WorldWideScience

Sample records for pten mutation spectrum

  1. A novel PTEN gene promoter mutation and untypical Cowden syndrome

    Institute of Scientific and Technical Information of China (English)

    Chen Liu; Guangbing Li; Rongrong Chen; Xiaobo Yang; Xue Zhao; Haitao Zhao

    2013-01-01

    Cowden syndrome (CS),an autosomal dominant disorder,is one of a spectrum of clinical disorders that have been linked to germline mutations in the phosphatase and tensin homolog (PTEN) gene.Although 70-80% of patients with CS have an identifiable germline PTEN mutation,the clinical diagnosis presents many challenges because of the phenotypic and genotypic variations.In the present study,we sequenced the exons and the promoter of PTEN gene,mutations and variations in the promoter and exons were identified,and a PTEN protein expression negative region was determined by immunohistochemistry (IHC).In conclusion,a novel promoter mutation we found in PTEN gene may turn off PTEN protein expression occasionally,leading to the disorder of PTEN and untypical CS manifestations.

  2. Computational Analysis of PTEN Gene Mutation

    Directory of Open Access Journals (Sweden)

    Siew-Kien Mah

    2012-01-01

    Full Text Available Post-genomic data can be efficiently analyzed using computational tools. It has the advantage over the biochemical and biophysical methods in term of higher coverage. In this research, we adopted a computational analysis on PTEN gene mutation.  Mutation in PTEN is responsible for many human diseases. The results of this research provide insights into the protein domains of PTEN and the distribution of mutation.

  3. Breast cancer risk and clinical implications for germline PTEN mutation carriers.

    Science.gov (United States)

    Ngeow, Joanne; Sesock, Kaitlin; Eng, Charis

    2017-08-01

    PTEN Hamartoma Tumor syndrome (PHTS) encompasses a clinical spectrum of heritable disorders including Cowden syndrome (CS), Bannayan-Riley-Ruvalcaba syndrome, and Proteus and Proteus-like syndrome that are associated with germline mutations in the PTEN tumor suppressor gene. Breast cancer risk estimates (67-85 %) for women with germline PTEN mutations are similar to those quoted for patients with germline mutations in the BRCA1/2 genes. With PTEN on several germline gene testing panels, finding PTEN mutations and variants have increased exponentially. PHTS can be differentiated from other hereditary cancer syndromes including Hereditary Breast Ovarian Cancer syndrome, Lynch syndrome, and hamartomatous polyposis syndromes based on personal as well as family history. However, many of the benign features of CS are common in the general population, making the diagnosis of CS challenging. Breast cancer patients with an identified germline PTEN mutation are at increased risk of endometrial, thyroid, renal, and colorectal cancers as well as a second breast cancer. Increased screening for the various component cancers as well as predictive testing in first-degree relatives is recommended. Prophylactic mastectomy may be considered especially if breast tissue is dense or if repeated breast biopsies have been necessary. Management of women with breast cancer suspected of CS who test negative for germline PTEN mutations should be managed as per a mutation carrier if she meets CS diagnostic criteria, and should be offered enrollment in research to identify other predisposition genes.

  4. Clinical Implications for Germline PTEN Spectrum Disorders.

    Science.gov (United States)

    Ngeow, Joanne; Sesock, Kaitlin; Eng, Charis

    2017-06-01

    Patients with PTEN hamartoma tumor syndrome (PHTS) may present to a variety of different subspecialties with benign and malignant clinical features. They have increased lifetime risks of breast, endometrial, thyroid, renal, and colon cancers, as well as neurodevelopmental disorders such as autism spectrum disorder. Patients and affected family members can be offered gene-directed surveillance and management. Patients who are unaffected can be spared unnecessary investigations. With longitudinal follow-up, we are likely to identify other non-cancer manifestations associated with PHTS such as metabolic, immunologic, and neurologic features. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The genetic basis of Cowden's syndrome: three novel mutations in PTEN/MMAC1/TEP1.

    Science.gov (United States)

    Tsou, H C; Ping, X L; Xie, X X; Gruener, A C; Zhang, H; Nini, R; Swisshelm, K; Sybert, V; Diamond, T M; Sutphen, R; Peacocke, M

    1998-04-01

    Cowden's syndrome (CS) is an autosomal dominant disorder associated with an increased risk of developing benign and malignant tumors in a variety of tissues, including the skin, thyroid, breast and brain. Women with CS are felt to have an increased risk of developing breast cancer, and virtually all women with CS develop bilateral fibrocystic disease of the breast. Recently, a series of germline mutations have been identified from CS families in a gene known as PTEN/MMAC1/TEP1. In this study, we used heteroduplex analysis and direct sequencing analysis and identified three novel germline mutations in the PTEN/MMAC1/TEP1 coding sequence from unrelated individuals with CS. We report a de novo transition (T-->C) at nucleotide 335 in exon 5. This missense mutation resulted in a leucine to proline (CTA to CCA) change at codon 112. We also describe a novel splice site mutation (801+2T-->G) in intron 7 that caused exon skipping in PTEN/MMAC1/TEP1 mRNA. The third mutation we report is a missense mutation, consisting of a transition (T-->C) at nucleotide 202 in exon 3, resulting in a tyrosine to histidine (TAC to CAC) change at codon 68. Finally, we also detected a rare polymorphism in exon 7 of the PTEN/MMAC1/TEP1 coding sequence. These data confirm the observation that mutations of the PTEN/MMAC1/TEP1 coding sequence are responsible for at least some cases of CS, and further define the spectrum of mutations in this autosomal dominant disorder.

  6. Characterization of a novel PTEN mutation in MDA-MB-453 breast carcinoma cell line

    Directory of Open Access Journals (Sweden)

    Singh Gobind

    2011-11-01

    Full Text Available Abstract Background Cowden Syndrome (CS patients with germ line point mutations in the PTEN gene are at high risk for developing breast cancer. It is believed that cells harboring these mutant PTEN alleles are predisposed to malignant conversion. This article will characterize the biochemical and biological properties of a mutant PTEN protein found in a commonly used metastatic breast cancer cell line. Methods The expression of PTEN in human breast carcinoma cell lines was evaluated by Western blotting analysis. Cell line MDA-MB-453 was selected for further analysis. Mutation analysis of the PTEN gene was carried out using DNA isolated from MDA-MB-453. Site-directed mutagenesis was used to generate a PTEN E307K mutant cDNA and ectopic expressed in PC3, U87MG, MCF7 and Pten-/- mouse embryo fibroblasts (MEFS. Histidine (His-tagged PTEN fusion protein was generated in Sf9 baculovirus expression system. Lipid phosphatase and ubiquitination assays were carried out to characterize the biochemical properties of PTEN E307K mutant. The intracellular localization of PTEN E307K was determined by subcellular fractionation experiments. The ability of PTEN E307K to alter cell growth, migration and apoptosis was analyzed in multiple PTEN-null cell lines. Results We found a mutation in the PTEN gene at codon 307 in MDA-MB-453 cell line. The glutamate (E to lysine (K substitution rendered the mutant protein to migrate with a faster mobility on SDS-PAGE gels. Biochemically, the PTEN E307K mutant displayed similar lipid phosphatase and growth suppressing activities when compared to wild-type (WT protein. However, the PTEN E307K mutant was present at higher levels in the membrane fraction and suppressed Akt activation to a greater extent than the WT protein. Additionally, the PTEN E307K mutant was polyubiquitinated to a greater extent by NEDD4-1 and displayed reduced nuclear localization. Finally, the PTEN E307K mutant failed to confer chemosensitivity to

  7. PTEN mutation analysis in two genetic subtypes of high-grade oligodendroglial tumors. PTEN is only occasionally mutated in one of the two genetic subtypes.

    Science.gov (United States)

    Jeuken, J W; Nelen, M R; Vermeer, H; van Staveren, W C; Kremer, H; van Overbeeke, J J; Boerman, R H

    2000-05-01

    We recently identified two genetic subtypes of high-grade oligodendroglial tumors (HG-OT): 1p-/19q- HG-OT are characterized by a loss of chromosome 1p32-36 (del(1)(p32-p36) and/or a del(19)(q13. 3); whereas +7/-10 HG-OT harbor a gain of chromosome 7 (+7) and/or a -10 without a loss of 1p32-36 and 19q13.3. Because a -10 and a +7 are most frequently detected in glioblastomas (GBM), the genotype of +7/-10 HG-OT suggests that these tumors are GBM with a prominent oligodendroglial phenotype rather than anaplastic oligodendrogliomas. PTEN is a tumor suppressor gene, located at 10q23.3, which is involved in tumor progression of GBM and other neoplasms. In this study, we screened for PTEN mutations in six low-grade oligodendroglial tumors (LG-OT), five 1p-/19q- HG-OT, seven +7/-10 HG-OT, and nine xenografted GBM. PTEN mutations were detected in none of the LG-OT and 1p-/19q- HG-OT, once in +7/-10 HG-OT, and frequently in GBM. As one of the +7/-10 HG-OT harbored a PTEN mutation, this demonstrates that PTEN can be involved in the oncogenesis of this genetic subtype of HG-OT. The lower frequency of PTEN mutations in +7/-10 HG-OT compared to GBM suggests that these tumors are of a distinct tumor type rather than GBM. Published by Elsevier Science Inc.

  8. EFFECTS OF MUTATION AND EXPRESSION OF PTEN GENE mRNA ON TUMORIGENESIS AND PROGRESSION OF EPITHELIAL OVARIAN CANCER

    Institute of Scientific and Technical Information of China (English)

    陈颖; 郑华川; 杨雪飞; 孙丽梅; 辛彦

    2004-01-01

    Objective To investigate the mutation and expression of tumor suppressor gene-PTEN mRNA and explore their roles in tumorigenesis and progression of ovarian cancer. Methods Mutated exon 5 of PTEN gene was examined in normal ovary (n = 5), ovarian cyst (n =5), ovarian borderline tumor (n=9), epithelial ovarian cancer (n=60), and ovarian cancer cell line (n= 1)by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP). mRNA expression of PTEN gene was evaluated in corresponding tissues and cell line by reverse transcription polymerase chain reaction(RT-PCR). The mutation and mRNA expression of PTEN gene were compared with clinicopathological features of ovarian cancer. Results Mutated exon 5 of PTEN gene was detected only in 5 (7.1%) cases of epithelial ovarian cancer. mRNA expression level of PTEN gene in ovarian borderline tumor or ovarian cancer was lower than that in normal ovary or ovarian cyst (P < 0.05). The level of PTEN gene mRNA expression was negatively correlated with clinicopathological staging of ovarian cancer, whereas positively correlated with histological differentiation (P < 0.05). mRNA expression level of PTEN gene in ovarian endometrioid cancer was significantly lower than that in ovarian serous or mucinous cancer (P < 0.05). Conclusions Mutation of PTEN gene occurs in ovarian cancer. Down-regulated expression of PTEN is probably an important molecular event in tumorigenesis of ovarian cancer. Abnormal expression of PTEN gene is involved in progression of ovarian cancer. Reduced expression of PTEN gene is closely associated with tumorigenesis and pathobiological behaviors of ovarian endometrioid cancer.

  9. PTEN gene mutations correlate to poor prognosis in glioma patients: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Han F

    2016-06-01

    Full Text Available Feng Han,1,* Rong Hu,2,* Hua Yang,1 Jian Liu,1 Jianmei Sui,1 Xin Xiang,1 Fan Wang,1 Liangzhao Chu,1 Shibin Song1 1Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, 2Department of Histology and Embryology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China *These authors contributed equally to this work Background: We conducted this meta-analysis based on eligible trials to investigate the relationship between phosphatase and tensin homolog (PTEN genetic mutation and glioma patients’ survival. Methods: PubMed, Web of Science, and EMBASE were searched for eligible studies regarding the relationship between PTEN genetic mutation and glioma patients’ survival. The primary outcome was the overall survival of glioma patient with or without PTEN genetic mutation, and second outcome was prognostic factors for the survival of glioma patient. A fixed-effects or random-effects model was used to pool the estimates according to the heterogeneity among the included studies. Results: Nine cohort studies, involving 1,173 patients, were included in this meta-analysis. Pooled results suggested that glioma patients with PTEN genetic mutation had a significant shorter overall survival than those without PTEN genetic mutation (hazard ratio [HR] =2.23, 95% confidence interval [CI]: 1.35, 3.67; P=0.002. Furthermore, subgroup analysis indicated that this association was only observed in American patients (HR =2.19, 95% CI: 1.23, 3.89; P=0.008, but not in Chinese patients (HR =1.44, 95% CI: 0.29, 7.26; P=0.657. Histopathological grade (HR =1.42, 95% CI: 0.07, 28.41; P=0.818, age (HR =0.94, 95% CI: 0.43, 2.04; P=0.877, and sex (HR =1.28, 95% CI: 0.55, 2.98; P=0.564 were not significant prognostic factors for the survival of patients with glioma. Conclusion: Current evidence indicates that PTEN genetic mutation is associated with poor prognosis in glioma patients. However, this

  10. Second Malignant Neoplasms in Patients With Cowden Syndrome With Underlying Germline PTEN Mutations

    Science.gov (United States)

    Ngeow, Joanne; Stanuch, Kim; Mester, Jessica L.; Barnholtz-Sloan, Jill S.; Eng, Charis

    2014-01-01

    Purpose Patients with Cowden syndrome (CS) with underlying germline PTEN mutations are at increased risk of breast, thyroid, endometrial, and renal cancers. To our knowledge, risk of subsequent cancers in these patients has not been previously explored or quantified. Patients and Methods We conducted a 7-year multicenter prospective study (2005 to 2012) of patients with CS or CS-like disease, all of whom underwent comprehensive PTEN mutational analysis. Second malignant neoplasms (SMNs) were ascertained by medical records and confirmed by pathology reports. Standardized incidence ratios (SIRs) for all SMNs combined and for breast, thyroid, endometrial, and renal cancers were calculated. Results Of the 2,912 adult patients included in our analysis, 2,024 had an invasive cancer history. Germline pathogenic PTEN mutations (PTEN mutation positive) were identified in 114 patients (5.6%). Of these 114 patients, 46 (40%) had an SMN. Median age of SMN diagnosis was 50 years (range, 21 to 71 years). Median interval between primary cancer and SMN was 5 years (range, breast cancer, 11 (22%) had a subsequent new primary breast cancer and 10-year second breast cancer cumulative risk of 29% (95% CI, 15.3 to 43.7). Risk of SMNs compared with that of the general population was significantly elevated for all cancers (SIR, 7.74; 95% CI, 5.84 to 10.07), specifically for breast (SIR, 8.92; 95% CI, 5.85 to 13.07), thyroid (SIR, 5.83; 95% CI, 3.01 to 10.18), and endometrial SMNs (SIR, 14.08.07; 95% CI, 7.10 to 27.21). Conclusion Patients with CS with germline PTEN mutations are at higher risk for SMNs compared with the general population. Prophylactic mastectomy should be considered on an individual basis given the significant risk of subsequent breast cancer. PMID:24778394

  11. An integrative genomic and proteomic analysis of PIK3CA, PTEN and AKT mutations in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Stemke-Hale, Katherine; Gonzalez-Angulo, Ana Maria; Lluch, Ana; Neve, Richard M.; Kuo, Wen-Lin; Davies, Michael; Carey, Mark; Hu, Zhi; Guan, Yinghui; Sahin, Aysegul; Symmans, W. Fraser; Pusztai, Lajos; Nolden, Laura K.; Horlings, Hugo; Berns, Katrien; Hung, Mien-Chie; van de Vijver, Marc J.; Valero, Vicente; Gray, Joe W.; Bernards, Rene; Mills, Gordon B.; Hennessy, Bryan T.

    2008-05-06

    Phosphatidylinositol-3-kinase (PI3K)/AKT pathway aberrations are common in cancer. By applying mass spectroscopy-based sequencing and reverse phase protein arrays to 547 human breast cancers and 41 cell lines, we determined the subtype specificity and signaling effects of PIK3CA, AKT and PTEN mutations, and the effects of PIK3CA mutations on responsiveness to PI3K inhibition in-vitro and on outcome after adjuvant tamoxifen. PIK3CA mutations were more common in hormone receptor positive (33.8%) and HER2-positive (24.6%) than in basal-like tumors (8.3%). AKT1 (1.4%) and PTEN (2.3%) mutations were restricted to hormone receptor-positive cancers with PTEN protein levels also being significantly lower in hormone receptor-positive cancers. Unlike AKT1 mutations, PIK3CA (39%) and PTEN (20%) mutations were more common in cell lines than tumors, suggesting a selection for these but not AKT1 mutations during adaptation to culture. PIK3CA mutations did not have a significant impact on outcome in 166 hormone receptor-positive breast cancer patients after adjuvant tamoxifen. PIK3CA mutations, in comparison with PTEN loss and AKT1 mutations, were associated with significantly less and indeed inconsistent activation of AKT and of downstream PI3K/AKT signaling in tumors and cell lines, and PTEN loss and PIK3CA mutation were frequently concordant, suggesting different contributions to pathophysiology. PTEN loss but not PIK3CA mutations rendered cells sensitive to growth inhibition by the PI3K inhibitor LY294002. Thus, PI3K pathway aberrations likely play a distinct role in the pathogenesis of different breast cancer subtypes. The specific aberration may have implications for the selection of PI3K-targeted therapies in hormone receptor-positive breast cancer.

  12. Subtle variations in Pten dose determine cancer susceptibility.

    Science.gov (United States)

    Alimonti, Andrea; Carracedo, Arkaitz; Clohessy, John G; Trotman, Lloyd C; Nardella, Caterina; Egia, Ainara; Salmena, Leonardo; Sampieri, Katia; Haveman, William J; Brogi, Edi; Richardson, Andrea L; Zhang, Jiangwen; Pandolfi, Pier Paolo

    2010-05-01

    Cancer susceptibility has been attributed to at least one heterozygous genetic alteration in a tumor suppressor gene (TSG). It has been hypothesized that subtle variations in TSG expression can promote cancer development. However, this hypothesis has not yet been definitively supported in vivo. Pten is a TSG frequently lost in human cancer and mutated in inherited cancer-predisposition syndromes. Here we analyze Pten hypermorphic mice (Pten(hy/+)), expressing 80% normal levels of Pten. Pten(hy/+) mice develop a spectrum of tumors, with breast tumors occurring at the highest penetrance. All breast tumors analyzed here retained two intact copies of Pten and maintained Pten levels above heterozygosity. Notably, subtle downregulation of Pten altered the steady-state biology of the mammary tissues and the expression profiles of genes involved in cancer cell proliferation. We present an alterative working model for cancer development in which subtle reductions in the dose of TSGs predispose to tumorigenesis in a tissue-specific manner.

  13. PCR-SSCP-DNA sequencing method in detecting PTEN gene mutation and its significance in human gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Chuan-Yong Guo; Xuan-Fu Xu; Jian-Ye Wu; Shu-Fang Liu

    2008-01-01

    AIM: To discuss the possible effect of PTEN gene mutations on occurrence and development of gastric cancer.METHODS: Fifty-three gastric cancer specimens were selected to probe PTEN gene mutations in genome of gastric cancer and paracancerous tissues using PCR-SSCP-DNA sequencing method based on microdissection and to observe the protein expression by immunohistochemistry technique.RESULTS: PCR-SSCP-DNA sequencing indicated that 4 kinds of mutation sites were found in 5 of 53 gastric cancer specimens.One kind of mutation was found in exons.AA-TCC mutation was located at 40bp upstream of 3' lateral exert 7 (115946 AA-TCC).Such mutations led to terminator formation in the 297th codon of the PTEN gene.The other 3 kinds of mutation were found in introns,including a G-C point mutation at 91 bp upstream of 5' lateral exon 5(90896 G-C),a T-G point mutation at 24 bp upstream of 5' lateral exon 5 (90963 T-G),and a single base A mutation at 7 bp upstream of 5' lateral exon 5 (90980 A del).The PTEN protein expression in gastric cancer and paracancerous tissues detected using immunohistochemistry technique indicated that the total positive rate of PTEN protein expression was 66% in gastric cancer tissue,which was significantly lower than that (100%) in paracancerous tissues (P<0.005).CONCLUSION: PTEN gene mutation and expression may play an important role in the occurrence and development of gastric cancer.(C)2008 The WJG Press.All rights reserved.

  14. Loss of heterozygosity on 10q23.3 and mutation of tumor suppressor gene PTEN in gastric cancer and precancerous lesions

    Institute of Scientific and Technical Information of China (English)

    Yi-Ling Li; Zhong Tian; Dong-Ying Wu; Bao-Yu Fu; Yan Xin

    2005-01-01

    AIM: To investigate the loss of heterozygosity (LOH) and mutation of tumor suppressor gene PTEN in gastric cancer and precancerous lesions.METHODS: Thirty cases of normal gastric mucosa, advanced and early stage gastric cancer, intestinal metaplasia, atrophic gastritis, and atypical hyperplasia were analyzed for PTEN LOH and mutations within the entire coding region of PTEN gene by PCR-SSCP denaturing PAGE gel electrophoresis,and PTEN mutation was detected by PCR-SSCP sequencing followed by silver staining.RESULTS: LOH rate found in respectively atrophic gastritis was 10% (3/30), intestinal metaplasia 10% (3/30), atypical hyperpiasia 13.3% (4/30), early stage gastric cancer 20%(6/30), and advanced stage gastric cancer 33.3% (9/30),None of the precancerous lesions and early stage gastric cancer showed PTEN mutations, but 10% (3/30) of the advanced stage gastric cancers, which were all positive for LOH, showed PTEN mutation.CONCLUSION: LOH of PTEN gene appears in precancerous lesions, and PTEN mutations are restricted to advanced gastric cancer, LOH and mutation of PTEN gene are closely related to the infiltration and metastasis of gastric cancer.

  15. The Parvalbumin/Somatostatin Ratio Is Increased in Pten Mutant Mice and by Human PTEN ASD Alleles

    Directory of Open Access Journals (Sweden)

    Daniel Vogt

    2015-05-01

    Full Text Available Mutations in the phosphatase PTEN are strongly implicated in autism spectrum disorder (ASD. Here, we investigate the function of Pten in cortical GABAergic neurons using conditional mutagenesis in mice. Loss of Pten results in a preferential loss of SST+ interneurons, which increases the ratio of parvalbumin/somatostatin (PV/SST interneurons, ectopic PV+ projections in layer I, and inhibition onto glutamatergic cortical neurons. Pten mutant mice exhibit deficits in social behavior and changes in electroencephalogram (EEG power. Using medial ganglionic eminence (MGE transplantation, we test for cell-autonomous functional differences between human PTEN wild-type (WT and ASD alleles. The PTEN ASD alleles are hypomorphic in regulating cell size and the PV/SST ratio in comparison to WT PTEN. This MGE transplantation/complementation assay is efficient and is generally applicable for functional testing of ASD alleles in vivo.

  16. Hereditary breast cancer associated with Cowden syndrome-related PTEN mutation with Lhermitte-Duclos disease.

    Science.gov (United States)

    Kimura, Fuyo; Ueda, Ai; Sato, Eiichi; Akimoto, Jiro; Kaise, Hiroshi; Yamada, Kimito; Hosonaga, Mari; Kawai, Yuko; Teraoka, Saeko; Okazaki, Miki; Ishikawa, Takashi

    2017-12-01

    Cowden syndrome is characterized by multiple hamartomas in various tissues, including the skin, brain, breast, thyroid, mucous membrane, and gastrointestinal tract, and is reported to increase the risk of malignant disease. We describe the case of a 52-year-old woman in whom a tumor was diagnosed in the left cerebellar hemisphere and treated by surgical resection. Phosphatase and tensin homolog (PTEN) mutation in exon 8 insertion was found in the brain tumor tissue and leukocytes. This finding supported the diagnosis of Cowden syndrome. She consequently developed endometrial cancer and underwent abdominal total hysterectomy with bilateral salpingo-oophorectomy. Four years later, hormone receptor-positive breast cancer was found in the right breast, and breast-conserving surgery with radiation therapy and sentinel lymph node biopsy was performed. Herein, we describe a patient who was diagnosed as having familial breast cancer associated with PTEN mutation-related Cowden syndrome. We also reviewed reports of this syndrome in the literature for disease appraisal.

  17. Expression of PIK3CA, PTEN mRNA and PIK3CA mutations in primary breast cancer

    DEFF Research Database (Denmark)

    Palimaru, Irina; Brügmann, Anja; Wium-Andersen, Marie Kim;

    2013-01-01

    tissue samples of breast carcinoma and normal breast tissue were obtained from 175 breast cancer patients at the time of primary surgery, of these 105 patients were lymph node positive. Expression of PIK3CA and PTEN mRNA was quantified with Quantitative Real Time PCR. Somatic mutations in exon 9 and exon......PURPOSE: High activity of the intracellular phosphatidylinositol-3 kinase (PI3K) pathway is common in breast cancer. Here, we explore differences in expression of important PI3K pathway regulators: the activator, phosphatidylinositol-3-kinase catalytic subunit alpha (PIK3CA), and the tumour...... suppressor, phosphatase and tensin homolog (PTEN), in breast carcinoma tissue and normal breast tissue. Furthermore, we examine whether expression of PIK3CA and PTEN mRNA and occurrence of PIK3CA mutations are associated with lymph node metastases in patients with primary breast cancer. METHODS: Paired...

  18. An activating Pik3ca mutation coupled with Pten loss is sufficient to initiate ovarian tumorigenesis in mice.

    Science.gov (United States)

    Kinross, Kathryn M; Montgomery, Karen G; Kleinschmidt, Margarete; Waring, Paul; Ivetac, Ivan; Tikoo, Anjali; Saad, Mirette; Hare, Lauren; Roh, Vincent; Mantamadiotis, Theo; Sheppard, Karen E; Ryland, Georgina L; Campbell, Ian G; Gorringe, Kylie L; Christensen, James G; Cullinane, Carleen; Hicks, Rodney J; Pearson, Richard B; Johnstone, Ricky W; McArthur, Grant A; Phillips, Wayne A

    2012-02-01

    Mutations in the gene encoding the p110α subunit of PI3K (PIK3CA) that result in enhanced PI3K activity are frequently observed in human cancers. To better understand the role of mutant PIK3CA in the initiation or progression of tumorigenesis, we generated mice in which a PIK3CA mutation commonly detected in human cancers (the H1047R mutation) could be conditionally knocked into the endogenous Pik3ca locus. Activation of this mutation in the mouse ovary revealed that alone, Pik3caH1047R induced premalignant hyperplasia of the ovarian surface epithelium but no tumors. Concomitantly, we analyzed several human ovarian cancers and found PIK3CA mutations coexistent with KRAS and/or PTEN mutations, raising the possibility that a secondary defect in a co-regulator of PI3K activity may be required for mutant PIK3CA to promote transformation. Consistent with this notion, we found that Pik3caH1047R mutation plus Pten deletion in the mouse ovary led to the development of ovarian serous adenocarcinomas and granulosa cell tumors. Both mutational events were required for early, robust Akt activation. Pharmacological inhibition of PI3K/mTOR in these mice delayed tumor growth and prolonged survival. These results demonstrate that the Pik3caH1047R mutation with loss of Pten is enough to promote ovarian cell transformation and that we have developed a model system for studying possible therapies.

  19. KRAS, BRAF and PIK3CA mutations and the loss of PTEN expression in Chinese patients with colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Chen Mao

    Full Text Available BACKGROUND: To investigate the frequency and relationship of the KRAS, BRAF and PIK3CA mutations and the loss of PTEN expression in Chinese patients with colorectal cancer (CRC. METHODOLOGY/PRINCIPAL FINDINGS: Genomic DNA was extracted from the formalin-fixed paraffin-embedded (FFPE tissues of 69 patients with histologically confirmed CRC. Automated sequencing analysis was conducted to detect mutations in the KRAS (codons 12, 13, and 14, BRAF (codon 600 and PIK3CA (codons 542, 545 and 1047. PTEN protein expression was evaluated by immunohistochemistry on 3 mm FFPE tissue sections. Statistical analysis was carried out using SPSS 16.0 software. The frequency of KRAS, BRAF and PIK3CA mutations and loss of PTEN expression was 43.9% (25/57, 25.4% (15/59, 8.2% (5/61 and 47.8% (33/69, respectively. The most frequent mutation in KRAS, BRAF and PIK3CA was V14G (26.7% of all mutations, V600E (40.0% of all mutations and V600L (40.0% of all mutations, and H1047L (80.0% of all mutations, respectively. Six KRAS mutant patients (24.0% harbored BRAF mutations. BRAF and PIK3CA mutations were mutually exclusive. No significant correlation was observed between the four biomarkers and patients' characteristics. CONCLUSIONS/SIGNIFICANCE: BRAF mutation rate is much higher in this study than in other studies, and overlap a lot with KRAS mutations. Besides, the specific types of KRAS and PIK3CA mutations in Chinese patients could be quite different from that of patients in other countries. Further studies are warranted to examine their impact on prognosis and response to targeted treatment.

  20. Mutational spectrum drives the rise of mutator bacteria.

    Directory of Open Access Journals (Sweden)

    Alejandro Couce

    Full Text Available Understanding how mutator strains emerge in bacterial populations is relevant both to evolutionary theory and to reduce the threat they pose in clinical settings. The rise of mutator alleles is understood as a result of their hitchhiking with linked beneficial mutations, although the factors that govern this process remain unclear. A prominent but underappreciated fact is that each mutator allele increases only a specific spectrum of mutational changes. This spectrum has been speculated to alter the distribution of fitness effects of beneficial mutations, potentially affecting hitchhiking. To study this possibility, we analyzed the fitness distribution of beneficial mutations generated from different mutator and wild-type Escherichia coli strains. Using antibiotic resistance as a model system, we show that mutational spectra can alter these distributions substantially, ultimately determining the competitive ability of each strain across environments. Computer simulation showed that the effect of mutational spectrum on hitchhiking dynamics follows a non-linear function, implying that even slight spectrum-dependent fitness differences are sufficient to alter mutator success frequency by several orders of magnitude. These results indicate an unanticipated central role for the mutational spectrum in the evolution of bacterial mutation rates. At a practical level, this study indicates that knowledge of the molecular details of resistance determinants is crucial for minimizing mutator evolution during antibiotic therapy.

  1. A phosphatase-independent gain-of-function mutation in PTEN triggers aberrant cell growth in astrocytes through an autocrine IGF-1 loop.

    Science.gov (United States)

    Fernández, S; Genis, L; Torres-Alemán, I

    2014-08-07

    Loss-of-function mutations in the phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome10) contribute to aberrant cell growth in part through upregulation of the mitogenic IGF-1/PI3K/Akt pathway. In turn, this pathway exerts a homeostatic feedback over PTEN. Using mutagenesis analysis to explore a possible impact of this mutual control on astrocyte growth, we found that truncation of the C-terminal region of PTEN (Δ51) associates with a marked increase in NFκB activity, a transcription factor overactivated in astrocyte tumors. Whereas mutations of PTEN are considered to lead to a loss-of-function, PTENΔ51, a truncation that comprises a region frequently mutated in human gliomas, displayed a neomorphic (gain-of-function) activity that was independent of its phosphatase activity. This gain-of-function of PTENΔ51 includes stimulation of IGF-1 synthesis through protein kinase A activation of the IGF-1 promoter. Increased IGF-1 originates an autocrine loop that activates Akt and NFκB. Constitutive activation of NFκB in PTENΔ51-expressing astrocytes leads to aberrant cell growth; astrocytes expressing this mutant PTEN generate colonies in vitro and tumors in vivo. Mutations converting a tumor suppressor such as PTEN into a tumor promoter through a gain-of-function involving IGF-1 production may further our understanding of the role played by this growth factor in glioma growth and help us define druggable targets for personalized therapy.

  2. PTEN at 18: Still Growing.

    Science.gov (United States)

    Gorbenko, Olena; Stambolic, Vuk

    2016-01-01

    Discovered in 1997, PTEN remains one of the most studied tumor suppressors. In this issue of Methods in Molecular Biology, we assembled a series of papers describing various clinical and experimental approaches to studying PTEN function. Due to its broad expression, regulated subcellular localization, and intriguing phosphatase activity, methodologies aimed at PTEN study have often been developed in the context of mutations affecting various aspects of its regulation, found in patients burdened with PTEN loss-driven tumors. PTEN's extensive posttranslational modifications and dynamic localization pose unique challenges for studying PTEN features in isolation and necessitate considerable development of experimental systems to enable controlled characterization. Nevertheless, ongoing efforts towards the development of PTEN knockout and knock-in animals and cell lines, antibodies, and enzymatic assays have facilitated a huge body of work, which continues to unravel the fascinating biology of PTEN.

  3. Germline mutations in the breast cancer susceptibility gene PTEN are rare in high-risk non-BRCA1/2 French Canadian breast cancer families.

    Science.gov (United States)

    Guénard, Frédéric; Labrie, Yvan; Ouellette, Geneviève; Beauparlant, Charles Joly; Bessette, Paul; Chiquette, Jocelyne; Laframboise, Rachel; Lépine, Jean; Lespérance, Bernard; Pichette, Roxane; Plante, Marie; Durocher, Francine

    2007-01-01

    Cowden syndrome is a disease associated with an increase in breast cancer susceptibility. Alleles in PTEN and other breast cancer susceptibility genes would be responsible for approximately 25% of the familial component of breast cancer risk, BRCA1 and BRCA2 being the two major genes responsible for this inherited risk. In order to evaluate the proportion of high-risk French Canadian non-BRCA1/BRCA2 breast/ovarian cancer families potentially harboring a PTEN germline mutation, the whole coding and flanking intronic sequences were analyzed in a series of 98 breast cancer cases. Although no germline mutation has been identified in the coding region, our study led to the identification of four intronic variants. Further investigations were performed to analyze the effect of these variants, alone and/or in combination, on splicing and PTEN protein levels. Despite suggestive evidence emerging from in silico analyses, the presence of these intronic variants do not seem to alter RNA splicing or PTEN protein levels. In addition, as loss of PTEN or part of it has been reported, Western blot analysis has also been performed. No major deletion could be identified in our cohort. Therefore, assuming a Poisson distribution for the frequency of deleterious mutation in our cohort, if the frequency of such deleterious mutation was 2%, we would have had a 90% or greater chance of observing at least one such mutation. These results suggest that PTEN germline mutations are rare and are unlikely to account for a significant proportion of familial breast cancer cases in the French Canadian population.

  4. KRAS and BRAF Mutations and PTEN Expression Do Not Predict Efficacy of Cetuximab-Based Chemoradiotherapy in Locally Advanced Rectal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Erben, Philipp, E-mail: philipp.erben@medma.uni-heidelberg.de [III. Medizinische Klinik, Universitaetsmedizin Mannheim, Universitaet Heidelberg, Mannheim (Germany); Stroebel, Philipp [Pathologisches Institut, Universitaetsmedizin Mannheim, Universitaet Heidelberg, Mannheim (Germany); Horisberger, Karoline [Chirurgische Klinik, Universitaetsmedizin Mannheim, Universitaet Heidelberg, Mannheim (Germany); Popa, Juliana; Bohn, Beatrice; Hanfstein, Benjamin [III. Medizinische Klinik, Universitaetsmedizin Mannheim, Universitaet Heidelberg, Mannheim (Germany); Kaehler, Georg; Kienle, Peter; Post, Stefan [Chirurgische Klinik, Universitaetsmedizin Mannheim, Universitaet Heidelberg, Mannheim (Germany); Wenz, Frederik [Klinik fuer Strahlentherapie und Radioonkologie, Universitaetsmedizin Mannheim, Universitaet Heidelberg, Mannheim (Germany); Hochhaus, Andreas [III. Medizinische Klinik, Universitaetsmedizin Mannheim, Universitaet Heidelberg, Mannheim (Germany); Klinik fuer Innere Medizin II, Abteilung Haematologie/Onkologie, Universitaetsklinikum Jena, Jena (Germany); Hofheinz, Ralf-Dieter [III. Medizinische Klinik, Universitaetsmedizin Mannheim, Universitaet Heidelberg, Mannheim (Germany)

    2011-11-15

    Purpose: Mutations in KRAS and BRAF genes as well as the loss of expression of phosphatase and tensin homolog (PTEN) (deleted on chromosome 10) are associated with impaired activity of antibodies directed against epidermal growth factor receptor in patients with metastatic colorectal cancer. The predictive and prognostic value of the KRAS and BRAF point mutations as well as PTEN expression in patients with locally advanced rectal cancer (LARC) treated with cetuximab-based neoadjuvant chemoradiotherapy is unknown. Methods and Materials: We have conducted phase I and II trials of the combination of weekly administration of cetuximab and irinotecan and daily doses of capecitabine in conjunction with radiotherapy (45 Gy plus 5.4 Gy) in patients with LARC (stage uT3/4 or uN+). The status of KRAS and BRAF mutations was determined with direct sequencing, and PTEN expression status was determined with immunohistochemistry testing of diagnostic tumor biopsies. Tumor regression was evaluated by using standardized regression grading, and disease-free survival (DFS) was calculated according to the Kaplan-Meier method. Results: A total of 57 patients were available for analyses. A total of 31.6% of patients carried mutations in the KRAS genes. No BRAF mutations were found, while the loss of PTEN expression was observed in 9.6% of patients. Six patients achieved complete remission, and the 3-year DFS rate was 73%. No correlation was seen between tumor regression or DFS rate and a single marker or a combination of all markers. Conclusions: In the present series, no BRAF mutation was detected. The presence of KRAS mutations and loss of PTEN expression were not associated with impaired response to cetuximab-based chemoradiotherapy and 3-year DFS.

  5. Otopalatodigital spectrum disorders: refinement of the phenotypic and mutational spectrum.

    Science.gov (United States)

    Moutton, Sébastien; Fergelot, Patricia; Naudion, Sophie; Cordier, Marie-Pierre; Solé, Guilhem; Guerineau, Elodie; Hubert, Christophe; Rooryck, Caroline; Vuillaume, Marie-Laure; Houcinat, Nada; Deforges, Julie; Bouron, Julie; Devès, Sylvie; Le Merrer, Martine; David, Albert; Geneviève, David; Giuliano, Fabienne; Journel, Hubert; Megarbane, André; Faivre, Laurence; Chassaing, Nicolas; Francannet, Christine; Sarrazin, Elisabeth; Stattin, Eva-Lena; Vigneron, Jacqueline; Leclair, Danielle; Abadie, Caroline; Sarda, Pierre; Baumann, Clarisse; Delrue, Marie-Ange; Arveiler, Benoit; Lacombe, Didier; Goizet, Cyril; Coupry, Isabelle

    2016-08-01

    Otopalatodigital spectrum disorders (OPDSD) constitute a group of dominant X-linked osteochondrodysplasias including four syndromes: otopalatodigital syndromes type 1 and type 2 (OPD1 and OPD2), frontometaphyseal dysplasia, and Melnick-Needles syndrome. These syndromes variably associate specific facial and extremities features, hearing loss, cleft palate, skeletal dysplasia and several malformations, and show important clinical overlap over the different entities. FLNA gain-of-function mutations were identified in these conditions. FLNA encodes filamin A, a scaffolding actin-binding protein. Here, we report phenotypic descriptions and molecular results of FLNA analysis in a large series of 27 probands hypothesized to be affected by OPDSD. We identified 11 different missense mutations in 15 unrelated probands (n=15/27, 56%), of which seven were novel, including one of unknown significance. Segregation analyses within families made possible investigating 20 additional relatives carrying a mutation. This series allows refining the phenotypic and mutational spectrum of FLNA mutations causing OPDSD, and providing suggestions to avoid the overdiagnosis of OPD1.

  6. Mutations of the KIT gene and loss of heterozygosity of the PTEN region in a primary malignant melanoma arising from a mature cystic teratoma of the ovary.

    Science.gov (United States)

    Tate, Genshu; Tajiri, Takuma; Suzuki, Takao; Mitsuya, Toshiyuki

    2009-04-01

    A tumor suppressor gene at 10q23.3, designated PTEN, encoding a dual-specificity phosphatase with lipid and protein phosphatase activity, has been shown to play a pivotal role in the pathogenesis of a variety of human cancers. A frequent loss of heterozygosity (LOH) at 10q is found in melanoma; however, little is known about the role of PTEN in the pathogenesis of a primary malignant melanoma derived from ovarian mature cystic teratoma, which is an extremely rare melanoma. This study examined the genetic alterations involved in the mitogen-activated protein kinase and phosphatidylinositol 3 kinase pathways in an ovarian malignant melanoma. A LOH analysis revealed hemizygous deletion around and in the PTEN gene not only in the ovarian melanoma but also in a mature cystic teratoma. Another case of ovarian mature cystic teratomas in the absence of melanoma also showed allelic loss of the PTEN region. To date, mutations of BRAF, NRAS, and KIT genes have been reported in malignant melanomas. In the present study, D816H and K558E mutations of the KIT gene were revealed in the melanoma arising from a mature cystic teratoma, but not in a mature cystic teratoma. No mutations of the BRAF and NRAS genes were found in the melanoma. These results indicate that LOH of the PTEN region is one of the molecular alterations of an ovarian mature cystic teratoma and a KIT mutation is an additional promotional event associated with the oncogenesis of a melanoma arising from an ovarian mature cystic teratoma.

  7. Germline disruption of Pten localization causes enhanced sex-dependent social motivation and increased glial production.

    Science.gov (United States)

    Tilot, Amanda K; Gaugler, Mary K; Yu, Qi; Romigh, Todd; Yu, Wanfeng; Miller, Robert H; Frazier, Thomas W; Eng, Charis

    2014-06-15

    PTEN Hamartoma Tumor Syndrome (PHTS) is an autosomal-dominant genetic condition underlying a subset of autism spectrum disorder (ASD) with macrocephaly. Caused by germline mutations in PTEN, PHTS also causes increased risks of multiple cancers via dysregulation of the PI3K and MAPK signaling pathways. Conditional knockout models have shown that neural Pten regulates social behavior, proliferation and cell size. Although much is known about how the intracellular localization of PTEN regulates signaling in cancer cell lines, we know little of how PTEN localization influences normal brain physiology and behavior. To address this, we generated a germline knock-in mouse model of cytoplasm-predominant Pten and characterized its behavioral and cellular phenotypes. The homozygous Pten(m3m4) mice have decreased total Pten levels including a specific drop in nuclear Pten and exhibit region-specific increases in brain weight. The Pten(m3m4) model displays sex-specific increases in social motivation, poor balance and normal recognition memory-a profile reminiscent of some individuals with high functioning ASD. The cytoplasm-predominant protein caused cellular hypertrophy limited to the soma and led to increased NG2 cell proliferation and accumulation of glia. The animals also exhibit significant astrogliosis and microglial activation, indicating a neuroinflammatory phenotype. At the signaling level, Pten(m3m4) mice show brain region-specific differences in Akt activation. These results demonstrate that differing alterations to the same autism-linked gene can cause distinct behavioral profiles. The Pten(m3m4) model is the first murine model of inappropriately elevated social motivation in the context of normal cognition and may expand the range of autism-related behaviors replicated in animal models.

  8. Hyperactivity of Newborn Pten Knock-out Neurons Results from Increased Excitatory Synaptic Drive

    Science.gov (United States)

    Williams, Michael R.; DeSpenza, Tyrone; Li, Meijie; Gulledge, Allan T.

    2015-01-01

    Developing neurons must regulate morphology, intrinsic excitability, and synaptogenesis to form neural circuits. When these processes go awry, disorders, including autism spectrum disorder (ASD) or epilepsy, may result. The phosphatase Pten is mutated in some patients having ASD and seizures, suggesting that its mutation disrupts neurological function in part through increasing neuronal activity. Supporting this idea, neuronal knock-out of Pten in mice can cause macrocephaly, behavioral changes similar to ASD, and seizures. However, the mechanisms through which excitability is enhanced following Pten depletion are unclear. Previous studies have separately shown that Pten-depleted neurons can drive seizures, receive elevated excitatory synaptic input, and have abnormal dendrites. We therefore tested the hypothesis that developing Pten-depleted neurons are hyperactive due to increased excitatory synaptogenesis using electrophysiology, calcium imaging, morphological analyses, and modeling. This was accomplished by coinjecting retroviruses to either “birthdate” or birthdate and knock-out Pten in granule neurons of the murine neonatal dentate gyrus. We found that Pten knock-out neurons, despite a rapid onset of hypertrophy, were more active in vivo. Pten knock-out neurons fired at more hyperpolarized membrane potentials, displayed greater peak spike rates, and were more sensitive to depolarizing synaptic input. The increased sensitivity of Pten knock-out neurons was due, in part, to a higher density of synapses located more proximal to the soma. We determined that increased synaptic drive was sufficient to drive hypertrophic Pten knock-out neurons beyond their altered action potential threshold. Thus, our work contributes a developmental mechanism for the increased activity of Pten-depleted neurons. PMID:25609613

  9. RELN Mutations in Autism Spectrum Disorder.

    Science.gov (United States)

    Lammert, Dawn B; Howell, Brian W

    2016-01-01

    RELN encodes a large, secreted glycoprotein integral to proper neuronal positioning during development and regulation of synaptic function postnatally. Rare, homozygous, null mutations lead to lissencephaly with cerebellar hypoplasia (LCH), accompanied by developmental delay and epilepsy. Until recently, little was known about the frequency or consequences of heterozygous mutations. Several lines of evidence from multiple studies now implicate heterozygous mutations in RELN in autism spectrum disorders (ASD). RELN maps to the AUTS1 locus on 7q22, and at this time over 40 distinct mutations have been identified that would alter the protein sequence, four of which are de novo. The RELN mutations that are most clearly consequential are those that are predicted to inactivate the signaling function of the encoded protein and those that fall in a highly conserved RXR motif found at the core of the 16 Reelin subrepeats. Despite the growing evidence of RELN dysfunction in ASD, it appears that these mutations in isolation are insufficient and that secondary genetic or environmental factors are likely required for a diagnosis.

  10. RELN mutations in autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Dawn B. Lammert

    2016-03-01

    Full Text Available RELN encodes a large, secreted glycoprotein integral to proper neuronal positioning during development and regulation of synaptic function postnatally. Rare, homozygous, null mutations lead to lissencephaly with cerebellar hypoplasia, accompanied by developmental delay and epilepsy. Until recently, little was known about the frequency or consequences of heterozygous mutations. Several lines of evidence from multiple studies now implicate heterozygous mutations in RELN in autism spectrum disorders (ASD. RELN maps to the AUTS1 locus on 7q22, and at this time over 40 distinct mutations have been identified that would alter the protein sequence, four of which are de novo. The RELN mutations that are most clearly consequential are those that are predicted to inactivate the signaling function of the encoded protein, and those that fall in a highly conserved RXR motif found at the core of the 16 Reelin subrepeats. Despite the growing evidence of RELN dysfunction in ASD, it appears that these mutations in isolation are insufficient and that secondary genetic or environmental factors are likely required for a diagnosis.

  11. Dysregulation of synaptic plasticity precedes appearance of morphological defects in a Pten conditional knockout mouse model of autism.

    Science.gov (United States)

    Takeuchi, Koichi; Gertner, Michael J; Zhou, Jing; Parada, Luis F; Bennett, Michael V L; Zukin, R Suzanne

    2013-03-19

    The phosphoinositide signaling system is a crucial regulator of neural development, cell survival, and plasticity. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) negatively regulates phosphatidylinositol 3-kinase signaling and downstream targets. Nse-Cre Pten conditional knockout mice, in which Pten is ablated in granule cells of the dentate gyrus and pyramidal neurons of the hippocampal CA3, but not CA1, recapitulate many of the symptoms of humans with inactivating PTEN mutations, including progressive hypertrophy of the dentate gyrus and deficits in hippocampus-based social and cognitive behaviors. However, the impact of Pten loss on activity-dependent synaptic plasticity in this clinically relevant mouse model of Pten inactivation remains unclear. Here, we show that two phosphatidylinositol 3-kinase- and protein synthesis-dependent forms of synaptic plasticity, theta burst-induced long-term potentiation and metabotropic glutamate receptor (mGluR)-dependent long-term depression, are dysregulated at medial perforant path-to-dentate gyrus synapses of young Nse-Cre Pten conditional knockout mice before the onset of visible morphological abnormalities. In contrast, long-term potentiation and mGluR-dependent long-term depression are normal at CA3-CA1 pyramidal cell synapses at this age. Our results reveal that deletion of Pten in dentate granule cells dysregulates synaptic plasticity, a defect that may underlie abnormal social and cognitive behaviors observed in humans with Pten inactivating mutations and potentially other autism spectrum disorders.

  12. Subtle variations in Pten dose determine cancer susceptibility

    Science.gov (United States)

    Alimonti, Andrea; Carracedo, Arkaitz; Clohessy, John G; Trotman, Lloyd C; Nardella, Caterina; Egia, Ainara; Salmena, Leonardo; Sampieri, Katia; Haveman, William J; Brogi, Edi; Richardson, Andrea L; Zhang, Jiangwen; Pandolfi, Pier Paolo

    2010-01-01

    Cancer susceptibility has been attributed to at least one heterozygous genetic alteration in a tumor suppressor gene (TSG)1. It has been hypothesized that subtle variations in TSG expression can promote cancer development2,3. However, this hypothesis has not yet been definitively supported in vivo. PTEN is a TSG frequently lost in human cancer and mutated in inherited cancer-predisposition syndromes4. Here, we analyze Pten hypermorphic mice (Ptenhy/+), expressing 80% normal levels of Pten. Ptenhy/+ mice develop a spectrum of tumors, with breast tumors occurring at the highest penetrance. All breast tumors analyzed here retained two intact copies of Pten and maintained Pten levels above heterozygosis. Notably, subtle downregulation of Pten altered the steady-state biology of the mammary tissues and the expression profiles of genes involved in cancer cell proliferation. We present an alterative working model for cancer development in which subtle reductions in the dose of TSGs predispose to tumorigenesis in a tissue-specific manner. PMID:20400965

  13. PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia.

    Science.gov (United States)

    Jansen, Laura A; Mirzaa, Ghayda M; Ishak, Gisele E; O'Roak, Brian J; Hiatt, Joseph B; Roden, William H; Gunter, Sonya A; Christian, Susan L; Collins, Sarah; Adams, Carissa; Rivière, Jean-Baptiste; St-Onge, Judith; Ojemann, Jeffrey G; Shendure, Jay; Hevner, Robert F; Dobyns, William B

    2015-06-01

    Malformations of cortical development containing dysplastic neuronal and glial elements, including hemimegalencephaly and focal cortical dysplasia, are common causes of intractable paediatric epilepsy. In this study we performed multiplex targeted sequencing of 10 genes in the PI3K/AKT pathway on brain tissue from 33 children who underwent surgical resection of dysplastic cortex for the treatment of intractable epilepsy. Sequencing results were correlated with clinical, imaging, pathological and immunohistological phenotypes. We identified mosaic activating mutations in PIK3CA and AKT3 in this cohort, including cancer-associated hotspot PIK3CA mutations in dysplastic megalencephaly, hemimegalencephaly, and focal cortical dysplasia type IIa. In addition, a germline PTEN mutation was identified in a male with hemimegalencephaly but no peripheral manifestations of the PTEN hamartoma tumour syndrome. A spectrum of clinical, imaging and pathological abnormalities was found in this cohort. While patients with more severe brain imaging abnormalities and systemic manifestations were more likely to have detected mutations, routine histopathological studies did not predict mutation status. In addition, elevated levels of phosphorylated S6 ribosomal protein were identified in both neurons and astrocytes of all hemimegalencephaly and focal cortical dysplasia type II specimens, regardless of the presence or absence of detected PI3K/AKT pathway mutations. In contrast, expression patterns of the T308 and S473 phosphorylated forms of AKT and in vitro AKT kinase activities discriminated between mutation-positive dysplasia cortex, mutation-negative dysplasia cortex, and non-dysplasia epilepsy cortex. Our findings identify PI3K/AKT pathway mutations as an important cause of epileptogenic brain malformations and establish megalencephaly, hemimegalencephaly, and focal cortical dysplasia as part of a single pathogenic spectrum. © The Author (2015). Published by Oxford University Press

  14. The clonal and mutational evolution spectrum of primary triple negative breast cancers

    Science.gov (United States)

    Shah, Sohrab P.; Roth, Andrew; Goya, Rodrigo; Oloumi, Arusha; Ha, Gavin; Zhao, Yongjun; Turashvili, Gulisa; Ding, Jiarui; Tse, Kane; Haffari, Gholamreza; Bashashati, Ali; Prentice, Leah M.; Khattra, Jaswinder; Burleigh, Angela; Yap, Damian; Bernard, Virginie; McPherson, Andrew; Shumansky, Karey; Crisan, Anamaria; Giuliany, Ryan; Heravi-Moussavi, Alireza; Rosner, Jamie; Lai, Daniel; Birol, Inanc; Varhol, Richard; Tam, Angela; Dhalla, Noreen; Zeng, Thomas; Ma, Kevin; Chan, Simon; Griffith, Malachi; Moradian, Annie; Grace Cheng, S.-W.; Morin, Gregg B.; Watson, Peter; Gelmon, Karen; Chia, Stephen; Chin, Suet-Feung; Curtis, Christina; Rueda, Oscar; Pharoah, Paul D; Damaraju, Sambasivarao; Mackey, John; Hoon, Kelly; Harkins, Timothy; Tadigotla, Vasisht; Sigaroudinia, Mahvash; Gascard, Philippe; Tlsty, Thea; Costello, Joseph F; Meyer, Irmtraud M; Eaves, Connie J; Wasserman, Wyeth W; Jones, Steven; Huntsman, David; Hirst, Martin; Caldas, Carlos; Marra, Marco A; Aparicio, Samuel

    2013-01-01

    Primary triple negative breast cancers (TNBC) represent approximately 16% of all breast cancers1 and are a tumour type defined by exclusion, for which comprehensive landscapes of somatic mutation have not been determined. Here we show in 104 early TNBC cases, that at the time of diagnosis these cancers exhibit a wide and continuous spectrum of genomic evolution, with some exhibiting only a handful of somatic aberrations in a few pathways, whereas others contain hundreds of somatic events and multiple pathways implicated. Integration with matched whole transcriptome sequence data revealed that only ~36% of mutations are expressed. By examining single nucleotide variant (SNV) allelic abundance derived from deep re-sequencing (median >20,000 fold) measurements in 2414 somatic mutations, we determine for the first time in an epithelial tumour, the relative abundance of clonal genotypes among cases in the population. We show that TNBC vary widely and continuously in their clonal frequencies at the time of diagnosis, with basal subtype TNBC2,3 exhibiting more variation than non-basal TNBC. Although p53 and PIK3CA/PTEN somatic mutations appear clonally dominant compared with other pathways, in some tumours their clonal frequencies are incompatible with founder status. Mutations in cytoskeletal and cell shape/motility proteins occurred at lower clonal frequencies, suggesting they occurred later during tumour progression. Taken together our results show that future attempts to dissect the biology and therapeutic responses of TNBC will require the determination of individual tumour clonal genotypes. PMID:22495314

  15. Prevalence of germline PTEN, BMPR1A, SMAD4, STK11, and ENG mutations in patients with moderate-load colorectal polyps.

    Science.gov (United States)

    Ngeow, Joanne; Heald, Brandie; Rybicki, Lisa A; Orloff, Mohammed S; Chen, Jin Lian; Liu, Xiuli; Yerian, Lisa; Willis, Joseph; Lehtonen, Heli J; Lehtonen, Rainer; Mester, Jessica L; Moline, Jessica; Burke, Carol A; Church, James; Aaltonen, Lauri A; Eng, Charis

    2013-06-01

    Gastrointestinal polyposis is a common clinical problem, yet there is no consensus on how to best manage patients with moderate-load polyposis. Identifying genetic features of this disorder could improve management and especially surveillance of these patients. We sought to determine the prevalence of hamartomatous polyposis-associated mutations in the susceptibility genes PTEN, BMPR1A, SMAD4, ENG, and STK11 in individuals with ≥5 gastrointestinal polyps, including at least 1 hamartomatous or hyperplastic/serrated polyp. We performed a prospective, referral-based study of 603 patients (median age: 51 years; range, 2-89 years) enrolled from June 2006 through January 2012. Genomic DNA was extracted from peripheral lymphocytes and analyzed for specific mutations and large rearrangements in PTEN, BMPR1A, SMAD4, and STK11, as well as mutations in ENG. Recursive partitioning analysis was used to determine cutoffs for continuous variables. The prevalence of mutations was compared using Fisher's exact test. Logistic regression analyses were used to determine univariate and multivariate risk factors. Of 603 patients, 119 (20%) had a personal history of colorectal cancer and most (n = 461 [76%]) had ENG (1.8%), 13 in PTEN (2.2%), 13 in STK11 (2.2%), 20 in BMPR1A (3.3%), and 21 in SMAD4 (3.5%). Univariate clinical predictors for risk of having these mutations included age at presentation younger than 40 years (19% vs 10%; P = .008), a polyp burden of ≥30 (19% vs 11%; P = .014), and male sex (16% vs 10%; P = .03). Patients who had ≥1 ganglioneuroma (29% vs 2%; P < .001) or presented with polyps of ≥3 histologic types (20% vs 2%; P = .003) were more likely to have germline mutations in PTEN. Age younger than 40 years, male sex, and specific polyp histologies are significantly associated with risk of germline mutations in hamartomatous-polyposis associated genes. These associations could guide clinical decision making and further investigations. Copyright © 2013 AGA

  16. TP53 Mutational Spectrum in Endometrioid and Serous Endometrial Cancers.

    Science.gov (United States)

    Schultheis, Anne M; Martelotto, Luciano G; De Filippo, Maria R; Piscuglio, Salvatore; Ng, Charlotte K Y; Hussein, Yaser R; Reis-Filho, Jorge S; Soslow, Robert A; Weigelt, Britta

    2016-07-01

    Endometrial carcinomas (ECs) are heterogeneous at the genetic level. Although TP53 mutations are highly recurrent in serous endometrial carcinomas (SECs), these are also present in a subset of endometrioid endometrial carcinomas (EECs). Here, we sought to define the frequency, pattern, distribution, and type of TP53 somatic mutations in ECs by performing a reanalysis of the publicly available data from The Cancer Genome Atlas (TCGA). A total of 228 EECs (n=186) and SECs (n=42) from the TCGA data set, for which an integrated genomic characterization was performed, were interrogated for the presence and type of TP53 mutations, and for mutations in genes frequently mutated in ECs. TP53 mutations were found in 15% of EECs and 88% of SECs, and in 91% of copy-number-high and 35% of polymerase (DNA directed), epsilon, catalytic subunit (POLE) integrative genomic subtypes. In addition to differences in prevalence, variations in the type and pattern of TP53 mutations were observed between histologic types and between integrative genomic subtypes. TP53 hotspot mutations were significantly more frequently found in SECs (46%) than in EECs (15%). TP53-mutant EECs significantly more frequently harbored a co-occurring PTEN mutation than TP53-mutant SECs. Finally, a subset of TP53-mutant ECs (22%) was found to harbor frameshift or nonsense mutations. Given that nonsense and frameshift TP53 mutations result in distinct p53 immunohistochemical results that require careful interpretation, and that EECs and SECs display different patterns, types, and distributions of TP53 mutations, the use of the TP53/p53 status alone for the differential diagnosis of EECs and SECs may not be sufficient.

  17. PTEN inhibits BMI1 function independently of its phosphatase activity

    Directory of Open Access Journals (Sweden)

    Kapoor Anil

    2009-11-01

    Full Text Available Abstract Background PTEN is the second most mutated tumor suppressor gene other than p53. It suppresses tumorigenesis by dephosphorylating phosphatidylinositol (3,4,5-triphosphate (PIP3 to phosphatidylinositol (4,5-biphosphate (PIP2, thereby directly inhibiting phosphatidylinositol 3 kinase (PI3K-mediated tumorigenic activities. Consistent with this model of action, cytosolic PTEN is recruited to the plasma membrane to dephosphorylate PIP3. While nuclear PTEN has been shown to suppress tumorigenesis by governing genome integrity, additional mechanisms may also contribute to nuclear PTEN-mediated tumor suppression. The nuclear protein BMI1 promotes stem cell self-renewal and tumorigenesis and PTEN inhibits these events, suggesting that PTEN may suppress BMI1 function. Results We investigated whether PTEN inhibits BMI1 function during prostate tumorigenesis. PTEN binds to BMI1 exclusively in the nucleus. This interaction does not require PTEN's phosphatase activity, as phosphatase-deficient PTEN mutants, PTEN/C124S (CS, PTEN/G129E (GE, and a C-terminal PTEN fragment (C-PTEN excluding the catalytic domain, all associate with BMI1. Furthermore, the residues 186-286 of C-PTEN are sufficient for binding to BMI1. This interaction reduces BMI1's function. BMI1 enhances hTERT activity and reduces p16INK4A and p14ARF expression. These effects were attenuated by PTEN, PTEN(CS, PTEN(GE, and C-PTEN. Furthermore, knockdown of PTEN in DU145 cells increased hTERT promoter activity, which was reversed when BMI1 was concomitantly knocked-down, indicating that PTEN reduces hTERT promoter activity via inhibiting BMI1 function. Conversely, BMI1 reduces PTEN's ability to inhibit AKT activation, which can be attributed to its interaction with PTEN in the nucleus, making PTEN unavailable to dephosphorylate membrane-bound PIP3. Furthermore, BMI1 appears to co-localize with PTEN more frequently in clinical prostate tissue samples from patients diagnosed with PIN

  18. KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer.

    Science.gov (United States)

    De Roock, Wendy; De Vriendt, Veerle; Normanno, Nicola; Ciardiello, Fortunato; Tejpar, Sabine

    2011-06-01

    The discovery of mutant KRAS as a predictor of resistance to epidermal growth-factor receptor (EGFR) monoclonal antibodies brought a major change in the treatment of metastatic colorectal cancer. This seminal finding also highlighted our sparse knowledge about key signalling pathways in colorectal tumours. Drugs that inhibit oncogenic alterations such as phospho-MAP2K (also called MEK), phospho-AKT, and mutant B-RAF seem promising as single treatment or when given with EGFR inhibitors. However, our understanding of the precise role these potential drug targets have in colorectal tumours, and the oncogenic dependence that tumours might have on these components, has not progressed at the same rate. As a result, patient selection and prediction of treatment effects remain problematic. We review the role of mutations in genes other than KRAS on the efficacy of anti-EGFR therapy, and discuss strategies to target these oncogenic alterations alone or in combination with receptor tyrosine-kinase inhibition.

  19. Impact of KRAS, BRAF, PIK3CA mutations, PTEN, AREG, EREG expression and skin rash in ≥ 2 line cetuximab-based therapy of colorectal cancer patients.

    Directory of Open Access Journals (Sweden)

    Zacharenia Saridaki

    Full Text Available BACKGROUND: To investigate the predictive significance of KRAS, BRAF, PIK3CA mutational status, AREG- EREG mRNA expression, PTEN protein expression and skin rash in metastatic colorectal cancer (mCRC patients treated with cetuximab containing salvage chemotherapy. METHODS: Primary tumors from 112 mCRC patients were analyzed. The worst skin toxicity during treatment was recorded. RESULTS: KRAS, BRAF and PIK3CA mutations were present in 37 (33%, 8 (7.2% and 11 (9.8% cases, respectively, PTEN was lost in 21 (19.8% cases, AREG and EREG were overexpressed in 48 (45% and 51 (49% cases. In the whole study population, time to tumor progression (TTP and overall survival (OS was significantly lower in patients with KRAS (p = 0.001 and p = 0.026, respectively or BRAF (p = 0.001 and p<0.0001, respectively mutant tumors, downregulation of AREG (p = 0.018 and p = 0.013, respectively or EREG (p = 0.002 and p = 0.004, respectively and grade 0-1 skin rash (p<0.0001 and p<0.0001, respectively. In KRAS wt patients TTP and OS was significantly lower in patients with BRAF (p = 0.0001 and p<0.0001, respectively mutant tumors, downregulation of AREG (p = 0.021 and p = 0.004, respectively or EREG (p = 0.0001 and p<0.0001, respectively and grade 0-1 skin rash (p<0.0001 and p<0.0001, respectively. TTP was significantly lower in patients with PIK3CA mutations (p = 0.01 or lost PTEN (p = 0.002. Multivariate analysis revealed KRAS (Hazard Ratio [HR] 4.3, p<0.0001, BRAF mutation (HR: 5.1, p<0.0001, EREG low expression (HR: 1.6, p = 0.021 and absence of severe/moderate skin rash (HR: 4.0, p<0.0001 as independent prognostic factors for decreased TTP. Similarly, KRAS (HR 2.9, p = 0.01, BRAF mutation (HR: 3.0, p = 0.001, EREG low expression (HR: 1.7, p = 0.021, absence of severe/moderate skin rash (HR: 3.7, p<0.0001 and the presence of undifferantited tumours (HR: 2.2, p = 0.001 were revealed as independent prognostic factors for decreased OS. CONCLUSIONS: These results

  20. The Role of B-RAF Mutations in Melanoma and the Induction of EMT via Dysregulation of the NF-κB/Snail/RKIP/PTEN Circuit.

    Science.gov (United States)

    Lin, Kimberly; Baritaki, Stavroula; Militello, Loredana; Malaponte, Graziella; Bevelacqua, Ylenia; Bonavida, Benjamin

    2010-05-01

    Melanoma is a highly metastatic cancer, and there are no current therapeutic modalities to treat this deadly malignant disease once it has metastasized. Melanoma cancers exhibit B-RAF mutations in up to 70% of cases. B-RAF mutations are responsible, in large part, for the constitutive hyperactivation of survival/antiapoptotic pathways such as the MAPK, NF-κB, and PI3K/AKT. These hyperactivated pathways regulate the expression of genes targeting the initiation of the metastatic cascade, namely, the epithelial to mesenchymal transition (EMT). EMT is the result of the expression of mesenchymal gene products such as fibronectin, vimentin, and metalloproteinases and the invasion and inhibition of E-cadherin. The above pathways cross-talk and regulate each other's activities and functions. For instance, the NF-κB pathway directly regulates EMT through the transcription of gene products involved in EMT and indirectly through the transcriptional up-regulation of the metastasis inducer Snail. Snail, in turn, suppresses the expression of the metastasis suppressor gene product Raf kinase inhibitor protein RKIP (inhibits the MAPK and the NF-κB pathways) as well as PTEN (inhibits the PI3K/AKT pathway). The role of B-RAF mutations in melanoma and their direct role in the induction of EMT are not clear. This review discusses the hypothesis that B-RAF mutations are involved in the dysregulation of the NF-κB/Snail/RKIP/PTEN circuit and in both the induction of EMT and metastasis. The therapeutic implications of the dysregulation of the above circuit by B-RAF mutations are such that they offer novel targets for therapeutic interventions in the treatment of EMT and metastasis.

  1. The mutational spectrum in Waardenburg syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Read, A.P.; Tassabehji, M.; Liu, X.Z. [and others

    1994-09-01

    101 individuals or families with Waardenburg syndrome (WS) or related abnormalities have been screened for mutations in the PAX3 gene. PAX3 mutations were seen in 19 of 35 individuals or families with features of Type I Waardenburg syndrome. None of the 47 Type 2 WS families showed any PAX3 mutation, nor did any of 19 individuals with other neural crest syndromes or pigmentary disturbances. PAX3 mutations included substitutions of highly conserved amino acids, splice site mutations, nonsense mutations and frameshifting deletions or insertions. One patient (with Type 1 WS, mental retardation and growth retardation) had a chromosomal deletion of 7-8 Mb encompassing the PAX3 gene. Mutations were seen in each of exons 2-6, with a concentration in the 5{prime} part of the paired box (exon 2) and the 3{prime} part of the homeobox (exon 6). There was no evident relation between the molecular change and the clinical manifestations in mutation carriers. We conclude that PAX3 dosage effects very specifically produce dystopia canthorum, the distinguishing feature of Type 1 WS, and variably produce the other features of Type 1 WS depending on genetic background or chance events. Two of the Type 2 families showed linkage to markers from 3p14, the location of the MITF gene. MITF encodes a basic helix-loop-helix-zipper protein which is the homologue of the mouse microphthalmia gene product. It is likely that mutations in MITF cause some but not all Type 2 WS.

  2. Genomic rearrangements of PTEN in prostate cancer

    Directory of Open Access Journals (Sweden)

    Sopheap ePhin

    2013-09-01

    Full Text Available The phosphatase and tensin homolog gene on chromosome 10q23.3 (PTEN is a negative regulator of the PIK3/Akt survival pathway and is the most frequently deleted tumor suppressor gene in prostate cancer. Monoallelic loss of PTEN is present in up to 60% of localized prostate cancers and complete loss of PTEN in prostate cancer is linked to metastasis and androgen independent progression. Studies on the genomic status of PTEN in prostate cancer initially used a two-color fluorescence in-situ hybridization (FISH assay for PTEN copy number detection in formalin fixed paraffin embedded tissue preparations. More recently, a four-color FISH assay containing two additional control probes flanking the PTEN locus with a lower false-positive rate was reported. Combined with the detection of other critical genomic biomarkers for prostate cancer such as ERG, AR, and MYC, the evaluation of PTEN genomic status has proven to be invaluable for patient stratification and management. Although less frequent than allelic deletions, point mutations in the gene and epigenetic silencing are also known to contribute to loss of PTEN function, and ultimately to prostate cancer initiation. Overall, it is clear that PTEN is a powerful biomarker for prostate cancer. Used as a companion diagnostic for emerging therapeutic drugs, FISH analysis of PTEN is promisingly moving human prostate cancer closer to more effective cancer management and therapies.

  3. Expression and mutation sites analysis of PTEN gene in esophageal squa-mous cell carcinoma cells%食管鳞癌细胞中 PTEN基因表达水平及突变位点分析

    Institute of Scientific and Technical Information of China (English)

    侯桂琴; 贝维娟; 杨帅; 王琼叶; 鲁照明

    2013-01-01

    Aim:To study the expression level and mutation of PTEN gene in esophageal squamous cell carcinoma (ESCC) cells.Methods:The expression of PTEN mRNA in three ESCC cell lines (EC9706,EC1 of low differentiation and Eca109 of high differentiation ) was detected by RT-PCR.The full length of PTEN gene in the cell lines mentioned above was cloned , and then the sequences of PTEN gene were blasted with the sequence of wide type PTEN gene on GenBank to analyze the mutation sites.Results: The expression levels of PTEN in EC1, EC9706 and Eca109 cells were(0.06 ± 0.02),(0.24 ±0.02) and (0.41 ±0.01), and there were significant difference among the three cell lines (F=306.330, P <0.001).That was higher in Eca109 cells with well differentiation degree than those in EC 9706 and EC1 cells with low differentiation degree(P<0.05).The mutations of PTEN gene in the three ESCC cell lines were found and the mutation sites mainly focused on exon 5 and 8.Conclusion: The expression level of PTEN has correlation with the differentiation degree and there are mutations of PTEN gene in ESCC .%目的:探讨PTEN基因在食管鳞癌细胞中的表达水平及突变情况。方法:采用RT-PCR技术检测高分化的Eca109、低分化的EC 9706和EC1食管鳞癌细胞株细胞中PTEN mRNA的表达水平,并克隆PTEN基因全长,与野生型PTEN基因序列比对,分析突变情况。结果:EC1、EC9706、Eca109细胞株中PTEN mRNA的表达水平分别为(0.06±0.02)、(0.24±0.02)、(0.41±0.01),3株细胞中PTEN mRNA 的表达水平差异有统计学意义(F =306.330,P<0.001),Eca109细胞中PTEN mRNA的表达水平高于 EC9706和 EC1细胞(P<0.05)。3株细胞中PTEN基因均存在不同程度突变,突变主要集中在外显子5和8。结论:食管鳞癌细胞中PTEN表达水平与细胞的分化程度有关,PTEN基因突变与食管鳞癌的发生发展有关。

  4. DMD mutation spectrum analysis in 613 Chinese patients with dystrophinopathy.

    Science.gov (United States)

    Guo, Ruolan; Zhu, Guosheng; Zhu, Huimin; Ma, Ruiyu; Peng, Ying; Liang, Desheng; Wu, Lingqian

    2015-08-01

    Dystrophinopathy is a group of inherited diseases caused by mutations in the DMD gene. Within the dystrophinopathy spectrum, Duchenne and Becker muscular dystrophies are common X-linked recessive disorders that mainly feature striated muscle necrosis. We combined multiplex ligation-dependent probe amplification with Sanger sequencing to detect large deletions/duplications and point mutations in the DMD gene in 613 Chinese patients. A total of 571 (93.1%) patients were diagnosed, including 428 (69.8%) with large deletions/duplications and 143 (23.3%) with point mutations. Deletion/duplication breakpoints gathered mostly in introns 44-55. Reading frame rules could explain 88.6% of deletion mutations. We identified seventy novel point mutations that had not been previously reported. Spectrum expansion and genotype-phenotype analysis of DMD mutations on such a large sample size in Han Chinese population would provide new insights into the pathogenic mechanism underlying dystrophinopathies.

  5. PTEN, Longevity and Age-Related Diseases

    Directory of Open Access Journals (Sweden)

    Izak S. Tait

    2013-12-01

    Full Text Available Since the discovery of PTEN, this protein has been shown to be an effective suppressor of cancer and a contributor to longevity. This report will review, in depth, the associations between PTEN and other molecules, its mutations and regulations in order to present how PTEN can be used to increase longevity. This report will collect recent research of PTEN and use this to discuss PTEN’s role in caloric restriction, antioxidative defense of DNA-damage and the role it plays in suppressing tumors. The report will also discuss that variety of ways that PTEN can be compromised, through mutations, complete loss of alleles and its main antagonist, the PI3K/AKT pathway.

  6. Nuclear PTEN controls DNA repair and sensitivity to genotoxic stress

    Science.gov (United States)

    Bassi, C; Ho, J; Srikumar, T; Dowling, RJO; Gorrini, C; Miller, SJ; Mak, TW; Neel, BG; Raught, B; Stambolic, V

    2016-01-01

    Loss of function of the Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) tumor suppressor gene is associated with many human cancers. In the cytoplasm, PTEN antagonizes the Phosphatidylinositol 3′ kinase (PI3K) signaling pathway. PTEN also accumulates in the nucleus, where its function remains poorly understood. We demonstrate that SUMOylation (SUMO) of PTEN controls its nuclear localization. In cells exposed to genotoxic stress, SUMO-PTEN was rapidly excluded from the nucleus dependent on the protein kinase Ataxia telangiectasia mutated (ATM). Cells lacking nuclear PTEN were hypersensitive to DNA damage, while PTEN-deficient cells were susceptible to killing by a combination of genotoxic stress and a small molecule PI3K inhibitor both in vitro and in vivo. Our findings may have implications for individualized therapy for patients with PTEN-deficient tumors. PMID:23888040

  7. Low Genetic Quality Alters Key Dimensions of the Mutational Spectrum.

    Directory of Open Access Journals (Sweden)

    Nathaniel P Sharp

    2016-03-01

    Full Text Available Mutations affect individual health, population persistence, adaptation, diversification, and genome evolution. There is evidence that the mutation rate varies among genotypes, but the causes of this variation are poorly understood. Here, we link differences in genetic quality with variation in spontaneous mutation in a Drosophila mutation accumulation experiment. We find that chromosomes maintained in low-quality genetic backgrounds experience a higher rate of indel mutation and a lower rate of gene conversion in a manner consistent with condition-based differences in the mechanisms used to repair DNA double strand breaks. These aspects of the mutational spectrum were also associated with body mass, suggesting that the effect of genetic quality on DNA repair was mediated by overall condition, and providing a mechanistic explanation for the differences in mutational fitness decline among these genotypes. The rate and spectrum of substitutions was unaffected by genetic quality, but we find variation in the probability of substitutions and indels with respect to several aspects of local sequence context, particularly GC content, with implications for models of molecular evolution and genome scans for signs of selection. Our finding that the chances of mutation depend on genetic context and overall condition has important implications for how sequences evolve, the risk of extinction, and human health.

  8. Low Genetic Quality Alters Key Dimensions of the Mutational Spectrum

    Science.gov (United States)

    Sharp, Nathaniel P.; Agrawal, Aneil F.

    2016-01-01

    Mutations affect individual health, population persistence, adaptation, diversification, and genome evolution. There is evidence that the mutation rate varies among genotypes, but the causes of this variation are poorly understood. Here, we link differences in genetic quality with variation in spontaneous mutation in a Drosophila mutation accumulation experiment. We find that chromosomes maintained in low-quality genetic backgrounds experience a higher rate of indel mutation and a lower rate of gene conversion in a manner consistent with condition-based differences in the mechanisms used to repair DNA double strand breaks. These aspects of the mutational spectrum were also associated with body mass, suggesting that the effect of genetic quality on DNA repair was mediated by overall condition, and providing a mechanistic explanation for the differences in mutational fitness decline among these genotypes. The rate and spectrum of substitutions was unaffected by genetic quality, but we find variation in the probability of substitutions and indels with respect to several aspects of local sequence context, particularly GC content, with implications for models of molecular evolution and genome scans for signs of selection. Our finding that the chances of mutation depend on genetic context and overall condition has important implications for how sequences evolve, the risk of extinction, and human health. PMID:27015430

  9. [ Spectrum of oncogene mutations is different in melanoma subtypes].

    Science.gov (United States)

    Mazurenko, N N; Tsyganova, I V; Lushnikova, A A; Ponkratova, D A; Anurova, O A; Cheremushkin, E A; Mikhailova, I N; Demidov, L V

    2015-01-01

    Melanoma is the most lethal malignancy of skin, which is comprised of clinically relevant molecular subsets defined by specific "driver" mutations in BRAF, NRAS, and KIT genes. Recently, the better results in melanoma treatment were obtained with the mutation-specific inhibitors that have been developed for clinical use and target only patients with particular tumor genotypes. The aim of the study was to characterize the spectrum of "driver" mutations in melanoma subtypes from 137 patients with skin melanoma and 14 patients with mucosal melanoma. In total 151 melanoma cases, the frequency of BRAF, NRAS, KIT, PDGFRA, and KRAS mutations was 55.0, 10.6, 4.0, 0.7, and 0.7%, respectively. BRAF mutations were found in 69% of cutaneous melanoma without UV exposure and in 43% of cutaneous melanoma with chronic UV exposure (p=0.045), rarely in acral and mucosal melanomas. Most of melanomas containing BRAF mutations, V600E (92%) and V600K (6.0%) were potentially sensitive to inhibitors vemurafenib and dabrafenib. NRAS mutations were more common in cutaneous melanoma with chronic UV exposure (26.0%), in acral and mucosal melanomas; the dominant mutations being Q61R/K/L (87.5%). KIT mutations were found in cutaneous melanoma with chronic UV exposure (8.7%) and mucosal one (28.6%), but not in acral melanoma. Most of KIT mutations were identified in exon 11; these tumors being sensitive to tyrosine kinase inhibitors. This is the first monitoring of BRAF, NRAS, KIT, PDGFRA, and KRAS hotspot mutations in different subtypes of melanoma for Russian population. On the base of data obtained, one can suppose that at the molecular level melanomas are heterogeneous tumors that should be tested for "driver" mutations in the each case for evaluation of the potential sensitivity to target therapy. The obtained results were used for treatment of melanoma patients.

  10. Mutations in KCNT1 cause a spectrum of focal epilepsies

    DEFF Research Database (Denmark)

    Møller, Rikke Steensbjerre; Heron, Sarah E.; Larsen, Line H. G.

    2015-01-01

    Autosomal dominant mutations in the sodium-gated potassium channel subunit gene KCNT1 have been associated with two distinct seizure syndromes, nocturnal frontal lobe epilepsy (NFLE) and malignant migrating focal seizures of infancy (MMFSI). To further explore the phenotypic spectrum associated w...

  11. Mutations in KCNT1 cause a spectrum of focal epilepsies

    NARCIS (Netherlands)

    Møller, Rikke S.; Heron, Sarah E.; Larsen, Line H G; Lim, Chiao Xin; Ricos, Michael G.; Bayly, Marta A.; Van Kempen, Marjan J A; Klinkenberg, Sylvia; Andrews, Ian; Kelley, Kent; Ronen, Gabriel M.; Callen, David; McMahon, Jacinta M.; Yendle, Simone C.; Carvill, Gemma L.; Mefford, Heather C.; Nabbout, Rima; Poduri, Annapurna; Striano, Pasquale; Baglietto, Maria G.; Zara, Federico; Smith, Nicholas J.; Pridmore, Clair; Gardella, Elena; Nikanorova, Marina; Dahl, Hans Atli; Gellert, Pia; Scheffer, Ingrid E.; Gunning, Boudewijn; Kragh-Olsen, Bente; Dibbens, Leanne M.

    2015-01-01

    Summary Autosomal dominant mutations in the sodium-gated potassium channel subunit gene KCNT1 have been associated with two distinct seizure syndromes, nocturnal frontal lobe epilepsy (NFLE) and malignant migrating focal seizures of infancy (MMFSI). To further explore the phenotypic spectrum associa

  12. The mutational spectrum of Lynch syndrome in cyprus.

    Science.gov (United States)

    Loizidou, Maria A; Neophytou, Ioanna; Papamichael, Demetris; Kountourakis, Panteleimon; Vassiliou, Vassilios; Marcou, Yiola; Kakouri, Eleni; Ioannidis, Georgios; Philippou, Chrystalla; Spanou, Elena; Tanteles, George A; Anastasiadou, Violetta; Hadjisavvas, Andreas; Kyriacou, Kyriacos

    2014-01-01

    Lynch syndrome is the most common form of hereditary colorectal cancer and is caused by germline mutations in the mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2. Mutation carriers have an increased lifetime risk of developing colorectal cancer as well as other extracolonic tumours. The aim of the current study was to evaluate the frequency and distribution of mutations in the MLH1, MSH2 and MSH6 genes within a cohort of Cypriot families that fulfilled the revised Bethesda guidelines. The study cohort included 77 patients who fulfilled at least one of the revised Bethesda guidelines. Mutational analysis revealed the presence of 4 pathogenic mutations, 3 in the MLH1 gene and 1 in the MSH2 gene, in 5 unrelated individuals. It is noted that out of the 4 pathogenic mutations detected, one is novel (c.1610delG in exon 14 of the MLH1) and has been detected for the first time in the Cypriot population. Overall, the pathogenic mutation detection rate in our patient cohort was 7%. This percentage is relatively low but could be explained by the fact that the sole criterion for genetic screening was compliance to the revised Bethesda guidelines. Larger numbers of Lynch syndrome families and screening of the two additional predisposition genes, PMS2 and EPCAM, are needed in order to decipher the full spectrum of mutations associated with Lynch syndrome predisposition in Cyprus.

  13. Expanding the mutation and clinical spectrum of Roberts syndrome.

    Science.gov (United States)

    Afifi, Hanan H; Abdel-Salam, Ghada M H; Eid, Maha M; Tosson, Angie M S; Shousha, Wafaa Gh; Abdel Azeem, Amira A; Farag, Mona K; Mehrez, Mennat I; Gaber, Khaled R

    2016-07-01

    Roberts syndrome and SC phocomelia syndrome are rare autosomal recessive genetic disorders representing the extremes of the spectrum of severity of the same condition, caused by mutations in ESCO2 gene. We report three new patients with Roberts syndrome from three unrelated consanguineous Egyptian families. All patients presented with growth retardation, mesomelic shortening of the limbs more in the upper than in the lower limbs and microcephaly. Patients were subjected to clinical, cytogenetic and radiologic examinations. Cytogenetic analysis showed the characteristic premature separation of centromeres and puffing of heterochromatic regions. Further, sequencing of the ESCO2 gene identified a novel mutation c.244_245dupCT (p.T83Pfs*20) in one family besides two previously reported mutations c.760_761insA (p.T254Nfs*27) and c.764_765delTT (p.F255Cfs*25). All mutations were in homozygous state, in exon 3. The severity of the mesomelic shortening of the limbs and craniofacial anomalies showed variability among patients. Interestingly, patient 1 had abnormal skin hypopigmentation. Serial fetal ultrasound examinations and measurements of long bones diagnosed two affected fetuses in two of the studied families. A literature review and case comparison was performed. In conclusion, we report a novel ESCO2 mutation and expand the clinical spectrum of Roberts syndrome.

  14. PTEN Gene: A Model for Genetic Diseases in Dermatology

    Directory of Open Access Journals (Sweden)

    Corrado Romano

    2012-01-01

    Full Text Available PTEN gene is considered one of the most mutated tumor suppressor genes in human cancer, and it’s likely to become the first one in the near future. Since 1997, its involvement in tumor suppression has smoothly increased, up to the current importance. Germline mutations of PTEN cause the PTEN hamartoma tumor syndrome (PHTS, which include the past-called Cowden, Bannayan-Riley-Ruvalcaba, Proteus, Proteus-like, and Lhermitte-Duclos syndromes. Somatic mutations of PTEN have been observed in glioblastoma, prostate cancer, and brest cancer cell lines, quoting only the first tissues where the involvement has been proven. The negative regulation of cell interactions with the extracellular matrix could be the way PTEN phosphatase acts as a tumor suppressor. PTEN gene plays an essential role in human development. A recent model sees PTEN function as a stepwise gradation, which can be impaired not only by heterozygous mutations and homozygous losses, but also by other molecular mechanisms, such as transcriptional regression, epigenetic silencing, regulation by microRNAs, posttranslational modification, and aberrant localization. The involvement of PTEN function in melanoma and multistage skin carcinogenesis, with its implication in cancer treatment, and the role of front office in diagnosing PHTS are the main reasons why the dermatologist should know about PTEN.

  15. The three faces of riboviral spontaneous mutation: spectrum, mode of genome replication, and mutation rate.

    Directory of Open Access Journals (Sweden)

    Libertad García-Villada

    Full Text Available Riboviruses (RNA viruses without DNA replication intermediates are the most abundant pathogens infecting animals and plants. Only a few riboviral infections can be controlled with antiviral drugs, mainly because of the rapid appearance of resistance mutations. Little reliable information is available concerning i kinds and relative frequencies of mutations (the mutational spectrum, ii mode of genome replication and mutation accumulation, and iii rates of spontaneous mutation. To illuminate these issues, we developed a model in vivo system based on phage Qß infecting its natural host, Escherichia coli. The Qß RT gene encoding the Read-Through protein was used as a mutation reporter. To reduce uncertainties in mutation frequencies due to selection, the experimental Qß populations were established after a single cycle of infection and selection against RT(- mutants during phage growth was ameliorated by plasmid-based RT complementation in trans. The dynamics of Qß genome replication were confirmed to reflect the linear process of iterative copying (the stamping-machine mode. A total of 32 RT mutants were detected among 7,517 Qß isolates. Sequencing analysis of 45 RT mutations revealed a spectrum dominated by 39 transitions, plus 4 transversions and 2 indels. A clear template•primer mismatch bias was observed: A•C>C•A>U•G>G•U> transversion mismatches. The average mutation rate per base replication was ≈9.1×10(-6 for base substitutions and ≈2.3×10(-7 for indels. The estimated mutation rate per genome replication, μ(g, was ≈0.04 (or, per phage generation, ≈0.08, although secondary RT mutations arose during the growth of some RT mutants at a rate about 7-fold higher, signaling the possible impact of transitory bouts of hypermutation. These results are contrasted with those previously reported for other riboviruses to depict the current state of the art in riboviral mutagenesis.

  16. Detecting the spectrum of multigene mutations in non-small cell lung cancer by Snapshot assay

    Institute of Scientific and Technical Information of China (English)

    Jian Su; Xiao-Sui Huang; Yi-Long Wu; Xu-Chao Zhang; She-Juan An; Wen-Zhao Zhong; Ying Huang; Shi-Liang Chen; Hong-Hong Yan; Zhi-Hong Chen; Wei-Bang Guo

    2014-01-01

    As molecular targets continue to be identified and more targeted inhibitors are developed for personalized treatment of non-small cell lung cancer (NSCLC), multigene mutation determination will be needed for routine oncology practice and for clinical trials. In this study, we evaluated the sensitivity and specificity of multigene mutation testing by using the Snapshot assay in NSCLC. We retrospectively reviewed a cohort of 110 consecutive NSCLC specimens for which epidermal growth factor receptor (EGFR) mutation testing was performed between November 2011 and December 2011 using Sanger sequencing. Using the Snapshot assay, mutation statuses were detected forEGFR, Kirsten rate sarcoma viral oncogene homolog (KRAS), phosphoinositide-3-kinase catalytic alpha polypeptide (PIK3CA), v-Raf murine sarcoma viral oncogene homolog B1 (BRAF), v-ras neuroblastoma viral oncogene homolog (NRAS), dual specificity mitogen activated protein kinase kinase 1 (MEK1), phosphatase and tensin homolog (PTEN), and human epidermal growth factor receptor 2 (HER2) in patient specimens and cellline DNA. Snapshot data were compared to Sanger sequencing data. Of the 110 samples, 51 (46.4%) harbored at least one mutation. The mutation frequency in adenocarcinoma specimens was 55.6%, and the frequencies ofEGFR, KRAS, PIK3CA, PTEN, andMEK1 mutations were 35.5%, 9.1%, 3.6%, 0.9%, and 0.9%, respectively. No mutation was found in theHER2, NRAS, orBRAF genes. Three of the 51 mutant samples harbored double mutations: twoPIK3CA mutations coexisted withKRAS orEGFR mutations, and another KRAS mutation coexisted with aPTEN mutation. Among the 110 samples, 47 were surgical specimens, 60 were biopsy specimens, and 3 were cytological specimens; the corresponding mutation frequencies were 51.1%, 41.7%, and 66.7%, respectively (P = 0.532). Compared to Sanger sequencing, Snapshot specificity was 98.4% and sensitivity was 100% (positive predictive value, 97.9%; negative predictive value, 100%). The Snapshot assay

  17. A frequent splicing mutation and novel missense mutations color the updated mutational spectrum of classic galactosemia in Portugal.

    Science.gov (United States)

    Coelho, Ana I; Ramos, Ruben; Gaspar, Ana; Costa, Cláudia; Oliveira, Anabela; Diogo, Luísa; Garcia, Paula; Paiva, Sandra; Martins, Esmeralda; Teles, Elisa Leão; Rodrigues, Esmeralda; Cardoso, M Teresa; Ferreira, Elena; Sequeira, Sílvia; Leite, Margarida; Silva, Maria João; de Almeida, Isabel Tavares; Vicente, João B; Rivera, Isabel

    2014-01-01

    Classic galactosemia is an autosomal recessive disorder caused by deficient galactose-1-phosphate uridylyltransferase (GALT) activity. Patients develop symptoms in the neonatal period, which can be ameliorated by dietary restriction of galactose. Many patients develop long-term complications, with a broad range of clinical symptoms whose pathophysiology is poorly understood. The high allelic heterogeneity of GALT gene that characterizes this disorder is thought to play a determinant role in biochemical and clinical phenotypes. We aimed to characterize the mutational spectrum of GALT deficiency in Portugal and to assess potential genotype-phenotype correlations. Direct sequencing of the GALT gene and in silico analyses were employed to evaluate the impact of uncharacterized mutations upon GALT functionality. Molecular characterization of 42 galactosemic Portuguese patients revealed a mutational spectrum comprising 14 nucleotide substitutions: ten missense, two nonsense and two putative splicing mutations. Sixteen different genotypic combinations were detected, half of the patients being p.Q188R homozygotes. Notably, the second most frequent variation is a splicing mutation. In silico predictions complemented by a close-up on the mutations in the protein structure suggest that uncharacterized missense mutations have cumulative point effects on protein stability, oligomeric state, or substrate binding. One splicing mutation is predicted to cause an alternative splicing event. This study reinforces the difficulty in establishing a genotype-phenotype correlation in classic galactosemia, a monogenic disease whose complex pathogenesis and clinical features emphasize the need to expand the knowledge on this "cloudy" disorder.

  18. The effect of silibinin in enhancing toxicity of temozolomide and etoposide in p53 and PTEN-mutated resistant glioma cell lines.

    Science.gov (United States)

    Elhag, Rashid; Mazzio, Elizabeth A; Soliman, Karam F A

    2015-03-01

    Glioblastoma multiforme (GBM) is an intractable brain tumor, associated with poor prognosis and low survival rate. Combination therapy such as surgery, radiotherapy and temozolomide is considered standard in overcoming this aggressive cancer, despite poor prognosis. There is a need to identify potential agents, which may augment the chemotherapeutic effects of standard drugs such as temozolomide. In this project, we evaluated the effects of silibinin, a natural plant component of milk thistle seeds, to potentiate toxic effects of chemotherapy drugs such as temozolomide, etoposide and irinotecan on LN229, U87 and A172 (P53 and phosphatase and tensin homolog (PTEN) -tumor suppressor-mutated) glioma cell lines. Data from this work suggest that silibinin was effective in potentiating the cytotoxic efficacy of temozolomide in LN229, U87 and A172 cells. While silibinin reduced survivin protein expression only in LN229 cells, its ability to potentiate cytotoxicity of chemo therapy drugs occurred irrespective of survivin protein levels. The data also demonstrated that silibinin potentiated the effect of etoposide and but not irinotecan in LN229 cells. Future research will be required to evaluate the in vivo efficacy of silibinin to delineate its mechanism of action and its ability to cross the blood-brain barrier.

  19. Binding of PTEN to specific PDZ domains contributes to PTEN protein stability and phosphorylation by microtubule-associated serine/threonine kinases.

    Science.gov (United States)

    Valiente, Miguel; Andrés-Pons, Amparo; Gomar, Beatriz; Torres, Josema; Gil, Anabel; Tapparel, Caroline; Antonarakis, Stylianos E; Pulido, Rafael

    2005-08-12

    The tumor suppressor phosphatase PTEN is a key regulator of cell growth and apoptosis that interacts with PDZ domains from regulatory proteins, including MAGI-1/2/3, hDlg, and MAST205. Here we identified novel PTEN-binding PDZ domains within the MAST205-related proteins, syntrophin-associated serine/threonine kinase and MAST3, characterized the regions of PTEN involved in its interaction with distinctive PDZ domains, and analyzed the functional consequences on PTEN of PDZ domain binding. Using a panel of PTEN mutations, as well as PTEN chimeras containing distinct domains of the related protein TPTE, we found that the PTP and C2 domains of PTEN do not affect PDZ domain binding and that the C-terminal tail of PTEN (residues 350-403) provides selectivity to recognize specific PDZ domains from MAGI-2, hDlg, and MAST205. Binding of PTEN to the PDZ-2 domain from MAGI-2 increased PTEN protein stability. Furthermore, binding of PTEN to the PDZ domains from microtubule-associated serine/threonine kinases facilitated PTEN phosphorylation at its C terminus by these kinases. Our results suggest an important role for the C-terminal region of PTEN in the selective association with scaffolding and/or regulatory molecules and provide evidence that PDZ domain binding stabilizes PTEN and targets this tumor suppressor for phosphorylation by microtubule-associated serine/threonine kinases.

  20. Identification of novel PTEN-binding partners: PTEN interaction with fatty acid binding protein FABP4.

    Science.gov (United States)

    Gorbenko, O; Panayotou, G; Zhyvoloup, A; Volkova, D; Gout, I; Filonenko, V

    2010-04-01

    PTEN is a tumor suppressor with dual protein and lipid-phosphatase activity, which is frequently deleted or mutated in many human advanced cancers. Recent studies have also demonstrated that PTEN is a promising target in type II diabetes and obesity treatment. Using C-terminal PTEN sequence in pEG202-NLS as bait, yeast two-hybrid screening on Mouse Embryo, Colon Cancer, and HeLa cDNA libraries was carried out. Isolated positive clones were validated by mating assay and identified through automated DNA sequencing and BLAST database searches. Sequence analysis revealed a number of PTEN-binding proteins linking this phosphatase to a number of different signaling cascades, suggesting that PTEN may perform other functions besides tumor-suppressing activity in different cell types. In particular, the interplay between PTEN function and adipocyte-specific fatty-acid-binding protein FABP4 is of notable interest. The demonstrable tautology of PTEN to FABP4 suggested a role for this phosphatase in the regulation of lipid metabolism and adipocyte differentiation. This interaction was further studied using coimmunoprecipitation and gel-filtration assays. Finally, based on Biacore assay, we have calculated the K(D) of PTEN-FABP4 complex, which is around 2.8 microM.

  1. Impaired Pten expression in human malignant peripheral nerve sheath tumours.

    Directory of Open Access Journals (Sweden)

    Maren Bradtmöller

    Full Text Available Malignant peripheral nerve sheath tumours (MPNST are aggressive sarcomas that develop in about 10% of patients with the genetic disease neurofibromatosis type 1 (NF1. Molecular alterations contributing to MPNST formation have only partially been resolved. Here we examined the role of Pten, a key regulator of the Pi3k/Akt/mTOR pathway, in human MPNST and benign neurofibromas. Immunohistochemistry showed that Pten expression was significantly lower in MPNST (n=16 than in neurofibromas (n=16 and normal nervous tissue. To elucidate potential mechanisms for Pten down-regulation or Akt/mTOR activation in MPNST we performed further experiments. Mutation analysis revealed absence of somatic mutations in PTEN (n=31 and PIK3CA (n=38. However, we found frequent PTEN promotor methylation in primary MPNST (11/26 and MPNST cell lines (7/8 but not in benign nerve sheath tumours. PTEN methylation was significantly associated with early metastasis. Moreover, we detected an inverse correlation of Pten-regulating miR-21 and Pten protein levels in MPNST cell lines. The examination of NF1-/- and NF1+/+Schwann cells and fibroblasts showed that Pten expression is not regulated by NF1. To determine the significance of Pten status for treatment with the mTOR inhibitor rapamycin we treated 5 MPNST cell lines with rapamycin. All cell lines were sensitive to rapamycin without a significant correlation to Pten levels. When rapamycin was combined with simvastatin a synergistic anti-proliferative effect was achieved. Taken together we show frequent loss/reduction of Pten expression in MPNST and provide evidence for the involvement of multiple Pten regulating mechanisms.

  2. Pten Regulates Epithelial Cytodifferentiation during Prostate Development

    DEFF Research Database (Denmark)

    Lokody, Isabel B; Francis, Jeffrey C; Gardiner, Jennifer R;

    2015-01-01

    Gene expression and functional studies have indicated that the molecular programmes involved in prostate development are also active in prostate cancer. PTEN has been implicated in human prostate cancer and is frequently mutated in this disease. Here, using the Nkx3.1:Cre mouse strain and a genetic...... deletion approach, we investigate the role of Pten specifically in the developing mouse prostate epithelia. In contrast to its role in other developing organs, this gene is dispensable for the initial developmental processes such as budding and branching. However, as cytodifferentiation progresses...... that are shared with Pten mutant prostate cancer models, including a decrease in androgen receptor regulated genes. In depth analysis of the phenotype of these mice during development revealed that loss of Pten leads to the precocious differentiation of epithelial cells towards a luminal cell fate. This study...

  3. Focus on PTEN regulation

    Directory of Open Access Journals (Sweden)

    Miriam eBermudez-Brito

    2015-07-01

    Full Text Available The role of PTEN as a tumour suppressor has been for a long time attributed to its lipid phosphatase activity against PI(3,4,5P3, the phospholipid product of the class I PI3Ks. Besides its traditional role as a lipid phosphatase at the plasma membrane, a wealth of data has shown that PTEN can function independently of its phosphatase activity and that PTEN also exists and plays a role in the nucleus, in cytoplasmic organelles and extracellularly. Accumulating evidence has shed light on diverse physiological functions of PTEN which are accompanied by a complex regulation of its expression and activity. PTEN levels and function are regulated transcriptionally, post-transcriptionally and post-translationally. PTEN is also sensitive to regulation by its interacting proteins and its localization. Herein, we summarize the current knowledge on mechanisms that regulate the expression and enzymatic activity of PTEN and its role in human diseases.

  4. A unified nomenclature and amino acid numbering for human PTEN

    NARCIS (Netherlands)

    Pulido, Rafael; Baker, Suzanne J; Barata, Joao T; Carracedo, Arkaitz; Cid, Victor J; Chin-Sang, Ian D; Davé, Vrushank; den Hertog, Jeroen; Devreotes, Peter; Eickholt, Britta J; Eng, Charis; Furnari, Frank B; Georgescu, Maria-Magdalena; Gericke, Arne; Hopkins, Benjamin; Jiang, Xeujun; Lee, Seung-Rock; Lösche, Mathias; Malaney, Prerna; Matias-Guiu, Xavier; Molina, María; Pandolfi, Pier Paolo; Parsons, Ramon; Pinton, Paolo; Rivas, Carmen; Rocha, Rafael M; Rodríguez, Manuel S; Ross, Alonzo H; Serrano, Manuel; Stambolic, Vuk; Stiles, Bangyan; Suzuki, Akira; Tan, Seong-Seng; Tonks, Nicholas K; Trotman, Lloyd C; Wolff, Nicolas; Woscholski, Rudiger; Wu, Hong; Leslie, Nicholas R

    2014-01-01

    The tumor suppressor PTEN is a major brake for cell transformation, mainly due to its phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] phosphatase activity that directly counteracts the oncogenicity of phosphoinositide 3-kinase (PI3K). PTEN mutations are frequent in tumors and in the germ line

  5. A unified nomenclature and amino acid numbering for human PTEN

    NARCIS (Netherlands)

    Pulido, Rafael; Baker, Suzanne J; Barata, Joao T; Carracedo, Arkaitz; Cid, Victor J; Chin-Sang, Ian D; Davé, Vrushank; den Hertog, Jeroen; Devreotes, Peter; Eickholt, Britta J; Eng, Charis; Furnari, Frank B; Georgescu, Maria-Magdalena; Gericke, Arne; Hopkins, Benjamin; Jiang, Xeujun; Lee, Seung-Rock; Lösche, Mathias; Malaney, Prerna; Matias-Guiu, Xavier; Molina, María; Pandolfi, Pier Paolo; Parsons, Ramon; Pinton, Paolo; Rivas, Carmen; Rocha, Rafael M; Rodríguez, Manuel S; Ross, Alonzo H; Serrano, Manuel; Stambolic, Vuk; Stiles, Bangyan; Suzuki, Akira; Tan, Seong-Seng; Tonks, Nicholas K; Trotman, Lloyd C; Wolff, Nicolas; Woscholski, Rudiger; Wu, Hong; Leslie, Nicholas R

    2014-01-01

    The tumor suppressor PTEN is a major brake for cell transformation, mainly due to its phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] phosphatase activity that directly counteracts the oncogenicity of phosphoinositide 3-kinase (PI3K). PTEN mutations are frequent in tumors and in the germ line

  6. PTEN mosaicism with features of Cowden syndrome.

    Science.gov (United States)

    Gammon, A; Jasperson, K; Pilarski, R; Prior, Tw; Kuwada, S

    2013-12-01

    We present the first known case of somatic PTEN mosaicism causing features of Cowden syndrome (CS) and inheritance in the subsequent generation. A 20-year-old woman presented for genetics evaluation with multiple ganglioneuromas of the colon. On examination, she was found to have a thyroid goiter, macrocephaly, and tongue papules, all suggestive of CS. However, her reported family history was not suspicious for CS. A deleterious PTEN mutation was identified in blood lymphocytes, 966A>G, 967delA. Genetic testing was recommended for her parents. Her 48-year-old father was referred for evaluation and was found to have macrocephaly and a history of Hashimoto's thyroiditis, but no other features of CS. Site-specific genetic testing carried out on blood lymphocytes showed mosaicism for the same PTEN mutation identified in his daughter. Identifying PTEN mosaicism in the proband's father had significant implications for the risk assessment/genetic testing plan for the rest of his family. His result also provides impetus for somatic mosaicism in a parent to be considered when a de novo PTEN mutation is suspected.

  7. PTEN/PIK3CA genes are frequently mutated in spontaneous and medroxyprogesterone acetate-accelerated 7,12-dimethylbenz(a)anthracene-induced mammary tumours of tree shrews.

    Science.gov (United States)

    Xia, Hou-Jun; He, Bao-Li; Wang, Chun-Yan; Zhang, Hai-Lin; Ge, Guang-Zhe; Zhang, Yuan-Xu; Lv, Long-Bao; Jiao, Jian-Lin; Chen, Ceshi

    2014-12-01

    Tree shrew has increasingly become an attractive experimental animal model for human diseases, particularly for breast cancer due to spontaneous breast tumours and their close relationship to primates and by extension to humans. However, neither normal mammary glands nor breast tumours have been well characterised in the Chinese tree shrew (Tupaia belangeri chinensis). In this study, normal mammary glands from four different developmental stages and 18 spontaneous breast tumours were analysed. Haematoxylin and eosin (H&E) staining and immunohistochemistry (IHC) showed that normal mammary gland morphology and structures of tree shrews were quite similar to those found in humans. Spontaneous breast tumours of tree shrews were identified as being intraductal papilloma, papillary carcinoma, and invasive ductal carcinoma with or without lung metastasis. To further analyse breast cancer tumours among tree shrews, 40 3-4 month-old female tree shrews were orally administrated 20 mg 7,12-dimethylbenz(a)anthracene (DMBA) or peanut oil thrice, and then, 15 of these DMBA administrated tree shrews were implanted with medroxyprogesterone acetate (MPA) pellets. DMBA was shown to induce breast tumours (12%) while the addition of MPA increased the tumour incidence (50%). Of these, three induced breast tumours were intraductal papillary carcinomas and one was invasive ductal carcinoma (IDC). The PTEN/PIK3CA (phosphatase and tensin homologue/phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha), but not TP53 and GATA3, genes are frequently mutated in breast tumours, and the PTEN/PIK3CA gene mutation status correlated with the expression of pAKT in tree shrew breast tumours. These results suggest that tree shrews may be a promising animal model for a subset of human breast cancers with PTEN/PIK3CA gene mutations.

  8. Pten Regulates Epithelial Cytodifferentiation during Prostate Development.

    Directory of Open Access Journals (Sweden)

    Isabel B Lokody

    Full Text Available Gene expression and functional studies have indicated that the molecular programmes involved in prostate development are also active in prostate cancer. PTEN has been implicated in human prostate cancer and is frequently mutated in this disease. Here, using the Nkx3.1:Cre mouse strain and a genetic deletion approach, we investigate the role of Pten specifically in the developing mouse prostate epithelia. In contrast to its role in other developing organs, this gene is dispensable for the initial developmental processes such as budding and branching. However, as cytodifferentiation progresses, abnormal luminal cells fill the ductal lumens together with augmented epithelial proliferation. This phenotype resembles the hyperplasia seen in postnatal Pten deletion models that develop neoplasia at later stages. Consistent with this, gene expression analysis showed a number of genes affected that are shared with Pten mutant prostate cancer models, including a decrease in androgen receptor regulated genes. In depth analysis of the phenotype of these mice during development revealed that loss of Pten leads to the precocious differentiation of epithelial cells towards a luminal cell fate. This study provides novel insight into the role of Pten in prostate development as part of the process of coordinating the differentiation and proliferation of cell types in time and space to form a functional organ.

  9. Pten Regulates Epithelial Cytodifferentiation during Prostate Development

    Science.gov (United States)

    Lokody, Isabel B.; Francis, Jeffrey C.; Gardiner, Jennifer R.; Erler, Janine T.; Swain, Amanda

    2015-01-01

    Gene expression and functional studies have indicated that the molecular programmes involved in prostate development are also active in prostate cancer. PTEN has been implicated in human prostate cancer and is frequently mutated in this disease. Here, using the Nkx3.1:Cre mouse strain and a genetic deletion approach, we investigate the role of Pten specifically in the developing mouse prostate epithelia. In contrast to its role in other developing organs, this gene is dispensable for the initial developmental processes such as budding and branching. However, as cytodifferentiation progresses, abnormal luminal cells fill the ductal lumens together with augmented epithelial proliferation. This phenotype resembles the hyperplasia seen in postnatal Pten deletion models that develop neoplasia at later stages. Consistent with this, gene expression analysis showed a number of genes affected that are shared with Pten mutant prostate cancer models, including a decrease in androgen receptor regulated genes. In depth analysis of the phenotype of these mice during development revealed that loss of Pten leads to the precocious differentiation of epithelial cells towards a luminal cell fate. This study provides novel insight into the role of Pten in prostate development as part of the process of coordinating the differentiation and proliferation of cell types in time and space to form a functional organ. PMID:26076167

  10. Dysferlin Gene Mutation Spectrum in a Large Cohort of Chinese Patients with Dysferlinopathy

    Directory of Open Access Journals (Sweden)

    Su-Qin Jin

    2016-01-01

    Conclusions: DYSF mutations in Chinese patients clustered in the N-terminal region of the gene. Exonic rearrangements were found in 23% of patients with only one pathogenic mutation identified by Sanger sequencing or NGS. The novel mutations found in this study greatly expanded the mutational spectrum of dysferlinopathy.

  11. A Novel PTEN/Mutant p53/c-Myc/Bcl-XL Axis Mediates Context-Dependent Oncogenic Effects of PTEN with Implications for Cancer Prognosis and Therapy

    Directory of Open Access Journals (Sweden)

    Xiaoping Huang

    2013-08-01

    Full Text Available Phosphatase and tensin homolog located on chromosome 10 (PTEN is one of the most frequently mutated tumor suppressors in human cancer including in glioblastoma. Here, we show that PTEN exerts unconventional oncogenic effects in glioblastoma through a novel PTEN/mutant p53/c-Myc/Bcl-XL molecular and functional axis. Using a wide array of molecular, genetic, and functional approaches, we demonstrate that PTEN enhances a transcriptional complex containing gain-of-function mutant p53, CBP, and NFY in human glioblastoma cells and tumor tissues. The mutant p53/CBP/NFY complex transcriptionally activates the oncogenes c-Myc and Bcl-XL, leading to increased cell proliferation, survival, invasion, and clonogenicity. Disruption of the mutant p53/c-Myc/Bcl-XL axis or mutant p53/CBP/NFY complex reverses the transcriptional and oncogenic effects of PTEN and unmasks its tumor-suppressive function. Consistent with these data, we find that PTEN expression is associated with worse patient survival than PTEN loss in tumors harboring mutant p53 and that a small molecule modulator of p53 exerts greater antitumor effects in PTEN-expressing cancer cells. Altogether, our study describes a new signaling pathway that mediates context-dependent oncogenic/tumor-suppressive role of PTEN. The data also indicate that the combined mutational status of PTEN and p53 influences cancer prognosis and anticancer therapies that target PTEN and p53.

  12. Identification of nucleolus-localized PTEN and its function in regulating ribosome biogenesis.

    Science.gov (United States)

    Li, Pingdong; Wang, Danni; Li, Haiyang; Yu, Zhenkun; Chen, Xiaohong; Fang, Jugao

    2014-10-01

    The tumor suppressor PTEN is a lipid phosphatase that is found mutated in different types of human cancers. PTEN suppresses cell proliferation by inhibiting the PI3K-Akt signaling pathway at the cell membrane. However, PTEN is also demonstrated to localize in the cell nucleus where it exhibits tumor suppressive activity via a different, unknown mechanism. In this study we report that PTEN also localizes to the nucleolus and that nucleolar PTEN plays an important role in regulating nucleolar homeostasis and maintaining nucleolar morphology. Overexpression of nuclear PTEN in PTEN null cells inhibits Akt phosphorylation and reduces cell size. Knockdown of PTEN in PTEN positive cells leads to nucleolar morphologic changes and an increase in the proportion of cells with a greater number of nucleoli. In addition, knockdown of PTEN in PTEN positive cells increased ribosome biogenesis. These findings expand current understanding of function and relevance of nuclear localized PTEN and provide a foundation for the development of novel therapies targeting PTEN.

  13. Strain-Specific Spontaneous and NNK-Mediated Tumorigenesis in Pten+/− Mice

    Directory of Open Access Journals (Sweden)

    Mary Christine Hollander

    2008-08-01

    Full Text Available Pten is a negative regulator of the Akt pathway, and its inactivation is believed to be an etiological factor in many tumor types. Pten+/- mice are susceptible to a variety of spontaneous tumor types, depending on strain background. Pten+/- mice, in lung tumor-sensitive and -resistant background strains, were treated with a tobacco carcinogen, 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK, to determine whether allelic Pten deletion can cooperate with NNK in carcinogenesis in lung or other tissues. In lung tumor-resistant C57BL/6 Pten+/- or +/+ mice, NNK treatment did not lead to any lung tumors and did not increase the incidence or severity of tumors previously reported for this strain. In contrast, in a lung tumor-susceptible pseudo-A/J strain, there was a dose-dependent increase in lung tumor size in Pten+/- compared with +/+ mice, although there was no increase in multiplicity. No other tumor types were observed in pseudo-A/J Pten+/- mice regardless of NNK treatment. Lung tumors from these Pten+/- mice had K-ras mutations, retained Pten expression and had similar Akt pathway activation as lung tumors from +/+ mice. Therefore, deletion of a single copy of Pten does not substantially add to the lung tumor phenotype conferred by mutation of K-ras by NNK, and there is likely no selective advantage for loss of the second Pten allele in lung tumor initiation.

  14. The spectrum of mutation produced by low dose radiation

    Energy Technology Data Exchange (ETDEWEB)

    Morley,Alexander,A; Turner, David,R

    2004-10-31

    Inherited mutations are the basis of evolution and acquired mutations in humans are important in ageing, cancer and possibly various forms of tissue degeneration. Mutations are responsible for many of the long-term effects of radiation. However, sensitive direct detection of mutations in humans has been difficult. The aims of the project were to develop methods for the sensitive enumeration of mutations in DNA, to measure mutation frequencies in a wide variety of tissue types and to quantify the mutational effect of direct oxidative damage produced by radiation, at both high and low doses. The project was successful in developing a sensitive method which could detect mutations directly in the genetic material, DNA at a sensitivity of 1 mutated molecule in 1000000000 unmutated molecules. However a number of methodological problems had to be overcome and lack of ongoing funding made it impossible to fulfill all of the aims of the project

  15. Spectrum of small mutations in the dystrophin coding region.

    Science.gov (United States)

    Prior, T W; Bartolo, C; Pearl, D K; Papp, A C; Snyder, P J; Sedra, M S; Burghes, A H; Mendell, J R

    1995-07-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are caused by defects in the dystrophin gene. About two-thirds of the affected patients have large deletions or duplications, which occur in the 5' and central portion of the gene. The nondeletion/duplication cases are most likely the result of smaller mutations that cannot be identified by current diagnostic screening strategies. We screened approximately 80% of the dystrophin coding sequence for small mutations in 158 patients without deletions or duplications and identified 29 mutations. The study indicates that many of the DMD and the majority of the BMD small mutations lie in noncoding regions of the gene. All of the mutations identified were unique to single patients, and most of the mutations resulted in protein truncation. We did not find a clustering of small mutations similar to the deletion distribution but found > 40% of the small mutations 3' of exon 55. The extent of protein truncation caused by the 3' mutations did not determine the phenotype, since even the exon 76 nonsense mutation resulted in the severe DMD phenotype. Our study confirms that the dystrophin gene is subject to a high rate of mutation in CpG sequences. As a consequence of not finding any hotspots or prevalent small mutations, we conclude that it is presently not possible to perform direct carrier and prenatal diagnostics for many families without deletions or duplications.

  16. Identification of CYP4V2 mutation in 21 families and overview of mutation spectrum in Bietti crystalline corneoretinal dystrophy.

    Science.gov (United States)

    Xiao, Xueshan; Mai, Guiying; Li, Shiqiang; Guo, Xiangming; Zhang, Qingjiong

    2011-06-03

    Bietti crystalline corneoretinal dystrophy (BCD, MIM 210370) is a common form of hereditary retinal degeneration in the Chinese population. BCD is caused by CYP4V2 mutations. Understanding the CYP4V2 mutational spectrum and associated phenotypes is of value for clinical practice. In this study, nine CYP4V2 mutations, including four novel ones (c.215-2A>G, c.761A>G, c.958C>T, and c.1169G>A), were detected in all 21 families with BCD. All patients with CYP4V2 mutations had phenotypes typical for BCD. As of now, 34 CYP4V2 mutations have been identified in 104 of 109 families (95.4%), affecting 204 of the 218 alleles (93.6%). Of the 34 mutations, c.802-8_810del17insGC, c.992A>C, and c.1091-2A>G are the most common mutations, accounting for 62.7%, 7.4%, and 6.4% of the 204 mutant alleles, respectively. The remaining 31 mutations were only detected in 1-6 alleles. Mutations in exons 7, 8, and 9 account for 83.3% of mutant alleles (64.7%, 9.3%, and 10.3%, respectively). Our results expand the mutation spectrum of CYP4V2 and demonstrate an overview of the CYP4V2 mutation spectrum and its frequency in families with BCD. BCD is a clinically and genetically homogenous disease.

  17. Spectrum of K ras mutations in Pakistani colorectal cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Murtaza, B.N.; Bibi, A. [School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore (Pakistan); Rashid, M.U.; Khan, Y.I. [Shaukat Khanum Memorial Cancer Hospital and Research Centre, Johar Town, Lahore (Pakistan); Chaudri, M.S. [Services Institute of Medical Sciences, Lahore (Pakistan); Shakoori, A.R. [School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore (Pakistan)

    2013-11-29

    The incidence of colorectal cancer (CRC) is increasing daily worldwide. Although different aspects of CRC have been studied in other parts of the world, relatively little or almost no information is available in Pakistan about different aspects of this disease at the molecular level. The present study was aimed at determining the frequency and prevalence of K ras gene mutations in Pakistani CRC patients. Tissue and blood samples of 150 CRC patients (64% male and 36% female) were used for PCR amplification of K ras and detection of mutations by denaturing gradient gel electrophoresis, restriction fragment length polymorphism analysis, and nucleotide sequencing. The K ras mutation frequency was found to be 13%, and the most prevalent mutations were found at codons 12 and 13. A novel mutation was also found at codon 31. The dominant mutation observed was a G to A transition. Female patients were more susceptible to K ras mutations, and these mutations were predominant in patients with a nonmetastatic stage of CRC. No significant differences in the prevalence of K ras mutations were observed for patient age, gender, or tumor type. It can be inferred from this study that Pakistani CRC patients have a lower frequency of K ras mutations compared to those observed in other parts of the world, and that K ras mutations seemed to be significantly associated with female patients.

  18. Spectrum of K ras mutations in Pakistani colorectal cancer patients

    Directory of Open Access Journals (Sweden)

    B.N. Murtaza

    2014-01-01

    Full Text Available The incidence of colorectal cancer (CRC is increasing daily worldwide. Although different aspects of CRC have been studied in other parts of the world, relatively little or almost no information is available in Pakistan about different aspects of this disease at the molecular level. The present study was aimed at determining the frequency and prevalence of K ras gene mutations in Pakistani CRC patients. Tissue and blood samples of 150 CRC patients (64% male and 36% female were used for PCR amplification of K ras and detection of mutations by denaturing gradient gel electrophoresis, restriction fragment length polymorphism analysis, and nucleotide sequencing. The K ras mutation frequency was found to be 13%, and the most prevalent mutations were found at codons 12 and 13. A novel mutation was also found at codon 31. The dominant mutation observed was a G to A transition. Female patients were more susceptible to K ras mutations, and these mutations were predominant in patients with a nonmetastatic stage of CRC. No significant differences in the prevalence of K ras mutations were observed for patient age, gender, or tumor type. It can be inferred from this study that Pakistani CRC patients have a lower frequency of K ras mutations compared to those observed in other parts of the world, and that K ras mutations seemed to be significantly associated with female patients.

  19. The mutational spectrum in Treacher Collins syndrome reveals a predominance of mutations that create a premature-termination codon

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, S.J.; Gladwin, A.J.; Dixon, M.J. [Univ. of Manchester (United Kingdom)

    1997-03-01

    Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development, the features of which include conductive hearing loss and cleft palate. The TCS locus has been mapped to human chromosome 5q31.3-32 and the mutated gene identified. In the current investigation, 25 previously undescribed mutations, which are spread throughout the gene, are presented. This brings the total reported to date to 35, which represents a detection rate of 60%. Of the mutations that have been reported to date, all but one result in the introduction of a premature-termination codon into the predicted protein, treacle. Moreover, the mutations are largely family specific, although a common 5-bp deletion in exon 24 (seven different families) and a recurrent splicing mutation in intron 3 (two different families) have been identified. This mutational spectrum supports the hypothesis that TCS results from haploin-sufficiency. 49 refs., 4 figs., 3 tabs.

  20. The spectrum of Familial Mediterranean Fever (FMF) mutations.

    Science.gov (United States)

    Touitou, I

    2001-07-01

    Familial Mediterranean Fever (FMF) is the prototype of a group of inherited inflammatory disorders. The gene (MEFV) responsible for this disease, comprises 10 exons and 781 codons. Twenty-nine mutations, most located in the last exon, have been identified so far. It is unclear whether all are true disease-causing mutations. Five founder mutations, V726A, M694V, M694I, M680I and E148Q account for 74% of FMF chromosomes from typical cases (Armenians, Arabs, Jews, and Turks). Rare mutations are preferentially found in populations not usually affected by FMF (eg Europeans not from the above ancestries). The various combinations of MEFV mutations define severe to mild genotypes. The trend is that genotypes including two mutations located within mutational 'hot-spots' (codons 680 or 694) of the gene are associated with severe phenotypes, whereas mild phenotypes are associated with some other mutations, E148Q being the mildest and least penetrant. Understanding the correlation between the FMF phenotype and genotype is further obscured by the existence of complex alleles, modifier loci, genetic heterogeneity and possible epigenetic factors. Additionally, mutations in the MEFV gene are thought to be involved in non FMF disorders. Carrier rates for FMF mutations may be as high as 1:3 in some populations, suggesting that the disease is underdiagnosed. This review update emphasises that both clinical and genetic features are to be taken into account for patient diagnosis, colchicine treatment and prognosis.

  1. The significance of PTEN and AKT aberrations in pediatric T-cell acute lymphoblastic leukemia

    Science.gov (United States)

    Zuurbier, Linda; Petricoin, Emanuel F.; Vuerhard, Maartje J.; Calvert, Valerie; Kooi, Clarissa; Buijs-Gladdines, Jessica G.C.A.M.; Smits, Willem K.; Sonneveld, Edwin; Veerman, Anjo J.P.; Kamps, Willem A.; Horstmann, Martin; Pieters, Rob; Meijerink, Jules P.P.

    2012-01-01

    Background PI3K/AKT pathway mutations are found in T-cell acute lymphoblastic leukemia, but their overall impact and associations with other genetic aberrations is unknown. PTEN mutations have been proposed as secondary mutations that follow NOTCH1-activating mutations and cause cellular resistance to γ-secretase inhibitors. Design and Methods The impact of PTEN, PI3K and AKT aberrations was studied in a genetically well-characterized pediatric T-cell leukemia patient cohort (n=146) treated on DCOG or COALL protocols. Results PTEN and AKT E17K aberrations were detected in 13% and 2% of patients, respectively. Defective PTEN-splicing was identified in incidental cases. Patients without PTEN protein but lacking exon-, splice-, promoter mutations or promoter hypermethylation were present. PTEN/AKT mutations were especially abundant in TAL- or LMO-rearranged leukemia but nearly absent in TLX3-rearranged patients (P=0.03), the opposite to that observed for NOTCH1-activating mutations. Most PTEN/AKT mutant patients either lacked NOTCH1-activating mutations (P=0.006) or had weak NOTCH1-activating mutations (P=0.011), and consequently expressed low intracellular NOTCH1, cMYC and MUSASHI levels. T-cell leukemia patients without PTEN/AKT and NOTCH1-activating mutations fared well, with a cumulative incidence of relapse of only 8% versus 35% for PTEN/AKT and/or NOTCH1-activated patients (P=0.005). Conclusions PI3K/AKT pathway aberrations are present in 18% of pediatric T-cell acute lymphoblastic leukemia patients. Absence of strong NOTCH1-activating mutations in these cases may explain cellular insensitivity to γ-secretase inhibitors. PMID:22491738

  2. Mutation spectrum of NF1 and clinical characteristics in 78 Korean patients with neurofibromatosis type 1.

    Science.gov (United States)

    Ko, Jung Min; Sohn, Young Bae; Jeong, Seon Yong; Kim, Hyon-Ju; Messiaen, Ludwine M

    2013-06-01

    Neurofibromatosis type 1 (NF1) is one of the most common autosomal dominant disorders in humans. NF1 is caused by mutations of the NF1 gene. Mutation detection is complex owing to the large size of the NF1 gene, the presence of pseudogenes, and the great variety of mutations. Also, few probable genotype-phenotype correlations have been found in NF1. In this study 78 Korean patients from 60 families were screened for NF1 mutations. Mutation analysis of the entire coding region and flanking splice sites was carried out and included the use of a combination of reverse transcription polymerase chain reaction, multiplex ligation probe amplification, or fluorescence in situ hybridization. Mutation spectrum and genotype-phenotype relationship were assessed. Fifty-two distinct NF1 mutations were identified in 60 families. The mutations included 30 single base substitutions (12 missense and 18 nonsense), 11 missplicing mutations, seven small insertion or deletions, and four gross deletions. Sixteen (30.8%) mutations were novel; c.1A>G, c.2033_2034insC, c.2540T>C, c.4537C>T, c.5546G>A, c.6792C>A, and c.6792C>G were recurrently identified. The mutations were evenly distributed across exon 1 through intron 47 of NF1, and no mutational hot spots were found. A genotype-phenotype analysis suggests that there is no clear relationship between specific mutations and clinical features. This analysis revealed a wide spectrum of NF1 mutations in Korean patients. As technologies advance in molecular genetics, the mutation detection rate will increase. Considering that 30.8% of detected mutations were novel, exhaustive mutation analysis of NF1 may be an important tool in early diagnosis and genetic counseling.

  3. The Spectrum of NF1 Mutations in Korean Patients with Neurofibromatosis Type 1

    OpenAIRE

    Jeong, Seon-Yong; Park, Sang-Jin; Kim, Hyon J.

    2006-01-01

    Neurofibromatosis type 1 (NF1) is one of the most common autosomal dominant disorders in humans. NF1 is caused by mutations in the NF1 gene which consists of 57 exons and encodes a GTPase activating protein (GAP), neurofibromin. To date, more than 640 different NF1 mutations have been identified and registered in the Human Gene Mutation Database (HGMD). In order to assess the NF1 mutational spectrum in Korean NF1 patients, we screened 23 unrelated Korean NF1 patients for mutations in the codi...

  4. Mutational and phenotypical spectrum of phenylalanine hydroxylase deficiency in Denmark

    DEFF Research Database (Denmark)

    Bayat, Allan; Yasmeen, Saiqa; Lund, Allan

    2016-01-01

    We describe the genotypes of the complete cohort, from 1967-2014, of phenylketonuria (PKU) patients in Denmark, in total 376 patients. A total of 752 independent alleles were investigated. Mutations were identified on 744 PKU alleles (98.9%). In total 82 different mutations were present in the co...

  5. Novel mutations in EPM2A and NHLRC1 widen the spectrum of Lafora disease

    DEFF Research Database (Denmark)

    Lesca, Gaetan; Boutry-Kryza, Nadia; de Toffol, Bertrand

    2010-01-01

    Lafora disease (LD) is an autosomal recessive form of progressive myoclonus epilepsy with onset in childhood or adolescence and with fatal outcome caused by mutations in two genes: EPM2A and NHLRC1. The aim of this study was to characterize the mutation spectrum in a cohort of unrelated patients ...

  6. Adenovirus mediated homozygous endometrial epithelial Pten deletion results in aggressive endometrial carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ayesha; Ellenson, Lora Hedrick, E-mail: lora.ellenson@med.cornell.edu

    2011-07-01

    Pten is the most frequently mutated gene in uterine endometriod carcinoma (UEC) and its precursor complex atypical hyperplasia (CAH). Because the mutation frequency is similar in CAH and UEC, Pten mutations are thought to occur relatively early in endometrial tumorigenesis. Previous work from our laboratory using the Pten{sup +/-} mouse model has demonstrated somatic inactivation of the wild type allele of Pten in both CAH and UEC. In the present study, we injected adenoviruses expressing Cre into the uterine lumen of adult Pten floxed mice in an attempt to somatically delete both alleles of Pten specifically in the endometrium. Our results demonstrate that biallelic inactivation of Pten results in an increased incidence of carcinoma as compared to the Pten{sup +/-} mouse model. In addition, the carcinomas were more aggressive with extension beyond the uterus into adjacent tissues and were associated with decreased expression of nuclear ER{alpha} as compared to associated CAH. Primary cultures of epithelial and stromal cells were prepared from uteri of Pten floxed mice and Pten was deleted in vitro using Cre expressing adenovirus. Pten deletion was evident in both the epithelial and stromal cells and the treatment of the primary cultures with estrogen had different effects on Akt activation as well as Cyclin D3 expression in the two purified components. This study demonstrates that somatic biallelic inactivation of Pten in endometrial epithelium in vivo results in an increased incidence and aggressiveness of endometrial carcinoma compared to mice carrying a germline deletion of one allele and provides an important in vivo and in vitro model system for understanding the genetic underpinnings of endometrial carcinoma.

  7. Unique spectrum of MEFV mutations in Iranian Jewish FMF patients--clinical and demographic significance.

    Science.gov (United States)

    Shinar, Y; Kuchuk, I; Menasherow, S; Kolet, M; Lidar, M; Langevitz, P; Livneh, A

    2007-11-01

    To determine the spectrum of mutations in the Mediterranean fever gene (MEFV) of Iranian Jews with familial Mediterranean fever (FMF) and to analyse their clinical manifestations. FMF patients with both parents of Iranian-Jewish (IJ) extraction or with one IJ parent (IJ-other, 10 of each) were characterized for clinical manifestations, and the B30.2 (PRYSPRY) domain of their MEFV was sequenced for mutations. Only one rare mutation, R653H, and one new mutation, G632S were present in the IJ group (in 2/10 patients), whereas the new, and common mutations were present in the IJ-other patients (8/10 patients). The new mutation was traced thrice to an IJ ancestor, and although carried asymptomatically by family members, it was over-represented in the patients (3/28 unrelated IJ alleles) compared non-affected IJ subjects (1/126 alleles, P = 0.03) or with non-Jewish Iranians (0/108 alleles, P = 0.001). The mutation was associated with a distinct phenotype regarding sites involved in the attack (P = 0.001), mild severity, sole expression of febrile episodes (P = 0.01) and a male bias (P = 0.01). In two 3D PRYSPRY models the G632S mutation was localized to a surface loop and close to a putative binding site. Iranian Jews with FMF have a unique spectrum of mutations including a newly described mutation with a non-typical phenotype.

  8. Mutation spectrum of the TYR and SLC45A2 genes in patients with oculocutaneous albinism.

    Science.gov (United States)

    Ko, Jung Min; Yang, Jung-Ah; Jeong, Seon-Yong; Kim, Hyon-Ju

    2012-04-01

    Oculocutaneous albinism (OCA) is a group of inherited disorders characterized by defective melanin biosynthesis. OCA1, the most common and severe form, is caused by mutations in the tyrosinase (TYR) gene. OCA4, caused by mutations in the SLC45A2 gene, has frequently been reported in the Japanese population. To determine the mutational spectrum in Korean OCA patients, 12 patients were recruited. The samples were first screened for TYR mutations, and negative samples were screened for SLC45A2 mutations. OCA1 was confirmed in 8 of 12 (66.7%) patients, and OCA4 was diagnosed in 1 (8.3%) patient. In the OCA1 patients, a total of 6 distinct TYR mutations were found in 15 of 16 (93.8%) alleles, all of which had been previously reported. Out of the 6 alleles, c.929insC was the most frequently detected (31.3%), and was mainly associated with OCA1A phenotypes. Other TYR mutations identified included c.1037-7T>A/c.1037-10delTT, p.D383N, p.R77Q and p.R299H. These largely overlapped with mutations found in Japanese and Chinese patients. The SLC45A2 gene analysis identified 1 novel mutation, p.D93N, in 1 patient. This study has provided information on the mutation spectrum in Korean OCA patients, and allows us to estimate the relative frequencies of OCA1 and OCA4 in Korea.

  9. Birth prevalence and mutation spectrum in danish patients with autosomal recessive albinism

    DEFF Research Database (Denmark)

    Grønskov, Karen; Ek, Jakob; Sand, Annie;

    2009-01-01

    PURPOSE: The study was initiated to investigate the mutation spectrum of four OCA genes and to calculate the birth prevalence in patients with autosomal recessive albinism. METHODS: Mutation analysis using dHPLC or direct DNA sequencing of TYR, OCA2, TYRP1, and MATP was performed in 62 patients....... Two mutations in one OCA gene explained oculocutaneous albinism (OCA) in 44% of the patients. Mutations in TYR were found in 26% of patients, while OCA2 and MATP caused OCA in 15% and 3%, respectively. No mutations were found in TYRP1. Of the remaining 56% of patients, 29% were heterozygous...... recessive ocular albinism (AROA) based on clinical findings was 55 to 45. CONCLUSIONS: TYR is the major OCA gene in Denmark, but several patients do not have mutations in the investigated genes. A relatively large fraction of patients were observed with AROA, and of those 52% had no mutations compared...

  10. Cancer risk and genotype-phenotype correlations in PTEN hamartoma tumor syndrome

    NARCIS (Netherlands)

    Nieuwenhuis, M.H.; Kets, C.M.; Murphy-Ryan, M.; Yntema, H.G.; Evans, D.G.; Colas, C.; Moller, P.; Hes, F.J.; Hodgson, S.V.; Olderode-Berends, M.J.; Aretz, S.; Heinimann, K.; Garcia, E.B.; Douglas, F.; Spigelman, A.; Timshel, S.; Lindor, N.M.; Vasen, H.F.

    2014-01-01

    Patients with germline PTEN mutations are at high risk of developing benign and malignant tumours. We aimed to evaluate the cumulative risk of several types of cancer and of dysplastic cerebellar gangliocytoma (Lhermitte-Duclos disease, LDD). In addition, genotype-phenotype correlations in PTEN hama

  11. Expanding the phenotypic and mutational spectrum in microcephalic osteodysplastic primordial dwarfism type I.

    Science.gov (United States)

    Abdel-Salam, Ghada M H; Abdel-Hamid, Mohamed S; Issa, Mahmoud; Magdy, Ahmed; El-Kotoury, Ahmed; Amr, Khalda

    2012-06-01

    Mutations in the RNU4ATAC gene cause microcephalic osteodysplastic primordial dwarfism type I. It encodes U4atac, a small nuclear RNA that is a component of the minor spliceosome. Six distinct mutations in 30 patients diagnosed as microcephalic osteodysplastic primordial dwarfism type I have been described. We report on three additional patients from two unrelated families presenting with a milder phenotype of microcephalic osteodysplastic primordial dwarfism type I and metopic synostosis. Patient 1 had two novel heterozygous mutations in the 3' prime stem-loop, g.66G > C and g.124G > A while Patients 2 and 3 had a homozygous mutation g.55G > A in the 5' prime stem-loop. Although they manifested the known spectrum of clinical features of microcephalic osteodysplastic primordial dwarfism type I, they lacked evidence of severe developmental delay and neurological symptoms. These findings expand the mutational and phenotypic spectrum of this syndrome. Copyright © 2012 Wiley Periodicals, Inc.

  12. Hydrocephalus caused by conditional ablation of the Pten or beta-catenin gene

    Directory of Open Access Journals (Sweden)

    Ohtoshi Akihira

    2008-10-01

    Full Text Available Abstract To investigate the roles of Pten and β-Catenin in the midbrain, either the Pten gene or the β-catenin gene was conditionally ablated, using Dmbx1 (diencephalon/mesencephalon-expressed brain homeobox gene 1-Cre mice. Homozygous disruption of the Pten or β-catenin gene in Dmbx1-expressing cells caused severe hydrocephalus and mortality during the postnatal period. Conditional deletion of Pten resulted in enlargement of midbrain structures. β-catenin conditional mutant mice showed malformation of the superior and inferior colliculi and stenosis of the midbrain aqueduct. These results demonstrate that both Pten and β-Catenin are essential for proper midbrain development, and provide the direct evidence that mutations of both Pten and β-catenin lead to hydrocephalus.

  13. Dysferlin Gene Mutation Spectrum in a Large Cohort of Chinese Patients with Dysferlinopathy

    Science.gov (United States)

    Jin, Su-Qin; Yu, Meng; Zhang, Wei; Lyu, He; Yuan, Yun; Wang, Zhao-Xia

    2016-01-01

    Background: Dysferlinopathy is caused by mutations in the dysferlin (DYSF) gene. Here, we described the genetic features of a large cohort of Chinese patients with this disease. Methods: Eighty-nine index patients were included in the study. DYSF gene analysis was performed by Sanger sequencing in 41 patients and targeted next generation sequencing (NGS) in 48 patients. Multiplex ligation-dependent probe amplification (MLPA) was performed to detect exon duplication/deletion in patients with only one pathogenic mutation. Results: Among the 89 index patients, 79 patients were demonstrated to carry two disease-causing (73 cases) or possibly disease-causing mutations (6 cases), including 26 patients with homozygous mutations. We identified 105 different mutations, including 59 novel ones. Notably, in 13 patients in whom only one pathogenic mutation was initially found by Sanger sequencing or NGS, 3 were further identified to carry exon deletions by MLPA. The mutations identified in this study appeared to cluster in the N-terminal region. Mutation types included missense mutations (30.06%), nonsense mutations (17.18%), frameshift mutations (30.67%), in-frame deletions (2.45%), intronic mutations (17.79%), and exonic rearrangement (1.84%). No genotype-phenotype correlation was identified. Conclusions: DYSF mutations in Chinese patients clustered in the N-terminal region of the gene. Exonic rearrangements were found in 23% of patients with only one pathogenic mutation identified by Sanger sequencing or NGS. The novel mutations found in this study greatly expanded the mutational spectrum of dysferlinopathy. PMID:27647186

  14. Dysferlin Gene Mutation Spectrum in a Large Cohort of Chinese Patients with Dysferlinopathy

    Institute of Scientific and Technical Information of China (English)

    Su-Qin Jin; Meng Yu; Wei Zhang; He Lyu; Yun Yuan; Zhao-Xia Wang

    2016-01-01

    Background:Dysferlinopathy is caused by mutations in the dysferlin (DYSF) gene.Here,we described the genetic features of a large cohort of Chinese patients with this disease.Methods:Eighty-nine index patients were included in the study.DYSF gene analysis was performed by Sanger sequencing in 41 patients and targeted next generation sequencing (NGS) in 48 patients.Multiplex ligation-dependent probe amplification (MLPA) was performed to detect exon duplication/deletion in patients with only one pathogenic mutation.Results:Among the 89 index patients,79 patients were demonstrated to carry two disease-causing (73 cases) or possibly disease-causing mutations (6 cases),including 26 patients with homozygous mutations.We identified 105 different mutations,including 59 novel ones.Notably,in 13 patients in whom only one pathogenic mutation was initially found by Sanger sequencing or NGS,3 were further identified to carry exon deletions by MLPA.The mutations identified in this study appeared to cluster in the N-terminal region.Mutation types included missense mutations (30.06%),nonsense mutations (1 7.18%),frameshift mutations (30.67%),in-frame deletions (2.45%),intronic mutations (17.79%),and exonic rearrangement (1.84%).No genotype-phenotype correlation was identified.Conclusions:DYSF mutations in Chinese patients clustered in the N-terminal region of the gene.Exonic rearrangements were found in 23% of patients with only one pathogenic mutation identified by Sanger sequencing or NGS.The novel mutations found in this study greatly expanded the mutational spectrum of dysferlinopathy.

  15. Mutational spectrum of APC and genotype-phenotype correlations in Greek FAP patients

    Directory of Open Access Journals (Sweden)

    Fountzilas George

    2010-07-01

    Full Text Available Abstract Background Familial adenomatous polyposis, an autosomal dominant inherited disease caused by germline mutations within the APC gene, is characterized by early onset colorectal cancer as a consequence of the intrinsic phenotypic feature of multiple colorectal adenomatic polyps. The genetic investigation of Greek adenomatous polyposis families was performed in respects to APC and MUTYH germline mutations. Additionally, all available published mutations were considered in order to define the APC mutation spectrum in Greece. Methods A cohort of 25 unrelated adenomatous polyposis families of Greek origin has been selected. Genetic testing included direct sequencing of APC and MUTYH genes. APC gene was also checked for large genomic rearrangements by MLPA. Results Analysis of the APC gene performed in a Greek cohort of twenty five FAP families revealed eighteen different germline mutations in twenty families (80%, four of which novel. Mutations were scattered between exon 3 and codon 1503 of exon 15, while no large genomic rearrangements were identified. Conclusion This concise report describes the spectrum of all APC mutations identified in Greek FAP families, including four novel mutations. It is concluded that the Greek population is characterized by genetic heterogeneity, low incidence of genomic rearrangements in APC gene and lack of founder mutation in FAP syndrome.

  16. Holes influence the mutation spectrum of human mitochondrial DNA

    Science.gov (United States)

    Villagran, Martha; Miller, John

    Mutations drive evolution and disease, showing highly non-random patterns of variant frequency vs. nucleotide position. We use computational DNA hole spectroscopy [M.Y. Suarez-Villagran & J.H. Miller, Sci. Rep. 5, 13571 (2015)] to reveal sites of enhanced hole probability in selected regions of human mitochondrial DNA. A hole is a mobile site of positive charge created when an electron is removed, for example by radiation or contact with a mutagenic agent. The hole spectra are quantum mechanically computed using a two-stranded tight binding model of DNA. We observe significant correlation between spectra of hole probabilities and of genetic variation frequencies from the MITOMAP database. These results suggest that hole-enhanced mutation mechanisms exert a substantial, perhaps dominant, influence on mutation patterns in DNA. One example is where a trapped hole induces a hydrogen bond shift, known as tautomerization, which then triggers a base-pair mismatch during replication. Our results deepen overall understanding of sequence specific mutation rates, encompassing both hotspots and cold spots, which drive molecular evolution.

  17. Spectrum of mutations in Lebanese patients with phenylalanine hydroxylase deficiency.

    Science.gov (United States)

    Karam, Pascale E; Alhamra, Rasha Shahabeddeen; Nemer, Georges; Usta, Julnar

    2013-02-15

    Phenylketonuria is an autosomal recessive inborn error of metabolism resulting from phenylalanine hydroxylase deficiency. Genetic basis of phenylalanine hydroxylase deficiency has been reported in various European and Asian countries with few reports available in Arab populations of the Mediterranean region. This is the first pilot study describing phenotype and genotype of 23 Lebanese patients with phenylketonuria. 48% of the patients presented mainly with neurological signs at a mean age of 2 years 9 months, as newborn screening is not yet a nationwide policy. 56.5% of the patients had classical phenylketonuria. Thirteen different mutations were identified: splice site 52%, frameshift 31%, and missense 17% with no nonsense mutations. IVS10-11G>A was found mainly in Christians at high relative frequency whereas Muslims carried the G352fs and R261Q mutations. A rare splice mutation IVS7+1G>T, not described before, was identified in the homozygous state in one family with moderate phenylketonuria phenotype. Genotype-phenotype correlation using Guldberg arbitrary value method showed high consistency between predicted and observed phenotypes. Calculated homozygosity rate was 0.07 indicating the genetic heterogeneity in our patients. Our findings underline the admixture of different ethnicities and religions in Lebanon that might help tracing back the PAH gene flux history across the Mediterranean region.

  18. Relating the disease mutation spectrum to the evolution of the cystic fibrosis transmembrane conductance regulator (CFTR.

    Directory of Open Access Journals (Sweden)

    Lavanya Rishishwar

    Full Text Available Cystic fibrosis (CF is the most common genetic disease among Caucasians, and accordingly the cystic fibrosis transmembrane conductance regulator (CFTR protein has perhaps the best characterized disease mutation spectrum with more than 1,500 causative mutations having been identified. In this study, we took advantage of that wealth of mutational information in an effort to relate site-specific evolutionary parameters with the propensity and severity of CFTR disease-causing mutations. To do this, we devised a scoring scheme for known CFTR disease-causing mutations based on the Grantham amino acid chemical difference matrix. CFTR site-specific evolutionary constraint values were then computed for seven different evolutionary metrics across a range of increasing evolutionary depths. The CFTR mutational scores and the various site-specific evolutionary constraint values were compared in order to evaluate which evolutionary measures best reflect the disease-causing mutation spectrum. Site-specific evolutionary constraint values from the widely used comparative method PolyPhen2 show the best correlation with the CFTR mutation score spectrum, whereas more straightforward conservation based measures (ConSurf and ScoreCons show the greatest ability to predict individual CFTR disease-causing mutations. While far greater than could be expected by chance alone, the fraction of the variability in mutation scores explained by the PolyPhen2 metric (3.6%, along with the best set of paired sensitivity (58% and specificity (60% values for the prediction of disease-causing residues, were marginal. These data indicate that evolutionary constraint levels are informative but far from determinant with respect to disease-causing mutations in CFTR. Nevertheless, this work shows that, when combined with additional lines of evidence, information on site-specific evolutionary conservation can and should be used to guide site-directed mutagenesis experiments by more narrowly

  19. FLG mutations in ichthyosis vulgaris and atopic eczema: spectrum of mutations and population genetics.

    Science.gov (United States)

    Akiyama, M

    2010-03-01

    Filaggrin is a key protein involved in skin barrier function. Mutations in the gene encoding filaggrin (FLG) have been identified as the cause of ichthyosis vulgaris and have been shown to be major predisposing factors for atopic eczema (AE), initially in European populations. Subsequently, FLG mutations were identified in Japanese, Chinese, Taiwanese and Korean populations. It was demonstrated that FLG mutations are closely associated with AE in the Japanese population. Notably, the same FLG mutations identified in the European population were rarely found in Asians. These results exemplify differences in filaggrin population genetics between Europe and Asia. For mutation screening, background information needs to be obtained on prevalent FLG mutations for each geographical population. It is therefore important to establish the global population genetics maps for FLG mutations. Mutations at any site within FLG, even mutations in C-terminal imperfect filaggrin repeats, cause significant reductions in amounts of profilaggrin/filaggrin peptide in patient epidermis as the C-terminal region is essential for proper processing of profilaggrin into filaggrin. Thus, no genotype-phenotype correlation has been observed in patients with FLG mutations. A restoration of the barrier function seems a feasible and promising strategy for treatment and prevention in individuals with filaggrin deficiency.

  20. Mutation Spectrum of β-Thalassemia and Other Hemoglobinopathies in Chittagong, Southeast Bangladesh.

    Science.gov (United States)

    Chatterjee, Tridip; Chakravarty, Amit; Chakravarty, Sudipa; Chowdhury, Mahmood Ahmed; Sultana, Razia

    2015-01-01

    Thalassemia is one of the most common autosomal recessive blood disorders in the world. It shows a variety of clinical expression, starting from asymptomatic to severe blood transfusion dependence. More than 500 alleles have been characterized in or around the β-globin region. Moreover, most geographical regions have their own characteristics, frequency and availability of these alleles, predominantly circulating within the communities present in that particular region. In this study, we explored the spectrum of β-thalassemia (β-thal) alleles present in Chittagong, Southeast Bangladesh. This study comprises β-thal and Hb E (HBB: c.79 G > A) patients from in and around the area of Chittagong. Not only exploring the complete β-globin mutation spectrum of the area, but we also tried to look at the origin of the mutated alleles. The β-thal mutations of Bangladesh show a relatively wide spectrum of alleles, which further demonstrates the heterogeneity of the disease in this country. Although our study showed that the majority of the mutations have their origin in neighboring countries such as India, countries of Southeast Asia, Pakistan, etc., some unusual alleles do not originate in neighboring countries and put a little more diversity in the overall spectrum of β-thal-specific alleles. Overall, this study demonstrates the mutation spectrum related to β-thal in Chittagong, Southeast Bangladesh.

  1. Spectrum of mutations and phenotypic expression in patients with autosomal dominant hypercholesterolemia identified in Italy.

    Science.gov (United States)

    Bertolini, Stefano; Pisciotta, Livia; Rabacchi, Claudio; Cefalù, Angelo B; Noto, Davide; Fasano, Tommaso; Signori, Alessio; Fresa, Raffaele; Averna, Maurizio; Calandra, Sebastiano

    2013-04-01

    To determine the spectrum of gene mutations and the genotype-phenotype correlations in patients with Autosomal Dominant Hypercholesterolemia (ADH) identified in Italy. The resequencing of LDLR, PCSK9 genes and a selected region of APOB gene were conducted in 1018 index subjects clinically heterozygous ADH and in 52 patients clinically homozygous ADH. The analysis was also extended to 1008 family members of mutation positive subjects. Mutations were detected in 832 individuals: 97.4% with LDLR mutations, 2.2% with APOB mutations and 0.36% with PCSK9 mutations. Among the patients with homozygous ADH, 51 were carriers of LDLR mutations and one was an LDLR/PCSK9 double heterozygote. We identified 237 LDLR mutations (45 not previously reported), 4 APOB and 3 PCSK9 mutations. The phenotypic characterization of 1769 LDLR mutation carriers (ADH-1) revealed that in both sexes independent predictors of the presence of tendon xanthomas were age, the quintiles of LDL cholesterol, the presence of coronary heart disease (CHD) and of receptor negative mutations. Independent predictors of CHD were male gender, age, the presence of arterial hypertension, smoking, tendon xanthomas, the scalar increase of LDL cholesterol and the scalar decrease of HDL cholesterol. We identified 13 LDLR mutation clusters, which allowed us to compare the phenotypic impact of different mutations. The LDL cholesterol raising potential of these mutations was found to vary over a wide range. This study confirms the genetic and allelic heterogeneity of ADH and underscores that the variability in phenotypic expression of ADH-1 is greatly affected by the type of LDLR mutation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Autism Spectrum Disorder: FRAXE Mutation, a Rare Etiology

    Science.gov (United States)

    Correia, F.; Café, C.; Almeida, J.; Mouga, S.; Oliveira, G.

    2015-01-01

    Autism spectrum disorder (ASD) is characterized by impaired social interaction and communication, restricted interests and repetitive behaviors. Fragile X E is associated with X-linked non-specific mild intellectual disability (ID) and with behavioral problems. Most of the known genetic causes of ASD are also causes of ID, implying that these two…

  3. Characterization of cryptic splicing in germline PTEN intronic variants in Cowden syndrome.

    Science.gov (United States)

    Chen, Hannah Jinlian; Romigh, Todd; Sesock, Kaitlin; Eng, Charis

    2017-10-01

    Germline mutations in the tumor-suppressor gene PTEN predispose to subsets of Cowden syndrome (CS), Bannayan-Riley-Ruvalcaba syndrome, and autism. Evidence-based classification of PTEN variants as either deleterious or benign is urgently needed for accurate molecular diagnosis and gene-informed genetic counseling. We studied 34 different germline PTEN intronic variants from 61 CS patients, characterized their PTEN mRNA processing, and analyzed PTEN expression and downstream readouts of P-AKT and P-ERK1/2. While we found that many mutations near splice junctions result in exon skipping, we also identified the presence of cryptic splicing that resulted in premature termination or a shift in isoform usage. PTEN protein expression is significantly lower in the group with splicing changes while P-AKT, but not P-ERK1/2, is significantly increased. Our observations of these PTEN intronic variants should contribute to the determination of pathogenicity of PTEN intronic variants and aid in genetic counseling. © 2017 The Authors. Human Mutation published by Wiley Periodicals, Inc.

  4. Characterization of novel non-clonal intrachromosomal rearrangements between the H4 and PTEN genes (H4/PTEN) in human thyroid cell lines and papillary thyroid cancer specimens

    Energy Technology Data Exchange (ETDEWEB)

    Puxeddu, Efisio [Division of Endocrinology and Metabolism, University of Cincinnati College of Medicine, PO Box 670547, Cincinnati, OH 45267-0547 (United States); Zhao Guisheng [Division of Endocrinology and Metabolism, University of Cincinnati College of Medicine, PO Box 670547, Cincinnati, OH 45267-0547 (United States); Stringer, James R. [Department of Molecular Genetics, University of Cincinnati College of Medicine, PO Box 670547, Cincinnati, OH 45267-0547 (United States); Medvedovic, Mario [Center for Biostatistic Service, University of Cincinnati College of Medicine, PO Box 670547, Cincinnati, OH 45267-0547 (United States); Moretti, Sonia [Dipartimento di Medicina Interna, Universita degli Studi di Perugia, Via E. dal Pozzo, Perugia 06126, (Italy); Fagin, James A. [Division of Endocrinology and Metabolism, University of Cincinnati College of Medicine, PO Box 670547, Cincinnati, OH 45267-0547 (United States)]. E-mail: james.fagin@uc.edu

    2005-02-15

    The two main forms of RET rearrangement in papillary thyroid carcinomas (PTC) arise from intrachromosomal inversions fusing the tyrosine kinase domain of RET with either the H4 (RET/PTC1) or the ELE1/RFG genes (RET/PTC3). PTEN codes for a dual-specificity phosphatase and maps to chromosome 10q22-23. Germline mutations confer susceptibility to Cowden syndrome whereas somatic mutations or deletions are common in several sporadic human tumors. Decreased PTEN expression has been implicated in thyroid cancer development. We report the characterization of a new chromosome 10 rearrangement involving H4 and PTEN. The initial H4/PTEN rearrangement was discovered as a non-specific product of RT-PCR for RET/PTC1 in irradiated thyroid cell lines. Sequencing revealed a transcript consisting of exon 1 and 2 of H4 fused with exons 3-6 of PTEN. Nested RT-PCR with specific primers bracketing the breakpoints confirmed the H4/PTEN rearrangements in irradiated KAT-1 and KAT-50 cells. Additional H4/PTEN variants, generated by recombination of either exon 1 or exon 2 of H4 with exon 6 of PTEN, were found in non-irradiated KAK-1, KAT-50, ARO and NPA cells. Their origin through chromosomal recombination was confirmed by detection of the reciprocal PTEN/H4 product. H4/PTEN recombination was not a clonal event in any of the cell lines, as Southern blots with appropriate probes failed to demonstrate aberrant bands, and multicolor FISH of KAK1 cells with BAC probes for H4 and PTEN did not show a signal overlap in all cells. Based on PCR of serially diluted samples, the minimal frequency of spontaneous recombination between these loci was estimated to be approximately 1/10{sup 6} cells. H4/PTEN products were found by nested RT-PCR in 4/14 normal thyroid tissues (28%) and 14/18 PTC (78%) (P < 0.01). H4/PTEN is another example of recombination involving the H4 locus, and points to the high susceptibility of thyroid cells to intrachromosomal gene rearrangements. As this also represents a

  5. Next Generation Sequencing to Determine the Cystic Fibrosis Mutation Spectrum in Palestinian Population

    Directory of Open Access Journals (Sweden)

    O. Essawi

    2015-01-01

    Full Text Available An extensive molecular analysis of the CF transmembrane regulator (CFTR gene was performed to establish the CFTR mutation spectrum and frequencies in the Palestinian population, which can be considered as an understudied population. We used a targeted Next Generation Sequencing approach to sequence the entire coding region and the adjacent sequences of the CFTR gene combined with MLPA analysis of 60 unrelated CF patients. Eighteen different CF-causing mutations, including one previously undescribed mutation p.(Gly1265Arg, were identified. The overall detection rate is up to 67%, and when we consider only CF patients with sweat chloride concentrations >70 mEq/L, we even have a pickup rate of 92%. Whereas p.(Phe508del is the most frequent allele (35% of the positive cases, 3 other mutations c.2988+1Kbdel8.6Kb, c.1393-1G>A, and p.(Gly85Glu showed frequencies higher than 5% and a total of 9 mutations account for 84% of the mutations. This limited spectrum of CF mutations is in agreement with the homozygous ethnic origin of the Palestinian population. The relative large portion of patients without a mutation is most likely due to clinical misdiagnosis. Our results will be important in the development of an adequate molecular diagnostic test for CF in Palestine.

  6. Alterations in PTEN and PIK3CA in colorectal cancers in the EPIC Norfolk study: associations with clinicopathological and dietary factors

    Directory of Open Access Journals (Sweden)

    Mitrou Panagiota N

    2011-04-01

    Full Text Available Abstract Background The PTEN tumour suppressor gene and PIK3CA proto-oncogene encode proteins which contribute to regulation and propagation of signal transduction through the PI3K/AKT signalling pathway. This study investigates the prevalence of loss of PTEN expression and mutations in both PTEN and PIK3CA in colorectal cancers (CRC and their associations with tumour clinicopathological features, lifestyle factors and dietary consumptions. Methods 186 adenocarcinomas and 16 adenomas from the EPIC Norfolk study were tested for PTEN and PIK3CA mutations by DNA sequencing and PTEN expression changes by immunohistochemistry. Dietary and lifestyle data were collected prospectively using seven day food diaries and lifestyle questionnaires. Results Mutations in exons 7 and 8 of PTEN were observed in 2.2% of CRC and PTEN loss of expression was identified in 34.9% CRC. Negative PTEN expression was associated with lower blood low-density lipoprotein concentrations (p = 0.05. PIK3CA mutations were observed in 7% of cancers and were more frequent in CRCs in females (p = 0.04. Analysis of dietary intakes demonstrated no link between PTEN expression status and any specific dietary factor. PTEN expression negative, proximal CRC were of more advanced Dukes' stage (p = 0.02 and poor differentiation (p PIK3CA mutations and loss of PTEN expression demonstrated that these two events were independent (p = 0.55. Conclusion These data demonstrated the frequent occurrence (34.9% of PTEN loss of expression in colorectal cancers, for which gene mutations do not appear to be the main cause. Furthermore, dietary factors are not associated with loss of PTEN expression. PTEN expression negative CRC were not homogenous, as proximal cancers were associated with a more advanced Dukes' stage and poor differentiation, whereas distal cancers were associated with earlier Dukes' stage.

  7. A spectrum of severe familial liver disorders associate with telomerase mutations.

    Directory of Open Access Journals (Sweden)

    Rodrigo T Calado

    Full Text Available BACKGROUND: Telomerase is an enzyme specialized in maintaining telomere lengths in highly proliferative cells. Loss-of-function mutations cause critical telomere shortening and are associated with the bone marrow failure syndromes dyskeratosis congenita and aplastic anemia and with idiopathic pulmonary fibrosis. Here, we sought to determine the spectrum of clinical manifestations associated with telomerase loss-of-function mutations. METHODOLOGY/PRINCIPAL FINDINGS: Sixty-nine individuals from five unrelated families with a variety of hematologic, hepatic, and autoimmune disorders were screened for telomerase complex gene mutations; leukocyte telomere length was measured by flow fluorescence in situ hybridization in mutation carriers and some non-carriers; the effects of the identified mutations on telomerase activity were determined; and genetic and clinical data were correlated. In six generations of a large family, a loss-of-function mutation in the telomerase enzyme gene TERT associated with severe telomere shortening and a range of hematologic manifestations, from macrocytosis to acute myeloid leukemia, with severe liver diseases marked by fibrosis and inflammation, and one case of idiopathic pulmonary fibrosis but not with autoimmune disorders. Additionally, we identified four unrelated families in which loss-of-function TERC or TERT gene mutations tracked with marrow failure, pulmonary fibrosis, and a spectrum of liver disorders. CONCLUSIONS/SIGNIFICANCE: These results indicate that heterozygous telomerase loss-of-function mutations associate with but are not determinant of a large spectrum of hematologic and liver abnormalities, with the latter sometimes occurring in the absence of marrow failure. Our findings, along with the link between pulmonary fibrosis and telomerase mutations, also suggest a common pathogenic mechanism for fibrotic diseases in which defective telomere repair plays important role.

  8. The frequency and spectrum of K-ras mutations among Iraqi patients with sporadic colorectal carcinoma

    Directory of Open Access Journals (Sweden)

    N A Al-Allawi

    2012-01-01

    Full Text Available Background: The epidemiology of colorectal cancers (CRC is well known to differ in different geographical regions. K-ras mutations have been implicated in CRC carcinogenesis and they were extensively studied in developed countries; however, such studies are scarce from developing countries, like Iraq. Aim: To determine the frequency and spectrum of K-ras mutations among CRC Iraqi patients, and their clinico-pathological associations, if any. Materials and Methods: Fifty consecutive surgically resected sporadic CRC were evaluated. The evaluation included screening for ten K-ras mutations in codon 12 and 13 by mutant enriched polymerase chain reaction followed by reverse hybridization to oligospecific probes. Results: Out of the 50 enrolled patients, 24 (48% had K-ras mutations. A total of 29 mutations were identified in the tumors of the latter 24 patients (20/24 tumors had single mutations, 3/24 had double mutations and 1/24 had triple mutations. The most frequently encountered mutations were the G>T transversions and G>A transitions (41.4% each. Codon 12 mutations constituted 89.7%, while codon 13 the remaining 10.3%. The most frequent mutation was GGT>GTT (Gly>Val of codon 12 documented in 31%. No significant clinico-pathological correlations with K-ras mutational status were identified. Conclusion : The K-ras mutations are frequently encountered among Iraqi sporadic CRC patients, with relative higher frequencies of G>T transversions and Gly>Val codon 12 substitutions than encountered in their counterparts in developed countries. The latter is most likely to be related to differences in local carcinogens exposure, an aspect which requires further scrutiny.

  9. Selective neuronal PTEN deletion: can we take the brakes off of growth without losing control?

    Science.gov (United States)

    Gutilla, Erin A; Steward, Oswald

    2016-08-01

    The limited ability for injured adult axons to regenerate is a major cause for limited functional recovery after injury to the nervous system, motivating numerous efforts to uncover mechanisms capable of enhancing regeneration potential. One promising strategy involves deletion or knockdown of the phosphatase and tensin (PTEN) gene. Conditional genetic deletion of PTEN before, immediately following, or several months after spinal cord injury enables neurons of the corticospinal tract (CST) to regenerate their axons across the lesion, which is accompanied by enhanced recovery of skilled voluntary motor functions mediated by the CST. Although conditional genetic deletion or knockdown of PTEN in neurons enables axon regeneration, PTEN is a well-known tumor suppressor and mutations of the PTEN gene disrupt brain development leading to neurological abnormalities including macrocephaly, seizures, and early mortality. The long-term consequences of manipulating PTEN in the adult nervous system, as would be done for therapeutic intervention after injury, are only now being explored. Here, we summarize evidence indicating that long-term deletion of PTEN in mature neurons does not cause evident pathology; indeed, cortical neurons that have lived without PTEN for over 1 year appear robust and healthy. Studies to date provide only a first look at potential negative consequences of PTEN deletion or knockdown, but the absence of any detectable neuropathology supports guarded optimism that interventions to enable axon regeneration after injury are achievable.

  10. Selective neuronal PTEN deletion: can we take the brakes off of growth without losing control?

    Directory of Open Access Journals (Sweden)

    Erin A Gutilla

    2016-01-01

    Full Text Available The limited ability for injured adult axons to regenerate is a major cause for limited functional recovery after injury to the nervous system, motivating numerous efforts to uncover mechanisms capable of enhancing regeneration potential. One promising strategy involves deletion or knockdown of the phosphatase and tensin (PTEN gene. Conditional genetic deletion of PTEN before, immediately following, or several months after spinal cord injury enables neurons of the corticospinal tract (CST to regenerate their axons across the lesion, which is accompanied by enhanced recovery of skilled voluntary motor functions mediated by the CST. Although conditional genetic deletion or knockdown ofPTEN in neurons enables axon regeneration, PTEN is a well-known tumor suppressor and mutations of the PTEN gene disrupt brain development leading to neurological abnormalities including macrocephaly, seizures, and early mortality. The long-term consequences of manipulating PTEN in the adult nervous system, as would be done for therapeutic intervention after injury, are only now being explored. Here, we summarize evidence indicating that long-term deletion of PTEN in mature neurons does not cause evident pathology; indeed, cortical neurons that have lived without PTEN for over 1 year appear robust and healthy. Studies to date provide only a first look at potential negative consequences of PTEN deletion or knockdown, but the absence of any detectable neuropathology supports guarded optimism that interventions to enable axon regeneration after injury are achievable.

  11. [Analysis of DIAPH3 gene mutation in a boy with autism spectrum disorder].

    Science.gov (United States)

    Xie, Jiang; Li, Hua; Zhu, Hua; Huang, Li; Li, Hongxia; Zhang, Xiling; Zhou, Yongmei; Zhou, Qiang; Xu, Wenming

    2016-08-01

    To analyze the clinical manifestations and gene mutation of a 6 year old boy with autism spectrum disorders (ASD). Peripheral blood of the boy and his parents were subjected to genetic testing. The patient was diagnosed with typical autism. Exome sequencing has identified mutations of four candidate genes, namely TUT1, DIAPH3, REELIN and SETD2, which were confirmed with Sanger sequencing. Analysis of family members confirmed that the missense mutations of DIAPH3 and SETD2 genes were of de novo origin. Missense mutations of DIAPH3 and SETD2 genes may have contributed to the risk of ASD. Disrupted neurogenesis associated with such mutations may have been the underlying mechanism for ASD.

  12. Spectrum of NSD1 gene mutations in southern Chinese patients with Sotos syndrome

    Institute of Scientific and Technical Information of China (English)

    Tony M.F. Tong; Edgar W.L. Hau; Ivan F.M. Lo; Daniel H.C. Chan; Stephen T.S. Lam

    2005-01-01

    Background Sotos syndrome is an overgrowth syndrome with characteristic facial gestalt and mental retardation of variable severity. Haploinsufficiency of the NSD1 gene has been implicated as the major cause of Sotos syndrome, with a predominance of microdeletions reported in Japanese patients. This study was conducted to investigate into the spectrum of NSD1 gene mutations in southern Chinese patients with Sotos syndrome. Methods Thirty-six Chinese patients with Sotos syndrome and two patients with Weaver syndrome were subject to molecular testing. Results NSD1 gene mutations were detected in 26 (72%) Sotos patients. Microdeletion was found in only 3 patients, while the other 23 had point mutations (6 frameshift, 8 nonsense, 2 spice site, and 7 missense). Of these, 19 mutations were never reported. NSD1 gene mutations were not found in the two patients with Weaver syndrome. Conclusions Most cases of Sotos syndrome are caused by NSD1 gene defects, but the spectrum of mutations is different from that of Japanese patients. Genotype-phenotype correlation showed that patients with microdeletions might be more prone to congenital heart disease but less likely to have somatic overgrowth. The two patients with Weaver syndrome were not found to have NSD1 gene mutations, but the number was too small for any conclusion to be drawn.

  13. Detecting the somatic mutations spectrum of Chinese lung cancer by analyzing the whole mitochondrial DNA genomes.

    Science.gov (United States)

    Fang, Yu; Huang, Jie; Zhang, Jing; Wang, Jun; Qiao, Fei; Chen, Hua-Mei; Hong, Zhi-Peng

    2015-02-01

    To detect the somatic mutations and character its spectrum in Chinese lung cancer patients. In this study, we sequenced the whole mitochondrial DNA (mtDNA) genomes for 10 lung cancer patients including the primary cancerous, matched paracancerous normal and distant normal tissues. By analyzing the 30 whole mtDNA genomes, eight somatic mutations were identified from five patients investigated, which were confirmed with the cloning and sequencing of the somatic mutations. Five of the somatic mutations were detected among control region and the rests were found at the coding region. Heterogeneity was the main character of the somatic mutations in Chinese lung cancer patients. Further potential disease-related screening showed that, except the C deletion at position 309 showed AD-weakly associated, most of them were not disease-related. Although the role of aforementioned somatic mutations was unknown, however, considering the relative higher frequency of somatic mutations among the whole mtDNA genomes, it hints that detecting the somatic mutation(s) from the whole mtDNA genomes can serve as a useful tool for the Chinese lung cancer diagnostic to some extent.

  14. Molecular analysis expands the spectrum of phenotypes associated with GLI3 mutations

    Science.gov (United States)

    Johnston, Jennifer J.; Sapp, Julie C.; Turner, Joyce T.; Amor, David; Aftimos, Salim; Aleck, Kyrieckos A.; Bocian, Maureen; Bodurtha, Joann N.; Cox, Gerald F.; Curry, Cynthia J.; Day, Ruth; Donnai, Dian; Field, Michael; Fujiwara, Ikuma; Gabbett, Michael; Gal, Moran; Graham, John M.; Hedera, Peter; Hennekam, Raoul C.M.; Hersh, Joseph H.; Hopkin, Robert J.; Kayserili, Hülya; Kidd, Alexa M.J.; Kimonis, Virginia; Lin, Angela E.; Lynch, Sally Ann; Maisenbacher, Melissa; Mansour, Sahar; McGaughran, Julie; Mehta, Lakshmi; Murphy, Helen; Raygada, Margarita; Robin, Nathaniel H.; Rope, Alan F.; Rosenbaum, Kenneth N.; Schaefer, G. Bradley; Shealy, Amy; Smith, Wendy; Soller, Maria; Sommer, Annmarie; Stalker, Heather J.; Steiner, Bernhard; Stephan, Mark J.; Tilstra, David; Tomkins, Susan; Trapane, Pamela; Tsai, Anne Chun-Hui; Van Allen, Margot I.; Vasudevan, Pradeep C.; Zabel, Bernhard; Zunich, Janice; Black, Graeme C.M.; Biesecker, Leslie G.

    2010-01-01

    A range of phenotypes including Greig cephalopolysyndactyly and Pallister-Hall syndromes (GCPS, PHS) are caused by pathogenic mutation of the GLI3 gene. To characterize the clinical variability of GLI3 mutations, we present a subset of a cohort of 174 probands referred for GLI3 analysis. Eighty-one probands with typical GCPS or PHS were previously reported, and we report the remaining ninety-three probands here. This includes nineteen probands (twelve mutations) who fulfilled clinical criteria for GCPS or PHS, forty-eight probands (sixteen mutations) with features of GCPS or PHS but who did not meet the clinical criteria (sub-GCPS and sub-PHS), twenty-one probands (six mutations) with features of PHS or GCPS and oral-facial-digital syndrome and five probands (one mutation) with non-syndromic polydactyly. These data support previously identified genotype-phenotype correlations and demonstrate a more variable degree of severity than previously recognized. The finding of GLI3 mutations in patients with features of oral-facial-digital syndrome supports the observation that GLI3 interacts with cilia. We conclude that the phenotypic spectrum of GLI3 mutations is broader than that encompassed by the clinical diagnostic criteria, but the phenotype-genotype correlation persists. Individuals with features of either GCPS or PHS should be screened for mutations in GLI3 even if they do not fulfill clinical criteria. PMID:20672375

  15. The spectrum of epilepsy and electroencephalographic abnormalities due to SHANK3 loss-of-function mutations.

    Science.gov (United States)

    Holder, J Lloyd; Quach, Michael M

    2016-10-01

    The coincidence of autism with epilepsy is 27% in those individuals with intellectual disability.(1) Individuals with loss-of-function mutations in SHANK3 have intellectual disability, autism, and variably, epilepsy.(2-5) The spectrum of seizure semiologies and electroencephalography (EEG) abnormalities has never been investigated in detail. With the recent report that SHANK3 mutations are present in approximately 2% of individuals with moderate to severe intellectual disabilities and 1% of individuals with autism, determining the spectrum of seizure semiologies and electrographic abnormalities will be critical for medical practitioners to appropriately counsel the families of patients with SHANK3 mutations. A retrospective chart review was performed of all individuals treated at the Blue Bird Circle Clinic for Child Neurology who have been identified as having either a chromosome 22q13 microdeletion encompassing SHANK3 or a loss-of-function mutation in SHANK3 identified through whole-exome sequencing. For each subject, the presence or absence of seizures, seizure semiology, frequency, age of onset, and efficacy of therapy were determined. Electroencephalography studies were reviewed by a board certified neurophysiologist. Neuroimaging was reviewed by both a board certified pediatric neuroradiologist and child neurologist. There is a wide spectrum of seizure semiologies, frequencies, and severity in individuals with SHANK3 mutations. There are no specific EEG abnormalities found in our cohort, and EEG abnormalities were present in individuals diagnosed with epilepsy and those without history of a clinical seizure. All individuals with a mutation in SHANK3 should be evaluated for epilepsy due to the high prevalence of seizures in this population. The most common semiology is atypical absence seizure, which can be challenging to identify due to comorbid intellectual disability in individuals with SHANK3 mutations; however, no consistent seizure semiology

  16. GJB2 mutation spectrum in 2063 Chinese patients with nonsyndromic hearing impairment

    Directory of Open Access Journals (Sweden)

    Tang Liang

    2009-04-01

    Full Text Available Abstract Background Mutations in GJB2 are the most common molecular defects responsible for autosomal recessive nonsyndromic hearing impairment (NSHI. The mutation spectra of this gene vary among different ethnic groups. Methods In order to understand the spectrum and frequency of GJB2 mutations in the Chinese population, the coding region of the GJB2 gene from 2063 unrelated patients with NSHI was PCR amplified and sequenced. Results A total of 23 pathogenic mutations were identified. Among them, five (p.W3X, c.99delT, c.155_c.158delTCTG, c.512_c.513insAACG, and p.Y152X are novel. Three hundred and seven patients carry two confirmed pathogenic mutations, including 178 homozygotes and 129 compound heterozygotes. One hundred twenty five patients carry only one mutant allele. Thus, GJB2 mutations account for 17.9% of the mutant alleles in 2063 NSHI patients. Overall, 92.6% (684/739 of the pathogenic mutations are frame-shift truncation or nonsense mutations. The four prevalent mutations; c.235delC, c.299_c.300delAT, c.176_c.191del16, and c.35delG, account for 88.0% of all mutantalleles identified. The frequency of GJB2 mutations (alleles varies from 4% to 30.4% among different regions of China. It also varies among different sub-ethnic groups. Conclusion In some regions of China, testing of the three most common mutations can identify at least one GJB2 mutant allele in all patients. In other regions such as Tibet, the three most common mutations account for only 16% the GJB2 mutant alleles. Thus, in this region, sequencing of GJB2 would be recommended. In addition, the etiology of more than 80% of the mutant alleles for NSHI in China remains to be identified. Analysis of other NSHI related genes will be necessary.

  17. Mutations in SLC35A3 cause autism spectrum disorder, epilepsy and arthrogryposis

    NARCIS (Netherlands)

    Edvardson, S.; Ashikov, A.M.; Jalas, C.; Sturiale, L.; Shaag, A.; Fedick, A.; Treff, N.R.; Garozzo, D.; Gerardy-Schahn, R.; Elpeleg, O.

    2013-01-01

    BACKGROUND: The heritability of autism spectrum disorder is currently estimated at 55%. Identification of the molecular basis of patients with syndromic autism extends our understanding of the pathogenesis of autism in general. The objective of this study was to find the gene mutated in eight patien

  18. Poly-ADP ribosylation of PTEN by tankyrases promotes PTEN degradation and tumor growth

    OpenAIRE

    Li, Nan; Zhang, Yajie; Han, Xin; Liang, Ke; Wang, Jiadong; Feng, Lin; Wang, Wenqi; Songyang, Zhou; Lin, Chunru; Yang, Liuqing; Yu, Yonghao; Chen, Junjie

    2015-01-01

    Li et al. report ADP-ribosylation as a new post-translational modification of the tumor suppressor PTEN. Tankyrases interact with and ribosylate PTEN, which promotes the recognition of PTEN by a PAR-binding E3 ubiquitin ligase, RNF146, leading to PTEN ubiquitination and degradation. Tankyrases were up-regulated and negatively correlated with PTEN expression in human colon carcinomas.

  19. Mutation spectrum and genotype-phenotype correlation of hearing loss patients caused by SLC26A4 mutations in the Japanese: a large cohort study.

    Science.gov (United States)

    Miyagawa, Maiko; Nishio, Shin-Ya; Usami, Shin-Ichi

    2014-05-01

    Mutations in SLC26A4 cause a broad phenotypic spectrum, from typical Pendred syndrome to nonsyndromic hearing loss associated with enlarged vestibular aqueduct. Identification of these mutations is important for accurate diagnosis, proper medical management and appropriate genetic counseling and requires updated information regarding spectrum, clinical characteristics and genotype-phenotype correlations, based on a large cohort. In 100 patients with bilateral enlarged vestibular aqueduct among 1511 Japanese hearing loss probands registered in our gene bank, goiter data were available for 79, of whom 15 had Pendred syndrome and 64 had nonsyndromic hearing loss. We clarified the mutation spectrum for the SLC26A4 mutations and also summarized hearing levels, progression, fluctuation and existence of genotype-phenotype correlation. SLC26A4 mutations were identified in 82 of the 100 patients (82.0%). Of the Pendred syndrome patients, 93% (14/15) were carriers, as were 77% (49/64) of the nonsyndromic hearing loss patients. Clinical characteristics of patients with SLC26A4 mutations were congenital, fluctuating and progressive hearing loss usually associated with vertigo and/or goiter. We found no genotype-phenotype correlations, indicating that, unlike in the case of GJB2 mutations, the phenotype cannot be predicted from the genotype. Our mutation analysis confirmed the importance of mutations in the SLC26A4 gene among hearing loss patients with enlarged vestibular aqueduct and revealed the mutation spectrum, essential information when performing genetic testing.

  20. Further Evidence of Mutational Heterogeneity of the XPC Gene in Tunisian Families: A Spectrum of Private and Ethnic Specific Mutations

    Directory of Open Access Journals (Sweden)

    Mariem Ben Rekaya

    2013-01-01

    Full Text Available Xeroderma Pigmentosum (XP is a rare recessive autosomal cancer prone disease, characterized by UV hypersensitivity and early appearance of cutaneous and ocular malignancies. We investigated four unrelated patients suspected to be XP-C. To confirm linkage to XPC gene, genotyping and direct sequencing of XPC gene were performed. Pathogenic effect of novel mutations was confirmed by reverse Transciptase PCR. Mutation screening revealed the presence of two novel mutations g.18246G>A and g.18810G>T in the XPC gene (NG_011763.1. The first is present in one patient XP50NEF, but the second is present in three unrelated patients (XP16KEB, XP28SFA, and XP45GB. These 3 patients are from three different cities of Southern Tunisia and bear the same haplotype, suggesting a founder effect. Reverse Transciptase PCR revealed the absence of the XPC mRNA. In Tunisia, as observed in an other severe genodermatosis, the mutational spectrum of XP-C group seems to be homogeneous with some clusters of heterogeneity that should be taken into account to improve molecular diagnosis of this disease.

  1. CFTR mutations spectrum and the efficiency of molecular diagnostics in Polish cystic fibrosis patients.

    Science.gov (United States)

    Ziętkiewicz, Ewa; Rutkiewicz, Ewa; Pogorzelski, Andrzej; Klimek, Barbara; Voelkel, Katarzyna; Witt, Michał

    2014-01-01

    Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane regulator gene (CFTR). In light of the strong allelic heterogeneity and regional specificity of the mutation spectrum, the strategy of molecular diagnostics and counseling in CF requires genetic tests to reflect the frequency profile characteristic for a given population. The goal of the study was to provide an updated comprehensive estimation of the distribution of CFTR mutations in Polish CF patients and to assess the effectiveness of INNOLiPA_CFTR tests in Polish population. The analyzed cohort consisted of 738 patients with the clinically confirmed CF diagnosis, prescreened for molecular defects using INNOLiPA_CFTR panels from Innogenetics. A combined efficiency of INNOLiPA CFTR_19 and CFTR_17_TnUpdate tests was 75.5%; both mutations were detected in 68.2%, and one mutation in 14.8% of the affected individuals. The group composed of all the patients with only one or with no mutation detected (109 and 126 individuals, respectively) was analyzed further using a mutation screening approach, i.e. SSCP/HD (single strand conformational polymorphism/heteroduplex) analysis of PCR products followed by sequencing of the coding sequence. As a result, 53 more mutations were found in 97 patients. The overall efficiency of the CF allele detection was 82.5% (7.0% increase compared to INNOLiPA tests alone). The distribution of the most frequent mutations in Poland was assessed. Most of the mutations repetitively found in Polish patients had been previously described in other European populations. The most frequent mutated allele, F508del, represented 54.5% of Polish CF chromosomes. Another eight mutations had frequencies over 1%, 24 had frequencies between 1 and 0.1%; c.2052-2053insA and c.3468+2_3468+3insT were the most frequent non-INNOLiPA mutations. Mutation distribution described herein is also relevant to the Polish diaspora. Our study also demonstrates that the reported efficiency of

  2. Function of PTEN during the formation and maintenance of neuronal circuits in the brain.

    Science.gov (United States)

    van Diepen, Michiel T; Eickholt, Britta J

    2008-01-01

    PTEN (phosphatase and tensin homologue deleted on chromosome 10) is a tumor suppressor that can inhibit proliferation and migration and controls apoptosis in a number of cell types, mainly through inhibition of the phosphoinositide 3-kinase (PI3K) signaling pathway. Patients carrying inactivating mutations of PTEN show a prevalence to develop tumors that can coincide with neurological defects such as mental retardation, ataxia and seizures. A number of in vitro and in vivo studies were instrumental in uncovering a direct correlation between deregulated PI3K/PTEN signaling and changes in neuronal morphogenesis, which is likely to have profound bearings upon the pathogenesis of neurological symptoms. This review outlines recent work on the function of PTEN during vertebrate brain development and the current understanding of the signaling pathways downstream of PTEN that control neuronal connectivity in the brain.

  3. Mutation analysis of the NSD1 gene in patients with autism spectrum disorders and macrocephaly

    Directory of Open Access Journals (Sweden)

    Delorme Richard

    2007-11-01

    Full Text Available Abstract Background Sotos syndrome is an overgrowth syndrome characterized by macrocephaly, advanced bone age, characteristic facial features, and learning disabilities, caused by mutations or deletions of the NSD1 gene, located at 5q35. Sotos syndrome has been described in a number of patients with autism spectrum disorders, suggesting that NSD1 could be involved in other cases of autism and macrocephaly. Methods We screened the NSD1 gene for mutations and deletions in 88 patients with autism spectrum disorders and macrocephaly (head circumference 2 standard deviations or more above the mean. Mutation analysis was performed by direct sequencing of all exons and flanking regions. Dosage analysis of NSD1 was carried out using multiplex ligation-dependent probe amplification. Results We identified three missense variants (R604L, S822C and E1499G in one patient each, but none is within a functional domain. In addition, segregation analysis showed that all variants were inherited from healthy parents and in two cases were also present in unaffected siblings, indicating that they are probably nonpathogenic. No partial or whole gene deletions/duplications were observed. Conclusion Our findings suggest that Sotos syndrome is a rare cause of autism spectrum disorders and that screening for NSD1 mutations and deletions in patients with autism and macrocephaly is not warranted in the absence of other features of Sotos syndrome.

  4. De novo genic mutations among a Chinese autism spectrum disorder cohort

    Science.gov (United States)

    Wang, Tianyun; Guo, Hui; Xiong, Bo; Stessman, Holly A.F.; Wu, Huidan; Coe, Bradley P.; Turner, Tychele N.; Liu, Yanling; Zhao, Wenjing; Hoekzema, Kendra; Vives, Laura; Xia, Lu; Tang, Meina; Ou, Jianjun; Chen, Biyuan; Shen, Yidong; Xun, Guanglei; Long, Min; Lin, Janice; Kronenberg, Zev N.; Peng, Yu; Bai, Ting; Li, Honghui; Ke, Xiaoyan; Hu, Zhengmao; Zhao, Jingping; Zou, Xiaobing; Xia, Kun; Eichler, Evan E.

    2016-01-01

    Recurrent de novo (DN) and likely gene-disruptive (LGD) mutations contribute significantly to autism spectrum disorders (ASDs) but have been primarily investigated in European cohorts. Here, we sequence 189 risk genes in 1,543 Chinese ASD probands (1,045 from trios). We report an 11-fold increase in the odds of DN LGD mutations compared with expectation under an exome-wide neutral model of mutation. In aggregate, ∼4% of ASD patients carry a DN mutation in one of just 29 autism risk genes. The most prevalent gene for recurrent DN mutations is SCN2A (1.1% of patients) followed by CHD8, DSCAM, MECP2, POGZ, WDFY3 and ASH1L. We identify novel DN LGD recurrences (GIGYF2, MYT1L, CUL3, DOCK8 and ZNF292) and DN mutations in previous ASD candidates (ARHGAP32, NCOR1, PHIP, STXBP1, CDKL5 and SHANK1). Phenotypic follow-up confirms potential subtypes and highlights how large global cohorts might be leveraged to prove the pathogenic significance of individually rare mutations. PMID:27824329

  5. The spectrum of SWI/SNF mutations, ubiquitous in human cancers.

    Directory of Open Access Journals (Sweden)

    A Hunter Shain

    Full Text Available SWI/SNF is a multi-subunit chromatin remodeling complex that uses the energy of ATP hydrolysis to reposition nucleosomes, thereby modulating gene expression. Accumulating evidence suggests that SWI/SNF functions as a tumor suppressor in some cancers. However, the spectrum of SWI/SNF mutations across human cancers has not been systematically investigated. Here, we mined whole-exome sequencing data from 24 published studies representing 669 cases from 18 neoplastic diagnoses. SWI/SNF mutations were widespread across diverse human cancers, with an excess of deleterious mutations, and an overall frequency approaching TP53 mutation. Mutations occurred most commonly in the SMARCA4 enzymatic subunit, and in subunits thought to confer functional specificity (ARID1A, ARID1B, PBRM1, and ARID2. SWI/SNF mutations were not mutually-exclusive of other mutated cancer genes, including TP53 and EZH2 (both previously linked to SWI/SNF. Our findings implicate SWI/SNF as an important but under-recognized tumor suppressor in diverse human cancers, and provide a key resource to guide future investigations.

  6. Mutation Spectrum and Genotype–Phenotype Correlation in Cornelia de Lange Syndrome

    Science.gov (United States)

    Mannini, Linda; Cucco, Francesco; Quarantotti, Valentina; Krantz, Ian D.; Musio, Antonio

    2013-01-01

    Cornelia de Lange syndrome (CdLS) is a clinically and genetically heterogeneous developmental disorder. Clinical features include growth retardation, intellectual disability, limb defects, typical facial dysmorphism, and other systemic involvement. The increased understanding of the genetic basis of CdLS has led to diagnostic improvement and expansion of the phenotype. Mutations in five genes (NIPBL, SMC1A, SMC3, RAD21, and HDAC8), all regulators or structural components of cohesin, have been identified. Approximately 60% of CdLS cases are due to NIPBL mutations, 5% caused by mutations in SMC1A, RAD21, and HDAC8 and one proband was found to carry a mutation in SMC3. To date, 311 CdLS-causing mutations are known including missense, nonsense, small deletions and insertions, splice site mutations, and genomic rearrangements. Phenotypic variability is seen both intra- and intergenically. This article reviews the spectrum of CdLS mutations with a particular emphasis on their correlation to the clinical phenotype. PMID:24038889

  7. Mutation spectrum and genotype-phenotype correlation in Cornelia de Lange syndrome.

    Science.gov (United States)

    Mannini, Linda; Cucco, Francesco; Quarantotti, Valentina; Krantz, Ian D; Musio, Antonio

    2013-12-01

    Cornelia de Lange syndrome (CdLS) is a clinically and genetically heterogeneous developmental disorder. Clinical features include growth retardation, intellectual disability, limb defects, typical facial dysmorphism, and other systemic involvement. The increased understanding of the genetic basis of CdLS has led to diagnostic improvement and expansion of the phenotype. Mutations in five genes (NIPBL, SMC1A, SMC3, RAD21, and HDAC8), all regulators or structural components of cohesin, have been identified. Approximately 60% of CdLS cases are due to NIPBL mutations, 5% caused by mutations in SMC1A, RAD21, and HDAC8 and one proband was found to carry a mutation in SMC3. To date, 311 CdLS-causing mutations are known including missense, nonsense, small deletions and insertions, splice site mutations, and genomic rearrangements. Phenotypic variability is seen both intra- and intergenically. This article reviews the spectrum of CdLS mutations with a particular emphasis on their correlation to the clinical phenotype. © 2013 WILEY PERIODICALS, INC.

  8. Genetic testing in familial AD and FTD: mutation and phenotype spectrum in a Danish cohort.

    Science.gov (United States)

    Lindquist, S G; Schwartz, M; Batbayli, M; Waldemar, G; Nielsen, J E

    2009-08-01

    Autosomal dominantly transmitted Alzheimer's disease (AD) and frontotemporal dementia (FTD) are genetically heterogeneous disorders. To date, three genes have been identified in which mutations cause early-onset autosomal dominant inherited AD: APP, PSEN1, and PSEN2. Mutations in two genes on chromosome 17, the MAPT and the PGRN genes, are associated with autosomal dominant inherited FTD. The aim of this study was to characterize the mutation spectrum and describe genotype-phenotype correlations in families with inherited dementia. The identification of novel mutations and/or atypical genotype-phenotype correlations contributes to further characterizing the disorders. DNA-samples from the 90 index cases from a Danish referral-based cohort representing families with presumed autosomal dominant inherited AD or FTD were screened for mutations in the known genes with sequencing, denaturing high-performance liquid chromatography (DHPLC) and multiplex ligation-dependent probe amplification (MLPA) techniques. Seven presumed pathogenic mutations (two PSEN1, one PSEN2, one APP, one MAPT, and two PGRN) were identified, including a novel PSEN2 mutation (V393M). No dosage aberrations were identified.

  9. PTEN alterations of the stromal cells characterise an aggressive subpopulation of pancreatic cancer with enhanced metastatic potential.

    Science.gov (United States)

    Wartenberg, Martin; Centeno, Irene; Haemmig, Stefan; Vassella, Erik; Zlobec, Inti; Galván, José A; Neuenschwander, Maja; Schlup, Cornelia; Gloor, Beat; Lugli, Alessandro; Perren, Aurel; Karamitopoulou, Eva

    2016-09-01

    Neoplastic stroma is believed to influence tumour progression. Here, we examine phosphatase and tensin homolog deleted on chromosome ten (PTEN) status in the tumour microenvironment of pancreatic ductal adenocarcinoma (PDAC) focussing especially at the stromal cells. We asses PTEN at protein, messenger RNA and DNA level using a well-characterised PDAC cohort (n = 117). miR-21, known to target PTEN, is assessed after RNA extraction from different laser-capture-microdissected cell populations, including cancer cells and juxta-tumoural and tumour-remote stroma. PTEN deletion was the most frequent cause of PTEN protein loss in PDAC cells (71%) and correlated with vascular invasion (p = 0.0176) and decreased overall survival (p = 0.0127). Concomitant PTEN protein loss in tumour and juxta-tumoural stroma, found in 21.4% of PDACs, correlated with increased distant metastasis (p = 0.0045). Stromal cells with PTEN protein loss frequently showed PTEN genetic aberrations, including hemizygous PTEN deletion (46.6%) or chromosome 10 monosomy (40%). No alterations were found in the tumour-remote stroma. miR-21 was overexpressed by cancer- and juxta-tumoural stromal cells, in some cases without simultaneous PTEN gene alterations. No PTEN mutations or promoter methylation were detected. We find various mechanisms of PTEN protein loss in the different tumour cell populations, including allelic PTEN deletions, gross chromosomal 10 aberrations and altered miR-21 expression. PTEN deletion is a major cause of PTEN protein loss in PDAC and correlates with aggressive characteristics and worse outcome. PTEN protein loss in juxta-tumoural stromal cells is mostly due to PTEN haplo-insufficiency and characterises a subgroup of PDACs with enhanced metastatic potential. In the tumour microenvironment of the invasive front, PTEN silencing by miR-21 in cancer and surrounding stromal cells acts not only cooperatively but also independently of the genetic aberrations to precipitate PTEN

  10. SIL1 mutations and clinical spectrum in patients with Marinesco-Sjogren syndrome.

    Science.gov (United States)

    Krieger, Michael; Roos, Andreas; Stendel, Claudia; Claeys, Kristl G; Sonmez, Fatma Mujgan; Baudis, Michael; Bauer, Peter; Bornemann, Antje; de Goede, Christian; Dufke, Andreas; Finkel, Richard S; Goebel, Hans H; Häussler, Martin; Kingston, Helen; Kirschner, Janbernd; Medne, Livija; Muschke, Petra; Rivier, François; Rudnik-Schöneborn, Sabine; Spengler, Sabrina; Inzana, Francesca; Stanzial, Franco; Benedicenti, Francesco; Synofzik, Matthis; Lia Taratuto, Ana; Pirra, Laura; Tay, Stacey Kiat-Hong; Topaloglu, Haluk; Uyanik, Gökhan; Wand, Dorothea; Williams, Denise; Zerres, Klaus; Weis, Joachim; Senderek, Jan

    2013-12-01

    Marinesco-Sjögren syndrome is a rare autosomal recessive multisystem disorder featuring cerebellar ataxia, early-onset cataracts, chronic myopathy, variable intellectual disability and delayed motor development. More recently, mutations in the SIL1 gene, which encodes an endoplasmic reticulum resident co-chaperone, were identified as the main cause of Marinesco-Sjögren syndrome. Here we describe the results of SIL1 mutation analysis in 62 patients presenting with early-onset ataxia, cataracts and myopathy or combinations of at least two of these. We obtained a mutation detection rate of 60% (15/25) among patients with the characteristic Marinesco-Sjögren syndrome triad (ataxia, cataracts, myopathy) whereas the detection rate in the group of patients with more variable phenotypic presentation was below 3% (1/37). We report 16 unrelated families with a total of 19 different SIL1 mutations. Among these mutations are 15 previously unreported changes, including single- and multi-exon deletions. Based on data from our screening cohort and data compiled from the literature we found that SIL1 mutations are invariably associated with the combination of a cerebellar syndrome and chronic myopathy. Cataracts were observed in all patients beyond the age of 7 years, but might be missing in infants. Six patients with SIL1 mutations had no intellectual disability, extending the known wide range of cognitive capabilities in Marinesco-Sjögren syndrome to include normal intelligence. Modestly constant features were somatic growth retardation, skeletal abnormalities and pyramidal tract signs. Examination of mutant SIL1 expression in cultured patient lymphoblasts suggested that SIL1 mutations result in severely reduced SIL1 protein levels irrespective of the type and position of mutations. Our data broaden the SIL1 mutation spectrum and confirm that SIL1 is the major Marinesco-Sjögren syndrome gene. SIL1 patients usually present with the characteristic triad but cataracts might be

  11. Spectrum of Glycidyl Methacrylate—induced Mutation in Plasmid—Escherichia coli System

    Institute of Scientific and Technical Information of China (English)

    GAOHui-Lan; ZuoJin; 等

    1994-01-01

    In order to characterize the spectrum of mutation induced by glycidyl methacrylate(GMA),the plasmid pBR322 was modified with this mutagen in vitro.transfected into appropriate Escherichia coli host HB101.The mutants were then screned and defined by DNA sequencing.Sequence analysis reveals that GMA induces two classes of mutations:deletion of the mono-,di-or tetra-base or the insertion of mono-or di-base.Both types of muations,with about 10% frequency,occur predominantly at C.G runs and at 5'-CNCCN-3' sequence,which are hotspots for GMA damage and may cause frameshift muation.

  12. Expanding the mutation spectrum in ICF syndrome: Evidence for a gender bias in ICF2.

    Science.gov (United States)

    van den Boogaard, M L; Thijssen, P E; Aytekin, C; Licciardi, F; Kıykım, A A; Spossito, L; Dalm, V A S H; Driessen, G J; Kersseboom, R; de Vries, F; van Ostaijen-Ten Dam, M M; Ikinciogullari, A; Dogu, F; Oleastro, M; Bailardo, E; Daxinger, L; Nain, E; Baris, S; van Tol, M J D; Weemaes, C; van der Maarel, S M

    2017-01-27

    Immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome is a rare, genetically heterogeneous, autosomal recessive disorder. Patients suffer from recurrent infections caused by reduced levels or absence of serum immunoglobulins. Genetically, 4 subtypes of ICF syndrome have been identified to date: ICF1 (DNMT3B mutations), ICF2 (ZBTB24 mutations), ICF3 (CDCA7 mutations), and ICF4 (HELLS mutations). To study the mutation spectrum in ICF syndrome. Genetic studies were performed in peripheral blood lymphocyte DNA from suspected ICF patients and family members. We describe 7 ICF1 patients and 6 novel missense mutations in DNMT3B, affecting highly conserved residues in the catalytic domain. We also describe 5 new ICF2 patients, one of them carrying a homozygous deletion of the complete ZBTB24 locus. In a meta-analysis of all published ICF cases, we observed a gender bias in ICF2 with 79% male patients. The biallelic deletion of ZBTB24 provides strong support for the hypothesis that most ICF2 patients suffer from a ZBTB24 loss of function mechanism and confirms that complete absence of ZBTB24 is compatible with human life. This is in contrast to the observed early embryonic lethality in mice lacking functional Zbtb24. The observed gender bias seems to be restricted to ICF2 as it is not observed in the ICF1 cohort. Our study expands the mutation spectrum in ICF syndrome and supports that DNMT3B and ZBTB24 are the most common disease genes. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. GJB2 mutation spectrum in deaf population in a typical southeastern area of China

    Institute of Scientific and Technical Information of China (English)

    DAI Pu; YOU Yi-wen; CUI Jing-hong; YU Fei; HAN Bing; KANG Dong-yang; YUAN Hui-jun; HAN Dong-yi

    2006-01-01

    Mutations in GJB2 gene are the most frequently found mutations in patients with nonsyndromic hearing impairment. However, the spectrum and prevalence of mutations in this gene vary among different ethnic groups. In China, 30,000 infants are born with congenital hearing impairment annually. In order to provide appropriate genetic testing and counseling to the families, we investigated the molecular etiology of nonsyndromic deafness in 103 unrelated school children attending Nantong School for the Deaf and Mute in Jiangsu Province, China. The coding exon of the GJB2 gene was PCR amplified and sequenced. Sixty two GJB2 mutant alleles were identified in 35.9% (37/103) of the patients. Twenty five patients carried two pathogenic mutations and 12 patients carried one mutant allele. The 235delC was the most common mutation accounting for 69.4% (43/62) of GJB2 mutant alleles.The GJB2 mutant alleles accounted for 30.1% (62/206) of all chromosomes responsible for nonsyndromic hearing impairment. Testing of the 3 most prevalent deleterious frame shift mutations in this cohort detected 100% of all GJB2 mutant alleles. These results demonstrate that an effective genetic testing of GJB2 gene for patients and families with nonsyndromic hearing impairment is possible.

  14. Mutation screening of GRIN2B in schizophrenia and autism spectrum disorder in a Japanese population

    Science.gov (United States)

    Takasaki, Yuto; Koide, Takayoshi; Wang, Chenyao; Kimura, Hiroki; Xing, Jingrui; Kushima, Itaru; Ishizuka, Kanako; Mori, Daisuke; Sekiguchi, Mariko; Ikeda, Masashi; Aizawa, Miki; Tsurumaru, Naoko; Iwayama, Yoshimi; Yoshimi, Akira; Arioka, Yuko; Yoshida, Mami; Noma, Hiromi; Oya-Ito, Tomoko; Nakamura, Yukako; Kunimoto, Shohko; Aleksic, Branko; Uno, Yota; Okada, Takashi; Ujike, Hiroshi; Egawa, Jun; Kuwabara, Hitoshi; Someya, Toshiyuki; Yoshikawa, Takeo; Iwata, Nakao; Ozaki, Norio

    2016-01-01

    N-methyl-d-aspartate receptors (NMDARs) play a critical role in excitatory synaptic transmission and plasticity in the central nervous systems. Recent genetics studies in schizophrenia (SCZ) show that SCZ is susceptible to NMDARs and the NMDAR signaling complex. In autism spectrum disorder (ASD), several studies report dysregulation of NMDARs as a risk factor for ASD. To further examine the association between NMDARs and SCZ/ASD development, we conducted a mutation screening study of GRIN2B which encodes NR2B subunit of NMDARs, to identify rare mutations that potentially cause diseases, in SCZ and ASD patients (n = 574 and 152, respectively). This was followed by an association study in a large sample set of SCZ, ASD, and normal healthy controls (n = 4145, 381, and 4432, respectively). We identified five rare missense mutations through the mutation screening of GRIN2B. Although no statistically significant association between any single mutation and SCZ or ASD was found, one of its variant, K1292R, is found only in the patient group. To further examine the association between mutations in GRIN2B and SCZ/ASD development, a larger sample size and functional experiments are needed. PMID:27616045

  15. Mutation analysis of the NRXN1 gene in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Onay H

    2016-12-01

    Full Text Available The aim of this study was to identify the sequence mutations in the Neurexin 1 (NRXN1 gene that has been considered as one of the strong candidate genes. A total of 30 children and adolescents (aged 3-18 with non syndromic autism were enrolled this study. Sequencing of the coding exons and the exon-intron boundaries of the NRXN1 gene was performed. Two known mutations were described in two different cases. Heterozygous S14L was determined in one patient and heterozygous L748I was determined in another patient. The S14L and L748I mutations have been described in the patients with autism before. Both of these mutations were inherited from their father. In this study, two of 30 (6.7% autism spectrum disorder (ASD patients carrying NRXN1 gene mutations were detected. It indicates that variants in the NRXN1 gene might confer a risk of developing nonsyndromic ASD. However, due to the reduced penetrance in the gene, the causal role of the NRXN1 gene mutations must be evaluated carefully in all cases.

  16. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene.

    Science.gov (United States)

    Farooqi, I Sadaf; Keogh, Julia M; Yeo, Giles S H; Lank, Emma J; Cheetham, Tim; O'Rahilly, Stephen

    2003-03-20

    Melanocortin 4 receptor (MC4R) deficiency is the commonest monogenic form of obesity. However, the clinical spectrum and mode of inheritance have not been defined, pathophysiological mechanisms leading to obesity are poorly understood, and there is little information regarding genotype-phenotype correlations. We determined the nucleotide sequence of the MC4R gene in 500 probands with severe childhood obesity. Family studies were undertaken to examine cosegregation of identified mutations with obesity. Subjects with MC4R deficiency underwent metabolic and endocrine evaluation; the results were correlated with the signaling properties of mutant receptors. Twenty-nine probands (5.8 percent) had mutations in MC4R; 23 were heterozygous, and 6 were homozygous. Mutation carriers had severe obesity, increased lean mass, increased linear growth, hyperphagia, and severe hyperinsulinemia; homozygotes were more severely affected than heterozygotes. Subjects with mutations retaining residual signaling capacity had a less severe phenotype. Mutations in MC4R result in a distinct obesity syndrome that is inherited in a codominant manner. Mutations leading to complete loss of function are associated with a more severe phenotype. The correlation between the signaling properties of these mutant receptors and energy intake emphasizes the key role of this receptor in the control of eating behavior in humans. Copyright 2003 Massachusetts Medical Society

  17. The sequence spectrum of frameshift reversions obtained with a novel adaptive mutation assay in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Erich Heidenreich

    2016-12-01

    Full Text Available Research on the mechanisms of adaptive mutagenesis in resting, i.e. non-replicating cells relies on appropriate mutation assays. Here we provide a novel procedure for the detection of frameshift-reverting mutations in yeast. Proliferation of non-reverted cells in this assay is suppressed by the lack of a fermentable carbon source. The test allele was constructed in a way that the reversions mimic microsatellite instability, a condition often found in cancer cells. We show the cell numbers during these starvation conditions and provide a DNA sequence spectrum of a representative set of revertants. The data in this article support the publication "Glucose starvation as a selective tool for the study of adaptive mutations in Saccharomyces cerevisiae" (Heidenreich and Steinboeck, 2016 [1].

  18. Hearing loss and PRPS1 mutations: Wide spectrum of phenotypes and potential therapy.

    Science.gov (United States)

    Liu, Xue Zhong; Xie, Dinghua; Yuan, Hui Jun; de Brouwer, Arjan P M; Christodoulou, John; Yan, Denise

    2013-01-01

    The purpose of this review was to evaluate the current literature on phosphoribosylpyrophosphate synthetase 1 (PRPS1)-related diseases and their consequences on hearing function. A literature search of peer-reviewed, published journal articles was conducted in online bibliographic databases. Three databases for medical research were included in this review. Mutations in PRPS1 are associated with a spectrum of non-syndromic to syndromic hearing loss. Hearing loss in male patients with PRPS1 mutations is bilateral, moderate to profound, and can be prelingual or postlingual, progressive or non-progressive. Audiogram shapes associated with PRPS1 deafness are usually residual and flat. Female carriers can have unilateral or bilateral hearing impairment. Gain of function mutations in PRPS1 cause a superactivity of the PRS-I protein whereas the loss-of-function mutations result in X-linked nonsyndromic sensorineural deafness type 2 (DFN2), or in syndromic deafness including Arts syndrome and X-linked Charcot-Marie-Tooth disease-5 (CMTX5). Lower residual activity in PRS-I leads to a more severe clinical manifestation. Clinical and molecular findings suggest that the four PRPS1 disorders discovered to date belong to the same disease spectrum. Dietary supplementation with S-adenosylmethionine (SAM) appeared to alleviate the symptoms of Arts syndrome patients, suggesting that SAM could compensate for PRS-I deficiency.

  19. Loss of function mutations in HARS cause a spectrum of inherited peripheral neuropathies.

    Science.gov (United States)

    Safka Brozkova, Dana; Deconinck, Tine; Griffin, Laurie Beth; Ferbert, Andreas; Haberlova, Jana; Mazanec, Radim; Lassuthova, Petra; Roth, Christian; Pilunthanakul, Thanita; Rautenstrauss, Bernd; Janecke, Andreas R; Zavadakova, Petra; Chrast, Roman; Rivolta, Carlo; Zuchner, Stephan; Antonellis, Anthony; Beg, Asim A; De Jonghe, Peter; Senderek, Jan; Seeman, Pavel; Baets, Jonathan

    2015-08-01

    Inherited peripheral neuropathies are a genetically heterogeneous group of disorders characterized by distal muscle weakness and sensory loss. Mutations in genes encoding aminoacyl-tRNA synthetases have been implicated in peripheral neuropathies, suggesting that these tRNA charging enzymes are uniquely important for the peripheral nerve. Recently, a mutation in histidyl-tRNA synthetase (HARS) was identified in a single patient with a late-onset, sensory-predominant peripheral neuropathy; however, the genetic evidence was lacking, making the significance of the finding unclear. Here, we present clinical, genetic, and functional data that implicate HARS mutations in inherited peripheral neuropathies. The associated phenotypic spectrum is broad and encompasses axonal and demyelinating motor and sensory neuropathies, including four young patients presenting with pure motor axonal neuropathy. Genome-wide linkage studies in combination with whole-exome and conventional sequencing revealed four distinct and previously unreported heterozygous HARS mutations segregating with autosomal dominant peripheral neuropathy in four unrelated families (p.Thr132Ile, p.Pro134His, p.Asp175Glu and p.Asp364Tyr). All mutations cause a loss of function in yeast complementation assays, and p.Asp364Tyr is dominantly neurotoxic in a Caenorhabditis elegans model. This study demonstrates the role of HARS mutations in peripheral neuropathy and expands the genetic and clinical spectrum of aminoacyl-tRNA synthetase-related human disease. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Relationship between PTEN, DNA mismatch repair, and tumor histotype in endometrial carcinoma: retained positive expression of PTEN preferentially identifies sporadic non-endometrioid carcinomas.

    Science.gov (United States)

    Djordjevic, Bojana; Barkoh, Bedia A; Luthra, Rajyalakshmi; Broaddus, Russell R

    2013-10-01

    Loss of PTEN (phosphatase and tensin homolog) expression and microsatellite instability are two of the more common molecular alterations in endometrial carcinoma. From the published literature, it is controversial as to whether there is a relationship between these different molecular mechanisms. Therefore, a cohort of 187 pure endometrioid and non-endometrioid endometrial carcinomas, carefully characterized as to clinical and pathological features, was examined for PTEN sequence abnormalities and the immunohistochemical expression of PTEN and the DNA mismatch repair proteins MLH1, MSH2, MSH6, and PMS2. MLH1 methylation analysis was performed when tumors had loss of MLH1 protein. Mismatch repair protein loss was more frequent in endometrioid carcinomas compared with non-endometrioid carcinomas, a difference primarily attributable to the presence of MLH1 methylation in a greater proportion of endometrioid tumors. Among the non-endometrioid group, mixed endometrioid/non-endometrioid carcinomas were the histotype that most commonly had loss of a mismatch repair protein. In endometrioid tumors, the frequency of PTEN loss measured by immunohistochemistry and mutation did not differ significantly between the mismatch repair protein intact or mismatch repair protein loss groups, suggesting that PTEN loss is independent of mismatch protein repair status in this group. However, in non-endometrioid carcinomas, both intact positive PTEN immunohistochemical expression and PTEN wild type were highly associated with retained positive expression of mismatch repair proteins in the tumor. Relevant to screening endometrial cancers for Lynch Syndrome, an initial PTEN immunohistochemistry determination may be able to replace the use of four mismatch repair immunohistochemical markers in 63% of patients with non-endometrioid endometrial carcinoma. Therefore, PTEN immunohistochemistry, in combination with tumor histotype, is a useful adjunct in the clinical evaluation of endometrial

  1. DNA Mismatch Repair Deficiency Accelerates Endometrial Tumorigenesis in Pten Heterozygous Mice

    OpenAIRE

    Hong WANG; Douglas, Wayne; Lia, Marie; Edelmann, Winfried; Kucherlapati, Raju; Podsypanina, Katrina; Parsons, Ramon; Ellenson, Lora Hedrick

    2002-01-01

    PTEN mutation and microsatellite instability are two of the most common genetic alterations in uterine endometrioid carcinoma. Furthermore, previous studies have suggested an association between the two alterations, however the basis and consequence of the association is not understood. Recently it has been shown that 100% of female Pten+/− mice develop complex atypical hyperplasia by 32 weeks of age that progresses to endometrial carcinoma in ∼20 to 25% of mice at 40 weeks. In an attempt to ...

  2. Comparative Analysis of Phenylalanine Hydroxylase Mutations Spectrum in Novosibirsk and Kemerovo regions of Western Siberia, Russia

    Directory of Open Access Journals (Sweden)

    Olga A. Baturina

    2016-03-01

    Full Text Available Results of phenylalanine hydroxylase (PAH locus molecular genotyping for 115 phenylketonuria (PKU patients and their family members from Novosibirsk and Kemerovo regions of Western Siberia are presented. The direct exons and adjacent introns regions sequencing was used to identify PKU-associated mutations. Mutations typical for Europe (p.R158Q, p.R252W, p.P281L, IVS10-11G>A, p.R408W, IVS12+1G>A and typical for South-Eastern Asia and Turkey (p.R261Q и p.R243Q were identified as well as a bunch of rare mutations (IVS2+5G>A, p.R155H, p.Y168H, p.W187R, E221_D222>Efs, p.A342T, p.Y386C, IVS11+1G>C. The p.R408W mutation was prevailing. Mutations spectrum for Novosibirsk region appeared to be more diverse than one for Kemerovo region.

  3. EGFR- and AKT-mediated reduction in PTEN expression contributes to tyrphostin resistance and is reversed by mTOR inhibition in endometrial cancer cells.

    Science.gov (United States)

    Li, Tian; Yang, Yuebo; Li, Xiaomao; Xu, Chengfang; Meng, Lirong

    2012-02-01

    Loss or mutation of the PTEN (phosphatase and tensin homologue deleted on chromosome 10) gene is associated with resistance to epidermal growth factor receptor (EGFR) inhibitors. However, the mechanism underlying remains elusive. In this study, we aimed to explore whether sensitivity to the EGFR tyrosine kinase inhibitor (TKI) is affected by PTEN status in endometrial cancer cells. PTEN siRNA and the PTEN gene were transfected into HEC-1A and Ishikawa endometrial cancer cells using lentiviral vectors. Cells were treated under various concentrations of RG14620 and rapamycin, which are EGFR and mammalian target of rapamycin (mTOR) inhibitors, respectively. The IC(50) of RG16420 was determined by using the MTT method. Cell apoptosis and the cell cycle were studied, and activation of EGFR, AKT, and p70S6 were detected by Western blot analysis. Loss of PTEN promoted cell proliferation and led to significant increases in the levels of EGFR, phospho-EGFR, AKT, phospho-AKT, and phospho-mTOR proteins. Ishikawa and HEC-1A(PTENkd) cells that displayed loss and inactivation of PTEN function were resistant to RG14620. HEC-1A and Ishikawa(PTEN) cells with intact PTEN were sensitive to RG14620. The combination of two inhibitors was more effective than both monotherapies, particularly in carcinoma cells with PTEN dysfunction. Decreased phospho-EGFR protein expression was observed in all cell lines that were sensitive to RG14620. Decreased phospho-AKT and phospho-p70S6 protein expression was observed in PTEN-intact cells that were sensitive to RG14620. PTEN loss results in resistance to EGFR TKI, which was reversed by PTEN reintroduction or mTOR inhibitor treatment. The combined treatment of EGFR TKI and the mTOR inhibitor provided a synergistic effect by promoting cell death in PTEN-deficient and PTEN-intact endometrial cancer cells, particularly in PTEN-deficient carcinoma cells with up-regulated EGFR activation.

  4. Attenuation of PTEN increases p21 stability and cytosolic localization in kidney cancer cells: a potential mechanism of apoptosis resistance

    Directory of Open Access Journals (Sweden)

    Baksh Shairaz

    2007-02-01

    Full Text Available Abstract Background The PTEN (Phosphatase and Tensin homolog deleted on chromosome Ten tumor suppressor gene is frequently mutated or deleted in a wide variety of solid tumors, and these cancers are generally more aggressive and difficult to treat than those possessing wild type PTEN. While PTEN lies upstream of the phosphoinositide-3 kinase signaling pathway, the mechanisms that mediate its effects on tumor survival remain incompletely understood. Renal cell carcinoma (RCC is associated with frequent treatment failures (~90% in metastatic cases, and these tumors frequently contain PTEN abnormalities. Results Using the ACHN cell line containing wild type PTEN, we generated a stable PTEN knockdown RCC cell line using RNA interference. We then used this PTEN knockdown cell line to show that PTEN attenuation increases resistance to cisplatin-induced apoptosis, a finding associated with increased levels of the cyclin kinase inhibitor p21. Elevated levels of p21 result from stabilization of the protein, and they are dependent on the activities of phosphoinositide-3 kinase and Akt. More specifically, the accumulation of p21 occurs preferentially in the cytosolic compartment, which likely contributes to both cell cycle progression and resistance to apoptosis. Conclusion Since p21 regulates a decision point between repair and apoptosis after DNA damage, our data suggest that p21 plays a key role in mechanisms used by PTEN-deficient tumors to escape chemotherapy. This in turn raises the possibility to use p21 attenuators as chemotherapy sensitizers, an area under active continuing investigation in our laboratories.

  5. Mutation screening of melatonin-related genes in patients with autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Thuresson Kent

    2010-04-01

    Full Text Available Abstract Background One consistent finding in autism spectrum disorders (ASD is a decreased level of the pineal gland hormone melatonin and it has recently been demonstrated that this decrease to a large extent is due to low activity of the acetylserotonin O-methyltransferase (ASMT, the last enzyme in the melatonin synthesis pathway. Moreover, mutations in the ASMT gene have been identified, including a splice site mutation, that were associated with low ASMT activity and melatonin secretion, suggesting that the low ASMT activity observed in autism is, at least partly, due to variation within the ASMT gene. Methods In the present study, we have investigated all the genes involved in the melatonin pathway by mutation screening of AA-NAT (arylalkylamine N-acetyltransferase, ASMT, MTNR1A, MTNR1B (melatonin receptor 1A and 1B and GPR50 (G protein-coupled receptor 50, encoding both synthesis enzymes and the three main receptors of melatonin, in 109 patients with autism spectrum disorders (ASD. A cohort of 188 subjects from the general population was used as a comparison group and was genotyped for the variants identified in the patient sample. Results Several rare variants were identified in patients with ASD, including the previously reported splice site mutation in ASMT (IVS5+2T>C. Of the variants affecting protein sequence, only the V124I in the MTNR1B gene was absent in our comparison group. However, mutations were found in upstream regulatory regions in three of the genes investigated, ASMT, MTNR1A, and MTNR1B. Conclusions Our report of another ASD patient carrying the splice site mutation IVS5+2T>C, in ASMT further supports an involvement of this gene in autism. Moreover, our results also suggest that other melatonin related genes might be interesting candidates for further investigation in the search for genes involved in autism spectrum disorders and related neurobehavioral phenotypes. However, further studies of the novel variants identified

  6. Spectrum of mutations in sarcoglycan genes in the Mumbai region of western India: High prevalence of 525del T

    Directory of Open Access Journals (Sweden)

    Khadilkar Satish

    2009-01-01

    Full Text Available Background : While the clinical and immunocytochemical features of sarcoglycanopathies have been reported from India, genetic aspects have not been studied. There is large variation in the sarcoglycan mutations among the studied populations. Aim : To study the spectrum of mutations in sarcoglycan genes (SG. Materials and Methods : Patients fulfilling Bushby′s criteria for limb girdle muscular dystrophy were prospectively analyzed. Patients gave their medical history and underwent a clinical examination, serum creatine kinase estimation, electrophysiology, muscle biopsy with immunostaining for alpha, beta, gamma, and delta subunits and mutational analysis using denaturing high pressure liquid chromatography and direct sequencing. Results : Mutations in SG accounted for 26.4% of the cohort of limb girdle muscular dystrophy. The mean age of these 18 patients was 22.5 years. Generally, proximal weakness affected the flexor and adductor compartments of the lower and upper limbs. The clinical profile of various mutations was indistinguishable from each other. Gamma SG mutations were most common, seen in 8 patients, followed by delta SG mutation in 5 patients and alpha mutation in 4 patients, while only 1 patient had mutation in the beta sarcoglycan gene. The most prevalent mutation in the gamma SG gene was 525del T. This is of interest as the mutation has been known to exist only in specific populations. Conclusion : This study, the first mutational analysis of Indian patients with sarcoglycanopathies suggests gamma SG mutations were the most common and the most prevalent mutation in the gamma SG gene was 525del T.

  7. [Frequency, spectrum, and functional significance of TP53 mutations in patients with diffuse large B-cell lymphoma].

    Science.gov (United States)

    Voropaeva, E N; Pospelova, T I; Voevoda, M I; Maksimov, V N

    2017-01-01

    A comparative analysis of oncogene mutations shows that variations in their frequency, spectrum, and hot-spot locations depends on the type of tumor and the ethnic origin of the population studied. The current version of the IARC TP53 Mutation Database lacks information about the frequency and spectrum of TP53 mutations in patients with DLBCL in Russia. The aim of this study was to assess the frequency and functional significance of TP53 mutations in patients with DLBCL in Novosibirsk. The TP53 coding sequence and the adjacent intron regions were analyzed by direct sequencing in the tumor material from 74 patients with DLBCL. Mutations of the TP53 coding sequence were found in 18 (24.3%) patients. These data are consistent with the frequency of TP53  mutations observed in other studies. The spectrum of nucleotide substitutions found in DLBCL specimens corresponded to that described in the IARC TP53 Mutation Database. According to bioinformatic data and to reported experiments in vitro, most of the mutations detected result in the production of functionally inactive p53. Our results show that DLBCL progression is accompanied by the functional selection for mutations in TP53 exons 5-8.

  8. Further defining the phenotypic spectrum of B4GALT7 mutations.

    Science.gov (United States)

    Salter, Claire G; Davies, Justin H; Moon, Rebecca J; Fairhurst, Joanna; Bunyan, David; Foulds, Nicola

    2016-06-01

    Proteoglycans are components of the extracellular matrix with diverse biological functions. Defects in proteoglycan synthesis have been linked to several human diseases with common features of short stature, hypermobility, joint dislocations, and skeletal dysplasia. B4GALT7 encodes galactosyltransferase-I that catalyzes the addition of a galactose moiety to a xylosyl group in the tetrasaccharide linker of proteoglycans. Mutations in this gene have been associated with the rare progeroid form of Ehlers Danlos syndrome and in addition more recently found to underlie Larsen of Reunion Island syndrome. Nine individuals have been reported with a diagnosis of the progeroid form of Ehlers Danlos syndrome, four of whom have had molecular characterization showing homozygous or compound heterozygous mutations in B4GALT7. We report two newly described patients with compound heterozygous mutations in B4GALT7, and show that the six individuals with confirmed mutations do not have the progeroid features described in the original five patients with a clinical diagnosis of the progeroid form of Ehlers Danlos syndrome. We suggest that galactosyltransferase-I deficiency does not cause the progeroid form of Ehlers Danlos syndrome, but instead results in a clinically recognizable syndrome comprising short stature, joint hypermobility, radioulnar synostosis, and severe hypermetropia. This group of syndromic patients are on a phenotypic spectrum with individuals who have Larsen of Reunion Island syndrome, although the key features of osteopenia, fractures and hypermetropia have not been reported in patients from Reunion Island. © 2016 Wiley Periodicals, Inc.

  9. Characterization of the Genomic Architecture and Mutational Spectrum of a Small Cell Prostate Carcinoma

    Directory of Open Access Journals (Sweden)

    Alan F. Scott

    2014-05-01

    Full Text Available We present the use of a series of laboratory, analytical and interpretation methods to investigate personalized cancer care for a case of small cell prostate carcinoma (SCPC, a rare and aggressive tumor with poor prognosis, for which the underlying genomic architecture and mutational spectrum has not been well characterized. We performed both SNP genotyping and exome sequencing of a Virchow node metastasis from a patient with SCPC. A variety of methods were used to analyze and interpret the tumor genome for copy number variation, loss of heterozygosity (LOH, somatic mosaicism and mutations in genes from known cancer pathways. The combination of genotyping and exome sequencing approaches provided more information than either technique alone. The results showed widespread evidence of copy number changes involving most chromosomes including the possible loss of both alleles of CDKN1B (p27/Kip1. LOH was observed for the regions encompassing the tumor suppressors TP53, RB1, and CHD1. Predicted damaging somatic mutations were observed in the retained TP53 and RB1 alleles. Mutations in other genes that may be functionally relevant were noted, especially the recently reported high confidence cancer drivers FOXA1 and CCAR1. The disruption of multiple cancer drivers underscores why SCPC may be such a difficult cancer to manage.

  10. Reassessing the role of mitochondrial DNA mutations in autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Carracedo Ángel

    2011-04-01

    Full Text Available Abstract Background There is increasing evidence that impairment of mitochondrial energy metabolism plays an important role in the pathophysiology of autism spectrum disorders (ASD; OMIM number: 209850. A significant proportion of ASD cases display biochemical alterations suggestive of mitochondrial dysfunction and several studies have reported that mutations in the mitochondrial DNA (mtDNA molecule could be involved in the disease phenotype. Methods We analysed a cohort of 148 patients with idiopathic ASD for a number of mutations proposed in the literature as pathogenic in ASD. We also carried out a case control association study for the most common European haplogroups (hgs and their diagnostic single nucleotide polymorphisms (SNPs by comparing cases with 753 healthy and ethnically matched controls. Results We did not find statistical support for an association between mtDNA mutations or polymorphisms and ASD. Conclusions Our results are compatible with the idea that mtDNA mutations are not a relevant cause of ASD and the frequent observation of concomitant mitochondrial dysfunction and ASD could be due to nuclear factors influencing mitochondrion functions or to a more complex interplay between the nucleus and the mitochondrion/mtDNA.

  11. Mutation spectrum of MLL2 in a cohort of kabuki syndrome patients

    Directory of Open Access Journals (Sweden)

    Renieri Alessandra

    2011-06-01

    Full Text Available Abstract Background Kabuki syndrome (Niikawa-Kuroki syndrome is a rare, multiple congenital anomalies/mental retardation syndrome characterized by a peculiar face, short stature, skeletal, visceral and dermatoglyphic abnormalities, cardiac anomalies, and immunological defects. Recently mutations in the histone methyl transferase MLL2 gene have been identified as its underlying cause. Methods Genomic DNAs were extracted from 62 index patients clinically diagnosed as affected by Kabuki syndrome. Sanger sequencing was performed to analyze the whole coding region of the MLL2 gene including intron-exon junctions. The putative causal and possible functional effect of each nucleotide variant identified was estimated by in silico prediction tools. Results We identified 45 patients with MLL2 nucleotide variants. 38 out of the 42 variants were never described before. Consistently with previous reports, the majority are nonsense or frameshift mutations predicted to generate a truncated polypeptide. We also identified 3 indel, 7 missense and 3 splice site. Conclusions This study emphasizes the relevance of mutational screening of the MLL2 gene among patients diagnosed with Kabuki syndrome. The identification of a large spectrum of MLL2 mutations possibly offers the opportunity to improve the actual knowledge on the clinical basis of this multiple congenital anomalies/mental retardation syndrome, design functional studies to understand the molecular mechanisms underlying this disease, establish genotype-phenotype correlations and improve clinical management.

  12. Spectrum of clinical presentations in familial hemophagocytic lymphohistiocytosis type 5 patients with mutations in STXBP2

    DEFF Research Database (Denmark)

    Meeths, Marie; Entesarian, Miriam; Al-Herz, Waleed

    2010-01-01

    in patients with mutations in STXBP2 encoding Munc18-2, recently associated with familial HLH type 5. The disease severity among 11 persons studied here was highly variable and, accordingly, age at diagnosis ranged from 2 months to 17 years. Remarkably, in addition to typical manifestations of familial HLH...... (FHL), the clinical findings included colitis, bleeding disorders, and hypogammaglobulinemia in approximately one-third of the patients. Laboratory analysis revealed impairment of NK-cell degranulation and cytotoxic capacity. Interleukin-2 stimulation of lymphocytes in vitro rescued the NK cell......-associated functional defects. In conclusion, familial HLH type 5 is associated with a spectrum of clinical symptoms, which may be a reflection of impaired expression and function of Munc18-2 also in cells other than cytotoxic lymphocytes. Mutations in STXBP2 should thus also be considered in patients with clinical...

  13. The spectrum of mutations controlling complex traits and the genetics of fitness in plants.

    Science.gov (United States)

    Falke, K Christin; Glander, Shirin; He, Fei; Hu, Jinyong; de Meaux, Juliette; Schmitz, Gregor

    2013-12-01

    Elucidating the molecular basis of natural variation in complex traits is the key for their effective management in crops or natural systems. This review focuses on plant variation. It will first, show that genetic modifications causing major alterations in polygenic phenotypes often hit targets within an array of 'candidate genes', second, present new methods that include mutations of all effect sizes, and help exhaustively describe the molecular systems underlying complex traits, and third, discuss recent findings regarding the role of epigenetic variants, which in plants are often maintained through both mitosis and meiosis. Exploring the whole spectrum of mutations controlling complex traits is made possible by the combination of genetic, genomic and epigenomic approaches.

  14. Immunohistochemical expression of PTEN in normal, hyperplastic and endometrial carcinoma of endometrium

    Directory of Open Access Journals (Sweden)

    IzadiMood

    2008-08-01

    Full Text Available "nBackground: Endometrial carcinoma is the most common malignancy of the female genital tract. Different molecular alterations have been described in endometrioid endometrial carcinoma that, the most frequently altered gene is mutations of PTEN. Up to 50-83% of endometrioid carcinoma reveal altered PTEN characterized by loss of expression. In endometrial hyperplasia, which are precursors of endometrioid carcinoma, loss of PTEN expression is 30-63%."n"nMethods: Immunohistochemical staining was performed on 90 cases of endometrial curettage including: 30 proliferative endometrium, 30 hyperplastic endometrium and 30 endometroid carcinoma."n"nImmunohistochemical specimens were graded semiquatitatively by considering the percentage of staining with two cut-point 10% & 50% on the whole section for each specimen."n"nResults: loss of PTEN expression was observed 0%, 0%, 30% of 51.7% in proliferative, simple hyperplasia, complex hyperplasia and endometrioid carcinoma respectively with cut-point 10% and 0%, 5.3%, 30%, 52.2% in endometrioid carcinoma respectively with cut-point 50%. Also there was no difference in PTEN expression between atypical complex hyperplasia and endometrioid carcinoma but there was significant difference between simple hyperplasia and proliferative with endometrioid carcinoma & atypical complex hyperplasia."n"nConclusion: These results show loss of PTEN expression in endmetrioid carcinoma and no differences between endometrioid carcinoma and atypical complex hyperplasia. Therefore, assessment of PTEN expression by negative immunostaining and matched with routine hematoxylin and eosin stained can be a new tool for diagnosis of endometrioid carcinoma.

  15. De novo mutation in the dopamine transporter gene associates dopamine dysfunction with autism spectrum disorder

    DEFF Research Database (Denmark)

    Hamilton, P J; Campbell, N G; Sharma, S

    2013-01-01

    De novo genetic variation is an important class of risk factors for autism spectrum disorder (ASD). Recently, whole-exome sequencing of ASD families has identified a novel de novo missense mutation in the human dopamine (DA) transporter (hDAT) gene, which results in a Thr to Met substitution...... at site 356 (hDAT T356M). The dopamine transporter (DAT) is a presynaptic membrane protein that regulates dopaminergic tone in the central nervous system by mediating the high-affinity reuptake of synaptically released DA, making it a crucial regulator of DA homeostasis. Here, we report the first...

  16. Prevalence and Spectrum of Germline Cancer Susceptibility Gene Mutations Among Patients With Early-Onset Colorectal Cancer.

    Science.gov (United States)

    Pearlman, Rachel; Frankel, Wendy L; Swanson, Benjamin; Zhao, Weiqiang; Yilmaz, Ahmet; Miller, Kristin; Bacher, Jason; Bigley, Christopher; Nelsen, Lori; Goodfellow, Paul J; Goldberg, Richard M; Paskett, Electra; Shields, Peter G; Freudenheim, Jo L; Stanich, Peter P; Lattimer, Ilene; Arnold, Mark; Liyanarachchi, Sandya; Kalady, Matthew; Heald, Brandie; Greenwood, Carla; Paquette, Ian; Prues, Marla; Draper, David J; Lindeman, Carolyn; Kuebler, J Philip; Reynolds, Kelly; Brell, Joanna M; Shaper, Amy A; Mahesh, Sameer; Buie, Nicole; Weeman, Kisa; Shine, Kristin; Haut, Mitchell; Edwards, Joan; Bastola, Shyamal; Wickham, Karen; Khanduja, Karamjit S; Zacks, Rosemary; Pritchard, Colin C; Shirts, Brian H; Jacobson, Angela; Allen, Brian; de la Chapelle, Albert; Hampel, Heather

    2017-04-01

    Hereditary cancer syndromes infer high cancer risks and require intensive cancer surveillance, yet the prevalence and spectrum of these conditions among unselected patients with early-onset colorectal cancer (CRC) is largely undetermined. To determine the frequency and spectrum of cancer susceptibility gene mutations among patients with early-onset CRC. Overall, 450 patients diagnosed with colorectal cancer younger than 50 years were prospectively accrued from 51 hospitals into the Ohio Colorectal Cancer Prevention Initiative from January 1, 2013, to June 20, 2016. Mismatch repair (MMR) deficiency was determined by microsatellite instability and/or immunohistochemistry. Germline DNA was tested for mutations in 25 cancer susceptibility genes using next-generation sequencing. Mutation prevalence and spectrum in patients with early-onset CRC was determined. Clinical characteristics were assessed by mutation status. In total 450 patients younger than 50 years were included in the study, and 75 gene mutations were found in 72 patients (16%). Forty-eight patients (10.7%) had MMR-deficient tumors, and 40 patients (83.3%) had at least 1 gene mutation: 37 had Lynch syndrome (13, MLH1 [including one with constitutional MLH1 methylation]; 16, MSH2; 1, MSH2/monoallelic MUTYH; 2, MSH6; 5, PMS2); 1 patient had the APC c.3920T>A, p.I1307K mutation and a PMS2 variant; 9 patients (18.8%) had double somatic MMR mutations (including 2 with germline biallelic MUTYH mutations); and 1 patient had somatic MLH1 methylation. Four hundred two patients (89.3%) had MMR-proficient tumors, and 32 patients (8%) had at least 1 gene mutation: 9 had mutations in high-penetrance CRC genes (5, APC; 1, APC/PMS2; 2, biallelic MUTYH; 1, SMAD4); 13 patients had mutations in high- or moderate-penetrance genes not traditionally associated with CRC (3, ATM; 1, ATM/CHEK2; 2, BRCA1; 4, BRCA2; 1, CDKN2A; 2, PALB2); 10 patients had mutations in low-penetrance CRC genes (3, APC c.3920T>A, p.I1307K; 7

  17. TBK1 Mutation Spectrum in an Extended European Patient Cohort with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    van der Zee, Julie; Gijselinck, Ilse; Van Mossevelde, Sara; Perrone, Federica; Dillen, Lubina; Heeman, Bavo; Bäumer, Veerle; Engelborghs, Sebastiaan; De Bleecker, Jan; Baets, Jonathan; Gelpi, Ellen; Rojas-García, Ricardo; Clarimón, Jordi; Lleó, Alberto; Diehl-Schmid, Janine; Alexopoulos, Panagiotis; Perneczky, Robert; Synofzik, Matthis; Just, Jennifer; Schöls, Ludger; Graff, Caroline; Thonberg, Håkan; Borroni, Barbara; Padovani, Alessandro; Jordanova, Albena; Sarafov, Stayko; Tournev, Ivailo; de Mendonça, Alexandre; Miltenberger-Miltényi, Gabriel; Simões do Couto, Frederico; Ramirez, Alfredo; Jessen, Frank; Heneka, Michael T; Gómez-Tortosa, Estrella; Danek, Adrian; Cras, Patrick; Vandenberghe, Rik; De Jonghe, Peter; De Deyn, Peter P; Sleegers, Kristel; Cruts, Marc; Van Broeckhoven, Christine; Goeman, Johan; Nuytten, Dirk; Smets, Katrien; Robberecht, Wim; Damme, Philip Van; Bleecker, Jan De; Santens, Patrick; Dermaut, Bart; Versijpt, Jan; Michotte, Alex; Ivanoiu, Adrian; Deryck, Olivier; Bergmans, Bruno; Delbeck, Jean; Bruyland, Marc; Willems, Christiana; Salmon, Eric; Pastor, Pau; Ortega-Cubero, Sara; Benussi, Luisa; Ghidoni, Roberta; Binetti, Giuliano; Hernández, Isabel; Boada, Mercè; Ruiz, Agustín; Sorbi, Sandro; Nacmias, Benedetta; Bagnoli, Silvia; Sorbi, Sandro; Sanchez-Valle, Raquel; Llado, Albert; Santana, Isabel; Rosário Almeida, Maria; Frisoni, Giovanni B; Maetzler, Walter; Matej, Radoslav; Fraidakis, Matthew J; Kovacs, Gabor G; Fabrizi, Gian Maria; Testi, Silvia

    2017-03-01

    We investigated the mutation spectrum of the TANK-Binding Kinase 1 (TBK1) gene and its associated phenotypic spectrum by exonic resequencing of TBK1 in a cohort of 2,538 patients with frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), or FTD plus ALS, ascertained within the European Early-Onset Dementia Consortium. We assessed pathogenicity of predicted protein-truncating mutations by measuring loss of RNA expression. Functional effect of in-frame amino acid deletions and missense mutations was further explored in vivo on protein level and in vitro by an NFκB-induced luciferase reporter assay and measuring phosphorylated TBK1. The protein-truncating mutations led to the loss of transcript through nonsense-mediated mRNA decay. For the in-frame amino acid deletions, we demonstrated loss of TBK1 or phosphorylated TBK1 protein. An important fraction of the missense mutations compromised NFκB activation indicating that at least some functions of TBK1 are lost. Although missense mutations were also present in controls, over three times more mutations affecting TBK1 functioning were found in the mutation fraction observed in patients only, suggesting high-risk alleles (P = 0.03). Total mutation frequency for confirmed TBK1 LoF mutations in the European cohort was 0.7%, with frequencies in the clinical subgroups of 0.4% in FTD, 1.3% in ALS, and 3.6% in FTD-ALS.

  18. A Critical Role of the PTEN/PDGF Signaling Network for the Regulation of Radiosensitivity in Adenocarcinoma of the Prostate

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Michael, E-mail: mechristense@uwalumni.com [Department of Radiation Oncology, Wayne State University School of Medicine, Barbara Ann Karmanos Cancer Center, Detroit, Michigan (United States); Najy, Abdo J. [Department of Pathology, Wayne State University School of Medicine, Barbara Ann Karmanos Cancer Center, Detroit, Michigan (United States); Snyder, Michael; Movilla, Lisa S. [Department of Radiation Oncology, Wayne State University School of Medicine, Barbara Ann Karmanos Cancer Center, Detroit, Michigan (United States); Kim, Hyeong-Reh Choi [Department of Pathology, Wayne State University School of Medicine, Barbara Ann Karmanos Cancer Center, Detroit, Michigan (United States)

    2014-01-01

    Purpose: Loss or mutation of the phosphate and tensin homologue (PTEN) is a common genetic abnormality in prostate cancer (PCa) and induces platelet-derived growth factor D (PDGF D) signaling. We examined the role of the PTEN/PDGF axis on radioresponse using a murine PTEN null prostate epithelial cell model. Methods and Materials: PTEN wild-type (PTEN{sup +/+}) and PTEN knockout (PTEN{sup −/−}) murine prostate epithelial cell lines were used to examine the relationship between the PTEN status and radiosensitivity and also to modulate the PDGF D expression levels. PTEN{sup −/−} cells were transduced with a small hairpin RNA (shRNA) lentiviral vector containing either scrambled nucleotides (SCRM) or sequences targeted to PDGF D (shPDGF D). Tumorigenesis and morphogenesis of these cell lines were evaluated in vivo via subcutaneous injection of male nude mice and in vitro using Matrigel 3-dimensional (3D) culture. Effects of irradiation on clonogenic survival, cell migration, and invasion were measured with respect to the PTEN status and the PDGF D expression level. In addition, apoptosis and cell cycle redistribution were examined as potential mechanisms for differences seen. Results: PTEN{sup −/−} cells were highly tumorigenic in animals and effectively formed foci in 3D culture. Importantly, loss of PDGF D in these cell lines drastically diminished these phenotypes. Furthermore, PTEN{sup −/−} cells demonstrated increased clonogenic survival in vitro compared to PTEN{sup +/+}, and attenuation of PDGF D significantly reversed this radioresistant phenotype. PTEN{sup −/−} cells displayed greater migratory and invasive potential at baseline as well as after irradiation. Both the basal and radiation-induced migratory and invasive phenotypes in PTEN{sup −/−} cells required PDGF D expression. Interestingly, these differences were independent of apoptosis and cell cycle redistribution, as they showed no significant difference. Conclusions: We propose

  19. Large-scale inference of the point mutational spectrum in human segmental duplications

    Directory of Open Access Journals (Sweden)

    Rognes Torbjørn

    2009-01-01

    Full Text Available Abstract Background Recent segmental duplications are relatively large (≥ 1 kb genomic regions of high sequence identity (≥ 90%. They cover approximately 4–5% of the human genome and play important roles in gene evolution and genomic disease. The DNA sequence differences between copies of a segmental duplication represent the result of various mutational events over time, since any two duplication copies originated from the same ancestral DNA sequence. Based on this fact, we have developed a computational scheme for inference of point mutational events in human segmental duplications, which we collectively term duplication-inferred mutations (DIMs. We have characterized these nucleotide substitutions by comparing them with high-quality SNPs from dbSNP, both in terms of sequence context and frequency of substitution types. Results Overall, DIMs show a lower ratio of transitions relative to transversions than SNPs, although this ratio approaches that of SNPs when considering DIMs within most recent duplications. Our findings indicate that DIMs and SNPs in general are caused by similar mutational mechanisms, with some deviances at the CpG dinucleotide. Furthermore, we discover a large number of reference SNPs that coincide with computationally inferred DIMs. The latter reflects how sequence variation in duplicated sequences can be misinterpreted as ordinary allelic variation. Conclusion In summary, we show how DNA sequence analysis of segmental duplications can provide a genome-wide mutational spectrum that mirrors recent genome evolution. The inferred set of nucleotide substitutions represents a valuable complement to SNPs for the analysis of genetic variation and point mutagenesis.

  20. A pathway-centric survey of somatic mutations in Chinese patients with colorectal carcinomas.

    Directory of Open Access Journals (Sweden)

    Chao Ling

    Full Text Available Previous genetic studies on colorectal carcinomas (CRC have identified multiple somatic mutations in four candidate pathways (TGF-β, Wnt, P53 and RTK-RAS pathways on populations of European ancestry. However, it is under-studied whether other populations harbor different sets of hot-spot somatic mutations in these pathways and other oncogenes. In this study, to evaluate the mutational spectrum of novel somatic mutations, we assessed 41 pairs of tumor-stroma tissues from Chinese patients with CRC, including 29 colon carcinomas and 12 rectal carcinomas. We designed Illumina Custom Amplicon panel to target 43 genes, including genes in the four candidate pathways, as well as several known oncogenes for other cancers. Candidate mutations were validated by Sanger sequencing, and we further used SIFT and PolyPhen-2 to assess potentially functional mutations. We discovered 3 new somatic mutations in gene APC, TCF7L2, and PIK3CA that had never been reported in the COSMIC or NCI-60 databases. Additionally, we confirmed 6 known somatic mutations in gene SMAD4, APC, FBXW7, BRAF and PTEN in Chinese CRC patients. While most were previously reported in CRC, one mutation in PTEN was reported only in malignant endometrium cancer. Our study confirmed the existence of known somatic mutations in the four candidate pathways for CRC in Chinese patients. We also discovered a number of novel somatic mutations in these pathways, which may have implications for the pathogenesis of CRC.

  1. Spectrum of SMPD1 mutations in Asian-Indian patients with acid sphingomyelinase (ASM)-deficient Niemann-Pick disease.

    Science.gov (United States)

    Ranganath, Prajnya; Matta, Divya; Bhavani, Gandham SriLakshmi; Wangnekar, Savita; Jain, Jamal Mohammed Nurul; Verma, Ishwar C; Kabra, Madhulika; Puri, Ratna Dua; Danda, Sumita; Gupta, Neerja; Girisha, Katta M; Sankar, Vaikom H; Patil, Siddaramappa J; Ramadevi, Akella Radha; Bhat, Meenakshi; Gowrishankar, Kalpana; Mandal, Kausik; Aggarwal, Shagun; Tamhankar, Parag Mohan; Tilak, Preetha; Phadke, Shubha R; Dalal, Ashwin

    2016-10-01

    Acid sphingomyelinase (ASM)-deficient Niemann-Pick disease is an autosomal recessive lysosomal storage disorder caused by biallelic mutations in the SMPD1 gene. To date, around 185 mutations have been reported in patients with ASM-deficient NPD world-wide, but the mutation spectrum of this disease in India has not yet been reported. The aim of this study was to ascertain the mutation profile in Indian patients with ASM-deficient NPD. We sequenced SMPD1 in 60 unrelated families affected with ASM-deficient NPD. A total of 45 distinct pathogenic sequence variants were found, of which 14 were known and 31 were novel. The variants included 30 missense, 4 nonsense, and 9 frameshift (7 single base deletions and 2 single base insertions) mutations, 1 indel, and 1 intronic duplication. The pathogenicity of the novel mutations was inferred with the help of the mutation prediction software MutationTaster, SIFT, Polyphen-2, PROVEAN, and HANSA. The effects of the identified sequence variants on the protein structure were studied using the structure modeled with the help of the SWISS-MODEL workspace program. The p. (Arg542*) (c.1624C>T) mutation was the most commonly identified mutation, found in 22% (26 out of 120) of the alleles tested, but haplotype analysis for this mutation did not identify a founder effect for the Indian population. To the best of our knowledge, this is the largest study on mutation analysis of patients with ASM-deficient Niemann-Pick disease reported in literature and also the first study on the SMPD1 gene mutation spectrum in India. © 2016 Wiley Periodicals, Inc.

  2. Regenerant arabidopsis lineages display a distinct genome-wide spectrum of mutations conferring variant phenotypes

    KAUST Repository

    Jiang, Caifu

    2011-07-28

    Multicellular organisms can be regenerated from totipotent differentiated somatic cell or nuclear founders [1-3]. Organisms regenerated from clonally related isogenic founders might a priori have been expected to be phenotypically invariant. However, clonal regenerant animals display variant phenotypes caused by defective epigenetic reprogramming of gene expression [2], and clonal regenerant plants exhibit poorly understood heritable phenotypic ("somaclonal") variation [4-7]. Here we show that somaclonal variation in regenerant Arabidopsis lineages is associated with genome-wide elevation in DNA sequence mutation rate. We also show that regenerant mutations comprise a distinctive molecular spectrum of base substitutions, insertions, and deletions that probably results from decreased DNA repair fidelity. Finally, we show that while regenerant base substitutions are a likely major genetic cause of the somaclonal variation of regenerant Arabidopsis lineages, transposon movement is unlikely to contribute substantially to that variation. We conclude that the phenotypic variation of regenerant plants, unlike that of regenerant animals, is substantially due to DNA sequence mutation. 2011 Elsevier Ltd. All rights reserved.

  3. Whole genome sequencing reveals a de novo SHANK3 mutation in familial autism spectrum disorder.

    Directory of Open Access Journals (Sweden)

    Sergio I Nemirovsky

    Full Text Available Clinical genomics promise to be especially suitable for the study of etiologically heterogeneous conditions such as Autism Spectrum Disorder (ASD. Here we present three siblings with ASD where we evaluated the usefulness of Whole Genome Sequencing (WGS for the diagnostic approach to ASD.We identified a family segregating ASD in three siblings with an unidentified cause. We performed WGS in the three probands and used a state-of-the-art comprehensive bioinformatic analysis pipeline and prioritized the identified variants located in genes likely to be related to ASD. We validated the finding by Sanger sequencing in the probands and their parents.Three male siblings presented a syndrome characterized by severe intellectual disability, absence of language, autism spectrum symptoms and epilepsy with negative family history for mental retardation, language disorders, ASD or other psychiatric disorders. We found germline mosaicism for a heterozygous deletion of a cytosine in the exon 21 of the SHANK3 gene, resulting in a missense sequence of 5 codons followed by a premature stop codon (NM_033517:c.3259_3259delC, p.Ser1088Profs*6.We reported an infrequent form of familial ASD where WGS proved useful in the clinic. We identified a mutation in SHANK3 that underscores its relevance in Autism Spectrum Disorder.

  4. PTEN sequence analysis in endometrial hyperplasia and endometrial carcinoma in Slovak women.

    Science.gov (United States)

    Gbelcová, H; Bakeš, P; Priščáková, P; Šišovský, V; Hojsíková, I; Straka, Ľ; Konečný, M; Markus, J; D'Acunto, C W; Ruml, T; Böhmer, D; Danihel, Ľ; Repiská, V

    2015-01-01

    Phosphatase and tensin homolog (PTEN) is a protein that acts as a tumor suppressor by dephosphorylating the lipid second messenger phosphatidylinositol 3,4,5-trisphosphate. Loss of PTEN function has been implicated in the pathogenesis of a number of different tumors, particularly endometrial carcinoma (ECa). ECa is the most common neoplasia of the female genital tract. Our study evaluates an association between the morphological appearance of endometrial hyperplasia and endometrial carcinoma and the degree of PTEN alterations. A total of 45 endometrial biopsies from Slovak women were included in present study. Formalin-fixed and paraffin-embedded tissue samples with simple hyperplasia (3), complex hyperplasia (5), atypical complex hyperplasia (7), endometrioid carcinomas G1 (20) and G3 (5), and serous carcinoma (5) were evaluated for the presence of mutations in coding regions of PTEN gene, the most frequently mutated tumor suppressor gene in endometrial carcinoma. 75% of the detected mutations were clustered in exons 5 and 8. Out of the 39 mutations detected in 24 cases, 20 were frameshifts and 19 were nonsense, missense, or silent mutations. Some specimens harboured more than one mutation. The results of current study on Slovak women were compared to a previous study performed on Polish population. The two sets of results were similar.

  5. PTEN Sequence Analysis in Endometrial Hyperplasia and Endometrial Carcinoma in Slovak Women

    Directory of Open Access Journals (Sweden)

    H. Gbelcová

    2015-01-01

    Full Text Available Phosphatase and tensin homolog (PTEN is a protein that acts as a tumor suppressor by dephosphorylating the lipid second messenger phosphatidylinositol 3,4,5-trisphosphate. Loss of PTEN function has been implicated in the pathogenesis of a number of different tumors, particularly endometrial carcinoma (ECa. ECa is the most common neoplasia of the female genital tract. Our study evaluates an association between the morphological appearance of endometrial hyperplasia and endometrial carcinoma and the degree of PTEN alterations. A total of 45 endometrial biopsies from Slovak women were included in present study. Formalin-fixed and paraffin-embedded tissue samples with simple hyperplasia (3, complex hyperplasia (5, atypical complex hyperplasia (7, endometrioid carcinomas G1 (20 and G3 (5, and serous carcinoma (5 were evaluated for the presence of mutations in coding regions of PTEN gene, the most frequently mutated tumor suppressor gene in endometrial carcinoma. 75% of the detected mutations were clustered in exons 5 and 8. Out of the 39 mutations detected in 24 cases, 20 were frameshifts and 19 were nonsense, missense, or silent mutations. Some specimens harboured more than one mutation. The results of current study on Slovak women were compared to a previous study performed on Polish population. The two sets of results were similar.

  6. Mutanalyst, an online tool for assessing the mutational spectrum of epPCR libraries with poor sampling

    DEFF Research Database (Denmark)

    Ferla, Matteo

    2016-01-01

    Background: Assessing library diversity is an important control step in a directed evolution experiment. To do this, a limited amount of colonies from a test library are sequenced and tested. In the case of an error-prone PCR library, the spectrum of the identified mutations - the proportions...... of mutations of a specific nucleobase to another-is calculated enabling the user to make more informed predictions on library diversity and coverage. However, the calculations of the mutational spectrum are severely affected by the limited sample sizes.Results: Here an online program, called Mutanalyst...... of mutations per sequence it does so by fitting to a Poisson distribution, which is more robust than calculating the average in light of the small sampling size.Conclusion: As a result of the added measures to keep into account of small sample size the user can better assess whether the library is satisfactory...

  7. A functional network of the tumor suppressors APC, hDlg, and PTEN, that relies on recognition of specific PDZ-domains.

    Science.gov (United States)

    Sotelo, Natalia S; Valiente, Miguel; Gil, Anabel; Pulido, Rafael

    2012-08-01

    APC and PTEN are tumor suppressor proteins that bind through their C-termini to the PDZ domain containing-hDlg scaffolding protein. We have found that co-expression of PTEN and hDlg enhanced the negative regulation of the PI3K/Akt pathway by PTEN, indicating the physiologic importance of these interactions. APC and PTEN share other PDZ domain containing-interacting partners, including the MAGI scaffolding proteins and the MAST family of protein kinases. Mutational analysis revealed that the C-terminal PDZ-binding motifs from APC and PTEN were differentially recognized by distinct PDZ domains. APC bound to the three PDZ domains from hDlg, whereas PTEN mainly bound to PDZ-2/hDlg. This indicates the existence of overlapping, but distinct PDZ-domain recognition patterns by APC and PTEN. Furthermore, a ternary complex formed by APC, PTEN, and hDlg was detected, suggesting that hDlg may serve as a platform to bring in proximity APC and PTEN tumor suppressor activities. In line with this, tumor-related mutations targeting the PDZ-2/hDlg domain diminished its interaction with APC and PTEN. Our results expand the PDZ-domain counterparts for the tumor suppressor APC, show that APC and PTEN share PDZ-domain partners but have individual molecular determinants for specific recognition of PDZ domains, and suggest the participation of the tumor suppressors APC, PTEN, and hDlg in PDZ-domain interaction networks which may be relevant in oncogenesis.

  8. Interaction of E-cadherin and PTEN regulates morphogenesis and growth arrest in human mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Marcia V.; Fata, Jimmie E.; Martin, Katherine J.; Yaswen, Paul; Bissell, Mina J.

    2009-06-03

    PTEN is a dual function phosphatase with tumor suppressor function compromised in a wide spectrum of cancers. Because tissue polarity and architecture are crucial modulators of normal and malignant behavior, we postulated that PTEN may play a role in maintenance of tissue integrity. We used two non-malignant human mammary epithelial cell lines (HMECs) that form polarized, growth-arrested structures (acini) when cultured in 3-dimensional laminin-rich extracellular matrix gels (3D lrECM). As acini begin to form, PTEN accumulates in both the cytoplasm, and at cell-cell contacts where it colocalizes with E-cadherin/{beta}-catenin complex. Reduction of PTEN levels by shRNA in lrECM prevents formation of organized breast acini and disrupts growth arrest. Importantly, disruption of acinar polarity and cell-cell contact by E-cadherin function-blocking antibodies reduces endogenous PTEN protein levels and inhibits its accumulation at cell-cell contacts. Conversely, in SKBR3 breast cancer cells lacking endogenous E-cadherin expression, exogenous introduction of E-cadherin gene causes induction of PTEN expression and its accumulation at sites of cell interactions. These studies provide evidence that E-cadherin regulates both the PTEN protein levels and its recruitment to cell-cell junctions in 3D lrECM indicating a dynamic reciprocity between architectural integrity and the levels and localization of PTEN. This interaction thus appears to be a critical integrator of proliferative and morphogenetic signaling in breast epithelial cells.

  9. Mechanistic Rationale to Target PTEN-Deficient Tumor Cells with Inhibitors of the DNA Damage Response Kinase ATM.

    Science.gov (United States)

    McCabe, Nuala; Hanna, Conor; Walker, Steven M; Gonda, David; Li, Jie; Wikstrom, Katarina; Savage, Kienan I; Butterworth, Karl T; Chen, Clark; Harkin, D Paul; Prise, Kevin M; Kennedy, Richard D

    2015-06-01

    Ataxia telangiectasia mutated (ATM) is an important signaling molecule in the DNA damage response (DDR). ATM loss of function can produce a synthetic lethal phenotype in combination with tumor-associated mutations in FA/BRCA pathway components. In this study, we took an siRNA screening strategy to identify other tumor suppressors that, when inhibited, similarly sensitized cells to ATM inhibition. In this manner, we determined that PTEN and ATM were synthetically lethal when jointly inhibited. PTEN-deficient cells exhibited elevated levels of reactive oxygen species, increased endogenous DNA damage, and constitutive ATM activation. ATM inhibition caused catastrophic DNA damage, mitotic cell cycle arrest, and apoptosis specifically in PTEN-deficient cells in comparison with wild-type cells. Antioxidants abrogated the increase in DNA damage and ATM activation in PTEN-deficient cells, suggesting a requirement for oxidative DNA damage in the mechanism of cell death. Lastly, the ATM inhibitor KU-60019 was specifically toxic to PTEN mutant cancer cells in tumor xenografts and reversible by reintroduction of wild-type PTEN. Together, our results offer a mechanistic rationale for clinical evaluation of ATM inhibitors in PTEN-deficient tumors.

  10. A de novo dominant mutation in ACTA1 causing congenital nemaline myopathy associated with a milder phenotype: expanding the spectrum of dominant ACTA1 mutations.

    Science.gov (United States)

    Levesque, L; Del Bigio, M R; Krawitz, S; Mhanni, A A

    2013-03-01

    We describe the presentation and six-year follow up of a child with nemaline myopathy due to a de novo mutation in the skeletal muscle α-actin gene (ACTA1) characterized by dramatic improvement during the early childhood years. The presentation in this female patient was infantile-onset weakness in the facial, bulbar, respiratory and neck flexor muscles. A six-year follow-up revealed continued progressive improvement in her muscle strength. Based upon the histopathologic and ultrastructural features of nemaline rod disease, ACTA1 was sequenced. This revealed a mutation in exon 4 of ACTA1 (c.557A>G). Our report further expands the phenotypic spectrum associated with ACTA1 mutations. Although it is difficult to infer any genotype-phenotype correlation, this report stimulates the discussion regarding the pathophysiologic mechanism of the clinical improvement seen in some patients with ACTA1 mutations. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. A novel mutation in CDMP1 causes brachydactyly type C with "angel-shaped phalanx". A genotype-phenotype correlation in the mutational spectrum.

    Science.gov (United States)

    Gutiérrez-Amavizca, Bianca Ethel; Brambila-Tapia, Aniel Jessica Leticia; Juárez-Vázquez, Clara Ibet; Holder-Espinasse, Muriel; Manouvrier-Hanu, Sylvie; Escande, Fabienne; Barros-Núñez, Patricio

    2012-11-01

    Brachydactyly type C (BDC), a well-recognized autosomal dominant hand malformation, displays brachymesophalangy of the second, third, and fifth fingers, a short first metacarpal, hyperphalangy, and ulnar deviation of the index finger. An "angel-shaped phalanx" is a distinctive radiological sign that can be found in BDC and other skeletal dysplasias, such as angel-shaped phalango-epiphyseal dysplasia (ASPED), an autosomal dominant skeletal abnormality characterized by a typical angel-shaped phalanx, brachydactyly, specific radiological findings, abnormal dentition, hip dysplasia, and delayed bone age. BDC and ASPED result from mutations in the CDMP1 gene. We report here a Mexican patient with BDC and clinical features of ASPED who carries a novel mutation in CDMP1, confirming that BDC and ASPED are part of the CDMP1 mutational spectrum. Based on the large number of clinical features in common, we suggest that both anomalies are part of the same clinical spectrum. Supported by an extensive review of the literature, a possible genotype-phenotype correlation in the mutational spectrum of this gene is proposed.

  12. De novo mutations in beta-catenin (CTNNB1) appear to be a frequent cause of intellectual disability: expanding the mutational and clinical spectrum.

    Science.gov (United States)

    Kuechler, Alma; Willemsen, Marjolein H; Albrecht, Beate; Bacino, Carlos A; Bartholomew, Dennis W; van Bokhoven, Hans; van den Boogaard, Marie Jose H; Bramswig, Nuria; Büttner, Christian; Cremer, Kirsten; Czeschik, Johanna Christina; Engels, Hartmut; van Gassen, Koen; Graf, Elisabeth; van Haelst, Mieke; He, Weimin; Hogue, Jacob S; Kempers, Marlies; Koolen, David; Monroe, Glen; de Munnik, Sonja; Pastore, Matthew; Reis, André; Reuter, Miriam S; Tegay, David H; Veltman, Joris; Visser, Gepke; van Hasselt, Peter; Smeets, Eric E J; Vissers, Lisenka; Wieland, Thomas; Wissink, Willemijn; Yntema, Helger; Zink, Alexander Michael; Strom, Tim M; Lüdecke, Hermann-Josef; Kleefstra, Tjitske; Wieczorek, Dagmar

    2015-01-01

    Recently, de novo heterozygous loss-of-function mutations in beta-catenin (CTNNB1) were described for the first time in four individuals with intellectual disability (ID), microcephaly, limited speech and (progressive) spasticity, and functional consequences of CTNNB1 deficiency were characterized in a mouse model. Beta-catenin is a key downstream component of the canonical Wnt signaling pathway. Somatic gain-of-function mutations have already been found in various tumor types, whereas germline loss-of-function mutations in animal models have been shown to influence neuronal development and maturation. We report on 16 additional individuals from 15 families in whom we newly identified de novo loss-of-function CTNNB1 mutations (six nonsense, five frameshift, one missense, two splice mutation, and one whole gene deletion). All patients have ID, motor delay and speech impairment (both mostly severe) and abnormal muscle tone (truncal hypotonia and distal hypertonia/spasticity). The craniofacial phenotype comprised microcephaly (typically -2 to -4 SD) in 12 of 16 and some overlapping facial features in all individuals (broad nasal tip, small alae nasi, long and/or flat philtrum, thin upper lip vermillion). With this detailed phenotypic characterization of 16 additional individuals, we expand and further establish the clinical and mutational spectrum of inactivating CTNNB1 mutations and thereby clinically delineate this new CTNNB1 haploinsufficiency syndrome.

  13. PPARγ, PTEN, and the Fight against Cancer

    OpenAIRE

    Teresi, Rosemary E.; Kristin A. Waite

    2008-01-01

    Peroxisome proliferator-activated receptor gamma (PPAR ) is a ligand-activated transcription factor, which belongs to the family of nuclear hormone receptors. Recent in vitro studies have shown that PPAR can regulate the transcription of phosphatase and tensin homolog on chromosome ten (PTEN), a known tumor suppressor. PTEN is a susceptibility gene for a number of disorders, including breast and thyroid cancer. Activation of PPAR through agonists increases functional PTEN protein levels...

  14. Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: a gradient of severity in cognitive impairments.

    Science.gov (United States)

    Leblond, Claire S; Nava, Caroline; Polge, Anne; Gauthier, Julie; Huguet, Guillaume; Lumbroso, Serge; Giuliano, Fabienne; Stordeur, Coline; Depienne, Christel; Mouzat, Kevin; Pinto, Dalila; Howe, Jennifer; Lemière, Nathalie; Durand, Christelle M; Guibert, Jessica; Ey, Elodie; Toro, Roberto; Peyre, Hugo; Mathieu, Alexandre; Amsellem, Frédérique; Rastam, Maria; Gillberg, I Carina; Rappold, Gudrun A; Holt, Richard; Monaco, Anthony P; Maestrini, Elena; Galan, Pilar; Heron, Delphine; Jacquette, Aurélia; Afenjar, Alexandra; Rastetter, Agnès; Brice, Alexis; Devillard, Françoise; Assouline, Brigitte; Laffargue, Fanny; Lespinasse, James; Chiesa, Jean; Rivier, François; Bonneau, Dominique; Regnault, Beatrice; Zelenika, Diana; Delepine, Marc; Lathrop, Mark; Sanlaville, Damien; Schluth-Bolard, Caroline; Edery, Patrick; Perrin, Laurence; Tabet, Anne Claude; Schmeisser, Michael J; Boeckers, Tobias M; Coleman, Mary; Sato, Daisuke; Szatmari, Peter; Scherer, Stephen W; Rouleau, Guy A; Betancur, Catalina; Leboyer, Marion; Gillberg, Christopher; Delorme, Richard; Bourgeron, Thomas

    2014-09-01

    SHANK genes code for scaffold proteins located at the post-synaptic density of glutamatergic synapses. In neurons, SHANK2 and SHANK3 have a positive effect on the induction and maturation of dendritic spines, whereas SHANK1 induces the enlargement of spine heads. Mutations in SHANK genes have been associated with autism spectrum disorders (ASD), but their prevalence and clinical relevance remain to be determined. Here, we performed a new screen and a meta-analysis of SHANK copy-number and coding-sequence variants in ASD. Copy-number variants were analyzed in 5,657 patients and 19,163 controls, coding-sequence variants were ascertained in 760 to 2,147 patients and 492 to 1,090 controls (depending on the gene), and, individuals carrying de novo or truncating SHANK mutations underwent an extensive clinical investigation. Copy-number variants and truncating mutations in SHANK genes were present in ∼1% of patients with ASD: mutations in SHANK1 were rare (0.04%) and present in males with normal IQ and autism; mutations in SHANK2 were present in 0.17% of patients with ASD and mild intellectual disability; mutations in SHANK3 were present in 0.69% of patients with ASD and up to 2.12% of the cases with moderate to profound intellectual disability. In summary, mutations of the SHANK genes were detected in the whole spectrum of autism with a gradient of severity in cognitive impairment. Given the rare frequency of SHANK1 and SHANK2 deleterious mutations, the clinical relevance of these genes remains to be ascertained. In contrast, the frequency and the penetrance of SHANK3 mutations in individuals with ASD and intellectual disability-more than 1 in 50-warrant its consideration for mutation screening in clinical practice.

  15. Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: a gradient of severity in cognitive impairments.

    Directory of Open Access Journals (Sweden)

    Claire S Leblond

    2014-09-01

    Full Text Available SHANK genes code for scaffold proteins located at the post-synaptic density of glutamatergic synapses. In neurons, SHANK2 and SHANK3 have a positive effect on the induction and maturation of dendritic spines, whereas SHANK1 induces the enlargement of spine heads. Mutations in SHANK genes have been associated with autism spectrum disorders (ASD, but their prevalence and clinical relevance remain to be determined. Here, we performed a new screen and a meta-analysis of SHANK copy-number and coding-sequence variants in ASD. Copy-number variants were analyzed in 5,657 patients and 19,163 controls, coding-sequence variants were ascertained in 760 to 2,147 patients and 492 to 1,090 controls (depending on the gene, and, individuals carrying de novo or truncating SHANK mutations underwent an extensive clinical investigation. Copy-number variants and truncating mutations in SHANK genes were present in ∼1% of patients with ASD: mutations in SHANK1 were rare (0.04% and present in males with normal IQ and autism; mutations in SHANK2 were present in 0.17% of patients with ASD and mild intellectual disability; mutations in SHANK3 were present in 0.69% of patients with ASD and up to 2.12% of the cases with moderate to profound intellectual disability. In summary, mutations of the SHANK genes were detected in the whole spectrum of autism with a gradient of severity in cognitive impairment. Given the rare frequency of SHANK1 and SHANK2 deleterious mutations, the clinical relevance of these genes remains to be ascertained. In contrast, the frequency and the penetrance of SHANK3 mutations in individuals with ASD and intellectual disability-more than 1 in 50-warrant its consideration for mutation screening in clinical practice.

  16. PTEN enhances G2/M arrest in etoposide-treated MCF‑7 cells through activation of the ATM pathway.

    Science.gov (United States)

    Zhang, Ruopeng; Zhu, Li; Zhang, Lirong; Xu, Anli; Li, Zhengwei; Xu, Yijuan; He, Pei; Wu, Maoqing; Wei, Fengxiang; Wang, Chenhong

    2016-05-01

    As an effective tumor suppressor, phosphatase and tensin homolog (PTEN) has attracted the increased attention of scientists. Recent studies have shown that PTEN plays unique roles in the DNA damage response (DDR) and can interact with the Chk1 pathway. However, little is known about how PTEN contributes to DDR through the ATM-Chk2 pathway. It is well-known that etoposide induces G2/M arrest in a variety of cell lines, including MCF-7 cells. The DNA damage-induced G2/M arrest results from the activation of protein kinase ataxia telangiectasia mutated (ATM), followed by the activation of Chk2 that subsequently inactivates CDC25C, resulting in G2/M arrest. In the present study, we assessed the contribution of PTEN to the etoposide-induced G2/M cell cycle arrest. PTEN was knocked down in MCF-7 cells by specific shRNA, and the effects of PTEN on the ATM-Chk2 pathway were investigated through various approaches. The results showed that knockdown of PTEN strongly antagonized ATM activation in response to etoposide treatment, and thereby reduced the phosphorylation level of ATM substrates, including H2AX, P53 and Chk2. Furthermore, depletion of PTEN reduced the etoposide-induced phosphorylation of CDC25C and strikingly compromised etoposide-induced G2/M arrest in the MCF-7 cells. Altogether, we demonstrated that PTEN plays a unique role in etoposide-induced G2/M arrest by facilitating the activation of the ATM pathway, and PTEN was required for the proper activation of checkpoints in response to DNA damage in MCF-7 cells.

  17. A recurrent germline BAP1 mutation and extension of the BAP1 tumor predisposition spectrum to include basal cell carcinoma

    DEFF Research Database (Denmark)

    Wadt, K A W; Aoude, L G; Johansson, P;

    2015-01-01

    We report four previously undescribed families with germline BAP1 mutations and expand the clinical phenotype of this tumor syndrome. The tumor spectrum in these families is predominantly uveal malignant melanoma (UMM), cutaneous malignant melanoma (CMM) and mesothelioma, as previously reported f...

  18. Novel CFI mutation in a patient with leukocytoclastic vasculitis may redefine the clinical spectrum of Complement Factor I deficiency

    DEFF Research Database (Denmark)

    Bay, Jakob Thaning; Katzenstein, Terese Lea; Kofoed, Kristian

    2015-01-01

    presentation of Factor I deficiency varies and includes severe recurrent bacterial infections, glomerulonephritis and autoimmune diseases. The patient, a 28-years old woman with consanguineous parents, presented with recurrent leukocytoclastic vasculitis in the lower extremities with no associated systemic...... mutations vary among patients sole association with leukocytoclastic vasculitis redefines the clinical spectrum of complete Factor I deficiency....

  19. The mutational spectrum in a cohort of Charcot-Marie-Tooth disease type 2 among the Han Chinese in Taiwan.

    Directory of Open Access Journals (Sweden)

    Kon-Ping Lin

    Full Text Available BACKGROUND: Charcot-Marie-Tooth disease type 2 (CMT2 is a clinically and genetically heterogeneous group of inherited axonal neuropathies. The aim of this study was to extensively investigate the mutational spectrum of CMT2 in a cohort of patients of Han Chinese. METHODOLOGY AND PRINCIPAL FINDINGS: Genomic DNA from 36 unrelated Taiwanese CMT2 patients of Han Chinese descent was screened for mutations in the coding regions of the MFN2, RAB7, TRPV4, GARS, NEFL, HSPB1, MPZ, GDAP1, HSPB8, DNM2, AARS and YARS genes. Ten disparate mutations were identified in 14 patients (38.9% of the cohort, including p.N71Y in AARS (2.8%, p.T164A in HSPB1 (2.8%, and p.[H256R]+[R282H] in GDAP1 (2.8% in one patient each, three NEFL mutations in six patients (16.7% and four MFN2 mutations in five patients (13.9%. The following six mutations were novel: the individual AARS, HSPB1 and GDAP1 mutations and c.475-1G>T, p.L233V and p.E744M mutations in MFN2. An in vitro splicing assay revealed that the MFN2 c.475-1G>T mutation causes a 4 amino acid deletion (p.T159_Q162del. Despite an extensive survey, the genetic causes of CMT2 remained elusive in the remaining 22 CMT2 patients (61.1%. CONCLUSIONS AND SIGNIFICANCE: This study illustrates the spectrum of CMT2 mutations in a Taiwanese CMT2 cohort and expands the number of CMT2-associated mutations. The relevance of the AARS and HSPB1 mutations in the pathogenesis of CMT2 is further highlighted. Moreover, the frequency of the NEFL mutations in this study cohort was unexpectedly high. Genetic testing for NEFL and MFN2 mutations should, therefore, be the first step in the molecular diagnosis of CMT2 in ethnic Chinese.

  20. Tumor Suppressor Pten Inhibits Nuclear Accumulation of β-Catenin and T Cell/Lymphoid Enhancer Factor 1–Mediated Transcriptional Activation

    Science.gov (United States)

    Persad, Sujata; A.Troussard, Armelle; McPhee, Timothy R.; Mulholland, David J.; Dedhar, Shoukat

    2001-01-01

    β-Catenin is a protein that plays a role in intercellular adhesion as well as in the regulation of gene expression. The latter role of β-catenin is associated with its oncogenic properties due to the loss of expression or inactivation of the tumor suppressor adenomatous polyposis coli (APC) or mutations in β-catenin itself. We now demonstrate that another tumor suppressor, PTEN, is also involved in the regulation of nuclear β-catenin accumulation and T cell factor (TCF) transcriptional activation in an APC-independent manner. We show that nuclear β-catenin expression is constitutively elevated in PTEN null cells and this elevated expression is reduced upon reexpression of PTEN. TCF promoter/luciferase reporter assays and gel mobility shift analysis demonstrate that PTEN also suppresses TCF transcriptional activity. Furthermore, the constitutively elevated expression of cyclin D1, a β-catenin/TCF–regulated gene, is also suppressed upon reexpression of PTEN. Mechanistically, PTEN increases the phosphorylation of β-catenin and enhances its rate of degradation. We define a pathway that involves mainly integrin-linked kinase and glycogen synthase kinase 3 in the PTEN-dependent regulation of β-catenin stability, nuclear β-catenin expression, and transcriptional activity. Our data indicate that β-catenin/TCF–mediated gene transcription is regulated by PTEN, and this may represent a key mechanism by which PTEN suppresses tumor progression. PMID:11402061

  1. Cornelia de Lange individuals with new and recurrent SMC1A mutations enhance delineation of mutation repertoire and phenotypic spectrum.

    Science.gov (United States)

    Gervasini, Cristina; Russo, Silvia; Cereda, Anna; Parenti, Ilaria; Masciadri, Maura; Azzollini, Jacopo; Melis, Daniela; Aravena, Teresa; Doray, Bérénice; Ferrarini, Alessandra; Garavelli, Livia; Selicorni, Angelo; Larizza, Lidia

    2013-11-01

    We report on the clinical and molecular characterization of eight patients, one male and seven females, with clinical diagnosis of Cornelia de Lange syndrome (CdLS), who were found to carry distinct mutations of the SMC1A gene. Five of the eight mutations are novel, with two involving amino acid residues previously described as altered in a different way. The other three have been reported each in a single case. Comparison of pairs of individuals with the same mutation indicates only partial overlap of their clinical phenotypes. The following novel missense mutations, all affecting highly conserved amino acid residues, were found: p.R398G in the N-terminal coiled-coil domain, p.V651M in the C-terminal coiled-coil/hinge junction, p.R693G in the C-terminal coiled-coil, and p.N1166T and p.L1189F in the C-terminal ABC cassette. The latter is localized in the H-loop, and represents the first mutation involving a functional motif of SMC1A protein. The effect of the mutations on SMC1A protein function has been predicted using four bioinformatic tools. All mutations except p.V651M were scored as pathogenic by three or four of the tools. p.V651M was found in the only male individual of our cohort, who presented with the most severe phenotype. This raises the issue of gender effect when addressing mutation-phenotype correlation for genes such as SMC1A, which incompletely escapes X-inactivation. Our clinical and molecular findings expand the total number of characterized SMC1A-mutated patients (from 44 to 52) and the restricted repertoire of SMC1A mutations (from 29 to 34), contributing to the molecular and clinical signature of SMC1A-based CdLS. © 2013 Wiley Periodicals, Inc.

  2. Rare mutations of CACNB2 found in autism spectrum disease-affected families alter calcium channel function.

    Directory of Open Access Journals (Sweden)

    Alexandra F S Breitenkamp

    Full Text Available Autism Spectrum Disorders (ASD are complex neurodevelopmental diseases clinically defined by dysfunction of social interaction. Dysregulation of cellular calcium homeostasis might be involved in ASD pathogenesis, and genes coding for the L-type calcium channel subunits CaV1.2 (CACNA1C and CaVβ2 (CACNB2 were recently identified as risk loci for psychiatric diseases. Here, we present three rare missense mutations of CACNB2 (G167S, S197F, and F240L found in ASD-affected families, two of them described here for the first time (G167S and F240L. All these mutations affect highly conserved regions while being absent in a sample of ethnically matched controls. We suggest the mutations to be of physiological relevance since they modulate whole-cell Ba2+ currents through calcium channels when expressed in a recombinant system (HEK-293 cells. Two mutations displayed significantly decelerated time-dependent inactivation as well as increased sensitivity of voltage-dependent inactivation. In contrast, the third mutation (F240L showed significantly accelerated time-dependent inactivation. By altering the kinetic parameters, the mutations are reminiscent of the CACNA1C mutation causing Timothy Syndrome, a Mendelian disease presenting with ASD. In conclusion, the results of our first-time biophysical characterization of these three rare CACNB2 missense mutations identified in ASD patients support the hypothesis that calcium channel dysfunction may contribute to autism.

  3. Carpenter syndrome: extended RAB23 mutation spectrum and analysis of nonsense-mediated mRNA decay.

    Science.gov (United States)

    Jenkins, Dagan; Baynam, Gareth; De Catte, Luc; Elcioglu, Nursel; Gabbett, Michael T; Hudgins, Louanne; Hurst, Jane A; Jehee, Fernanda Sarquis; Oley, Christine; Wilkie, Andrew O M

    2011-04-01

    Carpenter syndrome, a rare autosomal recessive disorder characterized by a combination of craniosynostosis, polysyndactyly, obesity, and other congenital malformations, is caused by mutations in RAB23, encoding a member of the Rab-family of small GTPases. In 15 out of 16 families previously reported, the disease was caused by homozygosity for truncating mutations, and currently only a single missense mutation has been identified in a compound heterozygote. Here, we describe a further 8 independent families comprising 10 affected individuals with Carpenter syndrome, who were positive for mutations in RAB23. We report the first homozygous missense mutation and in-frame deletion, highlighting key residues for RAB23 function, as well as the first splice-site mutation. Multi-suture craniosynostosis and polysyndactyly have been present in all patients described to date, and abnormal external genitalia have been universal in boys. High birth weight was not evident in the current group of patients, but further evidence for laterality defects is reported. No genotype-phenotype correlations are apparent. We provide experimental evidence that transcripts encoding truncating mutations are subject to nonsense-mediated decay, and that this plays an important role in the pathogenesis of many RAB23 mutations. These observations refine the phenotypic spectrum of Carpenter syndrome and offer new insights into molecular pathogenesis.

  4. Generalized epilepsy with febrile seizures plus (GEFS+) spectrum: clinical manifestations and SCN1A mutations in Indonesian patients.

    Science.gov (United States)

    Herini, Elisabeth Siti; Gunadi; Harahap, Indra Sari Kusuma; Yusoff, Surini; Morikawa, Satoru; Patria, Suryono Yudha; Nishimura, Noriyuki; Sunartini; Sutaryo; Takada, Satoshi; Matsuo, Masafumi; Nishio, Hisahide

    2010-06-01

    Generalized epilepsy with febrile seizures plus (GEFS+) is a childhood genetic epilepsy syndrome. GEFS+ includes a wide spectrum of clinical manifestations, and SCN1A mutations have frequently been reported among the GEFS+-related gene abnormalities. In this study, to clarify the distributions of the clinical subtypes, we analyzed 34 families with GEFS+ in Indonesia using the hospital records of the patients and questionnaires for the family members. The number of patients with febrile seizures plus (FS+), FS+ and afebrile generalized/partial seizures, borderline severe myoclonic epilepsy in infancy (SMEB) and severe myoclonic epilepsy in infancy (SMEI) were 9, 11, 7, and 7, respectively. Most patients had a family history of febrile seizures. Next, we performed molecular analyses to clarify the contributions of SCN1A mutations to the development of the GEFS+ subtypes. Only 3 of 34 probands showed SCN1A mutations. These mutations were two missense mutations, p.V1612I and p.C1756G, in two patients with SMEI and SMEB, and one silent mutation, p.G1762G, in a patient with FS+ and afebrile partial seizures. In conclusion, the majority of GEFS+ patients in Indonesia were not associated with SCN1A mutations. To detect the GEFS+-causing mutations, we must search and analyze other genes in these patients. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  5. Screening of ARHSP-TCC patients expands the spectrum of SPG11 mutations and includes a large scale gene deletion.

    Science.gov (United States)

    Denora, Paola S; Schlesinger, David; Casali, Carlo; Kok, Fernando; Tessa, Alessandra; Boukhris, Amir; Azzedine, Hamid; Dotti, Maria Teresa; Bruno, Claudio; Truchetto, Jeremy; Biancheri, Roberta; Fedirko, Estelle; Di Rocco, Maja; Bueno, Clarissa; Malandrini, Alessandro; Battini, Roberta; Sickl, Elisabeth; de Leva, Maria Fulvia; Boespflug-Tanguy, Odile; Silvestri, Gabriella; Simonati, Alessandro; Said, Edith; Ferbert, Andreas; Criscuolo, Chiara; Heinimann, Karl; Modoni, Anna; Weber, Peter; Palmeri, Silvia; Plasilova, Martina; Pauri, Flavia; Cassandrini, Denise; Battisti, Carla; Pini, Antonella; Tosetti, Michela; Hauser, Erwin; Masciullo, Marcella; Di Fabio, Roberto; Piccolo, Francesca; Denis, Elodie; Cioni, Giovanni; Massa, Roberto; Della Giustina, Elvio; Calabrese, Olga; Melone, Marina A B; De Michele, Giuseppe; Federico, Antonio; Bertini, Enrico; Durr, Alexandra; Brockmann, Knut; van der Knaap, Marjo S; Zatz, Mayana; Filla, Alessandro; Brice, Alexis; Stevanin, Giovanni; Santorelli, Filippo M

    2009-03-01

    Autosomal recessive spastic paraplegia with thinning of corpus callosum (ARHSP-TCC) is a complex form of HSP initially described in Japan but subsequently reported to have a worldwide distribution with a particular high frequency in multiple families from the Mediterranean basin. We recently showed that ARHSP-TCC is commonly associated with mutations in SPG11/KIAA1840 on chromosome 15q. We have now screened a collection of new patients mainly originating from Italy and Brazil, in order to further ascertain the spectrum of mutations in SPG11, enlarge the ethnic origin of SPG11 patients, determine the relative frequency at the level of single Countries (i.e., Italy), and establish whether there is one or more common mutation. In 25 index cases we identified 32 mutations; 22 are novel, including 9 nonsense, 3 small deletions, 4 insertions, 1 in/del, 1 small duplication, 1 missense, 2 splice-site, and for the first time a large genomic rearrangement. This brings the total number of SPG11 mutated patients in the SPATAX collection to 111 cases in 44 families and in 17 isolated cases, from 16 Countries, all assessed using homogeneous clinical criteria. While expanding the spectrum of mutations in SPG11, this larger series also corroborated the notion that even within apparently homogeneous population a molecular diagnosis cannot be achieved without full gene sequencing.

  6. Clinical features and MUT gene mutation spectrum in Chinese patients with isolated methylmalonic acidemia: identification of ten novel allelic variants.

    Science.gov (United States)

    Han, Lian-Shu; Huang, Zhuo; Han, Feng; Ye, Jun; Qiu, Wen-Juan; Zhang, Hui-Wen; Wang, Yu; Gong, Zhu-Wen; Gu, Xue-Fan

    2015-11-01

    This study aims to study MUT gene mutation spectrum in Chinese patients with isolated methylmalonic academia (MMA) and their clinical features for the potential genotype-phenotype correlation. Forty-three patients were diagnosed with isolated MMA by elevated blood propionylcarnitine, propionylcarnitine to acetylcarnitine ratio, and urine methylmalonate without hyperhomocysteinemia. The MUT gene was amplified by polymerase chain reaction and directly sequenced. Those patients with at least one variant allele were included. The novel missense mutations were assessed by bioinformatic analysis and screened against alleles sequenced from 50 control participants. Among the 43 patients, 38 had typical clinical presentations, and the majority (30/38) experienced earlyonset MMA. Eight patients died and seven were lost to follow-up. Twenty patients had poor outcomes and eight showed normal development. The 43 identified MUT gene mutations had at least one variant allele, whereas 35 had two mutant alleles. Of the 33 mutations reported before, eight recurrent mutations were identified in 32 patients, and c.729_730insTT (p.D244Lfs*39) was the most common (12/78) in the mutant alleles. Of the 10 novel mutations, six were missense mutations and four were premature termination codon mutations. The six novel missense mutations seemed to be pathogenic. A total of 10 novel MUT mutations were detected in the Chinese population. c.729_730insTT (p.D244Lfs*39) was the most frequent mutation. A genotype-phenotype correlation could not be found, but the genotypic characterization indicated the need of genetic counseling for MMA patients and early prenatal diagnoses for high-risk families.

  7. Spectrum of MECP2 gene mutations in a cohort of Indian patients with Rett syndrome: report of two novel mutations.

    Science.gov (United States)

    Das, Dhanjit Kumar; Raha, Sarbani; Sanghavi, Daksha; Maitra, Anurupa; Udani, Vrajesh

    2013-02-15

    Rett syndrome (RTT) is an X-linked neurodevelopmental disorder, primarily affecting females and characterized by developmental regression, epilepsy, stereotypical hand movements, and motor abnormalities. Its prevalence is about 1 in 10,000 female births. Rett syndrome is caused by mutations within methyl CpG-binding protein 2 (MECP2) gene. Over 270 individual nucleotide changes which cause pathogenic mutations have been reported. However, eight most commonly occurring missense and nonsense mutations account for almost 70% of all patients. We screened 90 individuals with Rett syndrome phenotype. A total of 19 different MECP2 mutations and polymorphisms were identified in 27 patients. Of the 19 mutations, we identified 7 (37%) frameshift, 6 (31%) nonsense, 14 (74%) missense mutations and one duplication (5%). The most frequent pathogenic changes were: missense p.T158M (11%), p.R133C (7.4%), and p.R306C (7.4%) and nonsense p.R168X (11%), p.R255X (7.4%) mutations. We have identified two novel mutations namely p.385-388delPLPP present in atypical patients and p.Glu290AlafsX38 present in a classical patient of Rett syndrome. Sequence homology for p.385-388delPLPP mutation revealed that these 4 amino acids were conserved across mammalian species. This indicated the importance of these 4 amino acids in structure and function of the protein. A novel variant p.T479T has also been identified in a patient with atypical Rett syndrome. A total of 62 (69%) patients remained without molecular genetics diagnosis that necessitates further search for mutations in other genes like CDKL5 and FOXG1 that are known to cause Rett phenotype. The majority of mutations are detected in exon 4 and only one mutation was present in exon 3. Therefore, our study suggests the need for screening exon 4 of MECP2 as first line of diagnosis in these patients.

  8. Expanding the mutation spectrum in 130 probands with ARPKD: identification of 62 novel PKHD1 mutations by sanger sequencing and MLPA analysis.

    Science.gov (United States)

    Melchionda, Salvatore; Palladino, Teresa; Castellana, Stefano; Giordano, Mario; Benetti, Elisa; De Bonis, Patrizia; Zelante, Leopoldo; Bisceglia, Luigi

    2016-09-01

    Autosomal recessive polycystic kidney disease (ARPKD) is a rare severe genetic disorder arising in the perinatal period, although a late-onset presentation of the disease has been described. Pulmonary hypoplasia is the major cause of morbidity and mortality in the newborn period. ARPKD is caused by mutations in the PKHD1 (polycystic kidney and hepatic disease 1) gene that is among the largest human genes. To achieve a molecular diagnosis of the disease, a large series of Italian affected subjects were recruited. Exhaustive mutation analysis of PKHD1 gene was carried out by Sanger sequencing and multiple ligation probe amplification (MLPA) technique in 110 individuals. A total of 173 mutations resulting in a detection rate of 78.6% were identified. Additional 20 unrelated patients, in whom it was not possible to analyze the whole coding sequence, have been included in this study. Taking into account the total number (n=130) of this cohort of patients, 107 different types of mutations have been detected in 193 mutated alleles. Out of 107 mutations, 62 were novel: 11 nonsense, 6 frameshift, 7 splice site mutations, 2 in-frame deletions and 2 multiexon deletion detected by MLPA. Thirty-four were missense variants. In conclusion, our report expands the spectrum of PKHD1 mutations and confirms the heterogeneity of this disorder. The population under study represents the largest Italian ARPKD cohort reported to date. The estimated costs and the time invested for molecular screening of genes with large size and allelic heterogeneity such as PKHD1 demand the use of next-generation sequencing (NGS) technologies for a faster and cheaper screening of the affected subjects.

  9. Mutant PTEN in Cancer : Worse Than Nothing

    NARCIS (Netherlands)

    Leslie, Nick R; den Hertog, Jeroen

    2014-01-01

    Tumor suppressors block the development of cancer and are often lost during tumor development. Papa et al. show that partial loss of normal PTEN tumor suppressor function can be compounded by additional disruption caused by the expression of inactive mutant PTEN protein. This has significant

  10. Evidence of a wide spectrum of cardiac involvement due to ACAD9 mutations: Report on nine patients.

    Science.gov (United States)

    Dewulf, Joseph P; Barrea, Catherine; Vincent, Marie-Françoise; De Laet, Corinne; Van Coster, Rudy; Seneca, Sara; Marie, Sandrine; Nassogne, Marie-Cécile

    2016-07-01

    Acyl-CoA dehydrogenase 9 (ACAD9) is a mitochondrial protein involved in oxidative phosphorylation complex I biogenesis. This protein also exhibits acyl-CoA dehydrogenase (ACAD) activity. ACAD9-mutated patients have been reported to suffer from primarily heart, muscle, liver, and nervous system disorders. ACAD9 mutation is suspected in cases of elevated lactic acid levels combined with complex I deficiency, and confirmed by ACAD9 gene analysis. At least 18 ACAD9-mutated patients have previously been reported, usually displaying severe cardiac involvement. We retrospectively studied nine additional patients from three unrelated families with a wide spectrum of cardiac involvement between the families as well as the patients from the same families. All patients exhibited elevated lactate levels. Deleterious ACAD9 mutations were identified in all patients except one for whom it was not possible to recover DNA. To our knowledge, this is one of the first reports on isolated mild ventricular hypertrophy due to ACAD9 mutation in a family with moderate symptoms during adolescence. This report also confirms that dilated cardiomyopathy may occur in conjunction with ACAD9 mutation and that some patients may respond clinically to riboflavin treatment. Of note, several patients suffered from patent ductus arteriosus (PDA), with one exhibiting a complex congenital heart defect. It is yet unknown whether these cardiac manifestations were related to ACAD9 mutation. In conclusion, this disorder should be suspected in the presence of lactic acidosis, complex I deficiency, and any cardiac involvement, even mild.

  11. Wide spectrum of developmental brain disorders from megalencephaly to focal cortical dysplasia and pigmentary mosaicism caused by mutations of MTOR

    Science.gov (United States)

    Solovieff, Nadia; Goold, Carleton; Jansen, Laura A.; Menon, Suchithra; Timms, Andrew E.; Conti, Valerio; Biag, Jonathan D.; Adams, Carissa; Boyle, Evan August; Collins, Sarah; Ishak, Gisele; Poliachik, Sandra; Girisha, Katta M.; Yeung, Kit San; Chung, Brian Hon Yin; Rahikkala, Elisa; Gunter, Sonya A.; McDaniel, Sharon S.; Macmurdo, Colleen Forsyth; Bernstein, Jonathan A.; Martin, Beth; Leary, Rebecca; Mahan, Scott; Liu, Shanming; Weaver, Molly; Doerschner, Michael; Jhangiani, Shalini; Muzny, Donna M.; Boerwinkle, Eric; Gibbs, Richard A.; Lupski, James R.; Shendure, Jay; Saneto, Russell P.; Novotny, Edward J.; Wilson, Christopher J.; Sellers, William R.; Morrissey, Michael; Hevner, Robert F.; Ojemann, Jeffrey G.; Guerrini, Renzo; Murphy, Leon O.; Winckler, Wendy; Dobyns, William B.

    2016-01-01

    Importance Focal cortical dysplasia (FCD), hemimegalencephaly (HMEG) and megalencephaly constitute a spectrum of malformations of cortical development with shared neuropathologic features. Collectively, these disorders are associated with significant childhood morbidity and mortality. FCD, in particular, represents the most frequent cause of intractable focal epilepsy in children. Objective To identify the underlying molecular etiology of FCD, HMEG, and diffuse megalencephaly. Design, Setting and Participants We performed whole exome sequencing (WES) on eight children with FCD or HMEG using standard depth (~50-60X) sequencing in peripheral samples (blood, saliva or skin) from the affected child and their parents, and deep (~150-180X) sequencing in affected brain tissue. We used both targeted sequencing and WES to screen a cohort of 93 children with molecularly unexplained diffuse or focal brain overgrowth (42 with FCD-HMEG, and 51 with diffuse megalencephaly). Histopathological and functional assays of PI3K-AKT-MTOR pathway activity in resected brain tissue and cultured neurons were performed to validate mutations. Main Outcomes and Measures Whole exome sequencing and targeted sequencing identified variants associated with this spectrum of developmental brain disorders. Results We identified low-level mosaic mutations of MTOR in brain tissue in four children with FCD type 2a with alternative allele fractions ranging from 0.012–0.086. We also identified intermediate level mosaic mutation of MTOR (p.Thr1977Ile) in three unrelated children with diffuse megalencephaly and pigmentary mosaicism in skin that resembles hypomelanosis of Ito. Finally, we identified a constitutional de novo mutation of MTOR (p.Glu1799Lys) in three unrelated children with diffuse megalencephaly and intellectual disability. Molecular and functional analysis in two children with FCD type 2a from whom multiple affected brain tissue samples were available revealed a gradient of alternate allele

  12. Determination of mutational spectrum of the pesticide, captan, with an improved set of Escherichia coli LacZ mutants.

    Science.gov (United States)

    Lu, C; Pfeil, R M; Rice, C P

    1995-07-01

    The mutational spectrum of the fungicide, captan, was determined using a set of improved Escherichia coli lacZ mutants. Captan created mutations mostly at dA-dT sites (83%) with only 17% occurring at dG-dC sites. The hydrolysis products of captan do not appear to be mutagenic because samples of captan at different hydrolysis stages showed basically the same mutational spectra: 31% at AT --> CG transversions, 8% of GC --> AT transitions, 2% of GC --> CG transversions, 8% of GC --> TA transversions, 19% of AT --> TA transversions, and 32% of AT --> GC transitions. Prepared solutions of captan lost their mutational activity gradually over time, indicating that the rate of decrease in mutagenicity agreed with the kinetics of captan hydrolysis reported in other studies. Using the change in mutagenicity to predict degradation, the hydrolysis of captan in pH 7.0 buffer was about three times faster than the hydrolysis carried out in pH 4.5 buffer. To our knowledge, this is the first presentation of mutational spectrum of captan.

  13. PTEN microdeletions in T-cell acute lymphoblastic leukemia are caused by illegitimate RAG-mediated recombination events.

    Science.gov (United States)

    Mendes, Rui D; Sarmento, Leonor M; Canté-Barrett, Kirsten; Zuurbier, Linda; Buijs-Gladdines, Jessica G C A M; Póvoa, Vanda; Smits, Willem K; Abecasis, Miguel; Yunes, J Andres; Sonneveld, Edwin; Horstmann, Martin A; Pieters, Rob; Barata, João T; Meijerink, Jules P P

    2014-07-24

    Phosphatase and tensin homolog (PTEN)-inactivating mutations and/or deletions are an independent risk factor for relapse of T-cell acute lymphoblastic leukemia (T-ALL) patients treated on Dutch Childhood Oncology Group or German Cooperative Study Group for Childhood Acute Lymphoblastic Leukemia protocols. Some monoallelic mutated or PTEN wild-type patients lack PTEN protein, implying that additional PTEN inactivation mechanisms exist. We show that PTEN is inactivated by small deletions affecting a few exons in 8% of pediatric T-ALL patients. These microdeletions were clonal in 3% and subclonal in 5% of patients. Conserved deletion breakpoints are flanked by cryptic recombination signal sequences (cRSSs) and frequently have non-template-derived nucleotides inserted in between breakpoints, pointing to an illegitimate RAG recombination-driven activity. Identified cRSSs drive RAG-dependent recombination in a reporter system as efficiently as bona fide RSSs that flank gene segments of the T-cell receptor locus. Remarkably, equivalent microdeletions were detected in thymocytes of healthy individuals. Microdeletions strongly associate with the TALLMO subtype characterized by TAL1 or LMO2 rearrangements. Primary and secondary xenotransplantation of TAL1-rearranged leukemia allowed development of leukemic subclones with newly acquired PTEN microdeletions. Ongoing RAG activity may therefore actively contribute to the acquisition of preleukemic hits, clonal diversification, and disease progression. © 2014 by The American Society of Hematology.

  14. Poly-ADP ribosylation of PTEN by tankyrases promotes PTEN degradation and tumor growth

    Science.gov (United States)

    Li, Nan; Zhang, Yajie; Han, Xin; Liang, Ke; Wang, Jiadong; Feng, Lin; Wang, Wenqi; Songyang, Zhou; Lin, Chunru; Yang, Liuqing; Yu, Yonghao

    2015-01-01

    PTEN [phosphatidylinositol (3,4,5)-trisphosphate phosphatase and tensin homolog deleted from chromosome 10], a phosphatase and critical tumor suppressor, is regulated by numerous post-translational modifications, including phosphorylation, ubiquitination, acetylation, and SUMOylation, which affect PTEN localization and protein stability. Here we report ADP-ribosylation as a new post-translational modification of PTEN. We identified PTEN as a novel substrate of tankyrases, which are members of the poly(ADP-ribose) polymerases (PARPs). We showed that tankyrases interact with and ribosylate PTEN, which promotes the recognition of PTEN by a PAR-binding E3 ubiquitin ligase, RNF146, leading to PTEN ubiquitination and degradation. Double knockdown of tankyrase1/2 stabilized PTEN, resulting in the subsequent down-regulation of AKT phosphorylation and thus suppressed cell proliferation and glycolysis in vitro and tumor growth in vivo. Furthermore, tankyrases were up-regulated and negatively correlated with PTEN expression in human colon carcinomas. Together, our study revealed a new regulation of PTEN and highlighted a role for tankyrases in the PTEN–AKT pathway that can be explored further for cancer treatment. PMID:25547115

  15. [A Brillouin Scattering Spectrum Feature Extraction Based on Flies Optimization Algorithm with Adaptive Mutation and Generalized Regression Neural Network].

    Science.gov (United States)

    Zhang, Yan-jun; Liu, Wen-zhe; Fu, Xing-hu; Bi, Wei-hong

    2015-10-01

    According to the high precision extracting characteristics of scattering spectrum in Brillouin optical time domain reflection optical fiber sensing system, this paper proposes a new algorithm based on flies optimization algorithm with adaptive mutation and generalized regression neural network. The method takes advantages of the generalized regression neural network which has the ability of the approximation ability, learning speed and generalization of the model. Moreover, by using the strong search ability of flies optimization algorithm with adaptive mutation, it can enhance the learning ability of the neural network. Thus the fitting degree of Brillouin scattering spectrum and the extraction accuracy of frequency shift is improved. Model of actual Brillouin spectrum are constructed by Gaussian white noise on theoretical spectrum, whose center frequency is 11.213 GHz and the linewidths are 40-50, 30-60 and 20-70 MHz, respectively. Comparing the algorithm with the Levenberg-Marquardt fitting method based on finite element analysis, hybrid algorithm particle swarm optimization, Levenberg-Marquardt and the least square method, the maximum frequency shift error of the new algorithm is 0.4 MHz, the fitting degree is 0.991 2 and the root mean square error is 0.024 1. The simulation results show that the proposed algorithm has good fitting degree and minimum absolute error. Therefore, the algorithm can be used on distributed optical fiber sensing system based on Brillouin optical time domain reflection, which can improve the fitting of Brillouin scattering spectrum and the precision of frequency shift extraction effectively.

  16. Comprehensive genotyping and clinical characterisation reveal 27 novel NKX2-1 mutations and expand the phenotypic spectrum

    Science.gov (United States)

    Thorwarth, Anne; Schnittert-Hübener, Sarah; Schrumpf, Pamela; Müller, Ines; Jyrch, Sabine; Dame, Christof; Biebermann, Heike; Kleinau, Gunnar; Katchanov, Juri; Schuelke, Markus; Ebert, Grit; Steininger, Anne; Bönnemann, Carsten; Brockmann, Knut; Christen, Hans-Jürgen; Crock, Patricia; deZegher, Francis; Griese, Matthias; Hewitt, Jacqueline; Ivarsson, Sten; Hübner, Christoph; Kapelari, Klaus; Plecko, Barbara; Rating, Dietz; Stoeva, Iva; Ropers, Hans-Hilger; Grüters, Annette; Ullmann, Reinhard; Krude, Heiko

    2017-01-01

    Background NKX2-1 encodes a transcription factor with large impact on the development of brain, lung and thyroid. Germline mutations of NKX2-1 can lead to dysfunction and malformations of these organs. Starting from the largest coherent collection of patients with a suspected phenotype to date, we systematically evaluated frequency, quality and spectrum of phenotypic consequences of NKX2-1 mutations. Methods After identifying mutations by Sanger sequencing and array CGH, we comprehensively reanalysed the phenotype of affected patients and their relatives. We employed electrophoretic mobility shift assay (EMSA) to detect alterations of NKX2-1 DNA binding. Gene expression was monitored by means of in situ hybridisation and compared with the expression level of MBIP, a candidate gene presumably involved in the disorders and closely located in close genomic proximity to NKX2-1. Results Within 101 index patients, we detected 17 point mutations and 10 deletions. Neurological symptoms were the most consistent finding (100%), followed by lung affection (78%) and thyroidal dysfunction (75%). Novel symptoms associated with NKX2-1 mutations comprise abnormal height, bouts of fever and cardiac septum defects. In contrast to previous reports, our data suggest that missense mutations in the homeodomain of NKX2-1 not necessarily modify its DNA binding capacity and that this specific type of mutations may be associated with mild pulmonary phenotypes such as asthma. Two deletions did not include NKX2-1, but MBIP, whose expression spatially and temporarily coincides with NKX2-1 in early murine development. Conclusions The high incidence of NKX2-1 mutations strongly recommends the routine screen for mutations in patients with corresponding symptoms. However, this analysis should not be confined to the exonic sequence alone, but should take advantage of affordable NGS technology to expand the target to adjacent regulatory sequences and the NKX2-1 interactome in order to maximise the

  17. TP53 mutation spectrum in smokers and never smoking lung cancer patients

    Directory of Open Access Journals (Sweden)

    Ann Rita Halvorsen

    2016-05-01

    Full Text Available AbstractBackground: TP53 mutations are among the most common mutations found in lung cancers, identified as an independent prognostic factor in many types of cancers. The purpose of this study was to investigate the frequency and prognostic impact of TP53 mutations in never-smokers and in different histological subtypes of lung cancer.Methods: We analysed tumour tissue from 394 non-small cell carcinomas including adenocarcinomas (n=229, squamous cell carcinomas (n=112, large cell carcinomas (n=30 and others (n=23 for mutations in TP53 by the use of Sanger sequencing (n=394 and next generation sequencing (n=100. Results: TP53 mutations were identified in 47.2% of the samples, with the highest frequency (65% of mutations among squamous cell carcinomas. Among never-smokers, 36% carried a TP53 mutation, identified as a significant independent negative prognostic factor in this subgroup. For large cell carcinomas, a significantly prolonged progression free survival was found for those carrying a TP53 mutation. In addition, the frequency of frameshift mutations was doubled in squamous cell carcinomas (20.3% compared to adenocarcinomas (9.1%.Conclusion: TP53 mutation patterns differ between the histological subgroups of lung cancers, as also influenced by smoking history. This indicates that the histological subtypes in lung cancer are genetically different, and that smoking-induced TP53 mutations may have a different biological impact than TP53 mutations occurring in never-smokers.

  18. Growth and activation of PI-3K/PKB and Akt by stromal cell-derived factor 1α in endometrial carcinoma cells with expression of suppressor endoprotein PTEN

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-ping; ZHAO Dan; GAO Min; ZHAO Chao; WANG Jian-liu; WEI Li-hui

    2006-01-01

    Background Mutation or deletion in the phosphatase and tensin homologue deleted on chromosome ten (PTEN)gene has been identified as an important cause of endometrial carcinoma; stromal cell derived factor-1α (SDF-1α)exerts growth-promoting effects on endometrial cancer cells through activation of the PI-3 kinase/Akt pathway and downstream effectors such as extracellular-responsive kinase (ERK). In this study, a plasmid containing the PTEN gene was transfected into Ishikawa cells to investigate the difference in growth and signal transduction between Ishikawa-PTEN and Ishikawa cells after SDF-1α stimulation, and to study mechanisms of the involvement of PTEN protein in endometrial carcinoma development.Methods Ishikawa cells were transfected with a plasmid (pLXSN-PTEN) containing the PTEN gene and a plasmid (pLXSN-EGFP) with enhanced green fluorescent protein (EGFP). Cells were then screened to obtain Ishikawa-PTEN cells and Ishikawa-neo cells that can both stably express PTEN protein and EGFP. Expression of PTEN protein, phosphorylation levels of AKT and ERK (pAKT and pERK) and growth differences in Ishikawa-PTEN, Ishikawa-neo and Ishikawa cells before and after SDF-1α stimulation were then determined by Western blots and MTT assays.Results Western blot analysis showed that Ishikawa cells produced PTEN after transfection with the PTEN gene. At 15 minutes after SDF-1α stimulation, the pAKT level of Ishikawa-PTEN cells was lower than that of Ishikawa-neo cells and Ishikawa cells. There was no significant difference in pERK levels among the three cell lines. The positive effect of SDF-1α on Ishikawa-PTEN cells growth was markedly less than the effect on Ishikawa-neo and Ishikawa cells. However, in the absence of SDF-1α stimulation (baseline), the pAKT level in Ishikawa-PTEN cells was less than that in Ishikawa cells. There was a significant difference in growth between the Ishikawa-PTEN cells and the Ishikawa-neo cells.Conclusions PTEN gene transfection can

  19. A different spectrum of DMD gene mutations in local Chinese patients with Duchenne/Becker muscular dystrophy

    Institute of Scientific and Technical Information of China (English)

    Ivan Fai-man Lo; Kent Keung-san Lai; Tony Ming-for Tong; Stephen Tak-sum Lam

    2006-01-01

    Background Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are X-linked recessive, allelic disorders. This study was conducted to look into the spectrum of DMD gene mutations in Hong Kong Chinese patients with Duchenne or Becket muscular dystrophy (DMD/BMD), and to study genotype-phenotype correlation.Methods A retrospective review of 67 patients.Results Twenty-three (34.3%) patients had exon deletions; whereas 5 (7.5%) patients had exon duplications.Twenty-three (34.3%) patients had small mutations, including 17-point mutations and 6 small insertions or deletions. No correlation was found between the type of mutation and the muscle phenotype or mental retardation.Significantly fewer maternal carriers were found in patients with exon deletions, and a positive family history was more common in those with small mutations. DMD phenotype was significantly less common in patients with exon deletions/duplications at the 5' hotspot, whereas all 4 small mutations associated with mental retardation were located in the 3' end of the gene.Conclusions The percentage of DMD exon deletions in local Chinese patients was significantly lower than the commonly quoted 60%. This indicated an ethnic or regional difference in predisposition to DMD exon deletions.

  20. Spectrum

    DEFF Research Database (Denmark)

    Høgfeldt Hansen, Leif

    2016-01-01

    The publication functions as a proces description of the development and construction of an urban furniture SPECTRUM in the city of Gwangju, Republic of Korea. It is used as the cataloque for the exhibition of Spectrum.......The publication functions as a proces description of the development and construction of an urban furniture SPECTRUM in the city of Gwangju, Republic of Korea. It is used as the cataloque for the exhibition of Spectrum....

  1. Loss of PTEN Is Associated with Aggressive Behavior in ERG-Positive Prostate Cancer

    Science.gov (United States)

    Leinonen, Katri A.; Saramäki, Outi R.; Furusato, Bungo; Kimura, Takahiro; Takahashi, Hiroyuki; Egawa, Shin; Suzuki, Hiroyoshi; Keiger, Kerri; Hahm, Sung Ho; Isaacs, William B.; Tolonen, Teemu T.; Stenman, Ulf-Håkan; Tammela, Teuvo L.J.; Nykter, Matti; Bova, G. Steven; Visakorpi, Tapio

    2014-01-01

    Background The associations of ERG overexpression with clinical behavior and molecular pathways of prostate cancer are incompletely known. We assessed the association of ERG expression with AR, PTEN, SPINK1, Ki-67, and EZH2 expression levels, deletion, and mutations of chromosomal region 3p14 and TP53, and clinicopathologic variables. Methods The material consisted of 326 prostatectomies, 166 needle biopsies from men treated primarily with endocrine therapy, 177 transurethral resections of castration-resistant prostate cancers (CRPC), and 114 CRPC metastases obtained from 32 men. Immunohistochemistry, FISH, and sequencing was used for the measurements. Results ERG expression was found in about 45% of all patient cohorts. In a multivariate analysis, ERG expression showed independent value of favorable prognosis (P = 0.019). ERG positivity was significantly associated with loss of PTEN expression in prostatectomy (P = 0.0348), and locally recurrent CRPCs (P = 0.0042). Loss of PTEN expression was associated (P = 0.0085) with shorter progression-free survival in ERG-positive, but not in negative cases. When metastases in each subject were compared, consistent ERG, PTEN, and AR expression as well as TP53 mutations were found in a majority of subjects. Conclusions A similar frequency of ERG positivity from early to late stage of the disease suggests lack of selection of ERG expression during disease progression. The prognostic significance of PTEN loss solely in ERG-positive cases indicates interaction of these pathways. The finding of consistent genetic alterations in different metastases suggests that the major genetic alterations take place in the primary tumor. Impact Interaction of PTEN and ERG pathways warrants further studies. PMID:24083995

  2. Complete Spectrum of CRISPR/Cas9-induced Mutations on HBV cccDNA

    Science.gov (United States)

    Seeger, Christoph; Sohn, Ji A

    2016-01-01

    Hepatitis B virus (HBV) causes chronic infections that cannot yet be cured. The virus persists in infected hepatocytes, because covalently closed circular DNA (cccDNA), the template for the transcription of viral RNAs, is stable in nondividing cells. Antiviral therapies with nucleoside analogues inhibit HBV DNA synthesis in capsids in the cytoplasm of infected hepatocytes, but do not destroy nuclear cccDNA. Because over 200 million people are still infected, a cure for chronic hepatitis B (CHB) has become one of the major challenges in antiviral therapy. As a first step toward the development of curative therapies, we previously demonstrated that the CRISPR/Cas9 system can be used to functionally inactivate cccDNA derived from infectious HBV. Moreover, some evidence suggests that certain cytokines might induce an APOBEC-mediated cascade leading to the destruction of cccDNA. In this report we investigated whether a combination of the two mechanisms could act synergistically to inactivate cccDNA. Using next generation sequencing (NGS), we determined the complete spectrum of mutations in cccDNA following Cas9 cleavage and repair by nonhomologous end joining (NHEJ). We found that over 90% of HBV DNA was cleaved by Cas9. In addition our results showed that editing of HBV DNA after Cas9 cleavage is at least 15,000 times more efficient that APOBEC-mediated cytosine deamination following treatment of infected cells with interferon alpha (IFNα). We also found that a previously used method to detect cytosine deaminated DNA, termed 3D-PCR, overestimates the amount and frequency of edited HBV DNA. Taken together, our results demonstrated that the CRISPR/Cas9 system is so far the best method to functionally inactivate HBV cccDNA and provide a cure for CHB. PMID:27203444

  3. The de novo autism spectrum disorder RELN R2290C mutation reduces Reelin secretion and increases protein disulfide isomerase expression.

    Science.gov (United States)

    Lammert, Dawn B; Middleton, Frank A; Pan, Jen; Olson, Eric C; Howell, Brian W

    2017-07-01

    Despite the recent identification of over 40 missense heterozygous Reelin gene (RELN) mutations in autism spectrum disorder (ASD), none of these has been functionally characterized. Reelin is an integral signaling ligand for proper brain development and post-natal synapse function - properties likely disrupted in ASD patients. We find that the R2290C mutation, which arose de novo in an affected ASD proband, and other analogous mutations in arginine-amino acid-arginine domains reduce protein secretion. Closer analysis of RELN R2290C heterozygous neurospheres reveals up-regulation of Protein Disulfide Isomerase A1, best known as an endoplasmic reticulum-chaperone protein, which has been linked to neuronal pathology. This effect is recapitulated in a heterozygous RELN mouse mutant that is characterized by defective Reelin secretion. These findings suggest that both a deficiency in Reelin signaling and pathologic impairment of Reelin secretion may contribute to ASD risk. © 2017 International Society for Neurochemistry.

  4. PTEN in liver diseases and cancer

    Institute of Scientific and Technical Information of China (English)

    Marion; Peyrou; Lucie; Bourgoin; Michelangelo; Foti

    2010-01-01

    The phosphoinositide 3-kinase (PI3K)/phosphatase and tensin homolog (PTEN)/Akt axis is a key signal transduction node that regulates crucial cellular functions, including insulin and other growth factors signaling, lipid and glucose metabolism, as well as cell survival and apoptosis. In this pathway, PTEN acts as a phosphoinositide phosphatase, which terminates PI3Kpropagated signaling by dephosphorylating PtdIns(3,4)P2 and PtdIns(3,4,5)P3. However, the role of PTEN does not appear to be restricted only to ...

  5. P130Cas和PTEN信号蛋白在胃癌中的表达及相互关系%The expressions and interrelation of p130Cas and PTEN in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Zhou Wang; Jifeng Li; Xichao Sun; Xu Wang

    2009-01-01

    Objective: To research the contributions of p130Cas and PTEN signal molecules to the carcinogenesis of gastric carcinoma and the relationship between them. Methods: Detecting proteins of p130Cas, PTEN and PTEN mRNA of 76 cases normal gastric mucosa and 112 cases gastric carcinoma by immunohistochemistry EnVision method and molecular hybridization in situ method respectively. Detecting PTEN genetic mutation of 30 cases normal gastric mucosa, 7 cases early gastric cancer and 30 cases progressive gastric cancer by PCR-SSCP. Results: The expression of p130Cas protein of gastric carcinoma increased significantly than that of normal gastric mucosa (P < 0.05). Opposite to above, the expression of PTEN protein of gastric carcinoma group was significantly lower than that of normal gastric mucosa group (P < 0.05). The expression of PTEN mRNA of gastric carcinoma group decreased obviously than normal gastric mucosa group (P < 0.001). Only one case exon 5 and one case exon 8 of PTEN appeared gene mutation of progressive gastric carcinoma group, the difference has no significance compared with normal gastric mucosa group and early gastric cancer group. Conclusion: The signaling molecules p130Cas and PTEN play an important role in the carcinogenesis of gastric carcinoma, and p130Cas olays the part of promoter, oppositely, maybe PTEN can inhibit it.

  6. Combined deletion of Pten and p53 in mammary epithelium accelerates triple-negative breast cancer with dependency on eEF2K.

    Science.gov (United States)

    Liu, Jeff C; Voisin, Veronique; Wang, Sharon; Wang, Dong-Yu; Jones, Robert A; Datti, Alessandro; Uehling, David; Al-awar, Rima; Egan, Sean E; Bader, Gary D; Tsao, Ming; Mak, Tak W; Zacksenhaus, Eldad

    2014-12-01

    The tumor suppressors Pten and p53 are frequently lost in breast cancer, yet the consequences of their combined inactivation are poorly understood. Here, we show that mammary-specific deletion of Pten via WAP-Cre, which targets alveolar progenitors, induced tumors with shortened latency compared to those induced by MMTV-Cre, which targets basal/luminal progenitors. Combined Pten-p53 mutations accelerated formation of claudin-low, triple-negative-like breast cancer (TNBC) that exhibited hyper-activated AKT signaling and more mesenchymal features relative to Pten or p53 single-mutant tumors. Twenty-four genes that were significantly and differentially expressed between WAP-Cre:Pten/p53 and MMTV-Cre:Pten/p53 tumors predicted poor survival for claudin-low patients. Kinome screens identified eukaryotic elongation factor-2 kinase (eEF2K) inhibitors as more potent than PI3K/AKT/mTOR inhibitors on both mouse and human Pten/p53-deficient TNBC cells. Sensitivity to eEF2K inhibition correlated with AKT pathway activity. eEF2K monotherapy suppressed growth of Pten/p53-deficient TNBC xenografts in vivo and cooperated with doxorubicin to efficiently kill tumor cells in vitro. Our results identify a prognostic signature for claudin-low patients and provide a rationale for using eEF2K inhibitors for treatment of TNBC with elevated AKT signaling.

  7. Clinical characterization and the mutation spectrum in Swedish adenomatous polyposis families

    Directory of Open Access Journals (Sweden)

    Meuller Johan

    2008-04-01

    Full Text Available Abstract Background The dominantly inherited condition familial adenomatous polyposis (FAP is caused by germline mutations in the APC gene. Finding the causative mutations has great implications for the families. Correlating the genotypes to the phenotypes could help to improve the diagnosis and follow-up of patients. Methods Mutation screening of APC and the clinical characterization of 96 unrelated FAP patients from the Swedish Polyposis Registry was performed. In addition to generally used mutation screening methods, analyses of splicing-affecting mutations and investigations of the presence of low-frequency mutation alleles, indicating mosaics, have been performed, as well as quantitative real-time polymerase chain reaction to detect lowered expression of APC. Results Sixty-one different APC mutations in 81 of the 96 families were identified and 27 of those are novel. We have previously shown that 6 of the 96 patients carried biallelic MUTYH mutations. The 9 mutation-negative cases all display an attenuated or atypical phenotype. Probands with a genotype (codon 1250–1464 predicting a severe phenotype had a median age at diagnosis of 21.8 (range, 11–49 years compared with 34.4 (range, 14–57 years among those with mutations outside this region (P 1000 occurred in 75% of the probands with a severe phenotype compared with 30% in those with mutations outside this region. The morbidity in colorectal cancer among probands was 25% at a mean age of 37.5 years and 29% at a mean age of 46.6 years. Conclusion Using a variety of mutation-detection techniques, we have achieved a 100% detection frequency in classical FAP. Probands with APC mutations outside codon 1250–1464, although exhibiting a less-severe phenotype, are at high risk of having a colorectal cancer at diagnosis indicating that age at diagnosis is as important as the severity of the disease for colorectal cancer morbidity.

  8. Spectrum of Common α-Globin Deletion Mutations in the Southern Region of Vietnam.

    Science.gov (United States)

    Bui Thi Kim, Ly; Phu Chi, Dung; Hoang Thanh, Chi

    2016-06-01

    The common deletion mutations of α-globin genes in the Vietnamese population is not well known. Here we report the presence of five deletional mutations of Southeast Asia in the southern region of Vietnam. The - -(SEA) (NG_000006.1: g.26264_45564del19301) mutation is the most common type of deletion (87.35%), followed by the -α(3.7) (rightward) (NG_000006.1: g.34164_37967del3804) deletion (9.64%), -α(4.2) (leftward) (AF221717) deletion (2.41%) and - -(THAI) (NG_000006.1: g.10664_44164del33501) (0.6%) mutation in this region. The - -(FIL) (NG_000006.1: g.11684_43534del31581) mutation was not detected in this study. This result provided a view of the distribution of common α-globin gene mutations in Vietnam and could serve as a baseline for further investigations into these genetic defects.

  9. From ventriculomegaly to severe muscular atrophy: expansion of the clinical spectrum related to mutations in AIFM1.

    Science.gov (United States)

    Kettwig, Matthias; Schubach, Max; Zimmermann, Franz A; Klinge, Lars; Mayr, Johannes A; Biskup, Saskia; Sperl, Wolfgang; Gärtner, Jutta; Huppke, Peter

    2015-03-01

    The apoptosis-inducing factor (AIF) functions as a FAD-dependent NADH oxidase in mitochondria. Upon apoptotic stimulation it is released from mitochondria and migrates to the nucleus where it induces chromatin condensation and DNA fragmentation. So far mutations in AIFM1, a X-chromosomal gene coding for AIF, have been described in three families with 11 affected males. We report here on a further patient thereby expanding the clinical and mutation spectrum. In addition, we review the known phenotypes related to AIFM1 mutations. The clinical course in the male patient described here was characterized by phases with rapid deterioration and long phases without obvious progression of disease. At age 2.5 years he developed hearing loss and severe ataxia and at age 10 years muscle wasting, swallowing difficulties, respiratory insufficiency and external opthamoplegia. By next generation sequencing of whole exome we identified a hemizygous missense mutation in the AIFM1 gene, c.727G>T (p.Val243Leu) affecting a highly conserved residue in the FAD-binding domain. Summarizing what is known today, mutations in AIFM1 are associated with a progressive disorder with myopathy, ataxia and neuropathy. Severity varies greatly even within one family with onset of symptoms between birth and adolescence. 3 of 12 patients died before age 5 years while others were still able to walk during young adulthood. Less frequent symptoms were hearing loss, seizures and psychomotor regression. Results from clinical chemistry, brain imaging and muscle biopsy were unspecific and inconsistent.

  10. The spectrum and frequency of self-inflicted and host gene mutations produced by the transposon Ac in maize.

    Science.gov (United States)

    Huang, Jun T; Dooner, Hugo K

    2012-10-01

    The autonomous transposon Activator (Ac) is a powerful mutagen. Ac-induced mutations range from small footprints of host sequences to large rearrangements of transposon or host sequences. These mutations arise by different repair mechanisms of the double-strand break produced by Ac excision: footprints by nonhomologous end joining and rearrangements by various mechanisms, including DNA replication repair. Footprints greatly outnumber other mutations, masking them because they usually share a nonfunctional phenotype. To determine the spectrum and frequencies of host and self-mutations generated by Ac, we used an allele harboring Ac in the 5' untranslated region bronze (bz). In this system, simple excisions produce purple revertants, whereas deletions of host or transposon sequences produce stable bronze (bz-s) mutants. Internal and terminal deletions of Ac predominated among the 72 bz-s derivatives. Most internal deletions (52 of 54) behaved as nonautonomous Dissociation (Ds) elements. All nine terminal deletions or fractured Ac (fAc) elements had rearrangements of adjacent host sequences. Most Ds and fAc deletion junctions displayed microhomologies and contained filler DNA from nearby sequences, suggesting an origin by DNA repair synthesis followed by microhomology-mediated end joining. All mutations occurred more frequently in pollen, where one in 200 grains carried new Ds or fAc elements.

  11. Spectrum of MLL2 (ALR) mutations in 110 cases of Kabuki syndrome.

    Science.gov (United States)

    Hannibal, Mark C; Buckingham, Kati J; Ng, Sarah B; Ming, Jeffrey E; Beck, Anita E; McMillin, Margaret J; Gildersleeve, Heidi I; Bigham, Abigail W; Tabor, Holly K; Mefford, Heather C; Cook, Joseph; Yoshiura, Koh-ichiro; Matsumoto, Tadashi; Matsumoto, Naomichi; Miyake, Noriko; Tonoki, Hidefumi; Naritomi, Kenji; Kaname, Tadashi; Nagai, Toshiro; Ohashi, Hirofumi; Kurosawa, Kenji; Hou, Jia-Woei; Ohta, Tohru; Liang, Deshung; Sudo, Akira; Morris, Colleen A; Banka, Siddharth; Black, Graeme C; Clayton-Smith, Jill; Nickerson, Deborah A; Zackai, Elaine H; Shaikh, Tamim H; Donnai, Dian; Niikawa, Norio; Shendure, Jay; Bamshad, Michael J

    2011-07-01

    Kabuki syndrome is a rare, multiple malformation disorder characterized by a distinctive facial appearance, cardiac anomalies, skeletal abnormalities, and mild to moderate intellectual disability. Simplex cases make up the vast majority of the reported cases with Kabuki syndrome, but parent-to-child transmission in more than a half-dozen instances indicates that it is an autosomal dominant disorder. We recently reported that Kabuki syndrome is caused by mutations in MLL2, a gene that encodes a Trithorax-group histone methyltransferase, a protein important in the epigenetic control of active chromatin states. Here, we report on the screening of 110 families with Kabuki syndrome. MLL2 mutations were found in 81/110 (74%) of families. In simplex cases for which DNA was available from both parents, 25 mutations were confirmed to be de novo, while a transmitted MLL2 mutation was found in two of three familial cases. The majority of variants found to cause Kabuki syndrome were novel nonsense or frameshift mutations that are predicted to result in haploinsufficiency. The clinical characteristics of MLL2 mutation-positive cases did not differ significantly from MLL2 mutation-negative cases with the exception that renal anomalies were more common in MLL2 mutation-positive cases. These results are important for understanding the phenotypic consequences of MLL2 mutations for individuals and their families as well as for providing a basis for the identification of additional genes for Kabuki syndrome.

  12. Mutation spectrum in sunlight-exposed mouse skin epidermis: small but appreciable contribution of oxidative stress-mediated mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ikehata, Hironobu [Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575 (Japan)]. E-mail: ikehata@mail.tains.tohoku.ac.jp; Nakamura, Shingo [Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575 (Japan); Department of Radiobiology, Institute for Environmental Sciences, Aomori 039-3212 (Japan); Asamura, Takaaki [Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575 (Japan); Ono, Tetsuya [Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575 (Japan)

    2004-11-22

    We studied the mutations induced in skin by sunlight using transgenic Muta{sup TM} mice. Noon sunlight during summer at Sendai, Japan induced mutations efficiently in both epidermis and dermis. The mutant frequency (MF) in epidermis reached nearly 0.5% during the first 40 min irradiation but became saturated at this level with the appearance of skin inflammation after further irradiation. At the equivalent inflammatory dose, sunlight was twice as genotoxic as 313 nm-peak UVB. The 81 mutations detected in 80 lacZ transgene mutants isolated from the sunlight-exposed epidermis were dominated by C {yields} T transitions (89%), occurring exclusively at dipyrimidine sites, and also included a CC {yields} TT tandem substitution. Thus, the sunlight-induced mutation spectrum is highly UV-specific, quite similar to that induced by UVB but significantly different from that induced by UVA. Although oxidative damage-related C {yields} A transversions were detected only in five mutants (6%), their frequency was elevated to at least 15 times the background level, suggesting that the contribution of UVA-mediated oxidative stress is comparatively small but considerable. An analysis of bases adjacent to the mutated cytosines revealed that the sunlight-induced mutations prefer 5'-TC-3' dipyrimidine sites to 5'-CC-3' and 5'-CT-3'. The distribution of the frequent C {yields} T transition sites in the transgene was well associated with the CpG motif, which is known to be completely methylated in the gene, and quite similar to that induced by UVB rather than that by UVA. Thus, the UVB component contributes to the sunlight-induced mutations in the mammalian skin much more than the UVA component, whose influence through reactive oxygen species (ROS)-mediated mutagenesis is still appreciable.

  13. PTEN degradation after ischemic stroke: a double-edged sword.

    Science.gov (United States)

    Li, W; Huang, R; Chen, Z; Yan, L-J; Simpkins, J W; Yang, S-H

    2014-08-22

    Tumor suppressor phosphatase and tensin homolog (PTEN) is highly expressed in neurons and PTEN inhibition has been reported to be neuroprotective against ischemic stroke in experimental models. On the other hand, PTEN deletion has been shown to lead to cognitive impairment. In the current study, we examined the expression and functions of PTEN in an ischemic stroke rodent model. We found rapid S-nitrosylation and degradation of PTEN after cerebral ischemia/reperfusion injury. PTEN degradation leads to activation of Akt. PTEN partial deletion or PTEN inhibition increased the expression of GABAA receptor (GABAAR) γ2 subunit and enhanced GABAA receptor current. After cerebral ischemia, increased expression of GABAAR γ2 subunit was observed in the ischemia region and the penumbra area. We also observed PTEN loss in astrocytes after cerebral ischemia. Astrocytic PTEN partial knockout increased astrocyte activation and exacerbated ischemic damage. We speculated that ischemic stroke induced neuronal PTEN degradation, hence enhanced GABAA receptor-medicated neuronal activity inhibition which could attenuate excitotoxicity and provide neuroprotection during the acute phase after stroke, while inhibiting long-term functional recovery and contributing to vascular cognitive impairment after stroke. On the other hand, ischemic stroke induced astrocytic PTEN loss and enhanced ischemic damage and astrogliosis. Taken together, our study indicates that ischemic stroke induces rapid PTEN degradation in both neurons and astrocytes which play both protective and detrimental action in a spatiotemporal- and cell-type-dependent manner. Our study provides critical insight for targeting PTEN signaling pathway for stroke treatment.

  14. Spectrum of mutations in Finnish patients with Charcot-Marie-Tooth disease and related neuropathies.

    Science.gov (United States)

    Silander, K; Meretoja, P; Juvonen, V; Ignatius, J; Pihko, H; Saarinen, A; Wallden, T; Herrgård, E; Aula, P; Savontaus, M L

    1998-01-01

    Our patient material included families and sporadic patients of Finnish origin with the diagnosis of Charcot-Marie-Tooth (CMT) disease types 1 and 2, Dejerine-Sottas syndrome (DSS), and hereditary neuropathy with liability to pressure palsies (HNPP). We screened for mutations in the peripheral myelin protein genes connexin 32 (Cx32), myelin protein zero (P0) and peripheral myelin protein 22 (PMP22) by direct sequencing. All patients chosen for mutation screening were negative for the 1.5 Mb duplication/deletion at 17p11.2-p12. Eleven Cx32 mutations were found in 12 families, six with a CMT2 diagnosis, three with a CMT1 diagnosis and three with unclassified CMT. The total number of patients in these 12 CMTX families was 61, giving a minimum prevalence of 1.2/100,000 for CMTX in Finland. Four of the mutations, Pro58Arg, Pro172Leu, Asn175Asp and Leu204Phe, have not been previously reported. One male patient with an early onset CMT had a double Cx32 mutation, Arg22Gln and Val63Ile. The double de novo mutation was found to be of maternal grandpaternal origin. In the P0 gene a Ser78Leu mutation was found in one family with severe CMT1 and a de novo Tyr82Cys mutation was found in one DSS patient. Both mutations have been previously reported in other CMT1 families. A novel PMP22 mutation, deletion of Phe84, was found in one sporadic DSS patient. Our mutation screening results show the necessity of molecular diagnosis, in addition to clinical and electrophysiological evaluation, for proper subtyping of the disease and for accurate genetic counseling.

  15. Spectrum of mutations in CRM-positive and CRM-reduced hemophilia A

    Energy Technology Data Exchange (ETDEWEB)

    McGinniss, M.J.; Kazazian, H.H. Jr.; Bi, L.; Antonarakis, S.E. (John Hopkins Univ., Baltimore, MD (United States)); Hoyer, L.W. (American Red Cross Blood Services, Rockville, MD (United States)); Inaba, H. (Tokyo Medical College (Japan))

    1993-02-01

    Hemophilia A is due to the functional deficiency of factor VIII (FVIII, gene locus F8C). Although half the patients have no detectable FVIII protein in their plasma, the more rare patients ([approximately]5%) have normal levels of a dysfunctional FVIII and are termed cross-reacting material (CRM)-positive. More commonly ([approximately]45%), patients have plasma FVIII protein reduced to an extent roughly comparable to the level of FVIII activity and are designated CRM-reduced. We used denaturing gradient gel electrophoresis to screen for mutations within the F8C gene of 11 patients (6CRM-positive, 5 CRM-reduced) and identified 9 different mutations in 9 patients after analyses of all 26 exons, the promoter region, and the polyadenylation site. Six mutations have not been described previously. Five weree missense (Ser289Leu, Ser558Phe, Val634Ala, Val634Met, Asn1441Lys), and the sixth was a 3-bp deletion ([Delta]Phe652). A review of the literature and the assay of FVIII antigen in 5 hemophilia A patients with previously identified missense mutations from this laboratory yielded a total of 20 other unique CRM-reduced and CRM-positive mutations. Almost all CRM-positive/reduced mutations (24/26) were missense, and many (12/26) occurred at CpG dinucleotides. We examined 19 missense mutation for evolutionary conservation using the portions of the porcine and murine F8C sequences that are known, and 18/19 amino acid residue altered by mutation in these patients wer conserved. Almost 50% of mutations (11/26) clustered in the A2 domain, suggesting that this region is critical for the function of FVIII. The results indicate a nonrandom distribution of mutations and suggest that mutations in a limited number of FVIII regions may cause CRM-positive and CRM-reduced heomphilia A. 48 refs., 1 fig., 1 tab.

  16. Role of PTEN in the Tumor Microenvironment

    Science.gov (United States)

    2008-06-01

    mouse mammary tumors. Oncogene 24, 6870-6876. 11. Park ES, Lee JS, Woo HG, Zhan F, Shih JH, Shaughnessy JD Jr, Frederic Mushinski J. (2007...between: Pearson : p-value PTEN and ETS2-P (T72) -0.577 < 0.001 PTEN and AKT-P (S473) -0.552 < 0.001 ETS2-P (T72) and AKT-P (S473) 0.947 < 0.001 50μm

  17. Molecular genetic analysis of the calcium sensing receptor gene in patients clinically suspected to have familial hypocalciuric hypercalcemia: phenotypic variation and mutation spectrum in a Danish population

    DEFF Research Database (Denmark)

    Nissen, Peter H; Christensen, Signe E; Heickendorff, Lene

    2007-01-01

    hyperparathyroidism and is caused by inactivating mutations in the calcium sensing receptor (CASR) gene. OBJECTIVE: We sought to define the mutation spectrum of the CASR gene in a Danish FHH population and to establish genotype-phenotype relationships regarding the different mutations. DESIGN AND PARTICIPANTS...... calcium concentrations moderately above the upper reference limit, to calcium levels more than 20% above the upper reference limit. Furthermore, the mean plasma PTH concentration was within the normal range in eight of 11 studied mutations, but mild to moderately elevated in families with the mutations p...

  18. Clinical presentation of Griscelli syndrome type 2 and spectrum of RAB27A mutations

    DEFF Research Database (Denmark)

    Meeths, Marie; Bryceson, Yenan T; Rudd, Eva

    2010-01-01

    Griscelli syndrome type 2 (GS2) is an autosomal-recessive immunodeficiency caused by mutations in RAB27A, clinically characterized by partial albinism and haemophagocytic lymphohistocytosis (HLH). We evaluated the frequency of RAB27A mutations in 21 unrelated patients with haemophagocytic syndrom...

  19. Genetic testing in familial AD and FTD: mutation and phenotype spectrum in a Danish cohort

    DEFF Research Database (Denmark)

    Lindquist, S G; Schwartz, M; Batbayli, M

    2009-01-01

    Autosomal dominantly transmitted Alzheimer's disease (AD) and frontotemporal dementia (FTD) are genetically heterogeneous disorders. To date, three genes have been identified in which mutations cause early-onset autosomal dominant inherited AD: APP, PSEN1, and PSEN2. Mutations in two genes...

  20. Expanded Mutational Spectrum in Cohen Syndrome, Tissue Expression, and Transcript Variants of COH1

    NARCIS (Netherlands)

    Seifert, Wenke; Holder-Espinasse, Muriel; Kuehnisch, Jirko; Kahrizi, Kimia; Tzschach, Andreas; Garshasbi, Masoud; Najmabadi, Hossein; Kuss, Andreas Walter; Kress, Wolfram; Laureys, Genevieve; Loeys, Bart; Brilstra, Eva; Mancini, Grazia M. S.; Dollfus, Helene; Dahan, Karin; Apse, Kira; Hennies, Hans Christian; Horn, Denise

    2009-01-01

    Cohen syndrome is characterised by mental retardation, postnatal microcephaly, facial dysmorphism, pigmentary retinopathy, myopia, and intermittent neutropenia. Mutations in COH1 (VPS13B) have been found in patients with Cohen syndrome from diverse ethnic origins. We have carried out mutation analys

  1. RB1 mutation spectrum in a comprehensive nationwide cohort of retinoblastoma patients

    NARCIS (Netherlands)

    Dommering, Charlotte J.; Mol, Berber M.; Moll, Annette C.; Burton, Margaret; Cloos, Jacqueline; Dorsman, Josephine C.; Meijers-Heijboer, Hanne; van der Hout, Annemarie H.

    2014-01-01

    Background Retinoblastoma (Rb) is a childhood cancer of the retina, commonly initiated by biallelic inactivation of the RB1 gene. Knowledge of the presence of a heritable RB1 mutation can help in risk management and reproductive decision making. We report here on RB1 mutation scanning in a unique na

  2. REEP1 Mutation Spectrum and Genotype/Phenotype Correlation in Hereditary Spastic Paraplegia Type 31

    Science.gov (United States)

    Beetz, Christian; Schule, Rebecca; Deconinck, Tine; Tran-Viet, Khanh-Nhat; Zhu, Hui; Kremer, Berry P. H.; Frints, Suzanna G. M.; van Zelst-Stams, Wendy A. G.; Byrne, Paula; Otto, Susanne; Nygren, Anders O. H.; Baets, Jonathan; Smets, Katrien; Ceulemans, Berten; Dan, Bernard; Nagan, Narasimhan; Kassubek, Jan; Klimpe, Sven; Klopstock, Thomas; Stolze, Henning; Smeets, Hubert J. M.; Schrander-Stumpel, Constance T. R. M.; Hutchinson, Michael; van de Warrenburg, Bart P.; Braastad, Corey; Deufel, Thomas; Pericak-Vance, Margaret; Schols, Ludger; de Jonghe, Peter; Zuchner, Stephan

    2008-01-01

    Mutations in the receptor expression enhancing protein 1 (REEP1) have recently been reported to cause autosomal dominant hereditary spastic paraplegia (HSP) type SPG31. In a large collaborative effort, we screened a sample of 535 unrelated HSP patients for "REEP1" mutations and copy number variations. We identified 13 novel and 2 known "REEP1"…

  3. PTEN dephosphorylates AKT to prevent the expression of GLUT1 on plasmamembrane and to limit glucose consumption in cancer cells.

    Science.gov (United States)

    Phadngam, Suratchanee; Castiglioni, Andrea; Ferraresi, Alessandra; Morani, Federica; Follo, Carlo; Isidoro, Ciro

    2016-12-20

    GLUT1 is the facilitative transporter playing the major role in the internalization of glucose. Basally, GLUT1 resides on vesicles located in a para-golgian area, and is translocated onto the plasmamembrane upon activation of the PI3KC1-AKT pathway. In proliferating cancer cells, which demand a high quantity of glucose for their metabolism, GLUT1 is permanently expressed on the plasmamembrane. This is associated with the abnormal activation of the PI3KC1-AKT pathway, consequent to the mutational activation of PI3KC1 and/or the loss of PTEN. The latter, in fact, could antagonize the phosphorylation of AKT by limiting the availability of Phosphatidylinositol (3,4,5)-trisphosphate. Here, we asked whether PTEN could control the plasmamembrane expression of GLUT1 also through its protein-phosphatase activity on AKT. Experiments of co-immunoprecipitation and in vitro de-phosphorylation assay with homogenates of cells transgenically expressing the wild type or knocked-down mutants (lipid-phosphatase, protein-phosphatase, or both) isoforms demonstrated that indeed PTEN physically interacts with AKT and drives its dephosphorylation, and so limiting the expression of GLUT1 at the plasmamembrane. We also show that growth factors limit the ability of PTEN to dephosphorylate AKT. Our data emphasize the fact that PTEN acts in two distinct steps of the PI3k/AKT pathway to control the expression of GLUT1 at the plasmamembrane and, further, add AKT to the list of the protein substrates of PTEN.

  4. Expanding the spectrum of HEXA mutations in Indian patients with Tay–Sachs disease

    Directory of Open Access Journals (Sweden)

    Jayesh Sheth

    2014-01-01

    Full Text Available Tay–Sachs disease is an autosomal recessive neurodegenerative disorder occurring due to impaired activity of β-hexosaminidase-A (EC 3.2.1.52, resulting from the mutation in HEXA gene. Very little is known about the molecular pathology of TSD in Indian children except for a few mutations identified by us. The present study is aimed to determine additional mutations leading to Tay–Sachs disease in nine patients confirmed by the deficiency of β-hexosaminidase-A (C (D175A and c.805G>C (p.G269R in one case; and one small 1 bp deletion c.426delT (p.F142LfsX57 and one splice site mutation c.459+4A>C in the other two cases respectively. None of these mutations were detected in 100 chromosomes from healthy individuals of the same ethnic group. Three previously reported missense mutations, (i c.532C>T (p.R178C, (ii c.964G>T (p.D322Y, and (iii c.1385A>T (p.E462V; two nonsense mutations (i c.709C>T (p.Q237X and (ii c.1528C>T (p.R510X, one 4 bp insertion c.1277_1278insTATC (p.Y427IfsX5 and one splice site mutation c.459+5G>A were also identified in six cases. We observe from this study that novel mutations are more frequently observed in Indian patients with Tay–Sachs disease with clustering of ~73% of disease causing mutations in exons 5 to 12. This database can be used for a carrier rate screening in the larger population of the country.

  5. Expanding the spectrum of HEXA mutations in Indian patients with Tay-Sachs disease.

    Science.gov (United States)

    Sheth, Jayesh; Mistri, Mehul; Datar, Chaitanya; Kalane, Umesh; Patil, Shekhar; Kamate, Mahesh; Shah, Harshuti; Nampoothiri, Sheela; Gupta, Sarita; Sheth, Frenny

    2014-01-01

    Tay-Sachs disease is an autosomal recessive neurodegenerative disorder occurring due to impaired activity of β-hexosaminidase-A (EC 3.2.1.52), resulting from the mutation in HEXA gene. Very little is known about the molecular pathology of TSD in Indian children except for a few mutations identified by us. The present study is aimed to determine additional mutations leading to Tay-Sachs disease in nine patients confirmed by the deficiency of β-hexosaminidase-A (C (D175A) and c.805G>C (p.G269R) in one case; and one small 1 bp deletion c.426delT (p.F142LfsX57) and one splice site mutation c.459+4A>C in the other two cases respectively. None of these mutations were detected in 100 chromosomes from healthy individuals of the same ethnic group. Three previously reported missense mutations, (i) c.532C>T (p.R178C), (ii) c.964G>T (p.D322Y), and (iii) c.1385A>T (p.E462V); two nonsense mutations (i) c.709C>T (p.Q237X) and (ii) c.1528C>T (p.R510X), one 4 bp insertion c.1277_1278insTATC (p.Y427IfsX5) and one splice site mutation c.459+5G>A were also identified in six cases. We observe from this study that novel mutations are more frequently observed in Indian patients with Tay-Sachs disease with clustering of ~ 73% of disease causing mutations in exons 5 to 12. This database can be used for a carrier rate screening in the larger population of the country.

  6. Mutational spectrum of Duchenne muscular dystrophy in Spain: Study of 284 cases.

    Science.gov (United States)

    Vieitez, I; Gallano, P; González-Quereda, L; Borrego, S; Marcos, I; Millán, J M; Jairo, T; Prior, C; Molano, J; Trujillo-Tiebas, M J; Gallego-Merlo, J; García-Barcina, M; Fenollar, M; Navarro, C

    Duchenne muscular dystrophy (DMD) is a severe X-linked recessive neuromuscular disease that affects one in 3500 live-born males. The total absence of dystrophin observed in DMD patients is generally caused by mutations that disrupt the reading frame of the DMD gene, and about 80% of cases harbour deletions or duplications of one or more exons. We reviewed 284 cases of males with a genetic diagnosis of DMD between 2007 and 2014. These patients were selected from 8 Spanish reference hospitals representing most areas of Spain. Multiplex PCR, MLPA, and sequencing were performed to identify mutations. Most of these DMD patients present large deletions (46.1%) or large duplications (19.7%) in the dystrophin gene. The remaining 34.2% correspond to point mutations, and half of these correspond to nonsense mutations. In this study we identified 23 new mutations in DMD: 7 large deletions and 16 point mutations. The algorithm for genetic diagnosis applied by the participating centres is the most appropriate for genotyping patients with DMD. The genetic specificity of different therapies currently being developed emphasises the importance of identifying the mutation appearing in each patient; 38.7% of the cases in this series are eligible to participate in current clinical trials. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Spectrum of oncogenic driver mutations in lung adenocarcinomas from East Asian never smokers.

    Directory of Open Access Journals (Sweden)

    Chenguang Li

    Full Text Available PURPOSE: We previously showed that 90% (47 of 52; 95% CI, 0.79 to 0.96 of lung adenocarcinomas from East Asian never-smokers harbored well-known oncogenic mutations in just four genes: EGFR, HER2, ALK, and KRAS. Here, we sought to extend these findings to more samples and identify driver alterations in tumors negative for these mutations. EXPERIMENTAL DESIGN: We have collected and analyzed 202 resected lung adenocarcinomas from never smokers seen at Fudan University Shanghai Cancer Center. Since mutations were mutually exclusive in the first 52 examined, we determined the status of EGFR, KRAS, HER2, ALK, and BRAF in stepwise fashion as previously described. Samples negative for mutations in these 5 genes were subsequently examined for known ROS1 fusions by RT-PCR and direct sequencing. RESULTS: 152 tumors (75.3% harbored EGFR mutations, 12 (6% had HER2 mutations, 10 (5% had ALK fusions all involving EML4 as the 5' partner, 4 (2% had KRAS mutations, and 2 (1% harbored ROS1 fusions. No BRAF mutation were detected. CONCLUSION: The vast majority (176 of 202; 87.1%, 95% CI: 0.82 to 0.91 of lung adenocarcinomas from never smokers harbor mutant kinases sensitive to available TKIs. Interestingly, patients with EGFR mutant patients tend to be older than those without EGFR mutations (58.3 Vs 54.3, P = 0.016 and patient without any known oncogenic driver tend to be diagnosed at a younger age (52.3 Vs 57.9, P = 0.013. Collectively, these data indicate that the majority of never smokers with lung adenocarcinoma could benefit from treatment with a specific tyrosine kinase inhibitor.

  8. Mutation spectrum of beta-thalassemia among carriers in Birjand and Amirabad village

    Directory of Open Access Journals (Sweden)

    Nasrin Zandi Dashtebayaz

    2016-04-01

    Full Text Available Background and Aim: Thalassemia is considered as the most important monogenic disorders around the world. So far, about 60 mutations of this type have been reported in Iranian patients. Comparison between different provinces of the country reveals that the dispersion of the mutations is significantly various with respect to their types and frequencies. The current study aimed at assessing prevalent molecular mutations in β Thalassemia carriers in Birjand  and Amirabad at the suburb of the city. Materials and Methods: In this descriptive in-vitro study, 34 carriers (15 females and 19 males, who had been identified through marriage screening tests at the health centers in the South Khorasan province were assessed. After obtaining written informed consent of the subjects and completing the respective questionnaires, 2 cc of intravenous blood sample from each subject were collected into EDTA tubes. Salting out and Arms-PCR methods were used for DNA extraction and mutation detection, respectively. Finally, the obtained data was analysed by means of SPSS software (V;19 using Fisher’s test at the significant level of P<0.05. Results: It was found that among five mutations on 68 chromosomes,  IVS 1-5 mutation with 47.1% frequency was the highest; and the mutations of Codon, Fr 8/9 , IVS II-1 5 , and Codon 37/38/39 had the frequency of 17.6%, 8.8%, 5.9% ,and 5.9% respectively. Out of the mutations, 14.7 % .remained undetermined. Conclusion: The mutation patterns obtained in Birjand reveal an outstanding difference with the state of affairs in the north and west of IRAN..High frequency of consanguity marriages between thalassemia carrier individuals indicates the potential reason behind increasing the number of patients with major thalassemia.

  9. Oncogenic microRNA-4534 regulates PTEN pathway in prostate cancer.

    Science.gov (United States)

    Nip, Hannah; Dar, Altaf A; Saini, Sharanjot; Colden, Melissa; Varahram, Shahryari; Chowdhary, Harshika; Yamamura, Soichiro; Mitsui, Yozo; Tanaka, Yuichiro; Kato, Taku; Hashimoto, Yutaka; Shiina, Marisa; Kulkarni, Priyanka; Dasgupta, Pritha; Imai-Sumida, Mitsuho; Tabatabai, Z Laura; Greene, Kirsten; Deng, Guoren; Dahiya, Rajvir; Majid, Shahana

    2016-10-18

    Prostate carcinogenesis involves alterations in several signaling pathways, the most prominent being the PI3K/AKT pathway. This pathway is constitutively active and drives prostate cancer (PCa) progression to advanced metastatic disease. PTEN, a critical tumor and metastasis suppressor gene negatively regulates cell survival, proliferation, migration and angiogenesis via the PI3K/Akt pathway. PTEN is mutated, downregulated/dysfunctional in many cancers and its dysregulation correlates with poor prognosis in PCa. Here, we demonstrate that microRNA-4534 (miR-4534) is overexpressed in PCa and show that miR-4534 is hypermethylated in normal tissues and cell lines compared to PCa tissues/cells. miR-4534 exerts its oncogenic effects partly by downregulating the tumor suppressor PTEN gene. Knockdown of miR-4534 impaired cell proliferation, migration/invasion and induced G0/G1 cell cycle arrest and apoptosis in PCa. Suppression of miR-4534 and its effects on tumor growth was confirmed in a xenograft mouse model. We performed parallel experiments in non-cancer RWPE1 cells by overexpessing miR-4534 followed by functional assays. Overexpression of miR-4534 induced pro-cancerous characteristics in this non-cancer cell line. Statistical analyses revealed that miR-4534 has potential to independently distinguish malignant from normal tissues and positively correlated with poor overall and PSA recurrence free survival. Taken together, our results show that depletion of miR-4534 in PCa induces a tumor suppressor phenotype partly through induction of PTEN. These results have important implications for identifying and defining the role of new PTEN regulators such as microRNAs in prostate tumorigenesis. Understanding aberrantly overexpressed miR-4534 and its downregulation of PTEN will provide mechanistic insight and therapeutic targets for PCa therapy.

  10. MDH2 Stimulated by Estrogen-GPR30 Pathway Down-Regulated PTEN Expression Promoting the Proliferation and Invasion of Cells in Endometrial Cancer

    Directory of Open Access Journals (Sweden)

    Yan Zhuang

    2017-04-01

    Full Text Available PURPOSE: The relationship between endometrial carcinoma and cellular metabolism is unknown. In endometrial cancer, mutation rate of PTEN has been reported very high. Malate dehydrogenase 2 (MDH2 is one of the isoforms of malate dehydrogenase, which is involved in citric acid cycle in mitochondria. Our study aimed to investigate the role MDH2 played in PTEN-regulated endometrial carcinoma. METHODS: To reveal the expression of MDH2 and the co-localization of PTEN and MDH2, immunohistochemistry and immunofluorescent staining were used. Western blot, Real-time PCR, RNA interference and overexpression plasmid DNA transfection were performed to investigate the relationship between PTEN and MDH2 as well as the impact of E2 on the expression of PTEN and MDH2, while CCK8, transwell and flow cytometric analysis were carried out to evaluate the proliferation, migration and invasion and apoptosis of endometrial carcinoma cell lines. RESULTS: Our results demonstrated that as a metabolism related enzyme, MDH2 was overexpressed in endometrial carcinoma tissues and related to the grade of the cancer (P = .038. Western blot, Real-time PCR and immunofluorescent staining revealed MDH2 inhibited the expression of PTEN and was co-localized with PTEN in the cytoplasm of endometrial carcinoma. Proliferation, transwell and apoptosis assay suggested that MDH2 enhanced the proliferation, migration and invasion but inhibited the apoptosis of endometrial cancer cell line through suppressing PTEN. Furthermore, E2 inhibited the expression level of PTEN but enhanced MDH2 via GPR30. CONCLUSIONS: Our study demonstrated that MDH2, stimulated by estrogen, was involved in the development of PTEN-regulated endometrial carcinoma through GPR30-related pathway.

  11. Mutations in ASXL1 are associated with poor prognosis across the spectrum of malignant myeloid diseases

    Directory of Open Access Journals (Sweden)

    Gelsi-Boyer Véronique

    2012-03-01

    Full Text Available Abstract The ASXL1 gene is one of the most frequently mutated genes in malignant myeloid diseases. The ASXL1 protein belongs to protein complexes involved in the epigenetic regulation of gene expression. ASXL1 mutations are found in myeloproliferative neoplasms (MPN, myelodysplastic syndromes (MDS, chronic myelomonocytic leukemia (CMML and acute myeloid leukemia (AML. They are generally associated with signs of aggressiveness and poor clinical outcome. Because of this, a systematic determination of ASXL1 mutational status in myeloid malignancies should help in prognosis assessment.

  12. The Rate and Spectrum of Spontaneous Mutations in Mycobacterium smegmatis, a Bacterium Naturally Devoid of the Postreplicative Mismatch Repair Pathway

    Directory of Open Access Journals (Sweden)

    Sibel Kucukyildirim

    2016-07-01

    Full Text Available Mycobacterium smegmatis is a bacterium that is naturally devoid of known postreplicative DNA mismatch repair (MMR homologs, mutS and mutL, providing an opportunity to investigate how the mutation rate and spectrum has evolved in the absence of a highly conserved primary repair pathway. Mutation accumulation experiments of M. smegmatis yielded a base-substitution mutation rate of 5.27 × 10−10 per site per generation, or 0.0036 per genome per generation, which is surprisingly similar to the mutation rate in MMR-functional unicellular organisms. Transitions were found more frequently than transversions, with the A:T→G:C transition rate significantly higher than the G:C→A:T transition rate, opposite to what is observed in most studied bacteria. We also found that the transition-mutation rate of M. smegmatis is significantly lower than that of other naturally MMR-devoid or MMR-knockout organisms. Two possible candidates that could be responsible for maintaining high DNA fidelity in this MMR-deficient organism are the ancestral-like DNA polymerase DnaE1, which contains a highly efficient DNA proofreading histidinol phosphatase (PHP domain, and/or the existence of a uracil-DNA glycosylase B (UdgB homolog that might protect the GC-rich M. smegmatis genome against DNA damage arising from oxidation or deamination. Our results suggest that M. smegmatis has a noncanonical Dam (DNA adenine methylase methylation system, with target motifs differing from those previously reported. The mutation features of M. smegmatis provide further evidence that genomes harbor alternative routes for improving replication fidelity, even in the absence of major repair pathways.

  13. Role of PTEN in TNFα induced insulin resistance

    Energy Technology Data Exchange (ETDEWEB)

    Bulger, David A. [Departments of Medicine and Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Medicine and Research Services, Veterans Association Medical Center, Memphis, TN 38104 (United States); Wellcome Trust Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ (United Kingdom); National Institute of Diabetes & Digestive & Kidney Disease, National Institutes of Health, Bethesda, MD 20892 (United States); Conley, Jermaine [Medicine and Research Services, Veterans Association Medical Center, Memphis, TN 38104 (United States); Conner, Spencer H.; Majumdar, Gipsy [Departments of Medicine and Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Medicine and Research Services, Veterans Association Medical Center, Memphis, TN 38104 (United States); Solomon, Solomon S., E-mail: ssolomon@uthsc.edu [Departments of Medicine and Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Medicine and Research Services, Veterans Association Medical Center, Memphis, TN 38104 (United States)

    2015-06-05

    Aims/hypothesis: PTEN may play a reversible role in TNFα induced insulin resistance, which has been linked to obesity-associated insulin resistance (IR). Methods: Western blots for PTEN and p-Akt were performed on H-411E liver cells incubated with insulin, TNFα, and in selected experiments VO-OHpic vanadium complex in the presence and absence of PTEN siRNA. Total PTEN was compared to β-actin loading control and p-Akt was compared to total Akt. Results: Western blot and Real Time RT-PCR experiments showed increased PTEN after TNFα treatment (p = 0.04); slightly decreased PTEN after insulin treatment; and slightly increased PTEN after insulin + TNFα treatment. PTEN siRNA markedly inhibited the TNFα-induced increase in PTEN (p < 0.01) without significantly changing the p-Akt levels. The vanadium complex, exhibiting insulin-like effects, also significantly prevented the TNFα-induced increase in PTEN. Combining insulin and VO-OHpic was additive, providing both proof of concept and insight into mechanism. Discussion: The PTEN increase due to TNFα treatment was reversible by both PTEN siRNA knockdown and VO-OHpic treatment. Thus, PTEN is identified as a potential new therapeutic target for reducing IR in Type 2 DM. - Highlights: • TNFα treatment induced a significant increase in PTEN in H-411E liver cells. • PTEN siRNA knockdown prevented this effect. • VO-OHpic (vanadium complex) treatment, like insulin, decreased PTEN protein levels. • Thus, PTEN is identified as a potential therapeutic target in DM Type 2.

  14. A novel mutation in IRF6 resulting in VWS-PPS spectrum disorder with renal aplasia.

    Science.gov (United States)

    de Medeiros, Filipe; Hansen, Lars; Mawlad, Evete; Eiberg, Hans; Asklund, Camilla; Tommerup, Niels; Jakobsen, Linda P

    2008-06-15

    Popliteal pterygium syndrome (PPS) and Van der Woude syndrome (VWS) are caused by mutations in the gene interferon regulatory factor 6 (IRF6). Skeletal, genital malformations and involvement of the skin occur in PPS and orofacial clefting and lip pits occur in both. We report on a patient with unilateral cleft lip and palate, ankyloblepharon, paramedian lip pits, unilateral renal aplasia, and a coronal hypospadias. By sequencing IRF6, we detected a novel missense mutation (Arg339Ile). The other family members were unaffected and had no IRF6 mutations, including the patient's brother who was also born with hypospadias. The patient and his brother were both conceived by in vitro fertilization (IVF). It is discussed whether the renal malformation in the patient is related to the IVF procedure or to the IRF6 mutation.

  15. Higher methylation intensity induced by EBV LMP1 via NF-κB/DNMT3b signaling contributes to silencing of PTEN gene

    Science.gov (United States)

    Lyu, Xiaoming; Jiang, Qiang; Wang, Jianguo; Lu, Juan; Yao, Kaitai; Liu, Kunping; Li, Jinbang; Li, Xin

    2016-01-01

    Phosphatase and tensin homolog (PTEN) is a major tumor suppressor and usually silenced via the deletion, insertion and mutation. We previously discovered its inactivation via aberrant CpG island methylation. Here, we provide further evidence that EBV latent membrane protein 1(LMP1) can induce a higher intensity of DNA methylation at PTEN CpG islands, inactivating PTEN at the cellular and molecular level. Initially, increased methylation intensity of PTEN CpG islands was observed in EBV-infected nasopharyngeal carcinoma (NPC) cells, accompanied by decreased PTEN expression. In NPC tissue samples showing the methylation at PTEN promoter, LMP1 was highly expressed in higher methylation intensity group relative to lower intensity group, and DNA methyltransferase 3b (DNMT3b) expression was positively correlated with LMP1 expression. Moreover, transfection of LMP1 gene into EBV-negative NPC cells demonstrated that LMP1 up-regulated DNMT3b expression, leading to a higher intensity of PTEN CpG island methylation. Mechanistically, computational prediction and luciferase reporter assay identified a functional NF-κB binding site on DNMT3b promoter and the mutated NF-κB binding site abolished LMP1-mediated DNMT3b activation. Chromatin immunoprecipitation displayed that NF-κB p65 subunit constitutively bound to DNMT3b promoter, supporting the activation of DNMT3b by EBV LMP1 via NF-κB signaling. Furthermore, the expression level of DNMT3b was observed to be increased in the nuclei of LMP1-expressing NPC cells, and a NF-κB inhibitor, PDTC, counteracted LMP1-mediated DNMT3b overexpression. Thus, this study first reports that LMP1-mediated NF-κB can up-regulate DNMT3b transcription, thereby leading to relatively higher methylation intensity at PTEN CpG islands, and ultimately silencing major tumor suppressor PTEN. PMID:27223069

  16. Higher methylation intensity induced by EBV LMP1 via NF-κB/DNMT3b signaling contributes to silencing of PTEN gene.

    Science.gov (United States)

    Peng, Hong; Chen, Yuxiang; Gong, Pinggui; Cai, Longmei; Lyu, Xiaoming; Jiang, Qiang; Wang, Jianguo; Lu, Juan; Yao, Kaitai; Liu, Kunping; Li, Jinbang; Li, Xin

    2016-06-28

    Phosphatase and tensin homolog (PTEN) is a major tumor suppressor and usually silenced via the deletion, insertion and mutation. We previously discovered its inactivation via aberrant CpG island methylation. Here, we provide further evidence that EBV latent membrane protein 1(LMP1) can induce a higher intensity of DNA methylation at PTEN CpG islands, inactivating PTEN at the cellular and molecular level. Initially, increased methylation intensity of PTEN CpG islands was observed in EBV-infected nasopharyngeal carcinoma (NPC) cells, accompanied by decreased PTEN expression. In NPC tissue samples showing the methylation at PTEN promoter, LMP1 was highly expressed in higher methylation intensity group relative to lower intensity group, and DNA methyltransferase 3b (DNMT3b) expression was positively correlated with LMP1 expression. Moreover, transfection of LMP1 gene into EBV-negative NPC cells demonstrated that LMP1 up-regulated DNMT3b expression, leading to a higher intensity of PTEN CpG island methylation. Mechanistically, computational prediction and luciferase reporter assay identified a functional NF-κB binding site on DNMT3b promoter and the mutated NF-κB binding site abolished LMP1-mediated DNMT3b activation. Chromatin immunoprecipitation displayed that NF-κB p65 subunit constitutively bound to DNMT3b promoter, supporting the activation of DNMT3b by EBV LMP1 via NF-κB signaling. Furthermore, the expression level of DNMT3b was observed to be increased in the nuclei of LMP1-expressing NPC cells, and a NF-κB inhibitor, PDTC, counteracted LMP1-mediated DNMT3b overexpression. Thus, this study first reports that LMP1-mediated NF-κB can up-regulate DNMT3b transcription, thereby leading to relatively higher methylation intensity at PTEN CpG islands, and ultimately silencing major tumor suppressor PTEN.

  17. Spectrum and frequency of GJB2, GJB6 and SLC26A4 gene mutations among nonsyndromic hearing loss patients in eastern part of India.

    Science.gov (United States)

    Adhikary, Bidisha; Ghosh, Sudakshina; Paul, Silpita; Bankura, Biswabandhu; Pattanayak, Arup Kumar; Biswas, Subhradev; Maity, Biswanath; Das, Madhusudan

    2015-12-01

    Genetically caused nonsyndromic hearing loss is highly heterogeneous. Inspite of this large heterogeneity, mutations in the genes GJB2, GJB6 and SLC26A4 are major contributors. The mutation spectrum of these genes varies among different ethnic groups. Only a handful of studies focused on the altered genetic signature of these genes in different demographic regions of India but never focused on the eastern part of the country. Our study for the first time aimed to characterize the mutation profile of these genes in hearing loss patients of West Bengal state, India. Mutations in GJB2, GJB6 and SLC26A4 genes were screened by bidirectional sequencing from 215 congenital nonsyndromic hearing loss patients. Radiological diagnosis was performed in patients with SLC26A4 mutations by temporal bone CT scan. The study revealed that 4.65% and 6.97% patients had monoallelic and biallelic GJB2 mutations respectively. Six mutations were identified, p.W24X being the most frequent one accounting for 71.05% of the mutated alleles. Mutations in GJB6 including the previously identified deletion mutation (GJB6-D13S1830) were not identified in our study. Further, no patients harbored biallelic mutations in the SLC26A4 gene or the common inner ear malformation Enlarged Vestibular Aqueduct (EVA). The mutation profile of GJB2 in our study is distinct from other parts of India, suggesting that the mutation spectrum of this gene varies with ethnicity and geographical origin. The absence of GJB6 mutations and low frequency of SLC26A4 mutations suggest that additional genetic factors may also contribute to this disease.

  18. Darier disease in Slovenia: spectrum of ATP2A2 mutations and relation to patients' phenotypes.

    Science.gov (United States)

    Godic, Aleksandar; Strazisar, Mojca; Zupan, Andrej; Korosec, Branka; Kansky, Aleksej; Glavac, Damjan

    2010-01-01

    ATP2A2 encodes the sarco/endoplasmic reticulum Ca2+- ATPase (SERCA2) and has been identified as a defective gene in Darier disease (DD). It is an autosomal dominant genodermatosis, which is characterized by loss of adhesion between suprabasal epidermal keratinocytes (acantholysis) and abnormal keratinization (dyskeratosis). We examined 28 Slovenian patients with DD (the cohort of patients represents over 50% of all DD patients in Slovenia) and screened genomic DNA for ATP2A2 mutations and RNA for splice site mutations. We identified 7 different ATP2A2 mutations, 4 of which are novel: A516P, R559G, 544+1del6, and 1762-6del18. We also found two previously described polymorphisms 2741+54 G>A in intron XVIII and 2172 G>A (A724A) in exon 15, with allele frequencies of 64.2% and 11.3%, respectively. The mutations are scattered throughout the gene and affect the actuator, phosphorylation, stalk and transmembrane domains of SERCA2. A P160L mutation in a Slovene patient with severe DD and a history of deafness is another consistent genotype-phenotype correlation. It seems that mutations of the ATP2A2 gene may also play a role in the pathogenesis of deafness, which seems to be a new phenotypic characteristic of DD patients.

  19. Inhibition of transfected PTEN on human colon cancer

    Institute of Scientific and Technical Information of China (English)

    Shou-Shui Xu; Wen-Lu Shen; Song-Ying Ouyang

    2004-01-01

    AIM: To study the inhibitory effect of transfected PTEN on LoVo cells.METHODS: Human PTEN cDNA was transferred into LoVo cells via lipofectin and PTEN mRNA levels and its expression were analyzed by Western blot and flow cytometry. Before or after transfection, the effects of 5-Fu on inhibiting cell proliferation and inducing apoptosis were measured by flow cytometry, DNA bands and MTT.RESULTS: PTEN transfection significantly up-regulated PTEN expression in LoVo cells. 5-Fu inhibited cell proliferation and induced apoptosis in transfected LoVo cells.CONCLUSION: Transfected PTEN can remark ably up-regulate PTEN expression in LoVo cells and promote the apoptosis.PTEN transfection is associated with 5-Fu treatment effect and has a cooperatively cytotoxic effect.

  20. PTEN function: the long and the short of it.

    Science.gov (United States)

    Hopkins, Benjamin D; Hodakoski, Cindy; Barrows, Douglas; Mense, Sarah M; Parsons, Ramon E

    2014-04-01

    Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a phosphatase that is frequently altered in cancer. PTEN has phosphatase-dependent and -independent roles, and genetic alterations in PTEN lead to deregulation of protein synthesis, the cell cycle, migration, growth, DNA repair, and survival signaling. PTEN localization, stability, conformation, and phosphatase activity are controlled by an array of protein-protein interactions and post-translational modifications. Thus, PTEN-interacting and -modifying proteins have profound effects on the tumor suppressive functions of PTEN. Moreover, recent studies identified mechanisms by which PTEN can exit cells, via either exosomal export or secretion, and act on neighboring cells. This review focuses on modes of PTEN protein regulation and ways in which perturbations in this regulation may lead to disease.

  1. Can we accurately report PTEN status in advanced colorectal cancer?

    OpenAIRE

    Hocking, Christopher; Hardingham, Jennifer E.; Broadbridge, Vy; Wrin, Joe; Townsend, Amanda R; Tebbutt, Niall; Cooper, John; Ruszkiewicz, Andrew; Lee, Chee; Price, Timothy J.

    2014-01-01

    Background Loss of phosphatase and tensin homologue (PTEN) function evaluated by loss of PTEN protein expression on immunohistochemistry (IHC) has been reported as both prognostic in metastatic colorectal cancer and predictive of response to anti-EGFR monoclonal antibodies although results remain uncertain. Difficulties in the methodological assessment of PTEN are likely to be a major contributor to recent conflicting results. Methods We assessed loss of PTEN function in 51 colorectal cancer ...

  2. EXPRESSION AND SIGNIFICANCE OF PTEN IN ENDOMETRIAL CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    GE Xiu-jun; LIU Zhi-hui; LI Ying-yong; Gao Rui-ping

    2005-01-01

    Objective: To investigate the expression of PTEN in endometrial carcinoma and its clinical significance. Methods: Reverse transcriptase-polymerase chain reaction and Western-blot methods were used to detect PTEN expression in 28 cases of endometrial carcinoma. Results: mRNA and protein expression levels of PTEN in endometrial carcinomas were significantly lower than those in normal endometrium (P<0.01). Conclusion: PTEN may play an important role in the tumorigenesis of endometrial carcinoma.

  3. PTEN regulates colorectal epithelial apoptosis through Cdc42 signalling

    OpenAIRE

    Deevi, R; A. Fatehullah; Jagan, I; Nagaraju, M; Bingham, V; Campbell, F C

    2011-01-01

    Background: Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) regulation of the Rho-like GTPase Cdc42 has a central role in epithelial polarised growth, but effects of this molecular network on apoptosis remain unclear. Methods: To investigate the role of Cdc42 in PTEN-dependent cell death, we used flow cytometry, in vitro pull-down assays, poly(ADP ribose) polymerase (PARP) cleavage and other immunoblots in isogenic PTEN-expressing and -deficient colorectal cells (HCT116PTEN+/...

  4. Plumbagin Inhibits Prostate Carcinogenesis in Intact and Castrated PTEN Knockout Mice via Targeting PKCε, Stat3, and Epithelial-to-Mesenchymal Transition Markers.

    Science.gov (United States)

    Hafeez, Bilal Bin; Fischer, Joseph W; Singh, Ashok; Zhong, Weixiong; Mustafa, Ala; Meske, Louise; Sheikhani, Mohammad Ozair; Verma, Ajit Kumar

    2015-05-01

    Prostate cancer continues to remain the most common cancer and the second leading cause of cancer-related deaths in American males. The Pten deletions and/or mutations are frequently observed in both primary prostate cancers and metastatic prostate tissue samples. Pten deletion in prostate epithelium in mice results in prostatic intraepithelial neoplasia (PIN), followed by progression to invasive adenocarcinoma. The Pten conditional knockout mice [(Pten-loxp/loxp:PB-Cre4(+)) (Pten-KO)] provide a unique preclinical model to evaluate agents for efficacy for both the prevention and treatment of prostate cancer. We present here for the first time that dietary plumbagin, a medicinal plant-derived naphthoquinone (200 or 500 ppm) inhibits tumor development in intact as well as castrated Pten-KO mice. Plumbagin has shown no signs of toxicity at either of these doses. Plumbagin treatment resulted in a decrease expression of PKCε, AKT, Stat3, and COX2 compared with the control mice. Plumbagin treatment also inhibited the expression of vimentin and slug, the markers of epithelial-to-mesenchymal transition (EMT) in prostate tumors. In summary, the results indicate that dietary plumbagin inhibits growth of both primary and castration-resistant prostate cancer (CRPC) in Pten-KO mice, possibly via inhibition of PKCε, Stat3, AKT, and EMT markers (vimentin and slug), which are linked to the induction and progression of prostate cancer.

  5. Functional analysis helps to define KCNC3 mutational spectrum in Dutch ataxia cases.

    Directory of Open Access Journals (Sweden)

    Anna Duarri

    Full Text Available Spinocerebellar ataxia type 13 (SCA13 is an autosomal dominantly inherited neurodegenerative disorder of the cerebellum caused by mutations in the voltage gated potassium channel KCNC3. To identify novel pathogenic SCA13 mutations in KCNC3 and to gain insights into the disease prevalence in the Netherlands, we sequenced the entire coding region of KCNC3 in 848 Dutch cerebellar ataxia patients with familial or sporadic origin. We evaluated the pathogenicity of the identified variants by co-segregation analysis and in silico prediction followed by biochemical and electrophysiological studies. We identified 19 variants in KCNC3 including 2 non-coding, 11 missense and 6 synonymous variants. Two missense variants did not co-segregate with the disease and were excluded as potentially disease-causing mutations. We also identified the previously reported p.R420H and p.R423H mutations in our cohort. Of the remaining 7 missense variants, functional analysis revealed that 2 missense variants shifted Kv3.3 channel activation to more negative voltages. These variations were associated with early disease onset and mild intellectual disability. Additionally, one other missense variant shifted channel activation to more positive voltages and was associated with spastic ataxic gait. Whereas, the remaining missense variants did not change any of the channel characteristics. Of these three functional variants, only one variant was in silico predicted to be damaging and segregated with disease. The other two variants were in silico predicted to be benign and co-segregation analysis was not optimal or could only be partially confirmed. Therefore, we conclude that we have identified at least one novel pathogenic mutation in KCNC3 that cause SCA13 and two additionally potential SCA13 mutations. This leads to an estimate of SCA13 prevalence in the Netherlands to be between 0.6% and 1.3%.

  6. Axenfeld-Rieger syndrome and spectrum of PITX2 and FOXC1 mutations

    DEFF Research Database (Denmark)

    Tümer, Zeynep; Bach-Holm, Daniella

    2009-01-01

    Axenfeld-Rieger syndrome (ARS) is a rare autosomal dominant disorder, which encompasses a range of congential malformations affecting the anterior segment of the eye. ARS shows genetic heterogeneity and mutations of the two genes, PITX2 and FOXC1, are known to be associated with the pathogenesis....... There are several excellent reviews dealing with the complexity of the phenotype and genotype of ARS. In this study, we will attempt to give a brief review of the clinical features and the relevant diagnostic approaches, together with a detailed review of published PITX2 and FOXC1 mutations....

  7. The spectrum of ABCC8 mutations in Norwegian patients with congenital hyperinsulinism of infancy

    DEFF Research Database (Denmark)

    Sandal, T; Laborie, L B; Brusgaard, K

    2009-01-01

    Potassium channels in the plasma membrane of the pancreatic beta cells are critical in maintaining glucose homeostasis by responding to ATP and coupling metabolic changes to insulin secretion. These channels consist of subunits denoted the sulfonylurea receptor SUR1 and the inwardly rectifying ion...... channel KIR6.2, which are encoded by the genes ABCC8 and KCNJ11, respectively. Activating mutations in the subunit genes can result in monogenic diabetes, whereas inactivating mutations are the most common cause of congenital hyperinsulinism of infancy (CHI). Twenty-six Norwegian probands with CHI were...

  8. The clinical spectrum of mutations in L1, a neuronal cell adhesion molecule

    Energy Technology Data Exchange (ETDEWEB)

    Fransen, E.; Vits, L.; Van Camp, G.; Willems, P.J. [Univ. of Antwerp (Belgium)

    1996-07-12

    Mutations in the gene encoding the neuronal cell adhesion molecule L1 are responsible for several syndromes with clinical overlap, including X-linked hydrocephalus (XLH, HSAS), MASA (mental retardation, aphasia, shuffling gait, adducted thumbs) syndrome, complicated X-linked spastic paraplegia (SP 1), X-linked mental retardation-clasped thumb (MR-CT) syndrome, and some forms of X-linked agenesis of the corpus callosum (ACC). We review 34 L1 mutations in patients with these phenotypes. 22 refs., 3 figs., 4 tabs.

  9. Exploring the Hypersensitivity of PTEN Deleted Prostate Cancer Stem Cells to WEE1 Tyrosine Kinase Inhibitors

    Science.gov (United States)

    2015-12-01

    deletion Inhibitors/drugs ABL1 4% SAC, 2% AML Stomach adenocarcinoma (SAC), Acute myeloid leukemias (AML) Amplifications and missense mutations, Gene fusion...Rassool,F.V. (2013) Targeting abnormal DNA double-strand break repair in tyrosine kinase inhibitor-resistant chronic myeloid leukemias . Oncogene, 32, 1784...with the WEE1 inhibitor, MK1775. In contrast to LNCaP, MK1775 induces a differentiation like phenotype in the PTEN wildtype prostate cancer derived

  10. Methodological aspects of the molecular and histological study of prostate cancer: focus on PTEN.

    Science.gov (United States)

    Ugalde-Olano, Aitziber; Egia, Ainara; Fernández-Ruiz, Sonia; Loizaga-Iriarte, Ana; Zuñiga-García, Patricia; Garcia, Stephane; Royo, Félix; Lacasa-Viscasillas, Isabel; Castro, Erika; Cortazar, Ana R; Zabala-Letona, Amaia; Martín-Martín, Natalia; Arruabarrena-Aristorena, Amaia; Torrano-Moya, Verónica; Valcárcel-Jiménez, Lorea; Sánchez-Mosquera, Pilar; Caro-Maldonado, Alfredo; González-Tampan, Jorge; Cachi-Fuentes, Guido; Bilbao, Elena; Montero, Rocío; Fernández, Sara; Arrieta, Edurne; Zorroza, Kerman; Castillo-Martín, Mireia; Serra, Violeta; Salazar, Eider; Macías-Cámara, Nuria; Tabernero, Jose; Baselga, Jose; Cordón-Cardo, Carlos; Aransay, Ana M; Villar, Amaia Del; Iovanna, Juan L; Falcón-Pérez, Juan M; Unda, Miguel; Bilbao, Roberto; Carracedo, Arkaitz

    2015-05-01

    Prostate cancer is among the most frequent cancers in men, and despite its high rate of cure, the high number of cases results in an elevated mortality worldwide. Importantly, prostate cancer incidence is dramatically increasing in western societies in the past decades, suggesting that this type of tumor is exquisitely sensitive to lifestyle changes. Prostate cancer frequently exhibits alterations in the PTEN gene (inactivating mutations or gene deletions) or at the protein level (reduced protein expression or altered sub-cellular compartmentalization). The relevance of PTEN in this type of cancer is further supported by the fact that the sole deletion of PTEN in the murine prostate epithelium recapitulates many of the features of the human disease. In order to study the molecular alterations in prostate cancer, we need to overcome the methodological challenges that this tissue imposes. In this review we present protocols and methods, using PTEN as proof of concept, to study different molecular characteristics of prostate cancer. Copyright © 2015. Published by Elsevier Inc.

  11. The spectrum of mutations in UBE3A causing Angelman syndrome

    NARCIS (Netherlands)

    P. Fang (Ping); E. Lev-Lehman (Efrat); T.-F. Tsai (Ting-Fen); N. Matsuura (Nobuo); S. Benton (Sabrina); J.S. Sutcliffe (James); S.L. Christian (Susan); T. Kubota (Takeo); D.J.J. Halley (Dicky); E.J. Meijers-Heijboer (Hanne); S. Langlois (Sylvie); J.M. Graham (John); J. Beuten (Joke); P.J. Willems (Patrick); A.M. Ledbetter (Andrew M.); L. Beaudet (Lucille)

    1999-01-01

    textabstractAngelman syndrome (AS) is characterized by mental retardation, absence of speech, seizures and motor dysfunction. AS is caused by maternal deletions for chromosome 15q11-q13, paternal uniparental disomy (UPD), imprinting defects or loss-of-function mutations in the UBE3A locus which

  12. Mutational spectrum and phenotypes in Danish families with hereditary angioedema because of C1 inhibitor deficiency

    DEFF Research Database (Denmark)

    Bygum, A; Fagerberg, C R; Ponard, D

    2011-01-01

    Hereditary angioedema (HAE), type I and II, is an autosomal dominant disease with deficiency of functional C1 inhibitor protein causing episodic swellings of skin, mucosa and viscera. HAE is a genetically heterogeneous disease with more than 200 different mutations in the SERPING1 gene. A genotype...

  13. The Spectrum of α-Thalassemia Mutations in Kermanshah Province, West Iran.

    Science.gov (United States)

    Alibakhshi, Reza; Mehrabi, Masomeh; Omidniakan, Leila; Shafieenia, Samaneh

    2015-01-01

    Thalassemia is a hereditary blood disorder that results from genetic defects causing deficient synthesis of hemoglobin (Hb) polypeptide chains. Although thalassemia mostly affects developing countries, there is limited knowledge of its accurate frequency and distribution in these regions. Knowing the prevalence of thalassemia and the frequency of responsible mutations is therefore an important step in the prevention and control program as well as treatment strategies. α-Thalassemia (α-thal) is prevalent in Middle East Asian populations, including Iran. In this study, 678 unrelated α-thal carriers, attending the Kermanshah Medical Genetics Laboratory, Kermanshah, Iran, were investigated for α-globin gene mutations by multiplex polymerase chain reaction (PCR) and direct sequencing. The most common mutation among our patients was -α(3.7) (rightward) (60.9%) deletion, which is also known to occur in high frequencies in other parts of Iran, in Southeast Asia and Mediterranean countries. Other prevalent α-thal mutations were α(-5 nt) (10.6%), α(polyA4) (9.9%), α(polyA6) (3.7%), - -(MED) (3.2%), -α(4.2) (leftward) (3.1%) deletion and codon 59 (Hb Adana; HBA1: c.179 G > A) (2.5%). These comprehensive new data are useful for establishing a screening strategy for the effective control of α-thal in Kermanshah Province.

  14. Phenotypic spectrum of dynamin 2 mutations in Charcot-Marie-Tooth neuropathy.

    NARCIS (Netherlands)

    Claeys, K.G.; Zuchner, S.; Kennerson, M.; Berciano, J.; Garcia, A.; Verhoeven, K.; Storey, E.; Merory, J.R.; Bienfait, H.M.; Lammens, M.M.Y.; Nelis, E.; Baets, J.; Vriendt, E. De; Berneman, Z.N.; Veuster, I. De; Vance, J.M.; Nicholson, G.; Timmerman, V.; Jonghe, P. de

    2009-01-01

    Dominant intermediate Charcot-Marie-Tooth neuropathy type B is caused by mutations in dynamin 2. We studied the clinical, haematological, electrophysiological and sural nerve biopsy findings in 34 patients belonging to six unrelated dominant intermediate Charcot-Marie-Tooth neuropathy type B familie

  15. Phenotypic spectrum of dynamin 2 mutations in Charcot-Marie-Tooth neuropathy

    NARCIS (Netherlands)

    K.G. Claeys; S. Züchner; M. Kennerson; J. Berciano; A. Garcia; K. Verhoeven; E. Storey; J.R. Merory; H.M.E. Bienfait; M. Lammens; E. Nelis; J. Baets; E. de Vriendt; Z.N. Berneman; I. de Veuster; J.M. Vance; G. Nicholson; V. Timmerman; P. de Jonghe

    2009-01-01

    Dominant intermediate Charcot-Marie-Tooth neuropathy type B is caused by mutations in dynamin 2. We studied the clinical, haematological, electrophysiological and sural nerve biopsy findings in 34 patients belonging to six unrelated dominant intermediate Charcot-Marie-Tooth neuropathy type B familie

  16. Spectrum of mutations in the renin-angiotensin system genes in autosomal recessive renal tubular dysgenesis

    DEFF Research Database (Denmark)

    Gribouval, Olivier; Morinière, Vincent; Pawtowski, Audrey

    2012-01-01

    , pulmonary hypoplasia, and refractory arterial hypotension. The disease is linked to mutations in the genes encoding several components of the renin-angiotensin system (RAS): AGT (angiotensinogen), REN (renin), ACE (angiotensin-converting enzyme), and AGTR1 (angiotensin II receptor type 1). Here, we review...

  17. Mutation Spectrum of EYS in Spanish Patients with Autosomal Recessive Retinitis Pigmentosa

    Science.gov (United States)

    Barragán, Isabel; Borrego, Salud; Pieras, Juan Ignacio; Pozo, María González-del; Santoyo, Javier; Ayuso, Carmen; Baiget, Montserrat; Millan, José M; Mena, Marcela; El-Aziz, Mai M Abd; Audo, Isabelle; Zeitz, Christina; Littink, Karin W; Dopazo, Joaquín; Bhattacharya, Shomi S; Antiñolo, Guillermo

    2010-01-01

    Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal dystrophies characterised ultimately by the loss of photoreceptor cells. We have recently identified a new gene (EYS) encoding an ortholog of Drosophila spacemaker (spam) as a commonly mutated gene in autosomal recessive RP. In the present study, we report the identification of 73 sequence variations in EYS, of which 28 are novel. Of these, 42.9% (12/28) are very likely pathogenic, 17.9% (5/28) are possibly pathogenic, whereas 39.3% (11/28) are SNPs. In addition, we have detected 3 pathogenic changes previously reported in other populations. We are also presenting the characterisation of EYS homologues in different species, and a detailed analysis of the EYS domains, with the identification of an interesting novel feature: a putative coiled-coil domain. Majority of the mutations in the arRP patients have been found within the domain structures of EYS. The minimum observed prevalence of distinct EYS mutations in our group of patients is of 15.9% (15/94), confirming a major involvement of EYS in the pathogenesis of arRP in the Spanish population. Along with the detection of three recurrent mutations in Caucasian population, our hypothesis of EYS being the first prevalent gene in arRP has been reinforced in the present study. © 2010 Wiley-Liss, Inc. PMID:21069908

  18. Clinical spectrum of mutations in SCN1A gene: severe myoclonic epilepsy in infancy and related epilepsies.

    Science.gov (United States)

    Fujiwara, Tateki

    2006-08-01

    Severe myoclonic epilepsy in infancy (SMEI) manifests very frequent generalized tonic-clonic seizures (GTC), accompanied by myoclonic seizures, absences and partial seizures [Dravet, C., 1978. Les épilepsie grave de l'enfant. Vie Méd. 8, 543-548; Dravet, C., Roger, J., Bureau, M., Dalla Bernardina, B., 1982. Myoclonic epilepsies in childhood. In: Akimoto, H., Kazamatsuri, H., Seino, M., Ward, A. (Eds.), Advances in Epileptology. Raven Press, New York, pp. 135-140; Dravet, C., Bureau, M., Oguni, H., Fukuyama, Y., Cokar, O., 2002. Severe myoclonic epilepsy of infancy (Dravet syndrome). In: Roger, J., Bureau, M., Dravet, C., Genton, P., Tassinari, C.A., Wolf, P. (Eds.), Epileptic Syndromes in Infancy, Childhood and Adolescence, third ed. John Libbey, London, pp. 81-103]. However, there is a group of severe epilepsy that has many characteristics common to SMEI except for myoclonic seizures. We reported this group of epilepsy as intractable childhood epilepsy with GTC (ICEGTC) [Watanabe, M., Fujiwara, T., Yagi, K., Seino, M., Higashi, T., 1989b. Intractable childhood epilepsy with generalized tonic-clonic seizures. J. Jpn. Epil. Soc. 7, 96-105 (in Japanese); Fujiwara, T., Watanabe, M., Takahashi, Y., Higashi, T., Yagi, K., Seino, M., 1992. Long-term course of childhood epilepsy with intractable grand mal seizures. Jpn. J. Psychiatr. Neurol. 46, 297-302]. Recently, mutations of the neuronal voltage-gated sodium channel alphasubunit type 1 gene (SCN1A) have been found in SMEI [Claes, L., Del-Favero, J., Ceulemans, B., Lagae, L., Van Broeckhoven, C., De Jonghe, P., 2001, De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am. J. Hum. Genet. 68, 327-1332]. Mutations in SCN1A are found in both SMEI and ICEGTC at high rates of 70-81%. The loci of the mutations seen in ICEGTC are quite similar to those found in SMEI, suggesting a genotypic continuity between these entities. The clinical spectrum of epilepsies harboring SCN1A

  19. A functional dissection of PTEN N-terminus : Implications in PTEN subcellular targeting and tumor suppressor activity

    NARCIS (Netherlands)

    Gil, Anabel; Rodríguez-Escudero, Isabel; Stumpf, Miriam; Molina, María; Cid, Víctor J.; Pulido, Rafael

    2015-01-01

    Spatial regulation of the tumor suppressor PTEN is exerted through alternative plasma membrane, cytoplasmic, and nuclear subcellular locations. The N-terminal region of PTEN is important for the control of PTEN subcellular localization and function. It contains both an active nuclear localization

  20. PTEN insufficiency modulates ER+ breast cancer cell cycle progression and increases cell growth in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Chiang KC

    2015-08-01

    Full Text Available Kun-Chun Chiang,1,4 Huang-Yang Chen,1 Shu-Yuan Hsu,2 Jong-Hwei S Pang,3 Shang-Yu Wang,4 Jun-Te Hsu,4 Ta-Sen Yeh,4 Li-Wei Chen,5 Sheng-Fong Kuo,6 Chi-Chin Sun,7 Jim-Ming Lee,1 Chun-Nan Yeh,4 Horng-Heng Juang21Department of General Surgery, Chang Gung Memorial Hospital, Chang Gung University, Keelung, 2Department of Anatomy, 3Graduate Institute of Clinical Medical Sciences, 4Department of General Surgery, 5Department of Gastroenterology, 6Department of Endocrinology and Metabolism, 7Department of Ophthalmology, Chang Gung Memorial Hospital, Chang Gung University, Keelung, Taiwan, Republic of China Abstract: Phosphatase and tensin homolog (PTEN, a well-known tumor suppressor gene and frequently mutated or lost in breast cancer, possesses the negative regulation function over the PI3K/Akt/mTOR pathway. PTEN insufficiency has been associated with advanced breast cancer and poor prognosis of breast cancer patients. Recently, target therapies aimed at PI3K/Akt/mTOR pathway to treat breast cancer have got popularity. However, the exact effect of PTEN on breast cancer cells is still not well understood. This study demonstrated that PTEN knockdown in MCF-7 cells strengthened the downstream gene expressions, including p-Akt, p-ERK1/2, p-mTOR, p-p70s6k, and p-GSK3ß. PTEN knockdown MCF-7 cells had increased cell growth and Ki-67 expression. Further Western blot demonstrated that p27 was repressed obviously with p21 slightly inhibited and CDK1, 2, 4, 6, cyclin A, and Cdc25C were upregulated in MCF-7 PTEN knockdown cells, leading to the higher growth rate. More importantly, PTEN knockdown MCF-7 cells had higher tumorigenesis and tumor growth in vivo. From our current work, we provided more detailed PTEN-mediated mechanisms to stimulate ER+ breast cancer cell growth. Our result may pave the way for further target therapy development used alone or in combination with other drugs for ER+ breast cancer with PTEN insufficiency.Keywords: PTEN, breast cancer, MCF-7

  1. Spectrum of mutations of the LPL gene identified in Italy in patients with severe hypertriglyceridemia.

    Science.gov (United States)

    Rabacchi, Claudio; Pisciotta, Livia; Cefalù, Angelo B; Noto, Davide; Fresa, Raffaele; Tarugi, Patrizia; Averna, Maurizio; Bertolini, Stefano; Calandra, Sebastiano

    2015-07-01

    Monogenic hypertriglyceridemia (HTG) may result from mutations in some genes which impair the intravascular lipolysis of triglyceride (TG)-rich lipoproteins mediated by the enzyme Lipoprotein lipase (LPL). Mutations in the LPL gene are the most frequent cause of monogenic HTG (familial chylomicronemia) with recessive transmission. The LPL gene was resequenced in 149 patients with severe HTG (TG > 10 mmol/L) and 106 patients with moderate HTG (TG > 4.5 and <10 mmol/L) referred to tertiary Lipid Clinics in Italy. In the group of severe HTG, 26 patients (17.4%) were homozygotes, 9 patients (6%) were compound heterozygotes and 15 patients (10%) were simple heterozygotes for rare LPL gene variants. Single or multiple episodes of pancreatitis were recorded in 24 (48%) of these patients. There was no difference in plasma TG concentration between patients with or without a positive history of pancreatitis. Among moderate HTG patients, six patients (5.6%) were heterozygotes for rare LPL variants; two of them had suffered from pancreatitis. Overall 36 rare LPL variants were found, 15 of which not reported previously. Systematic analysis of close relatives of mutation carriers led to the identification of 44 simple heterozygotes (plasma TG 3.2 ± 4.1 mmol/L), none of whom had a positive history of pancreatitis. The prevalence of rare LPL variants in patients with severe or moderate HTG, referred to tertiary lipid clinics, was 50/149 (33.5%) and 6/106 (5.6%), respectively. Systematic analysis of relatives of mutation carriers is an efficient way to identify heterozygotes who may develop severe HTG. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Evidence that in xeroderma pigmentosum variant cells, which lack DNA polymerase eta, DNA polymerase iota causes the very high frequency and unique spectrum of UV-induced mutations.

    Science.gov (United States)

    Wang, Yun; Woodgate, Roger; McManus, Terrence P; Mead, Samantha; McCormick, J Justin; Maher, Veronica M

    2007-04-01

    Xeroderma pigmentosum variant (XPV) patients have normal DNA excision repair, yet are predisposed to develop sunlight-induced cancer. They exhibit a 25-fold higher than normal frequency of UV-induced mutations and very unusual kinds (spectrum), mainly transversions. The primary defect in XPV cells is the lack of functional DNA polymerase (Pol) eta, the translesion synthesis DNA polymerase that readily inserts adenine nucleotides opposite photoproducts involving thymine. The high frequency and striking difference in kinds of UV-induced mutations in XPV cells strongly suggest that, in the absence of Pol eta, an abnormally error-prone polymerase substitutes. In vitro replication studies of Pol iota show that it replicates past 5'T-T3' and 5'T-U3' cyclobutane pyrimidine dimers, incorporating G or T nucleotides opposite the 3' nucleotide. To test the hypothesis that Pol iota causes the high frequency and abnormal spectrum of UV-induced mutations in XPV cells, we identified an unlimited lifespan XPV cell line expressing two forms of Pol iota, whose frequency of UV-induced mutations is twice that of XPV cells expressing one form. We eliminated expression of one form and compared the parental cells and derivatives for the frequency and kinds of UV-induced mutations. All exhibited similar sensitivity to the cytotoxicity of UV((254 nm)), and the kinds of mutations induced were identical, but the frequency of mutations induced in the derivatives was reduced to UV-induced mutations, and ultimately their malignant transformation.

  3. PTEN function, the long and the short of it

    Science.gov (United States)

    Hopkins, Benjamin D.; Hodakoski, Cindy; Barrows, Doug; Mense, Sarah; Parsons, Ramon E.

    2014-01-01

    Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a phosphatase that is frequently altered in cancer. PTEN has phosphatase-dependent and - independent roles; and genetic alterations in PTEN lead to deregulation of protein synthesis, cell cycle, migration, growth, DNA repair, and survival signaling. PTEN localization, stability, conformation, and phosphatase activity are controlled by an array of protein-protein interactions and post-translational modifications. Thus, PTEN-interacting and modifying proteins have profound effects on PTEN’s tumor suppressive functions. Moreover, recent studies identified mechanisms by which PTEN can exit cells, either via exosomal export or secretion, and act on neighboring cells. This review focuses on modes of PTEN protein regulation and ways in which perturbations in this regulation may lead to disease. PMID:24656806

  4. Mutational spectrum of the SPG4 (SPAST and SPG3A (ATL1 genes in Spanish patients with hereditary spastic paraplegia

    Directory of Open Access Journals (Sweden)

    Ribacoba Renne

    2010-10-01

    Full Text Available Abstract Background Hereditary Spastic Paraplegias (HSP are characterized by progressive spasticity and weakness of the lower limbs. At least 45 loci have been identified in families with autosomal dominant (AD, autosomal recessive (AR, or X-linked hereditary patterns. Mutations in the SPAST (SPG4 and ATL1 (SPG3A genes would account for about 50% of the ADHSP cases. Methods We defined the SPAST and ATL1 mutational spectrum in a total of 370 unrelated HSP index cases from Spain (83% with a pure phenotype. Results We found 50 SPAST mutations (including two large deletions in 54 patients and 7 ATL1 mutations in 11 patients. A total of 33 of the SPAST and 3 of the ATL1 were new mutations. A total of 141 (31% were familial cases, and we found a higher frequency of mutation carriers among these compared to apparently sporadic cases (38% vs. 5%. Five of the SPAST mutations were predicted to affect the pre-mRNA splicing, and in 4 of them we demonstrated this effect at the cDNA level. In addition to large deletions, splicing, frameshifting, and missense mutations, we also found a nucleotide change in the stop codon that would result in a larger ORF. Conclusions In a large cohort of Spanish patients with spastic paraplegia, SPAST and ATL1 mutations were found in 15% of the cases. These mutations were more frequent in familial cases (compared to sporadic, and were associated with heterogeneous clinical manifestations.

  5. Mutational Spectrum in Holoprosencephaly Shows That FGF is a New Major Signaling Pathway.

    Science.gov (United States)

    Dubourg, Christèle; Carré, Wilfrid; Hamdi-Rozé, Houda; Mouden, Charlotte; Roume, Joëlle; Abdelmajid, Benmansour; Amram, Daniel; Baumann, Clarisse; Chassaing, Nicolas; Coubes, Christine; Faivre-Olivier, Laurence; Ginglinger, Emmanuelle; Gonzales, Marie; Levy-Mozziconacci, Annie; Lynch, Sally-Ann; Naudion, Sophie; Pasquier, Laurent; Poidvin, Amélie; Prieur, Fabienne; Sarda, Pierre; Toutain, Annick; Dupé, Valérie; Akloul, Linda; Odent, Sylvie; de Tayrac, Marie; David, Véronique

    2016-12-01

    Holoprosencephaly (HPE) is the most common congenital cerebral malformation in humans, characterized by impaired forebrain cleavage and midline facial anomalies. It presents a high heterogeneity, both in clinics and genetics. We have developed a novel targeted next-generation sequencing (NGS) assay and screened a cohort of 257 HPE patients. Mutations with high confidence in their deleterious effect were identified in approximately 24% of the cases and were held for diagnosis, whereas variants of uncertain significance were identified in 10% of cases. This study provides a new classification of genes that are involved in HPE. SHH, ZIC2, and SIX3 remain the top genes in term of frequency with GLI2, and are followed by FGF8 and FGFR1. The three minor HPE genes identified by our study are DLL1, DISP1, and SUFU. Here, we demonstrate that fibroblast growth factor signaling must now be considered a major pathway involved in HPE. Interestingly, several cases of double mutations were found and argue for a polygenic inheritance of HPE. Altogether, it supports that the implementation of NGS in HPE diagnosis is required to improve genetic counseling.

  6. Mutation Spectrum in the CACNA1A Gene in 49 Patients with Episodic Ataxia.

    Science.gov (United States)

    Sintas, Cèlia; Carreño, Oriel; Fernàndez-Castillo, Noèlia; Corominas, Roser; Vila-Pueyo, Marta; Toma, Claudio; Cuenca-León, Ester; Barroeta, Isabel; Roig, Carles; Volpini, Víctor; Macaya, Alfons; Cormand, Bru

    2017-05-31

    Episodic ataxia is an autosomal dominant ion channel disorder characterized by episodes of imbalance and incoordination. The disease is genetically heterogeneous and is classified as episodic ataxia type 2 (EA2) when it is caused by a mutation in the CACNA1A gene, encoding the α1A subunit of the P/Q-type voltage-gated calcium channel Cav2.1. The vast majority of EA2 disease-causing variants are loss-of-function (LoF) point changes leading to decreased channel currents. CACNA1A exonic deletions have also been reported in EA2 using quantitative approaches. We performed a mutational screening of the CACNA1A gene, including the promoter and 3'UTR regions, in 49 unrelated patients diagnosed with episodic ataxia. When pathogenic variants were not found by sequencing, we performed a copy number variant (CNV) analysis to screen for duplications or deletions. Overall, sequencing screening allowed identification of six different point variants (three nonsense and three missense changes) and two coding indels, one of them found in two unrelated patients. Additionally, CNV analysis identified a deletion in a patient spanning exon 35 as a result of a recombination event between flanking intronic Alu sequences. This study allowed identification of potentially pathogenic alterations in our sample, five of them novel, which cover 20% of the patients (10/49). Our data suggest that most of these variants are disease-causing, although functional studies are required.

  7. ICF syndrome mutations cause a broad spectrum of biochemical defects in DNMT3B-mediated de novo DNA methylation.

    Science.gov (United States)

    Moarefi, Amir H; Chédin, Frédéric

    2011-06-24

    The DNMT3B de novo DNA methyltransferase (DNMT) plays a major role in establishing DNA methylation patterns in early mammalian development, but its catalytic mechanism remains poorly characterized. Here, we provide a comprehensive biochemical analysis of human DNMT3B function through the characterization of a series of site-directed DNMT3B variants associated with immunodeficiency, centromere instability, and facial anomalies (ICF) syndrome. Our data reveal several novel and important aspects of DNMT3B function. First, DNMT3B, unlike DNMT3A, requires a DNA cofactor in order to stably bind to S-adenosyl-l-methionine (SAM), suggesting that it proceeds according to an ordered catalytic scheme. Second, ICF mutations cause a broad spectrum of biochemical defects in DNMT3B function, including defects in homo-oligomerization, SAM binding, SAM utilization, and DNA binding. Third, all tested ICF mutations, including the A766P and R840Q variants, result in altered catalytic properties without interfering with DNMT3L-mediated stimulation; this indicates that DNMT3L is not involved in the pathogenesis of ICF syndrome. Finally, our study reveals a novel level of coupling between substrate binding, oligomerization, and catalysis that is likely conserved within the DNMT3 family of enzymes.

  8. Genotypic and clinical spectrum of self-improving collodion ichthyosis: ALOX12B, ALOXE3, and TGM1 mutations in Scandinavian patients

    DEFF Research Database (Denmark)

    Vahlquist, Anders; Bygum, Anette; Gånemo, Agneta

    2010-01-01

    Infants born with autosomal recessive congenital ichthyosis (ARCI) are often encapsulated in a collodion membrane, which shows a lamellar or erythrodermic type of ichthyosis upon shedding. However, some babies show a nearly normal underlying skin after several weeks, a phenotype called "self......-healing collodion baby" (SHCB). Mutations in two genes, TGM1 and ALOX12B, have previously been implicated in the etiology of SHCB, but the full genotypic spectrum remains to be determined. DNA sequencing in 11 Swedish and 4 Danish SHCB patients showed ALOX12B mutations in eight cases, ALOXE3 mutations in three...

  9. Genotypic and Clinical Spectrum of Self-Improving Collodion Ichthyosis: ALOX12B, ALOXE3, and TGM1 Mutations in Scandinavian Patients

    DEFF Research Database (Denmark)

    Vahlquist, Anders; Bygum, Anette; Gånemo, Agneta

    2009-01-01

    Infants born with autosomal recessive congenital ichthyosis (ARCI) are often encapsulated in a collodion membrane, which shows a lamellar or erythrodermic type of ichthyosis upon shedding. However, some babies show a nearly normal underlying skin after several weeks, a phenotype called "self......-healing collodion baby" (SHCB). Mutations in two genes, TGM1 and ALOX12B, have previously been implicated in the etiology of SHCB, but the full genotypic spectrum remains to be determined. DNA sequencing in 11 Swedish and 4 Danish SHCB patients showed ALOX12B mutations in eight cases, ALOXE3 mutations in three...

  10. In Vivo Spectrum of UVC-induced Mutation in Mouse Skin Epidermis May Reflect the Cytosine Deamination Propensity of Cyclobutane Pyrimidine Dimers.

    Science.gov (United States)

    Ikehata, Hironobu; Mori, Toshio; Yamamoto, Masayuki

    2015-11-01

    Although ultraviolet radiation (UVR) has a genotoxicity for inducing skin cancers, the skin may tolerate UVC component because the epidermal layer prevents this short wavelength range from passing through. Here, UVC genotoxicity for mouse skin was evaluated in terms of DNA damage formation and mutagenicity. UVC induced UVR photolesions and mutations remarkably in the epidermis but poorly in the dermis, confirming the barrier ability of the epidermis against shorter UVR wavelengths. Moreover, the epidermis itself responded to UVC mutagenicity with mutation induction suppression, which suppressed the mutant frequencies to a remarkably low, constant level regardless of UVC dose. The mutation spectrum observed in UVC-exposed epidermis showed a predominance of UV-signature mutation, which occurred frequently in 5'-TCG-3', 5'-TCA-3' and 5'-CCA-3' contexts. Especially, for the former two contexts, the mutations recurred at several sites with more remarkable recurrences at the 5'-TCG-3' sites. Comparison of the UVC mutation spectrum with those observed in longer UVR wavelength ranges led us to a mechanism that explains why the sequence context preference of UV-signature mutation changes according to the wavelength, which is based on the difference in the mCpG preference of cyclobutane pyrimidine dimer (CPD) formation among UVR ranges and the sequence context-dependent cytosine deamination propensity of CPD.

  11. MUC1 positive, Kras and Pten driven mouse gynecologic tumors replicate human tumors and vary in survival and nuclear grade based on anatomical location.

    Science.gov (United States)

    Tirodkar, Tejas S; Budiu, Raluca A; Elishaev, Esther; Zhang, Lixin; Mony, Jyothi T; Brozick, Joan; Edwards, Robert P; Vlad, Anda M

    2014-01-01

    Activating mutations of Kras oncogene and deletions of Pten tumor suppressor gene play important roles in cancers of the female genital tract. We developed here new preclinical models for gynecologic cancers, using conditional (Cre-loxP) mice with floxed genetic alterations in Kras and Pten. The triple transgenic mice, briefly called MUC1KrasPten, express human MUC1 antigen as self and carry a silent oncogenic KrasG12D and Pten deletion mutation. Injection of Cre-encoding adenovirus (AdCre) in the ovarian bursa, oviduct or uterus activates the floxed mutations and initiates ovarian, oviductal, and endometrial cancer, respectively. Anatomical site-specific Cre-loxP recombination throughout the genital tract of MUC1KrasPten mice leads to MUC1 positive genital tract tumors, and the development of these tumors is influenced by the anatomical environment. Endometrioid histology was consistently displayed in all tumors of the murine genital tract (ovaries, oviducts, and uterus). Tumors showed increased expression of MUC1 glycoprotein and triggered de novo antibodies in tumor bearing hosts, mimicking the immunobiology seen in patients. In contrast to the ovarian and endometrial tumors, oviductal tumors showed higher nuclear grade. Survival for oviduct tumors was significantly lower than for endometrial tumors (p = 0.0015), yet similar to survival for ovarian cancer. Oviducts seem to favor the development of high grade tumors, providing preclinical evidence in support of the postulated role of fallopian tubes as the originating site for high grade human ovarian tumors.

  12. Analysis of PTEN, BRAF and PI3K status for determination of benefit from cetuximab therapy in metastatic colorectal cancer patients refractory to chemotherapy with wild-type KRAS.

    Science.gov (United States)

    Tural, Deniz; Batur, Sebnem; Erdamar, Sibel; Akar, Emre; Kepil, Nuray; Mandel, Nil Molinas; Serdengeçti, Süheyla

    2014-02-01

    We investigated predictive values of BRAF, PI3K and PTEN in cetuximab responses in KRAS wild-type (+) chemotherapy refractory, metastatic colorectal cancer (CRC) patients. Primary tumour tissues of 41 KRAS wild-type mCRC patients receiving cetuximab-based chemotherapy were investigated for PI3K, PTEN, KRAS and BRAF mutations. Progression-free survival (PFS) and overall survival (OS) periods were calculated with Kaplan-Meier method and the Cox proportional hazards model was used. PTEN and PI3K expressions were 63 and 42 %, respectively. BRAF mutation was observed as 9.8 % among patients. Tumours with BRAF mutation had statistically lower response rates (RR) for cetuximab-based treatment than tumours with BRAF wild type (0 vs. 58 %, p = 0.02). PTEN expressing tumours had statistically higher RR for cetuximab-based treatment than tumours with PTEN loss (42 vs. 12 %, p = 0.04). PI3K expression had worse significant effect on cetuximab RR than PI3K non-expressed tumours (15 vs. 44 %, p = 0.023). Median PFS was significantly longer in patients with PTEN expression (14 months) than in patients with PTEN loss (5 months) (HR, 0.4; p = 0.028). Median PFS was significantly longer in patients with PI3K non-expression (15.2 months) than in patients with PI3K expression (4.1 months) (HR, 0.31; p = 0.001). Significant difference in PFS and OS between patients with BRAF mutated and BRAF wild-type tumours was not detected. However, patients with PTEN expression had significantly longer OS (15.1 months) than patients with PTEN loss tumour (9.9 months) (HR, 0.34; p = 0.008). Patients without PI3K expression had significantly longer OS (18.2 months) than patients with PI3K expression (10.1 months) (HR, 0.27; p = 0.001). Multivariate analyses revealed that PTEN expression (HR, 0.48; p = 0.02) and absence of PI3K expression (HR, 0.2; p = 0.001) were independent prognostic factors for increased PFS. Similarly, PTEN overexpression (HR, 0.62; p = 0.03) and absence of PI3K expression (HR, 0

  13. PTEN status in advanced colorectal cancer treated with cetuximab

    Science.gov (United States)

    Negri, F V; Bozzetti, C; Lagrasta, C A; Crafa, P; Bonasoni, M P; Camisa, R; Pedrazzi, G; Ardizzoni, A

    2009-01-01

    Background: Loss of phosphatase and tensin homologue deleted in chromosome 10 (PTEN) function in advanced colorectal cancer (CRC) may represent one of the resistance mechanisms to cetuximab by interfering with the epidermal growth factor receptor signal transduction pathway. Methods: PTEN expression tested by indirect immunofluorescence was evaluated both on primary (n=43) and on metastatic (n=24) sites in CRC patients treated with cetuximab. Results: The loss of PTEN expression tested on metastatic sites was negatively associated with response (100% progressive disease (PD) in PTEN-negative cases vs 30% PD in PTEN-positive cases; P<0.05), PFS (0.8 vs 8.2 months; P<0.001) and OS (2.9 vs 14.2 months; P<0.001). Conclusion: A potential role of PTEN in the anti-tumour activity of cetuximab could be hypothesised. PMID:19953097

  14. Applications of the method of high resolution melting analysis for diagnosis of Leber's disease and the three primary mutation spectrum of LHON in the Han Chinese population.

    Science.gov (United States)

    Cui, Guanglin; Ding, Hu; Xu, Yujun; Li, Bin; Wang, Dao Wen

    2013-01-01

    Current screening methods, such as single strand conformational polymorphism (SSCP), denaturing high performance liquid chromatography (dHPLC) and direct DNA sequencing that are used for detecting mutation in Leber's hereditary optic neuropathy (LHON) subjects are time consuming and costly. Here we tested high-resolution melt (HRM) analysis for mtDNA primary mutations in LHON patients. In this study, we applied the high resolution melting (HRM) technology to screen mtDNA primary mutations in 50 LHON patients from their peripheral blood. In order to evaluate the reliability of this technique, we compared the results obtained by HRM and direct mtDNA sequencing. We also investigated the spectrum of three most common mtDNA mutations implicated in LHON in the Han Chinese population. The results showed HRM analysis differentiated all of the mtDNA primary mutations and identified 4 additional mtDNA mutations from 50 patients in the blind study. The prevalence of three primary mutations were 11778G>A (87.9%), 14484T>C (6.5%) and 3460G>A (1.7%) in the Han Chinese population. In conclusion, HRM analysis is a rapid, reliable, and low-cost tool for detecting mtDNA primary mutations and has practical applications in molecular genetics.

  15. Low-energy (30 keV) carbon ion induced mutation spectrum in the LacZ{alpha} gene of M13mp18 double-stranded DNA

    Energy Technology Data Exchange (ETDEWEB)

    Wang Quan; Zhang Gang; Du Yanhua; Zhao Yong; Qiu Guanying

    2003-07-25

    Double-stranded M13mp18 DNA was irradiated with 30 keV carbon ions in dry state under vacuum to investigate the low-energy heavy ion induced mutation spectra. When the irradiated DNA was used to transfect Escherichia coli JM105, 3.6-5.7-fold increases in mutation frequency were observed, in contrast to the spontaneous group. Sequences of the 92 induced mutants showed that the carbon ions in this study could induce an interesting mutation spectrum in the lacZ{alpha} gene. One-base mutations (96.8%) and base pair substitutions (56.4%) were predominant, most of which involved G:C base pairs (90.6%), especially G:C {yields} T:A transversions (49.6%) and G:C {yields} A:T transitions (39.6%). This is similar to the spectra induced by {gamma}-rays in the same ds M13, wild type E. coli system. We also found a considerable amount of carbon ion induced one-base deletion (38.5%) and the mutation sites distribution on the target lacZ{alpha} gene was obviously non-random. We compared this study with previous data employing {gamma}-rays to discuss the possible causes of the mutation spectrum.

  16. Muscular dystrophies and myopathies: the spectrum of mutated genes in the Czech Republic.

    Science.gov (United States)

    Stehlíková, K; Skálová, D; Zídková, J; Haberlová, J; Voháňka, S; Mazanec, R; Mrázová, L; Vondráček, P; Ošlejšková, H; Zámečník, J; Honzík, T; Zeman, J; Magner, M; Šišková, D; Langová, M; Gregor, V; Godava, M; Smolka, V; Fajkusová, L

    2017-03-01

    Inherited neuromuscular disorder (NMD) is a wide term covering different genetic disorders affecting muscles, nerves, and neuromuscular junctions. Genetic and clinical heterogeneity is the main drawback in a routine gene-by-gene diagnostics. We present Czech NMD patients with a genetic cause identified using targeted next-generation sequencing (NGS) and the spectrum of these causes. Overall 167 unrelated patients presenting NMD falling into categories of muscular dystrophies, congenital muscular dystrophies, congenital myopathies, distal myopathies, and other myopathies were tested by targeted NGS of 42 known NMD-related genes. Pathogenic or probably pathogenic sequence changes were identified in 79 patients (47.3%). In total, 37 novel and 51 known disease-causing variants were detected in 23 genes. In addition, variants of uncertain significance were suspected in 7 cases (4.2%), and in 81 cases (48.5%) sequence changes associated with NMD were not found. Our results strongly indicate that for molecular diagnostics of heterogeneous disorders such as NMDs, targeted panel testing has a high-clinical yield and should therefore be the preferred first-tier approach. Further, we show that in the genetic diagnostic practice of NMDs, it is necessary to take into account different types of inheritance including the occurrence of an autosomal recessive disorder in two generations of one family. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Clinical features andMUT gene mutation spectrum in Chinese patients with isolated methylmalonic acidemia:identifi cation of ten novel allelic variants

    Institute of Scientific and Technical Information of China (English)

    Lian-Shu Han; Zhuo Huang; Feng Han; Jun Ye; Wen-Juan Qiu; Hui-Wen Zhang; Yu Wang; Zhu-Wen Gong; Xue-Fan Gu

    2015-01-01

    Background: This study aims to studyMUT gene mutation spectrum in Chinese patients with isolated methylmalonic academia (MMA) and their clinical features for the potential genotype-phenotype correlation. Methods: Forty-three patients were diagnosed with isolated MMA by elevated blood propionylcarnitine, propionylcarnitine to acetylcarnitine ratio, and urine methylmalonate without hyperhomocysteinemia. The MUT gene was amplifi ed by polymerase chain reaction and directly sequenced. Those patients with at least one variant allele were included. The novel missense mutations were assessed by bioinformatic analysis and screened against alleles sequenced from 50 control participants. Results: Among the 43 patients, 38 had typical clinical presentations, and the majority (30/38) experienced early-onset MMA. Eight patients died and seven were lost to follow-up. Twenty patients had poor outcomes and eight showed normal development. The 43 identifi edMUT gene mutations had at least one variant allele, whereas 35 had two mutant alleles. Of the 33 mutations reported before, eight recurrent mutations were identified in 32 patients, and c.729_730insTT (p.D244Lfs*39) was the most common (12/78) in the mutant alleles. Of the 10 novel mutations, six were missense mutations and four were premature termination codon mutations. The six novel missense mutations seemed to be pathogenic. Conclusions: A total of 10 novelMUT mutations were detected in the Chinese population. c.729_730insTT (p.D244Lfs*39) was the most frequent mutation. A genotype-phenotype correlation could not be found, but the genotypic characterization indicated the need of genetic counseling for MMA patients and early prenatal diagnoses for high-risk families.

  18. PTEN stabilizes TOP2A and regulates the DNA decatenation.

    Science.gov (United States)

    Kang, Xi; Song, Chang; Du, Xiao; Zhang, Cong; Liu, Yu; Liang, Ling; He, Jinxue; Lamb, Kristy; Shen, Wen H; Yin, Yuxin

    2015-12-10

    PTEN is a powerful tumor suppressor that antagonizes the cytoplasmic PI3K-AKT pathway and suppresses cellular proliferation. PTEN also plays a role in the maintenance of genomic stability in the nucleus. Here we report that PTEN facilitates DNA decatenation and controls a decatenation checkpoint. Catenations of DNA formed during replication are decatenated by DNA topoisomerase II (TOP2), and this process is actively monitored by a decatenation checkpoint in G2 phase. We found that PTEN deficient cells form ultra-fine bridges (UFBs) during anaphase and these bridges are generated as a result of insufficient decatenation. We show that PTEN is physically associated with a decatenation enzyme TOP2A and that PTEN influences its stability through OTUD3 deubiquitinase. In the presence of PTEN, ubiquitination of TOP2A is inhibited by OTUD3. Deletion or deficiency of PTEN leads to down regulation of TOP2A, dysfunction of the decatenation checkpoint and incomplete DNA decatenation in G2 and M phases. We propose that PTEN controls DNA decatenation to maintain genomic stability and integrity.

  19. PTEN Interacts with Histone H1 and Controls Chromatin Condensation

    Directory of Open Access Journals (Sweden)

    Zhu Hong Chen

    2014-09-01

    Full Text Available Chromatin organization and dynamics are integral to global gene transcription. Histone modification influences chromatin status and gene expression. PTEN plays multiple roles in tumor suppression, development, and metabolism. Here, we report on the interplay of PTEN, histone H1, and chromatin. We show that loss of PTEN leads to dissociation of histone H1 from chromatin and decondensation of chromatin. PTEN deletion also results in elevation of histone H4 acetylation at lysine 16, an epigenetic marker for chromatin activation. We found that PTEN and histone H1 physically interact through their C-terminal domains. Disruption of the PTEN C terminus promotes the chromatin association of MOF acetyltransferase and induces H4K16 acetylation. Hyperacetylation of H4K16 impairs the association of PTEN with histone H1, which constitutes regulatory feedback that may reduce chromatin stability. Our results demonstrate that PTEN controls chromatin condensation, thus influencing gene expression. We propose that PTEN regulates global gene transcription profiling through histones and chromatin remodeling.

  20. Spectrum of cognitive impairment in Korean ALS patients without known genetic mutations.

    Directory of Open Access Journals (Sweden)

    Seong-il Oh

    Full Text Available BACKGROUND: Cognitive impairment is associated with a negative prognosis in amyotrophic lateral sclerosis (ALS, as well as with clinical specificity. We investigate neuropsychological function in ALS patients without known genetic mutations in a Korean tertiary clinic. METHODS: Three hundred and eighteen patients were enrolled in a prospective longitudinal cohort from September 2008 to February 2012. At the time of diagnosis of sporadic ALS, we carried out genetic and comprehensive neuropsychological tests on all patients, and collected demographic and clinical characteristics. Six cognitive domains, namely executive function, attention, language, calculation, visuospatial function and memory were evaluated. ANOVA and t-tests were used to assess differences in clinical characteristics and neuropsychological parameters between sporadic ALS patients. The Kaplan-Meier method and Cox proportional hazard model were used for survival analysis. RESULTS: One hundred and sixty-six patients were categorized into five subtypes: normal cognition (ALS pure, cognitive impairment (ALSci, behavioral impairment (ALSbi, frontotemporal dementia (ALS-FTD, and other types of dementia. Seventy patients (70/166, 42.2% were cognitively or behaviorally impaired. Among the impaired patients, eight (8/166, 4.8% had FTD-type dementia and one (1/166, 0.6% was Alzheimer's disease-type. The ALS patients with cognitive impairment (ALSci and with FTD (ALS-FTD were more severely impaired in executive function, attention, language and memory than the cognitively intact ALS patients (ALS pure. In a survival analysis, ALSci (β = 1.925, p = 0.025 and ALS-FTD groups (β = 4.150, p = 0.019 tended to have shorter survival than the ALS pure group. CONCLUSIONS: About half of ALS patients without known genetic variation have cognitive or behavioral impairment. ALS patients with cognitive abnormalities, especially FTD, have a poorer prognosis than those without cognitive impairment. In

  1. Dependence of mutation spectrum on physiological state of Pen. Chrysogenum cells. Auxotrophic mutants induced with UV rays at various stages of DNA replication

    Energy Technology Data Exchange (ETDEWEB)

    Zakharova, G.M.; Bartoshevich, Yu.Eh.; Lebed, Eh.S.; Domracheva, A.G.

    1981-01-01

    The effect of UV-rays on non-activated and activated conidia of penicillin producers Pen, chryrogenum, strain 39, has been studied. It has been established that 2 doses of UV-rays - 4000 and 6000 erg/mm/sup 2/ - induce in non-activated conidia approximately equal quantity of mutations with broken synthesis of amino acids and nitrous bases of nucleic acids. The spectrum of auxotrophic mutations induced during the DNA replication changes depending on the mutagen dose and replication stage. No distinct periodicity in the mutation yield has been observed. Schemes of the induction of mutations during the DNA replication under the effect of both doses of UV-rays have been made.

  2. Spectrum of mutations in the ATP binding domain of ATP7B gene of Wilson Disease in a regional Indian cohort.

    Science.gov (United States)

    Guggilla, Sreenivasa Rao; Senagari, Jalandhar Reddy; Rao, P N; Madireddi, Sujatha

    2015-09-10

    Wilson disease is an autosomal recessive disorder of abnormal copper accumulation in the liver, brain, kidney and cornea, resulting in hepatic and neurological abnormalities, which results from impaired ATP7B protein function due to mutations in candidate ATP7B gene, till date more than 500 disease causing mutations were found. In India most disease causing mutations were identified in ATP-BD. DNA samples of the 101 WD cases and 100 control population were analyzed for mutations. 11 mutations were identified in 57 chromosomes. Three novel mutations, c.3310T>A (p.Cys1104Ser), c.3337C>A (p.Leu1113Met) on exon 15 and c.3877G>A (p.Glu1293Lys) on exon 18 were identified for the first time in the ATP7B gene. Two mutations, c.3121C>T (p.Arg1041Trp) and c.3128T>C (p.Leu1043Pro) on exon 14 were discovered for the first time in Indian Wilson disease patients. Four previously reported mutations c.3008C>T, c.3029A>G on exon 13, c.3182G>A on exon 14 and c.3809A>G on exon 18 from South India were also found in this study. Our research has enriched the spectrum of mutations of the ATP7B gene in the south Indian population. The detection of new mutations in the ATP7B gene can aid in genetic counseling and clinical or/prenatal diagnosis.

  3. Clinical and molecular genetic spectrum of autosomal dominant Emery-Dreifuss muscular dystrophy due to mutations of the lamin A/C gene.

    Science.gov (United States)

    Bonne, G; Mercuri, E; Muchir, A; Urtizberea, A; Bécane, H M; Recan, D; Merlini, L; Wehnert, M; Boor, R; Reuner, U; Vorgerd, M; Wicklein, E M; Eymard, B; Duboc, D; Penisson-Besnier, I; Cuisset, J M; Ferrer, X; Desguerre, I; Lacombe, D; Bushby, K; Pollitt, C; Toniolo, D; Fardeau, M; Schwartz, K; Muntoni, F

    2000-08-01

    Emery-Dreifuss muscular dystrophy (EDMD) is characterized by early contractures of the elbows and Achilles tendons, slowly progressive muscle wasting and weakness, and life-threatening cardiomyopathy with conduction blocks. We recently identified LMNA encoding two nuclear envelope proteins, lamins A and C, to be implicated in the autosomal dominant form of EDMD. Here, we report on the variability of the phenotype and spectrum of LMNA mutations in 53 autosomal dominant EDMD patients (36 members of 6 families and 17 sporadic cases). Twelve of the 53 patients showed cardiac involvement exclusively, although the remaining 41 all showed muscle weakness and contractures. We were able to identify a common phenotype among the patients with skeletal muscle involvement, consisting of humeroperoneal wasting and weakness, scapular winging, rigidity of the spine, and elbow and Achilles tendon contractures. The disease course was generally slow, but we observed either a milder phenotype characterized by late onset and a mild degree of weakness and contractures or a more severe phenotype with early presentation and a rapidly progressive course in a few cases. Mutation analysis identified 18 mutations in LMNA (i.e., 1 nonsense mutation, 2 deletions of a codon, and 15 missense mutations). All the mutations were distributed between exons 1 and 9 in the region of LMNA that is common to lamins A and C. LMNA mutations arose de novo in 76% of the cases; 2 of these de novo mutations were typical hot spots, and 2 others were identified in 2 unrelated cases. There was no clear correlation between the phenotype and type or localization of the mutations within the gene. Moreover, a marked inter- and intra-familial variability in the clinical expression of LMNA mutations exists, ranging from patients expressing the full clinical picture of EDMD to those characterized only by cardiac involvement, which points toward a significant role of possible modifier genes in the course of this disease

  4. The molecular basis of familial hypercholesterolemia in Lebanon: spectrum of LDLR mutations and role of PCSK9 as a modifier gene.

    Science.gov (United States)

    Abifadel, Marianne; Rabès, Jean-Pierre; Jambart, Sélim; Halaby, Georges; Gannagé-Yared, Marie-Hélène; Sarkis, Antoine; Beaino, Ghada; Varret, Mathilde; Salem, Nabiha; Corbani, Sandra; Aydénian, Hermine; Junien, Claudine; Munnich, Arnold; Boileau, Catherine

    2009-07-01

    Autosomal dominant hypercholesterolemia (ADH), a major risk for coronary heart disease, is associated with mutations in the genes encoding the low-density lipoproteins receptor (LDLR), its ligand apolipoprotein B (APOB) or PCSK9 (Proprotein Convertase Subtilin Kexin 9). Familial hypercholesterolemia (FH) caused by mutation in the LDLR gene is the most frequent form of ADH. The incidence of FH is particularly high in the Lebanese population presumably as a result of a founder effect. In this study we characterize the spectrum of the mutations causing FH in Lebanon: we confirm the very high frequency of the LDLR p.Cys681X mutation that accounts for 81.5 % of the FH Lebanese probands recruited and identify other less frequent mutations in the LDLR. Finally, we show that the p.Leu21dup, an in frame insertion of one leucine to the stretch of 9 leucines in exon 1 of PCSK9, known to be associated with lower LDL-cholesterol levels in general populations, is also associated with a reduction of LDL-cholesterol levels in FH patients sharing the p.C681X mutation in the LDLR. Thus, by studying for the first time the impact of PCSK9 polymorphism on LDL-cholesterol levels of FH patients carrying a same LDLR mutation, we show that PCSK9 might constitute a modifier gene in familial hypercholesterolemia.

  5. Mutations in blaKPC-3 that confer ceftazidime-avibactam resistance encode novel KPC-3 variants that function as extended-spectrum β-lactamases.

    Science.gov (United States)

    Haidar, Ghady; Clancy, Cornelius J; Shields, Ryan K; Hao, Binghua; Cheng, Shaoji; Nguyen, M Hong

    2017-02-21

    We identified four blaKPC-3 mutations in ceftazidime-avibactam resistant clinical Klebsiella pneumoniae isolates, corresponding to D179Y, T243M, D179Y/T243M, and EL165 KPC-3 variants. Using site-directed mutagenesis and transforming vectors into Escherichia coli, we conclusively demonstrated that mutant blaKPC-3 encoded enzymes that functioned as extended-spectrum β-lactamases; mutations directly conferred higher MICs of ceftazidime-avibactam MICs, and decreased MICs of carbapenems and other β-lactams. Impact was strongest for the D179Y mutant, highlighting the importance of the KPC Ω-loop.

  6. Hypoxia-induced modulation of PTEN activity and EMT phenotypes in lung cancers.

    Science.gov (United States)

    Kohnoh, Takashi; Hashimoto, Naozumi; Ando, Akira; Sakamoto, Koji; Miyazaki, Shinichi; Aoyama, Daisuke; Kusunose, Masaaki; Kimura, Motohiro; Omote, Norihito; Imaizumi, Kazuyoshi; Kawabe, Tsutomu; Hasegawa, Yoshinori

    2016-01-01

    Persistent hypoxia stimulation, one of the most critical microenvironmental factors, accelerates the acquisition of epithelial-mesenchymal transition (EMT) phenotypes in lung cancer cells. Loss of phosphatase and tensin homologue deleted from chromosome 10 (PTEN) expression might accelerate the development of lung cancer in vivo. Recent studies suggest that tumor microenvironmental factors might modulate the PTEN activity though a decrease in total PTEN expression and an increase in phosphorylation of the PTEN C-terminus (p-PTEN), resulting in the acquisition of the EMT phenotypes. Nevertheless, it is not known whether persistent hypoxia can modulate PTEN phosphatase activity or whether hypoxia-induced EMT phenotypes are negatively regulated by the PTEN phosphatase activity. We aimed to investigate hypoxia-induced modulation of PTEN activity and EMT phenotypes in lung cancers. Western blotting was performed in five lung cancer cell lines to evaluate total PTEN expression levels and the PTEN activation. In a xenograft model of lung cancer cells with endogenous PTEN expression, the PTEN expression was evaluated by immunohistochemistry. To examine the effect of hypoxia on phenotypic alterations in lung cancer cells in vitro, the cells were cultured under hypoxia. The effect of unphosphorylated PTEN (PTEN4A) induction on hypoxia-induced EMT phenotypes was evaluated, by using a Dox-dependent gene expression system. Lung cancer cells involving the EMT phenotypes showed a decrease in total PTEN expression and an increase in p-PTEN. In a xenograft model, loss of PTEN expression was observed in the tumor lesions showing tissue hypoxia. Persistent hypoxia yielded an approximately eight-fold increase in the p-PTEN/PTEN ratio in vitro. PTEN4A did not affect stabilization of hypoxia-inducible factor 1α. PTEN4A blunted hypoxia-induced EMT via inhibition of β-catenin translocation into the cytoplasm and nucleus. Our study strengthens the therapeutic possibility that

  7. MicroRNA-22 promotes cell survival upon UV radiation by repressing PTEN

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Guangyun [Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN (United States); Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, TN (United States); Jilin Province Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun (China); Shi, Yuling [Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN (United States); Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, TN (United States); Wu, Zhao-Hui, E-mail: zwu6@uthsc.edu [Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN (United States); Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, TN (United States)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer miR-22 is induced in cells treated with UV radiation. Black-Right-Pointing-Pointer ATM is required for miR-22 induction in response to UV. Black-Right-Pointing-Pointer miR-22 targets 3 Prime -UTR of PTEN to repress its expression in UV-treated cells. Black-Right-Pointing-Pointer Upregulated miR-22 inhibits apoptosis in cells exposed to UV. -- Abstract: DNA damage response upon UV radiation involves a complex network of cellular events required for maintaining the homeostasis and restoring genomic stability of the cells. As a new class of players involved in DNA damage response, the regulation and function of microRNAs in response to UV remain poorly understood. Here we show that UV radiation induces a significant increase of miR-22 expression, which appears to be dependent on the activation of DNA damage responding kinase ATM (ataxia telangiectasia mutated). Increased miR-22 expression may result from enhanced miR-22 maturation in cells exposed to UV. We further found that tumor suppressor gene phosphatase and tensin homolog (PTEN) expression was inversely correlated with miR-22 induction and UV-induced PTEN repression was attenuated by overexpression of a miR-22 inhibitor. Moreover, increased miR-22 expression significantly inhibited the activation of caspase signaling cascade, leading to enhanced cell survival upon UV radiation. Collectively, these results indicate that miR-22 is an important player in the cellular stress response upon UV radiation, which may promote cell survival via the repression of PTEN expression.

  8. Genetic and cell biological aspects of PTEN in prostate cancer

    NARCIS (Netherlands)

    P.W. van Duijn (Petra)

    2008-01-01

    textabstractThe dual specific phosphatase PTEN (Phosphatase and TENsin homolog deleted on chromosome 10) is one of the most extensively studied proteins of the last decade. It was the first phosphatase identified as a tumor suppressor and in sporadic cancers PTEN is one of the most frequently altere

  9. MyosinV controls PTEN function and neuronal cell size.

    Science.gov (United States)

    van Diepen, Michiel T; Parsons, Maddy; Downes, C Peter; Leslie, Nicholas R; Hindges, Robert; Eickholt, Britta J

    2009-10-01

    The tumour suppressor PTEN can inhibit cell proliferation and migration as well as control cell growth, in different cell types. PTEN functions predominately as a lipid phosphatase, converting PtdIns(3,4,5)P(3) to PtdIns(4,5)P(2), thereby antagonizing PI(3)K (phosphoinositide 3-kinase) and its established downstream effector pathways. However, much is unclear concerning the mechanisms that regulate PTEN movement to the cell membrane, which is necessary for its activity towards PtdIns(3,4,5)P(3) (Refs 3, 4, 5). Here we show a requirement for functional motor proteins in the control of PI3K signalling, involving a previously unknown association between PTEN and myosinV. FRET (Förster resonance energy transfer) measurements revealed that PTEN interacts directly with myosinV, which is dependent on PTEN phosphorylation mediated by CK2 and/or GSK3. Inactivation of myosinV-transport function in neurons increased cell size, which, in line with known attributes of PTEN-loss, required PI(3)K and mTor. Our data demonstrate a myosin-based transport mechanism that regulates PTEN function, providing new insights into the signalling networks regulating cell growth.

  10. Pten function in zebrafish : Anything but a fish story

    NARCIS (Netherlands)

    Stumpf, Miriam; Choorapoikayil, Suma; den Hertog, J.

    2015-01-01

    Zebrafish is an excellent model system for the analysis of gene function. We and others use zebrafish to investigate the function of the tumor suppressor, Pten, in tumorigenesis and embryonic development. Zebrafish have two pten genes, ptena and ptenb. The recently identified N-terminal extension of

  11. PTEN expression in patients with carcinoma of the cervix and its association with p53, Ki-67 and CD31

    OpenAIRE

    2014-01-01

    PURPOSE: To investigate protein expression and mutations in phosphatase and tensin homolog (PTEN) in patients with stage IB cervical squamous cell carcinoma (CSCC) and the association with clinical-pathologic features, tumor p53 expression, cell proliferation and angiogenesis.METHODS:Women with stage IB CSCC (n=20 - Study Group) and uterine myoma (n=20 - Control Group), aged 49.1±1.7 years (mean±standard deviation, range 27-78 years), were prospectively evaluated. Patients with cervical cance...

  12. PTEN-PDZ domain interactions: Binding of PTEN to PDZ domains of PTPN13.

    NARCIS (Netherlands)

    Sotelo, N.S.; Schepens, J.T.G.; Valiente, M.; Hendriks, W.J.A.J.; Pulido, R.

    2015-01-01

    Protein modular interactions mediated by PDZ domains are essential for the establishment of functional protein networks controlling diverse cellular functions. The tumor suppressor PTEN possesses a C-terminal PDZ-binding motif (PDZ-BM) that is recognized by a specific set of PDZ domains from scaffol

  13. Molecular spectrum of KRAS, BRAF, and PIK3CA gene mutation: determination of frequency, distribution pattern in Indian colorectal carcinoma.

    Science.gov (United States)

    Bisht, Swati; Ahmad, Firoz; Sawaimoon, Satyakam; Bhatia, Simi; Das, Bibhu Ranjan

    2014-09-01

    Molecular evaluation of KRAS, BRAF, and PIK3CA mutation has become an important part in colorectal carcinoma evaluation, and their alterations may determine the therapeutic response to anti-EGFR therapy. The current study demonstrates the evaluation of KRAS, BRAF, and PIK3CA mutation using direct sequencing in 204 samples. The frequency of KRAS, BRAF, and PIK3CA mutations was 23.5, 9.8, and 5.9 %, respectively. Five different substitution mutations at KRAS codon 12 (G12S, G12D, G12A, G12V, and G12C) and one substitution type at codon 13 (G13D) were observed. KRAS mutations were significantly higher in patients who were >50 years, and were associated with moderate/poorly differentiated tumors and adenocarcinomas. All mutations in BRAF gene were of V600E type, which were frequent in patients who were ≤ 50 years. Unlike KRAS mutations, BRAF mutations were more frequent in well-differentiated tumors and right-sided tumors. PIK3CA-E545K was the most recurrent mutation while other mutations detected were T544I, Q546R, H1047R, G1049S, and D1056N. No significant association of PIK3CA mutation with age, tumor differentiation, location, and other parameters was noted. No concomitant mutation of KRAS and BRAF mutations was observed, while, interestingly, five cases showed concurrent mutation of KRAS and PIK3CA mutations. In conclusion, to our knowledge, this is the first study to evaluate the PIK3CA mutation in Indian CRC patients. The frequency of KRAS, BRAF, and PIK3CA was similar to worldwide reports. Furthermore, identification of molecular markers has unique strengths, and can provide insights into the pathogenic process and help optimize personalized prevention and therapy.

  14. Early Behavioral Abnormalities and Perinatal Alterations of PTEN/AKT Pathway in Valproic Acid Autism Model Mice.

    Science.gov (United States)

    Yang, Eun-Jeong; Ahn, Sangzin; Lee, Kihwan; Mahmood, Usman; Kim, Hye-Sun

    2016-01-01

    Exposure to valproic acid (VPA) during pregnancy has been linked with increased incidence of autism, and has repeatedly been demonstrated as a useful autism mouse model. We examined the early behavioral and anatomical changes as well as molecular changes in mice prenatally exposed to VPA (VPA mice). In this study, we first showed that VPA mice showed developmental delays as assessed with self-righting, eye opening tests and impaired social recognition. In addition, we provide the first evidence that primary cultured neurons from VPA-treated embryos present an increase in dendritic spines, compared with those from control mice. Mutations in phosphatase and tensin homolog (PTEN) gene are also known to be associated with autism, and mice with PTEN knockout show autistic characteristics. Protein expression of PTEN was decreased and the ratio of p-AKT/AKT was increased in the cerebral cortex and the hippocampus, and a distinctive anatomical change in the CA1 region of the hippocampus was observed. Taken together, our study suggests that prenatal exposure to VPA induces developmental delays and neuroanatomical changes via the reduction of PTEN level and these changes were detectable in the early days of life.

  15. Clinical Characteristics, Mutation Spectrum, and Prevalence of Åland Eye Disease/Incomplete Congenital Stationary Night Blindness in Denmark

    DEFF Research Database (Denmark)

    Hove, Marianne N; Kilic-Biyik, Kevser Z; Trotter, Alana

    2016-01-01

    from 29 families participated in a follow-up study of whom 59 harbored a CACNA1F mutation and 1 harbored a CABP4 mutation. Among the subjects with a CACNA1F mutation, subnormal visual acuity was present in all, nystagmus was present in 63%, and foveal hypoplasia was observed in 25/43 subjects. Foveal...

  16. Use of nfsB, encoding nitroreductase, as a reporter gene to determine the mutational spectrum of spontaneous mutations in Neisseria gonorrhoeae

    Directory of Open Access Journals (Sweden)

    Dunham Stephen

    2009-11-01

    Full Text Available Abstract Background Organisms that are sensitive to nitrofurantoin express a nitroreductase. Since bacterial resistance to this compound results primarily from mutations in the gene encoding nitroreductase, the resulting loss of function of nitroreductase results in a selectable phenotype; resistance to nitrofurantoin. We exploited this direct selection for mutation to study the frequency at which spontaneous mutations arise (transitions and transversions, insertions and deletions. Results A nitroreductase- encoding gene was identified in the N. gonorrhoeae FA1090 genome by using a bioinformatic search with the deduced amino acid sequence derived from the Escherichia coli nitroreductase gene, nfsB. Cell extracts from N. gonorrhoeae were shown to possess nitroreductase activity, and activity was shown to be the result of NfsB. Spontaneous nitrofurantoin-resistant mutants arose at a frequency of ~3 × 10-6 - 8 × 10-8 among the various strains tested. The nfsB sequence was amplified from various nitrofurantoin-resistant mutants, and the nature of the mutations determined. Transition, transversion, insertion and deletion mutations were all readily detectable with this reporter gene. Conclusion We found that nfsB is a useful reporter gene for measuring spontaneous mutation frequencies. Furthermore, we found that mutations were more likely to arise in homopolymeric runs rather than as base substitutions.

  17. [Ursolic acid as antitumor agent and inductor of PTEN and brown fat].

    Science.gov (United States)

    Bershteĭn, L M

    2012-01-01

    In this mini-review the basic evidence about anticancer properties of ursolic acid (UA), the compound belonging to the class of triterpenoids, is given. Beside inhibiting tumor cell growth in vitro and in vivo and activating of apoptosis, UA (as well as some other related and not related compounds) is capable to induce PTEN (a tumor suppressor mutation of which is rather often discovered in human tumors including endometrial cancer type I) and amount/activity of brown fat. The latter action may explain obesity-preventing capacity of UA that also may lead to an additional antiblastomogenic effect.

  18. Characterizing mutational heterogeneity in a glioblastoma patient with double recurrence.

    Directory of Open Access Journals (Sweden)

    Gabrielle C Nickel

    Full Text Available Human cancers are driven by the acquisition of somatic mutations. Separating the driving mutations from those that are random consequences of general genomic instability remains a challenge. New sequencing technology makes it possible to detect mutations that are present in only a minority of cells in a heterogeneous tumor population. We sought to leverage the power of ultra-deep sequencing to study various levels of tumor heterogeneity in the serial recurrences of a single glioblastoma multiforme patient. Our goal was to gain insight into the temporal succession of DNA base-level lesions by querying intra- and inter-tumoral cell populations in the same patient over time. We performed targeted "next-generation" sequencing on seven samples from the same patient: two foci within the primary tumor, two foci within an initial recurrence, two foci within a second recurrence, and normal blood. Our study reveals multiple levels of mutational heterogeneity. We found variable frequencies of specific EGFR, PIK3CA, PTEN, and TP53 base substitutions within individual tumor regions and across distinct regions within the same tumor. In addition, specific mutations emerge and disappear along the temporal spectrum from tumor at the time of diagnosis to second recurrence, demonstrating evolution during tumor progression. Our results shed light on the spatial and temporal complexity of brain tumors. As sequencing costs continue to decline and deep sequencing technology eventually moves into the clinic, this approach may provide guidance for treatment choices as we embark on the path to personalized cancer medicine.

  19. Mouse Models of Mutations and Variations in Autism Spectrum Disorder-Associated Genes: Mice Expressing Caps2/Cadps2 Copy Number and Alternative Splicing Variants

    Directory of Open Access Journals (Sweden)

    Tetsushi Sadakata

    2013-11-01

    Full Text Available Autism spectrum disorder (ASD is a neurodevelopmental disorder characterized by disturbances in interpersonal relationships and behavior. Although the prevalence of autism is high, effective treatments have not yet been identified. Recently, genome-wide association studies have identified many mutations or variations associated with ASD risk on many chromosome loci and genes. Identification of the biological roles of these mutations or variations is necessary to identify the mechanisms underlying ASD pathogenesis and to develop clinical treatments. At present, mice harboring genetic modifications of ASD-associated gene candidates are the best animal models to analyze hereditary factors involved in autism. In this report, the biological significance of ASD-associated genes is discussed by examining the phenotypes of mouse models with ASD-associated mutations or variations in mouse homologs, with a focus on mice harboring genetic modifications of the Caps2/Cadps2 (Ca2+-dependent activator protein for secretion 2 gene.

  20. Loss-of-function HDAC8 mutations cause a phenotypic spectrum of Cornelia de Lange syndrome-like features, ocular hypertelorism, large fontanelle and X-linked inheritance

    Science.gov (United States)

    Kaiser, Frank J.; Ansari, Morad; Braunholz, Diana; Concepción Gil-Rodríguez, María; Decroos, Christophe; Wilde, Jonathan J.; Fincher, Christopher T.; Kaur, Maninder; Bando, Masashige; Amor, David J.; Atwal, Paldeep S.; Bahlo, Melanie; Bowman, Christine M.; Bradley, Jacquelyn J.; Brunner, Han G.; Clark, Dinah; Del Campo, Miguel; Di Donato, Nataliya; Diakumis, Peter; Dubbs, Holly; Dyment, David A.; Eckhold, Juliane; Ernst, Sarah; Ferreira, Jose C.; Francey, Lauren J.; Gehlken, Ulrike; Guillén-Navarro, Encarna; Gyftodimou, Yolanda; Hall, Bryan D.; Hennekam, Raoul; Hudgins, Louanne; Hullings, Melanie; Hunter, Jennifer M.; Yntema, Helger; Innes, A. Micheil; Kline, Antonie D.; Krumina, Zita; Lee, Hane; Leppig, Kathleen; Lynch, Sally Ann; Mallozzi, Mark B.; Mannini, Linda; Mckee, Shane; Mehta, Sarju G.; Micule, Ieva; Mohammed, Shehla; Moran, Ellen; Mortier, Geert R.; Moser, Joe-Ann S.; Noon, Sarah E.; Nozaki, Naohito; Nunes, Luis; Pappas, John G.; Penney, Lynette S.; Pérez-Aytés, Antonio; Petersen, Michael B.; Puisac, Beatriz; Revencu, Nicole; Roeder, Elizabeth; Saitta, Sulagna; Scheuerle, Angela E.; Schindeler, Karen L.; Siu, Victoria M.; Stark, Zornitza; Strom, Samuel P.; Thiese, Heidi; Vater, Inga; Willems, Patrick; Williamson, Kathleen; Wilson, Louise C.; Hakonarson, Hakon; Quintero-Rivera, Fabiola; Wierzba, Jolanta; Musio, Antonio; Gillessen-Kaesbach, Gabriele; Ramos, Feliciano J.; Jackson, Laird G.; Shirahige, Katsuhiko; Pié, Juan; Christianson, David W.; Krantz, Ian D.; Fitzpatrick, David R.; Deardorff, Matthew A.

    2014-01-01

    Cornelia de Lange syndrome (CdLS) is a multisystem genetic disorder with distinct facies, growth failure, intellectual disability, distal limb anomalies, gastrointestinal and neurological disease. Mutations in NIPBL, encoding a cohesin regulatory protein, account for >80% of cases with typical facies. Mutations in the core cohesin complex proteins, encoded by the SMC1A, SMC3 and RAD21 genes, together account for ∼5% of subjects, often with atypical CdLS features. Recently, we identified mutations in the X-linked gene HDAC8 as the cause of a small number of CdLS cases. Here, we report a cohort of 38 individuals with an emerging spectrum of features caused by HDAC8 mutations. For several individuals, the diagnosis of CdLS was not considered prior to genomic testing. Most mutations identified are missense and de novo. Many cases are heterozygous females, each with marked skewing of X-inactivation in peripheral blood DNA. We also identified eight hemizygous males who are more severely affected. The craniofacial appearance caused by HDAC8 mutations overlaps that of typical CdLS but often displays delayed anterior fontanelle closure, ocular hypertelorism, hooding of the eyelids, a broader nose and dental anomalies, which may be useful discriminating features. HDAC8 encodes the lysine deacetylase for the cohesin subunit SMC3 and analysis of the functional consequences of the missense mutations indicates that all cause a loss of enzymatic function. These data demonstrate that loss-of-function mutations in HDAC8 cause a range of overlapping human developmental phenotypes, including a phenotypically distinct subgroup of CdLS. PMID:24403048

  1. Mutational Events in Cefotaximase Extended-Spectrum β-Lactamases of the CTX-M-1 Cluster Involved in Ceftazidime Resistance ▿

    Science.gov (United States)

    Novais, Ângela; Cantón, Rafael; Coque, Teresa M.; Moya, Andrés; Baquero, Fernando; Galán, Juan Carlos

    2008-01-01

    CTX-M β-lactamases, which show a high cefotaxime hydrolytic activity, constitute the most prevalent extended-spectrum β-lactamase (ESBL) type found among clinical isolates. The recent explosive diversification of CTX-M enzymes seems to have taken place due to the appearance of more efficient enzymes which are capable of hydrolyzing both cefotaxime and ceftazidime, especially among the CTX-M-1 cluster. A combined strategy of in vitro stepwise evolution experiments using blaCTX-M-1, blaCTX-M-3, and blaCTX-M-10 genes and site-directed mutagenesis has been used to evaluate the role of ceftazidime and other β-lactam antibiotics in triggering the diversity found among enzymes belonging to this cluster. Two types of mutants, P167S and D240G, displaying high ceftazidime MICs but reduced resistance to cefotaxime and/or cefepime, respectively, were identified. Such an antagonistic pleiotropic effect was particularly evident with P167S/T mutations. The incompatibility between P167S and D240G changes was demonstrated, since double mutants reduced susceptibility to both ceftazidime and cefotaxime-cefepime; this may explain the absence of strains containing both mutations in the clinical environment. The role of A77V and N106S mutations, which are frequently associated with P167S/T and/or D240G, respectively, in natural strains, was investigated. The presence of A77V and N106S contributes to restore a high-level cefotaxime resistance phenotype, but only when associated with mutations P167S and D240G, respectively. However, A77V mutation increases resistance to both cefotaxime and ceftazidime when associated with CTX-M-10. This suggests that in this context this mutation might be considered a primary site involved in resistance to broad-spectrum cephalosporins. PMID:18443114

  2. BRCA Genetic Screening in Middle Eastern and North African: Mutational Spectrum and Founder BRCA1 Mutation (c.798_799delTT) in North African

    OpenAIRE

    Abdelilah Laraqui; Nancy Uhrhammer; Hicham EL Rhaffouli; Yassine Sekhsokh; Idriss Lahlou-Amine; Tahar Bajjou; Farida Hilali; Jamila El Baghdadi; Abderrahmane Al Bouzidi; Youssef Bakri; Said Amzazi; Yves-Jean Bignon

    2015-01-01

    Background. The contribution of BRCA1 mutations to both hereditary and sporadic breast and ovarian cancer (HBOC) has not yet been thoroughly investigated in MENA. Methods. To establish the knowledge about BRCA1 mutations and their correlation with the clinical aspect in diagnosed cases of HBOC in MENA populations. A systematic review of studies examining BRCA1 in BC women in Cyprus, Jordan, Egypt, Lebanon, Morocco, Algeria, and Tunisia was conducted. Results. Thirteen relevant references were...

  3. Hereditary fructose intolerance: frequency and spectrum mutations of the aldolase B gene in a large patients cohort from France--identification of eight new mutations.

    Science.gov (United States)

    Davit-Spraul, Anne; Costa, Catherine; Zater, Mokhtar; Habes, Dalila; Berthelot, Jacques; Broué, Pierre; Feillet, François; Bernard, Olivier; Labrune, Philippe; Baussan, Christiane

    2008-08-01

    We investigated the molecular basis of hereditary fructose intolerance (HFI) in 160 patients from 92 families by means of a PCR-based mutation screening strategy, consisting of restriction enzyme digestion and direct sequencing. Sixteen different mutations of the aldolase B (ALDOB) gene were identified in HFI patients. As in previous studies, p.A150P (64%), p.A175D (16%) and p.N335K (5%) were the most common mutated alleles, followed by p.R60X, p.A338V, c.360_363delCAAA (p.N120KfsX30), c.324G>A (p.K108K) and c.625-1G>A. Eight novel mutations were also identified in 10 families with HFI: a one-base deletion (c.146delT (p.V49GfsX27)), a small deletion (c.953del42bp), a small insertion (c.689ins TGCTAA (p.K230MfsX136)), one splice site mutation (c.112+1G>A), one nonsense mutation (c.444G>A (p.W148X)), and three missense mutations (c.170G>C (p.R57P), c.839C>A (p.A280P) and c.932T>C (p.L311P)). Our strategy allows to diagnose 75% of HFI patients using restriction enzymatic analysis and to enlarge the diagnosis to 97% of HFI patients when associated with direct sequencing.

  4. Phosphorylation of PTEN at STT motif is associated with DNA damage response

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Sandip; Mukherjee, Ananda; Karmakar, Parimal, E-mail: pkarmakar_28@yahoo.co.in

    2014-12-15

    Highlights: • Phosphorylation PTEN at the C-terminal STT motif is necessary for DNA repair. • DNA damage induces phosphorylation of STT motif of PTEN. • Phospho-PTEN translocates to nucleus after DNA damage. • Phospho-PTEN forms nuclear foci after DNA damage which co localized with γH2AX. - Abstract: Phosphatase and tensin homolog deleted on chromosome Ten (PTEN), a tumor suppressor protein participates in multiple cellular activities including DNA repair. In this work we found a relationship between phosphorylation of carboxy (C)-terminal STT motif of PTEN and DNA damage response. Ectopic expression of C-terminal phospho-mutants of PTEN, in PTEN deficient human glioblastoma cells, U87MG, resulted in reduced viability and DNA repair after etoposide induced DNA damage compared to cells expressing wild type PTEN. Also, after etoposide treatment phosphorylation of PTEN increased at C-terminal serine 380 and threonine 382/383 residues in PTEN positive HEK293T cells and wild type PTEN transfected U87MG cells. One-step further, DNA damage induced phosphorylation of PTEN was confirmed by immunoprecipitation of total PTEN from cellular extract followed by immunobloting with phospho-specific PTEN antibodies. Additionally, phospho-PTEN translocated to nucleus after etoposide treatment as revealed by indirect immunolabeling. Further, phosphorylation dependent nuclear foci formation of PTEN was observed after ionizing radiation or etoposide treatment which colocalized with γH2AX. Additionally, etoposide induced γH2AX, Mre11 and Ku70 foci persisted for a longer period of times in U87MG cells after ectopic expression of PTEN C-terminal phospho-mutant constructs compared to wild type PTEN expressing cells. Thus, our findings strongly suggest that DNA damage induced phosphorylation of C-terminal STT motif of PTEN is necessary for DNA repair.

  5. Alterations of EGFR, p53 and PTEN that mimic changes found in basal-like breast cancer promote transformation of human mammary epithelial cells.

    Science.gov (United States)

    Pires, Maira M; Hopkins, Benjamin D; Saal, Lao H; Parsons, Ramon E

    2013-03-01

    Breast cancer can be classified into different molecular subtypes with varying clinical and pathological characteristics. The basal-like breast cancer subtype represents one of the most aggressive and lethal types of breast cancer, and due to poor mechanistic understanding, it lacks targeted therapy. Many basal-like breast cancer patient samples display alterations of established drivers of cancer development, including elevated expression of EGFR, p53 inactivating mutations and loss of expression of the tumor suppressor PTEN; however, their contribution to human basal-like breast cancer pathogenesis remains ill-defined. Using non-transformed human mammary epithelial cells, we set out to determine whether altering EGFR, p53 and PTEN in different combinations could contribute to basal-like breast cancer progression through transformation of cells. Altering PTEN in combination with either p53 or EGFR in contrast to any of the single alterations caused increased growth of transformed colonies in soft agar. Concomitantly modifying all three genes led to the highest rate of cellular proliferation and the greatest degree of anchorage-independent colony formation. Results from our effort to engineer a model of BBC expressing alterations of EGFR, p53 and PTEN suggest that these changes are cooperative and likely play a causal role in basal-like breast cancer pathogenesis. Consideration should be given to targeting EGFR and restoring p53 and PTEN signaling simultaneously as a strategy for treatment of this subtype of breast cancer.

  6. Carpenter syndrome: extended RAB23 mutation spectrum and analysis of nonsense-mediated mRNA decay

    OpenAIRE

    2011-01-01

    Abstract Carpenter syndrome, a rare autosomal recessive disorder characterized by a combination of craniosynostosis, polysyndactyly, obesity, and other congenital malformations, is caused by mutations in RAB23, encoding a member of the Rab-family of small GTPases. In 15 out of 16 families previously reported, the disease was caused by homozygosity for truncating mutations, and currently only a single missense mutation has been identified in a compound heterozygote. Here, we describ...

  7. The spectrum of aldolase B (ALDOB) mutations and the prevalence of hereditary fructose intolerance in Central Europe.

    Science.gov (United States)

    Santer, René; Rischewski, Johannes; von Weihe, Michaela; Niederhaus, Marko; Schneppenheim, Sonja; Baerlocher, Kurt; Kohlschütter, Alfried; Muntau, Ania; Posselt, Hans-Georg; Steinmann, Beat; Schneppenheim, Reinhard

    2005-06-01

    We investigated the molecular basis of hereditary fructose intolerance (HFI) in 80 patients from 72 families by means of a PCR-based mutation screening strategy, consisting of heteroduplex analysis, restriction enzyme digest, DNA single strand electrophoresis, and direct sequencing. For a subset of patients mutation screening with DHPLC was established which turned out to be as fast and as sensitive as the more conventional methods. Fifteen different mutations of the aldolase B (ALDOB) gene were identified in HFI patients. As in smaller previous studies, p.A150P (65%), p.A175D (11%) and p.N335K (8%) were the most common mutated alleles, followed by c.360_363delCAAA, p.R60X, p.Y204X, and c.865delC. Eight novel mutations were identified in eight families with HFI: a small indel mutation (c.1044_1049delTTCTGGinsACACT), two small deletions (c.345_372del28; c.841_842delAC), two splice site mutations (c.113-1G>A, c.799+2T>A), one nonsense mutation (c.612T>G (p.Y204X)), and two missense mutations (c.532T>C (p.C178R), c.851T>C (p.L284P)). By mutation screening for the three most common ALDOB mutations by DHPLC in 2,000 randomly selected newborns we detected 21 heterozygotes. Based on these data and after correction for less common and private ALDOB mutations, HFI prevalence in central Europe is estimated to be 1:26,100 (95% confidence interval 1: 12,600-79,000).

  8. Mesodermal Pten inactivation leads to alveolar capillary dysplasia- like phenotype.

    Science.gov (United States)

    Tiozzo, Caterina; Carraro, Gianni; Al Alam, Denise; Baptista, Sheryl; Danopoulos, Soula; Li, Aimin; Lavarreda-Pearce, Maria; Li, Changgong; De Langhe, Stijn; Chan, Belinda; Borok, Zea; Bellusci, Saverio; Minoo, Parviz

    2012-11-01

    Alveolar capillary dysplasia (ACD) is a congenital, lethal disorder of the pulmonary vasculature. Phosphatase and tensin homologue deleted from chromosome 10 (Pten) encodes a lipid phosphatase controlling key cellular functions, including stem/progenitor cell proliferation and differentiation; however, the role of PTEN in mesodermal lung cell lineage formation remains unexamined. To determine the role of mesodermal PTEN in the ontogeny of various mesenchymal cell lineages during lung development, we specifically deleted Pten in early embryonic lung mesenchyme in mice. Pups lacking Pten died at birth, with evidence of failure in blood oxygenation. Analysis at the cellular level showed defects in angioblast differentiation to endothelial cells and an accompanying accumulation of the angioblast cell population that was associated with disorganized capillary beds. We also found decreased expression of Forkhead box protein F1 (Foxf1), a gene associated with the ACD human phenotype. Analysis of human samples for ACD revealed a significant decrease in PTEN and increased activated protein kinase B (AKT). These studies demonstrate that mesodermal PTEN has a key role in controlling the amplification of angioblasts as well as their differentiation into endothelial cells, thereby directing the establishment of a functional gas exchange interface. Additionally, these mice could serve as a murine model of ACD.

  9. Ascorbate, added after irradiation, reduces the mutant yield and alters the spectrum of CD59- mutations in A(L) cells irradiated with high LET carbon ions

    Science.gov (United States)

    Ueno, Akiko; Vannais, Diane; Lenarczyk, Marek; Waldren, Charles A.; Chatterjee, A. (Principal Investigator)

    2002-01-01

    It has been reported that X-ray induced HPRT- mutation in cultured human cells is prevented by ascorbate added after irradiation. Mutation extinction is attributed to neutralization by ascorbate, of radiation-induced long-lived radicals (LLR) with half-lives of several hours. We here show that post-irradiation treatment with ascorbate (5 mM added 30 min after radiation) reduces, but does not eliminate, the induction of CD59- mutants in human-hamster hybrid A(L) cells exposed to high-LET carbon ions (LET of 100 KeV/microm). RibCys, [2(R,S)-D-ribo-1',2',3',4'-Tetrahydroxybutyl]-thiazolidene-4(R)-ca riboxylic acid] (4 mM) gave a similar but lesser effect. The lethality of the carbon ions was not altered by these chemicals. Preliminary data are presented that ascorbate also alters the spectrum of CD59- mutations induced by the carbon beam, mainly by reducing the incidence of small mutations and mutants displaying transmissible genomic instability (TGI), while large mutations are unaffected. Our results suggest that LLR are important in initiating TGI.

  10. Mutational spectrum of myeloid malignancies with inv(3)/t(3;3) reveals a predominant involvement of RAS/RTK signaling pathways.

    Science.gov (United States)

    Gröschel, Stefan; Sanders, Mathijs A; Hoogenboezem, Remco; Zeilemaker, Annelieke; Havermans, Marije; Erpelinck, Claudia; Bindels, Eric M J; Beverloo, H Berna; Döhner, Hartmut; Löwenberg, Bob; Döhner, Konstanze; Delwel, Ruud; Valk, Peter J M

    2015-01-01

    Myeloid malignancies bearing chromosomal inv(3)/t(3;3) abnormalities are among the most therapy-resistant leukemias. Deregulated expression of EVI1 is the molecular hallmark of this disease; however, the genome-wide spectrum of cooperating mutations in this disease subset has not been systematically elucidated. Here, we show that 98% of inv(3)/t(3;3) myeloid malignancies harbor mutations in genes activating RAS/receptor tyrosine kinase (RTK) signaling pathways. In addition, hemizygous mutations in GATA2, as well as heterozygous alterations in RUNX1, SF3B1, and genes encoding epigenetic modifiers, frequently co-occur with the inv(3)/t(3;3) aberration. Notably, neither mutational patterns nor gene expression profiles differ across inv(3)/t(3;3) acute myeloid leukemia, chronic myeloid leukemia, and myelodysplastic syndrome cases, suggesting recognition of inv(3)/t(3;3) myeloid malignancies as a single disease entity irrespective of blast count. The high incidence of activating RAS/RTK signaling mutations may provide a target for a rational treatment strategy in this high-risk patient group.

  11. A cohort study of MFN2 mutations and phenotypic spectrums in Charcot-Marie-Tooth disease 2A patients.

    Science.gov (United States)

    Choi, B-O; Nakhro, K; Park, H J; Hyun, Y S; Lee, J H; Kanwal, S; Jung, S-C; Chung, K W

    2015-06-01

    Charcot-Marie-Tooth disease 2A (CMT2A) is the most common axonal form of peripheral neuropathy caused by a defect in the mitofusin 2 (MFN2) gene, which encodes an outer mitochondrial membrane GTPase. MFN2 mutations result in a large range of phenotypes. This study analyzed the prevalence of MFN2 mutation in Korean families with their assorted phenotypes (607 CMT families and 160 CMT2 families). Direct sequencing of the MFN2 coding exons or whole-exome sequencing has been applied to identify causative mutations. A total of 21 mutations were found in 36 CMT2 families. Comparative genotype-phenotype correlations impacting severity, onset age, and specific symptoms were assessed. Most mutations were seen in the GTPase domain (∼86%). A deletion mutation found in the transmembrane helices is reported for the first time, as well as five novel mutations at other domains. MFN2 mutations made up 5.9% of total CMT families, whereas 22.9% in CMT2 families, of which 27.8% occurred de novo. Interestingly, patient phenotypes ranged from mild to severe even for the same mutation, suggesting other factors influenced phenotype and penetrance. This CMT2A cohort study will be useful for molecular diagnosis and treatment of axonal neuropathy. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Actin cytoskeleton organization, cell surface modification and invasion rate of 5 glioblastoma cell lines differing in PTEN and p53 status

    Energy Technology Data Exchange (ETDEWEB)

    Djuzenova, Cholpon S., E-mail: djuzenova_t@ukw.de [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Fiedler, Vanessa [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Memmel, Simon [Lehrstuhl für Biotechnologie und Biophysik, Universität Würzburg, Biozentrum Am Hubland, 97070 Würzburg (Germany); Katzer, Astrid; Hartmann, Susanne [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Krohne, Georg [Elektronenmikroskopie, Biozentrum, Universität Würzburg, Am Hubland, 97070 Würzburg (Germany); Zimmermann, Heiko [Hauptabteilung Biophysik and Kryotechnologie, Fraunhofer-Institut für Biomedizinische Technik, Lehrstuhl für Molekulare und Zelluläre Biotechnologie/Nanotechnologie, Universität des Saarlandes, Ensheimer Strasse 48, 66386 St. Ingbert (Germany); Scholz, Claus-Jürgen [Interdisciplinary Center for Clinical Research, University Hospital, Versbacher Strasse 7, 97078 Würzburg (Germany); Polat, Bülent; Flentje, Michael [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); and others

    2015-01-15

    Glioblastoma cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores the relationship between the invasion capacity of 5 glioblastoma cell lines differing in p53 and PTEN status, expression of mTOR and several other marker proteins involved in cell invasion, actin cytoskeleton organization and cell morphology. We found that two glioblastoma lines mutated in both p53 and PTEN genes (U373-MG and SNB19) exhibited the highest invasion rates through the Matrigel or collagen matrix. In DK-MG (p53wt/PTENwt) and GaMG (p53mut/PTENwt) cells, F-actin mainly occurred in the numerous stress fibers spanning the cytoplasm, whereas U87-MG (p53wt/PTENmut), U373-MG and SNB19 (both p53mut/PTENmut) cells preferentially expressed F-actin in filopodia and lamellipodia. Scanning electron microscopy confirmed the abundant filopodia and lamellipodia in the PTEN mutated cell lines. Interestingly, the gene profiling analysis revealed two clusters of cell lines, corresponding to the most (U373-MG and SNB19, i.e. p53 and PTEN mutated cells) and less invasive phenotypes. The results of this study might shed new light on the mechanisms of glioblastoma invasion. - Highlights: • We examine 5 glioblastoma lines on the invasion capacity and actin cytoskeleton. • Glioblastoma cell lines mutated in both p53 and PTEN were the most invasive. • Less invasive cells showed much less lamellipodia, but more actin stress fibers. • A mechanism for the differences in tumor cell invasion is proposed.

  13. The Spectrum of Beta-Globin Gene Mutations in Thalassemia Patients of South-Western Maharashtra: A Cross Sectional Study

    Directory of Open Access Journals (Sweden)

    Kailas D. Datkhile ,

    2015-01-01

    Full Text Available Background: β-thalassemia is a heterogeneous group of inherited hematological disorder. Though the importance of mutations in the beta-globin gene causing β-thalassemia have been reported worldwide, no data are available from rural population of SouthWestern Maharashtra. Objective: In the present study we aimed to characterize the mutations in ß-globin gene from ß-thalassemia patients from rural areas of South-Western Maharashtra. Material and Methods: The patients were analyzed for the ß-globin gene mutations included IVS I-1 (G-T, IVS I-5 (G-C, cd 71/72 (+A, cd 41/42 (-TTCT, codon (cd 8/9 (+G, cd 17 (A-T, cd 95 (+A, cd 43 (-C, cd 41 (-C, cd 35 (C-A, cd 26 (G-T, cd 19 (A-G, cd 15 (-T, cd 27/28 (+C and cd 14/15 (+G with the help of Multiplexed Amplification Refractory Mutation SystemPolymerase Chain Reaction (MARMS-PCR. Results: Out of the common mutations studied the cd 71/72 (21.54%, cd 19 (13.7 %. cd 41/42 (9.68% and cd 41 (9.6% showed high prevalence followed by cd17 (7.56 %. 7.27% patients showed IVSI-5 mutations, 6.26 % showed IVSI-1 mutations. Cd 15 mutations were present in 8.69 % patients and only 5.39 % subjects showed cd 8/9 mutations. This study provides the pattern of ß-thalassemia mutations from rural areas of Maharashtra in India. Conclusion: This study provides the pattern of ß-thalassemia mutations from rural population which will open a new avenue for implementation of molecular diagnostics for prenatal diagnosis and prevention of blood disorder by proper counseling in rural areas.

  14. WWP2 and its association with PTEN in endometrial cancer

    Directory of Open Access Journals (Sweden)

    Aine E. Clements

    2015-08-01

    We found that in tumors with low PTEN protein but normal mRNA expression there were significantly higher levels of WWP2 expression (p = 0.0017. Increased WWP2 expression was not associated with clinical prognostic factors including lymphovascular space invasion, ≥50% myometrial invasion, grade, stage or recurrence. WWP2 expression was not different statistically between tumors and normal controls (p = NS. Therefore, in this cohort, tumors with low PTEN protein but normal mRNA expression had elevated levels of WWP2 expression. This suggests that WWP2 may be playing a role in PTEN degradation in endometrial cancer.

  15. Variable clinical spectrum of the myocilin Gln368X mutation in a Dutch family with primary open angle glaucoma.

    NARCIS (Netherlands)

    Hogewind, B.F.T.; Mukhopadhyay, A.; Theelen, T.; Hollander, A.I. den; Hoyng, C.B.

    2010-01-01

    PURPOSE: To describe the clinical phenotype in a family with primary open angle glaucoma harboring a p.Gln368X mutation in MYOC. MATERIALS AND METHODS: We identified a proband with primary open angle glaucoma and the p.Gln368X MYOC mutation. She and her six siblings were examined clinically, includi

  16. De novo mutations in beta-catenin (CTNNB1) appear to be a frequent cause of intellectual disability: expanding the mutational and clinical spectrum

    NARCIS (Netherlands)

    Kuechler, A.; Willemsen, M.H.; Albrecht, B.; Bacino, C.A.; Bartholomew, D.W.; Bokhoven, H. van; Boogaard, M.J. van den; Bramswig, N.; Buttner, C.; Cremer, K.; Czeschik, J.C.; Engels, H.; Gassen, K. van; Graf, E.; Haelst, M. van; He, W.; Hogue, J.S.; Kempers, M.; Koolen, D.; Monroe, G.; Munnik, S. de; Pastore, M.; Reis, A.; Reuter, M.S.; Tegay, D.H.; Veltman, J.; Visser, G.; Hasselt, P. van; Smeets, E.; Vissers, L.; Wieland, T.; Wissink, W.; Yntema, H.; Zink, A.M.; Strom, T.M.; Ludecke, H.J.; Kleefstra, T.; Wieczorek, D.

    2015-01-01

    Recently, de novo heterozygous loss-of-function mutations in beta-catenin (CTNNB1) were described for the first time in four individuals with intellectual disability (ID), microcephaly, limited speech and (progressive) spasticity, and functional consequences of CTNNB1 deficiency were characterized i

  17. De novo mutations in beta-catenin (CTNNB1) appear to be a frequent cause of intellectual disability : expanding the mutational and clinical spectrum

    NARCIS (Netherlands)

    Kuechler, Alma; Willemsen, Marjolein H.; Albrecht, Beate; Bacino, Carlos A.; Bartholomew, Dennis W.; van Bokhoven, Hans; van den Boogaard, Marie Jose H.; Bramswig, Nuria; Buettner, Christian; Cremer, Kirsten; Czeschik, Johanna Christina; Engels, Hartmut; van Gassen, Koen; Graf, Elisabeth; van Haelst, Mieke; He, Weimin; Hogue, Jacob S.; Kempers, Marlies; Koolen, David; Monroe, Glen; de Munnik, Sonja; Pastore, Matthew; Reis, Andre; Reuter, Miriam S.; Tegay, David H.; Veltman, Joris; Visser, Gepke; van Hasselt, Peter; Smeets, Eric E. J.; Vissers, Lisenka; Wieland, Thomas; Wissink, Willemijn; Yntema, Helger; Zink, Alexander Michael; Strom, Tim M.; Luedecke, Hermann-Josef; Kleefstra, Tjitske; Wieczorek, Dagmar

    2015-01-01

    Recently, de novo heterozygous loss-of-function mutations in beta-catenin (CTNNB1) were described for the first time in four individuals with intellectual disability (ID), microcephaly, limited speech and (progressive) spasticity, and functional consequences of CTNNB1 deficiency were characterized i

  18. Spectrum of MKS1 and MKS3 mutations in Meckel syndrome: a genotype-phenotype correlation. Mutation in brief #960. Online.

    Science.gov (United States)

    Khaddour, Rana; Smith, Ursula; Baala, Lekbir; Martinovic, Jéléna; Clavering, Davina; Shaffiq, Rizwana; Ozilou, Catherine; Cullinane, Andrew; Kyttälä, Mira; Shalev, Stavit; Audollent, Sophie; d'Humières, Camille; Kadhom, Noman; Esculpavit, Chantal; Viot, Géraldine; Boone, Claire; Oien, Christine; Encha-Razavi, Férechté; Batman, Philip A; Bennett, Christopher P; Woods, C Geoffrey; Roume, Joelle; Lyonnet, Stanislas; Génin, Emmanuelle; Le Merrer, Martine; Munnich, Arnold; Gubler, Marie-Claire; Cox, Phillip; Macdonald, Fiona; Vekemans, Michel; Johnson, Colin A; Attié-Bitach, Tania

    2007-05-01

    Meckel syndrome (MKS) is a rare autosomal recessive lethal condition characterized by central nervous system malformations (typically occipital meningoencephalocele), postaxial polydactyly, multicystic kidney dysplasia, and ductal proliferation in the portal area of the liver. MKS is genetically heterogeneous and three loci have been mapped respectively on 17q23 (MKS1), 11q13 (MKS2), and 8q24 (MKS3). Very recently, two genes have been identified: MKS1/FLJ20345 on 17q in Finnish kindreds, carrying the same intronic deletion, c.1408-35_c.1408-7del29, and MKS3/TMEM67 on 8q in families from Pakistan and Oman. Here we report the genotyping of the MKS1 and MKS3 genes in a large, multiethnic cohort of 120 independent cases of MKS. Our first results indicate that the MKS1 and MKS3 genes are each responsible for about 7% of MKS cases with various mutations in different populations. A strong phenotype-genotype correlation, depending on the mutated gene, was observed regarding the type of central nervous system malformation, the frequency of polydactyly, bone dysplasia, and situs inversus. The MKS1 c.1408-35_1408-7del29 intronic mutation was identified in three cases from French or English origin and dated back to 162 generations (approx. 4050 years) ago. We also identified a common MKS3 splice-site mutation, c.1575+1G>A, in five Pakistani sibships of three unrelated families of Mirpuri origin, with an estimated age-of-mutation of 5 generations (125 years).

  19. Clinical spectrum and molecular diagnosis of Angelman and Prader-Willi syndrome patients with an imprinting mutation

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, S.; Cassidy, S.B.; Conroy, J.M. [Univ. of Hospitals of Cleveland, OH (United States)] [and others

    1997-01-20

    Recent studies have identified a new class of Prader-Willi syndrome (PWS) and Angelman syndrome (AS) patients who have biparental inheritance, but neither the typical deletion nor uniparental disomy (UPD) or translocation. However, these patients have uniparental DNA methylation throughout 15q11-q13, and thus appear to have a mutation in the imprinting process for this region. Here we describe detailed clinical findings of five AS imprinting mutation patients (three families) and two PWS imprinting mutation patients (one new family). All these patients have essentially the classical clinical phenotype for the respective syndrome, except that the incidence of microcephaly is lower in imprinting mutation AS patients than in deletion AS patients. Furthermore, imprinting mutation AS and PWS patients do not typically have hypopigmentation, which is commonly found in patients with the usual large deletion. Molecular diagnosis of these cases is initially achieved by DNA methylation analyses of the DN34/ZNF127, PW71 (D15S63), and SNRPN loci. The latter two probes have clear advantages in the simple molecular diagnostic analysis of PWS and AS patients with an imprinting mutation, as has been found for typical deletion or UPD PWS and AS cases. With the recent finding of inherited microdeletions in PWS and AS imprinting mutation families, our studies define a new class of these two syndromes. The clinical and molecular identification of these PWS and AS patients has important genetic counseling consequences. 49 refs., 4 figs., 3 tabs.

  20. [MEFV gene mutation spectrum in familial Mediterranean fever (FMF) : a single center study in the Aegean region of Turkey].

    Science.gov (United States)

    Coker, I; Colak, A; Yolcu, I; Türkön, H; Nalbantoglu, S M

    2011-08-01

    Familial Mediterranean fever (FMF), an autosomal recessive autoinflammatory disorder, is characterized by recurrent, self-limiting fever and serositis which is frequently seen in Mediterranean populations. In this study, we retrospectively evaluated the MEFV gene mutation distribution of 883 citizens of the Aegean region with preliminary diagnosis of FMF who were referred to the Tepecik Research and Education Hospital's Tissue Typing and Molecular Diagnostic Laboratory (Izmir, Turkey) between 2006 and 2009. The FMF Strip Assay® (ViennaLab Diagnostics, Vienna, Austria) was used to determine the 12 most common MEFV gene mutations in patients prediagnosed with FMF. Allelic frequencies of the major mutations in the mutation positive groups, including M694V, E148Q, M680I(G>C), and V726A, accounted for 48.4, 16.5, 13.5, and 9.7%, respectively. The M694V mutation was found to be the most common mutation among FMF patients in the Aegean region, which is in accordance with mutation studies reported from other regions of the country and different ethnic populations. An English full-text version of this article is available at SpringerLink as supplemental.

  1. RAS/RAF/MEK/ERK and PI3K/PTEN/AKT Signaling in Malignant Melanoma Progression and Therapy

    Directory of Open Access Journals (Sweden)

    Ichiro Yajima

    2012-01-01

    Full Text Available Cutaneous malignant melanoma is one of the most serious skin cancers and is highly invasive and markedly resistant to conventional therapy. Melanomagenesis is initially triggered by environmental agents including ultraviolet (UV, which induces genetic/epigenetic alterations in the chromosomes of melanocytes. In human melanomas, the RAS/RAF/MEK/ERK (MAPK and the PI3K/PTEN/AKT (AKT signaling pathways are two major signaling pathways and are constitutively activated through genetic alterations. Mutations of RAF, RAS, and PTEN contribute to antiapoptosis, abnormal proliferation, angiogenesis, and invasion for melanoma development and progression. To find better approaches to therapies for patients, understanding these MAPK and AKT signaling mechanisms of melanoma development and progression is important. Here, we review MAPK and AKT signaling networks associated with melanoma development and progression.

  2. Novel Candidate Genes and a Wide Spectrum of Structural and Point Mutations Responsible for Inherited Retinal Dystrophies Revealed by Exome Sequencing

    Science.gov (United States)

    de Castro-Miró, Marta; Tonda, Raul; Escudero-Ferruz, Paula; Andrés, Rosa; Mayor-Lorenzo, Andrés; Castro, Joaquín; Ciccioli, Marcela; Hidalgo, Daniel A.; Rodríguez-Ezcurra, Juan José; Farrando, Jorge; Pérez-Santonja, Juan J.; Cormand, Bru; Marfany, Gemma

    2016-01-01

    Background NGS-based genetic diagnosis has completely revolutionized the human genetics field. In this study, we have aimed to identify new genes and mutations by Whole Exome Sequencing (WES) responsible for inherited retinal dystrophies (IRD). Methods A cohort of 33 pedigrees affected with a variety of retinal disorders was analysed by WES. Initial prioritization analysis included around 300 IRD-associated genes. In non-diagnosed families a search for pathogenic mutations in novel genes was undertaken. Results Genetic diagnosis was attained in 18 families. Moreover, a plausible candidate is proposed for 10 more cases. Two thirds of the mutations were novel, including 4 chromosomal rearrangements, which expand the IRD allelic heterogeneity and highlight the contribution of private mutations. Our results prompted clinical re-evaluation of some patients resulting in assignment to a syndromic instead of non-syndromic IRD. Notably, WES unveiled four new candidates for non-syndromic IRD: SEMA6B, CEP78, CEP250, SCLT1, the two latter previously associated to syndromic disorders. We provide functional data supporting that missense mutations in CEP250 alter cilia formation. Conclusion The diagnostic efficiency of WES, and strictly following the ACMG/AMP criteria is 55% in reported causative genes or functionally supported new candidates, plus 30% families in which likely pathogenic or VGUS/VUS variants were identified in plausible candidates. Our results highlight the clinical utility of WES for molecular diagnosis of IRD, provide a wider spectrum of mutations and concomitant genetic variants, and challenge our view on syndromic vs non-syndromic, and causative vs modifier genes. PMID:28005958

  3. DNA methylation of PTEN gene promoter region is not correlated ...

    African Journals Online (AJOL)

    Yomi

    2012-02-23

    Feb 23, 2012 ... Key words: PTEN, promoter methylation, bladder cancer. INTRODUCTION ... al., 2005), pancreatic cancer (Asano et al., 2004), thyroid cancer (Frisk et al., ..... papillary mucinous neoplasms of the pancreas. J. Hepatobiliary.

  4. The Large Phenotypic Spectrum of Fabry Disease Requires Graduated Diagnosis and Personalized Therapy: A Meta-Analysis Can Help to Differentiate Missense Mutations

    Directory of Open Access Journals (Sweden)

    Valentina Citro

    2016-12-01

    Full Text Available Fabry disease is caused by mutations in the GLA gene and is characterized by a large genotypic and phenotypic spectrum. Missense mutations pose a special problem for graduating diagnosis and choosing a cost-effective therapy. Some mutants retain enzymatic activity, but are less stable than the wild type protein. These mutants can be stabilized by small molecules which are defined as pharmacological chaperones. The first chaperone to reach clinical trial is 1-deoxygalactonojirimycin, but others have been tested in vitro. Residual activity of GLA mutants has been measured in the presence or absence of pharmacological chaperones by several authors. Data obtained from transfected cells correlate with those obtained in cells derived from patients, regardless of whether 1-deoxygalactonojirimycin was present or not. The extent to which missense mutations respond to 1-deoxygalactonojirimycin is variable and a reference table of the results obtained by independent groups that is provided with this paper can facilitate the choice of eligible patients. A review of other pharmacological chaperones is provided as well. Frequent mutations can have residual activity as low as one-fourth of normal enzyme in vitro. The reference table with residual activity of the mutants facilitates the identification of non-pathological variants.

  5. The Large Phenotypic Spectrum of Fabry Disease Requires Graduated Diagnosis and Personalized Therapy: A Meta-Analysis Can Help to Differentiate Missense Mutations

    Science.gov (United States)

    Citro, Valentina; Cammisa, Marco; Liguori, Ludovica; Cimmaruta, Chiara; Lukas, Jan; Cubellis, Maria Vittoria; Andreotti, Giuseppina

    2016-01-01

    Fabry disease is caused by mutations in the GLA gene and is characterized by a large genotypic and phenotypic spectrum. Missense mutations pose a special problem for graduating diagnosis and choosing a cost-effective therapy. Some mutants retain enzymatic activity, but are less stable than the wild type protein. These mutants can be stabilized by small molecules which are defined as pharmacological chaperones. The first chaperone to reach clinical trial is 1-deoxygalactonojirimycin, but others have been tested in vitro. Residual activity of GLA mutants has been measured in the presence or absence of pharmacological chaperones by several authors. Data obtained from transfected cells correlate with those obtained in cells derived from patients, regardless of whether 1-deoxygalactonojirimycin was present or not. The extent to which missense mutations respond to 1-deoxygalactonojirimycin is variable and a reference table of the results obtained by independent groups that is provided with this paper can facilitate the choice of eligible patients. A review of other pharmacological chaperones is provided as well. Frequent mutations can have residual activity as low as one-fourth of normal enzyme in vitro. The reference table with residual activity of the mutants facilitates the identification of non-pathological variants. PMID:27916943

  6. What controls PTEN and what it controls (in prostate cancer)

    Institute of Scientific and Technical Information of China (English)

    Paramita M Ghosh

    2012-01-01

    The standard of care for metastatic prostate cancer (PCa) is androgen deprivation therapy since almost all PCa growth is initially reliant on the androgen receptor (AR).However,almost all patients develop resistance to this therapy within 18-24months,and current treatment for castration-resistant prostate cancer (CRPC) is extremely limited,despite the advent of new drugs that target the AR,such as ahiraterone and MDV3100.1 Multiple studies have associated the loss of phosphatase and tensin homolog deleted on chromosome 10(PTEN),a dual lipid and protein phosphatase that is frequently lost in prostate cancer,with the development of CRPC.2,3 Yet,multiple studies have shown that at least 20%-40%of primary PCa,which are almost always androgen sensitive,experience a loss of PTEN,4,5 while as many as 30% of CRPC tumors are PTEN-positive.6 The broad questions then facing researchers are:(i) How does PTEN loss cause CRPC?;(ii) What is the mechanism of CRPC development in PTEN+/+ tumors?;and (iii) How can CRPC tumors be inhibited in PTEN-null cells?Three new publications in recent times have come up with mechanisms that answer these questions.7-9 Two of these,both in Cancer Cell eadier this year,from the laboratories of Dr Charles Sawyers and Dr Hong Wu,address a novel negative feedback regulation between AR and PTEN,and all three,including the one from Dr Damu Tang,show that the loss of PTEN function is likely the first step towards the development of CRPC.

  7. Caffeine activates tumor suppressor PTEN in sarcoma cells

    OpenAIRE

    Miwa, Shinji; Sugimoto, Naotoshi; Shirai, Toshiharu; Hayashi, Katsuhiro; Nishida, Hideji; Ohnari, Issei; Takeuchi, Akihiko; Yachie, Akihiro; Tsuchiya, Hiroyuki

    2011-01-01

    The tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a negative regulator of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Akt activation exerts a strong anti-apoptotic effect and inhibits key pro-apoptotic proteins. We investigated the effect of caffeine in the prevention of tumor cell proliferation and induction of cell death. We found that caffeine induced increased intracellular cAMP levels, PTEN activation and Akt inactivation, which to...

  8. Mutation Spectrum in the Large GTPase Dynamin 2, and Genotype–Phenotype Correlation in Autosomal Dominant Centronuclear Myopathy

    OpenAIRE

    Böhm, Johann; Biancalana, Valérie; DeChene, Elizabeth T; Bitoun, Marc; Pierson, Christopher R.; Schaefer, Elise; Karasoy, Hatice; Dempsey, Melissa A.; Klein, Fabrice; Dondaine, Nicolas; Kretz, Christine; Haumesser, Nicolas; Poirson, Claire; Toussaint, Anne; Greenleaf, Rebecca S.

    2012-01-01

    Centronuclear myopathy (CNM) is a genetically heterogeneous disorder associated with general skeletal muscle weakness, type I fiber predominance and atrophy, and abnormally centralized nuclei. Autosomal dominant CNM is due to mutations in the large GTPase dynamin 2 (DNM2), a mechanochemical enzyme regulating cytoskeleton and membrane trafficking in cells. To date, 40 families with CNM-related DNM2 mutations have been described, and here we report 60 additional families encompassing a broad ge...

  9. Genome-Wide Biases in the Rate and Molecular Spectrum of Spontaneous Mutations in Vibrio cholerae and Vibrio fischeri.

    Science.gov (United States)

    Dillon, Marcus M; Sung, Way; Sebra, Robert; Lynch, Michael; Cooper, Vaughn S

    2017-01-01

    The vast diversity in nucleotide composition and architecture among bacterial genomes may be partly explained by inherent biases in the rates and spectra of spontaneous mutations. Bacterial genomes with multiple chromosomes are relatively unusual but some are relevant to human health, none more so than the causative agent of cholera, Vibrio cholerae Here, we present the genome-wide mutation spectra in wild-type and mismatch repair (MMR) defective backgrounds of two Vibrio species, the low-%GC squid symbiont V. fischeri and the pathogen V. cholerae, collected under conditions that greatly minimize the efficiency of natural selection. In apparent contrast to their high diversity in nature, both wild-type V. fischeri and V. cholerae have among the lowest rates for base-substitution mutations (bpsms) and insertion-deletion mutations (indels) that have been measured, below 10(-)(3)/genome/generation. Vibrio fischeri and V. cholerae have distinct mutation spectra, but both are AT-biased and produce a surprising number of multi-nucleotide indels. Furthermore, the loss of a functional MMR system caused the mutation spectra of these species to converge, implying that the MMR system itself contributes to species-specific mutation patterns. Bpsm and indel rates varied among genome regions, but do not explain the more rapid evolutionary rates of genes on chromosome 2, which likely result from weaker purifying selection. More generally, the very low mutation rates of Vibrio species correlate inversely with their immense population sizes and suggest that selection may not only have maximized replication fidelity but also optimized other polygenic traits relative to the constraints of genetic drift. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. The spectrum of FMF mutations and genotypes in the referrals to molecular genetic laboratory at Kirikkale University in Turkey.

    Science.gov (United States)

    Gunel-Ozcan, Aysen; Sayin, Derya Beyza; Misirlioğlu, Emine Dibek; Güliter, Sefa; Yakaryilmaz, Fahri; Ensari, Cuneyt

    2009-04-01

    Familial Mediterranean Fever (FMF) is an autosomal recessive genetic disorder characterised by recurrent and self-limited abdominal pain, synovitis and pleuritis. MEFV gene mutations are responsible from the disease and its protein product, pyrin or marenostrin, plays an essential role in the regulation of the inflammatory reactions. MEFV gene contains 10 exons and most of the mutations have been found on the last exon. Up to date, 152 mutations and polymorpisms have been reported inwhere V726A, M694V, M694I, M680I and E148Q are the most common mutations. In this study, MEFV allele frequencies of 136 individuals (60 from Pediatry, 76 from Internal Medicine) have been evaluated, and compared with each other. Asymptomatic individuals with FMF family history (4 from Pediatry, 6 from Internal Medicine) were excluded from the analysis. The prominent mutations indicated in the Pediatry group are V726A, M694V and M680I (G/C) and with the allele frequency of 0.06, 0.05 and 0.04 respectively while they were E148Q, M694V, M680I (G/C) in the Internal Medicine group with the allele frequency of 0.12, 0.08 and 0.04. The E148Q mutation is significantly overrepresented in the adult referrals (P = 0.02). Mutation on both alleles was observed in only 12% of cases. Overall mutation frequency was low, seen in 26.2% (66/252). However, when only diagnosed patients were analyzed it is 72.7% (16/22). It is also interesting that 63% of individuals are female that there may be sex influence on FMF phenotype.

  11. Novel mutation in ATP13A2 widens the spectrum of Kufor-Rakeb syndrome (PARK9)

    DEFF Research Database (Denmark)

    Eiberg, H; Hansen, L; Korbo, L;

    2012-01-01

    caused by mutations in ATP13A2. We describe six patients from a consanguineous Greenlandic Inuit family, homozygous for a novel frame-shift mutation in exon 22 of ATP13A2 (c.2473C>AA, p.Leu825AsnfsX32). Disease onset varied from 10 to 29 years of age, the latest reported, and the clinical features were...

  12. MUC1 positive, Kras and Pten driven mouse gynecologic tumors replicate human tumors and vary in survival and nuclear grade based on anatomical location.

    Directory of Open Access Journals (Sweden)

    Tejas S Tirodkar

    Full Text Available Activating mutations of Kras oncogene and deletions of Pten tumor suppressor gene play important roles in cancers of the female genital tract. We developed here new preclinical models for gynecologic cancers, using conditional (Cre-loxP mice with floxed genetic alterations in Kras and Pten. The triple transgenic mice, briefly called MUC1KrasPten, express human MUC1 antigen as self and carry a silent oncogenic KrasG12D and Pten deletion mutation. Injection of Cre-encoding adenovirus (AdCre in the ovarian bursa, oviduct or uterus activates the floxed mutations and initiates ovarian, oviductal, and endometrial cancer, respectively. Anatomical site-specific Cre-loxP recombination throughout the genital tract of MUC1KrasPten mice leads to MUC1 positive genital tract tumors, and the development of these tumors is influenced by the anatomical environment. Endometrioid histology was consistently displayed in all tumors of the murine genital tract (ovaries, oviducts, and uterus. Tumors showed increased expression of MUC1 glycoprotein and triggered de novo antibodies in tumor bearing hosts, mimicking the immunobiology seen in patients. In contrast to the ovarian and endometrial tumors, oviductal tumors showed higher nuclear grade. Survival for oviduct tumors was significantly lower than for endometrial tumors (p = 0.0015, yet similar to survival for ovarian cancer. Oviducts seem to favor the development of high grade tumors, providing preclinical evidence in support of the postulated role of fallopian tubes as the originating site for high grade human ovarian tumors.

  13. Molecular Analysis of AFP and HSA Interactions with PTEN Protein.

    Science.gov (United States)

    Zhu, Mingyue; Lin, Bo; Zhou, Peng; Li, Mengsen

    2015-01-01

    Human cytoplasmic alpha-fetoprotein (AFP) has been classified as a member of the albuminoid gene family. The protein sequence of AFP has significant homology to that of human serum albumin (HSA), but its biological characteristics are vastly different from HSA. The AFP functions as a regulator in the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway, but HSA plays a key role as a transport protein. To probe their molecular mechanisms, we have applied colocalization, coimmunoprecipitation (co-IP), and molecular docking approaches to analyze the differences between AFP and HSA. The data from colocalization and co-IP displayed a strong interaction between AFP and PTEN (phosphatase and tensin homolog), demonstrating that AFP did bind to PTEN, but HSA did not. The molecular docking study further showed that the AFP domains I and III could contact with PTEN. In silicon substitutions of AFP binding site residues at position 490M/K and 105L/R corresponding to residues K490 and R105 in HSA resulted in steric clashes with PTEN residues R150 and K46, respectively. These steric clashes may explain the reason why HSA cannot bind to PTEN. Ultimately, the experimental results and the molecular modeling data from the interactions of AFP and HSA with PTEN will help us to identify targets for designing drugs and vaccines against human hepatocellular carcinoma.

  14. Methods to Study PTEN in Mitochondria and Endoplasmic Reticulum.

    Science.gov (United States)

    Missiroli, Sonia; Morganti, Claudia; Giorgi, Carlotta; Pinton, Paolo

    2016-01-01

    Although PTEN has been widely described as a nuclear and cytosolic protein, in the last 2 years, alternative organelles, such as the endoplasmic reticulum (ER), pure mitochondria, and mitochondria-associated membranes (MAMs), have been recognized as pivotal targets of PTEN activity.Here, we describe different methods that have been used to highlight PTEN subcellular localization.First, a protocol to extract nuclear and cytosolic fractions has been described to assess the "canonical" PTEN localization. Moreover, we describe a protocol for mitochondria isolation with proteinase K (PK) to further discriminate whether PTEN associates with the outer mitochondrial membrane (OMM) or resides within the mitochondria. Finally, we focus our attention on a subcellular fractionation protocol of cells that permits the isolation of MAMs containing unique regions of ER membranes attached to the outer mitochondrial membrane (OMM) and mitochondria without contamination from other organelles. In addition to biochemical fractionations, immunostaining can be used to determine the subcellular localization of proteins; thus, a detailed protocol to obtain good immunofluorescence (IF) is described. The employment of these methodological approaches could facilitate the identification of different PTEN localizations in several physiopathological contexts.

  15. Somatic mutation spectrum in monoclonal gammopathy of undetermined significance indicates a less complex genomic landscape compared to multiple myeloma.

    Science.gov (United States)

    Mikulasova, Aneta; Wardell, Christopher P; Murison, Alexander; Boyle, Eileen M; Jackson, Graham H; Smetana, Jan; Kufova, Zuzana; Pour, Ludek; Sandecka, Viera; Almasi, Martina; Vsianska, Pavla; Gregora, Evzen; Kuglik, Petr; Hajek, Roman; Davies, Faith E; Morgan, Gareth J; Walker, Brian A

    2017-05-26

    Monoclonal gammopathy of undetermined significance (MGUS) is a premalignant precursor of multiple myeloma with a 1% risk of progression per year. Although targeted analyses have shown the presence of specific genetic abnormalities such as IGH translocations, RB1 deletion, 1q gain, hyperdiploidy or RAS genes mutations, little is known about the molecular mechanism of malignant transformation. We have performed whole exome sequencing together with CGH+SNP array analysis in 33 flow-cytometry separated abnormal plasma cell samples from MGUS patients to describe somatic gene mutations and chromosome changes at the genome-wide level. Non-synonymous mutations and copy-number alterations were present in 97.0% and in 60.6% of cases, respectively. Importantly, the number of somatic mutations was significantly lower in MGUS compared to myeloma (P < 10-4) and we identified six genes that were significantly mutated in myeloma (KRAS, NRAS, DIS3, HIST1H1E, EGR1 and LTB) within the MGUS dataset. We also found a positive correlation with increasing chromosome changes and somatic gene mutations. IGH translocations were present in 27.3% of cases comprising t(4;14), t(11;14), t(14;16) or t(14;20) and were present in a similar frequency to myeloma, consistent with the primary lesion hypothesis. MYC translocations and TP53 deletions or mutations were not detected in MGUS samples indicating they may be drivers of progression to myeloma. Data from this study show that MGUS is genetically similar to myeloma, however overall genetic abnormalities are present at significantly lower levels compared to myeloma. Copyright © 2017, Ferrata Storti Foundation.

  16. Extending the spectrum of Ellis van Creveld syndrome: a large family with a mild mutation in the EVC gene

    Directory of Open Access Journals (Sweden)

    Cockerham John

    2008-10-01

    Full Text Available Abstract Background Ellis-van Creveld (EvC syndrome is characterized by short limbs, short ribs, postaxial polydactyly, dysplastic nails and teeth and is inherited in an autosomal recessive pattern. We report a family with complex septal cardiac defects, rhizomelic limb shortening, and polydactyly, without the typical lip, dental, and nail abnormalities of EvC. The phenotype was inherited in an autosomal recessive pattern, with one instance of pseudodominant inheritance. Methods Because of the phenotypic overlap with EvC, microsatellite markers were used to test for linkage to the EVC/EVC2 locus. The results did not exclude linkage, so samples were sequenced for mutations. Results We identified a c.1868T>C mutation in EVC, which predicts p.L623P, and was homozygous in affected individuals. Conclusion We conclude that this EVC mutation is hypomorphic and that such mutations can cause a phenotype of cardiac and limb defects that is less severe than typical EvC. EVC mutation analysis should be considered in patients with cardiac and limb malformations, even if they do not manifest typical EvC syndrome.

  17. A role for Pten in paediatric intestinal dysmotility disorders.

    LENUS (Irish Health Repository)

    O'Donnell, Anne-Marie

    2012-02-01

    PURPOSE: The enteric nervous system (ENS) is a network of neurons and glia that lies within the gut wall. It is responsible for the normal regulation of gut motility and secretory activities. Hirschsprung\\'s disease (HD) is a congenital defect of the ENS, characterised by an absence of ganglia in the distal colon. Intestinal neuronal dysplasia (IND) is a condition that clinically resembles HD, characterised by hyperganglionosis, giant and ectopic ganglia, resulting in intestinal dysmotility. Intestinal ganglioneuromatosis is characterised by hyperplasia and hypertrophy of enteric neuronal cells and causes chronic intestinal pseudo-obstruction (CIPO). Phosphatase and tensin homolog deleted on chromosome 10 (Pten) is a phosphatase that is critical for controlling cell growth, proliferation and cell death. A recent study of Pten knockout mice showed evidence of ganglioneuromatosis in the ENS suggesting a role for this protein in ENS development. Ganglioneuromatosis patients have also been shown to have a decreased level of Pten expression in the colon. The aim of our study was to investigate Pten expression in the ENS of HD and IND patients compared to normal controls. METHODS: Resected tissue from 10 HD and 10 IND type B patients was fixed and embedded in paraffin wax. Normal control colon tissue was obtained from ten patients who underwent a colostomy closure for imperforate anus. Sections were cut and immunohistochemistry was carried out using a Pten antibody. Results were analysed by light microscopy. RESULTS: Staining showed that Pten was strongly expressed in ganglia of both the submucosal and myenteric plexus of normal and HD specimens from the ganglionic colon. Pten expression was significantly reduced in the giant ganglia in IND patients in both the myenteric and submucosal plexuses compared to the normal controls. Specimens from the aganglionic region of HD did not show Pten expression. CONCLUSION: To the best of our knowledge, this is the first study

  18. Extremely discrepant mutation spectrum of SLC26A4 between Chinese patients with isolated Mondini deformity and enlarged vestibular aqueduct

    Directory of Open Access Journals (Sweden)

    Yan Xiaofei

    2011-09-01

    Full Text Available Abstract Background Mutations in SLC26A4 cause Pendred syndrome (hearing loss with goiter or DFNB4 (non-syndromic hearing loss with inner ear malformation, such as enlarged vestibular aqueduct or Mondini deformity. The relationship between mutations in SLC26A4 and Mondini deformity without enlarged vestibular aqueduct has not been studied in any Chinese deaf population. The purpose of this study was to assess whether mutations in the SLC26A4 gene cause Mondini deformity without an enlarged vestibular aqueduct (isolated Mondini deformity in a Chinese population. Methods In total, 144 patients with sensorineural hearing loss were included and subjected to high-resolution temporal bone CT. Among them, 28 patients with isolated Mondini dysplasia (MD group, 50 patients with enlarged vestibular aqueduct with Mondini dysplasia (EVA with MD group, 50 patients with enlarged vestibular aqueduct without Mondini dysplasia (EVA group, and 16 patients with other types of inner ear malformations (IEM group were identified. The coding exons of SLC26A4 were analyzed in all subjects. Results DNA sequence analysis of SLC26A4 was performed in all 144 patients. In the different groups, the detection rate of the SLC26A4 mutation differed. In the isolated MD group, only one single allelic mutation in SLC26A4 was found in one patient (1/28, 3.6%. In the EVA with MD group, biallelic and monoallelic SLC26A4 mutations were identified in 46 patients (46/50, 92.0% and three patients (3/50, 6.0%, respectively. Also, in the EVA group, biallelic and monoallelic SLC26A4 mutations were identified in 46 patients (46/50, 92.0% and three patients (3/50, 6.0%, respectively. These percentages were identical to those in the EVA plus MD group. Only two patients carried monoallelic mutations of the SLC26A4 gene in the IEM group (2/16, 12.5%. There were significant differences in the frequency of SLC26A4 mutation among the groups (P SLC26A4 mutation in the isolated MD group was

  19. A new pathway of glucocorticoid action for asthma treatment through the regulation of PTEN expression

    Directory of Open Access Journals (Sweden)

    Chen Qingge

    2011-04-01

    Full Text Available Abstract Background "Phosphatase and tensin homolog deleted on chromosome 10" (PTEN is mostly considered to be a cancer-related gene, and has been suggested to be a new pathway of pathogenesis of asthma. The purpose of this study was to investigate the effects of the glucocorticoid, dexamethasone, on PTEN regulation. Methods OVA-challenged mice were used as an asthma model to investigate the effect of dexamethasone on PTEN regulation. Immunohistochemistry was used to detect expression levels of PTEN protein in lung tissues. The human A549 cell line was used to explore the possible mechanism of action of dexamethasone on human PTEN regulation in vitro. A luciferase reporter construct under the control of PTEN promoter was used to confirm transcriptional regulation in response to dexamethasone. Results PTEN protein was found to be expressed at low levels in lung tissues in asthmatic mice; but the expression was restored after treatment with dexamethasone. In A549 cells, human PTEN was up-regulated by dexamethasone treatment. The promoter-reporter construct confirmed that dexamethasone could regulate human PTEN transcription. Treatment with the histone deacetylase inhibitor, TSA, could increase PTEN expression in A549 cells, while inhibition of histone acetylase (HAT by anacardic acid attenuated dexamethasone-induced PTEN expression. Conclusions Based on the data a new mechanism is proposed where glucocorticoids treat asthma partly through up-regulation of PTEN expression. The in vitro studies also suggest that the PTEN pathway may be involved in human asthma.

  20. Molecular analysis of the APC and MUTYH genes in Galician and Catalonian FAP families: a different spectrum of mutations?

    Directory of Open Access Journals (Sweden)

    Gómez-Fernández Nuria

    2009-06-01

    Full Text Available Abstract Background Familial adenomatous polyposis (FAP is an autosomal dominant-inherited colorectal cancer syndrome, caused by germline mutations in the APC gene. Recently, biallelic mutations in MUTYH have also been identified in patients with multiple colorectal adenomas and in APC-negative patients with FAP. The aim of this work is therefore to determine the frequency of APC and MUTYH mutations among FAP families from two Spanish populations. Methods Eighty-two unrelated patients with classical or attenuated FAP were screened for APC germline mutations. MUTYH analysis was then conducted in those APC-negative families and in 9 additional patients from a previous study. Direct sequencing, SSCP analysis and TaqMan genotyping were used to identify point and frameshift mutations, meanwhile large rearrangements in the APC gene were screened by multiplex ligation-dependent probe amplification (MLPA. Results APC germline mutations were found in 39% of the patients and, despite the great number of genetic variants described so far in this gene, seven new mutations were identified. The two hotspots at codons 1061 and 1309 of the APC gene accounted for 9,4% of the APC-positive families, although they were underrepresented in Galician samples. The deletion at codon 1061 was not found in 19 APC-positive Galician patients but represented 23% of the Catalonian positive families (p = 0,058. The same trend was observed at codon 1309, even though statistical analysis showed no significance between populations. Twenty-four percent of the APC-negative patients carried biallelic MUTYH germline mutations, and showed an attenuated polyposis phenotype generally without extracolonic manifestations. New genetic variants were found, as well as the two hotspots already reported (p.Tyr165Cys and p.Gly382Asp. Conclusion The results we present indicate that in Galician patients the frequency of the hotspot at codon 1061 in APC differs significantly from the Catalonian

  1. Multiple self-healing squamous epithelioma is caused by a disease-specific spectrum of mutations in TGFBR1

    DEFF Research Database (Denmark)

    Goudie, David R; D'Alessandro, Mariella; Merriman, Barry;

    2011-01-01

    Multiple self-healing squamous epithelioma (MSSE), also known as Ferguson-Smith disease (FSD), is an autosomal-dominant skin cancer condition characterized by multiple squamous-carcinoma-like locally invasive skin tumors that grow rapidly for a few weeks before spontaneously regressing, leaving...... affected families, firmly establishing TGFBR1 as the causative gene. The nature of the sequence variants, which include mutations in the extracellular ligand-binding domain and a series of truncating mutations in the kinase domain, indicates a clear genotype-phenotype correlation between loss-of-function...

  2. Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders

    OpenAIRE

    Drenth, J.P.H.; Waxman, S G

    2007-01-01

    The voltage-gated sodium-channel type IX alpha subunit, known as Na(v)1.7 and encoded by the gene SCN9A, is located in peripheral neurons and plays an important role in action potential production in these cells. Recent genetic studies have identified Na(v)1.7 dysfunction in three different human pain disorders. Gain-of-function missense mutations in Na(v)1.7 have been shown to cause primary erythermalgia and paroxysmal extreme pain disorder, while nonsense mutations in Na(v)1.7 result in los...

  3. Repair and actio spectrum of oxygen-independent lethality of near uv light on Haemophilus influenzae and lack of mutation

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera-Juarez, E.; Setlow, J.K.

    1980-01-01

    Haemophilus influenzae has been inactivated anaerobically at 313, 334, 365, and 405 nm, and exhibits the greatest sensitivity at 334 nm. The rec1 and uvr1 mutants show the greatest increase in sensitivity over the wild-type at 313 nm, but differences could be seen also at the other wavelengths. Anaerobic irradiation is less effective for killing at all the wavelengths than irradiation under aerobic conditions, but the greatest difference was observed at 365 nm. No induced mutation was seen as a result of anaerobic irradiation at 334 nm, although purified transforming DNA can be mutated at this wavelength.

  4. Mutational spectrum in 101 patients with hypohidrotic ectodermal dysplasia and breakpoint mapping in independent cases of rare genomic rearrangements.

    Science.gov (United States)

    Wohlfart, Sigrun; Hammersen, Johanna; Schneider, Holm

    2016-10-01

    Hypohidrotic ectodermal dysplasia (HED), a rare and heterogeneous hereditary disorder, is characterized by deficient development of multiple ectodermal structures including hair, sweat glands and teeth. If caused by mutations in the genes EDA, EDA1R or EDARADD, phenotypes are often very similar as the result of a common signaling pathway. Single-nucleotide polymorphisms (SNPs) affecting any gene product in this pathway may cause inter- and intrafamilial variability. In a cohort of 124 HED patients, genotyping was attempted by Sanger sequencing of EDA, EDA1R, EDARADD, TRAF6 and EDA2R and by multiplex ligation-dependent probe amplification (MLPA). Pathogenic mutations were detected in 101 subjects with HED, affecting EDA, EDA1R and EDARADD in 88%, 9% and 3% of the cases, respectively, and including 23 novel mutations. MLPA revealed exon copy-number variations in five unrelated HED families (two deletions and three duplications). In four of them, the genomic breakpoints could be localized. The EDA1R variant rs3827760 (p.Val370Ala), known to lessen HED-related symptoms, was found only in a single individual of Asian origin, but in none of the 123 European patients. Another SNP, rs1385699 (p.Arg57Lys) in EDA2R, however, appeared to have some impact on the hair phenotype of European subjects with EDA mutations.

  5. BESTROPHINOPATHY: A Spectrum of Ocular Abnormalities Caused by the c.614T>C Mutation in the BEST1 Gene

    NARCIS (Netherlands)

    Toto, L.; Boon, C.J.F.; Antonio, L. Di; Parodi, M. Battaglia; Mastropasqua, R.; Antonucci, I.; Stuppia, L.; Mastropasqua, L.

    2016-01-01

    PURPOSE: To describe the variable ocular phenotype associated with a heterozygous mutation in the BEST1 gene. METHODS: Clinical and genetic assessment was performed in five members of the same family. Molecular genetic analysis of the BEST1 gene was performed by direct sequencing. Extensive

  6. Mutation spectrum in the large GTPase dynamin 2, and genotype-phenotype correlation in autosomal dominant centronuclear myopathy

    DEFF Research Database (Denmark)

    Böhm, Johann; Biancalana, Valérie; Dechene, Elizabeth T

    2012-01-01

    Centronuclear myopathy (CNM) is a genetically heterogeneous disorder associated with general skeletal muscle weakness, type I fiber predominance and atrophy, and abnormally centralized nuclei. Autosomal dominant CNM is due to mutations in the large GTPase dynamin 2 (DNM2), a mechanochemical enzym...

  7. Phenotypic spectrum of eleven patients and five novel MTFMT mutations identified by exome sequencing and candidate gene screening

    NARCIS (Netherlands)

    Haack, T.B.; Gorza, M.; Danhauser, K.; Mayr, J.A.; Haberberger, B.; Wieland, T.; Kremer, L.; Strecker, V.; Graf, E.; Memari, Y.; Ahting, U.; Kopajtich, R.; Wortmann, S.B.; Rodenburg, R.J.T.; Kotzaeridou, U.; Hoffmann, G.F.; Sperl, W.; Wittig, I.; Wilichowski, E.; Schottmann, G.; Schuelke, M.; Plecko, B.; Stephani, U.; Strom, T.M.; Meitinger, T.; Prokisch, H.; Freisinger, P.

    2014-01-01

    Defects of mitochondrial oxidative phosphorylation (OXPHOS) are associated with a wide range of clinical phenotypes and time courses. Combined OXPHOS deficiencies are mainly caused by mutations of nuclear genes that are involved in mitochondrial protein translation. Due to their genetic heterogeneit

  8. Toward an improved definition of the genetic and tumor spectrum associated with SDH germ-line mutations

    NARCIS (Netherlands)

    Evenepoel, Lucie; Papathomas, Thomas G.; Krol, Niels; Korpershoek, Esther; De Krijger, Ronald R.; Persu, Alexandre; Dinjens, Winand N M

    2015-01-01

    The tricarboxylic acid, or Krebs, cycle is central to the cellular metabolism of sugars, lipids, and amino acids; it fuels the mitochondrial respiratory chain for energy generation. In the past decade, mutations in the Krebs-cycle enzymes succinate dehydrogenase, fumarate hydratase, and isocitrate

  9. Mutation spectrum in FE1-MUTA(TM) Mouse lung epithelial cells exposed to nanoparticulate carbon black

    DEFF Research Database (Denmark)

    Jacobsen, Nicklas Raun; White, Paul A; Gingerich, John

    2011-01-01

    It has been shown previously that carbon black (CB), Printex 90 exposure induces cII and lacZ mutants in the FE1-Muta(TM) Mouse lung epithelial cell line and causes oxidatively damaged DNA and the production of reactive oxygen species (ROS). The purpose of this study was to determine the mutation...

  10. CACNA1D de novo mutations in autism spectrum disorders activate Cav1.3 L-type calcium channels.

    Science.gov (United States)

    Pinggera, Alexandra; Lieb, Andreas; Benedetti, Bruno; Lampert, Michaela; Monteleone, Stefania; Liedl, Klaus R; Tuluc, Petronel; Striessnig, Jörg

    2015-05-01

    Cav1.3 voltage-gated L-type calcium channels (LTCCs) are part of postsynaptic neuronal signaling networks. They play a key role in brain function, including fear memory and emotional and drug-taking behaviors. A whole-exome sequencing study identified a de novo mutation, p.A749G, in Cav1.3 α1-subunits (CACNA1D), the second main LTCC in the brain, as 1 of 62 high risk-conferring mutations in a cohort of patients with autism and intellectual disability. We screened all published genetic information available from whole-exome sequencing studies and identified a second de novo CACNA1D mutation, p.G407R. Both mutations are present only in the probands and not in their unaffected parents or siblings. We functionally expressed both mutations in tsA-201 cells to study their functional consequences using whole-cell patch-clamp. The mutations p.A749G and p.G407R caused dramatic changes in channel gating by shifting (~15 mV) the voltage dependence for steady-state activation and inactivation to more negative voltages (p.A749G) or by pronounced slowing of current inactivation during depolarizing stimuli (p.G407R). In both cases, these changes are compatible with a gain-of-function phenotype. Our data, together with the discovery that Cav1.3 gain-of-function causes primary aldosteronism with seizures, neurologic abnormalities, and intellectual disability, suggest that Cav1.3 gain-of-function mutations confer a major part of the risk for autism in the two probands and may even cause the disease. Our findings have immediate clinical relevance because blockers of LTCCs are available for therapeutic attempts in affected individuals. Patients should also be explored for other symptoms likely resulting from Cav1.3 hyperactivity, in particular, primary aldosteronism. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Spectrum of EGFR gene copy number changes and KRAS gene mutation status in Korean triple negative breast cancer patients.

    Directory of Open Access Journals (Sweden)

    Yoonjung Kim

    Full Text Available Anti-epidermal growth factor receptor (EGFR therapy has been tried in triple negative breast cancer (TNBC patients without evaluation of molecular and clinical predictors in several randomized clinical studies. Only fewer than 20% of metastatic TNBCs showed response to anti-EGFR therapy. In order to increase the overall response rate, first step would be to classify TNBC into good or poor responders according to oncogenic mutation profiles. This study provides the molecular characteristics of TNBCs including EGFR gene copy number changes and mutation status of EGFR and KRAS gene in Korean TNBC patients. Mutation analysis for EGFR, KRAS, BRAF and TP53 from a total of 105 TNBC tissue samples was performed by direct sequencing, peptide nucleic acid-mediated PCR clamping method and real-time PCR. Copy number changes of EGFR gene were evaluated using multiplex ligation-dependent probe amplification. Out of all 105 TNBCs, 15.2% (16/105 showed EGFR copy number changes. Among them, increased or decreased EGFR copy number was detected in 13 (5 single copy gain, 2 amplification and 4 high-copy number amplification and 3 cases (3 hemizygous deletion, respectively. The mutation frequencies of KRAS, EGFR and TP53 gene were 1.9% (G12V and G12D, 1.0% (exon 19 del and 31.4%, respectively. There was no BRAF V600E mutation found. Future studies are needed to evaluate the clinical outcomes of TNBC patients who undergo anti-EGFR therapy according to the genetic status of EGFR.

  12. PTEN: a default gate-keeping tumor suppressor with a versatile tail

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The tumor suppressor PTEN controls a variety of biological processes including cell proliferation, growth, migration, and death. As a master cellular regulator, PTEN itself is also subjected to deliberated regulation to ensure its proper function. Defects in PTEN regulation have a profound impact on carcinogenesis. In this review, we briefly discuss recent advances concerning PTEN regulation and how such knowledge facilitates our understanding and further exploration of PTEN biology. The carboxyl-tail of PTEN, which appears to be associated with multiple types of posttranslational regulation, will be under detailed scrutiny. Further, a comparative analysis of PTEN and p53 suggests while p53 needs to be activated to suppress tumorigenesis (a dormant gatekeeper), PTEN is probably a constitutive surveillant against cancer development, thus a default gatekeeper.

  13. Reduced Expression of PTEN Protein and Its Prognostic Significance in the Gastrointestinal Stromal Tumor

    Institute of Scientific and Technical Information of China (English)

    张永红; 于冬冬; 李小兰; 胡俊波; 龚建平

    2010-01-01

    Little is reported about the role of PTEN gene in the progression and prognosis of GISTs.This study examined the clinical implications of the tumor suppressor gene PTEN as a prognostic factor in the GISTs.Immunohistological staining and immunoblotting were employed to examine the PTEN protein expression,and its association with clinical measures.Clinicopathological features were reviewed by a retrospective examination of medical records.Reduced PTEN expression was significantly associated with tumor diamete...

  14. Phosphorylation of PTEN at STT motif is associated with DNA damage response.

    Science.gov (United States)

    Misra, Sandip; Mukherjee, Ananda; Karmakar, Parimal

    2014-12-01

    Phosphatase and tensin homolog deleted on chromosome Ten (PTEN), a tumor suppressor protein participates in multiple cellular activities including DNA repair. In this work we found a relationship between phosphorylation of carboxy (C)-terminal STT motif of PTEN and DNA damage response. Ectopic expression of C-terminal phospho-mutants of PTEN, in PTEN deficient human glioblastoma cells, U87MG, resulted in reduced viability and DNA repair after etoposide induced DNA damage compared to cells expressing wild type PTEN. Also, after etoposide treatment phosphorylation of PTEN increased at C-terminal serine 380 and threonine 382/383 residues in PTEN positive HEK293T cells and wild type PTEN transfected U87MG cells. One-step further, DNA damage induced phosphorylation of PTEN was confirmed by immunoprecipitation of total PTEN from cellular extract followed by immunobloting with phospho-specific PTEN antibodies. Additionally, phospho-PTEN translocated to nucleus after etoposide treatment as revealed by indirect immunolabeling. Further, phosphorylation dependent nuclear foci formation of PTEN was observed after ionizing radiation or etoposide treatment which colocalized with γH2AX. Additionally, etoposide induced γH2AX, Mre11 and Ku70 foci persisted for a longer period of times in U87MG cells after ectopic expression of PTEN C-terminal phospho-mutant constructs compared to wild type PTEN expressing cells. Thus, our findings strongly suggest that DNA damage induced phosphorylation of C-terminal STT motif of PTEN is necessary for DNA repair. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. PTEN inhibition and axon regeneration and neural repair

    Institute of Scientific and Technical Information of China (English)

    Yosuke Ohtake; Umar Hayat; Shuxin Li

    2015-01-01

    The intrinsic growth ability of all the neurons declines during development although some may grow better than others. Numerous intracellular signaling proteins and transcription factors have been shown to regulate the intrinsic growth capacity in mature neurons. Among them, PI3 kinase/Akt pathway is important for controlling axon elongation. As a negative regulator of this pathway, the tumor suppressor phosphatase and tensin homolog (PTEN) appears critical to con-trol the regenerative ability of young and adult neurons. This review will focus on recent research progress in axon regeneration and neural repair by PTEN inhibition and therapeutic potential of blocking this phosphatase for neurological disorders. Inhibition of PTEN by deletion in con-ditional knockout mice, knockdown by short-hairpin RNA, or blockade by pharmacological approaches, including administration of selective PTEN antagonist peptides, stimulates various degrees of axon regrowth in juvenile or adult rodents with central nervous system injuries. Im-portantly, post-injury PTEN suppression could enhance axonal growth and functional recovery in adult central nervous system after injury.

  16. Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders.

    Science.gov (United States)

    Drenth, Joost P H; Waxman, Stephen G

    2007-12-01

    The voltage-gated sodium-channel type IX alpha subunit, known as Na(v)1.7 and encoded by the gene SCN9A, is located in peripheral neurons and plays an important role in action potential production in these cells. Recent genetic studies have identified Na(v)1.7 dysfunction in three different human pain disorders. Gain-of-function missense mutations in Na(v)1.7 have been shown to cause primary erythermalgia and paroxysmal extreme pain disorder, while nonsense mutations in Na(v)1.7 result in loss of Na(v)1.7 function and a condition known as channelopathy-associated insensitivity to pain, a rare disorder in which affected individuals are unable to feel physical pain. This review highlights these recent developments and discusses the critical role of Na(v)1.7 in pain sensation in humans.

  17. Suppression of gastric cancer growth by adenovirus-mediated transfer of the PTEN gene

    Institute of Scientific and Technical Information of China (English)

    Ying Hang; Yong-Chen Zheng; Yan Cao; Qing-Shan Li; Yu-Jie Sui

    2005-01-01

    AIM: To investigate the tumor-suppressive effect of the phosphatase and tensin homologue deleted from chromosome (PTEN) in human gastric cancer cells th atwere wild type for PTEN.METHODS: Adenoviruses expressing PTEN or luciferase as a control were introduced into gastric cancer cells.The effect of exogenous PTEN gene on the growth and apoptosis of gastric cancer cells that are wtPTEN were examined in vitro and in vivo.RESULTS: Adenovirus-mediated transfer of PTEN (AdPTEN) suppressed cell growth and induced apoptosis significantly in gastric cancer cells (MGC-803, SGC-7901)carrying wtPTEN in comparison with that in normal gastric epithelial cells (GES-1) carrying wtPTEN. This suppression was induced through downregulation of the Akt/PKB pathway, dephosphorylation of focal adhesion kinase and mitogen-activated protein kinase and cell-cycle arrest at the G2/M phase but not at the G1 phase. Furthermore,treatment of human gastric tumor xenografts (MGC-803,SGC-7901) with Ad-PTEN resulted in a significant (P<0.01)suppression of tumor growth.CONCLUSION: These results indicate a significant tumorsuppressive effect of Ad-PTEN against human gastric cancer cells. Thus, Ad-PTEN may be used as a potential therapeutic strategy for treatment of gastric cancers.

  18. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Zhen [Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Gan, Ye-Hua, E-mail: kqyehuagan@bjmu.edu.cn [Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China)

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.

  19. Six novel alleles identified in Italian hereditary fructose intolerance patients enlarge the mutation spectrum of the aldolase B gene.

    Science.gov (United States)

    Esposito, Gabriella; Santamaria, Rita; Vitagliano, Luigi; Ieno, Luigi; Viola, Antonietta; Fiori, Laura; Parenti, Giancarlo; Zancan, Lucia; Zagari, Adriana; Salvatore, Francesco

    2004-12-01

    Hereditary fructose intolerance (HFI) is a recessively inherited disorder of carbohydrate metabolism caused by impaired functioning of human liver aldolase (B isoform; ALDOB). To-date, 29 enzyme-impairing mutations have been identified in the aldolase B gene. Here we report six novel HFI single nucleotide changes identified by sequence analysis in the aldolase B gene. Three of these are missense mutations (g.6846T>C, g.10236G>T, g.10258T>C), one is a nonsense mutation (g.8187C>T) and two affect splicing sites (g.8180G>C and g.10196A>G). We have expressed in bacterial cells the recombinant proteins corresponding to the g.6846T>C (p.I74T), g.10236G>T (p.V222F), and g.10258T>C (p.L229P) natural mutants to study their effect on aldolase B function and structure. All the new variants were insoluble; molecular graphics data suggest this is due to impaired folding.

  20. Cell surface area and membrane folding in glioblastoma cell lines differing in PTEN and p53 status.

    Directory of Open Access Journals (Sweden)

    Simon Memmel

    Full Text Available Glioblastoma multiforme (GBM is characterized by rapid growth, invasion and resistance to chemo-/radiotherapy. The complex cell surface morphology with abundant membrane folds, microvilli, filopodia and other membrane extensions is believed to contribute to the highly invasive behavior and therapy resistance of GBM cells. The present study addresses the mechanisms leading to the excessive cell membrane area in five GBM lines differing in mutational status for PTEN and p53. In addition to scanning electron microscopy (SEM, the membrane area and folding were quantified by dielectric measurements of membrane capacitance using the single-cell electrorotation (ROT technique. The osmotic stability and volume regulation of GBM cells were analyzed by video microscopy. The expression of PTEN, p53, mTOR and several other marker proteins involved in cell growth and membrane synthesis were examined by Western blotting. The combined SEM, ROT and osmotic data provided independent lines of evidence for a large variability in membrane area and folding among tested GBM lines. Thus, DK-MG cells (wild type p53 and wild type PTEN exhibited the lowest degree of membrane folding, probed by the area-specific capacitance C m = 1.9 µF/cm(2. In contrast, cell lines carrying mutations in both p53 and PTEN (U373-MG and SNB19 showed the highest C m values of 3.7-4.0 µF/cm(2, which corroborate well with their heavily villated cell surface revealed by SEM. Since PTEN and p53 are well-known inhibitors of mTOR, the increased membrane area/folding in mutant GBM lines may be related to the enhanced protein and lipid synthesis due to a deregulation of the mTOR-dependent downstream signaling pathway. Given that membrane folds and extensions are implicated in tumor cell motility and metastasis, the dielectric approach presented here provides a rapid and simple tool for screening the biophysical cell properties in studies on targeting chemo- or radiotherapeutically the

  1. Dermal Delivery of Constructs Encoding Cre Recombinase to Induce Skin Tumors in PtenLoxP/LoxP;BrafCA/+ Mice

    Directory of Open Access Journals (Sweden)

    Marcel A. Deken

    2016-12-01

    Full Text Available Current genetically-engineered mouse melanoma models are often based on Tyr::CreERT2-controlled MAPK pathway activation by the BRAFV600E mutation and PI3K pathway activation by loss of PTEN. The major drawback of these models is the occurrence of spontaneous tumors caused by leakiness of the Tyr::CreERT2 system, hampering long-term experiments. To address this problem, we investigated several approaches to optimally provide local delivery of Cre recombinase, including injection of lentiviral particles, DNA tattoo administration and particle-mediated gene transfer, to induce melanomas in PtenLoxP/LoxP;BrafCA/+ mice lacking the Tyr::CreERT2 allele. We found that dermal delivery of the Cre recombinase gene under the control of a non-specific CAG promoter induced the formation of melanomas, but also keratoacanthoma and squamous cell carcinomas. Delivery of Cre recombinase DNA under the control of melanocyte-specific promoters in PtenLoxP/LoxP;BrafCA/+ mice resulted in sole melanoma induction. The growth rate and histological features of the induced tumors were similar to 4-hydroxytamoxifen-induced tumors in Tyr::CreERT2;PtenLoxP/LoxP;BrafCA/+ mice, while the onset of spontaneous tumors was prevented completely. These novel induction methods will allow long-term experiments in mouse models of skin malignancies.

  2. Loss of the tumor suppressor Pten promotes proliferation of Drosophila melanogaster cells in vitro and gives rise to continuous cell lines.

    Science.gov (United States)

    Justiniano, Steven E; Mathew, Anne; Mitra, Sayan; Manivannan, Sathiya N; Simcox, Amanda

    2012-01-01

    In vivo analysis of Drosophila melanogaster has enhanced our understanding of many biological processes, notably the mechanisms of heredity and development. While in vivo analysis of mutants has been a strength of the field, analyzing fly cells in culture is valuable for cell biological, biochemical and whole genome approaches in which large numbers of homogeneous cells are required. An efficient genetic method to derive Drosophila cell lines using expression of an oncogenic form of Ras (Ras(V12)) has been developed. Mutations in tumor suppressors, which are known to cause cell hyperproliferation in vivo, could provide another method for generating Drosophila cell lines. Here we screened Drosophila tumor suppressor mutations to test if they promoted cell proliferation in vitro. We generated primary cultures and determined when patches of proliferating cells first emerged. These cells emerged on average at 37 days in wild-type cultures. Using this assay we found that a Pten mutation had a strong effect. Patches of proliferating cells appeared on average at 11 days and the cultures became confluent in about 3 weeks, which is similar to the timeframe for cultures expressing Ras(V12). Three Pten mutant cell lines were generated and these have now been cultured for between 250 and 630 cell doublings suggesting the life of the mutant cells is likely to be indefinite. We conclude that the use of Pten mutants is a powerful means to derive new Drosophila cell lines.

  3. Loss of the tumor suppressor Pten promotes proliferation of Drosophila melanogaster cells in vitro and gives rise to continuous cell lines.

    Directory of Open Access Journals (Sweden)

    Steven E Justiniano

    Full Text Available In vivo analysis of Drosophila melanogaster has enhanced our understanding of many biological processes, notably the mechanisms of heredity and development. While in vivo analysis of mutants has been a strength of the field, analyzing fly cells in culture is valuable for cell biological, biochemical and whole genome approaches in which large numbers of homogeneous cells are required. An efficient genetic method to derive Drosophila cell lines using expression of an oncogenic form of Ras (Ras(V12 has been developed. Mutations in tumor suppressors, which are known to cause cell hyperproliferation in vivo, could provide another method for generating Drosophila cell lines. Here we screened Drosophila tumor suppressor mutations to test if they promoted cell proliferation in vitro. We generated primary cultures and determined when patches of proliferating cells first emerged. These cells emerged on average at 37 days in wild-type cultures. Using this assay we found that a Pten mutation had a strong effect. Patches of proliferating cells appeared on average at 11 days and the cultures became confluent in about 3 weeks, which is similar to the timeframe for cultures expressing Ras(V12. Three Pten mutant cell lines were generated and these have now been cultured for between 250 and 630 cell doublings suggesting the life of the mutant cells is likely to be indefinite. We conclude that the use of Pten mutants is a powerful means to derive new Drosophila cell lines.

  4. PTEN overexpression improves cisplatin-resistance of human ovarian cancer cells through upregulating KRT10 expression

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huijuan; Wang, Ke; Liu, Wenxin; Hao, Quan, E-mail: quan_haotj@126.com

    2014-02-07

    Highlights: • Overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin. • KRT10 is a downstream molecule of PTEN involved in the resistance-reversing effect. • Overexpression of KRT10 enhanced the chemosensitivity of C13K cells to cisplatin. - Abstract: Multi-drug resistance (MDR) is a common cause of the failure of chemotherapy in ovarian cancer. PTEN, a tumor suppressor gene, has been demonstrated to be able to reverse cisplatin-resistance in ovarian cancer cell line C13K. However, the downstream molecules of PTEN involved in the resistance-reversing effect have not been completely clarified. Therefore, we screened the downstream molecules of PTEN and studied their interactions in C13K ovarian cancer cells using a 3D culture model. Firstly, we constructed an ovarian cancer cell line stably expressing PTEN, C13K/PTEN. MTT assay showed that overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin, but not to paclitaxel. Then we examined the differently expressed proteins that interacted with PTEN in C13K/PTEN cells with or without cisplatin treatment by co-immunoprecipitation. KRT10 was identified as a differently expressed protein in cisplatin-treated C13K/PTEN cells. Further study confirmed that cisplatin could induce upregulation of KRT10 mRNA and protein in C13K/PTEN cells and there was a directly interaction between KRT10 and PTEN. Forced expression of KRT10 in C13K cells also enhanced cisplatin-induced proliferation inhibition and apoptosis of C13K cells. In addition, KRT10 siRNA blocked cisplatin-induced proliferation inhibition of C13K/PTEN cells. In conclusion, our data demonstrate that KRT10 is a downstream molecule of PTEN which improves cisplatin-resistance of ovarian cancer and forced KRT10 overexpression may also act as a therapeutic method for overcoming MDR in ovarian cancer.

  5. [Inhibitory effects of tumor suppressor gene PTEN on proliferation and metastasis of breast cancer ZR-75-1 cells].

    Science.gov (United States)

    Lin, Guan-Ping; Li, Xiang-Yong; Huang, Jin-Wen; Xiong, Liang; Zhou, Ke-Yuan

    2007-10-01

    Tumor suppressor gene PTEN could not only inhibit the proliferation of cancer cells, but also inhibit their metastasis. However, the mechanism is still unclear. This study was to investigate the effects of PTEN gene on the proliferation and metastasis of human breast cancer ZR-75-1 cells, and explore the mechanisms. Wild-type PTEN (wt-PTEN) plasmid and phosphatase-defective PTEN (G129R-PTEN) plasmid were transfected into ZR-75-1 cells by liposome, respectively. Cell proliferation was detected by MTT assay. Transfected cells were selected by puromycin. The expression of PTEN protein was detected by Western blot. Cell adhesion and invasion were tested by adhesion test and invasion test. The proliferation inhibition rate was significantly higher in wt-PTEN-transfected ZR-75-1 cells than in untransfected cells and G129R-PTEN-transfected cells (42.7% vs. 0% and 2.7%, P0.05). The proliferation inhibition of ZR-75-1 cells was enhanced along with the increase of culture time and concentration of wt-PTEN. wt-PTEN also induced cell apoptosis. PTEN protein was expressed efficiently in the cells transfected with either wt-PTEN or G129R-PTEN. The inhibition rates of adhesion and invasion were significantly higher in wt-PTEN-transfected cells than in G129R-PTEN-transfected cells (65.7% vs. 8.8%, 70.4% vs. 6.9%, PZR-75-1 cells.

  6. Molecular Mechanism of Nkx3.1 Deregulation and its Function in Murine Pten Prostate Cancer Model

    Science.gov (United States)

    2006-09-01

    hybridization , post hybridization , and analyses following standard laboratory procedure. The probe cocktail contained 20 differentially labeled chromosome...contain near tetraploid chromosome number, with 65-84 chromosomes in PTEN-P2 and 76-80 chromosomes in PTEN-CaP2; PTEN- P8 and PTEN-CaP8 have near 6N

  7. Low prevalence of rmpA and high tendency of rmpA mutation correspond to low virulence of extended spectrum β-lactamase-producing Klebsiella pneumoniae isolates.

    Science.gov (United States)

    Yu, Wen-Liang; Lee, Mei-Feng; Tang, Hung-Jen; Chang, Ming-Chung; Chuang, Yin-Ching

    2015-01-01

    Invasive syndrome caused by Klebsiella pneumoniae (KP), including liver abscess, is mainly caused by community-acquired strains with characteristics of positive hypermucoviscosity (HV) phenotype and regulator of mucoid phenotype A (rmpA) and transcriptional activator (rmpA2) genes. Extended- spectrum β-lactamase-producing KP (ESBL-KP) is commonly nosocomial and rarely HV-positive. We aimed to explore the reasons of the rarer prevalence of HV phenotype, rmpA and rmpA2 as well as the virulence phenotype among the ESBL-KP isolates from clinical specimens than those non-ESBL isolates. The β-lactamase genes, rmpA, rmpA2 and genes for K capsule serotype of 440 KP isolates were analyzed. The virulence of the isolates was characterized by the mouse lethality experiments. The prevalence rates of HV phenotype (∼ 50% vs. 5 × 10(7) CFU). The mutation rates might significantly differ among KP isolates from various sources. Virulence was dependent on rmpA-related HV phenotype. In conclusion, ESBL-KP isolates were less hypermucoviscous and less virulent than non-ESBL KP isolates, mostly due to concurrently lower carriage and higher mutation rates of the rmpA and rmpA2 genes.

  8. Mutations in B3GALT6, which encodes a glycosaminoglycan linker region enzyme, cause a spectrum of skeletal and connective tissue disorders.

    Science.gov (United States)

    Nakajima, Masahiro; Mizumoto, Shuji; Miyake, Noriko; Kogawa, Ryo; Iida, Aritoshi; Ito, Hironori; Kitoh, Hiroshi; Hirayama, Aya; Mitsubuchi, Hiroshi; Miyazaki, Osamu; Kosaki, Rika; Horikawa, Reiko; Lai, Angeline; Mendoza-Londono, Roberto; Dupuis, Lucie; Chitayat, David; Howard, Andrew; Leal, Gabriela F; Cavalcanti, Denise; Tsurusaki, Yoshinori; Saitsu, Hirotomo; Watanabe, Shigehiko; Lausch, Ekkehart; Unger, Sheila; Bonafé, Luisa; Ohashi, Hirofumi; Superti-Furga, Andrea; Matsumoto, Naomichi; Sugahara, Kazuyuki; Nishimura, Gen; Ikegawa, Shiro

    2013-06-01

    Proteoglycans (PGs) are a major component of the extracellular matrix in many tissues and function as structural and regulatory molecules. PGs are composed of core proteins and glycosaminoglycan (GAG) side chains. The biosynthesis of GAGs starts with the linker region that consists of four sugar residues and is followed by repeating disaccharide units. By exome sequencing, we found that B3GALT6 encoding an enzyme involved in the biosynthesis of the GAG linker region is responsible for a severe skeletal dysplasia, spondyloepimetaphyseal dysplasia with joint laxity type 1 (SEMD-JL1). B3GALT6 loss-of-function mutations were found in individuals with SEMD-JL1 from seven families. In a subsequent candidate gene study based on the phenotypic similarity, we found that B3GALT6 is also responsible for a connective tissue disease, Ehlers-Danlos syndrome (progeroid form). Recessive loss-of-function mutations in B3GALT6 result in a spectrum of disorders affecting a broad range of skeletal and connective tissues characterized by lax skin, muscle hypotonia, joint dislocation, and spinal deformity. The pleiotropic phenotypes of the disorders indicate that B3GALT6 plays a critical role in a wide range of biological processes in various tissues, including skin, bone, cartilage, tendon, and ligament.

  9. Subcellular targeting and dynamic regulation of PTEN: Implications for neuronal cells and neurological disorders

    Directory of Open Access Journals (Sweden)

    Patricia eKreis

    2014-04-01

    Full Text Available PTEN is a lipid and protein phosphatase that regulates a diverse range of cellular mechanisms. PTEN is mainly present in the cytosol and transiently associates with the plasma membrane to dephosphorylate PI(3,4,5P3, thereby antagonizing the PI3-Kinase signaling pathway. Recently, PTEN has been shown to associate also with organelles such as the endoplasmic reticulum, the mitochondria or the nucleus, and to be secreted outside of the cell. In addition, PTEN dynamically localizes to specialized sub-cellular compartments such as the neuronal growth cone or dendritic spines. The diverse localizations of PTEN imply a tight temporal and spatial regulation, orchestrated by mechanisms such as posttranslational modifications, formation of distinct protein-protein interactions or the activation/recruitment of PTEN downstream of external cues. The regulation of PTEN function is thus not only important at the enzymatic activity level, but is also associated to its spatial distribution. In this review we will summarize (i recent findings that highlight mechanisms controlling PTEN movement and sub-cellular localization, and (ii current understanding of how PTEN localization is achieved by mechanisms controlling posttranslational modification, by association with binding partners and by PTEN structural or activity requirements. Finally, we will discuss the possible roles of compartmentalized PTEN in developing and mature neurons in health and disease.

  10. Nuclear trafficking of Pten after brain injury leads to neuron survival not death.

    Science.gov (United States)

    Goh, Choo-Peng; Putz, Ulrich; Howitt, Jason; Low, Ley-Hian; Gunnersen, Jenny; Bye, Nicole; Morganti-Kossmann, Cristina; Tan, Seong-Seng

    2014-02-01

    There is controversy whether accumulation of the tumor suppressor PTEN protein in the cell nucleus under stress conditions such as trauma and stroke causes cell death. A number of in vitro studies have reported enhanced apoptosis in neurons possessing nuclear PTEN, with the interpretation that its nuclear phosphatase activity leads to reduction of the survival protein phospho-Akt. However, there have been no in vivo studies to show that nuclear PTEN in neurons under stress is detrimental. Using a mouse model of injury, we demonstrate here that brain trauma altered the nucleo-cytoplasmic distribution of Pten, resulting in increased nuclear Pten but only in surviving neurons near the lesion. This event was driven by Ndfip1, an adaptor and activator of protein ubiquitination by Nedd4 E3 ligases. Neurons next to the lesion with nuclear PTEN were invariably negative for TUNEL, a marker for cell death. These neurons also showed increased Ndfip1 which we previously showed to be associated with neuron survival. Biochemical assays revealed that overall levels of Pten in the affected cortex were unchanged after trauma, suggesting that Pten abundance globally had not increased but rather Pten subcellular location in affected neurons had changed. Following experimental injury, the number of neurons with nuclear Pten was reduced in heterozygous mice (Ndfip1(+/-)) although lesion volumes were increased. We conclude that nuclear trafficking of Pten following injury leads to neuron survival not death.

  11. DNA Repair Domain Modeling Can Predict Cell Death and Mutation Frequency for Wide Range Spectrum of Radiation

    Science.gov (United States)

    Viger, Louise; Ponomarev, Artem L.; Plante, Ianik; Evain, Trevor; Penninckx, Sebastien; Blattnig, Steve R.; Costes, Sylvain V.

    2017-01-01

    Exploration missions to Mars and other destinations raise many questions about the health of astronauts. The continuous exposure of astronauts to galactic cosmic rays is one of the main concerns for long-term missions. Cosmic ionizing radiations are composed of different ions of various charges and energies notably, highly charged energy (HZE) particles. The HZE particles have been shown to be more carcinogenic than low-LET radiation, suggesting the severity of chromosomal aberrations induced by HZE particles is one possible explanation. However, most mathematical models predicting cell death and mutation frequency are based on directly fitting various HZE dose response and are in essence empirical approaches. In this work, we assume a simple biological mechanism to model DNA repair and use it to simultaneously explain the low- and high-LET response using the exact same fitting parameters. Our work shows that the geometrical position of DNA repair along tracks of heavy ions are sufficient to explain why high-LET particles can induce more death and mutations. Our model is based on assuming DNA double strand breaks (DSBs) are repaired within repair domain, and that any DSBs located within the same repair domain cluster into one repair unit, facilitating chromosomal rearrangements and increasing the probability of cell death. We introduced this model in 2014 using simplified microdosimetry profiles to predict cell death. In this work, we collaborated with NASA Johnson Space Center to generate more accurate microdosimetry profiles derived by Monte Carlo techniques, taking into account track structure of HZE particles and simulating DSBs in realistic cell geometry. We simulated 224 data points (D, A, Z, E) with the BDSTRACKS model, leading to a large coverage of LET from 10 to 2,400 keV/µm. This model was used to generate theoretical RBE for various particles and energies for both cell death and mutation frequencies. The RBE LET dependence is in agreement with

  12. Coordinate suppression of B cell lymphoma by PTEN and SHIP phosphatases

    DEFF Research Database (Denmark)

    Miletic, Ana V; Anzelon-Mills, Amy N; Mills, David M

    2010-01-01

    results in lethal T cell lymphomas, we find that animals lacking PTEN or SHIP in B cells show no evidence of malignancy. However, concomitant deletion of PTEN and SHIP (bPTEN/SHIP(-/-)) results in spontaneous and lethal mature B cell neoplasms consistent with marginal zone lymphoma or, less frequently......, follicular or centroblastic lymphoma. bPTEN/SHIP(-/-) B cells exhibit enhanced survival and express more MCL1 and less Bim. These cells also express low amounts of p27(kip1) and high amounts of cyclin D3 and thus appear poised to undergo proliferative expansion. Unlike normal B cells, bPTEN/SHIP(-/-) B cells...... proliferate to the prosurvival factor B cell activating factor (BAFF). Interestingly, although BAFF availability may promote lymphoma progression, we demonstrate that BAFF is not required for the expansion of transferred bPTEN/SHIP(-/-) B cells. This study reveals that PTEN and SHIP act cooperatively...

  13. The mechanism involved in the loss of PTEN expression in NSCLC tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gang; Zhao, Jingfeng; Peng, Xianjing [Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008 (China); Liang, Jian; Deng, Xin [Ruikang Hospital, Guangxi University of Traditional Chinese Medicine, Nanning 530003 (China); Chen, Yuxiang, E-mail: chenyx008@yahoo.cn [Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008 (China); School of Biological Science and Technology, Central South University, Changsha 410008 (China)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Radiation stimulates PTEN reexpression in NSCLC independent of p53 activation. Black-Right-Pointing-Pointer PTEN reexpression is mediated by miR-29b overexpression. Black-Right-Pointing-Pointer miR-29b regulates Dnmts expression in NSCLC tumor cells. Black-Right-Pointing-Pointer Target therapy could be established by overexpressing miR-29b expression. -- Abstract: Loss of PTEN expression is observed in most non-small cell lung cancers (NSCLC). However, the mechanism by which PTEN expression is regulated in NSCLC has not been fully elucidated. In this study, we investigated the role of DNA methyltransferases (Dnmts), microRNA-29b (miR-29b), and anti-miR-29b inhibitor in PTEN promoter methylation and PTEN gene expression in H358 NSCLC cells in vitro and in vivo. PTEN mRNA was measured by RT-PCR. PTEN and Dnmts protein levels were measured by Western blot. miR-29b expression was detected by Northern blot. A xenograft H358 tumor mouse model was established by subcutaneously inoculating H358 cells into the right hind limbs of nude mice. We found that radiation induced cell apoptosis and hypomethylation in PTEN promoter, PTEN and miR-29b expression, and downregulation of Dnmt1, 3a and 3b expression in H358 tumor cells. The effect of radiation on gene expression and apoptosis was blocked by anti-miR-29b inhibitor. In the xenograft H358 tumor model, anti-miR-29b inhibitor reversed radiation-induced tumor growth delay, PTEN reexpression and downregulation of Dnmts expression. Our study suggested that miR-29b is an upstream molecule of PTEN. miR-29b regulates PTEN gene expression through downregulating Dnmts expression and subsequently induces hypomethylation in PTEN promoter. Targeting therapy could be established in NSCLC by upregulating miR-29b expression.

  14. Involvement of IGF-2, IGF-1R, IGF-2R and PTEN in development of human tooth germ – an immunohistochemical study

    Science.gov (United States)

    Kero, Darko; Cigic, Livia; Medvedec Mikic, Ivana; Galic, Tea; Cubela, Mladen; Vukojevic, Katarina; Saraga-Babic, Mirna

    2016-01-01

    ABSTRACT Insulin-Like Growth Factor 2 (IGF-2) is a peptide hormone essential for prenatal growth and development. IGF-2 exerts its mitogenic effects via Insulin-Like Growth Factor 1 Receptor (IGF-1R), and is eliminated by binding to Insulin-Like Growth Receptor 2 (IGF-2R). IGF-2 is also negatively regulated by Phosphatase and Tensin Homolog (PTEN), a phosphatase mutated in various tumors. Not much is known about the interplay between these factors during human odontogenesis. In this study, expression patterns of IGF-2, IGF-1R, IGF-2R and PTEN were analyzed by double immunofluorescence in incisor human tooth germs during the foetal period of development between the 7th and 20th gestational week. Throughout the investigated period, IGF-2 was mostly expressed in enamel organ, whereas mild to moderate expression of PTEN could be seen in dental papilla and parts of enamel organ. Expression of IGF-1R was ubiquitous and displayed strong intensity throughout the entire enamel organ. In contrast, expression of IGF-2R had rather erratic pattern in enamel organ and dental papilla alike. Expression patterns of IGF-2, IGF-1R, IGF-2R and PTEN in highly proliferative cervical loops, as well as in differentiating pre-ameloblasts and pre-odontoblasts of cusp tip region during the early and late bell stages when enamel organ acquires definitive shape, indicate importance of these factors in crown morphogenesis of human incisor. Taken together, our data suggest the involvement of IGF-2, IGF-1R, IGF-2R and PTEN in temporo-spatial patterning of basic cellular processes (proliferation, differentiation) during normal tooth development. They are also relevant for improving knowledge of molecular basis of human odontogenesis. PMID:27326759

  15. Involvement of IGF-2, IGF-1R, IGF-2R and PTEN in development of human tooth germ - an immunohistochemical study.

    Science.gov (United States)

    Kero, Darko; Cigic, Livia; Medvedec Mikic, Ivana; Galic, Tea; Cubela, Mladen; Vukojevic, Katarina; Saraga-Babic, Mirna

    2016-07-02

    Insulin-Like Growth Factor 2 (IGF-2) is a peptide hormone essential for prenatal growth and development. IGF-2 exerts its mitogenic effects via Insulin-Like Growth Factor 1 Receptor (IGF-1R), and is eliminated by binding to Insulin-Like Growth Receptor 2 (IGF-2R). IGF-2 is also negatively regulated by Phosphatase and Tensin Homolog (PTEN), a phosphatase mutated in various tumors. Not much is known about the interplay between these factors during human odontogenesis. In this study, expression patterns of IGF-2, IGF-1R, IGF-2R and PTEN were analyzed by double immunofluorescence in incisor human tooth germs during the foetal period of development between the 7(th) and 20(th) gestational week. Throughout the investigated period, IGF-2 was mostly expressed in enamel organ, whereas mild to moderate expression of PTEN could be seen in dental papilla and parts of enamel organ. Expression of IGF-1R was ubiquitous and displayed strong intensity throughout the entire enamel organ. In contrast, expression of IGF-2R had rather erratic pattern in enamel organ and dental papilla alike. Expression patterns of IGF-2, IGF-1R, IGF-2R and PTEN in highly proliferative cervical loops, as well as in differentiating pre-ameloblasts and pre-odontoblasts of cusp tip region during the early and late bell stages when enamel organ acquires definitive shape, indicate importance of these factors in crown morphogenesis of human incisor. Taken together, our data suggest the involvement of IGF-2, IGF-1R, IGF-2R and PTEN in temporo-spatial patterning of basic cellular processes (proliferation, differentiation) during normal tooth development. They are also relevant for improving knowledge of molecular basis of human odontogenesis.

  16. The PTEN/NRF2 Axis Promotes Human Carcinogenesis

    DEFF Research Database (Denmark)

    Rojo, Ana I; Rada, Patricia; Mendiola, Marta;

    2014-01-01

    UNLABELLED: Abstract Aims: A recent study conducted in mice reported that liver-specific knockout of tumor suppressor Pten augments nuclear factor (erythroid-derived 2)-like 2 (NRF2) transcriptional activity. Here, we further investigated how phosphatase and tensin homolog deleted on chromosome 1...

  17. TMPRSS2-ERG and PTEN loss in prostate cancer.

    Science.gov (United States)

    Squire, Jeremy A

    2009-05-01

    Two studies show that the common recurrent gene fusion between TMPRSS2 and ERG promotes prostate cancer in both mouse and humans when PTEN is concurrently lost. In human prostate cancer, the presence of both these aberrations may be indicative of poor prognosis, suggesting that preclinical therapeutic research should target both of these pathways.

  18. Differential activation of Wnt-β-catenin pathway in triple negative breast cancer increases MMP7 in a PTEN dependent manner.

    Directory of Open Access Journals (Sweden)

    Nandini Dey

    Full Text Available Mutations of genes in tumor cells of Triple Negative subset of Breast Cancer (TNBC deregulate pathways of signal transduction. The loss of tumor suppressor gene PTEN is the most common first event associated with basal-like subtype (Martins, De, Almendro, Gonen, and Park, 2012. Here we report for the first time that the functional upregulation of secreted-MMP7, a transcriptional target of Wnt-β-catenin signature pathway in TNBC is associated to the loss of PTEN. We identified differential expression of mRNAs in several key-components genes, and transcriptional target genes of the Wnt-β-catenin pathway (WP, including beta-catenin, FZD7, DVL1, MMP7, c-MYC, BIRC5, CD44, PPARD, c-MET, and NOTCH1 in FFPE tumors samples from TNBC patients of two independent cohorts. A similar differential upregulation of mRNA/protein for beta-catenin, the functional readout of WP, and for MMP7, a transcriptional target gene of beta-catenin was observed in TNBC cell line models. Genetic or pharmacological attenuation of beta-catenin by SiRNA or WP modulators (XAV939 and sulindac sulfide and pharmacological mimicking of PTEN following LY294002 treatment downregulated MMP7 levels as well as enzymatic function of the secreted MMP7 in MMP7 positive PTEN-null TNBC cells. Patient data revealed that MMP7 mRNA was high in only a subpopulation of TNBC, and this subpopulation was characterized by a concurrent low expression of PTEN mRNA. In cell lines, a high expression of casein-zymograph-positive MMP7 was distinguished by an absence of functional PTEN. A similar inverse relationship between MMP7 and PTEN mRNA levels was observed in the PAM50 data set (a correlation coefficient of -0.54. The PAM50 subtype and outcome data revealed that the high MMP7 group had low pCR (25% and High Rd (74% in clinical stage T3 pathologic response in contrast to the high pCR (40% and low residual disease (RD (60% of the low MMP7 group.

  19. Differential Activation of Wnt-β-Catenin Pathway in Triple Negative Breast Cancer Increases MMP7 in a PTEN Dependent Manner

    Science.gov (United States)

    Dey, Nandini; Young, Brandon; Abramovitz, Mark; Bouzyk, Mark; Barwick, Benjamin; De, Pradip; Leyland-Jones, Brian

    2013-01-01

    Mutations of genes in tumor cells of Triple Negative subset of Breast Cancer (TNBC) deregulate pathways of signal transduction. The loss of tumor suppressor gene PTEN is the most common first event associated with basal-like subtype (Martins, De, Almendro, Gonen, and Park, 2012). Here we report for the first time that the functional upregulation of secreted-MMP7, a transcriptional target of Wnt-β-catenin signature pathway in TNBC is associated to the loss of PTEN. We identified differential expression of mRNAs in several key-components genes, and transcriptional target genes of the Wnt-β-catenin pathway (WP), including beta-catenin, FZD7, DVL1, MMP7, c-MYC, BIRC5, CD44, PPARD, c-MET, and NOTCH1 in FFPE tumors samples from TNBC patients of two independent cohorts. A similar differential upregulation of mRNA/protein for beta-catenin, the functional readout of WP, and for MMP7, a transcriptional target gene of beta-catenin was observed in TNBC cell line models. Genetic or pharmacological attenuation of beta-catenin by SiRNA or WP modulators (XAV939 and sulindac sulfide) and pharmacological mimicking of PTEN following LY294002 treatment downregulated MMP7 levels as well as enzymatic function of the secreted MMP7 in MMP7 positive PTEN-null TNBC cells. Patient data revealed that MMP7 mRNA was high in only a subpopulation of TNBC, and this subpopulation was characterized by a concurrent low expression of PTEN mRNA. In cell lines, a high expression of casein-zymograph-positive MMP7 was distinguished by an absence of functional PTEN. A similar inverse relationship between MMP7 and PTEN mRNA levels was observed in the PAM50 data set (a correlation coefficient of -0.54). The PAM50 subtype and outcome data revealed that the high MMP7 group had low pCR (25%) and High Rd (74%) in clinical stage T3 pathologic response in contrast to the high pCR (40%) and low residual disease (RD) (60%) of the low MMP7 group. PMID:24143235

  20. UNUSUAL SPECTRUM OF GENETIC PATHOLOGIES AND NOVEL MUTATIONS IN PWS AND AS PATIENTS DETECTED BY A WIDE CLUSTER OF METHODS

    Directory of Open Access Journals (Sweden)

    Livia Kotysova

    2014-01-01

    Full Text Available Prader-Willi and Angelman syndromes are clinically distinct neurodevelopmental genetic disorders that map to 15q11.2-q13 locus. The common phenotypes are attributable to loss of expression of parentally specific imprinted genes inside this region, where the gene function is dependent on parental origin. Initial diagnosis was proved for the years by methylation pattern analyses of the SNRPN exon 1/promoter region within the PWS/AS critical domain. Apart from unifying methylation-specific PCR and allele specific real-time PCR with melt-curve analysis as the fundamental methods for suspected diagnosis confirmation, we combined several specifically methods used to clarify the molecular cause. In our study we had identified and genotyped 24 PWS and AS patients from 450 suspected. Applied cluster of methods-microsatellite analysis of SNPs within the chromosome 15, Methylation-specific Multiplex Ligation-dependent Probe Amplification (MS-MLPA and UBE3A gene sequence analysis, enable us to determined atypical deletion that does not include common breakpoints, novel highly likely to be pathologic UBE3A mutation, uniparental heterodisomy together with partial isodisomy and epimutation without any deletions in the imprinting centre. We present genotype-phenotype correlation of all positive cases. In addition, we estimate the incidence for Slovakian population at 1 in 20,000 for PWS and 1 in 40,000 for AS.

  1. Clinical spectrum of Kufor-Rakeb syndrome in the Chilean kindred with ATP13A2 mutations.

    Science.gov (United States)

    Behrens, Maria I; Brüggemann, Norbert; Chana, Pedro; Venegas, Pablo; Kägi, Marianne; Parrao, Teresa; Orellana, Patricia; Garrido, Cristian; Rojas, Cecilia V; Hauke, Jan; Hahnen, Eric; González, Rafael; Seleme, Nicolas; Fernández, Verónica; Schmidt, Alexander; Binkofski, Ferdinand; Kömpf, Detlef; Kubisch, Christian; Hagenah, Johann; Klein, Christine; Ramirez, Alfredo

    2010-09-15

    We report the clinical features of the original Chilean family with Kufor-Rakeb syndrome (KRS) that led to the discovery of the ATP13A2 gene at the PARK9 locus. KRS is a rare juvenile-onset autosomal recessive disease characterized by progressive Parkinsonism, pyramidal signs, and cognitive decline in addition to vertical gaze palsy and facial-faucial-finger minimyoclonus. Neurological and neuropsychological examination during a 10-year period, videotaping, neuroimaging, and measurement of DNA methylation of the ATP13A2 promoter region were performed. The youngest 5 of 17 children of nonconsanguineous parents, carrying compound-heterozygous ATP13A2 mutations, had normal development until ages ∼10 to 12 years, when school performance deteriorated and slowness, rigidity, and frequent falls developed. Examination revealed bradykinesia, subtle postural/action tremor, cogwheel rigidity, spasticity, upward gaze palsy, smooth pursuit with saccadic intrusions, and dementia. Additional signs included facial-faucial-finger minimyoclonus, absent postural reflexes, visual/auditory hallucinations, and insomnia. Levodopa response could not be fully judged in this family. T2* magnetic resonance imaging sequences revealed marked diffuse hypointensity of the caudate (head and body) and lenticular nucleus bilaterally. Disease progression was slow including epilepsy, cachexia, and anarthria. Four affected members died after 28.5 ± 5.5 (mean ± SD) years of disease. Two heterozygous carriers, the mother and eldest sibling, showed jerky perioral muscle contractions and clumsiness of hand movements. There was no significant correlation between DNA methylation of the ATP13A2 promoter region and disease progression. The marked caudate and lenticular nucleus T2*-hypointensity suggests that KRS might belong to the family of neurodegenerative diseases associated with brain iron accumulation.

  2. Phenotypic Spectrum in Osteogenesis Imperfecta Due to Mutations in TMEM38B: Unraveling a Complex Cellular Defect.

    Science.gov (United States)

    Webb, Emma A; Balasubramanian, Meena; Fratzl-Zelman, Nadja; Cabral, Wayne A; Titheradge, Hannah; Alsaedi, Atif; Saraff, Vrinda; Vogt, Julie; Cole, Trevor; Stewart, Susan; Crabtree, Nicola J; Sargent, Brandi M; Gamsjaeger, Sonja; Paschalis, Eleftherios P; Roschger, Paul; Klaushofer, Klaus; Shaw, Nick J; Marini, Joan C; Högler, Wolfgang

    2017-06-01

    Recessive mutations in TMEM38B cause type XIV osteogenesis imperfecta (OI) by dysregulating intracellular calcium flux. Clinical and bone material phenotype description and osteoblast differentiation studies. Natural history study in pediatric research centers. Eight patients with type XIV OI. Clinical examinations included bone mineral density, radiographs, echocardiography, and muscle biopsy. Bone biopsy samples (n = 3) were analyzed using histomorphometry, quantitative backscattered electron microscopy, and Raman microspectroscopy. Cellular differentiation studies were performed on proband and control osteoblasts and normal murine osteoclasts. Type XIV OI clinical phenotype ranges from asymptomatic to severe. Previously unreported features include vertebral fractures, periosteal cloaking, coxa vara, and extraskeletal features (muscular hypotonia, cardiac abnormalities). Proband lumbar spine bone density z score was reduced [median -3.3 (range -4.77 to +0.1; n = 7)] and increased by +1.7 (1.17 to 3.0; n = 3) following bisphosphonate therapy. TMEM38B mutant bone has reduced trabecular bone volume, osteoblast, and particularly osteoclast numbers, with >80% reduction in bone resorption. Bone matrix mineralization is normal and nanoporosity low. We demonstrate a complex osteoblast differentiation defect with decreased expression of early markers and increased expression of late and mineralization-related markers. Predominance of trimeric intracellular cation channel type B over type A expression in murine osteoclasts supports an intrinsic osteoclast defect underlying low bone turnover. OI type XIV has a bone histology, matrix mineralization, and osteoblast differentiation pattern that is distinct from OI with collagen defects. Probands are responsive to bisphosphonates and some show muscular and cardiovascular features possibly related to intracellular calcium flux abnormalities.

  3. Heterozygosity for Pten promotes tumorigenesis in a mouse model of medulloblastoma.

    Directory of Open Access Journals (Sweden)

    Robert C Castellino

    Full Text Available BACKGROUND: Recent publications have described an important role for cross talk between PI-3 kinase and sonic hedgehog signaling pathways in the pathogenesis of medulloblastoma. METHODOLOGY/PRINCIPAL FINDINGS: We crossed mice with constitutive activation of Smoothened, SmoA1, with Pten deficient mice. Both constitutive and conditional Pten deficiency doubled the incidence of mice with symptoms of medulloblastoma and resulted in decreased survival. Analysis revealed a clear separation of gene signatures, with up-regulation of genes in the PI-3 kinase signaling pathway, including downstream activation of angiogenesis in SmoA1+/-; Pten +/- medulloblastomas. Western blotting and immunohistochemistry confirmed reduced or absent Pten, Akt activation, and increased angiogenesis in Pten deficient tumors. Down-regulated genes included genes in the sonic hedgehog pathway and tumor suppressor genes. SmoA1+/-; Pten +/+ medulloblastomas appeared classic in histology with increased proliferation and diffuse staining for apoptosis. In contrast, Pten deficient tumors exhibited extensive nodularity with neuronal differentiation separated by focal areas of intense staining for proliferation and virtually absent apoptosis. Examination of human medulloblastomas revealed low to absent PTEN expression in over half of the tumors. Kaplan-Meier analysis confirmed worse overall survival in patients whose tumor exhibited low to absent PTEN expression. CONCLUSIONS/SIGNIFICANCE: This suggests that PTEN expression is a marker of favorable prognosis and mouse models with activation of PI-3 kinase pathways may be important tools for preclinical evaluation of promising agents for the treatment of medulloblastoma.

  4. The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer

    DEFF Research Database (Denmark)

    Therkildsen, Christina; Bergmann, Troels K; Henrichsen-Schnack, Tine

    2014-01-01

    BACKGROUND: In metastatic colorectal cancer, mutation testing for KRAS exon 2 is widely implemented to select patients with wild-type tumors for treatment with the monocloncal anti-EGFR antibodies cetuximab and panitumumab. The added predictive value of additional biomarkers in the RAS......-RAF-MAPK and PI3K-AKT-mTOR pathways in colorectal cancer is uncertain, which led us to systematically review the impact of alterations in KRAS (outside of exon 2), NRAS, BRAF, PIK3CA and PTEN in relation to the clinical benefit from anti-EGFR treatment. METHODS: In total, 22 studies that include 2395 patients......, NRAS, BRAF and PIK3CA and non-functional PTEN predict resistance to anti-EGFR therapies and demonstrates that biomarker analysis beyond KRAS exon 2 should be implemented for prediction of clinical benefit from anti-EGFR antibodies in metastatic colorectal cancer....

  5. Genetic and functional analyses of SHANK2 mutations suggest a multiple hit model of autism spectrum disorders.

    Directory of Open Access Journals (Sweden)

    Claire S Leblond

    2012-02-01

    Full Text Available Autism spectrum disorders (ASD are a heterogeneous group of neurodevelopmental disorders with a complex inheritance pattern. While many rare variants in synaptic proteins have been identified in patients with ASD, little is known about their effects at the synapse and their interactions with other genetic variations. Here, following the discovery of two de novo SHANK2 deletions by the Autism Genome Project, we identified a novel 421 kb de novo SHANK2 deletion in a patient with autism. We then sequenced SHANK2 in 455 patients with ASD and 431 controls and integrated these results with those reported by Berkel et al. 2010 (n = 396 patients and n = 659 controls. We observed a significant enrichment of variants affecting conserved amino acids in 29 of 851 (3.4% patients and in 16 of 1,090 (1.5% controls (P = 0.004, OR = 2.37, 95% CI = 1.23-4.70. In neuronal cell cultures, the variants identified in patients were associated with a reduced synaptic density at dendrites compared to the variants only detected in controls (P = 0.0013. Interestingly, the three patients with de novo SHANK2 deletions also carried inherited CNVs at 15q11-q13 previously associated with neuropsychiatric disorders. In two cases, the nicotinic receptor CHRNA7 was duplicated and in one case the synaptic translation repressor CYFIP1 was deleted. These results strengthen the role of synaptic gene dysfunction in ASD but also highlight the presence of putative modifier genes, which is in keeping with the "multiple hit model" for ASD. A better knowledge of these genetic interactions will be necessary to understand the complex inheritance pattern of ASD.

  6. Genetic and Functional Analyses of SHANK2 Mutations Suggest a Multiple Hit Model of Autism Spectrum Disorders

    Science.gov (United States)

    Leblond, Claire S.; Heinrich, Jutta; Delorme, Richard; Proepper, Christian; Betancur, Catalina; Huguet, Guillaume; Konyukh, Marina; Chaste, Pauline; Ey, Elodie; Rastam, Maria; Anckarsäter, Henrik; Nygren, Gudrun; Gillberg, I. Carina; Melke, Jonas; Toro, Roberto; Regnault, Beatrice; Fauchereau, Fabien; Mercati, Oriane; Lemière, Nathalie; Skuse, David; Poot, Martin; Holt, Richard; Monaco, Anthony P.; Järvelä, Irma; Kantojärvi, Katri; Vanhala, Raija; Curran, Sarah; Collier, David A.; Bolton, Patrick; Chiocchetti, Andreas; Klauck, Sabine M.; Poustka, Fritz; Freitag, Christine M.; Waltes, Regina; Kopp, Marnie; Duketis, Eftichia; Bacchelli, Elena; Minopoli, Fiorella; Ruta, Liliana; Battaglia, Agatino; Mazzone, Luigi; Maestrini, Elena; Sequeira, Ana F.; Oliveira, Barbara; Vicente, Astrid; Oliveira, Guiomar; Pinto, Dalila; Scherer, Stephen W.; Zelenika, Diana; Delepine, Marc; Lathrop, Mark; Bonneau, Dominique; Guinchat, Vincent; Devillard, Françoise; Assouline, Brigitte; Mouren, Marie-Christine; Leboyer, Marion; Gillberg, Christopher; Boeckers, Tobias M.; Bourgeron, Thomas

    2012-01-01

    Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders with a complex inheritance pattern. While many rare variants in synaptic proteins have been identified in patients with ASD, little is known about their effects at the synapse and their interactions with other genetic variations. Here, following the discovery of two de novo SHANK2 deletions by the Autism Genome Project, we identified a novel 421 kb de novo SHANK2 deletion in a patient with autism. We then sequenced SHANK2 in 455 patients with ASD and 431 controls and integrated these results with those reported by Berkel et al. 2010 (n = 396 patients and n = 659 controls). We observed a significant enrichment of variants affecting conserved amino acids in 29 of 851 (3.4%) patients and in 16 of 1,090 (1.5%) controls (P = 0.004, OR = 2.37, 95% CI = 1.23–4.70). In neuronal cell cultures, the variants identified in patients were associated with a reduced synaptic density at dendrites compared to the variants only detected in controls (P = 0.0013). Interestingly, the three patients with de novo SHANK2 deletions also carried inherited CNVs at 15q11–q13 previously associated with neuropsychiatric disorders. In two cases, the nicotinic receptor CHRNA7 was duplicated and in one case the synaptic translation repressor CYFIP1 was deleted. These results strengthen the role of synaptic gene dysfunction in ASD but also highlight the presence of putative modifier genes, which is in keeping with the “multiple hit model” for ASD. A better knowledge of these genetic interactions will be necessary to understand the complex inheritance pattern of ASD. PMID:22346768

  7. CLINICOPATHOLOGICAL SIGNIFICANCE OF PTEN AND CASPASE-3 EXPRESSIONS IN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    Xue-fei Yang; Yan Xin; Li-li Mao

    2008-01-01

    Objective To investigate the expressions of PTEN and Caspase-3 proteins in human breast carcinoma, and to evaluate their clinicopathological implications during the tumorigenesis and progression of breast cancer.Methods The expressions of PTEN and Caspase-3 proteins in 95 cases of breast cancer and 15 cases of benignbreast diseases were investigated immunohistochemically. Correlations between the expression of PTEN protein,Caspase-3 protein, and clinicopathological features of breast cancers were analyzed.Results The loss expression rate of PTEN protein in tumor tissues was significantly higher than that in benignbreast diseases (33.7% vs. 0, P 0. 05). In addition,the expression of PTEN protein had significantly positive correlation with the expression of Caspase-3 protein in breast cancer (P <0.01 ).Conclusion The combination detection of PTEN and Caspase-3 may serve as an important index to estimate the pathobiological behavior and pognosis of breast cancer.

  8. PTEN functions to 'prioritize' chemotactic cues and prevent 'distraction' in migrating neutrophils.

    Science.gov (United States)

    Heit, Bryan; Robbins, Stephen M; Downey, Charlene M; Guan, Zhiwen; Colarusso, Pina; Miller, B Joan; Jirik, Frank R; Kubes, Paul

    2008-07-01

    Neutrophils encounter and 'prioritize' many chemoattractants in their pursuit of bacteria. Here we tested the possibility that the phosphatase PTEN is responsible for the prioritization of chemoattractants. Neutrophils induced chemotaxis by two separate pathways, the phosphatidylinositol-3-OH kinase (PI(3)K) phosphatase and tensin homolog (PTEN) pathway, and the p38 mitogen-activated protein kinase pathway, with the p38 pathway dominating over the PI(3)K pathway. Pten(-/-) neutrophils could not prioritize chemoattractants and were 'distracted' by chemokines when moving toward bacterial chemoattractants. In opposing gradients, PTEN became distributed throughout the cell circumference, which inhibited all PI(3)K activity, thus permitting 'preferential' migration toward bacterial products via phospholipase A(2) and p38. Such prioritization was defective in Pten(-/-) neutrophils, which resulted in defective bacterial clearance in vivo. Our data identify a PTEN-dependent mechanism in neutrophils to prioritize, 'triage' and integrate responses to multiple chemotactic cues.

  9. Molecular cloning and characterization of PTEN in the orange-spotted grouper (Epinephelus coioides).

    Science.gov (United States)

    Luo, Sheng-Wei; Wang, Wei-Na; Xie, Ren-Chong; Xie, Fu-Xing; Kong, Jing-Rong; Xiao, Yu-Chao; Huang, Di; Sun, Zuo-Ming; Liu, Yuan; Wang, Cong

    2016-11-01

    PTEN is a key tumor suppressor gene that can play a regulatory role in the cellular proliferation, survival and apoptosis. In this study, the full-length PTEN (EcPTEN) was obtained, containing a 5'UTR of 745 bp, an ORF of 1269 bp and a 3'UTR of 106 bp. The EcPTEN gene encoded a polypeptide of 422 amino acids with an estimated molecular mass of 49.14 KDa and a predicted isoelectric point (pI) of 6.34. The deduced amino acid sequence analysis showed that EcPTEN comprised the conserved residues and the characteristic domains known to the critical functionality of PTEN. qRT-PCR analysis revealed that EcPTEN mRNA was broadly expressed in all the examined tissues, while the highest expression level was observed in liver, followed by the expression in blood, kidney, spleen, heart, gill, muscle and intestine. The groupers challenged with Vibrio alginolyticus showed a sharp increase of EcPTEN mRNA expression in immune tissues. In addition, western blotting analysis confirmed that the up-regulation of EcPTEN protein expression was steadily induced in liver. Subcellular localization analysis indicated that EcPTEN was localized in both nucleus and cytoplasm. Overexpression of EcPTEN can activate the apoptotic cascade and abrogate NF-kB, AP-1, Stat3 and Myc promoter activity in Hela cells. These results indicated that EcPTEN harboring highly-conserved domains with a close sequence similarity to those of PTP superfamily may disrupt the mammalian signalings and play a regulatory role in the apoptotic process.

  10. PTEN encoding product: a marker for tumorigenesis and progression of gastric carcinoma

    Institute of Scientific and Technical Information of China (English)

    Lin Yang; Li-Ge Kuang; Hua-Chuan Zheng; Jin-Yi Li; Dong-Ying Wu; Su-Min Zhang; Yan Xin

    2003-01-01

    AIM: To detect the expression of PTEN encoding productin normal mucosa, intestinal metaplasia (IM), dysplasia andcarcinoma of the stomach, and to investigate its clinicalimplication in tumorigenesis and progression of gastriccarcinoma.METHODS: Formalin-fixed paraffin embedded specimens from184 cases of gastric carcinoma, their adjacent normal mucosa,IM and dysplasia were evaluated for PTEN protein expressionby SABC immunohistochemistry. PTEN expression wascompared with tumor stage, lymph node metastasis, Lauren'sand WHO's histological classification of gastric carcinoma.Expression of VEGF was also detected in 60 cases of gastriccarcinoma and its correlation with PTEN was concerned.RESULTS: The positive rates of PTEN protein were 100 %(102/102), 98.5 %(65/66), 66.7 % (4/6) and 47.8 %(88/184)in normal mucosa, IM, dysplasia and carcinoma of the stomach,respectively. The positive rates in dysplasia and carcinomawere lower than in normal mucosa and IM (P<0.01).Advanced gastric cancers expressed less frequent PTEN thanearly gastric cancer (42.9 % v567.6 %, P<0.01). The positiverate of PTEN protein was lower in gastric cancer with thanwithout lymph node metastasis (40.3 % v563.3 %, P<0.01).PTEN was less expressed in diffuse-type than in intestinal-type gastric cancer (41.5 % v557.8 %,P<0.05). Signet ringcell carcinoma showed the expression of PTEN at the lowestlevel (25.0 %, 7/28); less than well and moderatelydifferentiated ones (P<0.01). Expression of PTEN was notcorrelated with expression of VEGF (P>0.05).CONCLUSION: Loss or reduced expression of PTEN proteinoccures commonly in tumorigenesis and progression of gastriccarcinoma. It is suggested that PTEN can be an objective markerfor pathologically biological behaviors of gastric carcinoma.

  11. Dysregulation of AKT Pathway by SMYD2-Mediated Lysine Methylation on PTEN

    OpenAIRE

    Makoto Nakakido; Zhenzhong Deng; Takehiro Suzuki; Naoshi Dohmae; Yusuke Nakamura; Ryuji Hamamoto

    2015-01-01

    Phosphatase and tensin homologue (PTEN), one of the well-characterized tumor suppressor proteins, counteracts the phosphatidylinositol 3-kinase-AKT pathway through its unique lipid phosphatase activity. The functions of PTEN are regulated by a variety of posttranslational modifications such as acetylation, oxidation, ubiquitylation, phosphorylation, and SUMOylation. However, methylation of PTEN has not been reported so far. In this study, we demonstrated that the oncogenic protein lysine meth...

  12. Tumor suppressor PTEN affects tau phosphorylation: deficiency in the phosphatase activity of PTEN increases aggregation of an FTDP-17 mutant Tau

    Directory of Open Access Journals (Sweden)

    Zhang Xue

    2006-07-01

    Full Text Available Abstract Background Aberrant hyperphosphorylation of tau protein has been implicated in a variety of neurodegenerative disorders. Although a number of protein kinases have been shown to phosphorylate tau in vitro and in vivo, the molecular mechanisms by which tau phosphorylation is regulated pathophysiologically are largely unknown. Recently, a growing body of evidence suggests a link between tau phosphorylation and PI3K signaling. In this study, phosphorylation, aggregation and binding to the microtubule of a mutant frontal temporal dementia and parkinsonism linked to chromosome 17 (FTDP-17 tau in the presence of tumor suppressor PTEN, a major regulatory component in PI3K signaling, were investigated. Results Phosphorylation of the human mutant FTDP-17 tau, T40RW, was evaluated using different phospho-tau specific antibodies in the presence of human wild-type or phosphatase activity null mutant PTEN. Among the evaluated phosphorylation sites, the levels of Ser214 and Thr212 phospho-tau proteins were significantly decreased in the presence of wild-type PTEN, and significantly increased when the phosphatase activity null mutant PTEN was ectopically expressed. Fractionation of the mutant tau transfected cells revealed a significantly increased level of soluble tau in cytosol when wild-type PTEN was expressed, and an elevated level of SDS-soluble tau aggregates in the presence of the mutant PTEN. In addition, the filter/trap assays detected more SDS-insoluble mutant tau aggregates in the cells overexpressing the mutant PTEN compared to those in the cells overexpressing wild-type PTEN and control DNA. This notion was confirmed by the immunocytochemical experiment which demonstrated that the overexpression of the phosphatase activity null mutant PTEN caused the mutant tau to form aggregates in the COS-7 cells. Conclusion Tumor suppressor PTEN can alleviate the phosporylation of the mutant FTDP-17 tau at specific sites, and the phosphatase activity

  13. PTEN, Stem Cells, and Cancer Stem Cells*S⃞

    OpenAIRE

    Hill, Reginald; Wu, Hong

    2009-01-01

    Like normal stem cells, “cancer stem cells” have the capacity for indefinite proliferation and generation of new cancerous tissues through self-renewal and differentiation. Among the major intracellular signaling pathways, WNT, SHH, and NOTCH are known to be important in regulating normal stem cell activities, and their alterations are associated with tumorigenesis. It has become clear recently that PTEN (phosphatase and tensin homologue) is also critical for stem cell...

  14. Expression of PPARγ and PTEN in human colorectal cancer: An immunohistochemical study using tissue microarray methodology.

    Science.gov (United States)

    Lin, Mao Song; Huang, Jun Xing; Chen, Wei Chang; Zhang, Bao Feng; Fang, Jing; Zhou, Qiong; Hu, Ying; Gao, Heng Jun

    2011-11-01

    Although aberrations of peroxisome proliferator-activated receptor γ (PPARγ) and phosphatase and tensin homolog (PTEN) expression have been identified in several other cancer types, certain previous studies have revealed that PPARγ is abundant in normal and malignant tissue in the colon. The question of whether aberrant PTEN is involved in the initial stage or is a later event during colorectal carcinogenesis remains controversial. Relatively few studies have focused on the correlation of expression of PPARγ and PTEN in various tissues. In the present study, paraffin-embedded blocks from 139 patients with CRC, 18 adenomatous polyps and 50 paired paracancerous benign mucosas were selected and analysed in 4 tissue microarray (TMA) blocks comprising 104, 72, 130 and 54 cores, respectively. Expression of PPARγ and PTEN was examined using immunohistochemical staining on TMAs. There were no significant differences in the expression of PPARγ (P=0.055) and PTEN (P=0.100) between the colorectal cancers, adenomas and paracancerous mucosas. However, correlations of PPARγ expression with clinical stage (P=0.004) and PTEN expression with histological grade (P=0.006) and distant metastasis (P=0.015) were demonstrated in the CRC specimens. Although the differences in PPARγ and PTEN protein expression in human colorectal cancer may not be considered as early diagnostic markers, our results indicate that CRCs with a low expression or deletion of PTEN may progress towards invasion and even metastasis; thus, PTEN may have potential as a prognostic marker in human CRC.

  15. Quantitative and dynamic analysis of PTEN phosphorylation by NMR.

    Science.gov (United States)

    Cordier, Florence; Chaffotte, Alain; Wolff, Nicolas

    2015-05-01

    The dual lipid and protein phosphatase PTEN is a tumor suppressor controlling key biological processes, such as cell growth, proliferation and neuro-survival. Its activity and intracellular trafficking is finely regulated notably by multi-site phosphorylation of its C-terminal tail. The reversible and highly dynamic character of these regulatory events confers a temporal dimension to the cell for triggering crucial decisions. In this review, we describe how a recently developed time-resolved NMR spectroscopy approach unveils the dynamic establishment of the phosphorylation events of PTEN C-terminal tail controlled by CK2 and GSK3β kinases. Two cascades of reactions have been identified, in vitro and in extracts of human neuroblastoma cells. They are triggered independently on two nearby clusters of sites (S380-S385 and S361-S370) and occur on different timescales. In each cascade, the reactions follow an ordered model with a distributive kinetic mechanism. The vision of these cascades as two delay timers activating distinct or time-delayed regulatory responses gives a temporal dimension on PTEN regulation and is discussed in relation to the known functional roles of each cluster. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Cell-Type Specific Roles for PTEN in Establishing a Functional Retinal Architecture

    Science.gov (United States)

    Cantrup, Robert; Dixit, Rajiv; Palmesino, Elena; Bonfield, Stephan; Shaker, Tarek; Tachibana, Nobuhiko; Zinyk, Dawn; Dalesman, Sarah; Yamakawa, Kazuhiro; Stell, William K.; Wong, Rachel O.; Reese, Benjamin E.; Kania, Artur; Sauvé, Yves; Schuurmans, Carol

    2012-01-01

    Background The retina has a unique three-dimensional architecture, the precise organization of which allows for complete sampling of the visual field. Along the radial or apicobasal axis, retinal neurons and their dendritic and axonal arbors are segregated into layers, while perpendicular to this axis, in the tangential plane, four of the six neuronal types form patterned cellular arrays, or mosaics. Currently, the molecular cues that control retinal cell positioning are not well-understood, especially those that operate in the tangential plane. Here we investigated the role of the PTEN phosphatase in establishing a functional retinal architecture. Methodology/Principal Findings In the developing retina, PTEN was localized preferentially to ganglion, amacrine and horizontal cells, whose somata are distributed in mosaic patterns in the tangential plane. Generation of a retina-specific Pten knock-out resulted in retinal ganglion, amacrine and horizontal cell hypertrophy, and expansion of the inner plexiform layer. The spacing of Pten mutant mosaic populations was also aberrant, as were the arborization and fasciculation patterns of their processes, displaying cell type-specific defects in the radial and tangential dimensions. Irregular oscillatory potentials were also observed in Pten mutant electroretinograms, indicative of asynchronous amacrine cell firing. Furthermore, while Pten mutant RGC axons targeted appropriate brain regions, optokinetic spatial acuity was reduced in Pten mutant animals. Finally, while some features of the Pten mutant retina appeared similar to those reported in Dscam-mutant mice, PTEN expression and activity were normal in the absence of Dscam. Conclusions/Significance We conclude that Pten regulates somal positioning and neurite arborization patterns of a subset of retinal cells that form mosaics, likely functioning independently of Dscam, at least during the embryonic period. Our findings thus reveal an unexpected level of cellular

  17. Cell-type specific roles for PTEN in establishing a functional retinal architecture.

    Directory of Open Access Journals (Sweden)

    Robert Cantrup

    Full Text Available BACKGROUND: The retina has a unique three-dimensional architecture, the precise organization of which allows for complete sampling of the visual field. Along the radial or apicobasal axis, retinal neurons and their dendritic and axonal arbors are segregated into layers, while perpendicular to this axis, in the tangential plane, four of the six neuronal types form patterned cellular arrays, or mosaics. Currently, the molecular cues that control retinal cell positioning are not well-understood, especially those that operate in the tangential plane. Here we investigated the role of the PTEN phosphatase in establishing a functional retinal architecture. METHODOLOGY/PRINCIPAL FINDINGS: In the developing retina, PTEN was localized preferentially to ganglion, amacrine and horizontal cells, whose somata are distributed in mosaic patterns in the tangential plane. Generation of a retina-specific Pten knock-out resulted in retinal ganglion, amacrine and horizontal cell hypertrophy, and expansion of the inner plexiform layer. The spacing of Pten mutant mosaic populations was also aberrant, as were the arborization and fasciculation patterns of their processes, displaying cell type-specific defects in the radial and tangential dimensions. Irregular oscillatory potentials were also observed in Pten mutant electroretinograms, indicative of asynchronous amacrine cell firing. Furthermore, while Pten mutant RGC axons targeted appropriate brain regions, optokinetic spatial acuity was reduced in Pten mutant animals. Finally, while some features of the Pten mutant retina appeared similar to those reported in Dscam-mutant mice, PTEN expression and activity were normal in the absence of Dscam. CONCLUSIONS/SIGNIFICANCE: We conclude that Pten regulates somal positioning and neurite arborization patterns of a subset of retinal cells that form mosaics, likely functioning independently of Dscam, at least during the embryonic period. Our findings thus reveal an unexpected

  18. Rescue of glandular dysmorphogenesis in PTEN-deficient colorectal cancer epithelium by PPARγ-targeted therapy.

    Science.gov (United States)

    Jagan, I; Fatehullah, A; Deevi, R K; Bingham, V; Campbell, F C

    2013-03-07

    Disruption of glandular architecture associates with poor clinical outcome in high-grade colorectal cancer (CRC). Phosphatase and tensin homolog deleted on chromosome ten (PTEN) regulates morphogenic growth of benign MDCK (Madin Darby Canine Kidney) cells through effects on the Rho-like GTPase cdc42 (cell division cycle 42). This study investigates PTEN-dependent morphogenesis in a CRC model. Stable short hairpin RNA knockdown of PTEN in Caco-2 cells influenced expression or localization of cdc42 guanine nucleotide exchange factors and inhibited cdc42 activation. Parental Caco-2 cells formed regular hollow gland-like structures (glands) with a single central lumen, in three-dimensional (3D) cultures. Conversely, PTEN-deficient Caco-2 ShPTEN cells formed irregular glands with multiple abnormal lumens as well as intra- and/or intercellular vacuoles evocative of the high-grade CRC phenotype. Effects of targeted treatment were investigated. Phosphatidinylinositol 3-kinase (PI3K) modulating treatment did not affect gland morphogenesis but did influence gland number, gland size and/or cell size within glands. As PTEN may be regulated by the nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ), cultures were treated with the PPARγ ligand rosiglitazone. This treatment enhanced PTEN expression, cdc42 activation and rescued dysmorphogenesis by restoring single lumen formation in Caco-2 ShPTEN glands. Rosiglitazone effects on cdc42 activation and Caco-2 ShPTEN gland development were attenuated by cotreatment with GW9662, a PPARγ antagonist. Taken together, these studies show PTEN-cdc42 regulation of lumen formation in a 3D model of human CRC glandular morphogenesis. Treatment by the PPARγ ligand rosiglitazone, but not PI3K modulators, rescued colorectal glandular dysmorphogenesis of PTEN deficiency.

  19. Inhibition of AMPK and Krebs cycle gene expression drives metabolic remodeling of Pten-deficient preneoplastic thyroid cells.

    Science.gov (United States)

    Antico Arciuch, Valeria G; Russo, Marika A; Kang, Kristy S; Di Cristofano, Antonio

    2013-09-01

    Rapidly proliferating and neoplastically transformed cells generate the energy required to support rapid cell division by increasing glycolysis and decreasing flux through the oxidative phosphorylation (OXPHOS) pathway, usually without alterations in mitochondrial function. In contrast, little is known of the metabolic alterations, if any, which occur in cells harboring mutations that prime their neoplastic transformation. To address this question, we used a Pten-deficient mouse model to examine thyroid cells where a mild hyperplasia progresses slowly to follicular thyroid carcinoma. Using this model, we report that constitutive phosphoinositide 3-kinase (PI3K) activation caused by PTEN deficiency in nontransformed thyrocytes results in a global downregulation of Krebs cycle and OXPHOS gene expression, defective mitochondria, reduced respiration, and an enhancement in compensatory glycolysis. We found that this process does not involve any of the pathways classically associated with the Warburg effect. Moreover, this process was independent of proliferation but contributed directly to thyroid hyperplasia. Our findings define a novel metabolic switch to glycolysis driven by PI3K-dependent AMPK inactivation with a consequent repression in the expression of key metabolic transcription regulators.

  20. Cdc6 and Cyclin E2 Are PTEN-Regulated Genes Associated with Human Prostate Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    Zhong Wu

    2009-01-01

    Full Text Available Phosphatase and tensin homolog deleted on chromosome 10 (PTEN is frequently inactivated in metastatic prostate cancer, yet the molecular consequences of this and their association with the metastatic phenotype are incompletely understood. We performed transcriptomic analysis and identified genes altered by conditional PTEN reexpression in C4-2, a human metastatic prostate cancer cell line with inactive PTEN. PTEN-regulated genes were disproportionately represented among genes altered in human prostate cancer progression and metastasis but not among those associated with tumorigenesis. From the former set, we identified two novel putative PTEN targets, cdc6 and cyclin E2, which were overexpressed in metastatic human prostate cancer and up-regulated as a function of PTEN depletion in poorly metastatic DU145 human prostate cancer cells harboring a wild type PTEN. Inhibition of cdc6 and cyclin E2 levels as a consequence of PTEN expression was associated with cell cycle G1 arrest, whereas use of PTEN activity mutants revealed that regulation of these genes was dependent on PTEN lipid phosphatase activity. Computational and promoter-reporter evaluations implicated the E2F transcription factor in PTEN regulation of cdc6 and cyclin E2 expression. Our results suggest a hypothetical model whereby PTEN loss upregulates cell cycle genes such as cdc6 and cyclin E2 that in turn promote metastatic colonization at distant sites.

  1. Soy peptide lunasin induces pten-mediated apoptosis in human breast cancer cells

    Science.gov (United States)

    The tumor suppressor PTEN inhibits the AKT signaling pathway whose unrestrained activity underlies many human malignancies. Previously we showed that dietary intake of soy protein isolate (SPI) enhanced PTEN expression in mammary tissue of rats with lower NMU-induced mammary tumor incidence relative...

  2. Studies of variability in the PTEN gene among Danish caucasian patients with Type II diabetes mellitus

    DEFF Research Database (Denmark)

    Hansen, L; Jensen, J N; Ekstrøm, C T

    2001-01-01

    Phosphatase and tensin homologue deleted from chromosome ten (PTEN) has recently been characterized as a novel member in the expanding network of proteins regulating the intracellular effects of insulin. By dephosphorylation of phosphatidyl-inositol-(3, 4, 5)-trisphosphate (PIP3) the PTEN protein...

  3. Planarian PTEN homologs regulate stem cells and regeneration through TOR signaling.

    Science.gov (United States)

    Oviedo, Néstor J; Pearson, Bret J; Levin, Michael; Sánchez Alvarado, Alejandro

    2008-01-01

    We have identified two genes, Smed-PTEN-1 and Smed-PTEN-2, capable of regulating stem cell function in the planarian Schmidtea mediterranea. Both genes encode proteins homologous to the mammalian tumor suppressor, phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Inactivation of Smed-PTEN-1 and -2 by RNA interference (RNAi) in planarians disrupts regeneration, and leads to abnormal outgrowths in both cut and uncut animals followed soon after by death (lysis). The resulting phenotype is characterized by hyperproliferation of neoblasts (planarian stem cells), tissue disorganization and a significant accumulation of postmitotic cells with impaired differentiation capacity. Further analyses revealed that rapamycin selectively prevented such accumulation without affecting the normal neoblast proliferation associated with physiological turnover and regeneration. In animals in which PTEN function is abrogated, we also detected a significant increase in the number of cells expressing the planarian Akt gene homolog (Smed-Akt). However, functional abrogation of Smed-Akt in Smed-PTEN RNAi-treated animals does not prevent cell overproliferation and lethality, indicating that functional abrogation of Smed-PTEN is sufficient to induce abnormal outgrowths. Altogether, our data reveal roles for PTEN in the regulation of planarian stem cells that are strikingly conserved to mammalian models. In addition, our results implicate this protein in the control of stem cell maintenance during the regeneration of complex structures in planarians.

  4. Systematic analysis of the PTEN 5' leader identifies a major AUU initiated proteoform.

    Science.gov (United States)

    Tzani, Ioanna; Ivanov, Ivaylo P; Andreev, Dmitri E; Dmitriev, Ruslan I; Dean, Kellie A; Baranov, Pavel V; Atkins, John F; Loughran, Gary

    2016-05-01

    Abundant evidence for translation within the 5' leaders of many human genes is rapidly emerging, especially, because of the advent of ribosome profiling. In most cases, it is believed that the act of translation rather than the encoded peptide is important. However, the wealth of available sequencing data in recent years allows phylogenetic detection of sequences within 5' leaders that have emerged under coding constraint and therefore allow for the prediction of functional 5' leader translation. Using this approach, we previously predicted a CUG-initiated, 173 amino acid N-terminal extension to the human tumour suppressor PTEN. Here, a systematic experimental analysis of translation events in the PTEN 5' leader identifies at least two additional non-AUG-initiated PTEN proteoforms that are expressed in most human cell lines tested. The most abundant extended PTEN proteoform initiates at a conserved AUU codon and extends the canonical AUG-initiated PTEN by 146 amino acids. All N-terminally extended PTEN proteoforms tested retain the ability to downregulate the PI3K pathway. We also provide evidence for the translation of two conserved AUG-initiated upstream open reading frames within the PTEN 5' leader that control the ratio of PTEN proteoforms.

  5. Opening the conformation is a master switch for the dual localization and phosphatase activity of PTEN

    Science.gov (United States)

    Nguyen, Hoai-Nghia; Yang, Jr-Ming; Miyamoto, Takafumi; Itoh, Kie; Rho, Elmer; Zhang, Qiang; Inoue, Takanari; Devreotes, Peter N.; Sesaki, Hiromi; Iijima, Miho

    2015-01-01

    Tumor suppressor PTEN mainly functions at two subcellular locations, the plasma membrane and the nucleus. At the plasma membrane, PTEN dephosphorylates the tumorigenic second messenger PIP3, which drives cell proliferation and migration. In the nucleus, PTEN controls DNA repair and genome stability independently of PIP3. Whereas the concept that a conformational change regulates protein function through post-translational modifications has been well established in biology, it is unknown whether a conformational change simultaneously controls dual subcellular localizations of proteins. Here, we discovered that opening the conformation of PTEN is the crucial upstream event that determines its key dual localizations of this crucial tumor suppressor. We identify a critical conformational switch that regulates PTEN’s localization. Most PTEN molecules are held in the cytosol in a closed conformation by intramolecular interactions between the C-terminal tail and core region. Dephosphorylation of the tail opens the conformation and exposes the membrane-binding regulatory interface in the core region, recruiting PTEN to the membrane. Moreover, a lysine at residue 13 is also exposed and when ubiquitinated, transports PTEN to the nucleus. Thus, opening the conformation of PTEN is a key mechanism that enhances its dual localization and enzymatic activity, providing a potential therapeutic strategy in cancer treatments. PMID:26216063

  6. Reprogramming of the Tumor Microenvironment by Stromal Pten-regulated miR-320

    Science.gov (United States)

    Bronisz, A; Godlewski, J; Wallace, JA; Merchant, AS; Nowicki, MO; Mathsyaraja, H; Srinivasan, R; Trimboli, AJ; Martin, CK; Li, F; Yu, L; Fernandez, SA; Pécot, T; Rosol, TJ; Cory, S; Hallett, M; Park, M; Piper, MG; Marsh, CB; Yee, LD; Jimenez, RE; Nuovo, G; Lawler, SE; Chiocca, EA; Leone, G; Ostrowski, MC

    2011-01-01

    Phosphatase and tensin homolog deleted on chromosome ten (Pten) in stromal fibroblasts suppresses epithelial mammary tumors, but the underlying molecular mechanisms remain unknown. Using proteomic and expression profiling, we show that Pten loss from mammary stromal fibroblasts activates an oncogenic secretome that orchestrates the transcriptional reprogramming of other cell types in the microenvironment. Downregulation of miR-320 and upregulation of one of its direct targets, ETS2, are critical events in Pten-deleted stromal fibroblasts responsible for inducing this oncogenic secretome, which in turn promotes tumor angiogenesis and tumor cell invasion. Expression of the Pten-miR-320-Ets2 regulated secretome distinguished human normal breast stroma from tumor stroma and robustly correlated with recurrence in breast cancer patients. This work reveals miR-320 as a critical component of the Pten tumor suppressor axis that acts in stromal fibroblasts to reprogram the tumor microenvironment and curtail tumor progression. PMID:22179046

  7. Comparative study of mutation spectrums of MT-RNR1 m.1555A>G,GJB2, and SLC26A4 between familial and sporadic patients with nonsyndromic sensorineural hearing loss in Chinese Han

    Institute of Scientific and Technical Information of China (English)

    Li Qian; Ji Yubin; Han Bing; Zong Liang; Lan Lan; Zhao Yali; Wang Hongyang

    2014-01-01

    Background The mutation frequencies of three common deafness genes (MT-RNR1 m.1555A>G,GJB2,and SLC26A4) among patients with nonsyndromic sensorineural hearing loss (NSHL) were different in previous studies.Inconsistent selection criteria for recruiting patients could have led to differences in estimating the frequencies of genetic mutations thus resulting in different mutation frequencies among these studies.The aim of this study was to reveal the differences in the mutation spectrums of the three common genes between familial and sporadic Chinese Han patients.Methods Totally,301 familial probands and 703 sporadic patients with NSHL were enrolled in this study.Three genes,MT-RNR1 m.1555A>G,GJB2,and SLC26A4,were screened for mutation in our study cohort.A X2 test was performed to compare the mutation frequencies between the two groups.Results The study showed that the disease-causing mutation frequencies of MT-RNR1 m.1555A>G,GJB2,and SLC26A4 were 12.29%,14.62%,and 18.27% in familial probands and 3.56%,18.63%,and 18.92% in sporadic patients,respectively.The mutation frequency of MT-RNR1 m.1555A>G in familial probands was significantly higher than in sporadic patients (X2 test,P=0.000),while there were no significant differences in the mutation frequencies of GJB2 and SLC26A4 between the familial and sporadic groups (X2 test,P >0.05).Conclusions It is necessary to reveal the differences in gene mutation frequencies between patients of different sources or characteristics by comparative studies in order to avoid selection bias.The mutations of GJB2,SLC26A4,and MTRNR1 m.1555A>G are the most important etiological factors in Chinese Han patients,among which SLC26A4 might be the most frequent.

  8. Molecular spectrum of somatic EGFR and KRAS gene mutations in non small cell lung carcinoma: determination of frequency, distribution pattern and identification of novel variations in Indian patients.

    Science.gov (United States)

    Das, Bibhu Ranjan; Bhaumik, Sangeet; Ahmad, Firoz; Mandsaurwala, Aziz; Satam, Heena

    2015-07-01

    Somatic mutations of EGFR and KRAS gene represent the most common alterations currently known in NSCLC patients. This study explored the frequency, distribution pattern of EGFR and KRAS mutations in Indian patients. The frequencies of EGFR and KRAS mutations were 29 % (116/400) and 4.5 % (6/132) respectively. Both EGFR and KRAS mutations were prevalent in females, and a trend towards higher mutation frequency was seen in patients under ≥ 60 years age. The presence of EGFR and KRAS mutations were higher in adenocarcinomas in comparison to other histological subtype. Sequencing analysis of EGFR exon 18 revealed Inframe deletion (G709_T710 > A) and missense mutation (K713R). Among exon 19 positive cases, 49.3 % (37/75) were in-frame deletions, of which E746_A750del was frequent. Similarly, ~47 % (35/75) cases showed complex mutation involving indel. Among mutations in exon 20 (N = 9), 8 were substitutions, one showed duplication, while all exon 21 mutations were of the missense types with L858R as the most recurrent type. Sequencing analysis of KRAS exon 1 revealed three different types codon 12 substitutions resulting in c34G > T (G12C) (n = 4), c.35G > A (G12D) (n = 1), and c.35G > T (G12V) (n = 1). In conclusion, the present study is an example of molecular diversity of EGFR and KRAS gene in Indian patients and further confirms that the frequency of EGFR and KRAS mutations varies considerably globally. To the best of our knowledge, this is the first Indian study to evaluate KRAS mutation. The current study also served to identify novel variations that added new insights into the genetic heterogeneity of NSCLC.

  9. The Spectrum of SLC17A5-Gene Mutations Resulting in Free Sialic Acid–Storage Diseases Indicates Some Genotype-Phenotype Correlation

    Science.gov (United States)

    Aula, Nina; Salomäki, Pirjo; Timonen, Ritva; Verheijen, Frans; Mancini, Grazia; Månsson, Jan-Eric; Aula, Pertti; Peltonen, Leena

    2000-01-01

    Lysosomal free sialic acid–storage diseases include the allelic disorders Salla disease (SD) and infantile sialic acid–storage disease (ISSD). The defective gene, SLC17A5, coding for the lysosomal free sialic acid transporter was recently isolated by positional cloning. In the present study, we have identified a large number of mutations in SLC17A5 in patients presenting with either Salla disease or the ISSD phenotype. We also report for the first time the exon-intron boundaries of SLC17A5. All Finnish patients with SD (n=80) had a missense mutation changing a highly conserved arginine to cysteine (R39C); 91% of them were homozygotes for this old founder mutation. The compound-heterozygote patients, with the founder mutation in only one allele, presented with a more severe phenotype than did the homozygote patients. The same R39C mutation was also found both in most of the Swedish patients with SD and in a heterozygous form in five patients from central Europe who presented with an unusually severe (intermediate) SD phenotype. Ten different mutations, including deletions, insertions, and missense and nonsense mutations, were identified in patients with the most severe ISSD phenotype, most of whom were compound heterozygotes. Our results indicate some genotype-phenotype correlation in free sialic acid–storage diseases, suggesting that the phenotype associated with the homozygote R39C mutation is milder than that associated with other mutations. PMID:10947946

  10. Characterization of Heterogeneous Prostate Tumors in Targeted Pten Knockout Mice.

    Directory of Open Access Journals (Sweden)

    Hanneke Korsten

    Full Text Available Previously, we generated a preclinical mouse prostate tumor model based on PSA-Cre driven inactivation of Pten. In this model homogeneous hyperplastic prostates (4-5m developed at older age (>10m into tumors. Here, we describe the molecular and histological characterization of the tumors in order to better understand the processes that are associated with prostate tumorigenesis in this targeted mouse Pten knockout model. The morphologies of the tumors that developed were very heterogeneous. Different histopathological growth patterns could be identified, including intraductal carcinoma (IDC, adenocarcinoma and undifferentiated carcinoma, all strongly positive for the epithelial cell marker Cytokeratin (CK, and carcinosarcomas, which were negative for CK. IDC pattern was already detected in prostates of 7-8 month old mice, indicating that it could be a precursor stage. At more than 10 months IDC and carcinosarcoma were most frequently observed. Gene expression profiling discriminated essentially two molecular subtypes, denoted tumor class 1 (TC1 and tumor class 2 (TC2. TC1 tumors were characterized by high expression of epithelial markers like Cytokeratin 8 and E-Cadherin whereas TC2 tumors showed high expression of mesenchyme/stroma markers such as Snail and Fibronectin. These molecular subtypes corresponded with histological growth patterns: where TC1 tumors mainly represented adenocarcinoma/intraductal carcinoma, in TC2 tumors carcinosarcoma was the dominant growth pattern. Further molecular characterization of the prostate tumors revealed an increased expression of genes associated with the inflammatory response. Moreover, functional markers for senescence, proliferation, angiogenesis and apoptosis were higher expressed in tumors compared to hyperplasia. The highest expression of proliferation and angiogenesis markers was detected in TC2 tumors. Our data clearly showed that in the genetically well-defined PSA-Cre;Pten-loxP/loxP prostate tumor

  11. Construction and Expression of Human PTEN Tumor Suppressor Gene Recombinant Adenovirus Vector

    Institute of Scientific and Technical Information of China (English)

    CHEN Qingyong; WANG Chunyou; CHEN Daoda; CHEN Jianying; JIANG Chunfang; ZHENG Hai

    2006-01-01

    The recombinant defective adenovirus vector carrying human PTEN tumor suppres sor gene was constructed by using AdEasy-1 system and its expression was detected in human breast cancer cell line MDA-MB-468. Human PTEN cDNA was cloned into adenovirus shuttle plasmid pAdTrack-CMV to generate a recombinant plasmid pAdTrack-CMV-PTEN, then homologeous recombination was carried out in the E. coli BJ5183 by contransforming linearized shuttle vector with adenovirus backbone plasmid pAdEasy-1. The newly recombined defective adenovirus vector AdPTEN containing green fluorescent protein (GFP) was packaged and propagated in 293 cells. After being purified by cesium chloride gradient centrifugation, the adenovirus was transfected into human breast cancer cell line MDA-MB-468 in vitro. The expression of PTEN mRNA and protein in infected human breast cancer cell line MDA-MB-468 was detected by RT-PCR and Western blot respectively. The recombinant defective adenovirus vector carrying PTEN gene was constructed successfully. The viral titer of purified adenovirus was 2.5×1010 pfu/mL, and about 70 % breast cancer cells were infected with Ad PTEN when multiplicity of infection (MOI) reached 50. The exogenous PTEN mRNA and protein were expressed in MDA-MB-468 cells infected with Ad-PTEN by RT-PCR and Western blot. The recombinant defective adenovirus vector of PTEN gene was constructed successfully using AdEasy-1 system rapidly, which paved a sound foundation for gene study of breast cancer.

  12. The role of PTEN in chronic growth hormone-induced hepatic insulin resistance.

    Science.gov (United States)

    Gao, Yuan; Su, Peizhu; Wang, Chuqiong; Zhu, Kongqin; Chen, Xiaolan; Liu, Side; He, Jiman

    2013-01-01

    Chronic growth hormone (GH) therapy has been shown to cause insulin resistance, but the mechanism remains unknown. PTEN, a tumor suppressor gene, is a major negative regulator of insulin signaling. In this study, we explored the effect of chronic GH on insulin signaling in the context of PTEN function. Balb/c healthy mice were given recombinant human or bovine GH intraperitoneally for 3 weeks. We found that phosphorylation of Akt was significantly decreased in chronic GH group and the expression of PTEN was significantly increased. We further examined this effect in the streptozotocin-induced Type I diabetic mouse model, in which endogenous insulin secretion was disrupted. Insulin/PI3K/Akt signaling was impaired. However, different from the observation in healthy mice, the expression of PTEN did not increase. Similarly, PTEN expression did not significantly increase in chronic GH-treated mice with hypoinsulinemia induced by prolonged fasting. We conducted in-vitro experiments in HepG2 cells to validate our in-vivo findings. Long-term exposure to GH caused similar resistance of insulin/PI3K/Akt signaling in HepG2 cells; and over-expression of PTEN enhanced the impairment of insulin signaling. On the other hand, disabling the PTEN gene by transfecting the mutant PTEN construct C124S or siPTEN, disrupted the chronic GH induced insulin resistance. Our data demonstrate that PTEN plays an important role in chronic-GH-induced insulin resistance. These findings may have implication in other pathological insulin resistance.

  13. Molecular characterization and function of a PTEN gene from Litopenaeus vannamei after Vibrio alginolyticus challenge.

    Science.gov (United States)

    Xie, C-y; Kong, J-r; Zhao, C-s; Xiao, Y-c; Peng, T; Liu, Y; Wang, W-n

    2016-06-01

    PTEN, a tumor suppressor gene, suppresses cell survival, growth, apoptosis, cell migration and DNA damage repair by inhibiting the PI3K/AKT signaling pathway. In this study, the full-length Litopenaeus vannamei PTEN (LvPTEN) cDNA was obtained, containing a 5'UTR of 59bp, an ORF of 1269bp and a 3'UTR of 146bp besides the poly (A) tail. The PTEN gene encoded a protein of 422 amino acids with an estimated molecular mass of 48.3 KDa and a predicted isoelectric point (pI) of 7.6. Subcellular localization analysis revealed that LvPTEN was distributed in both cytoplasm and nucleus, and the tissue distribution patterns showed that LvPTEN was ubiquitously expressed in all the examined tissues. Vibrio alginolyticus challenge induced upregulation of LvPTEN expression. Moreover, RNAi knock-down of LvPTEN in vivo significantly increased the expression of LvAKT mRNA, while reducing that of the downstream apoptosis genes LvP53 and LvCaspase3. LvPTEN knock-down also caused a sharp increase in cumulative mortality, bacterial numbers, and DNA damage in the hemolymph of L. vannamei following V. alginolyticus challenge, together with a sharp decrease in the total hemocyte count (THC). These results suggested that LvPTEN may participate in apoptosis via the PI3K/AKT signaling pathway in L. vannamei, and play an important role in shrimp innate immunity.

  14. Downregulation of PTEN at Corneal Wound Sites Accelerates Wound Healing through Increased Cell Migration

    Science.gov (United States)

    Cao, Lin; Graue-Hernandez, Enrique O.; Tran, Vu; Reid, Brian; Pu, Jin; Mannis, Mark J.

    2011-01-01

    Purpose. The PI3K/Akt pathway is required for cell polarization and migration, whereas the phosphatase and tensin homologue deleted on chromosome 10 (PTEN) has inhibitory effects on the PI3K/Akt pathway. The authors therefore hypothesized that wounding would downregulate PTEN and that this downregulation would enhance wound healing. Methods. In human corneal epithelial (HCE) cell monolayer and rat cornea scratch wound models, the authors investigated PTEN and Akt expression using Western blot and immunofluorescence analyses. The effects of PTEN and PI3K inhibitors dipotassium bisperoxo (picolinato) oxovanadate (bpv(pic)) and LY294002 on cell migration and wound closure were investigated using time-lapse imaging. Finally, the authors investigated the effect of PTEN inhibition on wound healing in whole rat eyes. Results. In HCE cell monolayer and rat cornea, PTEN was downregulated at the wound edges within 30 minutes of wounding. The downregulation of PTEN was causal in a simultaneous increase in Akt activation, which was responsible for a significant increase in individual cell migration rate from 8.8 μm/h to 17.3 μm/h. An increased migration rate was maintained for 20 hours. PTEN inhibition significantly enhanced the wound healing rate in the HCE cell monolayer from 10 minutes onward after treatment and reduced the healing time in eye organ culture from 30 to 20 hours. Conclusions. Injury to the corneal epithelium downregulates the expression of PTEN at wound edges, allowing increased PI3K/Akt signaling, thereby contributing to a significant enhancement of cell migration and wound healing. These results suggest that PTEN inhibition may be an effective treatment for corneal injury. PMID:21212174

  15. Loss of PTEN causes SHP2 activation, making lung cancer cells unresponsive to IFN-γ

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chia-Ling [Translational Research Center, Taipei Medical University, Taipei 110, Taiwan (China); Chiang, Tzu-Hui; Tseng, Po-Chun [Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan (China); Wang, Yu-Chih [Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Lin, Chiou-Feng, E-mail: cflin2014@tmu.edu.tw [Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (China)

    2015-10-23

    Src homology-2 domain-containing phosphatase (SHP) 2, an oncogenic phosphatase, inhibits type II immune interferon (IFN)-γ signaling by subverting signal transducers and activators of transcription 1 tyrosine phosphorylation and activation. For cancer immunoediting, this study aimed to investigate the decrease of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor protein, leading to cellular impairment of IFN-γ signaling. In comparison with human lung adenocarcinoma A549 cells, the natural PTEN loss in another human lung adenocarcinoma line, PC14PE6/AS2 cells, presents reduced responsiveness in IFN-γ-induced IFN regulatory factor 1 activation and CD54 expression. Artificially silencing PTEN expression in A549 cells also caused cells to be unresponsive to IFN-γ without affecting IFN-γ receptor expression. IFN-γ-induced inhibition of cell proliferation and cytotoxicity were demonstrated in A549 cells but were defective in PC14PE6/AS2 cells and in PTEN-deficient A549 cells. Aberrant activation of SHP2 by ROS was specifically shown in PC14PE6/AS2 cells and PTEN-deficient A549 cells. Inhibiting ROS and SHP2 rescued cellular responses to IFN-γ-induced cytotoxicity and inhibition of cell proliferation in PC14PE6/AS2 cells. These results demonstrate that a decrease in PTEN facilitates ROS/SHP2 signaling, causing lung cancer cells to become unresponsive to IFN-γ. - Highlights: • This study demonstrates that PTEN decrease causes cellular unresponsive to IFN-γ. • Lung cancer cells with PTEN deficiency show unresponsive to IFN-γ signaling. • PTEN decrease inhibits IFN-γ-induced CD54, cell proliferation inhibition, and cytotoxicity. • ROS-mediated SHP2 activation makes PTEN-deficient cells unresponsive to IFN-γ.

  16. In Vitro and In Vivo Effects of Tumor Suppressor Gene PTEN on Endometriosis: An Experimental Study

    Science.gov (United States)

    Lv, Juan; Zhu, Qiaoying; Jia, Xuemei; Yu, Ningzhu; Li, Qian

    2016-01-01

    Background Endometriosis can cause dysmenorrhea and infertility. Its pathogenesis has not yet been clarified and its treatment continues to pose enormous challenges. The protein tyrosine phosphatase (PTEN) gene is a tumor suppressor gene. The aim of this study was to investigate the role and significance of PTEN protein in the occurrence, development, and treatment of endometriosis through changes in apoptosis rate, cell cycle, and angiogenesis. Material/Methods PTEN was overexpressed and silenced in lentiviral vectors and inserted into primary endometrial cells. The changes in cell cycle and apoptosis in the different PTEN expression groups were evaluated using flow cytometry. Vessel growth mimicry was observed using 3-dimensional culture. A human-mouse chimeric endometriosis model was constructed using SCID mice. Hematoxylin and eosin staining and immunohistochemistry were used to detect pathological changes in ectopic endometrial tissues and the expression of VEGF protein in a human-mouse chimeric endometriosis mouse model. Results PTEN overexpression significantly increased apoptosis and inhibited the cell cycle compared with the silenced and control groups. Furthermore, cells expressing low PTEN levels were better able to undergo vasculogenic mimicry, and exhibited significantly increased angiogenesis compared to cells overexpressing PTEN. We found that ectopic foci were more easily formed in the endometrial tissue of SCID mice with low PTEN expression, and the VEGF expression in this group was relatively high. Conclusions PTEN inhibits the occurrence and development of endometriosis by regulating angiogenesis and the apoptosis and cell cycle of endometrial cells; therefore, we propose that the PTEN gene can be used to treat endometriosis. PMID:27744455

  17. Mice lacking pten in osteoblasts have improved intramembranous and late endochondral fracture healing.

    Directory of Open Access Journals (Sweden)

    Travis A Burgers

    Full Text Available The failure of an osseous fracture to heal (development of a non-union is a common and debilitating clinical problem. Mice lacking the tumor suppressor Pten in osteoblasts have dramatic and progressive increases in bone volume and density throughout life. Since fracture healing is a recapitulation of bone development, we investigated the process of fracture healing in mice lacking Pten in osteoblasts (Ocn-cre(tg/+;Pten(flox/flox . Mid-diaphyseal femoral fractures induced in wild-type and Ocn-cre(tg/+;Pten(flox/flox mice were studied via micro-computed tomography (µCT scans, biomechanical testing, histological and histomorphometric analysis, and protein expression analysis. Ocn-cre(tg/+;Pten(flox/flox mice had significantly stiffer and stronger intact bones relative to controls in all cohorts. They also had significantly stiffer healing bones at day 28 post-fracture (PF and significantly stronger healing bones at days 14, 21, and 28 PF. At day 7 PF, the proximal and distal ends of the Pten mutant calluses were more ossified. By day 28 PF, Pten mutants had larger and more mineralized calluses. Pten mutants had improved intramembranous bone formation during healing originating from the periosteum. They also had improved endochondral bone formation later in the healing process, after mature osteoblasts are present in the callus. Our results indicate that the inhibition of Pten can improve fracture healing and that the local or short-term use of commercially available Pten-inhibiting agents may have clinical application for enhancing fracture healing.

  18. Detecting PTEN and PI3K signaling in brain

    Science.gov (United States)

    Zhu, Guo; Baker, Suzanne J.

    2016-01-01

    Summary The central nervous system is comprised of multiple cell types including neurons, glia and other supporting cells that may differ dramatically in levels of signaling pathway activation. Immunohistochemistry in conjunction with drug interference are powerful tools that allow evaluation of signaling pathways in different cell types of the mouse central nervous system in vivo. Here we provide detailed protocols for immunohistochemistry to evaluate three essential components in the PI3K pathway in mouse brain: Pten, p-Akt and p-4ebp1, and for rapamycin treatment to modulate mTOR signaling in vivo. PMID:27033070

  19. A limited spectrum of phenylalanine hydroxylase mutations is observed in phenylketonuria patients in western Poland and implications for treatment with 6R tetrahydrobiopterin.

    Science.gov (United States)

    Dobrowolski, Steven F; Borski, K; Ellingson, C C; Koch, R; Levy, H L; Naylor, E W

    2009-06-01

    Phenylketonuria (PKU) is an autosomal recessive defect in hepatic metabolism of phenylalanine, which is secondary to mutations in the phenylalanine hydroxylase (PAH) gene. Sixty-seven ethnically Polish PKU patients, followed at the Outpatient Department of Pediatrics and Developmental Medicine in Poznan, Poland, were assessed for mutations in the PAH gene. Two mutations were identified in 61 of 67 patients and a single mutation was identified in the remaining six patients. The four most prevalent mutations (p.R408W, 68%; c.1066-11G>A, 6%; c.1315+1G>A, 5.2%; c.822-832delGCCCATGTATA, 3.7%) accounted for 83% of the mutant alleles. Fifteen additional mutations were identified of which most (13/15) were observed in an individual patient. Before knowledge of PAH genotypes, 19 patients were challenged with a 20 mg kg(-1) dose of 6R tetrahydrobiopterin (BH(4)) and serum phenylalanine concentration was monitored in hospital over 24 h. Two patients responded to the BH(4) challenge with a reduction of serum phenylalanine concentration >30% from baseline. PAH genotypes of the two responsive patients would have been predicted, as they contained mutations recognized as BH(4) responsive, whereas the 17 patients who were unresponsive would have been predicted as their mutations were either recognized as non-responsive or were highly deleterious frame-shift mutations. Overall, only 7.5% (5/ 67) of patients had PAH mutations recognized as responsive to co-factor therapy. Among the PKU patients from western Poland, PAH mutations responsive to BH(4) therapy are poorly represented; therefore, genotyping may be useful for identifying candidate patients likely to respond to BH(4) before physiological challenge.

  20. Mutations of the Imprinted CDKN1C Gene as a Cause of the Overgrowth Beckwith-Wiedemann Syndrome: Clinical Spectrum and Functional Characterization.

    Science.gov (United States)

    Brioude, Frederic; Netchine, Irène; Praz, Francoise; Le Jule, Marilyne; Calmel, Claire; Lacombe, Didier; Edery, Patrick; Catala, Martin; Odent, Sylvie; Isidor, Bertrand; Lyonnet, Stanislas; Sigaudy, Sabine; Leheup, Bruno; Audebert-Bellanger, Séverine; Burglen, Lydie; Giuliano, Fabienne; Alessandri, Jean-Luc; Cormier-Daire, Valérie; Laffargue, Fanny; Blesson, Sophie; Coupier, Isabelle; Lespinasse, James; Blanchet, Patricia; Boute, Odile; Baumann, Clarisse; Polak, Michel; Doray, Berenice; Verloes, Alain; Viot, Géraldine; Le Bouc, Yves; Rossignol, Sylvie

    2015-09-01

    Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder associating macroglossia, abdominal wall defects, visceromegaly, and a high risk of childhood tumor. Molecular anomalies are mostly epigenetic; however, mutations of CDKN1C are implicated in 8% of cases, including both sporadic and familial forms. We aimed to describe the phenotype of BWS patients with CDKN1C mutations and develop a functional test for CDKN1C mutations. For each propositus, we sequenced the three exons and intron-exon boundaries of CDKN1C in patients presenting a BWS phenotype, including abdominal wall defects, without 11p15 methylation defects. We developed a functional test based on flow cytometry. We identified 37 mutations in 38 pedigrees (50 patients and seven fetuses). Analysis of parental samples when available showed that all mutations tested but one was inherited from the mother. The four missense mutations led to a less severe phenotype (lower frequency of exomphalos) than the other 33 mutations. The following four tumors occurred: one neuroblastoma, one ganglioneuroblastoma, one melanoma, and one acute lymphoid leukemia. Cases of BWS caused by CDKN1C mutations are not rare. CDKN1C sequencing should be performed for BWS patients presenting with abdominal wall defects or cleft palate without 11p15 methylation defects or body asymmetry, or in familial cases of BWS.

  1. The Clinical Spectrum of Missense Mutations of the First Aspartic Acid of cbEGF-like Domains in Fibrillin-1 Including a Recessive Family

    NARCIS (Netherlands)

    Hilhorst-Hofstee, Yvonne; Rijlaarsdam, Marry E. B.; Scholte, Arthur J. H. A.; Swart-van den Berg, Marietta; Versteegh, Michel I. M.; van der Schoot-van Velzen, Iris; Schaebitz, Hans-Joachim; Bijlsma, Emilia K.; Baars, Marieke J.; Kerstjens-Frederikse, Wilhelmina S.; Giltay, Jacques C.; Hamel, Ben C.; Breuning, Martijn H.; Pals, Gerard

    2010-01-01

    Marfan syndrome (MFS) is a dominant disorder with a recognizable phenotype. In most patients with the classical phenotype mutations are found in the fibrillin-1 gene (FBN1) on chromosome 15q21. It is thought that most mutations act in a dominant negative way or through haploinsufficiency. In 9 index

  2. 遗传性牙本质疾病致病基因突变谱的生物信息学研究%Bioinformatic study of the spectrum of mutations for hereditary dentin defects

    Institute of Scientific and Technical Information of China (English)

    黄芙萌; 李海瑞; 王碧媛; 蒋子剑; 马捷

    2013-01-01

    Various bioinformatics software programs (PolyPhen-2,SignalP 3.0 and SplicePort) were used to analyze the spectrum of mutations in DSPP gene for hereditary dentin defects.40 mutations within DSPP for the hereditary dentin defects have been identified in 60 independent families.The 19 missense or nonsense mutations were located within the DSP domain,and 21 mutations located in the DPP domain cause frameshift mutations.In DSP domain,a mutation may change the cleavage site for the signal peptide; four mutations may affect signal peptide cleavage;ten mutations may affect normal pre-mRNA splicing; a mutation can create a stop codon; three mutatuons may directly affect the biological function of DSP by changing its normal space conformation.Unfortunately,bioinformatic analysis was unavailable for the frameshift mutations within the DPP domain.%运用PolyPhen-2,SignalP 3.0,SplicePort等多种生物信息学软件对遗传性牙本质疾病致病基因(牙本质涎磷蛋白基因)突变谱进行总结和生物信息学分析.在已知60个患者家系中的40个突变中,发现19个错义突变或无义突变发生在DSP结构域,而21个移码突变发生在DPP结构域.在DSP结构域中,1个突变可能改变信号肽剪切位置;4个突变降低信号肽剪切的可能性;10个突变干扰外显子间的剪接;1个突变提前终止翻译过程;还有3个突变可能对多肽的空间结构产生影响.由于在DPP结构域的移码突变缺乏合适的分析软件,尚无法准确评估各个突变发生后的生物学效应.

  3. The Spectrum of BRCA Mutations and Characteristics of BRCA-associated Breast Cancers in China: Screening of 2991 Patients and 1043 Controls by Next-Generation Sequencing.

    Science.gov (United States)

    Lang, Guan-Tian; Shi, Jin-Xiu; Hu, Xin; Zhang, Chen-Hui; Shan, Ling; Song, Chuan-Gui; Zhuang, Zhi-Gang; Cao, A-Yong; Ling, Hong; Yu, Ke-Da; Shan, Li; Sun, Meng-Hong; Zhou, Xiao-Yan; Huang, Wei; Shao, Zhi-Ming

    2017-03-14

    To characterize the prevalence of BRCA mutations and characteristics of BRCA carriers in China and to update the clinical recommendations for BRCA testing, we conducted a wide screen for BRCA mutations using next-generation sequencing (NGS). A total of 4,034 Chinese subjects were screened for germline BRCA1/2 mutations, including 2,991 breast cancer patients and 1,043 healthy individuals from the community enrolled as controls. We developed an NGS-based approach to perform BRCA1/2 screening. BRCA mutations were identified in 9.1% (232/2,560) of cases with at least one risk factor, in 3.5% (15/431) of sporadic patients and in 0.38% (4/1,043) of healthy controls. The mutation frequency ranged from 8.9-15.2% in cohorts with a single risk factor to 16.6-100% in groups with multiple risk factors. We identified 70 novel BRCA mutations. A high frequency of BRCA1 c.5470_5477del was detected, accounting for 13.9% (16/115) of the BRCA1 mutations detected in our study. Clinical characteristics such as family history, invasive carcinoma, negative human epidermal growth factor receptor 2 (HER2), high Ki67 index, lymph node status, and high tumour grade were closely related to BRCA mutations. BRCA2 carriers had poorer disease-free survival among HER2- or hormone receptor-positive patients (hazard ratio=1.892; 95% confidence interval: 1.132-3.161; P=0.013). This study shows that BRCA mutation carriers could be frequently identified among breast cancer patients with multiple risk factors. Importantly, we established an NGS-based pipeline for BRCA1/2 testing in clinical practice, and strongly suggest that breast cancer patients of premier- and moderate-grade risk receive BRCA1/2 mutations testing in China. This article is protected by copyright. All rights reserved.

  4. Mutational profiling of familial male breast cancers reveals similarities with luminal A female breast cancer with rare TP53 mutations.

    Science.gov (United States)

    Deb, S; Wong, S Q; Li, J; Do, H; Weiss, J; Byrne, D; Chakrabarti, A; Bosma, T; Fellowes, A; Dobrovic, A; Fox, S B

    2014-12-09

    Male breast cancer (MBC) is still poorly understood with a large proportion arising in families with a history of breast cancer. Genomic studies have focused on germline determinants of MBC risk, with minimal knowledge of somatic changes in these cancers. Using a TruSeq amplicon cancer panel, this study evaluated 48 familial MBCs (3 BRCA1 germline mutant, 17 BRCA2 germline mutant and 28 BRCAX) for hotspot somatic mutations and copy number changes in 48 common cancer genes. Twelve missense mutations included nine PIK3CA mutations (seven in BRCAX patients), two TP53 mutations (both in BRCA2 patients) and one PTEN mutation. Common gains were seen in GNAS (34.1%) and losses were seen in GNAQ (36.4%), ABL1 (47.7%) and ATM (34.1%). Gains of HRAS (37.5% vs 3%, P=0.006), STK11 (25.0% vs 0%, P=0.01) and SMARCB1 (18.8% vs 0%, P=0.04) and the loss of RB1 (43.8% vs 13%, P=0.03) were specific to BRCA2 tumours. This study is the first to perform high-throughput somatic sequencing on familial MBCs. Overall, PIK3CA mutations are most commonly seen, with fewer TP53 and PTEN mutations, similar to the profile seen in luminal A female breast cancers. Differences in mutation profiles and patterns of gene gains/losses are seen between BRCA2 (associated with TP53/PTEN mutations, loss of RB1 and gain of HRAS, STK11 and SMARCB1) and BRCAX (associated with PIK3CA mutations) tumours, suggesting that BRCA2 and BRCAX MBCs may be distinct and arise from different tumour pathways. This has implications on potential therapies, depending on the BRCA status of MBC patients.

  5. Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance.

    Science.gov (United States)

    McCubrey, James A; Steelman, Linda S; Abrams, Steven L; Lee, John T; Chang, Fumin; Bertrand, Fred E; Navolanic, Patrick M; Terrian, David M; Franklin, Richard A; D'Assoro, Antonio B; Salisbury, Jeffrey L; Mazzarino, Maria Clorinda; Stivala, Franca; Libra, Massimo

    2006-01-01

    The Ras/Raf/MEK/ERK and PI3K/PTEN/AKT signaling cascades play critical roles in the transmission of signals from growth factor receptors to regulate gene expression and prevent apoptosis. Components of these pathways are mutated or aberrantly expressed in human cancer (e.g., Ras, B-Raf, PI3K, PTEN, Akt). Also, mutations occur at genes encoding upstream receptors (e.g., EGFR and Flt-3) and chimeric chromosomal translocations (e.g., BCR-ABL) which transmit their signals through these cascades. These pathways interact with each other to regulate growth and in some cases tumorigenesis. For example, in some cells, PTEN mutation may contribute to suppression of the Raf/MEK/ERK cascade due to the ability of elevated activated Akt levels to phosphorylate and inactivate Raf-1. We have investigated the genetic structures and functional roles of these two signaling pathways in the malignant transformation and drug resistance of hematopoietic, breast and prostate cancer cells. Although both of these pathways are commonly thought to have anti-apoptotic and drug resistance effects on cells, they display different cell-lineage-specific effects. Induced Raf expression can abrogate the cytokine dependence of certain hematopoietic cell lines (FDC-P1 and TF-1), a trait associated with tumorigenesis. In contrast, expression of activated PI3K or Akt does not abrogate the cytokine dependence of these hematopoietic cell lines, but does have positive effects on cell survival. However, activated PI3K and Akt can synergize with activated Raf to abrogate the cytokine dependence of another hematopoietic cell line (FL5.12) which is not transformed by activated Raf expression by itself. Activated Raf and Akt also confer a drug-resistant phenotype to these cells. Raf is more associated with proliferation and the prevention of apoptosis while Akt is more associated with the long-term clonogenicity. In breast cancer cells, activated Raf conferred resistance to the chemotherapeutic drugs

  6. Widening the mutation spectrum of EVC and EVC2: ectopic expression of Weyer variants in NIH 3T3 fibroblasts disrupts Hedgehog signaling.

    Science.gov (United States)

    Valencia, Maria; Lapunzina, Pablo; Lim, Derek; Zannolli, Raffaella; Bartholdi, Deborah; Wollnik, Bernd; Al-Ajlouni, Othman; Eid, Suhair S; Cox, Helen; Buoni, Sabrina; Hayek, Joseph; Martinez-Frias, Maria L; Antonio, Perez-Aytes; Temtamy, Samia; Aglan, Mona; Goodship, Judith A; Ruiz-Perez, Victor L

    2009-12-01

    Autosomal recessive Ellis-van Creveld syndrome and autosomal dominant Weyer acrodental dysostosis are allelic conditions caused by mutations in EVC or EVC2. We performed a mutation screening study in 36 EvC cases and 3 cases of Weyer acrodental dysostosis, and identified pathogenic changes either in EVC or in EVC2 in all cases. We detected 40 independent EVC/EVC2 mutations of which 29 were novel changes in Ellis-van Creveld cases and 2 were novel mutations identified in Weyer pedigrees. Of interest one EvC patient had a T>G nucleotide substitution in intron 7 of EVC (c.940-150T>G), which creates a new donor splice site and results in the inclusion of a new exon. The T>G substitution is at nucleotide +5 of the novel 5' splice site. The three Weyer mutations occurred in the final exon of EVC2 (exon 22), suggesting that specific residues encoded by this exon are a key part of the protein. Using murine versions of EVC2 exon 22 mutations we demonstrate that the expression of a Weyer variant, but not the expression of a truncated protein that mimics an Ellis-van Creveld syndrome mutation, impairs Hedgehog signal transduction in NIH 3T3 cells in keeping with its dominant effect.

  7. The Clinical Spectrum of Missense Mutations of the First Aspartic Acid of cbEGF-like Domains in Fibrillin-1 Including a Recessive Family

    Science.gov (United States)

    Hilhorst-Hofstee, Yvonne; Rijlaarsdam, Marry EB; Scholte, Arthur JHA; Swart-van den Berg, Marietta; Versteegh, Michel IM; van der Schoot-van Velzen, Iris; Schäbitz, Hans-Joachim; Bijlsma, Emilia K; Baars, Marieke J; Kerstjens-Frederikse, Wilhelmina S; Giltay, Jacques C; Hamel, Ben C; Breuning, Martijn H; Pals, Gerard

    2010-01-01

    Marfan syndrome (MFS) is a dominant disorder with a recognizable phenotype. In most patients with the classical phenotype mutations are found in the fibrillin-1 gene (FBN1) on chromosome 15q21. It is thought that most mutations act in a dominant negative way or through haploinsufficiency. In 9 index cases referred for MFS we detected heterozygous missense mutations in FBN1 predicted to substitute the first aspartic acid of different calcium-binding Epidermal Growth Factor-like (cbEGF) fibrillin-1 domains. A similar mutation was found in homozygous state in 3 cases in a large consanguineous family. Heterozygous carriers of this mutation had no major skeletal, cardiovascular or ophthalmological features of MFS. In the literature 14 other heterozygous missense mutations are described leading to the substitution of the first aspartic acid of a cbEGF domain and resulting in a Marfan phenotype. Our data show that the phenotypic effect of aspartic acid substitutions in the first position of a cbEGF domain can range from asymptomatic to a severe neonatal phenotype. The recessive nature with reduced expression of FBN1 in one of the families suggests a threshold model combined with a mild functional defect of this specific mutation. © 2010 Wiley-Liss, Inc. PMID:20886638

  8. Mutation spectrum of 122 hemophilia A families from Taiwanese population by LD-PCR, DHPLC, multiplex PCR and evaluating the clinical application of HRM

    Directory of Open Access Journals (Sweden)

    Chang Chieh-Ting

    2008-06-01

    Full Text Available Abstract Background Hemophilia A represents the most common and severe inherited hemorrhagic disorder. It is caused by mutations in the F8 gene, which leads to a deficiency or dysfunctional factor VIII protein, an essential cofactor in the factor X activation complex. Methods We used long-distance polymerase chain reaction and denaturing high performance liquid chromatography for mutation scanning of the F8 gene. We designed the competitive multiplex PCR to identify the carrier with exonal deletions. In order to facilitate throughput and minimize the cost of mutation scanning, we also evaluated a new mutation scanning technique, high resolution melting analysis (HRM, as an alternative screening method. Results We presented the results of detailed screening of 122 Taiwanese families with hemophilia A and reported twenty-nine novel mutations. There was one family identified with whole exons deletion, and the carriers were successfully recognized by multiplex PCR. By HRM, the different melting curve patterns were easily identified in 25 out of 28 cases (89% and 15 out of 15 (100% carriers. The sensitivity was 93 % (40/43. The overall mutation detection rate of hemophilia A was 100% in this study. Conclusion We proposed a diagnostic strategy for hemophilia A genetic diagnosis. We consider HRM as a powerful screening tool that would provide us with a more cost-effective protocol for hemophilia A mutation identification.

  9. Posttranslational regulation of phosphatase and tensin homolog (PTEN and its functional impact on cancer behaviors

    Directory of Open Access Journals (Sweden)

    Xu WT

    2014-10-01

    Full Text Available Wenting Xu,1 Zhen Yang,1 Shu-Feng Zhou,2 Nonghua Lu1 1Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China; 2Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA Abstract: The incidence of cancer is increasing worldwide, but the biochemical mechanisms for the occurrence of cancer is not fully understood, and there is no cure for advanced tumors. Defects of posttranslational modifications of proteins are linked to a number of important diseases, such as cancer. This review will update our knowledge on the critical role of posttranscriptional regulation of phosphatase and tensin homolog (PTEN and its activities and the functional impact on cancer behaviors. PTEN is a tumor suppressor gene that occupies a key position in regulating cell growth, proliferation, apoptosis, mobility, signal transduction, and other crucial cellular processes. The activity and function of PTEN are regulated by coordinated epigenetic, transcriptional, posttranscriptional, and posttranslational modifications. In particular, PTEN is subject to phosphorylation, ubiquitylation, somoylation, acetylation, and active site oxidation. Posttranslational modifications of PTEN can dynamically change its activity and function. Deficiency in the posttranslational regulation of PTEN leads to abnormal cell proliferation, apoptosis, migration, and adhesion, which are associated with cancer initiation, progression, and metastasis. With increasing information on how PTEN is regulated by multiple mechanisms and networked proteins, its exact role in cancer initiation, growth, and metastasis will be revealed. PTEN and its functionally related proteins may represent useful targets for the discovery of new anticancer drugs, and gene therapy and the therapeutic potentials should be fully explored. Keywords: phosphorylation, ubiquitination, acetylation, oxidation

  10. Endogenous S-sulfhydration of PTEN helps protect against modification by nitric oxide

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Kazuki; Okuda, Kosaku; Uehara, Takashi, E-mail: uehara@pharm.okayama-u.ac.jp

    2015-01-02

    Highlights: • PTEN is S-sulfhydrated endogenously in SH-SY5Y human neuroblastoma cells. • Preventing this modification by knocking down CBS renders PTEN sensitive to NO. • pAkt levels are increased significantly in CBS siRNA-transfected cells. • H{sub 2}S functions as an endogenous regulator of PTEN in neuronal cells. - Abstract: Hydrogen sulfide (H{sub 2}S) is a gaseous regulatory factor produced by several enzymes, and plays a pivotal role in processes such as proliferation or vasodilation. Recent reports demonstrated the physiological and pathophysiological functions of H{sub 2}S in neurons. PTEN is a target of nitric oxide (NO) or hydrogen peroxide, and the oxidative modification of cysteine (Cys) residue(s) attenuates its enzymatic activity. In the present study, we assessed the effect of H{sub 2}S on the direct modification of PTEN and the resulting downstream signaling. A modified biotin switch assay in SH-SY5Y human neuroblastoma cells revealed that PTEN is S-sulfhydrated endogenously. Subsequently, site-directed mutagenesis demonstrated that both Cys71 and Cys124 in PTEN are targets for S-sulfhydration. Further, the knockdown of cystathionine β-synthetase (CBS) using siRNA decreased this modification in a manner that was correlated to amount of H{sub 2}S. PTEN was more sensitive to NO under these conditions. These results suggest that the endogenous S-sulfhydration of PTEN via CBS/H{sub 2}S plays a role in preventing the S-nitrosylation that would inhibition its enzymatic activity under physiological conditions.

  11. Interaction of IGF2 and PTEN in ( M alignant Breast T issues

    Directory of Open Access Journals (Sweden)

    Preetha J Shetty

    2012-07-01

    Full Text Available Background: Breast Cancer (BC is one of the leading malignancies affecting women worldwide. Epigenetic mechanisms regulate gene expression playing an important role in the pathophysiology of cancer. In the present study IGF2 and PTEN genes in AKT pathway were selected for evaluation. Objective: To investigate the role of methylation and interaction of IGF2 and PTEN and in the pathoetiology of BC. Methods: Paraffin embedded archival breast tumor and adjacent normal tissue samples were used for carrying out PCR based methylation assay, genomic PCR, immunohistochemistry and qRT PCR. Results: In-Silico study indicated the absence of hormone responsive elements in the promoters of the selected genes. Methylation results indicated significant loss of methylation in IGF2 exon 9 CpG cluster and significant gain of PTEN promoter methylation in tumors. Immunohistochemistry revealed enhanced cytoplasmic expression o f IGF2 protein (p< 0.0001 and decreased nuclear localization of PTEN protein (p=0.0069 in the breast tumors. RT-PCR results indicated an increased IGF2 (p=0.024 and decreased PTEN transcripts (p<0.0001 in the tumors. Conclusion: Increased IGF2 in normal tissues increases PTEN which acts as a negative regulator of AKT pathway in the cytoplasm controlling excessive proliferation while in tumors this regulation is lost. PTEN acts as a negative regulator of MAPK pathway in the nucleus, plays an important role in cell cycle arrest in normal breast tissue. Reduction of PTEN in tumor tissue affects this pathway leading to cell survival. IGF2 and PTEN have a role in breast cancer and these molecular factors can be used for targeting therapy in future.

  12. A phase 1b dose expansion study of the pan-class I PI3K inhibitor buparlisib (BKM120) plus carboplatin and paclitaxel in PTEN deficient tumors and with dose intensified carboplatin and paclitaxel.

    Science.gov (United States)

    Smyth, Lillian M; Monson, Kelsey R; Jhaveri, Komal; Drilon, Alexander; Li, Bob T; Abida, Wassim; Iyer, Gopa; Gerecitano, John F; Gounder, Mrinal; Harding, James J; Voss, Martin H; Makker, Vicky; Ho, Alan L; Razavi, Pedram; Iasonos, Alexia; Bialer, Philip; Lacouture, Mario E; Teitcher, Jerrold B; Erinjeri, Joseph P; Katabi, Nora; Fury, Matthew G; Hyman, David M

    2017-03-09

    Purpose We previously reported the phase I dose escalation study of buparlisib, a pan-class 1A PI3K inhibitor, combined with platinum/taxane-based chemotherapy in patients with advanced solid tumors. The combination was well tolerated and promising preliminary efficacy was observed in PTEN deficient tumors. This phase I dose expansion study now evaluates buparlisib plus high dose carboplatin and paclitaxel in unselected patients with advanced solid tumors and buparlisib plus standard dose carboplatin and paclitaxel in patients with PTEN deficient tumors (ClinicalTrials.gov, NCT01297452). Methods There were two expansion cohorts: Cohort A received continuous buparlisib (100 mg/daily) orally plus high dose carboplatin AUC 6 and paclitaxel 200 mg/m2; Cohort B treated patients with PTEN deficient tumors only and they received the recommended phase II dose (RP2D) of continuous buparlisib (100 mg/daily) orally plus standard dose carboplatin AUC 5 and paclitaxel 175 mg/m2. Both cohorts received chemotherapy intravenously on day 1 of the 21-day cycle with pegfilgrastim support. Primary endpoint in Cohort A was to evaluate the safety and tolerability of chemotherapy dose intensification with buparlisib and in Cohort B was to describe preliminary efficacy of the combination among patients with tumors harboring a PTEN mutation or homozygous deletion. Results 14 subjects were enrolled, 7 in Cohort A and 7 in Cohort B. Dose reductions were required in 5 (71%) and 3 (43%) patients, in cohort A and B respectively. Grade 3 adverse events in Cohort A included lymphopenia (n = 5 [71%]), hyperglycemia (n = 2, [29%]), diarrhea (n = 2, [29%]) and rash (n = 2, [29%]) and in cohort B included lymphopenia (n = 5 [71%]), hyperglycemia (n = 4 [57%]) and neutropenia (n = 2 [29%]. The mean number of cycles on protocol was 6. The overall objective response rate was 14% (2 /14). No objective responses were observed in the PTEN deficient cohort. Four out of 6 patients with

  13. Expanding the spectrum of mutations in GH1 and GHRHR: genetic screening in a large cohort of patients with congenital isolated growth hormone deficiency

    DEFF Research Database (Denmark)

    Alatzoglou, Kyriaki S; Turton, James P; Kelberman, Daniel

    2009-01-01

    mutations in GH1 (C182X, G120V, R178H, IVS3+4nt, a>t) and GHRHR (W273S, R94L, R162W). Autosomal dominant, type II IGHD was the commonest form (52.4%), followed by type IB (42.8%) and type IA (4.8%). Patients with type II IGHD had highly variable phenotypes. There was no difference in the endocrinology...... or magnetic resonance imaging appearance between patients with and without mutations, although those with mutations presented with more significant growth failure (height, -4.7 +/- 1.6 SDS vs. -3.4 +/- 1.7 SDS) (P = 0.001). There was no apparent difference between patients with mutations in GH1 and GHRHR...

  14. Correlation between PTEN Expression and PI3K/Akt Signal Pathway in Endometrial Carcinoma

    Institute of Scientific and Technical Information of China (English)

    Qinglei GAO; Fei YE; Xi XIA; Hui XING; Yunping LU; Jianfeng ZHOU; Ding MA

    2009-01-01

    In order to investigate the role of the PTEN expression in carcinogenesis and develop-ment of endometrial carcinoma and clarify whether and how PTEN and PI3K/Akt pathway relate to endometrial carcinoma,the expression of PTEN and phospho-Akt was detected by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) methods and Western-blot from 24 cases of endomctrial carcinoma,10 cases of endometrial atypical hyperplasia,10 cases of endometrial hy-perplasia,and 10 cases of normal endometrium.SP immunohistochemical methods were used to measure levels of PTEN protein expression in following 5 study groups:31 cases of endometrium in proliferative phase,30 cases of endometrium in secretory phase,71 cases of endometrial hyperplasia,25 cases of atypical hyperplasia and 73 cases of endometrial carcinoma.Immunostaining score of PTEN was 3.39±0.15 in proliferative phase,1.90±0.21 in secretory phase,3.34~0.29 in endometrial hyperplasia,0.624±0.11 in atypical hyperplasia,and 0.74±0.19 in endometrial carcinoma,respectively.PTEN mRNA relative value in normal endometrium,endometrial hyperplasia,endometrial atypical hyperplasia,and endometrial carcinoma was 2.45±0.51,2.32±0.32,0.46±0.11,and 0.35±0.13 respec-tively.The expression levels of PTEN mRNA and protein in patients with endometrial carcinoma and atypical hyperplasia were significantly lower than in those of proliferative phase and with endo-metrial hyperplasia.The level of PTEN expression in patients with endometrial carcinoma was sig-nificantly related to tissue type (P0.05).Western blot analysis revealed that Phospho-Akt level in PTEN negative cases was significantly higher,and there was a negative correlation between PTEN and phospho-Akt (r=- 0.8973,P<0.0001).It was suggested that loss of PTEN expression was an early event in endometrial tumorigenesis.The phosphorylation of Akt induced by the loss of PTEN took part in the tumorigenesis and development of endometrial carcinoma.

  15. Metformin inhibits inflammatory response via AMPK-PTEN pathway in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Ae [Department of Pharmacology, Aging-Associated Vascular Disease Research Center, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of); Choi, Hyoung Chul, E-mail: hcchoi@med.yu.ac.kr [Department of Pharmacology, Aging-Associated Vascular Disease Research Center, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer PTEN was induced by metformin and inhibited by compound C and AMPK siRNA. Black-Right-Pointing-Pointer Metformin suppressed TNF-{alpha}-induced COX-2 and iNOS mRNA expression. Black-Right-Pointing-Pointer Compound C and bpv (pic) increased iNOS and COX-2 protein expression. Black-Right-Pointing-Pointer NF-{kappa}B activation was restored by inhibiting AMPK and PTEN. Black-Right-Pointing-Pointer AMPK and PTEN regulated TNF-{alpha}-induced ROS production in VSMCs. -- Abstract: Atherosclerosis is a chronic inflammation of the coronary arteries. Vascular smooth muscle cells (VSMCs) stimulated by cytokines and chemokines accelerate the inflammatory response and migrate to the injured endothelium during the progression of atherosclerosis. Activation of AMP activated protein kinase (AMPK), a key sensor maintaining metabolic homeostasis, suppresses the inflammatory response. However, how AMPK regulates the inflammatory response is poorly understood. To identify the mechanism of this response, we focused on phosphatase and tensin homolog (PTEN), which is a negative regulator of inflammation. We investigated that activation of AMPK-induced PTEN expression and suppression of the inflammatory response through the AMPK-PTEN pathway in VSMCs. We treated with the well-known AMPK activator metformin to induce PTEN expression. PTEN was induced by metformin (2 mM) and inhibited by compound C (10 {mu}M) and AMPK siRNA. Tumor necrosis factor-alpha (TNF-{alpha}) was used to induce inflammation. The inflammatory response was confirmed by cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) expression, and activation of nuclear factor (NF)-{kappa}B. Metformin suppressed COX-2 and iNOS mRNA and protein expression dose dependently. Treatment with compound C and bpv (pic) in the presence of metformin, iNOS and COX-2 protein expression increased. NF-{kappa}B activation decreased in response to metformin and was restored by inhibiting AMPK

  16. Pten Regulates Retinal Amacrine Cell Number by Modulating Akt, Tgfβ, and Erk Signaling.

    Science.gov (United States)

    Tachibana, Nobuhiko; Cantrup, Robert; Dixit, Rajiv; Touahri, Yacine; Kaushik, Gaurav; Zinyk, Dawn; Daftarian, Narsis; Biernaskie, Jeff; McFarlane, Sarah; Schuurmans, Carol

    2016-09-07

    All tissues are genetically programmed to acquire an optimal size that is defined by total cell number and individual cellular dimensions. The retina contains stereotyped proportions of one glial and six neuronal cell types that are generated in overlapping waves. How multipotent retinal progenitors know when to switch from making one cell type to the next so that appropriate numbers of each cell type are generated is poorly understood. Pten is a phosphatase that controls progenitor cell proliferation and differentiation in several lineages. Here, using a conditional loss-of-function strategy, we found that Pten regulates retinal cell division and is required to produce the full complement of rod photoreceptors and amacrine cells in mouse. We focused on amacrine cell number control, identifying three downstream Pten effector pathways. First, phosphoinositide 3-kinase/Akt signaling is hyperactivated in Pten conditional knock-out (cKO) retinas, and misexpression of constitutively active Akt (Akt-CA) in retinal explants phenocopies the reduction in amacrine cell production observed in Pten cKOs. Second, Akt-CA activates Tgfβ signaling in retinal explants, which is a negative feedback pathway for amacrine cell production. Accordingly, Tgfβ signaling is elevated in Pten cKO retinas, and epistatic analyses placed Pten downstream of TgfβRII in amacrine cell number control. Finally, Pten regulates Raf/Mek/Erk signaling levels to promote the differentiation of all amacrine cell subtypes, which are each reduced in number in Pten cKOs. Pten is thus a positive regulator of amacrine cell production, acting via multiple downstream pathways, highlighting its diverse actions as a mediator of cell number control. Despite the importance of size for optimal organ function, how individual cell types are generated in correct proportions is poorly understood. There are several ways to control cell number, including readouts of organ function (e.g., secreted hormones reach functional

  17. Molecular spectrum of TP53 mutations in plasma cell dyscrasias by next generation sequencing: an Italian cohort study and overview of the literature.

    Science.gov (United States)

    Lionetti, Marta; Barbieri, Marzia; Manzoni, Martina; Fabris, Sonia; Bandini, Cecilia; Todoerti, Katia; Nozza, Filomena; Rossi, Davide; Musto, Pellegrino; Baldini, Luca; Neri, Antonino

    2016-04-19

    The prevalence of TP53 mutations greatly varies between tumor types; in multiple myeloma (MM) they were rarely detected at presentation, while increased frequency was reported with disease progression. Using next-generation sequencing, we analyzed TP53 exons 4-9 in a large representative cohort comprising patients with MM at diagnosis and more aggressive forms of plasma cell (PC) dyscrasia, identifying mutations in 4/129 (3%) MM, 6/24 (25%) primary PC leukemia, and 2/10 (20%) secondary PC leukemia cases. A similar increase in prevalence associated with disease aggressiveness (5%, 29.2% and 44%, respectively) was observed for TP53 deletion. Interestingly, in five patients mutations were not concomitant with TP53 deletion. Furthermore, longitudinal analysis revealed the acquisition of TP53 mutations in three of nineteen cases analyzed at relapse. Identified variants were mostly missense mutations concentrated in the DNA binding domain, only partly reflecting the pattern globally observed in human cancers. Our data confirm that TP53 mutations are rare in MM at presentation and rather represent a marker of progression, similarly to del(17p); however, their occurrence even in absence of deletions supports the importance of their assessment in patients with PC dyscrasia, in terms of both risk stratification and therapeutic implications.

  18. Spectrum of pontocerebellar hypoplasia in 13 girls and boys with CASK mutations: confirmation of a recognizable phenotype and first description of a male mosaic patient

    Directory of Open Access Journals (Sweden)

    Burglen Lydie

    2012-03-01

    Full Text Available Abstract Ba