2002bj. SN 2010X peaks at M r = -17 mag and has mean velocities of 10,000 km s -1 . Our light curve modeling suggests a radioactivity-powered event and an ejecta mass of 0.16 M sun . If powered by Nickel, we show that the Nickel mass must be very small (∼0.02 M sun ) and that the supernova quickly becomes optically thin to γ-rays. Our spectral modeling suggests that SN 2010X and SN 2002bj have similar chemical compositions and that one of aluminum or helium is present. If aluminum is present, we speculate that this may be an accretion-induced collapse of an O-Ne-Mg white dwarf. If helium is present, all observables of SN 2010X are consistent with being a thermonuclear helium shell detonation on a white dwarf, a '.Ia' explosion. With the 1 day dynamic-cadence experiment on the Palomar Transient Factory, we expect to annually discover a few such events.

  18. Effect of Pt:Sn atomic ratio on the preparation of PtSn/C electrocatalysts using electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Dionisio F.; Oliveira Neto, Almir; Pino, Eddy S.; Linardi, Marcelo; Spinace, Estevam V., E-mail: dfsilva@ipen.b, E-mail: espinace@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    PtSn/C electrocatalysts were prepared with Pt:Sn atomic ratios of 3:1, 1:1 and 1:3 in water/2-propanol using electron beam irradiation. The obtained materials were characterized by EDX, XRD and cyclic voltammetry. The ethanol electro-oxidation was studied by chronoamperometry. The XRD diffractograms of the PtSn/C electrocatalysts showed typical face-centered cubic (fcc) structure of platinum and the presence of a SnO{sub 2} phase (cassiterite). The mean crystallite sizes of Pt fcc phase was in the range of 3.0-3.5 nm. The PtSn/C electrocatalysts were active for ethanol electro-oxidation at room temperature and the material prepared with Pt:Sn atomic ratio of 1:1 showed the best activity. (author)

  19. Effect of Pt:Sn atomic ratio on the preparation of PtSn/C electrocatalysts using electron beam irradiation

    International Nuclear Information System (INIS)

    Silva, Dionisio F.; Oliveira Neto, Almir; Pino, Eddy S.; Linardi, Marcelo; Spinace, Estevam V.

    2009-01-01

    PtSn/C electrocatalysts were prepared with Pt:Sn atomic ratios of 3:1, 1:1 and 1:3 in water/2-propanol using electron beam irradiation. The obtained materials were characterized by EDX, XRD and cyclic voltammetry. The ethanol electro-oxidation was studied by chronoamperometry. The XRD diffractograms of the PtSn/C electrocatalysts showed typical face-centered cubic (fcc) structure of platinum and the presence of a SnO 2 phase (cassiterite). The mean crystallite sizes of Pt fcc phase was in the range of 3.0-3.5 nm. The PtSn/C electrocatalysts were active for ethanol electro-oxidation at room temperature and the material prepared with Pt:Sn atomic ratio of 1:1 showed the best activity. (author)

  20. Production of Sn/SnO2/MWCNT composites by plasma oxidation after thermal evaporation from pure Sn targets onto buckypapers.

    Science.gov (United States)

    Alaf, M; Gultekin, D; Akbulut, H

    2012-12-01

    In this study, tin/tinoxide/multi oxide/multi walled carbon nano tube (Sn/SnO2/MWCNT) composites were produced by thermal evaporation and then subsequent plasma oxidation. Buckypapers having controlled porosity were prepared by vacuum filtration from functionalized MWCNTs. Pure metallic tin was thermally evaporated on the buckypapers in argon atmosphere with different thicknesses. It was determined that the evaporated pure tin nano crystals were mechanically penetrated into pores of buckypaper to form a nanocomposite. The tin/MWCNT composites were subjected to plasma oxidation process at oxygen/argon gas mixture. Three different plasma oxidation times (30, 45 and 60 minutes) were used to investigate oxidation and physical and microstructural properties. The effect of coating thickness and oxidation time was investigated to understand the effect of process parameters on the Sn and SnO2 phases after plasma oxidation. Quantitative phase analysis was performed in order to determine the relative phase amounts. The structural properties were studied by field-emission gun scanning electron microscopy (FEG-SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD).

  1. Properties of second phase (BaSnO3, Sn) added-YBCO thick films

    International Nuclear Information System (INIS)

    Ban, E.; Matsuoka, Y.

    1997-01-01

    The improvement of the critical current density J c of YBCO thick films has been attempted by adding BaSnO 3 powder and ultrafine Sn particles, whose diameter is about 2 μm and 7 x 10 -2 μm, respectively. It was found that the addition of a small amount of these particles was effective for the enhancement of J c of thick films prepared by a liquid-phase processing method. The 1 wt.% BaSnO 3 films fired at T s =1040-1060 C and the 3 wt.% Sn films (T s =1030-1060 C) showed J c values (77 K, 0 T) of about 2.1-2.4 x 10 3 Acm -2 and 3.1-3.5 x 10 3 Acm -2 , respectively, as compared to 2.0 x 10 3 Acm -2 for the undoped films. (orig.)

  2. Late-time spectral line formation in Type IIb supernovae, with application to SN 1993J, SN 2008ax, and SN 2011dh

    Science.gov (United States)

    Jerkstrand, A.; Ergon, M.; Smartt, S. J.; Fransson, C.; Sollerman, J.; Taubenberger, S.; Bersten, M.; Spyromilio, J.

    2015-01-01

    We investigate line formation processes in Type IIb supernovae (SNe) from 100 to 500 days post-explosion using spectral synthesis calculations. The modelling identifies the nuclear burning layers and physical mechanisms that produce the major emission lines, and the diagnostic potential of these. We compare the model calculations with data on the three best observed Type IIb SNe to-date - SN 1993J, SN 2008ax, and SN 2011dh. Oxygen nucleosynthesis depends sensitively on the main-sequence mass of the star and modelling of the [O I] λλ6300, 6364 lines constrains the progenitors of these three SNe to the MZAMS = 12-16 M⊙ range (ejected oxygen masses 0.3-0.9 M⊙), with SN 2011dh towards the lower end and SN 1993J towards the upper end of the range. The high ejecta masses from MZAMS ≳ 17 M⊙ progenitors give rise to brighter nebular phase emission lines than observed. Nucleosynthesis analysis thus supports a scenario of low-to-moderate mass progenitors for Type IIb SNe, and by implication an origin in binary systems. We demonstrate how oxygen and magnesium recombination lines may be combined to diagnose the magnesium mass in the SN ejecta. For SN 2011dh, a magnesium mass of 0.02-0.14 M⊙ is derived, which gives a Mg/O production ratio consistent with the solar value. Nitrogen left in the He envelope from CNO burning gives strong [N II] λλ6548, 6583 emission lines that dominate over Hα emission in our models. The hydrogen envelopes of Type IIb SNe are too small and dilute to produce any noticeable Hα emission or absorption after ~150 days, and nebular phase emission seen around 6550 Å is in many cases likely caused by [N II] λλ6548, 6583. Finally, the influence of radiative transport on the emergent line profiles is investigated. Significant line blocking in the metal core remains for several hundred days, which affects the emergent spectrum. These radiative transfer effects lead to early-time blueshifts of the emission line peaks, which gradually

  3. Sn surface-enriched Pt-Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation

    KAUST Repository

    Zhu, Haibo; Anjum, Dalaver H.; Wang, Qingxiao; Abou-Hamad, Edy; Emsley, Lyndon; Dong, Hailin; Laveille, Paco; Li, Lidong; Samal, Akshaya Kumar; Basset, Jean-Marie

    2014-01-01

    Sn(n-C4H9) are chemically linked to the surface of Pt NPs to produce, in fine, after removal of most of the n-butyl fragment, bimetallic Pt-Sn nanoparticles. The Sn(n-CH2CH2CH2CH3) groups remaining at the surface are believed to stabilize the as

  4. A highly stable (SnOx-Sn)@few layered graphene composite anode of sodium-ion batteries synthesized by oxygen plasma assisted milling

    Science.gov (United States)

    Cheng, Deliang; Liu, Jiangwen; Li, Xiang; Hu, Renzong; Zeng, Meiqing; Yang, Lichun; Zhu, Min

    2017-05-01

    The (SnOx-Sn)@few layered graphene ((SnOx-Sn)@FLG) composite has been synthesized by oxygen plasma-assisted milling. Owing to the synergistic effect of rapid plasma heating and ball mill grinding, SnOx (1 ≤ x ≤ 2) nanoparticles generated from the reaction of Sn with oxygen are tightly wrapped by FLG nanosheets which are simultaneously exfoliated from expanded graphite, forming secondary micro granules. Inside the granules, the small size of the SnOx nanoparticles enables the fast kinetics for Na+ transfer. The in-situ formed FLG and residual Sn nanoparticles improve the electrical conductivity of the composite, meanwhile alleviate the aggregation of SnOx nanoparticles and relieve the volume change during the cycling, which is beneficial for the cyclic stability for the Na+ storage. As an anode material for sodium-ion batteries, the (SnOx-Sn)@FLG composite exhibits a high reversible capacity of 448 mAh g-1 at a current density of 100 mA g-1 in the first cycle, with 82.6% capacity retention after 250 cycles. Even when the current density increases to 1000 mA g-1, this composite retains 316.5 mAh g-1 after 250 cycles. With superior Na+ storage stability, the (SnOx-Sn)@FLG composite can be a promising anode material for high performance sodium-ion batteries.

  5. Electronic structure and electric fields gradients of crystalline Sn(II) and Sn(IV) compounds

    International Nuclear Information System (INIS)

    Terra, J.; Guenzburger, D.

    1991-01-01

    The electronic structures of clusters representing crystalline compounds of Sn(II) and Sn(IV) were investigated, employing the first-principles Discrete Variational method and Local Density theory. Densities of states and related parameters were obtained and compared with experimental measurements and with results from band structure calculations. Effects of cluster size and of cluster truncated bonds are discussed. Electric field gradients at the Sn nucleus were calculated; results are analysed in terms of charge distribution and chemical bonding in the crystals. (author)

  6. Synthesis of Pt{sub 75}Sn{sub 25}/SnO{sub 2}/CNT nanoscaled electrode: Low onset potential of ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Tabet-Aoul, Amel [Institut National de la Recherche Scientifique (INRS)-Énergie, Matériaux et Télécommunications (EMT), 1650 Boulevard Lionel Boulet, Varennes, Québec, Canada J3X 1S2 (Canada); Mohamedi, Mohamed, E-mail: mohamedi@emt.inrs.ca [Institut National de la Recherche Scientifique (INRS)-Énergie, Matériaux et Télécommunications (EMT), 1650 Boulevard Lionel Boulet, Varennes, Québec, Canada J3X 1S2 (Canada)

    2013-03-15

    Highlights: ► A pulsed laser synthesis is used for the deposition of Pt, SnO{sub 2} and PtSn alloy thin films onto carbon nanotubes. ► These nanoscaled materials were characterized by FESEM, TEM, XRD and XPS. ► Enhanced electrocatalytic properties toward ethanol oxidation. -- Abstract: With the objective of lowering the potential oxidation of ethanol at PtSn nanocatalyst, we present the synthesis of free-standing catalyst layer comprising a current collector/carbon nanotubes (catalyst support)/SnO{sub 2}/Pt{sub 75}Sn{sub 25} (catalyst) nanostructured layers, each layer constructed upon the one below it. The CNTs are grown by chemical vapor deposition (CVD), whereas SnO{sub 2} and Pt{sub 75}Sn{sub 25} are synthesized by pulsed laser deposition and cross-beam laser deposition, respectively. FESEM revealed that Pt{sub 75}Sn{sub 25} nanoparticles assemble into cauliflower-like arrangement. TEM and HR-TEM showed that the Pt{sub 75}Sn{sub 25} layer thickness is of ca. 25 nm with a particle mean diameter of 4.3 nm. It was found that addition of SnO{sub 2} to Pt{sub 75}Sn{sub 25} promotes significantly the oxidation of ethanol at Pt{sub 75}Sn{sub 25} nanoparticles relative to a carbon nanotubes support. Indeed, the electrooxidation of ethanol at CNTs/SnO{sub 2}/Pt{sub 75}Sn{sub 25} electrode starts at about 100 mV negative with respect to that at CNT/Pt{sub 75}Sn{sub 25}. This decreased overpotential required to oxidize ethanol is very significant and has profound implications to developing high performing anodes for direct ethanol fuel cells technology.

  7. Massive stars dying alone: Extremely remote environments of SN2009ip and SN2010jp

    Science.gov (United States)

    Smith, Nathan

    2014-10-01

    We propose an imaging study of the astonishingly remote environments of two recent supernovae (SNe): SN2009ip and SN2010jp. Both were unusual Type IIn explosions that crashed into dense circumstellar material (CSM) ejected by the star shortly before explosion. The favored progenitors of these SNe are very massive luminous blue variable (LBV) stars. In fact, SN2009ip presents an extraordinay case where the LBV-like progenitor was actually detected directly in archival HST data, and where we obtained spectra and photometry for numerous pre-SN eruptions. No other SN has this treasure trove of detailed information about the progenitor (not even SN1987A). SN2010jp represents a possible collapsar-powered event, since it showed evidence of a fast bipolar jet in spectra and a low 56Ni mass; this would be an analog of the black-hole forming explosions that cause gamma ray bursts, but where the relativistic jet is damped by a residual H envelope on the star. In both cases, the only viable models for these SNe involve extremely massive (initial masses of 40-100 Msun) progenitor stars. This seems at odds with their extremely remote environments in the far outskirts of their host galaxies, with no detected evidence for an underlying massive star population in ground-based data (nor in the single shallow WFPC2/F606W image of SN2009ip). Here we propose deep UV HST images to search for any mid/late O-type stars nearby, deep red images to detect any red supergiants, and an H-alpha image to search for any evidence of ongoing star formation in the vicinity. These observations will place important and demanding constraints on the initial masses and ages of these progenitors.

  8. Cytoplasmic assembly of snRNP particles from stored proteins and newly transcribed snRNA's in L929 mouse fibroblasts

    International Nuclear Information System (INIS)

    Sauterer, R.A.; Feeney, R.J.; Zieve, G.W.

    1988-01-01

    Newly synthesized snRNAs appear transiently in the cytoplasm where they assemble into ribonucleoprotein particles, the snRNP particles, before returning permanently to the interphase nucleus. In this report, bona fide cytoplasmic fractions, prepared by cell enucleation, are used for a quantitative analysis of snRNP assembly in growing mouse fibroblasts. The half-lives and abundances of the snRNP precursors in the cytoplasm and the rates of snRNP assembly are calculated in L929 cells. With the exception of U6, the major snRNAs are stable RNA species; U1 is almost totally stable while U2 has a half-life of about two cell cycles. In contrast, the majority of newly synthesized U6 decays with a half-life of about 15 h. The relative abundances of the newly synthesized snRNA species U1, U2, U3, U4 and U6 in the cytoplasm are determined by Northern hybridization using cloned probes and are approximately 2% of their nuclear abundance. The half-lives of the two major snRNA precursors in the cytoplasm (U1 and U2) are approximately 20 min as determined by labeling to steady state. The relative abundance of the snRNP B protein in the cytoplasm is determined by Western blotting with the Sm class of autoantibodies and is approximately 25% of the nuclear abundance. Kinetic studies, using the Sm antiserum to immunoprecipitate the methionine-labeled snRNP proteins, suggest that the B protein has a half-life of 90 to 120 min in the cytoplasm. These data are discussed and suggest that there is a large pool of more stable snRNP proteins in the cytoplasm available for assembly with the less abundant but more rapidly turning-over snRNAs

  9. Polymer-SnO2 composite membranes

    DEFF Research Database (Denmark)

    Nørgaard, Casper Frydendal; Skou, Eivind Morten

    . This work utilizes the latter approach and makes use of particles of tin dioxide (SnO2). Polymer-SnO2 composite membranes were successfully prepared using an ion-exchange method. SnO2 was incorporated into membranes by ion-exchange in solutions of SnCl2 ∙ 2 H2O in methanol, followed by oxidation to SnO2...... in air. The content of SnO2 proved controllable by adjusting the concentration of the ion-exchange solution. The prepared nanocomposite membranes were characterized by powder XRD, 119Sn MAS NMR, electrochemical impedance spectroscopy, water uptake and tensile stress-strain measurements. For Nafion 117...

  10. Improvements in the critical current densities of Nb3Sn by solid solution additions of Sn in Nb

    International Nuclear Information System (INIS)

    Luhman, T.; Suenaga, M.

    1975-01-01

    The effectiveness of solid solution additions of Sn to Nb in improving the superconducting properties of diffusion processed Nb 3 Sn conductors was examined. It was found that an increase in the superconducting critical current density, Jc, as function of layer thickness (d) may be obtained for thick Nb 3 Sn layers by solid solution additions of Sn in Nb. A large increase in J/sub c/ (d) is also achieved by increasing the Sn content in the bronze matrix material. In addition to uses of this material in magnet fabrications a potential application of these improved J/sub c/(d) values may lie in the use of Nb 3 Sn in power transmission lines. Here, a high superconducting critical current density is necessary throughout the material to carry the increased current during fault conditions. The magnetic field dependence of J/sub c/ is a function of alloy content but the alloying changes studied here do not increase the high field critical current capability of Nb 3 Sn. (auth)

  11. Production of superconducting Nb3Sn wire using Nb or Nb(Ti) and Sn(Ga) solid solution powders

    International Nuclear Information System (INIS)

    Thieme, C.L.H.; Foner, S.

    1991-01-01

    This paper reports on superconducting Nb 3 Sn wire produced by the powder metallurgy method using Nb or Nb-2.9 at% Ti powder in combination with Sn-x at% Ga powders (x = 3, 4.2, 6.2 and 9.0). Ga additions to the Sn caused considerable solid solution hardening which improved its workability. It made the Nb-Sn(Ga) powder combinations convenient for swaging and extensive wire drawing. Anneals at 950 degrees C produced wires with an overall J c of 10 4 A/cm 2 at 21.9 T for wires with both Ti in the Nb and 6.2 at% Ga in the Sn. Comparison of this wire with the best Nb(Ti)-Cu-internal Sn(Ti) shows a higher J c per A15 areas, especially in fields of 22T and above

  12. Kinetics of plasma oxidation of germanium-tin (GeSn)

    Science.gov (United States)

    Wang, Wei; Lei, Dian; Dong, Yuan; Zhang, Zheng; Pan, Jisheng; Gong, Xiao; Tok, Eng-Soon; Yeo, Yee-Chia

    2017-12-01

    The kinetics of plasma oxidation of GeSn at low temperature is investigated. The oxidation process is described by a power-law model where the oxidation rate decreases rapidly from the initial oxidation rate with increasing time. The oxidation rate of GeSn is higher than that of pure Ge, which can be explained by the higher chemical reaction rate at the GeSn-oxide/GeSn interface. In addition, the Sn atoms at the interface region exchange positions with the underlying Ge atoms during oxidation, leading to a SnO2-rich oxide near the interface. The bandgap of GeSn oxide is extracted to be 5.1 ± 0.2 eV by XPS, and the valence band offset at the GeSn-oxide/GeSn heterojunction is found to be 3.7 ± 0.2 eV. Controlled annealing experiments demonstrate that the GeSn oxide is stable with respect to annealing temperatures up to 400 °C. However, after annealing at 450 °C, the GeO2 is converted to GeO, and desorbs from the GeSn-oxide/GeSn, leaving behind Sn oxide.

  13. Fatigue and thermal fatigue of Pb-Sn solder joints

    International Nuclear Information System (INIS)

    Frear, D.; Grivas, D.; McCormack, M.; Tribula, D.; Morris, J.W. Jr.

    1987-01-01

    This paper presents a fundamental investigation of the fatigue and thermal fatigue characteristics, with an emphasis on the microstructural development during fatigue, of Sn-Pb solder joints. Fatigue tests were performed in simple shear on both 60Sn-40Pb and 5Sn-95Pb solder joints. Isothermal fatigue tests show increasing fatigue life of 60Sn-40Pb solder joints with decreasing strain and temperature. In contrast, such behavior was not observed in the isothermal fatigue of 5Sn-95Pb solder joints. Thermal fatigue results on 60Sn-40Pb solder cycled between -55 0 C and 125 0 C show that a coarsened region develops in the center of the joint. Both Pb-rich and Sn-rich phases coarsen, and cracks form within these coarsened regions. The failure mode 60Sn-40Pb solder joints in thermal and isothermal fatigue is similar: cracks form intergranularly through the Sn-rich phase or along Sn/Pb interphase boundaries. Extensive cracking is found throughout the 5Sn-95Pb joint for both thermal and isothermal fatigue. In thermal fatigue the 5Sn-95Pb solder joints failed after fewer cycles than 60Sn-40Pb

  14. DO22-(Cu,Ni)3Sn intermetallic compound nanolayer formed in Cu/Sn-nanolayer/Ni structures

    International Nuclear Information System (INIS)

    Liu Lilin; Huang, Haiyou; Fu Ran; Liu Deming; Zhang Tongyi

    2009-01-01

    The present work conducts crystal characterization by High Resolution Transmission Electron Microscopy (HRTEM) on Cu/Sn-nanolayer/Ni sandwich structures associated with the use of Energy Dispersive X-ray (EDX) analysis. The results show that DO 22 -(Cu,Ni) 3 Sn intermetallic compound (IMC) ordered structure is formed in the sandwich structures at the as-electrodeposited state. The formed DO 22 -(Cu,Ni) 3 Sn IMC is a homogeneous layer with a thickness about 10 nm. The DO 22 -(Cu,Ni) 3 Sn IMC nanolayer is stable during annealing at 250 deg. C for 810 min. The formation and stabilization of the metastable DO 22 -(Cu,Ni) 3 Sn IMC nanolayer are attributed to the less strain energy induced by lattice mismatch between the DO 22 IMC and fcc Cu crystals in comparison with that between the equilibrium DO 3 IMC and fcc Cu crystals.

  15. Liquidus Projection and Isothermal Section of the Sb-Se-Sn System

    Science.gov (United States)

    Chang, Jui-shen; Chen, Sinn-wen

    2017-12-01

    Sb-Se-Sn ternary alloys are promising chalcogenide materials. The liquidus projection and 673.2 K (400 °C) isothermal section of the Sb-Se-Sn ternary system are determined. Numerous Sb-Se-Sn alloys are prepared, and their primary solidification phases are examined. In addition to the three terminal phases, (Sb), (Se) and (Sn), there are Sb2Sn3, SbSn, SnSe, SnSe2, Sb2Se3, Sn2Sb9Se9, and SnSb2Se4 phases. In addition, there are two miscibility gaps along the Sb-Se and Se-Sn and sides. There are ten invariant reactions in the Sb-Se-Sn ternary system, and seven of them are experimentally determined in this study. The lowest reaction temperature of determined invariant reaction is L + SbSn = (Sn) + SnSe at 515.4 K ± 5 K (242.2 °C ± 5 °C). There are nine tie-triangles, which are Liquid + SbSn + SnSe, SbSn + SnSe + (Sb), SnSe + (Sb) + Sn2Sb9Se9, (Sb) + Sb2Se3 + Sn2Sb9Se9, SnSe + Sn2Sb9Se9 + SnSb2Se4, Sb2Se3 + Sn2Sb9Se9 + SnSb2Se4, SnSe + SnSe2 + SnSb2Se4, SnSe2 + SnSb2Se4 + Sb2Se3, and SnSe2 + Sb2Se3 + Liquid in the 673.2 K (400 °C) isothermal section of the Sb-Se-Sn ternary system.

  16. 0(gs)+ -->2(1)+ transition strengths in 106Sn and 108Sn.

    Science.gov (United States)

    Ekström, A; Cederkäll, J; Fahlander, C; Hjorth-Jensen, M; Ames, F; Butler, P A; Davinson, T; Eberth, J; Fincke, F; Görgen, A; Górska, M; Habs, D; Hurst, A M; Huyse, M; Ivanov, O; Iwanicki, J; Kester, O; Köster, U; Marsh, B A; Mierzejewski, J; Reiter, P; Scheit, H; Schwalm, D; Siem, S; Sletten, G; Stefanescu, I; Tveten, G M; Van de Walle, J; Van Duppen, P; Voulot, D; Warr, N; Weisshaar, D; Wenander, F; Zielińska, M

    2008-07-04

    The reduced transition probabilities, B(E2; 0(gs)+ -->2(1)+), have been measured in the radioactive isotopes (108,106)Sn using subbarrier Coulomb excitation at the REX-ISOLDE facility at CERN. Deexcitation gamma rays were detected by the highly segmented MINIBALL Ge-detector array. The results, B(E2;0(gs)+ -->2(1)+)=0.222(19)e2b2 for 108Sn and B(E2; 0(gs)+-->2(1)+)=0.195(39)e2b2 for 106Sn were determined relative to a stable 58Ni target. The resulting B(E2) values are approximately 30% larger than shell-model predictions and deviate from the generalized seniority model. This experimental result may point towards a weakening of the N=Z=50 shell closure.

  17. The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu-Zn-Sn precursors

    International Nuclear Information System (INIS)

    Schurr, R.; Hoelzing, A.; Jost, S.; Hock, R.; Voss, T.; Schulze, J.; Kirbs, A.; Ennaoui, A.; Lux-Steiner, M.; Weber, A.; Koetschau, I.; Schock, H.-W.

    2009-01-01

    The best CZTS solar cell so far was produced by co-sputtering continued with vapour phase sulfurization method. Efficiencies of up to 5.74% were reached by Katagiri et al. The one step electrochemical deposition of copper, zinc, tin and subsequent sulfurization is an alternative fabrication technique for the production of Cu 2 ZnSnS 4 based thin film solar cells. A kesterite based solar cell (size 0.5 cm 2 ) with a conversion efficiency of 3.4% (AM1.5) was produced by vapour phase sulfurization of co-electroplated Cu-Zn-Sn films. We report on results of in-situ X-ray diffraction (XRD) experiments during crystallisation of kesterite thin films from electrochemically co-deposited metal films. The kesterite crystallisation is completed by the solid state reaction of Cu 2 SnS 3 and ZnS. The measurements show two different reaction paths depending on the metal ratios in the as deposited films. In copper-rich metal films Cu 3 Sn and CuZn were found after electrodeposition. In copper-poor or near stoichiometric precursors additional Cu 6 Sn 5 and Sn phases were detected. The formation mechanism of Cu 2 SnS 3 involves the binary sulphides Cu 2-x S and SnS 2 in the absence of the binary precursor phase Cu 6 Sn 5 . The presence of Cu 6 Sn 5 leads to a preferred formation of Cu 2 SnS 3 via the reaction educts Cu 2-x S and SnS 2 in the presence of a SnS 2 (Cu 4 SnS 6 ) melt. The melt phase may be advantageous in crystallising the kesterite, leading to enhanced grain growth in the presence of a liquid phase

  18. All Small Nuclear RNAs (snRNAs) of the [U4/U6.U5] Tri-snRNP Localize to Nucleoli; Identification of the Nucleolar Localization Element of U6 snRNA

    Science.gov (United States)

    Gerbi, Susan A.; Lange, Thilo Sascha

    2002-01-01

    Previously, we showed that spliceosomal U6 small nuclear RNA (snRNA) transiently passes through the nucleolus. Herein, we report that all individual snRNAs of the [U4/U6.U5] tri-snRNP localize to nucleoli, demonstrated by fluorescence microscopy of nucleolar preparations after injection of fluorescein-labeled snRNA into Xenopus oocyte nuclei. Nucleolar localization of U6 is independent from [U4/U6] snRNP formation since sites of direct interaction of U6 snRNA with U4 snRNA are not nucleolar localization elements. Among all regions in U6, the only one required for nucleolar localization is its 3′ end, which associates with the La protein and subsequently during maturation of U6 is bound by Lsm proteins. This 3′-nucleolar localization element of U6 is both essential and sufficient for nucleolar localization and also required for localization to Cajal bodies. Conversion of the 3′ hydroxyl of U6 snRNA to a 3′ phosphate prevents association with the La protein but does not affect U6 localization to nucleoli or Cajal bodies. PMID:12221120

  19. P-type SnO thin films and SnO/ZnO heterostructures for all-oxide electronic and optoelectronic device applications

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Kachirayil J. [Nanostructured Materials Research Laboratory, Department of Materials Science & Engineering, University of Utah, Salt Lake City, UT 84112 (United States); Department of Physics, Govt. Victoria College, University of Calicut, Palakkad 678 001 (India); Venkata Subbaiah, Y.P. [Nanostructured Materials Research Laboratory, Department of Materials Science & Engineering, University of Utah, Salt Lake City, UT 84112 (United States); Department of Physics, Yogi Vemana University, Kadapa, Andhra Pradesh 516003 (India); Tian, Kun [Nanostructured Materials Research Laboratory, Department of Materials Science & Engineering, University of Utah, Salt Lake City, UT 84112 (United States); Tiwari, Ashutosh, E-mail: tiwari@eng.utah.edu [Nanostructured Materials Research Laboratory, Department of Materials Science & Engineering, University of Utah, Salt Lake City, UT 84112 (United States)

    2016-04-30

    Tin monoxide (SnO) is considered as one of the most important p-type oxides available to date. Thin films of SnO have been reported to possess both an indirect bandgap (~ 0.7 eV) and a direct bandgap (~ 2.8 eV) with quite high hole mobility (~ 7 cm{sup 2}/Vs) values. Moreover, the hole density in these films can be tuned from 10{sup 15}–10{sup 19} cm{sup −3} just by controlling the thin film deposition parameters. Because of the above attributes, SnO thin films offer great potential for fabricating modern electronic and optoelectronic devices. In this article, we are reviewing the most recent developments in this field and also presenting some of our own results on SnO thin films grown by pulsed laser deposition technique. We have also proposed a p–n heterostructure comprising of p-type SnO and n-type ZnO which can pave way for realizing next-generation, all-oxide transparent electronic devices. - Highlights: • We reviewed recent developments on p-type SnO thin film research. • Discussed the optical and electrical properties of SnO thin films • Bipolar conduction in SnO is discussed. • Optoelectronic properties of SnO–ZnO composite system are discussed. • Proposed SnO–ZnO heterojunction band structure.

  20. Spectroscopic ellipsometry characterization of ZnO:Sn thin films with various Sn composition deposited by remote-plasma reactive sputtering

    Science.gov (United States)

    Janicek, Petr; Niang, Kham M.; Mistrik, Jan; Palka, Karel; Flewitt, Andrew J.

    2017-11-01

    ZnO:Sn thin films were deposited onto thermally oxidized silicon substrates using a remote plasma reactive sputtering. Their optical constants (refractive index n and extinction coefficient k) were determined from ellipsometric data recorded over a wide spectral range (0.05-6 eV). Parametrization of ZnO:Sn complex dielectric permittivity consists of a parameterized semiconductor oscillator function describing the short wavelength absorption edge, a Drude oscillator describing free carrier absorption in near-infrared part of spectra and a Lorentz oscillator describing the long wavelength absorption edge and intra-band absorption in the ultra-violet part of the spectra. Using a Mott-Davis model, the increase in local disorder with increasing Sn doping is quantified from the short wavelength absorption edge onset. Using the Wemple-DiDomenico single oscillator model for the transparent part of the optical constants spectra, an increase in the centroid distance of the valence and conduction bands with increasing Sn doping is shown and only slight increase in intensity of the inter-band optical transition due to Sn doping occurs. The Drude model applied in the near-infrared part of the spectra revealed the free carrier concentration and mobility of ZnO:Sn. Results show that the range of transparency of prepared ZnO:Sn layers is not dramatically affected by Sn doping whereas electrical conductivity could be controlled by Sn doping. Refractive index in the transparent part is comparable with amorphous Indium Gallium Zinc Oxide allowing utilization of prepared ZnO:Sn layers as an indium-free alternative.

  1. Crystal structure of R.E. NiSn and R.E. PdSn equiatomic compounds

    International Nuclear Information System (INIS)

    Dwight, A.E.

    1983-03-01

    Call constants and volume per formula weight are tabulated for RE NiSn (RE = La to Lu, Y) and RE PdSn (RE = Nd to Ho). The unit cell constants are also plotted versus ionic radius of the RE; trends are noted

  2. Synthesis and fundamental properties of stable Ph(3)SnSiH(3) and Ph(3)SnGeH(3) hydrides: model compounds for the design of Si-Ge-Sn photonic alloys.

    Science.gov (United States)

    Tice, Jesse B; Chizmeshya, Andrew V G; Groy, Thomas L; Kouvetakis, John

    2009-07-06

    The compounds Ph(3)SnSiH(3) and Ph(3)SnGeH(3) (Ph = C(6)H(5)) have been synthesized as colorless solids containing Sn-MH(3) (M = Si, Ge) moieties that are stable in air despite the presence of multiple and highly reactive Si-H and Ge-H bonds. These molecules are of interest since they represent potential model compounds for the design of new classes of IR semiconductors in the Si-Ge-Sn system. Their unexpected stability and high solubility also makes them a safe, convenient, and potentially useful delivery source of -SiH(3) and -GeH(3) ligands in molecular synthesis. The structure and composition of both compounds has been determined by chemical analysis and a range of spectroscopic methods including multinuclear NMR. Single crystal X-ray structures were determined and indicated that both compounds condense in a Z = 2 triclinic (P1) space group with lattice parameters (a = 9.7754(4) A, b = 9.8008(4) A, c = 10.4093(5) A, alpha = 73.35(10)(o), beta = 65.39(10)(o), gamma = 73.18(10)(o)) for Ph(3)SnSiH(3) and (a = 9.7927(2) A, b = 9.8005(2) A, c = 10.4224(2) A, alpha = 74.01(3)(o), beta = 65.48(3)(o), gamma = 73.43(3)(o)) for Ph(3)SnGeH(3). First principles density functional theory simulations are used to corroborate the molecular structures of Ph(3)SnSiH(3) and Ph(3)SnGeH(3), gain valuable insight into the relative stability of the two compounds, and provide correlations between the Si-Sn and Ge-Sn bonds in the molecules and those in tetrahedral Si-Ge-Sn solids.

  3. Identify and Quantify the Mechanistic Sources of Sensor Performance Variation Between Individual Sensors SN1 and SN2

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Aaron A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baldwin, David L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cinson, Anthony D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Anthony M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larche, Michael R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mathews, Royce [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mullen, Crystal A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pardini, Allan F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Posakony, Gerald J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Prowant, Matthew S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hartman, Trenton S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Edwards, Matthew K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-08-06

    This Technical Letter Report satisfies the M3AR-14PN2301022 milestone, and is focused on identifying and quantifying the mechanistic sources of sensor performance variation between individual 22-element, linear phased-array sensor prototypes, SN1 and SN2. This effort constitutes an iterative evolution that supports the longer term goal of producing and demonstrating a pre-manufacturing prototype ultrasonic probe that possesses the fundamental performance characteristics necessary to enable the development of a high-temperature sodium-cooled fast reactor inspection system. The scope of the work for this portion of the PNNL effort conducted in FY14 includes performing a comparative evaluation and assessment of the performance characteristics of the SN1 and SN2 22 element PA-UT probes manufactured at PNNL. Key transducer performance parameters, such as sound field dimensions, resolution capabilities, frequency response, and bandwidth are used as a metric for the comparative evaluation and assessment of the SN1 and SN2 engineering test units.

  4. Controlling the Sn-C bonds content in SnO2@CNTs composite to form in situ pulverized structure for enhanced electrochemical kinetics.

    Science.gov (United States)

    Cheng, Yayi; Huang, Jianfeng; Qi, Hui; Cao, Liyun; Luo, Xiaomin; Li, Jiayin; Xu, Zhanwei; Yang, Jun

    2017-12-07

    The Sn-C bonding content between the SnO 2 and CNTs interface was controlled by the hydrothermal method and subsequent heat treatment. Electrochemical analysis found that the SnO 2 @CNTs with high Sn-C bonding content exhibited much higher capacity contribution from alloying and conversion reaction compared with the low content of Sn-C bonding even after 200 cycles. The high Sn-C bonding content enabled the SnO 2 nanoparticles to stabilize on the CNTs surface, realizing an in situ pulverization process of SnO 2 . The in situ pulverized structure was beneficial to maintain the close electrochemical contact of the working electrode during the long-term cycling and provide ultrafast transfer paths for lithium ions and electrons, which promoted the alloying and conversion reaction kinetics greatly. Therefore, the SnO 2 @CNTs composite with high Sn-C bonding content displayed highly reversible alloying and conversion reaction. It is believed that the composite could be used as a reference for design chemically bonded metal oxide/carbon composite anode materials in lithium-ion batteries.

  5. Nano-grain SnO{sub 2} electrodes for high conversion efficiency SnO{sub 2}-DSSC

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung-Hoon; Shin, Yu-Ju [Department of Chemistry, the Catholic University of Korea, Bucheon, Gyeonggi-do 422-743 (Korea, Republic of); Park, Nam-Gyu [School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2011-01-15

    The nano-grain ZnO/SnO{sub 2} composite electrode was prepared by adding 5 w% of the 200-250 nm ZnO particles to the 5 nm SnO{sub 2} colloid in the presence of hydroxypropylcellulose (M.W.=80,000). The nano-grain SnO{sub 2} electrode was obtained by removing the ZnO particles from the composite electrode using acetic acid. The FE-SEM micrographs revealed that both electrodes consisted of interconnected nano-grains that were ca. 800 nm in size, and the large pores between the grains furnished the wide electrolyte diffusion channels within the electrodes. The photovoltaic properties of the nano-grain electrodes were investigated by measuring the I-V behaviors, the IPCE spectra and the ac-impedance spectra. The nano-grain electrodes exhibited remarkably improved conversion efficiencies of 3.96% for the composite and 2.98% for the SnO{sub 2} electrode compared to the value of 1.66% for the usual nano-particle SnO{sub 2} electrode. The improvement conversion efficiencies were mainly attributed to the formation of nano-grains, which facilitated the electron diffusion within the grains. The improved electrolyte diffusion as well as the light-scattering effects enhanced the photovoltaic performance of the SnO{sub 2} electrode. (author)

  6. Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentrations from 4% to 11%

    Energy Technology Data Exchange (ETDEWEB)

    Hart, John; Hazbun, Ramsey; Gupta, Jay; Kolodzey, James [Department of Electrical Engineering, University of Delaware, 140 Evans Hall, Newark, Delaware 19716 (United States); Adam, Thomas [College of Nanoscale Science and Engineering, SUNY, Albany, New York 12203 (United States); Kim, Yihwan; Huang, Yi-Chiau [Applied Materials, Sunnyvale, California 94085 (United States); Reznicek, Alexander [IBM Research at Albany Nanotech, Albany, New York 12203 (United States)

    2016-03-07

    Pseudomorphic GeSn layers with Sn atomic percentages between 4.5% and 11.3% were grown by chemical vapor deposition using digermane and SnCl{sub 4} precursors on Ge virtual substrates grown on Si. The layers were characterized by x-ray diffraction rocking curves and reciprocal space maps. Photoconductive devices were fabricated, and the dark current was found to increase with Sn concentration. The responsivity of the photoconductors was measured at a wavelength of 1.55 μm using calibrated laser illumination at room temperature and a maximum value of 2.7 mA/W was measured for a 4.5% Sn device. Moreover, the responsivity for higher Sn concentration was found to increase with decreasing temperature. Spectral photoconductivity was measured using Fourier transform infrared spectroscopy. The photoconductive absorption edge continually increased in wavelength with increasing tin percentage, out to approximately 2.4 μm for an 11.3% Sn device. The direct band gap was extracted using Tauc plots and was fit to a bandgap model accounting for layer strain and Sn concentration. This direct bandgap was attributed to absorption from the heavy-hole band to the conduction band. Higher energy absorption was also observed, which was thought to be likely from absorption in the light-hole band. The band gaps for these alloys were plotted as a function of temperature. These experiments show the promise of GeSn alloys for CMOS compatible short wave infrared detectors.

  7. Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentrations from 4% to 11%

    International Nuclear Information System (INIS)

    Hart, John; Hazbun, Ramsey; Gupta, Jay; Kolodzey, James; Adam, Thomas; Kim, Yihwan; Huang, Yi-Chiau; Reznicek, Alexander

    2016-01-01

    Pseudomorphic GeSn layers with Sn atomic percentages between 4.5% and 11.3% were grown by chemical vapor deposition using digermane and SnCl 4 precursors on Ge virtual substrates grown on Si. The layers were characterized by x-ray diffraction rocking curves and reciprocal space maps. Photoconductive devices were fabricated, and the dark current was found to increase with Sn concentration. The responsivity of the photoconductors was measured at a wavelength of 1.55 μm using calibrated laser illumination at room temperature and a maximum value of 2.7 mA/W was measured for a 4.5% Sn device. Moreover, the responsivity for higher Sn concentration was found to increase with decreasing temperature. Spectral photoconductivity was measured using Fourier transform infrared spectroscopy. The photoconductive absorption edge continually increased in wavelength with increasing tin percentage, out to approximately 2.4 μm for an 11.3% Sn device. The direct band gap was extracted using Tauc plots and was fit to a bandgap model accounting for layer strain and Sn concentration. This direct bandgap was attributed to absorption from the heavy-hole band to the conduction band. Higher energy absorption was also observed, which was thought to be likely from absorption in the light-hole band. The band gaps for these alloys were plotted as a function of temperature. These experiments show the promise of GeSn alloys for CMOS compatible short wave infrared detectors.

  8. Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentrations from 4% to 11%

    Science.gov (United States)

    Hart, John; Adam, Thomas; Kim, Yihwan; Huang, Yi-Chiau; Reznicek, Alexander; Hazbun, Ramsey; Gupta, Jay; Kolodzey, James

    2016-03-01

    Pseudomorphic GeSn layers with Sn atomic percentages between 4.5% and 11.3% were grown by chemical vapor deposition using digermane and SnCl4 precursors on Ge virtual substrates grown on Si. The layers were characterized by x-ray diffraction rocking curves and reciprocal space maps. Photoconductive devices were fabricated, and the dark current was found to increase with Sn concentration. The responsivity of the photoconductors was measured at a wavelength of 1.55 μm using calibrated laser illumination at room temperature and a maximum value of 2.7 mA/W was measured for a 4.5% Sn device. Moreover, the responsivity for higher Sn concentration was found to increase with decreasing temperature. Spectral photoconductivity was measured using Fourier transform infrared spectroscopy. The photoconductive absorption edge continually increased in wavelength with increasing tin percentage, out to approximately 2.4 μm for an 11.3% Sn device. The direct band gap was extracted using Tauc plots and was fit to a bandgap model accounting for layer strain and Sn concentration. This direct bandgap was attributed to absorption from the heavy-hole band to the conduction band. Higher energy absorption was also observed, which was thought to be likely from absorption in the light-hole band. The band gaps for these alloys were plotted as a function of temperature. These experiments show the promise of GeSn alloys for CMOS compatible short wave infrared detectors.

  9. Electrodeposition of nanostructured Sn-Zn coatings

    Science.gov (United States)

    Salhi, Y.; Cherrouf, S.; Cherkaoui, M.; Abdelouahdi, K.

    2016-03-01

    The electrodeposition of Sn-Zn coating at ambient temperature was investigated. The bath consists of metal salts SnCl2·2H2O and ZnSO4·7H2O and sodium citrate (NaC6H5Na3O7·2H2O) as complexing agent. To prevent precipitation, the pH is fixed at 5. Reducing tin and zinc through Sncit2- and ZnHcit- complex respectively is confirmed by the presence of two cathodic peaks on the voltammogram. The kinetic of tin (II) reduction process is limited by the SnCit2- dissociation. The SEM and TEM observations have showed that the coating consists of a uniform Sn-Zn layer composed of fine grains on which tin aggregates grow up. XRD revealed peaks corresponding to the hexagonal Zn phase and the tetragonal β-Sn phase.

  10. SN 2006oz

    DEFF Research Database (Denmark)

    Leloudas, Georgios; Chatzopoulos, E.; Dilday, B.

    2012-01-01

    to contribute to a better understanding of these objects by studying SN 2006oz, a newly-recognized member of this class. Methods. We present multi-color light curves of SN 2006oz from the SDSS-II SN Survey that cover its rise time, as well as an optical spectrum that shows that the explosion occurred at z ~ 0.......376. We fitted black-body functions to estimate the temperature and radius evolution of the photosphere and used the parametrized code SYNOW to model the spectrum. We constructed a bolometric light curve and compared it with explosion models. In addition, we conducted a deep search for the host galaxy...... to a recombination wave in a circumstellar medium (CSM) and discuss whether this is a common property of all similar explosions. The subsequent rise can be equally well described by input from a magnetar or by ejecta-CSM interaction, but the models are not well constrained owing to the lack of post...

  11. Phase Equilibria of Sn-Co-Cu Ternary System

    Science.gov (United States)

    Chen, Yu-Kai; Hsu, Chia-Ming; Chen, Sinn-Wen; Chen, Chih-Ming; Huang, Yu-Chih

    2012-10-01

    Sn-Co-Cu ternary alloys are promising lead-free solders, and isothermal sections of Sn-Co-Cu phase equilibria are fundamentally important for the alloys' development and applications. Sn-Co-Cu ternary alloys were prepared and equilibrated at 523 K, 1073 K, and 1273 K (250 °C, 800 °C, and 1000 °C), and the equilibrium phases were experimentally determined. In addition to the terminal solid solutions and binary intermetallic compounds, a new ternary compound, Sn3Co2Cu8, was found. The solubilities of Cu in the α-CoSn3 and CoSn2 phases at 523 K (250 °C) are 4.2 and 1.6 at. pct, respectively, while the Cu solubility in the α-Co3Sn2 phase is as high as 20.0 at. pct. The Cu solubility increases with temperature and is around 30.0 at. pct in the β-Co3Sn2 at 1073 K (800 °C). The Co solubility in the η-Cu6Sn5 phase is also significant and is 15.5 at. pct at 523 K (250 °C).

  12. Peculiarities of component interaction in {Gd, Er}-V-Sn Ternary systems at 870 K and crystal structure of RV6Sn6 stannides

    International Nuclear Information System (INIS)

    Romaka, L.; Stadnyk, Yu.; Romaka, V.V.; Demchenko, P.; Stadnyshyn, M.; Konyk, M.

    2011-01-01

    Highlights: → {Gd, Er}-V-Sn ternary systems at 870 K are characterized by formation of stannides with general compositions RV 6 Sn 6 . → Isostructural RV 6 Sn 6 compounds were also found with Y, Dy, Ho, Tm, and Lu. → The crystal structure of RV 6 Sn 6 compounds was determined by powder diffraction method. → Structural analysis showed that RV 6 Sn 6 compounds (R = Gd, Dy-Tm, Lu) are disordered; YV 6 Sn 6 is characterized by structure ordering. - Abstract: The phase equilibria in the Gd-V-Sn and Er-V-Sn ternary systems were studied at 870 K by means of X-ray and metallographic analyses in the whole concentration range. Both Gd-V-Sn and Er-V-Sn systems are characterized by formation of one ternary compound at investigated temperature, with stoichiometry RV 6 Sn 6 (SmMn 6 Sn 6 -type, space group P6/mmm, a = 0.55322(3) nm, c = 0.91949(7) nm for Gd, a = 0.55191(2) nm, c = 0.91869(8) nm for Er). Solubility of the third component in the binary compounds was not observed. Compounds with the SmMn 6 Sn 6 -type were also found with Dy, Ho, Tm, and Lu, while YV 6 Sn 6 compound crystallizes in HfFe 6 Ge 6 structure type. All investigated compounds are the first ternary stannides with rare earth elements and vanadium.

  13. Dominant effect of high anisotropy in β-Sn grain on electromigration-induced failure mechanism in Sn-3.0Ag-0.5Cu interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Huang, M.L., E-mail: huang@dlut.edu.cn; Zhao, J.F.; Zhang, Z.J.; Zhao, N.

    2016-09-05

    The effect of high diffusivity anisotropy in β-Sn grain on electromigration behavior of micro-bumps was clearly demonstrated using Sn-3.0Ag-0.5Cu solder interconnects with only two β-Sn grains. The orientation of β-Sn grain (θ is defined as the angle between the c-axis of β-Sn grain and the electron flow direction) is becoming the most crucial factor to dominate the different electromigration-induced failure modes: 1) the excessive dissolution of the cathode Cu, blocking at the grain boundary and massive precipitation of columnar Cu{sub 6}Sn{sub 5} intermetallic compounds (IMCs) in the small angle θ β-Sn grain occur when electrons flow from a small angle θ β-Sn grain to a large one; 2) void formation and propagation occur at the cathode IMC/solder interface and no Cu{sub 6}Sn{sub 5} IMCs precipitate within the large angle θ β-Sn grain when electrons flow in the opposite direction. The EM-induced failure mechanism of the two β-Sn grain solder interconnects is well explained in viewpoint of atomic diffusion flux in β-Sn. - Highlights: • High anisotropy in β-Sn dominates different electromigration-induced failure mode. • Excessive dissolution of cathode Cu occurs if electrons flow in forward direction. • Voids initiate and propagate at cathode if electrons flow in reverse direction. • Failure modes are well explained in viewpoint of atomic diffusion flux in β-Sn.

  14. Ethanol electrooxidation on novel carbon supported Pt/SnOx/C catalysts with varied Pt:Sn ratio

    International Nuclear Information System (INIS)

    Jiang, L.; Colmenares, L.; Jusys, Z.; Sun, G.Q.; Behm, R.J.

    2007-01-01

    Novel carbon supported Pt/SnO x /C catalysts with Pt:Sn atomic ratios of 5:5, 6:4, 7:3 and 8:2 were prepared by a modified polyol method and characterized with respect to their structural properties (X-ray diffraction (XRD) and transmission electron microscopy (TEM)), chemical composition (XPS), their electrochemical properties (base voltammetry, CO ad stripping) and their electrocatalytic activity and selectivity for ethanol oxidation (ethanol oxidation reaction (EOR)). The data show that the Pt/SnO x /C catalysts are composed of Pt and tin oxide nanoparticles with an average Pt particle diameter of about 2 nm. The steady-state activity of the Pt/SnO x /C catalysts towards the EOR decreases with tin content at room temperature, but increases at 80 deg. C. On all Pt/SnO x /C catalysts, acetic acid and acetaldehyde represent dominant products, CO 2 formation contributes 1-3% for both potentiostatic and potentiodynamic reaction conditions. With increasing potential, the acetaldehyde yield decreases and the acetic acid yield increases. The apparent activation energies of the EOR increase with tin content (19-29 kJ mol -1 ), but are lower than on Pt/C (32 kJ mol -1 ). The somewhat better performance of the Pt/SnO x /C catalysts compared to alloyed PtSn x /C catalysts is attributed to the presence of both sufficiently large Pt ensembles for ethanol dehydrogenation and C-C bond splitting and of tin oxide for OH generation. Fuel cell measurements performed for comparison largely confirm the results obtained in model studies

  15. Syntheses, structural variants and characterization of AInM′S4 (A=alkali metals, Tl; M′ = Ge, Sn) compounds; facile ion-exchange reactions of layered NaInSnS4 and KInSnS4 compounds

    International Nuclear Information System (INIS)

    Yohannan, Jinu P.; Vidyasagar, Kanamaluru

    2016-01-01

    Ten AInM′S 4 (A=alkali metals, Tl; M′= Ge, Sn) compounds with diverse structure types have been synthesized and characterized by single crystal and powder X-ray diffraction and a variety of spectroscopic methods. They are wide band gap semiconductors. KInGeS 4 (1-β), RbInGeS 4 (2), CsInGeS 4 (3-β), TlInGeS 4 (4-β), RbInSnS 4 (8-β) and CsInSnS 4 (9) compounds with three-dimensional BaGa 2 S 4 structure and CsInGeS 4 (3-α) and TlInGeS 4 (4-α) compounds with a layered TlInSiS 4 structure have tetrahedral [InM′S 4 ] − frameworks. On the other hand, LiInSnS 4 (5) with spinel structure and NaInSnS 4 (6), KInSnS 4 (7), RbInSnS 4 (8-α) and TlInSnS 4 (10) compounds with layered structure have octahedral [InM′S 4 ] − frameworks. NaInSnS 4 (6) and KInSnS 4 (7) compounds undergo facile topotactic ion-exchange, at room temperature, with various mono-, di- and tri-valent cations in aqueous medium to give rise to metastable layered phases. - Graphical abstract: NaInSnS 4 and KInSnS 4 compounds undergo, in aqueous medium at room temperature, facile topotactic ion-exchange with mono, di and trivalent cations. Display Omitted - Highlights: • Ten AInM′S 4 compounds with diverse structure types were synthesized. • They are wide band gap semiconductors. • NaInSnS 4 and KInSnS 4 compounds undergo facile topotactic ion-exchange at room temperature.

  16. Effect of Nb on the Growth Behavior of Co3Sn2 Phase in Undercooled Co-Sn Melts

    Science.gov (United States)

    Kang, Jilong; Xu, Wanqiang; Wei, Xiuxun; Ferry, Michael; Li, Jinfu

    2016-12-01

    The growth behavior of the primary β-Co3Sn2 phase in (Co67Sn33)100- x Nb x ( x = 0, 0.5, 0.8, 1.0) hypereutectic alloys at different melt undercoolings was investigated systematically. The growth pattern of the β-Co3Sn2 phase at low undercooling changes with the Nb content from fractal seaweed ( x = 0, 0.5) into dendrite ( x = 0.8) and then returns to fractal seaweed ( x = 1.0) as a response to the changes in interface energy anisotropy and interface kinetic anisotropy. As undercooling increases, the dendritic growth of the β-Co3Sn2 phase in (Co67Sn33)99.2Nb0.8 alloy gives way to fractal seaweed growth at an undercooling of 32 K (-241 °C). At larger undercooling, the fractal seaweed growth is further replaced by compact seaweed growth, which occurred in the other three alloys investigated. The growth velocity of the β-Co3Sn2 phase slightly increases at low and intermediate undercooling but clearly decreases at larger undercooling due to the Nb addition. The growth velocity sharply increases as the growth pattern of the Co3Sn2 phase transits from fractal seaweed into compact seaweed.

  17. High field-effect mobility at the (Sr,Ba)SnO{sub 3}/BaSnO{sub 3} interface

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Kohei, E-mail: kfujiwara@imr.tohoku.ac.jp; Nishihara, Kazuki; Shiogai, Junichi; Tsukazaki, Atsushi [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2016-08-15

    A perovskite oxide, BaSnO{sub 3}, has been classified as one of transparent conducting materials with high electron mobility, and its application for field-effect transistors has been the focus of recent research. Here we report transistor operation in BaSnO{sub 3}-based heterostructures with atomically smooth surfaces, fabricated on SrTiO{sub 3} substrates by the (Sr,Ba)SnO{sub 3} buffer technique. Indeed, modulation of band profiles at the channel interfaces with the insertion of wide bandgap (Sr,Ba)SnO{sub 3} as a barrier layer results in a significant improvement of field-effect mobility, implying effective carrier doping at the regulated heterointerface. These results provide an important step towards realization of high-performance BaSnO{sub 3}-based field-effect transistors.

  18. Zr-Sn-Nb alloys. Preliminary studies

    International Nuclear Information System (INIS)

    Danon, C.A.; Arias, D.E.

    1993-01-01

    Studies of the Zr-Sn-Nb diagram have been started, focussing on the Zr-rich corner, near the composition of Zirlo commercial alloy, Zr-1Sn-1Nb, and with Fe and O contents usual in nuclear grade materials. Three alloys were melted, namely Zr-4Sn-2.4Nb (A), Zr-1Sn-3Nb (B) and Zr-2.1Sn-1Nb (C). α/β transformation temperatures were measured through the variation of electrical resistivity(p) vs temperature (T). Values of 560 deg C, 670 deg C and 750 deg C were measured for the α→α+β reaction and 980 deg C, 910 deg C and 1000 deg C for the α+β→β reaction, for the A, B and C alloys, respectively in that order. Some samples were submitted to heat treatments (62 and 216 hours at 825 deg C, 120 hours at 875 deg C). Optical and scanning electronic microscopy of those samples confirmed our resistivity results. (Author)

  19. Changes of electronic structure of SnTe due to high concentration of Sn vacancies

    International Nuclear Information System (INIS)

    Masek, J.; Nuzhnyj, D.N.

    1997-01-01

    Non-stoichiometric Sn 1-y Te is a strongly degenerated n-type semiconductor. This is important for understanding unusual features of magnetic behaviour of Sn 1-x Gd x Te where the relative positions of the Fermi energy and the atomic d-level of Gd govern the exchange coupling.The influence of the Sn vacancies on the band structure cannot be neglect if their concentration reaches a few atomic percent. We address this problem by using a tight-binding coherent potential approach and show that although the character of the bands remains unchanged, they are modified so that ε d can come out above the heavy-hole band. (author)

  20. Interfacial reaction of Ni{sub 3}Sn{sub 4} intermetallic compound in Ni/SnAg solder/Ni system under thermomigration

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yi-Shan; Yang, Chia-Jung; Ouyang, Fan-Yi, E-mail: fyouyang@ess.nthu.edu.tw

    2016-07-25

    The growth of Ni{sub 3}Sn{sub 4} intermetallic compound (IMC) between liquid–solid interface in micro-scale Ni/SnAg/Ni system was investigated under a temperature gradient of 160 °C/cm at 260 °C on a hot plate. In contrast to a symmetrical growth of Ni{sub 3}Sn{sub 4} on both interfaces under isothermally annealed at 260 °C, the interfacial Ni{sub 3}Sn{sub 4} IMC exhibited asymmetric growth under a temperature gradient; the growth of Ni{sub 3}Sn{sub 4} at cold interface was faster than that at hot side because of temperature gradient induced mass migration of Ni atoms from the hot end toward the cold end. It was found that two-stage growth behavior of Ni{sub 3}Sn{sub 4} IMC under a temperature gradient. A growth model was established and growth kinetic analysis suggested that the chemical potential gradient controlled the growth of Ni{sub 3}Sn{sub 4} at stage I (0–120 min) whereas the dynamic equilibrium between chemical potential gradient and temperature gradient forces was attained at the hot end at stage II (120–210 min). When dynamic equilibrium was achieved at 260 °C, the critical length-temperature gradient product at the hot end was experimentally estimated to be 489.18 μm × °C/cm and the moving velocity of Ni{sub 3}Sn{sub 4} interface due to Ni consumption was calculated to be 0.134 μm/h. The molar heat of transport (Q*) of Ni atoms in molten SnAg solder was calculated to be +0.76 kJ/mol. - Highlights: • Interfacial reaction in Ni/SnAg solder/Ni system under thermal gradient. • Growth rate of Ni{sub 3}Sn{sub 4} at cold end is faster than that at hot end. • Critical length-temperature gradient product at hot end is 489.2 μm°C/cm at 260 °C. • Velocity of Ni{sub 3}Sn{sub 4} moving interface is 0.134 μm/h during dynamic equilibrium. • Molar heat of transport (Q*) of Ni in molten SnAg was +0.76 kJ/mol.

  1. The crystal structure of (Nb$_{0.75}$Cu$_{0.25}$)Sn$_{2}$ in the Cu-Nb-Sn system

    CERN Document Server

    Martin, Stefan; Nolze, Gert; Leineweber, Andreas; Leaux, Floriane; Scheuerlein, Christian

    2017-01-01

    During the processing of superconducting Nb$_{3}$Sn wire, several intermediate intermetallic phases including a previously encountered Cu-Nb-Sn phase show up. The yet unknown crystal structure of this phase is now identified by a combination of different experimental techniques and database search to be of the hexagonal NiMg2 type with a proposed composition of about (Nb0.75Cu0.25)Sn2. The structure determination started from an evaluation of the lattice parameters from EBSD Kikuchi patterns from quenched material suggesting hexagonal or orthorhombic symmetry. A database search then led to the hexagonal NiMg2 type structure, the presence of which was confirmed by a Rietveld analysis on the basis of high energy synchrotron X-ray powder diffraction data. Assuming a partial substitution of Nb in orthorhombic NbSn2 by Cu, the change of the valence electron concentration provokes a structural transformation from the CuMg2 type for NbSn2 to the NiMg2 type for (Nb0.75Cu0.25)Sn2. In the previous literature the (Nb0.7...

  2. Coulomb excitation of {sup 107}Sn

    Energy Technology Data Exchange (ETDEWEB)

    DiJulio, D.D.; Cederkall, J.; Fahlander, C. [Lund University, Physics Department, 118, Lund (Sweden); Ekstroem, A. [University of Oslo, Department of Physics and Center of Mathematics for Applications, Oslo (Norway); Hjorth-Jensen, M. [University of Oslo, Department of Physics and Center of Mathematics for Applications, Oslo (Norway); Michigan State University, National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, East Lansing, MI (United States); Albers, M.; Blazhev, A.; Fransen, C.; Geibel, K.; Hess, H.; Reiter, P.; Seidlitz, M.; Taprogge, J.; Warr, N. [University of Cologne, Institute of Nuclear Physics, Cologne (Germany); Bildstein, V.; Gernhaeuser, R.; Wimmer, K. [Technische Universitaet Muenchen, Physik Department E12, Garching (Germany); Darby, I.; Witte, H. de [Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); Davinson, T. [University of Edinburgh, Department of Physics and Astronomy, Edinburgh (United Kingdom); Diriken, J. [Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); Studiecentrum voor Kernenergie/Centre d' Etude de l' energie Nucleaire (SCK CEN), Mol (Belgium); Goergen, A.; Siem, S.; Tveten, G.M. [University of Oslo, Department of Physics, Oslo (Norway); Iwanicki, J. [University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland); Lutter, R. [Ludwig-Maximilians-Universitaet Muenchen, Fakultaet fuer Physik, Garching (Germany); Scheck, M. [University of Liverpool, Oliver Lodge Laboratory, Liverpool (United Kingdom); Walle, J.V. de [PH Department, Geneva 23 (Switzerland); Voulot, D.; Wenander, F. [AB Department, Geneva 23 (Switzerland)

    2012-07-15

    The radioactive isotope {sup 107}Sn was studied using Coulomb excitation at the REX-ISOLDE facility at CERN. This is the lightest odd-Sn nucleus examined using this technique. The reduced transition probability of the lowest-lying 3/2{sup +} state was measured and is compared to shell-model predictions based on several sets of single-neutron energies relative to {sup 100}Sn. Similar to the transition probabilities for the 2{sup +} states in the neutron-deficient even-even Sn nuclei, the measured value is underestimated by shell-model calculations. Part of the strength may be recovered by considering the ordering of the d{sub 5/2} and g{sub 7/2} single-neutron states. (orig.)

  3. Effect of Cooling Rate on the Longitudinal Modulus of Cu3Sn Phase of Ag-Sn-Cu Amalgam Alloy (Part II

    Directory of Open Access Journals (Sweden)

    R. H. Rusli

    2015-10-01

    Full Text Available Effects of cooling rate (at the time of solidification on the elastic constants of Cu3Sn phase of Ag-Sn-Cu dental amalgam alloy were studied. In this study, three types of alloys were made, with the composition Cu-38-37 wt% Sn by means of casting, where each alloy was subjected to different cooling rate, such as cooling on the air (AC, air blown (AB, and quenched in the water (WQ. X-ray diffraction, metallography, and Scanning Electron Microscopy with Energy Dispersive Spectroscopy studies of three alloys indicated the existence of Cu3Sn phase. Determination of the modulus of elasticity of Cu3Sn (ε phase was carried out by the measurement of longitudinal and transversal waves velocity using ultrasonic technique. The result shows that Cu3Sn (ε phase on AC gives higher modulus of elasticity values than those of Cu3Sn (ε on AB and WQ. The high modulus of elasticity value will produce a strong Ag-Sn-Cu dental amalagam alloy.

  4. Controlling Cu–Sn mixing so as to enable higher critical current densities in RRP® Nb3Sn wires

    Science.gov (United States)

    Sanabria, Charlie; Field, Michael; Lee, Peter J.; Miao, Hanping; Parrell, Jeff; Larbalestier, David C.

    2018-06-01

    Dipole magnets for the proposed Future Circular Collider (FCC) demand specifications significantly beyond the limits of all existing Nb3Sn wires, in particular a critical current density (J c) of more than 1500 A mm‑2 at 16 T and 4.2 K with an effective filament diameter (D eff) of less than 20 μm. The restacked-rod-process (RRP®) is the technology closest to meeting these demands, with a J c (16 T) of up to 1400 A mm‑2, residual resistivity ratio > 100, for a sub-element size D s of 58 μm (which in RRP® wires is essentially the same as D eff). An important present limitation of RRP® is that reducing the sub-element size degrades J c to as low as 900 A mm‑2 at 16 T for D s = 35 μm. To gain an understanding of the sources of this J c degradation, we have made a detailed study of the phase evolution during the Cu–Sn ‘mixing’ stages of the wire heat treatment that occur prior to Nb3Sn formation. Using extensive microstructural quantification, we have identified the critical role that the Sn–Nb–Cu ternary phase (Nausite) can play. The Nausite forms as a well-defined ring between the Sn source and the Cu/Nb filament pack, and acts as an osmotic membrane in the 300 °C–400 °C range—greatly inhibiting Sn diffusion into the Cu/Nb filament pack while supporting a strong Cu counter-diffusion from the filament pack into the Sn core. This converts the Sn core into a mixture of the low melting point (408 °C) η phase (Cu6Sn5) and the more desirable ε phase (Cu3Sn), which decomposes at 676 °C. After the mixing stages, when heated above 408 °C towards the Nb3Sn reaction, any residual η liquefies to form additional irregular Nausite on the inside of the membrane. All Nausite decomposes into NbSn2 on further heating, and ultimately transforms into coarse-grain (and often disconnected) Nb3Sn which has little contribution to current transport. Understanding this critical Nausite reaction pathway has allowed us to simplify the mixing heat treatment to

  5. Lead-free soldering: Investigation of the Cu-Sn-Sb system along the Sn:Sb = 1:1 isopleth

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Y. [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Department of Chemistry and Industrial Chemistry, University of Genoa, INSTM UdR Genoa, Via Dodecaneso 31, I-16146 Genoa (Italy); Borzone, G., E-mail: borzone@chimica.unige.it [Department of Chemistry and Industrial Chemistry, University of Genoa, INSTM UdR Genoa, Via Dodecaneso 31, I-16146 Genoa (Italy); Zanicchi, G.; Delsante, S. [Department of Chemistry and Industrial Chemistry, University of Genoa, INSTM UdR Genoa, Via Dodecaneso 31, I-16146 Genoa (Italy)

    2011-02-03

    Research highlights: > In the electronics industry, the solder alloys commonly used for assembly belong to the Sn-Pb system. Fulfilment of the EU RoHS (reduction of hazardous substances) requires the development of new lead-free alloys for applications in electronics, with the same or possibly better characteristics than the traditional Sn-Pb alloys. > This research concerns the investigation of the constitutional properties of the Cu-Sn-Sb system which is considered as lead-free replacement for high-temperature applications. - Abstract: The Cu-Sn-Sb system has been experimentally investigated by a combination of optical microscopy, differential scanning calorimetry (DSC) and electron probe microanalysis (EPMA). DSC was used to identify a total number of five invariant ternary reactions and the Sn:Sb = 1:1 isopleth section up to 65 at.% Cu was constructed by combining the DSC data with the EPMA analyses of annealed alloys and literature information. The composition limits of the binary phases were detected.

  6. Laser spectroscopy of neutron deficient Sn isotopes

    CERN Multimedia

    We propose to study the ground state properties of neutron-deficient Sn isotopes towards the doubly-magic nucleus $^{100}$Sn. Nuclear spins, changes in the rms charge radii and electromagnetic moments of $^{101-121}$Sn will be measured by laser spectroscopy using the CRIS experimental beam line. These ground-state properties will help to clarify the evolution of nuclear structure properties approaching the $\\textit{N = Z =}$ 50 shell closures. The Sn isotopic chain is currently the frontier for the application of state-of-the-art ab-initio calculations. Our knowledge of the nuclear structure of the Sn isotopes will set a benchmark for the advances of many-body methods, and will provide an important test for modern descriptions of the nuclear force.

  7. Electrochemical energy storage behavior of Sn/SnO2 double phase nanocomposite anodes produced on the multiwalled carbon nanotube buckypapers for lithium-ion batteries

    Science.gov (United States)

    Alaf, Mirac; Akbulut, Hatem

    2014-02-01

    Recent development of electrode materials for Li-ion batteries is driven mainly by hybrid nanocomposite structures consisting of Li storage compounds and CNTs. In this study, tin/tinoxide (Sn/SnO2) films and tin/tinoxide/multi walled carbon nanotube (Sn/SnO2/MWCNT) nanocomposites are produced by a two steps process; thermal evaporation and subsequent plasma oxidation as anode materials for Li-ion batteries. The physical, structural, and electrochemical behaviors of the nanocomposite electrodes containing MWCNTs are discussed. The ratio between metallic tin (Sn) and tinoxide (SnO2) is controlled with plasma oxidation time and effects of the ratio are investigated on the structural and electrochemical properties. The greatly enhanced electrochemical performance is mainly due to the morphological stability and reduced diffusion resistance, which are induced by MWCNT core and deposited Sn/SnO2 double phase shell. The outstanding long-term cycling stability is a result of the two layers Sn and SnO2 phases on MWCNTs. The nanoscale Sn/SnO2/MWCNT network provides good electrical conductivity, and the creation of open spaces that buffer a large volume change during the Li-alloying/de-alloying reaction.

  8. CO oxidation on PtSn nanoparticle catalysts occurs at the interface of Pt and Sn oxide domains formed under reaction conditions

    KAUST Repository

    Michalak, William D.

    2014-04-01

    The barrier to CO oxidation on Pt catalysts is the strongly bound adsorbed CO, which inhibits O2 adsorption and hinders CO2 formation. Using reaction studies and in situ X-ray spectroscopy with colloidally prepared, monodisperse ∼2 nm Pt and PtSn nanoparticle catalysts, we show that the addition of Sn to Pt provides distinctly different reaction sites and a more efficient reaction mechanism for CO oxidation compared to pure Pt catalysts. To probe the influence of Sn, we intentionally poisoned the Pt component of the nanoparticle catalysts using a CO-rich atmosphere. With a reaction environment comprised of 100 Torr CO and 40 Torr O2 and a temperature range between 200 and 300 C, Pt and PtSn catalysts exhibited activation barriers for CO2 formation of 133 kJ/mol and 35 kJ/mol, respectively. While pure Sn is readily oxidized and is not active for CO oxidation, the addition of Sn to Pt provides an active site for O2 adsorption that is important when Pt is covered with CO. Sn oxide was identified as the active Sn species under reaction conditions by in situ ambient pressure X-ray photoelectron spectroscopy measurements. While chemical signatures of Pt and Sn indicated intermixed metallic components under reducing conditions, Pt and Sn were found to reversibly separate into isolated domains of Pt and oxidic Sn on the nanoparticle surface under reaction conditions of 100 mTorr CO and 40 mTorr O2 between temperatures of 200-275 C. Under these conditions, PtSn catalysts exhibited apparent reaction orders in O2 for CO 2 production that were 0.5 and lower with increasing partial pressures. These reaction orders contrast the first-order dependence in O 2 known for pure Pt. The differences in activation barriers, non-first-order dependence in O2, and the presence of a partially oxidized Sn indicate that the enhanced activity is due to a reaction mechanism that occurs at a Pt/Sn oxide interface present at the nanoparticle surface. © 2014 Published by Elsevier Inc.

  9. Development of a 117mSn preparation method

    International Nuclear Information System (INIS)

    Moraes, Vanessa; Osso Junior, Joao Alberto

    2000-01-01

    117m Sn is a radioisotope with suitable characteristics to be used in nuclear medicine as radiotherapy, when labeled with DTPA. The aim of this work is the preparation of 117m Sn from irradiation of the natural tin with proton beam at the cyclotron CV-28 of IPEN-CNEN/SP via the nuclear reaction nat Sn (p, xn) 117 Sb to 117m Sn. Due to the formation of the Sb precursor it is necessary to perform a chemical separation for Sb-Sn. The separation method used was the ion exchange, due to its utilization facilities for radioactive material. Chemical, radiochemical and radionuclidic methods were also developed for the quality control of the final product, the 117m Sn. (author)

  10. Exploration work function and optical properties of monolayer SnSe allotropes

    Science.gov (United States)

    Cui, Zhen; Wang, Xia; Ding, Yingchun; Li, Meiqin

    2018-02-01

    The work function and optical properties are investigated with density functional theory for three monolayer SnSe allotropes. The calculated results indicate that the α-SnSe, δ-SnSe, ε-SnSe are semiconductor with the band gaps of 0.90, 1.25, and 1.50 eV, respectively. Meanwhile, the work function of δ-SnSe is lower than α-SnSe and ε-SnSe, which indicates that the δ-SnSe can be prepared of photoemission and field emission nanodevices. More importantly, the α-SnSe, δ-SnSe, ε-SnSe with the large static dielectric constants are 4.22, 5.48, and 3.61, which demonstrate that the three monolayer SnSe allotropes can be fabricated the capacitor. In addition, the static refractive index of δ-SnSe is larger than α-SnSe and ε-SnSe. The different optical properties with three monolayer SnSe allotropes reveal that the allotropes can regulate the properties of the materials. Moreover, our researched results show that the three monolayer SnSe allotropes are sufficient for fabrication of optoelectronic nanodevices.

  11. Local atomic structure inheritance in Ag50Sn50 melt

    International Nuclear Information System (INIS)

    Bai, Yanwen; Bian, Xiufang; Qin, Jingyu; Hu, Lina; Yang, Jianfei; Zhang, Kai; Zhao, Xiaolin; Yang, Chuncheng; Zhang, Shuo; Huang, Yuying

    2014-01-01

    Local structure inheritance signatures were observed during the alloying process of the Ag 50 Sn 50 melt, using high-temperature X-ray diffraction and ab initio molecular dynamics simulations. The coordination number N m around Ag atom is similar in the alloy and in pure Ag melts (N m  ∼ 10), while, during the alloying process, the local structure around Sn atoms rearranges. Sn-Sn covalent bonds were substituted by Ag-Sn chemical bonds, and the total coordination number around Sn increases by about 70% as compared with those in the pure Sn melt. Changes in the electronic structure of the alloy have been studied by Ag and Sn K-edge X-ray absorption spectroscopy, as well as by calculations of the partial density of states. We propose that a leading mechanism for local structure inheritance in Ag 50 Sn 50 is due to s-p dehybridization of Sn and to the interplay between Sn-s and Ag-d electrons

  12. Annealing of RF-magnetron sputtered SnS{sub 2} precursors as a new route for single phase SnS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, M.G., E-mail: martasousa@ua.pt [AIN, I3N and Departamento de Física, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Cunha, A.F. da, E-mail: antonio.cunha@ua.pt [AIN, I3N and Departamento de Física, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Fernandes, P.A., E-mail: pafernandes@ua.pt [AIN, I3N and Departamento de Física, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Departamento de Física, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto (Portugal)

    2014-04-01

    Tin sulphide thin films have been grown on soda-lime glass substrates through the annealing of RF-magnetron sputtered SnS{sub 2} precursors. Three different approaches to the annealing were compared and the resulting films thoroughly studied. One series of precursors was annealed in a tubular furnace directly exposed to a flux of sulphur vapour plus forming gas, N{sub 2} + 5%H{sub 2}, and at a constant pressure of 500 mbar. The other two series of identical precursors were annealed in the same furnace but inside a graphite box with and without elemental sulphur evaporation again in the presence of N{sub 2} + 5%H{sub 2} and at the same pressure as for the sulphur flux experiments. Different maximum annealing temperatures for each set of samples, in the range of 300–570 °C, were tested to study their effects on the properties of the final films. The resulting phases were structurally investigated by X-Ray Diffraction (XRD) and Raman spectroscopy. Annealing of SnS{sub 2} precursors in sulphur flux produced films where SnS{sub 2} was dominant for temperatures up to 480 °C. Increasing the temperature to 530 °C and 570 °C led to films where the dominant phase became Sn{sub 2}S{sub 3}. Annealing of SnS{sub 2} precursors in a graphite box with sulphur vapour at temperatures in the range between 300 °C and 480 °C the films are multi-phase, containing Sn{sub 2}S{sub 3}, SnS{sub 2} and SnS. For high annealing temperatures of 530 °C and 570 °C the films have SnS as the dominant phase. Annealing of SnS{sub 2} precursors in a graphite box without sulphur vapour at 300 °C and 360 °C the films are essentially amorphous, at 420 °C SnS{sub 2} is the dominant phase. For temperatures of 480 °C and 530 °C SnS is the dominant phase but also same residual SnS{sub 2} and Sn{sub 2}S{sub 3} phases are observed. For annealing at 570 °C, according to the XRD results the films appear to be single phase SnS. The composition was studied using energy dispersive spectroscopy being

  13. Enhanced hydrogen storage capacity of Ni/Sn-coated MWCNT nanocomposites

    Science.gov (United States)

    Varshoy, Shokufeh; Khoshnevisan, Bahram; Behpour, Mohsen

    2018-02-01

    The hydrogen storage capacity of Ni-Sn, Ni-Sn/multi-walled carbon nanotube (MWCNT) and Ni/Sn-coated MWCNT electrodes was investigated by using a chronopotentiometry method. The Sn layer was electrochemically deposited inside pores of nanoscale Ni foam. The MWCNTs were put on the Ni-Sn foam with nanoscale porosities using an electrophoretic deposition method and coated with Sn nanoparticles by an electroplating process. X-ray diffraction and energy dispersive spectroscopy results indicated that the Sn layer and MWCNTs are successfully deposited on the surface of Ni substrate. On the other hand, a field-emission scanning electron microscopy technique revealed the morphology of resulting Ni foam, Ni-Sn and Ni-Sn/MWCNT electrodes. In order to measure the hydrogen adsorption performed in a three electrode cell, the Ni-Sn, Ni-Sn/MWCNT and Ni/Sn-coated MWCNT electrodes were used as working electrodes whereas Pt and Ag/AgCl electrodes were employed as counter and reference electrodes, respectively. Our results on the discharge capacity in different electrodes represent that the Ni/Sn-coated MWCNT has a maximum discharge capacity of ˜30 000 mAh g-1 for 20 cycles compared to that of Ni-Sn/MWCNT electrodes for 15 cycles (˜9500 mAh g-1). By increasing the number of cycles in a constant current, the corresponding capacity increases, thereby reaching a constant amount for 20 cycles.

  14. The crystallisation of Cu{sub 2}ZnSnS{sub 4} thin film solar cell absorbers from co-electroplated Cu-Zn-Sn precursors

    Energy Technology Data Exchange (ETDEWEB)

    Schurr, R. [Chair for Crystallography and Structural Physics, University of Erlangen-Nuernberg, Staudtstrasse 3, D-91058 Erlangen (Germany)], E-mail: schurr@krist.uni-erlangen.de; Hoelzing, A.; Jost, S.; Hock, R. [Chair for Crystallography and Structural Physics, University of Erlangen-Nuernberg, Staudtstrasse 3, D-91058 Erlangen (Germany); Voss, T.; Schulze, J.; Kirbs, A. [Atotech Deutschland GmbH, Erasmusstrasse 20, D-10553 Berlin (Germany); Ennaoui, A.; Lux-Steiner, M. [Heterogeneous Material Systems SE II, Hahn-Meitner-Institut, Glienickerstr.100, D-14109 Berlin (Germany); Weber, A.; Koetschau, I.; Schock, H.-W. [Technology SE III, Hahn-Meitner-Institut, Glienickerstr.100, D-14109 Berlin (Germany)

    2009-02-02

    The best CZTS solar cell so far was produced by co-sputtering continued with vapour phase sulfurization method. Efficiencies of up to 5.74% were reached by Katagiri et al. The one step electrochemical deposition of copper, zinc, tin and subsequent sulfurization is an alternative fabrication technique for the production of Cu{sub 2}ZnSnS{sub 4} based thin film solar cells. A kesterite based solar cell (size 0.5 cm{sup 2}) with a conversion efficiency of 3.4% (AM1.5) was produced by vapour phase sulfurization of co-electroplated Cu-Zn-Sn films. We report on results of in-situ X-ray diffraction (XRD) experiments during crystallisation of kesterite thin films from electrochemically co-deposited metal films. The kesterite crystallisation is completed by the solid state reaction of Cu{sub 2}SnS{sub 3} and ZnS. The measurements show two different reaction paths depending on the metal ratios in the as deposited films. In copper-rich metal films Cu{sub 3}Sn and CuZn were found after electrodeposition. In copper-poor or near stoichiometric precursors additional Cu{sub 6}Sn{sub 5} and Sn phases were detected. The formation mechanism of Cu{sub 2}SnS{sub 3} involves the binary sulphides Cu{sub 2-x}S and SnS{sub 2} in the absence of the binary precursor phase Cu{sub 6}Sn{sub 5}. The presence of Cu{sub 6}Sn{sub 5} leads to a preferred formation of Cu{sub 2}SnS{sub 3} via the reaction educts Cu{sub 2-x}S and SnS{sub 2} in the presence of a SnS{sub 2}(Cu{sub 4}SnS{sub 6}) melt. The melt phase may be advantageous in crystallising the kesterite, leading to enhanced grain growth in the presence of a liquid phase.

  15. Diffusion couple studies of the Ni-Bi-Sn system

    Directory of Open Access Journals (Sweden)

    Vassilev G.

    2012-01-01

    Full Text Available Investigations of Ni-Bi-Sn system were performed in order to inquire the phase diagram and to assess some diffusion kinetic parameters. For this purpose diffusion couples consisting of solid nickel (preliminary electroplated with tin and liquid Bi-Sn phase were annealed at 370 °C. Three compositions (0.8, 0.6 and 0.4 mole fractions Sn of the Bi-Sn melts were chosen. Annealing times from 24 to 216 h were applied. The phase and chemical compositions of the contact zone were determined by means of electron scanning microscope. It was confirmed that the diffusion layers consist mainly of Ni3Sn4 but other intermetallic phases grow as well. For the first time metastable Ni-Sn phases as NiSn and NiSn8 (NiSn9 were observed in metallurgical alloys (i.e. not in electroplated samples. The existence of a ternary compound previously reported in the literature was confirmed. More than one ternary Ni-Bi-Sn compounds might possibly be admitted. A growth coefficient of (2.29 ± 0.02 x 10-15 m2 s-1 was obtained. It was found that the apparent activation energy for diffusion layers growth (18 ± 8 kJ mol-1 is inferior to that one assessed at growth from solid state Bi-Sn mixtures (88 ± 12 kJ mol-1.

  16. Theoretical calculation of performance enhancement in lattice-matched SiGeSn/GeSn p-channel tunneling field-effect transistor with type-II staggered tunneling junction

    Science.gov (United States)

    Wang, Hongjuan; Han, Genquan; Wang, Yibo; Peng, Yue; Liu, Yan; Zhang, Chunfu; Zhang, Jincheng; Hu, Shengdong; Hao, Yue

    2016-04-01

    In this work, a lattice-matched SiGeSn/GeSn heterostructure p-channel tunneling field-effect transistor (hetero-PTFET) with a type-II staggered tunneling junction (TJ) is investigated theoretically. Lattice matching and type-II band alignment at the Γ-point is obtained at the SiGeSn/GeSn interface by tuning Sn and Si compositions. A steeper subthreshold swing (SS) and a higher on state current (I ON) are demonstrated in SiGeSn/GeSn hetero-PTFET than in GeSn homo-PTFET. Si0.31Ge0.49Sn0.20/Ge0.88Sn0.12 hetero-PTFET achieves a 2.3-fold higher I ON than Ge0.88Sn0.12 homo-PTFET at V DD of 0.3 V. Hetero-PTFET achieves a more abrupt hole profile and a higher carrier density near TJ than the homo-PTFET, which contributes to the significantly enhanced band-to-band tunneling (BTBT) rate and tunneling current in hetero-PTFET.

  17. Numerical analysis of In_xGa_1_−_xN/SnS and Al_xGa_1_−_xN/SnS heterojunction solar cells

    International Nuclear Information System (INIS)

    Lin, Shuo; Li, Xirong; Pan, Huaqing; Chen, Huanting; Li, Xiuyan; Li, Yan; Zhou, Jinrong

    2016-01-01

    Highlights: • In_xGa_1_−_xN/SnS and Al_xGa_1_−_xN/SnS solar cells are studied by numerical analysis. • Performances of In_xGa_1_−_xN/SnS solar cells enhanced with decreasing In content. • The electron barrier leads to the degraded efficiency of Al_xGa_1_−_xN/SnS solar cells. • GaN/SnS solar cell exhibits the highest efficiency 26.34%. - Abstract: In this work the photovoltaic properties of In_xGa_1_−_xN/SnS and Al_xGa_1_−_xN/SnS heterojunction solar cells are studied by numerical analysis. The photovoltaic performances of In_xGa_1_−_xN/SnS solar cells are enhanced with the decreasing In content and the GaN/SnS solar cell exhibits the highest efficiency. The efficiencies of GaN/SnS solar cell improve with the increased SnS thickness and the reduced GaN thickness. For the Al_xGa_1_−_xN/SnS solar cells, there is electron barrier in the Al_xGa_1_−_xN/SnS interface. The electron barrier becomes larger with increasing Al content and lead to the degraded efficiency of Al_xGa_1_−_xN/SnS solar cells. The simulation contributes to designing and fabricating SnS solar cells.

  18. Noncollinear antiferromagnetic Mn3Sn films

    Science.gov (United States)

    Markou, A.; Taylor, J. M.; Kalache, A.; Werner, P.; Parkin, S. S. P.; Felser, C.

    2018-05-01

    Noncollinear hexagonal antiferromagnets with almost zero net magnetization were recently shown to demonstrate giant anomalous Hall effect. Here, we present the structural and magnetic properties of noncollinear antiferromagnetic Mn3Sn thin films heteroepitaxially grown on Y:ZrO2 (111) substrates with a Ru underlayer. The Mn3Sn films were crystallized in the hexagonal D 019 structure with c -axis preferred (0001) crystal orientation. The Mn3Sn films are discontinuous, forming large islands of approximately 400 nm in width, but are chemical homogeneous and characterized by near perfect heteroepitaxy. Furthermore, the thin films show weak ferromagnetism with an in-plane uncompensated magnetization of M =34 kA/m and coercivity of μ0Hc=4.0 mT at room temperature. Additionally, the exchange bias effect was studied in Mn3Sn /Py bilayers. Exchange bias fields up to μ0HEB=12.6 mT can be achieved at 5 K. These results show Mn3Sn films to be an attractive material for applications in antiferromagnetic spintronics.

  19. 51Cr diffusion in Zr-Sn alloys

    International Nuclear Information System (INIS)

    Nicolai, L.I.; Migoni, R.L.; Hojvat de Tendler, Ruth

    1982-01-01

    The 51 Cr volume diffusion in Zr-Sn alloys is measured in polycrystals with big grains by the thin-film method. The Sn content in the alloys ranges from 0.39% at to 6.66 % at. In the beta-phase the analysed temperature range is 982 deg C-1240 deg C. The Sn dehances the 51 Cr diffusion in beta-Zr, the effect being small but well defined. Assuming the formation of Sn-Cr dimers, the linear dehancement coefficient b and the parameters for the variation of b with temperature were calculated. The parameters Q and D o were calculated for the more diluted alloys and, upon application of the Zener theory for D o , a negative contribution to the activation entropy is found. Three experiments at different temperatures were performed in the alpha-phase. 51 Cr diffuses very fast in alpha-Zr-Sn. No definite correlation is found between the 51 Cr diffusivity and the increasing Sn concentration, probably due to the anisotropy of the alfa-phase. (M.E.L.) [es

  20. PRE-DISCOVERY AND FOLLOW-UP OBSERVATIONS OF THE NEARBY SN 2009nr: IMPLICATIONS FOR PROMPT TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Khan, Rubab; Stanek, K. Z.; Beacom, J. F.; Szczygiel, D. M.; Mogren, K.; Eastman, J. D.; Martini, P.; Stoll, R.; Prieto, J. L.; Pojmanski, G.; Pilecki, B.

    2011-01-01

    We present photometric and spectroscopic observations of the Type Ia supernova SN 2009nr in UGC 8255 (z = 0.0122). Following the discovery announcement at what turned out to be 10 days after peak, we detected it at V ≅15.7 mag in data collected by the All-Sky Automated Survey (ASAS) North telescope 2 weeks prior to the peak, and then followed it up with telescopes ranging in aperture from 10 cm to 6.5 m. Using early photometric data available only from ASAS, we find that the supernova is similar to the overluminous Type Ia SN 1991T, with a peak at M V ≅ -19.6 mag, and a slow decline rate of Δm 15 (B) ≅ 0.95 mag. The early post-maximum spectra closely resemble those of SN 1991T, while the late-time spectra are more similar to those of normal Type Ia supernovae (SNe Ia). Interestingly, SN 2009nr has a projected distance of 13.0 kpc (∼4.3 disk scale lengths) from the nucleus of the small star-forming host galaxy UGC 8255. This indicates that the progenitor of SN 2009nr is not associated with a young stellar population, calling into question the conventional association of luminous SNe Ia with the 'prompt' component directly correlated with current star formation. The pre-discovery observation of SN 2009nr using ASAS demonstrates the science utility of high-cadence all sky surveys conducted using small telescopes for the discovery of nearby (d ∼< 50 Mpc) supernovae.

  1. Thermodynamic assessment of the Sn-Co lead-free solder system

    Science.gov (United States)

    Liu, Libin; Andersson, Cristina; Liu, Johan

    2004-09-01

    The Sn-Co-Cu eutectic alloy can be a less expensive alternative for the Sn-Ag-Cu alloy. In order to find the eutectic solder composition of the Sn-Co-Cu system, the Sn-Co binary system has been thoroughly assessed with the calculation of phase diagram (CALPHAD) method. The liquid phase, the FCC and HCP Co-rich solid solution, and the BCT Sn-rich solid solution have been described by the Redlich-Kister model. The Hillert-Jarl-Inden model has been used to describe the magnetic contributions to Gibbs energy in FCC and HCP. The CoSn2, CoSn, Co3Sn2_β, and Co3Sn2_α phases have been treated as stoichiometric phases. A series of thermodynamic parameters have been obtained. The calculated phase diagram and thermodynamic properties are in good agreement with the experimental data. The obtained thermodynamic data was used to extrapolate the ternary Sn-Co-Cu phase diagram. The composition of the Sn-rich eutectic point of the Sn-Co-Cu system was found to be 224°C, 0.4% Co, and 0.7% Cu.

  2. Phase analysis of superconducting Nb-Sn materials by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Sitek, J.; Tomasich, M.; Cirak, J.; Prejsa, M.; Kruzliak, J.

    1978-01-01

    Moessbauer spectroscopy is used for the optimalization of superconducting Nb-Sn samples preparation in the form of foils. Pure phases of Nb 3 Sn, Nb 6 Sn 5 , and NbSn 2 are determined. Two series of samples are studied at 750 and 900 0 C tinning temperature respectively, and at 750, 860, 900, and 960 0 C heating temperatures. In the samples the phases Nb 3 Sn, Nb 6 Sn 5 , NbSn 2 , and the solid solution Nb-Sn phase are observed. The results from the phase analysis lead to the assumption that the percentage amount of the phases is preferentially dependent on the tinning temperature. (author)

  3. Superconductivity optimization and phase formation kinetics study of internal-Sn Nb3Sn superconducting wires

    International Nuclear Information System (INIS)

    Zhang, Chaowu

    2007-07-01

    Superconductors Nb 3 Sn wires are one of the most applicable cryogenic superconducting materials and the best choice for high-field magnets exceeding 10 T. One of the most significant utilization is the ITER project which is regarded as the hope of future energy source. The high-Cu composite designs with smaller number of sub-element and non-reactive diffusion barrier, and the RRP (Restacked Rod Process) internal-Sn technology are usually applied for the wire manufacturing. Such designed and processed wires were supplied by MSA/Alstom and WST/NIN in this research. The systematic investigation on internal-Sn superconducting wires includes the optimization of heat treatment (HT) conditions, phase formation and its relation with superconductivity, microstructure analysis, and the phase formation kinetics. Because of the anfractuosity of the configuration design and metallurgical processing, the MF wires are not sufficient for studying a sole factor effect on superconductivity. Therefore, four sets of mono-element (ME) wires with different Sn ratios and different third-element addition were designed and fabricated in order to explore the relationship between phase formation and superconducting performances, particularly the A15 layer growth kinetics. Different characterization technic have been used (magnetization measurements, neutron diffraction and SEM/TEM/EDX analysis). The A15 layer thicknesses of various ME samples were measured and carried out linear and non-linear fits by means of two model equations. The results have clearly demonstrated that the phase formation kinetics of Nb 3 Sn solid-state reaction is in accordance with an n power relation and the n value is increased with the increase of HT temperature and the Sn ratio in the wire composite. (author)

  4. Directional Solidification and Liquidus Projection of the Sn-Co-Cu System

    Science.gov (United States)

    Chen, Sinn-Wen; Chang, Jui-Shen; Pan, Kevin; Hsu, Chia-Ming; Hsu, Che-Wei

    2013-04-01

    This study investigates the Sn-Co-Cu ternary system, which is of interest to the electronics industry. Ternary Sn-Co-Cu alloys were prepared, their as-solidified microstructures were examined, and their primary solidification phases were determined. The primary solidification phases observed were Cu, Co, Co3Sn2, CoSn, CoSn2, Cu6Sn5, Co3Sn2, γ, and β phases. Although there are ternary compounds reported in this ternary system, no ternary compound was found as the primary solidification phase. The directional solidification technique was applied when difficulties were encountered using the conventional quenching method to distinguish the primary solidification phases, such as Cu6Sn5, Cu3Sn, and γ phases. Of all the primary solidification phases, the Co3Sn2 and Co phases have the largest compositional regimes in which alloys display them as the primary solidification phases. There are four class II reactions and four class III reactions. The reactions with the highest and lowest reaction temperatures are both class III reactions, and are L + CoSn2 + Cu6Sn5 = CoSn3 at 621.5 K (348.3 °C) and L + Co3Sn2 + CoSn = Cu6Sn5 at 1157.8 K (884.6 °C), respectively.

  5. Carbon supported Pd-Sn and Pd-Ru-Sn nanocatalysts for ethanol electro-oxidation in alkaline medium

    CSIR Research Space (South Africa)

    Modibedi, RM

    2011-04-01

    Full Text Available Carbon supported Pd-Sn and Pd-Ru-Sn nanocatalysts were prepared by the chemical reduction method, using sodium borohydride and ethylene glycol mixture as the reducing agent. The catalytic activity towards ethanol electro-oxidation in alkaline medium...

  6. Beta-decay studies near 100Sn

    International Nuclear Information System (INIS)

    Rykaczewski, Krzysztof Piotr; Karny, M.; Batist, L.; Banu, A.; Becker, F.; Blazhev, A.; Burkard, K.; Bruchle, W.; Doring, J.; Faestermann, T.; Gorska, M.; Grawe, H.; Janas, Z.; Jungclaus, A.; Kavatsyuk, M.; Kavatsyuk, O.; Kirchner, R.; La Commara, M.; Mandal, S.; Mazzocchi, C.; Miernik, K.; Mukha, I.; Muralithar, S.; Plettner, C.; Plochocki, A.; Roeckl, E.; Romoli, M.; Schadel, M.; Schmidt, K.; Schwengner, R.; Zylicz, J.

    2005-01-01

    The β-decay of 102 Sn was studied by using high-resolution germanium detectors as well as a Total Absorption Spectrometer (TAS). A decay scheme has been constructed based on the γ-γ coincidence data. The total experimental Gamow-Teller strength B GT exp of 102 Sn was deduced from the TAS data to be 4.2(9). A search for β-delayed γ-rays of 100 Sn decay remained unsuccessful. However, a Gamow-Teller hindrance factor h = 2.2(3), and a cross-section of about 3nb for the production of 100 Sn in fusion-evaporation reaction between 58 Ni beam and 50 Cr target have been estimated from the data on heavier tin isotopes. The estimated hindrance factor is similar to the values derived for lower shell nuclei

  7. 119Sn MAS NMR Study of Probe Molecules Interaction with Sn-BEA: The Origin of Penta- and Hexacoordinated Tin Formation

    DEFF Research Database (Denmark)

    Yakimov, Alexander V.; G. Kolyagin, Yury; Tolborg, Søren

    2016-01-01

    and weak Lewis acidity, respectively. The adsorption of acetonitrile and methanol resulted in observation of pentacoordinated tin species, due to the formation of 1:1 adsorption complexes over both Sn-sites. Water adsorption led first to formation of pentacoordinated tin species, which were further...... by the formation of pentacoordinated Sn species in the case of weak sites and hexacoordinated Sn over sites with strong Lewis acidity, pointing to the possibility of dissociative adsorption of secondary alcohols over strong Sn-sites....

  8. Highly Active, Carbon-supported, PdSn Nano-core, Partially ...

    African Journals Online (AJOL)

    Carbon-supported, Pt partially covered, PdSn alloy nanoparticles (Pt-PdSn/C) were synthesized via a metathetical reaction of PdSn alloy nanoparticles, and a platinum precursor. The electrochemical activity was evaluated by methanol oxidation. The Pt-PdSn/C catalysts were characterized by transmission electron ...

  9. DO{sub 22}-(Cu,Ni){sub 3}Sn intermetallic compound nanolayer formed in Cu/Sn-nanolayer/Ni structures

    Energy Technology Data Exchange (ETDEWEB)

    Liu Lilin [School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Huang, Haiyou [Department of Mechanical Engineering, Hong Kong University of Science and Technology (HKUST) (Hong Kong); Hong Kong - Beijing Joint Research Center, HKUST Fok Ying Tung Graduate School, Nansha, Guangzhou (China); Fu Ran; Liu Deming [ASM Assembly Automation Ltd. (Hong Kong); Zhang Tongyi, E-mail: mezhangt@ust.h [Department of Mechanical Engineering, Hong Kong University of Science and Technology (HKUST) (Hong Kong); Hong Kong - Beijing Joint Research Center, HKUST Fok Ying Tung Graduate School, Nansha, Guangzhou (China)

    2009-11-03

    The present work conducts crystal characterization by High Resolution Transmission Electron Microscopy (HRTEM) on Cu/Sn-nanolayer/Ni sandwich structures associated with the use of Energy Dispersive X-ray (EDX) analysis. The results show that DO{sub 22}-(Cu,Ni){sub 3}Sn intermetallic compound (IMC) ordered structure is formed in the sandwich structures at the as-electrodeposited state. The formed DO{sub 22}-(Cu,Ni){sub 3}Sn IMC is a homogeneous layer with a thickness about 10 nm. The DO{sub 22}-(Cu,Ni){sub 3}Sn IMC nanolayer is stable during annealing at 250 deg. C for 810 min. The formation and stabilization of the metastable DO{sub 22}-(Cu,Ni){sub 3}Sn IMC nanolayer are attributed to the less strain energy induced by lattice mismatch between the DO{sub 22} IMC and fcc Cu crystals in comparison with that between the equilibrium DO{sub 3} IMC and fcc Cu crystals.

  10. First Principles Investigation of the Mechanical, Thermodynamic and Electronic Properties of FeSn{sub 5} and CoSn{sub 5} Intermetallic Phases under Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wenming; Liu, Jing; Wang, Hong [China Building Materials Academy, Beijing (China); Zhang, Zhenwei [Linyi Academy of Technology Cooperation and Application, Linyi (China); Zhang, Liang [NeoTrident Technology Ltd., Shanghai (China); Bu, Yuxiang [Shandong University, Jinan (China)

    2017-02-15

    For guidance for developing Fe/Co-Sn-based anode materials for lithium-ion batteries, the mechanical, thermodynamic and electronic properties of FeSn{sub 5} and CoSn{sub 5} intermetallic phases under pressures ranging from 0 to 30 GPa have been investigated systematically using first-principles total-energy calculations within the framework of the generalized gradient approximation. The pressure was found to have significant effects on the mechanical, thermodynamic and electronic properties of these compounds. In the selected pressure range, CoSn{sub 5} has a more negative formation enthalpy than FeSn{sub 5}. Based on the calculated elastic constants, the bulk modulus, shear modulus, and Young's modulus were determined via the Viogt-Reuss-Hill averaging scheme. The variations of specific heats at constant volume for FeSn{sub 5} and CoSn{sub 5} in a wide pressure (0 - 30 GPa) and temperature (0 - 1000 K) range are also predicted from phonon density of states calculation. The calculated results suggested that both FeSn{sub 5} and CoSn{sub 5} are mechanically stable at pressure from 0 to 30 GPa. FeSn{sub 5} is dynamically stable at pressure up to, 30 GPa, at least, however, CoSn{sub 5} is dynamically stable no higher than 15 GPa.

  11. Study of Sn100-xMnx amorphous system by 119Sn Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Drago, V.

    1986-01-01

    Thin films of Sn 100-x Mn x amorphous alloys with large range of concentrations were procedure by vapor condensation technique on substrates at temperatures near to liquid helium. The magnetic and paramagnetic hyperfine spectra, and the ordering temperatures were measured by 119 Sn Moessbauer effect. The electrical resistivity was used for characterizing the amorphous state. All the measurements were done 'in situ'. A magnetic phase diagram is proposed. (M.C.K.) [pt

  12. SN1987A's Twentieth Anniversary

    Science.gov (United States)

    2007-02-01

    provided further evidence for asymmetries in the explosion. The 'Bochum event' was a rapid change in the line profile observed with the Bochum telescope on La Silla. It is the signature of a radioactive blob rising from the inner ejecta to the surface. "The picture emerging from the observations of the first several weeks was certainly more complex than what had ever been assumed of supernovae before," says Bruno Leibundgut (ESO). ESO PR Photo 08f/07 ESO PR Photo 08f/07 A Ring Around SN1987A The 1-m telescope at La Silla was also extensively used in daytime observing the supernova in the near- and mid-infrared for more than one year after the explosion. A clear excess emission developed in the near-infrared already 10 days after the explosion, the origin of which is still not fully understood. It was most probably due to circumstellar material that was lighted up by the explosion. Dust condensation in the ejecta was discovered by spectroscopy about 500 days after the explosion. Macroscopic dust grains partially covered the ejecta, and most probably still do. They might explain why no compact object is seen at the location of the supernova. In 1989, when the NTT came into operation, it imaged for the first time the circumstellar ring around SN 1987A. And, about three years after the explosion, NTT images revealed a circumstellar structure around SN 1987A which resembled the triangular hat which Napoleon wore. Napoleon's hat gave the first opportunity for a 3-dimensional view of SN 1987A. "The existence of the ring presents an unsolved puzzle for SN 1987A," says Roberto Gilmozzi (ESO). "Even though it is not clear how to construct such a ring, it is likely that the star that exploded as SN 1987A had a companion." When ESO's Very Large Telescope came into operation, the interest in the supernova had not faded away. Far from it! Observations were done with the VLT's many instruments, including FORS, UVES, ISAAC, and VISIR, to probe in more detail the surroundings of the

  13. The effect of intermetallic compound morphology on Cu diffusion in Sn-Ag and Sn-Pb solder bump on the Ni/Cu Under-bump metallization

    Science.gov (United States)

    Jang, Guh-Yaw; Duh, Jenq-Gong

    2005-01-01

    The eutectic Sn-Ag solder alloy is one of the candidates for the Pb-free solder, and Sn-Pb solder alloys are still widely used in today’s electronic packages. In this tudy, the interfacial reaction in the eutectic Sn-Ag and Sn-Pb solder joints was investigated with an assembly of a solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. In the Sn-3.5Ag solder joints reflowed at 260°C, only the (Ni1-x,Cux)3Sn4 intermetallic compound (IMC) formed at the solder/Ni interface. For the Sn-37Pb solder reflowed at 225°C for one to ten cycles, only the (Ni1-x,Cux)3Sn4 IMC formed between the solder and the Ni/Cu under-bump metallization (UBM). Nevertheless, the (Cu1-y,Niy)6Sn5 IMC was observed in joints reflowed at 245°C after five cycles and at 265°C after three cycles. With the aid of microstructure evolution, quantitative analysis, and elemental distribution between the solder and Ni/Cu UBM, it was revealed that Cu content in the solder near the solder/IMC interface played an important role in the formation of the (Cu1-y,Niy)6Sn5 IMC. In addition, the diffusion behavior of Cu in eutectic Sn-Ag and Sn-Pb solders with the Ni/Cu UBM were probed and discussed. The atomic flux of Cu diffused through Ni was evaluated by detailed quantitative analysis in an electron probe microanalyzer (EPMA). During reflow, the atomic flux of Cu was on the order of 1016-1017 atoms/cm2sec in both the eutectic Sn-Ag and Sn-Pb systems.

  14. Nitrogen-Doped Carbon-Encapsulated SnO2@Sn Nanoparticles Uniformly Grafted on Three-Dimensional Graphene-like Networks as Anode for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Li, Yunyong; Zhang, Haiyan; Chen, Yiming; Shi, Zhicong; Cao, Xiaoguo; Guo, Zaiping; Shen, Pei Kang

    2016-01-13

    A peculiar nanostructure consisting of nitrogen-doped, carbon-encapsulated (N-C) SnO2@Sn nanoparticles grafted on three-dimensional (3D) graphene-like networks (designated as N-C@SnO2@Sn/3D-GNs) has been fabricated via a low-cost and scalable method, namely an in situ hydrolysis of Sn salts and immobilization of SnO2 nanoparticles on the surface of 3D-GNs, followed by an in situ polymerization of dopamine on the surface of the SnO2/3D-GNs, and finally a carbonization. In the composites, three-layer core-shell N-C@SnO2@Sn nanoparticles were uniformly grafted onto the surfaces of 3D-GNs, which promotes highly efficient insertion/extraction of Li(+). In addition, the outermost N-C layer with graphene-like structure of the N-C@SnO2@Sn nanoparticles can effectively buffer the large volume changes, enhance electronic conductivity, and prevent SnO2/Sn aggregation and pulverization during discharge/charge. The middle SnO2 layer can be changed into active Sn and nano-Li2O during discharge, as described by SnO2 + Li(+) → Sn + Li2O, whereas the thus-formed nano-Li2O can provide a facile environment for the alloying process and facilitate good cycling behavior, so as to further improve the cycling performance of the composite. The inner Sn layer with large theoretical capacity can guarantee high lithium storage in the composite. The 3D-GNs, with high electrical conductivity (1.50 × 10(3) S m(-1)), large surface area (1143 m(2) g(-1)), and high mechanical flexibility, tightly pin the core-shell structure of the N-C@SnO2@Sn nanoparticles and thus lead to remarkably enhanced electrical conductivity and structural integrity of the overall electrode. Consequently, this novel hybrid anode exhibits highly stable capacity of up to 901 mAh g(-1), with ∼89.3% capacity retention after 200 cycles at 0.1 A g(-1) and superior high rate performance, as well as a long lifetime of 500 cycles with 84.0% retention at 1.0 A g(-1). Importantly, this unique hybrid design is expected to be

  15. Adsorption and oxidation of acetaldehyde on carbon supported Pt, PtSn and PtSn-based trimetallic catalysts by in situ Fourier transform infrared spectroscopy

    Science.gov (United States)

    Beyhan, Seden; Léger, Jean-Michel; Kadırgan, Figen

    2013-11-01

    The adsorption and oxidation of acetaldehyde on carbon supported Pt, Pt90Sn10 and Pt80Sn10M10 (M = Ni, Co, Rh, Pd) catalysts have been investigated by using in situ Fourier transform infrared (FTIR) spectroscopy. The result revealed that Pt90Sn10/C catalyst is not very efficient for the conversion of acetaldehyde to CO2 due to the weak adsorption of acetaldehyde in the presence of Sn. However, the addition of a third metal to Pt--Sn facilitates the C-C bond cleavage of acetaldehyde. It seems that acetaldehyde is adsorbed dissociatively on the surface of Pt80Sn10Ni10/C, Pt80Sn10Co10/C, Pt80Sn10Rh10/C catalysts, producing CH3 and CHO adsorbate species, which can be further oxidized to CO2. However, the pathway forming CO2 for Pt80Sn10Pd10/C catalyst mainly originates from the oxidation of CH3CO species. Thus, the presence of third metal in the PtSn catalyst has a strong impact upon the acetaldehyde adsorption behaviour and its reaction products.

  16. Tin (Sn) for enhancing performance in silicon CMOS

    KAUST Repository

    Hussain, Aftab M.; Fahad, Hossain M.; Singh, Nirpendra; Sevilla, Galo T.; Schwingenschlö gl, Udo; Hussain, Muhammad Mustafa

    2013-01-01

    We study a group IV element: tin (Sn) by integrating it into silicon lattice, to enhance the performance of silicon CMOS. We have evaluated the electrical properties of the SiSn lattice by performing simulations using First-principle studies, followed by experimental device fabrication and characterization. We fabricated high-κ/metal gate based Metal-Oxide-Semiconductor capacitors (MOSCAPs) using SiSn as channel material to study the impact of Sn integration into silicon. © 2013 IEEE.

  17. Tin (Sn) for enhancing performance in silicon CMOS

    KAUST Repository

    Hussain, Aftab M.

    2013-10-01

    We study a group IV element: tin (Sn) by integrating it into silicon lattice, to enhance the performance of silicon CMOS. We have evaluated the electrical properties of the SiSn lattice by performing simulations using First-principle studies, followed by experimental device fabrication and characterization. We fabricated high-κ/metal gate based Metal-Oxide-Semiconductor capacitors (MOSCAPs) using SiSn as channel material to study the impact of Sn integration into silicon. © 2013 IEEE.

  18. Phase formation in Mg-Sn-Si and Mg-Sn-Si-Ca alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, A.; Groebner, J. [Institute of Metallurgy, Clausthal University of Technology, Robert-Koch-Str. 42, D-38678 Clausthal-Zellerfeld (Germany); Schmid-Fetzer, R., E-mail: schmid-fetzer@tu-clausthal.de [Institute of Metallurgy, Clausthal University of Technology, Robert-Koch-Str. 42, D-38678 Clausthal-Zellerfeld (Germany)

    2011-02-17

    Research highlights: > The solidification paths of ternary and quaternary alloys are analyzed in detail, using the tool of thermodynamic calculations. > The precipitation sequence of phases and their amounts compare well with the microstructure of alloys. > The most efficient comparison to the experimental thermal analysis data is done by calculation of the enthalpy variation with temperature. > The viability of a procedure for the selection of multicomponent key samples is demonstrated for the development of the Mg-Ca-Si-Sn phase diagram. - Abstract: Experimental work is done and combined with the Calphad method to generate a consistent thermodynamic description of the Mg-Ca-Si-Sn quaternary system, validated for Mg-rich alloys. The viability of a procedure for the selection of multicomponent key samples is demonstrated for this multicomponent system. Dedicated thermal analysis with DTA/DSC on sealed samples is performed and the microstructure of slowly solidified alloys is analyzed using SEM/EDX. The thermodynamic description and phase diagram of the ternary Mg-Si-Sn system, developed in detail also in this work, deviates significantly from a previous literature proposal. The phase formation in ternary and quaternary alloys is analyzed using the tool of thermodynamic equilibrium and Scheil calculations for the solidification paths and compared with present experimental data. The significant ternary/quaternary solid solubilities of pertinent intermetallic phases are quantitatively introduced in the quaternary Mg-Ca-Si-Sn phase diagram and validated by experimental data.

  19. Semiconducting ZnSnN{sub 2} thin films for Si/ZnSnN{sub 2} p-n junctions

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Ruifeng [Hebei Engineering Laboratory of Photoelectronic Functional Crystals, Hebei University of Technology (HEBUT), Tianjin 300401 (China); Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, and Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo 315201 (China); Cao, Hongtao; Liang, Lingyan, E-mail: lly@nimte.ac.cn, E-mail: swz@hebut.edu.cn; Xie, Yufang; Zhuge, Fei; Zhang, Hongliang; Gao, Junhua; Javaid, Kashif [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, and Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo 315201 (China); Liu, Caichi; Sun, Weizhong, E-mail: lly@nimte.ac.cn, E-mail: swz@hebut.edu.cn [Hebei Engineering Laboratory of Photoelectronic Functional Crystals, Hebei University of Technology (HEBUT), Tianjin 300401 (China)

    2016-04-04

    ZnSnN{sub 2} is regarded as a promising photovoltaic absorber candidate due to earth-abundance, non-toxicity, and high absorption coefficient. However, it is still a great challenge to synthesize ZnSnN{sub 2} films with a low electron concentration, in order to promote the applications of ZnSnN{sub 2} as the core active layer in optoelectronic devices. In this work, polycrystalline and high resistance ZnSnN{sub 2} films were fabricated by magnetron sputtering technique, then semiconducting films were achieved after post-annealing, and finally Si/ZnSnN{sub 2} p-n junctions were constructed. The electron concentration and Hall mobility were enhanced from 2.77 × 10{sup 17} to 6.78 × 10{sup 17 }cm{sup −3} and from 0.37 to 2.07 cm{sup 2} V{sup −1} s{sup −1}, corresponding to the annealing temperature from 200 to 350 °C. After annealing at 300 °C, the p-n junction exhibited the optimum rectifying characteristics, with a forward-to-reverse ratio over 10{sup 3}. The achievement of this ZnSnN{sub 2}-based p-n junction makes an opening step forward to realize the practical application of the ZnSnN{sub 2} material. In addition, the nonideal behaviors of the p-n junctions under both positive and negative voltages are discussed, in hope of suggesting some ideas to further improve the rectifying characteristics.

  20. Structural properties and hyperfine characterization of Sn-substituted goethites

    Energy Technology Data Exchange (ETDEWEB)

    Larralde, A.L. [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Ramos, C.P. [Departamento de Fisica de la Materia Condensada, GIyA - CAC - CNEA, Av. Gral. Paz 1499 (1650), San Martin, Bs. As. (Argentina); Arcondo, B. [Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires, Av. Paseo Colon 850 (C1063ACV), Bs. As. (Argentina); Tufo, A.E. [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Saragovi, C. [Departamento de Fisica de la Materia Condensada, GIyA - CAC - CNEA, Av. Gral. Paz 1499 (1650), San Martin, Bs. As. (Argentina); Sileo, E.E., E-mail: sileo@qi.fcen.uba.ar [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina)

    2012-04-16

    Highlights: Black-Right-Pointing-Pointer Pure and tin-doped goethites were synthesized from Sn(II) solutions at ambient pressure and 70 Degree-Sign C. Black-Right-Pointing-Pointer The Rietveld refinement of PXRD data indicated that Sn partially substituted the Fe(III) ions. Black-Right-Pointing-Pointer The substitution provoked unit cell expansion, and a distortion of the coordination polyhedron. Black-Right-Pointing-Pointer {sup 119}Sn Moessbauer spectroscopy revealed that Sn(II) is incorporated as Sn(IV). Black-Right-Pointing-Pointer {sup 57}Fe Moessbauer spectroscopy showed a lower magnetic coupling as tin concentration increased. - Abstract: Tin-doped goethites obtained by a simple method at ambient pressure and 70 Degree-Sign C were characterized by inductively coupled plasma atomic emission spectrometry, scanning electron microscopy, Rietveld refinement of powder X-ray diffraction data, and {sup 57}Fe and {sup 119}Sn Moessbauer spectroscopy. The particles size and the length to width ratios decreased with tin-doping. Sn partially substituted the Fe(III) ions provoking unit cell expansion and increasing the crystallinity of the particles with enlarged domains that grow in the perpendicular and parallel directions to the anisotropic broadening (1 1 1) axis. Intermetallic E, E Prime and DC distances also change although the variations are not monotonous, indicating different variations in the coordination polyhedron. In general, the Sn-substituted samples present larger intermetallic distances than pure goethite, and the greatest change is shown in the E Prime distance which coincides with the c-parameter. {sup 119}Sn Moessbauer spectroscopy revealed that Sn(II) is incorporated as Sn(IV) in the samples. On the other hand, Fe(II) presence was not detected by {sup 57}Fe Moessbauer spectroscopy, suggesting the existence of vacancies in the Sn-doped samples. A lower magnetic coupling is also evidenced from the average magnetic hyperfine field values obtained as tin

  1. SiSn diodes: Theoretical analysis and experimental verification

    KAUST Repository

    Hussain, Aftab M.; Wehbe, Nimer; Hussain, Muhammad Mustafa

    2015-01-01

    We report a theoretical analysis and experimental verification of change in band gap of silicon lattice due to the incorporation of tin (Sn). We formed SiSn ultra-thin film on the top surface of a 4 in. silicon wafer using thermal diffusion of Sn

  2. Single-Particle States in $^{133}$Sn

    CERN Multimedia

    Huck, A

    2002-01-01

    % IS338 \\\\ \\\\ It is suggested to investigate the $\\beta^- $-decay of $^{133}$In and $^{134}$In in order to determine the single-particle states in $^{133}$Sn, which are so far unknown and needed for the shell-model description of the region close to $^{132}$Sn. Large hyper-pure Ge-detectors will be used for the $\\gamma$-ray spectroscopy. In the experiments with $^{134}$In, delayed neutrons in coincidence with $\\gamma$-rays from excited states in $^{133}$Sn provide the opportunity for a very selective detection of the states in question.

  3. The tin-rich copper lithium stannides: Li{sub 3}Cu{sub 6}Sn{sub 4} and Li{sub 2}CuSn{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Fuertauer, Siegfried; Flandorfer, Hans [Vienna Univ. (Austria). Inst. of Inorganic Chemistry (Materials Chemisrty); Effenberger, Herta S. [Vienna Univ. (Austria). Inst. of Mineralogy and Crystallography

    2015-05-01

    The Sn rich ternary intermetallic compounds Li{sub 3}Cu{sub 6}Sn{sub 4} (CSD-427097) and Li{sub 2}CuSn{sub 2} (CSD-427098) were synthesized from the pure elements by induction melting and annealing at 400 C. Structural investigations were performed by powder- and single-crystal XRD. Li{sub 3}Cu{sub 6}Sn{sub 4} crystallizes in space group P6/mmm; it is structurally related to but not isotypic with MgFe{sub 6}Ge{sub 6} (a = 5.095(2) Aa, c = 9.524(3) Aa; wR{sub 2} = 0.059; 239 unique F{sup 2}-values, 17 free variables). Li{sub 3}Cu{sub 6}Sn{sub 4} is characterized by two sites with a mixed Cu:Sn occupation. In contrast to all other Cu-Li-Sn compounds known so far, any mixed occupation was found for Cu-Li pairs only. In addition, one Li site is only half occupied. The second Sn rich phase is Li{sub 2}CuSn{sub 2} (space group I4{sub 1}/amd, a = 4.4281(15) Aa, c = 19.416(4) Aa; wR{sub 2} = 0.033; 213 unique F{sup 2}-values, 12 atom free variables); it is the only phase in the Cu-Li-Sn system which is noted for full ordering. Both crystal structures exhibit 3D-networks which host Li atoms in channels. They are important for understanding the lithiation mechanism in Cu-Sn electrodes for Li-ion batteries.

  4. Origin of low thermal conductivity in SnSe

    Science.gov (United States)

    Xiao, Yu; Chang, Cheng; Pei, Yanling; Wu, Di; Peng, Kunling; Zhou, Xiaoyuan; Gong, Shengkai; He, Jiaqing; Zhang, Yongsheng; Zeng, Zhi; Zhao, Li-Dong

    2016-09-01

    We provide direct evidence to understand the origin of low thermal conductivity of SnSe using elastic measurements. Compared to state-of-the-art lead chalcogenides Pb Q (Q =Te , Se, S), SnSe exhibits low values of sound velocity (˜1420 m /s ) , Young's modulus (E ˜27.7 GPa ) , and shear modulus (G ˜9.6 GPa ) , which are ascribed to the extremely weak Sn-Se atomic interactions (or bonds between layers); meanwhile, the deduced average Grüneisen parameter γ of SnSe is as large as ˜3.13, originating from the strong anharmonicity of the bonding arrangement. The calculated phonon mean free path (l ˜ 0.84 nm) at 300 K is comparable to the lattice parameters of SnSe, indicating little room is left for further reduction of the thermal conductivity through introducing nanoscale microstructures and microscale grain boundaries. The low elastic properties indicate that the weak chemical bonding stiffness of SnSe generally causes phonon modes softening which eventually slows down phonon propagation. This work provides insightful data to understand the low lattice thermal conductivity of SnSe.

  5. Clinical evaluation of sup(99m)Tc-(Sn)-PI (sup(99m)Tc-(Sn)-pyridoxylidene isoleucine) in the various hepatobiliary disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, S; Iio, M; Yamada, H; Murata, H; Chiba, K [Tokyo Metropolitan Geriatric Medical Center (Japan)

    1978-12-01

    The purpose of this study is to evaluate the hepatobiliary scanning using sup(99m)Tc-(Sn)-PI in clinical diagnosis of various hepatobiliary disorders. Nineteen patients were scanned with sup(99m)Tc-(Sn)-PI. The results were as follows: 1) The stability of sup(99m)Tc-(Sn)-PI examined by paper chromatography using saline as a solvent showed satisfied result at scanning time. sup(99m)Tc-(Sn)-PI in the blood was assumed to be bound to serum proteins immediately after injection. sup(99m)Tc-(Sn)-PI in the urine was assumed to keep the form of sup(99m)Tc-(Sn)-PI. 2) The appearance times of kidney, liver, bile duct, gallbladder, and intestine in the normal case were 5, 5, 10 and 15 minutes respectively after injection. The peak times of hepatogram in the normal case, drug induced hepatitis and obstructive jaundice were 12, 15 and 18 minutes respectively after injection. The images obtained by sup(99m)Tc-(Sn)-PI was superior to the images obtained by /sup 131/I-BSP. 3) The blood clearance and urinary excretion rate of sup(99m)Tc-(Sn)-PI also provided us clinical usefulness. 4) The scanning of Dubin-Johnson syndrome of sup(99m)Tc-(Sn)-PI showed almost normal hepatobiliary image similar to the sequential scan by /sup 131/I-RB as was reported previously by authors. In conclusion, the hepatobiliary scan using sup(99m)Tc-(Sn)-PI provided clear hepatobiliary images. Other parameters such as blood clearance, urinary excretion rate and diameter of choledochus were also favorable. By combining it with sup(99m)Tc-HIDA a differential diagnosis of congenital jaundice is also expected.

  6. Clinical evaluation of sup(99m)Tc-(Sn)-PI [sup(99m)Tc-(Sn)-pyridoxylidene isoleucine] in the various hepatobiliary disorders

    International Nuclear Information System (INIS)

    Kawaguchi, Schinichiro; Iio, Masahiro; Yamada, Hideo; Murata, Hajime; Chiba, Kazuo

    1978-01-01

    The purpose of this study is to evaluate the hepatobiliary scanning using sup(99m)Tc-(Sn)-PI in clinical diagnosis of various hepatobiliary disorders. Nineteen patients were scanned with sup(99m)Tc-(Sn)-PI. The results were as follows: 1) The stability of sup(99m)Tc-(Sn)-PI examined by paper chromatography using saline as a solvent showed satisfied result at scanning time. sup(99m)Tc-(Sn)-PI in the blood was assumed to be bound to serum proteins immediately after injection. sup(99m)Tc-(Sn)-PI in the urine was assumed to keep the form of sup(99m)Tc-(Sn)-PI. 2) The appearance times of kidney, liver, bile duct, gallbladder, and intestine in the normal case were 5, 5, 10 and 15 minutes respectively after injection. The peak times of hepatogram in the normal case, drug induced hepatitis and obstructive jaundice were 12, 15 and 18 minutes respectively after injection. The images obtained by sup(99m)Tc-(Sn)-PI was superior to the images obtained by 131 I-BSP. 3) The blood clearance and urinary excretion rate of sup(99m)Tc-(Sn)-PI also provided us clinical usefulness. 4) The scanning of Dubin-Johnson syndrome of sup(99m)Tc-(Sn)-PI showed almost normal hepatobiliary image similar to the sequential scan by 131 I-RB as was reported previously by authors. In conclusion, the hepatobiliary scan using sup(99m)Tc-(Sn)-PI provided clear hepatobiliary images. Other parameters such as blood clearance, urinary excretion rate and diameter of choledochus were also favorable. By combining it with sup(99m)Tc-HIDA a differential diagnosis of congenital jaundice is also expected. (author)

  7. LED Die-Bonded on the Ag/Cu Substrate by a Sn-BiZn-Sn Bonding System

    Science.gov (United States)

    Tang, Y. K.; Hsu, Y. C.; Lin, E. J.; Hu, Y. J.; Liu, C. Y.

    2016-12-01

    In this study, light emitting diode (LED) chips were die-bonded on a Ag/Cu substrate by a Sn-BixZn-Sn bonding system. A high die-bonding strength is successfully achieved by using a Sn-BixZn-Sn ternary system. At the bonding interface, there is observed a Bi-segregation phenomenon. This Bi-segregation phenomenon solves the problems of the brittle layer-type Bi at the joint interface. Our shear test results show that the bonding interface with Bi-segregation enhances the shear strength of the LED die-bonding joints. The Bi-0.3Zn and Bi-0.5Zn die-bonding cases have the best shear strength among all die-bonding systems. In addition, we investigate the atomic depth profile of the deposited Bi-xZn layer by evaporating Bi-xZn E-gun alloy sources. The initial Zn content of the deposited Bi-Zn alloy layers are much higher than the average Zn content in the deposited Bi-Zn layers.

  8. {sup 119}Sn NMR investigations on superconducting Ca{sub 3}Ir{sub 4}Sn{sub 13}

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Rajib; Brueckner, Felix; Guenther, Marco; Klauss, Hans-Henning [IFP, TU Dresden (Germany); Petrovic, Cedomir; Wang, Kefeng [CMPMS, BNL, Upton, NY (United States); Luetkens, Hubertus; Biswas, Pabitra; Morenzoni, Elvezio; Amato, Alex [PSI, Villigen (Switzerland)

    2014-07-01

    Ca{sub 3}Ir{sub 4}Sn{sub 13} was found to exhibit superconducting transition with T{sub c} ∼ 7 K. It received considerable attention due to the possible coexistence of superconductivity and ferromagnetic spin fluctuation as well as the three-dimensional charge density wave (CDW) from the superlattice transition. While thermal, transport, and thermodynamic characterization of Ca{sub 3}Ir{sub 4}Sn{sub 13} single crystals suggest that it is a weakly correlated nodeless superconductor, recent μSR investigation reveals that the electron-phonon pairing interaction is in the strong-coupling limit. Here we present {sup 119}Sn NMR investigations on Ca{sub 3}Ir{sub 4}Sn{sub 13} polycrystalline samples and discuss the symmetry of the superconducting order parameter together with the normal state properties. Our preliminary results of spin-lattice relaxation rate (1/T{sub 1}) indicate that this is a BCS superconductor with weak-coupling limit.

  9. Voids, nanochannels and formation of nanotubes with mobile Sn fillings in Sn doped ZnO nanorods

    International Nuclear Information System (INIS)

    Ortega, Y; Dieker, Ch; Jaeger, W; Piqueras, J; Fernandez, P

    2010-01-01

    ZnO nanorods containing different hollow structures have been grown by a thermal evaporation-deposition method with a mixture of ZnS and SnO 2 powders as precursor. Transmission electron microscopy shows rods with rows of voids as well as rods with empty channels along the growth axis. The presence of Sn nanoprecipitates associated with the empty regions indicates, in addition, that these are generated by diffusion processes during growth, probably due to an inhomogeneous distribution of Sn. The mechanism of forming voids and precipitates appears to be based on diffusion processes similar to the Kirkendall effect, which can lead to void formation at interfaces of bulk materials or in core-shell nanostructures. In some cases the nanorods are ZnO tubes partially filled with Sn that has been found to melt and expand by heating the nanotubes under the microscope electron beam. Such metal-semiconductor nanostructures have potential applications as thermal nanosensors or as electrical nanocomponents.

  10. Effects of annealing on evaporated SnS thin films

    International Nuclear Information System (INIS)

    Samsudi Sakrani; Bakar Ismail

    1994-01-01

    The effects of annealing of evaporated tin sulphide thin films (SnS) are described. The films were initially deposited onto glass substrate, followed by annealing in an encapsulated carbon block under the running argon gas at 310 degree Celsius. Short time annealing of the films results in a slight change of the compositions to a mix SnS/SnS sub 2 compound, and the tendency of increasing SnS sub 2 formation was observed on the films annealed for longer periods up to 20 hours. X-ray results showed the transformation of SnS peaks (040) and (080) to predominantly SnS sub 2 peaks - (001), (100), (101), and (110). The associated absorption coefficients measured on the films were found to be greater than 10 sup 5 cm sup -1, with indication of higher photon energy leading to the formation of SnS sub 2 compound

  11. Effects of annealing on evaporated SnS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sakrani, Samsudi; Ismail, Bakar [Universiti Teknologi Malaysia, Skudai, Johor Bahru (Malaysia). Dept. of Physics

    1994-12-31

    The effects of annealing of evaporated tin sulphide thin films (SnS) are described. The films were initially deposited onto glass substrate, followed by annealing in an encapsulated carbon block under the running argon gas at 310 degree Celsius. Short time annealing of the films results in a slight change of the compositions to a mix SnS/SnS sub 2 compound, and the tendency of increasing SnS sub 2 formation was observed on the films annealed for longer periods up to 20 hours. X-ray results showed the transformation of SnS peaks (040) and (080) to predominantly SnS sub 2 peaks - (001), (100), (101), and (110). The associated absorption coefficients measured on the films were found to be greater than 10 sup 5 cm sup -1, with indication of higher photon energy leading to the formation of SnS sub 2 compound.

  12. Syntheses, structural variants and characterization of AInM′S{sub 4} (A=alkali metals, Tl; M′ = Ge, Sn) compounds; facile ion-exchange reactions of layered NaInSnS{sub 4} and KInSnS{sub 4} compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yohannan, Jinu P.; Vidyasagar, Kanamaluru, E-mail: kvsagar@iitm.ac.in

    2016-06-15

    Ten AInM′S{sub 4} (A=alkali metals, Tl; M′= Ge, Sn) compounds with diverse structure types have been synthesized and characterized by single crystal and powder X-ray diffraction and a variety of spectroscopic methods. They are wide band gap semiconductors. KInGeS{sub 4}(1-β), RbInGeS{sub 4}(2), CsInGeS{sub 4}(3-β), TlInGeS{sub 4}(4-β), RbInSnS{sub 4}(8-β) and CsInSnS{sub 4}(9) compounds with three-dimensional BaGa{sub 2}S{sub 4} structure and CsInGeS{sub 4}(3-α) and TlInGeS{sub 4}(4-α) compounds with a layered TlInSiS{sub 4} structure have tetrahedral [InM′S{sub 4}]{sup −} frameworks. On the other hand, LiInSnS{sub 4}(5) with spinel structure and NaInSnS{sub 4}(6), KInSnS{sub 4}(7), RbInSnS{sub 4}(8-α) and TlInSnS{sub 4}(10) compounds with layered structure have octahedral [InM′S{sub 4}]{sup −} frameworks. NaInSnS{sub 4}(6) and KInSnS{sub 4}(7) compounds undergo facile topotactic ion-exchange, at room temperature, with various mono-, di- and tri-valent cations in aqueous medium to give rise to metastable layered phases. - Graphical abstract: NaInSnS{sub 4} and KInSnS{sub 4} compounds undergo, in aqueous medium at room temperature, facile topotactic ion-exchange with mono, di and trivalent cations. Display Omitted - Highlights: • Ten AInM′S{sub 4} compounds with diverse structure types were synthesized. • They are wide band gap semiconductors. • NaInSnS{sub 4} and KInSnS{sub 4} compounds undergo facile topotactic ion-exchange at room temperature.

  13. Insight into the Effect of Sn on CO and Formic Acid Oxidation at PtSn Catalysts

    DEFF Research Database (Denmark)

    Stevanović, S.; Tripković, D.; Tripkovic, Vladimir

    2014-01-01

    The role of Sn on the catalytic activity for CO and formic acid oxidation is studied by comparing the activities of differently treated PtSn/C and Pt/C catalysts. The catalysts are prepared by a microwave-assisted polyol synthesis method. As revealed by scanning tunneling and transmission electron...

  14. Structural, magnetic and transport properties of Mn3.1Sn0.9 and Mn3.1Sn0.9N compounds

    International Nuclear Information System (INIS)

    Feng, W.J.; Li, D.; Ren, W.J.; Li, Y.B.; Li, W.F.; Li, J.; Zhang, Y.Q.; Zhang, Z.D.

    2007-01-01

    The cubic anti-perovskite Mn 3.1 Sn 0.9 N compound is prepared via nitrogenation of the hexagonal Mn 3.1 Sn 0.9 compound. A magnetic phase diagram of Mn 3.1 Sn 0.9 compound is constructed by analysis of data of its magnetic properties. For Mn 3.1 Sn 0.9 N compound, parasitic ferromagnetism exists in the temperature range of 5-370 K, besides a spin-reorientation at about 280 K. Mn 3.1 Sn 0.9 compound exhibits a metallic conducting behavior, while Mn 3.1 Sn 0.9 N displays a metal-nonmetal transition due to the electron localization caused by the static disorder. The differences of the physical properties between the both compounds, are discussed, in terms of the correlation of the hexagonal DO 19 and the cubic anti-perovskite structures, the reduction of the distances between Mn atoms, and the spin-pairing or charge transfer effect due to the electron donation by N 2p to Mn 3d states after introduction of N atoms into the interstitial sites of Mn 3.1 Sn 0.9 compound

  15. Studying superconducting Nb3Sn wire

    CERN Multimedia

    AUTHOR|(CDS)2099575

    2015-01-01

    Studying superconducting Nb3Sn wire. From the current experience from LHC and HL-LHC we know that the performance requirements for Nb3Sn conductor for future circular collider are challenging and should exceed that of present state-of-the-art materials.

  16. Studying superconducting Nb$_{3}$Sn wire

    CERN Multimedia

    AUTHOR|(CDS)2099575

    2015-01-01

    Studying superconducting Nb$_{3}$Sn wire. From the current experience from LHC and HL-LHC we know that the performance requirements for Nb$_{3}$Sn conductor for future circular collider are challenging and should exceed that of present state-of-the-art materials.

  17. Superconductivity optimization and phase formation kinetics study of internal-Sn Nb{sub 3}Sn superconducting wires

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chaowu

    2007-07-15

    Superconductors Nb{sub 3}Sn wires are one of the most applicable cryogenic superconducting materials and the best choice for high-field magnets exceeding 10 T. One of the most significant utilization is the ITER project which is regarded as the hope of future energy source. The high-Cu composite designs with smaller number of sub-element and non-reactive diffusion barrier, and the RRP (Restacked Rod Process) internal-Sn technology are usually applied for the wire manufacturing. Such designed and processed wires were supplied by MSA/Alstom and WST/NIN in this research. The systematic investigation on internal-Sn superconducting wires includes the optimization of heat treatment (HT) conditions, phase formation and its relation with superconductivity, microstructure analysis, and the phase formation kinetics. Because of the anfractuosity of the configuration design and metallurgical processing, the MF wires are not sufficient for studying a sole factor effect on superconductivity. Therefore, four sets of mono-element (ME) wires with different Sn ratios and different third-element addition were designed and fabricated in order to explore the relationship between phase formation and superconducting performances, particularly the A15 layer growth kinetics. Different characterization technic have been used (magnetization measurements, neutron diffraction and SEM/TEM/EDX analysis). The A15 layer thicknesses of various ME samples were measured and carried out linear and non-linear fits by means of two model equations. The results have clearly demonstrated that the phase formation kinetics of Nb{sub 3}Sn solid-state reaction is in accordance with an n power relation and the n value is increased with the increase of HT temperature and the Sn ratio in the wire composite. (author)

  18. GeSn-on-insulator substrate formed by direct wafer bonding

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Dian; Wang, Wei; Gong, Xiao, E-mail: elegong@nus.edu.sg, E-mail: yeo@ieee.org; Yeo, Yee-Chia, E-mail: elegong@nus.edu.sg, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Lee, Kwang Hong; Wang, Bing [Low Energy Electronic Systems (LEES), Singapore MIT Alliance for Research and Technology (SMART), 1 CREATE Way, #10-01 CREATE Tower, Singapore 138602 (Singapore); Bao, Shuyu [Low Energy Electronic Systems (LEES), Singapore MIT Alliance for Research and Technology (SMART), 1 CREATE Way, #10-01 CREATE Tower, Singapore 138602 (Singapore); School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Tan, Chuan Seng [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2016-07-11

    GeSn-on-insulator (GeSnOI) on Silicon (Si) substrate was realized using direct wafer bonding technique. This process involves the growth of Ge{sub 1-x}Sn{sub x} layer on a first Si (001) substrate (donor wafer) followed by the deposition of SiO{sub 2} on Ge{sub 1-x}Sn{sub x}, the bonding of the donor wafer to a second Si (001) substrate (handle wafer), and removal of the Si donor wafer. The GeSnOI material quality is investigated using high-resolution transmission electron microscopy, high-resolution X-ray diffraction (HRXRD), atomic-force microscopy, Raman spectroscopy, and spectroscopic ellipsometry. The Ge{sub 1-x}Sn{sub x} layer on GeSnOI substrate has a surface roughness of 1.90 nm, which is higher than that of the original Ge{sub 1-x}Sn{sub x} epilayer before transfer (surface roughness is 0.528 nm). The compressive strain of the Ge{sub 1-x}Sn{sub x} film in the GeSnOI is as low as 0.10% as confirmed using HRXRD and Raman spectroscopy.

  19. Phase composition of rapidly solidified Ag-Sn-Cu dental alloys

    International Nuclear Information System (INIS)

    Lecong Dzuong; Do Minh Nghiep; Nguyen van Dzan; Cao the Ha

    1996-01-01

    The phase composition of some rapidly solidified Ag-Sn-Cu dental alloys with different copper contents (6.22 wtpct) has been studied by XRD, EMPA and optical microscopy. The samples were prepared from melt-spun ribbons. The microstructure of the as-quenched ribbons was microcrystalline and consisted of the Ag sub 3 Sn, Ag sub 4 Sn, Cu sub 3 Sn and Cu sub 3 Sn sub 8 phases. Mixing with mercury (amalgamation) led to formation of the Ag sub 2 Hg sub 3, Sn sub 7 Hg and Cu sub 6 Sn sub 5 phases. The amount of copper atoms in the alloys played an important role in phase formation in the amalgams

  20. Phase Equilibria of the Sn-Ni-Si Ternary System and Interfacial Reactions in Sn-(Cu)/Ni-Si Couples

    Science.gov (United States)

    Fang, Gu; Chen, Chih-chi

    2015-07-01

    Interfacial reactions in Sn/Ni-4.5 wt.%Si and Sn-Cu/Ni-4.5 wt.%Si couples at 250°C, and Sn-Ni-Si ternary phase equilibria at 250°C were investigated in this study. Ni-Si alloys, which are nonmagnetic, can be regarded as a diffusion barrier layer material in flip chip packaging. Solder/Ni-4.5 wt.%Si interfacial reactions are crucial to the reliability of soldered joints. Phase equilibria information is essential for development of solder/Ni-Si materials. No ternary compound is present in the Sn-Ni-Si ternary system at 250°C. Extended solubility of Si in the phases Ni3Sn2 and Ni3Sn is 3.8 and 6.1 at.%, respectively. As more Si dissolves in these phases their lattice constants decrease. No noticeable ternary solubility is observed for the other intermetallics. Interfacial reactions in solder/Ni-4.5 wt.%Si are similar to those for solder/Ni. Si does not alter the reaction phases. No Si solubility in the reaction phases was detected, although rates of growth of the reaction phases were reduced. Because the alloy Ni-4.5 wt.%Si reacts more slowly with solders than pure Ni, the Ni-4.5 wt.%Si alloy could be a potential new diffusion barrier layer material for flip chip packaging.

  1. The selective catalytic reduction of NO with NH3 over a novel Ce-Sn-Ti mixed oxides catalyst: Promotional effect of SnO2

    Science.gov (United States)

    Yu, Ming'e.; Li, Caiting; Zeng, Guangming; Zhou, Yang; Zhang, Xunan; Xie, Yin'e.

    2015-07-01

    A series of novel catalysts (CexSny) for the selective catalytic reduction of NO by NH3 were prepared by the inverse co-precipitation method. The aim of this novel design was to improve the NO removal efficiency of CeTi by the introduction of SnO2. It was found that the Ce-Sn-Ti catalyst was much more active than Ce-Ti and the best Ce:Sn molar ratio was 2:1. Ce2Sn1 possessed a satisfied NO removal efficiency at low temperature (160-280 °C), while over 90% NO removal efficiency maintained in the temperature range of 280-400 °C at the gas hourly space velocity (GHSV) of 50,000 h-1. Besides, Ce2Sn1 kept a stable NO removal efficiency within a wide range of GHSV and a long period of reacting time. Meanwhile, Ce2Sn1 exhibited remarkable resistance to both respectively and simultaneously H2O and SO2 poisoning due to the introduction of SnO2. The promotional effect of SnO2 was studied by N2 adsorption-desorption, X-ray diffraction (XRD), Raman spectra, X-ray photoelectron spectroscopy (XPS) and H2 temperature programmed reduction (H2-TPR) for detail information. The characterization results revealed that the excellent catalytic performance of Ce2Sn1 was associated with the higher specific surface area, larger pore volume and poorer crystallization. Besides, the introduction of SnO2 could result in not only greater conversion of Ce4+ to Ce3+ but also the increase amount of chemisorbed oxygen, which are beneficial to improve the SCR activity. More importantly, a novel peak appearing at lower temperatures through the new redox equilibrium of 2Ce4+ + Sn2+ ↔ 2Ce3+ + Sn4+ and higher total H2 consumption can be obtained by the addition of SnO2. Finally, the possible reaction mechanism of the selective catalytic reduction over Ce2Sn1 was also proposed.

  2. Ethanol electrooxidation on novel carbon supported Pt/SnO{sub x}/C catalysts with varied Pt:Sn ratio

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, L. [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany); Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian (China); Colmenares, L.; Jusys, Z. [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany); Sun, G.Q. [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian (China)], E-mail: gqsun@dicp.ac.cn; Behm, R.J. [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany)], E-mail: juergen.behm@uni-ulm.de

    2007-12-01

    Novel carbon supported Pt/SnO{sub x}/C catalysts with Pt:Sn atomic ratios of 5:5, 6:4, 7:3 and 8:2 were prepared by a modified polyol method and characterized with respect to their structural properties (X-ray diffraction (XRD) and transmission electron microscopy (TEM)), chemical composition (XPS), their electrochemical properties (base voltammetry, CO{sub ad} stripping) and their electrocatalytic activity and selectivity for ethanol oxidation (ethanol oxidation reaction (EOR)). The data show that the Pt/SnO{sub x}/C catalysts are composed of Pt and tin oxide nanoparticles with an average Pt particle diameter of about 2 nm. The steady-state activity of the Pt/SnO{sub x}/C catalysts towards the EOR decreases with tin content at room temperature, but increases at 80 deg. C. On all Pt/SnO{sub x}/C catalysts, acetic acid and acetaldehyde represent dominant products, CO{sub 2} formation contributes 1-3% for both potentiostatic and potentiodynamic reaction conditions. With increasing potential, the acetaldehyde yield decreases and the acetic acid yield increases. The apparent activation energies of the EOR increase with tin content (19-29 kJ mol{sup -1}), but are lower than on Pt/C (32 kJ mol{sup -1}). The somewhat better performance of the Pt/SnO{sub x}/C catalysts compared to alloyed PtSn{sub x}/C catalysts is attributed to the presence of both sufficiently large Pt ensembles for ethanol dehydrogenation and C-C bond splitting and of tin oxide for OH generation. Fuel cell measurements performed for comparison largely confirm the results obtained in model studies.

  3. Crystal Structure, Optical, and Electrical Properties of SnSe and SnS Semiconductor Thin Films Prepared by Vacuum Evaporation Techniques for Solar Cell Applications

    Science.gov (United States)

    Ariswan; Sutrisno, H.; Prasetyawati, R.

    2017-05-01

    Thin films of SnSe and SnS semiconductors had been prepared by vacuum evaporation techniques. All prepared samples were characterized on their structure, optical, and electrical properties in order to know their application in technology. The crystal structure of SnSe and SnS was determined by X-Ray Diffraction (XRD) instrument. The morphology and chemical composition were obtained by Scanning Electron Microscopy (SEM) coupled with Energy Dispersive of X-Ray Analysis (EDAX). The optical property such as band gap was determined by DR-UV-Vis (Diffuse Reflectance-Ultra Violet-Visible) spectroscopy, while the electrical properties were determined by measuring the conductivity by four probes method. The characterization results indicated that both SnSe and SnS thin films were polycrystalline. SnSe crystallized in an orthorhombic crystal system with the lattice parameters of a = 11.47 Å, b = 4.152 Å and c = 4.439 Å, while SnS had an orthorhombic crystal system with lattice parameters of a = 4.317 Å, b = 11.647 Å and c = 3.981 Å. Band gaps (Eg) of SnSe and SnS were 1.63 eV and 1.35 eV, respectively. Chemical compositions of both thin films were non-stoichiometric. Molar ratio of Sn : S was close to ideal which was 1 : 0.96, while molar ratio of Sn : S was 1 : 0.84. The surface morphology described the arrangement of the grains on the surface of the thin film with sizes ranging from 0.2 to 0.5 microns. Color similarity on the surface of the SEM images proved a homogenous thin layer.

  4. Unexpected, spontaneous and selective formation of colloidal Pt 3Sn nanoparticles using organometallic Pt and Sn complexes

    KAUST Repository

    Boualleg, Malika; Baudouin, David; Basset, Jean-Marie; Bayard, Franç ois; Candy, Jean Pierre; Jumas, Jean Claude; Veyre, Laurent; Thieuleux, Chloé

    2010-01-01

    The facile and selective synthesis of small crystalline Pt3Sn alloy nanoparticles was performed at room temperature under H2, using a colloidal approach without the use of extra-stabilizing ligands. The Pt 3Sn alloy was found to be obtained

  5. 3D Flower-Like Hierarchitectures Constructed by SnS/SnS2 Heterostructure Nanosheets for High-Performance Anode Material in Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Zhiguo Wu

    2015-01-01

    Full Text Available Sn chalcogenides, including SnS, Sn2S3, and SnS2, have been extensively studied as anode materials for lithium batteries. In order to obtain one kind of high capacity, long cycle life lithium batteries anode materials, three-dimensional (3D flower-like hierarchitectures constructed by SnS/SnS2 heterostructure nanosheets with thickness of ~20 nm have been synthesized via a simple one-pot solvothermal method. The obtained samples exhibit excellent electrochemical performance as anode for Li-ion batteries (LIBs, which deliver a first discharge capacity of 1277 mAhg−1 and remain a reversible capacity up to 500 mAhg−1 after 50 cycles at a current of 100 mAg−1.

  6. Liquidus Projection and Thermodynamic Modeling of a Sn-Ag-Zn System

    Science.gov (United States)

    Chen, Sinn-wen; Chiu, Wan-ting; Gierlotka, Wojciech; Chang, Jui-shen; Wang, Chao-hong

    2017-12-01

    Sn-Ag-Zn alloys are promising Pb-free solders. In this study, the Sn-Ag-Zn liquidus projection was determined, and the Sn-Ag-Zn thermodynamic modeling was developed. Various Sn-Ag-Zn alloys were prepared. Their as-cast microstructures and primary solidification phases were examined. The invariant reaction temperatures of the ternary Sn-Ag-Zn system were determined. The liquidus projection of the Sn-Ag-Zn ternary system was constructed. It was found that the Sn-Ag-Zn ternary system has eight primary solidification phases: ɛ2-AgZn3, γ-Ag5Zn8, β-AgZn, ζ-Ag4Sn, (Ag), ɛ1-Ag3Sn, β-(Sn) and (Zn) phases. There are eight ternary invariant reactions, and the liquid + (Ag) = β-AgZn + ζ-Ag4Sn reaction is of the highest temperature at 935.5 K. Thermodynamic modeling of the ternary Sn-Ag-Zn system was also carried out in this study based on the thermodynamic models of the three constituent binary systems and the experimentally determined liquidus projection. The liquidus projection and the isothermal sections are calculated. The calculated and experimentally determined liquidus projections are in good agreement.

  7. The 20th anniversary of SN1987A

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, A [KEK, High Energy Accelerator Research Organization, Oho 1-1, Tsukuba, Ibaragi, 305-0801 (Japan)], E-mail: atsuto.suzuki@kek.jp

    2008-07-15

    Observation of a neutrino burst from the supernova, SN1987A opened a new window of observational astronomy by neutrinos. And the history showed that the SN1987A neutrino burst observation was the vanguard of successive discoveries of neutrino properties by Super-Kamiokande, SNO, K2K, KamLAND and so on. On the occasion of the SN1987A 20th anniversary, the backstage story up to the discovery of the SN1987A neutrino bursts is summarized, tracing the Kamiokande log-note and including the IMB, LSD and Baksan data.

  8. `Pd20Sn13' revisited: crystal structure of Pd6.69Sn4.31

    Directory of Open Access Journals (Sweden)

    Wilhelm Klein

    2015-07-01

    Full Text Available The crystal structure of the title compound was previously reported with composition `Pd20Sn13' [Sarah et al. (1981. Z. Metallkd, 72, 517–520]. For the original structure model, as determined from powder X-ray data, atomic coordinates from the isostructural compound Ni13Ga3Ge6 were transferred. The present structure determination, resulting in a composition Pd6.69Sn4.31, is based on single crystal X-ray data and includes anisotropic displacement parameters for all atoms as well as standard uncertainties for the atomic coordinates, leading to higher precision and accuracy for the structure model. Single crystals of the title compound were obtained via a solid-state reaction route, starting from the elements. The crystal structure can be derived from the AlB2 type of structure after removing one eighth of the atoms at the boron positions and shifting adjacent atoms in the same layer in the direction of the voids. One atomic site is partially occupied by both elements with a Pd:Sn ratio of 0.38 (3:0.62 (3. One Sn and three Pd atoms are located on special positions with site symmetry 2. (Wyckoff letter 3a and 3b.

  9. The Incredibly Long-Lived SN 2005ip

    Science.gov (United States)

    Fox, Ori

    2016-10-01

    Type IIn supernovae (SNe IIn) are defined by their relatively narrow spectral line features associated with a dense circumstellar medium (CSM) formed by the progenitor star. The nature of the progenitor and mass loss remains relatively unknown. Shock interaction with the dense CSM can often result in significant UV emission for several years post-explosion, thereby probing the CSM characteristics, progenitor mass loss history and, ultimately, the progenitor itself. The Type IIn SN 2005ip proves to be one of the most interesting and well-studied targets within this subclass. Compared to all other supernovae, SN 2005ip is the most luminous for its age. Now more than 11 years post-explosion, the SN has released >10^51 erg throughout its lifetime as the forward shock continues to collide with a dense CSM. Here we propose HST/STIS-MAMA UV observations of SN 2005ip to investigate the massive CSM. When accounting for the shock travel time, these observations will probe material lost from the progenitor more than 1000 years prior to the explosion. We already have a single HST/STIS spectrum of SN 2005ip from 2014, which was obtained while the shock was still within a higher mass regime. With just 5 orbits, a second spectrum will allow us to directly trace the evolution of the CSM and produce new constraints on the pre-SN mass-loss history. Coinciding with Cycle 24's UV Initiative, this program offers new insight regarding both the progenitor and explosion characteristics of the SN IIn subclass.

  10. [Hyp-Au-Sn9(Hyp)3-Au-Sn9(Hyp)3-Au-Hyp]-: the longest intermetalloid chain compound of tin.

    Science.gov (United States)

    Binder, Mareike; Schrenk, Claudio; Block, Theresa; Pöttgen, Rainer; Schnepf, Andreas

    2017-10-12

    The reaction of the metalloid tin cluster [Sn 10 (Hyp) 4 ] 2- with (Ph 3 P)Au-SHyp (Hyp = Si(SiMe 3 ) 3 ) gave an intermetalloid cluster [Au 3 Sn 18 (Hyp) 8 ] - 1, which is the longest intermetalloid chain compound of tin to date. 1 shows a structural resemblance to binary AuSn phases, which is expected for intermetalloid clusters.

  11. A review and prospects for Nb3Sn superconductor development

    Science.gov (United States)

    Xu, Xingchen

    2017-09-01

    Nb3Sn superconductors have significant applications in constructing high-field (>10 T) magnets. This article briefly reviews development of Nb3Sn superconductor and proposes prospects for further improvement. It is shown that significant improvement of critical current density (J c) is needed for future accelerator magnets. After a brief review of the development of Nb3Sn superconductors, the factors controlling J c are summarized and correlated with their microstructure and chemistry. The non-matrix J c of Nb3Sn conductors is mainly determined by three factors: the fraction of current-carrying Nb3Sn phase in the non-matrix area, the upper critical field B c2, and the flux line pinning capacity. Then prospects to improve the three factors are discussed respectively. An analytic model was developed to show how the ratios of precursors determine the phase fractions after heat treatment, based on which it is predicted that the limit of current-carrying Nb3Sn fraction in subelements is ∼65%. Then, since B c2 is largely determined by the Nb3Sn stoichiometry, a thermodynamic/kinetic theory is presented to show what essentially determines the Sn content of Nb3Sn conductors. This theory explains the influences of Sn sources and Ti addition on stoichiometry and growth rate of Nb3Sn layers. Next, to improve flux pinning, previous efforts in this community to introduce additional pinning centers to Nb3Sn wires are reviewed, and an internal oxidation technique is described. Finally, prospects for further improvement of non-matrix J c of Nb3Sn conductors are discussed, and it is seen that the only opportunity for further significantly improving J c lies in improving flux pinning.

  12. The complex structure of liquid Cu{sub 6}Sn{sub 5} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Qin Jingyu; Gu Tingkun; Bian Xiufang [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Southern Campus, Jinan 250061 (China); Liu Hui [Shandong High Performance Computing Center, Shandong University, Southern Campus, Jinan 250061 (China)

    2009-04-15

    By applying ab initio molecular dynamics simulation to liquid Cu{sub 6}Sn{sub 5} alloy, the hetero-coordination tendency is discovered by Bathia-Thornton partial correlation functions and a chemical short-range parameter. However the local structural environment of Sn in l-Cu{sub 6}Sn{sub 5} alloy resembles that of liquid Sn by Voronoi analysis. A new feature, i.e. a subpeak in between the first and second peaks, is discovered by the present method which implies that topologically disordered {beta}-Sn-type structural units may exist in l-Cu{sub 6}Sn{sub 5} alloy. The local density states of electrons show that both Cu-Sn and Sn-Sn bonding exist in l-Cu{sub 6}Sn{sub 5} alloy. This work suggests that chemical short-range order between unlike atoms and self-coordination between Sn atoms coexists in l-Cu{sub 6}Sn{sub 5} alloy.

  13. Prediction of activities of all components in the lead-free solder systems Bi-In-Sn and Bi-In-Sn-Zn

    International Nuclear Information System (INIS)

    Tao Dongping

    2008-01-01

    The activities of components of the ternary lead-free solder systems Al-Sn-Zn at 973 K, Zn-Cu-Sn at 1023 K and Bi-In-Sn at 1000 and 1050 K have been predicted by a novel molecular interaction volume model-MIVM and the results are in good agreement with experimental data. Then the activities of all components of the Bi-In-Sn at 550 K and the Bi-In-Sn-Zn quaternary system at 700 K have been further predicted and the results are reasonable and reliable. This shows that the model may be a superior alternative for describing interfacial chemical reactions between lead-free solder alloys and common base materials and for the calculation of their phase diagrams because MIVM has certain physical meaning from the viewpoint of statistical thermodynamics and requires only two infinite dilute activity coefficients for each sub-binary system

  14. Electromigration in 3D-IC scale Cu/Sn/Cu solder joints

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Cheng-En, E-mail: ceho1975@hotmail.com; Lee, Pei-Tzu; Chen, Chih-Nan; Yang, Cheng-Hsien

    2016-08-15

    The electromigration effect on the three-dimensional integrated circuits (3D-IC) scale solder joints with a Cu/Sn(25–50 μm)/Cu configuration was investigated using a field-emission scanning electron microscope (FE–SEM) combined with electron backscatter diffraction (EBSD) analysis system. Electron current stressing for a few days caused the pronounced accumulation of Cu{sub 6}Sn{sub 5} in specific Sn grain boundaries (GBs). The EBSD analysis indicated that both the β-Sn crystallographic orientation and GB orientation play dominant roles in this accumulation. The dependencies of the Cu{sub 6}Sn{sub 5} accumulation on the two above factors (i.e., Sn grain orientation and GB orientation) can be well rationalized via a proposed mathematic model based on the Huntington and Grone's electromigration theory with the Cu anisotropic diffusion data in a β-Sn lattice. - Highlights: • Anisotropic Cu electromigration in the 3D-IC scale microelectronic solder joints. • Pronounced accumulation of Cu{sub 6}Sn{sub 5} intermetallic in specific Sn grain boundaries. • A linear dependence of Cu{sub 6}Sn{sub 5} accumulation over the current stressing time. • β-Sn and grain boundary orientations are the dominant factors in Cu{sub 6}Sn{sub 5} accumulation.

  15. Single-Crystal Growth of Cl-Doped n-Type SnS Using SnCl2 Self-Flux.

    Science.gov (United States)

    Iguchi, Yuki; Inoue, Kazutoshi; Sugiyama, Taiki; Yanagi, Hiroshi

    2018-06-05

    SnS is a promising photovoltaic semiconductor owing to its suitable band gap energy and high optical absorption coefficient for highly efficient thin film solar cells. The most significant carnage is demonstration of n-type SnS. In this study, Cl-doped n-type single crystals were grown using SnCl 2 self-flux method. The obtained crystal was lamellar, with length and width of a few millimeters and thickness ranging between 28 and 39 μm. X-ray diffraction measurements revealed the single crystals had an orthorhombic unit cell. Since the ionic radii of S 2- and Cl - are similar, Cl doping did not result in substantial change in lattice parameter. All the elements were homogeneously distributed on a cleaved surface; the Sn/(S + Cl) ratio was 1.00. The crystal was an n-type degenerate semiconductor with a carrier concentration of ∼3 × 10 17 cm -3 . Hall mobility at 300 K was 252 cm 2 V -1 s -1 and reached 363 cm 2 V -1 s -1 at 142 K.

  16. Ionic liquid-assisted sonochemical synthesis of SnS nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    García-Gómez, Nora A.; Parra-Arcieniega, Salomé M. de la; Garza-Tovar, Lorena L.; Torres-González, Luis C.; Sánchez, Eduardo M., E-mail: eduardo.sanchezcv@uanl.edu.mx

    2014-03-05

    Highlight: • Obtention of SnS nanostructures using novel ionic liquid assisted sonochemical method. • Influence of the (BMImBF{sub 4}) ionic liquid in SnS morphology. • Inhibitory effect in SnS crystallinity by structuring agents in ionic environments. -- Abstract: SnS nanoparticles have been successfully synthesized by the ionic liquid-assisted sonochemical method (ILASM). The starting reagents were anhydrous SnCl{sub 2}, thioacetamide, dissolved in ethanol and ionic liquid (IL)1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF{sub 4}) mixtures. Our experiments showed that IL plays an important role in the morphology of SnS. A 1:1 ethanol:IL mixture was found to yield the more interesting features. The lower concentration of Sn (II) in solution favored the presence of nanoplatelets. An increase in ultrasonic time favored crystalline degree and size as well. Also, the effect of additives as 3-mercaptopropionic acid, diethanolamine, ethylene glycol, and trioctyl phosphine oxide is reported. X-ray diffraction (XRD) and ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis-DRS) were used to characterize the obtained products.

  17. Multifilamentary Cu-Nb3Sn superconductor wires

    International Nuclear Information System (INIS)

    Rodrigues, D.; Pinatti, D.G.

    1990-01-01

    This paper reports on one of the main technological problems concerning Nb 3 Sn superconducting wires production which is the optimization of heat treatments for the formation of the A-15 intermetallic compound. At the present work, Nb 3 Sn superconducting wire is produced by solid-liquid diffusion method which increases considerably the critical current values of the superconductor. Through this method, niobium, copper and Sn 7% wt Cu alloy are kept in the pure state. Thus, the method dispenses intermediate heat treatments of recrystallization during the manufacturing process of the wire. After the wire was ready, optimization work of heat treatments was accomplished aiming to obtain its best superconducting characteristics, Measurement of critical temperature, critical current versus magnetic field, normal and at room temperature resistivity were performed, as well as scanning electron microscopy for determination of Nb 3 Sn layers and transmission electron microscopy measurements of redetermining the grain sizes in Nb 3 Sn formed in each treatment. It was obtained critical current densities of 1.8 x 10 6 A/cm 2 in the Nb 3 Sn layer, at 10 Teslas and 4.2 K. The samples were analyzed by employing the superconducting collective flux pinning theories and a satisfactory agreement between the experimental and theoretical data was attained. The production process and the small size of the filaments used made a successful optimization of the wire possible

  18. Properties of Sn-doped TiO2 nanotubes fabricated by anodization of co-sputtered Ti–Sn thin films

    International Nuclear Information System (INIS)

    Kyeremateng, Nana Amponsah; Hornebecq, Virginie; Knauth, Philippe; Djenizian, Thierry

    2012-01-01

    Self-organized Sn-doped TiO 2 nanotubes (nts) were fabricated for the first time, by anodization of co-sputtered Ti and Sn thin films. This nanostructured material was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, UV–vis spectroscopy and transmission electron microscopy. Due to their remarkable properties, Sn-doped TiO 2 nts can find potential applications in Li-ion microbatteries, photovoltaics, and catalysis. Particularly, the electrochemical performance as an anode material for Li-ion microbatteries was evaluated in Li test cells. With current density of 70 μA cm −2 (1 C) and cut-off potential of 1 V, Sn-doped TiO 2 nts showed improved performance compared to simple TiO 2 nts, and differential capacity plots revealed that the material undergoes full electrochemical reaction as a Rutile-type TiO 2 .

  19. Quaternary chalcogenides La{sub 3}Sn{sub 0.5}InS{sub 7} and La{sub 3}Sn{sub 0.5}InSe{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Abishek K.; Lee, Emma J.; Bernard, Guy M.; Michaelis, Vladimir K.; Mar, Arthur [Department of Chemistry, University of Alberta, Edmonton, AB (Canada); Yin, Wenlong [Department of Chemistry, University of Alberta, Edmonton, AB (Canada); Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang (China)

    2017-12-13

    The quaternary chalcogenides La{sub 3}Sn{sub 0.5}InS{sub 7} and La{sub 3}Sn{sub 0.5}InSe{sub 7} were prepared by reactions of the elements at 1050 C and 950 C, respectively. They adopt noncentrosymmetric structures [hexagonal, space group P6{sub 3}, Z = 2; a = 10.2993(11) Aa, c = 6.0921(6) Aa for La{sub 3}Sn{sub 0.5}InS{sub 7}; a = 10.6533(7) Aa, c = 6.4245(4) Aa for La{sub 3}Sn{sub 0.5}InSe{sub 7}] in which the half-occupancy of Sn atoms within octahedral sites classifies them as belonging to the La{sub 3}Mn{sub 0.5}SiS{sub 7}-type branch of the large family of quaternary rare-earth chalcogenides RE{sub 3}M{sub 1-x}M{sup '}Ch{sub 7}. The site distribution in La{sub 3}Sn{sub 0.5}InCh{sub 7}, with higher-valent Sn atoms occupying octahedral instead of tetrahedral sites, is reversed from the typical situation observed in other RE{sub 3}M{sub 1-x}M{sup '}Ch{sub 7} compounds. The ordered distribution of Sn atoms in octahedral sites and In atoms in tetrahedral sites was evaluated by bond valence sum analyses. Moreover, {sup 119}Sn solid-state nuclear magnetic resonance (NMR) spectroscopy confirms the occupation of Sn{sup 4+} species exclusively within octahedral sites. An optical bandgap of 1.45 eV was found for La{sub 3}Sn{sub 0.5}InS{sub 7}. Band structure calculations on an ordered superstructure model of La{sub 3}Sn{sub 0.5}InS{sub 7} reveal that avoidance of strongly Sn-S antibonding levels is an important driving force for the Sn deficiency. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. First-principles study of ZnSnAs2-based dilute magnetic semiconductors

    Science.gov (United States)

    Kizaki, Hidetoshi; Morikawa, Yoshitada

    2018-02-01

    The electronic structure and magnetic properties of chalcopyrite Zn(Sn,TM)As2 and (Zn,TM)SnAs2 have been investigated by the Korringa-Kohn-Rostoker method combined with the coherent potential approximation within the local spin density approximation, where TM denotes a 3d transition metal element. We find that the half-metallic and high-spin ferromagnetic state can be obtained in Zn(Sn,V)As2, Zn(Sn,Cr)As2, Zn(Sn,Mn)As2, (Zn,V)SnAs2, and (Zn,Cr)SnAs2. The calculated result of Zn(Sn,Mn)As2 is in good agreement with the experimentally observed room-temperature ferromagnetism if we can control selective Mn doping at Sn sites. In addition, (Zn,V)SnAs2 and (Zn,Cr)SnAs2 are predicted to exhibit high-Curie-temperature ferromagnetism.

  1. Corrosion Behaviour of Sn-based Lead-Free Solders in Acidic Solution

    Science.gov (United States)

    Nordarina, J.; Mohd, H. Z.; Ahmad, A. M.; Muhammad, F. M. N.

    2018-03-01

    The corrosion properties of Sn-9(5Al-Zn), Sn-Cu and SAC305 were studied via potentiodynamic polarization method in an acidic solution of 1 M hydrochloric acid (HCl). Sn-9(5Al-Zn) produced different polarization profile compared with Sn-Cu and SAC305. The morphological analysis showed that small, deep grooves shaped of corrosion product formed on top of Sn-9(5Al-Zn) solder while two distinctive structures of closely packed and loosely packed corrosion product formed on top of Sn-Cu and SAC305 solder alloys. Phase analysis revealed the formations of various corrosion products such as SnO and SnO2 mainly dominant on surface of solder alloys after potentiodynamic polarization in 1 M hydrochloric acid (HCl).

  2. Influence of Sn content on PtSn/C catalysts for electrooxidation of C{sub 1}-C{sub 3} alcohols: Synthesis, characterization, and electrocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hong; Choi, Sung Mook; Nam, Sang Hoon; Seo, Min Ho; Kim, Won Bae [Department of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea); Choi, Sun Hee [Pohang Accelerator Laboratory, San-31 Hyoja-dong, Pohang, Kyungbuk 790-984 (Korea)

    2008-07-16

    A series of carbon-supported bimetallic PtSn catalysts for the electrooxidation of C{sub 1}-C{sub 3} alcohols (i.e., methanol (C{sub 1}), ethanol (C{sub 2}), and 1-propanol (C{sub 3})) were prepared with different Pt:Sn atomic ratios using borohydride reduction method combined with freeze-drying procedure at room temperature. The catalysts were investigated by employing various physicochemical analyses: X-ray diffraction (XRD), transmission electron microscopy (TEM) and extended X-ray absorption fine structure (EXAFS) to investigate the structural modification, and X-ray photoelectron spectroscopy (XPS) and X-ray absorption-near-edge spectroscopy (XANES) to characterize the change in electronic features. The variation of Sn content by forming PtSn alloys causes significant structural and electronic modifications of Pt crystallites, resulting in increases of lattice parameter and decreases of the Pt 5d band vacancies with Sn content. Cyclic voltammetry (CV) measurements showed that the addition of Sn into the Pt catalyst promotes the electro-catalytic activities for the electrooxidations of C{sub 1}, C{sub 2}, and C{sub 3} alcohols, in which the maximum activities appeared at different Sn contents for the C{sub 1}-C{sub 3} alcohols. In particular, a shift in optimum Pt:Sn composition was observed in that the Sn content required to reach the maximum peak current density was increased with the increasing number of carbon atoms in the C{sub 1}-C{sub 3} alcohols. Both the geometric and electronic effects with variation of Sn content are in close relationship in the bimetallic PtSn catalysts, consequently affecting the electrocatalytic activities by showing volcano-type behaviors over the electrooxidation of the individual alcohol. (author)

  3. Superconductivity, carrier concentration, and the ionic model of Sn/sub 4/P/sub 3/ and Sn/sub 4/As/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Van Maaren, M H

    1969-06-01

    Superconductivity is reported for Sn/sub 4/P/sub 2.65/ at T/sub c/ 1.2/sup 0/K. Hall constant and reflectivity measurements indicate a mixed type of conduction for Sn/sub 4/P/sub 2.65/ and Sn/sub 3.80/ As/sub 3/. The ionic model of Geller and Hull is not applicable.

  4. Characteristics and heat treatment of cold-sprayed Al-Sn binary alloy coatings

    International Nuclear Information System (INIS)

    Ning, Xian-Jin; Kim, Jin-Hong; Kim, Hyung-Jun; Lee, Changhee

    2009-01-01

    In this study, Al-Sn binary alloy coatings were prepared with Al-5 wt.% Sn (Al-5Sn) and Al-10 wt.% Sn (Al-10Sn) gas atomized powders by low pressure and high pressure cold spray process. The microstructure and microhardness of the coatings were characterized. To understand the coarsening of tin in the coating, the as-sprayed coatings were annealed at 150, 200, 250 and 300 o C for 1 h, respectively. The effect of annealing on microstructure and the bond strength of the coatings were investigated. The results show that Al-5Sn coating can be deposited by high pressure cold spray with nitrogen while Al-10Sn can only be deposited by low pressure cold spray with helium gas. Both Al-5Sn and Al-10Sn coatings present dense structures. The fraction of Sn in as-sprayed coatings is consistent with that in feed stock powders. The coarsening and/or migration of Sn phase in the coatings were observed when the annealing temperature exceeds 200 deg. C. Furthermore, the microhardness of the coatings decreased significantly at the annealing temperature of 250 deg. C. EDXA analysis shows that the heat treatment has no significant effect on fraction of Sn phase in Al-5Sn coatings. Bonding strength of as-sprayed Al-10Sn coating is slightly higher than that of Al-5Sn coating. Annealing at 200 o C can increase the bonding strength of Al-5Sn coatings.

  5. The crystallographic growth directions of Sn whiskers

    International Nuclear Information System (INIS)

    Stein, J.; Welzel, U.; Leineweber, A.; Huegel, W.; Mittemeijer, E.J.

    2015-01-01

    The growth directions of 55 Sn whiskers, i.e. the crystallographic orientation parallel to the whisker-growth axes, were determined using (i) a focused ion beam microscope for the determination of the physical growth angles of the whiskers with respect to a specimen (reference) coordinate system and (ii) an electron backscatter detector in a scanning electron microscope for the determination of the crystallographic orientation of the whiskers. The Sn whiskers were found to grow preferentially along low-index directions of the β-Sn crystal structure. The experimental findings of this study (and most of the results presented in the literature as well) were explained by applying, in a modified way, the Hartman–Perdok concept of periodic bond chains, i.e. chains of strong bonds running uninterruptedly through the structure, to the Sn whisker-growth phenomenon

  6. Unusually large chemical potential shift in a degenerate semiconductor: Angle-resolved photoemission study of SnSe and Na-doped SnSe

    Science.gov (United States)

    Maeda, M.; Yamamoto, K.; Mizokawa, T.; Saini, N. L.; Arita, M.; Namatame, H.; Taniguchi, M.; Tan, G.; Zhao, L. D.; Kanatzidis, M. G.

    2018-03-01

    We have studied the electronic structure of SnSe and Na-doped SnSe by means of angle-resolved photoemission spectroscopy. The valence-band top reaches the Fermi level by the Na doping, indicating that Na-doped SnSe can be viewed as a degenerate semiconductor. However, in the Na-doped system, the chemical potential shift with temperature is unexpectedly large and is apparently inconsistent with the degenerate semiconductor picture. The large chemical potential shift and anomalous spectral shape are key ingredients for an understanding of the novel metallic state with the large thermoelectric performance in Na-doped SnSe.

  7. Effect of indium and antimony doping in SnS single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chaki, Sunil H., E-mail: sunilchaki@yahoo.co.in; Chaudhary, Mahesh D.; Deshpande, M.P.

    2015-03-15

    Highlights: • Single crystals growth of pure SnS, indium doped SnS and antimony doped SnS by direct vapour transport (DVT) technique. • Doping of In and Sb occurred in SnS single crystals by cation replacement. • The replacement mechanism ascertained by EDAX, XRD and substantiated by Raman spectra analysis. • Dopants concentration affects the optical energy bandgap. • Doping influences electrical transport properties. - Abstract: Single crystals of pure SnS, indium (In) doped SnS and antimony (Sb) doped SnS were grown by direct vapour transport (DVT) technique. Two doping concentrations of 5% and 15% each were employed for both In and Sb dopants. Thus in total five samples were studied viz., pure SnS (S1), 5% In doped SnS (S2), 15% In doped SnS (S3), 5% Sb doped SnS (S4) and 15% Sb doped SnS (S5). The grown single crystal samples were characterized by evaluating their surface microstructure, stoichiometric composition, crystal structure, Raman spectroscopy, optical and electrical transport properties using appropriate techniques. The d.c. electrical resistivity and thermoelectric power variations with temperature showed semiconducting and p-type nature of the as-grown single crystal samples. The room temperature Hall Effect measurements further substantiated the semiconducting and p-type nature of the as-grown single crystal samples. The obtained results are deliberated in detail.

  8. Selective increase of in vivo firing frequencies in DA SN neurons after proteasome inhibition in the ventral midbrain.

    Science.gov (United States)

    Subramaniam, Mahalakshmi; Kern, Beatrice; Vogel, Simone; Klose, Verena; Schneider, Gaby; Roeper, Jochen

    2014-09-01

    The impairment of protein degradation via the ubiquitin-proteasome system (UPS) is present in sporadic Parkinson's disease (PD), and might play a key role in selective degeneration of vulnerable dopamine (DA) neurons in the substantia nigra pars compacta (SN). Further evidence for a causal role of dysfunctional UPS in familial PD comes from mutations in parkin, which results in a loss of function of an E3-ubiquitin-ligase. In a mouse model, genetic inactivation of an essential component of the 26S proteasome lead to widespread neuronal degeneration including DA midbrain neurons and the formation of alpha-synuclein-positive inclusion bodies, another hallmark of PD. Studies using pharmacological UPS inhibition in vivo had more mixed results, varying from extensive degeneration to no loss of DA SN neurons. However, it is currently unknown whether UPS impairment will affect the neurophysiological functions of DA midbrain neurons. To answer this question, we infused a selective proteasome inhibitor into the ventral midbrain in vivo and recorded single DA midbrain neurons 2 weeks after the proteasome challenge. We found a selective increase in the mean in vivo firing frequencies of identified DA SN neurons in anesthetized mice, while those in the ventral tegmental area (VTA) were unaffected. Our results demonstrate that a single-hit UPS inhibition is sufficient to induce a stable and selective hyperexcitability phenotype in surviving DA SN neurons in vivo. This might imply that UPS dysfunction sensitizes DA SN neurons by enhancing 'stressful pacemaking'. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Growth and photovoltaic performance of SnS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Deepa, K.G., E-mail: deepachaithanya@gmail.com [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore (India); Nagaraju, J. [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore (India)

    2012-08-01

    Highlights: Black-Right-Pointing-Pointer Orthorhombic SnS quantum dots are synthesized by chemical method. Black-Right-Pointing-Pointer HOMO-LUMO level alignments confirmed the electron transport from SnS to TiO{sub 2}. Black-Right-Pointing-Pointer Cell characteristics are analyzed with different size quantum dots. Black-Right-Pointing-Pointer FF increased drastically from 15 to 51% on adding a buffer layer to the structure. Black-Right-Pointing-Pointer The SnS QDSSC showed highest V{sub oc} of 504 mV and 2.3 mA/cm{sup 2}. - Abstract: Tin sulphide (SnS) quantum dots of size ranging from 2.4 to 14.4 nm are prepared by chemical precipitation method in aqueous media. Growth of the SnS particles is monitored by controlling the deposition time. Both XRD and SAED patterns confirm that the particles possess orthorhombic structure. The uncapped SnS particles showed secondary phases like Sn{sub 2}S{sub 3} and SnS{sub 2} which is visible in the SAED pattern. From the electrochemical characterization, HOMO-LUMO levels of both TiO{sub 2} and SnS are determined and the band alignment is found to be favorable for electron transfer from SnS to TiO{sub 2}. Moreover, the HOMO-LUMO levels varied for different particle sizes. Solar cell is fabricated by sensitizing porous TiO{sub 2} thin film with SnS QDs. Cell structure is characterized with and without buffer layer between FTO and TiO{sub 2}. Without the buffer layer, cell showed an open circuit voltage (V{sub oc}) of 504 mV and short circuit current density (J{sub sc}) of 2.3 mA/cm{sup 2} under AM1.5 condition. The low fill factor of this structure (15%) is seen to be increased drastically to 51%, on the incorporation of the buffer layer. The cell characteristics are analyzed using two different size quantum dots.

  10. Comparison between OPD-scan results and contrast sensitivity of three intraocular lenses: spheric AcrySof SN60AT, aspheric AcrySof SN60WF and multifocal AcrySof Restor lens Estudo comparativo da análise de frente de onda e sensibilidade ao contraste entre as lentes intra-oculares multifocal AcrySof Restor SN60D3, monofocal AcrySof SN60WF asférica e a monofocal SN60AT esférica

    Directory of Open Access Journals (Sweden)

    Celso Takashi Nakano

    2009-08-01

    Full Text Available Purpose: Compare the OPD-scan results and the contrast sensitivity in patients who had implantation of the AcrySof SN60D3 multifocal IOL, the AcrySof SA60AT spheric monofocal IOL and the AcrySof SN60AT aspheric monofocal IOL. Methods: Thirty-two eyes received the multifocal IOL, 32 eyes received the spheric monofocal IOL and 32 eyes received the aspheric monofocal IOL. They were closely paired in age, sex, pre-operative wavefront analysis and contrast sensitivity. All patients was tested with the OPD-scan aberrometer, ETDRS chart at 100% and 9% contrasts and contrast sensitivity. Results: Statistically significant differences were detected more total aberration in SN60AT group (KW = 9.42; p=0.009 when compared to SN60D3 group (p=0.016 and SN60WF group (p=0.0047. The SN60AT group (KW = 16.20; p=0.0003 showed with high spherical aberration values compared to the SN60WF (p=0.00046 and SN60D3 (p=0.0014 group. No significant differences were found between groups in far-distance VA measured using ETDRS at 100% and 9% contrast. The SN60D3 group compared to SN60AT group (p=0.016 had low contrast sensitivity (log units with statistical difference in 6.0 cpd (KW = 7.84; p=0.0199, but no statistical difference between SN60WF and SN60AT group (p=0.91 and SN60WF and SN60D3 group (p=0.051. The SN60D3 group had low contrast sensitivity performed under mesopic conditions (KW = 10.79; p=0,0045 in 6cpd spatial frequency compared to the SN60AT group (p=0.011 and to the SN60WF group (p=0.007 with statistical significant differences. Conclusion: In all analyzed parameters of OPD-scan aberrometry the aspheric and the multifocal IOLs provided less total and spherical aberrations than spheric IOLs. All IOLs provided an excellent high and low contrasts vision, the multifocal IOL was as good as the spheric and aspheric monofocal IOLs.Objetivo: Comparar a sensibilidade ao contraste e análise de "wavefront" com OPD-scan em pacientes submetidos a cirurgia de facoemulsifica

  11. Gamma spectroscopy of multiple nucleon transfer reactions in Sn

    International Nuclear Information System (INIS)

    Grabowski, Z.W.; Mayer, R.H.; Fornal, B.; Nisius, D.T.; Bearden, I.G.; Daly, P.J.; Broda, R.; Carpenter, M.P.; Janssens, R.V.F.; Khoo, T.L.; Lauritsen, T.

    1992-01-01

    The decay of (πh 11/2 ) n yrast isomers was studied in a series of proton-rich N = 82 isotones culminating in determination of B(E2) values in 153 Lu and 154 Hf. In the N = 82 isotones however, it seems unlikely that the measurements could be extended beyond 154 Hf (n = 8). The opportunity to investigate the (h 11/2 ) n ) isomers across the whole h 11/2 subshell exists, at least in principle, in Sn isotopes where the counterpart νh 11/2 subshell is being filled with neutrons starting at 116 Sn. Before our measurements were initiated, the (νh 11/2 ) n 10 + isomers were known to exist in 116, 118, 120 Sn, where the νh 11/2 subshell begins to fill, and in 128,130 Sn at the other end. Important information, however, was missing about the 10 + isomers in 122,124,126 Sn where the long lifetimes are expected. The υ = 3 (h 11/2 ) isomers in odd tin isomers for A ≥ 119 were also not identified. A serious experimental difficulty in populating high spin states in heavier Sn isotopes is that they are not accessible by fusion-evaporation reactions. We decided to search for these missing tin isotopes among the products of heavy ion reactions on 122,124 Sn targets. Using this approach we were able to identify the isomeric decays and measure the lifetimes of the (νh 11/2 n ) υ = 2 isomeric states in 122,124 Sn. In odd tin isotopes we identified new I = 19/2 + yrast isomers in 119,121,123 Sn and measured their lifetimes. In addition (νh 11/2 ) n υ = 3, I = 27/2 - isomers in 119,121 Sn were observed for the first time

  12. On possibility of superconductivity in SnSb: A first principle study

    Energy Technology Data Exchange (ETDEWEB)

    Dabhi, Shweta D. [Department of Physics, M. K. Bhavnagar University, Bhavnagar 364001 (India); Shrivastava, Deepika [Department of Physics, Barkatullah University, Bhopal 462026 (India); Jha, Prafulla K., E-mail: prafullaj@yahoo.com [Department of Physics, Faculty of Science, The M. S. University of Baroda, Vadodara 390002 (India); Sanyal, Sankar P. [Department of Physics, Barkatullah University, Bhopal 462026 (India)

    2016-09-15

    Highlights: • Superconducting property of SnSb is predicted by ab-initio calculations. • Electronic properties of SnSb in RS phase shows metallic behaviour similar to SnAs. • Phonon dispersion confirms the dynamical stability of SnSb in RS phase. • Superconducting transition temperature is 3.1 K, slightly lower than that of SnAs. • Calculated thermodynamic properties are also reported. - Abstract: The electronic, phonon structure and superconducting properties of tin antimonide (SnSb) in rock-salt (RS) structure are calculated using first-principles density functional theory. The electronic band structure and density of states show metallic behavior. The phonon frequencies are positive throughout the Brillouin zone in rock-salt structure indicating its stability in that phase. Superconductivity of SnSb in RS phase is discussed in detail by calculating phonon linewidths, Eliashberg spectral function, electron-phonon coupling constant and superconducting transition temperature. SnSb is found to have a slightly lower T{sub C} (3.1 K), as compared to SnAs.

  13. Synthesis and characterization of different morphological SnS nanomaterials

    International Nuclear Information System (INIS)

    Chaki, Sunil H; Chaudhary, Mahesh D; Deshpande, M P

    2014-01-01

    SnS in three nano forms possessing different morphologies such as particles, whiskers and ribbons were synthesised by chemical route. The morphology variation was brought about in the chemical route synthesis by varying a synthesis parameter such as temperature and influencing the synthesis by use of surfactant. The elemental composition determination by energy dispersive analysis of x-rays (EDAX) showed that all three synthesized SnS nanomaterials were tin deficient. The x-ray diffraction (XRD) study of the three SnS nanomaterials showed that all of them possess orthorhombic structure. The Raman spectra of the three SnS nanomaterials showed that all three samples possess three common distinguishable peaks. In them two peaks lying at 98 ± 1 cm −1 and 224 ± 4 cm −1 are the characteristic A g mode of SnS. The third peak lying at 302 ± 1 cm −1 is associated with secondary Sn 2 S 3 phase. The transmission electron microscopy (TEM) confirmed the respective morphologies. The optical analysis showed that they possess direct as well as indirect optical bandgap. The electrical transport properties study on the pellets prepared from the different nanomaterials of SnS showed them to be semiconducting and p-type in nature. The current–voltage (I–V) plots of the silver (Ag)/SnS nanomaterials pellets for dark and incandescent illumination showed that all configurations showed good ohmic behaviour except Ag/SnS nanoribbons pellet configuration under illumination. All the obtained results are discussed in detail. (paper)

  14. Parts per billion-level detection of benzene using SnO2/graphene nanocomposite composed of sub-6 nm SnO2 nanoparticles

    International Nuclear Information System (INIS)

    Meng Fanli; Li Huihua; Kong Lingtao; Liu Jinyun; Jin Zhen; Li Wei; Jia Yong; Liu Jinhuai; Huang Xingjiu

    2012-01-01

    Graphical abstract: SnO 2 /graphene nanocomposite composed of 4–5 nm SnO 2 nanoparticles was synthesized by one-step wet chemical method and the form mechanism of the nanocomposite is clearly interpreted. The detection limit of the nanocomposite was as low as 5 ppb to toxic benzene. Highlights: ► We synthesized SnO 2 /graphene nanocomposite using a simple one-step wet chemical method. ► The nanocomposite composed of 4–5 nm SnO 2 nanoparticles. ► Toxic benzene was detected by such kind of nanocomposite. ► The detection limit to toxic benzene was as low as 5 ppb. - Abstract: In the present work, the SnO 2 /graphene nanocomposite composed of 4–5 nm SnO 2 nanoparticles was synthesized using a simple wet chemical method for ppb-level detection of benzene. The formation mechanism of the nanocomposite was investigated systematically by means of simultaneous thermogravimetry analysis, X-ray diffraction, and X-ray photoelectron spectroscopy cooperated with transmission electron microscopy observations. The SnO 2 /graphene nanocomposite showed a very attractive improved sensitivity to toxic volatile organic compounds, especially to benzene, compared to a traditional SnO 2 . The responses of the nanocomposite to benzene were a little higher than those to ethanol and the detection limit reached 5 ppb to benzene which is, to our best knowledge, far lower than those reported previously.

  15. Phase transitions in thin films of Sn-Sb-Se system

    International Nuclear Information System (INIS)

    Samsudi Sakrani; Abdalla Belal Adam; Yussof Wahab

    1998-01-01

    The preparation and formation of covalent ternary Sn-Sb-Se system were investigated. A solid state reaction technique was employed whereby the evaporated multilayers of Sn/Se/Sb/Sn reacted chemically at a fixed temperature of 240 o C and were allowed to a room temperature slow-cooling. X-ray diffraction analysis showed that phase changes occurred in the system, with indication of amorphization for the predicted Sn 9 .3Sb 8 .1Se 4 4.9 and Sn 1 3.2Sb 4 3.4Se 4 3.4 compositions. These enabled the preliminary topological phase transitions of Sn-Sb-Se system according to the Gibb's triangle in which the areas of crystalline-amorphous were located. (Author)

  16. SiSn diodes: Theoretical analysis and experimental verification

    KAUST Repository

    Hussain, Aftab M.

    2015-08-24

    We report a theoretical analysis and experimental verification of change in band gap of silicon lattice due to the incorporation of tin (Sn). We formed SiSn ultra-thin film on the top surface of a 4 in. silicon wafer using thermal diffusion of Sn. We report a reduction of 0.1 V in the average built-in potential, and a reduction of 0.2 V in the average reverse bias breakdown voltage, as measured across the substrate. These reductions indicate that the band gap of the silicon lattice has been reduced due to the incorporation of Sn, as expected from the theoretical analysis. We report the experimentally calculated band gap of SiSn to be 1.11 ± 0.09 eV. This low-cost, CMOS compatible, and scalable process offers a unique opportunity to tune the band gap of silicon for specific applications.

  17. The Low Temperature Epitaxy of Strained GeSn Layers Using RTCVD System

    Science.gov (United States)

    Kil, Yeon-Ho; Yuk, Sim-Hoon; Jang, Han-Soo; Lee, Sang-Geul; Choi, Chel-Jong; Shim, Kyu-Hwan

    2018-03-01

    We have investigated the low temperature (LT) growth of GeSn-Ge-Si structures using rapid thermal chemical vapor deposition system utilizing Ge2H6 and SnCl4 as the reactive precursors. Due to inappropriate phenomena, such as, Ge etch and Sn segregation, it was hard to achieve high quality GeSn epitaxy at the temperature > 350 °C. On the contrary, we found that the SnCl4 promoted the reaction of Ge2H6 precursors in a certain process condition of LT, 240-360 °C. In return, we could perform the growth of GeSn epi layer with 7.7% of Sn and its remaining compressive strain of 71.7%. The surface propagated defects were increased with increasing the Sn content in the GeSn layer confirmed by TEM analysis. And we could calculate the activation energies at lower GeSn growth temperature regime using by Ge2H6 and SnCl4 precursors about 0.43 eV.

  18. Homogeneous (Cu, Ni)6Sn5 intermetallic compound joints rapidly formed in asymmetrical Ni/Sn/Cu system using ultrasound-induced transient liquid phase soldering process.

    Science.gov (United States)

    Li, Z L; Dong, H J; Song, X G; Zhao, H Y; Tian, H; Liu, J H; Feng, J C; Yan, J C

    2018-04-01

    Homogeneous (Cu, Ni) 6 Sn 5 intermetallic compound (IMC) joints were rapidly formed in asymmetrical Ni/Sn/Cu system by an ultrasound-induced transient liquid phase (TLP) soldering process. In the traditional TLP soldering process, the intermetallic joints formed in Ni/Sn/Cu system consisted of major (Cu, Ni) 6 Sn 5 and minor Cu 3 Sn IMCs, and the grain morphology of (Cu, Ni) 6 Sn 5 IMCs subsequently exhibited fine rounded, needlelike and coarse rounded shapes from the Ni side to the Cu side, which was highly in accordance with the Ni concentration gradient across the joints. However, in the ultrasound-induced TLP soldering process, the intermetallic joints formed in Ni/Sn/Cu system only consisted of the (Cu, Ni) 6 Sn 5 IMCs which exhibited an uniform grain morphology of rounded shape with a remarkably narrowed Ni concentration gradient. The ultrasound-induced homogeneous intermetallic joints exhibited higher shear strength (61.6 MPa) than the traditional heterogeneous intermetallic joints (49.8 MPa). Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Mechanical properties of high-current multifilamentary Nb3Sn conductors

    International Nuclear Information System (INIS)

    Scanlan, R.M.; Hoard, R.W.; Cornish, D.N.; Zbasnik, J.P.

    1980-01-01

    Nb 3 Sn is a strain-sensitive superconductor which exhibits large changes in properties for strains of less than 1 percent. The critical current density at 12 T undergoes a reversible degradation of a factor of two for compressive strains of about 1 percent and undergoes an irreversible degradation for tensile strains on the Nb 3 Sn greater than 0.2 percent. Consequently, the successful application of Nb 3 Sn in large high-field magnets requires a complete understanding of the mechanical properties of the conductor. One conductor which is being used for many applications consists of filaments of Nb 3 Sn in a bronze matrix, and much progress has been made in understanding the mechanical behavior of this composite. The Nb 3 Sn filaments are placed in compression due to the differential thermal contraction between Nb 3 Sn and bronze which occurs when the composite is cooled from the Nb 3 Sn formation temperature (typically 700 0 C) to the 4.2 0 K operating temperature. The general behavior of the critical current when this conductor is subjected to a tensile stress is an increase to a maximum when the compressive strain on the Nb 3 Sn is relieved, followed by a decrease as the Nb 3 Sn filemants are placed in tension. The degree of precompression is controlled largely by the ratio of bronze to Nb 3 Sn in the conductor

  20. Void formation and its impact on Cu−Sn intermetallic compound formation

    International Nuclear Information System (INIS)

    Ross, Glenn; Vuorinen, Vesa; Paulasto-Kröckel, Mervi

    2016-01-01

    Void formation in the Cu−Sn system has been identified as a major reliability issue with small volume electronic interconnects. Voids form during the interdiffusion of electrochemically deposited Cu and Sn, with varying magnitude and density. Electroplating parameters include the electrolytic chemistry composition and the electroplating current density, all of which appear to effect the voiding characteristics of the Cu−Sn system. In addition, interfacial voiding affects the growth kinetics of the Cu_3Sn and Cu_6Sn_5 intermetallic compounds of the Cu−Sn system. The aim here is to present voiding data as a function of electroplating chemistry and current density over a duration (up to 72 h) of isothermal annealing at 423 K (150 °C). Voiding data includes the average interfacial void size and average void density. Voids sizes grew proportionally as a function of thermal annealing time, whereas the void density grew initially very quickly but tended to saturate at a fixed density. A morphological evolution analysis called the physicochemical approach is utilised to understand the processes that occur when a voided Cu/Cu_3Sn interface causes changes to the IMC phase growth. The method is used to simulate the intermetallic thickness growths' response to interfacial voiding. The Cu/Cu_3Sn interface acts as a Cu diffusion barrier disrupting the diffusion of Cu. This resulted in a reduction in the Cu_3Sn thickness and an accelerated growth rate of Cu_6Sn_5. - Highlights: • Average void size is proportional linearly to thermal annealing time. • Average void density grows initially very rapidly followed by saturation. • Voids located close to the Cu/Cu_3Sn interface affect IMC growth rates. • Voids act as a diffusion barrier inhibiting Cu diffusion towards Sn. • Voids located at the interface cause Cu_3Sn to be consumed by Cu_6Sn_5.

  1. TDPAC study of Cd-doped SnO

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, E. L., E-mail: munoz@fisica.unlp.edu.ar [Universidad Nacional de La Plata, Departamento de Fisica-IFLP (CCT-La Plata, CONICET-UNLP), Facultad de Ciencias Exactas (Argentina); Carbonari, A. W. [Instituto de Pesquisas Energeticas y Nucleares-IPEN-CNEN/SP (Brazil); Errico, L. A. [Universidad Nacional de La Plata, Departamento de Fisica-IFLP (CCT-La Plata, CONICET-UNLP), Facultad de Ciencias Exactas (Argentina); Bibiloni, A. G. [Universidad Nacional de La Plata, Departamento de Fisica, Facultad de Ciencias Exactas (Argentina); Petrilli, H. M. [Universidade de Sao Paulo, Instituto de Fisica (Brazil); Renteria, M. [Universidad Nacional de La Plata, Departamento de Fisica-IFLP (CCT-La Plata, CONICET-UNLP), Facultad de Ciencias Exactas (Argentina)

    2007-07-15

    The combination of hyperfine techniques and ab initio calculations has been shown to be a powerful tool to unravel structural and electronic characterizations of impurities in solids. A recent example has been the study of Cd-doped SnO, where ab initio calculations questioned previous TDPAC assignments of the electric-field gradient (EFG) in {sup 111}In-implanted Sn-O thin films. Here we present new TDPAC experiments at {sup 111}In-diffused polycrystalline SnO. A reversible temperature dependence of the EFG was observed in the range 295-900 K. The TDPAC results were compared with theoretical calculations performed with the full-potential linearized augmented plane wave (FP-LAPW) method, in the framework of the density functional theory. Through the comparison with the theoretical results, we infer that different electronic surroundings around Cd impurities can coexist in the SnO sample.

  2. TDPAC study of Cd-doped SnO

    International Nuclear Information System (INIS)

    Munoz, E. L.; Carbonari, A. W.; Errico, L. A.; Bibiloni, A. G.; Petrilli, H. M.; Renteria, M.

    2007-01-01

    The combination of hyperfine techniques and ab initio calculations has been shown to be a powerful tool to unravel structural and electronic characterizations of impurities in solids. A recent example has been the study of Cd-doped SnO, where ab initio calculations questioned previous TDPAC assignments of the electric-field gradient (EFG) in 111 In-implanted Sn-O thin films. Here we present new TDPAC experiments at 111 In-diffused polycrystalline SnO. A reversible temperature dependence of the EFG was observed in the range 295-900 K. The TDPAC results were compared with theoretical calculations performed with the full-potential linearized augmented plane wave (FP-LAPW) method, in the framework of the density functional theory. Through the comparison with the theoretical results, we infer that different electronic surroundings around Cd impurities can coexist in the SnO sample.

  3. Spectroelectrochemical Study of Carbon Monoxide and Ethanol Oxidation on Pt/C, PtSn(3:1/C and PtSn(1:1/C Catalysts

    Directory of Open Access Journals (Sweden)

    Rubén Rizo

    2016-09-01

    Full Text Available PtSn-based catalysts are one of the most active materials toward that contribute ethanol oxidation reaction (EOR. In order to gain a better understanding of the Sn influence on the carbon monoxide (principal catalyst poison and ethanol oxidation reactions in acidic media, a systematic spectroelectrochemical study was carried out. With this end, carbon-supported PtSnx (x = 0, 1/3 and 1 materials were synthesized and employed as anodic catalysts for both reactions. In situ Fourier transform infrared spectroscopy (FTIRS and differential electrochemical mass spectrometry (DEMS indicate that Sn diminishes the amount of bridge bonded CO (COB and greatly improves the CO tolerance of Pt-based catalysts. Regarding the effect of Sn loading on the EOR, it enhances the catalytic activity and decreases the onset potential. FTIRS and DEMS analysis indicate that the C-C bond scission occurs at low overpotentials and at the same potential values regardless of the Sn loading, although the amount of C-C bond breaking decreases with the rise of Sn in the catalytic material. Therefore, the elevated catalytic activity toward the EOR at PtSn-based electrodes is mainly associated with the improved CO tolerance and the incomplete oxidation of ethanol to form acetic acid and acetaldehyde species, causing the formation of a higher amount of both C2 products with the rise of Sn loading.

  4. Some physico-chemical properties of liquid Ag-Sn-Zn

    International Nuclear Information System (INIS)

    Terzieff, P.

    2010-01-01

    The mean square concentration fluctuations in the long wavelength limit, the surface tension, the segregation behavior and the viscosity of the liquid system Ag-Sn-Zn are calculated in a semi-empirical manner based on experimental thermodynamic data. The increased intensity of fluctuations in the concentration of Sn extending over an wide range of composition is the dominant feature of the system. In a likewise manner, the tendency of segregation into the surface layer is observed to be most noticeable for Sn-atoms. As a consequence, even at massive additions of Ag or Zn up to 60 at% the surface tension is expected not to exceed the value of pure Sn by more than 15%. The viscosities are indicated to increase markedly but in a non-linear manner with the content of Ag. The excess viscosity is found to be negative throughout the system being more pronounced on the Ag-Sn side than on the Ag-Zn or the Sn-Zn side of the system.

  5. Docosahexaenoic acid (DHA) at the sn-2 position of triacylglycerols increases DHA incorporation in brown, but not in white adipose tissue, of hamsters.

    Science.gov (United States)

    Lopes, Paula A; Bandarra, Narcisa M; Martins, Susana V; Madeira, Marta S; Ferreira, Júlia; Guil-Guerrero, José L; Prates, José A M

    2018-06-01

    We hypothesised that the incorporation of docosahexaenoic acid (DHA) across adipose tissues will be higher when it is ingested as triacylglycerols (TAG) structured at the sn-2 position. Ten-week old male hamsters were allocated to 4 dietary treatments (n = 10): linseed oil (LSO-control group), fish oil (FO), fish oil ethyl esters (FO-EE) and structured DHA at the sn-2 position of TAG (DHA-SL) during 12 weeks. In opposition to the large variations found for fatty acid composition in retroperitoneal white adipose tissue (WAT), brown adipose tissue (BAT) was less responsive to diets. DHA was not found in subcutaneous and retroperitoneal WAT depots but it was successfully incorporated in BAT reaching the highest percentage in DHA-SL. The PCA on plasma hormones (insulin, leptin, adiponectin) and fatty acids discriminated BAT from WATs pointing towards an individual signature on fatty acid deposition, but did not allow for full discrimination of dietary treatments within each adipose tissue.

  6. Investigation of superior electro-optical properties of SnO{sub 2}/SiO{sub 2} nanocomposite over its individual counterpart SnO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Naveen Kumar, P.; Sahaya Selva Mary, J.; Chandrakala, V.; Jothi Jeyarani, W.; Merline Shyla, J., E-mail: jmshyla@gmail.com

    2017-06-01

    A comparative investigation of SnO{sub 2}/SiO{sub 2} nanocomposite with SnO{sub 2} nanoparticles has been conducted in the present study with the intent of learning the probable enhancement of the properties of the nanocomposite over those of the bare nanoparticles which has not been widely reported before. SnO{sub 2} nanoparticles and SnO{sub 2}/SiO{sub 2} nanocomposite have been synthesized via the facile and versatile sol-gel method. The samples were characterized with X-Ray Diffraction (XRD), High Resolution Scanning Electron Microscopy (HRSEM), Brunauer Emmett Teller (BET) studies, Fourier Transform Infra-Red spectroscopy (FT-IR), UV–Visible (UV–Vis) spectroscopy and Field-dependent photo conductivity technique for the evaluation of their crystallite size, structure & morphology, surface, chemical, optical and electrical properties respectively. Scherrer’s equation was used to determine the crystallite size of the as-synthesized samples from the XRD data. The particle size of SnO{sub 2}/SiO{sub 2} nanocomposite as observed through HRSEM was found to be reduced when compared with the bare SnO{sub 2} nanoparticles suggesting a possible increase in the optical band gap of the former which has been further confirmed in the optical studies. The surface area of SnO{sub 2}/SiO{sub 2} nanocomposite revealed a remarkable enrichment by approximately 5 folds in comparison with that of SnO{sub 2} nanoparticles which suggests an enhancement in its corresponding optical and electrical properties. The SnO{sub 2}/SiO{sub 2} nanocomposite recorded appreciated values of field-dependent photo and dark currents with several folds of augmentation thereby qualifying as an efficient photoconducting material. Attributed with an improved surface area and increased photoconducting nature, the SnO{sub 2}/SiO{sub 2} nanocomposite could be presented as an excellent photoanode material for nanomaterials based Dye Sensitized Solar Cells (DSSCs). - Highlights: • SnO{sub 2}/SiO{sub 2

  7. A phase I and pharmacokinetic study of a powder-filled capsule formulation of oral irinotecan (CPT-11) given daily for 5 days every 3 weeks in patients with advanced solid tumors.

    Science.gov (United States)

    Pitot, Henry C; Adjei, Alex A; Reid, Joel M; Sloan, Jeff A; Atherton, Pamela J; Rubin, Joseph; Alberts, Steven R; Duncan, Barbara A; Denis, Louis; Schaaf, Larry J; Yin, Donghua; Sharma, Amarnath; McGovren, Patrick; Miller, Langdon L; Erlichman, Charles

    2006-08-01

    Intravenous (i.v.) irinotecan is a cytotoxic topoisomerase I inhibitor with broad clinical activity in metastatic colorectal cancer and other tumors. The development of an oral formulation of irinotecan could enhance convenience and lessen the expense of palliative irinotecan delivery. This phase I study evaluated the dose-limiting toxicities (DLT), maximum tolerated dose (MTD), and pharmacokinetics (PK) of irinotecan given as a powder-filled capsule (PFC) daily for 5 days every 3 weeks. Patients with advanced solid tumors received escalating doses of oral irinotecan daily for 5 days every 3 weeks. Plasma samples were collected following the first and fifth doses of irinotecan during Cycle 1 to determine the PK of irinotecan and its major circulating metabolites: SN-38, SN-38G, and APC. 20 patients (median age 61.5 years, range 40-75; M/F 12/8; ECOG PS 0=5, 1=11, 2=4) received oral irinotecan at dose levels of 30 (n=3), 40 (n=3), 50 (n=6), and 60 (n=8) mg/m(2)/day. Of the eight patients enrolled at 60 mg/m(2), three patients experienced DLT (> or = grade 3) consisting of nausea (three patients), vomiting (three patients), diarrhea (two patients), and febrile neutropenia (two patients) for which all the three patients required hospitalization. Treatment of six patients at the 50-mg/m(2) dose level resulted in no DLT. Other toxicities observed include abdominal pain, alopecia, anorexia, and asthenia. After oral administration, irinotecan was rapidly absorbed into systemic circulation and converted to the active metabolite SN-38. Increasing dose levels resulted in a dose-dependent increase in mean exposure parameters (Cmax and AUC) of irinotecan and metabolites. Systemic exposure parameters (Cmax and AUC(0-24)) of irinotecan and SN-38 were comparable between days 1 and 5. The extent of conversion from irinotecan to SN-38 was approximately threefold higher after the oral administration compared to that previously observed after i.v. administration. The exposure

  8. Pharmacokinetics and safety of DTS-108, a human oligopeptide bound to SN-38 with an esterase-sensitive cross-linker in patients with advanced malignancies: a Phase I study

    Directory of Open Access Journals (Sweden)

    Coriat R

    2016-11-01

    Full Text Available Romain Coriat,1 Sandrine J Faivre,2 Olivier Mir,3 Chantal Dreyer,2 Stanislas Ropert,3 Mohammed Bouattour,2 Robert Desjardins,4 François Goldwasser,3 Eric Raymond5 1Gastroenterology and Digestive Oncology Unit, Cochin Teaching Hospital, Université Paris Descartes Sorbonne Paris Cité, Paris, 2Department of Medical Oncology, Beaujon Teaching Hospital, Université Paris Diderot, Paris 7, Clichy, 3Department of Medical Oncology, Cochin Teaching Hospital, Université Paris Descartes Sorbonne Paris Cité, Paris, France; 4Drais Pharmaceuticals, Bridgewater, NJ, USA; 5Groupe Hospitalier Paris Saint-Joseph, Paris, France Background: DTS-108 is a hydrosoluble prodrug, where the SN-38 moiety is covalently linked to a 20-amino acid vector peptide by a specific esterase-sensitive cross-linker, releasing 7-ethyl-10-hydroxycampthotecin (SN-38 by esterase bond cleavage. Methods: The pharmacokinetics of DTS-108, adverse events graded according to NCI-CTCv3.1, dose-limiting toxicities at cycle 1, the maximum tolerated dose (MTD, and the recommended Phase II dose (RP2D of intravenous DTS-108 (1–2 hours every 2 weeks were evaluated in a first-in-human Phase I study in patients with advanced/metastatic carcinomas, according to an accelerated dose escalation design. SN-38 and SN-38 glucuronide (SN-38G levels were evaluated with fluorescence high-performance liquid chromatography (HPLC test, then liquid chromatography–tandem mass spectrometry (LC/MS/MS methods. Results: Forty-two patients received DTS-108 across 14 dosing cohorts (range 3–416 mg/m2. At 416 mg/m2, three out of six patients had grade 4 neutropenia thereby defining the MTD and the RP2D at 313 mg/m2. Fluorescence HPLC was inaccurate to quantify DTS-108 and its metabolites (SN-38 and SN-38G. New processes and analytical LC/MS/MS methods for testing SN-38 were implemented. At a dose of 313 mg/m2, mean DTS-108, SN-38, and SN-38G area under the plasma concentration–time curve to infinity

  9. Influences of the quantity of Mg2Sn phase on the corrosion behavior of Mg-7Sn magnesium alloy

    International Nuclear Information System (INIS)

    Liu Xianbin; Shan Dayong; Song Yingwei; Chen Rongshi; Han Enhou

    2011-01-01

    The influence of the quantity of the Mg 2 Sn phase on the corrosion behavior of different solution temperature treated Mg-7Sn magnesium alloy has been investigated by electrochemical measurements, scanning electron microscope (SEM) observation, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. With the increase of solution temperature, the quantity of Mg 2 Sn phase decreased and the tin concentration of matrix increased. The dissolved tin in Mg matrix took part in the film formation and the constituent of film was magnesium oxide and stannic oxide. The corrosion mode and corrosion rate were associated with the quantity of Mg 2 Sn phases and tin concentration of the matrix. If most of tin was present as Mg 2 Sn, the corrosion mode was pitting corrosion and it accelerated the corrosion rate. If most of tin was dissolved in matrix, the corrosion mode was filiform corrosion and it decreased the corrosion rate. The experiment evidences demonstrated that the corrosion resistance can be improved by increasing the tin concentration of matrix and the lowest corrosion rate was observed for sample solution treated at 540 o C.

  10. Effect of various SnO2 pH on ZnO/SnO2-composite film via immersion technique

    Science.gov (United States)

    Malek, M. F.; Mohamed, R.; Mamat, M. H.; Ismail, A. S.; Yusoff, M. M.; Rusop, M.

    2018-05-01

    ZnO/SnO2-composite film has been synthesized via immersion technique with various pH of SnO2. The pH of SnO2 were varied between 4.5 and 6.5. The optical measurements of the samples were carried out using Varian Cary 5000 UV-Vis spectrophotometer within the range from 350 nm to 800 nm at room temperature in air with a data interval of 1 nm. On the other hand, the optical photoluminescence properties were measured by a photoluminescence spectrometer (PL, model: Horiba Jobin Yvon - 79 DU420A-OE-325) using a He-Cd laser as the excitation source at 325 nm. These highly oriented ZnO/SnO2-composite film are potential for the creation of functional materials, such as the sensors, solar cells and etc.

  11. Structure and chemical composition of supported Pt-Sn electrocatalysts for ethanol oxidation

    International Nuclear Information System (INIS)

    Jiang Luhua; Sun Gongquan; Sun Shiguo; Liu Jianguo; Tang Shuihua; Li Huanqiao; Zhou Bing; Xin Qin

    2005-01-01

    Carbon supported PtSn alloy and PtSnO x particles with nominal Pt:Sn ratios of 3:1 were prepared by a modified polyol method. High resolution transmission electron microscopy (HRTEM) and X-ray microchemical analysis were used to characterize the composition, size, distribution, and morphology of PtSn particles. The particles are predominantly single nanocrystals with diameters in the order of 2.0-3.0 nm. According to the XRD results, the lattice constant of Pt in the PtSn alloy is dilated due to Sn atoms penetrating into the Pt crystalline lattice. While for PtSnO x nanoparticles, the lattice constant of Pt only changed a little. HRTEM micrograph of PtSnO x clearly shows that the change of the spacing of Pt (1 1 1) plane is neglectable, meanwhile, SnO 2 nanoparticles, characterized with the nominal 0.264 nm spacing of SnO 2 (1 0 1) plane, were found in the vicinity of Pt particles. In contrast, the HRTEM micrograph of PtSn alloy shows that the spacing of Pt (1 1 1) plane extends to 0.234 nm from the original 0.226 nm. High resolution energy dispersive X-ray spectroscopy (HR-EDS) analyses show that all investigated particles in the two PtSn catalysts represent uniform Pt/Sn compositions very close to the nominal one. Cyclic voltammograms (CV) in sulfuric acid show that the hydrogen ad/desorption was inhibited on the surface of PtSn alloy compared to that on the surface of the PtSnO x catalyst. PtSnO x catalyst showed higher catalytic activity for ethanol electro-oxidation than PtSn alloy from the results of chronoamperometry (CA) analysis and the performance of direct ethanol fuel cells (DEFCs). It is deduced that the unchanged lattice parameter of Pt in the PtSnO x catalyst is favorable to ethanol adsorption and meanwhile, tin oxide in the vicinity of Pt nanoparticles could offer oxygen species conveniently to remove the CO-like species of ethanolic residues to free Pt active sites

  12. The function of Sn(II)-apatite as a Tc immobilizing agent

    Energy Technology Data Exchange (ETDEWEB)

    Asmussen, R. Matthew, E-mail: matthew.asmussen@pnnl.gov [Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99352 (United States); Neeway, James J.; Lawter, Amanda R.; Levitskaia, Tatiana G. [Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99352 (United States); Lukens, Wayne W. [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 (United States); Qafoku, Nikolla P. [Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99352 (United States)

    2016-11-15

    At the U.S. Department of Energy Hanford Site, Tc-99 is a component of low-activity waste (LAW) fractions of the nuclear tank waste and removal of Tc from LAW streams would greatly benefit the site remediation process. In this study, we investigated the removal of Tc(VII), as pertechnetate, from deionized water (DIW) and a LAW simulant through batch sorption testing and solid phase characterization using tin (II) apatite (Sn-A) and SnCl{sub 2}. Sn-A showed higher levels of Tc removal from both DIW and LAW simulant. Scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/XEDS) and X-ray absorption spectroscopy (XAS) of reacted Sn-A in DIW showed that TcO4- is reduced to Tc(IV) on the Sn-A surface. The performance of Sn-A in the LAW simulant was lowered due to a combined effect of the high alkalinity, which lead to an increased dissolution of Sn from the Sn-A, and a preference for the reduction of Cr(VI). - Highlights: • Sn(II)-Apatite shows high proficiency in removing Tc(VII) from neutral solutions. • The removal of the Tc(VII) by Sn(II)-apatite is done via reduction to Tc(IV)O{sub 2} × H{sub 2}O. • In LAW Sn(II)-apatite is less efficient in removing Tc(VII). • Interference in LAW due to a preference for the reduction of Cr(VI) and the high pH. • Sn(II)-apatite can remove Tc(VII) from LAW effectively through increasing material added.

  13. SnO2Nanowire Arrays and Electrical Properties Synthesized by Fast Heating a Mixture of SnO2and CNTs Waste Soot

    Directory of Open Access Journals (Sweden)

    Zhou Zhi-Hua

    2009-01-01

    Full Text Available Abstract SnO2nanowire arrays were synthesized by fast heating a mixture of SnO2and the carbon nanotubes waste soot by high-frequency induction heating. The resultant SnO2nanowires possess diameters from 50 to 100 nm and lengths up to tens of mircrometers. The field-effect transistors based on single SnO2nanowire exhibit that as-synthesized nanowires have better transistor performance in terms of transconductance and on/off ratio. This work demonstrates a simple technique to the growth of nanomaterials for application in future nanoelectronic devices.

  14. Nanocrystalline SnO2 by liquid pyrolysis

    Directory of Open Access Journals (Sweden)

    Morante, J. R.

    2000-08-01

    Full Text Available Liquid pyrolysis is presented as a new production method of SnO2 nanocrystalline powders suitable for gas sensor devices. The method is based on a pyrolytic reaction of high tensioned stressed drops of an organic solution of SnCl4•5(H2O. The main advantages of the method are its capability to produce SnO2 nanopowders with high stability, its accurate control over the grain size and other structural characteristics, its high level of repeatability and its low industrialization implementation cost. The characterization of samples of SnO2 nanoparticles obtained by liquid pyrolysis in the range between 200ºC and 900ºC processing temperature is carried out by X-ray diffraction, transmission electron microscopy, Raman and X-ray photoelectron spectroscopy. Results are analyzed and discussed so as to validate the advantages of the liquid pyrolysis method.La pirólisis líquida se presenta como un nuevo método para producir SnO2 nanocristalino en polvo ideal para sensores de gas. El método se basa en una reacción pirolítica de gotas altamente tensionadas procedentes de una solución orgánica de SnCl4•5(H2O. Las principales ventajas del método son la capacidad para producir nanopartículas de SnO2 con una gran estabilidad, el preciso control sobre el tamaño de grano y sobre otras características estructurales, el alto nivel de repetibilidad y el bajo coste en su implementación industrial.La caracterización de las muestras de las nanopartículas de SnO2 obtenidas por pirólisis líquida en un rango de temperatura de procesado que va de 200ºC a 900ºC se ha realizado mediante difracción de rayos X, microscopía electrónica de transmisión, espectroscopía Raman y espectroscopía fotoelectrónica de rayos X. Los resultados se han analizado y discutido. Éstos validan las ventajas del método de la pirólisis líquida.

  15. Decay properties of nuclei in the neighbourhood of {sup 100}Sn; Zerfallseigenschaften von Nukliden in der Umgebung von {sup 100}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Katrin

    2011-01-24

    This thesis concentrates on nuclear properties of very neutron deficient nuclei near the proton dripline in the neighbourhood of doubly-magic {sup 100}Sn. In an experiment performed in March 2008 at the GSI in Darmstadt, the exotic nuclei were produced in a projectile fragmentation reaction using a {sup 124}Xe primary beam with an energy of 100 AMeV impinging on a 4000 Beryllium target, separated and identified in the FRS and eventually stopped for decay spectroscopy in a complex implantation detector developed at the institute E12. The Germanium array RISING was employed for the measurement of prompt and delayed gamma radiation. Production cross sections and half lives were determined along the proton dripline. The isotopes {sup 99}Sn, {sup 97}In and {sup 95}Cd were identified for the first time. additional nuclei studied in this thesis are {sup 103}Sn, {sup 96}Cd as well as the two tin isotopes {sup 101}Sn and {sup 102}Sn. (orig.)

  16. Intercalation of organic molecules into SnS2 single crystals

    International Nuclear Information System (INIS)

    Toh, M.L.; Tan, K.J.; Wei, F.X.; Zhang, K.K.; Jiang, H.; Kloc, C.

    2013-01-01

    SnS 2 is a layered semiconductor with a van der Waals gap separating the covalently bonded layers. In this study, post-synthesis intercalation of donor organic amine molecules, such as ethylenediamine (en), into tin disulfide and secondary intercalation of p-phenylenediamine (PPD) and 1, 5-naphthalenediamine (NDA) into SnS 2e n have been verified with X-ray diffraction. PPD and NDA did not intercalate directly even during prolonged annealing but replaced en readily if en was already present in the van der Waals gap. The c-lattice dilation is proportional to the intercalant size. Unit cell lattices of intercalated products were determined from the positions of the X-ray diffraction peaks. Optical images taken during the intercalation showed that intercalation progressed from the periphery towards the interior of the crystal. TEM diffraction patterns in the [0 0 1] direction of SnS 2 after intercalation revealed defects and stacking mismatches among the SnS 2 layers caused by the intercalation. UV–Vis absorption studies showed a red shift in the band edge of the SnS 2 material after intercalation. The band edge was 2.2 eV for pristine SnS 2 ; after intercalation with en or PPD, the absorbance spectra band edges shifted to approximately 0.7 eV or 0.5 eV, respectively. - Graphical Abstract: SnS 2 single crystals were intercalated with organic amine molecules such as ethylenediamine, phenylenediamine and naphthalenediamine. Absorption studies showed red shift of band edge after intercalation, which was consistent with optical observations. X-ray diffraction indicated lattice dilation in the c-lattice of SnS 2 after intercalation. Highlights: ► Organic molecules intercalated inhomogenously between covalently bonded SnS 2 layers. ► Ethylenediamine (en) intercalate directly into SnS 2 . ► Phenylenediamine (PPD) and naphthalenediamine (NDA) can be intercalated into SnS 2 secondary. ► In a secondary intercalation the bonds between layers are weakened by direct

  17. Effects of Ni{sub 3}Sn{sub 4} and (Cu,Ni){sub 6}Sn{sub 5} intermetallic layers on cross-interaction between Pd and Ni in solder joints

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Yong-Ho [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Division of Advanced Circuit Interconnect, Samsung Electro-Mechanics Co., Ltd., Suwon 443-743 (Korea, Republic of); Chung, Bo-Mook [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Department of Research and Development, KPM TECH, Ansan 425-090 (Korea, Republic of); Choi, Young-Sik [Division of Advanced Circuit Interconnect, Samsung Electro-Mechanics Co., Ltd., Suwon 443-743 (Korea, Republic of); Choi, Jaeho [Department of Advanced Metal and Materials Engineering, Gangneung-Wonju National University, Gangneung 210-702 (Korea, Republic of); Huh, Joo-Youl, E-mail: jyhuh@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2013-12-05

    Highlights: •Ni{sub 3}Sn{sub 4} acts as a source of Ni atoms, leading to a strong cross-interaction with Pd. •(Cu,Ni){sub 6}Sn{sub 5} is an effective Ni diffusion barrier, inhibiting Pd resettlement. •Dissolution kinetics of (Pd,Ni)Sn{sub 4} was interpreted based on the Sn–Ni–Pd isotherm. •Cu addition to solder alleviates the (Pd,Ni)Sn{sub 4}-related risk of reliability deterioration. -- Abstract: We examined the effects of layers of intermetallic compound (IMC) Ni{sub 3}Sn{sub 4} and (Cu,Ni){sub 6}Sn{sub 5} formed at the solder/Ni interface, on the cross-interactions between Pd and Ni during solid-state aging and reflow soldering. Two types of diffusion couples, Pd/Sn/Ni and Pd/Sn–Cu/Ni, were aged at 150 °C to study the solid-state interactions. In contrast to the Pd/Sn/Ni couples in which a Ni{sub 3}Sn{sub 4} layer formed at the Ni interface, the Pd/Sn–Cu/Ni couple where a (Cu,Ni){sub 6}Sn{sub 5} layer formed at the Ni interface exhibited no significant interaction between Pd and Ni. The (Cu,Ni){sub 6}Sn{sub 5} layer acted as an effective barrier against Ni diffusion and thus inhibited the resettlement of (Pd,Ni)Sn{sub 4} onto the Ni interface. For the interaction during reflow, Sn–3.5Ag and Sn–3.0Ag–0.5Cu solder balls were isothermally reflowed on an electroless Ni(P)/electroless Pd/immersion Au (ENEPIG) surface finish at 250 °C, and the dissolution kinetics of the (Pd,Ni)Sn{sub 4} particles converted from the 0.2-μm-thick Pd-finish layer were examined. The spalled (Pd,Ni)Sn{sub 4} particles very quickly dissolved into the molten solder when the IMC layer formed on the Ni substrate was (Cu,Ni){sub 6}Sn{sub 5} rather than Ni{sub 3}Sn{sub 4}. The dependence of the dissolution kinetics of the spalled (Pd,Ni)Sn{sub 4} particles on the IMC layers was rationalized on the basis of a Sn–Ni–Pd isotherm at 250 °C. The present study suggests that the formation of a dense (Cu,Ni){sub 6}Sn{sub 5} layer at the solder/Ni interface can effectively

  18. Nb3Sn for Radio Frequency Cavities

    International Nuclear Information System (INIS)

    Godeke, A.

    2006-01-01

    In this article, the suitability of Nb3Sn to improve the performance of superconducting Radio-Frequency (RF) cavities is discussed. The use of Nb3Sn in RF cavities is recognized as an enabling technology to retain a very high cavity quality factor (Q0) at 4.2 K and to significantly improve the cavity accelerating efficiency per unit length (Eacc). This potential arises through the fundamental properties of Nb3Sn. The properties that are extensively characterized in the literature are, however, mainly related to improvements in current carrying capacity (Jc) in the vortex state. Much less is available for the Meissner state, which is of key importance to cavities. Relevant data, available for the Meissner state is summarized, and it is shown how this already validates the use of Nb3Sn. In addition, missing knowledge is highlighted and suggestions are given for further Meissner state specific research

  19. Cu2ZnSn(S,Se)4 from CuxSnSy nanoparticle precursors on ZnO nanorod arrays

    International Nuclear Information System (INIS)

    Kavalakkatt, Jaison; Lin, Xianzhong; Kornhuber, Kai; Kusch, Patryk; Ennaoui, Ahmed; Reich, Stephanie; Lux-Steiner, Martha Ch.

    2013-01-01

    Solar cells with Cu 2 ZnSnS 4 absorber thin films have a potential for high energy conversion efficiencies with earth-abundant and non-toxic elements. In this work the formation of CZTSSe from Cu x SnS y nanoparticles (NPs) deposited on ZnO nanorod (NR) arrays as precursors for zinc is investigated. The NPs are prepared using a chemical route and are dispersed in toluene. The ZnO NRs are grown on fluorine doped SnO 2 coated glass substrates by electro deposition method. A series of samples are annealed at different temperatures between 300 °C and 550 °C in selenium containing argon atmosphere. To investigate the products of the reaction between the precursors the series is analyzed by means of X-ray diffraction (XRD) and Raman spectroscopy. The morphology is recorded by scanning electron microscopy (SEM) images of broken cross sections. The XRD measurements and the SEM images show the disappearing of ZnO NRs with increasing annealing temperature. Simultaneously the XRD and Raman measurements show the formation of CZTSSe. The formation of secondary phases and the optimum conditions for the preparation of CZTSSe is discussed. - Highlights: ► Cu x SnS y nanoparticles are deposited on ZnO nanorod arrays. ► Samples are annealed at different temperatures (300–550 °C) in Se/Ar-atmosphere. ► Raman spectroscopy, X-ray diffraction and electron microscopy are performed. ► ZnO disappears with increasing annealing temperature. ► With increasing temperature Cu x SnS y and ZnO form Cu 2 ZnSn(S,Se) 4

  20. Electrochemical studies of CNT/Si–SnSb nanoparticles for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Nithyadharseni, P. [Department of Physics, Bannari Amman Institute of Technology, Sathyamangalam 638402 (India); Department of Physics, Advanced Batteries Lab, National University of Singapore, 117542 (Singapore); Reddy, M.V., E-mail: phymvvr@nus.edu.sg [Department of Physics, Advanced Batteries Lab, National University of Singapore, 117542 (Singapore); Nalini, B., E-mail: lalin99@rediffmail.com [Department of Physics, Avinashilingam University for Women, Coimbatore 641043 (India); Ravindran, T.R. [Centre for Research in Nanotechnology, Karunya University, Coimbatore 641114 (India); Pillai, B.C.; Kalpana, M. [Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603102 (India); Chowdari, B.V.R. [Department of Physics, Advanced Batteries Lab, National University of Singapore, 117542 (Singapore)

    2015-10-15

    Highlights: • Si added SnSb and CNT exhibits very low particle size of below 30 nm • A strong PL quenching due to the addition of Si to SnSb. • Electrochemical studies show CNT added SnSb shows good capacity retention. - Abstract: Nano-structured SnSb, SnSb–CNT, Si–SnSb and Si–SnSb–CNT alloys were synthesized from metal chlorides of Sn, Sb and Si via reductive co-precipitation technique using NaBH{sub 4} as reducing agent. The as prepared compounds were characterized by various techniques such as X-ray diffraction (XRD), scanning electron microscope (SEM), Raman, Fourier transform infra-red (FTIR) and photoluminescence (PL) spectroscopy. The electrochemical performances of the compounds were characterized by galvanostatic cycling (GC) and cyclic voltammetry (CV). The Si–SnSb–CNT compound shows a high reversible capacity of 1200 mAh g{sup −1}. However, the rapid capacity fading was observed during cycling. In contrast, SnSb–CNT compound showed a high reversible capacity of 568 mAh g{sup −1} at 30th cycles with good cycling stability. The improved reversible capacity and cyclic performance of the SnSb–CNT compound could be attributed to the nanosacle dimension of SnSb particles and the structural advantage of CNTs.

  1. Photoluminescence and electroluminescence from Ge/strained GeSn/Ge quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chung-Yi; Chang, Chih-Chiang [Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan (China); Huang, Chih-Hsiung; Huang, Shih-Hsien [Department of Electrical Engineering, Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Liu, C. W., E-mail: chee@cc.ee.ntu.edu.tw [Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan (China); Department of Electrical Engineering, Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan (China); National Nano Device Labs, Hsinchu 30077, Taiwan (China); Huang, Yi-Chiau; Chung, Hua; Chang, Chorng-Ping [Applied Materials Inc., Sunnyvale, California 94085 (United States)

    2016-08-29

    Ge/strained GeSn/Ge quantum wells are grown on a 300 mm Si substrate by chemical vapor deposition. The direct bandgap emission from strained GeSn is observed in the photoluminescence spectra and is enhanced by Al{sub 2}O{sub 3}/SiO{sub 2} passivation due to the field effect. The electroluminescence of the direct bandgap emission of strained GeSn is also observed from the Ni/Al{sub 2}O{sub 3}/GeSn metal-insulator-semiconductor tunneling diodes. Electroluminescence is a good indicator of GeSn material quality, since defects in GeSn layers degrade the electroluminescence intensity significantly. At the accumulation bias, the holes in the Ni gate electrode tunnel to the strained n-type GeSn layer through the ultrathin Al{sub 2}O{sub 3} and recombine radiatively with electrons. The emission wavelength of photoluminescence and electroluminescence can be tuned by the Sn content.

  2. Structural, optical and thermal characterization of PVC/SnO2 nanocomposites

    Science.gov (United States)

    Taha, T. A.; Ismail, Z.; Elhawary, M. M.

    2018-04-01

    The structural, optical, and thermal properties of PVC/SnO2 nanocomposites were investigated. XRD patterns were used to explore the structures of these prepared samples. Optical UV-Vis measurements were analyzed to calculate the spectroscopic optical constants of the prepared PVC/SnO2 nanocomposites. Both direct and indirect optical band gaps decreased with increasing SnO2 content. The refractive index, high frequency dielectric constant, plasma frequency, and optical conductivity values increased with SnO2. The single oscillator energy increased from 5.64 to 10.97 eV and the dispersion energy increased from 6.35 to 19.80 eV with the addition of SnO2. The other optical parameters such as optical moments, single oscillator strength, volume energy loss, and surface energy loss were calculated for different SnO2 concentrations. Raman spectra of the PVC/SnO2 nanocomposite films revealed the characteristic vibrational modes of PVC and surface phonon modes of SnO2. The thermal stability of PVC/SnO2 nanocomposite films was studied using DTA and thermogravimetric analysis. The glass transition ( T g) values abruptly changed from 46 °C for PVC to an average value of 59 °C for the polymer films doped with 2.0, 4.0, and 6.0 wt% SnO2. The weight loss decreased as the SnO2 concentration increased in the temperature range of 350-500 °C, corresponding to enhanced thermal stability.

  3. Co-depositing Sn controls the growth of Al films as surfactant

    International Nuclear Information System (INIS)

    Barna, P. B.; Kovacs, A.; Misjak, F.; Eisenmenger-Sittner, C.; Bangert, H.; Tomastik, C.

    2002-01-01

    The present study investigates the influence of co-deposited Sn on the atomic processes involved in the structure evolution of vapour-deposited Al films. The films were prepared in HV by thermal evaporation from W sources at 1600 C substrate temperature either on Si wafers covered by a thermally grown oxide or on air cleaved mica. By applying the half-shadow technique, pure and Sn-doped Al films could be deposited simultaneously. The samples were investigated by AFM, scanning AES, X-TEM as well as by X-ray diffraction methods. The grain growth of Al is promoted by Sn in all stages of the film formation. Scanning AES measurements prove the existence of a wetting Sn layer both on the surface of Al islands and on the surface of the continuos Al layer. Excess Sn forms islands on the growth surface. The surface of pure Al layers exhibits grain boundary grooves and bunches of growth steps around terraces, while that of the Sn doped layers is more rounded. The substrate-film interface was covered by a thin Sn layer. AES measurements also prove the presence of Sn on the growth surface of Al films even after termination of Sn addition. Results of these experiments indicate that during co-deposition of Al and Sn the impinging Al atoms penetrate the wetting layer and are incorporated into the already existing Al crystals. A model has been developed for describing the growth of Al crystals in the presence Sn. (Authors)

  4. Void formation and its impact on Cu−Sn intermetallic compound formation

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Glenn, E-mail: Glenn.Ross@aalto.fi; Vuorinen, Vesa; Paulasto-Kröckel, Mervi

    2016-08-25

    Void formation in the Cu−Sn system has been identified as a major reliability issue with small volume electronic interconnects. Voids form during the interdiffusion of electrochemically deposited Cu and Sn, with varying magnitude and density. Electroplating parameters include the electrolytic chemistry composition and the electroplating current density, all of which appear to effect the voiding characteristics of the Cu−Sn system. In addition, interfacial voiding affects the growth kinetics of the Cu{sub 3}Sn and Cu{sub 6}Sn{sub 5} intermetallic compounds of the Cu−Sn system. The aim here is to present voiding data as a function of electroplating chemistry and current density over a duration (up to 72 h) of isothermal annealing at 423 K (150 °C). Voiding data includes the average interfacial void size and average void density. Voids sizes grew proportionally as a function of thermal annealing time, whereas the void density grew initially very quickly but tended to saturate at a fixed density. A morphological evolution analysis called the physicochemical approach is utilised to understand the processes that occur when a voided Cu/Cu{sub 3}Sn interface causes changes to the IMC phase growth. The method is used to simulate the intermetallic thickness growths' response to interfacial voiding. The Cu/Cu{sub 3}Sn interface acts as a Cu diffusion barrier disrupting the diffusion of Cu. This resulted in a reduction in the Cu{sub 3}Sn thickness and an accelerated growth rate of Cu{sub 6}Sn{sub 5}. - Highlights: • Average void size is proportional linearly to thermal annealing time. • Average void density grows initially very rapidly followed by saturation. • Voids located close to the Cu/Cu{sub 3}Sn interface affect IMC growth rates. • Voids act as a diffusion barrier inhibiting Cu diffusion towards Sn. • Voids located at the interface cause Cu{sub 3}Sn to be consumed by Cu{sub 6}Sn{sub 5}.

  5. Zr-rich corner of the Zr-Sn-O diagram

    International Nuclear Information System (INIS)

    Roberti, L.A.; Arias, D.E.

    1993-01-01

    The understanding of the effect of light elements (in particular oxygen, nitrogen and hydrogen) on the behaviour of alloys for nuclear use is necessary because of its technological importance. The Zr-Sn-O system is perhaps the most representative of all possible ternary systems which can be used to simulate a simplified Zircaloy-type alloy in which the effect of O can be studied. However, in the specialized literature experimental data on phase equilibria and thermophysical properties of this system are not easily found. In the present work, the equilibrium compositions of the α and β phases of the Zr-Sn-O system at temperatures between 1150 and 1323 K are calculated, using the scarce available information. First results of the calculations show satisfactory coincidences with experimental data. Future work will be oriented towards the proposal of isothermal cross-sections calculated by a modelling of phases with wider Sn and O composition ranges, and involving equilibria with the phases Zr 4 Sn, Zr 5 Sn 3 , ZrO 2 , ZrSnO 4 . (Author)

  6. Evaluation of sup(99m)Tc-Sn-colloid on liver scintigram

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyuki, Y; Kanao, K; Honda, M; Ishihara, S [Sumitomo Hospital, Osaka (Japan)

    1975-04-01

    sup(99m)Tc-Sn-colloid injectable solution and Sn-colloid preparation set were used for nuclear medical examination of the liver and their efficiency was discussed. Both sup(99m)Tc-Sn-colloid injectable solution and Sn-colloid preparation set showed the same kinetics in vivo, and the sup(99m)Tc-Sn-colloid rapidly disappeared from the serum and concentrated to the liver and spleen. Comparing /sup 198/Au-colloid, sup(99m)Tc-Sn-colloid could be increased the administration dose, and provided easy examination within short time period, easy observation from multiple directions, and improvement of resolution by scinticamera. Imaging of the spleen with sup(99m)Tc-Sn-colloid was slightly superior to that with sup(99m)Tc-sulfur-colloid. sup(99m)Tc-Sn-colloid injectable solution which required no procedure of labeling was evaluated as the most safe and easy technique. Side effects were not recognized. As the results, already made preparation, such as sup(99m)Tc-Sn-colloid injectable solution, which provided easy preparation with less absorbed dose of the tissue and high resolution would be frequently required.

  7. Evaluation of sup(99m)Tc-Sn-colloid on liver scintigram

    International Nuclear Information System (INIS)

    Matsuyuki, Yoshihiko; Kanao, Keisuke; Honda, Minoru; Ishihara, Shizumori

    1975-01-01

    sup(99m)Tc-Sn-colloid injectable solution and Sn-colloid preparation set were used for nuclear medical examination of the liver and their efficiency was discussed. Both sup(99m)Tc-Sn-colloid injectable solution and Sn-colloid preparation set showed the same kinetics in vivo, and the sup(99m)Tc-Sn-colloid rapidly disappeared from the serum and concentrated to the liver and spleen. Comparing 198 Au-colloid, sup(99m)Tc-Sn-colloid could be increased the administration dose, and provided easy examination within short time period, easy observation from multiple directions, and improvement of resolution by scinticamera. Imaging of the spleen with sup(99m)Tc-Sn-colloid was slightly superior to that with sup(99m)Tc-sulfur-colloid. sup(99m)Tc-Sn-colloid injectable solution which required no procedure of labeling was evaluated as the most safe and easy technique. Side effects were not recognized. As the results, already made preparation, such as sup(99m)Tc-Sn-colloid injectable solution, which provided easy preparation with less absorbed dose of the tissue and high resolution would be frequently required. (Mukohata, S.)

  8. Unexpected, spontaneous and selective formation of colloidal Pt 3Sn nanoparticles using organometallic Pt and Sn complexes

    KAUST Repository

    Boualleg, Malika

    2010-01-01

    The facile and selective synthesis of small crystalline Pt3Sn alloy nanoparticles was performed at room temperature under H2, using a colloidal approach without the use of extra-stabilizing ligands. The Pt 3Sn alloy was found to be obtained spontaneously as the unique phase regardless of the number of tin equivalents introduced. © 2010 The Royal Society of Chemistry.

  9. Peculiarities of component interaction in {l_brace}Gd, Er{r_brace}-V-Sn Ternary systems at 870 K and crystal structure of RV{sub 6}Sn{sub 6} stannides

    Energy Technology Data Exchange (ETDEWEB)

    Romaka, L., E-mail: romakal@franko.lviv.ua [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya str. 6, 79005 Lviv (Ukraine); Stadnyk, Yu. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya str. 6, 79005 Lviv (Ukraine); Romaka, V.V. [Department of Materials Engineering and Applied Physics, Lviv Polytechnic National University, Ustyyanovycha Str. 5, 79013 Lviv (Ukraine); Demchenko, P.; Stadnyshyn, M.; Konyk, M. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya str. 6, 79005 Lviv (Ukraine)

    2011-09-08

    Highlights: > {l_brace}Gd, Er{r_brace}-V-Sn ternary systems at 870 K are characterized by formation of stannides with general compositions RV{sub 6}Sn{sub 6}. > Isostructural RV{sub 6}Sn{sub 6} compounds were also found with Y, Dy, Ho, Tm, and Lu. > The crystal structure of RV{sub 6}Sn{sub 6} compounds was determined by powder diffraction method. > Structural analysis showed that RV{sub 6}Sn{sub 6} compounds (R = Gd, Dy-Tm, Lu) are disordered; YV{sub 6}Sn{sub 6} is characterized by structure ordering. - Abstract: The phase equilibria in the Gd-V-Sn and Er-V-Sn ternary systems were studied at 870 K by means of X-ray and metallographic analyses in the whole concentration range. Both Gd-V-Sn and Er-V-Sn systems are characterized by formation of one ternary compound at investigated temperature, with stoichiometry RV{sub 6}Sn{sub 6} (SmMn{sub 6}Sn{sub 6}-type, space group P6/mmm, a = 0.55322(3) nm, c = 0.91949(7) nm for Gd, a = 0.55191(2) nm, c = 0.91869(8) nm for Er). Solubility of the third component in the binary compounds was not observed. Compounds with the SmMn{sub 6}Sn{sub 6}-type were also found with Dy, Ho, Tm, and Lu, while YV{sub 6}Sn{sub 6} compound crystallizes in HfFe{sub 6}Ge{sub 6} structure type. All investigated compounds are the first ternary stannides with rare earth elements and vanadium.

  10. Sn-Mesoporphyrin interdiction of severe hyperbilirubinemia in Jehovah's Witness newborns as an alternative to exchange transfusion.

    Science.gov (United States)

    Kappas, A; Drummond, G S; Munson, D P; Marshall, J R

    2001-12-01

    The religious convictions of parents who are Jehovah's Witness adherents lead them to reject the use of exchange transfusions as therapy for severe hyperbilirubinemia in newborns in whom intensive phototherapy has failed to control this problem. Consequently, physicians caring for such infants may be obliged to initiate legal action to compel use of the procedure when severe hyperbilirubinemia not sufficiently responsive to phototherapy warrants an exchange transfusion. Our goal was to determine if we could use the potent inhibitor of bilirubin production, Sn-Mesoporphyrin (SnMP), to resolve the troubling medical-legal issues in such situations in 2 infants with hemolytic disease of the newborn who required exchange transfusions for severe hyperbilirubinemia but whose Jehovah's Witness parents rejected the procedure. SnMP was administered in a single dose, as in previous studies, at the time when exchange transfusion would have been initiated and plasma bilirubin levels were monitored at close intervals thereafter. SnMP is a potent inhibitor of heme oxygenase, the rate-limiting enzyme in catabolism of heme to bilirubin. We found in earlier studies that in single doses of 6 micromol/kg birth weight, SnMP is extremely effective in moderating the course of hyperbilirubinemia and in eliminating the need for supplemental phototherapy in jaundiced newborns. In the 2 cases described, a single dose of SnMP (6 micromol/kg birth weight) was administered intramuscularly to severely jaundiced infants with immune hemolysis at a time when clinical circumstances dictated the need for exchange transfusion. CASE 1: This patient was a preterm male infant (gestational age: 35 5/7 weeks; birth weight: 2790 g) whose plasma bilirubin concentration (PBC) at 1 hour after birth was 5.0 mg/dL. Despite intensive phototherapy with 3 banks of lights and 1 biliblanket, the PBC increased steadily with no diminution in the rate of increase for 75 hours. In view of the problems of immune hemolysis

  11. Au–Sn bonding material for the assembly of power integrated circuit module

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Z.X.; Li, C.C. [Department of Materials Science & Engineering, National Taiwan University, Taipei, Taiwan (China); Liao, L.L.; Liu, C.K. [Electronic and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan (China); Kao, C.R., E-mail: crkao@ntu.edu.tw [Department of Materials Science & Engineering, National Taiwan University, Taipei, Taiwan (China)

    2016-06-25

    Insulated gate bipolar transistor (IGBT) chips are the key components in high-temperature power electronic modules, which have to efficiently convert electricity between direct and alternating current. In this study, the eutectic Au–Sn (20 wt.% Sn) is successfully used to assemble IGBT chips and direct-bond-copper substrates by using solid liquid interdiffusion (SLID) bonding. During subsequent isothermal aging at 150, 200, and 240 °C, the microstructure evolution and growth kinetics of intermetallic compounds are investigated. Excellent thermal stability and mechanical strength are observed. It is concluded that the eutectic Au–Sn solder is ideal to assemble high-temperature IGBT by using the SLID process. - Highlights: • Au–20Sn serves as a promising bonding material for IGBT operating at T < 519 °C. • The Au–20Sn reacted with Ni to form (Ni,Au){sub 3}Sn{sub 2}/(Au{sub 5}Sn + AuSn)/(Ni,Au){sub 3}Sn{sub 2}. • Once the AuSn was nearly exhausted, the whole joint could withstand higher temperatures. • A cost-effective way for long-term operations at high temperature.

  12. Defect interactions in Sn1−xGex random alloys

    KAUST Repository

    Chroneos, Alexander; Bracht, H.; Grimes, R. W.; Jiang, C.; Schwingenschlö gl, Udo

    2009-01-01

    Sn1−xGex alloys are candidates for buffer layers to match the lattices of III-V or II-VI compounds with Si or Ge for microelectronic or optoelectronic applications. In the present work electronic structure calculations are used to study relative energies of clusters formed between Sn atoms and lattice vacancies in Ge that relate to alloys of low Sn content. We also establish that the special quasirandom structure approach correctly describes the random alloy nature of Sn1−xGex with higher Sn content. In particular, the calculated deviations of the lattice parameters from Vegard’s Law are consistent with experimental results.

  13. Defect interactions in Sn1−xGex random alloys

    KAUST Repository

    Chroneos, Alexander

    2009-06-23

    Sn1−xGex alloys are candidates for buffer layers to match the lattices of III-V or II-VI compounds with Si or Ge for microelectronic or optoelectronic applications. In the present work electronic structure calculations are used to study relative energies of clusters formed between Sn atoms and lattice vacancies in Ge that relate to alloys of low Sn content. We also establish that the special quasirandom structure approach correctly describes the random alloy nature of Sn1−xGex with higher Sn content. In particular, the calculated deviations of the lattice parameters from Vegard’s Law are consistent with experimental results.

  14. Morphology and chemical composition of Cu/Sn/Cu and Cu(5 at-%Ni)/Sn/Cu(5 at-%Ni) interconnections

    NARCIS (Netherlands)

    Wierzbicka-Miernik, A.; Wojewoda-Budka, J.; Litynska-Dobrzynska, L.; Kodentsov, A.; Zieba, P.

    2012-01-01

    In the present paper, scanning and transmission electron microscopies as well as energy dispersive X-ray spectroscopy investigations were performed to describe the morphology and chemical composition of the intermetallic phases growing in Cu/Sn/Cu and Cu(Ni)/Sn/Cu(Ni) interconnections during the

  15. Irradiated Graphene Loaded with SnO₂ Quantum Dots for Energy Storage.

    Science.gov (United States)

    Huang, Ruting; Wang, Lijun; Zhang, Qian; Chen, Zhiwen; Li, Zhen; Pan, Dengyu; Zhao, Bing; Wu, Minghong; Wu, C M Lawrence; Shek, Chan-Hung

    2015-11-24

    Tin dioxide (SnO2) and graphene are unique strategic functional materials with widespread technological applications, particularly in the areas of solar batteries, optoelectronic devices, and solid-state gas sensors owing to advances in optical and electronic properties. Versatile strategies for microstructural evolution and related performance of SnO2 and graphene composites are of fundamental importance in the development of electrode materials. Here we report that a novel composite, SnO2 quantum dots (QDs) supported by graphene nanosheets (GNSs), has been prepared successfully by a simple hydrothermal method and electron-beam irradiation (EBI) strategies. Microstructure analysis indicates that the EBI technique can induce the exfoliation of GNSs and increase their interlayer spacing, resulting in the increase of GNS amorphization, disorder, and defects and the removal of partial oxygen-containing functional groups on the surface of GNSs. The investigation of SnO2 nanoparticles supported by GNSs (SnO2/GNSs) reveals that the GNSs are loaded with SnO2 QDs, which are dispersed uniformly on both sides of GNSs. Interestingly, the electrochemical performance of SnO2/GNSs indicates that SnO2 QDs supported by a 210 kGy irradiated GNS shows excellent cycle response, high specific capacity, and high reversible capacity. This novel SnO2/GNS composite has potential practical applications in SnO2 electrode materials during Li(+) insertion/extraction.

  16. Tunable SnO2 Nanoribbon by Electric Fields and Hydrogen Passivation

    Directory of Open Access Journals (Sweden)

    Xin-Lian Chen

    2017-01-01

    Full Text Available Under external transverse electronic fields and hydrogen passivation, the electronic structure and band gap of tin dioxide nanoribbons (SnO2NRs with both zigzag and armchair shaped edges are studied by using the first-principles projector augmented wave (PAW potential with the density function theory (DFT framework. The results showed that the electronic structures of zigzag and armchair edge SnO2NRs exhibit an indirect semiconducting nature and the band gaps demonstrate a remarkable reduction with the increase of external transverse electronic field intensity, which demonstrate a giant Stark effect. The value of the critical electric field for bare Z-SnO2NRs is smaller than A-SnO2NRs. In addition, the different hydrogen passivation nanoribbons (Z-SnO2NRs-2H and A-SnO2NRs-OH show different band gaps and a slightly weaker Stark effect. The band gap of A-SnO2NRs-OH obviously is enhanced while the Z-SnO2NRs-2H reduce. Interestingly, the Z-SnO2NRs-OH presented the convert of metal-semiconductor-metal under external transverse electronic fields. In the end, the electronic transport properties of the different edges SnO2NRs are studied. These findings provide useful ways in nanomaterial design and band engineering for spintronics.

  17. Production and application of Sn-117m

    International Nuclear Information System (INIS)

    Vucina, J.; Nikolic, N.; Orlic, M.

    2005-01-01

    For targeted therapy in nuclear medicine, besides the usually used, like 32 P, 89 Sr, 131 I, 186,188 Re, new radioisotopes are intensively investigated. Particular interest is devoted to 117m Sn. It decays by isomeric transition with the emission of low energy conversion electrons and short range. Their potent lethality, due to high LET, particularly when the emitter is located inside the cell, on or near nucleus, is well known. The accompanying gamma rays (Eγ = 159 keV) are also suitable for detection. At present, the specific activity which can be achieved in nuclear reactors is is sufficient for the production of agents for bone palliation. The best results so far were achieved with 117m Sn(IV)-DTPA. It is expected that the use of this radioisotope will increase when a method of its production in the no-carrier form will be developed. In the paper the production of 117m Sn and 117m Sn radiopharmaceuticals is briefly reviewed. (author) [sr

  18. Phase diagram of the ternary Zr-Ti-Sn system

    International Nuclear Information System (INIS)

    Arias, D.; Gonzalez Camus, M.

    1987-01-01

    It is well known that Ti stabilizes the high temperature cubic phase of Zr and that Sn stabilizes the low temperature hexagonal phase of Zr. The effect of Sn on the Zr-Ti diagram has been studied in the present paper. Using high purity metals, nine different alloys have been prepared, with 4-32 at % Ti, 0.7-2.2 at % Sn and Zr till 100%. Resistivity and optical and SEM metallography techniques have been employed. Effect of some impurities have been analyzed. The results are discussed and different isothermic sections of the ternary Zr-Ti-Sn diagram are presented. (Author) [es

  19. Design and assembly of ternary Pt/Re/SnO2 NPs by controlling the zeta potential of individual Pt, Re, and SnO2 NPs

    Science.gov (United States)

    Drzymała, Elżbieta; Gruzeł, Grzegorz; Pajor-Świerzy, Anna; Depciuch, Joanna; Socha, Robert; Kowal, Andrzej; Warszyński, Piotr; Parlinska-Wojtan, Magdalena

    2018-05-01

    In this study Pt, Re, and SnO2 nanoparticles (NPs) were combined in a controlled manner into binary and ternary combinations for a possible application for ethanol oxidation. For this purpose, zeta potentials as a function of the pH of the individual NPs solutions were measured. In order to successfully combine the NPs into Pt/SnO2 and Re/SnO2 NPs, the solutions were mixed together at a pH guaranteeing opposite zeta potentials of the metal and oxide NPs. The individually synthesized NPs and their binary/ternary combinations were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning transmission electron microscopy (STEM) combined with energy dispersive X-ray spectroscopy (EDS) analysis. FTIR and XPS spectroscopy showed that the individually synthesized Pt and Re NPs are metallic and the Sn component was oxidized to SnO2. STEM showed that all NPs are well crystallized and the sizes of the Pt, Re, and SnO2 NPs were 2.2, 1.0, and 3.4 nm, respectively. Moreover, EDS analysis confirmed the successful formation of binary Pt/SnO2 and Re/SnO2 NP, as well as ternary Pt/Re/SnO2 NP combinations. This study shows that by controlling the zeta potential of individual metal and oxide NPs, it is possible to assemble them into binary and ternary combinations. [Figure not available: see fulltext.

  20. SnO{sub 2}:F thin films deposited by RF magnetron sputtering: effect of the SnF{sub 2} amount in the target on the physical properties

    Energy Technology Data Exchange (ETDEWEB)

    De Moure F, F. [universidad Autonoma de Queretaro, Facultad de Quimica Materiales, Queretaro 76010, Queretaro (Mexico); Guillen C, A.; Nieto Z, K. E.; Quinones G, J. G.; Hernandez H, A.; Melendez L, M.; Olvera, M. de la L., E-mail: fcomoure@hotmail.com [IPN, Centro de Investigacion y de Estudios Avanzados, Departamento de Fisica, Apdo. Postal 14-740, 07360 Mexico D. F. (Mexico)

    2013-08-01

    SnO{sub 2}:F thin films were prepared by RF magnetron sputtering onto glass substrates using SnF{sub 2} as fluorine source. The films were deposited under a mixed argon/hydrogen atmosphere at a substrate temperature of 500 C. The X-ray diffraction shows that polycrystalline films were grown with a phases mixture of SnO{sub 2} and Sn O. The optical transmittance is between 80 and 90%. The physical properties of the films suggest that SnO{sub 2} thin films grown with small SnF{sub 2} content in the target can be considered as candidates for transparent electrodes. (Author)

  1. Preparation of highly dispersed Ru-Sn bimetallic supported catalysts from the single source precursors Cp(PPh32Ru-SnX3 (X = Cl or Br

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Bernardes Silva

    2003-06-01

    Full Text Available In this work highly dispersed Ru-Sn bimetallic catalysts have been prepared from organobimetallic Cp(PPh32Ru-SnX3 (X = Cl or Br complexes. These single source precursors can be easily impregnated in high surface area supports, such as activated carbon and sol-gel SiO2, and upon controlled thermal treatment the ligands are released as volatile products resulting in the formation of the bimetallic system Ru-Sn. Catalytic reactions, such as hydrodechlorination of CCl4 and chlorobenzene and TPR (Temperature Programmed Reduction experiments carried out with these RuSn catalysts suggested a strong interaction between Ruthenium and Tin. Mössbauer measurements showed that these materials when exposed to air are immediately oxidized to form Sn (IV. It was shown that upon controlled reduction conditions with H2 it is possible to reduce selectively Sn to different oxidation states and different phases. The Sn oxidation state showed significant effect on the catalytic hydrogenation of 1,5-cyclooctadiene. The use of these single source precursors with a controlled decomposition/reduction procedure allows the preparation of unique catalysts with an intimate interaction between the components ruthenium and tin and the possibility of varying the Sn oxidation state around the Ru metal.

  2. Studies of Nuclei Close to 132Sn Using Single-Neutron Transfer Reactions

    International Nuclear Information System (INIS)

    Jones, K.L.; Pain, S.D.; Kozub, R.L.; Adekola, Aderemi S.; Bardayan, Daniel W.; Blackmon, Jeff C.; Catford, Wilton N.; Chae, K.Y.; Chipps, K.; Cizewski, J.A.; Erikson, Luke; Gaddis, A.L.; Greife, U.; Grzywacz, R.K.; Harlin, Christopher W.; Hatarik, Robert; Howard, Joshua A.; James, J.; Kapler, R.; Krolas, W.; Liang, J. Felix; Ma, Zhanwen; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D.; O'Malley, Patrick; Patterson, N.P.; Paulauskas, Stanley; Shapira, Dan; Shriner, J.F. Jr.; Sikora, M.; Sissom, D.J.; Smith, Michael Scott; Swan, T.P.; Thomas, J.S.; Wilson, Gemma L.

    2009-01-01

    Neutron transfer reactions were performed in inverse kinematics using radioactive ion beams of 132Sn, 130Sn, and 134Te and deuterated polyethylene targets. Preliminary results are presented. The Q-value spectra for 133Sn, 131Sn and 135Te reveal a number of previously unobserved peaks. The angular distributions are compatible with the expected lf7/2 nature of the ground state of 133Sn, and 2p3/2 for the 3.4 MeV state in 131Sn.

  3. Alternating field losses in Nb3Sn multifilamentary superconductor

    International Nuclear Information System (INIS)

    Murphy, J.H.; Deis, D.W.; Shaw, B.J.; Walker, M.S.

    1975-01-01

    Transverse alternating field losses at 4.2K have been measured from 0.5 Hz to 10 kHz in a Nb 3 Sn multifilamentary superconductor in bias fields to 5 Tesla. The 0.020 inch diameter sample was prepared by heat treating a Cu, Nb-1 wt percent Zr, CuSn composite at 700 0 C for 20 hours to form Nb 3 Sn on the inside surface of the annular filaments. Metallurgical studies have been made to determine the Sn distribution and to estimate the thickness of the Nb 3 Sn layer. The I/sub c/-H curve and resistive and inductive transition curves are presented. The losses are analyzed with respect to the present loss theories using the conductor characteristics measured and excellent agreement between experiment and theory is achieved. 1 table, 6 figures

  4. Influence of Sn content on microstructural and mechanical properties of centrifugal cast Ti-Nb-Sn biomedical alloys; Efeitos da adicao de Sn na evolucao microestrutural e em propriedades mecanicas de ligas Ti-Nb-Sn biomedicas fundidas por centrifugacao

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, E.S.N.; Contieri, R.J.; Caram, R., E-mail: ederlopes@fem.unicamp.b [Universidade Estadual de Campinas (DEMA/FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Engenharia de Materiais; Moraes, P.E.L. [FATEC Artur Azevedo, Mogi Mirim, SP (Brazil); Costa, A.M.S. [Universidade de Sao Paulo (DEMAR/EEL/USP), Lorena, SP (Brazil). Escola de Engenharia. Dept. de Engenharia de Materiais

    2010-07-01

    The arc voltaic centrifugal casting is an interesting alternative in terms of economic and technological development in the production of components based on materials with high reactivity and high melting point, such as titanium alloys. In this work, Ti-30Nb (wt. %) with additions of Sn (2, 4, 6, 8 and 10 wt. %) were formed by casting process. Characterization of the samples included optical microscopy, scanning electron microscopy, X-ray diffraction, Vickers hardness and elastic modulus measures by acoustic techniques. It was observed that the microstructure of the samples investigated is composed by dendritic structures, with clear segregation of alloying elements. The Vickers hardness and the elastic modulus decreased with the addition of Sn. The results show that the mechanical behavior of Ti-Nb alloys can be controlled within certain limits, by adding Sn. (author)

  5. Preparation of PtSnSb/C electrocatalizers for the electro-oxidation of the ethanol; Preparacao de eletrocatalizadores PtSnSb/C para a eletrooxidacao do etanol

    Energy Technology Data Exchange (ETDEWEB)

    Tusi, M.M.; Ayoub, J.M.S.; Costa, T.C.; Spinace, E.V.; Neto, A.O., E-mail: aolivei@ipen.b, E-mail: espinace@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2010-07-01

    PtSn/C (Pt:Sn atomic ratio of 50:50) and PtSnSb/C (Pt:Sn:Sb atomic ratio of 50:45:05, 50:40:10 and 50:10:40) electrocatalysts were prepared (20 wt% metal loading) by an alcohol-reduction process using ethylene glycol as reducing agent, H{sub 2}PtCl{sub 6}.6H{sub 2}O, SnCl{sub 2}.H{sub 2}O and Sb(OOCCH{sub 3}){sub 3} and carbon Vulcan XC72 as support. The obtained materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and chronoamperometry. The PtSnSb/C (50:45:05) prepared by an alcohol-reduction process showed the best performance for ethanol electro-oxidation compared to the others catalysts. (author)

  6. Lattice positions of Sn in Cu2ZnSnS4 nanoparticles and thin films studied by synchrotron X-ray absorption near edge structure analysis

    Science.gov (United States)

    Zillner, E.; Paul, A.; Jutimoosik, J.; Chandarak, S.; Monnor, T.; Rujirawat, S.; Yimnirun, R.; Lin, X. Z.; Ennaoui, A.; Dittrich, Th.; Lux-Steiner, M.

    2013-06-01

    Lattice positions of Sn in kesterite Cu2ZnSnS4 and Cu2SnS3 nanoparticles and thin films were investigated by XANES (x-ray absorption near edge structure) analysis at the S K-edge. XANES spectra were analyzed by comparison with simulations taking into account anti-site defects and vacancies. Annealing of Cu2ZnSnS4 nanoparticle thin films led to a decrease of Sn at its native and defect sites. The results show that XANES analysis at the S K-edge is a sensitive tool for the investigation of defect sites, being critical in kesterite thin film solar cells.

  7. Diffusion and chemical activity of Zr-Sn and Zr-Ti systems

    International Nuclear Information System (INIS)

    Zee, R.H.; Watters, J.F.; Davidson, R.D.

    1986-01-01

    A modified evaporation method was used to determine the diffusion coefficients and the emission rates of Sn and Ti in Zr-Sn and Zr-Ti, respectively, at temperatures between 1605 and 1970 K. Results show that both Sn and Ti diffuse in their respective alloys via a vacancy mechanism. Comparison with data in the literature reveals that the activation energy for diffusion of Sn in Zr-Sn, with Sn content between 3 and 5 at.X is relatively constant from 1200 to 1970 K. From the measured emission rates, values of 103 and 98 kcal/mol were obtained for the enthalpies of sublimation for Sn and Ti in their alloys. With a comparison of the solute vapor pressures with those of the pure elements, partial molar free energies, entropies, and enthalpies for the two systems were determined in the temperature range investigated. The Zr-Sn system shows a very large negative heat of formation (-33 kcal/mol) whereas the Zr-Ti system behaves quite ideally, in agreement with phase-diagram predictions

  8. Mesoscale elucidation of laser-assisted chemical deposition of Sn nanostructured electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhixiao; Mukherjee, Partha P., E-mail: pmukherjee@tamu.edu [Department of Mechanical Engineering, Texas A and M University, College Station, Texas 77843 (United States); Deng, Biwei; Cheng, Gary J. [School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47906 (United States); Deng, Huiqiu [Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082 (China)

    2015-06-07

    Nanostructured tin (Sn) is a promising high-capacity electrode for improved performance in lithium-ion batteries for electric vehicles. In this work, Sn nanoisland growth for nanostructured electrodes assisted by the pulse laser irradiation has been investigated based on a mesoscale modeling formalism. The influence of pertinent processing conditions, such as pulse duration, heating/cooling rates, and atom flux, on the Sn nanostructure formation is specifically considered. The interaction between the adsorbed atom and the substrate, represented by the adatom diffusion barrier, is carefully studied. It is found that the diffusion barrier predominantly affects the distribution of Sn atoms. For both α-Sn and β-Sn, the averaged coordination number is larger than 3 when the diffusion barrier equals to 0.15 eV. The averaged coordination number decreases as the diffusion barrier increases. The substrate temperature, which is determined by heating/cooling rates and pulse duration, can also affect the formation of Sn nanoislands. For α-Sn, when applied low heating/cooling rates, nanoislands cannot form if the diffusion barrier is larger than 0.35 eV.

  9. Pressure effects on topological crystalline insulator SnTe and derived superconductor Sn{sub 0.5}In{sub 0.5}Te

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, V. K.; Shruti,; Patnaik, S., E-mail: spatnaik@mail.jnu.ac.in [School of Physical Sciences, Jawaharlal Nehru University New Delhi (India); Jha, Rajveer; Awana, V. P. S. [National Physical Laboratory, New Delhi 110012 (India)

    2016-05-23

    We are reporting decrease in superconducting transition temperature accompanied by increased metallicity in indium doped SnTe superconductor. SnTe is a topological crystalline insulator and superconductivity is achieved by indium substitution in place of tin. With application of hydrostatic pressure we find negative dT{sub c}/dP of ~ -0.6K/GPa upto 2.5 GPa. The overall phenomenon is ascribed to unconventional superconductivity. Decrease in resistivity is also seen in single crystal SnTe with application of pressure but no evidence of superconductivity is observed.

  10. SN 2009bb: A PECULIAR BROAD-LINED TYPE Ic SUPERNOVA ,

    International Nuclear Information System (INIS)

    Pignata, Giuliano; Stritzinger, Maximilian; Phillips, M. M.; Morrell, Nidia; Boldt, Luis; Campillay, Abdo; Contreras, Carlos; Gonzalez, Sergio; Krzeminski, Wojtek; Roth, Miguel; Salgado, Francisco; Soderberg, Alicia; Mazzali, Paolo; Anderson, J. P.; Folatelli, Gaston; Foerster, Francisco; Hamuy, Mario; Maza, Jose; Levesque, Emily M.; Rest, Armin

    2011-01-01

    Ultraviolet, optical, and near-infrared photometry and optical spectroscopy of the broad-lined Type Ic supernova (SN) 2009bb are presented, following the flux evolution from -10 to +285 days past B-band maximum. Thanks to the very early discovery, it is possible to place tight constraints on the SN explosion epoch. The expansion velocities measured from near maximum spectra are found to be only slightly smaller than those measured from spectra of the prototype broad-lined SN 1998bw associated with GRB 980425. Fitting an analytical model to the pseudobolometric light curve of SN 2009bb suggests that 4.1 ± 1.9 M sun of material was ejected with 0.22 ± 0.06 M sun of it being 56 Ni. The resulting kinetic energy is 1.8 ± 0.7 x 10 52 erg. This, together with an absolute peak magnitude of M B = -18.36 ± 0.44, places SN 2009bb on the energetic and luminous end of the broad-lined Type Ic (SN Ic) sequence. Detection of helium in the early time optical spectra accompanied with strong radio emission and high metallicity of its environment makes SN 2009bb a peculiar object. Similar to the case for gamma-ray bursts (GRBs), we find that the bulk explosion parameters of SN 2009bb cannot account for the copious energy coupled to relativistic ejecta, and conclude that another energy reservoir (a central engine) is required to power the radio emission. Nevertheless, the analysis of the SN 2009bb nebular spectrum suggests that the failed GRB detection is not imputable to a large angle between the line-of-sight and the GRB beamed radiation. Therefore, if a GRB was produced during the SN 2009bb explosion, it was below the threshold of the current generation of γ-ray instruments.

  11. Superconducting Nb{sub 3}Sn intermetallics made by electrochemical reduction of Nb{sub 2}O{sub 5}-SnO{sub 2} oxides

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B A; Fray, D J; Yan, X-Y; Chen, G

    2003-05-01

    The article is focused on low temperature superconducting Nb{sub 3}Sn material manufactured by novel electrodeoxidizing method developed in Cambridge whereby the range of alloys and intermetallics are produced cheaply making potential superconducting wires more cost effective. The process of direct electrochemical reduction of Nb{sub 2}O{sub 5}-SnO{sub 2} mixtures and in situ formation of the Nb{sub 3}Sn is discussed in details.

  12. Synthesis and photoluminescence of Ca-(Sn,Ti)-Si-O compounds

    International Nuclear Information System (INIS)

    Abe, Shunsuke; Yamane, Hisanori; Yoshida, Hisashi

    2010-01-01

    The phase relation of the compounds prepared in the CaO-SnO 2 -SiO 2 system at 1673 K and in the CaO-TiO 2 -SiO 2 system at 1573 K was investigated in order to explore new Ti 4+ -activated stannate phosphors. Solid solutions of Ca(Sn 1-x Ti x )SiO 5 and Ca 3 (Sn 1-y Ti y )Si 2 O 9 were synthesized at x = 0-1.0 and y = 0-0.10, respectively, and their crystal structures were analyzed by powder X-ray diffraction. Photoluminescence of these solid solutions was observed in a broad range of a visible light wavelength region under ultraviolet (UV) light excitation. The peaks of the emission band of Ca(Sn 0.97 Ti 0.03 )SiO 5 and Ca 3 (Sn 0.925 Ti 0.075 )Si 2 O 9 were at 510 nm under excitation of 252 nm and at 534 nm under excitation of 258 nm, respectively. The absorption edges estimated by the diffuse reflectance spectra were at 300 nm (4.1 eV) for CaSnSiO 5 and at 270 nm (4.6 eV) for Ca 3 SnSi 2 O 9 , suggesting that the excitation levels in Ca(Sn 1-x Ti x )SiO 5 were above the band gap of the host, although the levels in Ca 3 (Sn 1-y Ti y )Si 2 O 9 were within the band gap and near the conduction band edge.

  13. Fabrication and sulfurization of Cu{sub 2}SnS{sub 3} thin films with tuning the concentration of Cu-Sn-S precursor ink

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chi-Jie [Institute of Microelectronics & Department of Electrical Engineering, National Cheng Kung University, Taiwan (China); Shei, Shih-Chang, E-mail: scshei@mail.nutn.edu.tw [Department of Electrical Engineering, Nation University of Tainan, Taiwan (China); Chang, Shih-Chang [Department of Electrical Engineering, Nation University of Tainan, Taiwan (China); Chang, Shoou-Jinn [Institute of Microelectronics & Department of Electrical Engineering, National Cheng Kung University, Taiwan (China)

    2016-12-01

    Highlights: • Tuning the relative reaction rate of component phases proved to be beneficial in controlling the reaction process. • Low-concentration samples display closely packed Cu{sub 2}SnS{sub 3} grains with a flat morphology. • Optical band-gap energy measured at 1.346 eV suitable for thin-film solar cell applications. - Abstract: In this study, Cu-Sn-S nanoinks were synthesized by combining chelating polyetheramine to Cu, Sn, S powders of various concentrations. X-ray diffraction patterns indicate that nanoinks synthesized at low concentrations are composed almost entirely of binary phases SnS and Cu{sub 2}S. Synthesizing nanoinks at higher concentrations decreased the quantity of binary phase and led to the appearance of ternary phase Cu{sub 4}SnS{sub 4}. Following sulfurization, single phase Cu{sub 2}SnS{sub 3} (CTS) thin film was obtained from nanoinks of low concentration; however, impurities, such as Cu{sub 2}S were detected in the thin film obtained from nanoinks of high concentration. This can be attributed to the fact that lower concentrations reduce the reactivity of all the elements. As a result, the SnS phase reacted more readily and more rapidly, resulting in the early formation of a stoichiometric CTS thin film during sulfurization. Under these reaction conditions, Cu{sub 2}S and SnS transform into CTS and thereby prevent the formation of unwanted phases of Cu{sub 2}S and Cu{sub 4}SnS{sub 4}. Raman spectra revealed that second phase Cu{sub 2}S phase remained in the high-concentration samples, due to an increase in reactivity due to the participation of a greater proportion of the copper in the reaction. The surface microstructure of low-concentration samples display closely packed Cu{sub 2}SnS{sub 3} grains with a flat morphology and an atomic composition ratio of Cu:Sn:S = 34.69:15.90:49.41, which is close to stoichiometric. Hall measurement revealed that low-concentration sample has superior electrical properties; i.e., a hole

  14. PbSnTe injection lasers

    International Nuclear Information System (INIS)

    Oron, M.

    1982-03-01

    Carrier confined homostructure PbSnTe lasers were developed and investigated. In this laser structure good electrical and optical confinement can be achieved by a suitable carrier concentration profile. The advantage of these lasers over PbSnTe heterostructure lasers is the perfect lattice matching between the various layers of the structure. The desired carrier concentration profile was achieved by the growth of several epitaxial layers by the LPE method on a suitable substrate. The performance of these lasers was compared with that of previous homostructure and double heterostructure lasers. (H.K.)

  15. Advances in Nb3Sn Performance

    International Nuclear Information System (INIS)

    Godeke, Arno

    2008-01-01

    Nb 3 Sn wires with non-Cu critical current densities (J c ) that surpass 3 kAmm -2 at 12 T and 4.2 K are commercially available in piece lengths longer than 10 km. Accelerator-type magnets that utilize these conductors have achieved record magnetic fields. This article summarizes key developments in the last decade that have led to these significant improvements in the performance of Nb 3 Sn wires.

  16. Influence of Sn content on microstructural and mechanical properties of centrifugal cast Ti-Nb-Sn biomedical alloys

    International Nuclear Information System (INIS)

    Lopes, E.S.N.; Contieri, R.J.; Caram, R.; Costa, A.M.S.

    2010-01-01

    The arc voltaic centrifugal casting is an interesting alternative in terms of economic and technological development in the production of components based on materials with high reactivity and high melting point, such as titanium alloys. In this work, Ti-30Nb (wt. %) with additions of Sn (2, 4, 6, 8 and 10 wt. %) were formed by casting process. Characterization of the samples included optical microscopy, scanning electron microscopy, X-ray diffraction, Vickers hardness and elastic modulus measures by acoustic techniques. It was observed that the microstructure of the samples investigated is composed by dendritic structures, with clear segregation of alloying elements. The Vickers hardness and the elastic modulus decreased with the addition of Sn. The results show that the mechanical behavior of Ti-Nb alloys can be controlled within certain limits, by adding Sn. (author)

  17. A Review of SnSe: Growth and Thermoelectric Properties

    Science.gov (United States)

    Nguyen, Van Quang; Kim, Jungdae; Cho, Sunglae

    2018-04-01

    SnSe is a 2D semiconductor with an indirect energy gap of 0.86 - 1 eV; it is widely used in solar cell, optoelectronics, and electronic device applications. Recently, SnSe has been considered as a robust candidate for energy conversion applications due to its high thermoelectric performance ( ZT = 2.6 in p-type and 2.2 in n-type), which is assigned mainly to its anhamornic bonding leading to an ultralow thermal conductivity. In this review, we first discuss the crystalline and electronic structures of SnSe and the source of its p-type characteristic. Then, some typical single crystal and polycrystal growth techniques, as well as an epitaxial thin film growth technique, are outlined. The reported thermoelectric properties of SnSe grown by using each technique are also reviewed. Finally, we will describe some remaining issues concerning the use of SnSe for thermoelectric applications.

  18. GaInSn usage in the research laboratory

    International Nuclear Information System (INIS)

    Morley, N. B.; Burris, J.; Cadwallader, L. C.; Nornberg, M. D.

    2008-01-01

    GaInSn, a eutectic alloy, has been successfully used in the Magneto-Thermofluid Research Laboratory at the University of California-Los Angeles and at the Princeton Plasma Physics Laboratory for the past six years. This paper describes the handling and safety of GaInSn based on the experience gained in these institutions, augmented by observations from other researchers in the liquid metal experimental community. GaInSn is an alloy with benign properties and shows considerable potential in liquid metal experimental research and cooling applications

  19. Summary of George Mason University SN1987A workshop

    International Nuclear Information System (INIS)

    van den Bergh, S.

    1990-01-01

    The author summaries studies of SN 1987A. This discussion focuses on how theories of core collapse in supernovae have been confirmed by observations of neutrinos produced by SN1987A and observations of the exponential tail of the light curve of SN1987A give strong support to the prediction that this phase of supernova light curves is powered by 56 Co decay

  20. Host Galaxy Spectra and Consequences for SN Typing from the SDSS SN Survey

    Energy Technology Data Exchange (ETDEWEB)

    Olmstead, Matthew D.; Brown, Peter J.; Sako, Masao; Bassett, Bruce; Bizyaev, Dmitry; Brinkmann, J.; Brownstein, Joel R.; Brewington, Howard; Campbell, Heather; D’Andrea, Chris B.; Dawson, Kyle S.; Ebelke, Garrett L.; Frieman, Joshua A.; Galbany, Lluís; Garnavich, Peter; Gupta, Ravi R.; Hlozek, Renee; Jha, Saurabh W.; Kunz, Martin; Lampeitl, Hubert; Malanushenko, Elena; Malanushenko, Viktor; Marriner, John; Miquel, Ramon; Montero-Dorta, Antonio D.; Nichol, Robert C.; Oravetz, Daniel J.; Pan, Kaike; Schneider, Donald P.; Simmons, Audrey E.; Smith, Mathew; Snedden, Stephanie A.

    2014-03-06

    We present the spectroscopy from 5254 galaxies that hosted supernovae (SNe) or other transient events in the Sloan Digital Sky Survey II (SDSS-II). Obtained during SDSS-I, SDSS-II, and the Baryon Oscillation Spectroscopic Survey (BOSS), this sample represents the largest systematic, unbiased, magnitude limited spectroscopic survey of supernova (SN) host galaxies. Using the host galaxy redshifts, we test the impact of photometric SN classification based on SDSS imaging data with and without using spectroscopic redshifts of the host galaxies. Following our suggested scheme, there are a total of 1166 photometrically classified SNe Ia when using a flat redshift prior and 1126 SNe Ia when the host spectroscopic redshift is assumed. For 1024 (87.8%) candidates classified as likely SNe Ia without redshift information, we find that the classification is unchanged when adding the host galaxy redshift. Using photometry from SDSS imaging data and the host galaxy spectra, we also report host galaxy properties for use in future nalysis of SN astrophysics. Finally, we investigate the differences in the interpretation of the light curve properties with and without knowledge of the redshift. When using the SALT2 light curve fitter, we find a 21% increase in the number of fits that converge when using the spectroscopic redshift. Without host galaxy redshifts, we find that SALT2 light curve fits are systematically biased towards lower photometric redshift estimates and redder colors in the limit of low signal-to-noise data. The general improvements in performance of the light curve fitter and the increased diversity of the host galaxy sample highlights the importance of host galaxy spectroscopy for current photometric SN surveys such as the Dark Energy Survey and future surveys such as the Large Synoptic Survey Telescope.

  1. Tunneling spectroscopy on superconducting Nb3Sn with artioficial barriers

    International Nuclear Information System (INIS)

    Schneider, U.

    1984-03-01

    Tunneling diodes on Nb 3 Sn were prepared by magnetron sputtering. The superconducting transition temperatures of the Nb 3 Sn films were in the range of 5 to 18 K. An energetically low-lying structure in the tunneling density of states has been localized by detailed studies of the second derivative of the current-voltage characteristics of the diodes. This structure was found near 5.5 meV for stoichiometric Nb 3 Sn (Tsub(c) approx.= 18 K) and at 6.7 meV for understoichiometric Nb 3 Sn (Tsub(c) approx.= 5 K). The minimum in the conductance at zero energy found in the normal state could be identified to be mainly due to inelastic phonon processes of barrier phonons and Nb 3 Sn phonons. Deformations were found in the tunneling density of states of stoichiometric Nb 3 Sn diodes which lead to contradiction when explained by proximity effects. (orig./GSCH)

  2. Ambipolar SnOx thin-film transistors achieved at high sputtering power

    Science.gov (United States)

    Li, Yunpeng; Yang, Jia; Qu, Yunxiu; Zhang, Jiawei; Zhou, Li; Yang, Zaixing; Lin, Zhaojun; Wang, Qingpu; Song, Aimin; Xin, Qian

    2018-04-01

    SnO is the only oxide semiconductor to date that has exhibited ambipolar behavior in thin-film transistors (TFTs). In this work, ambipolar behavior was observed in SnOx TFTs fabricated at a high sputtering power of 200 W and post-annealed at 150-250 °C in ambient air. X-ray-diffraction patterns showed polycrystallisation of SnO and Sn in the annealed SnOx films. Scanning-electron-microscopy images revealed that microgrooves appeared after the films were annealed. Clusters subsequently segregated along the microgrooves, and our experiments suggest that they were most likely Sn clusters. Atomic force microscopy images indicate an abrupt increase in film roughness due to the cluster segregations. An important implication of this work is that excess Sn in the film, which has generally been thought to be detrimental to the film quality, may promote the ambipolar conduction when it is segregated from the film to enhance the stoichiometric balance.

  3. Ultrasonic synthesis of In-doped SnS nanoparticles and their physical properties

    Science.gov (United States)

    Jamali-Sheini, Farid; Cheraghizade, Mohsen; Yousefi, Ramin

    2018-05-01

    Indium (In)-doped Tin (II) Sulfide (SnS) nanoparticles (NPs) were synthesized by an ultra-sonication method and their optical, electrical, dielectric and photocatalytic properties were investigated. XRD patterns of the obtained NPs indicated formation of orthorhombic polycrystalline SnS. Field emission scanning electron microscopy exhibited flower-like NPs with particle sizes below 100 nm for both SnS and In-doped SnS samples. Optical analysis showed a decrease in energy band gap of SnS NPs upon In doping. In addition, electrical results demonstrated p-type nature of the synthesized SnS NPs and enhanced electrical conductivity of the NPs due to increased tin vacancy. Dielectric experiments on SnS NPs suggested an electronic polarizations effect to be responsible for changing dielectric properties of the particles, in terms of frequency. Finally, photocatalytic experiments revealed that high degradation power can be obtained using In-doped SnS NPs.

  4. Pulsed laser deposition of Cu-Sn-S for thin film solar cells

    DEFF Research Database (Denmark)

    Ettlinger, Rebecca Bolt; Crovetto, Andrea; Bosco, Edoardo

    Thin films of copper tin sulfide were deposited from a target of the stoichiometry Cu:Sn:S ~1:2:3 using pulsed laser deposition (PLD). Annealing with S powder resulted in films close to the desired Cu2SnS3 stoichiometry although the films remained Sn rich. Xray diffraction showed that the final...... films contained both cubic-phase Cu2SnS3 and orthorhombic-phase SnS...

  5. Fluxless Sn-Ag bonding in vacuum using electroplated layers

    International Nuclear Information System (INIS)

    Kim, Jongsung; Lee, Chin C.

    2007-01-01

    A fluxless bonding process in vacuum environment using newly developed electroplated Sn-Ag multilayer structure at eutectic composition is presented. The new bonding process is entirely fluxless, or flux-free. It is performed in vacuum (100 mTorr), in which the oxygen content is reduced by a factor of 7600 comparing to air, to inhibit solder oxidation. In the design, Cr/Au dual layer is employed as the UBM as well as the plating seed layer. This UBM design, seldom used in the electronic industry, is explained in some details. To realize the fluxless possibility, a proper layer design of the solder structure is needed. In this connection, we wish to point out that it is hard to achieve fluxless bonding using Sn-rich alloys because these alloys have numerous Sn atoms on the surface that are easily oxidized. To prevent Sn oxidation, a thin Ag layer is plated immediately over Sn layer. XRD results confirm that this thin Ag layer does act as a barrier to prevent oxidation of the inner Sn layer. The resulting solder joints are void free as examined by a scanning acoustic microscope (SAM). SEM and EDX studies on the cross section of the joint indicate a homogeneous Sn-rich phase. The melting temperature is measured to be between 219 and 226 deg. C. This new fluxless bonding process is valuable in many applications where the use of flux is prohibited

  6. Enthalpy of mixing of liquid Co–Sn alloys

    International Nuclear Information System (INIS)

    Yakymovych, A.; Fürtauer, S.; Elmahfoudi, A.; Ipser, H.; Flandorfer, H.

    2014-01-01

    Highlights: • The enthalpies of mixing of liquid Co–Sn alloys between T = (673 and 1773) K. • The temperature dependence of the enthalpies of mixing was described. • Full report of measured values including polynomial coefficients. - Abstract: A literature overview of enthalpy of mixing data for liquid Co–Sn alloys shows large scattering but no clear temperature dependence. Therefore drop calorimetry was performed in the Co–Sn system at twelve different temperatures in 100 K steps in the temperature range (673 to 1773) K. The integral enthalpy of mixing was determined starting from 1173 K and fitted to a standard Redlich–Kister polynomial. In addition, the limiting partial molar enthalpy of Co in Sn was investigated by small additions of Co to liquid Sn at temperatures (673 to 1773) K. The integral and partial molar enthalpies of the Co–Sn system generally show an exothermic mixing behavior. Significant temperature dependence was detected for the enthalpies of mixing. The minimum integral enthalpy values vary with rising temperature from approx. −7820 J/mol at T = 1173 K to −1350 J/mol at T = 1773 K; the position of the minimum is between (59 and 61) at.% Co. The results are discussed and compared with literature data available for this system. X-ray studies and scanning electron microscopy of selected alloys obtained from the calorimetric measurements were carried out in order to check the completeness of the solution process

  7. Dimensional stability of Ti--6Al--6V--2Sn

    International Nuclear Information System (INIS)

    Rack, H.J.

    1978-08-01

    The dimensional stability of Ti-6Al-6V-2Sn has been examined. It is shown that in the duplex annealed condition Ti-6Al-6V-2Sn is dimensionally stable at temperatures up to 448 0 K for 512 hrs. Solution treated Ti-6Al-6V-2Sn undergoes large dimensional changes during both initial aging between 673 and 973 0 K and subsequent exposure to low temperatures ( 0 K). These results indicate that if close dimensional tolerances must be maintained, duplex annealed Ti-6Al-6V-2Sn should be selected. Selection of treated and aged Ti-6Al-6V-2Sn should only be considered if accompanied by full scale environmental testing

  8. Field emission from patterned SnO2 nanostructures

    International Nuclear Information System (INIS)

    Zhang Yongsheng; Yu Ke; Li Guodong; Peng Deyan; Zhang Qiuxiang; Hu Hongmei; Xu Feng; Bai Wei; Ouyang Shixi; Zhu Ziqiang

    2006-01-01

    A simple and reliable method has been developed for synthesizing finely patterned tin dioxide (SnO 2 ) nanostructure arrays on silicon substrates. A patterned Au catalyst film was prepared on the silicon wafer by radio frequency (RF) magnetron sputtering and photolithographic patterning processes. The patterned SnO 2 nanostructures arrays, a unit area is of ∼500 μm x 200 μm, were synthesized via vapor phase transport method. The surface morphology and composition of the as-synthesized SnO 2 nanostructures were characterized by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The mechanism of formation of SnO 2 nanostructures was also discussed. The measurement of field emission (FE) revealed that the as-synthesized SnO 2 nanorods, nanowires and nanoparticles arrays have a lower turn-on field of 2.6, 3.2 and 3.9 V/μm, respectively, at the current density of 0.1 μA/cm 2 . This approach must have a wide variety of applications such as fabrications of micro-optical components and micropatterned oxide thin films used in FE-based flat panel displays, sensor arrays and so on

  9. SN 2008D: A WOLF-RAYET EXPLOSION THROUGH A THICK WIND

    International Nuclear Information System (INIS)

    Svirski, Gilad; Nakar, Ehud

    2014-01-01

    Supernova (SN) 2008D/XRT 080109 is considered to be the only direct detection of a shock breakout from a regular SN to date. While a breakout interpretation was favored by several papers, inconsistencies remain between the observations and current SN shock breakout theory. Most notably, the duration of the luminous X-ray pulse is considerably longer than expected for a spherical breakout through the surface of a type Ibc SN progenitor, and the X-ray radiation features, mainly its flat spectrum and its luminosity evolution, are enigmatic. We apply a recently developed theoretical model for the observed radiation from a Wolf-Rayet SN exploding through a thick wind and show that it naturally explains all of the observed features of SN 2008D X-ray emission, including the energetics, the spectrum, and the detailed luminosity evolution. We find that the inferred progenitor and SN parameters are typical for an exploding Wolf-Rayet. A comparison of the wind density found at the breakout radius and the density at much larger radii, as inferred by late radio observations, suggests an enhanced mass-loss rate taking effect about 10 days prior to the SN explosion. This finding joins accumulating evidence for a possible late phase in the stellar evolution of massive stars, involving vigorous mass loss a short time before the SN explosion

  10. SN 2008D: A WOLF-RAYET EXPLOSION THROUGH A THICK WIND

    Energy Technology Data Exchange (ETDEWEB)

    Svirski, Gilad; Nakar, Ehud [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel)

    2014-06-10

    Supernova (SN) 2008D/XRT 080109 is considered to be the only direct detection of a shock breakout from a regular SN to date. While a breakout interpretation was favored by several papers, inconsistencies remain between the observations and current SN shock breakout theory. Most notably, the duration of the luminous X-ray pulse is considerably longer than expected for a spherical breakout through the surface of a type Ibc SN progenitor, and the X-ray radiation features, mainly its flat spectrum and its luminosity evolution, are enigmatic. We apply a recently developed theoretical model for the observed radiation from a Wolf-Rayet SN exploding through a thick wind and show that it naturally explains all of the observed features of SN 2008D X-ray emission, including the energetics, the spectrum, and the detailed luminosity evolution. We find that the inferred progenitor and SN parameters are typical for an exploding Wolf-Rayet. A comparison of the wind density found at the breakout radius and the density at much larger radii, as inferred by late radio observations, suggests an enhanced mass-loss rate taking effect about 10 days prior to the SN explosion. This finding joins accumulating evidence for a possible late phase in the stellar evolution of massive stars, involving vigorous mass loss a short time before the SN explosion.

  11. Transmutation of 126Sn in spallation targets of accelerator-driven systems

    International Nuclear Information System (INIS)

    Han, Chi Young; Saito, Masaki; Sagara, Hiroshi

    2009-01-01

    The practical feasibility of 126 Sn transmutation in spallation targets of accelerator-driven systems was evaluated from the viewpoints of accumulation of radioactive spallation products and neutron production as well as transmutation amount of 126 Sn. A cylindrical liquid 126 Sn target whose length depends on proton beam energy was described, based on a Pb-Bi target design of accelerator-driven system being developed in JAEA. A proton beam of 1.5 GeV-20 mA was estimated to give the transmutation rate of 126 Sn 6.4 kg/yr, which corresponds to the amount of 126 Sn annually discharged in 27 LWRs of 1 GWt and 33 GWd/THM. The equilibrium radioactivity of spallation products would reach 9% of that of 126 Sn transmuted in the spallation target, and the equilibrium toxicity would be just 3%. Some parametric analyses showed that the effective half-life of 126 Sn could be reduced through a proper reduction of the target size. The 126 Sn target was calculated to produce 40 neutrons per proton of 1.5 GeV and give a neutron spectrum very similar to that of the reference Pb-Bi target. As a result, the transmutation of 126 Sn in the spallation target has a high feasibility in terms of better transmutation performance and comparable target performance. (author)

  12. Kinetics of Isothermal Reactive Diffusion Between Solid Cu and Liquid Sn

    Science.gov (United States)

    O, M.; Suzuki, T.; Kajihara, M.

    2018-01-01

    The Cu/Sn system is one of the most fundamental and important metallic systems for solder joints in electric devices. To realize reliable solder joints, information on reactive diffusion at the solder joint is very important. In the present study, we experimentally investigated the kinetics of the reactive diffusion between solid Cu and liquid Sn using semi-infinite Cu/Sn diffusion couples prepared by an isothermal bonding technique. Isothermal annealing of the diffusion couple was conducted in the temperature range of 533-603 K for various times up to 172.8 ks (48 h). Using annealing, an intermetallic layer composed of Cu6Sn5 with scallop morphology and Cu3Sn with rather uniform thickness is formed at the original Cu/Sn interface in the diffusion couple. The growth of the Cu6Sn5 scallop occurs much more quickly than that of the Cu3Sn layer and thus predominates in the overall growth of the intermetallic layer. This tendency becomes more remarkable at lower annealing temperatures. The total thickness of the intermetallic layer is proportional to a power function of the annealing time, and the exponent of the power function is close to unity at all the annealing temperatures. This means that volume diffusion controls the intermetallic growth and the morphology of the Cu6Sn5/Sn interface influences the rate-controlling process. Adopting a mean value of 0.99 for the exponent, we obtain a value of 26 kJ/mol for the activation enthalpy of the intermetallic growth.

  13. Cubic Crystal-Structured SnTe for Superior Li- and Na-Ion Battery Anodes.

    Science.gov (United States)

    Park, Ah-Ram; Park, Cheol-Min

    2017-06-27

    A cubic crystal-structured Sn-based compound, SnTe, was easily synthesized using a solid-state synthetic process to produce a better rechargeable battery, and its possible application as a Sn-based high-capacity anode material for Li-ion batteries (LIBs) and Na-ion batteries (NIBs) was investigated. The electrochemically driven phase change mechanisms of the SnTe electrodes during Li and Na insertion/extraction were thoroughly examined utilizing various ex situ analytical techniques. During Li insertion, SnTe was converted to Li 4.25 Sn and Li 2 Te; meanwhile, during Na insertion, SnTe experienced a sequential topotactic transition to Na x SnTe (x ≤ 1.5) and conversion to Na 3.75 Sn and Na 2 Te, which recombined into the original SnTe phase after full Li and Na extraction. The distinctive phase change mechanisms provided remarkable electrochemical Li- and Na-ion storage performances, such as large reversible capacities with high Coulombic efficiencies and stable cyclabilities with fast C-rate characteristics, by preparing amorphous-C-decorated nanostructured SnTe-based composites. Therefore, SnTe, with its interesting phase change mechanisms, will be a promising alternative for the oncoming generation of anode materials for LIBs and NIBs.

  14. Optical and electrochemical studies of polyaniline/SnO2 fibrous nanocomposites

    International Nuclear Information System (INIS)

    Manivel, P.; Ramakrishnan, S.; Kothurkar, Nikhil K.; Balamurugan, A.; Ponpandian, N.; Mangalaraj, D.; Viswanathan, C.

    2013-01-01

    Graphical abstract: Fiber with porous like structure of PANI/SnO 2 nanocomposites were prepared by simplest in situ chemical polymerization method. The PL emission spectra revealed that the band from 404 and 436 nm which is related with oxygen vacancies. The excellent electrochemical properties of composite electrode show the specific capacitance of 173 F/g at a scan rate of 25 m V/s. Display Omitted Highlights: ► Self assembled PANI/SnO 2 nanocomposites were synthesized by simple polymerization method. ► Electrochemical behavior of PANI/SnO 2 nanocomposites electrode was analyzed by CV. ► Nanocomposites exhibit a higher specific capacitance of 173 F/g, compared with pure SnO 2 . -- Abstract: Polyaniline (PANI)/tin oxide (SnO 2 ) fibrous nanocomposites were successfully prepared by an in situ chemical polymerization method with suitable conditions. The obtained composites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, photoluminescence (PL), electrical conductivity and cyclic voltammetry studies (CV). The XRD pattern of the as-prepared sample shows the presence of tetragonal SnO 2 and the crystalline structure of SnO 2 was not affected with the incorporation of PANI. The FTIR analysis confirms the uniform attachment of PANI on the surface of SnO 2 nanostructures. SEM images show a fibrous agglomerated structure of PANI/SnO 2 . The PL emission spectra revealed that the band from 404 and 436 nm which is related with oxygen vacancies. The electrochemical behavior of the PANI/SnO 2 composite electrode was evaluated in a H 2 SO 4 solution using cyclic voltammetry. The composite electrode exhibited a specific capacitance of 173 F/g at a scan rate 25 mV/s. Thus the as-prepared PANI/SnO 2 composite shows excellent electrochemical properties, suggesting that this composite is a promising material for supercapacitors.

  15. Synthesis of [119mSn]-mesoporphyrin IX dichloride

    International Nuclear Information System (INIS)

    Denissen, J.F.

    1990-01-01

    Tin mesoporphyrin IX dichloride (Sn-MPCl 2 ) is a heme oxygenase inhibitor of current clinical interest for the treatment of neonatal hyperbilirubinemia. The synthesis of [ 119m Sn]-MPCl 2 for drug metabolism and disposition studies is reported. [ 119m Sn]-MPCl 2 was prepared in 60% radiochemical yield by metalation of the porphyrin nucleus of mesoporphyrin IX dihydrochloride with tin(II)-119m acetate. The product had a specific activity of 43.4 mCi/mmol and a radiochemical purity of 99%, as determined by radio-HPLC analysis. (author)

  16. Amorphous magnetism in Mnx Sn1-x alloys

    International Nuclear Information System (INIS)

    Drago, V.; Saitovitch, E.M.B.; Abd-Elmeguid, M.M.

    1988-01-01

    Systematic low temperature in situ 119 Sn Moessbauer effect (ME) studies in vapor quenched amorphous Mn x Sn 1-x (0.09≤ x ≤0,95) alloys between 150 and 4.2 K, are presented. Its is shown that the magnetic behavior of the system is correctly displayed by the transferred magnetic hyperfine (hf) interactions, at the 119 Sn site. A complete magnetic phase diagram is proposed, and the effect of an external magnetic field (up to about 3T) on the spin correlations in the spin-glass state is also discussed. (author) [pt

  17. Pressure dependence of magnetic ordering temperatures of rare earth-Sn/sub 3/ compounds

    Energy Technology Data Exchange (ETDEWEB)

    Foner, S [Massachusetts Inst. of Tech., Cambridge (USA). Francis Bitter National Magnet Lab.

    1979-12-01

    Measurements of the hydrostatic pressure dependence of the Neel temperatures, Tsub(N), are reported for PrSn/sub 3/, NdSn/sub 3/, GdSn/sub 3/ and CeIn/sub 3/. Tsub(N) is found to increase with applied pressure for PrSn/sub 3/ and NdSn/sub 3/, whereas Tsub(N) is pressure independent within experimental error for GdSn/sub 3/ and CeIn/sub 3/. Slightly Sn-deficient RESn/sub 3/ (RE = rare earth) compounds are found consistently to be weakly ferromagnetic. The physical properties of the RESn/sub 3/ compounds exhibit analogies with the corresponding properties of dilute superconducting (LaRE)Sn/sub 3/ alloys. The high pressure data for PrSn/sub 3/ and CeIn/sub 3/ are qualitatively consistent with a 'Kondo necklace' model for magnetically ordered RE compounds with unstable 4f shells.

  18. Pressure dependence of magnetic ordering temperatures of rare earth - Sn/sub 3/ compounds

    Energy Technology Data Exchange (ETDEWEB)

    DeLong, L E [Virginia Univ., Charlottesville (USA). Dept. of Physics; Guertin, R P; Foner, S

    1979-12-01

    Measurements of the hydrostatic pressure dependence of the Neel temperatures, Tsub(N), are reported for PrSn/sub 3/, NdSn/sub 3/, GdSn/sub 3/ and CeIn/sub 3/. Tsub(N) is found to increase with applied pressure for PrSn/sub 3/ and NdSn/sub 3/, whereas Tsub(N) is pressure independent within experimental error for GdSn/sub 3/ and CeIn/sub 3/. Slightly Sn-deficient RESn/sub 3/ (RE=rare earth) compounds are found consistently to be weakly ferromagnetic. The physical properties of the RESn/sub 3/ compounds exhibit analogies with the corresponding properties of dilute superconducting (LaRE)Sn/sub 3/ alloys. The high pressure data for PrSn/sub 3/ and CeIn/sub 3/ are qualitatively consistent with a 'Kondo necklace' model for magnetically ordered RE compounds with unstable 4f shells.

  19. Surface alloying in Sn/Au(111) at elevated temperature

    Science.gov (United States)

    Sadhukhan, Pampa; Singh, Vipin Kumar; Rai, Abhishek; Bhattacharya, Kuntala; Barman, Sudipta Roy

    2018-04-01

    On the basis of x-ray photoelectron spectroscopy, we show that when Sn is deposited on Au(111) single crystal surface at a substrate temperature TS=373 K, surface alloying occurs with the formation of AuSn phase. The evolution of the surface structure and the surface morphology has been studied by low energy electron diffraction and scanning tunneling microscopy, respectively as a function of Sn coverage and substrate temperatures.

  20. Mg{sub 2}Sn heterostructures on Si(111) substrate

    Energy Technology Data Exchange (ETDEWEB)

    Dózsa, L., E-mail: dozsa@mfa.kfki.hu [Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, 1525 Budapest Pf, 49 (Hungary); Galkin, N.G. [Institute of Automation and Control Processes of FEB RAS, 5 Radio St., Vladivostok 690041 (Russian Federation); Far Eastern Federal University, 8 Sukhanova St., Vladivostok 690950 (Russian Federation); Pécz, B.; Osváth, Z.; Zolnai, Zs. [Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, 1525 Budapest Pf, 49 (Hungary); Németh, A. [Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, 1525 Budapest, P.O.B. 49 (Hungary); Galkin, K.N.; Chernev, I.M. [Institute of Automation and Control Processes of FEB RAS, 5 Radio St., Vladivostok 690041 (Russian Federation); Dotsenko, S.A. [Institute of Automation and Control Processes of FEB RAS, 5 Radio St., Vladivostok 690041 (Russian Federation); Far Eastern Federal University, 8 Sukhanova St., Vladivostok 690950 (Russian Federation)

    2017-05-31

    Highlights: • Investigations show that the nanostructures have significant changes during the applied regular experimental investigations. • It is especially true for transmittance electron microscopy, where the investigated layers have to be thinned near to the nanostructure size. • The time order of the applied experimental investigation has a dominant effect on the experimetal results. - Abstract: Thin un-doped and Al doped polycrystalline Mg-stannide films consisting mainly of Mg{sub 2}Sn semiconductor phase have been grown by deposition of Sn-Mg multilayers on Si(111) p-type wafers at room temperature and annealing at 150 °C. Rutherford backscattering measurement spectroscopy (RBS) were used to determine the amount of Mg and Sn in the structures. Raman spectroscopy has shown the layers contain Mg{sub 2}Sn phase. Cross sectional transmission electron microscopy (XTEM) measurements have identified Mg{sub 2}Sn nanocrystallites in hexagonal and cubic phases without epitaxial orientation with respect to the Si(111) substrate. Significant oxygen concentration was found in the layer both by RBS and TEM. The electrical measurements have shown laterally homogeneous conductivity in the grown layer. The undoped Mg{sub 2}Sn layers show increasing resistivity with increasing temperature indicating the scattering process dominates the resistance of the layers, i.e. large concentration of point defects was generated in the layer during the growth process. The Al doped layer shows increase of the resistance at low temperature caused by freeze out of free carriers in the Al doped Mg{sub 2}Sn layer. The measurements indicate the necessity of protective layer grown over the Mg{sub 2}Sn layers, and a short time delay between sample preparation and cross sectionalTEM analysis, since the unprotected layer is degraded by the interaction with the ambient.

  1. Interface between Sn-Sb-Cu solder and copper substrate

    Energy Technology Data Exchange (ETDEWEB)

    Sebo, P., E-mail: Pavel.Sebo@savba.sk [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Racianska 75, 831 02 Bratislava 3 (Slovakia); Svec, P. [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava 45 (Slovakia); Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava (Slovakia); Janickovic, D.; Illekova, E. [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava 45 (Slovakia); Plevachuk, Yu. [Ivan Franko National University, Department of Metal Physics, 79005 Lviv (Ukraine)

    2011-07-15

    Highlights: {yields} New lead-free solder materials based on Sn-Sb-Cu were designed and prepared. {yields} Melting and solidification temperatures of the solders have been determined. {yields} Cu-substrate/solder interaction has been analyzed and quantified. {yields} Phases formed at the solder-substrate interface have been identified. {yields} Composition and soldering atmospheres were correlated with joint strength. - Abstract: Influence of antimony and copper in Sn-Sb-Cu solder on the melting and solidification temperatures and on the microstructure of the interface between the solder and copper substrate after wetting the substrate at 623 K for 1800 s were studied. Microstructure of the interface between the solder and copper substrates in Cu-solder-Cu joints prepared at the same temperature for 1800 s was observed and shear strength of the joints was measured. Influence of the atmosphere - air with the flux and deoxidising N{sub 2} + 10H{sub 2} gas - was taken into account. Thermal stability and microstructure were studied by differential scanning calorimetry (DSC), light microscopy, scanning electron microscopy (SEM) with energy-dispersive spectrometry (EDS) and X-ray diffraction (XRD). Melting and solidification temperatures of the solders were determined. An interfacial transition zone was formed by diffusion reaction between solid copper and liquid solder. At the interface Cu{sub 3}Sn and Cu{sub 6}Sn{sub 5} phases arise. Cu{sub 3}Sn is adjacent to the Cu substrate and its thickness decreases with increasing the amount of copper in solder. Scallop Cu{sub 6}Sn{sub 5} phase is formed also inside the solder drop. The solid solution Sn(Sb) and SbSn phase compose the interior of the solder drop. Shear strength of the joints measured by push-off method decreases with increasing Sb concentration. Copper in the solder shows even bigger negative effect on the strength.

  2. Multi-yolk-shell SnO2/Co3Sn2@C Nanocubes with High Initial Coulombic Efficiency and Oxygen Reutilization for Lithium Storage.

    Science.gov (United States)

    Su, Liwei; Xu, Yawei; Xie, Jian; Wang, Lianbang; Wang, Yuanhao

    2016-12-28

    The challenging problems of SnO 2 anode material for lithium ion batteries are the poor electronic conductivity and the low oxygen reutilization due to the irreversibility of Li 2 O generated in the initial discharge leading to a theoretical initial Coulombic efficiency (ICE) of only 52.4%. Different from these strategies, this work proposes a novel strategy to level up the oxygen reutilization in SnO 2 by introducing Co 3 Sn 2 nanoalloys which can release Co atoms to reversibly react with Li 2 O instead. According to this protocol, multi-yolk-shell SnO 2 /Co 3 Sn 2 @C nanocubes are designed and successfully prepared using hollow CoSn(OH) 6 nanocubes as precursors followed a hydrothermal carbon coating and calcination treatment. The unique multi-yolk-shell nanostructure offers adequate breathing space for the volumetric deformation during long-term cycling. Moreover, the removal of Li 2 O allows a high electronic conductivity and resultant rate performance. As a result, the efficient reutilization of oxygen enables a high ICE of 71.7% and a reversible capacity of 1003 mA h g -1 after 200 cycles at 100 mA g -1 . Cyclic voltammetry, cycling performance at different voltage windows, and X-ray photoelectron spectroscopy confirm the proposed mechanism. This strategy employing oxygen-poor metals or alloys provides a novel approach to enhance the oxygen reutilization in SnO 2 for higher reversibility.

  3. Systematics of Structural, Phase Stability, and Cohesive Properties of η'-Cu6(Sn,In)5 Compounds Occurring in In-Sn/Cu Solder Joints

    Science.gov (United States)

    Ramos, S. B.; González Lemus, N. V.; Deluque Toro, C. E.; Cabeza, G. F.; Fernández Guillermet, A.

    2017-07-01

    Motivated by the high solubility of In in ( mC44) η'-Cu6Sn5 compound as well as the occurrence of an In-doped η'-intermetallic in the microstructure of Cu/In-Sn/Cu solder joints, a theoretical study has been carried out to investigate the various physical effects of incorporating In at Sn Wyckoff sites of the binary η'-phase. Systematic ab initio calculations using the projected augmented wave method and Vienna Ab initio Simulation Package were used to determine the composition dependence of the structural and cohesive properties of η'-Cu6(Sn,In)5 compounds, compared with those expected from the binary end-member compounds Cu6Sn5 and Cu6In5. The molar volume shows significant deviations from Vegard's law. The predicted composition dependence of the cohesive properties is discussed using two complementary approaches, viz. a valence-electron density approach as well as a bond-number approach, both accounting for the roughly linear dependence of the cohesive energy on the In content. A microscopic interpretation for this general trend is given in terms of the key contributions to chemical bonding in this class of compounds, namely Cu d-electron overlap and hybridization of Cu d-states with In and Sn p-electron states. Moreover, a crystallographic site approach is developed to accurately establish the phase-stabilizing effect of incorporating In at specific Wyckoff positions of the ( mC44) η'-Cu6Sn5 structure.

  4. Mössbauer and heat capacity studies of ErZnSn2

    Directory of Open Access Journals (Sweden)

    Łątka Kazimierz

    2017-06-01

    Full Text Available Heat capacity results obtained for the intermetallic compound ErZnSn2 were re-analysed to also consider, apart from the classical Debye model, the anharmonicity of the crystal lattice and the proper set of Einstein modes. The 119mSn Mössbauer technique was applied to derive the hyperfine interaction parameters characteristic of the two inequivalent crystallographic Sn sites in the compound studied. Quadrupole interaction constants, as measured by 119mSn Mössbauer spectroscopy, allowed for estimations of Vzz components of the electric field gradient tensor that exist at both Sn sites in the discussed compound.

  5. Effect of solvent on the synthesis of SnO_2 nanoparticles

    International Nuclear Information System (INIS)

    Kumar, Virender; Singh, Karamjit; Singh, Kulwinder; Kumar, Akshay; Kumari, Sudesh; Thakur, Anup

    2016-01-01

    Tin oxide (SnO_2) nanoparticles have been synthesized by co-precipitation method. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD) and Ultraviolet-Visible spectroscopy (UV-VIS). XRD analysis confirmed the formation of single phase of SnO_2 nanoparticles. It has been found that solvents played important role in controlling the crystallite size of SnO_2 nanoparticles. The XRD analysis showed well crystallized tetragonal SnO_2 nanoparticles. The crystallite size of SnO_2 nanoparticles varies with the solvent. Tauc plot showed that optical band gap was also tailored by controlling the solvent during synthesis.

  6. Microemulsion mediated synthesis of triangular shape SnO2 nanoparticles: Luminescence application

    International Nuclear Information System (INIS)

    Luwang, Meitram Niraj

    2014-01-01

    The triangular prism shapes of SnO 2 ·xH 2 O nanoparticles are prepared using microemulsion route. The effect of variation of water pool value on the formation of SnO 2 nanoparticles was studied. There is the quantum size effect in absorption study of SnO 2 nanoparticles. With the increase of the water pool value, there is a decrease in the band edge absorption energy suggesting the weak quantum confinement effect (QCE) in SnO 2 nanoparticles. Quenching effect increases with increase of water to surfactant ratio in luminescence. There is no significant effect in lifetime values for SnO 2 nanoparticles in both microemulsion and powder form. SnO 2 nanoparticles show green emission due to oxygen vacancy. SnO 2 nanoparticles when doped with Eu 3+ ions give the enhanced luminescence of Eu 3+ due to the surface mediated energy transfer from SnO 2 to Eu 3+ ion.

  7. Study of interfacial reactions in Sn-3.5Ag-3.0Bi and Sn-8.0Zn-3.0Bi sandwich structure solder joint with Ni(P)/Cu metallization on Cu substrate

    International Nuclear Information System (INIS)

    Sun, Peng; Andersson, Cristina; Wei, Xicheng; Cheng, Zhaonian; Shangguan, Dongkai; Liu, Johan

    2007-01-01

    In this paper, the coupling effect in Sn-3.5Ag-3.0Bi and Sn-8.0Zn-3.0Bi solder joint with sandwich structure by long time reflow soldering was studied. It was found that the interfacial compound at the Cu substrate was binary Cu-Sn compound in Sn-Ag-Bi solder joint and Cu 5 Zn 8 phase in Sn-Zn-Bi solder joint. The thickness of the Cu-Zn compound layer formed at the Cu substrate was greater than or equal to that of Cu-Sn compound layer, although the reflow soldering temperature of Sn-Zn-Bi (240 o C) was lower than that of Sn-Ag-Bi (250 o C). The stable Cu-Zn compound was the absolute preferential phase in the interfacial layer between Sn-Zn-Bi and the Cu substrate. The ternary (Cu, Ni) 6 Sn 5 compound was formed at the Sn-Ag-Bi/Ni(P)-Cu metallization interface, and a complex alloy Sn-Ni-Cu-Zn was formed at the Sn-Zn-Bi/Ni(P)-Cu metallization interface. It was noted that Cu atoms could diffuse from the Cu substrate through the solder matrix to the Ni(P)-Cu metallization within 1 min reflow soldering time for both solder systems, indicating that just 30 s was long enough for Cu to go through 250 μm diffusion length in the Sn-Ag-Bi solder joint at 250 o C. The coupling effect between Ni(P)/Cu metallization and Cu substrate was confirmed as the type of IMCs at Ni(P) layer had been changed from Ni-Sn system to Cu-Sn system apparently by the diffusion effect of Cu atoms. The (Cu, Ni) 6 Sn 5 layer at the Ni(P)/Cu metallization grew significantly and its thickness was even greater than that of the Cu-Sn compound on the opposite side, however the growth of the complex alloy including Sn, Ni, Cu and Zn on the Ni(P)/Cu metallization was suppressed

  8. Structures, energetics and magnetic properties of (NiSn) n clusters ...

    Indian Academy of Sciences (India)

    The preference for tetrahedron unit of Ni3 Sn is seen in the lowest-energy configuration of these clusters. The multi-centre bonding between Ni atoms play an important role in stabilizing the stoichiometric Ni–Sn clusters. Doping of Sn atoms enhances the binding energy and reduces the ionization potential of nickel clusters.

  9. $Nb_{3}Sn macrostructure, microstructure, and property comparisons for bronze and internal Sn process strands

    CERN Document Server

    Lee, P J; Larbalestier, D C

    2000-01-01

    The variation in irreversibility field, B*(T), with temperature has been measured for Nb/sub 3/Sn superconducting strands manufactured for ITER using vibrating sample and SQUID magnetometers. The high performance strands were developed for both high transport critical current density, J/sub c/, and low hysteresis loss. Despite a wide variety of designs and components, the strands could be split into two distinctive groups, based on the extrapolated irreversibility fields, which lie about 10% lower than the upper critical field. "Bronze-process" strands exhibited consistently higher B*(T) (28 T to 31 T) compared with "internal Sn" process (24 T to 26 T) conductors. The intrinsic critical current density of the superconductor, J/sub c (sc)/, and the specific pinning force of the grain boundaries, Q/sub gb/, were evaluated using the measured J/sub c/, and image analysis of the macro- and micro-structures. A bronze-processed Nb(-Ta)/sub 3 /Sn was found to have a higher J/sub c(sc)/ but lower Q/sub gb/ than Nb/sub...

  10. Spark plasma-sintered Sn-based intermetallic alloys and their Li-storage studies

    CSIR Research Space (South Africa)

    Nithyadharseni, P

    2016-06-01

    Full Text Available In the present study, SnSb, SnSb/Fe, SnSb/Co, and SnSb/Ni alloy powders processed by co-precipitation were subjected to spark plasma-sintering (SPS) at 400 °C for 5 min. The compacts were structurally and morphologically characterized by X...

  11. Continuous epitaxial growth of extremely strong Cu6Sn5 textures at liquid-Sn/(111)Cu interface under temperature gradient

    Science.gov (United States)

    Zhong, Y.; Zhao, N.; Liu, C. Y.; Dong, W.; Qiao, Y. Y.; Wang, Y. P.; Ma, H. T.

    2017-11-01

    As the diameter of solder interconnects in three-dimensional integrated circuits (3D ICs) downsizes to several microns, how to achieve a uniform microstructure with thousands of interconnects on stacking chips becomes a critical issue in 3D IC manufacturing. We report a promising way for fabricating fully intermetallic interconnects with a regular grain morphology and a strong texture feature by soldering single crystal (111) Cu/Sn/polycrystalline Cu interconnects under the temperature gradient. Continuous epitaxial growth of η-Cu6Sn5 at cold end liquid-Sn/(111)Cu interfaces has been demonstrated. The resultant η-Cu6Sn5 grains show faceted prism textures with an intersecting angle of 60° and highly preferred orientation with their ⟨ 11 2 ¯ 0 ⟩ directions nearly paralleling to the direction of the temperature gradient. These desirable textures are maintained even after soldering for 120 min. The results pave the way for controlling the morphology and orientation of interfacial intermetallics in 3D packaging technologies.

  12. Ceramic insulation for superconducting Nb{sub 3}Sn cables; Isolation ceramique pour cables supraconducteurs en Nb{sub 3}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Puigsegur, A

    2005-01-15

    Nb{sub 3}Sn is the best superconductor candidate for the realization of high field magnets (>11 Tesla), its implementation remains delicate because of the great brittleness of material after the heat treatment necessary to the formation of Nb{sub 3}Sn compounds. The conventional insulation for Nb{sub 3}Sn requires to perform, after the heat treatment, a vacuum resin impregnation, which adds to the cost and raises failure risk. We have proposed an innovating ceramic insulation deposited directly on the unreacted conducting cable. After the heat treatment of the niobium tin, we obtain a coil having a mechanical cohesion, while maintaining a proper conductor positioning and a suitable electric insulation. After a rheological study, to characterize the impregnated suspension, we have shown that using this insulation in a coil manufacture process does not affect the electrical properties of the Nb{sub 3}Sn wires. A solenoid of small dimensions was tested with success in high external magnetic fields and has produced a magnetic field of 3.8 T under 740 A. (author)

  13. Tree-like SnO2 nanowires and optical properties

    International Nuclear Information System (INIS)

    Tao Tao; Chen Qiyuan; Hu Huiping; Chen Ying

    2011-01-01

    Research highlights: → Tree-like SnO 2 nanowires can be grown as low as 1100 deg. C by a vapour-solid process using a milled SnO 2 powder as the evaporation source. → FT-IR and PL measurements have shown that the tree-like nanostructures lead to superb physical properties. → The PL spectrum of such tree-like nanowires exhibits a strong PL peak at 548 nm. - Abstract: Tree-like SnO 2 nanowires have been grown by a vapor-solid process using a milled SnO 2 powder as the evaporation source. Phase, structural evolution and chemical composition were investigated using X-ray diffraction (XRD), X-ray spectrometry (EDS), and scanning electron microscopy (SEM). The process yields a large proportion of ultra-long rutile nanowires of 50-150 nm diameter and lengths up to several tens of micrometers. High-resolution transmission electron microscopy (HRTEM) shows that the SnO 2 nanowires are single crystals in the (1 0 1) growth direction with scattered smaller crystals or nanowires as the tree branches. The SnO 2 nanostructures were also examined using Fourier transform infra-red (FT-IR) and photoluminescence (PL) spectroscopy. A strong emission band centered at 548 nm dominated the PL spectrum of the tree-like nanowires.

  14. Portuguese granites associated with Sn-W and Au mineralizations

    Directory of Open Access Journals (Sweden)

    Ana M.R. Neiva

    2002-01-01

    Full Text Available In northern and central Portugal, there are different tin-bearing granites. Most of them are of S-type, others have mixed characteristics of I-type and S-type granites and a few are of I-type. Tin-tungsten deposits are commonly associated with Hercynian tin-bearing S-type granites. Some quartz veins with wolframite are associated with an I-type granite, which has a low Sn content. In suites of tin-bearing S-type granitic rocks, Sn content increases as a function of the degree of fractional crystallization. Greisenizations of two-mica S-type granites associated with tin-tungsten mineralizations are accompanied by an increase in SiO2, H2O+, Sn, W, Nb, Ta, Rb, Zn, and Pb and decrease in MgO, Na2O, V, Sc,Zr, and Sr. The granite associated with the Jales gold deposit is of S-type and strongly differentiated like the tin-bearing S-type granites, but it has a very low Sn content. During fractional crystallization, Si, Rb, Sn, Pb, Au, As, Sb, and S increase. During increasing degree of hydrothermal alteration of this granite at the gold-quartz vein walls, there are progressive increases in K2O, H2O+, Sn, Cs, Cu, Pb, Au, Sb, As, and S.

  15. Non-LTE model calculations for SN 1987A and the extragalactic distance scale

    Science.gov (United States)

    Schmutz, W.; Abbott, D. C.; Russell, R. S.; Hamann, W.-R.; Wessolowski, U.

    1990-01-01

    This paper presents model atmospheres for the first week of SN 1987A, based on the luminosity and density/velocity structure from hydrodynamic models of Woosley (1988). The models account for line blanketing, expansion, sphericity, and departures from LTE in hydrogen and helium and differ from previously published efforts because they represent ab initio calculations, i.e., they contain essentially no free parameters. The formation of the UV spectrum is dominated by the effects of line blanketing. In the absorption troughs, the Balmer line profiles were fit well by these models, but the observed emissions are significantly stronger than predicted, perhaps due to clumping. The generally good agreement between the present synthetic spectra and observations provides independent support for the overall accuracy of the hydrodynamic models of Woosley. The question of the accuracy of the Baade-Wesselink method is addressed in a detailed discussion of its approximations. While the application of the standard method produces a distance within an uncertainty of 20 percent in the case of SN 1987A, systematic errors up to a factor of 2 are possible, particularly if the precursor was a red supergiant.

  16. Evaluation of mechanical properties of nanocrystalline Ti-Mo-Fe-Sn alloys system; Avaliacao de propriedades mecanicas de ligas nanocristalinas do sistema Ti-Mo-Fe-Sn

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, M.O.A; Vidilli, A.L.; Afonso, C.R.M., E-mail: andre.vidilli@gmail.com [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2014-07-01

    The Ti-6Al-4V, widely used in biomaterials, exhibits elastic modulus (E) of approximately 110GPa, which is significantly higher than the one of human bone (E = 10 to 30 GPa). In this project, a process of rapid solidification was utilized in 4 different alloys of Ti-Mo-Fe-Sn, in order to produce ultrafine nanocrystalline eutectic alloys, which present high strength (1800-2500 MPa), low elastic modulus (50-110 GPa) and good corrosion resistance. The alloys Ti{sub 62}Fe{sub 30}Mo{sub 8}, Ti{sub 56}Fe{sub 30}Mo{sub 8}Sn{sub 6}, Ti{sub 63}Fe{sub 23}Mo{sub 8}Sn{sub 6}, Ti{sub 60}Fe{sub 23}Mo{sub 8}Sn{sub 9} show Vickers microhardness de, respectively, 745 (1mm), 733 (1mm), 609 (1mm) e 651(1mm) HV. The characterization was performed using scanning electron microscopy (SEM) and X- ray diffraction (XRD). The results indicated the presence of a β-Ti (bcc) matrix and the intermetallic TiFe and Ti{sub 3}Sn phases, and the microstructure were formed by dendrites, and eutectic constituents, which were present in the compositions Ti{sub 62}Fe{sub 30}Mo{sub 8}, Ti{sub 56}Fe{sub 30}Mo{sub 8}Sn{sub 6}, Ti{sub 63}Fe{sub 23}Mo{sub 8}Sn{sub 6}, Ti{sub 60}Fe{sub 23}Mo{sub 8}Sn{sub 9}. (author)

  17. Experimental and computational study of the morphological evolution of intermetallic compound (Cu6Sn5) layers at the Cu/Sn interface under isothermal soldering conditions

    International Nuclear Information System (INIS)

    Park, M.S.; Stephenson, M.K.; Shannon, C.; Cáceres Díaz, L.A.; Hudspeth, K.A.; Gibbons, S.L.; Muñoz-Saldaña, J.; Arróyave, R.

    2012-01-01

    Cu/Sn soldering alloys have emerged as a viable alternative to Pb-based solders, and thus have been extensively explored in the past decade, although the fine-scale behavior of the resulting intermetallic compounds (IMCs), particularly during the early stages of interface formation, is still a source of debate. In this work, the microstructural evolution of Cu 6 Sn 5 , in a Cu/Sn soldering reaction at 523 K, was experimentally investigated by dipping a single Cu sample into molten Sn at a near-constant speed, yielding a continuous set of time evolution samples. The thickness, coarsening and morphology evolution of the Cu 6 Sn 5 layer is investigated through the use of scanning electron microscopy. The experimental results are also compared to phase-field simulations of the microstructural evolution of the Cu 6 Sn 5 layer. The influence of model parameters on the kinetics and morphological evolution of the IMC layer was examined. In general, good qualitative agreement is found between experiments and simulations and for a limited parameter set there appears to be good quantitative agreement between the growth kinetics of the Cu 6 Sn 5 layer, the grain boundary (GB) effect on grain coarsening, and the substrate/IMC interface roughness evolution. Furthermore, the parametric investigations of the model suggests that good agreement between experiments and simulations is achieved when the dominant transport mechanism for the reacting elements (Cu and Sn) is GB diffusion.

  18. Quaternary selenostannates Na{sub 2-x}Ga{sub 2-x}Sn{sub 1+x}Se{sub 6} and AGaSnSe{sub 4} (A=K, Rb, and Cs) through rapid cooling of melts. Kinetics versus thermodynamics in the polymorphism of AGaSnSe{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, S -J; Iyer, R G; Kanatzidis, M G

    2004-10-01

    The quaternary alkali-metal gallium selenostannates, Na{sub 2-x}Ga{sub 2-x}Sn{sub 1+x}Se{sub 6} and AGaSnSe{sub 4} (A=K, Rb, and Cs), were synthesized by reacting alkali-metal selenide, Ga, Sn, and Se with a flame melting-rapid cooling method. Na{sub 2-x}Ga{sub 2-x}Sn{sub 1+x}Se{sub 6} crystallizes in the non-centrosymmetric space group C2 with cell constants a=13.308(3) A, b=7.594(2) A, c=13.842(3) A, {beta}=118.730(4) deg., V=1226.7(5) A{sup 3}. {alpha}-KGaSnSe{sub 4} crystallizes in the tetragonal space group I4/mcm with a=8.186(5) A and c=6.403(5) A, V=429.1(5) A{sup 3}. {beta}-KGaSnSe{sub 4} crystallizes in the space group P2{sub 1}/c with cell constants a=7.490(2) A, b=12.578(3) A, c=18.306(5) A, {beta}=98.653(5) deg., V=1705.0(8) A{sup 3}. The unit cell of isostructural RbGaSnSe{sub 4} is a=7.567(2) A, b=12.656(3) A, c=18.277(4) A, {beta}=95.924(4) deg., V=1741.1(7) A{sup 3}. CsGaSnSe{sub 4} crystallizes in the orthorhombic space group Pmcn with a=7.679(2) A, b=12.655(3) A, c=18.278(5) A, V=1776.1(8) A{sup 3}. The structure of Na{sub 2-x}Ga{sub 2-x}Sn{sub 1+x}Se{sub 6} consists of a polar three-dimensional network of trimeric (Sn,Ga){sub 3}Se{sub 9} units with Na atoms located in tunnels. The AGaSnSe{sub 4} possess layered structures. The compounds show nearly the same Raman spectral features, except for Na{sub 2-x}Ga{sub 2-x}Sn{sub 1+x}Se{sub 6}. Optical band gaps, determined from UV-Vis spectroscopy, range from 1.50 eV in Na{sub 2-x}Ga{sub 2-x}Sn{sub 1+x}Se{sub 6} to 1.97 eV in CsGaSnSe{sub 4}. Cooling of the melts of KGaSnSe{sub 4} and RbGaSnSe{sub 4} produces only kinetically stable products. The thermodynamically stable product is accessible under extended annealing, which leads to the so-called {gamma}-form (BaGa{sub 2}S{sub 4}-type) of these compounds.

  19. Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process

    Science.gov (United States)

    Neto, Almir Oliveira; Dias, Ricardo R.; Tusi, Marcelo M.; Linardi, Marcelo; Spinacé, Estevam V.

    PtRu/C, PtSn/C and PtSnRu/C electrocatalysts were prepared by the alcohol reduction process using ethylene glycol as the solvent and reduction agent and Vulcan Carbon XC72 as the support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry. The electrochemical oxidation of methanol and ethanol were studied by chronoamperometry using a thin porous coating technique. The PtSn/C electrocatalyst prepared by this methodology showed superior performance compared to the PtRu/C and PtSnRu/C electrocatalysts for methanol and ethanol oxidation at room temperature.

  20. SN 2016X: a type II-P supernova with a signature of shock breakout from explosion of a massive red supergiant

    Science.gov (United States)

    Huang, F.; Wang, X.-F.; Hosseinzadeh, G.; Brown, P. J.; Mo, J.; Zhang, J.-J.; Zhang, K.-C.; Zhang, T.-M.; Howell, D.-A.; Arcavi, I.; McCully, C.; Valenti, S.; Rui, L.-M.; Song, H.; Xiang, D.-F.; Li, W.-X.; Lin, H.; Wang, L.-F.

    2018-04-01

    We present extensive ultraviolet (UV) and optical photometry, as well as dense optical spectroscopy, for type II Plateau (IIP) supernova SN 2016X that exploded in the nearby (˜15 Mpc) spiral galaxy UGC 08041. The observations span the period from 2 to 180 d after the explosion; in particular, the Swift UV data probably captured the signature of shock breakout associated with the explosion of SN 2016X. It shows very strong UV emission during the first week after explosion, with a contribution of ˜20-30 per cent to the bolometric luminosity (versus ≲15 per cent for normal SNe IIP). Moreover, we found that this supernova has an unusually long rise time of about 12.6 ± 0.5 d in the R band (versus ˜7.0 d for typical SNe IIP). The optical light curves and spectral evolution are quite similar to the fast-declining type IIP object SN 2013ej, except that SN 2016X has a relatively brighter tail. Based on the evolution of photospheric temperature as inferred from the Swift data in the early phase, we derive that the progenitor of SN 2016X has a radius of about 930 ± 70 R⊙. This large-size star is expected to be a red supergiant star with an initial mass of ≳19-20 M⊙ based on the mass-radius relation of the Galactic red supergiants, and it represents one of the most largest and massive progenitors found for SNe IIP.

  1. The system SnTe-InSe

    International Nuclear Information System (INIS)

    Gurshumov, A.P.; Alidzhanov, M.A.; Aliev, A.S.; Gadzhiev, T.G.; Mamedov, N.A.

    1986-01-01

    This paper discusses the nature of the interaction and physicochemical properties of the alloys of the system SnTe-InSe. The DTA was performed on an NTR-74 pyrometer, XPA on a Dron-2.0 diffractometer and MSA on an MIM-7 metallographic microscope. The microhardness of the samples was determined on a PMT-3 microhardness tester. The congruently melting compound SnInTeSe and solid solutions based on the starting components are formed in the system

  2. CuLi2Sn and Cu2LiSn: Characterization by single crystal XRD and structural discussion towards new anode materials for Li-ion batteries.

    Science.gov (United States)

    Fürtauer, Siegfried; Effenberger, Herta S; Flandorfer, Hans

    2014-12-01

    The stannides CuLi 2 Sn (CSD-427095) and Cu 2 LiSn (CSD-427096) were synthesized by induction melting of the pure elements and annealing at 400 °C. The phases were reinvestigated by X-ray powder and single-crystal X-ray diffractometry. Within both crystal structures the ordered CuSn and Cu 2 Sn lattices form channels which host Cu and Li atoms at partly mixed occupied positions exhibiting extensive vacancies. For CuLi 2 Sn, the space group F-43m. was verified (structure type CuHg 2 Ti; a =6.295(2) Å; wR 2 ( F ²)=0.0355 for 78 unique reflections). The 4( c ) and 4( d ) positions are occupied by Cu atoms and Cu+Li atoms, respectively. For Cu 2 LiSn, the space group P 6 3 / mmc was confirmed (structure type InPt 2 Gd; a =4.3022(15) Å, c =7.618(3) Å; wR 2 ( F ²)=0.060 for 199 unique reflections). The Cu and Li atoms exhibit extensive disorder; they are distributed over the partly occupied positions 2( a ), 2( b ) and 4( e ). Both phases seem to be interesting in terms of application of Cu-Sn alloys as anode materials for Li-ion batteries.

  3. THE 2012 RISE OF THE REMARKABLE TYPE IIn SN 2009ip

    International Nuclear Information System (INIS)

    Prieto, José L.; Brimacombe, J.; Drake, A. J.; Howerton, S.

    2013-01-01

    Recent observations by Mauerhan et al. have shown the unprecedented transition of the previously identified luminous blue variable (LBV) and supernova (SN) impostor SN 2009ip to a real Type IIn SN explosion. We present ∼100 optical R- and I-band photometric measurements of SN 2009ip obtained between UT 2012 September 23.6 and October 9.6, using 0.3-0.4 m aperture telescopes from the Coral Towers Observatory in Cairns, Australia. The light curves show well-defined phases, including very rapid brightening early on (0.5 mag in 6 hr observed during the night of September 24), a transition to a much slower rise between September 25 and September 28, and a plateau/peak around October 7. These changes are coincident with the reported spectroscopic changes that most likely mark the start of a strong interaction between the fast SN ejecta and a dense circumstellar medium formed during the LBV eruptions observed in recent years. In the 16-day observing period, SN 2009ip brightened by 3.7 mag from I = 17.4 mag on September 23.6 (M I ≅ –14.2) to I = 13.7 mag (M I ≅ –17.9) on October 9.6, radiating ∼3 × 10 49 erg in the optical wavelength range. As of 2012 October 9.6, SN 2009ip is more luminous than most Type IIP SN and comparable to other Type IIn SN.

  4. Fabrication and thermoelectric properties of fine-grained TiNiSn compounds

    International Nuclear Information System (INIS)

    Zou Minmin; Li Jingfeng; Du Bing; Liu Dawei; Kita, Takuji

    2009-01-01

    Nearly single-phased TiNiSn half-Heusler compound thermoelectric materials were synthesized by combining mechanical alloying (MA) and spark plasma sintering (SPS) in order to reduce its thermal conductivity by refining the grain sizes. Although TiNiSn compound powders were not synthesized directly via MA, dense bulk samples of TiNiSn compound were obtained by the subsequent SPS treatment. It was found that an excessive Ti addition relative to the TiNiSn stoichiometry is effective in increasing the phase purity of TiNiSn half-Heusler phase in the bulk samples, by compensating for the Ti loss caused by the oxidation of Ti powders and MA processing. The maximum power factor value obtained in the Ti-compensated sample is 1720 μW m -1 K -2 at 685 K. A relatively high ZT value of 0.32 is achieved at 785 K for the present undoped TiNiSn compound polycrystals. - Graphical abstract: Nearly single-phased TiNiSn-based half-Heusler compound polycrystalline materials with fine grains were fabricated by combining mechanical alloying (MA) and spark plasma sintering (SPS). A high ZT value for undoped TiNiSn was obtained because of the reduced thermal conductivity.

  5. Kinetics of photo-activated charge carriers in Sn:CdS

    Energy Technology Data Exchange (ETDEWEB)

    Patidar, Manju Mishra, E-mail: manjumishra.iuc@gmail.com; Gorli, V. R.; Gangrade, Mohan; Nath, R.; Ganesan, V. [UGC-DAE CSR, University Campus, Khandwa Road, Indore (M.P.)-452001 (India); Panda, Richa [S.S. Jain Subodh Girls College, Airport Road Sanganer, Jaipur - 302029 (India)

    2016-05-23

    Kinetics of the photo-activated charge carriers has been investigated in Tin substituted Cadmium Sulphide, Cd{sub 1-x}Sn{sub x}S (x=0, 0.05, 0.10 and 0.15), thin films prepared by spray pyrolysis. X-Ray Diffraction shows an increase in strain that resulted in the decreased crystallite size upon Sn substitution. At the first sight, the photo current characteristics show a quenching effect on Sn substitution. However, survival of persistent photocurrents is seen even up to 15% of Sn substitution. Transient photo current decay could be explained with a 2τ relaxation model. CdS normally has an n-type character and the Sn doping expected to inject hole carriers. The two fold increase in τ{sub 1}, increase in activation energy and the decrease in photocurrents upon Sn substitution point towards a band gap cleaning scenario that include compensation and associated carrier injection dynamics. In addition Atomic Force Microscopy shows a drastic change in microstructure that modulates the carrier dynamics as a whole.

  6. Porous SnO2-CuO nanotubes for highly reversible lithium storage

    Science.gov (United States)

    Cheong, Jun Young; Kim, Chanhoon; Jung, Ji-Won; Yoon, Ki Ro; Kim, Il-Doo

    2018-01-01

    Facile synthesis of rationally designed structures is critical to realize a high performance electrode for lithium-ion batteries (LIBs). Among different candidates, tin(IV) oxide (SnO2) is one of the most actively researched electrode materials due to its high theoretical capacity (1493 mAh g-1), abundance, inexpensive costs, and environmental friendliness. However, severe capacity decay from the volume expansion and low conductivity of SnO2 have hampered its use as a feasible electrode for LIBs. Rationally designed SnO2-based nanostructures with conductive materials can be an ideal solution to resolve such limitations. In this work, we have successfully fabricated porous SnO2-CuO composite nanotubes (SnO2-CuO p-NTs) by electrospinning and subsequent calcination step. The porous nanotubular structure is expected to mitigate the volume expansion of SnO2, while the as-formed Cu from CuO upon lithiation allows faster electron transport by improving the low conductivity of SnO2. With a synergistic effect of both Sn and Cu-based oxides, SnO2-CuO p-NTs deliver stable cycling performance (91.3% of capacity retention, ∼538 mAh g-1) even after 350 cycles at a current density of 500 mA g-1, along with enhanced rate capabilities compared with SnO2.

  7. The Ruthenostannylene Complex [Cp*(IXy)H2 Ru-Sn-Trip]: Providing Access to Unusual Ru-Sn Bonded Stanna-imine, Stannene, and Ketenylstannyl Complexes.

    Science.gov (United States)

    Liu, Hsueh-Ju; Ziegler, Micah S; Tilley, T Don

    2015-05-26

    Reactivity studies of the thermally stable ruthenostannylene complex [Cp*(IXy)(H)2 Ru-Sn-Trip] (1; IXy=1,3-bis(2,6-dimethylphenyl)imidazol-2-ylidene; Cp*=η(5) -C5 Me5 ; Trip=2,4,6-iPr3 C6 H2 ) with a variety of organic substrates are described. Complex 1 reacts with benzoin and an α,β-unsaturated ketone to undergo [1+4] cycloaddition reactions and afford [Cp*(IXy)(H)2 RuSn(κ(2) -O,O-OCPhCPhO)Trip] (2) and [Cp*(IXy)(H)2 RuSn(κ(2) -O,C-OCPhCHCHPh)Trip] (3), respectively. The reaction of 1 with ethyl diazoacetate resulted in a tin-substituted ketene complex [Cp*(IXy)(H)2 RuSn(OC2 H5 )(CHCO)Trip] (4), which is most likely a decomposition product from the putative ruthenium-substituted stannene complex. The isolation of a ruthenium-substituted stannene [Cp*(IXy)(H)2 RuSn(=Flu)Trip] (5) and stanna-imine [Cp*(IXy)(H)2 RuSn(κ(2) -N,O-NSO2 C6 H4 Me)Trip] (6) complexes was achieved by treatment of 1 with 9-diazofluorene and tosyl azide, respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Parts per billion-level detection of benzene using SnO2/graphene nanocomposite composed of sub-6 nm SnO2 nanoparticles.

    Science.gov (United States)

    Meng, Fan-Li; Li, Hui-Hua; Kong, Ling-Tao; Liu, Jin-Yun; Jin, Zhen; Li, Wei; Jia, Yong; Liu, Jin-Huai; Huang, Xing-Jiu

    2012-07-29

    In the present work, the SnO(2)/graphene nanocomposite composed of 4-5 nm SnO(2) nanoparticles was synthesized using a simple wet chemical method for ppb-level detection of benzene. The formation mechanism of the nanocomposite was investigated systematically by means of simultaneous thermogravimetry analysis, X-ray diffraction, and X-ray photoelectron spectroscopy cooperated with transmission electron microscopy observations. The SnO(2)/graphene nanocomposite showed a very attractive improved sensitivity to toxic volatile organic compounds, especially to benzene, compared to a traditional SnO(2). The responses of the nanocomposite to benzene were a little higher than those to ethanol and the detection limit reached 5 ppb to benzene which is, to our best knowledge, far lower than those reported previously. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Hubble space telescope and ground-based observations of the type Iax supernovae SN 2005hk and SN 2008A

    Energy Technology Data Exchange (ETDEWEB)

    McCully, Curtis; Jha, Saurabh W. [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Foley, Ryan J. [Astronomy Department, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Chornock, Ryan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Holtzman, Jon A. [Department of Astronomy, MSC 4500, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003 (United States); Balam, David D. [Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Branch, David [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Filippenko, Alexei V.; Ganeshalingam, Mohan; Li, Weidong [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Frieman, Joshua [Kavli Institute for Cosmological Physics and Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Fynbo, Johan; Leloudas, Giorgos [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Galbany, Lluis [Institut de Física d' Altes Energies, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Garnavich, Peter M. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Graham, Melissa L. [Las Cumbres Observatory Global Telescope Network, Goleta, CA 93117 (United States); Hsiao, Eric Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Leonard, Douglas C., E-mail: cmccully@physics.rutgers.edu [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); and others

    2014-05-10

    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). Here we focus on late-time observations, where these objects deviate most dramatically from all other SN types. Instead of the dominant nebular emission lines that are observed in other SNe at late phases, spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with n{sub e} ≳ 10{sup 9} cm{sup –3}. Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected 'infrared catastrophe', a generic feature of SN Ia models. However, our HST photometry of SN 2008A does not match the predictions of an infrared catastrophe. Moreover, our HST observations rule out a 'complete deflagration' that fully disrupts the white dwarf for these peculiar SNe, showing no evidence for unburned material at late times. Deflagration explosion models that leave behind a bound remnant can match some of the observed properties of SNe Iax, but no published model is consistent with all of our observations of SNe 2005hk and 2008A.

  10. Hubble space telescope and ground-based observations of the type Iax supernovae SN 2005hk and SN 2008A

    International Nuclear Information System (INIS)

    McCully, Curtis; Jha, Saurabh W.; Foley, Ryan J.; Chornock, Ryan; Holtzman, Jon A.; Balam, David D.; Branch, David; Filippenko, Alexei V.; Ganeshalingam, Mohan; Li, Weidong; Frieman, Joshua; Fynbo, Johan; Leloudas, Giorgos; Galbany, Lluis; Garnavich, Peter M.; Graham, Melissa L.; Hsiao, Eric Y.; Leonard, Douglas C.

    2014-01-01

    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). Here we focus on late-time observations, where these objects deviate most dramatically from all other SN types. Instead of the dominant nebular emission lines that are observed in other SNe at late phases, spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with n e ≳ 10 9 cm –3 . Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected 'infrared catastrophe', a generic feature of SN Ia models. However, our HST photometry of SN 2008A does not match the predictions of an infrared catastrophe. Moreover, our HST observations rule out a 'complete deflagration' that fully disrupts the white dwarf for these peculiar SNe, showing no evidence for unburned material at late times. Deflagration explosion models that leave behind a bound remnant can match some of the observed properties of SNe Iax, but no published model is consistent with all of our observations of SNe 2005hk and 2008A.

  11. THE PRODUCTION RATE OF SN Ia EVENTS IN GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Washabaugh, Pearce C.; Bregman, Joel N.

    2013-01-01

    In globular clusters, dynamical evolution produces luminous X-ray emitting binaries at a rate about 200 times greater than in the field. If globular clusters also produce SN Ia at a high rate, it would account for many of the SN Ia production in early-type galaxies and provide insight into their formation. Here we use archival Hubble Space Telescope (HST) images of nearby galaxies that have hosted an SN Ia to examine the rate at which globular clusters produce these events. The location of the SN Ia is registered on an HST image obtained before the event or after the supernova (SN) faded. Of the 36 nearby galaxies examined, 21 had sufficiently good data to search for globular cluster hosts. None of the 21 SNe have a definite globular cluster counterpart, although there are some ambiguous cases. This places an upper limit to the enhancement rate of SN Ia production in globular clusters of about 42 at the 95% confidence level, which is an order of magnitude lower than the enhancement rate for luminous X-ray binaries. Even if all of the ambiguous cases are considered as having a globular cluster counterpart, the upper bound for the enhancement rate is 82 at the 95% confidence level, still a factor of several below that needed to account for half of the SN Ia events. Barring unforeseen selection effects, we conclude that globular clusters are not responsible for producing a significant fraction of the SN Ia events in early-type galaxies.

  12. In vitro and in vivo evaluation of SN-38 nanocrystals with different particle sizes

    Directory of Open Access Journals (Sweden)

    Chen M

    2017-08-01

    Full Text Available Min Chen,1,2 Wanqing Li,3 Xun Zhang,1 Ye Dong,1 Yabing Hua,1 Hui Zhang,1 Jing Gao,1 Liang Zhao,2 Ying Li,1 Aiping Zheng1 1State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 2School of Pharmacy, Jinzhou Medical University, Jinzhou, 3School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China Abstract: 7-Ethyl-10-hydroxycamptothecin (SN-38 is a potent broad-spectrum antitumor drug derived from irinotecan hydrochloride (CPT-11. Due to its poor solubility and instability of the active lactone ring, its clinical use is significantly limited. As one of the most promising formulations for poorly water-soluble drugs, nanocrystals have attracted increasing attention. In order to solve these problems and evaluate the antitumor effect of SN-38 in vitro and in vivo, two nanocrystals with markedly different particle sizes were prepared. Dynamic light scattering and transmission electron microscopy were used to investigate the two nanocrystals. The particle sizes of SN-38 nanocrystals A (SN-38/NCs-A and SN-38 nanocrystals B (SN-38/NCs-B were 229.5±1.99 and 799.2±14.44 nm, respectively. X-ray powder diffraction analysis showed that the crystalline state of SN-38 did not change in the size reduction process. An accelerated dissolution velocity of SN-38 was achieved by nanocrystals, and release rate of SN-38/NCs-A was significantly faster than that of SN-38/NCs-B. Cellular uptake, cellular cytotoxicity, pharmacokinetics, animal antitumor efficacy, and tissue distribution were subsequently examined. As a result, enhanced intracellular accumulation in HT1080 cells and cytotoxicity on different tumor cells were observed for SN-38/NCs-A compared to that for SN-38/NCs-B and solution. Besides, compared to the SN-38 solution, SN-38/NCs-A had a higher bioavailability after intravenous injection; while the bioavailability of SN-38/NCs-B was even lower than

  13. A novel method for massive synthesis of SnO2 nanowires

    Indian Academy of Sciences (India)

    Compositions of three reaction systems for synthesizing SnO2 nanowires by thermite reaction. Constituents (g) ... ing voltage and at a magnification of 3000. .... nanowires to obtain the distribution shown in figure 7. SnO2 ... The Sn drop sprayed ...

  14. Neutrino properties and supernova SN1987a

    International Nuclear Information System (INIS)

    Nussinov, S.

    1989-01-01

    The use of SN1987a to indicate how limits on neutrino properties can be deduced from the observed neutrino signals is shown. Bounds on possible deviations from relativity are briefly considered. The possible evidence for a half-millisecond pulsar in the SN remnant and on speculative attempts at finding the same periodicity in the neutrino signal are commented on. 37 refs

  15. Studies of the labelling of human serum albumin with 99mTc using Sn(II) tartrate and Sn(II)Cl2 as reducing agents

    International Nuclear Information System (INIS)

    El-Kolaly, M.T.; El-Asrag, H.A.; El-Wetery, A.S.; El-Mohty, A.A.

    1990-01-01

    A comparative study has been carried out on the effect of Sn(II) tartrate and Sn(II)Cl 2 on the labelling efficiency and tissue distribution of 99m Tc-human serum albumin. The effect of reductant content, reaction time (incubation time), albumin content, pH, and ascorbic acid on the efficiency of labelling and the tissue distribution of the labelled albumin has been investigated. The percentage of labelling was determined by paper and thin layer radiochromatography. Ascorbic acid shows no effect on either labelling efficiency or tissue distribution of 99m Tc-HSA prepared by Sn(II) tartrate or Sn(II)Cl 2 . (author)

  16. Al-doped SnO2 nanocrystals from hydrothermal systems

    International Nuclear Information System (INIS)

    Jin Haiying; Xu Yaohua; Pang Guangsheng; Dong Wenjun; Wan Qiang; Sun Yan; Feng Shouhua

    2004-01-01

    Nanoparticles of Al-doped SnO 2 have been hydrothermally synthesized. The influences of the hydrothermal reaction time, the molar ratio of Sn/Al as well as the pH value of the solution have been studied. During the hydrothermal synthesis, the particle's core is rich in Sn and the surface is rich in Al. The Al-rich surface prevents the particles from further growing up either in the hydrothermal condition or during the calcination at 600 deg. C for a short period of time. The optimal hydrothermal synthesis condition of the nanoparticles is pH 5, Sn/Al=4:1 and 12 h at 160 deg. C. The products have been studied by XRD, TEM and 27 Al solid-state NMR

  17. Crystallographic disorder and magnetism in UPd2-xSn

    International Nuclear Information System (INIS)

    Suellow, S.; Mattheus, C.C.; Becker, B.; Snel, C.E.; Nieuwenhuys, G.J.; Mydosh, J.A.; Schenck, A.

    1997-01-01

    The intermetallic compound UPd 2 Sn has been shown in previous investigations to crystallize in an orthorhombic structure (space group Pnma). No indications for magnetic or superconducting transitions were found. However, if the Pd content is reduced, then, similar to UNi 2 Sn, a structural transition occurs. We prepared UPd 1.85 Sn and found it to crystallize as a Heusler compound in the MnCu 2 Al-structure (space group Fm anti 3m). Now the system undergoes a transition into a disordered magnetic state at T mag ≅ 28 K. Here, we present our measurements of the specific heat, susceptibility and muon relaxation of UPd 1.85 Sn, and discuss the nature of the magnetic state in relation to the crystallographic structure. (orig.)

  18. Stress effects on multifilamentary Nb3Sn wire

    International Nuclear Information System (INIS)

    Bartlett, R.J.; Taylor, R.D.; Thompson, J.D.

    1979-01-01

    Critical current I/sub c/ measurements were obtained on highly stabilized mf Nb 3 Sn wires as a function of heat treatment, stress, temperature, and applied magnetic field. The ratio of the area of the copper to bronze core-niobium tube is about 8, and the filaments are concentrated in the inner 30% of the wire cross section. Values of I/sub c/ and T/sub c/ were determined for samples subjected to a wide range of heat treatments. Diffusion reaction times and temperatures in the ranges 16 to 128 hr and 700 to 750 0 C provided a number of mf Nb 3 Sn wires having similar I/sub c/ characteristics. To some extent the residual compressive loading on the Nb 3 Sn wires varied with the particular heat treatment. This loading arises primarily from the differential contraction of the remaining bronze and the Nb 3 Sn layer when cooled from the reaction temperature to the operating temperature. It was found that, by controlled bending or stretching of the wires, whereby some of the strain in the Nb 3 Sn is relieved, the I/sub c/ at 14 K is increased by as much as 30% and the critical temperature is increased by up to 1 K

  19. Hydrogen peroxide route to Sn-doped titania photocatalysts

    Directory of Open Access Journals (Sweden)

    Štengl Václav

    2012-10-01

    Full Text Available Abstract Background The work aims at improving photocatalytic activity of titania under Vis light irradiation using modification by Sn ions and an original, simple synthesis method. Tin-doped titania catalysts were prepared by thermal hydrolysis of aqueous solutions of titanium peroxo-complexes in the presence of SnCl4 or SnCl2 using an original, proprietary "one pot" synthesis not employing organic solvents, metallo-organic precursors, autoclave aging nor post-synthesis calcination. The products were characterized in details by powder diffraction, XPS, UV–vis, IR, and Raman spectroscopies, electron microscopy and surface area and porosity measurements Results The presence of tin in synthesis mixtures favors the formation of rutile and brookite at the expense of anatase, decreases the particle size of all formed titania polymorphs, and extends light absorption of titania to visible light region >400 nm by both red shift of the absorption edge and introduction of new chromophores. The photocatalytic activity of titania under UV irradiation and >400 nm light was tested by decomposition kinetics of Orange II dye in aqueous solution Conclusions Doping by Sn improves titania photoactivity under UV light and affords considerable photoactivity under >400 nm light due to increased specific surface area and a phase heterogeneity of the Sn-doped titania powders.

  20. Prevalence of the types of the petrotympanic fissure in the temporomandibular joint dysfunction

    International Nuclear Information System (INIS)

    Cakur, Binali; Sumbullu, Muhammed Akif; Durna, Dogan; Akgul, Hayati Murat

    2011-01-01

    Background Petrotympanic fissure (PTF) is a fissure in the temporal bone that runs from the temporomandibular joint (TMJ) to the tympanic cavity (TC). In PTF, the discomallear ligament (DML) connects the malleus in the tympanic cavity and the articular disc and capsule of the temporomandibular joint. PTF with the DML is a possible cause of aural symptoms related to temporomandibular joint dysfunction (TMD). Purpose To investigate the prevalence of different types of PTF in TMD using dental volumetric tomography (DVT) and determine whether PTF type correlates with age. Material and Methods DVT scans in the sagittal planes of PTFs of 134 patients with TMD were examined for the types of PTF present. Three main PTF types were described: wide, tunnel-shaped structure (type 1); tunnel-shaped structure that is wide open in the PTF entrance to the mandibular fossa and gradually thins out in the tympanic cavity (type 2), tunnel-shaped structure that is wide open in the entrance of the mandibular fossa, with a middle region with a flat-shaped tunnel structure and a narrow exit in the tympanic cavity (type 3). Results In DVT scans, PTF types 1, 2 and 3 were seen in 67.2%, 1.5%, and 31.3% of cases, respectively. We found no significant relationship between age or gender and PTF type. Conclusion The low percentage of type 2 PTF and high percentage of type 1 PTF must be taken into consideration during pre-surgical planning related to TMD. However, future well-designed clinical studies involving larger numbers of subjects will be necessary to confirm the findings of this study

  1. Prevalence of the types of the petrotympanic fissure in the temporomandibular joint dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Cakur, Binali; Sumbullu, Muhammed Akif; Durna, Dogan; Akgul, Hayati Murat (Dept. of Oral Diagnosis and Oral Radiology, Faculty of Dentistry, Ataturk Univ., Erzurum (Turkey)), email: bcakur@atauni.edu.tr

    2011-06-15

    Background Petrotympanic fissure (PTF) is a fissure in the temporal bone that runs from the temporomandibular joint (TMJ) to the tympanic cavity (TC). In PTF, the discomallear ligament (DML) connects the malleus in the tympanic cavity and the articular disc and capsule of the temporomandibular joint. PTF with the DML is a possible cause of aural symptoms related to temporomandibular joint dysfunction (TMD). Purpose To investigate the prevalence of different types of PTF in TMD using dental volumetric tomography (DVT) and determine whether PTF type correlates with age. Material and Methods DVT scans in the sagittal planes of PTFs of 134 patients with TMD were examined for the types of PTF present. Three main PTF types were described: wide, tunnel-shaped structure (type 1); tunnel-shaped structure that is wide open in the PTF entrance to the mandibular fossa and gradually thins out in the tympanic cavity (type 2), tunnel-shaped structure that is wide open in the entrance of the mandibular fossa, with a middle region with a flat-shaped tunnel structure and a narrow exit in the tympanic cavity (type 3). Results In DVT scans, PTF types 1, 2 and 3 were seen in 67.2%, 1.5%, and 31.3% of cases, respectively. We found no significant relationship between age or gender and PTF type. Conclusion The low percentage of type 2 PTF and high percentage of type 1 PTF must be taken into consideration during pre-surgical planning related to TMD. However, future well-designed clinical studies involving larger numbers of subjects will be necessary to confirm the findings of this study

  2. Quasiparticle electronic and optical properties of the Si-Sn system

    International Nuclear Information System (INIS)

    Jensen, Rasmus V S; Pedersen, Thomas G; Larsen, Arne N

    2011-01-01

    The Si 1-x Sn x material system is an interesting candidate for an optically active material compatible with Si. Based on density functional theory with quasiparticle corrections we calculate the electronic band structure of zinc-blende SiSn under both compressive and tensile strain. At 2.2% tensile strain the band gap becomes direct with a magnitude of 0.85 eV. We develop an accurate tight-binding parameterization of the electronic structure and calculate the optical properties of SiSn. Furthermore, the silicide SiSn 2 is investigated and found to have metallic character. (paper)

  3. Ex situ n+ doping of GeSn alloys via non-equilibrium processing

    Science.gov (United States)

    Prucnal, S.; Berencén, Y.; Wang, M.; Rebohle, L.; Böttger, R.; Fischer, I. A.; Augel, L.; Oehme, M.; Schulze, J.; Voelskow, M.; Helm, M.; Skorupa, W.; Zhou, S.

    2018-06-01

    Full integration of Ge-based alloys like GeSn with complementary-metal-oxide-semiconductor technology would require the fabrication of p- and n-type doped regions for both planar and tri-dimensional device architectures which is challenging using in situ doping techniques. In this work, we report on the influence of ex situ doping on the structural, electrical and optical properties of GeSn alloys. n-type doping is realized by P implantation into GeSn alloy layers grown by molecular beam epitaxy (MBE) followed by flash lamp annealing. We show that effective carrier concentration of up to 1 × 1019 cm‑3 can be achieved without affecting the Sn distribution. Sn segregation at the surface accompanied with an Sn diffusion towards the crystalline/amorphous GeSn interface is found at P fluences higher than 3 × 1015 cm‑2 and electron concentration of about 4 × 1019 cm‑3. The optical and structural properties of ion-implanted GeSn layers are comparable with the in situ doped MBE grown layers.

  4. Synthesis and molecular structures of niobocene derivatives containing Nb-Sn-Nb metallochain

    International Nuclear Information System (INIS)

    Skripkin, Yu.V.; Volkov, O.G.; Pasynskij, A.A.

    1985-01-01

    The [Cp 2 Nb(CO)] 2 SnCl 2 (1) complex is synthesized in the form of crystals with 63% yield by the Cp 2 Nb(CO)H reaction wih SnCl 4 in THF in the presence of Et 3 N. The complex 1 is also prepared by interaction of Cp 2 Nb(CO)H with Cp 2 Nb(CO)SnCl 3 with 16% yield. The crystalline more sluble analog [(CH 3 C 5 H 4 ) 2 Nb(CO)] 2 ShCl 2 (2) is extracted, which contains the chain of Nb-Sn-Nb with short Nb-Sn(2.840)2)A bonds and 140.69(5) deg angle between them. The (Cp 2 NbH) 2 Sn(Cl)Et (3) complex is prepared wih 12% yield, possessing the structure analogous to type 2. In 3 each fragment CpNb is connected with the terminal hydride (Nb-H, 1.66(1) and 1.69(1)A) atom forms shortened bond with tin atom Nb-Sn 2.868(1) and 2.856(1) A, NbSnNb angle is 129.44(5)

  5. Hf{sub 3}Fe{sub 4}Sn{sub 4} and Hf{sub 9}Fe{sub 4−x}Sn{sub 10+x}: Two stannide intermetallics with low-dimensional iron sublattices

    Energy Technology Data Exchange (ETDEWEB)

    Calta, Nicholas P. [Department of Chemistry, Northwestern University (United States); Kanatzidis, Mercouri G., E-mail: m-kanatzidis@northwestern.edu [Department of Chemistry, Northwestern University (United States); Materials Science Division, Argonne National Laboratory (United States)

    2016-04-15

    This article reports two new Hf-rich intermetallics synthesized using Sn flux: Hf{sub 3}Fe{sub 4}Sn{sub 4} and Hf{sub 9}Fe{sub 4−x}Sn{sub 10+x}. Hf{sub 3}Fe{sub 4}Sn{sub 4} adopts an ordered variant the Hf{sub 3}Cu{sub 8} structure type in orthorhombic space group Pnma with unit cell edges of a=8.1143(5) Å, b=8.8466(5) Å, and c=10.6069(6) Å. Hf{sub 9}Fe{sub 4−x}Sn{sub 10+x}, on the other hand, adopts a new structure type in Cmc2{sub 1} with unit cell edges of a=5.6458(3) Å, b=35.796(2) Å, and c=8.88725(9) Å for x=0. It exhibits a small amount of phase width in which Sn substitutes on one of the Fe sites. Both structures are fully three-dimensional and are characterized by pseudo one- and two-dimensional networks of Fe–Fe homoatomic bonding. Hf{sub 9}Fe{sub 4−x}Sn{sub 10+x} exhibits antiferromagnetic order at T{sub N}=46(2) K and its electrical transport behavior indicates that it is a normal metal with phonon-dictated resistivity. Hf{sub 3}Fe{sub 4}Sn{sub 4} is also an antiferromagnet with a rather high ordering temperature of T{sub N}=373(5) K. Single crystal resistivity measurements indicate that Hf{sub 3}Fe{sub 4}Sn{sub 4} behaves as a Fermi liquid at low temperatures, indicating strong electron correlation. - Graphical abstract: Slightly different growth conditions in Sn flux produce two new intermetallic compounds: Hf{sub 3}Fe{sub 4}Sn{sub 4} and Hf{sub 9}Fe{sub 4−x}Sn{sub 10+x}. - Highlights: • Single crystals of both Hf{sub 3}Fe{sub 4}Sn{sub 4} and Hf{sub 9}Fe{sub 4−x}Sn{sub 10+x} were grown using Sn flux. • The crystal structures were determined using single crystal X-ray diffraction. • The Fe moments in Hf{sub 3}Fe{sub 4}Sn{sub 4} display AFM order below T{sub N}=373 K. • The Fe moments in Hf{sub 9}Fe{sub 4−x}Sn{sub 10+x} display AFM order below T{sub N}=46 K.

  6. Organ distribution of sup(99m)Tc-Sn tetracycline antibiotics in rats

    International Nuclear Information System (INIS)

    Kalincak, M.; Machan, V.; Barna, K.

    1976-01-01

    The organ distribution of [sup(99m)Tc-Sn]tetracycline hydrochloride, [sup(99m)Tc-Sn]oxytetracycline hydrochloride and [sup(99m)Tc-Sn]rolitetracycline nitrate was studied in rats. It was shown that these preparations have a very similar organ distribution and are predominantly deposited in the kidneys. The maximum renal radioactivity level was found 2 to 4 hours after intravenous administration of the preparation, this, for [sup(99m)Tc-Sn]tetracycline hydrochloride 18.60%; for [sup(99m)Tc-Sn]oxytetracycline hydrochloride 17.09.=.; for [sup(99m)Tc-Sn]rolitetracycline nitrate 20.12%. The activity levels in the muscle, liver, heart, brain, lungs, stomach and spleen are minimal. (author)

  7. Organ distribution of /sup 99m/Tc--Sn tetracycline antibiotics in rats

    Energy Technology Data Exchange (ETDEWEB)

    Kalincak, M; Machan, V; Barna, K [Univerzita P.J. Safarika, Kosice (Czechoslovakia). Lekarska Fakulta

    1976-06-01

    The organ distribution of (sup(99m)Tc-Sn)tetracycline hydrochloride, (sup(99m)Tc-Sn)oxytetracycline hydrochloride and (sup(99m)Tc-Sn)rolitetracycline nitrate was studied in rats. It was shown that these preparations have a very similar organ distribution and are predominantly deposited in the kidneys. The maximum renal radioactivity level was found 2 to 4 hours after intravenous administration of the preparation, this, for (sup(99m)Tc-Sn)tetracycline hydrochloride 18.60%; for (sup(99m)Tc-Sn)oxytetracycline hydrochloride 17.09.=.; for (sup(99m)Tc-Sn)rolitetracycline nitrate 20.12%. The activity levels in the muscle, liver, heart, brain, lungs, stomach and spleen are minimal.

  8. Properties and Microstructures of Sn-Bi-X Lead-Free Solders

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2016-01-01

    Full Text Available The Sn-Bi base lead-free solders are proposed as one of the most popular alloys due to the low melting temperature (eutectic point: 139°C and low cost. However, they are not widely used because of the lower wettability, fatigue resistance, and elongation compared to traditional Sn-Pb solders. So the alloying is considered as an effective way to improve the properties of Sn-Bi solders with the addition of elements (Al, Cu, Zn, Ga, Ag, In, Sb, and rare earth and nanoparticles. In this paper, the development of Sn-Bi lead-free solders bearing elements and nanoparticles was reviewed. The variation of wettability, melting characteristic, electromigration, mechanical properties, microstructures, intermetallic compounds reaction, and creep behaviors was analyzed systematically, which can provide a reference for investigation of Sn-Bi base solders.

  9. Development of SnS (FTO/CdS/SnS) thin films by nebulizer spray pyrolysis (NSP) for solar cell applications

    Science.gov (United States)

    Arulanantham, A. M. S.; Valanarasu, S.; Jeyadheepan, K.; Ganesh, V.; Shkir, Mohd

    2018-01-01

    Herein we report a well-organized analysis on various key-properties of SnS thin films for solar cell fabricated by nebulizer spray pyrolysis technique. X-ray diffraction study reveals the polycrystalline nature of deposited films with orthorhombic crystal structure. The crystallite size was calculated and observed to be in the range of 8-28 nm with increasing molarity of precursor solution. The stoichiometry composition of SnS was confirmed by EDX study. SEM/AFM studies divulge the well-covered deposited surface with spherical grains and the size of grains is increasing with concentration and so the roughness. A remarkable decrease in band gap from 2.6 eV to 1.6 eV was noticed by raising the molar concentration from 0.025 M up to 0.075 M. A single strong emission peak at about 825 nm is observed in PL spectra with enhanced intensity which may be attributed to near band edge emission. From the Hall effect measurement, it was found that the SnS thin film exhibits p-type conductivity. The calculated values of resistivity and carrier concentration are 0.729 Ω cm and 3.67 × 1018/cm3 respectively. Furthermore, to study the photovoltaic properties of SnS thin films a heterojunction solar cell, FTO/n-CdS/p-SnS was produced and the conversion efficiency was recorded about 0.01%.

  10. Intercalation of organic molecules into SnS{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Toh, M.L.; Tan, K.J.; Wei, F.X.; Zhang, K.K.; Jiang, H. [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798 (Singapore); Kloc, C., E-mail: ckloc@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798 (Singapore)

    2013-02-15

    SnS{sub 2} is a layered semiconductor with a van der Waals gap separating the covalently bonded layers. In this study, post-synthesis intercalation of donor organic amine molecules, such as ethylenediamine (en), into tin disulfide and secondary intercalation of p-phenylenediamine (PPD) and 1, 5-naphthalenediamine (NDA) into SnS{sub 2e}n have been verified with X-ray diffraction. PPD and NDA did not intercalate directly even during prolonged annealing but replaced en readily if en was already present in the van der Waals gap. The c-lattice dilation is proportional to the intercalant size. Unit cell lattices of intercalated products were determined from the positions of the X-ray diffraction peaks. Optical images taken during the intercalation showed that intercalation progressed from the periphery towards the interior of the crystal. TEM diffraction patterns in the [0 0 1] direction of SnS{sub 2} after intercalation revealed defects and stacking mismatches among the SnS{sub 2} layers caused by the intercalation. UV-Vis absorption studies showed a red shift in the band edge of the SnS{sub 2} material after intercalation. The band edge was 2.2 eV for pristine SnS{sub 2}; after intercalation with en or PPD, the absorbance spectra band edges shifted to approximately 0.7 eV or 0.5 eV, respectively. - Graphical Abstract: SnS{sub 2} single crystals were intercalated with organic amine molecules such as ethylenediamine, phenylenediamine and naphthalenediamine. Absorption studies showed red shift of band edge after intercalation, which was consistent with optical observations. X-ray diffraction indicated lattice dilation in the c-lattice of SnS{sub 2} after intercalation. Highlights: Black-Right-Pointing-Pointer Organic molecules intercalated inhomogenously between covalently bonded SnS{sub 2} layers. Black-Right-Pointing-Pointer Ethylenediamine (en) intercalate directly into SnS{sub 2}. Black-Right-Pointing-Pointer Phenylenediamine (PPD) and naphthalenediamine (NDA) can be

  11. Laser Spectroscopy Studies in the Neutron-Rich Sn Region

    CERN Multimedia

    Obert, J

    2002-01-01

    We propose to use the powerful laser spectroscopy method to determine the magnetic moment $\\mu$ and the variation of the mean square charge radius ($\\delta\\,\\langle$r$_{c}^{2}\\,\\rangle$) for ground and long-lived isomeric states of the Sn isotopes from A=125 to the doubly-magic $^{132}$Sn isotope and beyond. For these neutron-rich Sn nuclei, numerous $\\delta\\,\\langle$r$^{2}_{c}\\,\\rangle$ curves have already been calculated and the predictions depend upon the effective interactions used. Therefore, a study of the effect of the shell closure N=82 on the $\\delta\\,\\langle$r$^{2}_{c}\\,\\rangle$ values in the Z=50 magic nuclei is of great interest, especially because $^{132}$Sn is located far from the stability valley. It will help to improve the parameters of the effective interactions and make them more suitable to predict the properties of exotic nuclei. \\\\ \\\\The neutron-rich Sn isotopes produced with an uranium carbide target, are ionized using either a hot plasma ion source or the resonant ionization laser ion ...

  12. Synthesis and superconductivity of In-doped SnTe nanostructures

    Directory of Open Access Journals (Sweden)

    Piranavan Kumaravadivel

    2017-07-01

    Full Text Available InxSn1−xTe is a time-reversal invariant candidate 3D topological superconductor derived from doping the topological crystalline insulator SnTe with indium. The ability to synthesize low-dimensional nanostructures of indium-doped SnTe is key for realizing the promise they hold in future spintronic and quantum information processing applications. But hitherto only bulk synthesized crystals and nanoplates have been used to study the superconducting properties. Here for the first time we synthesize InxSn1−xTe nanostructures including nanowires and nanoribbons, which show superconducting transitions. In some of the lower dimensional morphologies, we observe signs of more than one superconducting transition and the absence of complete superconductivity. We propose that material inhomogeneity, such as indium inhomogeneity and possible impurities from the metal catalyst, is amplified in the transport characteristics of the smaller nanostructures and is responsible for this mixed behavior. Our work represents the first demonstration of InxSn1−xTe nanowires with the onset of superconductivity, and points to the need for improving the material quality for future applications.

  13. Experimental study of the Ag-Sn-In phase diagram

    International Nuclear Information System (INIS)

    Vassilev, Gueorgui P.; Dobrev, Evgueni S.; Tedenac, Jean-Claude

    2005-01-01

    Combined metallographic, differential scanning calorimetry, X-ray and scanning electron microscopy studies have been performed using 27 ternary alloys. The microhardness of the α(Ag), ε(Ag 3 Sn) and ζ(Ag 4 Sn,Ag 3 In) phases has been measured. The ternary extension of the phase φ(Ag x In y Sn z , where x ∼ 0.36, y ∼ 0.61, z ∼ 0.03) has been revealed in some specimens, although the binary compound (AgIn 2 ) melts at 166 deg. C. This finding is attributed to the limited cooling rate. The solubility ranges of the solid solution and the intermetallic phases have been determined. The tin and the indium show approximately equal mutual solubility (around 2 at.%) in the ternary extensions of their Ag-Sn or Ag-In phases. The experimental data have been compared with a calculated isothermal section at 280 deg. C and with a vertical section at 2.5 at.% Ag. The thermal analyses have confirmed, in general, the temperatures of the invariant reactions in the Ag-Sn-In system as calculated by literature data

  14. Liver scintigraphy with sup(99m)Tc-Sn-colloid

    International Nuclear Information System (INIS)

    Suzuki, Masaaki

    1976-01-01

    Basic and clinical studies of sup(99m)Tc-Sn-colloid (Tc-Sn-C) were made on liver scintigraphy for comparison with 198 Au-colloid in blood clearance, liver accumulation, and spleen imaging strength. Tc-Sn-C was excellent in ease of sterilization, simplicity of preparation, reduction in the exposure dose for the examiner, labeling rate, and stability, and it was effective as a drug for liver scintigraphy. The blood clearance T1/2 can be an indicator for the blood flow rate in the liver, similarly to the Au-C method. Although a decrease in the liver radioactivity after liver accumulation was observed, it was not thought to affect liver scintigraphy. A clear shadow of the liver was obtained in all cases, and there seemed to be no differences between the commercially prepared Tc-Sn-C and the Tc-Sn-C which must be prepared each time. The spleen imaging strength was thought to be effective as a supplementary diagnosis for splenic diseases. No allergic symptoms appeared immediately after examination. (Chiba, N.)

  15. Interfacial reactions in the Sb–Sn/(Cu, Ni) systems: Wetting experiments

    International Nuclear Information System (INIS)

    Novakovic, R.; Lanata, T.; Delsante, S.; Borzone, G.

    2012-01-01

    Interfacial reactions in the Sb–Sn/Cu and Sb–Sn/Ni systems have been investigated by means of wetting experiments. The wetting behaviour of two lead-free alloys, namely, Sb 2.5 Sn 97.5 and Sb 14.5 Sn 85.5 (at.%), in contact with Cu and Ni-substrates has been studied in view of possible applications as high-temperature solders in the electronics industry. The contact angle measurements on Cu and Ni plates were performed by using a sessile drop apparatus. The solder/substrate interface was characterised by the SEM-EDS analyses. -- Highlights: ► Sb–Sn alloys are used as high temperature lead-free solders. ► Sb–Sn alloys have good wetting properties on Cu and Ni substrates. ► Interfacial reactions and products are important for joint properties. ► Interfacial reactions/products data can be used to study the phase diagrams.

  16. Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Almir Oliveira; Dias, Ricardo R.; Tusi, Marcelo M.; Linardi, Marcelo; Spinace, Estevam V. [Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, Cidade Universitaria, CEP 05508-900 Sao Paulo, SP (Brazil)

    2007-03-30

    PtRu/C, PtSn/C and PtSnRu/C electrocatalysts were prepared by the alcohol reduction process using ethylene glycol as the solvent and reduction agent and Vulcan Carbon XC72 as the support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry. The electrochemical oxidation of methanol and ethanol were studied by chronoamperometry using a thin porous coating technique. The PtSn/C electrocatalyst prepared by this methodology showed superior performance compared to the PtRu/C and PtSnRu/C electrocatalysts for methanol and ethanol oxidation at room temperature. (author)

  17. Sn nanothreads in GaAs: experiment and simulation

    Science.gov (United States)

    Semenikhin, I.; Vyurkov, V.; Bugaev, A.; Khabibullin, R.; Ponomarev, D.; Yachmenev, A.; Maltsev, P.; Ryzhii, M.; Otsuji, T.; Ryzhii, V.

    2016-12-01

    The gated GaAs structures like the field-effect transistor with the array of the Sn nanothreads was fabricated via delta-doping of vicinal GaAs surface by Sn atoms with a subsequent regrowth. That results in the formation of the chains of Sn atoms at the terrace edges. Two device models were developed. The quantum model accounts for the quantization of the electron energy spectrum in the self-consistent two-dimensional electric potential, herewith the electron density distribution in nanothread arrays for different gate voltages is calculated. The classical model ignores the quantization and electrons are distributed in space according to 3D density of states and Fermi-Dirac statistics. It turned out that qualitatively both models demonstrate similar behavior, nevertheless, the classical one is in better quantitative agreement with experimental data. Plausibly, the quantization could be ignored because Sn atoms are randomly placed along the thread axis. The terahertz hot-electron bolometers (HEBs) could be based on the structure under consideration.

  18. Modifications in SnS thin films by plasma treatments

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, H., E-mail: hm@fis.unam.mx [Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Apartado Postal 48-3, 62210 Cuernavaca, Morelos (Mexico); Avellaneda, D. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico)

    2012-02-01

    The present study shows the modifications of structural, optical and electrical characteristics that occur in tin sulfide (SnS) thin films treated in air and in nitrogen plasma at different pressure conditions. The films were obtained by the chemical bath deposition method, which results in SnS thin films with an orthorhombic crystalline structure, band gap (E{sub g}) of 1.1-1.2 eV, and electrical conductivities ({sigma}) in the order of 10{sup -6} {Omega}{sup -1}cm{sup -1}. The films treated with air plasma at pressures between 1 and 4 Torr, showed the presence of SnS{sub 2}, Sn{sub 2}S{sub 3}, and SnO{sub 2} phases, within the band gap values ranging from 0.9 to 1.5 eV. On the other hand, the films treated with nitrogen plasma presented the same phases, but showed a significant modification in the electrical conductivity, increasing from 10{sup -6} {Omega}{sup -1}cm{sup -1} (as-deposited) up to 10{sup -2}-10{sup -3} {Omega}{sup -1}cm{sup -1} (plasma treated). This result is a suitable range of conductivity for the improvement of the solar cells with SnS as an absorber material. Also, emission spectroscopy measurements were carried out in both air and nitrogen plasma treatments.

  19. Interfacial microstructures and solder joint strengths of the Sn-8Zn-3Bi and Sn-9Zn-lAl Pb-free solder pastes on OSP finished printed circuit boards

    Energy Technology Data Exchange (ETDEWEB)

    Lin, C.-T. [Department of Materials Science and Engineering, National United University, 1 Lein-Da, Kung-Ching Li, Miaoli 36003, Taiwan (China); Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, 195 Section 4, Chung-Hsing Road, Chutung, Hsinchu 31040, Taiwan (China); Hsi, C.-S. [Department of Materials Science and Engineering, National United University, 1 Lein-Da, Kung-Ching Li, Miaoli 36003, Taiwan (China); Wang, M.-C. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan (China)], E-mail: mcwang@kmu.edu.tw; Chang, T.-C.; Liang, M.-K. [Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, 195 Section 4, Chung-Hsing Road, Chutung, Hsinchu 31040, Taiwan (China)

    2008-07-14

    Two kinds of lead-free solders, Sn-8Zn-3Bi and Sn-9Zn-lAl, were used to mount passive components onto printed circuit boards via a re-flow soldering process. The samples were stored at 150 deg. C for 200, 400, 600, 800, and 1100 h. The microstructures of the samples after aged at 150 deg. C for various times were characterized using optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and the analyzed of solder joint shear strengths. The joint strength between Sn-8Zn-3Bi and Cu pad was about 4.0 {+-} 0.3 kg, while the strength between Sn-9Zn-lAl and Cu pad had values of 2.6 {+-} 0.1 kg. Both kinds of solder joints exhibited reduced strengths with increasing aging times. After aging at 150 deg. C for 1100 h, the joints strengths of Sn-8Zn-3Bi and Sn-9Zn-lAl were 1.8 {+-} 0.3 and 1.7 {+-} 0.3 kg, respectively. Both the Sn-8Zn-3Bi and Sn-9Zn-lAl joints showed brittle fracture behaviors. A flat layer of Cu{sub 5}Zn{sub 8} intermetallic compound (IMC) was formed between Sn-8Zn-3Bi solder and Cu pad after reflow. When the aging time was increased to 400 h, Zn-depletion and formation of Cu{sub 6}Sn{sub 5} IMC were observed in the solders due to the interaction between the tin and zinc compounds. The interaction between Sn-9Zn-lAl solder and Cu pad had similar behavior, however, Cu{sub 6}Sn{sub 5} IMC formed in Sn-9Zn-lAl solder when after aging at 150 deg. C for 600 h. As the aging time increased, both types of solders generated clear IMC spalling layers with large and continuous voids. Those voids substantially decreased the joint strength.

  20. Magnetoresistance and phase composition of La-Sn-Mn-O systems

    DEFF Research Database (Denmark)

    Li, Z.W.; Morrish, A.H.; Jiang, Jianzhong

    1999-01-01

    The transport properties of the manganites La1 - xSnxMnO3 + delta with x = 0.1-0.5 and of Fe-doped samples have been comprehensively studied using magnetoresistance measurements, Fe-57 and Sn-119 Mossbauer spectroscopy, and x-ray diffraction. At the Sn concentration x = 0.5, La0.5Sn0.5MnO3 + delta...

  1. A new langbeinite-type phosphate: K2AlSn(PO43

    Directory of Open Access Journals (Sweden)

    Dan Zhao

    2011-10-01

    Full Text Available Single crystals of the title compound, dipotassium aluminium tin(IV tris[phosphate(V], K2AlSn(PO43, were synthesized by a high temperature reaction in a platinum crucible. In the structure, the AlIII and SnIV atoms occupy the same site on a threefold rotation axis with occupational disorder in a 1:1 ratio. In the three-dimensional structure, Al/SnO6 octahedra and PO4 tetrahedra are interconnected via their vertices, yielding a [Al/SnP3O12]n framework. The K atoms (site symmetry 3 reside in the large cavities delimited by the [Al/SnP3O12]n framework, and are surrounded by 12 O atoms.

  2. Effects of current stressing on the p-Bi2Te3/Sn interfacial reactions

    International Nuclear Information System (INIS)

    Chan, Hsing-Ting; Lin, Chih-Fan; Yen, Yee-Wen; Chen, Chih-Ming

    2016-01-01

    The Sn/p-Bi 2 Te 3 /Sn sandwich-type sample was current stressed with a density of 150 A/cm 2 to investigate the effects of current stressing on the p-Bi 2 Te 3 /Sn interfacial reactions. Asymmetrical heating phenomenon was observed at the anodic Sn/p-Bi 2 Te 3 (50 °C) and cathodic p-Bi 2 Te 3 /Sn (120 °C) interfaces due to the Peltier effect. Besides the Peltier effect, the electromigration effect also influenced the growth of the SnTe phase and therefore polarity growth behavior was observed at the two interfaces. The growth of the SnTe phase at the cathodic p-Bi 2 Te 3 /Sn interface was accelerated because Peltier and electromigration effects drove more Sn atoms (dominant diffusion species) for the phase growth. By measuring the electromigration-induced atomic flux of Sn, the product of diffusivity and effective charge number (D × z*) was calculated to be 6.3 × 10 −9 cm 2 s −1 at 120 °C. - Highlights: • Sn/p-Bi 2 Te 3 /Sn sandwich-type sample is current stressed with a density of 150 A/cm 2 . • Passage of an electric current induces Peltier and electromigration effects. • Peltier effect causes asymmetrical heating at the anode and cathode interfaces. • Both effects accelerate the SnTe growth at the cathode interface. • Sn is the dominant diffusion species identified by a marker experiment.

  3. Thermoelectric properties of SnSe compound

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Xinhong [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, P.O. Box 72, Beijing 100876 (China); Lu, Pengfei, E-mail: photon@bupt.edu.cn [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, P.O. Box 72, Beijing 100876 (China); Wu, Liyuan; Han, Lihong [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, P.O. Box 72, Beijing 100876 (China); Liu, Gang [School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Song, Yuxin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Wang, Shumin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Gothenburg (Sweden)

    2015-09-15

    Highlights: • The electronic and thermoelectric properties of SnSe bulk material are studied. • The ZT can reach as high as 1.87 along yy and 1.6 along zz direction at 800k. • SnSe is an indirect-band material, and SOC has little effect on the band structure. • The high ZT can be attributed to the intrinsically ultralow thermal conductivity. - Abstract: A first-principles study and Boltzmann transport theory have been performed to evaluate the electronic structure and thermoelectric properties of SnSe compound. The energy band structure and density of states are studied in detail. The electronic transport coefficients are then calculated as a function of chemical potential or temperature within the assumption of the constant relaxation time. The figure of merit ZT is obtained with the use of calculated thermoelectric properties and can reach as high as 1.87 along yy and 1.6 along zz direction at 800 K. Our theoretical result agrees well with previous experimental data.

  4. Thermoelectric properties of SnSe compound

    International Nuclear Information System (INIS)

    Guan, Xinhong; Lu, Pengfei; Wu, Liyuan; Han, Lihong; Liu, Gang; Song, Yuxin; Wang, Shumin

    2015-01-01

    Highlights: • The electronic and thermoelectric properties of SnSe bulk material are studied. • The ZT can reach as high as 1.87 along yy and 1.6 along zz direction at 800k. • SnSe is an indirect-band material, and SOC has little effect on the band structure. • The high ZT can be attributed to the intrinsically ultralow thermal conductivity. - Abstract: A first-principles study and Boltzmann transport theory have been performed to evaluate the electronic structure and thermoelectric properties of SnSe compound. The energy band structure and density of states are studied in detail. The electronic transport coefficients are then calculated as a function of chemical potential or temperature within the assumption of the constant relaxation time. The figure of merit ZT is obtained with the use of calculated thermoelectric properties and can reach as high as 1.87 along yy and 1.6 along zz direction at 800 K. Our theoretical result agrees well with previous experimental data

  5. The Hubble Constant from SN Refsdal

    Science.gov (United States)

    Vega-Ferrero, J.; Diego, J. M.; Miranda, V.; Bernstein, G. M.

    2018-02-01

    Hubble Space Telescope observations from 2015 December 11 detected the expected fifth counter-image of supernova (SN) Refsdal at z = 1.49. In this Letter, we compare the time-delay predictions from numerous models with the measured value derived by Kelly et al. from very early data in the light curve of the SN Refsdal and find a best value for {H}0={64}-11+9 {km} {{{s}}}-1 {{Mpc}}-1 (68% CL), in excellent agreement with predictions from cosmic microwave background and recent weak lensing data + baryon acoustic oscillations + Big Bang nucleosynthesis (from the DES Collaboration). This is the first constraint on H 0 derived from time delays between multiple-lensed SN images, and the first with a galaxy cluster lens, subject to systematic effects different from other time-delay H 0 estimates. Additional time-delay measurements from new multiply imaged SNe will allow derivation of competitive constraints on H 0.

  6. Microwave-Assisted Synthesis of Graphene-SnO2 Nanocomposites and Their Applications in Gas Sensors.

    Science.gov (United States)

    Kim, Hyoun Woo; Na, Han Gil; Kwon, Yong Jung; Kang, Sung Yong; Choi, Myung Sik; Bang, Jae Hoon; Wu, Ping; Kim, Sang Sub

    2017-09-20

    We obtained extremely high and selective sensitivity to NO 2 gas by fabricating graphene-SnO 2 nanocomposites using a commercial microwave oven. Structural characterization revealed that the products corresponded to agglomerated structures of graphene and SnO 2 particles, with small secondary SnO x (x ≤ 2) nanoparticles deposited on the surfaces. The overall oxygen atomic ratio was decreased with the appearance of an SnO x (x graphene-SnO 2 nanocomposites, with the graphene promoting efficient transport of the microwave energy, evaporation and redeposition of SnO x nanoparticles were facilitated. The graphene-SnO 2 nanocomposites exhibited a high sensor response of 24.7 for 1 ppm of NO 2 gas, at an optimized temperature of 150 °C. The graphene-SnO 2 nanocomposites were selectively sensitive to NO 2 gas, in comparison with SO 2 , NH 3 , and ethanol gases. We suggest that the generation of SnO x nanoparticles and the SnO x phase in the matrix results in the formation of SnO 2 /SnO 2 homojunctions, SnO 2 /SnO x (x graphene heterojunctions, which are responsible for the excellent sensitivity of the graphene-SnO 2 nanocomposites to NO 2 gas. In addition, the generation of surface Sn interstitial defects is also partly responsible for the excellent NO 2 sensing performance observed in this study.

  7. Solvothermal Synthesis of Zn2SnO4 Nanocrystals and Their Photocatalytic Properties

    Directory of Open Access Journals (Sweden)

    Guang Sun

    2014-01-01

    Full Text Available Crystalline Zn2SnO4 nanoparticles were successfully synthesized via a simple solvothermal route by using Zn(CH3COO2·2H2O and SnCl4·5H2O as source materials, NaOH as mineralizing agent, and water and ethanol as mixed solvents. The used amount of NaOH was found to have an important influence on the formation of Zn2SnO4. When the molar ratio of OH− : Zn2+ : Sn4+ was set in the range from 4 : 2 : 1 to 8 : 2 : 1, Zn2SnO4 nanoparticles with different shape and size were obtained. However, when the molar ratio of OH− : Zn2+ : Sn4+ was set as 10 : 2 : 1, a mixture phase of ZnO and ZnSn(OH6 instead of Zn2SnO4 was obtained. Photodegradation measurements indicated that the Zn2SnO4 nanoparticles own better photocatalytic property to depredate methyl orange than the Zn2SnO4 nanopolyhedrons. The superior photocatalytic properties of Zn2SnO4 nanoparticles may be contributed to their small crystal size and high surface area.

  8. Near-infrared light absorption by polycrystalline SiSn alloys grown on insulating layers

    Energy Technology Data Exchange (ETDEWEB)

    Kurosawa, Masashi, E-mail: kurosawa@alice.xtal.nagoya-u.ac.jp [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); JSPS, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Kato, Motohiro; Yamaha, Takashi; Taoka, Noriyuki; Nakatsuka, Osamu [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Zaima, Shigeaki [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-04-27

    High-Sn-content SiSn alloys are strongly desired for the next-generation near-infrared optoelectronics. A polycrystalline growth study has been conducted on amorphous SiSn layers with a Sn-content of 2%–30% deposited on either a substrate of SiO{sub 2} or SiN. Incorporating 30% Sn into Si permits the crystallization of the amorphous layers at annealing temperatures below the melting point of Sn (231.9 °C). Composition analyses indicate that approximately 20% of the Sn atoms are substituted into the Si lattice after solid-phase crystallization at 150–220 °C for 5 h. Correspondingly, the optical absorption edge is red-shifted from 1.12 eV (Si) to 0.83 eV (Si{sub 1−x}Sn{sub x} (x ≈ 0.18 ± 0.04)), and the difference between the indirect and direct band gap is significantly reduced from 3.1 eV (Si) to 0.22 eV (Si{sub 1−x}Sn{sub x} (x ≈ 0.18 ± 0.04)). These results suggest that with higher substitutional Sn content the SiSn alloys could become a direct band-gap material, which would provide benefits for Si photonics.

  9. SN 2012fr

    DEFF Research Database (Denmark)

    Contreras, Carlos; Phillips, M. M.; Burns, Christopher R.

    2018-01-01

    We present detailed ultraviolet, optical, and near-infrared light curves of the Type Ia supernova (SN) 2012fr, which exploded in the Fornax cluster member NGC 1365. These precise high-cadence light curves provide a dense coverage of the flux evolution from -12 to +140 days with respect to the epo...

  10. La5Zn2Sn

    Directory of Open Access Journals (Sweden)

    Igor Oshchapovsky

    2011-11-01

    Full Text Available A single crystal of pentalanthanum dizinc stannide, La5Zn2Sn, was obtained from the elements in a resistance furnace. It belongs to the Mo5SiB2 structure type, which is a ternary ordered variant of the Cr5B3 structure type. The space is filled by bicapped tetragonal antiprisms from lanthanum atoms around tin atoms sharing their vertices. Zinc atoms fill voids between these bicapped tetragonal antiprisms. All four atoms in the asymmetric unit reside on special positions with the following site symmetries: La1 (..m; La2 (4/m..; Zn (m.2m; Sn (422.

  11. Enhanced Thermoelectric Properties of Graphene/Cu2SnSe3 Composites

    Directory of Open Access Journals (Sweden)

    Degang Zhao

    2017-02-01

    Full Text Available Cu2SnSe3 material is regarded as a potential thermoelectric material due to its relatively high carrier mobility and low thermal conductivity. In this study, graphene was introduced into the Cu2SnSe3 powder by ball milling, and the bulk graphene/Cu2SnSe3 thermoelectric composites were prepared by spark plasma sintering. The graphene nanosheets distributed uniformly in the Cu2SnSe3 matrix. Meanwhile, some graphene nanosheets tended to form thick aggregations, and the average length of these aggregations was about 3 μm. With the fraction of graphene increasing, the electrical conductivity of graphene/Cu2SnSe3 samples increased greatly while the Seebeck coefficient was decreased. The introduction of graphene nanosheets can reduce the thermal conductivity effectively resulting from the phonon scattering by the graphene interface. When the content of graphene exceeds a certain value, the thermal conductivity of graphene/Cu2SnSe3 composites starts to increase. The achieved highest figure of merit (ZT for 0.25 vol % graphene/Cu2SnSe3 composite was 0.44 at 700 K.

  12. Low-Temperature Deposition of Layered SnSe2 for Heterojunction Diodes

    KAUST Repository

    Serna, Martha I.

    2018-04-27

    Tin diselenide (SnSe) has been recently investigated as an alternative layered metal dichalcogenide due to its unique electrical and optoelectronics properties. Although there are several reports on the deposition of layered crystalline SnSe films by chemical and physical methods, synthesis methods like pulsed laser deposition (PLD) are not reported. An attractive feature of PLD is that it can be used to grow 2D films over large areas. In this report, a deposition process to grow stoichiometric SnSe on different substrates such as single crystals (Sapphire) and amorphous oxides (SiO and HfO) is reported. A detailed process flow for the growth of 2D SnSe at temperatures of 300 °C is presented, which is substantially lower than temperatures used in chemical vapor deposition and molecular beam epitaxy. The 2D SnSe films exhibit a mobility of ≈4.0 cm V s, and are successfully used to demonstrate SnSe/p-Si heterojunction diodes. The diodes show I /I ratios of 10-10 with a turn on voltage of <0.5 V, and ideality factors of 1.2-1.4, depending on the SnSe film growth conditions.

  13. Investigations on the structures of sup(99m)Tc and 113Sn pyrophosphate complexes and of sup(99m)Tc and 113Sn ethane hydroxy diphosphate complexes

    International Nuclear Information System (INIS)

    Hohloch, M.

    1980-01-01

    The complex formation of double labelling of bivalent 113 Sn and reduced, quadrovalent sup(99m)Tc with pyrophosphate (PPi) or ethane hydroxy diphosphorate (EHDP) has been investigated by means of in vivo distribution in the rat. The molar rates of sup(99m)Tc and 113 Sn to PPi resp. EHDP, as well as the pH-value and the initial concentration is varied. Furthermore, both elements were oxidized with H 2 O 2 in the alkaline medium. Four typical sup(99m)Tc and two typical 113 Sn in-vivo distribution patterns can be differentiated: 1. Pertechnetate, characterized by a strong enrichment in the stomach, forms when all Sn-II has been oxidized to Sn-IV in the preparation. 2. One bone-seeking 113 Sn-II PPi (EHDP) complex and a sup(99m)Tc-IV PPi (EHDP) complex each, which are formed at least equimolar ratio of Sn to PPi (EHDP) and suffiently high concentration of PPi (EHDP) in the physiological pH-value. 3. A non-bone-seeking sup(99m)Tc-IV compound, which is enriched in the kidneys instead, is formed in the weakly alkaline medium or at low PPi (EHDP) concentration. This is probably monomeric technetium dioxide dihydrate. 4. A sup(99m)Tc as well as a Sn colloid is formed at deficient ligand concentration (PPi or EHDP to Sn). The chemical composition of the complexes is discussed the possible reaction courses are illustrated in the following diagrams. (orig./MG) [de

  14. Gas Sensing Properties of ZnO-SnO2 Nanostructures.

    Science.gov (United States)

    Chen, Weigen; Li, Qianzhu; Xu, Lingna; Zeng, Wen

    2015-02-01

    One-dimensional (1D) semiconductor metal oxide nanostructures have attracted increasing attention in electrochemistry, optics, magnetic, and gas sensing fields for the good properties. N-type low dimensional semiconducting oxides such as SnO2 and ZnO have been known for the detection of inflammable or toxic gases. In this paper, we fabricated the ZnO-SnO2 and SnO2 nanoparticles by hydrothermal synthesis. Microstructure characterization was performed using X-ray diffraction (XRD) and surface morphologies for both the pristine and doped samples were observed using field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Then we made thin film gas sensor to study the gas sensing properties of ZnO-SnO2 and SnO2 gas sensor to H2 and CO. A systematic comparison study reveals an enhanced gas sensing performance for the sensor made of SnO2 and ZnO toward H2 and CO over that of the commonly applied undecorated SnO2 nanoparticles. The improved gas sensing properties are attributed to the size of grains and pronounced electron transfer between the compound nanostructures and the absorbed oxygen species as well as to the heterojunctions of the ZnO nanoparticles to the SnO2 nanoparticles, which provide additional reaction rooms. The results represent an advance of compound nanostructures in further enhancing the functionality of gas sensors, and this facile method could be applicable to many sensing materials, offering a new avenue and direction to detect gases of interest based on composite tin oxide nanoparticles.

  15. The experimental viscosity and calculated relative viscosity of liquid In-Sn allcoys

    International Nuclear Information System (INIS)

    Wu, A.Q.; Guo, L.J.; Liu, C.S.; Jia, E.G.; Zhu, Z.G.

    2007-01-01

    The experimental measured viscosity of liquid pure Sn, In 20 Sn 80 and In 80 Sn 20 alloys was studied, and to make a comparison, the calculated relative viscosity based on the pair distribution functions, g(r), has also been studied. There is one peak in each experimental viscosity and calculated relative-viscosity curve of liquid pure Sn about 1000 deg. C. One valley appears in each experimental viscosity and calculated viscosity curve of liquid In 20 Sn 80 alloy about 700 deg. C. There is no abnormal behavior on In 80 Sn 20 alloy. The behavior of experimental viscosity and calculated relative viscosity is coincident with each other. Those results conformed that the temperature-induced structure anomalies reported before did take place

  16. Clinical results of sentinel lymph node (SN) biopsy for oral cancer. Relationship between SN localization and metastasis in tongue cancer

    International Nuclear Information System (INIS)

    Shintani, Satoru; Nakashiro, Koh-ichi; Hino, Satoshi; Terakado, Nagaaki; Hamakawa, Hiroyuki

    2005-01-01

    Attempts were made to detect micrometastasis in N0 neck of oral cancer patients using sentinel lymph node (SN) biopsy (SNB). We previously described our approach to identify SN using a radioisotope ( 99m Tc-Tin colloid)-guided and dye-guided method. Micrometastases were detected by means of serial sections and real-time polymerase chain reaction (PCR) based on squamous cell carcinoma (SCC) antigen mRNA. In this study, we evaluated the radiolocalization of SN and identification of metastatic lymph node in N0 oral cancer patients. The positive rate of metastatic lymph node in N0 oral cancer was 35% and the diagnostic sensitivity of SNB was 95%. The SNB detected subclinical metastases in 4 of 10 N0 patients with tongue cancer. Moreover, in 3 of these 4 cases, all metastatic lymph nodes consisted with SNs. Postoperative cervical metastasis was observed in a patient whose SNB was negative. While more experience is needed, we believe the SN concept for tongue cancer is established, and practical application in clinical settings is anticipated. (author)

  17. {sup 119}Sn-NMR investigations on superconducting Ca{sub 3}Ir{sub 4}Sn{sub 13}: Evidence for multigap superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, R., E-mail: rajibsarkarsinp@gmail.com [Institute for Solid State Physics, TU Dresden, D-01069 Dresden (Germany); Brückner, F.; Günther, M. [Institute for Solid State Physics, TU Dresden, D-01069 Dresden (Germany); Wang, Kefeng; Petrovic, C. [Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Biswas, P.K.; Luetkens, H.; Morenzoni, E.; Amato, A. [Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Klauss, H-H. [Institute for Solid State Physics, TU Dresden, D-01069 Dresden (Germany)

    2015-12-15

    We report bulk superconductivity (SC) in Ca{sub 3}Ir{sub 4}Sn{sub 13} by means of {sup 119}Sn nuclear magnetic resonance (NMR) experiments. Two classical signatures of BCS superconductivity in spin-lattice relaxation rate (1/T{sub 1}), namely the Hebel–Slichter coherence peak just below the T{sub c}, and the exponential decay in the superconducting phase, are evident. The noticeable decrease of {sup 119}Sn Knight shift below T{sub c} indicates spin-singlet superconductivity. The temperature dependence of the spin-lattice relaxation rate {sup 119}(1/T{sub 1}) is convincingly described by the multigap isotropic superconducting gap. NMR experiments do not witness any sign of enhanced spin fluctuations.

  18. Quasi-two-dimensional thermoelectricity in SnSe

    Science.gov (United States)

    Tayari, V.; Senkovskiy, B. V.; Rybkovskiy, D.; Ehlen, N.; Fedorov, A.; Chen, C.-Y.; Avila, J.; Asensio, M.; Perucchi, A.; di Pietro, P.; Yashina, L.; Fakih, I.; Hemsworth, N.; Petrescu, M.; Gervais, G.; Grüneis, A.; Szkopek, T.

    2018-01-01

    Stannous selenide is a layered semiconductor that is a polar analog of black phosphorus and of great interest as a thermoelectric material. Unusually, hole doped SnSe supports a large Seebeck coefficient at high conductivity, which has not been explained to date. Angle-resolved photoemission spectroscopy, optical reflection spectroscopy, and magnetotransport measurements reveal a multiple-valley valence-band structure and a quasi-two-dimensional dispersion, realizing a Hicks-Dresselhaus thermoelectric contributing to the high Seebeck coefficient at high carrier density. We further demonstrate that the hole accumulation layer in exfoliated SnSe transistors exhibits a field effect mobility of up to 250 cm2/V s at T =1.3 K . SnSe is thus found to be a high-quality quasi-two-dimensional semiconductor ideal for thermoelectric applications.

  19. Metallic superconductors. 3. Na3Sn and V3Ga wires (Part one)

    International Nuclear Information System (INIS)

    Tachikawa, Kyoji

    2010-01-01

    Nowadays Nb 3 Sn wires are being widely used as one of the key materials in advanced science and technology, with various applications such as NMR, fusion and cryogen-free superconducting magnets. In this article, at first microstructures and fundamental aspects as well as the effect of additional elements in Nb 3 Sn are outlined. Intrinsic superconducting performances, e.g. T c and B c2 , are quite sensitive to the stoichiometry of the Sn concentration. A small amount of Ti and Ta doping is much effective for the increase of B c2 in Nb 3 Sn. The effect of Cu on the enhancement of Nb 3 Sn synthesis has yielded a significant breakthrough for the industrial production of the wires. At present the bronze process and internal Sn process are the twin major fabrication techniques of Nb 3 Sn wires. The recent status of both processes is reviewed in this article. Pronounced progress has been achieved in the performance of Nb 3 Sn wires fabricated through both techniques. Although just half a century has passed since the first fabrication of Nb 3 Sn wire, further progress in Nb 3 Sn technology may be expected like the proverb saying 'Fresh water still comes out from an old spring'. (author)

  20. Correlation between the resistivity and the atomic clusters in liquid Cu-Sn alloys

    Science.gov (United States)

    Jia, Peng; Zhang, Jinyang; Hu, Xun; Li, Cancan; Zhao, Degang; Teng, XinYing; Yang, Cheng

    2018-05-01

    The liquid structure of CuxSn100-x (x = 0, 10, 20, 33, 40, 50, 60, 75, 80 and 100) alloys with atom percentage were investigated with resistivity and viscosity methods. It can be found from the resistivity data that the liquid Cu75Sn25 and Cu80Sn20 alloys had a negative temperature coefficient of resistivity (TCR), and liquid Cu75Sn25 alloy had a minimum value of -9.24 μΩ cm K-1. While the rest of liquid Cu-Sn alloys had a positive TCR. The results indicated that the Cu75Sn25 atomic clusters existed in Cu-Sn alloys. In addition, the method of calculating the percentage of Cu75Sn25 atomic clusters was established on the basis of resistivity theory and the law of conservation of mass. The Cu75Sn25 alloy had a maximum volume of the atomic clusters and a highest activation energy. The results further proved the existence of Cu75Sn25 atomic clusters. Furthermore, the correlation between the liquid structure and the resistivity was established. These results provide a useful reference for the investigation of liquid structure via the sensitive physical properties to the liquid structure.

  1. Suppression on allotropic transformation of Sn planar anode with enhanced electrochemical performance

    Science.gov (United States)

    Wang, Peng; Hu, Junhua; Cao, Guoqin; Zhang, Shilin; Zhang, Peng; Liang, Changhao; Wang, Zhuo; Shao, Guosheng

    2018-03-01

    Different configurations of Sn and C films were deposited and used as a planar anode for Li ion battery. The interplay of carbon layer with Sn as supporting and buffering, respectively, was revealed. The suppression on the allotropic transformation to α phase by a carbon layer results in a significantly improved capacity retention rate, which also avoids the crack of Sn film. As expected, a conductive carbon layer improves rating performance. However, a supporting carbon layer (SC) just contributes to the charge transfer process. A DFT approach was used to assess the allotropic transformation process. An additional barrier (∼0.86 eV) exits on the α-β diagram, which is responsible for the irreversibility of α phase back to β phase. An enhanced persistence of β phase in Sn/C anode contributes to cycling performance. A Li rich condition contributes to the stabilization of β-Sn, which is thermodynamically favored. A nano buffering carbon (BC) layer can evidently alleviate the side reaction on Sn surface, which in turn promotes the diffusion of Li ions in electrode and generates a Li rich condition. The direct contact of Sn with electrolyte leads to serious accumulation of α-Sn during cycling and results in a poor cycling performance. By the synergistic effect of BC and SC, a sandwich C/Sn/C structure demonstrates an enchantment in electrochemical behavior.

  2. Highly Reproducible Sn-Based Hybrid Perovskite Solar Cells with 9% Efficiency

    NARCIS (Netherlands)

    Shao, Shuyan; Liu, Jian; Portale, Giuseppe; Fang, Hong-Hua; Blake, Graeme R.; ten Brink, Gert H.; Koster, L. Jan Anton; Loi, Maria Antonietta

    2018-01-01

    The low power conversion efficiency (PCE) of tin-based hybrid perovskite solar cells (HPSCs) is mainly attributed to the high background carrier density due to a high density of intrinsic defects such as Sn vacancies and oxidized species (Sn4+) that characterize Sn-based HPSCs. Herein, this study

  3. Synthesis and Raman analysis of SnS nanoparticles synthesized by PVP assisted polyol method

    Energy Technology Data Exchange (ETDEWEB)

    Baby, Benjamin Hudson; Mohan, D. Bharathi, E-mail: d.bharathimohan@gmail.com [Department of Physics, School of Physical, Chemical and Applied Sciences, Pondicherry University, R.V. Nagar, Kalapet, Puducherry-605014 (India)

    2015-06-24

    SnS film was prepared by a simple drop casting method after synthesizing SnS nanoparticles by using PVP assisted polyol method. Confocal Raman study was carried out for the as deposited and annealed (150, 300 and 400 °C) films at two different excitation wavelengths 514 and 785 nm. At the excitation wavelength of 514 nm, the Raman modes showed for a mixed phase of SnS and SnS{sub 2} up to 150 °C and then only a pure SnS phase was observed up to 400 °C due to the dissociation of SnS{sub 2} in to SnS by releasing S. The increase in intensity of Raman (A{sub g} and B{sub 3g}) as well as IR (B{sub 3u}) active modes of SnS are observed with increasing annealing temperature at excitation wavelength 785 nm due to the increased crystallinity and inactiveness of SnS{sub 2} modes. X-ray diffraction confirming the formation of a single phase of SnS while the greater homogeneity in both size and shape of SnS nanoparticles were confirmed through surface morphology from SEM.

  4. Influence of stresses on superconducting properties of Nb3Sn conductors

    International Nuclear Information System (INIS)

    Suenaga, M.; Luhman, T.S.; Sampson, W.B.; Onishi, T.; Klamut, C.J.

    1978-01-01

    This investigation of the degradation in the superconducting properties of Nb 3 Sn conductors when subjected to mechanical strain can be divided into the following areas: (I) monofilamentary Nb 3 Sn wires, (II) multifilamentary Nb 3 Sn conductors and wires, (III) effects of additives to Nb 3 Sn, (IV) mechanisms for degradation, and (V) construction of test facilities. Efforts to the present time have been concentrated in the investigation of T/sub c/, J/sub c/, and H/sub c2/ variations in monofilamentary wires. The most important finding in this study is that a Nb 3 Sn composite wire can sustain an effective mechanical strain well beyond ''1%'' if a proper ratio of the matrix to the Nb core has been chosen

  5. SN 2006bt: A PERPLEXING, TROUBLESOME, AND POSSIBLY MISLEADING TYPE Ia SUPERNOVA

    International Nuclear Information System (INIS)

    Foley, Ryan J.; Narayan, Gautham; Challis, Peter J.; Kirshner, Robert P.; Filippenko, Alexei V.; Silverman, Jeffrey M.; Steele, Thea N.

    2010-01-01

    SN 2006bt displays characteristics unlike those of any other known Type Ia supernova (SN Ia). We present optical light curves and spectra of SN 2006bt which demonstrate the peculiar nature of this object. SN 2006bt has broad, slowly declining light curves indicative of a hot, high-luminosity SN, but lacks a prominent second maximum in the i band as do low-luminosity SNe Ia. Its spectra are similar to those of low-luminosity SNe Ia, containing features that are only present in cool SN photospheres. Light-curve fitting methods suggest that SN 2006bt is reddened by a significant amount of dust; however, it occurred in the outskirts of its early-type host galaxy and has no strong Na D absorption in any of its spectra, suggesting a negligible amount of host-galaxy dust absorption. C II is possibly detected in our pre-maximum spectra, but at a much lower velocity than other elements. The progenitor was likely very old, being a member of the halo population of a galaxy that shows no signs of recent star formation. SNe Ia have been very successfully modeled as a one-parameter family, and this is fundamental to their use as cosmological distance indicators. SN 2006bt is a challenge to that picture, yet its relatively normal light curves allowed SN 2006bt to be included in cosmological analyses. We generate mock SN Ia data sets which indicate that contamination by similar objects will both increase the scatter of a SN Ia Hubble diagram and systematically bias measurements of cosmological parameters. However, spectra and rest-frame i-band light curves should provide a definitive way to identify and eliminate such objects.

  6. Structural and transport properties of Sn-Mg alloys

    International Nuclear Information System (INIS)

    Meydaneri, F.; Saatci, E.; Oezdemir, M.; Ari, M.; Durmus, S.

    2010-01-01

    The structural and temperature dependence transport of Sn-Mg alloys have been investigated for five different samples (Pure Sn, Sn-1.0 wt % Mg , Sn-2.0 wt % Mg , Sn-6.0 wt.% Mg and Pure Mg). Scanning Electron Microscopy (SEM), x-ray diffraction (XRD) and Energy Dispersive x-ray Analysis (EDX) measurements were carried out in order to clarify the structural properties of the samples. It has been found that, the samples have tetragonal crystal symmetry except the pure Mg which has hexagonal crystal symmetry. The cell parameters decrease slightly with addition of Mg element. The SEM micrographs of the samples show that, the samples have smooth surfaces with clear grain boundary. There is no crack, porosity or defects on the surfaces. The electrical resistivity of the samples increases almost linearly with the increasing temperature, which were measured by four-point probe technique. The thermal conductivity values are in between 0.60-1.00 W/Km, which are decrease slightly with temperature and increase with composition of Mg. The thermal conductivity values of the alloys are in between the values of the pure samples. Thermal conductivity results of the alloys have been compared with available other studies and a good agreement has been seen between the results. In addition, the temperature coefficients of electrical resistivity and thermal conductivity have been determined, which are independent with the compositions of alloying elements

  7. Superhydrophilic SnO{sub 2} nanosheet-assembled film

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Yoshitake, E-mail: masuda-y@aist.go.jp; Kato, Kazumi

    2013-10-01

    SnO{sub 2} films were fabricated on fluorine-doped tin oxide (FTO) substrates in aqueous solutions. The films of about 800 nm in thickness grew in the solutions containing SnF{sub 2} of 25 mM at 90 °C for 24 h. They consisted of nanosheets of about 5–10 nm in thickness and about 100–1600 nm in plane size. The films had gradient structure of nanosheets. Smaller nanosheets formed dense structures in a bottom area, while larger nanosheets formed porous structures in a surface area of the films. The SnO{sub 2} films showed higher transparency than bare FTO substrates in a visible light region of 470 to 850 nm. Decrease of reflectance increased transparency. The SnO{sub 2} films had superhydrophilic surfaces of static contact angle below 1°. Nanosheet-assembled structures contributed high hydrophilicity. The surfaces were further modified with light irradiation. High speed camera observation showed that spread speed of water was improved with the irradiation. Removal of surface adsorbed organic molecules and increase in the number of hydroxyl groups brought superhydrophilicity and high spread speed. - Highlights: ► SnO{sub 2} nanosheet films were prepared from aqueous solutions. ► The antireflective films showed superhydrophilicity. ► Crystal growth mechanism of the gradient structures is discussed.

  8. Microemulsion mediated synthesis of triangular shape SnO{sub 2} nanoparticles: Luminescence application

    Energy Technology Data Exchange (ETDEWEB)

    Luwang, Meitram Niraj, E-mail: mn.luwang@ncl.res.in

    2014-01-30

    The triangular prism shapes of SnO{sub 2}·xH{sub 2}O nanoparticles are prepared using microemulsion route. The effect of variation of water pool value on the formation of SnO{sub 2} nanoparticles was studied. There is the quantum size effect in absorption study of SnO{sub 2} nanoparticles. With the increase of the water pool value, there is a decrease in the band edge absorption energy suggesting the weak quantum confinement effect (QCE) in SnO{sub 2} nanoparticles. Quenching effect increases with increase of water to surfactant ratio in luminescence. There is no significant effect in lifetime values for SnO{sub 2} nanoparticles in both microemulsion and powder form. SnO{sub 2} nanoparticles show green emission due to oxygen vacancy. SnO{sub 2} nanoparticles when doped with Eu{sup 3+} ions give the enhanced luminescence of Eu{sup 3+} due to the surface mediated energy transfer from SnO{sub 2} to Eu{sup 3+} ion.

  9. The development of 126Sn separation procedure by means of TBP resin

    International Nuclear Information System (INIS)

    Andris, Boris; Bena, Jozef

    2016-01-01

    Separation possibilities of 126 Sn with a new extraction-chromatographic material TBP Resin were studied. Suitable conditions for tin separation were determined in hydrochloric acid medium. 126 Sn was concentrated on TBP resin from 6 mol L -1 HCl and was eluted with 0.1 mol L -1 HCl. A purification step to remove 137 Cs with AMP-PAN column was necessary to obtain sufficiently purified samples which were directly measured with gamma spectrometry for 126 Sn activity. Separation of 126 Sn from a raw sludge sample was done according to proposed procedure, 126 Sn was detected and its activity was determined. (author)

  10. Microstructure, corrosion behavior and cytotoxicity of biodegradable Mg-Sn implant alloys prepared by sub-rapid solidification.

    Science.gov (United States)

    Zhao, Chaoyong; Pan, Fusheng; Zhao, Shuang; Pan, Hucheng; Song, Kai; Tang, Aitao

    2015-09-01

    In this study, biodegradable Mg-Sn alloys were fabricated by sub-rapid solidification, and their microstructure, corrosion behavior and cytotoxicity were investigated by using optical microscopy, scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy, X-ray diffraction, immersion test, potentiodynamic polarization test and cytotoxicity test. The results showed that the microstructure of Mg-1Sn alloy was almost equiaxed grain, while the Mg-Sn alloys with higher Sn content (Sn≥3 wt.%) displayed α-Mg dendrites, and the secondary dendrite arm spacing of the primary α-Mg decreased significantly with increasing Sn content. The Mg-Sn alloys consisted of primary α-Mg matrix, Sn-rich segregation and Mg2Sn phase, and the amount of Mg2Sn phases increased with increasing Sn content. Potentiodynamic polarization and immersion tests revealed that the corrosion rates of Mg-Sn alloys increased with increasing Sn content. Cytotoxicity test showed that Mg-1Sn and Mg-3Sn alloys were harmless to MG63 cells. These results of the present study indicated that Mg-1Sn and Mg-3Sn alloys were promising to be used as biodegradable implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Multiepoch Spectropolarimetry of SN 2011fe

    International Nuclear Information System (INIS)

    Milne, Peter A.; Williams, G. Grant; Smith, Paul S.; Smith, Nathan; Jannuzi, Buell T.; Green, E. M.; Porter, Amber; Leising, Mark D.

    2017-01-01

    We present multiple spectropolarimetric observations of the nearby Type Ia supernova (SN) 2011fe in M101, obtained before, during, and after the time of maximum apparent visual brightness. The excellent time coverage of our spectropolarimetry has allowed better monitoring of the evolution of polarization features than is typical, which has allowed us new insight into the nature of normal SNe Ia. SN 2011fe exhibits time-dependent polarization in both the continuum and strong absorption lines. At early epochs, red wavelengths exhibit a degree of continuum polarization of up to 0.4%, likely indicative of a mild asymmetry in the electron-scattering photosphere. This behavior is more common in subluminous SNe Ia than in normal events, such as SN 2011fe. The degree of polarization across a collection of absorption lines varies dramatically from epoch to epoch. During the earliest epoch, a λ 4600–5000 Å complex of absorption lines shows enhanced polarization at a different position angle than the continuum. We explore the origin of these features, presenting a few possible interpretations, without arriving at a single favored ion. During two epochs near maximum, the dominant polarization feature is associated with the Si ii λ 6355 Å absorption line. This is common for SNe Ia, but for SN 2011fe the polarization of this feature increases after maximum light, whereas for other SNe Ia, that polarization feature was strongest before maximum light.

  12. Multiepoch Spectropolarimetry of SN 2011fe

    Energy Technology Data Exchange (ETDEWEB)

    Milne, Peter A.; Williams, G. Grant; Smith, Paul S.; Smith, Nathan; Jannuzi, Buell T.; Green, E. M. [University of Arizona, Steward Observatory, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Porter, Amber; Leising, Mark D. [118 Kinard Laboratory, Clemson University, Clemson, SC 29634 (United States)

    2017-01-20

    We present multiple spectropolarimetric observations of the nearby Type Ia supernova (SN) 2011fe in M101, obtained before, during, and after the time of maximum apparent visual brightness. The excellent time coverage of our spectropolarimetry has allowed better monitoring of the evolution of polarization features than is typical, which has allowed us new insight into the nature of normal SNe Ia. SN 2011fe exhibits time-dependent polarization in both the continuum and strong absorption lines. At early epochs, red wavelengths exhibit a degree of continuum polarization of up to 0.4%, likely indicative of a mild asymmetry in the electron-scattering photosphere. This behavior is more common in subluminous SNe Ia than in normal events, such as SN 2011fe. The degree of polarization across a collection of absorption lines varies dramatically from epoch to epoch. During the earliest epoch, a λ 4600–5000 Å complex of absorption lines shows enhanced polarization at a different position angle than the continuum. We explore the origin of these features, presenting a few possible interpretations, without arriving at a single favored ion. During two epochs near maximum, the dominant polarization feature is associated with the Si ii λ 6355 Å absorption line. This is common for SNe Ia, but for SN 2011fe the polarization of this feature increases after maximum light, whereas for other SNe Ia, that polarization feature was strongest before maximum light.

  13. Electrochemical corrosion of Pb-1 wt% Sn and Pb-2.5 wt% Sn alloys for lead-acid battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, Wislei R.; Peixoto, Leandro C.; Garcia, Amauri [Department of Materials Engineering, State University of Campinas - UNICAMP, PO Box 612, 13083-970 Campinas, SP (Brazil)

    2009-12-01

    The aim of this study was to compare the electrochemical corrosion behavior of as-cast Pb-1 wt% Sn and Pb-2.5 wt% Sn alloy samples in a 0.5 M H{sub 2}SO{sub 4} solution at 25 C. A water-cooled unidirectional solidification system was used to obtain the as-cast samples. Electrochemical impedance spectroscopy (EIS) diagrams, potentiodynamic polarization curves and an equivalent circuit analysis were used to evaluate the electrochemical corrosion response. It was found that a coarse cellular array has a better electrochemical corrosion resistance than fine cells. The pre-programming of microstructure cell size of Pb-Sn alloys can be used as an alternative way to produce as-cast components of lead-acid batteries with higher corrosion resistance associated with environmental and economical aspects. (author)

  14. Synthesis and characterization of Sn doped TiO{sub 2} photocatalysts: Effect of Sn concentration on the textural properties and on the photocatalytic degradation of 2,4-dichlorophenoxyacetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Rangel-Vázquez, I.; Del Angel, G.; Bertin, V. [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael, Atlixco No 1865, México 09340 D.F. (Mexico); González, F. [Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael, Atlixco No 1865, México 09340 D.F. (Mexico); Vázquez-Zavala, A.; Arrieta, A. [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael, Atlixco No 1865, México 09340 D.F. (Mexico); Padilla, J.M. [Universidad Tecnológica del Centro de Veracruz, Área de Tecnología, Av. Universidad Carretera Federal Cuitláhuac-La Tinaja No. 350, Cuitláhuac, Veracruz 94910 (Mexico); Barrera, A. [Universidad de Guadalajara, Centro Universitario de la Ciénega, Av. Universidad, Número 1115, Col. Linda Vista, Apdo. Postal 106, Ocotlán Jal. (Mexico); Ramos-Ramirez, E. [Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato de la Universidad de Guanajuato Noria Alta S/N, Col. Noria Alta, Guanajuato, Gto. C.P. 36050 (Mexico)

    2015-09-15

    Abstract: TiO{sub 2} and Sn-doped TiO{sub 2} materials were prepared by sol–gel method using titanium and tin alkoxides at different Sn concentration (0.1 mol%, 0.5 mol%, 1 mol%, 3 mol% and 5 mol%). Samples were characterized by thermo gravimetric analyzer with differential scanning calorimeter (TGA–DSC), X-ray Rietveld refinement, N{sub 2} adsorption (BET), transmission electron microscopy (TEM), UV–vis spectroscopies technology and Raman spectroscopy. Only anatase phase was observed in pure TiO{sub 2}, whereas anatase and brookite were obtained in Sn-doped TiO{sub 2} samples. Sn dopant acts as a promoter in phase transformation of TiO{sub 2}. The Rietveld refinements method was used to determine the relative weight of anatase and brookite, and crystallite size as a function of Sn concentration after calcination of samples at 673 K. It was also demonstrated the incorporation of Sn{sup 4+} into the anatase TiO{sub 2} structure. Sn{sup 4+} inhibits the growth of TiO{sub 2} crystallite size, which leads to an increase of the specific surface area of TiO{sub 2}. From XRD analysis, the solid solution limit of Sn{sup 4+} into TiO{sub 2} is 5 mol% Sn. The photocatalytic activity on Sn{sup 4+} doped TiO{sub 2} was determined for the 2,4-dichlorophenoxyacetic acid reaction. The maximum in activity was attributed to the coexistence of anatase and brookite phases in the appropriate ratio and crystallite size.

  15. The ASAS-SN bright supernova catalogue - III. 2016

    DEFF Research Database (Denmark)

    Holoien, T. W. -S.; Brown, J. S.; Stanek, K. Z.

    2017-01-01

    This catalogue summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (m(peak)d......This catalogue summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (m(peak)d...

  16. Muon spin rotation measurements on LaNiSn

    International Nuclear Information System (INIS)

    Drew, A.J.; Lee, S.L.; Ogrin, F.Y.; Charalambous, D.; Bancroft, N.; Paul, D. McK.; Takabatake, T.; Baines, C.

    2006-01-01

    The first microscopic investigation of superconductivity in LaNiSn is reported using muon spin rotation. LaNiSn is found to be mainly a type I superconductor in an intermediate state with some evidence for type II behaviour at low temperatures, possibly due to a temperature dependent Ginzburg Landau parameter κ

  17. Hydrodynamical models of supernova SN 1987 A in the LMC

    International Nuclear Information System (INIS)

    Grassberg, E.K.; Imshennik, V.S.; Nadezhin, D.K.; Utrobin, V.P.

    1987-01-01

    It is shown that the properties of SN 1987A in LMC can be described well by hydrodynamical models of explosions of compact massive stars. In accordance with these models, the mass of the expelled envelope the presupernova radius and the total energy of explosion are evaluated for SN 1987A to be ∼ 16M Sun , ∼ 30R Sun , and ∼ 3.10 51 erg, respectively. The progenitor of supernova remnant Cas A may be considered as the prototype to the SN 1987A in our own Galaxy. In other galaxies, this subtype of supernovae can be represented by SN 1948B in NGC6946. If energy of explosion transfers from collapsed core of the star to the envelope within timescale less than 1 hour, then delay Δt ∼ 3 hours between the neutrino pulse and the steep rise of optical luminosity of SN 1987A does not contradict with scenario of explosions of compact massive stars

  18. Decay properties of nuclei in the neighbourhood of 100Sn

    International Nuclear Information System (INIS)

    Straub, Katrin

    2011-01-01

    This thesis concentrates on nuclear properties of very neutron deficient nuclei near the proton dripline in the neighbourhood of doubly-magic 100 Sn. In an experiment performed in March 2008 at the GSI in Darmstadt, the exotic nuclei were produced in a projectile fragmentation reaction using a 124 Xe primary beam with an energy of 100 AMeV impinging on a 4000 Beryllium target, separated and identified in the FRS and eventually stopped for decay spectroscopy in a complex implantation detector developed at the institute E12. The Germanium array RISING was employed for the measurement of prompt and delayed gamma radiation. Production cross sections and half lives were determined along the proton dripline. The isotopes 99 Sn, 97 In and 95 Cd were identified for the first time. additional nuclei studied in this thesis are 103 Sn, 96 Cd as well as the two tin isotopes 101 Sn and 102 Sn. (orig.)

  19. Optical band-edge absorption of oxide compound SnO2

    International Nuclear Information System (INIS)

    Roman, L.S.; Valaski, R.; Canestraro, C.D.; Magalhaes, E.C.S.; Persson, C.; Ahuja, R.; Silva, E.F. da; Pepe, I.; Silva, A. Ferreira da

    2006-01-01

    Tin oxide (SnO 2 ) is an important oxide for efficient dielectrics, catalysis, sensor devices, electrodes and transparent conducting coating oxide technologies. SnO 2 thin film is widely used in glass applications due to its low infra-red heat emissivity. In this work, the SnO 2 electronic band-edge structure and optical properties are studied employing a first-principle and fully relativistic full-potential linearized augmented plane wave (FPLAPW) method within the local density approximation (LDA). The optical band-edge absorption α(ω) of intrinsic SnO 2 is investigated experimentally by transmission spectroscopy measurements and their roughness in the light of the atomic force microscopy (AFM) measurements. The sample films were prepared by spray pyrolysis deposition method onto glass substrate considering different thickness layers. We found for SnO 2 qualitatively good agreement of the calculated optical band-gap energy as well as the optical absorption with the experimental results

  20. Distinction between SnO2 nanoparticles synthesized using co ...

    Indian Academy of Sciences (India)

    Administrator

    pared with that of a co-precipitation-modified SnO2 nanoparticles. Keywords. SnO2 nanoparticle ... Dye-sensitized solar cells (DSSCs), which convert light to electricity by means of ... nature, additives and aging time. Nanosized particles pre-.

  1. Pregnancy Calendar: A Week-by-Week Guide

    Science.gov (United States)

    ... Fitness Diseases & Conditions Infections Drugs & Alcohol School & Jobs Sports Expert Answers (Q&A) Staying Safe Videos for Educators Search English Español A Week-by-Week Pregnancy Calendar KidsHealth / For Parents / A Week-by-Week ...

  2. Facile mechanochemical synthesis of nano SnO2/graphene composite from coarse metallic Sn and graphite oxide: an outstanding anode material for lithium-ion batteries.

    Science.gov (United States)

    Ye, Fei; Zhao, Bote; Ran, Ran; Shao, Zongping

    2014-04-01

    A facile method for the large-scale synthesis of SnO2 nanocrystal/graphene composites by using coarse metallic Sn particles and cheap graphite oxide (GO) as raw materials is demonstrated. This method uses simple ball milling to realize a mechanochemical reaction between Sn particles and GO. After the reaction, the initial coarse Sn particles with sizes of 3-30 μm are converted to SnO2 nanocrystals (approximately 4 nm) while GO is reduced to graphene. Composite with different grinding times (1 h 20 min, 2 h 20 min or 8 h 20 min, abbreviated to 1, 2 or 8 h below) and raw material ratios (Sn:GO, 1:2, 1:1, 2:1, w/w) are investigated by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy and transmission electron microscopy. The as-prepared SnO2 /graphene composite with a grinding time of 8 h and raw material ratio of 1:1 forms micrometer-sized architected chips composed of composite sheets, and demonstrates a high tap density of 1.53 g cm(-3). By using such composites as anode material for LIBs, a high specific capacity of 891 mA h g(-1) is achieved even after 50 cycles at 100 mA g(-1). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Aluminium stabilized Nb$-3$/Sn superconductors

    International Nuclear Information System (INIS)

    Thoener, M.; Krauth, H.; Rudolph, J.; Szulczyk, A.

    1988-01-01

    Composite superconductors made of reacted Nb 3 Sn stabilized with high purity Al were produced. Two methods were tested. The first involved soft soldering a Cu clad aluminum tape to the Nb 3 Sn conductor. In the second method the conductor, cable or monolith, was coextruded with the aluminum. Results obtained from using both methods indicated that mechanically reinforcing materials can be easily introduced into superconductors. Tests were conducted to determine magnetoresistance, electric contact resistance, yield strength, Young modulus, critical current, and other properties of the composites. Strengthening with Duratherm during coextrusion was also evaluated

  4. XRF 100316D/SN 2010bh and the nature of gamma-ray burst supernovae

    NARCIS (Netherlands)

    Cano, Z.; Bersier, D.; Guidorzi, C.; Kobayashi, S.; Levan, A.J.; Tanvir, N.R.; Wiersema, K.; D'Avanzo, P.; Fruchter, A.S.; Garnavich, P.; Gomboc, A.; Gorosabel, J.; Kasen, D.; Kopač, D.; Margutti, R.; Mazzali, P.A.; Melandri, A.; Mundell, C.G.; Nugent, P.E.; Pian, E.; Smith, R.J.; Steele, I.; Wijers, R.A.M.J.; Woosley, S.E.

    2011-01-01

    We present ground-based and Hubble Space Telescope optical and infrared observations of Swift XRF 100316D/SN 2010bh. It is seen that the optical light curves of SN 2010bh evolve at a faster rate than the archetype gamma-ray burst supernova (GRB-SN) 1998bw, but at a similar rate to SN 2006aj, an SN

  5. SN 1987A. Theory

    International Nuclear Information System (INIS)

    Schaeffer, R.

    1987-03-01

    SN 1987A was unique in many aspects. The most striking, undoubtedly, is its low luminosity, nearly two orders of magnitude below the expectations based on supernovae currently observed in external galaxies. The rise time of the optical emission, usually a few days, was for SN 1987A, of the order of a few hours. Also its surface temperature is surprisingly low, 5000K. The neutrino burst has been detected. It was observed twice, with a time difference of 5 hours, the second burst occurring within 3 hours of the onset of the optical signal. In this talk, I will discuss how these strange events fit with the theoretical models of supernova explosions, how they differ in some cases, and try to evaluate the degree of certainty -or uncertainty- of our present knowledge on how these extremely powerful star explosions occur

  6. Hurst's Exponent Determination for Radial Distribution Functions of In, Sn and In-40 wt%Sn Melt

    International Nuclear Information System (INIS)

    Zhou Yong-Zhi; Li Mei; Geng Hao-Ran; Yang Zhong-Xi; Sun Chun-Jing

    2011-01-01

    Hurst's exponent of radial distribution functions (RDFs) within the short-range scope of In, Sn and In-40 wt % Sn melts are determined by the rescaled range analysis method. Hurst's exponents H are between 0.94 and 0.97, which display long-range dependence. Within short-range scope, the number of particles from a reference particle belongs to fractional Brownian motion. After RDF serials are randomly scrambled, Hurst's exponents all dramatically dropped, which proves long-range dependence. H irregularly varies as the temperature rises, but the change tendency is not consistent with the correlation radius r c . (general)

  7. XRD and 119Sn Moessbauer spectroscopy characterization of SnSe obtained from a simple chemical route

    International Nuclear Information System (INIS)

    Bernardes-Silva, Ana Claudia; Mesquita, A.F.; Moura de Neto, E.; Porto, A.O.; Ardisson, J.D.; Lima, G.M. de; Lameiras, F.S.

    2005-01-01

    Crystalline tin selenide semiconductor was synthesized by a chemical route. Selenium powder reacted with potassium boronhydride, giving a soluble selenium species potassium seleniumhydride. The reaction of potassium seleniumhydride with tin chloride produced crystalline tin selenide, which was characterized by X-ray diffraction, 119 Sn Moessbauer spectroscopy and scanning electronic microscopy. The material was thermally treated, in nitrogen flow, at 300 and 600 deg. C for 2 h and the particle size evolution was studied by X-ray diffraction. The X-ray diffraction and 119 Sn Moessbauer results showed that a mixture of tin oxides and orthorhombic tin selenide was obtained

  8. Phase Equilibria in the Sn-Rich Corner of the Ni-Sb-Sn System

    Czech Academy of Sciences Publication Activity Database

    Mishra, R.; Kroupa, Aleš; Zemanová, Adéla; Ipser, H.

    2013-01-01

    Roč. 42, č. 4 (2013), s. 646-653 ISSN 0361-5235 Institutional support: RVO:68081723 Keywords : lead-free solder * high-temperature solder * Ni-Sb-Sn system Subject RIV: BJ - Thermodynamics Impact factor: 1.675, year: 2013

  9. Study of superconducting Nb{sub 3}Sn coils; Etude de bobinages supraconducteurs en Nb{sub 3}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Vivet, B

    1963-07-01

    Composite superconducting Nb{sub 3}Sn wires with a diameter of 0.5 mm and a length of about 100 m were made, and Hc-Ic diagrams were plotted up to fields of 80 kgauss for short lengths. Two solenoids producing fields of about 20 kgauss were studied. Nb{sub 3}Sn solenoids, as opposed to those of Nb-Zr or Nb-Ti, appear to have a predictable behavior. Solenoids with less insulation produced stronger fields than heavily insulated solenoids. (author) [French] Une etude des fils composites supraconducteurs de Nb{sub 3}Sn a ete entreprise au C.E.N. Saclay, en collaboration avec la Societe S.O.D.E.R.X. Des fils de 0,5 mm de diametre et d'une centaine de metres de longueur ont ete produits de facon experimentale. Des diagrammes Hc-Ic ont pu etre traces, jusqu'en des champs de 80 kG, sur des echantillons de petite longueur. Deux solenoides ont ete etudies produisant les champs de l'ordre de 20 kg. Il semble que, contrairement aux alliages Nb-Zr ou Nb-Ti, les solenoides en Nb{sub 3}Sn aient un comportement previsible d'apres les tests sur des echantillons courts. On montrera d'autre part qu'un bobinage a faible isolement peut produire un champ notablement plus eleve qu'un bobinage isole. Une production plus extensive permettra, dans les semaines a venir, la fabrication de solenoides de plus grosse dimension et produisant des champs plus eleves. (auteur)

  10. Primordial black holes survive SN lensing constraints

    Science.gov (United States)

    García-Bellido, Juan; Clesse, Sébastien; Fleury, Pierre

    2018-06-01

    It has been claimed in [arxiv:1712.02240] that massive primordial black holes (PBH) cannot constitute all of the dark matter (DM), because their gravitational-lensing imprint on the Hubble diagram of type Ia supernovae (SN) would be incompatible with present observations. In this note, we critically review those constraints and find several caveats on the analysis. First of all, the constraints on the fraction α of PBH in matter seem to be driven by a very restrictive choice of priors on the cosmological parameters. In particular, the degeneracy between Ωm and α was ignored and thus, by fixing Ωm, transferred the constraining power of SN magnitudes to α. Furthermore, by considering more realistic physical sizes for the type-Ia supernovae, we find an effect on the SN lensing magnification distribution that leads to significantly looser constraints. Moreover, considering a wide mass spectrum of PBH, such as a lognormal distribution, further softens the constraints from SN lensing. Finally, we find that the fraction of PBH that could constitute DM today is bounded by fPBH < 1 . 09(1 . 38) , for JLA (Union 2.1) catalogs, and thus it is perfectly compatible with an all-PBH dark matter scenario in the LIGO band.

  11. Carbon-supported ternary PtSnIr catalysts for direct ethanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, J.; Kokoh, K.B.; Coutanceau, C.; Leger, J.-M. [Equipe Electrocatalyse, UMR 6503 CNRS, Universite de Poitiers, 40 avenue du Recteur Pineau 86022 Poitiers Cedex (France); Dos Anjos, D.M. [Equipe Electrocatalyse, UMR 6503 CNRS, Universite de Poitiers, 40 avenue du Recteur Pineau 86022 Poitiers Cedex (France); Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal 780, 13560-970 Sao Carlos, SP (Brazil); Olivi, P.; De Andrade, A.R. [Departamento de Quimica da Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Av. Bandeirantes, 3900, 14040-901 Ribeirao Preto, SP (Brazil); Tremiliosi-Filho, G. [Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal 780, 13560-970 Sao Carlos, SP (Brazil)

    2007-08-01

    Binary PtIr, PtSn and ternary PtSnIr electrocatalysts were prepared by the Pechini-Adams modified method on carbon Vulcan XC-72, and these materials were characterized by TEM and XRD. The XRD results showed that the electrocatalysts consisted of the Pt displaced phase, suggesting the formation of solid solutions between the metals Pt/Ir and Pt/Sn. However, the increase in Sn loading promoted phase separation, with the formation of peaks typical of cubic Pt{sub 3}Sn. The electrochemical investigation of these different electrode materials was carried out as a function of the electrocatalyst composition, in a 0.5 mol dm{sup -3} H{sub 2}SO{sub 4} solution, with either the presence or the absence of ethanol. Cyclic voltammetric measurements and chronoamperometric results obtained at room temperature showed that PtSn/C and PtSnIr/C displayed better electrocatalytic activity for ethanol electrooxidation compared to PtIr/C and Pt/C, mainly at low potentials. The oxidation process was also investigated by in situ infrared reflectance spectroscopy, to identify the adsorbed species. Linearly adsorbed CO and CO{sub 2} were found, indicating that the cleavage of the C-C bond in the ethanol substrate occurred during the oxidation process. At 90 C, the Pt{sub 89}Sn{sub 11}/C and Pt{sub 68}Sn{sub 9}Ir{sub 23}/C electrocatalysts displayed higher current and power performances as anode materials in a direct ethanol fuel cell (DEFC). (author)

  12. Coulomb excitation of $^{110}$Sn using REX-ISOLDE

    CERN Document Server

    Ekström, A; Hurst, A; Fahlander, C; Banu, A; Butler, P; Eberth, J; Górska, M; Habs, D; Huyse, M; Kester, O; Niedermayer, O; Nilsson, T; Pantea, M; Scheit, H; Schwalm, D; Sletten, G; Ushasi, D P; Van Duppen, P; Warr, N; Weisshaar, D

    2006-01-01

    In this paper, we report the preliminary result from the first Coulomb excitation experiment at REX-ISOLDE (Habs et al 1998 Nucl. Instrum. Methods B 139 128) using neutron-deficient Sn-beams. The motivation of the experiment is to deduce the reduced transition probability, B(E2 ; 2$^+\\rightarrow$ 0$^+$) , for the sequence of neutron deficient, unstable, even-even Sn-isotopes from using a radioactive beam opens up a new path to study the lifetime of the first excited 2$^+$ state in these isotopes. The de-excitation path following fusion-evaporation reactions will for the even-even Sn isotopes pass via an isomeric 6$^+$ state, located at higher energy, which thus hampers measurements of the lifetime of the first excited state using, e.g., recoil-distance methods. For this reason the reduced transition probability of the first excited 2$^+$ state has remained unknown in this chain of isotopes although the B(E2) value of the stable isotope $^{112}$Sn was measured approximately 30 years ago (see, e.g., Stelson et...

  13. Selectivity enhancement of indium-doped SnO2 gas sensors

    International Nuclear Information System (INIS)

    Salehi, A.

    2002-01-01

    Indium doping was used to enhance the selectivity of SnO 2 gas sensor. Both indium-doped and undoped SnO 2 gas sensors fabricated with different deposition techniques were investigated. The changes in the sensitivity of the sensors caused by selective gases (hydrogen and wood smoke) ranging from 500 to 3000 ppm were measured at different temperatures from 50 to 300 deg. C. The sensitivity peaks of the samples exhibit different values for selective gases with a response time of approximately 0.5 s. Thermally evaporated indium-doped SnO 2 gas sensor shows a considerable increase in the sensitivity peak of 27% in response to wood smoke, whereas it shows a sensitivity peak of 7% to hydrogen. This is in contrast to the sputter deposited indium-doped SnO 2 gas sensor, which exhibits a much lower sensitivity peak of approximately 2% to hydrogen and wood smoke compared to undoped SnO 2 gas sensors fabricated by chemical vapor deposition and spray pyrolysis. Scanning electron microscopy shows that different deposition techniques result in different porosity of the films. It is observed that the thermally evaporated indium-doped SnO 2 gas sensor shows high porosity, while the sputtered sample exhibits almost no porosity

  14. Synthesis, characterization and photocatalytic activity of ZnO-SnO2 nanocomposites

    International Nuclear Information System (INIS)

    Hamrouni, Abdessalem; Lachheb, Hinda; Houas, Ammar

    2013-01-01

    Highlights: • ZnO-SnO 2 photocatalysts were prepared successfully by the coprecipitation method. • The best conditions found are: calcination at 600 °C/2 h; molar ratio Zn/Sn = 1/0.05. • The lower tin content in the samples led to the higher photocatalytic activity. • Zn-Sn 0.05 photoactivity under solar light was better than visible lamps light. -- Abstract: Nanocomposites of coupled ZnO-SnO 2 photocatalysts were synthesized by the coprecipitation method and were characterized by X-ray diffraction, UV–vis diffuse reflectance spectroscopy, surface area analyzer and scanning electron microscopy. Their photocatalytic activity was investigated under UV, visible and solar light and evaluated using methylene blue (MB) as a model pollutant. The performance of the coupled ZnO-SnO 2 photocatalysts was found to be related to the Zn/Sn molar ratio and to the calcination conditions. The photocatalyst with a Zn/Sn molar ratio of 1:0.05 calcined at 600 °C for 2 h showed the maximum degradation rate of MB under different lights used. Its photocatalytic activity was found to be about two times that of ZnO and about 10 times that of SnO 2 which can be explained by the heterojunction effect. Charge separation mechanism has been studied

  15. Effect of P on Microstructure and Mechanical Properties of Sn-Bi Solder

    Directory of Open Access Journals (Sweden)

    WANG Xiao-jing

    2016-07-01

    Full Text Available Micro alloy metals P or P/Cu/Zn were added into Sn-Bi alloy to investigate the doping effects on microstructure, mechanical property, deformation fracture from the function of P in pure tin. The results show that doping 1%( mass fraction, same as below P to pure tin can improve the strength and stiffness, decrease the plasticity. Only 0.1%P additive degenerates the mechanical property of Sn-Bi alloy, this is related to the existing form of element P in the base metal and the microstructure of the base metal. In Sn base alloy, P is distributed in phase or grain boundaries in the form of Sn-P intermetallic compounds (IMC, restricting the diffusion and shifting of deformation. Therefore, Sn-1P alloy, IMC distributed in beta-tin base plays a role of strengthening in pure tin doped situation, in Sn-Bi alloy instead, enhancing the deformation mismatch under loading becoming the weak spots where cracks may initiate and propagate, and leading to brittle fracture . Finally, addition of P/Zn/Cu simultaneously to Sn-Bi alloy, the doping can optimize the microstructure, improve the strength and enhance the ultimate tensile strength (UTS of Sn-Bi alloys.

  16. Detection of DNA hybridization based on SnO2 nanomaterial enhanced fluorescence

    International Nuclear Information System (INIS)

    Gu Cuiping; Huang Jiarui; Ni Ning; Li Minqiang; Liu Jinhuai

    2008-01-01

    In this paper, enhanced fluorescence emissions were firstly investigated based on SnO 2 nanomaterial, and its application in the detection of DNA hybridization was also demonstrated. The microarray of SnO 2 nanomaterial was fabricated by the vapour phase transport method catalyzed by patterned Au nanoparticles on a silicon substrate. A probe DNA was immobilized on the substrate with patterned SnO 2 nanomaterial, respectively, by covalent and non-covalent linking schemes. When a fluorophore labelled target DNA was hybridized with a probe DNA on the substrate, fluorescence emissions were only observed on the surface of SnO 2 nanomaterial, which indicated the property of enhancing fluorescence signals from the SnO 2 nanomaterial. By comparing the different fluorescence images from covalent and non-covalent linking schemes, the covalent method was confirmed to be more effective for immobilizing a probe DNA. With the combined use of SnO 2 nanomaterial and the covalent linking scheme, the target DNA could be detected at a very low concentration of 10 fM. And the stability of SnO 2 nanomaterial under the experimental conditions was also compared with silicon nanowires. The findings strongly suggested that SnO 2 nanomaterial could be extensively applied in detections of biological samples with enhancing fluorescence property and high stability

  17. Influences of electric current on the wettability and interfacial microstructure in Sn/Fe system

    Science.gov (United States)

    Shen, Ping; Gu, Yan; Yang, Nan-Nan; Zheng, Rui-Peng; Ren, Li-Hua

    2015-02-01

    The wettability of oxidized and clean Fe substrates by liquid Sn was investigated using a dispensed sessile drop method with and without the application of a direct current (DC) and their interfacial microstructures were compared. The initial contact angles were 107 ± 3° at 623 K when the Fe substrate was covered by an oxide film, and they did not show an appreciable decrease during isothermal dwells in the absence of DC application but progressively decreased to 42 ± 3° when a 7.5 ampere current was applied. However, in the case of the oxide film being removed by a high-vacuum pre-annealing treatment at 1073 K, the current and its polarity had a negligible effect on the wetting behavior. Nevertheless, they had a noticeable influence on the interfacial microstructure. In the absence of DC, the interface was covered by a product layer consisting of a single FeSn2 phase for the samples tested at 623 K and the FeSn2/FeSn2 grain boundaries were incompletely wetted by the Sn melt; whereas, under DC, the reaction layer was much thicker and the Sn melt wet well the FeSn2/FeSn2 grain boundaries. Moreover, a FeSn phase also formed as a result of enhanced mass transfer. The amount of the FeSn phase was larger and the grain boundary wetting of FeSn2 by liquid Sn was better for the current flowing from the molten Sn drop to the Fe substrate due to an electromigration effect.

  18. Preparation of SnO2 Nanoparticles by Two Different Wet Chemistry Methods

    International Nuclear Information System (INIS)

    Ridha, N.J.; Akrajas Ali Umar; Muhammad Yahya; Muhammad Mat Salleh; Mohamad Hafizuddin Jumali

    2011-01-01

    The objective of this project is to prepare SnO 2 nanoparticles by two different wet chemistry methods namely sol gel and direct growth methods. The XRD results indicated that both samples are single phase SnO 2 . The FE-SEM micrographs displayed that SnO 2 nanoparticles prepared in first method exhibited a round shape with particle size around 15 nm while the second method produced SnO 2 nano rod with length and width of 570 nm and 55 nm respectively. Energy gap values for SnO 2 nanospheres and nano rods were 4.38 and 4.34 eV respectively. (author)

  19. Analysis of Nb$_{3}$Sn Rutherford cable production and strand deformations

    CERN Document Server

    Peggiani, Sonia; Beghi, Marco

    The development of cutting-edge 11-12 T superconducting magnets made from Nb$_{3}$Sn technology is one of the major milestones for the upgrade of the Large Hadron Collider at CERN. The upgrade, called High Luminosity LHC Project, was planned in order to reach higher luminosity and discover new particles. Replacing the NbTi superconductor with the Nb$_{3}$Sn makes it possible to reach a practical operating magnetic field limit of up to 16 T. The superconducting coils are formed by Nb$_{3}$Sn Rutherford cables with a trapezoidal cross section and composed of 40 strands. Since the superconducting phase of Nb$_{3}$Sn is very brittle and it is reached after a thermal cycle, the Nb$_{3}$Sn Rutherford cable needs to be wound in a coil before the thermal treatment. The cabling process is a delicate step in the production of high performing cables that need different systems to control their quality. This work aims to provide practical tools to analyze the Nb$_{3}$Sn Rutherford cable production and the strands defo...

  20. Corrosion behavior of Zr-x(Nb, Sn and Cu) binary alloys

    International Nuclear Information System (INIS)

    Kim, M. H.; Lee, M. H.; Park, S. Y.; Jung, Y. H.; We, M. Y.

    1999-01-01

    For the development of advanced zirconium alloys for nuclear fuel cladding, the corrosion behaviors of zirconium binary alloys were studied on the Zr-xNb, Zr-xSn, and Zr-xCu alloys. The corrosion test were performed in water at 360 deg C, steam at 400 deg C and LiOH at 360 deg C for 45 days. The corrosion behaviors of Zr-xNb was similar to that of Zr-xCu alloys. However, the corrosion behavior of Zr-xSn was different from Zr-xNb and Zr-xCu. The weight gain of Zr-xNb and Zr-xCu was increased with addition of alloying elements. When Sn is added to Zr matrix in range below the solubility limit, the corrosion resistance decrease with increasing Sn-content, while in the range over solubility limit, Sn has an adverse effect on the corrosion resistance. Especially, Zr-xSn alloys showed higher corrosion resistance than Zr-xNb and Zr-xCu alloys in LiOH solution