WorldWideScience

Sample records for pt-si intermetallic thin

  1. The nucleation and growth of intermetallic Al-Pt phases

    International Nuclear Information System (INIS)

    Kovacs, A.; Barna, P.B.; Labar, J. l.

    2002-01-01

    The nucleation and growth of intermetallic Al-Pt phases on amorphous carbon was investigated by half shadow technique in co-deposited thin films. In such experimental condition, the composition of the deposited films varied in the range of Al x Pt 1-x (0≤x≤0.6). The coexistence of Al 5 Pt, Al 2 Pt, Al 3 Pt 2 intermetallic phases have been found in the whole range with varying ratio. Vapour depositions were performed in an UHV system. The Al and Pt components were evaporated simultaneously onto amorphous carbon layer supported by TEM micro-grids. Deposition rates were controlled separately by quartz crystal monitors. Substrate temperature during deposition was 350 grad C. A special evaporation arrangement made possible to create a half shadow area on the substrate in which the quantity one of the components increased from zero to the wanted composition of the sample. The composition of the zones was determined by energy dispersive X-ray spectroscopy (EDS) in TEM. The intermetallic phases developed in the sample were investigated by analytical TEM (Philips CM20) and high resolution TEM (JEOL 3010 UHR). The electron diffraction patterns have been evaluated by ProcessDiffraction program. (Authors)

  2. Sub-4 nm PtZn Intermetallic Nanoparticles for Enhanced Mass and Specific Activities in Catalytic Electrooxidation Reaction

    International Nuclear Information System (INIS)

    Qi, Zhiyuan

    2017-01-01

    Atomically ordered intermetallic nanoparticles (iNPs) have sparked considerable interest in fuel cell applications by virtue of their exceptional electronic and structural properties. However, the synthesis of small iNPs in a controllable manner remains a formidable challenge because of the high temperature generally required in the formation of intermetallic phases. Here in this paper we report a general method for the synthesis of PtZn iNPs (3.2 ± 0.4 nm) on multiwalled carbon nanotubes (MWNT) via a facile and capping agent free strategy using a sacrificial mesoporous silica (mSiO 2 ) shell. The as-prepared PtZn iNPs exhibited ca. 10 times higher mass activity in both acidic and basic solution toward the methanol oxidation reaction (MOR) compared to larger PtZn iNPs synthesized on MWNT without the mSiO 2 shell. Density functional theory (DFT) calculations predict that PtZn systems go through a “non-CO” pathway for MOR because of the stabilization of the OH* intermediate by Zn atoms, while a pure Pt system forms highly stable COH* and CO* intermediates, leading to catalyst deactivation. Experimental studies on the origin of the backward oxidation peak of MOR coincide well with DFT predictions. Moreover, the calculations demonstrate that MOR on smaller PtZn iNPs is energetically more favorable than larger iNPs, due to their high density of corner sites and lower-lying energetic pathway. Therefore, smaller PtZn iNPs not only increase the number but also enhance the activity of the active sites in MOR compared with larger ones. This work opens a new avenue for the synthesis of small iNPs with more undercoordinated and enhanced active sites for fuel cell applications.

  3. Influence of multi-hit capability on quantitative measurement of NiPtSi thin film with laser-assisted atom probe tomography

    International Nuclear Information System (INIS)

    Kinno, T.; Akutsu, H.; Tomita, M.; Kawanaka, S.; Sonehara, T.; Hokazono, A.; Renaud, L.; Martin, I.; Benbalagh, R.; Sallé, B.; Takeno, S.

    2012-01-01

    Highlights: ► Laser-assisted atom probe tomography was applied to NiPtSi films on Si substrates. ► Comparison of depth profiles of single-hit events and those of multi-hit events. ► ∼80% of Pt atoms were detected in multi-hit events. ► Multiple-ion detection is important for Laser-assisted atom probe tomography. - Abstract: Laser-assisted atom probe tomography (LA-APT) was applied to NiPtSi (0, 30, and 50% Pt contents) thin films on Si substrates. Consistent results with those of high-resolution Rutherford backscattering spectrometry (HR-RBS) were obtained. Based on the obtained data sets, the composition profiles from only the signals of single-hit events, meaning detection of one ion by one laser pulse, were compiled. The profiles from only the signals of multi-hit events, meaning detection of multiple ions by one laser pulse, were also compiled. There were large discrepancies with respect to Ni and Pt concentrations among the compiled profiles and the original profiles including the signals of both types of detection events. Additionally, the profiles compiled from single-hit events showed that Si concentration in NiPtSi layer became smaller toward the surface, differing from the original profiles and the multi-hit profiles. These results suggest that capability of simultaneous multiple-ion detection is important for appropriate LA-APT analyses.

  4. Properties of SrBi2Nb2O9 thin films on Pt-coated Si

    International Nuclear Information System (INIS)

    Avila, R.E.; Navarro, P.O.; Martin, V. del C.; Fernandez, L.M.; Sylvester, G.; Retuert, P.J.; Gramsch, E.

    2002-01-01

    SrBi 2 Nb 2 O 9 powders and thin films, on Pt-coated Si, were synthesised by the sol-gel method. Three-layer thin films appear homogeneous down to the 100 nm scale, polycrystalline in the tetragonal Aurivillius phase, at a average thickness of 40 nm per layer. The index of refraction at the center of the visible range increases with the sintering temperature from roughly 2.1 (at 400 Centigrade) to 2.5 (at 700 Centigrade). The expression n 2 -1 increases linearly with the relative density of the thin films, in similar fashion as previous studies in PbTiO 3 thin films. The dielectric constant in quasistatic and high frequency (1 MHz) modes, is between 160 and 230. (Author)

  5. Columnar grain growth of FePt(L10) thin films

    International Nuclear Information System (INIS)

    Yang En; Ho Hoan; Laughlin, David E.; Zhu Jiangang

    2012-01-01

    An experimental approach for obtaining perpendicular FePt-SiOx thin films with a large height to diameter ratio FePt(L1 0 ) columnar grains is presented in this work. The microstructure for FePt-SiOx composite thin films as a function of oxide volume fraction, substrate temperature, and film thickness is studied by plan view and cross section TEM. The relations between processing, microstructure, epitaxial texture, and magnetic properties are discussed. By tuning the thickness of the magnetic layer and the volume fraction of oxide in the film at a sputtering temperature of 410 deg. C, a 16 nm thick perpendicular FePt film with ∼8 nm diameter of FePt grains was obtained. The height to diameter ratio of the FePt grains was as large as 2. Ordering at lower temperature can be achieved by introducing a Ag sacrificial layer.

  6. [Zn(NH3)4][PtCl6] and [Cd(NH3)4][PtCl6] as precursors for intermetallic compounds PtZn and PtCd

    International Nuclear Information System (INIS)

    Zadesenets, A.V.; Venediktov, A.B.; Shubin, Yu.V.; Korenev, S.V.

    2007-01-01

    Double complex salts (tetraamminezinc and tetraamminecadmium hexachloroplatinates) have been synthesized. Their thermal properties have been studied, as well as the products of their degradation in hydrogen and helium atmospheres. Optimal thermolysis schedules have been determined. Thermolysis under hydrogen yields intermetallic compounds PtZn and PtCd [ru

  7. Crystal Growth and Characterization of MT2Si2 Ternary Intermetallics (M = U, RE and T = 3d, 4d, 5d Transition Metals)

    NARCIS (Netherlands)

    Menovsky, A.A.; Moleman, A.C.; Snel, G.E.; Gortenmulder, T.J.; Palstra, T.T.M.

    1986-01-01

    Bulk single crystals of the ternary intermetallic compounds UT2Si2 (T = Ni, Pd, Pt and Ru), LaT2Si2 (T = Pd and Rh) and LuPd2Si2 have been grown from the melt with a modified “tri-arc” Czochralski method. The as-grown crystals were characterized by X-ray, microprobe and chemical analyses. The

  8. L10 phase transition in FePt thin films via direct interface reaction

    International Nuclear Information System (INIS)

    Li Xiaohong; Sun Hongyu; Wang Fengqing; Li Wei; Zhang Xiangyi; Liu Baoting; Guo Jianxin

    2008-01-01

    Lowering the L1 0 ordering temperature of FePt films is of great significance for their application as an ultrahigh density magnetic recording medium. In this study, the L1 0 ordering process of FePt thin films deposited directly on Si substrates has been significantly accelerated by the interface reaction between the thin film and the Si substrate, and thus the thin films show a low L1 0 ordering temperature of T = 310 deg. C as compared with those deposited on Si/SiO 2 substrates. The accelerated L1 0 ordering transition is predominantly dependent on the rapid growth of the ordered domains during the interface reaction. The film thickness has an important effect on the interface reaction and thus can be used to tune the L1 0 ordering process of the FePt films.

  9. Properties of RF-Sputtered PZT Thin Films with Ti/Pt Electrodes

    Directory of Open Access Journals (Sweden)

    Cui Yan

    2014-01-01

    Full Text Available Effect of annealing temperature and thin film thickness on properties of Pb(Zr0.53Ti0.47O3 (PZT thin film deposited via radiofrequency magnetron sputtering technique onto Pt/Ti/SiO2/Si substrate was investigated. Average grain sizes of the PZT thin film were measured by atomic force microscope; their preferred orientation was studied through X-ray diffraction analysis. Average residual stress in the thin film was estimated according to the optimized Stoney formula, and impedance spectroscopy characterization was performed via an intelligent LCR measuring instrument. Average grain sizes of PZT thin films were 60 nm~90 nm and their average roughness was less than 2 nm. According to X-ray diffraction analysis, 600°C is the optimal annealing temperature to obtain the PZT thin film with better crystallization. Average residual stress showed that thermal mismatch was the decisive factor of residual stress in Pt/Ti/SiO2/Si substrate; the residual stress in PZT thin film decreased as their thickness increased and increased with annealing temperature. The dielectric constant and loss angle tangent were extremely increased with the thickness of PZT thin films. The capacitance of the device can be adjusted according to the thickness of PZT thin films.

  10. Enhanced dielectric constant and fatigue-resistance of PbZr0.4Ti0.6O3 capacitor with magnetic intermetallic FePt top electrode

    Science.gov (United States)

    Liu, B. T.; Zhao, J. W.; Li, X. H.; Zhou, Y.; Bian, F.; Wang, X. Y.; Zhao, Q. X.; Wang, Y. L.; Guo, Q. L.; Wang, L. X.; Zhang, X. Y.

    2010-06-01

    Both FePt/PbZr0.4Ti0.6O3(PZT)/Pt and Pt/PZT/Pt ferroelectric capacitors have been fabricated on Si substrates. It is found that up to 109 switching cycles, the FePt/PZT/Pt capacitor, measured at 50 kHz, with polarization decreased by 57%, is superior to the Pt/PZT/Pt capacitor by 82%, indicating that an intermetallic FePt top electrode can also improve the fatigue-resistance of a PZT capacitor. Maximum dielectric constants are 980 and 770 for PZT capacitors with FePt and Pt, respectively. This is attributed to the interface effect between PZT film and the top electrode since the interfacial capacitance of FePt/PZT is 3.5 times as large as that of Pt/PZT interface.

  11. Interfacial effects on the electrical properties of multiferroic BiFeO3/Pt/Si thin film heterostructures

    International Nuclear Information System (INIS)

    Yakovlev, S.; Zekonyte, J.; Solterbeck, C.-H.; Es-Souni, M.

    2005-01-01

    Polycrystalline BiFeO 3 thin films of various thickness were fabricated on (111)Pt/Ti/SiO 2 /Si substrates via chemical solution deposition. The electrical properties were investigated using impedance and leakage current measurements. X-ray photoelectron spectroscopy (XPS) combined with Ar ion milling (depth profiling) was used to investigate elemental distribution near the electrode-film interface. It is shown that the dielectric constant depends on film thickness due to the presence of an interfacial film-electrode layer evidenced by XPS investigation. Direct current conductivity is found to be governed by Schottky and/or Poole-Frenkel mechanisms

  12. The chemical phenol extraction of intermetallic particles from casting AlSi5Cu1Mg alloy.

    Science.gov (United States)

    Mrówka-Nowotnik, G; Sieniawski, J; Nowotnik, A

    2010-03-01

    This paper presents a chemical extraction technique for determination of intermetallic phases formed in the casting AlSi5Cu1Mg aluminium alloy. Commercial aluminium alloys contain a wide range of intermetallic particles that are formed during casting, homogenization and thermomechanical processing. During solidification, particles of intermetallics are dispersed in interdendritic spaces as fine primary phases. Coarse intermetallic compounds that are formed in this aluminium alloy are characterized by unique atomic arrangement (crystallographic structure), morphology, stability, physical and mechanical properties. The volume fraction, chemistry and morphology of the intermetallics significantly affect properties and material behaviour during thermomechanical processing. Therefore, accurate determination of intermetallics is essential to understand and control microstructural evolution in Al alloys. Thus, in this paper it is shown that chemical phenol extraction method can be applied for precise qualitative evaluation. The results of optical light microscopy LOM, scanning electron microscopy SEM and X-ray diffraction XRD analysis reveal that as-cast AlSi5Cu1Mg alloy contains a wide range of intermetallic phases such as Al(4)Fe, gamma- Al(3)FeSi, alpha-Al(8)Fe(2)Si, beta-Al(5)FeSi, Al(12)FeMnSi.

  13. L1{sub 0} phase transition in FePt thin films via direct interface reaction

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaohong; Sun Hongyu; Wang Fengqing; Li Wei; Zhang Xiangyi [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 066004 Qinhuangdao (China); Liu Baoting; Guo Jianxin [College of Physics Science and Technology, Hebei University, 071002 Baoding (China)], E-mail: xyzh66@ysu.edu.cn

    2008-12-07

    Lowering the L1{sub 0} ordering temperature of FePt films is of great significance for their application as an ultrahigh density magnetic recording medium. In this study, the L1{sub 0} ordering process of FePt thin films deposited directly on Si substrates has been significantly accelerated by the interface reaction between the thin film and the Si substrate, and thus the thin films show a low L1{sub 0} ordering temperature of T = 310 deg. C as compared with those deposited on Si/SiO{sub 2} substrates. The accelerated L1{sub 0} ordering transition is predominantly dependent on the rapid growth of the ordered domains during the interface reaction. The film thickness has an important effect on the interface reaction and thus can be used to tune the L1{sub 0} ordering process of the FePt films.

  14. A low-temperature synthesis of electrochemical active Pt nanoparticles and thin films by atomic layer deposition on Si(111) and glassy carbon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rui [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Han, Lihao [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Photovoltaic Materials and Devices (PVMD) Laboratory, Delft University of Technology, P.O. Box 5031, GA Delft 2600 (Netherlands); Huang, Zhuangqun; Ferrer, Ivonne M. [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Division of Chemistry and Chemical Engineering, California Institute of Technology, 210 Noyes Laboratory 127-72, Pasadena, CA 91125 (United States); Smets, Arno H.M.; Zeman, Miro [Photovoltaic Materials and Devices (PVMD) Laboratory, Delft University of Technology, P.O. Box 5031, GA Delft 2600 (Netherlands); Brunschwig, Bruce S., E-mail: bsb@caltech.edu [Beckman Institute, California Institute of Technology, Pasadena, CA 91125 (United States); Lewis, Nathan S., E-mail: nslewis@caltech.edu [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Beckman Institute, California Institute of Technology, Pasadena, CA 91125 (United States); Division of Chemistry and Chemical Engineering, California Institute of Technology, 210 Noyes Laboratory 127-72, Pasadena, CA 91125 (United States); Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-07-01

    Atomic layer deposition (ALD) was used to deposit nanoparticles and thin films of Pt onto etched p-type Si(111) wafers and glassy carbon discs. Using precursors of MeCpPtMe{sub 3} and ozone and a temperature window of 200–300 °C, the growth rate was 80–110 pm/cycle. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to analyze the composition, structure, morphology, and thickness of the ALD-grown Pt nanoparticle films. The catalytic activity of the ALD-grown Pt for the hydrogen evolution reaction was shown to be equivalent to that of e-beam evaporated Pt on glassy carbon electrode. - Highlights: • Pure Pt films were grown by atomic layer deposition (ALD) using MeCpPtMe3 and ozone. • ALD-grown Pt thin films had high growth rates of 110 pm/cycle. • ALD-grown Pt films were electrocatalytic for hydrogen evolution from water. • Electrocatalytic activity of the ALD Pt films was equivalent to e-beam deposited Pt. • No carbon species were detected in the ALD-grown Pt films.

  15. A low-temperature synthesis of electrochemical active Pt nanoparticles and thin films by atomic layer deposition on Si(111) and glassy carbon surfaces

    International Nuclear Information System (INIS)

    Liu, Rui; Han, Lihao; Huang, Zhuangqun; Ferrer, Ivonne M.; Smets, Arno H.M.; Zeman, Miro; Brunschwig, Bruce S.; Lewis, Nathan S.

    2015-01-01

    Atomic layer deposition (ALD) was used to deposit nanoparticles and thin films of Pt onto etched p-type Si(111) wafers and glassy carbon discs. Using precursors of MeCpPtMe 3 and ozone and a temperature window of 200–300 °C, the growth rate was 80–110 pm/cycle. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to analyze the composition, structure, morphology, and thickness of the ALD-grown Pt nanoparticle films. The catalytic activity of the ALD-grown Pt for the hydrogen evolution reaction was shown to be equivalent to that of e-beam evaporated Pt on glassy carbon electrode. - Highlights: • Pure Pt films were grown by atomic layer deposition (ALD) using MeCpPtMe3 and ozone. • ALD-grown Pt thin films had high growth rates of 110 pm/cycle. • ALD-grown Pt films were electrocatalytic for hydrogen evolution from water. • Electrocatalytic activity of the ALD Pt films was equivalent to e-beam deposited Pt. • No carbon species were detected in the ALD-grown Pt films

  16. Cerium intermetallics with TiNiSi-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Janka, Oliver; Niehaus, Oliver; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Chevalier, Bernard [Bordeaux Univ. CNRS (UPR 9048), Pessac (France). Inst. de Chimie de la Matiere Condensee de Bordeaux (ICMCB)

    2016-08-01

    Intermetallic compounds with the equiatomic composition CeTX that crystallize with the orthorhombic TiNiSi-type structure can be synthesized with electron-rich transition metals (T) and X = Zn, Al, Ga, Si, Ge, Sn, As, Sb, and Bi. The present review focusses on the crystal chemistry and chemical bonding of these CeTX phases and on their physical properties, {sup 119}Sn and {sup 121}Sb Moessbauer spectra, high-pressure effects, hydrogenation reactions and the formation of solid solutions in order to elucidate structure-property relationships. This paper is the final one of a series of four reviews on equiatomic intermetallic cerium compounds [Part I: Z. Naturforsch. 2015, 70b, 289; Part II: Z. Naturforsch. 2015, 70b, 695; Part III: Z. Naturforsch. 2016, 71b, 165].

  17. Longitudinal recording on FePt and FePtX (X = B, Ni) intermetallic compounds

    Science.gov (United States)

    Li, Ning

    1999-11-01

    Near field recording on high coercivity FePt intermetallic compound media using a high Bsat write element was investigated. Untextured FePt media were prepared by magnetron sputtering on ZrO2 disks at a substrate temperature of 450°C, with post annealing at 450°C for 8 hrs. Both multilayer and cosputtered precursors produced the ordered tetragonal L10 phase with high coercivity between 5kOe and 12kOe. To improve readback noise decrease magnetic domain size, FePtB media were subsequently prepared by cosputtering. Over-write, roll-off, signal to noise ratio and non-linear transition shift (NLTS) ere measured by both metal in gap (MIG) and merged MR heads. FePtB media showed similar NLTS to commercial CoCrPtTa longitudinal media, but 5dB lower signal to noise ratio. By operating recording transducers in near contact, reasonable values of (>30dB) could be obtained. VSM Rotational Transverse Magnetization has been used for measuring the anisotropy field of magnetic thin films. Magnetization reversal during rotation of a 2D isotropic an applied field is discussed. The relationship between the transverse magnetization My and the applied field H was numerically solved. An excellent approximation for the transverse magnetization is found to be: My/Ms=A(1- H/Hk) 2.5, where A = 1.1434, and Hk is the anisotropy field. For curve fitting to experimental data, both A and Hk were used as fitting parameters. Comparison between a constructed torque hysteresis method and this VSM RTM method have been made theoretically and experimentally. Both results showed that VSM RTM will give better extrapolation of the anisotropy field. The torque measurement will slightly overestimate the anisotropy field. The anisotropy fields of FePt and FePtX (X = B, Ni) films were characterized using this VSM RTM technique with comparison to a CoCrTaPt disk. Anisotropy energy was derived. Hc/Hk was used as an indicator for coherent rotation of a single domain. Interactions between magnetic domains were

  18. Properties of SrBi sub 2 Nb sub 2 O sub 9 thin films on Pt-coated Si

    CERN Document Server

    Avila, R E; Martin, V D C; Fernandez, L M; Sylvester, G S; Retuert, P J; Gramsch, E

    2002-01-01

    SrBi sub 2 Nb sub 2 O sub 9 powders and thin films, on Pt-coated Si, were synthesised by the sol-gel method. Three-layer thin films appear homogeneous down to the 100 nm scale, polycrystalline in the tetragonal Aurivillius phase, at a average thickness of 40 nm per layer. The index of refraction at the center of the visible range increases with the sintering temperature from roughly 2.1 (at 400 Centigrade) to 2.5 (at 700 Centigrade). The expression n sup 2 -1 increases linearly with the relative density of the thin films, in similar fashion as previous studies in PbTiO sub 3 thin films. The dielectric constant in quasistatic and high frequency (1 MHz) modes, is between 160 and 230. (Author)

  19. The influence of Pt redistribution on Ni1-xPtxSi growth properties

    International Nuclear Information System (INIS)

    Demeulemeester, J.; Smeets, D.; Temst, K.; Vantomme, A.; Comrie, C. M.; Van Bockstael, C.; Knaepen, W.; Detavernier, C.

    2010-01-01

    We have studied the influence of Pt on the growth of Ni silicide thin films by examining the Pt redistribution during silicide growth. Three different initial Pt configurations were investigated, i.e., a Pt alloy (Ni+Pt/ ), a Pt capping layer (Pt/Ni/ ) and a Pt interlayer (Ni/Pt/ ), all containing 7 at. % Pt relative to the Ni content. The Pt redistribution was probed using in situ real-time Rutherford backscattering spectrometry (RBS) whereas the phase sequence was monitored during the solid phase reaction (SPR) using in situ real-time x-ray diffraction. We found that the capping layer and alloy exhibit a SPR comparable to the pure Ni/ system, whereas Pt added as an interlayer has a much more drastic influence on the Ni silicide phase sequence. Nevertheless, for all initial sample configurations, Pt redistributes in an erratic way. This phenomenon can be assigned to the low solubility of Pt in Ni 2 Si compared to NiSi and the high mobility of Pt in Ni 2 Si compared to pure Ni. Real-time RBS further revealed that the crucial issue determining the growth properties of each silicide phase is the Pt concentration at the Si interface during the initial stages of phase formation. The formation of areas rich in Pt reduce the Ni silicide growth kinetics which influences the phase sequence and properties of the silicides.

  20. Morphology of intermetallic phases in Al-Si cast alloys and their fracture behaviour

    Directory of Open Access Journals (Sweden)

    Lenka Hurtalová

    2015-03-01

    Full Text Available Applications of Al-Si cast alloys in recent years have increased especially in the automotive industry (dynamic exposed cast, en-gine parts, cylinder heads, pistons and so on. Controlling the microstructure of secondary aluminium cast alloys is very important, because these alloys contain more additional elements that form various intermetallic phases in the structure. Therefore, the contribution is dealing with the valuation type of intermetallic phases and their identification with using optical and scanning microscopy. Some of the intermetallic phases could be identified on the basis of morphology but some of them must be identified according EDX analysis. The properties of alu-minium alloy are affected by morphology of intermetallic phases and therefore it is necessary to study morphology and its fracture behav-iour. The present work shows morphology and typical fracture behaviour as the most common intermetallic phases forming in Al-Si alloys.

  1. Microstructure Characterization and Wear-Resistant Properties Evaluation of an Intermetallic Composite in Ni–Mo–Si System

    Directory of Open Access Journals (Sweden)

    Boyuan Huang

    2017-02-01

    Full Text Available Intermetallic compounds have been studied for their potential application as structural wear materials or coatings on engineering steels. In the present work, a newly designed intermetallic composite in a Ni–Mo–Si system was fabricated by arc-melting process with commercially pure metal powders as starting materials. The chemical composition of this intermetallic composite is 45Ni–40Mo–15Si (at %, selected according to the ternary alloy diagram. The microstructure was characterized using optical microscopy (OM, scanning electron microscopy (SEM, X-ray diffraction (XRD, and energy dispersive spectroscopy (EDS, and the wear-resistant properties at room temperature were evaluated under different wear test conditions. Microstructure characterization showed that the composite has a dense and uniform microstructure. XRD results showed that the intermetallic composite is constituted by a binary intermetallic compound NiMo and a ternary Mo2Ni3Si metal silicide phase. Wear test results indicated that the intermetallic composite has an excellent wear-resistance at room-temperature, which is attributed to the high hardness and strong atomic bonding of constituent phases NiMo and Mo2Ni3Si.

  2. Pt silicide/poly-Si Schottky diodes as temperature sensors for bolometers

    Energy Technology Data Exchange (ETDEWEB)

    Yuryev, V. A., E-mail: vyuryev@kapella.gpi.ru; Chizh, K. V.; Chapnin, V. A.; Mironov, S. A.; Dubkov, V. P.; Uvarov, O. V.; Kalinushkin, V. P. [A. M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, Moscow 119991 (Russian Federation); Senkov, V. M. [P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy Avenue, Moscow 119991 (Russian Federation); Nalivaiko, O. Y. [JSC “Integral” – “Integral” Holding Management Company, 121A, Kazintsa I. P. Street, Minsk 220108 (Belarus); Novikau, A. G.; Gaiduk, P. I. [Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk (Belarus)

    2015-05-28

    Platinum silicide Schottky diodes formed on films of polycrystalline Si doped by phosphorus are demonstrated to be efficient and manufacturable CMOS-compatible temperature sensors for microbolometer detectors of radiation. Thin-film platinum silicide/poly-Si diodes have been produced by a CMOS-compatible process on artificial Si{sub 3}N{sub 4}/SiO{sub 2}/Si(001) substrates simulating the bolometer cells. Layer structure and phase composition of the original Pt/poly-Si films and the Pt silicide/poly-Si films synthesized by a low-temperature process have been studied by means of the scanning transmission electron microscopy; they have also been explored by means of the two-wavelength X-ray structural phase analysis and the X-ray photoelectron spectroscopy. Temperature coefficient of voltage for the forward current of a single diode is shown to reach the value of about −2%/ °C in the temperature interval from 25 to 50 °C.

  3. Phase transition of intermetallic TbPt at high temperature and high pressure

    Science.gov (United States)

    Qin, Fei; Wu, Xiang; Yang, Ke; Qin, Shan

    2018-04-01

    Here we present synchrotron-based x-ray diffraction experiments combined with diamond anvil cell and laser heating techniques on the intermetallic rare earth compound TbPt (Pnma and Z  =  4) up to 32.5 GPa and ~1800 K. The lattice parameters of TbPt exhibit continuous compression behavior up to 18.2 GPa without any evidence of phase transformation. Pressure-volume data were fitted to a third-order Birch-Murnaghan equation of state with V 0  =  175.5(2) Å3, {{K}{{T0}}}   =  110(5) GPa and K{{T0}}\\prime   =  3.8(7). TbPt exhibits anisotropic compression with β a   >  β b   >  β c and the ratio of axial compressibility is 2.50:1.26:1.00. A new monoclinic phase of TbPt assigned to the Pc or P2/c space group was observed at 32.5 GPa after laser heating at ~1800 K. This new phase is stable at high pressure and presented a quenchable property on decompression to ambient conditions. The pressure-volume relationship is well described by the second-order Birch-Murnaghan equation of state, which yields V 0  =  672(4) Å3, {{K}{{T0}}}   =  123(6) GPa, which is about ~14% more compressible than the orthorhombic TbPt. Our results provide more information on the structure and elastic property view, and thus a better understanding of the physical properties related to magnetic structure in some intermetallic rare earth alloys.

  4. Evolution of Fe based intermetallic phases in Al–Si hypoeutectic casting alloys: Influence of the Si and Fe concentrations, and solidification rate

    International Nuclear Information System (INIS)

    Gorny, Anton; Manickaraj, Jeyakumar; Cai, Zhonghou; Shankar, Sumanth

    2013-01-01

    Highlights: •Anomalous evolution of Fe based intermetallic phases in Al–Si–Fe alloys. •XRF coupled with nano-diffraction to confirm the nano-size Fe intermetallic phases. •Crystallography of the θ-Al 13 Fe 4 , τ 5 -Al 8 Fe 2 Si and τ 6 -Al 9 Fe 2 Si 2 phases. •Peritectic reactions involving the Fe intermetallic phases in Al–Si–Fe alloys. -- Abstract: Al–Si–Fe hypoeutectic cast alloy system is very complex and reported to produce numerous Fe based intermetallic phases in conjunction with Al and Si. This publication will address the anomalies of phase evolution in the Al–Si–Fe hypoeutectic casting alloy system; the anomaly lies in the peculiarities in the evolution and nature of the intermetallic phases when compared to the thermodynamic phase diagram predictions and past publications of the same. The influence of the following parameters, in various combinations, on the evolution and nature of the intermetallic phases were analyzed and reported: concentration of Si between 2 and 12.6 wt%, Fe between 0.05 and 0.5 wt% and solidification rates of 0.1, 1, 5 and 50 K s −1 . Two intermetallic phases are observed to evolve in these alloys under these solidification conditions: the τ 5 -Al 8 SiFe 2 and τ 6 -Al 9 Fe 2 Si 2 . The τ 5 -Al 8 SiFe 2 phase evolves at all levels of the parameters during solidification and subsequently transforms into the τ 6 -Al 9 Fe 2 Si 2 through a peritectic reaction when promoted by certain combinations of solidification parameters such as higher Fe level, lower Si level and slower solidification rates. Further, it is also hypothesized from experimental evidences that the θ-Al 13 Fe 4 binary phase precludes the evolution of the τ 5 during solidification and subsequently transforms into the τ 6 phase during solidification. These observations are anomalous to the publications as prior art and simulation predictions of thermodynamic phase diagrams of these alloys, wherein, only one intermetallic phases in the

  5. Effect of Hf underlayer on structure and magnetic properties of rapid thermal annealed FePt thin films

    International Nuclear Information System (INIS)

    Shen, C.Y.; Yuan, F.T.; Chang, H.W.; Lin, M.C.; Su, C.C.; Chang, S.T.; Wang, C.R.; Mei, J.K.; Hsiao, S.N.; Chen, C.C.; Shih, C.W.; Chang, W.C.

    2014-01-01

    FePt(20 nm) and FePt(20 nm)/Hf(10 nm) thin films prepared on the glass substrates by sputtering and post annealing are studied. For both samples, the as deposited films are disordered and L1 0 -ordering is triggered by a 400 °C-annealing. At T a ≥600 °C, Hf–Pt intermetallic compound forms with increasing T a , which consumes Pt in FePt layer and results in the formation of Fe 3 Pt phase. The film becomes soft magnetic at T a =800 °C. The optimized condition of FePt/Hf film is in the T a range of 500 to 600 °C where the interdiffusion between Hf and FePt layer is not extensive. The value of H c is 8.9 kOe and M r is 650–670 emu/cm 3 . Unlike FePt films, the Hf-undelayered samples show significantly reduced out-of-plane remanent and coercivity. The values for both are around 50% smaller than that of the FePt films. Additionally, Hf underlayer markedly reduces the FePt grain size and narrows the distribution, which enhances magnetic intergrain coupling. Good in-plane magnetic properties are preferred for the uses like a hard biasing magnet in a spintronic device. - Highlights: • Effect of Hf underlayer on structure and magnetic properties of FePt films are studied. • Hf underlayer reduces size, narrows the distribution of grains and thus enhances intergrain coupling. • Higher T a ≥600 °C makes Hf–Pt intermetallic compound and thus Fe 3 Pt phase form. • Good in-plane magnetic property is proper for uses in hard biasing magnet in spintronic devices

  6. A highly active PtCu3 intermetallic core-shell, multilayered Pt-skin, carbon embedded electrocatalyst produced by a scale-up sol-gel synthesis.

    Science.gov (United States)

    Bele, M; Jovanovič, P; Pavlišič, A; Jozinović, B; Zorko, M; Rečnik, A; Chernyshova, E; Hočevar, S; Hodnik, N; Gaberšček, M

    2014-11-07

    We present a novel, scaled-up sol-gel synthesis which enables one to produce 20 g batches of highly active and stable carbon supported PtCu3 nanoparticles as cathode materials for low temperature fuel cell application. We confirm the presence of an ordered intermetallic phase underneath a multilayered Pt-skin together with firm embedment of nanoparticles in the carbon matrix.

  7. Pitting Corrosion of Ni3(Si,Ti Intermetallic Compound at Various Chloride Concentrations

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2013-10-01

    Full Text Available The pitting corrosion of Ni3(Si,Ti intermetallic compound was investigated as function of chloride concentration by using electrochemical method and scanning electron microscope in sodium chloride solutions at 293 K.  In addition, the pitting corrosion of type C276 alloy was also studied under the same experimental condition for comparison.  The pitting potential obtained for the intermetallic compound decreased with increasing chloride concentration.  The specific pitting potential and pitting potential of Ni3(Si,Ti were lower than those of C276 alloy, which means that the pitting corrosion resistance of C276 alloy was higher than that of Ni3(Si,Ti.

  8. Evolution of Fe based intermetallic phases in Al–Si hypoeutectic casting alloys: Influence of the Si and Fe concentrations, and solidification rate

    Energy Technology Data Exchange (ETDEWEB)

    Gorny, Anton; Manickaraj, Jeyakumar [Light Metal Casting Research Centre (LMCRC), Department of Mechanical Engineering, McMaster University, 1280 Main Street W, Hamilton, ON, Canada L8S 4L7 (Canada); Cai, Zhonghou [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Shankar, Sumanth, E-mail: shankar@mcmaster.ca [Light Metal Casting Research Centre (LMCRC), Department of Mechanical Engineering, McMaster University, 1280 Main Street W, Hamilton, ON, Canada L8S 4L7 (Canada)

    2013-11-15

    Highlights: •Anomalous evolution of Fe based intermetallic phases in Al–Si–Fe alloys. •XRF coupled with nano-diffraction to confirm the nano-size Fe intermetallic phases. •Crystallography of the θ-Al{sub 13}Fe{sub 4}, τ{sub 5}-Al{sub 8}Fe{sub 2}Si and τ{sub 6}-Al{sub 9}Fe{sub 2}Si{sub 2} phases. •Peritectic reactions involving the Fe intermetallic phases in Al–Si–Fe alloys. -- Abstract: Al–Si–Fe hypoeutectic cast alloy system is very complex and reported to produce numerous Fe based intermetallic phases in conjunction with Al and Si. This publication will address the anomalies of phase evolution in the Al–Si–Fe hypoeutectic casting alloy system; the anomaly lies in the peculiarities in the evolution and nature of the intermetallic phases when compared to the thermodynamic phase diagram predictions and past publications of the same. The influence of the following parameters, in various combinations, on the evolution and nature of the intermetallic phases were analyzed and reported: concentration of Si between 2 and 12.6 wt%, Fe between 0.05 and 0.5 wt% and solidification rates of 0.1, 1, 5 and 50 K s{sup −1}. Two intermetallic phases are observed to evolve in these alloys under these solidification conditions: the τ{sub 5}-Al{sub 8}SiFe{sub 2} and τ{sub 6}-Al{sub 9}Fe{sub 2}Si{sub 2}. The τ{sub 5}-Al{sub 8}SiFe{sub 2} phase evolves at all levels of the parameters during solidification and subsequently transforms into the τ{sub 6}-Al{sub 9}Fe{sub 2}Si{sub 2} through a peritectic reaction when promoted by certain combinations of solidification parameters such as higher Fe level, lower Si level and slower solidification rates. Further, it is also hypothesized from experimental evidences that the θ-Al{sub 13}Fe{sub 4} binary phase precludes the evolution of the τ{sub 5} during solidification and subsequently transforms into the τ{sub 6} phase during solidification. These observations are anomalous to the publications as prior art and

  9. Stable dielectric response of low-loss aromatic polythiourea thin films on Pt/SiO2 substrate

    Directory of Open Access Journals (Sweden)

    A. Eršte

    2016-03-01

    Full Text Available We have investigated dielectric properties of aromatic polythiourea (ArPTU, a polar polymer containing high dipolar moments with very low defect levels thin films that were developed on Pt/SiO2 substrate. The detected response is compared to the response of commercially available polymers, such as high density polyethylene (HDPE and polypropylene (PP, which are at present used in foil capacitors. Stable values of the dielectric constant ε′≈5 (being twice higher than in HDPE and PP over broad temperature and frequency ranges and dielectric losses as low as in commercial systems suggest ArPTU as a promising candidate for future use in a variety of applications.

  10. A study on the microstructure of Pt/TaN/Si films by high resolution TEM analysis

    CERN Document Server

    Cho, K N; Oh, J E; Park, C S; Lee, S I; Lee, M Y

    1998-01-01

    The microstructure change of Pt/amorphous TaN/Si films after various heat treatments has been investigated by high resolution transmission electron microscopy (HR-TEM) analysis. TaN thin films are deposited by remote plasma metalorganic chemical vapor deposition (RP-MOCVD) using pentakis-dimethyl-amino-tantalum (PDMATa) and radical sources, hydrogen and ammonia plasma. Deposited TaN thin film shows excellent barrier properties such as good resistance against oxidation after post-heat treatment at high temperature. In the case of hydrogen plasma, however, diffusion of Pt into TaN layer was observed, which was caused by the out-diffusion of carbon through the grain boundaries of Pt. In the case of ammonia plasma, the formation of thin oxide layer at the Pt/TaN interface was observed.

  11. Microstructure and tribological properties of NiMo/Mo2Ni3Si intermetallic 'in-situ' composites

    International Nuclear Information System (INIS)

    Gui Yongliang; Song Chunyan; Yang Li; Qin Xiaoling

    2011-01-01

    Research highlights: → Wear resistant NiMo/Mo 2 Ni 3 Si intermetallic 'in-situ' composites was fabricated successfully with Mo-Ni-Si powder blends as the starting materials. Microstructure of the NiMo/Mo 2 Ni 3 Si composites consists of Mo 2 Ni 3 Si primary dendrites, binary intermetallic phase NiMo and small amount of Ni/NiMo eutectics structure. The NiMo/Mo 2 Ni 3 Si composites exhibited high hardness and outstanding tribological properties under room-temperature dry-sliding wear test conditions which were attributed to the covalent-dominant strong atomic bonds and excellent combination of strength and ductility and toughness. - Abstract: Wear resistant NiMo/Mo 2 Ni 3 Si intermetallic 'in-situ' composites with a microstructure of ternary metal silicide Mo 2 Ni 3 Si primary dendritic, the long strip-like NiMo intermetallic phase, and a small amount of Ni/NiMo eutectics structure were designed and fabricated using molybdenum, nickel and silicon elemental powders. Friction and wear properties of NiMo/Mo 2 Ni 3 Si composites were evaluated under different contact load at room-temperature dry-sliding wear test conditions. Microstructure, worn surface morphologies and subsurface microstructure were characterized by OM, XRD, SEM and EDS. Results indicate that NiMo/Mo 2 Ni 3 Si composites have low fiction coefficient, excellent wear resistance and sluggish wear-load dependence. The dominant wear mechanisms of NiMo/Mo 2 Ni 3 Si composites are soft abrasion and slightly superficial oxidative wear.

  12. Effect of TiN-ZrO{sub 2} intermediate layer on the microstructure and magnetic properties of FePt and FePt-SiO{sub 2}-C thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dong, K.F., E-mail: dongkf1981@163.com; Mo, W.Q.; Jin, F.; Song, J.L.

    2017-06-15

    Highlights: • The TiN-ZrO{sub 2} consisted of solid solution of Ti(Zr)ON segregated by amorphous ZrO{sub 2}. • With doping ZrO{sub 2} into TiN layer, grain size of FePt films significantly decreased. • By introducing TiN-ZrO{sub 2}/TiN combined layer, the magnetic properties were improved. - Abstract: The microstructures and magnetic properties of FePt based thin films grown on TiN-ZrO{sub 2} and TiN-ZrO{sub 2}/TiN intermediate layers were systematically investigated. The TiN-ZrO{sub 2} intermediate layer was granular consisting of grains of solid solution of Ti(Zr)ON segregated by amorphous ZrO{sub 2}. It was found with doping ZrO{sub 2} into TiN intermediate layer, grain size of FePt-SiO{sub 2}-C films significantly decreased. Simultaneously, the isolation was obviously improved and grain size distribution became more uniform. However, the magnetic properties of the FePt-SiO{sub 2}-C films grown on TiN-ZrO{sub 2} intermediate layers were slowly deteriorated, which was due to the disturbance of the epitaxial growth of FePt by amorphous ZrO{sub 2} in TiN-ZrO{sub 2} intermediate layer. In order to improve the TiN-ZrO{sub 2} (0 0 2) texture and the crystallinity of TiN-ZrO{sub 2}, TiN-ZrO{sub 2}/TiN combined intermediate layer was introduced. And the magnetic properties were improved, simultaneously, achieving the benefit of grain size reduction. For the FePt 4 nm-SiO{sub 2} 40 vol%-C 20 vol% film grown on TiN/TiN-ZrO{sub 2} 30 vol% combined intermediate layer, well isolated FePt (0 0 1) granular films with coercivity higher than 17.6 kOe and an average size as small as 6.5 nm were achieved.

  13. Four-branched compounds coupled Si and iron-rich intermetallics in near eutectic Al-Si alloys

    International Nuclear Information System (INIS)

    Wu, Yuying; Liu, Xiangfa; Jiang, Binggang; Bian, Xiufang

    2007-01-01

    Many four-branched compounds coupled Si and iron-rich intermetallics were observed in near eutectic Al-Si alloy modified with Al-P master alloy. Such four-branched compounds have never been reported before, but in our case it seems to be commonly observed. In this work the growth characterization of the four-branched compounds are scrutinized with a JXA-8800 electron microprobe (EPMA). More deep study of the formation of four-branched compounds is performed by SEM and TEM analysis. The characterization of the four-branched compounds is that of a primary silicon in the center with four iron-rich intermetallics around. Experimental results also show that the precipitation of primary silicon is the key factor for the formation of four-branched compounds. And WHS-theory explains the growth mechanism of the four-branched compounds. In detail, subsequent twinning within the primary silicon provides four-fold coordination sites on the surface, and then the α-Al(Fe,Mn)-Si phase nucleates on the surface of the primary silicon

  14. In-situ investigation of thermal instabilities and solid state dewetting in polycrystalline platinum thin films via confocal laser microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jahangir, S.; Cheng, Xuan; Huang, H. H.; Nagarajan, V. [School of Materials Science and Engineering, University of New South Wales, Sydney 2052 (Australia); Ihlefeld, J. [Electronic, Optical, and Nanomaterials Department, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2014-10-28

    Solid state dewetting and the subsequent morphological changes for platinum thin films grown on zinc oxide (ZnO) buffered (001) silicon substrates (Pt/ZnO/SiO{sub 2}/(001)Si system) is investigated under vacuum conditions via a custom-designed confocal laser microscope coupled with a laser heating system. Live imaging of thin film dewetting under a range of heating and quenching vacuum ambients reveals events including hillock formation, hole formation, and hole growth that lead to formation of a network of Pt ligaments, break up of Pt ligaments to individual islands and subsequent Pt islands shape reformation, in chronological fashion. These findings are corroborated by ex-situ materials characterization and quantitative electron microscopy analysis. A secondary hole formation via blistering before film rupture is revealed to be the critical stage, after which a rapid dewetting catastrophe occurs. This process is instantaneous and cannot be captured by ex-situ methods. Finally, an intermetallic phase forms at 900 °C and alters the morphology of Pt islands, suggesting a practical limit to the thermal environments that may be used for these platinized silicon wafers in vacuum conditions.

  15. In-situ investigation of thermal instabilities and solid state dewetting in polycrystalline platinum thin films via confocal laser microscopy

    International Nuclear Information System (INIS)

    Jahangir, S.; Cheng, Xuan; Huang, H. H.; Nagarajan, V.; Ihlefeld, J.

    2014-01-01

    Solid state dewetting and the subsequent morphological changes for platinum thin films grown on zinc oxide (ZnO) buffered (001) silicon substrates (Pt/ZnO/SiO 2 /(001)Si system) is investigated under vacuum conditions via a custom-designed confocal laser microscope coupled with a laser heating system. Live imaging of thin film dewetting under a range of heating and quenching vacuum ambients reveals events including hillock formation, hole formation, and hole growth that lead to formation of a network of Pt ligaments, break up of Pt ligaments to individual islands and subsequent Pt islands shape reformation, in chronological fashion. These findings are corroborated by ex-situ materials characterization and quantitative electron microscopy analysis. A secondary hole formation via blistering before film rupture is revealed to be the critical stage, after which a rapid dewetting catastrophe occurs. This process is instantaneous and cannot be captured by ex-situ methods. Finally, an intermetallic phase forms at 900 °C and alters the morphology of Pt islands, suggesting a practical limit to the thermal environments that may be used for these platinized silicon wafers in vacuum conditions.

  16. Large positive magnetoresistance in intermetallic compound NdCo2Si2

    Science.gov (United States)

    Roy Chowdhury, R.; Dhara, S.; Das, I.; Bandyopadhyay, B.; Rawat, R.

    2018-04-01

    The magnetic, magneto-transport and magnetocaloric properties of antiferromagnetic intermetallic compound NdCo2Si2 (TN = 32K) have been studied. The compound yields a positive magnetoresistance (MR) of about ∼ 123 % at ∼ 5K in 8 T magnetic field. The MR value is significantly large vis - a - vis earlier reports of large MR in intermetallic compounds, and possibly associated with the changes in magnetic structure of the compound. The large MR value can be explained in terms of field induced pseudo-gaps on Fermi surface.

  17. Microstructure and Tribological Properties of Mo–40Ni–13Si Multiphase Intermetallic Alloy

    Science.gov (United States)

    Song, Chunyan; Wang, Shuhuan; Gui, Yongliang; Cheng, Zihao; Ni, Guolong

    2016-01-01

    Intermetallic compounds are increasingly being expected to be utilized in tribological environments, but to date their implementation is hindered by insufficient ductility at low and medium temperatures. This paper presents a novel multiphase intermetallic alloy with the chemical composition of Mo–40Ni–13Si (at %). Microstructure characterization reveals that a certain amount of ductile Mo phases formed during the solidification process of a ternary Mo–Ni–Si molten alloy, which is beneficial to the improvement of ductility of intermetallic alloys. Tribological properties of the designed alloy—including wear resistance, friction coefficient, and metallic tribological compatibility—were evaluated under dry sliding wear test conditions at room temperature. Results suggest that the multiphase alloy possesses an excellent tribological property, which is attributed to unique microstructural features and thereby a good combination in hardness and ductility. The corresponding wear mechanism is explained by observing the worn surface, subsurface, and wear debris of the alloy, which was found to be soft abrasive wear. PMID:28774106

  18. Microstructure and Tribological Properties of Mo-40Ni-13Si Multiphase Intermetallic Alloy.

    Science.gov (United States)

    Song, Chunyan; Wang, Shuhuan; Gui, Yongliang; Cheng, Zihao; Ni, Guolong

    2016-12-06

    Intermetallic compounds are increasingly being expected to be utilized in tribological environments, but to date their implementation is hindered by insufficient ductility at low and medium temperatures. This paper presents a novel multiphase intermetallic alloy with the chemical composition of Mo-40Ni-13Si (at %). Microstructure characterization reveals that a certain amount of ductile Mo phases formed during the solidification process of a ternary Mo-Ni-Si molten alloy, which is beneficial to the improvement of ductility of intermetallic alloys. Tribological properties of the designed alloy-including wear resistance, friction coefficient, and metallic tribological compatibility-were evaluated under dry sliding wear test conditions at room temperature. Results suggest that the multiphase alloy possesses an excellent tribological property, which is attributed to unique microstructural features and thereby a good combination in hardness and ductility. The corresponding wear mechanism is explained by observing the worn surface, subsurface, and wear debris of the alloy, which was found to be soft abrasive wear.

  19. Microstructure and Tribological Properties of Mo–40Ni–13Si Multiphase Intermetallic Alloy

    Directory of Open Access Journals (Sweden)

    Chunyan Song

    2016-12-01

    Full Text Available Intermetallic compounds are increasingly being expected to be utilized in tribological environments, but to date their implementation is hindered by insufficient ductility at low and medium temperatures. This paper presents a novel multiphase intermetallic alloy with the chemical composition of Mo–40Ni–13Si (at %. Microstructure characterization reveals that a certain amount of ductile Mo phases formed during the solidification process of a ternary Mo–Ni–Si molten alloy, which is beneficial to the improvement of ductility of intermetallic alloys. Tribological properties of the designed alloy—including wear resistance, friction coefficient, and metallic tribological compatibility—were evaluated under dry sliding wear test conditions at room temperature. Results suggest that the multiphase alloy possesses an excellent tribological property, which is attributed to unique microstructural features and thereby a good combination in hardness and ductility. The corresponding wear mechanism is explained by observing the worn surface, subsurface, and wear debris of the alloy, which was found to be soft abrasive wear.

  20. Vanadium Influence on Iron Based Intermetallic Phases in AlSi6Cu4 Alloy

    Directory of Open Access Journals (Sweden)

    Bolibruchová D.

    2014-10-01

    Full Text Available Negative effect of iron in Al-Si alloys mostly refers with iron based intermetallic phases, especially Al5FeSi phases. These phases are present in platelet-like forms, which sharp edges are considered as main cracks initiators and also as contributors of porosity formation. In recent times, addition of some elements, for example Mn, Co, Cr, Ni, V, is used to reduce influence of iron. Influence of vanadium in aluminium AlSi6Cu4 alloy with intentionally increased iron content is presented in this article. Vanadium amount has been graduated and chemical composition of alloy has been analysed by spectral analysis. Vanadium influence on microstructural changes was evaluated by microstructural analysis and some of intermetallic particles were reviewed by EDX analysis.

  1. Influence of Pt Gate Electrode Thickness on the Hydrogen Gas Sensing Characteristics of Pt/In2O3/SiC Hetero-Junction Devices

    Directory of Open Access Journals (Sweden)

    S. Kandasamy

    2007-09-01

    Full Text Available Hetero-junction Pt/In2O3/SiC devices with different Pt thickness (30, 50 and 90nm were fabricated and their hydrogen gas sensing characteristics have been studied. Pt and In2O3 thin films were deposited by laser ablation. The hydrogen sensitivity was found to increase with decreasing Pt electrode thickness. For devices with Pt thickness of 30 nm, the sensitivity gradually increased with increasing temperature and reached a maximum of 390 mV for 1% hydrogen in air at 530°C. Atomic force microscopy (AFM analysis revealed a decrease in Pt grain size and surface roughness for increasing Pt thickness. The relationship between the gas sensing performance and the Pt film thickness and surface morphology is discussed.

  2. One-pot solvothermal synthesis of ordered intermetallic Pt2In3 as stable and efficient electrocatalyst towards direct alcohol fuel cell application

    Science.gov (United States)

    Jana, Rajkumar; Peter, Sebastian C.

    2016-10-01

    Ordered intermetallic Pt2In3 nanoparticles have been synthesized by superhydride reduction of K2PtCl4 and InCl3.xH2O precursors using facile, one-pot solvothermal method. We report surfactant free solvothermal synthesis of a novel ordered Pt2In3 intermetallic nanoparticles for the first time. The structure and morphology of the catalyst has been confirmed by powder X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, energy-dispersive spectrometry and X-ray photoelectron spectroscopy. The electrocatalytic properties of the catalysts have been investigated by cyclic voltammetry and chronoamperometry. The as prepared Pt2In3 catalyst exhibit far superior electrocatalytic activity and stability towards alcohol oxidation over commercial Pt/C. The specific activity of as synthesized catalyst was found to be 3.2 and 2.3 times higher than commercial Pt/C for methanol and ethanol oxidation, respectively. This improved activity and durability of the Pt2In3 nanoparticles can make the catalyst an ideal catalyst candidate for direct alcohol fuel cell.

  3. Study of microstructure and magnetic properties of L10 FePt/SiO2 thin films

    Directory of Open Access Journals (Sweden)

    Giannopoulos G.

    2014-07-01

    Full Text Available Achieving magnetic recording densities in excess of 1Tbit/in2 requires not only perpendicular media with anisotropies larger than 7 MJ/m3, making FePt alloys an ideal choice, but also a narrow distribution below 10 nm for a reduced S/N ratio. Such grain size reduction and shape control are crucial parameters for high density magnetic recording, along with high thermal stability. Previous work has shown that the L10 FePt grain size can be controlled by alloying FePt with materials such as C, Ag, and insulators such as AlOx, MgO. Au and Al2O3 also act to segregate and magnetically decouple the FePt grains. Better results were obtained with C with respect to the uniformity of grains and SiO2 with respect to the shape. We present our results on co-sputtering FePt with C or SiO2 (up to 30 vol % on MgO (001 single crystal substrates at 350 and 500 oC. With C or SiO2 addition we achieved grain size reduction, shape control and isolated structure formation, producing continuous films with high uniformity and a narrow grain size distribution. These additions thus allow us to simultaneously control the coercivity and the S/N ratio. We also will report structural and microstructural properties.

  4. SiO2-supported Pt particles studied by electron microscopy

    International Nuclear Information System (INIS)

    Wang, D.; Penner, S.; Su, D.S.; Rupprechter, G.; Hayek, K.; Schloegl, R.

    2003-01-01

    Regularly grown Pt particles supported by amorphous SiO 2 were heated in hydrogen at 873 K after an oxidising treatment. The morphological and structural changes were studied by electron microscopy. Platinum silicides Pt 3 Si with L1 2 (Cu 3 Au) structure, monoclinic Pt 3 Si and tetragonal Pt 12 Si 5 were identified after the treatment. The mechanisms of coalescence of the particles and the formation of irregular large particles are suggested. A topotactic structural transformation accompanied with the migration of Si from the substrate to the particles are suggested to take place during Pt 3 Si formation

  5. X-ray diffraction and surface acoustic wave analysis of BST/Pt/TiO{sub 2}/SiO{sub 2}/Si thin films

    Energy Technology Data Exchange (ETDEWEB)

    Mseddi, Souhir; Hedi Ben Ghozlen, Mohamed [Laboratoire de Physique des Materiaux, Faculte des Sciences de Sfax, Universite de Sfax, 3018 Sfax (Tunisia); Njeh, Anouar [Unite de Physique, Informatique et Matematiques, Faculte des Sciences de Gafsa, Universite de Gafsa, 2112 Gafsa (Tunisia); Schneider, Dieter [Fraunhofer-Institut fuer Material- und Strahltechnologie, Winterbergstrasse 28, 1277 Dresden (Germany); Fuess, Hartmut [Institute of Materials Science, University of Technology, Petersenstr.23, 64287 Darmstadt (Germany)

    2011-11-15

    High dielectric constant and electrostriction property of (Ba, Sr)Ti0{sub 3} (BST) thin films result in an increasing interest for dielectric devices and microwave acoustic resonator. Barium strontium titanate (Ba{sub 0.645}Sr{sub 0.355}TiO{sub 3}) films of about 300 nm thickness are grown on Pt(111)/TiO{sub 2}/SiO{sub 2}/Si(001) substrates by rf magnetron sputtering deposition techniques. X-ray diffraction is applied for the microstructural characterization. The BST films exhibit a cubic perovskite structure with a dense and smooth surface. A laser acoustic waves (LA-waves) technique is used to generate surface acoustic waves (SAW) propagating in the BST films. Young's modulus E and the Poisson ratio {nu} of TiO{sub 2,} Pt and BST films in different propagation directions are derived from the measured dispersion curves. Estimation of BST elastics constants are served in SAW studies. Impact of stratification process on SAW, propagating along [100] and [110] directions of silicon substrate, has been interpreted on the basis of ordinary differential equation (ODE) and stiffness matrix method (SMM). A good agreement is observed between experimental and calculated dispersion curves. The performed calculations are strongly related to the implemented crystallographic data of each layer. Dispersion curves are found to be sensitive to the SAW propagation direction and the stratification process for the explored frequency ranges 50-250 MHz, even though it corresponds to a wave length clearly higher than the whole films thickness.

  6. Crystallization behavior and domain structure in textured Pb(Zr0.52Ti0.48)O3 thin films by different annealing processes

    International Nuclear Information System (INIS)

    Huang, W.; Jiang, S.W.; Li, Y.R.; Zhu, J.; Zhang, Y.; Wei, X.H.; Zeng, H.Z.

    2006-01-01

    Amorphous Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) thin films were prepared on the Pt/Ti/SiO 2 /Si substrates by radio-frequency magnetron sputtering at room temperature. After rapid thermal annealing (RTA) and conventional furnace annealing (CFA) at different temperatures, the films were transformed into polycrystalline PZT thin films with (111) and (100) orientation, respectively. The phase formation and ferroelectric domains correlated with different orientation were systematically investigated by X-ray diffraction and piezoresponse force microscopy. The results showed that the perovskite PZT crystal with [111] orientation hetero-nucleated preferentially on top of the PtPb intermetallic phase at the PZT/Pt interface during RTA process. It is of interest to find that the domain self-organized into a structure with rounded shape at the early stage of crystallization. While the nucleation of the films treated by CFA dominantly homo-nucleated, thus the (100) orientation grains with minimum surface energy were easy to grow. The texture effects on ferroelectric properties of PZT films were also discussed in relation to the domain structure

  7. Multiple oxide content media for columnar grain growth in L10 FePt thin films

    International Nuclear Information System (INIS)

    Ho, Hoan; Yang, En; Laughlin, David E.; Zhu, Jian-Gang

    2013-01-01

    An approach to enhance the height-to-diameter ratio of FePt grains in heat-assisted magnetic recording media is proposed. The FePt-SiO x thin films are deposited with a decrease of the SiO x percentage along the film growth direction. When bi-layer and tri-layer media are sputtered at 410 °C, we observe discontinuities in the FePt grains at interfaces between layers, which lead to poor epitaxial growth. Due to increased atomic diffusion, the bi-layer media sputtered at 450 °C is shown to (1) grow into continuous columnar grains with similar size as single-layer media but much higher aspect ratio, (2) have better L1 0 ordering and larger coercivity.

  8. Characteristics of ferroelectric Pb(Zr,Ti)O3 thin films having Pt/PtOx electrode barriers

    International Nuclear Information System (INIS)

    Lee, Kwangbae; Rhee, Byung Roh; Lee, Chanku

    2001-01-01

    We have investigated the feasibility of the Pt/PtO x multilayer as an electrode barrier for Pb(Zr,Ti)O 3 (PZT)-based ferroelectric random access memories. PtO x and Pt layers were prepared on polycrystalline-Si/SiO 2 /Si substrates by means of the sputtering method in Ar and O 2 ambience, and the Pb(Zr 0.53 Ti 0.47 )O 3 layer was prepared by the sol-gel method. A capacitor consisting of Pt/PtO x /PZT/PtO x /Pt/PtO x /poly-Si had a remanent polarization of 18 μC/cm 2 and a low coercive field of 32 kV/cm. The polarization fatigue behavior of test capacitors was improved as compared with that of Pt/PZT/Pt, which showed negligible fatigue loss of 15% after 10 11 switching repetitions with a frequency of 1 MHz. Copyright 2001 American Institute of Physics

  9. Electrochemical evaluation of adsorption and oxidation of the carbon monoxide towards ordered intermetallic phases Pt-M (M=Mn, Pb, Sb e Sn); Avaliacao eletroquimica da adsorcao e oxidacao do monoxido de carbono sobre fases intermetalicas ordenadas Pt-M (M=Mn, Pb, Sb e Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Nicolai, A L; Miguel-Junior, E; Silva, R I.V. da; Angelo, A C.D. [UNESP, Bauru, SP (Brazil). Depto. de Quimica. Lab. de Eletrocatalise

    2004-07-01

    This paper presents the experimental results obtained from the electrochemical evaluation of Pt ordered intermetallic phases (PtMn, PtPb, PtSb, PtSn) as electrode materials towards the CO oxidation reaction. The intermetallics showed a higher performance than pure Pt in the same experimental conditions. PtSn has presented the highest performance among the evaluated materials. There was not observed a clear relationship between the electrocatalytic activity of the materials and their ability in producing oxygen species at lower anodic potentials, suggesting that surface electronic density and structural characteristics of the electrode surfaces must be the properties to be investigated in order to explain the obtained results. (author)

  10. Magnetism and superconductivity of CePt3Si and Ce1+xPt3+ySi1+z

    International Nuclear Information System (INIS)

    Motoyama, Gaku; Yamamoto, Suguru; Takezoe, Hiroaki; Oda, Yasukage; Ueda, Ko-ichi; Kohara, Takao

    2006-01-01

    We measured the dc magnetization, electrical resistivity, and ac magnetic susceptibility of a series of polycrystalline CePt 3 Si samples whose compositions vary slightly from the stoichiometric composition. The sample that showed the most distinct anitiferromagnetic transition at 2.2K was found to be Ce 1.01 Pt 3 Si annealed. This sample showed a clear bulk antiferromagnetic order at 2.2 K even in both electrical resistivity and dc magnetization measurements, although the characteristic change in dc magnetization at 2.2 K was found to be small and to be easily masked in other magnetic anomalies if they exist. Moreover, it had the largest residual resistivity ratio. We concluded that Ce 1.01 Pt 3 Si annealed has the intrinsic bulk properties of ideal CePt 3 Si. In addition, we revealed that some anomalies arise as a result of the variation in composition. One is a ferromagnetic anomaly at 3.0 K in the Pt-rich samples, and the other is an antiferromagnetic anomaly at 4.0 K in the Pt-poor samples. The two magnetic anomalies seemed to appear in small domains in the samples that exhibited an antiferromagnetic order at 2.2 K. To reveal the relationship between these magnetisms and superconductivity, we measured ac magnetic susceptibility down to ∼14mK. We found that the superconducting transition temperature is suppressed by the ferromagnetic anomaly. (author)

  11. Pt/MOx/SiO2, Pt/MOx/TiO2, and Pt/MOx/Al2O3 Catalysts for CO Oxidation

    Directory of Open Access Journals (Sweden)

    Hongmei Qin

    2015-04-01

    Full Text Available Conventional supported Pt catalysts have often been prepared by loading Pt onto commercial supports, such as SiO2, TiO2, Al2O3, and carbon. These catalysts usually have simple metal-support (i.e., Pt-SiO2 interfaces. To tune the catalytic performance of supported Pt catalysts, it is desirable to modify the metal-support interfaces by incorporating an oxide additive into the catalyst formula. Here we prepared three series of metal oxide-modified Pt catalysts (i.e., Pt/MOx/SiO2, Pt/MOx/TiO2, and Pt/MOx/Al2O3, where M = Al, Fe, Co, Cu, Zn, Ba, La for CO oxidation. Among them, Pt/CoOx/SiO2, Pt/CoOx/TiO2, and Pt/CoOx/Al2O3 showed the highest catalytic activities. Relevant samples were characterized by N2 adsorption-desorption, X-ray diffraction (XRD, transmission electron microscopy (TEM, H2 temperature-programmed reduction (H2-TPR, X-ray photoelectron spectroscopy (XPS, CO temperature-programmed desorption (CO-TPD, O2 temperature-programmed desorption (O2-TPD, and CO2 temperature-programmed desorption (CO2-TPD.

  12. Iron Intermetallic Phases in the Alloy Based on Al-Si-Mg by Applying Manganese

    Directory of Open Access Journals (Sweden)

    Podprocká R.

    2017-09-01

    Full Text Available Manganese is an effective element used for the modification of needle intermetallic phases in Al-Si alloy. These particles seriously degrade mechanical characteristics of the alloy and promote the formation of porosity. By adding manganese the particles are being excluded in more compact shape of “Chinese script” or skeletal form, which are less initiative to cracks as Al5FeSi phase. In the present article, AlSi7Mg0.3 aluminium foundry alloy with several manganese content were studied. The alloy was controlled pollution for achieve higher iron content (about 0.7 wt. % Fe. The manganese were added in amount of 0.2 wt. %, 0.6 wt. %, 1.0 wt. % and 1.4 wt. %. The influence of the alloying element on the process of crystallization of intermetallic phases were compared to microstructural observations. The results indicate that increasing manganese content (> 0.2 wt. % Mn lead to increase the temperature of solidification iron rich phase (TAl5FeSi and reduction this particles. The temperature of nucleation Al-Si eutectic increase with higher manganese content also. At adding 1.4 wt. % Mn grain refinement and skeleton particles were observed.

  13. Rapid thermal annealing of FePt and FePt/Cu thin films

    Energy Technology Data Exchange (ETDEWEB)

    Brombacher, Christoph

    2011-01-10

    Chemically ordered FePt is one of the most promising materials to reach the ultimate limitations in storage density of future magnetic recording devices due to its high uniaxial magnetocrystalline anisotropy and a corrosion resistance superior to rare-earth based magnets. In this study, FePt and FePt/Cu bilayers have been sputter deposited at room temperature onto thermally oxidized silicon wafers, glass substrates and self-assembled arrays of spherical SiO{sub 2} particles with diameters down to 10 nm. Millisecond flash lamp annealing, as well as conventional rapid thermal annealing was employed to induce the phase transformation from the chemically disordered A1 phase into the chemically ordered L1{sub 0} phase. The influence of the annealing temperature, annealing time and the film thickness on the ordering transformation and (001) texture evolution of FePt films with near equiatomic composition was studied. Whereas flash lamp annealed FePt films exhibit a polycrystalline morphology with high chemical L1{sub 0} order, rapid thermal annealing can lead to the formation of chemically ordered FePt films with (001) texture on amorphous SiO{sub 2}/Si substrates. The resultant high perpendicular magnetic anisotropy and large coercivities up to 40 kOe are demonstrated. Simultaneously to the ordering transformation, rapid thermal annealing to temperatures exceeding 600 C leads to a break up of the continuous FePt film into separated islands. This dewetting behavior was utilized to create regular arrays of FePt nanostructures on SiO{sub 2} particle templates with periods down to 50 nm. The addition of Cu improves the (001) texture formation and chemical ordering for annealing temperatures T{sub a} {<=}600 C. In addition, the magnetic anisotropy and the coercivity of the ternary FePtCu alloy can be effectively tailored by adjusting the Cu content. The prospects of FePtCu based exchange spring media, as well as the magnetic properties of FePtCu nanostructures fabricated

  14. Thermal expansion and thermal diffusivity properties of Co-Si solid solutions and intermetallic compounds

    International Nuclear Information System (INIS)

    Ruan, Ying; Li, Liuhui; Gu, Qianqian; Zhou, Kai; Yan, Na; Wei, Bingbo

    2016-01-01

    Highlights: • Length change difference between rapidly and slowly solidified Co-Si alloy occurs at high temperature. • Generally CTE increases with an increasing Si content. • The thermal diffusion abilities are CoSi 2 > Co 95 Si 5 > Co 90 Si 10 > Co 2 Si > CoSi if T exceeds 565 K. • All the CTE and thermal diffusivity variations with T satisfy linear or polynomial relations. - Abstract: The thermal expansion of Co-Si solid solutions and intermetallic compounds was measured via dilatometric method, compared with the results of first-principles calculations, and their thermal diffusivities were investigated using laser flash method. The length changes of rapidly solidified Co-Si alloys are larger than those of slowly solidified alloys when temperature increases to around 1000 K due to the more competitive atom motion. The coefficient of thermal expansion (α) of Co-Si alloy increases with an increasing Si content, except that the coefficient of thermal expansion of Co 95 Si 5 influenced by both metastable structure and allotropic transformation is lower than that of Co 90 Si 10 at a higher temperature. The thermal expansion abilities of Co-Si intermetallic compounds satisfy the relationship of Co 2 Si > CoSi > CoSi 2 , and the differences of the coefficients of thermal expansion between them increase with the rise of temperature. The thermal diffusivity of CoSi 2 is evidently larger than the values of other Co-Si alloys. If temperature exceeds 565 K, their thermal diffusion abilities are CoSi 2 > Co 95 Si 5 > Co 90 Si 10 > Co 2 Si > CoSi. All the coefficient of thermal expansion and thermal diffusivity variations with temperature satisfy linear or polynomial relations.

  15. Ferroelectric properties of bilayer structured Pb(Zr0.52Ti0.48)O3/SrBi2Ta2O9 (PZT/SBT) thin films on Pt/TiO2/SiO2/Si substrates

    International Nuclear Information System (INIS)

    Zhang Wenqi; Li Aidong; Shao Qiyue; Xia Yidong; Wu Di; Liu Zhiguo; Ming Naiben

    2008-01-01

    Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) thin films with large remanent polarization and SrBi 2 Ta 2 O 9 (SBT) thin films with excellent fatigue-resisting characteristic have been widely studied for non-volatile random access memories, respectively. To combine these two advantages , bilayered Pb(Zr 0.52 Ti 0.48 )O 3 /SrBi 2 Ta 2 O 9 (PZT/SBT) thin films were fabricated on Pt/TiO 2 /SiO 2 /Si substrates by chemical solution deposition method. X-ray diffraction patterns revealed that the diffraction peaks of PZT/SBT thin films were completely composed of PZT and SBT, and no other secondary phase was observed. The electrical properties of the bilayered structure PZT/SBT films have been investigated in comparison with pure PZT and SBT films. PZT/SBT bilayered thin films showed larger remanent polarization (2P r ) of 18.37 μC/cm 2 than pure SBT and less polarization fatigue up to 1 x 10 9 switching cycles than pure PZT. These results indicated that this bilayered structure of PZT/SBT is a promising material combination for ferroelectric memory applications

  16. Preparation and electrocatalytic properties of Pt-SiO2 nanocatalysts for ethanol electrooxidation.

    Science.gov (United States)

    Liu, B; Chen, J H; Zhong, X X; Cui, K Z; Zhou, H H; Kuang, Y F

    2007-03-01

    Due to their high stability in general acidic solutions, SiO(2) nanoparticles were selected as the second catalyst for ethanol oxidation in sulfuric acid aqueous solution. Pt-SiO(2) nanocatalysts were prepared in this paper. The micrography and elemental composition of Pt-SiO(2) nanoparticles were characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy, respectively. The electrocatalytic properties of Pt-SiO(2) nanocatalysts for ethanol oxidation were investigated by cyclic voltammetry. Under the same Pt loading mass and experimental conditions for ethanol oxidation, Pt-SiO(2) nanocatalysts show higher activity than PtRu/C (E-Tek), Pt/C (E-Tek), and Pt catalysts. Additionally, Pt-SiO(2) nanocatalysts possess good anti-poisoning ability. The results indicate that Pt-SiO(2) nanocatalysts may have good potential applications in direct ethanol fuel cells.

  17. Microstructure and electrochemical characterization of laser melt-deposited Ti2Ni3Si/NiTi intermetallic alloys

    International Nuclear Information System (INIS)

    Dong Lixin; Wang Huaming

    2008-01-01

    Corrosion and wear resistant Ti 2 Ni 3 Si/NiTi intermetallic alloys with Ti 2 Ni 3 Si as the reinforcing phase and the ductile NiTi as the toughening phase were designed and fabricated by the laser melt-deposition manufacturing process. Electrochemical behavior of the alloys was investigated using potentiodynamic polarization testing and electrochemical impedance spectroscopy in an NaOH solution. The results showed that the alloys have outstanding corrosion resistance due to the formation of a protective passive surface film of Ni(OH) 2 as well as the high chemical stability and strong inter-atomic bonds inherent to Ti 2 Ni 3 Si and NiTi intermetallics. The Ti 2 Ni 3 Si content has a significant influence on the microstructure of the alloys but only a slight effect on electrochemical corrosion properties

  18. A statistical-thermodynamic model for ordering phenomena in thin film intermetallic structures

    International Nuclear Information System (INIS)

    Semenova, Olga; Krachler, Regina

    2008-01-01

    Ordering phenomena in bcc (110) binary thin film intermetallics are studied by a statistical-thermodynamic model. The system is modeled by an Ising approach that includes only nearest-neighbor chemical interactions and is solved in a mean-field approximation. Vacancies and anti-structure atoms are considered on both sublattices. The model describes long-range ordering and simultaneously short-range ordering in the thin film. It is applied to NiAl thin films with B2 structure. Vacancy concentrations, thermodynamic activity profiles and the virtual critical temperature of order-disorder as a function of film composition and thickness are presented. The results point to an important role of vacancies in near-stoichiometric and Ni-rich NiAl thin films

  19. Identification of intermetallic phases in a eutectic Al-Si casting alloy using electron backscatter diffraction pattern analysis

    International Nuclear Information System (INIS)

    Kral, M.V.; McIntyre, H.R.; Smillie, M.J.

    2004-01-01

    Intermetallic phases in sand cast eutectic Al-Si alloys were characterized using a combination of SEM, EDS and EBSD pattern analysis. Chinese script α-phase particles were consistent with cubic Al 19 (Fe,Mn) 5 Si 2 . Plate-shaped β-phase particles were consistent with tetragonal Al 3 (Fe,Mn)Si 2

  20. Continuous Catalytic Hydrodeoxygenation of Guaiacol over Pt/SiO2 and Pt/H-MFI-90

    Directory of Open Access Journals (Sweden)

    Melanie Hellinger

    2015-07-01

    Full Text Available Hydrodeoxygenation of guaiacol in the presence of 1-octanol was studied in a fixed-bed reactor under mild conditions (50–250 °C over platinum particles supported on silica (Pt/SiO2 and a zeolite with framework type MFI at a Si/Al-ratio of 45 (Pt/H-MFI-90. The deoxygenation selectivity strongly depended on the support and the temperature. Both guaiacol and octanol were rapidly deoxygenated in the presence of hydrogen over Pt/H-MFI-90 at 250 °C to cyclohexane and octane, respectively. In contrast, Pt/SiO2 mostly showed hydrogenation, but hardly any deoxygenation activity. The acidic sites of the MFI-90 support lead to improved deoxygenation performance at the mild temperature conditions of this study. Significant conversions under reaction conditions applied already occurred at temperatures of 200 °C. However, during long-term stability tests, the Pt/H-MFI-90 catalyst deactivated after more than 30 h, probably due to carbon deposition, whereas Pt/SiO2 was more stable. The catalytic activity of the zeolite catalyst could only partly be regained by calcination in air, as some of the acidic sites were lost.

  1. Real structure and selected properties of the superconducting intermetallic compound V3Si

    International Nuclear Information System (INIS)

    Kleinstueck, K.; Kraemer, U.; Paufler, P.; Ullrich, H.J.

    1980-01-01

    Plasticity and electro-plastic effects have been detected at temperatures above 1200 0 C in the intermetallic compound V 3 Si which can not plastically be deformed under normal conditions. The mechanisms of plastic deformation were elucidated. The critical temperature and the critical current density could be altered by plastic deformation. It was found that the mechanisms of plastic deformation as well as the alteration of the critical parameters are dependent on the chemical composition of the intermetallic compound within the range of homogeneity. For measuring such alterations Kossel's interference method was used. Intense plastic deformation of crystals resulted in an influence on the martensite transformation

  2. Self-assembled patches in PtSi/n-Si (111) diodes

    Science.gov (United States)

    Afandiyeva, I. M.; Altιndal, Ş.; Abdullayeva, L. K.; Bayramova, A. İ.

    2018-05-01

    Using the effect of the temperature on the capacitance–voltage (C–V) and conductance–voltage (G/ω–V) characteristics of PtSi/n-Si (111) Schottky diodes the profile of apparent doping concentration (N Dapp), the potential difference between the Fermi energy level and the bottom of the conduction band (V n), apparent barrier height (Φ Bapp), series resistance (R s) and the interface state density N ss have been investigated. From the temperature dependence of (C–V) it was found that these parameters are non-uniformly changed with increasing temperature in a wide temperature range of 79–360 K. The voltage and temperature dependences of apparent carrier distribution we attributed to the existence of self-assembled patches similar the quantum wells, which formed due to the process of PtSi formation on semiconductor and the presence of hexagonal voids of Si (111).

  3. Pt-Si Bifunctional Surfaces for CO and Methanol Electro-Oxidation

    DEFF Research Database (Denmark)

    Permyakova, Anastasia A.; Han, Binghong; Jensen, Jens Oluf

    2015-01-01

    and storage. Here we report on Pt-Si bulk samples prepared by arc-melting, for the first time, with high activities toward the electro-oxidation of CO and methanol. Increasing the Si concentration on the surface was correlated with the shifts of onset oxidation potentials to lower values and higher activities...... for CO and methanol electro-oxidation. It is proposed that the reaction on the Pt-Si catalyst could follow a Langmuir-Hinshelwood type of mechanism, where substantially enhanced catalytic activity is attributed to the fine-tuning of the surface Pt-Si atomic structure....

  4. Mechanical properties of non-centrosymmetric CePt3Si and CePt3B

    Science.gov (United States)

    Rogl, G.; Legut, D.; Sýkora, R.; Müller, P.; Müller, H.; Bauer, E.; Puchegger, S.; Zehetbauer, M.; Rogl, P.

    2017-05-01

    Elastic moduli, hardness (both at room temperature) and thermal expansion (4.2-670 K) have been experimentally determined for polycrystalline CePt3Si and its prototype compound CePt3B as well as for single-crystalline CePt3Si. Resonant ultrasound spectroscopy was used to determine elastic properties (Young’s modulus E and Poisson’s ratio ν) via the eigenfrequencies of the sample and the knowledge of sample mass and dimensions. Bulk and shear moduli were calculated from E and ν, and the respective Debye temperatures were derived. In addition, ab initio DFT calculations were carried out for both compounds. A comparison of parameters evaluated from DFT with those of experiments revealed, in general, satisfactory agreement. Positive and negative thermal expansion values obtained from CePt3Si single crystal data are fairly well explained in terms of the crystalline electric field model, using CEF parameters derived recently from inelastic neutron scattering. DFT calculations, in addition, demonstrate that the atomic vibrations keep almost unaffected by the antisymmetric spin-orbit coupling present in systems with crystal structures having no inversion symmetry. This is opposite to electronic properties, where the antisymmetric spin-orbit interaction has shown to distinctly influence features like the superconducting condensate of CePt3Si.

  5. Benchmarking Pt and Pt-lanthanide sputtered thin films for oxygen electroreduction

    DEFF Research Database (Denmark)

    Zamburlini, Eleonora; Jensen, Kim Degn; Stephens, Ifan E.L.

    2017-01-01

    Platinum-lanthanide alloys are very promising as active and stable catalysts for the oxygen reduction reaction (ORR) in low-temperature fuel cells. We have fabricated Pt and Pt5Gd metallic thin films via (co-)sputtering deposition in an ultra-high vacuum (UHV) chamber. The electrochemical ORR...

  6. Efficient detection of total cholesterol using (ChEt–ChOx/ZnO/Pt/Si) bioelectrode based on ZnO matrix

    International Nuclear Information System (INIS)

    Batra, Neha; Sharma, Anjali; Tomar, Monika; Gupta, Vinay

    2014-01-01

    Present study highlights the importance of ZnO matrix prepared by vapour phase transport technique on platinum coated Si platform (ZnO/Pt/Si) as a potential matrix for the realization of highly sensitive and selective bioelectrode for detection of total cholesterol. Bienzymes cholesterol esterase (ChEt) and cholesterol oxidase (ChOx) have been immobilized onto the surface of ZnO thin film matrix by physical adsorption technique. The prepared bioelectrode (ChEt–ChOx/ZnO/Pt/Si) is utilized for detection of total cholesterol using the cyclic voltammetry technique. The bioelectrode (ChEt–ChOx/ZnO/Pt/Si) is found to exhibit efficient sensing response characteristics with high sensitivity of 190 μA mM −1 cm −2 ; good linearity in the range of 0.5–12 mM total cholesterol concentration, and a very low Michaelis–Menten constant of 0.68 mM which indicates high affinity of bienzymes immobilized on ZnO towards the analyte (total cholesterol). The enhanced response is attributed to the development of ZnO thin film based matrix having good electron transport property and nanoporous morphology for effective loading of enzymes with favourable orientation. - Highlights: • Fabrication of a ZnO nanostructured thin film based efficient matrix • Utilizing prepared matrix for detection of total cholesterol (free + esterified) • Cholesterol oxidase and cholesterol esterase are the corresponding selective enzymes. • Vapour phase transport technique, for the fabrication of nanostructured ZnO matrix • The bioelectrode exhibits enhanced response characteristics towards total cholesterol detection

  7. Efficient detection of total cholesterol using (ChEt–ChOx/ZnO/Pt/Si) bioelectrode based on ZnO matrix

    Energy Technology Data Exchange (ETDEWEB)

    Batra, Neha; Sharma, Anjali [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Tomar, Monika [Department of Physics, Miranda House, University of Delhi, Delhi 110007 (India); Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2014-07-01

    Present study highlights the importance of ZnO matrix prepared by vapour phase transport technique on platinum coated Si platform (ZnO/Pt/Si) as a potential matrix for the realization of highly sensitive and selective bioelectrode for detection of total cholesterol. Bienzymes cholesterol esterase (ChEt) and cholesterol oxidase (ChOx) have been immobilized onto the surface of ZnO thin film matrix by physical adsorption technique. The prepared bioelectrode (ChEt–ChOx/ZnO/Pt/Si) is utilized for detection of total cholesterol using the cyclic voltammetry technique. The bioelectrode (ChEt–ChOx/ZnO/Pt/Si) is found to exhibit efficient sensing response characteristics with high sensitivity of 190 μA mM{sup −1} cm{sup −2}; good linearity in the range of 0.5–12 mM total cholesterol concentration, and a very low Michaelis–Menten constant of 0.68 mM which indicates high affinity of bienzymes immobilized on ZnO towards the analyte (total cholesterol). The enhanced response is attributed to the development of ZnO thin film based matrix having good electron transport property and nanoporous morphology for effective loading of enzymes with favourable orientation. - Highlights: • Fabrication of a ZnO nanostructured thin film based efficient matrix • Utilizing prepared matrix for detection of total cholesterol (free + esterified) • Cholesterol oxidase and cholesterol esterase are the corresponding selective enzymes. • Vapour phase transport technique, for the fabrication of nanostructured ZnO matrix • The bioelectrode exhibits enhanced response characteristics towards total cholesterol detection.

  8. The thermodynamic assessment of the As-Pt system and the analysis of the Pt/GaAs interfacial reactions

    International Nuclear Information System (INIS)

    Li, Mei; Li, Changrong; Wang, Fuming; Zhang, Weijing

    2007-01-01

    In order to analyze the Pt/GaAs interfacial reaction sequence, the As-Pt binary system was thermodynamically assessed. A consistent thermodynamic data set for the As-Pt binary system have been obtained by means of calculation of phase diagrams (CALPHAD) technology. The intermetallic compound, As 2 Pt, was treated as stoichiometric compound. The gas phase was treated as an ideal mixture. Using the present thermodynamic data set for the As-Pt system and the literatures reported ones for the Ga-Pt and As-Ga systems, the isothermal sections of the As-Ga-Pt system at different temperatures 873 and 298 K were constructed by extending the related binaries. The calculated phase diagrams reproduce the experimental results well. Based on the present optimized data and the phase equilibrium calculation, the interfacial reactions of (bulk Pt)/GaAs and (thin-film Pt)/GaAs couples were analyzed and the phase formation sequences were predicted. The calculation results agree well with the reported experiments

  9. PtSi Clustering in Silicon Probed by Transport Spectroscopy

    Directory of Open Access Journals (Sweden)

    Massimo Mongillo

    2013-12-01

    Full Text Available Metal silicides formed by means of thermal annealing processes are employed as contact materials in microelectronics. Control of the structure of silicide/silicon interfaces becomes a critical issue when the characteristic size of the device is reduced below a few tens of nanometers. Here, we report on silicide clustering occurring within the channel of PtSi/Si/PtSi Schottky-barrier transistors. This phenomenon is investigated through atomistic simulations and low-temperature resonant-tunneling spectroscopy. Our results provide evidence for the segregation of a PtSi cluster with a diameter of a few nanometers from the silicide contact. The cluster acts as a metallic quantum dot giving rise to distinct signatures of quantum transport through its discrete energy states.

  10. Ferroelectric properties of sandwich structured (Bi, La)4T3O12/Pb(Zr, Ti)O3/ (Bi, La)4Ti3O12 thin films on Pt/Ti/SiO2/Si substrates

    International Nuclear Information System (INIS)

    Bao Dinghua; Wakiya, Naoki; Shinozaki, Kazuo; Mizutani, Nobuyasu

    2002-01-01

    Sandwich structured (Bi, La) 4 Ti 3 O 12 /Pb(Zr, Ti)O 3 /(Bi, La) 4 Ti 3 O 12 thin films were fabricated on Pt/Ti/SiO 2 /Si substrates, with the intention of simultaneously utilizing the advantages of both (Bi, La) 4 Ti 3 O 12 (BLT) and Pb(Zr, Ti)O 3 (PZT) thin films such as non-fatigue behaviours of BLT and good ferroelectric properties of PZT. Both BLT and PZT layers were prepared by a chemical solution deposition technique. The experiments demonstrated that the sandwich structure showed fatigue-free characteristics at least up to 10 10 switching bipolar pulse cycles under 8 V and excellent retention properties. The sandwich structured thin films also exhibited well-defined hysteresis loops with a remanent polarization (2P r ) of 8.8 μC cm -2 and a coercive field (E c ) of 47 kV cm -1 . The room-temperature dielectric constant and dissipation factor were 210 and 0.031, respectively, at a frequency of 100 kHz. These results suggest that this sandwich structure is a promising material combination for ferroelectric memory applications. (author)

  11. Formation of intermetallic phases in AlSi7Fe1 alloy processed under microgravity and forced fluid flow conditions and their influence on the permeability

    Science.gov (United States)

    Steinbach, S.; Ratke, L.; Zimmermann, G.; Budenkova, O.

    2016-03-01

    Ternary Al-6.5wt.%Si-0.93wt.%Fe alloy samples were directionally solidified on-board of the International Space Station ISS in the ESA payload Materials Science Laboratory (MSL) equipped with Low Gradient Furnace (LGF) under both purely diffusive and stimulated convective conditions induced by a rotating magnetic field. Using different analysis techniques the shape and distribution of the intermetallic phase β-Al5SiFe in the dendritic microstructure was investigated, to study the influence of solidification velocity and fluid flow on the size and spatial arrangement of intermetallics. Deep etching as well as 3-dimensional computer tomography measurements characterized the size and the shape of β-Al5SiFe platelets: Diffusive growth results in a rather homogeneous distribution of intermetallic phases, whereas forced flow promotes an increase in the amount and the size of β-Al5SiFe platelets in the centre region of the samples. The β-Al5SiFe intermetallics can form not only simple platelets, but also be curved, branched, crossed, interacting with dendrites and porosity located. This leads to formation of large and complex groups of Fe-rich intermetallics, which reduce the melt flow between dendrites leading to lower permeability of the mushy zone and might significantly decrease feeding ability in castings.

  12. Mechanical properties of aluminium matrix composites reinforced with intermetallics

    International Nuclear Information System (INIS)

    Torres, B.; Garcia-Escorial, A.; Ibanez, J.; Lieblich, M.

    2001-01-01

    In this work 2124 aluminium matrix composites reinforced with Ni 3 Al, NiAl, MoSi 2 and Cr 3 Si intermetallic powder particles have been investigated. For comparison purposes, un reinforced 2124 and reinforced with SiC have also been studied. In all cases, the same powder metallurgy route was used, i. e. the 2124 alloy was obtained by rapid solidification and the intermetallic particles by self-propagating high-temperature synthesis (SHS). The matrix and the intermetallics were mechanically blended, cold compacted and finally hot extruded. Tensile tests were carried out in T1 and T4 treatments. Results indicate that mechanical properties depend strongly on the tendency to form new phases at the matrix-intermetallic interface during processing and/or further thermal treatments. The materials which present better properties are those that present less reaction between matrix and intermetallic reinforcement, i. e. MoSi 2 and SiC reinforced composites. (Author) 9 refs

  13. Morphology and Activity Tuning of Cu 3 Pt/C Ordered Intermetallic Nanoparticles by Selective Electrochemical Dealloying

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Deli; Yu, Yingchao; Zhu, Jing; Liu, Sufen; Muller, David A.; Abruña, Héctor D.

    2015-02-11

    Improving the catalytic activity of Pt-based bimetallic nanoparticles is a key challenge in the application of proton-exchange membrane fuel cells. Electrochemical dealloying represents a powerful approach for tuning the surface structure and morphology of these catalyst nanoparticles. We present a comprehensive study of using electrochemical dealloying methods to control the morphology of ordered Cu3Pt/C intermetallic nanoparticles, which could dramatically affect their electrocatalytic activity for the oxygen reduction reaction (ORR). Depending on the electrochemical dealloying conditions, the nanoparticles with Pt-rich core–shell or porous structures were formed. We further demonstrate that the core–shell and porous morphologies can be combined to achieve the highest ORR activity. This strategy provides new guidelines for optimizing nanoparticles synthesis and improving electrocatalytic activity.

  14. Reduction in L10 phase transition temperature of PLD grown FePt thin by pre-annealing pulse laser exposure

    International Nuclear Information System (INIS)

    Wang, Y.; Rawat, R.S.; Bisht, A.

    2013-01-01

    A pre-annealing atmospheric pulsed laser exposure was applied to decrease the phase transition (from chemically disordered A1 phase to chemically ordered L1 0 phase) temperature of FePt nano-particles on a Si (100) substrate. Different pre-annealing laser energy densities of 0.024 and 0.079 J/cm2 were utilized to expose the pulsed laser deposition (PLD) FePt thin film samples under atmospheric conditions. Subsequently, FePt thin film samples were annealed at different temperatures of 300 and 400 ºC to observe the influence of laser exposure on the phase transition temperature. The phase transition temperature was decreased from conventional 600 ºC to 400 ºC by one shot pre-annealing atmospheric pulsed laser exposure. (author)

  15. Modelling and analysis of the stress distribution in a multi-thin film system Pt/USG/Si

    Science.gov (United States)

    Yao, W. Z.; Roqueta, F.; Craveur, J. C.; Belhenini, S.; Gardes, P.; Tougui, A.

    2018-04-01

    Residual stress analysis is commonly achieved through curvature measurement with the help of Stoney’s formula. However, this conventional approach is inadequate for multi-layer thin film systems, which are widely used in today’s microelectronics. Also, for the thin film case, the residual stress is composed of thermal stress and intrinsic stress. Measuring the wafer curvature at room temperature provides a value for the average stresses in the layer, the two components cannot be distinguished by the existing methodologies of curvature measurement. To alleviate these problems, a modified curvature method combining finite element (FE) modelling is proposed to study the stress distribution in a Pt/USG/Si structure. A 2D FE model is firstly built in order to calculate the thermal stress in the multilayer structure, the obtained thermal stresses in respective films are verified by an analytical model. Then, we calculate the warpage of the multilayer structure by considering the intrinsic stress in the respective films. The residual stresses in the films are determined by minimizing the difference between the simulated warpage and that of experimental measurement. The proposed approach can be used to calculate not only the average residual stress but also thermal and intrinsic stress components in the USG and Platinum films. The obtained residual and intrinsic stresses from a numerical model are compared with the values of other studies. There is no limitation for the application of our methodologies regarding the number of the layers in the stack.

  16. Investigation of passivity and its breakdown on Fe3Al–Si and Fe3Al–Ge intermetallics in chloride-containing solution

    International Nuclear Information System (INIS)

    Rosalbino, F.; Carlini, R.; Parodi, R.; Zanicchi, G.; Scavino, G.

    2014-01-01

    Highlights: • Passivity and its breakdown on Fe 3 Al–Si and Fe 3 Al–Ge iron aluminides was investigated. • Investigation was performed in borate buffer solution with and without 100 mM KCl. • Polarization, potentiostatic transients and impedance measurements have been employed. • Results have been compared with those obtained on Fe 3 Al intermetallic. • Si and Ge improve the resistance to localized corrosion of Fe 3 Al. - Abstract: The passivity and passivity breakdown of Fe 3 Al–Si and Fe 3 Al–Ge iron aluminides were studied in borate buffer solution (pH 8.4) in the absence and presence of 100 mM KCl, performing potentiodynamic polarization, potentiostatic transients and electrochemical impedance spectroscopy (EIS) measurements complemented with scanning electron microscopy (SEM). In the absence of chloride ions Si and Ge exercise a beneficial role in the passivating characteristics of Fe 3 Al intermetallic. Addition of Si or Ge significantly modifies the electrochemical response of iron aluminide Fe 3 Al resulting in a more stable passive film. In the presence of chloride ions all the intermetallic compounds experience localized corrosion (pitting). However, Si and Ge alloying additions increase the breakdown potential and the extent of passivation domain, indicating improved resistance to initiation of pitting corrosion. Furthermore, EIS measurements performed at the breakdown state evidenced higher R ct and lower depression angle values for Fe 3 Al–Si and Fe 3 Al–Ge iron aluminides compared to Fe 3 Al intermetallic, confirming their better localized corrosion behavior. The improved resistance to pitting corrosion results from the enhanced protective function of passive film due to the presence of Si or Ge that inhibit pit initiation by hindering the adsorption of Cl − ions at the metal surface

  17. One-pot solvothermal synthesis of ordered intermetallic Pt{sub 2}In{sub 3} as stable and efficient electrocatalyst towards direct alcohol fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Rajkumar; Peter, Sebastian C., E-mail: sebastiancp@jncasr.ac.in

    2016-10-15

    Ordered intermetallic Pt{sub 2}In{sub 3} nanoparticles have been synthesized by superhydride reduction of K{sub 2}PtCl{sub 4} and InCl{sub 3}.xH{sub 2}O precursors using facile, one-pot solvothermal method. We report surfactant free solvothermal synthesis of a novel ordered Pt{sub 2}In{sub 3} intermetallic nanoparticles for the first time. The structure and morphology of the catalyst has been confirmed by powder X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, energy-dispersive spectrometry and X-ray photoelectron spectroscopy. The electrocatalytic properties of the catalysts have been investigated by cyclic voltammetry and chronoamperometry. The as prepared Pt{sub 2}In{sub 3} catalyst exhibit far superior electrocatalytic activity and stability towards alcohol oxidation over commercial Pt/C. The specific activity of as synthesized catalyst was found to be ~3.2 and ~2.3 times higher than commercial Pt/C for methanol and ethanol oxidation, respectively. This improved activity and durability of the Pt{sub 2}In{sub 3} nanoparticles can make the catalyst an ideal catalyst candidate for direct alcohol fuel cell. - Graphical abstract: The ordered structure of Pt{sub 2}In{sub 3} nanoparticles synthesized by solvothermal method has confirmed through XRD and TEM. Cyclic voltametry and chronoamperometry showed improved catalytic activity and stability compared to commercial Pt/C. - Highlights: • Ordered Pt{sub 2}In{sub 3} nanoparticles were synthesized by solvothermal method. • Electrooxidation of alcohols on Pt{sub 2}In{sub 3} catalyst was investigated in acidic medium. • Pt{sub 2}In{sub 3} catalyst has superior catalytic activity compared to commercial Pt/C. • Pt{sub 2}In{sub 3} catalyst exhibited much higher stability than commercial Pt/C.

  18. X-ray nano-diffraction study of Sr intermetallic phase during solidification of Al-Si hypoeutectic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Manickaraj, Jeyakumar; Gorny, Anton; Shankar, Sumanth, E-mail: shankar@mcmaster.ca [Light Metal Casting Research Centre (LMCRC), Department of Mechanical Engineering, McMaster University, 1280 Main Street W, Hamilton, Ontario L8S 4L7 (Canada); Cai, Zhonghou [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States)

    2014-02-17

    The evolution of strontium (Sr) containing intermetallic phase in the eutectic reaction of Sr-modified Al-Si hypoeutectic alloy was studied with high energy synchrotron beam source for nano-diffraction experiments and x-ray fluorescence elemental mapping. Contrary to popular belief, Sr does not seem to interfere with the Twin Plane Re-entrant Edge (TPRE) growth mechanism of eutectic Si, but evolves as the Al{sub 2}Si{sub 2}Sr phase during the eutectic reaction at the boundary between the eutectic Si and Al grains.

  19. Specific heat measurements of CePt{sub 3}Si and Ce{sub 1+x}Pt{sub 3+y}Si{sub 1+z}

    Energy Technology Data Exchange (ETDEWEB)

    Motoyama, G. [Graduate School of Material Science, University of Hyogo, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan)]. E-mail: motoyama@sci.u-hyogo.ac.jp; Watanabe, M. [Graduate School of Material Science, University of Hyogo, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); Maeda, K. [Graduate School of Material Science, University of Hyogo, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); Oda, Y. [Graduate School of Material Science, University of Hyogo, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); Ueda, K. [Graduate School of Material Science, University of Hyogo, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); Kohara, T. [Graduate School of Material Science, University of Hyogo, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan)

    2007-03-15

    We have measured the specific heat of a series of polycrystalline CePt{sub 3}Si and Ce{sub 1+x}Pt{sub 3+y}Si{sub 1+z} samples whose compositions vary slightly from the stoichiometric composition. We observed two peaks derived from magnetic anomalies on the specific heat measurements of the Ce{sub 1+x}Pt{sub 3+y}Si{sub 1+z} samples. One of the peaks relates to the antiferromagnetic phase transition at T{sub N}=2.2K. The other is a large peak at 2.7K observed for the sample that showed a ferromagnetic anomaly at 3.0K on the temperature dependence of the magnetization. Heat treatment had different effects between these anomalies.

  20. Effect of Sr and solidification conditions on characteristics of intermetallic in Al-Si 319 industrial alloys

    International Nuclear Information System (INIS)

    Espinoza-Cuadra, J.; Gallegos-Acevedo, P.; Mancha-Molinar, H.; Picado, A.

    2010-01-01

    An experimental study was carried out to determine the effect of strontium (Sr) on the characteristic of intermetallic phases, particularly the Al 5 FeSi phase which present morphology of platelets or needle-like. The results showed that within the range of variables studied, the modification process caused the disappearance of the needles and only occur the precipitation of phase α (chinese script-like). Refinement of the intermetallic phases occurs in conjunction with the refinement in grain size. Both parameters depend strongly on local cooling rate (T), temperature gradient (G) and apparent rate of solidification front (V). In the case of equiaxed structures the refinement of grain size and intermetallic occurs with increasing local cooling rate and temperature gradient and decrease the apparent rate of solidification front. In the case of columnar structures, refinement of grains and intermetallic requires the increase in values of the three variables indicated. Moreover, the addition of Sr resulted in the modification of silicon eutectic, as noted in others research works.

  1. Effect of Co on Si and Fe-containing intermetallic compounds (IMCs) in Al-20Si-5Fe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fatih Kilicaslan, M. [Department of Physics, Faculty of Art and Science, Kastamonu University, Kastamonu (Turkey); Yilmaz, Fikret [Department of Physics, Faculty of Art and Science, Gaziosmanpasa University, Tokat (Turkey); Hong, Soon-Jik, E-mail: hongsj@kongju.ac.kr [Division of Advanced Materials Engineering, Institute for Rare Metals, Kongju National University, Cheonan 331717 (Korea, Republic of); Uzun, Orhan, E-mail: orhan.uzun@gop.edu.tr [Department of Physics, Faculty of Art and Science, Gaziosmanpasa University, Tokat (Turkey)

    2012-10-30

    The effects of cobalt addition on microstructure and mechanical properties of Al-20Si-5Fe-XCo (X=0, 1, 3, and 5) alloys were reported in this study. The alloys were produced by both conventional sand casting and melt-spinning at 20 m/s disk velocity. Microstructures of the samples were investigated using X-ray diffractometry (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Vickers micro-hardness tester was used for hardness measurements. Results showed that Co addition can alter morphology of Fe-bearing intermetallic compounds (IMCs) from long rod/needle-like structures to short rod-like ones, and lead to a more homogenous distribution in the microstructure. Addition of 5 wt% Co leads to a decrease in average size of the primary silicon phases in as-cast Al-Si alloys. In melt-spun alloys, with the addition of Co, the microstructure became finer and more homogenously distributed, while thickness of the featureless zone has seen great increase. The optimum Fe to Co ratio was found to be 1 for suppressing the undesirable effect of Fe-bearing acicular/needle-like intermetallic compounds.

  2. Corrosive sliding wear behavior of laser clad Mo2Ni3Si/NiSi intermetallic coating

    International Nuclear Information System (INIS)

    Lu, X.D.; Wang, H.M.

    2005-01-01

    Many ternary metal silicides such as W 2 Ni 3 Si, Ti 2 Ni 3 Si and Mo 2 Ni 3 Si with the topologically closed-packed (TCP) hP12 MgZn 2 type Laves phase crystal structure are expected to have outstanding wear and corrosion resistance due to their inherent high hardness and sluggish temperature dependence and strong atomic bonds. In this paper, Mo 2 Ni 3 Si/NiSi intermetallic coating was fabricated on substrate of an austenitic stainless steel AISI321 by laser cladding using Ni-Mo-Si elemental alloy powders. Microstructure of the coating was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDS). Wear resistance of the coating is evaluated under corrosive sliding wear test condition. Influence of corrosion solutions on the wear resistance of the coating was studied and the wear mechanism was discussed based on observations of worn surface morphology. Results showed that the laser clad Mo 2 Ni 3 Si/NiSi composite coating have a fine microstructure of Mo 2 Ni 3 Si primary dendrites and the interdendritic Mo 2 Ni 3 Si/NiSi eutectics. The coating has excellent corrosive wear resistance compared with austenitic stainless steel AISI321 under acid, alkaline and saline corrosive environments

  3. Mechanisms of current conduction in Pt/BaTiO3/Pt resistive switching cell

    International Nuclear Information System (INIS)

    Pan, R.K.; Zhang, T.J.; Wang, J.Y.; Wang, J.Z.; Wang, D.F.; Duan, M.G.

    2012-01-01

    The 80-nm-thickness BaTiO 3 (BT) thin film was prepared on the Pt/Ti/SiO 2 /Si substrate by the RF magnetron sputtering technique. The Pt/BT/Pt/Ti/SiO 2 /Si structure was investigated using X-ray diffraction and scanning electron microscopy. The current–voltage characteristic measurements were performed. The bipolar resistive switching behavior was found in the Pt/BT/Pt cell. The current–voltage curves were well fitted in different voltage regions at the high resistance state (HRS) and the low resistance state (LRS), respectively. The conduction mechanisms are concluded to be Ohmic conduction and Schottky emission at the LRS, while space-charge-limited conduction and Poole–Frenkel emission at the HRS. The electroforming and switching processes were explained in terms of the valence change mechanism, in which oxygen vacancies play a key role in forming conducting paths. - Highlights: ►Pt/BaTiO 3 /Pt cell shows the bipolar resistive switching behavior. ►The current–voltage curves were well fitted for different conduction mechanisms. ►The electroforming and switching processes were explained.

  4. Effect of ternary alloying elements on microstructure and mechanical property of Nb-Si based refractory intermetallic alloy

    International Nuclear Information System (INIS)

    Kim, W.Y.; Kim, H.S.; Kim, S.K.; Ra, T.Y.; Kim, M.S.

    2005-01-01

    Microstructure and mechanical property at room temperature and at 1773 K of Nb-Si based refractory intermetallic alloys were investigated in terms of compression and fracture toughness test. Mo and V were chosen as ternary alloying elements because of their high melting points, atomic sizes smaller than Nb. Both ternary alloying elements were found to have a significant role in modifying the microstructure from dispersed structure to eutectic-like structure in Nb solid solution/Nb 5 Si 3 intermetallic composites. The 0.2% offset yield strength at room temperature increased with increasing content of ternary elements in Nb solid solution and volume fraction of Nb 5 Si 3 . At 1773 K, Mo addition has a positive role in increasing the yield strength. On the other hand, V addition has a role in decreasing the yield strength. The fracture toughness of ternary alloys was superior to binary alloys. Details will be discussed in correlation with ternary alloying, volume fraction of constituent phase, and the microstructure. (orig.)

  5. Effect of Si on Fe-rich intermetallic formation and mechanical properties of heat-treated Al–Cu–Mn–Fe alloys

    Science.gov (United States)

    Zhao, Yuliang; Zhang, Weiwen; Yang, Chao; Zhang, Datong; Wang, Zhi

    2018-04-01

    The effect of Si on Fe-rich intermetallics formation and mechanical properties of heat-treated squeeze cast Al-5.0Cu-0.6Mn-0.7Fe alloy was investigated. Our results show that increasing Si content promotes the formation of Al15(FeMn)3(SiCu)2 (${\\alpha}$-Fe), and varying the morphology of T (Al20Cu3Mn2) where the size decreases and the amount increases. The major reason is that Si promotes heterogeneous nucleation of the intermetallics leading to finer precipitates. Si addition significantly enhances ultimate tensile strength and yield strength of the alloys. The strengthening effect is mainly owing to the dispersoid strengthening by increasing volume fraction of T phase and less harmful ${\\alpha}$-Fe with a compact structure, which make the cracks more difficult to initiate and propagation during tensile test. The squeeze cast Al-5.0Cu-0.6Mn-0.7Fe alloy with 1.1% Si shows significantly improved mechanical properties than the alloy without Si addition, which has tensile strength of 386 MPa, yield strength of 280 MPa and elongation of 8.6%.

  6. Ab initio investigation of superconductivity in orthorhombic MgPtSi

    Energy Technology Data Exchange (ETDEWEB)

    Tütüncü, H.M., E-mail: tutuncu@sakarya.edu.tr [Sakarya Üniversitesi, Fen-Edebiyat Fakültesi, Fizik Bölümü, 54187, Adapazarı (Turkey); Sakarya Üniversitesi, BIMAYAM Biyomedikal, Manyetik ve Yarıiletken Malzemeler Araştırma Merkezi, 54187, Adapazarı (Turkey); Ertuǧrul Karaca [Sakarya Üniversitesi, Fen-Edebiyat Fakültesi, Fizik Bölümü, 54187, Adapazarı (Turkey); Srivastava, G.P. [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

    2016-07-15

    We have performed an ab initio study of electronic, vibrational and superconducting properties of the orthorhombic MgPtSi by employing the density functional theory, a linear-response formalism, and the plane-wave pseudopotential method. Our electronic results suggest that the density of states at the Fermi level is primarily contributed by Pt 5d and Si 3p states with much smaller contribution from Mg electronic states. Phonon anomalies have been found for all three acoustic branches. Due to these phonon anomalies, the acoustic branches make large contributions to the average electron-phonon coupling parameter. From the Eliashberg spectral function, the value of average electron-phonon coupling parameter is found to 0.707. Using this value, the superconducting critical temperature is obtained to be 2.4 K, in excellent accordance with its experimental value of 2.5 K. - Highlights: • The electronic structure of MgPtSi is studied using ab initio pseudopotential method. • Phonons and electron–phonon interaction in MgPtSi are studied using a linear response theory. • The acoustic phonon modes couple more strongly with electrons. • The value of λ is found to be 0.707 which shows that MgPtSi is a conventional honon-mediated superconductor. • The calculated T{sub c} of 2.4 K is in excellent accordance with its experimental value of 2.5 K.

  7. Laser-induced Ni(Pt) germanosilicide formation through a self-limiting melting phenomenon on Si1-xGex/Si heterostructure

    International Nuclear Information System (INIS)

    Setiawan, Y.; Lee, P. S.; Pey, K. L.; Wang, X. C.; Lim, G. C.; Tan, B. L.

    2007-01-01

    Laser-induced Ni(Pt) germanosilicide formation on Si 1-x Ge x /Si substrate has resulted in the formation of smooth Ni(Pt) germanosilicide/Si interface with minimum interface roughness which is preferred as a contact material. A confined (self-limiting) melting phenomenon occurred during the laser-induced silicidation process at laser fluence of 0.4 J cm -2 (just at the melting threshold of the sample). This phenomenon is caused by significant differences in material properties of Si 1-x Ge x alloy and Si substrates. Formation of highly textured [Ni 1-v (Pt) v ](Si 1-y Ge y ) phase was detected in the sample after 20-pulsed laser thermal annealing at 0.4 J cm -2 . The formation mechanism of the Ni(Pt) monogermanosilicide is discussed

  8. Preparation, microstructural evolution and properties of Ni–Zr intermetallic/Zr–Si ceramic reinforced composite coatings on zirconium alloy by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kun; Li, Yajiang, E-mail: yajli@sdu.edu.cn; Wang, Juan; Ma, Qunshuang; Li, Jishuai; Li, Xinyue

    2015-10-25

    NiZr{sub 2}–ZrSi–Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4}-ZrC intermetallic/ceramic reinforced composite coatings were in situ synthesized by laser cladding the pre-placed Ni–Cr–B–Si powder on zirconium substrate. Microstructure and phase constituents were investigated by X-ray diffraction (XRD), optical microscope (OM), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). Microhardness tester and block-on-ring wear tester were employed to measure the hardness distribution and wear resistance of the intermetallic/ceramic reinforced composite coating. Results indicated that the multiphase of reinforcements includes Ni–Zr intermetallic compounds (e.g., NiZr and NiZr{sub 2}) and Zr–Si(C) ceramic phases (e.g., ZiSi, Zr{sub 5}Si{sub 4} and ZrC). Ni–Si clusters transforming to Zr–Si–Ni clusters at high temperature facilitated the forming of Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4} and during the growth of Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4}, the consumption of Zr atoms at the lateral interface of liquid/Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4} resulted into developing Zr-poor zone near Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4}. The microhardness and wear resistance of the coating were significantly improved by various reinforced phases in comparison to zirconium substrate. - Highlights: • NiZr{sub 2}–ZrSi–Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4}-ZrC compostie coating was in-situ synthesized. • Ni–Si clusters transforming resulted into developing Zr-poor zone near Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4}. • Reinforced phases significantly improve wear resistance of the coating.

  9. SiO2 stabilized Pt/C cathode catalyst for proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Zhu Tong; Du Chunyu; Liu Chuntao; Yin Geping; Shi Pengfei

    2011-01-01

    This paper describes the preparation of SiO 2 stabilized Pt/C catalyst (SiO 2 /Pt/C) by the hydrolysis of alkoxysilane, and examines the possibility that the SiO 2 /Pt/C is used as a durable cathode catalyst for proton exchange membrane fuel cells (PEMFCs). TEM and XRD results revealed that the hydrolysis of alkoxysilane did not significantly change the morphology and crystalline structure of Pt particles. The SiO 2 /Pt/C catalyst exhibited higher durability than the Pt/C one, due to the facts that the silica layers covered were beneficial for reducing the Pt aggregation and dissolution as well as increasing the corrosion resistance of supports, although the benefit of silica covering was lower than the case of Pt/CNT catalyst. Also, it was observed that the activity of the SiO 2 /Pt/C catalyst for the oxygen reduction reaction was somewhat reduced compared to the Pt/C one after the silica covering. This reduction was partially due to the low oxygen kinetics as revealed by the rotating-disk-electrode measurement. Silica covering by hydrolysis of only 3-aminopropyl trimethoxysilane is able to achieve a good balance between the durability and activity, leading to SiO 2 /Pt/C as a promising cathode catalyst for PEMFCs.

  10. Reliable and cost effective design of intermetallic Ni2Si nanowires and direct characterization of its mechanical properties

    OpenAIRE

    Seung Zeon Han; Joonhee Kang; Sung-Dae Kim; Si-Young Choi; Hyung Giun Kim; Jehyun Lee; Kwangho Kim; Sung Hwan Lim; Byungchan Han

    2015-01-01

    We report that a single crystal Ni2Si nanowire (NW) of intermetallic compound can be reliably designed using simple three-step processes: casting a ternary Cu-Ni-Si alloy, nucleate and growth of Ni2Si NWs as embedded in the alloy matrix via designing discontinuous precipitation (DP) of Ni2Si nanoparticles and thermal aging, and finally chemical etching to decouple the Ni2Si NWs from the alloy matrix. By direct application of uniaxial tensile tests to the Ni2Si NW we characterize its mechanica...

  11. Crack resistance behaviour of an intermetallic Ti-Al-Si-Nb alloy at room temperature

    International Nuclear Information System (INIS)

    Wittkowsky, B.U.; Pfuff, M.J.

    1996-01-01

    The room temperature crack growth behaviour of a Ti-Al-Si-Nb alloy consisting of the two intermetallic phases (Ti, Nb) 3 (Al, Si) and (Ti, Nb) 5 (Si, Al) 3 is investigated in the present paper. The material exhibits a heterogeneous disordered microstructure and fails in a brittle manner. Crack growth is associated with a pronounced crack resistance behaviour. For a sample of nominally identical specimens the R-curves scatter around a mean curve with a standard deviation which remains roughly constant as the crack grows. A natural extension of the bundle model introduced in a previous paper is used to simulate R-curves and their scatter is in reasonably good agreement with the experimental findings. (orig.)

  12. Elimination of impurity phase formation in FePt magnetic thin films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Wang, Ying; Medwal, Rohit; Sehdev, Neeru; Yadian, Boluo; Tan, T.L.; Lee, P.; Talebitaher, A.; Ilyas, Usman; Ramanujan, R.V.; Huang, Yizhong; Rawat, R.S.

    2014-01-01

    The formation of impurity phases in FePt thin films severely degrades its magnetic properties. The X-ray diffraction patterns of FePt thin films, synthesized using pulsed laser deposition (PLD), showed peaks corresponding to impurity phases, resulting in softer magnetic properties. A systematic investigation was carried to determine the factors that might have led to impurity phase formation. The factors include (i) PLD target composition, (ii) substrate material, (iii) annealing parameters such as temperature, duration and ambience and (iv) PLD deposition parameters such as chamber ambience, laser energy fluence and target–substrate distance. Depositions on the different substrates revealed impurity phase formation only on Si substrates. It was found that the target composition, PLD chamber ambience, and annealing ambience were not the factors that caused the impurity phase formation. The annealing temperature and duration influenced the impurity phases, but are not the cause of their formation. A decrease in the laser energy fluence and increase of the target–substrate distance resulted in elimination of the impurity phases and enhancement in the magnetic and structural properties of FePt thin films. The energy of the ablated plasma species, controlled by the laser energy fluence and the target–substrate distance, is found to be the main factor responsible for the formation of the impurity phases.

  13. Growth, structure and magnetic properties of magnetron sputtered FePt thin films

    Energy Technology Data Exchange (ETDEWEB)

    Cantelli, Valentina

    2010-07-01

    The L1{sub 0} FePt phase belongs to the most promising hard ferromagnetic materials for high density recording media. The main challenges for thin FePt films are: (i) to lower the process temperature for the transition from the soft magnetic A1 to the hard magnetic L1{sub 0} phase, (ii) to realize c-axes preferential oriented layers independently from the substrate nature and (iii) to control layer morphology supporting the formation of FePt-L1{sub 0} selforganized isolated nanoislands towards an increase of the signal-to-noise ratio. In this study, dc magnetron sputtered FePt thin films on amorphous substrates were investigated. The work is focused on the correlation between structural and magnetic properties with respect to the influence of deposition parameters like growth mode (cosputtering vs. layer - by - layer) and the variation of the deposition gas (Ar, Xe) or pressure (0.3-3 Pa). In low-pressure Ar discharges, high energetic particle impacts support vacancies formation during layer growth lowering the phase transition temperature to (320{+-}20) C. By reducing the particle kinetic energy in Xe discharges, highly (001) preferential oriented L1{sub 0}-FePt films were obtained on a-SiO{sub 2} after vacuum annealing. L1{sub 0}-FePt nano-island formation was supported by the introduction of an Ag matrix, or by random ballistic aggregation and atomic self shadowing realized by FePt depositions at very high pressure (3 Pa). The high coercivity (1.5 T) of granular, magnetic isotropic FePt layers, deposited in Ar discharges, was measured with SQUID magnetometer hysteresis loops. For non-granular films with (001) preferential orientation the coercivity decreased (0.6 T) together with an enhancement of the out-of- plane anisotropy. Nanoislands show a coercive field close to the values obtained for granular layers but exhibit an in-plane easy axis due to shape anisotropy effects. An extensive study with different synchrotron X-ray scattering techniques, mainly

  14. Intermetallic precipitation in rare earth-treated A413.1 alloy. A metallographic study

    International Nuclear Information System (INIS)

    Samuel, Agnes M.; Samuel, Fawzy H.

    2018-01-01

    The present study was performed mainly on A413.1 alloy. Measured amounts of La, Ce or La+Ce, Ti and Sr were added to the molten alloy in the form of master alloys. Samples sectioned from castings obtained from thermal analysis experiments were used for preparing samples for metallographic examination. The results show that addition of rare earth (RE) metals to Al-Si alloys increased the α-Al nucleation temperature and depressed the Al-Si eutectic formation temperature, thereby increasing the solidification range. Depending upon the alloying elements/additives, a large number of RE-based intermetallics could be formed: Al 4 (Ce,La), Al 13 (Ce,La) 2 Cu 3 , Al 7 (Cu,Fe) 6 (Ce,La) 6 Si 2 , Al 4 La, Al 2 La 5 Si 2 , Al 2 Ce 5 Si 2 , Al 2 (Ce,La) 5 Si 2 . Under an electron microscope, these phases appear in backscatter imaging mode in the form of thin grayish-white platelets on the dark gray Al matrix. The average thickness of these platelets is about 1.5 μm. When the alloy is grain refined with Ti-based master alloys, precipitation of a gray phase in the form of sludge is observed: Al 12 La 3 Ti 2 , or Al 12 (Ce,La) 3 Ti 2 . Regardless the alloy composition, the RE/Al ratios remain constant in each type of intermetallic. Rare earth metals have a strong affinity to react with Sr (resulting in partial modification of the eutectic Si particles) as well as some transition elements, in particular Ti and Cu. Iron has a very low affinity for interaction with RE metals. It is only confined to Fe-based intermetallics.

  15. Intermetallic precipitation in rare earth-treated A413.1 alloy. A metallographic study

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Agnes M.; Samuel, Fawzy H. [Univ. du Quebec a Chicoutimi (Canada). Dept. des Sciences Appliquees; Doty, Herbert W. [General Motors, Pontiac, MI (United States). Materials Engineering; Valtierra, Salvador [Nemak, S.A., Garza Garcia (Mexico)

    2018-02-15

    The present study was performed mainly on A413.1 alloy. Measured amounts of La, Ce or La+Ce, Ti and Sr were added to the molten alloy in the form of master alloys. Samples sectioned from castings obtained from thermal analysis experiments were used for preparing samples for metallographic examination. The results show that addition of rare earth (RE) metals to Al-Si alloys increased the α-Al nucleation temperature and depressed the Al-Si eutectic formation temperature, thereby increasing the solidification range. Depending upon the alloying elements/additives, a large number of RE-based intermetallics could be formed: Al{sub 4}(Ce,La), Al{sub 13}(Ce,La){sub 2}Cu{sub 3}, Al{sub 7}(Cu,Fe){sub 6}(Ce,La){sub 6}Si{sub 2}, Al{sub 4}La, Al{sub 2}La{sub 5}Si{sub 2}, Al{sub 2}Ce{sub 5}Si{sub 2}, Al{sub 2}(Ce,La){sub 5}Si{sub 2}. Under an electron microscope, these phases appear in backscatter imaging mode in the form of thin grayish-white platelets on the dark gray Al matrix. The average thickness of these platelets is about 1.5 μm. When the alloy is grain refined with Ti-based master alloys, precipitation of a gray phase in the form of sludge is observed: Al{sub 12}La{sub 3}Ti{sub 2}, or Al{sub 12}(Ce,La){sub 3}Ti{sub 2}. Regardless the alloy composition, the RE/Al ratios remain constant in each type of intermetallic. Rare earth metals have a strong affinity to react with Sr (resulting in partial modification of the eutectic Si particles) as well as some transition elements, in particular Ti and Cu. Iron has a very low affinity for interaction with RE metals. It is only confined to Fe-based intermetallics.

  16. Fast diffusion in the intermetallics Ni3Sb and Fe3Si: a neutron scattering study

    International Nuclear Information System (INIS)

    Randl, O.G.

    1994-02-01

    We present the results of neutron scattering experiments designed to elucidate the reason for the extraordinarily fast majority component diffusion in two intermetallic alloys of DO 3 structure, Fe 3 Si and Ni 3 Sb: We have performed diffraction measurements in order to determine the crystal structure and the state of order of both alloys as a function of composition and temperature. The results on Fe 3 Si essentially confirm the classical phase diagram: The alloys of a composition between 16 and 25 at % Si are DO 3 -ordered at room temperature and disorder at high temperatures. The high-temperature phase Ni 3 Sb also crystallizes in the DO 3 structure. Vacancies are created in one Ni sublattice at Sb contents beyond 25 at %. In a second step the diffusion mechanism in Ni 3 Sb has been studied by means of quasielastic neutron scattering. The results are reconcileable with a very simple NN jump model between the two different Ni sublattices. Finally, the lattice dynamics of Fe 3 Si and Ni 3 Sb has been studied by inelastic neutron scattering in dependence of temperature (both alloys) and alloy composition (Fe 3 Si only). The results on Fe 3 Si indicate clearly that phonon enhancement is not the main reason for fast diffusion in this alloy. In Ni 3 Sb no typical signs of phonon-enhanced diffusion have been found either. As a conclusion, fast diffusion in DO 3 intermetallics is explained by extraordinarily high vacancy concentrations (several atomic percent) in the majority component sublattices. (author)

  17. Microstructure, electrical, and optical properties of evaporated PtSi/p-Si(100) Schottky barriers as high quantum efficient infrared detectors

    International Nuclear Information System (INIS)

    Wu Jihhuah; Chang Rongsen; Horng Gwoji

    2004-01-01

    The effects of the microstructure and the electrical and optical properties on the formation at highly efficient infrared PtSi Schottky barrier detectors (SBD) have been studied in detail. Two- to twelve-nanometer-thick PtSi films were grown by evaporation at temperature ranging from 350 to 550 deg. C. The electron diffraction patterns indicate the existence of both the (11-bar0) and (12-bar1) orientations when PtSi films formed at 350 deg. C. However, the diffraction patterns show only the (12-bar1) orientation when the PtSi films are formed at 450 deg. C or above. The electrical barrier height of the Schottky barrier detector that formed at 350 deg. C was about 20 meV higher than that formed at 450 deg. C or above. The grain size and the film thickness had a negligible effect on the electrical barrier height. However, the optical performance was strongly dependent on the film thickness and the growth conditions. The 350 deg. C PtSi film showed increased quantum efficiency as the film thickness decreased. The optimal thickness that provided the highest responsivity was 2 nm. On the other hand, the optimal thickness shifted to 8 nm for PtSi film formed at 450 deg. C or above. These results indicate that the quantum efficiency of a detector can be improved if the PtSi film has an orientation at (12-bar1), a larger grain size, and an optimal film thickness

  18. Thermal stability of Ni-Pt-Ta alloy silicides on epi-Si1-xCx

    International Nuclear Information System (INIS)

    Yoo, Jung-Ho; Chang, Hyun-Jin; Min, Byoung-Gi; Ko, Dae-Hong; Cho, Mann-Ho; Sohn, Hyunchul; Lee, Tae-Wan

    2008-01-01

    We investigated the silicide formation in Ni/epi-Si 1-x C x systems. Ni-Pt and Ni-Pt-Ta films were deposited on epi-Si 1-x C x /Si substrates by DC magnetron sputtering and processed at various temperatures. The sheet resistance of the silicide from the Ni alloy/epi-Si 1-x C x systems was maintained at low values compared to that from Ni/Si systems. By TEM and EDS analyses, we confirmed the presence of a Pt alloy layer at the top of the Ni-silicide layer. The stability of the silicide layer in the Ni alloy/epi-Si 1-x C x system is explained by not only the Pt rich layer on the top of the Ni-silicide layer, but also by the presence of a small amount of Pt in the Ni-silicide layer or at the grain boundaries. And both the thermal stability and the morphology of silicide were greatly improved by the addition of Ta in Ni-Pt films

  19. Processing, Microstructure and Creep Behavior of Mo-Si-B-Based Intermetallic Alloys for Very High Temperature Structural Applications

    Energy Technology Data Exchange (ETDEWEB)

    Vijay Vasudevan

    2008-03-31

    This research project is concerned with developing a fundamental understanding of the effects of processing and microstructure on the creep behavior of refractory intermetallic alloys based on the Mo-Si-B system. In the first part of this project, the compression creep behavior of a Mo-8.9Si-7.71B (in at.%) alloy, at 1100 and 1200 C was studied, whereas in the second part of the project, the constant strain rate compression behavior at 1200, 1300 and 1400 C of a nominally Mo-20Si-10B (in at.%) alloy, processed such as to yield five different {alpha}-Mo volume fractions ranging from 5 to 46%, was studied. In order to determine the deformation and damage mechanisms and rationalize the creep/high temperature deformation data and parameters, the microstructure of both undeformed and deformed samples was characterized in detail using x-ray diffraction, scanning electron microscopy (SEM) with back scattered electron imaging (BSE) and energy dispersive x-ray spectroscopy (EDS), electron back scattered diffraction (EBSD)/orientation electron microscopy in the SEM and transmission electron microscopy (TEM). The microstructure of both alloys was three-phase, being composed of {alpha}-Mo, Mo{sub 3}Si and T2-Mo{sub 5}SiB{sub 2} phases. The values of stress exponents and activation energies, and their dependence on microstructure were determined. The data suggested the operation of both dislocation as well as diffusional mechanisms, depending on alloy, test temperature, stress level and microstructure. Microstructural observations of post-crept/deformed samples indicated the presence of many voids in the {alpha}-Mo grains and few cracks in the intermetallic particles and along their interfaces with the {alpha}-Mo matrix. TEM observations revealed the presence of recrystallized {alpha}-Mo grains and sub-grain boundaries composed of dislocation arrays within the grains (in Mo-8.9Si-7.71B) or fine sub-grains with a high density of b = 1/2<111> dislocations (in Mo-20Si-10B), which

  20. Magnetic porous PtNi/SiO2 nanofibers for catalytic hydrogenation of p-nitrophenol

    Science.gov (United States)

    Guan, Huijuan; Chao, Cong; Kong, Weixiao; Hu, Zonggao; Zhao, Yafei; Yuan, Siguo; Zhang, Bing

    2017-06-01

    In this work, the mesoporous SiO2 nanofibers from pyrolyzing precursor of electrospun nanofibers were employed as support to immobilize PtNi nanocatalyst (PtNi/SiO2 nanofibers). AFM, XRD, SEM, TEM, XPS, ICP-AES and N2 adsorption/desorption analysis were applied to systematically investigate the morphology and microstructure of as-prepared products. Results showed that PtNi alloy nanoparticles with average diameter of 18.7 nm were formed and could be homogeneously supported on the surface of porous SiO2 nanofiber, which further indicated that the SiO2 nanofibers with well-developed porous structure, large specific surface area, and roughened surface was a benefit for the support of PtNi alloy nanoparticles. The PtNi/SiO2 nanofibers catalyst exhibited an excellent catalytic activity towards the reduction of p-nitrophenol, and the catalyst's kinetic parameter ( k n = 434 × 10-3 mmol s-1 g-1) was much higher than those of Ni/SiO2 nanofibers (18 × 10-3 mmol s-1 g-1), Pt/SiO2 nanofibers (55 × 10-3 mmol s-1 g-1) and previous reported PtNi catalysts. The catalyst could be easily recycled from heterogeneous reaction system based on its good magnetic properties (the Ms value of 11.48 emu g-1). In addition, PtNi/SiO2 nanofibers also showed an excellent stability and the conversion rate of p-nitrophenol still could maintain 94.2% after the eighth using cycle.

  1. Continuous Catalytic Hydrodeoxygenation of Guaiacol over Pt/SiO2 and Pt/H-MFI-90

    DEFF Research Database (Denmark)

    Hellinger, Melanie; Baier, Sina; Mortensen, Peter Mølgaard

    2015-01-01

    Hydrodeoxygenation of guaiacol in the presence of 1-octanol was studied in a fixed-bed reactor under mild conditions (50–250 °C) over platinum particles supported on silica (Pt/SiO2) and a zeolite with framework type MFI at a Si/Al-ratio of 45 (Pt/H-MFI-90). The deoxygenation selectivity strongly...

  2. Bifunctional Pt-Si Alloys for Small Organic Molecule Electro-oxidation

    DEFF Research Database (Denmark)

    Permyakova, Anastasia Aleksandrovna; Suntivich, Jin; Han, Binghong

    Designing highly active catalysts for electro-oxidation of small organic molecules can help to reduce the anodic overpotential for more efficient utilization of hydrocarbon fuels. The challenge in developing more active electrocatalysts for electro-oxidation reactions is to satisfy the stringent...... adsorption site. We will discuss the enhanced activity of Pt-Si alloys for small organic molecule oxidation, which can be attributed to the improved CO electro-oxidation kinetics on Pt-Si....

  3. Lowered operation voltage in Pt/SBi2Ta2O9/HfO2/Si ferroelectric-gate field-effect transistors by oxynitriding Si

    International Nuclear Information System (INIS)

    Horiuchi, Takeshi; Takahashi, Mitsue; Li, Qiu-Hong; Wang, Shouyu; Sakai, Shigeki

    2010-01-01

    Oxynitrided Si (SiON) surfaces show smaller subthreshold swings than do directly nitrided Si (SiN) surfaces when used in ferroelectric-gate field-effect transistors (FeFETs) having the following stacked-gate structure: Pt/SrBi 2 Ta 2 O 9 (SBT)/HfO 2 /Si. SiON/Si substrates for FeFETs were prepared by rapid thermal oxidation (RTO) in O 2 at 1000 °C and subsequent rapid thermal nitridation (RTN) in NH 3 at various temperatures in the range 950–1150 °C. The electrical properties of the Pt/SBT/HfO 2 /SiON/Si FeFET were compared with those of reference FETs, i.e. Pt/SBT/HfO 2 gate stacks formed on Si substrates subjected to various treatments: SiN x /Si formed by RTN, SiO 2 /Si formed by RTO and untreated Si. The Pt/SBT/HfO 2 /SiON/Si FeFET had a larger memory window than all the other reference FeFETs, particularly at low operation voltages when the RTN temperature was 1050 °C

  4. Structure and magnetic properties of L10-FePt thin films on TiN/RuAl underlayers

    International Nuclear Information System (INIS)

    Yang En; Ratanaphan, Sutatch; Zhu Jiangang; Laughlin, David E.

    2011-01-01

    Highly ordered L1 0 FePt-oxide thin films with small grains were prepared by using a RuAl layer as a grain size defining seed layer along with a TiN barrier layer. Different HAMR (Heat Assisted Magnetic Recording) favorable underlayers were studied to encourage perpendicular texture and preferred microstructure. It was found that the epitaxial and small grain growth from the RuAl/TiN underlayer results in small and uniform grains in the FePt layer with perpendicular texture. By introducing the grain size defining underlayers, the FePt grain size can be reduced from 30 to 6 nm with the same volume fraction (9%) of SiO 2 in the film, excellent perpendicular texture, and very high order parameter at 520 deg. C.

  5. Control of crystallographic texture and surface morphology of Pt/Tio2 templates for enhanced PZT thin film texture.

    Science.gov (United States)

    Fox, Austin J; Drawl, Bill; Fox, Glen R; Gibbons, Brady J; Trolier-McKinstry, Susan

    2015-01-01

    Optimized processing conditions for Pt/TiO2/SiO2/Si templating electrodes were investigated. These electrodes are used to obtain [111] textured thin film lead zirconate titanate (Pb[ZrxTi1-x ]O3 0 ≤ x ≤ 1) (PZT). Titanium deposited by dc magnetron sputtering yields [0001] texture on a thermally oxidized Si wafer. It was found that by optimizing deposition time, pressure, power, and the chamber pre-conditioning, the Ti texture could be maximized while maintaining low surface roughness. When oxidized, titanium yields [100]-oriented rutile. This seed layer has as low as a 4.6% lattice mismatch with [111] Pt; thus, it is possible to achieve strongly oriented [111] Pt. The quality of the orientation and surface roughness of the TiO2 and the Ti directly affect the achievable Pt texture and surface morphology. A transition between optimal crystallographic texture and the smoothest templating surface occurs at approximately 30 nm of original Ti thickness (45 nm TiO2). This corresponds to 0.5 nm (2 nm for TiO2) rms roughness as determined by atomic force microscopy and a full-width at half-maximum (FWHM) of the rocking curve 0002 (200) peak of 5.5/spl degrees/ (3.1/spl degrees/ for TiO2). A Pb[Zr0.52Ti 0.48]O3 layer was deposited and shown to template from the textured Pt electrode, with a maximum [111] Lotgering factor of 87% and a minimum 111 FWHM of 2.4/spl degrees/ at approximately 30 nm of original Ti.

  6. Oxidation of Ni(Pt)Si by molecular vs. atomic oxygen

    International Nuclear Information System (INIS)

    Manandhar, Sudha; Copp, Brian; Kelber, J.A.

    2008-01-01

    X-ray photoelectron spectroscopy (XPS) has been used to characterize the oxidation of a clean Ni(Pt)Si surface under two distinct conditions: exposure to a mixed flux of atomic and molecular oxygen (O + O 2 ; P O+O 2 = 5 x 10 -6 Torr) and pure molecular oxygen (O 2 ; P O 2 = 10 -5 Torr) at ambient temperatures. Formation of the clean, stoichiometric (nickel monosilicide) phase under vacuum conditions results in the formation of a surface layer enriched in PtSi. Oxidation of this surface in the presence of atomic oxygen initially results in formation of a silicon oxide overlayer. At higher exposures, kinetically limited oxidation of Pt results in Pt silicate formation. No passivation of oxygen uptake of the sample is observed for total O + O 2 exposure 4 L, at which point the average oxide/silicate overlayer thickness is 23 (3) A (uncertainty in the last digit in parentheses). In contrast, exposure of the clean Ni(Pt)Si surface to molecular oxygen only (maximum exposure: 5 x 10 5 L) results in slow growth of a silicon oxide overlayer, without silicate formation, and eventual passivation at a total average oxide thickness of 8(1) A, compared to a oxide average thickness of 17(2) A (no silicate formation) for the as-received sample (i.e., exposed to ambient.) The aggressive silicon oxidation by atomic oxygen, results in Ni-rich silicide formation in the substrate and the kinetically limited oxidation of the Pt

  7. Superplastic ceramics and intermetallics and their potential applications

    International Nuclear Information System (INIS)

    Wadsworth, J.; Nieh, T.G.

    1994-11-01

    Recent advances in the basic understanding of superplasticity and superplastic forming of ceramics and intermetallics are reviewed. Fine-grained superplastic ceramics, including yttria-stabilized tetragonal zirconia polycrystal, Y- or MgO-doped Al 2 O 3 Hydroxyapatite, β-spodumene glass ceramics, Al 2 0 3 -YTZP two-phase composites, SiC-Si 3 N 4 and Fe-Fe 3 C composites, are discussed. Superplasticity in the nickel-base (e.g., Ni 3 Al and Ni 3 Si) and titanium-base intermetallics (TiAl and T1 3 Al), is described. Deformation mechanisms as well as microstructural requirements and effects such as grain size, grain growth, and grain-boundary phases, on the superplastic deformation behavior am addressed. Factors that control the superplastic tensile elongation of ceramics are discussed. Superplastic forming, and particularly biaxial gas-pressure forming, of several ceramics and intermetallics are presented with comments on the likelihood of commercial application

  8. Dewetting and nanopattern formation of thin Pt films on SiO2 induced by ion beam irradiation

    International Nuclear Information System (INIS)

    Hu, Xiaoyuan; Cahill, David G.; Averback, Robert S.

    2001-01-01

    Dewetting and nanopattern formation of 3 - 10 nm Pt thin films upon ion irradiation is studied using scanning electron microscopy (SEM). Lateral feature size and the fraction of exposed surface area are extracted from SEM images and analyzed as functions of ion dose. The dewetting phenomenon has little temperature dependence for 3 nm Pt films irradiated by 800 keV Kr + at temperatures ranging from 80 to 823 K. At 893 K, the films dewet without irradiation, and no pattern formation is observed even after irradiation. The thickness of the Pt films, in the range 3 - 10 nm, influences the pattern formation, with the lateral feature size increasing approximately linearly with film thickness. The effect of different ion species and energies on the dewetting process is also investigated using 800 keV Kr + and Ar + irradiation and 19.5keVHe + , Ar + , Kr + , and Xe + irradiation. The lateral feature size and exposed surface fraction scale with energy deposition density (J/cm2) for all conditions except 19.5keVXe + irradiation. [copyright] 2001 American Institute of Physics

  9. Thin film circuits for future applications. Pt. 2. Evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Haug, G; Houska, K H; Schmidt, H J; Sprengel, H P; Wohak, K

    1976-06-01

    Investigations of thin film diffusion processes and reactions with encapsulation materials resulted in improved long term stability of evaporated NiCr resistors, SiO capacitors and NiCr/Au conductors for thin film circuits. Stable NiCr resistor networks can be formed on ceramic substrates, and SiO capacitors of good quality can be deposited on the new very smooth ceramic substrates. The knowledge of the influence of evaporation parameters make the production of SiO capacitors with definite properties and good reproducibility possible. The range of capacitance of tantalum thin film circuits can be extended by integration with evaporated SiO capacitors.

  10. Preparation and Thermoelectric Characteristics of ITO/PtRh:PtRh Thin Film Thermocouple.

    Science.gov (United States)

    Zhao, Xiaohui; Wang, Hongmin; Zhao, Zixiang; Zhang, Wanli; Jiang, Hongchuan

    2017-12-15

    Thin film thermocouples (TFTCs) can provide more precise in situ temperature measurement for aerospace propulsion systems without disturbance of gas flow and surface temperature distribution of the hot components. ITO/PtRh:PtRh TFTC with multilayer structure was deposited on alumina ceramic substrate by magnetron sputtering. After annealing, the TFTC was statically calibrated for multiple cycles with temperature up to 1000 °C. The TFTC with excellent stability and repeatability was realized for the negligible variation of EMF in different calibration cycles. It is believed that owing to oxygen diffusion barriers by the oxidation of top PtRh layer and Schottky barriers formed at the grain boundaries of ITO, the variation of the carrier concentration of ITO film is minimized. Meanwhile, the life time of TFTC is more than 30 h in harsh environment. This makes ITO/PtRh:PtRh TFTC a promising candidate for precise surface temperature measurement of hot components of aeroengines.

  11. Mixed valence and metamagnetism in a metal flux grown compound Eu2Pt3Si5

    International Nuclear Information System (INIS)

    Sarkar, Sumanta; Subbarao, Udumula; Joseph, Boby; Peter, Sebastian C.

    2015-01-01

    A new compound Eu 2 Pt 3 Si 5 with plate shaped morphology has been grown from excess In flux. The compound crystallizes in the orthorhombic U 2 Co 3 Si 5 structure type, Ibam space group and the lattice parameters are a=10.007(2) Å, b=11.666(2) Å and c=6.0011(12) Å. The crystal structure of this compound can be conceived as inter-twinned chains of [Pt 2 Si 2 ] and [PtSi 3 ] tetrahedra connected along [100] direction to give rise to a complex three dimensional [Pt 3 Si 5 ] network. Temperature dependent magnetic susceptibility data suggests that Eu 2 Pt 3 Si 5 undergoes a strong antiferromagnetic ordering (T N =19 K) followed by a weak ferromagnetic transition (T C =5.5 K). The effective magnetic moment/Eu obtained from susceptibility data is 6.78 μ B accounts mixed valent Eu with almost 85% divalent Eu, which is supported by X-ray absorption near edge spectroscopy. The compound undergoes a metamagnetic transition under applied magnetic field through a probable spin flop mechanism. - Graphical abstract: Eu 2 Pt 3 Si 5 , a new member in the U 2 Co 3 Si 5 (Ibam) family undergoes metamagnetic transition at high magnetic field and Eu is in mixed valence state. - Highlights: • A new compound Eu 2 Pt 3 Si 5 has been synthesized using indium as an inactive metal flux. • The compound undergoes metamagnetic transition at higher field. • Eu in this compound resides in a mixed valence state

  12. Magnetic and magneto-optical characteristics of spin coated Co{sub 0.6}Zn{sub 0.4}Fe{sub 1.7}Mn{sub 0.3}O{sub 4} thin films on Pt (1 1 1) coated Si substrate

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Arti, E-mail: artigupta80@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi110007 (India); Dutta, Shankar [Solid State Physics Laboratory, DRDO, Lucknow Road, Timarpur, Delhi110054 (India); Tandon, Ram Pal [Department of Physics and Astrophysics, University of Delhi, Delhi110007 (India)

    2016-05-15

    Highlights: • Properties of Co{sub 0.6}Zn{sub 0.4}Mn{sub 0.3}Fe{sub 1.7}O{sub 4} thin films on Pt-Si substrate are reported. • Reduction in thickness ∼27% with increased annealing temperature was found. • Partial (3 3 3) plane textured orientation was noted for these films. - Abstract: This paper reports magnetic and magneto-optical properties of Co{sub 0.6}Zn{sub 0.4}Fe{sub 1.7}Mn{sub 0.3}O{sub 4} nanocrystalline thin films (thickness ∼140–200 nm) deposited on Pt (1 1 1)/Ti/SiO{sub 2}/Si substrates by spin coating technique. Deposited films are then annealed at 600 °C and 700 °C for 60 min (significant reduction in film thickness from 200 nm to 140 nm was noted with the increase in post deposition annealing temperature). The X ray diffraction patterns confirmed the spinel cubic structure of Co{sub 0.6}Zn{sub 0.4}Fe{sub 1.7}Mn{sub 0.3}O{sub 4} films with polycrystalline phase and also indicated a partial <3 3 3> texture orientation. Deposited films showed magnetic anisotropy as evidenced from magnetic and magneto-optical measurements. Higher in plane remnant magnetization and low coercivity values as compared to out of plane ones were observed for both samples, indicating in plane alignment of easy axis of magnetization.

  13. Intermetallic GaPd2 Nanoparticles on SiO2 for Low-Pressure CO2 Hydrogenation to Methanol

    DEFF Research Database (Denmark)

    Fiordaliso, Elisabetta Maria; Sharafutdinov, Irek; Carvalho, Hudson W. P.

    2015-01-01

    A nanodispersed intermetallic GaPd2/SiO2 catalyst is prepared by simple impregnation of industrially relevant high-surface-area SiO2 with Pd and Ga nitrates, followed by drying, calcination, and reduction in hydrogen. The catalyst is tested for CO2 hydrogenation to methanol at ambient pressure, r...

  14. Study of physical, chemical and electronic properties of binaries and ternaries uranium compounds in the U-Si-B and U-Pt-Si systems

    International Nuclear Information System (INIS)

    Brisset, Nicolas

    2016-01-01

    Two main research axes were defined for this Ph-D work: (i) studying the effect of light elements (B, C) on the stability of U-Si compounds, and (ii) identifying and physically characterizing new phases in the U-Pt-Si system. Minor additions of carbon and boron in U-Si samples revealed that the formation of U 5 Si 4 would be correlated to the presence of these light elements, questioning its existence in the U-Si system. To evaluate the boron potential as a stimulant for non-metallic light elements of the second period (C, N, O), the isothermal section of the ternary phase diagram U-Si-B has been drawn at 927 C, disclosing solid equilibrium mainly between the UB and U-Si binary axes and the existence of the novel compound U 20 Si 16 B 3 , isostructural to the carbon equivalent one. These results suggest a specific behavior for a given light element on the U-Si phase relations. The isothermal section at 900 C of the U-Pt-Si ternary system was experimentally determined, leading to the discovery of 14 new phases, among which U 3 Pt 4 Si 6 , U 3 Pt 6 Si 4 and U 3 Pt 7 Si crystallized in their own structural type. As a prerequisite for this study, the phase relations in the U-Pt binary phase diagram were re-examined for the composition range 30 at.% and 70 at.% Pt, leading to a new assessment of the phase diagram which comprises the new U 3 Pt 4 compound. The temperature of the transformations has been measured by DTA. By coupling our experimental results to the literature data, a modeling of the phase diagram by the Calphad method was performed. Physical characterizations of the new U 3 Pt 4 compound revealed a moderate heavy fermion behavior, with ferromagnetic ordering below Tc = 7(1) K. As a side project, a study of the U 3 TGe 5 family with the anti-Hf 5 CuSn 3 structural type lead to the discovery of nine new compounds for T = V, Cr, Mn, Zr, Nb, Mo, Hf, Ta and W in addition to the previously reported U 3 TiGe 5 . Their magnetic and electronic properties were

  15. Oxygen reduction and methanol oxidation behaviour of SiC based Pt nanocatalysts for proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Dhiman, Rajnish; Stamatin, Serban Nicolae; Andersen, Shuang Ma

    2013-01-01

    for carbon based commercial catalyst, when HClO4 is used as electrolyte. The Pt (110) & Pt (111) facets are shown to have higher electrochemical activities than Pt (100) facets. To the best of our knowledge, methanol oxidation studies and the comparison of peak deconvolutions of the H desorption region in CV...... and methanol oxidation reactions of SiC supported catalysts and measured them against commercially available carbon based catalysts. The deconvolution of the hydrogen desorption signals in CV cycles shows a higher contribution of Pt (110) & Pt (111) peaks compared to Pt (100) for SiC based supports than...... cyclic studies are here reported for the first time for SiC based catalysts. The reaction kinetics for the oxygen reduction and for methanol oxidation with Pt/SiC are observed to be similar to the carbon based catalysts. The SiC based catalyst shows a higher specific surface activity than BASF (Pt...

  16. Structural and functional intermetallics - an overview

    International Nuclear Information System (INIS)

    Varin, R.A.

    2000-01-01

    This overview presents the current status of the research and development of both structural and functional intermetallics. On the one hand, the discussion is focused on commercialization and existing industrial applications of intermetallics. Within this frame the applications of titanium aluminides (TiAl) for turbocharger rotors and exhaust valves in automotive industry are being discussed. Advances in the applications of TiAl alloys for the next generation of turbine blades in aerospace/aircraft segment are also presented. The entire spectrum of nickel and iron aluminide alloys developed commercially by the Oak Ridge national Laboratory (USA) and the examples of their application in various segments of industry are thoroughly discussed. Some inroads made in the application of directionally solidified (DS) multiphase niobium silicides (Nb 3 Si+Nb 5 Si 3 ) in situ intermetallic composites with the goal of pushing the service temperature envelope of turbine blades to ∼ 1200-1300 o C are also discussed. On the other hand, various topics in basic or curiosity driven research of titanium aluminides and trialuminides, iron aluminides and high temperature structural silicides are discussed. Some very recent findings on the improvements in fracture toughness and strength of titanium trialuminides and magnetic behaviour of unconventionally cold - worked iron aluminides are highlighted. The topic of functional intermetallics is limited to the systems must suitable for hydrogen storage applications. A perspective on the directions of future research and development of intermetallics is also provided. (author)

  17. Atom probe tomography of intermetallic phases and interfaces formed in dissimilar joining between Al alloys and steel

    International Nuclear Information System (INIS)

    Lemmens, B.; Springer, H.; Duarte, M.J.; De Graeve, I.; De Strycker, J.; Raabe, D.; Verbeken, K.

    2016-01-01

    While Si additions to Al are widely used to reduce the thickness of the brittle intermetallic seam formed at the interface during joining of Al alloys to steel, the underlying mechanisms are not clarified yet. The developed approach for the site specific atom probe tomography analysis revealed Si enrichments at grain and phase boundaries between the θ (Fe 4 Al 13 ) and η (Fe 2 Al 5 ) phase, up to about ten times that of the concentration in Al. The increase in Si concentration could play an important role for the growth kinetics of the intermetallic phases formed for example in hot-dip aluminizing of steel. - Highlights: •Si additions to Al reduce thickness of intermetallic seam in joining with steel. •Approach developed for the site specific APT analysis of the intermetallic seam •Si enrichment at grain and phase boundaries possibly affects growth of intermetallics.

  18. Structure and properties of PZT thin films on strontium ruthenate and calcium ruthenate electrodes

    International Nuclear Information System (INIS)

    Wu, T.-J.; Tsai, D.-S.

    2004-01-01

    PZT thin films have been prepared via metalorganic CVD (MOCVD) on four substrates of conducting oxides of ruthenates, SrRuO 3 /Pt/Ti/SiO 2 /Si(1 0 0), SrRuO 3 /SiO 2 /Si(1 0 0), CaRuO 3 /Pt/Ti/SiO 2 /Si(1 0 0), CaRuO 3 /SiO 2 /Si(1 0 0). The conducting ruthenate layers were also grown using MOCVD. Ferroelectric properties of polarization fatigue and leakage current density are measured. The internal strain of PZT thin crystal which is mainly constrained by the bottom electrode seems to be the decisive factor in ferroelectric properties. The internal strain of PZT is represented by its tetragonality ratio. The PZT thin film in the capacitor Au/PZT/SrRuO 3 /Pt/Ti/SiO 2 /Si, with the largest tetragonality ratio 1.026, exhibits an optimum combination of large polarization, less fatigue, and low leakage current density. Both SrRuO 3 and CaRuO 3 are good diffusion barriers to prevent interdiffusion of cations between the ferroelectric and the electrode. The slightly higher intermixing at the CaRuO 3 -to-Pt/Ti interface is owing to the high annealing temperature needed in CaRuO 3 synthesis

  19. Thermal stability of Ni-Pt-Ta alloy silicides on epi-Si{sub 1-x}C{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jung-Ho; Chang, Hyun-Jin [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Min, Byoung-Gi [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Jusung Engineering Co., Ltd., 49, Neungpyeong-ri, Opo-eup, Gwangju-Si, Kyunggi-do 464-892 (Korea, Republic of); Ko, Dae-Hong [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)], E-mail: dhko@yonsei.ac.kr; Cho, Mann-Ho [Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749 (Korea, Republic of); Sohn, Hyunchul [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Tae-Wan [Jusung Engineering Co., Ltd., 49, Neungpyeong-ri, Opo-eup, Gwangju-Si, Kyunggi-do 464-892 (Korea, Republic of)

    2008-12-05

    We investigated the silicide formation in Ni/epi-Si{sub 1-x}C{sub x} systems. Ni-Pt and Ni-Pt-Ta films were deposited on epi-Si{sub 1-x}C{sub x}/Si substrates by DC magnetron sputtering and processed at various temperatures. The sheet resistance of the silicide from the Ni alloy/epi-Si{sub 1-x}C{sub x} systems was maintained at low values compared to that from Ni/Si systems. By TEM and EDS analyses, we confirmed the presence of a Pt alloy layer at the top of the Ni-silicide layer. The stability of the silicide layer in the Ni alloy/epi-Si{sub 1-x}C{sub x} system is explained by not only the Pt rich layer on the top of the Ni-silicide layer, but also by the presence of a small amount of Pt in the Ni-silicide layer or at the grain boundaries. And both the thermal stability and the morphology of silicide were greatly improved by the addition of Ta in Ni-Pt films.

  20. Spectroscopic ellipsometry study of FePt nanoparticle films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.J.; Lo, C.C.H. [Ames Laboratory, Iowa State University, Ames, IA 50011 (United States); Yu, A.C.C. [Sony Corporation, Sendai Technology Center, 3-4-1 Sakuragi, Miyagi 985-0842 (Japan); Fan, M. [School of Materials Science and Technology, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2006-12-15

    The optical properties of a FePt nanoparticle film were investigated using spectroscopic ellipsometry. The FePt nanoparticle film of thickness about 15 nm was prepared by deposition of FePt nanoparticles directly on a Si substrate. The nanoparticle film was annealed at 600 C in vacuum for two hours before the measurements. The optical properties of the FePt nanoparticle film showed distinctively different spectra from those obtained from the bulk and thin film FePt samples, in particular in the low photon energy range (below 3.5 eV) where the nanoparticle film exhibited a relatively flat refractive index and a substantially lower extinction coefficient than the bulk and epitaxial thin film samples. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Magnetic properties of Co/Pt-Pd multilayer thin film media

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, N.; Igarashi, S.; Fujita, F.; Koike, K.; Kato, H. [Faculty of Engineering, Yamagata University, Yonezawa, Yamagata 992-8510 (Japan); Kirino, F. [National University of Fine Arts and Music, Taitou-ku, Tokyo 110-8714 (Japan)

    2007-12-15

    We investigated the dependence of magnetic properties for Co/Pt{sub 100-x}Pd{sub x} multilayer thin films on the concentration in the Pt-Pd alloy layers. Perpendicular magneto anisotropy constant K {sub p} increases with increasing Pt concentration in the Pt-Pd layer, since the interface anisotropy between the Co and the Pt-Pd layers is enhanced by the increase of the Pt concentration. The Curie temperature and the temperature dependence of K{sub p} for the specimens increase with increasing the amount of Pt in the Pt-Pd layer. These results may indicate that the lattice distortion of the Co layer caused by the interface from the Pt-Pd layer becomes larger and the increase of the distortion enhances the interface anisotropy, since the lattice misfit between the Pt-Pd and the Co increases with increasing the Pt concentration. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Pt/AlPO{sub 4} nanocomposite thin-film electrodes for ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Yuhong; Kang, Joonhyeon; Nam, Seunghoon; Byun, Sujin [WCU Hybrid Materials Program, Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 151-744 (Korea, Republic of); Park, Byungwoo, E-mail: byungwoo@snu.ac.kr [WCU Hybrid Materials Program, Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2012-07-16

    The enhanced catalytic properties toward ethanol electrooxidation on Pt/AlPO{sub 4} nanocomposite thin-film electrodes were investigated. The Pt/AlPO{sub 4} nanocomposites with various Al/Pt ratios (0.27, 0.57, and 0.96) were fabricated by a co-sputtering method. All of the Pt/AlPO{sub 4} nanocomposites showed a negative shift in the onset potential and a higher current density than those of pure Pt electrode for the electrooxidation of ethanol. Among the various Pt/AlPO{sub 4} nanocomposite thin-film electrodes, the electrode with an atomic ratio of Al to Pt of 0.57 showed the highest electrocatalytic activity for ethanol electrooxidation. The activation enthalpy for the optimum Pt/AlPO{sub 4} nanocomposite was approximately 0.05 eV lower than that of pure Pt. It is believed that the enhancement in catalytic activity is due to the electron-rich Pt resulting from the Fermi-energy difference between Pt and AlPO{sub 4}. - Highlights: Black-Right-Pointing-Pointer The enhanced ethanol electrooxidation on Pt/AlPO{sub 4} nanocomposites is investigated. Black-Right-Pointing-Pointer The Pt/AlPO{sub 4} exhibits higher current density and lower onset potential than pure Pt. Black-Right-Pointing-Pointer The activation enthalpy for optimum Pt/AlPO{sub 4} electrode is {approx}0.05 eV lower than pure Pt. Black-Right-Pointing-Pointer XPS shows electron-rich Pt due to Fermi-energy difference between Pt and AlPO{sub 4}.

  3. The equiatomic intermetallics REPtCd (RE = La, Ce, Pr, Nd, Eu) and magnetic properties of CeAuCd

    Energy Technology Data Exchange (ETDEWEB)

    Johnscher, Michael; Niehaus, Oliver; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Tappe, Frank [Hochschule Hamm-Lippstadt, Hamm (Germany)

    2015-06-01

    The cadmium intermetallics REPtCd (RE = La, Ce, Pr, Nd, Eu) and CeAuCd were synthesized by induction-melting of the elements in sealed niobium ampoules followed by annealing in muffle furnaces. The samples were characterized by powder X-ray diffraction. The structures of CePtCd (ZrNiAl type, P anti 62m, a = 763.8(6), c = 409.1(4) pm, wR2 = 0.0195, 298 F{sup 2} values, 14 variables) and EuPtCd (TiNiSi type, Pnma, a = 741.3(2), b = 436.4(1), c = 858.0(4) pm, wR2 = 0.0385, 440 F{sup 2} values, 20 variables) were refined from single-crystal data. The REPtCd structures exhibit three-dimensional networks of corner- and edge-sharing Cd rate at Pt{sub 2/6}Pt{sub 2/3} and Cd rate at Pt{sub 4/4} tetrahedra, which leave cages for the rare earth atoms. Temperature-dependent magnetic susceptibility data of CeAuCd reveal a paramagnetic to antiferromagnetic phase transition at T{sub N} = 3.7(5) K.

  4. The equiatomic intermetallics REPtCd (RE = La, Ce, Pr, Nd, Eu) and magnetic properties of CeAuCd

    International Nuclear Information System (INIS)

    Johnscher, Michael; Niehaus, Oliver; Poettgen, Rainer

    2015-01-01

    The cadmium intermetallics REPtCd (RE = La, Ce, Pr, Nd, Eu) and CeAuCd were synthesized by induction-melting of the elements in sealed niobium ampoules followed by annealing in muffle furnaces. The samples were characterized by powder X-ray diffraction. The structures of CePtCd (ZrNiAl type, P anti 62m, a = 763.8(6), c = 409.1(4) pm, wR2 = 0.0195, 298 F 2 values, 14 variables) and EuPtCd (TiNiSi type, Pnma, a = 741.3(2), b = 436.4(1), c = 858.0(4) pm, wR2 = 0.0385, 440 F 2 values, 20 variables) were refined from single-crystal data. The REPtCd structures exhibit three-dimensional networks of corner- and edge-sharing Cd rate at Pt 2/6 Pt 2/3 and Cd rate at Pt 4/4 tetrahedra, which leave cages for the rare earth atoms. Temperature-dependent magnetic susceptibility data of CeAuCd reveal a paramagnetic to antiferromagnetic phase transition at T N = 3.7(5) K.

  5. High-coercivity FePt nanoparticle assemblies embedded in silica thin films

    International Nuclear Information System (INIS)

    Yan, Q; Purkayastha, A; Singh, A P; Li, H; Ramanath, G; Li, A; Ramanujan, R V

    2009-01-01

    The ability to process assemblies using thin film techniques in a scalable fashion would be a key to transmuting the assemblies into manufacturable devices. Here, we embed FePt nanoparticle assemblies into a silica thin film by sol-gel processing. Annealing the thin film composite at 650 deg. C transforms the chemically disordered fcc FePt phase into the fct phase, yielding magnetic coercivity values H c >630 mT. The positional order of the particles is retained due to the protection offered by the silica host. Such films with assemblies of high-coercivity magnetic particles are attractive for realizing new types of ultra-high-density data storage devices and magneto-composites.

  6. Formation of abrasion-resistant coatings of the AlSiFe{sub x}Mny intermetallic compound type on the AISI 304L alloy

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Peralez, L. G.; Flores-Valdes, A.; Salinas-Rodriguez, A.; Ochoa-Palacios, R. M.; Toscano-giles, J. A.; Torres-Torres, J.

    2016-05-01

    The α-Al{sub 9}FeMnSi and α-Al{sub 9}FeMn{sub 2}Si intermetallics formed by reactive sintering of Al, Si, Mn, Fe, Cr and Ni powders have been used in AISI 304L steels to enhance microhardness. Processing variables of the reactive sintering treatment were temperature (600, 650, 700, 750 and 800 degree centigrade), pressure (5, 10 y 20 MPa) and holding time (3600, 5400 y 7200 seconds). Experimental results show that temperature is the most important variable affecting the substrate/coating formation, while pressure does not appear to have a significant effect. The results show the optimum conditions of the reactive sintering that favor the substrate/coating formation are 800 degree centigrade, 20 MPa and 7200 seconds. Under these conditions, the reaction zone between the substrate and coating is more compacted and well-adhered, with a microhardness of 1300 Vickers. The results of SEM and X-Ray diffraction confirmed the formation of β-Al{sub 9}FeMnSi and β-Al{sub 9}FeMn{sub 2}Si intermetallics in the substrate/coating interface as well as the presence of Cr and Ni, indicating diffusion of these two elements from the substrate to the interface. (Author)

  7. All-optical measurement of interlayer exchange coupling in Fe/Pt/FePt thin films

    Science.gov (United States)

    Berk, C.; Ganss, F.; Jaris, M.; Albrecht, M.; Schmidt, H.

    2018-01-01

    Time Resolved Magneto Optic Kerr Effect spectroscopy was used to all-optically study the dynamics in exchange coupled Fe(10 nm)/Pt(x = 0-5 nm)/FePt (10 nm) thin films. As the Pt spacer decreases, the effective magnetization of the layers is seen to evolve towards the strong coupling limit where the two films can be described by a single effective magnetization. The coupling begins at x = 1.5 nm and reaches a maximum exchange coupling constant of 2.89 erg/cm2 at x = 0 nm. The films are ferromagnetically coupled at all Pt thicknesses in the exchange coupled regime (x ≤ 1.5 nm). A procedure for extracting the interlayer exchange constant by measuring the magnetic precession frequencies at multiple applied fields and angles is outlined. The dynamics are well reproduced using micromagnetic simulations.

  8. Electronic structure and chemical bonding in LaIrSi-type intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Matar, Samir F. [Bordeaux Univ., Pessac (France). CNRS; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Nakhl, Michel [Univ. Libanaise, Fanar (Lebanon). Ecole Doctorale Sciences et Technologies

    2017-05-01

    The cubic LaIrSi type has 23 representatives in aluminides, gallides, silicides, germanides, phosphides, and arsenides, all with a valence electron count of 16 or 17. The striking structural motif is a three-dimensional network of the transition metal (T) and p element (X) atoms with TX{sub 3/3} respectively XT{sub 3/3} coordination. Alkaline earth or rare earth atoms fill cavities within the polyanionic [TX]{sup δ-} networks. The present work presents a detailed theoretical study of chemical bonding in LaIrSi-type representatives, exemplarily for CaPtSi, BaIrP, BaAuGa, LaIrSi, CeRhSi, and CeIrSi. DFT-GGA-based electronic structure calculations show weakly metallic compounds with itinerant small magnitude DOSs at E{sub F} except for CeRhSi whose large Ce DOS at E{sub F} leads to a finite magnetization on Ce (0.73 μ{sub B}) and induced small moments of opposite sign on Rh and Si in a ferromagnetic ground state. The chemical bonding analyses show dominant bonding within the [TX]{sup δ-} polyanionic networks. Charge transfer magnitudes were found in accordance with the course of the electronegativites of the chemical constituents.

  9. Recent progress in Si thin film technology for solar cells

    Science.gov (United States)

    Kuwano, Yukinori; Nakano, Shoichi; Tsuda, Shinya

    1991-11-01

    Progress in Si thin film technology 'specifically amorphous Si (a-Si) and polycrystalline Si (poly-Si) thin film' for solar cells is summarized here from fabrication method, material, and structural viewpoints. In addition to a-Si, primary results on poly-Si thin film research are discussed. Various applications for a-Si solar cells are mentioned, and consumer applications and a-Si solar cell photovoltaic systems are introduced. New product developments include see-through solar cells, solar cell roofing tiles, and ultra-light flexible solar cells. As for new systems, air conditioning equipment powered by solar cells is described. Looking to the future, the proposed GENESIS project is discussed.

  10. Pt-based Thin Films as Efficient and Stable Catalysts for Oxygen Electroreduction

    DEFF Research Database (Denmark)

    Zamburlini, Eleonora

    at the cathode of Polymer Electrolyte Membrane Fuel Cells (PEMFCs). Herein the fabrication method, which consists of co-sputtering of thin films, is presented in detail, explaining the challenges one must face in order to fabricate oxygen-free Pt-lanthanides and Pt-early transition metals alloys......This thesis presents the fabrication and characterization of Pt-based thin film catalysts for Oxygen Reduction Reaction (ORR). Gadolinium and Yttrium have been used as alloying materials, in preparation for the replacement of the traditional but economically disadvantageous pure Pt catalysts......, and the proposed solutions. The characterization of the catalysts focused mainly on the electrochemical testing using a Rotating Ring Disk Electrode (RRDE) setup, and includes X-ray Diffraction (XRD), X-ray Photoemission Spectroscopy (XPS), Angle-Resolved X-ray Photoelectron Spectroscopy (AR-XPS), Scanning...

  11. Preparation and switching kinetics of Pb(Zr, Ti)O3 thin films deposited by reactive sputtering

    International Nuclear Information System (INIS)

    Hase, Takashi; Shiosaki, Tadashi

    1991-01-01

    Ferroelectric Pb(Zr, Ti)O 3 [PZT] thin films have been prepared on Pt/Ti/SiO 2 /Si and Pt/SiO 2 /Si substrates using the reactive sputtering method with a metal composite target. The (111)-oriented PZT (80/20) thin films with a perovskite structure have been obtained at a substrate temperature of 595degC on highly (111)-oriented Pt films formed on SiO 2 /Si substrates. When an 8 V pulse sequence was applied to a 265 nm-thick film with an electrode area of 50 x 50 μm 2 , the switching time and the switched charge density measured were 20 ns and 10 μC/cm 2 , respectively. The switching time was strongly dependent on the electrode area. (author)

  12. Preparation and performance of Pt/PTFE/Foam SiC as a hydrophobic catalyst for LPCE

    International Nuclear Information System (INIS)

    He, Jianchao; Wang, Heyi; Xiao, Chengjian; Li, Jiamao; Chen, Ping; Hou, Jingwei

    2016-01-01

    Highlights: • A new type of foam material, Foam SiC with three-dimensional network structure, was chosen as the carrier of catalyst. • Foam SiC was hydrophobic treated by PTFE, and achieved a good hydrophobic property. • Pt/PTFE/Foam SiC was prepared by impregnation method with Pt-organic solution and gaseous phase reduction method. • The hydrophobic catalysts were packed with Dixon phosphor bronze gauze rings (about 3 mm × 3 mm) in LPCE system to test the catalytic performance. • The effect of different size of the catalyst on LPCE was been tested. - Abstract: Platinum catalysts supported on a composite of polytetrafluoroethylene (PTFE) and Foam SiC (Pt/PTFE/Foam SiC) have been proposed and prepared by an impregnation method. The as-prepared Pt/PTFE/Foam SiC was characterized by compression load testing, dynamic contact angle measurement, SEM, XRD, and TEM. The results show that the catalyst prepared by triple hydrophobic treatment had an initial contact angle of 134.2°, a good compression performance of 3.2 MPa, and platinum nanoparticles of 12.1 nm (average size). The catalytic activity of the catalyst was tested with different packing methods, reaction temperatures, and gas-liquid ratios. An excellent hydrogen isotope exchange performance was observed using a hydrophilic packing material-to-catalyst ratio of 25% and reaction temperature of 80 °C. Pt/PTFE/Foam SiC may be used as a hydrophobic catalyst for a water detritiation system (WDS) via a liquid-phase catalytic exchange process (LPCE).

  13. Preparation and performance of Pt/PTFE/Foam SiC as a hydrophobic catalyst for LPCE

    Energy Technology Data Exchange (ETDEWEB)

    He, Jianchao; Wang, Heyi, E-mail: hywang@caep.cn; Xiao, Chengjian; Li, Jiamao; Chen, Ping; Hou, Jingwei

    2016-12-15

    Highlights: • A new type of foam material, Foam SiC with three-dimensional network structure, was chosen as the carrier of catalyst. • Foam SiC was hydrophobic treated by PTFE, and achieved a good hydrophobic property. • Pt/PTFE/Foam SiC was prepared by impregnation method with Pt-organic solution and gaseous phase reduction method. • The hydrophobic catalysts were packed with Dixon phosphor bronze gauze rings (about 3 mm × 3 mm) in LPCE system to test the catalytic performance. • The effect of different size of the catalyst on LPCE was been tested. - Abstract: Platinum catalysts supported on a composite of polytetrafluoroethylene (PTFE) and Foam SiC (Pt/PTFE/Foam SiC) have been proposed and prepared by an impregnation method. The as-prepared Pt/PTFE/Foam SiC was characterized by compression load testing, dynamic contact angle measurement, SEM, XRD, and TEM. The results show that the catalyst prepared by triple hydrophobic treatment had an initial contact angle of 134.2°, a good compression performance of 3.2 MPa, and platinum nanoparticles of 12.1 nm (average size). The catalytic activity of the catalyst was tested with different packing methods, reaction temperatures, and gas-liquid ratios. An excellent hydrogen isotope exchange performance was observed using a hydrophilic packing material-to-catalyst ratio of 25% and reaction temperature of 80 °C. Pt/PTFE/Foam SiC may be used as a hydrophobic catalyst for a water detritiation system (WDS) via a liquid-phase catalytic exchange process (LPCE).

  14. Co-sputtered ZnO:Si thin films as transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Faure, C. [CNRS, Univ. Bordeaux, ICMCB, UPR 9048, F33600 Pessac (France); Clatot, J. [LRCS, 33 Rue St Leu, F-80039 Amiens (France); Teule-Gay, L.; Campet, G. [CNRS, Univ. Bordeaux, ICMCB, UPR 9048, F33600 Pessac (France); Labrugere, C. [CeCaMA, Universite de Bordeaux, ICMCB, 87 avenue du Dr. A. Schweitzer, Pessac, F-33608 (France); Nistor, M. [National Institute for Lasers, Plasmas and Radiation Physics, L22, PO Box MG-36, 77125 Bucharest-Magurele (Romania); Rougier, A., E-mail: rougier@icmcb-bordeaux.cnrs.fr [CNRS, Univ. Bordeaux, ICMCB, UPR 9048, F33600 Pessac (France)

    2012-12-01

    Silicon doped Zinc Oxide thin films, so-called SZO, were deposited at room temperature on glass and plastic substrates by co-sputtering of ZnO and SiO{sub 2} targets. The influence of the SiO{sub 2} target power supply (from 30 to 75 W) on the SZO thin film composition and crystallinity is discussed. Si/Zn atomic ratio, determined by X-ray microprobe, increases from 1.2 to 8.2 at.%. For Si/Zn ratio equal and lower than 3.9%, SZO (S{sub 3.9}ZO) thin films exhibit the Wurzite structure with the (0 0 2) preferred orientation. Larger Si content leads to a decrease in crystallinity. With Si addition, the resistivity decreases down to 3.5 Multiplication-Sign 10{sup -3} Ohm-Sign {center_dot}cm for SZO thin film containing 3.9 at.% of Si prior to an increase. The mean transmittance of S{sub 3.9}ZO thin film on glass substrate approaches 80% (it is about 90% for the film itself) in the visible range (from 400 to 750 nm). Co-sputtered SZO thin films are suitable candidates for large area transparent conductive oxides. - Highlights: Black-Right-Pointing-Pointer Si doped ZnO thin films by co-sputtering of ZnO and SiO{sub 2} targets. Black-Right-Pointing-Pointer Minimum of resistivity for Si doped ZnO thin films containing 3.9% of Si. Black-Right-Pointing-Pointer Si and O environments by X-ray Photoelectron Spectroscopy.

  15. Transformation of iron containing constituent intermetallic particles during hydrothermal treatment

    DEFF Research Database (Denmark)

    Borgaonkar, Shruti; Din, Rameez Ud; Kasama, Takeshi

    2018-01-01

    in the alloys. Furthermore, electron energy loss spectroscopy analysis revealed that the during the steam treatment, the Fe enriched areas of the Al (Fe-Si) Mn type intermetallic particles were transformed into Fe2O3 and Fe3O4 phases, while energy-dispersive X-ray spectroscopy line profile measurements...... by scanning transmission electron microscope showed that Mn and Si were leached out and incorporated into the surrounding oxide layer. Further, the part of intermetallic phase was transformed into polycrystalline material....

  16. High quality atomically thin PtSe2 films grown by molecular beam epitaxy

    Science.gov (United States)

    Yan, Mingzhe; Wang, Eryin; Zhou, Xue; Zhang, Guangqi; Zhang, Hongyun; Zhang, Kenan; Yao, Wei; Lu, Nianpeng; Yang, Shuzhen; Wu, Shilong; Yoshikawa, Tomoki; Miyamoto, Koji; Okuda, Taichi; Wu, Yang; Yu, Pu; Duan, Wenhui; Zhou, Shuyun

    2017-12-01

    Atomically thin PtSe2 films have attracted extensive research interests for potential applications in high-speed electronics, spintronics and photodetectors. Obtaining high quality thin films with large size and controlled thickness is critical. Here we report the first successful epitaxial growth of high quality PtSe2 films by molecular beam epitaxy. Atomically thin films from 1 ML to 22 ML have been grown and characterized by low-energy electron diffraction, Raman spectroscopy and x-ray photoemission spectroscopy. Moreover, a systematic thickness dependent study of the electronic structure is revealed by angle-resolved photoemission spectroscopy (ARPES), and helical spin texture is revealed by spin-ARPES. Our work provides new opportunities for growing large size single crystalline films to investigate the physical properties and potential applications of PtSe2.

  17. Preparation of Ag@mSiO{sub 2} and Pt@mSiO{sub 2}nano composites using trioctylmethyl ammonium hydrogen phthalate (TOMAHP) ionic liquid as reaction medium

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Sujoy, E-mail: sujoyb@barc.gov.in [Chemical Engineering Group, Bhabha Atomic Research Centre, Mumbai 400085 (India); Dasgupta, Kinshuk [Materials Group, Bhabha Atomic Research Centre, Mumbai 400085 (India); Bahadur, Jitendra [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Tewari, Raghavendra [Materials Group, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mazumder, Subhasish [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-09-15

    A novel one step green chemistry approach utilizing trioctylmethyl ammonium hydrogen phthalate (TOMAHP), task specific ionic liquid has been attempted for synthesis of Ag and Pt nanoparticles supported on silica (Ag@mSiO{sub 2} and Pt@mSiO{sub 2}). Structure, size distribution and morphology of these nano-composite particles were evaluated using X-ray diffraction (XRD), transmission electron microscopy (TEM), small angle neutron scattering (SANS) as well as small angle X-ray scattering (SAXS) techniques. The XRD results show that Ag/Pt metal nanoparticles deposited on to SiO{sub 2} surface are face center cubic (fcc) in nature. The TEM and SAXS/SANS results show the morphology and size distributions of Ag and Pt nanoparticles loaded on to the surface of SiO{sub 2}. It has been found that Ag nanoparticles are well dispersed on to the SiO{sub 2} surface and are quite monodisperse in size, whereas Pt nanoparticles are quite polydisperse in size and forms aggregate or chain like structure on SiO{sub 2} surface containing primary nanoparticles of typical size range 3–7 nm. The stability of nanoparticles, which controls its dispersion on SiO{sub 2} substrate, has been discussed. - Graphical abstract: Mechanism for Ag@mSiO{sub 2} and Pt@mSiO{sub 2} nano composites in TOMAHP ionic liquid medium. - Highlights: • Novel methods for preparation of Pt@SiO{sub 2} and Ag@SiO{sub 2} nano composite in functionalized ionic liquid. • Pt@SiO{sub 2} and Ag@SiO{sub 2} nano composite are characterized using XRD, TEM as well as small angle x-ray scattering techniques. • The sizes of nano composite is <10 nm in size. • The method is simple one step, green chemical reduction method to prepare SiO{sub 2} support nano catalyst.

  18. First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Hansen, Heine Anton; Rossmeisl, Jan

    2015-01-01

    driving force for surface segregation, diffusion to defects or surface self-assembling. On the basis of stability and activity analysis we conclude that the near surface alloy of Pd in Pt and some PdAu binary and PtPdAu ternary thin films with a controlled amount of Au are the best catalysts for oxygen......Further advances in fuel cell technologies are hampered by kinetic limitations associated with the sluggish cathodic oxygen reduction reaction. We have investigated a range of different formulations of binary and ternary Pt, Pd and Au thin films as electrocatalysts for oxygen reduction. The most...... active binary thin films are near-surface alloys of Pt with subsurface Pd and certain PdAu and PtAu thin films with surface and/or subsurface Au. The most active ternary thin films are with pure metal Pt or Pd skins with some degree of Au in the surface and/or subsurface layer and the near-surface alloys...

  19. PLD prepared nanostructured Pt-CeO{sub 2} thin films containing ionic platinum

    Energy Technology Data Exchange (ETDEWEB)

    Vorokhta, M., E-mail: vorohtam@gmail.com [Charles University in Prague, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 18000 Prague 8 (Czech Republic); Khalakhan, I.; Matolínová, I.; Nováková, J.; Haviar, S. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 18000 Prague 8 (Czech Republic); Lančok, J.; Novotný, M. [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague, Czhech Republic (Czech Republic); Yoshikawa, H. [National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan); Matolín, V. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 18000 Prague 8 (Czech Republic)

    2017-02-28

    Highlights: • Nanostructured Pt-CeO{sub 2} thin catalyst films were grown on plasma etched and non-etched carbon substrates by pulsed laser deposition. • The surface composition of the nanostructured Pt-CeO{sub 2} films was investigated by surface analysis techniques. • The effect of film roughening was separated from the effect of platinum-ceria atomic interactions. - Abstract: The composition of nanostructured Pt-CeO{sub 2} films on graphite substrates prepared by pulsed laser deposition has been investigated by means of hard X-ray photoelectron spectroscopy, scanning electron microscopy, high resolution transmission electron microscopy, and atomic force microscopy. The influence of morphology of the graphite substrates was investigated with respect to the relative concentrations of ionic and metallic Pt species in the films. It was found that the degree of Pt{sup 2+} enrichment is directly related to the surface morphology of graphite substrates. In particular, the deposition of Pt-CeO{sub 2} films on rough graphite substrate etched in oxygen plasma yielded nanostructured Pt-CeO{sub 2} catalyst films with high surface area and high Pt{sup 2+}/Pt{sup 0} ratio. The presented results demonstrate that PLD is a suitable method for the preparation of thin Pt-CeO{sub 2} catalyst films for fuel cell applications.

  20. Comparison of lead zirconate titanate thin films on ruthenium oxide and platinum electrodes

    International Nuclear Information System (INIS)

    Bursill, L.A.; Reaney, I.M.

    1994-01-01

    High-resolution and bright- and dark-field transmission electron microscopy are used to characterize and compare the interface structures and microstructure of PZT/RuO 2 /SiO 2 /Si and PZT/Pt/Ti/SiO 2 /Si ferroelectric thin films, with a view to understanding the improved fatigue characteristics of PZT thin films with RuO 2 electrodes. The RuO 2 /PZT interface consists of a curved pseudoperiodic minimal surface. The interface is chemically sharp with virtually no intermixing of RuO 2 and PZT, as evidenced by the atomic resolution images as well as energy dispersive X-ray analysis. A nanocrystalline pyrochlore phase Pb 2 ZrTiO 7-x (x ≠ 1) was found on the top surface of the PZT layer. The PZT/Pt/Ti/SiO 2 /Si thin film was well-crystallized and showed sharp interfaces throughout. Possible reasons for the improved fatigue characteristics of PZT/RuO 2 /SiO 2 /Si thin films are discussed. 13 refs; 7 figs

  1. Comparison of lead zirconate titanate thin films on ruthenium oxide and platinum electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Bursill, L A; Reaney, I M

    1994-12-31

    High-resolution and bright- and dark-field transmission electron microscopy are used to characterize and compare the interface structures and microstructure of PZT/RuO{sub 2}/SiO{sub 2}/Si and PZT/Pt/Ti/SiO{sub 2}/Si ferroelectric thin films, with a view to understanding the improved fatigue characteristics of PZT thin films with RuO{sub 2} electrodes. The RuO{sub 2}/PZT interface consists of a curved pseudoperiodic minimal surface. The interface is chemically sharp with virtually no intermixing of RuO{sub 2} and PZT, as evidenced by the atomic resolution images as well as energy dispersive X-ray analysis. A nanocrystalline pyrochlore phase Pb{sub 2}ZrTiO{sub 7-x} (x {ne} 1) was found on the top surface of the PZT layer. The PZT/Pt/Ti/SiO{sub 2}/Si thin film was well-crystallized and showed sharp interfaces throughout. Possible reasons for the improved fatigue characteristics of PZT/RuO{sub 2}/SiO{sub 2}/Si thin films are discussed. 13 refs; 7 figs.

  2. First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Hansen, Heine Anton; Rossmeisl, Jan

    2015-01-01

    Further advances in fuel cell technologies are hampered by kinetic limitations associated with the sluggish cathodic oxygen reduction reaction. We have investigated a range of different formulations of binary and ternary Pt, Pd and Au thin films as electrocatalysts for oxygen reduction. The most...... active binary thin films are near-surface alloys of Pt with subsurface Pd and certain PdAu and PtAu thin films with surface and/or subsurface Au. The most active ternary thin films are with pure metal Pt or Pd skins with some degree of Au in the surface and/or subsurface layer and the near-surface alloys...

  3. Platinum Iron Intermetallic Nanoparticles Supported on Carbon Formed In Situ by High-Pressure Pyrolysis for Efficient Oxygen Reduction

    DEFF Research Database (Denmark)

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei

    2016-01-01

    Carbon-supported PtFe alloy catalysts are synthesized by the one-step, high-temperature pyrolysis of Pt, Fe, and C precursors. As a result of the high temperature, the formed PtFe nanoparticles possess highly ordered, face-centered tetragonal, intermetallic structures with a mean size of ≈11.8 nm....... At 0.9 V versus the reversible hydrogen electrode, the PtFe nanoparticles show a 6.8 times higher specific activity than the reference Pt/C catalyst towards the oxygen reduction reaction (ORR) as well as excellent stability, most likely because of the durable intermetallic structure and the preleaching...... treatment of the catalyst. During these preliminary syntheses, we found that a portion of the PtFe nanoparticles is buried in the in situ formed carbon phase, which limits Pt utilization in the catalyst and results in a mass-specific activity equivalent to the commercial Pt/C catalyst. Moreover...

  4. Multiscale modeling of the influence of Fe content in a Al-Si-Cu alloy on the size distribution of intermetallic phases and micropores

    International Nuclear Information System (INIS)

    Wang Junsheng; Lee, Peter D.; Li Mei; Allison, John

    2010-01-01

    A multiscale model was developed to simulate the formation of Fe-rich intermetallics and pores in quaternary Al-Si-Cu-Fe alloys. At the microscale, the multicomponent diffusion equations were solved for multiphase (liquid-solid-gas) materials via a finite difference framework to predict microstructure formation. A fast and robust decentered plate algorithm was developed to simulate the strong anisotropy of the solid/liquid interfacial energy for the Fe-rich intermetallic phase. The growth of porosity was controlled by local pressure drop due to solidification and interactions with surrounding solid phases, in addition to hydrogen diffusion. The microscale model was implemented as a subroutine in a commercial finite element package, producing a coupled multiscale model. This allows the influence of varying casting conditions on the Fe-rich intermetallics, the pores, and their interactions to be predicted. Synchrotron x-ray tomography experiments were performed to validate the model by comparing the three-dimensional morphology and size distribution of Fe-rich intermetallics as a function of Fe content. Large platelike Fe-rich β intermetallics were successfully simulated by the multiscale model and their influence on pore size distribution in shape castings was predicted as a function of casting conditions.

  5. Cerium intermetallics CeTX. Review III

    Energy Technology Data Exchange (ETDEWEB)

    Poettgen, Rainer; Janka, Oliver [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Chevalier, Bernard [Bordeaux Univ., Pessac (France). Inst. de Chimie de la Matiere Condensee de Bordeaux

    2016-05-01

    The structure-property relationships of CeTX intermetallics with structures other than the ZrNiAl and TiNiSi type are systematically reviewed. These CeTX phases form with electron-poor and electron-rich transition metals (T) and X = Mg, Zn, Cd, Hg, Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, As, Sb, and Bi. The review focusses on the crystal chemistry, the chemical bonding peculiarities, and the magnetic and transport properties. Furthermore {sup 119}Sn Moessbauer spectroscopic data, high-pressure studies, hydrogenation reactions and the formation of solid solutions are reviewed. This paper is the third of a series of four reviews on equiatomic intermetallic cerium compound [Part I: R. Poettgen, B. Chevalier, Z. Naturforsch. 2015, 70b, 289; Part II: R. Poettgen, B. Chevalier, Z. Naturforsch. 2015, 70b, 695].

  6. Addition of iron for the removal of the {beta}-AlFeSi intermetallic by refining of {alpha}-AlFeSi phase in an Al-7.5Si-3.6Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Belmares-Perales, S. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico); Zaldivar-Cadena, A.A., E-mail: azaldiva70@hotmail.com [Facultad de Ingenieria Civil, Departamento de Ecomateriales y Energia, Instituto de Ingenieria Civil, Av. Fidel Velasquez and Av. Universidad S/N, Cd. Universitaria, San Nicolas de los Garza, N.L. 66450 (Mexico)

    2010-10-25

    Addition of iron into the molten metal for the removal of the {beta}-AlFeSi intermetallic by refining of {alpha}-AlFeSi phase has been studied. Solidification conditions and composition determine the final microstructure and mechanical properties of a casting piece. It is known that increasing the iron content will produce an increasing of the {alpha}-AlFeSi and {beta}-AlFeSi phases. This phenomenon was confirmed with calculations made by Thermo-Calc{sup TM} software and validated with experimental results, however, the technique of iron addition in this study plays an important role on the solidification kinetics of these iron phases because the refining of {alpha}-AlFeSi and removal of {beta}-AlFeSi phases can be improved. Final results showed an improvement in mechanical properties by removal and refining of {beta}-AlFeSi and {alpha}-AlFeSi phases, respectively. This study shows a new method of removal of {beta}-AlFeSi that could be adopted in the aluminum smelting industry in aluminum alloys with a low cooling rate with a secondary dendritic spacing of about 37 {mu}m.

  7. Addition of iron for the removal of the β-AlFeSi intermetallic by refining of α-AlFeSi phase in an Al-7.5Si-3.6Cu alloy

    International Nuclear Information System (INIS)

    Belmares-Perales, S.; Zaldivar-Cadena, A.A.

    2010-01-01

    Addition of iron into the molten metal for the removal of the β-AlFeSi intermetallic by refining of α-AlFeSi phase has been studied. Solidification conditions and composition determine the final microstructure and mechanical properties of a casting piece. It is known that increasing the iron content will produce an increasing of the α-AlFeSi and β-AlFeSi phases. This phenomenon was confirmed with calculations made by Thermo-Calc TM software and validated with experimental results, however, the technique of iron addition in this study plays an important role on the solidification kinetics of these iron phases because the refining of α-AlFeSi and removal of β-AlFeSi phases can be improved. Final results showed an improvement in mechanical properties by removal and refining of β-AlFeSi and α-AlFeSi phases, respectively. This study shows a new method of removal of β-AlFeSi that could be adopted in the aluminum smelting industry in aluminum alloys with a low cooling rate with a secondary dendritic spacing of about 37 μm.

  8. 3D study of intermetallics and their effect on the corrosion morphology of rheocast aluminium alloy

    International Nuclear Information System (INIS)

    Mingo, B.; Arrabal, R.; Pardo, A.; Matykina, E.; Skeldon, P.

    2016-01-01

    In the present study, the effect of heat treatment T6.1 on the microstructure and corrosion behaviour of rheocast aluminium alloy A356 is investigated on the basis of 2D/3D characterization techniques and electrochemical and SKPFM measurements. Heat treatment strengthens the α-Al matrix, modifies the intermetallic particles and spheroidizes eutectic Si. These changes do not modify significantly the corrosion behaviour of the alloy. 3D SEM-Tomography clearly shows that the corrosion advances in the shape of narrow paths between closely spaced intermetallics without a major influence of eutectic Si. - Highlights: • T6.1 spheroidizes Si, strengthens the matrix and modifies the intermetallics. • Electrochemical behaviour of untreated and heat-treated alloys is similar. • 3D SEM-Tomography provides additional information on the corrosion morphology. • Corrosion advances as paths between intermetallics with little influence of Si.

  9. Titanium as an intermetallic phase stabilizer and its effect on the mechanical and thermal properties of Al-Si-Mg-Cu-Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Se-Weon [Korea Institute of Industrial Technology, 6 Cheomdan-gwagiro 208 beon-gil, Buk-gu, Gwangju 500-480 (Korea, Republic of); Cho, Hoon-Sung [School of Materials Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757 (Korea, Republic of); Kumai, Shinji [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, S8-10, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2016-12-15

    The effect of precipitation of intermetallics on the mechanical and thermal properties of Al-6.5Si-0.44Mg-0.9Cu-(Ti) alloys (in wt%) during various artificial aging treatments was studied using a universal testing machine and a laser flash apparatus. The solution treatment of the alloy samples was conducted at 535 °C for 6 h, followed by quenching in warm water. The solution-treated samples were artificially aged for 5 h at different temperatures ranging from 170 °C to 220 °C. After the artificial aging treatment, the Al-6.5Si-0.44Mg-0.9Cu alloy (the Ti-free alloy) had a lower ultimate tensile strength (UTS) than the Al-6.5Si-0.44Mg-0.9Cu-0.2Ti alloy. The UTS response of the alloys was enhanced by the addition of Ti, with the maximum UTS showing an increase from 348 MPa for the Ti-free alloy to 363 MPa for that containing 0.2 wt% Ti, aged at 180 °C. The Ti-free alloy had a higher thermal diffusivity than the Ti-containing alloy over all temperature ranges. Upon increasing the temperature from 180 °C to 220 °C, the room temperature thermal diffusivities increased because the solute concentration in the α-Al matrix rapidly decreased. In particular, the thermal diffusivity increased significantly between 200 °C and 400 °C. This temperature range matched the range of intermetallic phase precipitation as confirmed by differential scanning calorimetry and measurement of the coefficient of thermal expansion. During the artificial aging treatment, the intermetallic phases precipitated and grew rapidly. These reactions induced a reduction of the solute atoms in the solid solution, thus producing a more significant reduction in the thermal diffusivity. As the temperature was increased to above 400 °C, the formation of intermetallic phases ceased, and the thermal diffusivity showed a steady value, regardless of the aging temperature.

  10. Preparation and switching kinetics of Pb(Zr, Ti)O sub 3 thin films deposited by reactive sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Hase, Takashi; Shiosaki, Tadashi [Kyoto Univ. (Japan). Faculty of Engineering

    1991-09-01

    Ferroelectric Pb(Zr, Ti)O{sub 3} (PZT) thin films have been prepared on Pt/Ti/SiO{sub 2}/Si and Pt/SiO{sub 2}/Si substrates using the reactive sputtering method with a metal composite target. The (111)-oriented PZT (80/20) thin films with a perovskite structure have been obtained at a substrate temperature of 595degC on highly (111)-oriented Pt films formed on SiO{sub 2}/Si substrates. When an 8 V pulse sequence was applied to a 265 nm-thick film with an electrode area of 50 x 50 {mu}m{sup 2}, the switching time and the switched charge density measured were 20 ns and 10 {mu}C/cm{sup 2}, respectively. The switching time was strongly dependent on the electrode area. (author).

  11. The effect of pH on the corrosion behavior of intermetallic compounds Ni{sub 3}(Si,Ti) and Ni{sub 3}(Si,Ti) + 2Mo in sodium chloride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Priyotomo, Gadang, E-mail: gada001@lipi.go.id; Nuraini, Lutviasari, E-mail: Lutviasari@gmail.com [Research Center for Metallurgy and Material, Indonesian Institute of Sciences, Kawasan PUSPIPTEK Gd.474, Setu, Tangerang Selatan, Banten 15314 (Indonesia); Kaneno, Yasuyuki, E-mail: kaneno@mtr.osakafu-u.ac.id [Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531 (Japan)

    2015-12-29

    The corrosion behavior of the intermetallic compounds, Ni{sub 3}(Si,Ti) (L1{sub 2}: single phase) and Ni{sub 3}(Si,Ti) + 2Mo (L1{sub 2} and (L12 + Ni{sub ss}) mixture region), has been investigated using an immersion test, electrochemical method and surface analytical method (SEM; scanning electron microscope and EDAX: Energy Dispersive X-ray) in 0.5 kmol/m{sup 3} NaCl solutions at various pH. The corrosion behavior of nickel alloy C-276 was studied under the same experimental conditions as a reference. It was found that the uniform attack was observed on Ni{sub 3}(Si,Ti) for the immersion test at lower pH, while the pitting attack was observed on this compound for this test at neutral solution. Furthermore, Ni{sub 3}(Si,Ti)+2Mo had the preferential dissolution of L1{sub 2} compared to (L1{sub 2} + Ni{sub ss}) mixture region at lower pH, while pitting attack occurred in (L1{sub 2} + Ni{sub ss}) mixture region at neutral solution. For both intermetallic compounds, the magnitude of pitting and uniform attack decrease with increasing pH of solutions. From the immersion test and polarization curves, the corrosion resistance of Ni{sub 3}(Si,Ti)+2Mo is lower than that of Ni{sub 3}(Si,Ti), while the nickel alloy C-276 is the highest one at various pH of solutions. On the other hand, in the lower pH of solutions, the corrosion resistance of tested materials decreased significantly compared to those in neutral and higher pH of solutions.

  12. Room temperature deposition of perpendicular magnetic anisotropic Co{sub 3}Pt thin films on glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Shen; Dai, Hong-Yu; Hsu, Yi-Wei [Department of Chemical Engineering and Materials Science, Yuan-Ze University, Chung-Li 32003, Taiwan (China); Ou, Sin-Liang, E-mail: slo@mail.dyu.edu.tw [Department of Materials Science and Engineering, Da-Yeh University, Changhua 51591, Taiwan (China); Chen, Shi-Wei [National Synchrotron Radiation Research Center (NSRRC), Hsinchu 300, Taiwan (China); Lu, Hsi-Chuan; Wang, Sea-Fue [Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan (China); Sun, An-Cheng, E-mail: acsun@saturn.yzu.edu.tw [Department of Chemical Engineering and Materials Science, Yuan-Ze University, Chung-Li 32003, Taiwan (China)

    2017-03-01

    Co{sub 3}Pt alloy thin films were deposited on the glass substrate at room temperature (RT) and 300 °C, which showed high perpendicular magnetic anisotropy (PMA) and isotropy magnetic behaviors, respectively. Co{sub 3}Pt HCP (0002) planes grew along the substrate plane for the films deposited at RT. The easy axis [0001] was consequently vertical to the substrate surface and obtained the predominant PMA. Large magnetic domains and sharp boundary also supported high PMA in RT-deposited samples. On the other hand, the PMA was significantly decreased with increasing the deposition temperature from RT to 300 °C. Hard HCP(0002) and soft A1(111) co-existed in the film and the magnetic exchanged coupling between these two phases induced isotropy magnetic behavior. In addition, the various thicknesses (t) of the RT-deposited Co{sub 3}Pt films were deposited with different base pressures prior to sputtering. The Kerr rotation loops showed high PMA and out-of-plane squareness (S{sub ⊥}) of ~0.9 were found in low base pressure chamber. Within high base pressure chamber, Co{sub 3}Pt films just show magnetic isotropy behaviors. This study provides a fabrication method for the preparation of high PMA HCP-type Co{sub 3}Pt films on the glass substrate without any underlayer at RT. The results could be the base for future development of RT-deposited magnetic alloy thin film with high PMA. - Highlights: • Fabricated high perpendicular magnetic anisotropy Co{sub 3}Pt thin film on glass substrate. • Prepared HCP Co{sub 3}Pt thin film at room temperature. • The key to enhance the PMA of the Co{sub 3}Pt films. • Thinner film is good to fabricate PMA Co{sub 3}Pt thin films.

  13. Atomic Structure Control of Silica Thin Films on Pt(111)

    KAUST Repository

    Crampton, Andrew S

    2015-05-27

    Metal oxide thin films grown on metal single crystals are commonly used to model heterogeneous catalyst supports. The structure and properties of thin silicon dioxide films grown on metal single crystals have only recently been thoroughly characterized and their spectral properties well established. We report the successful growth of a three- dimensional, vitreous silicon dioxide thin film on the Pt(111) surface and reproduce the closed bilayer structure previously reported. The confirmation of the three dimensional nature of the film is unequivocally shown by the infrared absorption band at 1252 cm−1. Temperature programmed desorption was used to show that this three-dimensional thin film covers the Pt(111) surface to such an extent that its application as a catalyst support for clusters/nanoparticles is possible. The growth of a three-dimensional film was seen to be directly correlated with the amount of oxygen present on the surface after the silicon evaporation process. This excess of oxygen is tentatively attributed to atomic oxygen being generated in the evaporator. The identification of atomic oxygen as a necessary building block for the formation of a three-dimensional thin film opens up new possibilities for thin film growth on metal supports, whereby simply changing the type of oxygen enables thin films with different atomic structures to be synthesized. This is a novel approach to tune the synthesis parameters of thin films to grow a specific structure and expands the options for modeling common amorphous silica supports under ultra high vacuum conditions.

  14. Magnetic properties and microstructure of low ordering temperature L10 FePt thin films

    International Nuclear Information System (INIS)

    Sun, A.C.; Kuo, P.C.; Chen, S.C.; Chou, C.Y.; Huang, H.L.; Hsu, J.H.

    2004-01-01

    Polycrystalline Fe 52 Pt 48 alloy thin films were prepared by dc magnetron sputtering on preheated natural-oxidized silicon wafer substrates. The film thickness was varied from 10 to 100 nm. The as-deposited film was encapsulated in a quartz tube and postannealed in vacuum at various temperatures for 1 h, then furnace cooled. It is found that the ordering temperature from as-deposited soft magnetic fcc FePt phase to hard magnetic fct L1 0 FePt phase could be reduced to about 350 deg. C by preheating substrate and furnace cooling treatment. The magnetic properties measurements indicated that the in-plane coercivity of the films was increased rapidly as annealing temperature is increased from 300 to 400 deg. C, but it decreased when the annealing temperature is higher than 400 deg. C. X-ray diffraction analysis shown that the as-deposited FePt thin film was a disorder fcc FePt phase. The magnetic measurement indicated that the transformation of disorder fcc FePt to fct L1 0 FePt phase was started at about 350 deg. C, which is consistent with the analysis of x-ray diffraction patterns. From scanning electron microscopy observation and selected area energy disperse spectrum analysis, the distributions of Fe and Pt elements in the films became nonuniform when the annealing temperature was higher than 500 deg. C due to the formation of the Fe 3 Pt phase. After annealing at 400 deg. C, the in plane coercivity of Fe 52 Pt 48 thin film with film thickness of 100 nm is 10 kOe, M s is 580 emu/cm3, and grain size is about 12 nm

  15. Effects of Fragmented Fe Intermetallic Compounds on Ductility in Al-Si-Mg Alloys.

    Science.gov (United States)

    Kim, JaeHwang; Kim, DaeHwan

    2018-03-01

    Fe is intentionally added in order to form the Fe intermetallic compounds (Fe-IMCs) during casting. Field emission scanning electron microscope with energy dispersive spectrometer (EDS) was conducted to understand microstructural changes and chemical composition analyses. The needlelike Fe-IMCs based on two dimensional observation with hundreds of micro size are modified to fragmented particles with the minimum size of 300 nm through clod rolling with 80% thickness reduction. The ratio of Fe:Si on the fragmented Fe-IMCs after 80% reduction is close to 1:1, representing the β-Al5FeSi. The yield and tensile strengths are increased with increasing reduction rate. On the other hand, the elongation is decreased with the 40% reduction, but slightly increased with the 60% reduction. The elongation is dramatically increased over two times for the specimen of 80% reduction compared with that of the as-cast. Fracture behavior is strongly affected by the morphology and size of Fe-IMCs. The fracture mode is changed from brittle to ductile with the microstructure modification of Fe-IMCs.

  16. Sum Frequency Generation Vibrational Spectroscopy of 1,3-Butadiene Hydrogenation on 4 nm Pt@SiO 2 , Pd@SiO 2 , and Rh@SiO 2 Core–Shell Catalysts

    KAUST Repository

    Krier, James M.

    2015-01-14

    © 2014 American Chemical Society. 1,3-Butadiene (1,3-BD) hydrogenation was performed on 4 nm Pt, Pd, and Rh nanoparticles (NPs) encapsulated in SiO2 shells at 20, 60, and 100 °C. The core-shells were grown around polyvinylpyrrolidone (PVP) coated NPs (Stöber encapsulation) prepared by colloidal synthesis. Sum frequency generation (SFG) vibrational spectroscopy was performed to correlate surface intermediates observed in situ with reaction selectivity. It is shown that calcination is effective in removing PVP, and the SFG signal can be generated from the metal surface. Using SFG, it is possible to compare the surface vibrational spectrum of Pt@SiO2 (1,3-BD is hydrogenated through multiple paths and produces butane, 1-butene, and cis/trans-2-butene) to Pd@SiO2 (1,3-BD favors one path and produces 1-butene and cis/trans-2-butene). In contrast to Pt@SiO2 and Pd@SiO2, SFG and kinetic experiments of Rh@SiO2 show a permanent accumulation of organic material.

  17. Influence of Si wafer thinning processes on (sub)surface defects

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Fumihiro, E-mail: fumihiro.inoue@imec.be [Imec, Kapeldreef 75, 3001 Leuven (Belgium); Jourdain, Anne; Peng, Lan; Phommahaxay, Alain; De Vos, Joeri; Rebibis, Kenneth June; Miller, Andy; Sleeckx, Erik; Beyne, Eric [Imec, Kapeldreef 75, 3001 Leuven (Belgium); Uedono, Akira [Division of Applied Physics, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)

    2017-05-15

    Highlights: • Mono-vacancy free Si-thinning can be accomplished by combining several thinning techniques. • The grinding damage needs to be removed prior to dry etching, otherwise vacancies remain in the Si at a depth around 0.5 to 2 μm after Si wafer thickness below 5 μm. • The surface of grinding + CMP + dry etching is equivalent mono vacancy level as that of grinding + CMP. - Abstract: Wafer-to-wafer three-dimensional (3D) integration with minimal Si thickness can produce interacting multiple devices with significantly scaled vertical interconnections. Realizing such a thin 3D structure, however, depends critically on the surface and subsurface of the remaining backside Si after the thinning processes. The Si (sub)surface after mechanical grinding has already been characterized fruitfully for a range of few dozen of μm. Here, we expand the characterization of Si (sub)surface to 5 μm thickness after thinning process on dielectric bonded wafers. The subsurface defects and damage layer were investigated after grinding, chemical mechanical polishing (CMP), wet etching and plasma dry etching. The (sub)surface defects were characterized using transmission microscopy, atomic force microscopy, and positron annihilation spectroscopy. Although grinding provides the fastest removal rate of Si, the surface roughness was not compatible with subsequent processing. Furthermore, mechanical damage such as dislocations and amorphous Si cannot be reduced regardless of Si thickness and thin wafer handling systems. The CMP after grinding showed excellent performance to remove this grinding damage, even though the removal amount is 1 μm. For the case of Si thinning towards 5 μm using grinding and CMP, the (sub)surface is atomic scale of roughness without vacancy. For the case of grinding + dry etch, vacancy defects were detected in subsurface around 0.5–2 μm. The finished surface after wet etch remains in the nm scale in the strain region. By inserting a CMP step in

  18. Processing and thin film formation of TiO{sub 2}-Pt nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Es-Souni, M.; Kartopu, G.; Habouti, S.; Piorra, A.; Solterbeck, C.H. [Institute for Materials and Surface Technology, Kiel University of Applied Sciences, Grenzstr. 3, 24149 Kiel (Germany); Es-Souni, Mar.; Brandies, H.F. [Faculty of Dentistry, Christian-Albrecht University, Kiel (Germany)

    2008-02-15

    Thin films of TiO{sub 2}-Pt nanocomposites containing 4 at% Pt have been processed via spin-coating. Film characterization involved XRD, Raman as well as XPS and scanning surface potential microscopy (SSPM). After annealing at 500 C the thin films consisted of nanocrystalline anatase and a few nm Pt nanoclusters. Annealing at 600 C resulted in the formation of a high volume fraction of rutile, {proportional_to}70%, and a coarsening of the microstructure, including Pt nanoparticles which attained a mean particle size of up to 11 nm. These results contrasted with those of pure TiO{sub 2} films obtained at 600 C which showed only a limited amount of rutile formation, namely 9%. Raman spectra of Pt-containing samples exhibited a fluorescence emission, as background to the Raman features, which was attributed to photoinduced luminescence from Pt nanoparticles supported by their surface plasmon resonance. Emission intensity being much higher in 600 C film indicated a difference between the two films in terms of the (Pt) particle size and crystallinity, in agreement with the XRD results. XPS investigations revealed different oxidation states of Pt at the surface and in the film interior. The spectra suggested a slight oxidation of Pt at the surface while mainly metallic Pt was revealed in the film interior. The morphology and distribution of the Pt nanoparticles in the films annealed at 600 C were investigated using SSPM. Discrete Pt nanoparticles, mainly distributed in the vicinity of TiO{sub 2} grain boundaries were revealed. Nanocomposite film formation, Pt distribution and morphology are explained in terms of the limited solubility of Pt in the TiO{sub 2} lattice and its higher surface energy in comparison to that of TiO{sub 2}. Both effects are believed to lead to the formation of Pt nanoparticles at the (anatase or rutile) grain boundaries. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. The effect of Fe-rich intermetallics on the microstructure, hardness and tensile properties of Al–Mg2Si die-cast composite

    International Nuclear Information System (INIS)

    Emamy, M.; Emami, A.R.; Khorshidi, R.; Ghorbani, M.R.

    2013-01-01

    Highlights: ► Effect of Fe on the microstructure and mechanical properties of Al–Mg 2 Si composite. ► Fe changed the size of primary Mg 2 Si from 33 μm to 15 μm. ► Higher hardness, YS, UTS and Quality Index values obtained from Fe addition. ► Different morphologies of Fe-intermetallics were found with higher Fe contents. - Abstract: In present paper, an attempt was made to examine the effect of different concentrations of Fe (0.5, 1, 1.5, 2 and 3 wt.%) on the microstructure and tensile properties of an in situ Al–15wt.%Mg 2 Si metal matrix composite (MMC). The composite was made by casting process and characterized by optical microscope, scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy. The results depicted that the addition of 2 wt.% Fe to the MMC changes the morphology of primary Mg 2 Si from irregular to polyhedral shape and reduces its average particle size from 33 μm to 15 μm. The microstructural studies also showed that the addition of Fe leads to the formation of Fe-rich intermetallics with polyhedral, plate-like and star-like morphology. Hardness results demonstrated that Fe addition to Al–15%Mg 2 Si composite has a positive effect on the hardness improvement. Further investigations on tensile tests revealed optimum Fe (1 wt.%) level for improving tensile properties. In the point of fracture behavior of the composite, Fe-containing specimens showed a brittle mode of failure

  20. Obtaining and characterizing the binary compound Zr3Pt

    International Nuclear Information System (INIS)

    Tanoni, Diego; Arico, Sergio F; Alonso, Paula R

    2006-01-01

    The equilibrium phases in the Zr - Pt binary system are not fully defined. Experiences carried out from 0% to 50% at. Pt in the equilibrium diagram of Zr-Pt phases in 2001 revealed the presence of the intermetallic compounds Zr 2 Pt, Zr 5 Pt 3 , ZrPt (already previously identified by other authors) and a compound of 25% composition at Pt with an unidentified crystalline structure. This experimental work aims to fill out the information on this compound by characterizing its crystallography. An alloy was produced in the binary system Zr-Pt with a composition close to the stoichiometry by casting in an arc furnace, and was studied by optic and electronic metallography. The identification and crystallographic characterization of the phase is based on measurements of composition in electronic microwave and on analysis of spectrums obtained by X-ray diffraction. The results are presented, showing the presence in the cast structure of the solid solution zircon phases (hexagonal) and of the inter-metallic compound Zr 5 Pt 3 . These two phases were identified in the X-ray diffraction diagrams as well as the presence of other reflections that are associated with the inter-metallic Zr 3 Pt. The measurements of composition consistently reveal the presence of a phase of 25%at Pt composition. The structure's morphology shown in metallographies reveals the occurrence of a eutectic type transformation during cooling. We conclude that the formation of the phase sought in a composition 25 % at Pt should occur at temperatures below the eutectic transformation, and could be a peritectoid formation as was previously proposed. Therefore, the sample needs to be homogenized with thermal treatments that favor the formation and stabilization of the compound (CW)

  1. Thermal expansion and elastic moduli of the silicide based intermetallic alloys Ti5Si3(X) and Nb5Si3

    International Nuclear Information System (INIS)

    Zhang, L.; Wu, J.

    1997-01-01

    Silicides are among those potential candidates for high temperature application because of their high melting temperature, low density and good oxidation resistance. Recent interest is focused on molybdenum silicides and titanium silicides. Extensive investigation has been carried out on MoSi 2 , yet comparatively less work was performed on titanium silicides such as Ti 5 Si 3 and Ti 3 and TiSi 2 which are of lower density than MoSi 2 . Fundamental understanding of the titanium silicides' properties for further evaluation their potential for practical application are thus needed. The thermal expansion coefficients and elastic moduli of intermetallic compounds are two properties important for evaluation as a first step. The thermal expansion determines the possible stress that might arise during cooling for these high melting point compounds, which is crucial to the preparation of defect free specimens; and the elastic moduli are usually reflections of the cohesion in crystal. In Frommeyer's work and some works afterwards, the coefficients of thermal expansion were measured on both polycrystalline and single crystal Ti 5 Si 3 . The elastic modulus of polycrystalline Ti 5 Si 3 was measured by Frommeyer and Rosenkranz. However, in the above works, the referred Ti 5 Si 3 was the binary one, no alloying effect has been reported on this matter. Moreover, the above parameters (coefficient of thermal expansion and elastic modulus) of Nb 5 Si 3 remain unreported so far. In this paper, the authors try to extend the knowledge of alloyed Ti 5 Si 3 compounds with Nb and Cr additions. Results on the coefficients of thermal expansion and elastic moduli of Ti 5 Si 3 compounds and Nb 5 Si 3 are presented and the discussion is focused on the alloying effect

  2. Structure and electrical properties of Pb(ZrxTi1-x)O3 deposited on textured Pt thin films

    International Nuclear Information System (INIS)

    Hong, Jongin; Song, Han Wook; Lee, Hee Chul; Lee, Won Jong; No, Kwangsoo

    2001-01-01

    The texturing of the bottom electrode plays a key role in the structure and electrical properties of Pb(Zr,Ti)O 3 (PZT) thin films. We fabricated Pt bottom electrodes having a different thickness on MgO single crystals at 600 o C by rf magnetron sputtering. As the thickness of platinum (Pt) thin film increased, the preferred orientation of Pt thin film changed from (200) to (111). PZT thin films were fabricated at 450 o C by electron cyclotron resonance-plasma enhanced metal organic chemical vapor deposition on the textured Pt thin films. The texturing of the bottom electrode caused drastic changes in the C--V characteristics, P--E characteristics, and fatigue characteristics of metal/ferroelectric material/metal (MFM) capacitors. The difference of the electrical properties between the PZT thin films having different texturing was discussed in terms-of the x--y alignment and the interface between electrode and PZT in MFM capacitors. copyright 2001 American Institute of Physics

  3. Fabrication and Surface Properties of Composite Films of SAM/Pt/ZnO/SiO 2

    KAUST Repository

    Yao, Ke Xin

    2008-12-16

    Through synthetic architecture and functionalization with self-assembled monolayers (SAMs), complex nanocomposite films of SAM/Pt/ZnO/SiO2 have been facilely prepared in this work. The nanostructured films are highly uniform and porous, showing a wide range of tunable wettabilities from superhydrophilicity to superhydrophobicity (water contact angles: 0° to 170°). Our approach offers synthetic flexibility in controlling film architecture, surface topography, coating texture, crystallite size, and chemical composition of modifiers (e.g., SAMs derived from alkanethiols). For example, wettability properties of the nanocomposite films can be finely tuned with both inorganic phase (i.e., ZnO/SiO2 and Pt/ZnO/SiO2) and organic phase (i.e., SAMs on Pt/ZnO/SiO2). Due to the presence of catalytic components Pt/ZnO within the nanocomposites, surface reactions of the organic modifiers can further take place at room temperature and elevated temperatures, which provides a means for SAM formation and elimination. Because the Pt/ZnO forms an excellent pair of metal-semiconductors for photocatalysis, the anchored SAMs can also be modified or depleted by UV irradiation (i.e., the films possess self-cleaning ability). Potential applications of these nanocomposite films have been addressed. Our durability tests also confirm that the films are thermally stable and structurally robust in modification- regeneration cycles. © 2008 American Chemical Society.

  4. Reliable and cost effective design of intermetallic Ni2Si nanowires and direct characterization of its mechanical properties.

    Science.gov (United States)

    Han, Seung Zeon; Kang, Joonhee; Kim, Sung-Dae; Choi, Si-Young; Kim, Hyung Giun; Lee, Jehyun; Kim, Kwangho; Lim, Sung Hwan; Han, Byungchan

    2015-10-12

    We report that a single crystal Ni2Si nanowire (NW) of intermetallic compound can be reliably designed using simple three-step processes: casting a ternary Cu-Ni-Si alloy, nucleate and growth of Ni2Si NWs as embedded in the alloy matrix via designing discontinuous precipitation (DP) of Ni2Si nanoparticles and thermal aging, and finally chemical etching to decouple the Ni2Si NWs from the alloy matrix. By direct application of uniaxial tensile tests to the Ni2Si NW we characterize its mechanical properties, which were rarely reported in previous literatures. Using integrated studies of first principles density functional theory (DFT) calculations, high-resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectroscopy (EDX) we accurately validate the experimental measurements. Our results indicate that our simple three-step method enables to design brittle Ni2Si NW with high tensile strength of 3.0 GPa and elastic modulus of 60.6 GPa. We propose that the systematic methodology pursued in this paper significantly contributes to opening innovative processes to design various kinds of low dimensional nanomaterials leading to advancement of frontiers in nanotechnology and related industry sectors.

  5. The solidification and structure of Al-17wt.%Si alloy modified with intermetallic phases containing Ti and Fe

    Directory of Open Access Journals (Sweden)

    J. Piątkowski

    2011-10-01

    Full Text Available The article describes the process of casting and solidification of Al-17wt.%Si alloy that have been modified with composite powdercontaining the intermetallic phases of Ti and Fe. The chemical and phase composition of the applied modifier was described with thefollowingformula:FeAlx–TiAlx–Al2O3. Applying the method of thermal analysis ATD, the characteristic parameters of the solidificationprocess were determined, and exo-and endothermic effects of the modifying powder on the run of the silumin solidification curves wereobserved. By the methods of light, scanning, and X-ray microscopy, the structure of alloy and the chemical composition of the dispersionhardening precipitates were examined. A change in the morphology of Al-Si eutectic from the lamellar to fibrous type was reportedtogether with changes in the form of complex eutectics of an Al-Si-Ti and Al-Si-Fe type and size reduction of primary silicon crystals.

  6. Engineering helimagnetism in MnSi thin films

    Directory of Open Access Journals (Sweden)

    S. L. Zhang

    2016-01-01

    Full Text Available Magnetic skyrmion materials have the great advantage of a robust topological magnetic structure, which makes them stable against the superparamagnetic effect and therefore a candidate for the next-generation of spintronic memory devices. Bulk MnSi, with an ordering temperature of 29.5 K, is a typical skyrmion system with a propagation vector periodicity of ∼18 nm. One crucial prerequisite for any kind of application, however, is the observation and precise control of skyrmions in thin films at room-temperature. Strain in epitaxial MnSi thin films is known to raise the transition temperature to 43 K. Here we show, using magnetometry and x-ray spectroscopy, that the transition temperature can be raised further through proximity coupling to a ferromagnetic layer. Similarly, the external field required to stabilize the helimagnetic phase is lowered. Transmission electron microscopy with element-sensitive detection is used to explore the structural origin of ferromagnetism in these Mn-doped substrates. Our work suggests that an artificial pinning layer, not limited to the MnSi/Si system, may enable room temperature, zero-field skyrmion thin-film systems, thereby opening the door to device applications.

  7. Engineering helimagnetism in MnSi thin films

    Science.gov (United States)

    Zhang, S. L.; Chalasani, R.; Baker, A. A.; Steinke, N.-J.; Figueroa, A. I.; Kohn, A.; van der Laan, G.; Hesjedal, T.

    2016-01-01

    Magnetic skyrmion materials have the great advantage of a robust topological magnetic structure, which makes them stable against the superparamagnetic effect and therefore a candidate for the next-generation of spintronic memory devices. Bulk MnSi, with an ordering temperature of 29.5 K, is a typical skyrmion system with a propagation vector periodicity of ˜18 nm. One crucial prerequisite for any kind of application, however, is the observation and precise control of skyrmions in thin films at room-temperature. Strain in epitaxial MnSi thin films is known to raise the transition temperature to 43 K. Here we show, using magnetometry and x-ray spectroscopy, that the transition temperature can be raised further through proximity coupling to a ferromagnetic layer. Similarly, the external field required to stabilize the helimagnetic phase is lowered. Transmission electron microscopy with element-sensitive detection is used to explore the structural origin of ferromagnetism in these Mn-doped substrates. Our work suggests that an artificial pinning layer, not limited to the MnSi/Si system, may enable room temperature, zero-field skyrmion thin-film systems, thereby opening the door to device applications.

  8. Engineering helimagnetism in MnSi thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S. L.; Hesjedal, T., E-mail: Thorsten.Hesjedal@physics.ox.ac.uk [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, OX1 3PU (United Kingdom); Chalasani, R.; Kohn, A. [Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv 6997801, Tel Aviv (Israel); Baker, A. A. [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, OX1 3PU (United Kingdom); Magnetic Spectroscopy Group, Diamond Light Source, Didcot, OX11 0DE (United Kingdom); Steinke, N.-J. [ISIS, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX (United Kingdom); Figueroa, A. I.; Laan, G. van der [Magnetic Spectroscopy Group, Diamond Light Source, Didcot, OX11 0DE (United Kingdom)

    2016-01-15

    Magnetic skyrmion materials have the great advantage of a robust topological magnetic structure, which makes them stable against the superparamagnetic effect and therefore a candidate for the next-generation of spintronic memory devices. Bulk MnSi, with an ordering temperature of 29.5 K, is a typical skyrmion system with a propagation vector periodicity of ∼18 nm. One crucial prerequisite for any kind of application, however, is the observation and precise control of skyrmions in thin films at room-temperature. Strain in epitaxial MnSi thin films is known to raise the transition temperature to 43 K. Here we show, using magnetometry and x-ray spectroscopy, that the transition temperature can be raised further through proximity coupling to a ferromagnetic layer. Similarly, the external field required to stabilize the helimagnetic phase is lowered. Transmission electron microscopy with element-sensitive detection is used to explore the structural origin of ferromagnetism in these Mn-doped substrates. Our work suggests that an artificial pinning layer, not limited to the MnSi/Si system, may enable room temperature, zero-field skyrmion thin-film systems, thereby opening the door to device applications.

  9. SiC nanocrystals as Pt catalyst supports for fuel cell applications

    DEFF Research Database (Denmark)

    Dhiman, Rajnish; Morgen, Per; Skou, E.M.

    2013-01-01

    A robust catalyst support is pivotal to Proton Exchange Membrane Fuel Cells (PEMFCs) to overcome challenges such as catalyst support corrosion, low catalyst utilization and overall capital cost. SiC is a promising candidate material which could be applied as a catalyst support in PEMFCs. Si...... on the nanocrystals of SiC-SPR and SiC-NS by the polyol method. The SiC substrates are subjected to an acid treatment to introduce the surface groups, which help to anchor the Pt nano-catalysts. These SiC based catalysts have been found to have a higher electrochemical activity than commercially available Vulcan...... based catalysts (BASF & HISPEC). These promising results signal a new era of SiC based catalysts for fuel cell applications....

  10. Dynamic nanomechanical properties of novel Si-rich intermetallic coatings growth on a medical 316 LVM steel by hot dipping in a hypereutectic Al-25Si alloy.

    Science.gov (United States)

    Frutos, E; González-Carrasco, J L

    2015-06-01

    This aim of this study is to determine the elastoplastic properties of Ni-free Al3FeSi2 intermetallic coatings grown on medical stainless steel under different experimental conditions. Elastoplastic properties are defined by the plasticity index (PI), which correlates the hardness and the Young's modulus. Special emphasis is devoted to correlate the PI with the wear resistance under sliding contact, determined by scratch testing, and fracture toughness, determined by using a novel method based on successive impacts with small loads. With regard to the substrate, the developed coatings are harder and exhibit a lower Young's reduced modulus, irrespective of the experimental conditions. It has been shown that preheating of the samples prior to hot dipping and immersion influences the type and volume fraction of precipitates, which in turn also affect the nanomechanical properties. The higher the preheating temperature is, the greater the Young's reduced modulus is. For a given preheating condition, an increase of the immersion time yields a decrease in hardness. Although apparent friction coefficients of coated specimens are smaller than those obtained on AISI 316 LVM, they increase when using preheating or higher immersion times during processing, which correlates with the PI. The presence of precipitates produces an increase in fracture toughness, with values greater than those presented by samples processed on melted AlSi alloys with lower Si content (12 wt%). Therefore, these intermetallic coatings could be considered "hard but tough", suitable to enhance the wear resistance, especially when using short periods of immersion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Near-surface segregation in irradiated Ni3Si

    International Nuclear Information System (INIS)

    Wagner, W.; Rehn, L.E.; Wiedersich, H.

    1982-01-01

    The radiation-induced growth of Ni 3 Si films on the surfaces of Ni(Si) alloys containing = 3 Si phase has been observed. Post-irradiation depth profiling by Auger electron spectroscopy, as well as in situ analysis by high-resolution Rutherford backscattering spectrometry, reveals Si-enrichment at the surfaces of Ni(Si) alloys in excess of stoichiometric Ni 3 Si during irradiation. Thin, near-surface layers with silicon concentrations of 28 to 30 at.% are observed, and even higher Si enrichment is found in the first few atom layers. Transmission electron microscopy and selected area-electron diffraction were employed to characterize these Si-enriched layers. A complex, multiple-spot diffraction pattern is observed superposed on the diffraction pattern of ordered Ni 3 Si. The d-spacings obtained from the extra spots are consistent with those of the orthohexagonal intermetallic compound Ni 5 Si 2 . (author)

  12. Phase transitions and magnetocaloric effects in intermetallic compounds MnFeX (X=P, As, Si, Ge)

    International Nuclear Information System (INIS)

    Tegus, O.; Bao Li-Hong; Song Lin

    2013-01-01

    Since the discovery of giant magnetocaloric effect in MnFeP 1−x As x compounds, much valuable work has been performed to develop and improve Fe 2 P-type transition-metal-based magnetic refrigerants. In this article, the recent progress of our studies on fundamental aspects of theoretical considerations and experimental techniques, effects of atomic substitution on the magnetism and magnetocalorics of Fe 2 P-type intermetallic compounds MnFeX (X=P, As, Ge, Si) is reviewed. Substituting Si (or Ge) for As leads to an As-free new magnetic material MnFeP 1−x Si(Ge) x . These new materials show large magnetocaloric effects resembling MnFe(P, As) near room temperature. Some new physical phenomena, such as huge thermal hysteresis and ‘virgin’ effect, were found in new materials. On the basis of Landau theory, a theoretical model was developed for studying the mechanism of phase transition in these materials. Our studies reveal that MnFe(P, Si) compound is a very promising material for room-temperature magnetic refrigeration and thermo-magnetic power generation. (topical review - magnetism, magnetic materials, and interdisciplinary research)

  13. Synthesis of Pt nanoparticles and their burrowing into Si due to synergistic effects of ion beam energy losses

    Directory of Open Access Journals (Sweden)

    Pravin Kumar

    2014-10-01

    Full Text Available We report the synthesis of Pt nanoparticles and their burrowing into silicon upon irradiation of a Pt–Si thin film with medium-energy neon ions at constant fluence (1.0 × 1017 ions/cm2. Several values of medium-energy neon ions were chosen in order to vary the ratio of the electronic energy loss to the nuclear energy loss (Se/Sn from 1 to 10. The irradiated films were characterized using Rutherford backscattering spectroscopy (RBS, atomic force microscopy (AFM, scanning electron microscopy (SEM, X-ray diffraction (XRD and high resolution transmission electron microscopy (HRTEM. A TEM image of a cross section of the film irradiated with Se/Sn = 1 shows ≈5 nm Pt NPs were buried up to ≈240 nm into the silicon. No silicide phase was detected in the XRD pattern of the film irradiated at the highest value of Se/Sn. The synergistic effect of the energy losses of the ion beam (molten zones are produced by Se, and sputtering and local defects are produced by Sn leading to the synthesis and burrowing of Pt NPs is evidenced. The Pt NP synthesis mechanism and their burrowing into the silicon is discussed in detail.

  14. Investigations of Si Thin Films as Anode of Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qingliu [Department of Chemical; Shi, Bing; Bareño, Javier; Liu, Yuzi; Maroni, Victor A.; Zhai, Dengyun; Dees, Dennis W.; Lu, Wenquan

    2018-01-22

    Amorphous silicon thin films having various thicknesses were investigated as a negative electrode material for lithium-ion batteries. Electrochemical characterization of the 20 nm thick thin silicon film revealed a very low first cycle Coulombic efficiency, which can be attributed to the silicon oxide layer formed on both the surface of the as-deposited Si thin film and the interface between the Si and the substrate. Among the investigated films, the 100 nm Si thin film demonstrated the best performance in terms of first cycle efficiency and cycle life. Observations from scanning electron microscopy demonstrated that the generation of cracks was inevitable in the cycled Si thin films, even as the thickness of the film was as little as 20 nm, which was not predicted by previous modeling work. However, the cycling performance of the 20 and 100 nm silicon thin films was not detrimentally affected by these cracks. The poor capacity retention of the 1 mu m silicon thin film was attributed to the delamination.

  15. Investigating and engineering spin-orbit torques in heavy metal/Co2FeAl0.5Si0.5/MgO thin film structures

    International Nuclear Information System (INIS)

    Loong, Li Ming; Deorani, Praveen; Qiu, Xuepeng; Yang, Hyunsoo

    2015-01-01

    Current-induced spin-orbit torques (SOTs) have the potential to revolutionize magnetization switching technology. Here, we investigate SOT in a heavy metal (HM)/Co 2 FeAl 0.5 Si 0.5 (CFAS)/MgO thin film structure with perpendicular magnetic anisotropy (PMA), where the HM is either Pt or Ta. Our results suggest that both the spin Hall effect and the Rashba effect contribute significantly to the effective fields in the Pt underlayer samples. Moreover, after taking the PMA energies into account, current-induced SOT-based switching studies of both the Pt and Ta underlayer samples suggest that the two HM underlayers yield comparable switching efficiency in the HM/CFAS/MgO material system

  16. SiO2 decoration dramatically enhanced the stability of PtRu electrocatalysts with undetectable deterioration in fuel cell performance

    Science.gov (United States)

    Yu, Xinxin; Xu, Zejun; Yang, Zehui; Xu, Sen; Zhang, Quan; Ling, Ying; Zhang, Yunfeng; Cai, Weiwei

    2018-06-01

    Prevention of Ru dissolution is essential for steady CO tolerance of anodic electrocatalysts in direct methanol fuel cells. Here, we demonstrate a facile way to stabilize Ru atoms by decorating commercial CB/PtRu with SiO2, which shows a six-fold higher stability and similar activity toward a methanol oxidation reaction leading to no discernible degradation in fuel cell performance compared to commercial CB/PtRu electrocatalysts. The higher stability and stable CO tolerance of SiO2-decorated electrocatalysts originate from the SiO2 coating, since Ru atoms are partially ionized during SiO2 decorating, resulting in difficulties in dissolution; while, in the case of commercial CB/PtRu, the dissolved Ru offers active sites for Pt coalescences and CO species resulting in the rapid decay of the electrochemical surface area and fuel cell performance. To the best of our knowledge, this is the first study about the stabilization of Ru atoms by SiO2. The highest stability is obtained for a PtRu electrocatalyst with negligible effect on the electrochemical properties.

  17. Preparation of c-axis perpendicularly oriented ultra-thin L10-FePt films on MgO and VN underlayers

    Science.gov (United States)

    Futamoto, Masaaki; Shimizu, Tomoki; Ohtake, Mitsuru

    2018-05-01

    Ultra-thin L10-FePt films of 2 nm average thickness are prepared on (001) oriented MgO and VN underlayers epitaxially grown on base substrate of SrTiO3(001) single crystal. Detailed cross-sectional structures are observed by high-resolution transmission electron microscopy. Continuous L10-FePt(001) thin films with very flat surface are prepared on VN(001) underlayer whereas the films prepared on MgO(001) underlayer consist of isolated L10-FePt(001) crystal islands. Presence of misfit dislocation and lattice bending in L10-FePt material is reducing the effective lattice mismatch with respect to the underlayer to be less than 0.5 %. Formation of very flat and continuous FePt layer on VN underlayer is due to the large surface energy of VN material where de-wetting of FePt material at high temperature annealing process is suppressed under a force balance between the surface and interface energies of FePt and VN materials. An employment of underlayer or substrate material with the lattice constant and the surface energy larger than those of L10-FePt is important for the preparation of very thin FePt epitaxial thin continuous film with the c-axis controlled to be perpendicular to the substrate surface.

  18. Dependence of intermetallic compound formation on the sublayer stacking sequence in Ag–Sn bilayer thin films

    International Nuclear Information System (INIS)

    Rossi, P.J.; Zotov, N.; Bischoff, E.; Mittemeijer, E.J.

    2016-01-01

    Intermetallic compound (IMC) formation in thermally-evaporated Ag–Sn bilayer thin films has been investigated employing especially X-ray diffraction (XRD) and (S)TEM methods. The specific IMCs that are present in the as-deposited state depend sensitively on the stacking sequence of the sublayers. In case of Sn on top of Ag, predominantly Ag 3 Sn is formed, whereas Ag 4 Sn is predominantly present in the as-deposited state for Ag on top of Sn. In the latter case this is accompanied by an extremely fast uptake of a large amount of Sn by the Ag sublayer, leaving behind macroscopic voids in the Sn sublayer. The results are discussed on the basis of the thermodynamics and kinetics of (IMC) product-layer growth in thin films. It is shown that both thermodynamic and kinetic arguments explain the contrasting phenomena observed.

  19. Effect of carbon additive on microstructure evolution and magnetic properties of epitaxial FePt (001) thin films

    International Nuclear Information System (INIS)

    Ding, Y.F.; Chen, J.S.; Liu, E.; Lim, B.C.; Hu, J.F.; Liu, B.

    2009-01-01

    FePt:C thin films were deposited on CrRu underlayers by DC magnetron co-sputtering. The effects of C content, FePt:C film thickness and substrate temperature on the microstructural and magnetic properties of the epitaxial FePt (001) films were studied. Experimental results showed that even with 30 vol.% C doping, the FePt films could keep a (001) preferred orientation at 350 deg. C . When a FePt:C film was very thin (< 5 nm), the film had a continuous microstructure instead of a granual structure with C diffused onto the film surface. With further increased film thickness, the film started to nucleate and formed a column microstructure over continuous FePt films. A strong exchange coupling in the FePt:C films was believed to be due to the presence of a thin continuous FePt layer attributed to the carbon diffusion during the initial stage of the FePt:C film growth. Despite the presence of a strong exchange coupling in the FePt:C (20 vol.% C) film, the SNR ratio of the FePt:C media was about 10 dB better than that of the pure FePt media. The epitaxial growth of the FePt:C films on the Pt layers was observed from high resolution TEM cross sectional images even for the films grown at about 200 deg. C . The TEM images did not show an obvious change in the morphology of the FePt:C films deposited at different temperatures (from 200 deg. C to 350 deg. C ), though the ordering degree and coercivity of the films increased with increased substrate temperature

  20. Synthesis and characterization of the Pt/SiO2 nanocomposite by the sol-gel method

    Directory of Open Access Journals (Sweden)

    A. Salabat

    2011-01-01

    Full Text Available The silica supported platinum nanoparticles was synthesized by using the sol-gel method. The possibility of using diamminedinitro platinum (II as Pt precursor and effect of metal precursor concentration on the final Pt nanoparticle size was investigated. A stable silica sol was prepared via hydrolysis of tetraethyl orthosilicate (TEOS as a metal alcoxide and condensation reaction. Subsequently, diamminedinitro platinum (II was added to sol to form the Pt/silica sol. After drying and calcination of the sol, the Pt/SiO2 nanocpmposite has been obtained. Crystallographic information and crystalline size of the synthesized Pt/SiO2 were determined by X-ray diffraction (XRD method. Morphology of the nanoparticles and hydrogen-bonding interaction between silanol groups and amine ligands were characterized by SEM and Fourier transform infrared (FTIR spectra, respectively. Transmission Electron Microscopy (TEM was employed in evaluating the distribution and size of the platinum nanoparticles in the silica.

  1. Broadband THz pulse emission and transmission properties of nanostructured Pt thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Mingzhe [Department of Physics and Electronics, Liupanshui Normal University, Liupanshui, Guizhou 553004 (China); College of Electronics and Information, Guizhou University, Huaxi 550025, Guiyang, Guizhou (China); Mu, Kaijun; Zhang, Cunlin [Department of Physics, Capital Normal University, Yuquan Road 100082, Beijing (China); Gu, Haoshuang, E-mail: guhs@hubu.edu.cn [Department of Electronic Sci& Tech, Hubei University, Xueyuan Road 430062, Wuhan, Hubei (China); Ding, Zhao [College of Electronics and Information, Guizhou University, Huaxi 550025, Guiyang, Guizhou (China)

    2015-10-01

    The THz transmission and emitting properties of a composite metallic nanostructure, composed of Ag nanowires electrodeposited in an anodic aluminum oxide (AAO) template and a Pt thin film, were investigated by using a femtosecond pulse laser irradiation. The microstructure of the above sub-wavelength nanostructure was investigated by XRD, SEM, AFM and TEM. The results indicated that the thickness of the Pt thin film was about 200 nm and the Ag nanowire array had a sparse and random distribution inside the AAO template, with a length distribution in the range of 10–25 μm. The THz radiation properties of above sub-wavelength nanostructure indicated that the generated THz fluence from the Pt film was a magnitude of μW scale with a broadband frequency range and its subsequent transmission could be significantly improved by the better impedance matching property of the Ag nanowire embedded AAO film compared with that of the empty AAO film.

  2. The role of intermetallic precipitates in Ti-62222S

    Energy Technology Data Exchange (ETDEWEB)

    Evans, D J [US Air Force Mater. Directorate Wright Lab., Wright Patterson AFB, OH (United States); Broderick, T F [US Air Force Mater. Directorate Wright Lab., Wright Patterson AFB, OH (United States); Woodhouse, J B [UES Inc, Dayton, OH (United States); Hoenigman, J R [Wright State Univ., Dayton, OH (United States). Research Inst.

    1996-08-15

    Samples of Ti-62222-0.23wt.%Si were heat treated and aged at temperatures ranging from 1150 F to 1500 F with the view of effecting selective precipitation of {alpha}{sub 2} precipitates and silicides (i.e. Ti{sub x}Zr{sub 5-x}Si{sub 3}). The effect of these intermetallic precipitates on the mechanical properties and fracture morphology was assessed via three separate microstructural conditions: Ti-62222S with {alpha}{sub 2} precipitates, Ti-62222S with {alpha}{sub 2} and silicide precipitates, and Ti-62222S with silicide precipitates. Both types of intermetallic precipitate appear to lower the fracture toughness, however {alpha}{sub 2} promotes intergranular fracture while silicides lead to transgranular failure and dimpling. The combined presence of the {alpha}{sub 2} and silicides leads to mixed mode failure. Further, since {alpha}{sub 2} is present in the {alpha} phase and silicides precipitate out in the {beta} phase, it appears that the effect of each of these intermetallics in Ti-62222S is additive rather than synergistic. (orig.)

  3. Investigation of optical pump on dielectric tunability in PZT/PT thin film by THz spectroscopy.

    Science.gov (United States)

    Ji, Jie; Luo, Chunya; Rao, Yunkun; Ling, Furi; Yao, Jianquan

    2016-07-11

    The dielectric spectra of single-layer PbTiO3 (PT), single-layer PbZrxTi1-xO3 (PZT) and multilayer PZT/PT thin films under an external optical field were investigated at room temperature by time-domain terahertz (THz) spectroscopy. Results showed that the real part of permittivity increased upon application of an external optical field, which could be interpreted as hardening of the soft mode and increasing of the damping coefficient and oscillator strength. Furthermore, the central mode was observed in the three films. Among the dielectric property of the three thin films studied, the tunability of the PZT/PT superlattice was the largest.

  4. NMR study of novel heavy fermion superconductor CePt{sub 3}Si

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, K. [Graduate School of Material Science, University of Hyogo, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan)]. E-mail: ueda@sci.u-hyogo.ac.jp; Kohara, T. [Graduate School of Material Science, University of Hyogo, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); Motoyama, G. [Graduate School of Material Science, University of Hyogo, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); Oda, Y. [Graduate School of Material Science, University of Hyogo, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan)

    2007-03-15

    Si29 NMR experiments were performed to study microscopically the normal and superconducting states in Si29 enriched CePt{sub 3}Si. A Si29 Knight shift parallel to the c-axis did not decrease below the T{sub c}. The 1/T{sub 1} result taken with a field cycling method showed no distinct coherence peak just below T{sub c} and a steep decrease below T{sub c} on cooling. The estimated value of the superconducting energy gap was about 2{delta}=3.6k{sub B}T{sub c}. These results may be an evidence for triplet pairing superconductivity.

  5. Intermetallic matrix composites; Proceedings of the MRS Symposium, San Francisco, CA, Apr. 18-20, 1990

    International Nuclear Information System (INIS)

    Anton, D.L.; Martin, P.L.; Miracle, D.B.; Mcmeeking, R.

    1990-01-01

    The present volume on intermetallic matrix composites discusses the modeling, processing, microstructure/property relationships, and compatibility of intermetallic matrix composites. Attention is given to models for the strength of ductile matrix composites, innovative processing techniques for intermetallic matrix composites, ductile phase toughening of brittle intermetallics, and reactive synthesis of NbAl3 matrix composites. Topics addressed include solidification processing of NbCr2 alloys, Ta and Nb reinforced MoSi2, the microstructure and mechanical behavior of Ni3Al-matrix composites, and ductile-phase toughening of Cr3Si with chromium. Also discussed are dislocation morphologies in TiB2/NiAl, the development of highly impact resistant NiAl matrix composites, the effect of notches on the fatigue life of the SCS-6Ti3Al composite, and the chemical stability of fiber-metal matrix composites

  6. Reduction in the formation temperature of Poly-SiGe alloy thin film in Si/Ge system

    Science.gov (United States)

    Tah, Twisha; Singh, Ch. Kishan; Madapu, K. K.; Sarguna, R. M.; Magudapathy, P.; Ilango, S.

    2018-04-01

    The role of deposition temperature in the formation of poly-SiGe alloy thin film in Si/Ge system is reported. For the set ofsamples deposited without any intentional heating, initiation of alloying starts upon post annealingat ˜ 500 °C leading to the formation of a-SiGe. Subsequently, poly-SiGe alloy phase could formonly at temperature ≥ 800 °C. Whereas, for the set of samples deposited at 500 °C, in-situ formation of poly-SiGe alloy thin film could be observed. The energetics of the incoming evaporated atoms and theirsubsequent diffusionsin the presence of the supplied thermal energy is discussed to understand possible reasons for lowering of formation temperature/energyof the poly-SiGe phase.

  7. Crystal field splitting in CePt{sub 5}. Magnetic analysis and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zinner, Martin; Praetorius, Christian; Fauth, Kai [Universitaet Wuerzburg, Experimentelle Physik II, 97074 Wuerzburg (Germany); Halbig, Benedikt; Bass, Utz; Geurts, Jean [Universitaet Wuerzburg, Experimentelle Physik III, 97074 Wuerzburg (Germany)

    2015-07-01

    The crystal electric field (CF) is an essential factor determining the paramagnetic response of rare earth ions in solids. In Ce intermetallics, Kondo screening can additionally modify the magnetic behavior and it may then prove difficult to disentangle the two. In the hexagonal surface intermetallic CePt{sub 5}, grown on Pt(111), we find two distinct sets of CF parameters which both account rather well for the anisotropic magnetic susceptibility and its temperature dependence. Different strengths of Kondo screening have to be assumed in the two cases in order to obtain quantitative agreement with experimental results. Discriminating between the two solutions requires an independent determination of the CF splitting. We shall report on our attempts to obtain this information from electronic Raman scattering. Raman signal is indeed even obtained from CePt{sub 5} specimens with a thickness of just two unit cells. We shall discuss the identification of electronic Raman losses by comparison with LaPt{sub 5} as well as the dependence of the Raman features on temperature and thickness of the intermetallic film.

  8. Formation of intermetallic phases in AlSi7Fe1 alloy processed under microgravity and forced fluid flow conditions and their influence on the permeability

    OpenAIRE

    Steinbach, Sonja; Ratke, Lorenz; Zimmermann, Gerhard; Budenkova, Olga

    2016-01-01

    Ternary Al-6.5wt.%Si-0.93wt.%Fe alloy samples were directionally solidified on-board of the International Space Station ISS in the ESA payload Materials Science Laboratory (MSL) equipped with Low Gradient Furnace (LGF) under both purely diffusive and stimulated convective conditions induced by a rotating magnetic field. Using different analysis techniques the shape and distribution of the intermetallic phase β-Al 5 SiFe in the dendritic microstructure was investigated, to study the influence ...

  9. Valence instabilities in cerium intermetallics

    International Nuclear Information System (INIS)

    Dijkman, W.H.

    1982-01-01

    The primary purpose of this investigation was to study the magnetic behaviour of cerium in intermetallic compounds, that show an IV behaviour, e.g. CeSn 3 . In the progress of the investigations, it became of interest to study the effect of changes in the lattice of the IV compound by substituting La or Y for Ce, thus constituting the Cesub(1-x)Lasub(x)Sn 3 and Cesub(1-x)Ysub(x)Sn 3 quasibinary systems. A second purpose was to examine the possibility of introducing instabilities in the valency of a trivalent intermetallic cerium compound: CeIn 3 , also by La and Y-substitutions in the lattice. Measurements on the resulting Cesub(1-x)Lasub(x)In 3 and Cesub(1-x)Ysub(x)In 3 quasibinaries are described. A third purpose was to study the (gradual) transition from a trivalent cerium compound into an IV cerium compound. This was done by examining the magnetic properties of the CeInsub(x)Snsub(3-x) and CePbsub(x)Snsub(3-x) systems. Finally a new possibility was investigated: that of the occurrence of IV behaviour in CeSi 2 , CeSi, and in CeGa 2 . (Auth.)

  10. Gas cluster ion beam assisted NiPt germano-silicide formation on SiGe

    Energy Technology Data Exchange (ETDEWEB)

    Ozcan, Ahmet S., E-mail: asozcan@us.ibm.com [IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States); Lavoie, Christian; Jordan-Sweet, Jean [IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598 (United States); Alptekin, Emre; Zhu, Frank [IBM Semiconductor Research and Development Center, 2070 Route 52, Hopewell Junction, New York 12533 (United States); Leith, Allen; Pfeifer, Brian D.; LaRose, J. D.; Russell, N. M. [TEL Epion Inc., 900 Middlesex Turnpike, Bldg. 6, Billerica, Massachusetts 01821 (United States)

    2016-04-21

    We report the formation of very uniform and smooth Ni(Pt)Si on epitaxially grown SiGe using Si gas cluster ion beam treatment after metal-rich silicide formation. The gas cluster ion implantation process was optimized to infuse Si into the metal-rich silicide layer and lowered the NiSi nucleation temperature significantly according to in situ X-ray diffraction measurements. This novel method which leads to more uniform films can also be used to control silicide depth in ultra-shallow junctions, especially for high Ge containing devices, where silicidation is problematic as it leads to much rougher interfaces.

  11. Cell adhesion to cathodic arc plasma deposited CrAlSiN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Kyu, E-mail: skim@ulsan.ac.kr [School of Materials Science and Engineering, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Pham, Vuong-Hung [Department of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Kim, Chong-Hyun [Department of Food Science, Cornell University, Ithaca, NY 14853 (United States)

    2012-07-01

    Osteoblast cell response (cell adhesion, actin cytoskeleton and focal contact adhesion as well as cell proliferation) to CrN, CrAlSiN and Ti thin films was evaluated in vitro. Cell adhesion and actin stress fibers organization depended on the film composition significantly. Immunofluorescent staining of vinculin in osteoblast cells showed good focal contact adhesion on the CrAlSiN and Ti thin films but not on the CrN thin films. Cell proliferation was significantly greater on the CrAlSiN thin films as well as on Ti thin films than on the CrN thin films.

  12. Atomically thin Pt shells on Au nanoparticle cores: facile synthesis and efficient synergetic catalysis

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Seselj, Nedjeljko; Poreddy, Raju

    2016-01-01

    in electrooxidation of sustainable fuels (i.e. formic acid, methanol and ethanol), and selective hydrogenation of benzene derivatives. Especially high activity was achieved for formic acid oxidation, 549 mA (mgPt)−1 (at 0.6 V vs. SCE), which is 3.5 fold higher than a commercial ... properties were thoroughly characterized by ultraviolet-visible light spectrophotometry, transmission electron microscopy, nanoparticle tracking analysis and electrochemistry. The 8 ± 2 nm Au@PtNPs contained 24 ± 1 mol% Pt and 76 ± 1 mol% Au corresponding to an atomically thin Pt shell. Electrochemical data...

  13. Thin film pc-Si by aluminium induced crystallization on metallic substrate

    Directory of Open Access Journals (Sweden)

    Cayron C.

    2013-04-01

    Full Text Available Thin film polycrystalline silicon (pc-Si on flexible metallic substrates is promising for low cost production of photovoltaic solar cells. One of the attractive methods to produce pc-Si solar cells consists in thickening a large-grained seed layer by epitaxy. In this work, the deposited seed layer is made by aluminium induced crystallization (AIC of an amorphous silicon (a-Si thin film on metallic substrates (Ni/Fe alloy initially coated with a tantalum nitride (TaN conductive diffusion barrier layer. Effect of the thermal budget on the AIC grown pc-Si seed layer was investigated in order to optimize the process (i.e. the quality of the pc-Si thin film. Structural and optical characterizations were carried out using optical microscopy, μ-Raman and Electron Backscatter Diffraction (EBSD. At optimal thermal annealing conditions, the continuous AIC grown pc-Si thin film showed an average grain size around 15 μm. The grains were preferably (001 oriented which is favorable for its epitaxial thickening. This work proves the feasibility of the AIC method to grow large grains pc-Si seed layer on TaN coated metal substrates. These results are, in terms of grains size, the finest obtained by AIC on metallic substrates.

  14. di Synthesis and Characterization of the Platinum-Substituted Keggin Anion alpha-H2SiPtW11O404-

    Energy Technology Data Exchange (ETDEWEB)

    Klonowski, P; Goloboy, JC; Uribe-Romo, FJ; Sun, FR; Zhu, LY; Gandara, F; Wills, C; Errington, RJ; Yaghi, OM; Klemperer, WG

    2014-12-15

    Acidification of an aqueous solution of K8SiW11O39 and K2Pt(OH)(6) to pH 4 followed by addition of excess tetramethylammonium (TMA) chloride yielded a solid mixture of TMA salts of H2SiPtW11O404- (1) and SiW12O404- (2). The former was separated from the latter by extraction into an aqueous solution and converted into tetra-n-butylammonium (TBA) and potassium salts TBA-1 and K-1. The a-H2SiPtW11O404- was identified as a monosubstituted Keggin anion using elemental analysis, IR spectroscopy, X-ray crystallography, electrospray ionization mass spectrometry, Pt-195 NMR spectroscopy, (183)W NMR spectroscopy, and W-183-W-183 2D INADEQUATE NMR spectroscopy. Both TBA-1 and K-1 readily cocrystallized with their unsubstituted Keggin anion salts, TBA-2 and K-2, respectively, providing an explanation for the historical difficulty of isolating certain platinum-substituted heteropolyanions in pure form.

  15. Investigating and engineering spin-orbit torques in heavy metal/Co{sub 2}FeAl{sub 0.5}Si{sub 0.5}/MgO thin film structures

    Energy Technology Data Exchange (ETDEWEB)

    Loong, Li Ming; Deorani, Praveen; Qiu, Xuepeng; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2015-07-13

    Current-induced spin-orbit torques (SOTs) have the potential to revolutionize magnetization switching technology. Here, we investigate SOT in a heavy metal (HM)/Co{sub 2}FeAl{sub 0.5}Si{sub 0.5} (CFAS)/MgO thin film structure with perpendicular magnetic anisotropy (PMA), where the HM is either Pt or Ta. Our results suggest that both the spin Hall effect and the Rashba effect contribute significantly to the effective fields in the Pt underlayer samples. Moreover, after taking the PMA energies into account, current-induced SOT-based switching studies of both the Pt and Ta underlayer samples suggest that the two HM underlayers yield comparable switching efficiency in the HM/CFAS/MgO material system.

  16. Combined effects of ultrasonic vibration and manganese on Fe-containing inter-metallic compounds and mechanical properties of Al-17Si alloy with 3wt.%Fe

    Directory of Open Access Journals (Sweden)

    Lin Chong

    2013-05-01

    Full Text Available The research studied the combined effects of ultrasonic vibration (USV and manganese on the Fe-containing inter-metallic compounds and mechanical properties of Al-17Si-3Fe-2Cu-1Ni (wt.% alloys. The results showed that, without USV, the alloys with 0.4wt.% Mn or 0.8wt.% Mn both contain a large amount of coarse plate-like δ-Al4(Fe,MnSi2 phase and long needle-like β-Al5(Fe,MnSi phase. When the Mn content changes from 0.4wt.% to 0.8wt.% in the alloys, the amount and the length of needle-like β-Al5(Fe,MnSi phase decrease and the plate-like δ-Al4(Fe,MnSi2 phase becomes much coarser. After USV treatment, the Fe-containing compounds in the alloys are refined and exist mainly as δ-Al4(Fe,MnSi2 particles with an average grain size of about 20 μm, and only a small amount of β-Al5(Fe,MnSi phase remains. With USV treatment, the ultimate tensile strengths (UTS of the alloys containing 0.4wt.%Mn and 0.8wt.%Mn at room temperature are 253 MPa and 262 MPa, respectively, and the ultimate tensile strengths at 350 °C are 129 MPa and 135 MPa, respectively. It is considered that the modified morphology and uniform distribution of the Fe-containing inter-metallic compounds, which are caused by the USV process, are the main reasons for the increase in the tensile strength of these two alloys.

  17. Self-aligned indium–gallium–zinc oxide thin-film transistors with SiNx/SiO2/SiNx/SiO2 passivation layers

    International Nuclear Information System (INIS)

    Chen, Rongsheng; Zhou, Wei; Zhang, Meng; Kwok, Hoi-Sing

    2014-01-01

    Self-aligned top-gate amorphous indium–gallium–zinc oxide (a-IGZO) thin-film transistors (TFTs) with SiN x /SiO 2 /SiN x /SiO 2 passivation layers are developed in this paper. The resulting a-IGZO TFT exhibits high reliability against bias stress and good electrical performance including field-effect mobility of 5 cm 2 /Vs, threshold voltage of 2.5 V, subthreshold swing of 0.63 V/decade, and on/off current ratio of 5 × 10 6 . With scaling down of the channel length, good characteristics are also obtained with a small shift of the threshold voltage and no degradation of subthreshold swing. The proposed a-IGZO TFTs in this paper can act as driving devices in the next generation flat panel displays. - Highlights: • Self-aligned top-gate indium–gallium–zinc oxide thin-film transistor is proposed. • SiN x /SiO 2 /SiN x /SiO 2 passivation layers are developed. • The source/drain areas are hydrogen-doped by CHF3 plasma. • The devices show good electrical performance and high reliability against bias stress

  18. Reversible and nonvolatile ferroelectric control of two-dimensional electronic transport properties of ZrCuSiAs-type copper oxyselenide thin films with a layered structure

    Science.gov (United States)

    Zhao, Xu-Wen; Gao, Guan-Yin; Yan, Jian-Min; Chen, Lei; Xu, Meng; Zhao, Wei-Yao; Xu, Zhi-Xue; Guo, Lei; Liu, Yu-Kuai; Li, Xiao-Guang; Wang, Yu; Zheng, Ren-Kui

    2018-05-01

    Copper-based ZrCuSiAs-type compounds of LnCuChO (Ln =Bi and lanthanides, Ch =S , Se, Te) with a layered crystal structure continuously attract worldwide attention in recent years. Although their high-temperature (T ≥ 300 K) electrical properties have been intensively studied, their low-temperature electronic transport properties are little known. In this paper, we report the integration of ZrCuSiAs-type copper oxyselenide thin films of B i0.94P b0.06CuSeO (BPCSO) with perovskite-type ferroelectric Pb (M g1 /3N b2 /3 ) O3-PbTi O3 (PMN-PT) single crystals in the form of ferroelectric field effect devices that allow us to control the electronic properties (e.g., carrier density, magnetoconductance, dephasing length, etc.) of BPCSO films in a reversible and nonvolatile manner by polarization switching at room temperature. Combining ferroelectric gating and magnetotransport measurements with the Hikami-Larkin-Nagaoka theory, we demonstrate two-dimensional (2D) electronic transport characteristics and weak antilocalization effect as well as strong carrier-density-mediated competition between weak antilocalization and weak localization in BPCSO films. Our results show that ferroelectric gating using PMN-PT provides an effective and convenient approach to probe the carrier-density-related 2D electronic transport properties of ZrCuSiAs-type copper oxyselenide thin films.

  19. Effect of annealing temperature on the magnetoelectric properties of CoFe{sub 2}O{sub 4}/Pt/Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} multilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Eum, You Jeong; Hwang, Sung Ok; Koo, Chang Young; Lee, Jai Yeoul; Lee, Hee Young [Yeungnam University, Gyeongsan (Korea, Republic of); Ryu, Jung Ho [Korea Institute of Materials Science, Changwon (Korea, Republic of); Park, Jung Min [Osaka University, Osaka (Japan)

    2014-08-15

    CoFe{sub 2}O{sub 4}(CoFO)/Pt/Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} (PZT) multilayer films were grown on Pt/Ti/SiO{sub 2}/Si substrates. A thin Pt layer was inserted between the ferrimagnetic and the ferroelectric layers in order to suppress diffusion at high temperatures and thereby to prevent possible interfacial reactions. The effect of annealing on the film's microstructure and multiferroic properties was then investigated using thin film stacks heat-treated at temperatures ranging from 550 to 650 .deg. C. The magnetoelectric coefficients were calculated from the magnetoelectric voltages measured using a magnetoelectric measurement system. The effect of annealing temperature on the magnetoelectric coupling in the CoFO/Pt/PZT multilayer thin film is discussed in detail.

  20. Pr and Gd co-doped bismuth ferrite thin films with enhanced

    Indian Academy of Sciences (India)

    Pr and Gd co-modified Bi0.95−PrGd0.05FeO3 ( = 0.00, 0.05, 0.10) (BPGFO) thin films on Pt(111)/Ti/SiO2/Si(100) substrates were prepared by a sol-gel together with spin coating technique. A detailed study of electrical and magnetic properties of these thin films is reported. X-ray diffraction analysis shows that, with an ...

  1. Ultra-high current density thin-film Si diode

    Science.gov (United States)

    Wang, Qi [Littleton, CO

    2008-04-22

    A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

  2. Preparation Effects on the Performance of Silica-Doped Hydrous Titanium Oxide (HTO:Si)-Supported Pt Catalysts for Lean-Burn NOx Reduction by Hydrocarbons; TOPICAL

    International Nuclear Information System (INIS)

    GARDNER, TIMOTHY J.; MCLAUGHLIN, LINDA I.; MOWERY, DEBORAH L.; SANDOVAL, RONALD S.

    2002-01-01

    This report describes the development of bulk hydrous titanium oxide (HTO)- and silica-doped hydrous titanium oxide (HTO:Si)-supported Pt catalysts for lean-burn NOx catalyst applications. The effects of various preparation methods, including both anion and cation exchange, and specifically the effect of Na content on the performance of Pt/HTO:Si catalysts, were evaluated. Pt/HTO:Si catalysts with low Na content ( and lt; 0.5 wt.%) were found to be very active for NOx reduction in simulated lean-burn exhaust environments utilizing propylene as the major reductant species. The activity and performance of these low Na Pt/HTO:Si catalysts were comparable to supported Pt catalysts prepared using conventional oxide or zeolite supports. In ramp down temperature profile test conditions, Pt/HTO:Si catalysts with Na contents in the range of 3-5 wt.% showed a wide temperature window of appreciable NOx conversion relative to low Na Pt/HTO:Si catalysts. Full reactant species analysis using both ramp up and isothermal test conditions with the high Na Pt/HTO:Si catalysts, as well as diffuse reflectance FTIR studies, showed that this phenomenon was related to transient NOx storage effects associated with NaNO(sub 2)/NaNO(sub 3) formation. These nitrite/nitrate species were found to decompose and release NOx at temperatures above 300 C in the reaction environment (ramp up profile). A separate NOx uptake experiment at 275 C in NO/N(sub 2)/O(sub 2) showed that the Na phase was inefficiently utilized for NOx storage. Steady state tests showed that the effect of increased Na content was to delay NOx light-off and to decrease the maximum NOx conversion. Similar results were observed for high K Pt/HTO:Si catalysts, and the effects of high alkali content were found to be independent of the sample preparation technique. Catalyst characterization (BET surface area, H(sub 2) chemisorption, and transmission electron microscopy) was performed to elucidate differences between the HTO- and HTO:Si

  3. Pressure effect on magnetism and superconductivity in CePt{sub 3}Si

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, T. [Low Temperature Center, Osaka University, Toyonaka, Osaka 560-0043 (Japan) and KYOKUGEN, Osaka University, Toyonaka, Osaka 560-8513 (Japan)]. E-mail: takeuchi@rcem.osaka-u.ac.jp; Shiimoto, M. [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Kohara, H. [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Yasuda, T. [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Hashimoto, S. [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Settai, R. [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Onuki, Y. [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Advanced Science Research Center, JAERI, Tokai, Ibaraki 319-1195 (Japan)

    2006-05-01

    Magnetism and superconductivity in the heavy-fermion superconductor CePt{sub 3}Si have been studied under pressure. The antiferromagnetic and superconducting transition temperatures, T{sub N} and T{sub sc}, respectively, decrease by applying pressure. T{sub N} becomes zero around 0.6-0.7GPa, while the pressure dependence of T{sub sc} exhibits a shoulder-like feature around 0.7GPa, and superconductivity is found to persist in the pressure range up to about 1.5GPa. A broad peak around 5K in the temperature derivative of thermal expansion {alpha}(T) and electrical resistivity d{rho}(T)/dT at ambient pressure begins to shift to higher temperatures above 0.7GPa. These results suggest that a critical pressure exists around 0.6-0.7GPa in CePt{sub 3}Si.

  4. Formation of abrasion-resistant coatings of the AlSiFexMny intermetallic compound type on the AISI 304L alloy

    Directory of Open Access Journals (Sweden)

    Martínez-Perales, Laura G.

    2016-03-01

    Full Text Available The α-Al9FeMnSi and β-Al9FeMn2Si intermetallics formed by reactive sintering of Al, Si, Mn, Fe, Cr and Ni powders have been used in AISI 304L steels to enhance microhardness. Processing variables of the reactive sintering treatment were temperature (600, 650, 700, 750 and 800 °C, pressure (5, 10 y 20 MPa and holding time (3600, 5400 y 7200 seconds. Experimental results show that temperature is the most important variable affecting the substrate/coating formation, while pressure does not appear to have a significant effect. The results show the optimum conditions of the reactive sintering that favor the substrate/coating formation are 800 °C, 20 MPa and 7200 seconds. Under these conditions, the reaction zone between the substrate and coating is more compacted and well-adhered, with a microhardness of 1300 Vickers. The results of SEM and X-Ray diffraction confirmed the formation of α-Al9FeMnSi and β-Al9FeMn2Si intermetallics in the substrate/coating interface as well as the presence of Cr and Ni, indicating diffusion of these two elements from the substrate to the interface.Los intermetálicos α-Al9FeMnSi y β-Al9FeMn2Si formados por sinterización reactiva de polvos Al, Si, Mn, Fe, Cr, Ni se han utilizado en aceros AISI 304L para mejorar la microdureza. Las variables de procesamiento de sinterización reactiva fueron temperatura (600, 650, 700, 750, y 800 °C, presión (5, 10 y 20 MPa y el tiempo de retención (3600, 5400 7200 segundos. Los resultados experimentales muestran que la temperatura es la variable más importante que afecta a la formación del sustrato/recubrimiento, mientras que la presión no parece tener un efecto significativo una influencia significativa. Los resultados muestran las condiciones óptimas de la sinterización reactiva que favorecen la formación del sustrato/recubrimiento a 800 °C, 20 MPa y 7200 segundos. En estas condiciones, la zona de reacción entre el sustrato y el recubrimiento es más compacta y bien

  5. Corrosion Behavior of Ni3(Si,Ti in Hydrochloric Acid Solution

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2013-06-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} The corrosion behaviour of the intermetallic compounds Ni3(Si,Ti (L12: single phase, has been investigated using an immersion test, electrochemical method, scanning electron microscope in 0.5 kmol/m3 HCl at 303 K. In addition, the corrosion behaviour of austenitic stainless steel type 304 and C276 was studied under the same experimental conditions as references. It was found that the intergranular attack was observed for Ni3(Si,Ti in the immersion test. From the immersion test and polarization curves, Ni3(Si,Ti had the moderate corrosion resistance, while the corrosion resistances of C 276 and type 304 were the highest and the lowest. Ni3(Si,Ti and type 304 were difficult to form a stable passive film, but not for C276. A further experiment must be conducted to clarify the stability of film for Ni3(Si,Ti in detail.

  6. State diagram of U-Al-Si as a basis for analysis of the processes in nuclear fuel compositions based on U(Al, Si)3 and U3Si compounds

    International Nuclear Information System (INIS)

    Chebotarev, N.T.; Konovalov, L.N.; Zhmak, V.A.; Chebotarev, Ya.N.

    1996-01-01

    Results of studies into the Al-UAl 3 -USi 3 -Si of the U-Al-Si ternary system are presented. It is established that phase equilibrium between the intermetallic compound U(Al, Si) 3 and the aluminium-silicon alloys may be presented in form of conodes on the isothermal cross-section of the state diagram. It is shown that the U(Al, Si) 3 intermetallic compound, containing up to 6.5 at.% silicon, interacts both with liquid and solid aluminium with the U(Al, Si) 4 phase formation [ru

  7. High-coercivity FePt sputtered films

    International Nuclear Information System (INIS)

    Luong, N.H.; Hiep, V.V.; Hong, D.M.; Chau, N.; Linh, N.D.; Kurisu, M.; Anh, D.T.K.; Nakamoto, G.

    2005-01-01

    Fe 56 Pt 44 thin films have been prepared by RF magnetron sputtering on Si substrates. The substrate temperature was kept at 350 deg C. The X-ray diffraction patterns of as-deposited FePt films exhibited a disordered structure. Annealing of the films at 650-685 deg C for 1 h yielded an ordered L1 0 phase with FCT structure. The high value for coercivity H C of 17 kOe was obtained at room temperature for the 68 nm thick film annealed at 685 deg C. The hard magnetic properties as well as grain structure of the films strongly depend on the annealing conditions

  8. Annealing effect on the bipolar resistive switching behaviors of BiFeO3 thin films on LaNiO3-buffered Si substrates

    International Nuclear Information System (INIS)

    Chen Xinman; Zhang Hu; Ruan Kaibin; Shi Wangzhou

    2012-01-01

    Highlights: ► Annealing effect on the bipolar resistive switching behaviors of BiFeO 3 thin films with Pt/BiFeO 3 /LNO was reported. ► Rectification property was explained from the asymmetrical contact between top and bottom interfaces and the distinct oxygen vacancy density. ► The modification of Schottky-like barrier was suggested to be responsible for the resistance switching behaviors of Pt/BiFeO 3 /LNO devices. - Abstract: We reported the annealing effect on the electrical behaviors of BiFeO 3 thin films integrated on LaNiO 3 (LNO) layers buffered Si substrates by sol–gel spin-coating technique. All the BiFeO 3 thin films exhibit the reversible bipolar resistive switching behaviors with Pt/BiFeO 3 /LNO configuration. The electrical conduction mechanism of the devices was dominated by the Ohmic conduction in the low resistance state and trap-controlled space charged limited current in the high resistance state. Good diode-like rectification property was observed in device with BiFeO 3 film annealed at 500 °C, but vanished in device with BiFeO 3 film annealed at 600 °C. This was attributed to the asymmetrical contact between top and bottom interfaces as well as the distinct oxygen vacancy density verified by XPS. Furthermore, the modification of Schottky-like barrier due to the drift of oxygen vacancies was suggested to be responsible for the resistance switching behaviors of Pt/BiFeO 3 /LNO devices.

  9. Comparison of lead zirconate titanate thin films on ruthenium oxide and platinum electrodes

    OpenAIRE

    Bursill, Les A.; Reaney, Ian M.; Vijay, Dilip P.; Desu, Seshu B.

    1994-01-01

    High-resolution and bright- and dark-field transmission electron microscopy are used to characterize and compare the interface structures and microstructure of PZT/RuO2/SiO2/Si and PZT/Pt/Ti/SiO2/Si ferroelectric thin films, with a view to understanding the improved fatigue characteristics of PZT thin films with RuO2 electrodes. The RuO2/PZT interface consists of a curved pseudoperiodic minimal surface. The interface is chemically sharp with virtually no intermixing of RuO2 and PZT, as eviden...

  10. Effect of Co on Si and Fe-containing intermetallic compounds (IMCs) in Al–20Si–5Fe alloys

    International Nuclear Information System (INIS)

    Fatih Kilicaslan, M.; Yilmaz, Fikret; Hong, Soon-Jik; Uzun, Orhan

    2012-01-01

    The effects of cobalt addition on microstructure and mechanical properties of Al–20Si–5Fe–XCo (X=0, 1, 3, and 5) alloys were reported in this study. The alloys were produced by both conventional sand casting and melt-spinning at 20 m/s disk velocity. Microstructures of the samples were investigated using X-ray diffractometry (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Vickers micro-hardness tester was used for hardness measurements. Results showed that Co addition can alter morphology of Fe-bearing intermetallic compounds (IMCs) from long rod/needle-like structures to short rod-like ones, and lead to a more homogenous distribution in the microstructure. Addition of 5 wt% Co leads to a decrease in average size of the primary silicon phases in as-cast Al–Si alloys. In melt-spun alloys, with the addition of Co, the microstructure became finer and more homogenously distributed, while thickness of the featureless zone has seen great increase. The optimum Fe to Co ratio was found to be 1 for suppressing the undesirable effect of Fe-bearing acicular/needle-like intermetallic compounds.

  11. Probing Single Pt Atoms in Complex Intermetallic Al13Fe4.

    Science.gov (United States)

    Yamada, Tsunetomo; Kojima, Takayuki; Abe, Eiji; Kameoka, Satoshi; Murakami, Yumi; Gille, Peter; Tsai, An Pang

    2018-03-21

    The atomic structure of a 0.2 atom % Pt-doped complex metallic alloy, monoclinic Al 13 Fe 4 , was investigated using a single crystal prepared by the Czochralski method. High-angle annular dark-field scanning transmission electron microscopy showed that the Pt atoms were dispersed as single atoms and substituted at Fe sites in Al 13 Fe 4 . Single-crystal X-ray structural analysis revealed that the Pt atoms preferentially substitute at Fe(1). Unlike those that have been reported, Pt single atoms in the surface layers showed lower activity and selectivity than those of Al 2 Pt and bulk Pt for propyne hydrogenation, indicating that the active state of a given single-atom Pt site is strongly dominated by the bonding to surrounding Al atoms.

  12. Giant Hall Resistivity and Magnetoresistance in Cubic Chiral Antiferromagnet EuPtSi

    Science.gov (United States)

    Kakihana, Masashi; Aoki, Dai; Nakamura, Ai; Honda, Fuminori; Nakashima, Miho; Amako, Yasushi; Nakamura, Shota; Sakakibara, Toshiro; Hedo, Masato; Nakama, Takao; Ōnuki, Yoshichika

    2018-02-01

    EuPtSi crystallizes in the cubic chiral structure (P213, No. 198), which is the same as the non-centrosymmetric space group of MnSi with the skyrmion structure, and orders antiferromagnetically below a Néel temperature TN = 4.05 K. The magnetization at 2 K for the [111] direction indicates two metamagnetic transitions at the magnetic fields HA1 = 9.2 kOe and HA2 = 13.8 kOe and saturates above Hc = 26.6 kOe. The present magnetic phase between HA1 and HA2 is most likely closed in the (H,T) phase and is observed in a wide temperature range from 3.6 to 0.5 K. In this magnetic phase known as the A-phase, we found giant additional Hall resistivity ΔρH(H) and magnetoresistance Δρ(H), reaching ΔρH(H) = 0.12 µΩ·cm and Δρ(H) = 1.4 µΩ·cm, respectively. These findings are obtained for H || [111] and [100], but not for H || [110] and [112], revealing an anisotropic behavior in the new material EuPtSi.

  13. Bimetallic Ag-Pt and Au-Pt aggregates synthesized by radiolysis

    International Nuclear Information System (INIS)

    Remita, S.; Mostafavi, M.; Delcourt, M.O.

    1996-01-01

    Irradiating aqueous solutions containing both Ag 2 So 4 and K 2 PtCl 4 leads to intermetallic aggregates of various sizes according to the stabilizing agent: polyvinylalcohol, polyacrylic acid or polyacrylate. In the last case, the particle diameter is 1.5 nm. The bimetallic character is evidenced in all cases by the spectral changes of such sols compared to pure silver sols which display a characteristic surface plasmon absorption band. This plasmon band disappears when 10 to 20 at.% or more Pr is present. Observation by TEM gives an estimation of the particle sizes. Comparable results have been obtained for Au-Pt particles. (author)

  14. Bimetallic Ag-Pt and Au-Pt aggregates synthesized by radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Remita, S; Mostafavi, M; Delcourt, M O [Paris-11 Univ., 91 - Orsay (France)

    1996-02-01

    Irradiating aqueous solutions containing both Ag{sub 2}So{sub 4} and K{sub 2}PtCl{sub 4} leads to intermetallic aggregates of various sizes according to the stabilizing agent: polyvinylalcohol, polyacrylic acid or polyacrylate. In the last case, the particle diameter is 1.5 nm. The bimetallic character is evidenced in all cases by the spectral changes of such sols compared to pure silver sols which display a characteristic surface plasmon absorption band. This plasmon band disappears when 10 to 20 at.% or more Pr is present. Observation by TEM gives an estimation of the particle sizes. Comparable results have been obtained for Au-Pt particles. (author).

  15. Properties of laser-crystallized polycrystalline SiGe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Weizman, Moshe

    2008-06-06

    In this thesis, structural, electrical, and optical properties of laser-crystallized polycrystalline Si{sub 1-x}Ge{sub x} thin films with 0Si{sub 1-x}Ge{sub x} thin films with 0.3SiGe samples that are exposed to a single laser pulse exhibit a ripple structure that evolves into a hillock structure when the samples are irradiated with additional laser pulses. - It is maintained that the main mechanism behind the structure formation is an instability of the propagating solid-liquid interface during solidification. - The study of defects with electron spin resonance showed that laser-crystallized poly-Si{sub 1-x}Ge{sub x} thin films with 0SiGe films was lower and amounted to N{sub s}=7 x 10{sup 17} cm{sup -3}. - Germanium-rich laser-crystallized poly-SiGe thin films exhibited mostly a broad atypical electric dipole spin resonance (EDSR) signal that was accompanied by a nearly temperature-independent electrical conductivity in the range 20-100 K. - Most likely, the origin of the grain boundary conductance is due to dangling-bond defects and not impurities. Metallic-like conductance occurs when the dangling-bond defect density is above a critical value of about N{sub C} {approx} 10{sup 18} cm{sup -3}. - Laser crystallized poly-Si{sub 1-x}Ge{sub x} thin films with x{>=}0.5 exhibit optical absorption behavior that is characteristic for disordered SiGe, implying that the absorption occurs primarily at the grain boundaries. A sub-band-gap absorption peak was found for

  16. Phase and Texture Evolution in Chemically Derived PZT Thin Films on Pt Substrates

    Science.gov (United States)

    2014-09-01

    function of heating rate. The FWHM of the Ill PZT texture components is sim 2978 Journal of the American Ceramic Society Mhin et al. Vol. 97, No. 9...Z39.18 ABSTRACT Phase and Texture Evolution in Chemically Derived PZT Thin Films on Pt Substrates Report Title The crystallization of lead zirconate...phase influencing texture evolution. The results suggest that PZT nucleates directly on Pt, which explains the observation of a more highly oriented

  17. Ion beam mixing of marker layers in Al and Si

    International Nuclear Information System (INIS)

    Mantl, S.; Rehn, L.E.; Averback, R.S.; Thompson, L.J. Jr.

    1984-07-01

    Ion beam mixing experiments on thin Pt, Au, and Ni markers in Al and Si have performed at 17, 85, and 300 K. After irradiation with 300-keV Ar ions the broadening and relative shifts of the markers have been determined by RBS measurements. The marker broadenings are more pronounced in Si than in Al; in both matrices the broadenings decrease in the following order: Au, Pt, and Ni. No dependence of mixing on irradiation temperature was observed between 17 and 300 K. The shifts of the heavy Au and Pt markers relative to the Ni markers are approximately equal to the experimental accuracy. However, a shift of the Ni marker toward the surface relative to the heavier Au and Pt markers was consistently observed. 13 references, 2 figures

  18. Ultrahigh broadband photoresponse of SnO2 nanoparticle thin film/SiO2/p-Si heterojunction.

    Science.gov (United States)

    Ling, Cuicui; Guo, Tianchao; Lu, Wenbo; Xiong, Ya; Zhu, Lei; Xue, Qingzhong

    2017-06-29

    The SnO 2 /Si heterojunction possesses a large band offset and it is easy to control the transportation of carriers in the SnO 2 /Si heterojunction to realize high-response broadband detection. Therefore, we investigated the potential of the SnO 2 nanoparticle thin film/SiO 2 /p-Si heterojunction for photodetectors. It is demonstrated that this heterojunction shows a stable, repeatable and broadband photoresponse from 365 nm to 980 nm. Meanwhile, the responsivity of the device approaches a high value in the range of 0.285-0.355 A W -1 with the outstanding detectivity of ∼2.66 × 10 12 cm H 1/2 W -1 and excellent sensitivity of ∼1.8 × 10 6 cm 2 W -1 , and its response and recovery times are extremely short (oxide or oxide/Si based photodetectors. In fact, the photosensitivity and detectivity of this heterojunction are an order of magnitude higher than that of 2D material based heterojunctions such as (Bi 2 Te 3 )/Si and MoS 2 /graphene (photosensitivity of 7.5 × 10 5 cm 2 W -1 and detectivity of ∼2.5 × 10 11 cm H 1/2 W -1 ). The excellent device performance is attributed to the large Fermi energy difference between the SnO 2 nanoparticle thin film and Si, SnO 2 nanostructure, oxygen vacancy defects and thin SiO 2 layer. Consequently, practical highly-responsive broadband PDs may be actualized in the future.

  19. Separation of stress-free AlN/SiC thin films from Si substrate

    International Nuclear Information System (INIS)

    Redkov, A V; Osipov, A V; Mukhin, I S; Kukushkin, S A

    2016-01-01

    We separated AlN/SiC film from Si substrate by chemical etching of the AlN/SiC/Si heterostructure. The film fully repeats the size and geometry of the original sample and separated without destroying. It is demonstrated that a buffer layer of silicon carbide grown by a method of substitution of atoms may have an extensive hollow subsurface structure, which makes it easier to overcome the differences in the coefficients of thermal expansion during the growth of thin films. It is shown that after the separation of the film from the silicon substrate, mechanical stresses therein are almost absent. (paper)

  20. Intermetallic alloys - overview on new materials developments for structural applications in West Germany

    International Nuclear Information System (INIS)

    Sauthoff, G.

    1990-01-01

    As a result of recent research on intermetallics for high-temperature applications several alloy systems which are based on intermetallics are regarded as promising for new materials developments, and respective developments have been initiated in West Germany. The present work is aimed a lightweight materials on one hand and at high-temperature high-strength materials on the other hand. The overview surveys the work in West Germany on γ-TiAl, Ti 5 Si 3 -based alloys, Mg 2 Si-Al, NiAl-Cr, Al 3 Nb-NiAl and Laves phase-based alloys, and the mechanical properties - strength, ductility and/or toughness - are described. (orig.) [de

  1. Durability Evaluation of a Thin Film Sensor System With Enhanced Lead Wire Attachments on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Lei, Jih-Fen; Kiser, J. Douglas; Singh, Mrityunjay; Cuy, Mike; Blaha, Charles A.; Androjna, Drago

    2000-01-01

    An advanced thin film sensor system instrumented on silicon carbide (SiC) fiber reinforced SiC matrix ceramic matrix composites (SiC/SiC CMCs), was evaluated in a Mach 0.3 burner rig in order to determine its durability to monitor material/component surface temperature in harsh environments. The sensor system included thermocouples in a thin film form (5 microns thick), fine lead wires (75 microns diameter), and the bonds between these wires and the thin films. Other critical components of the overall system were the heavy, swaged lead wire cable (500 microns diameter) that contained the fine lead wires and was connected to the temperature readout, and ceramic attachments which were bonded onto the CMCs for the purpose of securing the lead wire cables, The newly developed ceramic attachment features a combination of hoops made of monolithic SiC or SiC/SiC CMC (which are joined to the test article) and high temperature ceramic cement. Two instrumented CMC panels were tested in a burner rig for a total of 40 cycles to 1150 C (2100 F). A cycle consisted of rapid heating to 1150 C (2100 F), a 5 minute hold at 1150 C (2100 F), and then cooling down to room temperature in 2 minutes. The thin film sensor systems provided repeatable temperature measurements for a maximum of 25 thermal cycles. Two of the monolithic SiC hoops debonded during the sensor fabrication process and two of the SiC/SiC CMC hoops failed during testing. The hoops filled with ceramic cement, however, showed no sign of detachment after 40 thermal cycle test. The primary failure mechanism of this sensor system was the loss of the fine lead wire-to-thin film connection, which either due to detachment of the fine lead wires from the thin film thermocouples or breakage of the fine wire.

  2. Orientation control of chemical solution deposited LaNiO3 thin films

    International Nuclear Information System (INIS)

    Ueno, Kengo; Yamaguchi, Toshiaki; Sakamoto, Wataru; Yogo, Toshinobu; Kikuta, Koichi; Hirano, Shin-ichi

    2005-01-01

    High quality LaNiO 3 (LNO) thin films with preferred orientation could be synthesized on Pt/Ti/SiO 2 /Si substrates at 700 deg. C using the chemical solution deposition method. The homogeneous and stable LNO precursor solutions were prepared using lanthanum isopropoxide and nickel (II) acetylacetonate in a mixed solvent of absolute ethanol and 2-methoxyethanol. The oriented LNO thin films exhibit metallic electro-conduction, and their resistivity at room temperature is sufficiently low for making them an alternative electrode material for functional ceramic thin films

  3. Osteoblast Adhesion on Cathodic Arc Plasma Deposited Nano-Multilayered TiCrAlSiN Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Kyu [University of Ulsan, Ulsan (Korea, Republic of); Pham, Vuong Hung [Hanoi University of Science and Technology (HUST), Hanoi (Viet Nam)

    2014-03-15

    Adhesion of osteoblast cells to TiCrAlSiN thin films was evaluated in vitro. Ti and TiCrAlSiN thin films were deposited on glass substrates by cathodic arc deposition. Surface roughness and chemistry of the TiCrAlSiN thin films was characterized by AFM and EPMA, respectively. Ti and TiCrAlSiN thin films and glass coverslips were cultured with human osteoblast cells (hFOB 1.19). The cell cytoskeleton was analyzed by observing the organization of actin stress fibers and microtubules. Cell proliferation was investigated by MTT assay and visualization. Focal contact adhesion was studied by observing the vinculin density. The results indicated that the TiCrAlSiN coating significantly influenced the actin cytoskeleton and microtubule organization. Human osteoblasts hFOB attached and proliferated better on TiCrAlSiN thin films with more focal contact adhesions than on Ti thin films or glass surfaces. These results suggest that TiCrAlSiN thin films can be an implantable material where the maximum cell adhesion is required.

  4. High-performance a -Si/c-Si heterojunction photoelectrodes for photoelectrochemical oxygen and hydrogen evolution

    KAUST Repository

    Wang, Hsin Ping

    2015-05-13

    Amorphous Si (a-Si)/crystalline Si (c-Si) heterojunction (SiHJ) can serve as highly efficient and robust photoelectrodes for solar fuel generation. Low carrier recombination in the photoelectrodes leads to high photocurrents and photovoltages. The SiHJ was designed and fabricated into both photoanode and photocathode with high oxygen and hydrogen evolution efficiency, respectively, by simply coating of a thin layer of catalytic materials. The SiHJ photoanode with sol-gel NiOx as the catalyst shows a current density of 21.48 mA/cm2 at the equilibrium water oxidation potential. The SiHJ photocathode with 2 nm sputter-coated Pt catalyst displays excellent hydrogen evolution performance with an onset potential of 0.640 V and a solar to hydrogen conversion efficiency of 13.26%, which is the highest ever reported for Si-based photocathodes. © 2015 American Chemical Society.

  5. Analysis of the High Conversion Efficiencies β-FeSi2 and BaSi2 n-i-p Thin Film Solar Cells

    International Nuclear Information System (INIS)

    Huang, J.Sh.; Lee, K.W.; Tseng, Y.H.

    2014-01-01

    Both β-FeSi 2 and BaSi 2 are silicides and have large absorption coefficients; thus they are very promising Si-based new materials for solar cell applications. In this paper, the dc I-V characteristics of n-Si/i-βFeSi 2 /p-Si and n-Si/i-BaSi 2 /p-Si thin film solar cells are investigated by solving the charge transport equations with optical generations. The diffusion current densities of free electron and hole are calculated first. Then the drift current density in the depletion regions is obtained. The total current density is the sum of diffusion and drift current densities. The conversion efficiencies are obtained from the calculated I-V curves. The optimum conversion efficiency of n-Si/i-βFeSi 2 /p-Si thin film solar cell is 27.8% and that of n-Si/i-BaSi 2 /p-Si thin film solar cell is 30.4%, both are larger than that of Si n-i-p solar cell (η is 20.6%). These results are consistent with their absorption spectrum. The calculated conversion efficiency of Si n-i-p solar cell is consistent with the reported researches. Therefore, these calculation results are valid in this work.

  6. Analysis of the High Conversion Efficiencies β-FeSi2 and BaSi2 n-i-p Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Jung-Sheng Huang

    2014-01-01

    Full Text Available Both β-FeSi2 and BaSi2 are silicides and have large absorption coefficients; thus they are very promising Si-based new materials for solar cell applications. In this paper, the dc I-V characteristics of n-Si/i-βFeSi2/p-Si and n-Si/i-BaSi2/p-Si thin film solar cells are investigated by solving the charge transport equations with optical generations. The diffusion current densities of free electron and hole are calculated first. Then the drift current density in the depletion regions is obtained. The total current density is the sum of diffusion and drift current densities. The conversion efficiencies are obtained from the calculated I-V curves. The optimum conversion efficiency of n-Si/i-βFeSi2/p-Si thin film solar cell is 27.8% and that of n-Si/i-BaSi2/p-Si thin film solar cell is 30.4%, both are larger than that of Si n-i-p solar cell (η is 20.6%. These results are consistent with their absorption spectrum. The calculated conversion efficiency of Si n-i-p solar cell is consistent with the reported researches. Therefore, these calculation results are valid in this work.

  7. Nanoparticles of Pt and Ag supported in meso porous SiO{sub 2}: characterization and catalytic applications; Nanoparticulas de Pt y Ag soportadas en SiO{sub 2} mesoporosa: caracterizacion y aplicaciones cataliticas

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, M.E.; Perez H, R.; Perez A, M.; Mondragon G, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Arenas A, J. [IFUNAM, A.P. 20-364, 01000 Mexico D.F. (Mexico)

    2004-07-01

    The surface properties of catalysts of Pt and Ag supported in conventional SiO{sub 2} hey have been studied through reduction reactions of N{sub 2}O with H{sub 2} which is a sensitive reaction to the structure. In our case it was used a meso porous ceramic support of SiO{sub 2} of great surface area (1100 m{sup 2}/gr), where it is caused a high dispersion of the metallic nanoparticles of Pt and Ag, the total charge of the active phase in the meso porous support was of 3% in weight. The catalysts show a variation in the percentages of conversion of N{sub 2}O depending on the size and dispersion of the metallic phases. (Author)

  8. Chemistry and Properties of Complex Intermetallics from Metallic Fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Kanatzidis, Mercouri G. [Northwestern Univ., Evanston, IL (United States)

    2015-03-28

    This project investigated the reaction chemistry and synthesis of new intermetallic materials with complex compositions and structures using metallic fluxes as solvents. It was found that the metallic fluxes offer several key advantages in facilitating the formation and crystal growth of new materials. The fluxes mostly explored were liquid aluminum, gallium and indium. The main purpose of this project was to exploit the potential of metallic fluxes as high temperature solvent for materials discovery in the broad class of intermetallics. This work opened new paths to compound formation. We discovered many new Si (or Ge)-based compounds with novel structures, bonding and physicochemical properties. We created new insights about the reaction chemistry that is responsible for stabilizing the new materials. We also studied the structural and compositional relationships to understand their properties. We investigated the use of Group-13 metals Al, Ga and In as solvents and have generated a wide variety of new results including several new ternary and quaternary materials with fascinating structures and properties as well as new insights as to how these systems are stabilized in the fluxes. The project focused on reactions of metals from the rare earth element family in combination with transition metals with Si and Ge. For example molten gallium has serves both as a reactive and non-reactive solvent in the preparation and crystallization of intermetallics in the system RE/M/Ga/Ge(Si). Molten indium behaves similarly in that it too is an excellent reaction medium, but it gives compounds that are different from those obtained from gallium. Some of the new phase identified in the aluminide class are complex phases and may be present in many advanced Al-matrix alloys. Such phases play a key role in determining (either beneficially or detrimentally) the mechanical properties of advanced Al-matrix alloys. This project enhanced our basic knowledge of the solid state chemistry

  9. Microstructure and magnetic properties of FePt:Ag nanocomposite films on SiO2/Si(1 0 0)

    International Nuclear Information System (INIS)

    Wang Hao; Yang, F.J.; Wang, H.B.; Cao, X.; Xue, S.X.; Wang, J.A.; Gao, Y.; Huang, Z.B.; Yang, C.P.; Chiah, M.F.; Cheung, W.Y.; Wong, S.P.; Li, Q.; Li, Z.Y.

    2006-01-01

    FePt:Ag nanocomposite films were prepared by pulsed filtered vacuum arc deposition system and subsequent rapid thermal annealing on SiO 2 /Si(1 0 0) substrates. The microstructure and magnetic properties were investigated. A strong dependence of coercivity and ordering of the face-central tetragonal structure on both Ag concentration and annealing temperature was observed. With Ag concentration of 22% in atomic ratio, the coercivity got to 6.0 kOe with a grain size of 6.7 nm when annealing temperature was 400 deg. C

  10. Suppression of slow capacitance relaxation phenomenon in Pt/Ba0.3Sr0.7TiO3/Pt thin film ferroelectric structures by annealing in oxygen atmosphere

    KAUST Repository

    Altynnikov, A. G.; Gagarin, A. G.; Gaidukov, M. M.; Tumarkin, A. V.; Petrov, P. K.; Alford, N.; Kozyrev, A. B.

    2014-01-01

    The impact of oxygen annealing on the switching time of ferroelectric thin film capacitor structures Pt/Ba0.3Sr0.7TiO3/Pt was investigated. The response of their capacitance on pulsed control voltages before and after annealing was experimentally

  11. Effects of atomic hydrogen on the selective area growth of Si and Si1-xGex thin films on Si and SiO2 surfaces: Inhibition, nucleation, and growth

    International Nuclear Information System (INIS)

    Schroeder, T.W.; Lam, A.M.; Ma, P.F.; Engstrom, J.R.

    2004-01-01

    Supersonic molecular beam techniques have been used to study the nucleation of Si and Si 1-x Ge x thin films on Si and SiO 2 surfaces, where Si 2 H 6 and GeH 4 have been used as sources. A particular emphasis of this study has been an examination of the effects of a coincident flux of atomic hydrogen. The time associated with formation of stable islands of Si or Si 1-x Ge x on SiO 2 surfaces--the incubation time--has been found to depend strongly on the kinetic energy of the incident molecular precursors (Si 2 H 6 and GeH 4 ) and the substrate temperature. After coalescence, thin film morphology has been found to depend primarily on substrate temperature, with smoother films being grown at substrate temperatures below 600 deg. C. Introduction of a coincident flux of atomic hydrogen has a large effect on the nucleation and growth process. First, the incubation time in the presence of atomic hydrogen has been found to increase, especially at substrate temperatures below 630 deg. C, suggesting that hydrogen atoms adsorbed on Si-like sites on SiO 2 can effectively block nucleation of Si. Unfortunately, in terms of promoting selective area growth, coincident atomic hydrogen also decreases the rate of epitaxial growth rate, essentially offsetting any increase in the incubation time for growth on SiO 2 . Concerning Si 1-x Ge x growth, the introduction of GeH 4 produces substantial changes in both thin film morphology and the rate nucleation of poly-Si 1-x Ge x on SiO 2 . Briefly, the addition of Ge increases the incubation time, while it lessens the effect of coincident hydrogen on the incubation time. Finally, a comparison of the maximum island density, the time to reach this density, and the steady-state polycrystalline growth rate strongly suggests that all thin films [Si, Si 1-x Ge x , both with and without H(g)] nucleate at special sites on the SiO 2 surface, and grow primarily via direct deposition of adatoms on pre-existing islands

  12. Synthesis of magnetic CoPt/SiO{sub 2} core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seto, Takafumi [Research Consortium for Synthetic Nano-Function Materials Project (SYNAF), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Koga, Kenji [Research Consortium for Synthetic Nano-Function Materials Project (SYNAF), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Takano, Fumiyoshi [Research Consortium for Synthetic Nano-Function Materials Project (SYNAF), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Akinaga, Hiroyuki [Research Consortium for Synthetic Nano-Function Materials Project (SYNAF), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Orii, Takaaki [Research Consortium for Synthetic Nano-Function Materials Project (SYNAF), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Hirasawa, Makoto [Research Consortium for Synthetic Nano-Function Materials Project (SYNAF), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Murayama, Mitsuhiro [National Institute for Material Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan)

    2007-04-15

    Core-shell nanoparticles composed of ferromagnetic cobalt platinum cores covered by non-magnetic silica shells were synthesized by laser ablating a composite target in a helium background gas. The average diameter of the CoPt core was controlled by adjusting the CoPt/SiO{sub 2} ratio of the ablation target. The particles were also classified in the gas phase using an electrical mobility classifier. The present method successfully synthesized nearly monodispersed nanoparticles with an average core diameter of 2.5nm. This article describes the synthesis of the core-shell nanoparticles and investigates their magnetic properties.

  13. Surface composition of magnetron sputtered Pt-Co thin film catalyst for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Vorokhta, Mykhailo, E-mail: vorohtam@gmail.com [Charles University in Prague, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 18000 Prague (Czech Republic); Khalakhan, Ivan; Václavů, Michal [Charles University in Prague, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 18000 Prague (Czech Republic); Kovács, Gábor; Kozlov, Sergey M. [Departament de Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1, 08028 Barcelona (Spain); Kúš, Peter; Skála, Tomáš; Tsud, Natalia; Lavková, Jaroslava [Charles University in Prague, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 18000 Prague (Czech Republic); Potin, Valerie [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université Bourgogne, 9 Av. A. Savary, BP 47870, F-21078 Dijon Cedex (France); and others

    2016-03-01

    Graphical abstract: - Highlights: • Nanostructured Pt-Co thin catalyst films were grown on carbon by magnetron sputtering. • The surface composition of the nanostructured Pt-Co films was investigated by surface analysis techniques. • We carried out modeling of Pt-Co nanoalloys by computational methods. • Both experiment and modeling based on density functional theory showed that the surface of Pt-Co nanoparticles is almost exclusively composed of Pt atoms. - Abstract: Recently we have tested a magnetron sputtered Pt-Co catalyst in a hydrogen-fed proton exchange membrane fuel cell and showed its high catalytic activity for the oxygen reduction reaction. Here we present further investigation of the magnetron sputtered Pt-Co thin film catalyst by both experimental and theoretical methods. Scanning electron microscopy and transmission electron microscopy experiments confirmed the nanostructured character of the catalyst. The surface composition of as-deposited and annealed at 773 K Pt-Co films was investigated by surface analysis techniques, such as synchrotron radiation photoelectron spectroscopy and X-ray photoelectron spectroscopy. Modeling based on density functional theory showed that the surface of 6 nm large 1:1 Pt-Co nanoparticles is almost exclusively composed of Pt atoms (>90%) at typical operation conditions and the Co content does not exceed 20% at 773 K, in agreement with the experimental characterization of such films annealed in vacuum. According to experiment, the density of valence states of surface atoms in Pt-Co nanostructures is shifted by 0.3 eV to higher energies, which can be associated with their higher activity in the oxygen reduction reaction. The changes in electronic structure caused by alloying are also reflected in the measured Pt 4f, Co 3p and Co 2p photoelectron peak binding energies.

  14. Structural and optical properties of SiC-SiO2 nanocomposite thin films

    Science.gov (United States)

    Bozetine, I.; Keffous, A.; Kaci, S.; Menari, H.; Manseri, A.

    2018-03-01

    This study deals with the deposition of thin films of a SiC-SiO2nanocomposite deposited on silicon substrates. The deposition is carried out by a co-sputtering RF magnetron 13.56 MHz, using two targets a polycristallin 6H-SiC and sprigs of SiO2. In order to study the influence of the deposition time on the morphology, the structural and optical properties of the thin films produced, two series of samples were prepared, namely a series A with a 30 min deposition time and a series B of one hour duration. The samples were investigated using different characterization techniques such as Scanning Electron Microscope (SEM), X-ray Diffraction (DRX), Fourier Transform Infrared Spectroscopy (FTIR), Secondary Ion Mass Spectrometry (SIMS) and photoluminescence. The results obtained, reveal an optical gap varies between 1.4 and 2.4 eV depending on the thickness of the film; thus depending on the deposition time. The SIMS profile recorded the presence of oxygen (16O) on the surface, which the signal beneath the silicon signal (28Si) and carbon (12C) signals, which confirms that the oxide (SiO2) is the first material deposited at the interface film - substrate with an a-OSiC structure. The photoluminescence (PL) measurement exhibits two peaks, centred at 390 nm due to the oxide and at 416 nm due probably to the nanocrystals of SiC crystals, note that when the deposition time increases, the intensity of the PL drops drastically, result in agreement with dense and smooth film.

  15. Electride and superconductivity behaviors in Mn5Si3-type intermetallics

    Science.gov (United States)

    Zhang, Yaoqing; Wang, Bosen; Xiao, Zewen; Lu, Yangfan; Kamiya, Toshio; Uwatoko, Yoshiya; Kageyama, Hiroshi; Hosono, Hideo

    2017-08-01

    Electrides are unique in the sense that they contain localized anionic electrons in the interstitial regions. Yet they exist with a diversity of chemical compositions, especially under extreme conditions, implying generalized underlying principles for their existence. What is rarely observed is the combination of electride state and superconductivity within the same material, but such behavior would open up a new category of superconductors. Here, we report a hexagonal Nb5Ir3 phase of Mn5Si3-type structure that falls into this category and extends the electride concept into intermetallics. The confined electrons in the one-dimensional cavities are reflected by the characteristic channel bands in the electronic structure. Filling these free spaces with foreign oxygen atoms serves to engineer the band topology and increase the superconducting transition temperature to 10.5 K in Nb5Ir3O. Specific heat analysis indicates the appearance of low-lying phonons and two-gap s-wave superconductivity. Strong electron-phonon coupling is revealed to be the pairing glue with an anomalously large ratio between the superconducting gap Δ0 and Tc, 2Δ0/kBTc = 6.12. The general rule governing the formation of electrides concerns the structural stability against the cation filling/extraction in the channel site.

  16. Low-Temperature Synthesis Routes to Intermetallic Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schaak, Raymond E

    2008-01-08

    Over the past few years, our group has gained expertise at developing low-temperature solution-based synthetic pathways to complex nanoscale solids, with particular emphasis on nanocrystalline intermetallic compounds. Our synthetic capabilities are providing tools to reproducibly generate intermetallic nanostructures with simultaneous control over crystal structure, composition, and morphology. This DOE-funded project aims to expand these capabilities to intermetallic superconductors. This could represent an important addition to the tools that are available for the synthesis and processing of intermetallic superconductors, which traditionally utilize high-temperature, high-pressure, thin film, or gas-phase vacuum deposition methods. Our current knowledge of intermetallic superconductors suggests that significant enhancements could result from the inherent benefits of low-temperature solution synthesis, e.g. metastable phase formation, control over nanoscale morphology to facilitate size-dependent property studies, robust and inexpensive processability, low-temperature annealing and consolidation, and impurity incorporation (for doping, stoichiometry control, flux pinning, and improving the critical fields). Our focus is on understanding the superconducting properties as a function of synthetic route, crystal structure, crystallite size, and morphology, and developing the synthetic tools necessary to accomplish this. This research program can currently be divided into two classes of superconducting materials: intermetallics (transition metal/post transition metal) and metal carbides/borides. Both involve the development and exploitation of low-temperature synthesis routes followed by detailed characterization of structures and properties, with the goal of understanding how the synthetic pathways influence key superconducting properties of selected target materials. Because of the low-temperature methods used to synthesize them and the nanocrystalline morphologies

  17. Electrocatalytic activity of Pt grown by ALD on carbon nanotubes for Si-based DMFC applications

    DEFF Research Database (Denmark)

    Johansson, Alicia Charlotte; Dalslet, Bjarke Thomas; Yang, R.B.

    2012-01-01

    in a top-flow ALD reactor at 250°C, using MeCpPtMe3 and O2 as precursors. The anode was tested for the methanol oxidation reaction (MOR) in a three-electrode electrochemical set-up and it showed improved catalytic activity compared to a reference sample of Pt deposited on flat Si. It is demonstrated......We present an anode design for silicon-based direct methanol fuel cell (DMFC) applications. Platinum was deposited conformally by atomic layer deposition (ALD) onto vertically aligned, nitrogendoped multi-walled carbon nanotubes (MWCNTs) grown on porous silicon. The deposition was carried out...... that ALD could be a MEMS compatible deposition technique for Si-based fuel cell applications. © The Electrochemical Society....

  18. Magnetoelectric properties of magnetic/ferroelectric multilayer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung-Ok; Eum, You-Jeong; Koo, Chang-Young; Lee, Hee-Young [Yeungnam University, Gyeongsan (Korea, Republic of); Park, Jung-Min [Osaka University, Osaka (Japan); Ryu, Jung-Ho [Korea Institute of Materials Science, Changwon (Korea, Republic of)

    2014-07-15

    Magnetic/ferroelectric multilayer thin films using PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} (PZT) and two different magnetic materials, i.e., Terfenol-D and CuFe{sub 2}O{sub 4} (CuFO) layers, were fabricated, and their magnetoelectric (ME) coupling behavior was investigated. The PZT layer was first coated onto Pt/Ti/SiO{sub 2}/Si substrate by sol-gel spin coating method. Pt layer, which served as an electrode and a diffusion barrier, was grown on the PZT layer by using the ion-beam sputtering method. The ME voltage coefficients were calculated from the ME voltage data measured utilizing a magnetoelectric test system. The Terfenol-D/Pt/PZT films were found to show a higher in-plane ME voltage coefficient than that the CuFO/Pt/PZT films due primarily to the higher magnetostriction coefficient of Terfenol-D.

  19. Highly stable carbon coated Mg2Si intermetallic nanoparticles for lithium-ion battery anode

    Science.gov (United States)

    Tamirat, Andebet Gedamu; Hou, Mengyan; Liu, Yao; Bin, Duan; Sun, Yunhe; Fan, Long; Wang, Yonggang; Xia, Yongyao

    2018-04-01

    Silicon is an ideal candidate anode material for Li-ion batteries (LIBs). However, it suffers from rapid capacity fading due to large volume expansion upon lithium insertion. Herein, we design and fabricate highly stable carbon coated porous Mg2Si intermetallic anode material using facile mechano-thermal technique followed by carbon coating using thermal vapour deposition (TVD), toluene as carbon source. The electrode exhibits an excellent first reversible capacity of 726 mAh g-1 at a rate of 100 mA g-1. More importantly, the electrode demonstrates high rate capability (380 mAh g-1 at high rate of 2 A g-1) as well as high cycle stability, with capacity retentions of 65% over 500 cycles. These improvements are attributable to both Mg supporting medium and the uniform carbon coating, which can effectively increase the conductivity and electronic contact of the active material and protects large volume alterations during the electrochemical cycling process.

  20. Pulsed laser deposition of Pb(Zr0.52Ti0.48)O3 thin film on cobalt ferrite nano-seed layered Pt(111)/Si substrate: effect of oxygen pressure

    Science.gov (United States)

    Khodaei, M.; Seyyed Ebrahimi, S. A.; Park, Yong Jun; Song, Seungwoo; Jang, Hyun Myung; Son, Junwoo; Baik, Sunggi

    2014-07-01

    The effect of oxygen pressure during pulsed laser deposition of Pb(Zr0.52Ti0.48)O3 (PZT) thin films on CoFe2O4 nano-seed layered Pt(111)/Si substrate was investigated. The PZT film deposited at oxygen pressure lower than 25 mTorr is identified as both perovskite and pyrochlore phases and the films deposited at high oxygen pressure (50-100 mTorr) show the single-phase perovskite PZT that has a perfect (111)-orientation. In addition, the film deposited at PO2 of 50 mTorr has a uniform surface morphology, whereas the film deposited at PO2 of 100 mTorr has a non-uniform surface morphology and more incompacted columnar cross-section microstructure. The polarization of film deposited at 100 mTorr is higher than that deposited at 50 mTorr, but shift of the hysteresis loop along the electrical field axis in the film deposited at PO2 of 100 mTorr is larger than that of the film deposited at PO2 of 50 mTorr.

  1. Preferential growth and enhanced dielectric properties of Ba0.7Sr0.3TiO3 thin films with preannealed Pt bottom electrode

    International Nuclear Information System (INIS)

    Zhu Xiaohong; Ren Yinjuan; Zhang Caiyun; Zhu Jiliang; Zhu Jianguo; Xiao Dingquan; Defaÿ, Emmanuel; Aïd, Marc

    2013-01-01

    Ba 0.7 Sr 0.3 TiO 3 (BST) thin films, about 100 nm in thickness, were prepared on unannealed and 700 °C-preannealed Pt bottom electrodes by the ion beam sputtering and post-deposition annealing method. It was found that the preannealed Pt layer has a more compact structure, making it not only a bottom electrode but also a good template for high-quality BST thin film growth. The BST films deposited on preannealed Pt bottom electrodes showed (0 0 l)-preferred orientation, dense and uniform microstructure with no intermediate phase formed at the film/electrode interface, and thus enhanced dielectric properties. As a result, the typical relative dielectric constant and tunability (under a dc electric field of 1 MV cm −1 ) reach 180 and 50.1%, respectively, for the BST thin films with preannealed Pt bottom electrodes, which are significantly higher than those (166 and 41.3%, respectively) for the BST thin films deposited on unannealed Pt bottom electrodes. (paper)

  2. Preferential growth and enhanced dielectric properties of Ba0.7Sr0.3TiO3 thin films with preannealed Pt bottom electrode

    Science.gov (United States)

    Zhu, Xiaohong; Defaÿ, Emmanuel; Aïd, Marc; Ren, Yinjuan; Zhang, Caiyun; Zhu, Jiliang; Zhu, Jianguo; Xiao, Dingquan

    2013-03-01

    Ba0.7Sr0.3TiO3 (BST) thin films, about 100 nm in thickness, were prepared on unannealed and 700 °C-preannealed Pt bottom electrodes by the ion beam sputtering and post-deposition annealing method. It was found that the preannealed Pt layer has a more compact structure, making it not only a bottom electrode but also a good template for high-quality BST thin film growth. The BST films deposited on preannealed Pt bottom electrodes showed (0 0 l)-preferred orientation, dense and uniform microstructure with no intermediate phase formed at the film/electrode interface, and thus enhanced dielectric properties. As a result, the typical relative dielectric constant and tunability (under a dc electric field of 1 MV cm-1) reach 180 and 50.1%, respectively, for the BST thin films with preannealed Pt bottom electrodes, which are significantly higher than those (166 and 41.3%, respectively) for the BST thin films deposited on unannealed Pt bottom electrodes.

  3. H{sub 2}-Ar dilution for improved c-Si quantum dots in P-doped SiN{sub x}:H thin film matrix

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jia [Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119 (China); Zhang, Weijia, E-mail: zwjghx@126.com [Center of Condensed Matter and Material Physics, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing, 100191 (China); Liu, Shengzhong, E-mail: szliu@dicp.ac.cn [Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119 (China); State key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023 (China)

    2017-02-28

    Highlights: • Phosphorous-doped SiN{sub x}:H thin films containing c-Si QDs were prepared by PECVD in H{sub 2}-Ar mixed dilution under low temperature. • QD density and QD size can be controlled by tuning H{sub 2}/Ar flow ratio. • The sample prepared at the H{sub 2}/Ar flow ratio of 100/100 possesses both wide band gap and excellent conductivity. • Detail discussion has been presented for illustrating the influence of H{sub 2}/Ar mixed dilution on the crystallization process and P-doping. - Abstract: Phosphorus-doped hydrogenated silicon nitride (SiN{sub x}:H) thin films containing crystalline silicon quantum dot (c-Si QD) was prepared by plasma enhanced chemical vapor deposition (PECVD) using hydrogen-argon mixed dilution. The effects of H{sub 2}/Ar flow ratio on the structural, electrical and optical characteristics of as-grown P-doped SiN{sub x}:H thin films were systematically investigated. Experimental results show that crystallization is promoted by increasing the H{sub 2}/Ar flow ratio in dilution, while the N/Si atomic ratio is higher for thin film deposited with argon-rich dilution. As the H{sub 2}/Ar flow ratio varies from 100/100 to 200/0, the samples exhibit excellent conductivity owing to the large volume fraction of c-Si QDs and effective P-doping. By adjusting the H{sub 2}/Ar ratio to 100/100, P-doped SiN{sub x}:H thin film containing tiny and densely distributed c-Si QDs can be obtained. It simultaneously possesses wide optical band gap and high dark conductivity. Finally, detailed discussion has been made to analyze the influence of H{sub 2}-Ar mixed dilution on the properties of P-doped SiN{sub x}:H thin films.

  4. Development of thin-film Si HYBRID solar module

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Akihiko; Gotoh, Masahiro; Sawada, Toru; Fukuda, Susumu; Yoshimi, Masashi; Yamamoto, Kenji; Nomura, Takuji [Kaneka Corporation, 2-1-1, Hieitsuji, Otsu, Shiga 520-0104 (Japan)

    2009-06-15

    The device current-voltage (I-V) characteristics of thin-film silicon stacked tandem solar modules (HYBRID modules), consisting of a hydrogenated amorphous silicon (a-Si:H) cell and a thin-film crystalline silicon solar cell ({mu}c-Si), have been investigated under various spectral irradiance distributions. The performance of the HYBRID module varied periodically in natural sunlight due to the current-limiting property of the HYBRID module and the environmental effects. The behavior based on the current-limiting property was demonstrated by the modelling of the I-V curves using the linear interpolation method for each component cell. The improvement of the performance for the HYBRID module in natural sunlight will also be discussed from the viewpoint of the device design of the component cells. (author)

  5. First principles study of halogens adsorption on intermetallic surfaces

    International Nuclear Information System (INIS)

    Zhu, Quanxi; Wang, Shao-qing

    2016-01-01

    Graphical abstract: - Highlights: • The linear relation between adsorbates induced work function change and dipole moment change also exists for intermetallic surfaces. • It is just a common linear relationship rather than a directly proportion. • A new weight parameter β is proposed to describe different factors effect on work function shift. - Abstract: Halides are often present at electrochemical environment, they can directly influence the electrode potential or zero charge potential through the induced work-function change. In this work, we focused in particular on the halogen-induced work function change as a function of the coverage of fluorine, chlorine, bromine and iodine on Al_2Au and Al_2Pt (110) surfaces. Results show that the real relation between work function change and dipole moment change for halogens adsorption on intermetallic surfaces is just a common linear relationship rather than a directly proportion. Besides, the different slopes between fitted lines and the theoretical slope employed in pure metal surfaces demonstrating that the halogens adsorption on intermetallic surfaces are more complicated. We also present a weight parameter β to describe different factors effect on work function shift and finally qualify which factor dominates the shift direction.

  6. Nano-structure formation of Fe-Pt perpendicular magnetic recording media co-deposited with MgO, Al2O3 and SiO2 additives

    International Nuclear Information System (INIS)

    Safran, G.; Suzuki, T.; Ouchi, K.; Barna, P.B.; Radnoczi, G.

    2006-01-01

    Perpendicular magnetic recording media samples were prepared by sputter deposition on sapphire with a layer sequence of MgO seed-layer/Cr under-layer/FeSi soft magnetic under-layer/MgO intermediate layer/FePt-oxide recording layer. The effects of MgO, Al 2 O 3 and SiO 2 additives on the morphology and orientation of the FePt layer were investigated by transmission electron microscopy. The samples exhibited (001) orientation of the L1 FePt phase with the mutual orientations of sapphire substrate//MgO(100)[001]//Cr(100)[11-bar0]//FeSi(100)[11-bar0]//MgO(100) [001]//FePt(001)[100]. The morphology of the FePt films varied due to the co-deposited oxides: The FePt layers were continuous and segmented by stacking faults aligned at 54 o to the surface. Films with SiO 2 addition, beside the oriented columnar FePt grains, exhibited a fraction of misoriented crystallites due to random repeated nucleation. Al 2 O 3 addition resulted in a layered structure, i.e. an initial continuous epitaxial FePt layer covered by a secondary layer of FePt-Al 2 O 3 composite. Both components (FePt and MgO) of the MgO-added samples were grown epitaxially on the MgO intermediate layer, so that a nano-composite of intercalated (001) FePt and (001) MgO was formed. The revealed microstructures and formation mechanisms may facilitate the improvement of the structural and magnetic properties of the FePt-oxide composite perpendicular magnetic recording media

  7. An Investigation of the Microstructure of an Intermetallic Layer in Welding Aluminum Alloys to Steel by MIG Process.

    Science.gov (United States)

    Nguyen, Quoc Manh; Huang, Shyh-Chour

    2015-12-02

    Butt joints of A5052 aluminum alloy and SS400 steel, with a new type of chamfered edge, are welded by means of metal inert gas welding and ER4043 Al-Si filler metal. The microhardness and microstructure of the joint are investigated. An intermetallic layer is found on the surface of the welding seam and SS400 steel sheet. The hardness of the intermetallic layer is examined using the Vickers hardness test. The average hardness values at the Intermetallic (IMC) layer zone and without the IMC layer zone were higher than that of the welding wire ER4043. The tensile strength test showed a fracture at the intermetallic layer when the tensile strength is 225.9 MPa. The tensile value test indicated the average of welds was equivalent to the 85% tensile strength of the A5052 aluminum alloy. The thickness of the intermetallic layers is non-uniform at different positions with the ranges from 1.95 to 5 μm. The quality of the butt joint is better if the intermetallic layer is minimized. The Si crystals which appeared at the welding seam, indicating that this element participated actively during the welding process, also contributed to the IMC layer's formation.

  8. Giant piezoelectricity on Si for hyperactive MEMS.

    Science.gov (United States)

    Baek, S H; Park, J; Kim, D M; Aksyuk, V A; Das, R R; Bu, S D; Felker, D A; Lettieri, J; Vaithyanathan, V; Bharadwaja, S S N; Bassiri-Gharb, N; Chen, Y B; Sun, H P; Folkman, C M; Jang, H W; Kreft, D J; Streiffer, S K; Ramesh, R; Pan, X Q; Trolier-McKinstry, S; Schlom, D G; Rzchowski, M S; Blick, R H; Eom, C B

    2011-11-18

    Microelectromechanical systems (MEMS) incorporating active piezoelectric layers offer integrated actuation, sensing, and transduction. The broad implementation of such active MEMS has long been constrained by the inability to integrate materials with giant piezoelectric response, such as Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) (PMN-PT). We synthesized high-quality PMN-PT epitaxial thin films on vicinal (001) Si wafers with the use of an epitaxial (001) SrTiO(3) template layer with superior piezoelectric coefficients (e(31,f) = -27 ± 3 coulombs per square meter) and figures of merit for piezoelectric energy-harvesting systems. We have incorporated these heterostructures into microcantilevers that are actuated with extremely low drive voltage due to thin-film piezoelectric properties that rival bulk PMN-PT single crystals. These epitaxial heterostructures exhibit very large electromechanical coupling for ultrasound medical imaging, microfluidic control, mechanical sensing, and energy harvesting.

  9. Studies on nonvolatile resistance memory switching in ZnO thin films

    Indian Academy of Sciences (India)

    Six decades of research on ZnO has recently sprouted a new branch in the domain of resistive random access memories. Highly resistive and c-axis oriented ZnO thin films were grown by us using d.c. discharge assisted pulsed laser deposition on Pt/Ti/SiO2/Si substrates at room temperature. The resistive switching ...

  10. Fabrication and properties of strip casting 4.5 wt% Si steel thin sheet

    Energy Technology Data Exchange (ETDEWEB)

    Zu, Guoqing, E-mail: gz854@uowmail.edu.au [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Zhang, Xiaoming [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Zhao, Jingwei [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Wang, Yuqian [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Yan, Yi [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Li, Chengang; Cao, Guangming [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Jiang, Zhengyi [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia)

    2017-02-15

    Three 4.5 wt% Si steel thin sheets with different thicknesses were efficiently fabricated by twin-roll strip casting, warm rolling and cold rolling followed by final annealing. A comprehensive investigation from the workability of the as-cast strip to the magnetic property of the produces was performed to illustrate the superiority of the new materials. The results show that the as-cast strip, which has a much lower Vickers hardness than that of the 6.5 wt% Si steel, is suitable for rolling processing. The X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies confirm that no ordering phase exists in the as-cast strip. The cold-rolled thin sheets exhibit good surface quality without edge cracks. Furthermore, all the three 4.5 wt% Si steel thin sheets possess relative strong <100>//ND texture and present high magnetic inductions and low iron losses after finial annealing. - Highlights: • 4.5 wt% Si as-cast sheet with excellent workability was produced by strip casting. • Three 4.5 wt% Si thin sheets were effectively fabricated by warm and cold rolling. • The microstructure and macro-texture of the thin sheets were elucidated. • High magnetic inductions and low iron losses were achieved simultaneously.

  11. RBS characterization of the deposition of very thin SiGe/SiO2 multilayers by LPCVD

    International Nuclear Information System (INIS)

    Munoz-Martin, A.; Climent-Font, A.; Rodriguez, A.; Sangrador, J.; Rodriguez, T.

    2005-01-01

    Multilayer structures consisting of several alternated layers of SiGe and SiO 2 with thickness ranging from 2 or Si as well as the deposition of SiO 2 on Si show negligible incubation times. The deposition of SiO 2 on SiGe, however, exhibits an incubation time of several minutes, which would be related to the oxidation of the surface necessary for the SiO 2 deposition to start. In all cases the film thickness increases linearly with deposition time, thus allowing the growth rates to be determined. These data allow the deposition process of these very thin layers to be accurately controlled

  12. Geometric structure of thin SiO xN y films on Si(100)

    Science.gov (United States)

    Behrens, K.-M.; Klinkenberg, E.-D.; Finster, J.; Meiwes-Broer, K.-H.

    1998-05-01

    Thin films of amorphous stoichometric SiO xN y are deposited on radiation-heated Si(100) by rapid thermal low-pressure chemical vapour deposition. We studied the whole range of possible compositions. In order to determine the geometric structure, we used EXAFS and photoelectron spectroscopy. Tetrahedrons constitute the short-range units with a central Si atom connected to N and O. The distribution of the possible tetrahedrons can be described by a mixture of the Random Bonding Model and the Random Mixture Model. For low oxygen contents x/( x+ y)≤0.3, the geometric structure of the film is almost the structure of a-Si 3N 4, with the oxygen preferably on top of Si-N 3 triangles. Higher oxygen contents induce changes in the bond lengths, bond angles and coordination numbers.

  13. Damping constant of Co/Pt multilayer thin-film media

    International Nuclear Information System (INIS)

    Fujita, N.; Inaba, N.; Kirino, F.; Igarashi, S.; Koike, K.; Kato, H.

    2008-01-01

    Gilbert's damping constants, α, of Co(t Co )/Pt (1.4 nm) multilayer thin films are investigated by Q-band FMR analysis. α is calculated from the resonance width of the FMR spectrum. With decreasing t Co , the α value decreases from 0.034 (t Co =8.7 nm) to 0.023 (t Co =1.8 nm), and then increases to 0.037 (t Co =1.0 nm). The decrease of α with t Co >1.8 nm is probably due to the eddy current loss effects. The increase of α with t Co <1.8 nm would be caused by the increase of the distortion between the Co and the Pt layers at the interface. When the magnetic field direction was changed from θ=90 deg. (parallel to the specimen) to θ=0 deg. (perpendicular to the specimen), the α of all the specimens increased, and a sharp step in α was observed around θ=40 deg., where the α has the maximum value

  14. Damage profiles and ion distribution in Pt-irradiated SiC

    Energy Technology Data Exchange (ETDEWEB)

    Xue, H.Z. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Zhang, Y., E-mail: Zhangy1@ornl.gov [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zhu, Z. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States); Zhang, W.M. [Department of Radiation Therapy, Peking University First Hospital, Beijing 100034 (China); Bae, I.-T. [Small Scale Systems Integration and Packaging Center, State University of New York at Binghamton, P.O. Box 6000, Binghamton, NY 13902 (United States); Weber, W.J. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2012-09-01

    Single crystalline 6H-SiC samples were irradiated at 150 K with 2 MeV Pt ions. The local volume swelling was determined by electron energy loss spectroscopy (EELS), and a nearly sigmoidal dependence on irradiation dose is observed. The disorder profiles and ion distribution were determined by Rutherford backscattering spectrometry (RBS), transmission electron microscopy, and secondary ion mass spectrometry. Since the volume swelling reaches 12% over the damage region at high ion fluence, the effect of lattice expansion is considered and corrected for in the analysis of RBS spectra to obtain depth profiles. Projectile and damage profiles are estimated by SRIM (Stopping and Range of Ions in Matter). When compared with the measured profiles, the SRIM code predictions of ion distribution and the damage profiles are underestimated due to significant overestimation of the electronic stopping power for the slow heavy Pt ions. By utilizing the reciprocity method, which is based on the invariance of the inelastic energy loss in ion-solid collisions against interchange of projectile and target atom, a much lower electronic stopping power is deduced. A simple approach, based on reducing the density of SiC target in SRIM simulation, is proposed to compensate the overestimated SRIM electronic stopping power values, which results in improved agreement between predicted and measured damage profiles and ion ranges.

  15. Performance Improvement of Microcrystalline p-SiC/i-Si/n-Si Thin Film Solar Cells by Using Laser-Assisted Plasma Enhanced Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Hsin-Ying Lee

    2014-01-01

    Full Text Available The microcrystalline p-SiC/i-Si/n-Si thin film solar cells treated with hydrogen plasma were fabricated at low temperature using a CO2 laser-assisted plasma enhanced chemical vapor deposition (LAPECVD system. According to the micro-Raman results, the i-Si films shifted from 482 cm−1 to 512 cm−1 as the assisting laser power increased from 0 W to 80 W, which indicated a gradual transformation from amorphous to crystalline Si. From X-ray diffraction (XRD results, the microcrystalline i-Si films with (111, (220, and (311 diffraction were obtained. Compared with the Si-based thin film solar cells deposited without laser assistance, the short-circuit current density and the power conversion efficiency of the solar cells with assisting laser power of 80 W were improved from 14.38 mA/cm2 to 18.16 mA/cm2 and from 6.89% to 8.58%, respectively.

  16. Abrasive wear of intermetallics

    International Nuclear Information System (INIS)

    Hawk, J.A.; Alman, D.E.; Wilson, R.D.

    1995-01-01

    The US Bureau of Mines is investigating the wear behavior of a variety of advanced materials. Among the many materials under evaluation are intermetallic alloys based on the compounds: Fe 3 Al, Ti 3 Al, TiAl, Al 3 Ti, NiAl and MoSi 2 . The high hardness, high modulus, low density, and superior environmental stability of these compounds make them attractive for wear materials. This paper reports on the abrasive wear of alloys and composites based on the above compounds. The abrasive wear behavior of these alloys and composites are compared to other engineering materials used in wear applications

  17. Characteristics of Schottky-barrier source/drain metal-oxide-polycrystalline thin-film transistors on glass substrates

    International Nuclear Information System (INIS)

    Jung, Seung-Min; Cho, Won-Ju; Jung, Jong-Wan

    2012-01-01

    Polycrystalline-silicon (poly-Si) Schottky-barrier thin-film transistors (SB-TFTs) with Pt-silicided source /drain junctions were fabricated on glass substrates, and the electrical characteristics were examined. The amorphous silicon films on glass substrates were converted into high-quality poly-Si by using excimer laser annealing (ELA) and solid phase crystallization (SPC) methods. The crystallinity of poly-Si was analyzed by using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction analysis. The silicidation process was optimized by measuring the electrical characteristics of the Pt-silicided Schottky diodes. The performances of Pt-silicided SB-TFTs using poly-Si films on glass substrates and crystallized by using ELA and SPC were demonstrated. The SB-TFTs using the ELA poly-Si film demonstrated better electrical performances such as higher mobility (22.4 cm 2 /Vs) and on/off current ratio (3 x 10 6 ) and lower subthreshold swing value (120 mV/dec) than the SPC poly-Si films.

  18. Nanoparticles of Pt and Ag supported in meso porous SiO2: characterization and catalytic applications

    International Nuclear Information System (INIS)

    Espinosa, M.E.; Perez H, R.; Perez A, M.; Mondragon G, G.; Arenas A, J.

    2004-01-01

    The surface properties of catalysts of Pt and Ag supported in conventional SiO 2 hey have been studied through reduction reactions of N 2 O with H 2 which is a sensitive reaction to the structure. In our case it was used a meso porous ceramic support of SiO 2 of great surface area (1100 m 2 /gr), where it is caused a high dispersion of the metallic nanoparticles of Pt and Ag, the total charge of the active phase in the meso porous support was of 3% in weight. The catalysts show a variation in the percentages of conversion of N 2 O depending on the size and dispersion of the metallic phases. (Author)

  19. Regulating effect of SiO2 interlayer on optical properties of ZnO thin films

    International Nuclear Information System (INIS)

    Xu, Linhua; Zheng, Gaige; Miao, Juhong; Su, Jing; Zhang, Chengyi; Shen, Hua; Zhao, Lilong

    2013-01-01

    ZnO/SiO 2 nanocomposite films with periodic structure were prepared by electron beam evaporation technique. Regulating effect of SiO 2 interlayer with various thicknesses on the optical properties of ZnO/SiO 2 thin films was investigated deeply. The analyses of X-ray diffraction show that the ZnO layers in ZnO/SiO 2 nanocomposite films have a wurtzite structure and are preferentially oriented along the c-axis while the SiO 2 layers are amorphous. The scanning electron microscope images display that the ZnO layers are composed of columnar grains and the thicknesses of ZnO and SiO 2 layers are all very uniform. The SiO 2 interlayer presents a significant modulation effect on the optical properties of ZnO thin films, which is reflected in the following two aspects: (1) the transmittance of ZnO/SiO 2 nanocomposite films is increased; (2) the photoluminescence (PL) of ZnO/SiO 2 nanocomposite films is largely enhanced compared with that of pure ZnO thin films. The ZnO/SiO 2 nanocomposite films have potential applications in light-emitting devices and flat panel displays. -- Highlights: ► ZnO/SiO 2 nanocomposite films with periodic structure were prepared by electron beam evaporation technique. ► The SiO 2 interlayer presents a significant modulation effect on the optical properties of ZnO thin films. ► The photoluminescence of ZnO/SiO 2 nanocomposite films is largely enhanced compared with that of pure ZnO thin films. ► The ZnO/SiO 2 nanocomposite films have potential applications in light-emitting devices and flat panel displays

  20. Inverse bilayer magnetoelectric thin film sensor

    Energy Technology Data Exchange (ETDEWEB)

    Yarar, E.; Piorra, A.; Quandt, E., E-mail: eq@tf.uni-kiel.de [Chair for Inorganic Functional Materials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstraße 2, D-24143 Kiel (Germany); Salzer, S.; Höft, M.; Knöchel, R. [Microwave Laboratory, Institute of Electrical and Information Engineering, Faculty of Engineering, Kiel University, Kaiserstraße 2, D-24143 Kiel (Germany); Hrkac, V.; Kienle, L. [Chair for Synthesis and Real Structure, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstraße 2, D-24143 Kiel (Germany)

    2016-07-11

    Prior investigations on magnetoelectric (ME) thin film sensors using amorphous FeCoSiB as a magnetostrictive layer and AlN as a piezoelectric layer revealed a limit of detection (LOD) in the range of a few pT/Hz{sup 1/2} in the mechanical resonance. These sensors are comprised of a Si/SiO{sub 2}/Pt/AlN/FeCoSiB layer stack, as dictated by the temperatures required for the deposition of the layers. A low temperature deposition route of very high quality AlN allows the reversal of the deposition sequence, thus allowing the amorphous FeCoSiB to be deposited on the very smooth Si substrate. As a consequence, the LOD could be enhanced by almost an order of magnitude reaching 400 fT/Hz{sup 1/2} at the mechanical resonance of the sensor. Giant ME coefficients (α{sub ME}) as high as 5 kV/cm Oe were measured. Transmission electron microscopy investigations revealed highly c-axis oriented growth of the AlN starting from the Pt-AlN interface with local epitaxy.

  1. Highly Oriented Growth of Piezoelectric Thin Films on Silicon Using Two-Dimensional Nanosheets as Growth Template Layer.

    Science.gov (United States)

    Nguyen, Minh D; Yuan, Huiyu; Houwman, Evert P; Dekkers, Matthijn; Koster, Gertjan; Ten Elshof, Johan E; Rijnders, Guus

    2016-11-16

    Ca 2 Nb 3 O 10 (CNOns) and Ti 0.87 O 2 (TiOns) metal oxide nanosheets (ns) are used as a buffer layer for epitaxial growth of piezoelectric capacitor stacks on Si and Pt/Ti/SiO 2 /Si (Pt/Si) substrates. Highly (001)- and (110)-oriented Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) films are achieved by utilizing CNOns and TiOns, respectively. The piezoelectric capacitors are characterized by polarization and piezoelectric hysteresis loops and by fatigue measurements. The devices fabricated with SrRuO 3 top and bottom electrodes directly on nanosheets/Si have ferroelectric and piezoelectric properties well comparable with devices that use more conventional oxide buffer layers (stacks) such as YSZ, CeO 2 /YSZ, or SrTiO 3 on Si. The devices grown on nanosheets/Pt/Si with Pt top electrodes show significantly improved polarization fatigue properties over those of similar devices grown directly on Pt/Si. The differences in properties are ascribed to differences in the crystalline structures and the density of the films. These results show a route toward the fabrication of single crystal piezoelectric thin films and devices with high quality, long-lifetime piezoelectric capacitor structures on nonperovskite and even noncrystalline substrates such as glass or polished metal surfaces.

  2. Intermetallic nanoparticles

    Science.gov (United States)

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules

    2015-07-14

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  3. Subtle Raman signals from nano-diamond and β-SiC thin films

    International Nuclear Information System (INIS)

    Kuntumalla, Mohan Kumar; Ojha, Harish; Srikanth, Vadali Venkata Satya Siva

    2013-01-01

    Micro Raman scattering experiments are carried out in pursuit of subtle but discernable signals from nano-diamond and β-SiC thin films. The thin films are synthesized using microwave plasma assisted chemical vapor deposition technique. Raman scattering experiments in conjunction with scanning electron microscopy and x-ray diffraction were carried out to extract microstructure and phase information of the above mentioned thin films. Certain subtle Raman signals have been identified in this work. In the case of nanodiamond thin films, Raman bands at ∼ 485 and ∼ 1220 cm −1 are identified. These bands have been assigned to the nanodiamond present in nanodiamond thin films. In the case of nano β-SiC thin films, optical phonons are identified using surface enhanced Raman scattering. - Highlights: ► Subtle Raman signals from nano-diamond and β-silicon carbide related thin films. ► Raman bands at ∼ 485 and ∼ 1220 cm −1 from nanodiamond thin films are identified. ► Longitudinal optical phonon from nano β-silicon carbide thin films is identified

  4. Two superconducting phases in CePt{sub 3}Si confirmed by NMR

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Koh-ichi; Motoyama, Gaku; Kohara, Takao, E-mail: ueda@sci.u-hyogo.ac.j [Graduate School of Material Science, University of Hyogo, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan)

    2009-03-01

    Recent specific heat experiments in CePt{sub 3}Si of good quality gave an evidence of coexistence of two phases, which have distinct T{sub c} and T{sub n} for each phase. NMR spectrum of {sup 29}Si also showed a complicated line shape due to a co-existence of two phases below T{sub n}. One phase is an ordinary AF state and the other is a paramagnetic like phase, in which the internal field is somewhat small. The AF internal field deduced by NMR is expected to be parallel to the c-axis at Si site. With decreasing temperature below T{sub c}, 1/T{sub 1} measured at the satellite peak decreased rapidly followed by T{sup 3} with no enhancement just below T{sub c}.

  5. Effects of the top-electrode preparation method on the ferroelectric properties of Pt/Pb(Zr,Ti)O3/Pt thin film capacitors

    International Nuclear Information System (INIS)

    Lee, Eun Gu; Lee, Jae Gab; Kim, Sun Jae

    2006-01-01

    The deformation in the hysteresis loop of Pt/PZT/Pt thin-film capacitors due to deposition and patterning of the top electrode has been investigated. The PZT film was aged during the deposition of the top electrode and was positively poled during reactive ion etching (RIE). The PZT film having sputtered top electrode was very sensitive to the RIE process. The film with a thinner top electrode showed less initial switching polarization due to less compressive stress, but better fatigue characteristics due to an enhanced partial-switching region.

  6. Synthesis and characterization of ion-implanted Pt nanocrystals in SiO2

    International Nuclear Information System (INIS)

    Giulian, R.; Kluth, P.; Johannessen, B.; Araujo, L.L.; Llewellyn, D.J.; Cookson, D.J.; Ridgway, M.C.

    2007-01-01

    Pt nanocrystals (NCs) produced by ion implantation in SiO 2 films were investigated by Rutherford backscattering spectroscopy (RBS), transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). The implantations were performed at liquid nitrogen temperature using energies between 3.4 and 5.6 MeV and an ion fluence range of 2-30 x 10 16 cm -2 and were followed by annealing in forming gas (95% N 2 , 5% H 2 ) for one hour at temperatures between 500 and 1100 deg. C. TEM analysis revealed that the NCs are spherical in shape. The mean size of the NCs annealed at 1100 deg. C varied between 2.8 and 3.6 nm for the highest and lowest fluences, respectively, as determined with both TEM and SAXS. In contrast to previous studies on ion implanted metal NCs, larger Pt NCs are located far beyond the Pt peak concentration, potentially the result of a strongly defect mediated NC nucleation

  7. Reactions of R(2)P-P(SiMe(3))Li with [(R'(3)P)(2)PtCl(2)]. A general and efficient entry to phosphanylphosphinidene complexes of platinum. Syntheses and structures of [(eta(2)-P=(i)Pr(2))Pt(p-Tol(3)P)(2)], [(eta(2)-P=(t)Bu(2))Pt(p-Tol(3)P)(2)], [{eta(2)-P=(N(i)Pr(2))(2)}Pt(p-Tol(3)P)(2)] and [{(Et(2)PhP)(2)Pt}(2)P(2)].

    Science.gov (United States)

    Domańska-Babul, Wioleta; Chojnacki, Jaroslaw; Matern, Eberhard; Pikies, Jerzy

    2009-01-07

    The reactions of lithium derivatives of diphosphanes R(2)P-P(SiMe(3))Li (R = (t)Bu, (i)Pr, Et(2)N and (i)Pr(2)N) with [(R'(3)P)(2)PtCl(2)] (R'(3)P = Et(3)P, Et(2)PhP, EtPh(2)P and p-Tol(3)P) proceed in a facile manner to afford side-on bonded phosphanylphosphinidene complexes of platinum [(eta(2)-P=R(2))Pt(PR'(3))(2)]. The related reactions of Ph(2)P-P(SiMe(3))Li with [(R'(3)P)(2)PtCl(2)] did not yield [(eta(2)-P=PPh(2))Pt(PR'(3))(2)] and resulted mainly in the formation of [{(R'(3)P)(2)Pt}(2)P(2)], Ph(2)P-PLi-PPh(2), (Me(3)Si)(2)PLi and (Me(3)Si)(3)P. Crystallographic data are reported for the compounds [(eta(2)-P=R(2))Pt(p-Tol(3)P)(2)] (R = (t)Bu, (i)Pr, ((i)Pr(2)N)(2)P) and for [{(Et(2)PhP)(2)Pt}(2)P(2)].

  8. Anomalous Nernst Effects of [CoSiB/Pt] Multilayer Films

    OpenAIRE

    Kelekci, O.; Lee, H. N.; Kim, T. W.; Noh, H.

    2013-01-01

    We report a measurement for the anomalous Nernst effects induced by a temperature gradient in [CoSiB/Pt] multilayer films with perpendicular magnetic anisotropy. The Nernst voltage shows a characteristic hysteresis which reflects the magnetization of the film as in the case of the anomalous Hall effects. With a local heating geometry, we also measure the dependence of the anomalous Nernst voltage on the distance d from the heating element. It is roughly proportional to 1/d^1.3, which can be c...

  9. Experimental and thermodynamic assessments of substitutions in the AlFeSi, FeMnSi, FeSiZr and AlCaFeSi systems (65 wt % Si) - solidification simulation

    International Nuclear Information System (INIS)

    Gueneau, C.; Ansara, I.

    1994-01-01

    The substitutions of Al Si, Fe Mn and Fe Zr in some intermetallic compounds of the Al-Fe-Si, Fe-Mn-Si and Fe-Si-Zr systems are modelled in the Si-rich corner using a two sublattice model. The solidification paths of the studied alloys are determined at equilibrium. The ascalculated phase volume fractions of the alloys are compared to the experimental ones. Finally, a solidification simulation using the Gulliver-Scheil's model is performed in order to explain the formation of some precipitates experimentally observed. (authors). 14 figs., 19 refs

  10. Deposition of thin ultrafiltration membranes on commercial SiC microfiltration tubes

    DEFF Research Database (Denmark)

    Facciotti, Marco; Boffa, Vittorio; Magnacca, Giuliana

    2014-01-01

    Porous SiC based materials present high mechanical, chemical and thermal robustness, and thus have been largely applied to water-filtration technologies. In this study, commercial SiC microfiltration tubes with nominal pore size of 0.04 m were used as carrier for depositing thin aluminium oxide....... After 5 times coating, a 5.6 µm thick γ-Al2O3 layer was obtained. This membrane shows retention of ~75% for polyethylene glycol molecules with Mn of 8 and 35 kDa, indicating that, despite their intrinsic surface roughness, commercial SiC microfiltration tubes can be applied as carrier for thin...... ultrafiltration membranes. This work also indicates that an improvement of the commercial SiC support surface smoothness may greatly enhance permeance and selectivity of Υ-Al2O3 ultrafiltration membranes by allowing the deposition of thinner defect-free layers....

  11. Corrosion resistance of sintered NdFeB coated with SiC/Al bilayer thin films by magnetron sputtering

    International Nuclear Information System (INIS)

    Huang, Yiqin; Li, Heqin; Zuo, Min; Tao, Lei; Wang, Wei; Zhang, Jing; Tang, Qiong; Bai, Peiwen

    2016-01-01

    The poor corrosion resistance of sintered NdFeB imposes a great challenge in industrial applications. In this work, the SiC/Al bilayer thin films with the thickness of 510 nm were deposited on sintered NdFeB by magnetron sputtering to improve the corrosion resistance. A 100 nm Al buffer film was used to reduce the internal stress between SiC and NdFeB and improve the surface roughness of the SiC thin film. The morphologies and structures of SiC/Al bilayer thin films and SiC monolayer film were investigated with FESEM, AFM and X-ray diffraction. The corrosion behaviors of sintered NdFeB coated with SiC monolayer film and SiC/Al bilayer thin films were analyzed by polarization curves. The magnetic properties were measured with an ultra-high coercivity permanent magnet pulse tester. The results show that the surface of SiC/Al bilayer thin films is more compact and uniform than that of SiC monolayer film. The corrosion current densities of SiC/Al bilayer films coated on NdFeB in acid, alkali and salt solutions are much lower than that of SiC monolayer film. The SiC/Al bilayer thin films have little influence to the magnetic properties of NdFeB. - Highlights: • The same thick Al, SiC and SiC/Al films are deposited on NdFeB by magnetron sputtering. • 510 nm SiC/Al bilayer films can improve the corrosion resistance of the NdFeB evidently. • Al buffer layer improves effectively the surface roughness of the SiC thin film. • SiC/Al bilayer films do not deteriorate the magnetic properties of NdFeB.

  12. Corrosion resistance of sintered NdFeB coated with SiC/Al bilayer thin films by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yiqin [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Li, Heqin, E-mail: lhqjs@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zuo, Min; Tao, Lei; Wang, Wei [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zhang, Jing; Tang, Qiong [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009 (China); Bai, Peiwen [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China)

    2016-07-01

    The poor corrosion resistance of sintered NdFeB imposes a great challenge in industrial applications. In this work, the SiC/Al bilayer thin films with the thickness of 510 nm were deposited on sintered NdFeB by magnetron sputtering to improve the corrosion resistance. A 100 nm Al buffer film was used to reduce the internal stress between SiC and NdFeB and improve the surface roughness of the SiC thin film. The morphologies and structures of SiC/Al bilayer thin films and SiC monolayer film were investigated with FESEM, AFM and X-ray diffraction. The corrosion behaviors of sintered NdFeB coated with SiC monolayer film and SiC/Al bilayer thin films were analyzed by polarization curves. The magnetic properties were measured with an ultra-high coercivity permanent magnet pulse tester. The results show that the surface of SiC/Al bilayer thin films is more compact and uniform than that of SiC monolayer film. The corrosion current densities of SiC/Al bilayer films coated on NdFeB in acid, alkali and salt solutions are much lower than that of SiC monolayer film. The SiC/Al bilayer thin films have little influence to the magnetic properties of NdFeB. - Highlights: • The same thick Al, SiC and SiC/Al films are deposited on NdFeB by magnetron sputtering. • 510 nm SiC/Al bilayer films can improve the corrosion resistance of the NdFeB evidently. • Al buffer layer improves effectively the surface roughness of the SiC thin film. • SiC/Al bilayer films do not deteriorate the magnetic properties of NdFeB.

  13. Self-aligned indium–gallium–zinc oxide thin-film transistors with SiN{sub x}/SiO{sub 2}/SiN{sub x}/SiO{sub 2} passivation layers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Rongsheng, E-mail: rschen@ust.hk; Zhou, Wei; Zhang, Meng; Kwok, Hoi-Sing

    2014-08-01

    Self-aligned top-gate amorphous indium–gallium–zinc oxide (a-IGZO) thin-film transistors (TFTs) with SiN{sub x}/SiO{sub 2}/SiN{sub x}/SiO{sub 2} passivation layers are developed in this paper. The resulting a-IGZO TFT exhibits high reliability against bias stress and good electrical performance including field-effect mobility of 5 cm{sup 2}/Vs, threshold voltage of 2.5 V, subthreshold swing of 0.63 V/decade, and on/off current ratio of 5 × 10{sup 6}. With scaling down of the channel length, good characteristics are also obtained with a small shift of the threshold voltage and no degradation of subthreshold swing. The proposed a-IGZO TFTs in this paper can act as driving devices in the next generation flat panel displays. - Highlights: • Self-aligned top-gate indium–gallium–zinc oxide thin-film transistor is proposed. • SiN{sub x}/SiO{sub 2}/SiN{sub x}/SiO{sub 2} passivation layers are developed. • The source/drain areas are hydrogen-doped by CHF3 plasma. • The devices show good electrical performance and high reliability against bias stress.

  14. Corrosion resistance of sintered NdFeB coated with SiC/Al bilayer thin films by magnetron sputtering

    Science.gov (United States)

    Huang, Yiqin; Li, Heqin; Zuo, Min; Tao, Lei; Wang, Wei; Zhang, Jing; Tang, Qiong; Bai, Peiwen

    2016-07-01

    The poor corrosion resistance of sintered NdFeB imposes a great challenge in industrial applications. In this work, the SiC/Al bilayer thin films with the thickness of 510 nm were deposited on sintered NdFeB by magnetron sputtering to improve the corrosion resistance. A 100 nm Al buffer film was used to reduce the internal stress between SiC and NdFeB and improve the surface roughness of the SiC thin film. The morphologies and structures of SiC/Al bilayer thin films and SiC monolayer film were investigated with FESEM, AFM and X-ray diffraction. The corrosion behaviors of sintered NdFeB coated with SiC monolayer film and SiC/Al bilayer thin films were analyzed by polarization curves. The magnetic properties were measured with an ultra-high coercivity permanent magnet pulse tester. The results show that the surface of SiC/Al bilayer thin films is more compact and uniform than that of SiC monolayer film. The corrosion current densities of SiC/Al bilayer films coated on NdFeB in acid, alkali and salt solutions are much lower than that of SiC monolayer film. The SiC/Al bilayer thin films have little influence to the magnetic properties of NdFeB.

  15. Plasticity enhancement mechanisms in refractory metals and intermetallics

    International Nuclear Information System (INIS)

    Gibala, R.; Chang, H.; Czarnik, C.M.; Edwards, K.M.; Misra, A.

    1993-01-01

    Plasticity enhancement associated with surface films and precipitates or dispersoids in bcc refractory metals is operative in ordered intermetallic compounds. Some results are given for NiAl and MoSi 2 -based materials. The monotonic and cyclic plasticity of NiAl at room temperature can be enhanced by surface films. Ductile second phases also enhance the plasticity of NiAl. MoSi 2 exhibits similar effects of surface films and dispersoids, but primarily at elevated temperatures. The plasticity enhancement is associated with enhanced dislocation generation from constrained deformation at the film-substrate or precipitate/dispersoid-matrix interface of the composite systems

  16. Conformal Thin Film Packaging for SiC Sensor Circuits in Harsh Environments

    Science.gov (United States)

    Scardelletti, Maximilian C.; Karnick, David A.; Ponchak, George E.; Zorman, Christian A.

    2011-01-01

    In this investigation sputtered silicon carbide annealed at 300 C for one hour is used as a conformal thin film package. A RF magnetron sputterer was used to deposit 500 nm silicon carbide films on gold metal structures on alumina wafers. To determine the reliability and resistance to immersion in harsh environments, samples were submerged in gold etchant for 24 hours, in BOE for 24 hours, and in an O2 plasma etch for one hour. The adhesion strength of the thin film was measured by a pull test before and after the chemical immersion, which indicated that the film has an adhesion strength better than 10(exp 8) N/m2; this is similar to the adhesion of the gold layer to the alumina wafer. MIM capacitors are used to determine the dielectric constant, which is dependent on the SiC anneal temperature. Finally, to demonstrate that the SiC, conformal, thin film may be used to package RF circuits and sensors, an LC resonator circuit was fabricated and tested with and without the conformal SiC thin film packaging. The results indicate that the SiC coating adds no appreciable degradation to the circuits RF performance. Index Terms Sputter, silicon carbide, MIM capacitors, LC resonators, gold etchants, BOE, O2 plasma

  17. Investigation of corrosion behavior of nitrogen doped and platinum/ruthenium doped diamond-like carbon thin films in Hank's solution

    International Nuclear Information System (INIS)

    Khun, N.W.; Liu, E.

    2011-01-01

    Undoped (DLC), nitrogen-doped (N-DLC) and platinum/ruthenium doped diamond-like carbon (PtRu-DLC) thin films were deposited on p-Si (100) substrates using a DC magnetron sputtering deposition system. The chemical composition, bonding structure, surface morphology and adhesion strength of the films were characterized using X-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy, atomic force microscopy (AFM) and micro-scratch test, respectively. The corrosion behavior of the films in a Hank's solution was investigated using potentiodynamic polarization test. The corrosion results revealed that the PtRu-DLC film had the highest corrosion potential among the films used in this study. Highlights: → DLC thin films were deposited on Si substrates via dc magnetron sputtering. → Some DLC films were doped with N and/or Pt/Ru. → The film corrosion behavior was studied in a Hank solution with polarization test. → The PtRu-DLC film showed the highest corrosion potential among the films studied.

  18. Fabrication and Surface Properties of Composite Films of SAM/Pt/ZnO/SiO 2

    KAUST Repository

    Yao, Ke Xin; Zeng, Hua Chun

    2008-01-01

    Through synthetic architecture and functionalization with self-assembled monolayers (SAMs), complex nanocomposite films of SAM/Pt/ZnO/SiO2 have been facilely prepared in this work. The nanostructured films are highly uniform and porous, showing a

  19. Thermodynamic modeling of the Pt-Zr system

    International Nuclear Information System (INIS)

    Gao Yongliang; Guo Cuiping; Li Changrong; Du Zhenmin

    2010-01-01

    By means of the CALPHAD (CALculation of PHAse Diagram) technique, the Pt-Zr system was critically assessed. The solution phases (liquid, bcc, fcc and hcp) are described with the substitutional model. The intermetallic compounds Pt 4 Zr, Pt 4 Zr 3 , αPtZr and Pt 3 Zr 5 are treated as the formula (Pt,Zr) m (Pt,Zr) n by a two-sublattice model with the elements Pt and Zr on the first and the second sublattices, respectively. A two-sublattice model (Pt,Zr) 0.5 (Pt,Zr) 0.5 is applied to describe the compound βPtZr with CsCl-type structure (B2) in order to cope with the order-disorder transition between bcc solution (A2) and βPtZr (B2). Another two-sublattice model (Pt,Zr) 0.75 (Pt,Zr) 0.25 with Ni 3 Ti-type structure (D0 24 ) is applied to describe the compound Pt 3 Zr in order to cope with the order-disorder transition between hexagonal close-packed (A3) and Pt 3 Zr (D0 24 ). The compound Pt 10 Zr 7 is treated as a stoichiometric compound. A set of self-consistent thermodynamic parameters of the Pt-Zr system was obtained. (orig.)

  20. Damping constant of Co/Pt multilayer thin-film media

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, N. [Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510 (Japan); Inaba, N. [Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510 (Japan)], E-mail: inaba@yz.yamagata-u.ac.jp; Kirino, F. [National University of Fine Arts and Music, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8577 (Japan); Igarashi, S.; Koike, K.; Kato, H. [Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510 (Japan)

    2008-11-15

    Gilbert's damping constants, {alpha}, of Co(t{sub Co})/Pt (1.4 nm) multilayer thin films are investigated by Q-band FMR analysis. {alpha} is calculated from the resonance width of the FMR spectrum. With decreasing t{sub Co}, the {alpha} value decreases from 0.034 (t{sub Co}=8.7 nm) to 0.023 (t{sub Co}=1.8 nm), and then increases to 0.037 (t{sub Co}=1.0 nm). The decrease of {alpha} with t{sub Co}>1.8 nm is probably due to the eddy current loss effects. The increase of {alpha} with t{sub Co}<1.8 nm would be caused by the increase of the distortion between the Co and the Pt layers at the interface. When the magnetic field direction was changed from {theta}=90 deg. (parallel to the specimen) to {theta}=0 deg. (perpendicular to the specimen), the {alpha} of all the specimens increased, and a sharp step in {alpha} was observed around {theta}=40 deg., where the {alpha} has the maximum value.

  1. Magnetron-sputter epitaxy of β-FeSi2(220)/Si(111) and β-FeSi2(431)/Si(001) thin films at elevated temperatures

    International Nuclear Information System (INIS)

    Liu Hongfei; Tan Chengcheh; Chi Dongzhi

    2012-01-01

    β-FeSi 2 thin films have been grown on Si(111) and Si(001) substrates by magnetron-sputter epitaxy at 700 °C. On Si(111), the growth is consistent with the commonly observed orientation of [001]β-FeSi 2 (220)//[1-10]Si(111) having three variants, in-plane rotated 120° with respect to one another. However, on Si(001), under the same growth conditions, the growth is dominated by [-111]β-FeSi 2 (431)//[110]Si(001) with four variants, which is hitherto unknown for growing β-FeSi 2 . Photoelectron spectra reveal negligible differences in the valance-band and Fe2p core-level between β-FeSi 2 grown on Si(111) and Si(001) but an apparent increased Si-oxidization on the surface of β-FeSi 2 /Si(001). This phenomenon is discussed and attributed to the Si-surface termination effect, which also suggests that the Si/Fe ratio on the surface of β-FeSi 2 (431)/Si(001) is larger than that on the surface of β-FeSi 2 (220)/Si(111).

  2. Single-phase {beta}-FeSi{sub 2} thin films prepared on Si wafer by femtosecond laser ablation and its photoluminescence at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lu Peixiang [State Key Laboratory of Laser Technology and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China)]. E-mail: lupeixiang@mail.hust.edu.cn; Zhou Youhua [State Key Laboratory of Laser Technology and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China) and Physics and Information School, Jianghan University, Wuhan 430056 (China)]. E-mail: yhzhou@jhun.edu.cn; Zheng Qiguang [State Key Laboratory of Laser Technology and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Yang Guang [State Key Laboratory of Laser Technology and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2006-02-06

    Single-phase {beta}-FeSi{sub 2} thin films were prepared on Si(100) and Si(111) wafers by using femtosecond laser deposition with a FeSi{sub 2} alloy target for the first time. X-ray diffraction (XRD), field scanning electron microscopy (FSEM), scanning probe microscopy (SPM), electron backscattered diffraction pattern (EBSD), and Fourier-transform Raman infrared spectroscopy (FTRIS) were used to characterize the structure, composition, and properties of the {beta}-FeSi{sub 2}/Si films. The orientation of {beta}-FeSi{sub 2} grains was found to depend on the orientation of the Si substrates, and photoluminescence at wavelength of 1.53 {mu}m was observed from the single-phase {beta}-FeSi{sub 2}/Si thin film at room temperature (20 {sup o}C)

  3. Soft Magnetic Properties of High-Entropy Fe-Co-Ni-Cr-Al-Si Thin Films

    Directory of Open Access Journals (Sweden)

    Pei-Chung Lin

    2016-08-01

    Full Text Available Soft magnetic properties of Fe-Co-Ni-Al-Cr-Si thin films were studied. As-deposited Fe-Co-Ni-Al-Cr-Si nano-grained thin films showing no magnetic anisotropy were subjected to field-annealing at different temperatures to induce magnetic anisotropy. Optimized magnetic and electrical properties of Fe-Co-Ni-Al-Cr-Si films annealed at 200 °C are saturation magnetization 9.13 × 105 A/m, coercivity 79.6 A/m, out-of-plane uniaxial anisotropy field 1.59 × 103 A/m, and electrical resistivity 3.75 μΩ·m. Based on these excellent properties, we employed such films to fabricate magnetic thin film inductor. The performance of the high entropy alloy thin film inductors is superior to that of air core inductor.

  4. Marbled texture of sputtered Al/Si alloy thin film on Si

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, M.G. [Physics Department and NIS Interdepartmental Center, University of Torino, via P. Giuria 1, 10125 Torino (Italy); Vishay Intertechnology, Diodes Division, Via Liguria 49, 10071 Borgaro Torinese, Turin (Italy); Muñoz-Tabares, J.A.; Chiodoni, A. [Istituto Italiano di Tecnologia, Center for Space Human Robotics, Corso Trento 21, 10129 Torino (Italy); Sgorlon, C. [Vishay Intertechnology, Diodes Division, Via Liguria 49, 10071 Borgaro Torinese, Turin (Italy); Para, I. [Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Carta, R.; Richieri, G. [Vishay Intertechnology, Diodes Division, Via Liguria 49, 10071 Borgaro Torinese, Turin (Italy); Bejtka, K. [Istituto Italiano di Tecnologia, Center for Space Human Robotics, Corso Trento 21, 10129 Torino (Italy); Merlin, L. [Vishay Intertechnology, Diodes Division, Via Liguria 49, 10071 Borgaro Torinese, Turin (Italy); Vittone, E. [Physics Department and NIS Interdepartmental Center, University of Torino, via P. Giuria 1, 10125 Torino (Italy)

    2016-08-01

    DC magnetron sputtering is a commonly used technique for the fabrication of silicon based electronic devices, since it provides high deposition rates and uniform large area metallization. However, in addition to the thickness uniformity, coating optical uniformity is a crucial need for semiconductor industrial processes, due to the wide use of optical recognition tools. In the silicon-based technology, aluminum is one of the most used materials for the metal contact. Both the pre-deposition substrate cleaning and the sputtering conditions determine the quality and the crystalline properties of the final Al deposited film. In this paper is shown that not all the mentioned conditions lead to good quality and uniform Al films. In particular, it is shown that under certain standard process conditions, Al/Si alloy (1% Si) metallization on a [100] Si presents a non-uniform reflectivity, with a marbled texture caused by flakes with milky appearance. This optical inhomogeneity is found to be caused by the coexistence of randomly orient Al/Si crystal, with heteroepitaxial Al/Si crystals, both grown on Si substrate. Based on the microstructural analysis, some strategies to mitigate or suppress this marbled texture of the Al thin film are proposed and discussed. - Highlights: • Sputtered Al/Si layers deposited on Si present evident optical non-uniformity • It could be an issue for optical recognition tools used in semiconductor industries • Optical non-uniformity is due to randomly oriented growth of Al grains. • Substrate misorientation and process temperature can mitigate the problem.

  5. Surface, interface and thin film characterization of nano-materials using synchrotron radiation

    International Nuclear Information System (INIS)

    Kimura, Shigeru; Kobayashi, Keisuke

    2005-01-01

    From the results of studies in the nanotechnology support project of the Ministry of Education, Culture, Sports, Science and Technology of Japan, several investigations on the surface, interface and thin film characterization of nano-materials are described; (1) the MgB 2 thin film by X-ray diffraction, (2) the magnetism of the Pt thin film on a Co film by X-ray magnetic circular dichroism measurement, (3) the structure and physical properties of oxygen molecules absorbed in a micro hole of the cheleted polymer crystal by the direct observation in X-ray powder diffraction, and (4) the thin film gate insulator with a large dielectric constant, thermally treated HfO 2 /SiO 2 /Si, by X-ray photoelectron spectroscopy. (M.H.)

  6. The reduction of the change of secondary ions yield in the thin SiON/Si system

    International Nuclear Information System (INIS)

    Sameshima, J.; Yamamoto, H.; Hasegawa, T.; Nishina, T.; Nishitani, T.; Yoshikawa, K.; Karen, A.

    2006-01-01

    For the analyses of gate insulating materials of thin silicon oxy-nitride (SiON) and dielectric films, SIMS is one of the available tool along with TEM and ESCA, etc. Especially, to investigate the distribution of dopant in the thin films, SIMS is appreciably effective in these techniques because of its depth profiling capability and high sensitivity. One of the problem occurring in this SIMS measurement is the change of secondary ion yield at the interface as well as in the layers with different chemical composition. To solve this problem, some groups have researched the phenomenon for SiO 2 /Si interface [W. Vandervorst, T. Janssens, R. Loo, M. Caymax, I. Peytier, R. Lindsay, J. Fruhauf, A. Bergmaier, G. Dollinger, Appl. Surf. Sci. 203-204 (2003) 371-376; S. Hayashi, K.Yanagihara, Appl. Surf. Sci. 203-204 (2003) 339-342; M. Barozzi, D. Giubertoni, M.Anderle, M. Bersani, Appl. Surf. Sci. 231-232 (2004) 632-635; T.H. Buyuklimanli, J.W. Marino, S.W. Novak, Appl. Surf. Sci. 231-232 (2004) 636-639]. In the present study, profiles of boron and matrix elements in the Si/SiON layers on Si substrate have been investigated. The sensitivity change of Si and B profiles in SiON layer become smaller by using oxygen flood than those without oxygen flood for both O 2 + and Cs + beam. At the range of 0-25 at.% of N composition, 11 B dosimetry in SiON layer implanted through amorphous Si depends on N composition. This trend could be caused by the sensitivity change of 11 B, or it indicates real 11 B concentration change in SiON lyaer. N areal density determined by Cs + SIMS with oxygen flooding also shows linear relationship with N composition estimated by XPS

  7. Influence of Filler Alloy Composition and Process Parameters on the Intermetallic Layer Thickness in Single-Sided Cold Metal Transfer Welding of Aluminum-Steel Blanks

    Science.gov (United States)

    Silvayeh, Zahra; Vallant, Rudolf; Sommitsch, Christof; Götzinger, Bruno; Karner, Werner; Hartmann, Matthias

    2017-11-01

    Hybrid components made of aluminum alloys and high-strength steels are typically used in automotive lightweight applications. Dissimilar joining of these materials is quite challenging; however, it is mandatory in order to produce multimaterial car body structures. Since especially welding of tailored blanks is of utmost interest, single-sided Cold Metal Transfer butt welding of thin sheets of aluminum alloy EN AW 6014 T4 and galvanized dual-phase steel HCT 450 X + ZE 75/75 was experimentally investigated in this study. The influence of different filler alloy compositions and welding process parameters on the thickness of the intermetallic layer, which forms between the weld seam and the steel sheet, was studied. The microstructures of the weld seam and of the intermetallic layer were characterized using conventional optical light microscopy and scanning electron microscopy. The results reveal that increasing the heat input and decreasing the cooling intensity tend to increase the layer thickness. The silicon content of the filler alloy has the strongest influence on the thickness of the intermetallic layer, whereas the magnesium and scandium contents of the filler alloy influence the cracking tendency. The layer thickness is not uniform and shows spatial variations along the bonding interface. The thinnest intermetallic layer (mean thickness < 4 µm) is obtained using the silicon-rich filler Al-3Si-1Mn, but the layer is more than twice as thick when different low-silicon fillers are used.

  8. Effect of grain refiner on intermetallic phase formation in directional solidification of 6xxx series wrought Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sha, G.; O' Reilly, K.; Cantor, B. [Oxford Univ. (United Kingdom). Centre for Adv. Mat. and Composites; Hamerton, R.; Worth, J.

    2000-07-01

    The effect of a grain refiner on the formation of intermetallic phases in a directionally solidified (Bridgman grown) model 6xxx series wrought Al alloy has been investigated using X-ray diffractometry (XRD), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). A base alloy with and without Al-Ti-B grain refiner was directionally solidified in a Bridgman furnace at growth velocities in the range of 5-120 mm/min. In both cases, the Fe-containing intermetallic phases present were found to be mainly {alpha}-AlFeSi and {beta}-AlFeSi. However, in the alloy with grain refiner solidified at 5mm/min, Al{sub 13}Fe{sub 4} was also observed. Quantitative XRD results indicated that the addition of Al-Ti-B grain refiner has a strong influence on the relative quantities of intermetallic phases forming during solidification at different growth velocities, which was also confirmed by TEM observations. TEM observations also show that depending on where the {beta}-AlFeSi particles solidified e.g. grain boundaries or triple grain junctions, the size and morphology of the particles may change dramatically. TiB{sub 2} particles were observed to nucleate {beta}-AlFeSi at low and high growth velocities in the 6xxx series Al alloys. (orig.)

  9. Optimizations of Pt/SiC and W/Si multilayers for the Nuclear Spectroscopic Telescope Array

    DEFF Research Database (Denmark)

    Madsen, K. K.; Harrison, F. A.; Mao, P. H.

    2009-01-01

    function to control the shape of the desired effective area. The NuSTAR multilayers are depth graded with a power-law, di = a/(b + i)c, and we optimize over the total number of bi-layers, N, c, and the maximum bi-layer thickness, dmax. The result is a 10 mirror group design optimized for a flat even energy......The Nuclear Spectroscopic Telescope Array, NuSTAR, is a NASA funded Small Explorer Mission, SMEX, scheduled for launch in mid 2011. The spacecraft will fly two co-aligned conical approximation Wolter-I optics with a focal length of 10 meters. The mirrors will be deposited with Pt/SiC and W....../Si multilayers to provide a broad band reflectivity from 6 keV up to 78.4 keV. To optimize the mirror coating we use a Figure of Merit procedure developed for gazing incidence optics, which averages the effective area over the energy range, and combines an energy weighting function with an angular weighting...

  10. Evaluating interfacial adhesion properties of Pt/Ti thin-film by using acousto-optic technique

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae Sung [Graduate School of Automotive Engineering, Seoul National University of Science and Technology, Seoul (Korea, Republic of); Didie, David; Yoshida, Sanichiro [Dept. of Chemistry and Physics, Southeastern Louisiana University, Hammond (United States); Park, Ik Keun [Dept. of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2016-06-15

    We propose an acousto-optic technique for the nondestructive evaluation of adhesion properties of a Pt/Ti thin-film interface. Since there are some problems encountered when using prevailing techniques to nondestructively evaluate the interfacial properties of micro/nano-scale thin-films, we applied an interferometer that combined the acoustic and optical methods. This technique is based on the Michelson interferometer but the resultant surface of the thin film specimen makes interference instead of the mirror when the interface is excited from the acoustic transducer at the driving frequency. The thin film shows resonance-like behavior at a certain frequency range, resulting in a low-contrast fringe pattern. Therefore, we represented quantitatively the change in fringe pattern as a frequency spectrum and discovered the possibility that the interfacial adhesion properties of a thin film can be evaluated using the newly proposed technique.

  11. Thermal annealing of amorphous Ti-Si-O thin films

    OpenAIRE

    Hodroj , Abbas; Chaix-Pluchery , Odette; Audier , Marc; Gottlieb , Ulrich; Deschanvres , Jean-Luc

    2008-01-01

    International audience; Ti-Si-O thin films were deposited using an aerosol chemical vapor deposition process at atmospheric pressure. The film structure and microstructure were analysed using several techniques before and after thermal annealing. Diffraction results indicate that the films remain X-ray amorphous after annealing whereas Fourier transform infrared spectroscopy gives evidence of a phase segregation between amorphous SiO2 and well crystallized anatase TiO2. Crystallization of ana...

  12. Magnetoelectric coupling in multiferroic heterostructure of rf-sputtered Ni–Mn–Ga thin film on PMN–PT

    International Nuclear Information System (INIS)

    Teferi, M.Y.; Amaral, V.S.; Lounrenco, A.C.; Das, S.; Amaral, J.S.; Karpinsky, D.V.; Soares, N.; Sobolev, N.A.; Kholkin, A.L.; Tavares, P.B.

    2012-01-01

    In this paper, we report a preparation of multiferroic heterostructure from thin film of Ni–Mn–Ga (NMG) alloy and lead magnesium niobate–lead titanate (PMN–PT) with effective magnetoelectric (ME) coupling between the film as ferromagnetic material and PMN–PT as piezoelectric material. The heterostructure was prepared by relatively low temperature (400 °C) deposition of the film on single crystal of piezoelectric PMN–PT substrate using rf magnetron co-sputtering of Ni 50 Mn 50 and Ni 50 Ga 50 targets. Magnetic measurements by Superconducting Quantum Interference Design (SQIUD) Magnetometer and Vibrating Sample Magnetometer (VSM) on the film revealed that the film is in ferromagnetically ordered martensitic state at room temperature with saturation magnetization of ∼240 emu/cm 3 and Curie temperature of ∼337 K. Piezoresponse force microscopy (PFM) measurement done at room temperature on the substrate showed the presence of expected hysteresis loop confirming the stability of the piezoelectric state of the substrate after deposition. Room temperature ME voltage coefficient (α ME ) of the heterostructure was measured as a function of applied bias dc magnetic field in Longitudinal–Transverse (L–T) ME coupling mode by lock-in technique. A maximum ME coefficient α ME of 3.02 mV/cm Oe was measured for multiferroic NMG/PMN–PT heterostructure which demonstrates that there is ME coupling between the film as ferromagnetic material and PMN–PT as piezoelectric material. - Highlights: ► Multiferroic NMG/PMN–PT heterostructure prepared by depositing NMG alloy thin film on PMN–PT substrate. ► The film is in ferromagnetically ordered martensite state at room temperature. ► The substrate maintains its piezoelectric state after deposition. ► The heterostructure exhibits ME effect with maximum of α ME of 3.02 mV/cm Oe.

  13. Investigation of corrosion behavior of nitrogen doped and platinum/ruthenium doped diamond-like carbon thin films in Hank's solution

    Energy Technology Data Exchange (ETDEWEB)

    Khun, N.W.; Liu, E., E-mail: MEJLiu@ntu.edu.sg

    2011-10-10

    Undoped (DLC), nitrogen-doped (N-DLC) and platinum/ruthenium doped diamond-like carbon (PtRu-DLC) thin films were deposited on p-Si (100) substrates using a DC magnetron sputtering deposition system. The chemical composition, bonding structure, surface morphology and adhesion strength of the films were characterized using X-ray photoelectron spectroscopy (XPS), micro-Raman spectroscopy, atomic force microscopy (AFM) and micro-scratch test, respectively. The corrosion behavior of the films in a Hank's solution was investigated using potentiodynamic polarization test. The corrosion results revealed that the PtRu-DLC film had the highest corrosion potential among the films used in this study. Highlights: {yields} DLC thin films were deposited on Si substrates via dc magnetron sputtering. {yields} Some DLC films were doped with N and/or Pt/Ru. {yields} The film corrosion behavior was studied in a Hank solution with polarization test. {yields} The PtRu-DLC film showed the highest corrosion potential among the films studied.

  14. Characterization of Nanocrystalline SiGe Thin Film Solar Cell with Double Graded-Dead Absorption Layer

    Directory of Open Access Journals (Sweden)

    Chao-Chun Wang

    2012-01-01

    Full Text Available The nanocrystalline silicon-germanium (nc-SiGe thin films were deposited by high-frequency (27.12 MHz plasma-enhanced chemical vapor deposition (HF-PECVD. The films were used in a silicon-based thin film solar cell with graded-dead absorption layer. The characterization of the nc-SiGe films are analyzed by scanning electron microscopy, UV-visible spectroscopy, and Fourier transform infrared absorption spectroscopy. The band gap of SiGe alloy can be adjusted between 0.8 and 1.7 eV by varying the gas ratio. For thin film solar cell application, using double graded-dead i-SiGe layers mainly leads to an increase in short-circuit current and therefore cell conversion efficiency. An initial conversion efficiency of 5.06% and the stabilized efficiency of 4.63% for an nc-SiGe solar cell were achieved.

  15. Solid-state compound phase formation of TiSi2 thin films under stress

    Directory of Open Access Journals (Sweden)

    C. Theron

    2010-02-01

    Full Text Available Different stress situations were created on an Si(100 wafer by depositing either Si3N4 or SiO2 thin films on the back side. Si3N4 has a different thermal expansion coefficient from that of SiO2. A thin Ti film was then deposited on the front side of the Si wafer. The structures were then annealed at various high temperatures for different periods of time. Real-time Rutherford backscattering spectrometry, as well as sample curvature measurements, were used to characterise the samples. Different reaction rates were found between Si3N4-deposited samples and SiO2-deposited samples.

  16. Effects of substrate temperature on structural and electrical properties of SiO2-matrix boron-doped silicon nanocrystal thin films

    International Nuclear Information System (INIS)

    Huang, Junjun; Zeng, Yuheng; Tan, Ruiqin; Wang, Weiyan; Yang, Ye; Dai, Ning; Song, Weijie

    2013-01-01

    In this work, silicon-rich SiO 2 (SRSO) thin films were deposited at different substrate temperatures (T s ) and then annealed by rapid thermal annealing to form SiO 2 -matrix boron-doped silicon-nanocrystals (Si-NCs). The effects of T s on the micro-structure and electrical properties of the SiO 2 -matrix boron-doped Si-NC thin films were investigated using Raman spectroscopy and Hall measurements. Results showed that the crystalline fraction and dark conductivity of the SiO 2 -matrix boron-doped Si-NC thin films both increased significantly when the T s was increased from room temperature to 373 K. When the T s was further increased from 373 K to 676 K, the crystalline fraction of 1373 K-annealed thin films decreased from 52.2% to 38.1%, and the dark conductivity reduced from 8 × 10 −3 S/cm to 5.5 × 10 −5 S/cm. The changes in micro-structure and dark conductivity of the SiO 2 -matrix boron-doped Si-NC thin films were most possibly due to the different amount of Si-O 4 bond in the as-deposited SRSO thin films. Our work indicated that there was an optimal T s , which could significantly increase the crystallization and conductivity of Si-NC thin films. Also, it was illumined that the low-resistivity SiO 2 -matrix boron-doped Si-NC thin films can be achieved under the optimal substrate temperatures, T s .

  17. Physical and dispersive optical characteristics of ZrON/Si thin-film system

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Yew Hoong [University of Malaya, Centre of Advanced Materials, Department of Mechanical Engineering, Faculty of Engineering, Kuala Lumpur (Malaysia); University of Malaya, Centre of Advanced Manufacturing and Material Processing, Kuala Lumpur (Malaysia); Atuchin, V.V. [Institute of Semiconductor Physics, SB RAS, Laboratory of Optical Materials and Structures, Novosibirsk (Russian Federation); Kruchinin, V.N. [Institute of Semiconductor Physics, SB RAS, Laboratory for Ellipsometry of Semiconductor Materials and Structures, Novosibirsk (Russian Federation); Cheong, Kuan Yew [Universiti Sains Malaysia, Electronic Materials Research Group, School of Materials and Mineral Resources Engineering, Engineering Campus, Seberang Perai Selatan, Penang (Malaysia)

    2014-06-15

    To date, the complex evaluation of physical and dispersive optical characteristics of the ZrON/Si film system has yet been reported. Hence, ZrON thin films have been formed on Si(100) substrates through oxidation/nitridation of sputtered metallic Zr in N{sub 2}O environment at 500, 700, and 900 C. Physical properties of the deposited films have been characterized by X-ray diffractometry (XRD), Fourier transform infrared (FTIR) spectroscopy, reflection high-energy electron diffraction (RHEED), and spectroscopic ellipsometry (SE). It has been shown that ZrON/Si thin films without optical absorption can be prepared by oxidation/nitridation reaction in N{sub 2}O environment at 700-900 C. (orig.)

  18. Regulation of the forming process and the set voltage distribution of unipolar resistance switching in spin-coated CoFe2O4 thin films.

    Science.gov (United States)

    Mustaqima, Millaty; Yoo, Pilsun; Huang, Wei; Lee, Bo Wha; Liu, Chunli

    2015-01-01

    We report the preparation of (111) preferentially oriented CoFe2O4 thin films on Pt(111)/TiO2/SiO2/Si substrates using a spin-coating process. The post-annealing conditions and film thickness were varied for cobalt ferrite (CFO) thin films, and Pt/CFO/Pt structures were prepared to investigate the resistance switching behaviors. Our results showed that resistance switching without a forming process is preferred to obtain less fluctuation in the set voltage, which can be regulated directly from the preparation conditions of the CFO thin films. Therefore, instead of thicker film, CFO thin films deposited by two times spin-coating with a thickness about 100 nm gave stable resistance switching with the most stable set voltage. Since the forming process and the large variation in set voltage have been considered as serious obstacles for the practical application of resistance switching for non-volatile memory devices, our results could provide meaningful insights in improving the performance of ferrite material-based resistance switching memory devices.

  19. High-efficiency thin Si solar cells prepared at reduced temperatures. Final report; Herstellung von hocheffizienten, duennen Si-Solarzellen bei erniedrigten Prozesstemperaturen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Kruehler, W.

    1999-07-01

    Thin crystalline Si wafer solar cells were processed at reduced temperatures. In addition multicrystalline thin-film solar cells were fabricated on graphite substrates. Large area (175 cm{sup 2}) wafer solar cells made from mono- as well as from tricrystalline Si material were processed with reduced thicknesses down to 100 {mu}m. Conversion efficiencies were obtained in the range between 11.5 and 12.5% without antireflection coating. The reduction of the process temperatures had no positive impact on the expected cost reduction because of the degradation of the electrical cell data during processing. Tricrystalline Si wafers have shown to be mechanically stronger than monocrystalline Si material. Consequently, tri-Si ingots can be sawn in thinner wafers with higher yield. The concept of backside-contacted solar cell was realized by the preparation of thin slit solar cells (150 {mu}m thin, 43 cm{sup 2} in area) made from tri-Si. A conversion efficiency of 14,3% was reached. Amorphous Si layer deposited on graphite substrates were recrystallized by the electron beam recrystallization method developed by the Technical University in Hamburg-Harburg. The recrystallized Si layers showed large grains and were suitible as seed layers for the following gas phase epitaxy (CVD). With the CVD method 20 to 40 {mu}m thin Si absorber layers were deposited on the seed layers with the same excellent crystallographic properties. In contrast, their electrical properties were not sufficient for the preparation of solar cells having more than 3% efficiency. The study of the different concepts has shown, that the development of thin wafer solar cells made from tri-Si has the highest potential with respect to a further cost reduction. (orig.) [German] Es wurden sowohl duenne, kristalline Si-Wafer-Solarzellen bei erniedrigten Prozesstemperaturen als auch multikristalline Si-Duennschicht-Solarzellen auf Graphitsubstraten entwickelt und untersucht. Es konnten grossflaechige (175 cm{sup 2

  20. Multi-center vs. two-center bonding within the hetero-polyanion in Eu{sub 2}GaPt{sub 2} and its prototype Ca{sub 2}SiIr{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Poettgen, Rainer [Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster (Germany); Borrmann, Horst; Grin, Yuri [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Dresden (Germany)

    2017-11-17

    The compound Eu{sub 2}GaPt{sub 2} was synthesized from the elements in a sealed tantalum tube. Its Ca{sub 2}SiIr{sub 2}-type crystal structure was refined from single-crystal X-ray diffraction data: space group C2/c, a = 9.8775(6), b = 5.8621(6), c = 7.9677(5) Aa, β = 102.257(4) , R{sub F} = 0.039, 1344 observed reflections, and 25 variable parameters. The platinum (iridium) atoms in Eu{sub 2}GaPt{sub 2} and Ca{sub 2}SiIr{sub 2} form linear chains of dumbbells [2c(Pt-Pt) or 2c(Ir-Ir) bonds, respectively]. These chains are interconnected to 2D polyanions in Eu{sub 2}GaPt{sub 2} by the gallium atoms forming 4c(Ga-Pt-Ga-Pt) or by silicon atoms forming 2c(Si-Ir) bonds in Ca{sub 2}SiIr{sub 2}. The polyanion bonds to the europium (calcium) matrix via the pseudo lone-pairs at the gallium (silicon) atoms. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Formation of Surface and Quantum-Well States in Ultra Thin Pt Films on the Au(111 Surface

    Directory of Open Access Journals (Sweden)

    Igor V. Silkin

    2017-12-01

    Full Text Available The electronic structure of the Pt/Au(111 heterostructures with a number of Pt monolayers n ranging from one to three is studied in the density-functional-theory framework. The calculations demonstrate that the deposition of the Pt atomic thin films on gold substrate results in strong modifications of the electronic structure at the surface. In particular, the Au(111 s-p-type Shockley surface state becomes completely unoccupied at deposition of any number of Pt monolayers. The Pt adlayer generates numerous quantum-well states in various energy gaps of Au(111 with strong spatial confinement at the surface. As a result, strong enhancement in the local density of state at the surface Pt atomic layer in comparison with clean Pt surface is obtained. The excess in the density of states has maximal magnitude in the case of one monolayer Pt adlayer and gradually reduces with increasing number of Pt atomic layers. The spin–orbit coupling produces strong modification of the energy dispersion of the electronic states generated by the Pt adlayer and gives rise to certain quantum states with a characteristic Dirac-cone shape.

  2. Thin SiGe virtual substrates for Ge heterostructures integration on silicon

    International Nuclear Information System (INIS)

    Cecchi, S.; Chrastina, D.; Frigerio, J.; Isella, G.; Gatti, E.; Guzzi, M.; Müller Gubler, E.; Paul, D. J.

    2014-01-01

    The possibility to reduce the thickness of the SiGe virtual substrate, required for the integration of Ge heterostructures on Si, without heavily affecting the crystal quality is becoming fundamental in several applications. In this work, we present 1 μm thick Si 1−x Ge x buffers (with x > 0.7) having different designs which could be suitable for applications requiring a thin virtual substrate. The rationale is to reduce the lattice mismatch at the interface with the Si substrate by introducing composition steps and/or partial grading. The relatively low growth temperature (475 °C) makes this approach appealing for complementary metal-oxide-semiconductor integration. For all the investigated designs, a reduction of the threading dislocation density compared to constant composition Si 1−x Ge x layers was observed. The best buffer in terms of defects reduction was used as a virtual substrate for the deposition of a Ge/SiGe multiple quantum well structure. Room temperature optical absorption and photoluminescence analysis performed on nominally identical quantum wells grown on both a thick graded virtual substrate and the selected thin buffer demonstrates a comparable optical quality, confirming the effectiveness of the proposed approach

  3. Perpendicular magnetic anisotropy of amorphous ferromagnetic CoSiB/[Pt,Au] multilayer

    International Nuclear Information System (INIS)

    Jeong, S.; Yim, H. I.

    2012-01-01

    Perpendicular magnetic anisotropy is being widely studied as a possible candidate for a high density spin-transfer torque magnetic random access memory. The key issues of a high-density spin-transfer torque magnetic random access memory are decreasing the switching current and the high thermal stability. In order to solve these problems, two approaches are suggested: One is the development a new amorphous ferromagnetic material as a pinned layer for a multilayer with a low saturated magnetization (M s ) value because of the interface roughness between the two layers. The other is a search for the most suitable materials with high perpendicular magnetic anisotropy in order to have high thermal stability. In this work, we present an amorphous ferromagnetic Co 75 Si 15 B 10 material and compare the magnetic properties of a [CoSiB (0.3, 0.4, 0.5 nm)/Pt (1.4 nm)] 5 multilayer and new combinations [CoSiB (0.3, 0.4, 0.5 nm)/Au (1.5 nm)] 5 .

  4. Structural and mechanical properties of ZrSiN thin films prepared by reactive magnetron sputtering

    International Nuclear Information System (INIS)

    Freitas, F.G.R.; Conceicao, A.G.S.; Vitoria, E.R.; Carvalho, R.G.; Tentardini, E.K.; Hübler, R.; Soares, G.

    2014-01-01

    Zirconium silicon nitride (ZrSiN) thin films were deposited by reactive magnetron sputtering in order to verify the silicon influence on coating morphology and mechanical properties. The Si/(Zr+Si) ratio was adjusted between 0 to 14.5% just modifying the power applied on the silicon target. Only peaks associated to ZrN crystalline structure were observed in XRD analysis, since Si_3N_4 phase was amorphous. All samples have (111) preferred orientation, but there is a peak intensity reduction and a broadening increase for the sample with the highest Si/(Zr+Si) ratio (14.5%), demonstrating a considerable loss of crystallinity or grain size reduction (about 8 nm calculated by Scherrer). It was also observed that the texture coefficient for (200) increases with silicon addition. Chemical composition and thickness of the coatings were determined by RBS analysis. No significant changes in nano hardness with increasing Si content were found. The thin film morphology observed by SEM presents columnar and non columnar characteristics. The set of results suggests that Si addition is restricting the columnar growth of ZrN thin films. This conclusion is justified by the fact that Si contributes to increase the ZrN grains nucleation during the sputtering process. (author)

  5. Changes in Structural Characteristics of Hypoeutectic Al-Si Cast Alloy after Age Hardening

    Directory of Open Access Journals (Sweden)

    Lenka HURTALOVÁ

    2012-09-01

    Full Text Available The contribution describes influence of the age-hardening consist of solution treatment at 515 °C with holding time 4 hours, water quenching at 40 °C and artificial aging at different temperature 150 °C, 170 °C and 190 °C with different holding time 2, 4, 8, 16 and 32 hours on mechanical properties (tensile strength and Brinell hardness and changes in morphology of eutectic Si, Fe-rich and Cu-rich intermetallic phases in secondary (recycled AlSi9Cu3 cast alloy. A combination of different analytical techniques (light microscopy upon black-white and colour etching, scanning electron microscopy (SEM upon deep etching and energy dispersive X-ray analysis (EDX were therefore been used for the identification of the various phases. Quantitative study of changes in morphology of eutectic Si, Cu-rich and Fe-rich phases was carried out using Image Analyzer software NIS-Elements. Mechanical properties were measured in line with EN ISO. Age-hardening led to changes in microstructure include the spheroidization and coarsening of eutectic silicon, gradual disintegration, shortening and thinning of Fe- rich intermetallic phases, the dissolution of precipitates and the precipitation of finer hardening phase (Al2Cu further increase in the hardness and tensile strength in the alloy.DOI: http://dx.doi.org/10.5755/j01.ms.18.3.2430

  6. Stability of ZrBe17, and NiBe intermetallics during intermediate temperature oxidation

    International Nuclear Information System (INIS)

    Chou, T.C.; Nieh, T.G.; Wadsworth, J.

    1992-01-01

    This paper reports that since the finding of MoSi 2 pest by Fitzer in 1955, a number of intermetallic compounds, e.g., ZrBe 13 , WSi 2 , and NiAl have also been reported to exhibit similar behavior during oxidation in air. For example, Lewis reported that catastrophic failure (total disintegration into powders) occurred in ZrBe 13 when oxidized at 700 degrees C in air. X-ray diffraction analyses revealed that the powders were composed of BeO, ZrO 2 (cubic), Zr 2 Be 17 , and unreacted ZrBe 13 . Regardless of numerous cited incidents of pest in intermetallics, fundamental understanding of pest is very limited. Recently, MoSi 2 pest has been studied in a great detail and fundamental insights to the mechanism of pest have been established. It is found that both single- and ply- crystalline MoSi 2 are susceptible to pest, which leads to the disintegration of test samples into powder consisting of MoO 3 whiskers, SiP 2 clusters, and residual MoSi 2 crystals. Pest is also noted to associate with substantial volume expansion of the samples. Most important, the occurrence of pest is contingent upon the formation of blisters, resulting from volume expansion by oxidation and the evaporation of MoO 3 on the surfaces and grain boundary interfaces

  7. CVD growth and characterization of 3C-SiC thin films

    Indian Academy of Sciences (India)

    Unknown

    Cubic silicon carbide (3C-SiC) thin films were grown on (100) and (111) Si substrates by CVD technique using ... of grown films were studied using optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis and X-ray ... the oxide mask gets damaged (Edgar et al 1998). There- fore, lower ...

  8. Resistive switching properties of Ce and Mn co-doped BiFeO3 thin films for nonvolatile memory application

    Directory of Open Access Journals (Sweden)

    Zhenhua Tang

    2013-12-01

    Full Text Available The Ce and Mn co-doped BiFeO3 (BCFMO thin films were synthesized on Pt/Ti/SiO2/Si substrates using a sol-gel method. The unipolar resistive switching (URS and bipolar resistive switching (BRS behaviors were observed in the Pt/BCFMO/Pt device structure, which was attributed to the formation/rupture of metal filaments. The fabricated device exhibits a large ROFF/RON ratio (>80, long retention time (>105 s and low programming voltages (<1.5 V. Analysis of linear fitting current-voltage curves suggests that the space charge limited leakage current (SCLC and Schottky emission were observed as the conduction mechanisms of the devices.

  9. Spiropyran-Decorated SiO₂-Pt Janus Micromotor: Preparation and Light-Induced Dynamic Self-Assembly and Disassembly.

    Science.gov (United States)

    Zhang, Qilu; Dong, Renfeng; Chang, Xueyi; Ren, Biye; Tong, Zhen

    2015-11-11

    The controlled self-assembly of self-propelled Janus micromotors may give the micromotors some potential applications in many fields. In this work, we design a kind of SiO2-Pt Janus catalytic micromotor functionalized by spiropyran (SP) moieties on the surface of the SiO2 hemisphere. The spiropyran-modified SiO2-Pt Janus micromotor exhibits autonomous self-propulsion in the presence of hydrogen peroxide fuel in N,N-dimethylformamide (DMF)/H2O (1:1 in volume) mixture. We demonstrate that the self-propelled Janus micromotors can dynamically assemble into multiple motors because of the electrostatic attractions and π-π stacking between MC molecules induced by UV light irradiation (λ = 365 nm) and also quickly disassemble into mono motors when the light is switched to green light (λ = 520 nm) for the first time. Furthermore, the assembled Janus motors can move together automatically with different motion patterns propelled by the hydrogen peroxide fuels upon UV irradiation. The work provides a new approach not only to the development of the potential application of Janus motors but also to the fundamental science of reversible self-assembly and disassembly of Janus micromotors.

  10. Electrical transport characterization of Al and Sn doped Mg 2 Si thin films

    KAUST Repository

    Zhang, Bo

    2017-05-22

    Thin-film Mg2Si was deposited using radio frequency (RF) magnetron sputtering. Al and Sn were incorporated as n-type dopants using co-sputtering to tune the thin-film electrical properties. X-ray diffraction (XRD) analysis confirmed that the deposited films are polycrystalline Mg2Si. The Sn and Al doping concentrations were measured using Rutherford backscattering spectroscopy (RBS) and energy dispersive X-ray spectroscopy (EDS). The charge carrier concentration and the charge carrier type of the Mg2Si films were measured using a Hall bar structure. Hall measurements show that as the doping concentration increases, the carrier concentration of the Al-doped films increases, whereas the carrier concentration of the Sn-doped films decreases. Combined with the resistivity measurements, the mobility of the Al-doped Mg2Si films is found to decrease with increasing doping concentration, whereas the mobility of the Sn-doped Mg2Si films is found to increase.

  11. Growth process and structure of Er/Si(100) thin film

    International Nuclear Information System (INIS)

    Fujii, S.; Michishita, Y.; Miyamae, N.; Suto, H.; Honda, S.; Okado, H.; Oura, K.; Katayama, M.

    2006-01-01

    The solid-phase reactive epitaxial growth processes and structures of Er/Si(100) thin films were investigated by coaxial impact-collision ion scattering spectroscopy (CAICISS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The as-deposited Er film grown at room temperature was transformed into crystalline rectangular-shaped islands after annealing at 900 deg. C. These islands have a hexagonal AlB 2 -type structure and the epitaxial relationship is determined to be ErSi 2 (011-bar0)[0001]//Si(100)[011-bar]. It has been revealed that the surface of the Er silicide island is terminated with an Er plane

  12. Electrical transport characterization of Al and Sn doped Mg 2 Si thin films

    KAUST Repository

    Zhang, Bo; Zheng, Tao; Sun, Ce; Guo, Zaibing; Kim, Moon J.; Alshareef, Husam N.; Quevedo-Lopez, Manuel; Gnade, Bruce E.

    2017-01-01

    Thin-film Mg2Si was deposited using radio frequency (RF) magnetron sputtering. Al and Sn were incorporated as n-type dopants using co-sputtering to tune the thin-film electrical properties. X-ray diffraction (XRD) analysis confirmed

  13. Optical properties of monodispersive FePt nanoparticle films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.J.; Lo, C.C.H. [Ames Laboratory, Iowa State University, Ames, IA 50011 (United States); Yu, A.C.C. [Sony Corporation, Sendai Technology Center, 3-4-1 Sakuragi, Miyagi 985-0842 (Japan); Fan, M. [Center for Sustainable Environmental Technologies, Iowa State University, Ames, IA 50011 (United States)

    2004-10-01

    The optical properties of monodispersive FePt nanoparticle films were investigated using spectroscopic ellipsometry in the energy range of 1.5 to 5.5 eV. The monodispersive FePt nanoparticle film was stabilized on a Si substrate by means of an organosilane coupling film, resulting in the formation of a (Si/SiO{sub 2}/APTS/FePt nanoparticles monolayer) structure. Multilayer optical models were employed to study the contribution of the FePt nanoparticles to the measured optical properties of the monodispersive FePt nanoparticle film, and to estimate the optical properties of the FePt nanoparticle layer. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Microstructural properties of BaTiO3 ceramics and thin films

    International Nuclear Information System (INIS)

    Fundora C, A.; Portelles, J.J.; Siqueiros, J.M.

    2000-01-01

    A microstructural study of BaTiO 3 ceramics obtained by the conventional ceramic method is presented. Targets were produced to grow BaTiO 3 thin films by pulsed laser deposition on Pt/Ti/Si (100) substrates. X-ray diffraction, Auger Electron Spectroscopy, X-ray Photon Spectroscopy and Scanning Electron Microscopy were used to study the properties of the BaTiO 3 ceramic samples and thin films, as deposited and after an annealing process. (Author)

  15. Metastability of a-SiO{sub x}:H thin films for c-Si surface passivation

    Energy Technology Data Exchange (ETDEWEB)

    Serenelli, L., E-mail: luca.serenelli@enea.it [ENEA Research centre “Casaccia”, via Anguillarese 301, 00123 Rome (Italy); DIET University of Rome “Sapienza”, via Eudossiana 18, 00184 Rome (Italy); Martini, L. [DIET University of Rome “Sapienza”, via Eudossiana 18, 00184 Rome (Italy); Imbimbo, L. [ENEA Research centre “Casaccia”, via Anguillarese 301, 00123 Rome (Italy); DIET University of Rome “Sapienza”, via Eudossiana 18, 00184 Rome (Italy); Asquini, R. [DIET University of Rome “Sapienza”, via Eudossiana 18, 00184 Rome (Italy); Menchini, F.; Izzi, M.; Tucci, M. [ENEA Research centre “Casaccia”, via Anguillarese 301, 00123 Rome (Italy)

    2017-01-15

    Highlights: • a-SiO{sub x}:H film deposition by RF-PECVD is optimized from SiH{sub 4}, CO{sub 2} and H{sub 2} gas mixture. • Metastability of a-SiO{sub x}:H/c-Si passivation is investigated under thermal annealing and UV exposure. • A correlation between passivation metastability and Si−H bonds is found by FTIR spectra. • A metastability model is proposed. - Abstract: The adoption of a-SiO{sub x}:H films obtained by PECVD in heterojunction solar cells is a key to further increase their efficiency, because of its transparency in the UV with respect to the commonly used a-Si:H. At the same time this layer must guarantee high surface passivation of the c-Si to be suitable in high efficiency solar cell manufacturing. On the other hand the application of amorphous materials like a-Si:H and SiN{sub x} on the cell frontside expose them to the mostly energetic part of the sun spectrum, leading to a metastability of their passivation properties. Moreover as for amorphous silicon, thermal annealing procedures are considered as valuable steps to enhance and stabilize thin film properties, when performed at opportune temperature. In this work we explored the reliability of a-SiO{sub x}:H thin film layers surface passivation on c-Si substrates under UV exposition, in combination with thermal annealing steps. Both p- and n-type doped c-Si substrates were considered. To understand the effect of UV light soaking we monitored the minority carriers lifetime and Si−H and Si−O bonding, by FTIR spectra, after different exposure times to light coming from a deuterium lamp, filtered to UV-A region, and focused on the sample to obtain a power density of 50 μW/cm{sup 2}. We found a certain lifetime decrease after UV light soaking in both p- and n-type c-Si passivated wafers according to a a-SiO{sub x}:H/c-Si/a-SiO{sub x}:H structure. The role of a thermal annealing, which usually enhances the as-deposited SiO{sub x} passivation properties, was furthermore considered. In

  16. Suppression of slow capacitance relaxation phenomenon in Pt/Ba0.3Sr0.7TiO3/Pt thin film ferroelectric structures by annealing in oxygen atmosphere

    KAUST Repository

    Altynnikov, A. G.

    2014-01-27

    The impact of oxygen annealing on the switching time of ferroelectric thin film capacitor structures Pt/Ba0.3Sr0.7TiO3/Pt was investigated. The response of their capacitance on pulsed control voltages before and after annealing was experimentally measured. It was demonstrated that the annealing results in suppression of the capacitance slow relaxation processes and increase of the threshold control voltages. These structures can therefore be attractive for fabrication of fast acting microwave devices. © 2014 Author(s).

  17. Picosecond laser pulse-driven crystallization behavior of SiSb phase change memory thin films

    International Nuclear Information System (INIS)

    Huang Huan; Li Simian; Zhai Fengxiao; Wang Yang; Lai Tianshu; Wu Yiqun; Gan Fuxi

    2011-01-01

    Highlights: → We reported crystallization dynamics of a novel SiSb phase change material. → We measured optical constants of as-deposited and irradiated SiSb areas. → Optical properties of as-deposited and irradiated SiSb thin film were compared. → Crystallization of irradiated SiSb was confirmed by using AFM and micro-Raman spectra. → The heat conduction effect of lower metal layer of multi-layer films was studied. - Abstract: Transient phase change crystallization process of SiSb phase change thin films under the irradiation of picosecond (ps) laser pulse was studied using time-resolved reflectivity measurements. The ps laser pulse-crystallized domains were characterized by atomic force microscope, Raman spectra and ellipsometrical spectra measurements. A reflectivity contrast of about 15% can be achieved by ps laser pulse-induced crystallization. A minimum crystallization time of 11 ns was achieved by a low-fluence single ps laser pulse after pre-irradiation. SiSb was shown to be very promising for fast phase change memory applications.

  18. Passivation of Si(111) surfaces with electrochemically grafted thin organic films

    Science.gov (United States)

    Roodenko, K.; Yang, F.; Hunger, R.; Esser, N.; Hinrichs, K.; Rappich, J.

    2010-09-01

    Ultra thin organic films (about 5 nm thick) of nitrobenzene and 4-methoxydiphenylamine were deposited electrochemically on p-Si(111) surfaces from benzene diazonium compounds. Studies based on atomic force microscopy, infrared spectroscopic ellipsometry and x-ray photoelectron spectroscopy showed that upon exposure to atmospheric conditions the oxidation of the silicon interface proceed slower on organically modified surfaces than on unmodified hydrogen passivated p-Si(111) surfaces. Effects of HF treatment on the oxidized organic/Si interface and on the organic layer itself are discussed.

  19. The high-pressure phase of CePtAl

    International Nuclear Information System (INIS)

    Heymann, Gunter; Heying, Birgit; Rodewald, Ute C.; Janka, Oliver; Univ. Oldenburg

    2017-01-01

    The intermetallic aluminum compound HP-CePtAl was synthesized by arc melting of the elements with subsequent high-pressure/high-temperature treatment at 1620 K and 10.5 GPa in a multianvil press. The compound crystallizes in the hexagonal MgZn_2-type structure (P6_3/mmc) with lattice parameters of a=552.7(1) and c=898.8(2) pm refined from powder X-ray diffraction data. With the help of single crystal investigations (wR=0.0527, 187 F"2 values, 13 variables), the proposed structure type was confirmed and the mixed Pt/Al site occupations could be refined. Magnetic susceptibility measurements showed a disappearance of the complex magnetic ordering phenomena, which are observed in NP-CePtAl.

  20. The high-pressure phase of CePtAl

    Energy Technology Data Exchange (ETDEWEB)

    Heymann, Gunter [Univ. Innsbruck (Austria). Inst. fuer Allgemeine, Anorganische und Theoretische Chemie; Heying, Birgit; Rodewald, Ute C. [Univ. Muenster (Germany). Inst. fuer Anorganische und Analytische Chemie; Janka, Oliver [Univ. Muenster (Germany). Inst. fuer Anorganische und Analytische Chemie; Univ. Oldenburg (Germany). Inst. fuer Chemie

    2017-03-01

    The intermetallic aluminum compound HP-CePtAl was synthesized by arc melting of the elements with subsequent high-pressure/high-temperature treatment at 1620 K and 10.5 GPa in a multianvil press. The compound crystallizes in the hexagonal MgZn{sub 2}-type structure (P6{sub 3}/mmc) with lattice parameters of a=552.7(1) and c=898.8(2) pm refined from powder X-ray diffraction data. With the help of single crystal investigations (wR=0.0527, 187 F{sup 2} values, 13 variables), the proposed structure type was confirmed and the mixed Pt/Al site occupations could be refined. Magnetic susceptibility measurements showed a disappearance of the complex magnetic ordering phenomena, which are observed in NP-CePtAl.

  1. Surface PIXE analysis of phosphorus in a thin SiO2 (P, B) CVD layer deposited onto Si substrate

    International Nuclear Information System (INIS)

    Roumie, M.; Nsouli, B.

    2001-01-01

    Phosphorus determination, at level of percent, in Si matrix is not an easy analytical task. The analyzed materials arc Borophosphosilicate glass which are an important component of silicon based semiconductor technology. It's a thin SiO2 layer (400 nm) doped with boron and phosphorus using, in general, CVD (Chemical Vapor Deposition) process, in order to improve its plasticity, and deposited onto Si substrate. Therefore, the mechanical behaviour of the CVD SiO2 (P, B) layer is very sensitive to the phosphorus concentration. In this work we explore the capability of FIXE (Particle Induced X-ray Emission) to monitor a rapid and accurate quantification of P which is usually very low in such materials (few percent of the thin CVD layer deposited onto a silicon substrate). A systematic study is undertaken using Proton (0.5-3 MeV energy) and helium (1-3 MeV energy) beams, different thickness of X-ray absorber (131 and 146 μm of Kapton filter) and different tilting angles (0,45,60 and 80 deg.). The optimized measurement conditions should improve the P signal detection comparing to the Si and Background ones

  2. Epitaxial growth of metallic buffer layer structure and c-axis oriented Pb(Mn1/3,Nb2/3)O3-Pb(Zr,Ti)O3 thin film on Si for high performance piezoelectric micromachined ultrasonic transducer

    Science.gov (United States)

    Thao, Pham Ngoc; Yoshida, Shinya; Tanaka, Shuji

    2017-12-01

    This paper reports on the development of a metallic buffer layer structure, (100) SrRuO3 (SRO)/(100) Pt/(100) Ir/(100) yttria-stabilized zirconia (YSZ) layers for the epitaxial growth of a c-axis oriented Pb(Mn1/3,Nb2/3)O3-Pb(Zr,Ti)O3 (PMnN-PZT) thin film on a (100) Si wafer for piezoelectric micro-electro mechanical systems (MEMS) application. The stacking layers were epitaxially grown on a Si substrate under the optimal deposition condition. A crack-free PMnN-PZT epitaxial thin films was obtained at a thickness up to at least 1.7 µm, which is enough for MEMS applications. The unimorph MEMS cantilevers based on the PMnN-PZT thin film were fabricated and characterized. As a result, the PMnN-PZT thin film exhibited -10 to -12 C/m2 as a piezoelectric coefficient e 31,f and ˜250 as a dielectric constants ɛr. The resultant FOM for piezoelectric micromachined ultrasonic transducer (pMUT) is higher than those of general PZT and AlN thin films. This structure has a potential to provide high-performance pMUTs.

  3. Structural colors of the SiO2/polyethyleneimine thin films on poly(ethylene terephthalate) substrates

    International Nuclear Information System (INIS)

    Jia, Yanrong; Zhang, Yun; Zhou, Qiubao; Fan, Qinguo; Shao, Jianzhong

    2014-01-01

    The SiO 2 /polyethyleneimine (PEI) films with structural colors on poly(ethylene terephthalate) (PET) substrates were fabricated by an electrostatic self-assembly method. The morphology of the films was characterized by Scanning Electron Microscopy. The results showed that there was no distinguishable multilayered structure found of SiO 2 /PEI films. The optical behaviors of the films were investigated through the color photos captured by a digital camera and the color measurement by a multi-angle spectrophotometer. Different hue and brightness were observed at various viewing angles. The structural colors were dependent on the SiO 2 particle size and the number of assembly cycles. The mechanism of the structural colors generated from the assembled films was elucidated. The morphological structures and the optical properties proved that the SiO 2 /PEI film fabricated on PET substrate formed a homogeneous inorganic/organic SiO 2 /PEI composite layer, and the structural colors were originated from single thin film interference. - Highlights: • SiO 2 /PEI thin films were electrostatic self-assembled on PET substrates. • The surface morphology and optical behavior of the film were investigated. • The structural colors varied with various SiO 2 particle sizes and assembly cycles. • Different hue and lightness of SiO 2 /PEI film were observed at various viewing angles. • Structural color of the SiO 2 /PEI film originated from single thin film interference

  4. Effect of SiO2 passivation overlayers on hillock formation in Al thin films

    International Nuclear Information System (INIS)

    Kim, Deok-kee

    2012-01-01

    Hillock formation in Al thin films with varying thicknesses of SiO 2 as a passivation layer was investigated during thermal cycling. Based on the stress measurements and the number of hillocks, 250 nm thick SiO 2 was thick enough to suppress the hillock formation and the suppression of hillock at 250 nm passivation and the lack of suppression at thinner passivation is related to the presence/absence of protection against the diffusive flow of atoms from the surrounding area to the surface due to the biaxial compressive stresses present in the film through the weak spots in the passivation layer. The stress state of Al films measured during annealing (the driving force for hillock formation) did not vary much with SiO 2 thickness. A small number of hillocks formed during the plasma enhanced chemical vapor deposition of SiO 2 overlayers at 300 °C. - Highlights: ► We examined the effect of SiO 2 overlayers on hillock formation in Al thin films. ► Thin overlayers were not effective in suppressing diffusive flow to the surface. ► A thick overlayer suppressed the diffusive flow from the interior to the surface. ► The stress state of Al films did not vary much with SiO 2 passivation thickness. ► High mechanical strength provided a large driving force for the large grain growth.

  5. Light-emitting Si films formed by neutral cluster deposition in a thin O2 gas

    International Nuclear Information System (INIS)

    Honda, Y.; Takei, M.; Ohno, H.; Shida, S.; Goda, K.

    2005-01-01

    We have fabricated the light-emitting Si-rich and oxygen-rich amorphous SiO 2 (a-SiO 2 ) films using the neutral cluster deposition (NCD) method without and with oxygen gas admitted, respectively, and demonstrate for the first time that these films show a photoluminescent feature. The Si thin films were observed by atomic force microscopy and high-resolution transmission electron microscopy, and analyzed by means of X-ray photoelectron spectroscopy, photoluminescence (PL) and FTIR-attenuated total reflection measurements. All of the PL spectra show mountainous distribution with a peak around 620 nm. It is found that the increase in the oxygen termination in the a-SiO 2 films evidently makes the PL intensity increase. It is demonstrated that NCD technique is one of the hopeful methods to fabricate light-emitting Si thin films

  6. Room temperature synthesis of porous SiO2 thin films by plasma enhanced chemical vapor deposition

    OpenAIRE

    Barranco Quero, Ángel; Cotrino Bautista, José; Yubero Valencia, Francisco; Espinós, J. P.; Rodríguez González-Elipe, Agustín

    2004-01-01

    Synthesis of porous SiO2 thin films in room temperature was carried out using plasma enhanced chemical vapor deposition (CVD) in an electron cyclotron resonance microwave reactor with a downstream configuration.The gas adsorption properties and the type of porosity of the SiO2 thin films were assessed by adsorption isotherms of toluene at room temperature.The method could also permit the tailoring synthesis of thin films when both composition and porosity can be simultaneously and independent...

  7. Sputtered Modified Barium Titanate for Thin-Film Capacitor Applications

    Directory of Open Access Journals (Sweden)

    Robert Mamazza

    2012-04-01

    Full Text Available New apparatus and a new process for the sputter deposition of modified barium titanate thin-films were developed. Films were deposited at temperatures up to 900 °C from a Ba0.96Ca0.04Ti0.82Zr0.18O3 (BCZTO target directly onto Si, Ni and Pt surfaces and characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and X-ray photoelectron spectroscopy (XPS. Film texture and crystallinity were found to depend on both deposition temperature and substrate: above 600 °C, the as-deposited films consisted of well-facetted crystallites with the cubic perovskite structure. A strongly textured Pt (111 underlayer enhanced the (001 orientation of BCZTO films deposited at 900 °C, 10 mtorr pressure and 10% oxygen in argon. Similar films deposited onto a Pt (111 textured film at 700 °C and directly onto (100 Si wafers showed relatively larger (011 and diminished intensity (00ℓ diffraction peaks. Sputter ambients containing oxygen caused the Ni underlayers to oxidize even at 700 °C: Raising the process temperature produced more diffraction peaks of NiO with increased intensities. Thin-film capacitors were fabricated using ~500 nm thick BCZTO dielectrics and both Pt and Ni top and bottom electrodes. Small signal capacitance measurements were carried out to determine capacitance and parallel resistance at low frequencies and from these data, the relative permittivity (er and resistivity (r of the dielectric films were calculated; values ranged from ~50 to >2,000, and from ~104 to ~1010 Ω∙cm, respectively.

  8. Facing-target sputtering deposition of ZnO films with Pt ultra-thin layers for gas-phase photocatalytic application

    International Nuclear Information System (INIS)

    Zhang Zhonghai; Hossain, Md. Faruk.; Arakawa, Takuya; Takahashi, Takakazu

    2010-01-01

    In this paper, various zinc oxide (ZnO) films are deposited by a versatile and effective dc-reactive facing-target sputtering method. The ratios of Ar to O 2 in the mixture gas are varied from 8:2 to 6:4 at a fixed sputtering pressure of 1.0 Pa. X-ray diffraction, spectrophotometer and scanning electron microscope are used to study the crystal structure, optical property and surface morphology of the as-deposited films. The Pt ultra-thin layer, ∼2 nm thick, is deposited on the surface of ZnO film by dc diode sputtering with a mesh mask controlling the coated area. The photocatalytic activity of ZnO films and Pt-ZnO films is evaluated by decomposition of methanol under UV-vis light irradiation. The variation of photocatalytic activity depends on the ratios of Ar to O 2 , which is mainly attributed to the different grain size and carrier mobility. Though the pure ZnO film normally shows a low gas-phase photocatalytic activity, its activity is significantly enhanced by depositing Pt ultra-thin layer.

  9. Aerosol deposition of Ba0.8Sr0.2TiO3 thin films

    Directory of Open Access Journals (Sweden)

    Branković Zorica

    2009-01-01

    Full Text Available In this work we optimized conditions for aerosol deposition of homogeneous, nanograined, smooth Ba0.8Sr0.2TiO3 thin films. Investigation involved optimization of deposition parameters, namely deposition time and temperature for different substrates. Solutions were prepared from titanium isopropoxide, strontium acetate and barium acetate. Films were deposited on Si (1 0 0 or Si covered by platinum (Pt (1 1 1 /Ti/SiO2/Si. Investigation showed that the best films were obtained at substrate temperature of 85ºC. After deposition films were slowly heated up to 650ºC, annealed for 30 min, and slowly cooled. Grain size of BST films deposited on Si substrate were in the range 40-70 nm, depending on deposition conditions, while the same films deposited on Pt substrates showed mean grain size in the range 35-50 nm. Films deposited under optimal conditions were very homogeneous, crackfree, and smooth with rms roughness lower than 4 nm for both substrates.

  10. Optimizing Pt/TiO2 templates for textured PZT growth and MEMS devices

    Science.gov (United States)

    Potrepka, Daniel; Fox, Glenn; Sanchez, Luz; Polcawich, Ronald

    2013-03-01

    Crystallographic texture of lead zirconate titanate (PZT) thin films strongly influences piezoelectric properties used in MEMS applications. Textured growth can be achieved by relying on crystal growth habit and can also be initiated by the use of a seed-layer heteroepitaxial template. Template choice and the process used to form it determine structural quality, ultimately influencing performance and reliability of MEMS PZT devices such as switches, filters, and actuators. This study focuses on how 111-textured PZT is generated by a combination of crystal habit and templating mechanisms that occur in the PZT/bottom-electrode stack. The sequence begins with 0001-textured Ti deposited on thermally grown SiO2 on a Si wafer. The Ti is converted to 100-textured TiO2 (rutile) through thermal oxidation. Then 111-textured Pt can be grown to act as a template for 111-textured PZT. Ti and Pt are deposited by DC magnetron sputtering. TiO2 and Pt film textures and structure were optimized by variation of sputtering deposition times, temperatures and power levels, and post-deposition anneal conditions. The relationship between Ti, TiO2, and Pt texture and their impact on PZT growth will be presented. Also affiliated with U.S. Army Research Lab, Adelphi, MD 20783, USA

  11. Formation mechanisms of metallic Zn nanodots by using ZnO thin films deposited on n-Si substrates

    International Nuclear Information System (INIS)

    Yuk, J. M.; Lee, J. Y.; Kim, Y.; No, Y. S.; Kim, T. W.; Choi, W. K.

    2010-01-01

    High-resolution transmission electron microscopy and energy dispersive x-ray spectroscopy results showed that metallic Zn nanodots (NDs) were fabricated through transformation of ZnO thin films by deposition of SiO x on ZnO/n-Si (100) heterostructures. The Zn NDs with various sizes and densities were formed due to the occurrence of the mass diffusion of atoms along the grain boundaries in the ZnO thin films. The fabrication mechanisms of metallic Zn NDs through transformation of ZnO thin films deposited on n-Si substrates are described on the basis of the experimental results.

  12. PtPb nanoparticle electrocatalysts: control of activity through synthetic methods

    International Nuclear Information System (INIS)

    Ghosh, Tanushree; Matsumoto, Futoshi; McInnis, Jennifer; Weiss, Marilyn; Abruna, Hector D.; DiSalvo, Francis J.

    2009-01-01

    Solution phase synthesis of intermetallic nanoparticles without using surfactants (for catalytic applications) and subsequent control of size distribution remains a challenge: of growing interest, but not widely explored yet. To understand the questions in the syntheses of Pt containing intermetallic nanoparticles (as electrocatalysts for direct fuel cells) by using sodium naphthalide as the reducing agent, the effects of the Pt precursors' organic ligands were investigated. PtPb syntheses were studied as the model case. In particular, methods that lead to nanoparticles that are independent single crystals are desirable. Platinum acetylacetonate, which is soluble in many organic solvents, has ligands that may interfere less with nanoparticle growth and ordering. Interesting trends, contrary to expectations, were observed when precursors were injected into a reducing agent solution at high temperatures. The presence of acetylacetonate, from the precursor, on the nanoparticles was confirmed by ATR, while SEM imaging showed evidence of morphological changes in the nanoparticles with increasing reaction temperature. A definite relationship between domain size and extent of observed residue (organic material and sodium) present on the particles could be established. By varying post-reaction solvent removal techniques, room temperature crystallization of PtPb nanoparticles was also achieved. Electrochemical activity of the nanoparticles was also much higher than that of nanoparticles synthesized by previous reaction schemes using sodium naphthalide as the reducing agent. Along with the above mentioned techniques, BET, TEM, CBED, SAED, and XRD were used as characterization tools for the prepared nanoparticles.

  13. Simultaneous ultra-long data retention and low power based on Ge10Sb90/SiO2 multilayer thin films

    Science.gov (United States)

    You, Haipeng; Hu, Yifeng; Zhu, Xiaoqin; Zou, Hua; Song, Sannian; Song, Zhitang

    2018-02-01

    In this article, Ge10Sb90/SiO2 multilayer thin films were prepared to improve thermal stability and data retention for phase change memory. Compared with Ge10Sb90 monolayer thin film, Ge10Sb90 (1 nm)/SiO2 (9 nm) multilayer thin film had higher crystallization temperature and resistance contrast between amorphous and crystalline states. Annealed Ge10Sb90 (1 nm)/SiO2 (9 nm) had uniform grain with the size of 15.71 nm. After annealing, the root-mean-square surface roughness for Ge10Sb90 (1 nm)/SiO2 (9 nm) thin film increased slightly from 0.45 to 0.53 nm. The amorphization time for Ge10Sb90 (1 nm)/SiO2 (9 nm) thin film (2.29 ns) is shorter than Ge2Sb2Te5 (3.56 ns). The threshold voltage of a cell based on Ge10Sb90 (1 nm)/SiO2 (9 nm) (3.57 V) was smaller than GST (4.18 V). The results indicated that Ge10Sb90/SiO2 was a promising phase change thin film with high thermal ability and low power consumption for phase change memory application.

  14. Multiband superconductivity in heavy fermion compound CePt3Si without inversion symmetry. An NMR study on a high-quality single crystal

    International Nuclear Information System (INIS)

    Mukuda, Hidekazu; Nishide, Sachihiro; Harada, Atsushi

    2009-01-01

    We report on novel superconducting characteristics of the heavy fermion (HF) superconductor CePt 3 Si without inversion symmetry through 195 Pt-NMR study on a single crystal with T c =0.46 K that is lower than T c - 0.75 K for polycrystals. We show that the intrinsic superconducting characteristics inherent to CePt 3 Si can be understood in terms of the unconventional strong-coupling state with a line-node gap below T c =0.46 K. The mystery about the sample dependence of T c is explained by the fact that more or less polycrystals and single crystals inevitably contain some disordered domains, which exhibit a conventional BCS s-wave superconductivity (SC) below 0.8 K. In contrast, the Neel temperature T N - 2.2 K is present regardless of the quality of samples, revealing that the Fermi surface responsible for SC differ from that for the antiferromagnetic order. These unusual characteristics of CePt 3 Si can be also described by a multiband model; in the homogeneous domains, the coherent HF bands are responsible for the unconventional SC, whereas in the disordered domains the conduction bands existing commonly in LaPt 3 Si may be responsible for the conventional s-wave SC. We remark that some impurity scatterings in the disordered domains break up the 4f-electrons-derived coherent bands but not others. In this context, the small peak in 1/T 1 just below T c reported before [Yogi et al. (2004)] is not due to a two-component order parameter composed of spin-singlet and spin-triplet Cooper pairing states, but due to the contamination of the disorder domains which are in the s-wave SC state. (author)

  15. Temperature stability of c-axis oriented LiNbO3/SiO2/Si thin film layered structures

    International Nuclear Information System (INIS)

    Tomar, Monika; Gupta, Vinay; Mansingh, Abhai; Sreenivas, K.

    2001-01-01

    Theoretical calculations have been performed for the temperature stability of the c-axis oriented LiNbO 3 thin film layered structures on passivated silicon (SiO 2 /Si) substrate with and without a non-piezoelectric SiO 2 overlayer. The phase velocity, electromechanical coupling coefficient and temperature coefficient of delay (TCD) have been calculated. The thicknesses of various layers have been determined for optimum SAW performance with zero TCD. The presence of a non-piezoelectric SiO 2 overlayer on LiNbO 3 film is found to significantly enhance the coupling coefficient. The optimized results reveal that a high coupling coefficient of K 2 =3.45% and a zero TCD can be obtained in the SiO 2 /LiNbO 3 /SiO 2 /Si structure with a 0.235λ thick LiNbO 3 layer sandwiched between 0.1λ thick SiO 2 layers. (author)

  16. Enhanced fatigue characteristics of sol-gel derived PZT thin films

    International Nuclear Information System (INIS)

    Shim, Donghyun; Pak, Jaemoon; Nam, Kuangwoo; Park, Gwangweo

    2008-01-01

    Pb(Zr,Ti)O 3 (PZT) thin films with Zr/Ti ratio of 52:48 were deposited on Pt/Ti/SiO 2 /Si substrates using the sol-gel method. Since the conditions of heat-treatment play a great role in film growth, post-annealing processes were conducted under different environments. After standard processing, films were annealed at 600 deg. C in three different atmosphere-air, O 2 and a two-step process conducted in air for 30 min and then in O 2 ambient, all done for 10 min. Through electron microscopy and X-ray diffraction, we found that all films were crack-free and highly (1 1 1) oriented. Hysteresis measurements showed a generally large polarization value. The fatigue properties differ drastically for all processes, showing an abnormal behaviour near the end of the measurement. The hysteresis loops before and after 1 x 10 10 switching cycles have been slightly changed in both shape and magnitude. Such abnormality and fatigue-free property is an unusual result for PZT films prepared on conventional Pt/Ti/SiO 2 /Si substrates

  17. Evaluating the residual stress in PbTiO3 thin films prepared by a polymeric chemical method

    International Nuclear Information System (INIS)

    Valim, D; Filho, A G Souza; Freire, P T C; Filho, J Mendes; Guarany, C A; Reis, R N; Araujo, E B

    2004-01-01

    We report a study of residual stress in PbTiO 3 (PT) thin films prepared on Si substrates by a polymeric chemical method. The E(1TO) frequency was used to evaluate the residual stress through an empirical equation available for bulk PT. We find that the residual stress in PT films increases as the film thickness decreases and conclude that it originates essentially from the contributions of extrinsic and intrinsic factors. Polarized Raman experiments showed that the PT films prepared by a polymeric chemical method are somewhat a-domain (polar axis c parallel to the substrate) oriented

  18. Wafer-scale growth of highly textured piezoelectric thin films by pulsed laser deposition for micro-scale sensors and actuators

    Science.gov (United States)

    Nguyen, M. D.; Tiggelaar, R.; Aukes, T.; Rijnders, G.; Roelof, G.

    2017-11-01

    Piezoelectric lead-zirconate-titanate (PZT) thin films were deposited on 4-inch (111)Pt/Ti/SiO2/Si(001) wafers using large-area pulsed laser deposition (PLD). This study was focused on the homogeneity in film thickness, microstructure, ferroelectric and piezoelectric properties of PZT thin films. The results indicated that the highly textured (001)-oriented PZT thin films with wafer-scale thickness homogeneity (990 nm ± 0.8%) were obtained. The films were fabricated into piezoelectric cantilevers through a MEMS microfabrication process. The measured longitudinal piezoelectric coefficient (d 33f = 210 pm/V ± 1.6%) and piezoelectric transverse coefficient (e 31f = -18.8 C/m2 ± 2.8%) were high and homogeneity across wafers. The high piezoelectric properties on Si wafers will extend industrial application of PZT thin films and further development of piezoMEMS.

  19. Resistive switching properties of Ce and Mn co-doped BiFeO{sub 3} thin films for nonvolatile memory application

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhenhua; Zeng, Jia; Tang, Minghua, E-mail: mhtang@xtu.edu.cn; Xu, Dinglin; Cheng, Chuanpin; Xiao, Yongguang; Zhou, Yichun [Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan, Hunan, 411105 (China); Xiong, Ying [The School of Mathematics and Computational Science, Xiangtan University, Xiangtan, Hunan 411105 (China)

    2013-12-15

    The Ce and Mn co-doped BiFeO{sub 3} (BCFMO) thin films were synthesized on Pt/Ti/SiO{sub 2}/Si substrates using a sol-gel method. The unipolar resistive switching (URS) and bipolar resistive switching (BRS) behaviors were observed in the Pt/BCFMO/Pt device structure, which was attributed to the formation/rupture of metal filaments. The fabricated device exhibits a large R{sub OFF}/R{sub ON} ratio (>80), long retention time (>10{sup 5} s) and low programming voltages (<1.5 V). Analysis of linear fitting current-voltage curves suggests that the space charge limited leakage current (SCLC) and Schottky emission were observed as the conduction mechanisms of the devices.

  20. Me-Si-C (Me= Nb, Ti or Zr) : Nanocomposite and Amorphous Thin Films

    OpenAIRE

    Tengstrand, Olof

    2012-01-01

    This thesis investigates thin films of the transition metal carbide systems Ti-Si-C, Nb-Si-C, and Zr-Si-C, deposited at a low substrate temperature (350 °C) with dc magnetron sputtering in an Ar discharge. Both the electrical and mechanical properties of these systems are highly affected by their structure. For Nb-Si-C, both the ternary Nb-Si-C and the binary Nb-C are studied. I show pure NbC films to consist of crystalline NbC grains embedded in a matrix of amorphous carbon. The best combina...

  1. Structural studies of n-type nc-Si-QD thin films for nc-Si solar cells

    Science.gov (United States)

    Das, Debajyoti; Kar, Debjit

    2017-12-01

    A wide optical gap nanocrystalline silicon (nc-Si) dielectric material is a basic requirement at the n-type window layer of nc-Si solar cells in thin film n-i-p structure on glass substrates. Taking advantage of the high atomic-H density inherent to the planar inductively coupled low-pressure (SiH4 + CH4)-plasma, development of an analogous material in P-doped nc-Si-QD/a-SiC:H network has been tried. Incorporation of C in the Si-network extracted from the CH4 widens the optical band gap; however, at enhanced PH3-dilution of the plasma spontaneous miniaturization of the nc-Si-QDs below the dimension of Bohr radius (∼4.5 nm) further enhances the band gap by virtue of the quantum size effect. At increased flow rate of PH3, dopant induced continuous amorphization of the intrinsic crystalline network is counterbalanced by the further crystallization promoted by the supplementary atomic-H extracted from PH3 (1% in H2) in the plasma, eventually holding a moderately high degree of crystallinity. The n-type wide band gap (∼1.93 eV) window layer with nc-Si-QDs in adequate volume fraction (∼52%) could furthermore be instrumental as an effective seed layer for advancing sequential crystallization in the i-layer of nc-Si solar cells with n-i-p structure in superstrate configuration.

  2. Effects of filling material and laser power on the formation of intermetallic compounds during laser-assisted friction stir butt welding of steel and aluminum alloys

    Science.gov (United States)

    Fei, Xinjiang; Jin, Xiangzhong; Peng, Nanxiang; Ye, Ying; Wu, Sigen; Dai, Houfu

    2016-11-01

    In this paper, two kinds of materials, Ni and Zn, are selected as filling material during laser-assisted friction stir butt welding of Q235 steel and 6061-T6 aluminum alloy, and their influences on the formation of intermetallic compounds on the steel/aluminum interface of the joints were first studied. SEM was used to analyze the profile of the intermetallic compound layer and the fractography of tensile fracture surfaces. In addition, EDS was applied to investigate the types of the intermetallic compounds. The results indicate that a thin iron-abundant intermetallic compound layer forms and ductile fracture mode occurs when Ni is added, but a thick aluminum-abundant intermetallic compound layer generates and brittle fracture mode occurs when Zn is added. So the tensile strength of the welds with Ni as filling material is greater than that with Zn as filling material. Besides, the effect of laser power on the formation of intermetallic compound layer when Ni is added was investigated. The preheated temperature field produced by laser beam in the cross section of workpiece was calculated, and the tensile strength of the joints at different laser powers was tested. Results show that only when suitable laser power is adopted, can suitable preheating temperature of the steel reach, then can thin intermetallic compound layer form and high tensile strength of the joints reach. Either excessive or insufficient laser power will reduce the tensile strength of the joints.

  3. Fatigue-resistant epitaxial Pb(Zr,Ti)O3 capacitors on Pt electrode with ultra-thin SrTiO3 template layers

    International Nuclear Information System (INIS)

    Takahara, Seiichi; Morimoto, Akiharu; Kawae, Takeshi; Kumeda, Minoru; Yamada, Satoru; Ohtsubo, Shigeru; Yonezawa, Yasuto

    2008-01-01

    Lead zirconate-titanate Pb(Zr,Ti)O 3 (PZT) capacitors with Pt bottom electrodes were prepared on MgO substrates by pulsed laser deposition (PLD) technique employing SrTiO 3 (STO) template layer. Perovskite PZT thin films are prepared via stoichiometric target using the ultra-thin STO template layers while it is quite difficult to obtain the perovskite PZT on Pt electrode via stoichiometric target in PLD process. The PZT capacitor prepared with the STO template layer showed good hysteresis and leakage current characteristics, and it showed an excellent fatigue resistance. The ultra-thin STO template layers were characterized by angle-resolved X-ray photoelectron spectroscopy measurement. The effect of the STO template layer is discussed based on the viewpoint of the perovskite nucleation and diffusion of Pb and O atoms

  4. Fabrication and properties of SmFe2-PZT magnetoelectric thin films

    KAUST Repository

    Giouroudi, Ioanna

    2013-05-17

    Magnetoelectric (ME) thin film composites are attracting a continually increasing interest due to their unique features and potential applications in multifunctional microdevices and integrated units such as sensors, actuators and energy harvesting modules. By combining piezoelectric and highly magnetostrictive thin films, the potentialities of these materials increase. In this paper we report the fabrication of SmFe2 and PZT thin films and the investigation of their properties. First of all, a ~ 400 nm thin SmFe film was deposited on top of Si/SiO2 substrate by magnetron sputter deposition. Afterwards, a 140 nm Pt bottom electrode was sputtered on top of the SmFe film forming a bottom electrode. Spin coating was employed for the deposition of the 150 nm thin PZT layer. A PZT solution with 10 %Pb excess was utilized for this fabrication step. Finally, circular Pt top electrodes were sputtered as top electrodes. This paper focuses on the microstructure of the individual films characterized by X-Ray diffractometer (XRD) and scanning electron microscopy (SEM). A piezoelectric evaluation system, aixPES, with TF2000E analyzer component was used for the electric hysteresis measurements of PZT thin films and a vibrating sample magnetometer (VSM) was employed for the magnetic characterization of the SmFe. The developed thin films and the fabricated double layer SmFe-PZT exhibit both good ferromagnetic and piezoelectric responses which predict a promising ME composite structure. The quantitative chemical composition of the samples was confirmed by energy dispersive spectroscopy (EDX). © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  5. Fabrication and properties of SmFe2-PZT magnetoelectric thin films

    KAUST Repository

    Giouroudi, Ioanna; Alnassar, Mohammed; Kosel, Jü rgen

    2013-01-01

    Magnetoelectric (ME) thin film composites are attracting a continually increasing interest due to their unique features and potential applications in multifunctional microdevices and integrated units such as sensors, actuators and energy harvesting modules. By combining piezoelectric and highly magnetostrictive thin films, the potentialities of these materials increase. In this paper we report the fabrication of SmFe2 and PZT thin films and the investigation of their properties. First of all, a ~ 400 nm thin SmFe film was deposited on top of Si/SiO2 substrate by magnetron sputter deposition. Afterwards, a 140 nm Pt bottom electrode was sputtered on top of the SmFe film forming a bottom electrode. Spin coating was employed for the deposition of the 150 nm thin PZT layer. A PZT solution with 10 %Pb excess was utilized for this fabrication step. Finally, circular Pt top electrodes were sputtered as top electrodes. This paper focuses on the microstructure of the individual films characterized by X-Ray diffractometer (XRD) and scanning electron microscopy (SEM). A piezoelectric evaluation system, aixPES, with TF2000E analyzer component was used for the electric hysteresis measurements of PZT thin films and a vibrating sample magnetometer (VSM) was employed for the magnetic characterization of the SmFe. The developed thin films and the fabricated double layer SmFe-PZT exhibit both good ferromagnetic and piezoelectric responses which predict a promising ME composite structure. The quantitative chemical composition of the samples was confirmed by energy dispersive spectroscopy (EDX). © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  6. An easy way to measure accurately the direct magnetoelectric voltage coefficient of thin film devices

    Energy Technology Data Exchange (ETDEWEB)

    Poullain, Gilles, E-mail: gilles.poullain@ensicaen.fr; More-Chevalier, Joris; Cibert, Christophe; Bouregba, Rachid

    2017-01-15

    Tb{sub x}Dy{sub 1−x}Fe{sub 2}/Pt/Pb(Zr{sub x}, Ti{sub 1−x})O{sub 3} thin films were grown on Pt/TiO{sub 2}/SiO{sub 2}/Si substrate by multi-target sputtering. The magnetoelectric voltage coefficient α{sup Η}{sub ΜΕ} was determined at room temperature using a lock-in amplifier. By adding, in series in the circuit, a capacitor of the same value as that of the device under test, we were able to demonstrate that the magnetoelectric device behaves as a voltage source. Furthermore, a simple way to subtract the stray voltage arising from the flow of eddy currents in the measurement set-up, is proposed. This allows the easy and accurate determination of the true magnetoelectric voltage coefficient. A large α{sup Η}{sub ΜΕ} of 8.3 V/cm. Oe was thus obtained for a Terfenol-D/Pt/PZT thin film device, without DC magnetic field nor mechanical resonance. - Highlights: • Magnetoelectric device behaves as a voltage source. • A simple way to subtract eddy currents during the measurement, is proposed.

  7. Target swapping in PLD: An efficient approach for CdS/SiO2 and CdS:Ag(1%)/SiO2 nanocomposite thin films with enhanced luminescent properties

    International Nuclear Information System (INIS)

    Saxena, Nupur; Kumar, Pragati; Gupta, Vinay

    2017-01-01

    A novel synthesis method for luminescent and by-products (like CdO) free CdS/SiO 2 and CdS:Ag(1%)/SiO 2 (i.e. 1%Ag doped CdS/SiO 2 ) nanocomposite thin films at room temperature by pulsed laser deposition is reported. Targets of CdS, CdS:Ag(1%) and SiO 2 are used to deposit CdS/SiO 2 and CdS:Ag(1%)/SiO 2 nanocomposite thin films by swapping them at a frequency ratio of 2:8 laser pulses/sec. X-ray photoelectron spectroscopy analysis ensures the ratio of CdS to SiO 2 in nanocomposite as 21:79 which is nearly same as the ratio of incident pulses/sec (i.e. 2:8) on the two targets. Transmission electron micrographs visualize the formation of CdS/ CdS:Ag(1%) nanocrystals in nanocomposite systems after annealing at 500 °C. Highly intense and broad red emission is achieved from CdS/SiO 2 and CdS:Ag(1%)/SiO 2 nanocomposites. The efficiencies of emission from pristine CdS:SiO 2 and CdS:Ag(1%)/SiO 2 nanocomposites are found to be enhanced by approximately two times as compared to sole nanocrystalline CdS and CdS:Ag(1%) thin films respectively and further enhanced upto 7 times on annealing the nanocomposite systems at 500 °C. - Graphical abstract: A modified synthesis method for luminescent and by-products (like CdO) free undoped &1% Ag doped CdS/SiO 2 (deposit CdS/SiO 2 and CdS:Ag(1%)/SiO 2 ) nanocomposite thin films at room temperature by pulsed laser deposition is reported. Targets of CdS or CdS:Ag(1%) and SiO 2 are used to deposit CdS/SiO 2 and CdS:Ag(1%)/SiO 2 nanocomposite thin films by swapping them at a frequency of 2:8 pulses/sec. X-ray photoelectron spectroscopy analysis ensures the ratio of CdS to SiO 2 in nanocomposite as 21:79 which is nearly same as the ratio of incident pulses/sec (2:8) on the two targets. Transmission electron micrographs visualize the formation of CdS nanocrystals in nanocomposite systems after annealing at 500 °C. Intense and broad red emission is achieved from deposit CdS/SiO 2 and CdS:Ag(1%)/SiO 2 nanocomposites. The efficiency of

  8. Contact resistance and stability study for Au, Ti, Hf and Ni contacts on thin-film Mg2Si

    KAUST Repository

    Zhang, Bo; Zheng, Tao; Wang, Qingxiao; Zhu, Yihan; Alshareef, Husam N.; Kim, Moon J.; Gnade, Bruce E.

    2016-01-01

    We present a detailed study of post-deposition annealing effects on contact resistance of Au, Ti, Hf and Ni electrodes on Mg2Si thin films. Thin-film Mg2Si and metal contacts were deposited using magnetron sputtering. Various post

  9. Characterization of ZnO thin films grown on different p-Si substrate elaborated by solgel spin-coating method

    Energy Technology Data Exchange (ETDEWEB)

    Chebil, W., E-mail: Chbil.widad@live.fr [Laboratoire Physico-chimie des Matériaux, Unité de Service Commun de Recherche “High resolution X-ray diffractometer”, Département de Physique, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l’Environnement, 5019 Monastir (Tunisia); Fouzri, A. [Laboratoire Physico-chimie des Matériaux, Unité de Service Commun de Recherche “High resolution X-ray diffractometer”, Département de Physique, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l’Environnement, 5019 Monastir (Tunisia); Institut Supérieur des Sciences Appliquées et de Technologie de Sousse, Université de Sousse (Tunisia); Fargi, A. [Laboratoire de Microélectronique et Instrumentation, Faculté des Sciences de Monastir, Université de Monastir, Avenue de l’environnement, 5019 Monastir (Tunisia); Azeza, B.; Zaaboub, Z. [Laboratoire Micro-Optoélectroniques et Nanostructures, Faculté des Sciences de Monastir, Université de Monastir, Avenue de l' environnement, 5019 Monastir (Tunisia); and others

    2015-10-15

    Highlights: • High quality ZnO thin films grown on different p-Si substrates were successful obtained by sol–gel process. • PL measurement revealed that ZnO thin film grown on porous Si has the better optical quality. • I–V characteristics for all heterojunctions exhibit successful diode formation. • The diode ZnO/PSi shows a better photovoltaic effect under illumination with a maximum {sub Voc} of 0.2 V. - Abstract: In this study, ZnO thin films are deposited by sol–gel technique on p-type crystalline silicon (Si) with [100] orientation, etched silicon and porous silicon. The structural analyses showed that the obtained thin films were polycrystalline with a hexagonal wurtzite structure and preferentially oriented along the c-axis direction. Morphological study revealed the presence of rounded and facetted grains irregularly distributed on the surface of all samples. PL spectra at room temperature revealed that ZnO thin film grown on porous Si has a strong UV emission with low defects in the visible region comparing with ZnO grown on plat Si and etched Si surface. The heterojunction parameters were evaluated from the (I–V) under dark and illumination at room temperature. The ideality factor, barrier height and series resistance of heterojunction grown on different p-Si substrates are determined by using different methods. Best electrical properties are obtained for ZnO layer deposited on porous silicon.

  10. Pulsed laser deposition of SiC thin films at medium substrate temperatures

    International Nuclear Information System (INIS)

    Katharria, Y.S.; Kumar, Sandeep; Choudhary, R.J.; Prakash, Ram; Singh, F.; Lalla, N.P.; Phase, D.M.; Kanjilal, D.

    2008-01-01

    Systematic studies of thin silicon carbide (SiC) films deposited on Si (100) substrates using pulsed laser deposition technique at room temperature, 370 deg. C and 480 deg. C are carried out. X-ray photoelectron spectroscopy showed the formation of SiC bonds in the films at these temperatures along with some graphitic carbon clusters. Fourier transform infrared analysis also confirmed the formation of SiC nanocrystallites in the films. Transmission electron microscopy and electron diffraction were used to study the structural properties of nanocrystallites formed in the films. Surface morphological analysis using atomic force microscopy revealed the growth of smooth films

  11. ToF-MEIS stopping measurements in thin SiC films

    International Nuclear Information System (INIS)

    Linnarsson, M.K.; Khartsev, S.; Primetzhofer, D.; Possnert, G.; Hallén, A.

    2014-01-01

    Electronic stopping in thin, amorphous, SiC films has been studied by time-of-flight medium energy ion scattering and conventional Rutherford backscattering spectrometry. Amorphous SiC films (8, 21 and 36 nm) were prepared by laser ablation using a single crystalline silicon carbide target. Two kinds of substrate films, one with a lower atomic mass (carbon) and one with higher atomic mass (iridium) compared to silicon has been used. Monte Carlo simulations have been used to evaluate electronic stopping from the shift in energy for the signal scattered from Ir with and without SiC. The two kinds of samples are used to illustrate the strength and challenges for ToF-MEIS compared to conventional RBS

  12. Platinum containing amorphous hydrogenated carbon (a-C:H/Pt) thin films as selective solar absorbers

    International Nuclear Information System (INIS)

    Lan, Yung-Hsiang; Brahma, Sanjaya; Tzeng, Y.H.; Ting, Jyh-Ming

    2014-01-01

    We have investigated a double-cermet structured thin film in which an a-C:H thin film was used as an anti-reflective (AR) layer and two platinum-containing amorphous hydrogenated carbon (a-C:H/Pt) thin films were used as the double cermet layers. A reactive co-sputter deposition method was used to prepare both the anti-reflective and cermet layers. Effects of the target power and heat treatment were studied. The obtained films were characterized using X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy. The optical absorptance and emittance of the as deposited and annealed films were determined using UV–vis-NIR spectroscopy. We show that the optical absorptance of the resulting double-cermet structured thin film is as high as 96% and remains to be 91% after heat treatment at 400 °C, indicating the thermal stability of the film

  13. Exchange-coupled hard magnetic Fe-Co/CoPt nanocomposite films fabricated by electro-infiltration

    Directory of Open Access Journals (Sweden)

    Xiao Wen

    2017-05-01

    Full Text Available This paper introduces a potentially scalable electro-infiltration process to produce exchange-coupled hard magnetic nanocomposite thin films. Fe-Co/CoPt nanocomposite films are fabricated by deposition of CoFe2O4 nanoparticles onto Si substrate, followed by electroplating of CoPt. Samples are subsequently annealed under H2 to reduce the CoFe2O4 to magnetically soft Fe-Co and also induce L10 ordering in the CoPt. Resultant films exhibit 0.97 T saturation magnetization, 0.70 T remanent magnetization, 127 kA/m coercivity and 21.8 kJ/m3 maximum energy density. First order reversal curve (FORC analysis and δM plot are used to prove the exchange coupling between soft and hard magnetic phases.

  14. Fabrication of electrodeposited Co-Pt nano-arrays embedded in an anodic aluminum oxide/Ti/Si substrate

    Energy Technology Data Exchange (ETDEWEB)

    Lim, S.K. [School of Advanced Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Jeong, G.H. [School of Advanced Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Park, I.S. [School of Advanced Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Na, S.M. [Advanced Materials and Process Research for IT, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)]. E-mail: nsmv2k@skku.edu; Suh, S.J. [School of Advanced Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Advanced Materials and Process Research for IT, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2007-03-15

    An anodic aluminum oxide (AAO) template, which is filled with the Co-Pt alloys, is a promising material for high-density magnetic recording media due to its high magnetic anisotropy and high coercivity. The porous AAO templates were fabricated by the two-step anodizing of 1-{mu}m-thick Al thin film evaporated on top of the titanium layer with the thickness of 250 nm. The AAO template with pore size of approximately 60 nm and aspect ratio of 10 was obtained at voltage of 40 V, temperature of 5 deg. C, oxalic acid of 0.3 M and widening time of 55 min. Then the thickness of barrier is less than 20 nm. The Co-Pt alloy electrodeposited at pulsed current density, pH of 4 and room temperature was successfully filled in the AAO template with pore size of 80 nm and aspect ratio of 3. Then the Co-Pt alloy with Pt concentration of 45 at% was uniformly filled in the template and the coercivity of 1100 Oe was observed by VSM.

  15. Fabrication of electrodeposited Co-Pt nano-arrays embedded in an anodic aluminum oxide/Ti/Si substrate

    Science.gov (United States)

    Lim, S. K.; Jeong, G. H.; Park, I. S.; Na, S. M.; Suh, S. J.

    An anodic aluminum oxide (AAO) template, which is filled with the Co-Pt alloys, is a promising material for high-density magnetic recording media due to its high magnetic anisotropy and high coercivity. The porous AAO templates were fabricated by the two-step anodizing of 1-μm-thick Al thin film evaporated on top of the titanium layer with the thickness of 250 nm. The AAO template with pore size of approximately 60 nm and aspect ratio of 10 was obtained at voltage of 40 V, temperature of 5 °C, oxalic acid of 0.3 M and widening time of 55 min. Then the thickness of barrier is less than 20 nm. The Co-Pt alloy electrodeposited at pulsed current density, pH of 4 and room temperature was successfully filled in the AAO template with pore size of 80 nm and aspect ratio of 3. Then the Co-Pt alloy with Pt concentration of 45 at% was uniformly filled in the template and the coercivity of 1100 Oe was observed by VSM.

  16. Fabrication of electrodeposited Co-Pt nano-arrays embedded in an anodic aluminum oxide/Ti/Si substrate

    International Nuclear Information System (INIS)

    Lim, S.K.; Jeong, G.H.; Park, I.S.; Na, S.M.; Suh, S.J.

    2007-01-01

    An anodic aluminum oxide (AAO) template, which is filled with the Co-Pt alloys, is a promising material for high-density magnetic recording media due to its high magnetic anisotropy and high coercivity. The porous AAO templates were fabricated by the two-step anodizing of 1-μm-thick Al thin film evaporated on top of the titanium layer with the thickness of 250 nm. The AAO template with pore size of approximately 60 nm and aspect ratio of 10 was obtained at voltage of 40 V, temperature of 5 deg. C, oxalic acid of 0.3 M and widening time of 55 min. Then the thickness of barrier is less than 20 nm. The Co-Pt alloy electrodeposited at pulsed current density, pH of 4 and room temperature was successfully filled in the AAO template with pore size of 80 nm and aspect ratio of 3. Then the Co-Pt alloy with Pt concentration of 45 at% was uniformly filled in the template and the coercivity of 1100 Oe was observed by VSM

  17. On the way to enhance the optical absorption of a-Si in NIR by embedding Mg_2Si thin film

    International Nuclear Information System (INIS)

    Chernev, I. M.; Shevlyagin, A. V.; Galkin, K. N.; Stuchlik, J.; Remes, Z.; Fajgar, R.; Galkin, N. G.

    2016-01-01

    Mg_2Si thin film was embedded in amorphous silicon matrix by solid phase epitaxy. The structure and optical properties were investigated by electron energy loss, X-ray photoelectron, Raman, and photo thermal deflection spectroscopy measurements. It was found that in the photon energy range of 0.8–1.7 eV, the light absorption of the structure with magnesium silicide (Mg_2Si) film embedded in a-Si(i) matrix is 1.5 times higher than that for the same structure without Mg_2Si.

  18. Recent advances in ordered intermetallics

    International Nuclear Information System (INIS)

    Liu, C.T.

    1995-01-01

    Ordered intermetallic alloys based on aluminides and silicides offer many advantages for structural use at elevated temperatures in hostile environments. Their attractive properties include excellent oxidation and corrosion resistance, light weight, and superior strength at elevated temperatures. The major concern for structural use of intermetallics was their low ductility and poor fracture resistance at ambient temperatures. For the past ten years, considerable effort has been devoted to the research and development of ordered intermetallic alloys, and good progress has been made on understanding intrinsic and extrinsic factors controlling brittle fracture in intermetallic alloys based on aluminides and silicides. Parallel efforts on alloy design have led to the development of a number of ductile and strong intermetallic alloys based on Ni(3)Al, NiAl, Fe(3)Al, FeAl, Ti(3)Al and TiAl systems for structural applications. (orig.)

  19. Microstructural properties of BaTiO{sub 3} ceramics and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Fundora C, A.; Portelles, J.J.; Siqueiros, J.M. [Posgrado en Fisica de Materiales, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada. Apartado Postal 2861, 22800 Ensenada, Baja California (Mexico)

    2000-07-01

    A microstructural study of BaTiO{sub 3} ceramics obtained by the conventional ceramic method is presented. Targets were produced to grow BaTiO{sub 3} thin films by pulsed laser deposition on Pt/Ti/Si (100) substrates. X-ray diffraction, Auger Electron Spectroscopy, X-ray Photon Spectroscopy and Scanning Electron Microscopy were used to study the properties of the BaTiO{sub 3} ceramic samples and thin films, as deposited and after an annealing process. (Author)

  20. Investigation of interface property in Al/SiO2/ n-SiC structure with thin gate oxide by illumination

    Science.gov (United States)

    Chang, P. K.; Hwu, J. G.

    2017-04-01

    The reverse tunneling current of Al/SiO2/ n-SiC structure employing thin gate oxide is introduced to examine the interface property by illumination. The gate current at negative bias decreases under blue LED illumination, yet increases under UV lamp illumination. Light-induced electrons captured by interface states may be emitted after the light sources are off, leading to the recovery of gate currents. Based on transient characteristics of gate current, the extracted trap level is close to the light energy for blue LED, indicating that electron capture induced by lighting may result in the reduction of gate current. Furthermore, bidirectional C- V measurements exhibit a positive voltage shift caused by electron trapping under blue LED illumination, while a negative voltage shift is observed under UV lamp illumination. Distinct trapping and detrapping behaviors can be observed from variations in I- V and C- V curves utilizing different light sources for 4H-SiC MOS capacitors with thin insulators.

  1. Influence of the thermal annealing on the photoluminescence of a-Si:H:F thin films

    International Nuclear Information System (INIS)

    Mendoza A, J.G.; Torres D, G.

    1984-01-01

    The experimental results of the photoluminescence spectra of intrinsic layers of a: Si: H: F deposited by the electric discharge method are presented. This procedure was developed in the presence of silane. (M.W.O.) [pt

  2. Electrochemical stability and postmortem studies of Pt/SiC catalysts for polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Stamatin, Serban Nicolae; Spéder, József; Dhiman, Rajnish

    2015-01-01

    In the presented work, the electrochemical stability of platinized silicon carbide is studied. Postmortem transmission electron microscopy and X-ray photoelectron spectroscopy were used to document the change in the morphology and structure upon potential cycling of Pt/SiC catalysts. Two differen......, silicon carbide undergoes at least mild oxidation if not even silicon leaching....

  3. The combined use of EBSD and EDX analyses for the identification of complex intermetallic phases in multicomponent Al-Si piston alloys

    International Nuclear Information System (INIS)

    Chen, C.-L.; Thomson, R.C.

    2010-01-01

    Multicomponent Al-Si based casting alloys are used for a variety of engineering applications, including for example, piston alloys. Properties include good castability, high strength, light weight, good wear resistance and low thermal expansion. In order for such alloys to continue operation to increasingly higher temperatures, alloy element modifications are continually being made to further enhance the properties. Improved mechanical and physical properties are strongly dependent upon the morphologies, type and distribution of the second phases, which are in turn a function of alloy composition and cooling rate. The presence of additional elements in the Al-Si alloy system allows many complex intermetallic phases to form, which make characterisation non-trivial. These include, for example, CuAl 2 , Al 3 Ni 2 , Al 7 Cu 4 Ni, Al 9 FeNi and Al 5 Cu 2 Mg 8 Si 6 phases, all of which may have some solubility for additional elements. Identification is often non-trivial due to the fact that some of the phases have either similar crystal structures or only subtle changes in their chemistries. A combination of electron backscatter diffraction (EBSD) and energy dispersive X-ray analysis (EDX) has therefore been used for the identification of the various phases. This paper will present comparisons of phase identification methodologies using EBSD alone, and in combination with chemical information, either directly or through post processing.

  4. Corrosion Behavior of Ni3(Si,Ti + 2Mo in Hydrochloric Acid Solution

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2013-10-01

    Full Text Available The corrosion behavior of Ni3(Si,Ti + 2Mo intermetallic compound (L12 and (L12 + Niss mixture region has been investigated using an immersion test, polarization method and surface analytical method (scanning electron microscope and energy-dispersive X-Ray spectrometry in 0.5 kmol/m3 hydrochloric acid (HCl solution at 303 K.  In addition, the results obtained were compared to those of the L12 single-phase Ni3(Si,Ti intermetallic compound and C 276 alloy.  It was found that Ni3(Si,Ti + 2Mo had the preferential dissolution of L12 with a lower Mo concentration compared to (L12 + Niss mixture region.  From the immersion test and polarization curves, Ni3(Si,Ti + 2Mo and C276 showed the lowest corrosion resistance and the highest corrosion resistance in the solution, respectively.  From this work, It implied that unlike C276, Ni3(Si,Ti +2Mo intermetallic compound was difficult to form a stable passive film in HCl solution as well as Ni3(Si,Ti in the same solution.

  5. Microstructure and mechanical properties of spray deposited hypoeutectic Al-Si alloy

    International Nuclear Information System (INIS)

    Ferrarini, C.F.; Bolfarini, C.; Kiminami, C.S.; Botta F, W.J.

    2004-01-01

    The microstructure and the tensile properties of an Al-8.9 wt.% Si-3.2 wt.% Cu-0.9 wt.% Fe-0.8% Zn alloy processed by spray forming was investigated. The alloy was gas atomized with argon and deposited onto a copper substrate. The microstructure was evaluated by optical microscopy (OM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Small faceted dispersoids observed surrounding equiaxial α-Al matrix were identified by SEM-EDS as silicon particles. Sand cast samples with the same composition showed a columnar dendritic α-Al matrix, Al-Si eutectic, polyhedric α-AlFeSi and needle-like β-AlFeSi intermetallics. In the spray formed material the formation of the Al-Si eutetic was suppressed, and the formation of the α-AlFeSi and β-AlFeSi intermetallics was strongly reduced. The fine and homogeneous microstructure showed an aluminium matrix with grain size ranging from 30 to 40 μm, and particle size of the silicon dispersoids having a mean size of 12 μm. Room temperature tensile tests of the spray formed alloy showed relative increasing of strength and elongation when compared with the values observed for the conventionally cast counterparts. These results can be ascribed to the refined microstructure and the scarce presence of intermetallics of the spray formed material

  6. Superconductivity and normal state properties of non-centrosymmetric CePt3Si: a status report

    International Nuclear Information System (INIS)

    Bauer, E.; Bonalde, I.; Sigrist, M.

    2005-01-01

    Ternary CePt 3 Si crystallizes in the tetragonal P4mm structure which lacks a center of inversion. Antiferromagnetic order sets in at T N approx 22 K followed by superconductivity (SC) below Tc approx 0.75 K. Large values of H' c2 approx -8.5 T/K and H c2 (0) approx 5T were derived, referring to Cooper pairs formed out of heavy quasiparticles. The mass enhancement originates from Kondo interactions with a characteristic temperature T K approx 8 K. CePt 3 Si follows the general features of correlated electron systems and can be arranged within the Kadowaki-Woods plot next to the unconventional SC UPt 3 . NMR and mSR results show that both magnetic order and SC coexist on a microscopic scale without having spatial segregation of both phenomena. The absence of an inversion symmetry gives rise to a lifting of the degeneracy of electronic bands by spin-orbit coupling. As a consequence, the SC order parameter may have uncommon features as indicated from a very unique NMR relaxation rate 1/T 1 and a linear temperature dependence of the penetration depth λ

  7. Preparation of SiC thin films by ion beam technology and PECVD

    International Nuclear Information System (INIS)

    Chen Changqing; Ren Congxin; Yang Lixin; Yan Jinlong; Zheng Zhihong; Zhou Zuyao; Chen Ping; Liu Xianghuai; Chen Xueliang

    1998-01-01

    The formation of β-SiC buried layers in p-type Si by ion beam methods is reported and a comparison of the results obtained under different experimental conditions is made. The preparation of amorphous SiC thin films by IBED is presented and the enhanced deposition of Xe + is found superior to that of Ar + . The work of synthesizing hydrogenated amorphous SiC films by RIBS and RIBAD is described with a discussion on the dependence of some physical parameters on the partial pressure ratio pCH 4 /pAr. Finally given is a brief introduction to a high quality α-SiC:H film which is prepared by PECVD and can exhibit green luminescence at room temperature

  8. Growth of epitaxial Pt thin films on (0 0 1) SrTiO{sub 3} by rf magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Kahsay, A. [Departament de Física Aplicada i Òptica, Universitat de Barcelona, 08028 Barcelona (Spain); Polo, M.C., E-mail: mcpolo@ub.edu [Departament de Física Aplicada i Òptica, Universitat de Barcelona, 08028 Barcelona (Spain); Ferrater, C.; Ventura, J. [Departament de Física Aplicada i Òptica, Universitat de Barcelona, 08028 Barcelona (Spain); Rebled, J.M. [Departament d’Electrònica, Universitat de Barcelona Institut de Nanociència i Nanotecnologia IN 2UB, 08028 Barcelona (Spain); Varela, M. [Departament de Física Aplicada i Òptica, Universitat de Barcelona, 08028 Barcelona (Spain)

    2014-07-01

    The growth of platinum thin film by rf magnetron sputtering on SrTiO{sub 3}(0 0 1) substrates for oxide based devices was investigated. Platinum films grown at temperatures higher than 750 °C were epitaxial ([1 0 0]Pt(0 0 1)//[1 0 0]STO(0 0 1)), whereas at lower temperatures Pt(1 1 1) films were obtained. The surface morphology of the Pt films showed a strong dependence on the deposition temperature as was revealed by atomic force microscopy (AFM). At elevated temperatures there is a three-dimensional (3D) growth of rectangular atomically flat islands with deep boundaries between them. On the other hand, at low deposition temperatures, a two-dimensional (2D) layered growth was observed. The transition from 2D to 3D growth modes was observed that occurs for temperatures around 450 °C. The obtained epitaxial thin films also formed an atomically sharp interface with the SrTiO{sub 3}(0 0 1) substrate as confirmed by HRTEM.

  9. Effects of Mn doping on the ferroelectric properties of PZT thin films

    International Nuclear Information System (INIS)

    Zhang Qi

    2004-01-01

    The effects of Mn doping on the ferroelectric properties of Pb(Zr 0.3 Ti 0.7 )O 3 (PZT) thin films on Pt/Ti/SiO 2 /Si substrates have been investigated. The composition of the PZT and Mn doping level are Pb(Zr 0.3 Ti 0.7 ) 1-x Mn x O 3 (x = 0,0.2,0.5,1,2,4 mol%). The PZT thin films doped with a small amount of Mn 2+ (x ≤ 1) showed almost no hysteretic fatigue up to 10 10 switching bipolar pulse cycles, coupled with excellent retention properties. However, excessive additions of manganese made the fatigue behaviour worse. We propose that the addition of small amounts of Mn is able to reduce the oxygen vacancy concentration due to the combination of Mn 2+ and oxygen vacancies in PZT films, forming Mn 4+ ions. The interfacial layer between the Pt electrode and PZT films and Mn-doped PZT (x = 4) was detected by measuring the dielectric constant of thin films of different thickness. However, this interfacial layer was not detected in Mn-doped PZT (x = 1). These observations support the concept of the preferential electromigration of oxygen vacancies into sites in planes parallel to the electrodes, which is probably responsible for the hysteretic fatigue

  10. Thermal expansion coefficient and thermomechanical properties of SiN(x) thin films prepared by plasma-enhanced chemical vapor deposition.

    Science.gov (United States)

    Tien, Chuen-Lin; Lin, Tsai-Wei

    2012-10-20

    We present a new method based on fast Fourier transform (FFT) for evaluating the thermal expansion coefficient and thermomechanical properties of thin films. The silicon nitride thin films deposited on Corning glass and Si wafers were prepared by plasma-enhanced chemical vapor deposition in this study. The anisotropic residual stress and thermomechanical properties of silicon nitride thin films were studied. Residual stresses in thin films were measured by a modified Michelson interferometer associated with the FFT method under different heating temperatures. We found that the average residual-stress value increases when the temperature increases from room temperature to 100°C. Increased substrate temperature causes the residual stress in SiN(x) film deposited on Si wafers to be more compressive, but the residual stress in SiN(x) film on Corning glass becomes more tensile. The residual-stress versus substrate-temperature relation is a linear correlation after heating. A double substrate technique is used to determine the thermal expansion coefficients of the thin films. The experimental results show that the thermal expansion coefficient of the silicon nitride thin films is 3.27×10(-6)°C(-1). The biaxial modulus is 1125 GPa for SiN(x) film.

  11. Observations on Si-based micro-clusters embedded in TaN thin film deposited by co-sputtering with oxygen contamination

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Mi [Beamline Division, Pohang Accelerator Laboratory, POSTECH, Pohang, 305-764 (Korea, Republic of); Jung, Min-Sang; Choi, Duck-Kyun, E-mail: duck@hanyang.ac.kr, E-mail: mcjung@oist.jp [Department of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Jung, Min-Cherl, E-mail: duck@hanyang.ac.kr, E-mail: mcjung@oist.jp [Energy Materials and Surface Sciences Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495 (Japan)

    2015-08-15

    Using scanning electron microscopy (SEM) and high-resolution x-ray photoelectron spectroscopy with the synchrotron radiation we investigated Si-based micro-clusters embedded in TaSiN thin films having oxygen contamination. TaSiN thin films were deposited by co-sputtering on fixed or rotated substrates and with various power conditions of TaN and Si targets. Three types of embedded micro-clusters with the chemical states of pure Si, SiO{sub x}-capped Si, and SiO{sub 2}-capped Si were observed and analyzed using SEM and Si 2p and Ta 4f core-level spectra were derived. Their different resistivities are presumably due to the different chemical states and densities of Si-based micro-clusters.

  12. Observations on Si-based micro-clusters embedded in TaN thin film deposited by co-sputtering with oxygen contamination

    Directory of Open Access Journals (Sweden)

    Young Mi Lee

    2015-08-01

    Full Text Available Using scanning electron microscopy (SEM and high-resolution x-ray photoelectron spectroscopy with the synchrotron radiation we investigated Si-based micro-clusters embedded in TaSiN thin films having oxygen contamination. TaSiN thin films were deposited by co-sputtering on fixed or rotated substrates and with various power conditions of TaN and Si targets. Three types of embedded micro-clusters with the chemical states of pure Si, SiOx-capped Si, and SiO2-capped Si were observed and analyzed using SEM and Si 2p and Ta 4f core-level spectra were derived. Their different resistivities are presumably due to the different chemical states and densities of Si-based micro-clusters.

  13. In-situ synthesized Ni–Zr intermetallic/ceramic reinforced composite coatings on zirconium substrate by high power diode laser

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kun; Li, Yajiang, E-mail: yajli@sdu.edu.cn; Wang, Juan; Ma, Qunshuang

    2015-03-05

    Highlights: • In-situ synthesized Ni–Zr intermetallics/ceramic reinforced composite coatings. • Si enrichment and Ni replacing site of Si both resulted in forming Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4.} • Microstructure and forming of ZrB{sub 2} depended on affinity of elements and Si/B ratio. - Abstract: Ni–Zr intermetallic/ceramic reinforced composite coatings were in-situ synthesized by laser cladding series of Ni–Cr–B–Si powders on zirconium substrate. Microstructure, phase constituents and microhardness of coatings were investigated by means of optical microscope (OM), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and microsclemeter. Results indicated that coatings with metallurgical bonding to substrate consisted of cellular NiZr matrix and massive reinforcements including NiZr{sub 2}, Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4} and ZrB{sub 2}. Morphologies of reinforcements were mainly dominated by temperature gradient and cooling rate from surface to bottom of the coating produced by same powder. In different coatings, microstructure and forming of ZrB{sub 2} mainly depended on affinity of elements and Si/B ratio in different powders. In addition, the mean microhardness of coatings up to 1200–1300 HV{sub 0.2} is nearly 7 times higher than that of R60702 zirconium substrate.

  14. High Temperature Magnetic Properties of Indirect Exchange Spring FePt/M(Cu,C/Fe Trilayer Thin Films

    Directory of Open Access Journals (Sweden)

    Anabil Gayen

    2013-01-01

    Full Text Available We report the investigation of temperature dependent magnetic properties of FePt and FePt(30/M(Cu,C/Fe(5 trilayer thin films prepared by using magnetron sputtering technique at ambient temperature and postannealed at different temperatures. L10 ordering, hard magnetic properties, and thermal stability of FePt films are improved with increasing postannealing temperature. In FePt/M/Fe trilayer, the formation of interlayer exchange coupling between magnetic layers depends on interlayer materials and interface morphology. In FePt/C/Fe trilayer, when the C interlayer thickness was about 0.5 nm, a strong interlayer exchange coupling between hard and soft layers was achieved, and saturation magnetization was enhanced considerably after using interlayer exchange coupling with Fe. In addition, incoherent magnetization reversal process observed in FePt/Fe films changes into coherent switching process in FePt/C/Fe films giving rise to a single hysteresis loop. High temperature magnetic studies up to 573 K reveal that the effective reduction in the coercivity decreases largely from 34 Oe/K for FePt/Fe film to 13 Oe/K for FePt/C(0.5/Fe film demonstrating that the interlayer exchange coupling seems to be a promising approach to improve the stability of hard magnetic properties at high temperatures, which is suitable for high-performance magnets and thermally assisted magnetic recording media.

  15. Thickness dependence of crystallographic and magnetic properties for L10-CoPt thin films

    International Nuclear Information System (INIS)

    Liao, W.M.; Chen, S.K.; Yuan, F.T.; Hsu, C.W.; Lee, H.Y.

    2006-01-01

    Thickness dependence of crystallographic and magnetic properties is investigated from the analyses of the order parameter S, chemically ordered fraction f 0 , and internal stress of the L1 0 Co 49 Pt 51 film. Coercivity H c was increased from 5.1kOe to a maximum value of 13.3kOe as the thickness of the film (δ) was raised from 10nm to 50nm.This is due to the increase of S from 0.30 to 0.64 and the increase of f 0 from 0.52 to 0.75. For thicker samples (δ-bar 50nm), a dramatic drop-off in H c was observed at δ=80nm. The quantity of ordered phase, measured by X-ray diffractometry, is closely related to the H c value of the Co 49 Pt 51 thin film for δ 49 Pt 51 samples is harmful for H c . The decrease in H c can also be partially attributed to the thermal-stress-induced (001) texture

  16. Effect of Si ion irradiation on polycrystalline CdS thin film grown from novel photochemical deposition technique

    International Nuclear Information System (INIS)

    Soundeswaran, S.; Senthil Kumar, O.; Ramasamy, P.; Kabi Raj, D.; Avasthi, D.K.; Dhanasekaran, R.

    2005-01-01

    CdS thin films have been deposited from aqueous solution by photochemical reactions. The solution contains Cd(CH 3 COO) 2 and Na 2 S 2 O 3 , and pH is controlled in an acidic region by adding H 2 SO 4 . The solution is illuminated with light from a high-pressure mercury-arc lamp. CdS thin films are formed on a glass substrate by the heterogeneous nucleation and the deposited thin films have been subjected to high-energy Si ion irradiations. Si ion irradiation has been performed with an energy of 80 MeV at fluences of 1x10 11 , 1x10 12 , 1x10 13 and 1x10 14 ions/cm 2 using tandem pelletron accelerator. The irradiation-induced changes in CdS thin films are studied using XRD, Raman spectroscopy and photoluminescence. Broadening of the PL emission peak were observed with increasing irradiation fluence, which could be attributed to the band tailing effect of the Si ion irradiation. The lattice disorder takes place at high Si ion fluences

  17. Phase diagrams of two dimensional Pd{sub x}Ag{sub 1-x}/Pd(111) and Pt{sub x}Ag{sub 1-x}/Pt(111) surface alloys

    Energy Technology Data Exchange (ETDEWEB)

    Engstfeld, Albert K.; Roetter, Ralf T.; Bergbreiter, Andreas; Hoster, Harry E.; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University (Germany)

    2011-07-01

    The distribution of Ag and Pd or Pt in Ag{sub x}Pd{sub 1-x}/Pd(111) and Ag{sub x}Pt{sub 1-x}/Pt(111) surface alloys was studied by high resolution UHV-STM. The alloys were prepared by evaporating Ag on the respective substrate and subsequent annealing to 800 K. From quantitative 2D atom distributions we can show that AgPt tends towards two dimensional clustering and AgPd towards a 'quasi' random distribution, with small deviations for low and high coverages. From effective pair interactions, we are able to calculate the surface mixing energy and determine 2D phase diagrams. Furthermore we will elucidate whether the size mismatch or the differences in the intermetallic bonding are the dominant factor for the respective distribution in the surface alloy.

  18. Characterization of Pb(Zr, Ti)O sub 3 thin films prepared by metal-organic chemical-vapor deposition using a solid delivery system

    CERN Document Server

    Shin, J C; Hwang, C S; Kim, H J; Lee, J M

    1999-01-01

    Pb(Zr, Ti)O sub 3 (PZT) thin films were deposited on Pt/SiO sub 2 /Si substrates by metal-organic chemical-vapor deposition technique using a solid delivery system to improve the reproducibility of the deposition. The self-regulation mechanism, controlling the Pb-content of the film, was observed to work above a substrate temperature of 620 .deg. C. Even with the self-regulation mechanism, PZT films having low leakage current were obtained only when the molar mixing ratio of the input precursors was 1Pt/PZT/Pt capacitor was Schottky emission with a barrier height of 1.36 eV.

  19. AES study of the reaction between a thin Fe-film and β-SiC (100) surface

    International Nuclear Information System (INIS)

    Mizokawa, Yusuke; Nakanishi, Shigemitsu; Miyase, Sunao

    1989-01-01

    The solid state reaction between thin Fe-films and β-SiC(100) in UHV has been studied using AES. Even at room temperature, the reaction between the thin Fe-film and SiC occurred and formed Fe-silicide and graphite with a minor product of Fe-carbide (Fe 3 C). The reaction proceeded with an increase of Fe-coverage to some extent. With annealing of 15 A-Fe-film/SiC below 540degC, the Fe-silicide formation was accelerated, but because the amount of available Fe was small, the dissolved carbon atoms were forced to form not the Fe-carbide but the graphite phase. Above 640degC, the Fe-silicide started to decompose and the carbon atoms diffused to the surface and formed surface graphite layers. With annealing at 1080degC, the free-Si segregats at the surface and formed Si-Si bonds, as well as the Si-C bonds consuming the surface graphite phase. (author)

  20. Understanding Pt-ZnO:In Schottky nanocontacts by conductive atomic force microscopy

    Science.gov (United States)

    Chirakkara, Saraswathi; Choudhury, Palash Roy; Nanda, K. K.; Krupanidhi, S. B.

    2016-04-01

    Undoped and In doped ZnO (IZO) thin films are grown on Pt coated silicon substrates Pt/Si by pulsed laser deposition to fabricate Pt/ZnO:In Schottky diodes. The Schottky diodes were investigated by conventional two-probe current-voltage (I-V) measurements and by the I-V spectroscopy tool of conductive atomic force microscopy (C-AFM). The large deviation of the ideality factor from unity and the temperature dependent Schottky barrier heights (SBHs) obtained from the conventional method imply the presence of inhomogeneous interfaces. The inhomogeneity of SBHs is confirmed by C-AFM. Interestingly, the I-V curves at different points are found to be different, and the SBHs deduced from the point diodes reveal inhomogeneity at the nanoscale at the metal-semiconductor interface. A reduction in SBH and turn-on voltage along with enhancement in forward current are observed with increasing indium concentration.

  1. Hard TiCx/SiC/a-C:H nanocomposite thin films using pulsed high energy density plasma focus device

    International Nuclear Information System (INIS)

    Umar, Z.A.; Rawat, R.S.; Tan, K.S.; Kumar, A.K.; Ahmad, R.; Hussain, T.; Kloc, C.; Chen, Z.; Shen, L.; Zhang, Z.

    2013-01-01

    Highlights: •The energetic ions and electron beams are used to synthesize TiC x /SiC/a-C:H films. •As-deposited crystalline and hard nanocomposite TiC x /SiC/a-C:H films are synthesized. •Very high average deposition rates of 68 nm/shot are achieved using dense plasma focus. •The maximum hardness of 22 GPa is achieved at the surface of the film. -- Abstract: Thin films of TiC x /SiC/a-C:H were synthesized on Si substrates using a complex mix of high energy density plasmas and instability accelerated energetic ions of filling gas species, emanated from hot and dense pinched plasma column, in dense plasma focus device. The conventional hollow copper anode of Mather type plasma focus device was replaced by solid titanium anode for synthesis of TiC x /SiC/a-C:H nanocomposite thin films using CH 4 :Ar admixture of (1:9, 3:7 and 5:5) for fixed 20 focus shots as well as with different number of focus shots with fixed CH 4 :Ar admixture ratio 3:7. XRD results showed the formation of crystalline TiC x /SiC phases for thin film synthesized using different number of focus shots with CH 4 :Ar admixture ratio fixed at 3:7. SEM results showed that the synthesized thin films consist of nanoparticle agglomerates and the size of agglomerates depended on the CH 4 :Ar admixture ratio as well as on the number of focus shots. Raman analysis showed the formation of polycrystalline/amorphous Si, SiC and a-C for different CH 4 :Ar ratio as well as for different number of focus shots. The XPS analysis confirmed the formation of TiC x /SiC/a-C:H composite thin film. Nanoindentation results showed that the hardness and elastic modulus values of composite thin films increased with increasing number of focus shots. Maximum values of hardness and elastic modulus at the surface of the composite thin film were found to be about 22 and 305 GPa, respectively for 30 focus shots confirming the successful synthesis of hard composite TiC x /SiC/a-C:H coatings

  2. Correlation between the dielectric constant and X-ray diffraction pattern of Si-O-C thin films with hydrogen bonds

    International Nuclear Information System (INIS)

    Oh, Teresa; Oh, Kyoung Suk; Lee, Kwang-Man; Choi, Chi Kyu

    2004-01-01

    The amorphous structure of organic-inorganic hybrid type Si-O-C thin films was studied using the first principles molecular-dynamics method with density functional techniques. The correlation between the dielectric constant and the degree of amorphous structure in organic-inorganic hybrid type Si-O-C thin films was studied. Si-O-C thin films were deposited by high-density plasma chemical vapor deposition using bis-trimethylsilylmethane and oxygen precursors. As-deposited films and films annealed at 500 deg. C were analyzed by X-ray diffraction (XRD). For quantitative analysis, the X-ray diffraction patterns of the samples were transformed to the radial distribution function (RDF) using Fourier analysis. Hybrid type Si-O-C thin films can be divided into three types using their amorphous structure and the dielectric constant: those with organic, hybrid, and inorganic properties

  3. Numerical Optimization of a Bifacial Bi-Glass Thin-Film a-Si:H Solar Cell for Higher Conversion Efficiency

    Science.gov (United States)

    Berrian, Djaber; Fathi, Mohamed; Kechouane, Mohamed

    2018-02-01

    Bifacial solar cells that maximize the energy output per a square meter have become a new fashion in the field of photovoltaic cells. However, the application of thin-film material on bifacial solar cells, viz., thin-film amorphous hydrogenated silicon ( a- Si:H), is extremely rare. Therefore, this paper presents the optimization and influence of the band gap, thickness and doping on the performance of a glass/glass thin-film a- Si:H ( n- i- p) bifacial solar cell, using a computer-aided simulation tool, Automat for simulation of hetero-structures (AFORS-HET). It is worth mentioning that the thickness and the band gap of the i-layer are the key parameters in achieving higher efficiency and hence it has to be handled carefully during the fabrication process. Furthermore, an efficient thin-film a- Si:H bifacial solar cell requires thinner and heavily doped n and p emitter layers. On the other hand, the band gap of the p-layer showed a dramatic reduction of the efficiency at 2.3 eV. Moreover, a high bifaciality factor of more than 92% is attained, and top efficiency of 10.9% is revealed under p side illumination. These optimizations demonstrate significant enhancements of the recent experimental work on thin-film a- Si:H bifacial solar cells and would also be useful for future experimental investigations on an efficient a- Si:H thin-film bifacial solar cell.

  4. CoPt and FePt magnetic alloys grown on van der Waals WSe{sub 2}(0001) surfaces and on arrays of SiO{sub 2} spherical particles

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, Denys

    2008-06-06

    Modern magnetic recording is based on usage of hard magnetic alloys as a recording media. In order to increase the areal storage density (number of stored bits per square inch), materials with a high value of magnetic anisotropy are required to stabilize the direction of the magnetization and thus satisfy the criteria of thermal stability. The magnetic alloy currently used for hard disk drive production is a granular CoCrPt:SiO2 alloy with a grain size of approximately 7 nm and an anisotropy constant of about 0.4 MJ/m{sup 3}. However, the predicted limit of the highest achievable areal density of this type of granular media is 500-600 Gbit/in{sup 2}. To satisfy the demand of higher densities, new magnetic alloys have to be introduced. The most promising candidates for future ultra-high density magnetic recording applications are chemically L10 ordered FePt and CoPt alloys with anisotropy constants of about 10 MJ/m{sup 3} and 3 MJ/m{sup 3}, respectively. In order to obtain a high value of uniaxial magnetic anisotropy, the substrate temperature during molecular beam epitaxy or sputtering deposition has to be higher than 500 C. For practical use in industrial applications the ordering temperature of the FePt and CoPt alloys has to be reduced. One of the promising approaches to reduce the ordering temperature is related to the enhancement of the adatom mobility by growing the alloy on the chemically saturated surface. In this regard an attempt to reduce the ordering temperature of the CoPt alloy with equiatomic composition was performed in the scope of present work by growing the CoPt alloy on van der Waals WSe{sub 2}(0001) substrates. Moreover, an increase in data density can be gained using the concept of patterned media, where an information unit (bit) is stored in a single nanostructure. The most attractive way to produce patterned magnetic media for ultra-high density magnetic recording applications is based on self-assembly of the magnetic nanostructures. In this

  5. Morphology and Surface Energy of a Si Containing Semifluorinated Di-block Copolymer Thin Films.

    Science.gov (United States)

    Shrestha, Umesh; Clarson, Stephen; Perahia, Dvora

    2013-03-01

    The structure and composition of an interface influence stability, adhesiveness and response to external stimuli of thin polymeric films. Incorporation of fluorine affects interfacial energy as well as thermal and chemical stability of the layers. The incompatibility between the fluorinated and non-fluorinated blocks induces segregation that leads to long range correlations where the tendency of the fluorine to migrate to interfaces impacts the surface tension of the films. Concurrently Si in a polymeric backbone enhances the flexibility of polymeric chains. Our previous studies of poly trifluoro propyl methyl siloxane-polystyrene thin films with SiF fraction 0.03-0.5 as a function of temperature have shown that the SiF block drives layering parallel to the surface of the diblock. Here in we report the structure and interfacial energies of SiF-PS in the plane of the films, as a function of the volume fraction of the SiF block obtained from Atomic Force microscopy and contact angle measurement studies. This work is supported by NSF DMR - 0907390

  6. Local Fatigue Evaluation in PZT Thin Films with Nanoparticles by Piezoresponse Force Microscopy

    OpenAIRE

    B. S. Li

    2012-01-01

    Lead zirconate titanate (PZT) thin films with the morphotropic phase boundary composition (Zr/Ti = 52/48) have been prepared using a modified diol-based sol-gel route by introducing 1–5 mol% barium titanate (BT) nanoseeds into the precursor solution on platinized silicon substrates (Pt/Ti/SiO2/Si). Macroscopic electric properties of PZT film with nanoparticle showed a significant improvement of ferroelectric properties. This work aims at the systematic study of the local switching polarizatio...

  7. Tuning magnetic properties of non-collinear magnetization configuration in Pt/[Pt/Co]{sub 6}/Pt/Co/Pt multilayer structure

    Energy Technology Data Exchange (ETDEWEB)

    Kalaycı, Taner, E-mail: taner.kalayci@marmara.edu.tr [Department of Physics, Marmara University, 34722, Kadıköy, Istanbul (Turkey); Deger, Caner [Department of Physics, Marmara University, 34722, Kadıköy, Istanbul (Turkey); Akbulut, Salih [Department of Physics, Gebze Technical University, 41400, Gebze, Kocaeli (Turkey); Yildiz, Fikret, E-mail: fyildiz@gtu.edu.tr [Department of Physics, Gebze Technical University, 41400, Gebze, Kocaeli (Turkey)

    2017-08-15

    Highlights: • Effects of Pt spacer and reference layers thickness are investigated by MOKE and FMR. • Controlling of non-collinear states in multilayered thin film systems is studied. • Micromagnetic approach is used for modeling of magnetic multilayered structure. • Magnetic parameters are determined by a simulation based on metropolis algorithm. - Abstract: In this study, effects of Pt spacer and Co reference layers thickness in [Co/Pt]{sub 6}/Pt/Co multilayer have been revealed to tailor magnetization directions in non-collinear configuration. Magneto-optic Kerr effect and ferromagnetic resonance techniques were employed to investigate magnetic properties. Bilinear coupling between [Co/Pt]{sub 6} and Co layers and anisotropy constants were determined by a micromagnetic simulation based on metropolis algorithm. 3 nm spacer causes ferromagnetic coupling while the samples have 4 and 5 nm spacer are coupled anti-ferromagneticaly. Also, tuning magnetic anisotropy of [Co/Pt]{sub 6} layer was accomplished by Co reference layer. It is revealed that controlling of non-collinear states in such systems is possible by variation of thickness of spacer and reference layers and [Co/Pt]{sub 6}/t{sub Pt}/t{sub Co} trilayer system can be used in multilayered magnetic systems.

  8. Vibrational Characterizations of Zn0.72Li0.28O/Si Thin Films Studied by Fourier Transform Raman Spectroscopy

    International Nuclear Information System (INIS)

    Myo Myat Thet; Win Kyaw; Yin Maung Maung; Ko Ko Kyaw Soe

    2008-03-01

    The Zn0.72Li0.28O/Si (x = 0.28mol%) thin layers were fabricated on p-Si(100) substrate with five different process temperature. Vibrational characterizations of those thin films were investigated by FT- Raman spectroscopy. The resulted spectral line characters have been compared with that of Zn0.72Li0.28O/Glass thin films. Some vibrational motions of starting materials and final(candidate) thin films molecules were found in two substrates of glass and Si and vibrational frequencies were assigned by using molecular spectroscopy. Most of the frequencies of starting and final materials were found to be shifted in each of the films of two different substrates.

  9. RAMAN spectra of amorphous silicon thin films deposited by glow discharges

    International Nuclear Information System (INIS)

    Bustarret, E.; Alvarez, F.; Brenzikofer, R.; Vilche Pena, A.; Chambouleyron, I.

    1983-01-01

    The local disorder present in films of a-Si:H and a-Si x N 1-x :H has been studied through first order Raman spectroscopy, using the 5145A line of an Argon laser in a backscattering geometry at room temperature. This allowed us to compare thin films deposited in two different reactors where the capacitively coupled glow-discharge was produced either in a ''cross field'' or a ''parallel field'' geometry. Gaseous mixtures of SiH 4 . N 2 , He and Ar have been used in both cases. The systematic variation of the preparation parameters leads to a whole class of ''alloys'' including partially micro-crysttalized films. (author) [pt

  10. Fabrication of bright and thin Zn₂SiO₄ luminescent film for electron beam excitation-assisted optical microscope.

    Science.gov (United States)

    Furukawa, Taichi; Kanamori, Satoshi; Fukuta, Masahiro; Nawa, Yasunori; Kominami, Hiroko; Nakanishi, Yoichiro; Sugita, Atsushi; Inami, Wataru; Kawata, Yoshimasa

    2015-07-13

    We fabricated a bright and thin Zn₂SiO₄ luminescent film to serve as a nanometric light source for high-spatial-resolution optical microscopy based on electron beam excitation. The Zn₂SiO₄ luminescent thin film was fabricated by annealing a ZnO film on a Si₃N₄ substrate at 1000 °C in N₂. The annealed film emitted bright cathodoluminescence compared with the as-deposited film. The film is promising for nano-imaging with electron beam excitation-assisted optical microscopy. We evaluated the spatial resolution of a microscope developed using this Zn₂SiO₄ luminescent thin film. This is the first report of the investigation and application of ZnO/Si₃N₄ annealed at a high temperature (1000 °C). The fabricated Zn₂SiO₄ film is expected to enable high-frame-rate dynamic observation with ultra-high resolution using our electron beam excitation-assisted optical microscopy.

  11. The anisotropy field of FePt L10 nanoparticles controlled by very thin Pt layer

    International Nuclear Information System (INIS)

    Okamoto, Satoshi; Kitakami, Osamu; Kikuchi, Nobuaki; Miyazaki, Takamichi; Shimada, Yutaka; Chiang, Te-Hsuan

    2004-01-01

    We have prepared epitaxial FePt L1 0 (001) nanoparticles covered with Pt [d Pt nm]/Ag[(4-d Pt ) nm] overlayers. The particles are oblate spheroids approximately 10 nm in diameter and 2 nm in height. The anisotropy field H k at 0 K, which is evaluated from the temperature dependences of coercivity H c , decreases from 90 to 60 kOe on increasing the Pt thickness from d Pt 0 to 1.5 nm, while the energy barrier at zero field remains unchanged. The significant reduction of H k due to the presence of the adjacent Pt layer can be attributed to an enhanced magnetic moment caused by the ferromagnetic polarization of Pt atoms at the interface. This finding suggests an effective method of controlling the switching field of FePt L1 0 nanoparticles

  12. On the way to enhance the optical absorption of a-Si in NIR by embedding Mg{sub 2}Si thin film

    Energy Technology Data Exchange (ETDEWEB)

    Chernev, I. M., E-mail: igor-chernev7@mail.ru; Shevlyagin, A. V.; Galkin, K. N. [Institute of Automation and Control Processes of FEB RAS, Radio St. 5, 690041 Vladivostok (Russian Federation); Stuchlik, J. [Institute of Physics of the ASCR, v. v. i., Cukrovarnická 10/112, 162 00 Praha 6 (Czech Republic); Remes, Z. [Institute of Physics of the ASCR, v. v. i., Cukrovarnická 10/112, 162 00 Praha 6 (Czech Republic); FBE CTU, Nam. Sitna 3105, 272 01 Kladno (Czech Republic); Fajgar, R. [Institute of Chemical Process Fundamentals of the ASCR, v. v. i., Rozvojová 135, 165 02 Praha 6 (Czech Republic); Galkin, N. G. [Institute of Automation and Control Processes of FEB RAS, Radio St. 5, 690041 Vladivostok (Russian Federation); Far Eastern Federal University, School of Natural Sciences, Sukhanova St. 8, 690950 Vladivostok (Russian Federation)

    2016-07-25

    Mg{sub 2}Si thin film was embedded in amorphous silicon matrix by solid phase epitaxy. The structure and optical properties were investigated by electron energy loss, X-ray photoelectron, Raman, and photo thermal deflection spectroscopy measurements. It was found that in the photon energy range of 0.8–1.7 eV, the light absorption of the structure with magnesium silicide (Mg{sub 2}Si) film embedded in a-Si(i) matrix is 1.5 times higher than that for the same structure without Mg{sub 2}Si.

  13. Geometric structures of thin film: Pt on Pd(110) and NiO on Ni(100)

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Oden L. [Iowa State Univ., Ames, IA (United States)

    1993-07-01

    This thesis is divided into 3 papers: dynamical low-energy electron- diffraction investigation of lateral displacements in topmost layer of Pd(110); determination of (1x1) and (1x2) structures of Pt thin films on Pd(110) by dynamical low-energy electron-diffraction analysis; and structural determination of a NiO(111) film on Ni(100) by dynamical low-energy electron-diffraction analysis.

  14. Effect of Heat Treatment on Morphology of Fe-Rich Intermetallics in Hypereutectic Al-Si-Cu-Ni Alloy with 1.26 pct Fe

    Science.gov (United States)

    Sha, Meng; Wu, Shusen; Wan, Li; Lü, Shulin

    2013-12-01

    Cobalt is generally considered as the element that can neutralize the negative effects of iron in Al alloys, such as inducing fracture and failure for stress concentration. Nevertheless, Fe-rich intermetallics would be inclined to form coarse plate-like δ-Al4(Fe, Co, Ni)Si2 particles when the content of Fe was high, which could also cause inferior mechanical properties. The dissolution and transformation of δ-Al4(Fe, Co, Ni)Si2 phase in solution heat-treated samples of Al-20Si-1.85Cu-1.05Ni-1.26Fe-1.35Co alloy were studied using optical microscopy, image analysis, and scanning electron microscopy. The effects of solution heat treatment time ranging from 0 to 9 hours at 783.15 K (510 °C) on mechanical properties were also investigated. The coarse plate-like δ-Al4(Fe, Co, Ni)Si2 particles varied slowly through concurrent dissolution along widths and at the plate tips as solution treatment time increased, which could be explained from diffusion-induced grain boundary migration. Solution heat treatment also has an important influence on mechanical properties. The maximum ultimate tensile strength and yield strength after T6 treatment were 258 and 132 MPa, respectively, while the maximum hardness was 131 HB. Compared with those of the samples in the as-cast state, they increased by 53, 42, and 28 pct, respectively. Moreover, δ-Al4(Fe, Co, Ni)Si2 phase, which appears as a coarse plate-like particle in two dimensions, is actually a cuboid in three dimensions. The length of this cuboid is close to the width, while the height is much smaller.

  15. Enhanced polarization and dielectric properties of Pb(Zr1-xTix)O3 thin films

    Science.gov (United States)

    Ortega, N.; Kumar, Ashok; Katiyar, R. S.

    2008-10-01

    We report the fabrication of PbZr0.57Ti0.43O3 (PZT) thin films with preferential growth along (111) and random crystalline orientation on the platinized silicon substrates using pulsed laser deposition technique. X-ray diffraction patterns and surface morphology indicate increase in grain size and nucleation, which support better perovskite matrix with increase in annealing temperature. We observed large dielectric constant (˜4000) and enhanced remanent polarization 70 μC/cm2 at room temperature attributed to grain growth and intermetallic Pt-Pb transient phase. Frequency dependent polarization showed minor reduction in polarization above 10 kHz frequencies. Normalized fatigue characteristic of PZT thin films showed minimal 25% degradation in remanent polarization after 109 cycles, which may be useful for memory devices. ac conductivity spectra illustrated that anomaly near the phase transition temperature with activation energy (Ea˜0.60-0.75 eV) supports the intrinsic nature of ferroelectric phase transition.

  16. Thermoelectric Properties of Nanograined Si-Ge-Au Thin Films Grown by Molecular Beam Deposition

    Science.gov (United States)

    Nishino, Shunsuke; Ekino, Satoshi; Inukai, Manabu; Omprakash, Muthusamy; Adachi, Masahiro; Kiyama, Makoto; Yamamoto, Yoshiyuki; Takeuchi, Tsunehiro

    2018-06-01

    Conditions to achieve extremely large Seebeck coefficient and extremely small thermal conductivity in Si-Ge-Au thin films formed of nanosized grains precipitated in amorphous matrix have been investigated. We employed molecular beam deposition to prepare Si1- x Ge x Au y thin films on sapphire substrate. The deposited films were annealed under nitrogen gas atmosphere at 300°C to 500°C for 15 min to 30 min. Nanocrystals dispersed in amorphous matrix were clearly observed by transmission electron microscopy. We did not observe anomalously large Seebeck coefficient, but very low thermal conductivity of nearly 1.0 W K-1 m-1 was found at around 0.2 Si-Ge bulk material for which dimensionless figure of merit of ZT ≈ 1 was reported at high temperature.

  17. Structure and optical properties of aSiAl and aSiAlHx magnetron sputtered thin films

    Directory of Open Access Journals (Sweden)

    Annett Thøgersen

    2016-03-01

    Full Text Available Thin films of homogeneous mixture of amorphous silicon and aluminum were produced with magnetron sputtering using 2-phase Al–Si targets. The films exhibited variable compositions, with and without the presence of hydrogen, aSi1−xAlx and aSi1−xAlxHy. The structure and optical properties of the films were investigated using transmission electron microscopy, X-ray photoelectron spectroscopy, UV-VisNIR spectrometry, ellipsometry, and atomistic modeling. We studied the effect of alloying aSi with Al (within the range 0–25 at. % on the optical band gap, refractive index, transmission, and absorption. Alloying aSi with Al resulted in a non-transparent film with a low band gap (1 eV. Variations of the Al and hydrogen content allowed for tuning of the optoelectronic properties. The films are stable up to a temperature of 300 °C. At this temperature, we observed Al induced crystallization of the amorphous silicon and the presence of large Al particles in a crystalline Si matrix.

  18. Formation of thin DLC films on SiO2/Si substrate using FCVAD technique

    International Nuclear Information System (INIS)

    Bootkul, D.; Intarasiri, S.; Aramwit, C.; Tippawan, U.; Yu, L.D.

    2013-01-01

    Diamond-like carbon (DLC) films deposited on SiO 2 /Si substrate are attractive for novel sensitive and selective chemical sensors. According to the almost never ending of size reduction, a nm-thickness layer of the film is greatly required. However, formation of such a very thin DLC film on SiO 2 /Si substrate is challenging. In this experiment, DLC films were formed using our in-house Filtered Cathodic Vacuum Arc Deposition (FCVAD) facility by varying the bias voltage of 0 V, −250 V and −450 V with the arc voltage of 350 V, 450 V, 550 V, 650 V and 750 V for 10 min. Raman spectroscopy was applied for characterization of the film qualities and Transmission Electron Microscopy (TEM) was applied for cross sectional analysis. Results showed that films of thickness ranging from 10–50 nm were easily acquired depending on deposition conditions. Deconvolution of Raman spectra of these samples revealed that, when fixing the substrate bias but increasing the arc voltage from 350 to 750 V, the ratio between D-peak and G-peak intensity, namely I D /I G ratio, tended to reduce up to the arc voltage of 450 V, then increased up to the arc voltage of 650 V and finally decreased again. On the other hand, when fixing the arc voltage, the I D /I G ratio tended to decrease continuously as the increasing of bias voltage. It can be concluded that the bonding structure would evolve from a graphitic-like structure to a diamond-like structure as the substrate bias increases. Additionally, the sp 3 site should be maximized at the arc voltage ∼450 V for fixed bias voltage. It is expected that, at −450 V bias and 450 V arc, sp 3 fractions could be higher than 60%. However, in some cases, e.g. at low arc voltages, voids formed between the film and the amorphous SiO 2 substrate. Electron energy loss spectroscopy (EELS) of the C edge across the DLC indicated that the thicker DLC film had uniform chemistry and structure, whereas the thin DLC film showed changes in the edge shape

  19. Practical chemical analysis of Pt and Pd based heterogeneous catalysts with hard X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, H., E-mail: YOSHIKAWA.Hideki@nims.go.jp [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Matolínová, I.; Matolín, V. [Charles University in Prague, Faculty of Mathematics and Physics, V Holešovičkách 2, 18000 Prague 8 (Czech Republic)

    2013-10-15

    Highlights: •Hard X-ray photoelectron spectroscopy (HAXPES) enables interface analysis of catalyst. •HAXPES enables overall analysis of porous film of Pt-doped CeO{sub 2} and related catalyst. •HAXPES enables analysis of trace elements for Pd and Pt{sub 3}Ni nanoparticle catalysts. -- Abstract: Interfacial properties including configuration, porosity, chemical states, and atomic diffusion greatly affect the performance of supported heterogeneous catalysts. Hard X-ray photoelectron spectroscopy (HAXPES) can be used to analyze the interfaces of heterogeneous catalysts because of its large information depth of more than 20 nm. We use HAXPES to examine Pt-doped CeO{sub 2} and related thin film catalysts evaporated on Si, carbon, and carbon nanotube substrates, because Pt-doped CeO{sub 2} has great potential as a noble metal-based heterogeneous catalyst for fuel cells. The HAXPES measurements clarify that the dopant material, substrate material, and surface pretreatment of substrate are important parameters that affect the interfacial properties of Pt-doped CeO{sub 2} and related thin film catalysts. Another advantage of HAXPES measurement of heterogeneous catalysts is that it can be used for chemical analysis of trace elements by detecting photoelectrons from deep core levels, which have large photoionization cross-sections in the hard X-ray region. We use HAXPES for chemical analysis of trace elements in Pd nanoparticle catalysts immobilized on sulfur-terminated substrates and Pt{sub 3}Ni nanoparticle catalysts enveloped by dendrimer molecules.

  20. Comparative study of anisotropic superconductivity in CaAlSi and CaGaSi

    International Nuclear Information System (INIS)

    Tamegai, T.; Uozato, K.; Kasahara, S.; Nakagawa, T.; Tokunaga, M.

    2005-01-01

    In order to get some insight into the origin of the anomalous angular dependence of H c2 in a layered intermetallic compound CaAlSi, electronic, superconducting, and structural properties are compared between CaAlSi and CaGaSi. The angular dependence of H c2 in CaGaSi is well described by the anisotropic GL model. Parallel to this finding, the pronounced lattice modulation accompanying the superstructure along the c-axis in CaAlSi is absent in CaGaSi. A relatively large specific heat jump at the superconducting transition in CaAlSi compared with CaGaSi indicates the presence of strong electron-phonon coupling in CaAlSi, which may cause the superstructure and the anomalous angular dependence of H c2

  1. MnSi nanostructures obtained from epitaxially grown thin films: magnetotransport and Hall effect

    Science.gov (United States)

    Schroeter, D.; Steinki, N.; Schilling, M.; Fernández Scarioni, A.; Krzysteczko, P.; Dziomba, T.; Schumacher, H. W.; Menzel, D.; Süllow, S.

    2018-06-01

    We present a comparative study of the (magneto)transport properties, including Hall effect, of bulk, epitaxially grown thin film and nanostructured MnSi. In order to set our results in relation to published data we extensively characterize our materials, this way establishing a comparatively good sample quality. Our analysis reveals that in particular for thin film and nanostructured material, there are extrinsic and intrinsic contributions to the electronic transport properties, which by modeling the data we separate out. Finally, we discuss our Hall effect data of nanostructured MnSi under consideration of the extrinsic contributions and with respect to the question of the detection of a topological Hall effect in a skyrmionic lattice.

  2. Intermetallic-Based High-Temperature Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.

    1999-04-25

    The intermetallic-based alloys for high-temperature applications are introduced. General characteristics of intermetallics are followed by identification of nickel and iron aluminides as the most practical alloys for commercial applications. An overview of the alloy compositions, melting processes, and mechanical properties for nickel and iron aluminizes are presented. The current applications and commercial producers of nickel and iron aluminizes are given. A brief description of the future prospects of intermetallic-based alloys is also given.

  3. Formation of β-FeSi 2 thin films by partially ionized vapor deposition

    Science.gov (United States)

    Harada, Noriyuki; Takai, Hiroshi

    2003-05-01

    The partially ionized vapor deposition (PIVD) is proposed as a new method to realize low temperature formation of β-FeSi 2 thin films. In this method, Fe is evaporated by E-gun and a few percents of Fe atoms are ionized. We have investigated influences of the ion content and the accelerating voltage of Fe ions on the structural properties of β-FeSi 2 films deposited on Si substrates. It was confirmed that β-FeSi 2 can be formed on Si(1 0 0) substrate by PIVD even at substrate temperature as low as 350, while FeSi by the conventional vacuum deposition. It was concluded that the influence of Fe ions on preferential orientation of β-FeSi 2 depends strongly on the content and the acceleration energy of ions.

  4. Si/Fe flux ratio influence on growth and physical properties of polycrystalline β-FeSi2 thin films on Si(100) surface

    Science.gov (United States)

    Tarasov, I. A.; Visotin, M. A.; Aleksandrovsky, A. S.; Kosyrev, N. N.; Yakovlev, I. A.; Molokeev, M. S.; Lukyanenko, A. V.; Krylov, A. S.; Fedorov, A. S.; Varnakov, S. N.; Ovchinnikov, S. G.

    2017-10-01

    This work investigates the Si/Fe flux ratio (2 and 0.34) influence on the growth of β-FeSi2 polycrystalline thin films on Si(100) substrate at 630 °C. Lattice deformations for the films obtained are confirmed by X-ray diffraction analysis (XRD). The volume unit cell deviation from that of β-FeSi2 single crystal are 1.99% and 1.1% for Si/Fe =2 and Si/Fe =0.34, respectively. Absorption measurements show that the indirect transition ( 0.704 eV) of the Si/Fe =0.34 sample changes to the direct transition with a bandgap value of 0.816 eV for the sample prepared at Si/Fe =2. The absorption spectrum of the Si/Fe =0.34 sample exhibits an additional peak located below the bandgap energy value with the absorption maximum of 0.36 eV. Surface magneto-optic Kerr effect (SMOKE) measurements detect the ferromagnetic behavior of the β-FeSi2 polycrystalline films grown at Si/Fe =0.34 at T=10 K, but no ferromagnetism was observed in the samples grown at Si/Fe =2. Theoretical calculations refute that the cell deformation can cause the emergence of magnetization and argue that the origin of the ferromagnetism, as well as the lower absorption peak, is β-FeSi2 stoichiometry deviations. Raman spectroscopy measurements evidence that the film obtained at Si/Fe flux ratio equal to 0.34 has the better crystallinity than the Si/Fe =2 sample.

  5. Determination of the optical parameters of a-Si:H thin films ...

    Indian Academy of Sciences (India)

    single-effective oscillator model to the a-Si:H samples to calculate the optical ..... et al [23] and have similar trend as those shown by El-Sayed and Amin [24]. .... [3] K L Chopra, Thin film phenomena (McGraw-Hill Book Company, USA, 1969).

  6. Ferroelectric properties of PZT/BFO multilayer thin films prepared using the sol-gel method.

    Science.gov (United States)

    Jo, Seo-Hyeon; Lee, Sung-Gap; Lee, Young-Hie

    2012-01-05

    In this study, Pb(Zr0.52Ti0.48)O3/BiFeO3 [PZT/BFO] multilayer thin films were fabricated using the spin-coating method on a Pt(200 nm)/Ti(10 nm)/SiO2(100 nm)/p-Si(100) substrate alternately using BFO and PZT metal alkoxide solutions. The coating-and-heating procedure was repeated several times to form the multilayer thin films. All PZT/BFO multilayer thin films show a void-free, uniform grain structure without the presence of rosette structures. The relative dielectric constant and dielectric loss of the six-coated PZT/BFO [PZT/BFO-6] thin film were approximately 405 and 0.03%, respectively. As the number of coatings increased, the remanent polarization and coercive field increased. The values for the BFO-6 multilayer thin film were 41.3 C/cm2 and 15.1 MV/cm, respectively. The leakage current density of the BFO-6 multilayer thin film at 5 V was 2.52 × 10-7 A/cm2.

  7. Interfacial characteristics and dielectric properties of Ba0.65Sr0.35TiO3 thin films

    International Nuclear Information System (INIS)

    Quan Zuci; Zhang Baishun; Zhang Tianjin; Zhao Xingzhong; Pan Ruikun; Ma Zhijun; Jiang Juan

    2008-01-01

    Ba 0.65 Sr 0.35 TiO 3 (BST) thin films were deposited on Pt/Ti/SiO 2 /Si substrates by radio frequency magnetron sputtering technique. X-ray photoelectron spectroscopy (XPS) depth profiling data show that each element component of the BST film possesses a uniform distribution from the outermost surface to subsurface, but obvious Ti-rich is present to BST/Pt interface because Ti 4+ cations are partially reduced to form amorphous oxides such as TiO x (x -7 A/cm 2 at 1.23 V and lower than 5.66 x 10 -6 A/cm 2 at 2.05 V as well as breakdown strength is above 3.01 x 10 5 V/cm

  8. Low-temperature atomic layer deposition of MgO thin films on Si

    International Nuclear Information System (INIS)

    Vangelista, S; Mantovan, R; Lamperti, A; Tallarida, G; Kutrzeba-Kotowska, B; Spiga, S; Fanciulli, M

    2013-01-01

    Magnesium oxide (MgO) films have been grown by atomic layer deposition in the wide deposition temperature window of 80–350 °C by using bis(cyclopentadienyl)magnesium and H 2 O precursors. MgO thin films are deposited on both HF-last Si(1 0 0) and SiO 2 /Si substrates at a constant growth rate of ∼0.12 nm cycle −1 . The structural, morphological and chemical properties of the synthesized MgO thin films are investigated by x-ray reflectivity, grazing incidence x-ray diffraction, time-of-flight secondary ion mass spectrometry and atomic force microscopy measurements. MgO layers are characterized by sharp interface with the substrate and limited surface roughness, besides good chemical uniformity and polycrystalline structure for thickness above 7 nm. C–V measurements performed on Al/MgO/Si MOS capacitors, with MgO in the 4.6–11 nm thickness range, allow determining a dielectric constant (κ) ∼ 11. Co layers are grown by chemical vapour deposition in direct contact with MgO without vacuum-break (base pressure 10 −5 –10 −6  Pa). The as-grown Co/MgO stacks show sharp interfaces and no elements interdiffusion among layers. C–V and I–V measurements have been conducted on Co/MgO/Si MOS capacitors. The dielectric properties of MgO are not influenced by the further process of Co deposition. (paper)

  9. Gracing incidence small angle neutron scattering of incommensurate magnetic structures in MnSi thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, Birgit; Pfleiderer, Christian; Boeni, Peter [Physik Department, Technische Universitaet Muenchen (Germany); Zhang, Shilei; Hesjedal, Thorsten [Clarendon Laboratory, Department of Physics, University of Oxford (United Kingdom); Khaydukov, Yury; Soltwedel, Olaf; Keller, Thomas [Max-Planck-Institut fuer Festkoerperforschung (Germany); Max Planck Society, Outstation at FRM-II (Germany); Muehlbauer, Sebastian [Forschungsneutronenquelle Heinz Maier Leibnitz, Technische Universitaet Muenchen (Germany); Chacon, Alfonso [Physik Department, Technische Universitaet Muenchen (Germany); Forschungsneutronenquelle Heinz Maier Leibnitz, Technische Universitaet Muenchen (Germany)

    2015-07-01

    The topological stability of skyrmions in bulk samples of MnSi and the observation of spin transfer torque effects at ultra-low current densities have generated great interest in skyrmions in chiral magnets as a new route towards next generation spintronics devices. Yet, the formation of skyrmions in MBE grown thin films of MnSi reported in the literature is highly controversial. We report gracing incidence small angle neutron scattering (GISANS) of the magnetic order in selected thin films of MnSi grown by state of the art MBE techniques. In combination with polarised neutron reflectometry (PNR) and magnetisation measurements of the same samples our data provide direct reciprocal space information of the incommensurate magnetic order, clarifying the nature of magnetic phase diagram.

  10. Photovoltaic effect in transition metal modified polycrystalline BiFeO3 thin films

    International Nuclear Information System (INIS)

    Puli, Venkata Sreenivas; Chrisey, Douglas B; Pradhan, Dhiren Kumar; Katiyar, Rajesh Kumar; Misra, Pankaj; Scott, J F; Katiyar, Ram S; Coondoo, Indrani; Panwar, Neeraj

    2014-01-01

    We report photovoltaic (PV) effect in multiferroic Bi 0.9 Sm 0.1 Fe 0.95 Co 0.05 O 3 (BSFCO) thin films. Transition metal modified polycrystalline BiFeO 3 (BFO) thin films have been deposited on Pt/TiO 2 /SiO 2 /Si substrate successfully through pulsed laser deposition (PLD). PV response is observed under illumination both in sandwich and lateral electrode configurations. The open-circuit voltage (V oc ) and the short-circuit current density (J sc ) of the films in sandwich electrode configuration under illumination are measured to be 0.9 V and −0.051 µA cm −2 . Additionally, we report piezoresponse for BSFCO films, which confirms ferroelectric piezoelectric behaviour. (paper)

  11. Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process

    Science.gov (United States)

    Neto, Almir Oliveira; Dias, Ricardo R.; Tusi, Marcelo M.; Linardi, Marcelo; Spinacé, Estevam V.

    PtRu/C, PtSn/C and PtSnRu/C electrocatalysts were prepared by the alcohol reduction process using ethylene glycol as the solvent and reduction agent and Vulcan Carbon XC72 as the support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry. The electrochemical oxidation of methanol and ethanol were studied by chronoamperometry using a thin porous coating technique. The PtSn/C electrocatalyst prepared by this methodology showed superior performance compared to the PtRu/C and PtSnRu/C electrocatalysts for methanol and ethanol oxidation at room temperature.

  12. Joining thick section aluminum to steel with suppressed FeAl intermetallic formation via friction stir dovetailing

    Energy Technology Data Exchange (ETDEWEB)

    Reza-E-Rabby, Md.; Ross, Kenneth; Overman, Nicole R.; Olszta, Matthew J.; McDonnell, Martin; Whalen, Scott A.

    2018-04-01

    A new solid-phase technique called friction stir dovetailing (FSD) has been developed for joining thick section aluminum to steel. In FSD, mechanical interlocks are formed at the aluminum-steel interface and are reinforced by metallurgical bonds where intermetallic growth has been uniquely suppressed. Lap shear testing shows superior strength and extension at failure compared to popular friction stir approaches where metallurgical bonding is the only joining mechanism. High resolution microscopy revealed the presence of a 40-70 nm interlayer having a composition of 76.4 at% Al, 18.4 at% Fe, and 5.2 at% Si, suggestive of limited FeAl3 intermetallic formation.

  13. Vacuum deposition and pulsed modification of Ge thin films on Si. Structure and photoluminescence

    International Nuclear Information System (INIS)

    Batalov, R.I.; Bayazitov, R.M.; Novikov, G.A.; Shustov, V.A.; Bizyaev, D.A.; Gajduk, P.I.; Ivlev, G.D.; Prokop'ev, S.L.

    2013-01-01

    Vacuum deposition of Ge thin films onto Si substrates by magnetron sputtering was studied. During deposition sputtering time and substrate temperature were varied. Nanosecond pulsed annealing of deposited films by powerful laser or ion beams was performed. The dependence of the structure and optical properties of Ge/Si films on parameters of pulsed treatments was investigated. Optimum parameters of deposition and pulsed treatments resulting into light emitting monocrystalline Ge/Si layers are determined. (authors)

  14. Target swapping in PLD: An efficient approach for CdS/SiO{sub 2} and CdS:Ag(1%)/SiO{sub 2} nanocomposite thin films with enhanced luminescent properties

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Nupur, E-mail: n1saxena@gmail.com [Department of Physics & Astrophysics, University of Delhi, Delhi 110007 (India); Kumar, Pragati, E-mail: pkumar.phy@gmail.com [Department of Physics & Astrophysics, University of Delhi, Delhi 110007 (India); Department of Nano Sciences and Materials, Central University of Jammu, Rahya-Suchani (Bagla), Samba, 181143 Jammu, J& K (India); Gupta, Vinay [Department of Physics & Astrophysics, University of Delhi, Delhi 110007 (India)

    2017-06-15

    A novel synthesis method for luminescent and by-products (like CdO) free CdS/SiO{sub 2} and CdS:Ag(1%)/SiO{sub 2} (i.e. 1%Ag doped CdS/SiO{sub 2}) nanocomposite thin films at room temperature by pulsed laser deposition is reported. Targets of CdS, CdS:Ag(1%) and SiO{sub 2} are used to deposit CdS/SiO{sub 2} and CdS:Ag(1%)/SiO{sub 2} nanocomposite thin films by swapping them at a frequency ratio of 2:8 laser pulses/sec. X-ray photoelectron spectroscopy analysis ensures the ratio of CdS to SiO{sub 2} in nanocomposite as 21:79 which is nearly same as the ratio of incident pulses/sec (i.e. 2:8) on the two targets. Transmission electron micrographs visualize the formation of CdS/ CdS:Ag(1%) nanocrystals in nanocomposite systems after annealing at 500 °C. Highly intense and broad red emission is achieved from CdS/SiO{sub 2} and CdS:Ag(1%)/SiO{sub 2} nanocomposites. The efficiencies of emission from pristine CdS:SiO{sub 2} and CdS:Ag(1%)/SiO{sub 2} nanocomposites are found to be enhanced by approximately two times as compared to sole nanocrystalline CdS and CdS:Ag(1%) thin films respectively and further enhanced upto 7 times on annealing the nanocomposite systems at 500 °C. - Graphical abstract: A modified synthesis method for luminescent and by-products (like CdO) free undoped &1% Ag doped CdS/SiO{sub 2} (deposit CdS/SiO{sub 2} and CdS:Ag(1%)/SiO{sub 2}) nanocomposite thin films at room temperature by pulsed laser deposition is reported. Targets of CdS or CdS:Ag(1%) and SiO{sub 2} are used to deposit CdS/SiO{sub 2} and CdS:Ag(1%)/SiO{sub 2} nanocomposite thin films by swapping them at a frequency of 2:8 pulses/sec. X-ray photoelectron spectroscopy analysis ensures the ratio of CdS to SiO{sub 2} in nanocomposite as 21:79 which is nearly same as the ratio of incident pulses/sec (2:8) on the two targets. Transmission electron micrographs visualize the formation of CdS nanocrystals in nanocomposite systems after annealing at 500 °C. Intense and broad red emission is

  15. Temperature stability of c-axis oriented LiNbO{sub 3}/SiO{sub 2}/Si thin film layered structures

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Monika [Department of Physics and Astrophysics, University of Delhi, Delhi (India)]. E-mail: mtomar@physics.du.ac.in; monikatomar@rediffmail.com; Gupta, Vinay; Mansingh, Abhai; Sreenivas, K. [Department of Physics and Astrophysics, University of Delhi, Delhi (India)

    2001-08-07

    Theoretical calculations have been performed for the temperature stability of the c-axis oriented LiNbO{sub 3} thin film layered structures on passivated silicon (SiO{sub 2}/Si) substrate with and without a non-piezoelectric SiO{sub 2} overlayer. The phase velocity, electromechanical coupling coefficient and temperature coefficient of delay (TCD) have been calculated. The thicknesses of various layers have been determined for optimum SAW performance with zero TCD. The presence of a non-piezoelectric SiO{sub 2} overlayer on LiNbO{sub 3} film is found to significantly enhance the coupling coefficient. The optimized results reveal that a high coupling coefficient of K{sup 2}=3.45% and a zero TCD can be obtained in the SiO{sub 2}/LiNbO{sub 3}/SiO{sub 2}/Si structure with a 0.235{lambda} thick LiNbO{sub 3} layer sandwiched between 0.1{lambda} thick SiO{sub 2} layers. (author)

  16. Magnetic properties, domain-wall creep motion, and the Dzyaloshinskii-Moriya interaction in Pt/Co/Ir thin films

    Science.gov (United States)

    Shepley, Philippa M.; Tunnicliffe, Harry; Shahbazi, Kowsar; Burnell, Gavin; Moore, Thomas A.

    2018-04-01

    We study the magnetic properties of perpendicularly magnetized Pt/Co/Ir thin films and investigate the domain-wall creep method of determining the interfacial Dzyaloshinskii-Moriya (DM) interaction in ultrathin films. Measurements of the Co layer thickness dependence of saturation magnetization, perpendicular magnetic anisotropy, and symmetric and antisymmetric (i.e., DM) exchange energies in Pt/Co/Ir thin films have been made to determine the relationship between these properties. We discuss the measurement of the DM interaction by the expansion of a reverse domain in the domain-wall creep regime. We show how the creep parameters behave as a function of in-plane bias field and discuss the effects of domain-wall roughness on the measurement of the DM interaction by domain expansion. Whereas modifications to the creep law with DM field and in-plane bias fields have taken into account changes in the energy barrier scaling parameter α , we find that both α and the velocity scaling parameter v0 change as a function of in-plane bias field.

  17. In Situ PDF Study of the Nucleation and Growth of Intermetallic PtPb Nanocrystals

    DEFF Research Database (Denmark)

    Saha, Dipankar; Bojesen, Espen D.; Mamakhel, Mohammad Aref Hasen

    2017-01-01

    The mechanism of Pt and PtPb nanocrystal formation under supercritical ethanol conditions has been investigated by means of in situ X-ray total scattering and pair distribution function (PDF) analysis. The metal complex structures of two different platinum precursor solutions, chloroplatinic acid...... supercritical ethanol process for obtaining phase-pure hexagonal PtPb nanocrystals. The study thus highlights the importance of in situ studies in revealing atomic-scale information about nucleation mechanisms, which can be used in design of specific synthesis pathways, and the new continuous-flow process...

  18. Oxidation behavior of arc evaporated Al-Cr-Si-N thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tritremmel, Christian; Daniel, Rostislav; Mitterer, Christian; Mayrhofer, Paul H.; Lechthaler, Markus; Polcik, Peter [Christian Doppler Laboratory for Advanced Hard Coatings, Department of Physical Metallurgy and Materials Testing, Montanuniversitaet Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria); Christian Doppler Laboratory for Application Oriented Coating Development, Department of Physical Metallurgy and Materials Testing, Montanuniversitaet Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria); OC Oerlikon Balzers AG, Iramali 18, LI-9496 Balzers (Liechtenstein); PLANSEE Composite Materials GmbH, Siebenbuergerstrasse 23, D-86983 Lechbruck am See (Germany)

    2012-11-15

    The impact of Al and Si on the oxidation behavior of Al-Cr-(Si)-N thin films synthesized by arc evaporation of powder metallurgically prepared Al{sub x}Cr{sub 1-x} targets with x = Al/(Al + Cr) of 0.5, 0.6, and 0.7 and (Al{sub 0.5}Cr{sub 0.5}){sub 1-z}Si{sub z} targets with Si contents of z = 0.05, 0.1, and 0.2 in N{sub 2} atmosphere was studied in detail by means of differential scanning calorimetry, thermogravimetric analysis (TGA), x-ray diffraction, and Raman spectroscopy. Dynamical measurements in synthetic air (up to 1440 Degree-Sign C) revealed the highest onset temperature of pronounced oxidation for nitride coatings prepared from the Al{sub 0.4}Cr{sub 0.4}Si{sub 0.2} target. Isothermal TGA at 1100, 1200, 1250, and 1300 Degree-Sign C highlight the pronounced improvement of the oxidation resistance of Al{sub x}Cr{sub 1-x}N coatings by the addition of Si. The results show that Si promotes the formation of a dense coating morphology as well as a dense oxide scale when exposed to air.

  19. X-ray diffraction and high resolution transmission electron microscopy characterization of intermetallics formed in Fe/Ti nanometer-scale multilayers during thermal annealing

    International Nuclear Information System (INIS)

    Wu, Z.L.; Peng, T.X.; Cao, B.S.; Lei, M.K.

    2009-01-01

    Intermetallics formation in the Fe/Ti nanometer-scale multilayers magnetron-sputtering deposited on Si(100) substrate during thermal annealing at 623-873 K was investigated by using small and wide angle X-ray diffraction and cross-sectional high-resolution transmission electron microscopy. The Fe/Ti nanometer-scale multilayers were constructed with bilayer thickness of 16.2 nm and the sublayer thickness ratio of 1:1. At the annealing temperature of 623 K, intermetallics FeTi were formed by nucleation at the triple joins of α-Fe(Ti)/α-Ti interface and α-Ti grain boundary with an orientational correlation of FeTi(110)//α-Ti(100) and FeTi[001]//α-Ti[001] to adjacent α-Ti grains. The lateral growth of intermetallics FeTi which is dependent on the diffusion path of Ti led to a coalescence into an intermetallic layer. With an increase in the annealing temperature, intermetallics Fe 2 Ti were formed between the intermetallics FeTi and the excess Fe due to the limitation of Fe and Ti atomic concentrations, resulting in the coexistence of intermetallics FeTi and Fe 2 Ti. It was found that the low energy interface as well as the dominant diffusion path constrained the nucleation and growth of intermetallics during interfacial reaction in the nanometer-scale metallic multilayers.

  20. Pressure effect on magnetic and magnetotransport properties of intermetallic and colossal magnetoresistance oxide compounds

    International Nuclear Information System (INIS)

    Arnold, Z; Ibarra, M R; Algarabel, P A; Marquina, C; Teresa, Jose MarIa de; Morellon, L; Blasco, J; Magen, C; Prokhnenko, O; Kamarad, J; Ritter, C

    2005-01-01

    The joint power of neutron diffraction and pressure techniques allows us to characterize under unique conditions the nature and different role of basic interactions in solids. We have covered a broad phenomenology in archetypical compounds: intermetallics and magnetic oxides. We have selected compounds in which the effect of moderate pressure is able to modify the electronic structure and bond angles that in turn are in the bases of magnetic and structural transitions. Complex magnetic and structural phase diagrams are reported for compounds with magnetic (Tb 1-X Y X Mn 2 ) and structural (RE 5 Si 4-X Ge X ) instabilities. Pressure-induced change of the magnetic structure in (R 2 Fe 17 ) intermetallics and the effect on the colossal magnetoresistance manganites are described

  1. Thermal stability of (AlSi)x(ZrVTi) intermetallic phases in the Al–Si–Cu–Mg cast alloy with additions of Ti, V, and Zr

    International Nuclear Information System (INIS)

    Shaha, S.K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D.L.

    2014-01-01

    Highlights: • Al–Si–Cu–Mg alloy was modified by introducing Zr, V, and Ti. • The chemistry of the phases was identified using SEM/EDX. • The crystal lattice parameters of the phases were characterized using EBSD. • To investigate the phase stability, XRD was performed up to 600 °C. • Thermal analysis was done to find out the possible phase transformation reactions. - Abstract: The Al–Si–Cu–Mg cast alloy was modified with additions of Ti–V–Zr to improve the thermal stability of intermetallics at increased temperatures. A combination of electron microscopy, electron backscatter diffraction, and high temperature X-ray diffraction was explored to identify phases and temperatures of their thermal stability. The micro-additions of transition metals led to formation of several (AlSi) x (TiVZr) phases with D0 22 /D0 23 tetragonal crystal structure and different lattice parameters. While Cu and Mg rich phases along with the eutectic Si dissolved at temperatures from 300 to 500 °C, the (AlSi) x (TiVZr) phases were stable up to 696–705 °C which is the beneficial to enhance the high temperature properties. Findings of this study are useful for selecting temperatures during melting and heat treatment of Al–Si alloys with additions of transition metals

  2. Dynamic magnetization of NiZn ferrite doped FeSiAl thin films fabricated by oblique sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Xiaoxi, E-mail: xiaoxi.zhong@gmail.com [Sichuan Province Key Laboratory of Information Materials and Devices Application, Chengdu University of Information Technology, Chengdu 610225 (China); Phuoc, Nguyen N. [Temasek Laboratories, National University of Singapore, 5A Engineering Drive 2, Singapore 117411 (Singapore); Soh, Wee Tee [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Ong, C.K. [Temasek Laboratories, National University of Singapore, 5A Engineering Drive 2, Singapore 117411 (Singapore); Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Li, Lezhong [Sichuan Province Key Laboratory of Information Materials and Devices Application, Chengdu University of Information Technology, Chengdu 610225 (China)

    2017-06-15

    Highlights: • We prepared NiZn ferrite doped FeSiAl-based thin films using oblique deposition technique. • The magnetic properties of FeSiAl-based thin films were systematically studied. • Two ferromagnetic resonance peaks were observed in the permeability spectra. • The thermal stability of microwave properties of FeSiAl-based films was studied. • The thermal stability of properties we studied was relatively good. - Abstract: In this study, we comprehensively investigate the dynamic magnetic properties of FeSiAl-NiZnFeO thin films prepared by the oblique deposition method via a shorted microstrip perturbation technique. For the films with higher oblique angle and NiZn ferrite doping amount, there are two ferromagnetic resonance peaks observed in the permeability spectra, and both of the two peaks originate from FeSiAl. Furthermore, the magnetic anisotropy field H{sub K} of the ferromagnetic resonance peak at higher frequency is enhanced with increasing doping amount, which is interpreted in terms of the contribution of reinforced stress-induced anisotropy and shape anisotropy brought about by doping elements and oblique sputtering method. In addition, the thermal stability of the ferromagnetic resonance frequency f{sub FMR} of FeSiAl-NiZnFeO films with oblique angles of 35° and 45° with respect to temperature ranging from 300 K to 420 K is deteriorated with increasing ferrite doping amount, which is mainly ascribed to the influence of pair-ordering anisotropy and/or the reduction of the FeSiAl grain size.

  3. Raman spectra of amorphous silicon thin films deposited by glow discharge

    International Nuclear Information System (INIS)

    Bustarret, E.; Alvarez, F.; Brenzikofer, R.; Vilche Pena, A.; Chambouleyron, I.

    1983-01-01

    The local disorder present in films of a-Si:H and a-Si sub(x) N 1 - sub(x):H has been studied through first order Raman spectroscopy, using the 5145A line of an Argon laser in a backscattering geometry at room temperature. This allowed us to compare thin films deposited in two different reactors where the capacitively coupled glow-discharge was produced either in a 'cross field' or a 'parallel field' geometry. Gaseous mixtures of SiH 4 , N 2 , He and Ar have been used in both cases. The systematic variation of the preparation parameters leads to a whole class of 'alloys' including partially micro-crystallized films. (Author) [pt

  4. Vacancies and atomic processes in intermetallics - From crystals to quasicrystals and bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Hans-Eckhardt [Institute of Theoretical and Applied Physics, Stuttgart University, Pfaffenwaldring 57, 70569 Stuttgart (Germany); Baier, Falko [Voith Turbo Comp., Alexanderstr. 2, 89552 Heidenheim (Germany); Mueller, Markus A. [GFT Technologies A. G., Filderhauptstr. 142, 70599 Stuttgart (Germany); Reichle, Klaus J. [Philipp-Matthaeus-Hahn School, Jakob-Beutter-Str. 15, 72336 Balingen (Germany); Reimann, Klaus [NXP Semiconductors, Central Research and Development, High Tech Campus 4, 5656 AE Eindhoven (Netherlands); Rempel, Andrey A. [Institute of Solid State Chemistry, Russian Academy of Sciences, Ul. Pervomaiskaya 91, 620041 Ekaterinburg (Russian Federation); Sato, Kiminori [Tokyo Gakugei University, Nukuikita 4-1-1, Koganei, Tokyo 184-8501 (Japan); Ye, Feng [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, 30 Xue Yuan Road, Beijing 100083 (China); Zhang, Xiangyi [Yanshan University, Qinhuangdao 066004 (China); Sprengel, Wolfgang [Institute of Materials Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria)

    2011-10-15

    A review is given on atomic vacancies in intermetallic compounds. The intermetallic compounds cover crystalline, quasicrystalline, and bulk metallic glass (BMG) structures. Vacancies can be specifically characterized by their positron lifetimes, by the coincident measurement of the Doppler broadening of the two quanta emitted by positron-electron annihilation, or by time-differential dilatometry. By these techniques, high concentrations and low mobilities of thermal vacancies were found in open-structured B2 intermetallics such as FeAl or NiAl, whereas the concentrations of vacancies are low and their mobilities high in close-packed structure as, e.g., L1{sub 2}-Ni{sub 3}Al. The activation volumes of vacancy formation and migration are determined by high-pressure experiments. The favorable sublattice for vacancy formation is found to be the majority sublattice in Fe{sub 61}Al{sub 39} and in MoSi{sub 2}. In the icosahedral quasicrystal Al{sub 70}Pd{sub 21}Mn{sub 9} the thermal vacancy concentration is low, whereas in the BMG Zr{sub 57}Cu{sub 15.4}Ni{sub 12.6}Nb{sub 3}Al{sub 10} thermal vacancies are found in high concentrations with low mobilities. This may determine the basic mechanisms of the glass transition. Making use of the experimentally determined vacancy data, the main features of atomic diffusion studies in crystalline intermetallics, in quasicrystals, and in BMGs can be understood. Manfred Faehnle and his group have substantially contributed to the theoretical understanding of vacancies and diffusion mechanisms in intermetallics. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Polycrystalline Mg2Si thin films: A theoretical investigation of their electronic transport properties

    International Nuclear Information System (INIS)

    Balout, H.; Boulet, P.; Record, M.-C.

    2015-01-01

    The electronic structures and thermoelectric properties of a polycrystalline Mg 2 Si thin film have been investigated by first-principle density-functional theory (DFT) and Boltzmann transport theory calculations within the constant-relaxation time approximation. The polycrystalline thin film has been simulated by assembling three types of slabs each having the orientation (001), (110) or (111) with a thickness of about 18 Å. The effect of applying the relaxation procedure to the thin film induces disorder in the structure that has been ascertained by calculating radial distribution functions. For the calculations of the thermoelectric properties, the energy gap has been fixed at the experimental value of 0.74 eV. The thermoelectric properties, namely the Seebeck coefficient, the electrical conductivity and the power factor, have been determined at three temperatures of 350 K, 600 K and 900 K with respect to both the energy levels and the p-type and n-type doping levels. The best Seebeck coefficient is obtained at 350 K: the S yy component of the tensor amounts to about ±1000 μV K −1 , depending on the type of charge carriers. However, the electrical conductivity is much too small which results in low values of the figure of merit ZT. Structure–property relationship correlations based on directional radial distribution functions allow us to tentatively draw some explanations regarding the anisotropy of the electrical conductivity. Finally, the low ZT values obtained for the polycrystalline Mg 2 Si thin film are paralleled with those recently reported in the literature for bulk chalcogenide glasses. - Graphical abstract: Structure of the polycrystalline thin film of Mg 2 Si. - Author-Highlights: • Polycrystalline Mg 2 Si film has been modelled by DFT approach. • Thermoelectric properties have been evaluated by semi-classical Boltzmann theory. • The structure was found to be slightly disordered after relaxation. • The highest value of Seebeck

  6. Methanol Adsorption and Reaction on Samaria Thin Films on Pt(111

    Directory of Open Access Journals (Sweden)

    Jin-Hao Jhang

    2015-09-01

    Full Text Available We investigated the adsorption and reaction of methanol on continuous and discontinuous films of samarium oxide (SmOx grown on Pt(111 in ultrahigh vacuum. The methanol decomposition was studied by temperature programmed desorption (TPD and infrared reflection absorption spectroscopy (IRRAS, while structural changes of the oxide surface were monitored by low-energy electron diffraction (LEED. Methanol dehydrogenates to adsorbed methoxy species on both the continuous and discontinuous SmOx films, eventually leading to the desorption of CO and H2 which desorbs at temperatures in the range 400–600 K. Small quantities of CO2 are also detected mainly on as-prepared Sm2O3 thin films, but the production of CO2 is limited during repeated TPD runs. The discontinuous film exhibits the highest reactivity compared to the continuous film and the Pt(111 substrate. The reactivity of methanol on reduced and reoxidized films was also investigated, revealing how SmOx structures influence the chemical behavior. Over repeated TPD experiments, a SmOx structural/chemical equilibrium condition is found which can be approached either from oxidized or reduced films. We also observed hydrogen absence in TPD which indicates that hydrogen is stored either in SmOx films or as OH groups on the SmOx surfaces.

  7. Partially spin-polarized Josephson tunneling between non-centrosymmetric superconductors like CePt3Si

    International Nuclear Information System (INIS)

    Mandal, S.S.; Mukherjee, S.P.

    2007-01-01

    Full text: The recent discovery of the superconductivity in the heavy fermionic compound CePt 3 Si have attracted much of the attention of the physics community. The presence of strong Rashba kind of spin-orbit coupling in them split the otherwise degenerate electronic band into two nondegenerate bands. This peculiarity in the band structure gives rise to complicated kind of order parameter whose exact nature is unknown till date. Traditionally Josephson junctions in superconductors draw interest both scientifically and its applicability in making devices. It has been used in several cases as a probe to the order parameter symmetry of the superconductor. It has also been studied in unconventional superconductors like spin-singlet cuprate and spin-triplet Sr 2 RuO 4 superconductors. However no Josephson junction between nonmagnetic superconductors is known to generate spin-polarized current. The purpose of this work is to theoretically show that the direction dependent tunneling matrix element across the junction between two recently discovered non-centrosymmetric superconductors like CePt 3 Si, leads to tunneling of both spin-singlet and spin-triplet Cooper pairs. As a consequence, nonvanishing spin-Josephson current is viable along with the usual charge-Josephson current. This novel spin-Josephson current depends on the relative angle xi between the axes of non-centrosymmetry {n} L and that {n} R in the left and right side of the junction respectively. This angular dependence may be used to make Josephson spin switch. (authors)

  8. Structure evolution of multilayer materials of heat-resistant intermetallic compounds under the influence of temperature in the process of diffusion welding under pressure and their mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Korzhov, Valeriy P.; Karpov, Michael I.; Prokhorov, Dmitriy V. [Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka (Russian Federation)

    2013-07-01

    Multilayer materials of high-resistant intermetallic compounds of some transition metals with aluminum and silicon were obtained by diffusion welding of packages, collected from a large number of the respective foils, such as niobium and aluminum. Materials of intermetallics with silicon were obtained by the welding of packages built from metal foils with Si-coating. The change in the structure according to the temperature of the welding was studied, and the high-temperature bending strength was determined. Key words: multilayer composite, high-resistant material, intermetallic compound, diffusion welding, package rolling, layered structure, bending strength.

  9. Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Almir Oliveira; Dias, Ricardo R.; Tusi, Marcelo M.; Linardi, Marcelo; Spinace, Estevam V. [Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, Cidade Universitaria, CEP 05508-900 Sao Paulo, SP (Brazil)

    2007-03-30

    PtRu/C, PtSn/C and PtSnRu/C electrocatalysts were prepared by the alcohol reduction process using ethylene glycol as the solvent and reduction agent and Vulcan Carbon XC72 as the support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry. The electrochemical oxidation of methanol and ethanol were studied by chronoamperometry using a thin porous coating technique. The PtSn/C electrocatalyst prepared by this methodology showed superior performance compared to the PtRu/C and PtSnRu/C electrocatalysts for methanol and ethanol oxidation at room temperature. (author)

  10. Ion-beam mixed ultra-thin cobalt suicide (CoSi2) films by cobalt sputtering and rapid thermal annealing

    Science.gov (United States)

    Kal, S.; Kasko, I.; Ryssel, H.

    1995-10-01

    The influence of ion-beam mixing on ultra-thin cobalt silicide (CoSi2) formation was investigated by characterizing the ion-beam mixed and unmixed CoSi2 films. A Ge+ ion-implantation through the Co film prior to silicidation causes an interface mixing of the cobalt film with the silicon substrate and results in improved silicide-to-silicon interface roughness. Rapid thermal annealing was used to form Ge+ ion mixed and unmixed thin CoSi2 layer from 10 nm sputter deposited Co film. The silicide films were characterized by secondary neutral mass spectroscopy, x-ray diffraction, tunneling electron microscopy (TEM), Rutherford backscattering, and sheet resistance measurements. The experi-mental results indicate that the final rapid thermal annealing temperature should not exceed 800°C for thin (micrographs of the ion-beam mixed and unmixed CoSi2 films reveals that Ge+ ion mixing (45 keV, 1 × 1015 cm-2) produces homogeneous silicide with smooth silicide-to-silicon interface.

  11. Thermal stability of Ti3SiC2 thin films

    International Nuclear Information System (INIS)

    Emmerlich, Jens; Music, Denis; Eklund, Per; Wilhelmsson, Ola; Jansson, Ulf; Schneider, Jochen M.; Hoegberg, Hans; Hultman, Lars

    2007-01-01

    The thermal stability of Ti 3 SiC 2 (0 0 0 1) thin films is studied by in situ X-ray diffraction analysis during vacuum furnace annealing in combination with X-ray photoelectron spectroscopy, transmission electron microscopy and scanning transmission electron microscopy with energy dispersive X-ray analysis. The films are found to be stable during annealing at temperatures up to ∼1000 deg. C for 25 h. Annealing at 1100-1200 deg. C results in the rapid decomposition of Ti 3 SiC 2 by Si out-diffusion along the basal planes via domain boundaries to the free surface with subsequent evaporation. As a consequence, the material shrinks by the relaxation of the Ti 3 C 2 slabs and, it is proposed, by an in-diffusion of O into the empty Si-mirror planes. The phase transformation process is followed by the detwinning of the as-relaxed Ti 3 C 2 slabs into (1 1 1)-oriented TiC 0.67 layers, which begin recrystallizing at 1300 deg. C. Ab initio calculations are provided supporting the presented decomposition mechanisms

  12. Si-based thin film coating on Y-TZP: Influence of deposition parameters on adhesion of resin cement

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, José Renato Cavalcanti, E-mail: joserenatocq@hotmail.com [Potiguar University, Department of Biotechnology, Natal (Brazil); Nogueira Junior, Lafayette [São Paulo State University, Department of Prosthodontics and Dental Materials, São José dos Campos (Brazil); Massi, Marcos [Federal University of São Paulo, Institute of Science and Technology, São José dos Campos (Brazil); Silva, Alecssandro de Moura; Bottino, Marco Antonio [São Paulo State University, Department of Prosthodontics and Dental Materials, São José dos Campos (Brazil); Sobrinho, Argemiro Soares da Silva [Technological Institute of Aeronautics, Department of Physics, São José dos Campos (Brazil); Özcan, Mutlu [University of Zurich, Dental Materials Unit, Center for Dental and Oral Medicine, Clinic for Fixed and Removable Prosthodontics and Dental Materials Science, Zurich (Switzerland)

    2013-10-01

    This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0–14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia.

  13. Si-based thin film coating on Y-TZP: Influence of deposition parameters on adhesion of resin cement

    International Nuclear Information System (INIS)

    Queiroz, José Renato Cavalcanti; Nogueira Junior, Lafayette; Massi, Marcos; Silva, Alecssandro de Moura; Bottino, Marco Antonio; Sobrinho, Argemiro Soares da Silva; Özcan, Mutlu

    2013-01-01

    This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0–14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia.

  14. Enhanced ferro-and piezoelectric properties of Bi4Ti3O12-CaBi4Ti4O15 thin film on Pt(111)/Ti/SiO2/Si substrate

    Science.gov (United States)

    Yan, J.; Hu, G. D.

    2018-05-01

    Bi4Ti3O12-CaBi4Ti4O15 (BT-CBTi) film was fabricated on Pt(111)/Ti/SiO2/Si substrate by the sol-gel method. The intergrowth structure was demonstrated to be obtained both in the film and corresponding powder sample according to x-ray diffraction (XRD) patterns. The good fatigue resistance as well as a strong charge-retaining ability can be obtained in the intergrowth BT-CBTi film. The remanent polarization (P r ) and coercive field (E c ) for BT-CBTi film was about 28 μC cm‑2 and 150 kV cm‑1 under an electric field of 540 kV cm‑1, respectively. The P r value of purely (100)-oriented BT-CBTi film can be roughly estimated to be higher than 50 μC cm‑2 based on both the volume fraction of (100)-oriented grains and the piezoelectric properties. The P r value of BT-CBTi film is about 50 μC cm‑2 under an electric field of 1100 kV cm‑1 in predominently (100)-oriented BT-CBTi film. It means that it is reasonable to predict the performance of (100)-oriented BT-CBTi films based on the ferroelectric and piezoelectric properties of the polycrystalline BT-CBTi film. The spontaneous polarization is larger than 80 μC cm‑2 under an electric field of 1100 kV cm‑1.

  15. Fatigue of superalloys and intermetallics

    International Nuclear Information System (INIS)

    Stoloff, N.S.

    1993-01-01

    The fatigue behavior of intermetallic alloys and their composites is contrasted to that of nickel-base superalloys. The roles of microstructure and slip planarity are emphasized. Obstacles to use of intermetallics under cyclic loading conditions are described and future research directions are suggested

  16. Li4SiO4-Based Artificial Passivation Thin Film for Improving Interfacial Stability of Li Metal Anodes.

    Science.gov (United States)

    Kim, Ji Young; Kim, A-Young; Liu, Guicheng; Woo, Jae-Young; Kim, Hansung; Lee, Joong Kee

    2018-03-14

    An amorphous SiO 2 (a-SiO 2 ) thin film was developed as an artificial passivation layer to stabilize Li metal anodes during electrochemical reactions. The thin film was prepared using an electron cyclotron resonance-chemical vapor deposition apparatus. The obtained passivation layer has a hierarchical structure, which is composed of lithium silicide, lithiated silicon oxide, and a-SiO 2 . The thickness of the a-SiO 2 passivation layer could be varied by changing the processing time, whereas that of the lithium silicide and lithiated silicon oxide layers was almost constant. During cycling, the surface of the a-SiO 2 passivation layer is converted into lithium silicate (Li 4 SiO 4 ), and the portion of Li 4 SiO 4 depends on the thickness of a-SiO 2 . A minimum overpotential of 21.7 mV was observed at the Li metal electrode at a current density of 3 mA cm -2 with flat voltage profiles, when an a-SiO 2 passivation layer of 92.5 nm was used. The Li metal with this optimized thin passivation layer also showed the lowest charge-transfer resistance (3.948 Ω cm) and the highest Li ion diffusivity (7.06 × 10 -14 cm 2 s -1 ) after cycling in a Li-S battery. The existence of the Li 4 SiO 4 artificial passivation layer prevents the corrosion of Li metal by suppressing Li dendritic growth and improving the ionic conductivity, which contribute to the low charge-transfer resistance and high Li ion diffusivity of the electrode.

  17. Ultra-thin silicon oxide layers on crystalline silicon wafers: Comparison of advanced oxidation techniques with respect to chemically abrupt SiO{sub 2}/Si interfaces with low defect densities

    Energy Technology Data Exchange (ETDEWEB)

    Stegemann, Bert, E-mail: bert.stegemann@htw-berlin.de [HTW Berlin - University of Applied Sciences, 12459 Berlin (Germany); Gad, Karim M. [University of Freiburg, Department of Microsystems Engineering - IMTEK, 79110 Freiburg (Germany); Balamou, Patrice [HTW Berlin - University of Applied Sciences, 12459 Berlin (Germany); Helmholtz Center Berlin for Materials and Energy (HZB), 12489 Berlin (Germany); Sixtensson, Daniel [Helmholtz Center Berlin for Materials and Energy (HZB), 12489 Berlin (Germany); Vössing, Daniel; Kasemann, Martin [University of Freiburg, Department of Microsystems Engineering - IMTEK, 79110 Freiburg (Germany); Angermann, Heike [Helmholtz Center Berlin for Materials and Energy (HZB), 12489 Berlin (Germany)

    2017-02-15

    Highlights: • Fabrication of ultrathin SiO{sub 2} tunnel layers on c-Si. • Correlation of electronic and chemical SiO{sub 2}/Si interface properties revealed by XPS/SPV. • Chemically abrupt SiO{sub 2}/Si interfaces generate less interface defect states considerable. - Abstract: Six advanced oxidation techniques were analyzed, evaluated and compared with respect to the preparation of high-quality ultra-thin oxide layers on crystalline silicon. The resulting electronic and chemical SiO{sub 2}/Si interface properties were determined by a combined x-ray photoemission (XPS) and surface photovoltage (SPV) investigation. Depending on the oxidation technique, chemically abrupt SiO{sub 2}/Si interfaces with low densities of interface states were fabricated on c-Si either at low temperatures, at short times, or in wet-chemical environment, resulting in each case in excellent interface passivation. Moreover, the beneficial effect of a subsequent forming gas annealing (FGA) step for the passivation of the SiO{sub 2}/Si interface of ultra-thin oxide layers has been proven. Chemically abrupt SiO{sub 2}/Si interfaces have been shown to generate less interface defect states.

  18. < c >-component plastic displacements in different microstructures of TiAl-base intermetallics

    Czech Academy of Sciences Publication Activity Database

    Orlová, Alena; Kuchařová, Květa; Dlouhý, Antonín

    2008-01-01

    Roč. 483, Sp.Iss.SI (2008), s. 109-112 ISSN 0921-5093. [International Conference on the Strength of Materials /14./. Xian, 04.06.2006-09.06.2006] R&D Projects: GA AV ČR(CZ) 1QS200410502; GA MŠk OC 522.100 Institutional research plan: CEZ:AV0Z20410507 Keywords : intermetallics * creep * transmission electron microscopy * titanium aluminides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.806, year: 2008

  19. Investigation of SiO2 thin films dielectric constant using ellipsometry technique

    Directory of Open Access Journals (Sweden)

    P Sangpour

    2014-11-01

    Full Text Available In this paper, we studied the optical behavior of SiO2 thin films prepared via sol-gel route using spin coating deposition from tetraethylorthosilicate (TEOS as precursor. Thin films were annealed at different temperatures (400-600oC. Absorption edge and band gap of thin layers were measured using UV-Vis spectrophotometery. Optical refractive index and dielectric constant were measured by ellipsometry technique. Based on our atomic force microscopic (AFM and ellipsometry results, thin layers prepared through this method showed high surface area, and high porosity ranging between 4.9 and 16.9, low density 2 g/cm, and low dielectric constant. The dielectric constant and porosity of layers increased by increasing the temperature due to the changes in surface roughness and particle size.

  20. Modification of erbium photoluminescence decay rate due to ITO layers on thin films of SiO{sub 2}:Er doped with Si-nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Wojdak, M., E-mail: m.wojdak@ucl.ac.uk [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Jayatilleka, H. [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario, Canada M5S 3G4 (Canada); Shah, M. [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Kenyon, A.J., E-mail: t.kenyon@ucl.ac.uk [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Gourbilleau, F.; Rizk, R. [Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), ENSICAEN, CNRS, CEA/IRAMIS, Université de Caen, 14050 CAEN cedex (France)

    2013-04-15

    During the fabrication of MOS light emitting devices, the thin film of active material is usually characterized by photoluminescence measurements before electrical contacts are deposited. However, the presence of a conductive contact layer can alter the luminescent properties of the active material. The local optical density of states changes due to the proximity of luminescent species to the interface with the conductive medium (the top electrode), and this modifies the radiative rate of luminescent centers within the active layer. In this paper we report enhancement of the observed erbium photoluminescence rate after deposition of indium tin oxide contacts on thin films of SiO{sub 2}:Er containing silicon nanoclusters, and relate this to Purcell enhancement of the erbium radiative rate. -- Highlights: ► We studied photoluminescence of Er in SiO{sub 2} thin films doped with Si nanoclusters. ► Presence of ITO layer on the top enhances photoluminescence decay rate of Er. ► The effect depends on the thickness of active film. ► Radiative rate change in proximity of ITO layer was calculated theoretically. ► The calculation results are compared with the experiment and discussed.

  1. Fabrication and characterization of Al2O3 /Si composite nanodome structures for high efficiency crystalline Si thin film solar cells

    Directory of Open Access Journals (Sweden)

    Ruiying Zhang

    2015-12-01

    Full Text Available We report on our fabrication and characterization of Al2O3/Si composite nanodome (CND structures, which is composed of Si nanodome structures with a conformal cladding Al2O3 layer to evaluate its optical and electrical performance when it is applied to thin film solar cells. It has been observed that by application of Al2O3thin film coating using atomic layer deposition (ALD to the Si nanodome structures, both optical and electrical performances are greatly improved. The reflectivity of less than 3% over the wavelength range of from 200 nm to 2000 nm at an incident angle from 0° to 45° is achieved when the Al2O3 film is 90 nm thick. The ultimate efficiency of around 27% is obtained on the CND textured 2 μm-thick Si solar cells, which is compared to the efficiency of around 25.75% and 15% for the 2 μm-thick Si nanodome surface-decorated and planar samples respectively. Electrical characterization was made by using CND-decorated MOS devices to measure device’s leakage current and capacitance dispersion. It is found the electrical performance is sensitive to the thickness of the Al2O3 film, and the performance is remarkably improved when the dielectric layer thickness is 90 nm thick. The leakage current, which is less than 4x10−9 A/cm2 over voltage range of from -3 V to 3 V, is reduced by several orders of magnitude. C-V measurements also shows as small as 0.3% of variation in the capacitance over the frequency range from 10 kHz to 500 kHz, which is a strong indication of surface states being fully passivated. TEM examination of CND-decorated samples also reveals the occurrence of SiOx layer formed between the interface of Si and the Al2O3 film, which is thin enough that ensures the presence of field-effect passivation, From our theoretical and experimental study, we believe Al2O3 coated CND structures is a truly viable approach to achieving higher device efficiency.

  2. The sequence of intermetallic formation and solidification pathway of an Al–13Mg–7Si–2Cu in-situ composite

    Energy Technology Data Exchange (ETDEWEB)

    Farahany, Saeed, E-mail: saeedfarahany@gmail.com [Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru (Malaysia); Nordin, Nur Azmah; Ourdjini, Ali; Abu Bakar, TutyAsma; Hamzah, Esah; Idris, Mohd Hasbullah [Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru (Malaysia); Hekmat-Ardakan, Alireza [École Polytechnique de Montréal, Dép. de Génie Chimique, P.O. Box 6079, Centre-ville, Montreal, Quebec H3C 3A7 (Canada)

    2014-12-15

    The phase transformation sequence and solidification behaviour of an Al–13Mg–7Si–2Cu in-situ composite was examined using a combination of computer-aided cooling curve thermal analysis and interrupted quenching techniques. Five different phases were identified by analysing the derivative cooling curves, the X-ray diffraction profile, optical and scanning electron microscopy images and the corresponding energy dispersive spectroscopy. It has been found that the solidification of this alloy begins with primary Mg{sub 2}Si precipitation and continues with the formation of eutectic Al–Mg{sub 2}Si, followed by Al{sub 5}FeSi and simultaneous precipitation of Al{sub 5}Cu{sub 2}Mg{sub 8}Si{sub 6} and Al{sub 2}Cu complex intermetallic phases. The formation of the last three intermetallic compounds changes the solidification behaviour of these composites remarkably due to their complex eutectic formation reactions. The solidification of the alloy, calculated using the Factsage thermochemical analysis software, has demonstrated a good agreement with the experiments in terms of compound prediction, their weight fractions and reaction temperatures. - Highlights: • Solidification path of a commercial Al-13Mg-7Si-2Cu composite was characterized. • Five different phases were identified and then confirmed with EDS and XRD results. • Mg{sub 2}Si, Al-Mg{sub 2}Si,Al{sub 5}FeSi (β),Al{sub 5}Cu{sub 2}Mg{sub 8}Si{sub 6} (Q) and Al{sub 2}Cu(θ) precipitated respectively. • Solidification was predicted using the Factsage thermochemical analysis software.

  3. Structural damage in thin SLIM-Cut c-Si foils fabricated for solar cell purposes: atomic assessment by electron spin resonance

    International Nuclear Information System (INIS)

    Kepa, J; Stesmans, A; Martini, R

    2015-01-01

    Within the context of reducing production costs, thin (<90 μm) silicon foils intended for photovoltaic applications have been fabricated from standard (100)Si wafers using a low-temperature (<150 °C) stress-induced lift-off process. A multi-frequency electron spin resonance (ESR) study was performed in order to evaluate, at atomic scale, the quality of the material in terms of defects, including identification and quantification. Generally, a complex ESR spectrum is observed, disentangled as the superposition of three separate signals. This includes, most prominently (∼91% of total density) the D-line (Si 3  ≡ Si· dangling bonds in a disordered Si environment), a set (∼6%) of highly anisotropic signals ascribed to dislocations (K1-like), and a triplet, identified as the Si-SL5 N-donor defect. Defect density depth profiling from the lift-off side shows all signals disappear in tandem after etching off a ∼33 μm thick Si layer, indicating a highly correlated−equal in relative terms−distribution of the three types of defects over the affected top part of the Si foil. The defect density is found to be highly non-uniform laterally, with the density peaking near the crack initiation point, from which defect generation spreads. It is thus found that the SLIM-Cut method for fabrication of thin Si foils results in the introduction of defects that would unacceptably impair the functionality of photovoltaic cells built on these substrates. Fortunately, this may be cured by etching off a thin top Si layer, resulting in a most useful thin Si foil of standard high quality. (paper)

  4. The effect of Nb doping on ferroelectric properties of PZT thin films prepared from polymeric precursors

    International Nuclear Information System (INIS)

    Souza, E.C.F.; Simoes, A.Z.; Cilense, M.; Longo, E.; Varela, J.A.

    2004-01-01

    Pure and Nb doped PbZr 0.4 Ti 0.6 O 3 thin films was prepared by the polymeric precursor method and deposited by spin coating on Pt/Ti/SiO 2 /Si (100) substrates and annealed at 700 deg. C. The films are oriented in (1 1 0) and (1 0 0) direction. The electric properties of PZT thin films show strong dependence of the crystallographic orientation. The P-E hysteresis loops for the thin film with composition PbZr 0.39 Ti 0.6 Nb 0.1 O 3 showed good saturation, with values for coercive field (E c ) equal to 60 KV cm -1 and for remanent polarization (P r ) equal to 20 μC cm -2 . The measured dielectric constant (ε) is 1084 for this film. These results show good potential for application in FERAM

  5. Enhanced field emission from Si doped nanocrystalline AlN thin films

    International Nuclear Information System (INIS)

    Thapa, R.; Saha, B.; Chattopadhyay, K.K.

    2009-01-01

    Si doped and undoped nanocrystalline aluminum nitride thin films were deposited on various substrates by direct current sputtering technique. X-ray diffraction analysis confirmed the formation of phase pure hexagonal aluminum nitride with a single peak corresponding to (1 0 0) reflection of AlN with lattice constants, a = 0.3114 nm and c = 0.4986 nm. Energy dispersive analysis of X-rays confirmed the presence of Si in the doped AlN films. Atomic force microscopic studies showed that the average particle size of the film prepared at substrate temperature 200 deg. C was 9.5 nm, but when 5 at.% Si was incorporated the average particle size increased to ∼21 nm. Field emission study indicated that, with increasing Si doping concentration, the emission characteristics have been improved. The turn-on field (E to ) was 15.0 (±0.7) V/μm, 8.0 (±0.4) V/μm and 7.8 (±0.5) V/μm for undoped, 3 at.% and 5 at.% Si doped AlN films respectively and the maximum current density of 0.27 μA/cm 2 has been observed for 5 at.% Si doped nanocrystalline AlN film. It was also found that the dielectric properties were highly dependent on Si doping.

  6. Preparation and study of nanostructured TiAlSiN thin films

    Directory of Open Access Journals (Sweden)

    Jakab-Farkas L.

    2011-12-01

    Full Text Available TiAlSiN thin film coatings were deposited by DC reactive magnetron sputtering of TiAlSi target with 40 at.% Ti, 40 at.% Al and 20 at.% Si, performed in N2-Ar gas mixture. The sputtering power used in these experiments was controlled for 400 W. The bias voltage of the substrates was kept at -20 V DC and the temperature at 500 0C. All the samples were prepared with a constant flow rate of Ar and different nitrogen flow rates, which were selected from 1.25 sccm to 4.0 sccm. Nanostructured TiAlSiN coatings were developed on Si(100 and HSS substrates. Microstructure investigation of the coatings was performed by transmission electron microscopy investigation, structure investigation was performed by XRD analysis, and the mechanical properties of the coatings have been tested by ball-on-disk tribological investigation and micro-Vickers hardness measurements. In this paper will be shown that for optimized nitrogen concentration the microstructure of TiAlSiN coating evolve from a competitive columnar growth to a dendritic growth one with very fine nano-lamellae like morphology. The developed nanostructured TiAlSiN coatingshave hardness HV exceeding 40 GPa and show an increased abrasive wear resistance

  7. Thermal stability of (AlSi){sub x}(ZrVTi) intermetallic phases in the Al–Si–Cu–Mg cast alloy with additions of Ti, V, and Zr

    Energy Technology Data Exchange (ETDEWEB)

    Shaha, S.K. [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Czerwinski, F., E-mail: Frank.Czerwinski@nrcan.gc.ca [CanmetMATERIALS, Natural Resources Canada, 183 Longwood Road South, Hamilton, Ontario L8P 0A5 (Canada); Kasprzak, W. [CanmetMATERIALS, Natural Resources Canada, 183 Longwood Road South, Hamilton, Ontario L8P 0A5 (Canada); Friedman, J.; Chen, D.L. [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada)

    2014-11-10

    Highlights: • Al–Si–Cu–Mg alloy was modified by introducing Zr, V, and Ti. • The chemistry of the phases was identified using SEM/EDX. • The crystal lattice parameters of the phases were characterized using EBSD. • To investigate the phase stability, XRD was performed up to 600 °C. • Thermal analysis was done to find out the possible phase transformation reactions. - Abstract: The Al–Si–Cu–Mg cast alloy was modified with additions of Ti–V–Zr to improve the thermal stability of intermetallics at increased temperatures. A combination of electron microscopy, electron backscatter diffraction, and high temperature X-ray diffraction was explored to identify phases and temperatures of their thermal stability. The micro-additions of transition metals led to formation of several (AlSi){sub x}(TiVZr) phases with D0{sub 22}/D0{sub 23} tetragonal crystal structure and different lattice parameters. While Cu and Mg rich phases along with the eutectic Si dissolved at temperatures from 300 to 500 °C, the (AlSi){sub x}(TiVZr) phases were stable up to 696–705 °C which is the beneficial to enhance the high temperature properties. Findings of this study are useful for selecting temperatures during melting and heat treatment of Al–Si alloys with additions of transition metals.

  8. Site-specific Pt deposition and etching on electrically and thermally isolated SiO2 micro-disk surfaces

    International Nuclear Information System (INIS)

    Saraf, Laxmikant V

    2010-01-01

    Electrically and thermally isolated surfaces are crucial for improving the detection sensitivity of microelectronic sensors. The site-specific in situ growth of Pt nano-rods on thermally and electrically isolated SiO 2 micro-disks using wet chemical etching and a focused ion/electron dual beam (FIB-SEM) is demonstrated. Fabrication of an array of micro-cavities on top of a micro-disk is also demonstrated. The FIB source is utilized to fabricate through-holes in the micro-disks. Due to the amorphous nature of SiO 2 micro-disks, the Ga implantation possibly modifies through-hole sidewall surface chemistry rather than affecting its transport properties. Some sensor design concepts based on micro-fabrication of SiO 2 micro-disks utilizing thermally and electrically isolated surfaces are discussed from the viewpoint of applications in photonics and bio-sensing.

  9. ZnO:Al Thin Film Gas Sensor for Detection of Ethanol Vapor

    Directory of Open Access Journals (Sweden)

    Min Hsiung Hon

    2006-10-01

    Full Text Available The ZnO:Al thin films were prepared by RF magnetron sputtering on Si substrateusing Pt as interdigitated electrodes. The structure was characterized by XRD and SEManalyses, and the ethanol vapor gas sensing as well as electrical properties have beeninvestigated and discussed. The gas sensing results show that the sensitivity for detecting400 ppm ethanol vapor was ~20 at an operating temperature of 250°C. The high sensitivity,fast recovery, and reliability suggest that ZnO:Al thin film prepared by RF magnetronsputtering can be used for ethanol vapor gas sensing.

  10. Crystal structure of a novel cerium indide Ce{sub 6}Pt{sub 11}In{sub 14}

    Energy Technology Data Exchange (ETDEWEB)

    Stepien-Damm, J.; Bukowski, Z.; Zaremba, V.I.; Pikul, A.P.; Kaczorowski, D

    2004-10-06

    The crystal structure of a new intermetallic compound Ce{sub 6}Pt{sub 11}In{sub 14} has been determined from single crystal X-ray data and was refined by a full-matrix least-squares method down to R{sub 1}=0.0497 for 1215 structure factors and 96 parameters. The unit cell is monoclinic, space group C2/m, Z=2 with the lattice parameters: a=22.729(5) A, b=4.3960(10) A, c=14.780(3) A and {beta}=118.35(3) deg. . It represents a new type of crystal structure of intermetallic compounds.

  11. Perpendicular magnetic anisotropy of non-epitaxial hexagonal Co{sub 50}Pt{sub 50} thin films prepared at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, F.T., E-mail: ftyuan@gmail.com [iSentek Ltd., Advanced Sensor Laboratory, New Taipei City 22101, Taiwan (China); Chang, H.W., E-mail: wei0208@gmail.com [Department of Applied Physics, Tunghai University, Taichung 40704, Taiwan (China); Lee, P.Y.; Chang, C.Y. [Department of Applied Physics, Tunghai University, Taichung 40704, Taiwan (China); Chi, C.C. [Department of Materials Sciences and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Ouyang, H., E-mail: houyang@mx.nthu.edu.tw [Department of Materials Sciences and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2015-04-15

    Highlights: • In this paper, we propose a non-epitaxially grown PMA thin film of disorder hexagonal Co{sub 50}Pt{sub 50} which can satisfy all the requirements at once. • Although the preparation temperature is at room temperature and no post annealing is required, the film also shows good thermal stability up to 400 °C. • Moreover, the easy-controlling single layer deposition process of the film largely enhances the feasibility of practical production. • Significant PMA is achieved in a wide range of film thickness from 2 nm to 20 nm, which expands the usage form a GMR or TMR magnetic junctions to perpendicular spin polarizer for spin current related engineering. • The presented results may open new opportunities for advanced spintronic devices. - Abstract: Non-epitaxially induced perpendicular magnetic anisotropy (PMA) of Co{sub 50}Pt{sub 50} thin films at room temperature (RT) is reported. The CoPt film having a disordered hcp structure shows a magnetocrystalline anisotropy (K{sub u}{sup RT}) of 1–2 × 10{sup 6} erg/cm{sup 3} in a wide range of layer thickness from 2 to 20 nm. K{sub u}{sup RT} of about 1 × 10{sup 6} erg/cm{sup 3} can be preserved after a 400 °C-thermal cycle in the 5-nm-thick sample. Moderate PMA, large thickness range, simple preparation process, low formation temperature but good thermal stability make presented hcp CoPt become a remarkable option for advanced spintronic devices.

  12. DOE-EPSCoR. Exchange interactions in epitaxial intermetallic layered systems

    Energy Technology Data Exchange (ETDEWEB)

    LeClair, Patrick R. [Univ. of Alabama, Tuscaloosa, AL (United States); Gary, Mankey J. [Univ. of Alabama, Tuscaloosa, AL (United States)

    2015-05-25

    The goal of this research is to develop a fundamental understanding of the exchange interactions in epitaxial intermetallic alloy thin films and multilayers, including films and multilayers of Fe-Pt, Co-Pt and Fe-P-Rh alloys deposited on MgO and Al2O3 substrates. Our prior results have revealed that these materials have a rich variety of ferromagnetic, paramagnetic and antiferromagnetic phases which are sensitive functions of composition, substrate symmetry and layer thickness. Epitaxial antiferromagnetic films of FePt alloys exhibit a different phase diagram than bulk alloys. The antiferromagnetism of these materials has both spin ordering transitions and spin orienting transitions. The objectives include the study of exchange-inversion materials and the interface of these materials with ferromagnets. Our aim is to formulate a complete understanding of the magnetic ordering in these materials, as well as developing an understanding of how the spin structure is modified through contact with a ferromagnetic material at the interface. The ultimate goal is to develop the ability to tune the phase diagram of the materials to produce layered structures with tunable magnetic properties. The alloy systems that we will study have a degree of complexity and richness of magnetic phases that requires the use of the advanced tools offered by the DOE-operated national laboratory facilities, such as neutron and x-ray scattering to measure spin ordering, spin orientations, and element-specific magnetic moments. We plan to contribute to DOE’s mission of producing “Materials by Design” with properties determined by alloy composition and crystal structure. We have developed the methods for fabricating and have performed neutron diffraction experiments on some of the most interesting phases, and our work will serve to answer questions raised about the element-specific magnetizations using the magnetic x-ray dichroism techniques and interface magnetism in layered structures

  13. Nanostructures based in boro nitride thin films deposited by PLD onto Si/Si3N4/DLC substrate

    International Nuclear Information System (INIS)

    Roman, W S; Riascos, H; Caicedo, J C; Ospina, R; Tirado-MejIa, L

    2009-01-01

    Diamond-like carbon and boron nitride were deposited like nanostructered bilayer on Si/Si 3 N 4 substrate, both with (100) crystallographic orientation, these films were deposited through pulsed laser technique (Nd: YAG: 8 Jcm -2 , 9ns). Graphite (99.99%) and boron nitride (99.99%) targets used to growth the films in argon atmosphere. The thicknesses of bilayer were determined with a perfilometer, active vibration modes were analyzed using infrared spectroscopy (FTIR), finding bands associated around 1400 cm -1 for B - N bonding and bands around 1700 cm -1 associated with C=C stretching vibrations of non-conjugated alkenes and azometinic groups, respectively. The crystallites of thin films were analyzed using X-ray diffraction (XRD) and determinated the h-BN (0002), α-Si 3 N 4 (101) phases. The aim of this study is to relate the dependence on physical and chemical characteristics of the system Si/Si 3 N 4 /DLC/BN with gas pressure adjusted at the 1.33, 2.67 and 5.33 Pa values.

  14. Corrosion resistance of the NdFeB coated with AlN/SiC bilayer thin films by magnetron sputtering under different environments

    International Nuclear Information System (INIS)

    Tao, Lei; Li, Heqin; Shen, Jiong; Qiao, Kai; Wang, Wei; Zhou, Chu; Zhang, Jing; Tang, Qiong

    2015-01-01

    The AlN/SiC bilayer and SiC monolayer thin films were deposited on sintered NdFeB by RF magnetron sputtering to improve the corrosion resistance. Their structures and morphologies were studied by XRD and AFM and SEM. The corrosion behaviors of AlN/SiC and SiC-coated NdFeB in 3.5 wt% NaCl, 20 wt% NaOH and 0.1 mol/L H 2 SO 4 solutions were characterized with potentiodynamic polarization curves. The results show that AlN/SiC and SiC thin films can evidently improve the corrosion resistance of NdFeB, and the AlN/SiC films have the better resistance than the SiC film. - Highlights: • SiC monolayer and AlN/SiC bilayer thin films have been prepared on NdFeB at room temperature by RF magnetron sputtering. • NdFeB coated with AlN/SiC bilayer films has more corrosion resistance than that coated with SiC monolayer film under different environments. • The grains of the AlN/SiC bilayer films are finer and the surface roughness is lower than that of SiC monolayer film

  15. Corrosion resistance of the NdFeB coated with AlN/SiC bilayer thin films by magnetron sputtering under different environments

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Lei [School of Materials Science and Engineering, Hefei University of Technology, Anhui Hefei 230009 (China); Li, Heqin, E-mail: lhqjs@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Anhui Hefei 230009 (China); Shen, Jiong [Earth-Panda Advance Magnetic Material Co., Ltd., Anhui Lujiang 231500 (China); Qiao, Kai; Wang, Wei; Zhou, Chu [School of Materials Science and Engineering, Hefei University of Technology, Anhui Hefei 230009 (China); Zhang, Jing; Tang, Qiong [School of Materials Science and Engineering, Hefei University of Technology, Anhui Hefei 230009 (China); School of Electronic Science and Applied Physics, Hefei University of Technology, Anhui Hefei 230009 (China)

    2015-02-01

    The AlN/SiC bilayer and SiC monolayer thin films were deposited on sintered NdFeB by RF magnetron sputtering to improve the corrosion resistance. Their structures and morphologies were studied by XRD and AFM and SEM. The corrosion behaviors of AlN/SiC and SiC-coated NdFeB in 3.5 wt% NaCl, 20 wt% NaOH and 0.1 mol/L H{sub 2}SO{sub 4} solutions were characterized with potentiodynamic polarization curves. The results show that AlN/SiC and SiC thin films can evidently improve the corrosion resistance of NdFeB, and the AlN/SiC films have the better resistance than the SiC film. - Highlights: • SiC monolayer and AlN/SiC bilayer thin films have been prepared on NdFeB at room temperature by RF magnetron sputtering. • NdFeB coated with AlN/SiC bilayer films has more corrosion resistance than that coated with SiC monolayer film under different environments. • The grains of the AlN/SiC bilayer films are finer and the surface roughness is lower than that of SiC monolayer film.

  16. Sintered cobalt-rare earth intermetallic product

    International Nuclear Information System (INIS)

    Benz, M.C.

    1975-01-01

    A process is described for preparing novel sintered cobalt--rare earth intermetallic products which can be magnetized to form permanent magnets having stable improved magnetic properties. A cobalt--rare earth metal alloy is formed having a composition which at sintering temperature falls outside the composition covered by the single Co 5 R intermetallic phase on the rare earth richer side. The alloy contains a major amount of the Co 5 R intermetallic phase and a second solid CoR phase which is richer in rare earth metal content than the Co 5 R phase. The specific cobalt and rare earth metal content of the alloy is substantially the same as that desired in the sintered product. The alloy, in particulate form, is pressed into compacts and sintered to the desired density. The sintered product is comprised of a major amount of the Co 5 R solid intermetallic phase and up to about 35 percent of the product of the second solid CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase

  17. Microprocessing of ITO and a-Si thin films using ns laser sources

    Science.gov (United States)

    Molpeceres, C.; Lauzurica, S.; Ocaña, J. L.; Gandía, J. J.; Urbina, L.; Cárabe, J.

    2005-06-01

    Selective ablation of thin films for the development of new photovoltaic panels and sensoring devices based on amorphous silicon (a-Si) is an emerging field, in which laser micromachining systems appear as appropriate tools for process development and device fabrication. In particular, a promising application is the development of purely photovoltaic position sensors. Standard p-i-n or Schottky configurations using transparent conductive oxides (TCO), a-Si and metals are especially well suited for these applications, appearing selective laser ablation as an ideal process for controlled material patterning and isolation. In this work a detailed study of laser ablation of a widely used TCO, indium-tin-oxide (ITO), and a-Si thin films of different thicknesses is presented, with special emphasis on the morphological analysis of the generated grooves. Excimer (KrF, λ = 248 nm) and DPSS lasers (λ = 355 and λ = 1064 nm) with nanosecond pulse duration have been used for material patterning. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) techniques have been applied for the characterization of the ablated grooves. Additionally, process parametric windows have been determined in order to assess this technology as potentially competitive to standard photolithographic processes. The encouraging results obtained, with well-defined ablation grooves having thicknesses in the order of 10 µm both in ITO and in a-Si, open up the possibility of developing a high-performance double Schottky photovoltaic matrix position sensor.

  18. Pb(Zr,TiO3 (PZT Thin Film Sensors for Fully-Integrated, Passive Telemetric Transponders

    Directory of Open Access Journals (Sweden)

    Richard X. FU

    2011-04-01

    Full Text Available The great potential of taking advantages of PZT in a single chip to achieve inexpensive, fully-integrated, passive telemetric transponders has been shown in this paper. The processes for the sputter deposition of Pb(Zr,TiO3 (PZT thin films from two different composite targets on both Si and c-plane sapphire substrates have been demonstrated. PZT thin films have been deposited by sputter technique. PZT films were deposited onto substrates (Si [(100 Cz wafer] and c-plane sapphire (0001//Ti//Pt followed by sputter-deposited Pt top electrodes. X-ray diffraction results showed that both sputtered PZT films were textured along the [110] direction. The degree of preference for the [110] direction was greater on sapphire substrate where the intensity of that peak is seen to be larger compared to the intensity one Si substrate. TEM data revealed that both sputtered PZT films were polycrystalline in nature. Selected area diffraction (SAD pattern showed that the degree of disorientation between the crystallites was smaller on sapphire substrate compared to on Si substrate, which confirmed the results from the XRD. The remnant polarization Pr on sapphire substrate was larger than on Si’s. The leakage current for the 11 % Pb target sputtered film was much less than 22 % Pb target sputtered film. The breakdown voltage on sapphire substrate was the best. However, for the 11 % Pb target sputtered film’s breakdown voltage was much higher than 22 % Pb target sputtered film.

  19. Formation of {beta}-FeSi{sub 2} thin films by partially ionized vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Noriyuki; Takai, Hiroshi

    2003-05-01

    The partially ionized vapor deposition (PIVD) is proposed as a new method to realize low temperature formation of {beta}-FeSi{sub 2} thin films. In this method, Fe is evaporated by E-gun and a few percents of Fe atoms are ionized. We have investigated influences of the ion content and the accelerating voltage of Fe ions on the structural properties of {beta}-FeSi{sub 2} films deposited on Si substrates. It was confirmed that {beta}-FeSi{sub 2} can be formed on Si(1 0 0) substrate by PIVD even at substrate temperature as low as 350, while FeSi by the conventional vacuum deposition. It was concluded that the influence of Fe ions on preferential orientation of {beta}-FeSi{sub 2} depends strongly on the content and the acceleration energy of ions.

  20. Growth of light-emitting SiGe heterostructures on strained silicon-on-insulator substrates with a thin oxide layer

    Energy Technology Data Exchange (ETDEWEB)

    Baidakova, N. A., E-mail: banatale@ipmras.ru [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Bobrov, A. I. [University of Nizhny Novgorod (Russian Federation); Drozdov, M. N.; Novikov, A. V. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Pavlov, D. A. [University of Nizhny Novgorod (Russian Federation); Shaleev, M. V.; Yunin, P. A.; Yurasov, D. V.; Krasilnik, Z. F. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2015-08-15

    The possibility of using substrates based on “strained silicon on insulator” structures with a thin (25 nm) buried oxide layer for the growth of light-emitting SiGe structures is studied. It is shown that, in contrast to “strained silicon on insulator” substrates with a thick (hundreds of nanometers) oxide layer, the temperature stability of substrates with a thin oxide is much lower. Methods for the chemical and thermal cleaning of the surface of such substrates, which make it possible to both retain the elastic stresses in the thin Si layer on the oxide and provide cleaning of the surface from contaminating impurities, are perfecte. It is demonstrated that it is possible to use the method of molecular-beam epitaxy to grow light-emitting SiGe structures of high crystalline quality on such substrates.

  1. Magnetic properties of rare-earth intermetallics

    International Nuclear Information System (INIS)

    Kirchmayr, H.

    1978-01-01

    A review is given of the concepts at present used to explain the magnetic properties of rare-earth intermetallics which have been the subject of numerous investigations in recent years. Rare-earth intermetallics with the formula Rsub(a)Bsub(b) are divided according to the magnetic moment of the B atom(s). If there is no magnetic moment present at the B-site, the exchange is only between the magnetic moments at the R-sites, which can only be of indirect character. One possible model is still the RKKY model, although it usually gives in practice only a qualitative description of the magnetic properties. Typical R-B compounds with the B-moment equal to zero are (for instance) the RA1 2 compounds, and related compounds such as the RZn and RCd compounds as well as compounds of the general formula RB 2 (B = Ni, Os, Ir, Pd, Ru or Rh). Of all intermetallics with nonzero B-moment, the R-3d intermetallics are the most important. These intermetallics can be formed with Mn, Fe, Co and Ni. In these systems there exist in principle three interactions, namely between the R-R, R-3d and 3d-3d atoms. The most important is usually the latter interaction. After a short discussion of the crystal structures which occur with R-3d intermetallics, the basic magnetic properties of R-3d intermetallics are presented. These properties are discussed with respect to the formation of a magnetic moment at the 3d site in the framework of present band theories. Special emphasis is given to a discussion of the localized or itinerant character of 3d electrons. (author)

  2. Formation of FePt nanodots by wetting of nanohole substrates

    Directory of Open Access Journals (Sweden)

    Ahmed M. Abdelgawad

    2016-05-01

    Full Text Available Large area arrays of FePt nanodots are fabricated on patterned substrates made of SiOx, SiNx and TiNx. The templates have a depth of ∼10 nm and a pitch of ∼20 nm with 18 nm wide holes. FePt is sputtered on the nanohole arrays, then back-etched, leaving a highly ordered array of FePt nanodots behind. To promote phase transformation to the L10 phase, the samples are annealed at temperatures of 550-650° C. During annealing, the FePt strongly dewets SiOx and SiNx substrates, causing sintering and coalescence of the FePt nanodots, but the nanodots remain highly ordered on the TiNx substrate. The nanodot arrays on TiNx are characterized magnetically before and after annealing. The out-of-plane coercivity increases by ∼1 kOe, suggesting partial transformation to the L10 phase. We also show that a capping layer can be sputtered on top of the nanodot arrays prior to annealing to prevent dewetting.

  3. Synthesis of Reusable Silica Nanosphere-Supported Pt(IV Complex for Formation of Disulfide Bonds in Peptides

    Directory of Open Access Journals (Sweden)

    Xiaonan Hou

    2017-02-01

    Full Text Available Some peptide-based drugs, including oxytocin, vasopressin, ziconotide, pramlintide, nesiritide, and octreotide, contain one intramolecular disulfide bond. A novel and reusable monodispersed silica nanosphere-supported Pt(IV complex (SiO2@TPEA@Pt(IV; TPEA: N-[3-(trimethoxysilylpropyl]ethylenediamine was synthesized via a four-step procedure and was used for the formation of intramolecular disulfide bonds in peptides. Transmission electron microscopy (TEM and chemical mapping results for the Pt(II intermediates and for SiO2@TPEA@Pt(IV show that the silica nanospheres possess a monodisperse spherical structure and contain uniformly-distributed Si, O, C, N, Cl, and Pt. The valence state of Pt on the silica nanospheres was characterized by X-ray photoelectron spectroscopy (XPS. The Pt(IV loaded on SiO2@TPEA@Pt(IV was 0.15 mmol/g, as determined by UV-VIS spectrometry. The formation of intramolecular disulfides in six dithiol-containing peptides of variable lengths by the use of SiO2@TPEA@Pt(IV was investigated, and the relative oxidation yields were determined by high-performance liquid chromatography (HPLC. In addition, peptide 1 (Ac-CPFC-NH2 was utilized to study the reusability of SiO2@TPEA@Pt(IV. No significant decrease in the relative oxidation yield was observed after ten reaction cycles. Moreover, the structure of SiO2@TPEA@Pt(IV after being used for ten cycles was determined to be similar to its initial one, demonstrating the cycling stability of the complex.

  4. Magnetic and electronic properties of some actinide intermetallic compounds

    International Nuclear Information System (INIS)

    Yaar, Ilan

    1992-06-01

    The electronic structure and magnetic properties of the light actinide intermetallic compounds are often related to interplay between localized and itinerant (band like) behavior of the 5f- electrons. In the present work, the properties of some actinide, mainly Np, intermetallic compounds were studied by Mossbauer effect, ac and dc susceptibility, X-ray and Neutron diffraction techniques. 1. NpX 2 (X=Ga,Si) - Both compounds order ferromagnetically at TC=55(2) and 48(2) K respectively. A comparison of our data with the results for other NpX 2 (X=Al,As,Sb,Tl) compounds indicates that NpGa 2 is a highly localized 5f electron system, whereas in NpSi 2 the 5f electrons are partially delocalized. The magnetic properties of NpX 2 compounds can neither be consistently explained within the conventional crystal electric field picture (CEF) nor by takink into account hybridization dressing of local spin density models. 2. NpX 3 (X=Ga,Si,In,Al) in the cubic AuCu 3 (Pm3m) crystallographic structure - From the Mossbauer isomer shift (IS) data we argue that the Np ion in the NpX 3 family is close to the formal 3+ (5I 4 ) charge state. The magnetic moment of the Np in NpSi 3 is totally suppressed whereas in NpGa 3 and NpAl 3 a localized (narrow band) moment is established. However, in NpIn 3 at 4.2 K, a modulated magnetic moment (0-1.5μB) is observed. Comparing the magnetic behavior of the NpX 3 family (X=Si,Ge,Ga, Al,In and Sn), we find an impressive variation of the magnetic properties, from temperature independent paramagnetism (TIP), localized and modulated ordered moments, to the formation of a concentrated Kondo lattice. Hybridization of 5f electrons with ligand electrons appears to play a crucial role in establishing these magnetic properties. However, at present a consistent theoretical picture can not be drawn. 3. XFe 4 Al 8 (X=Ho,Np,U) spin galss (SG) systems in the ThMn 12 (I 4 /mmm) crystallographic structure - Localized and itinerant behaviour of the f electrons

  5. Role of SiNx Barrier Layer on the Performances of Polyimide Ga2O3-doped ZnO p-i-n Hydrogenated Amorphous Silicon Thin Film Solar Cells

    Science.gov (United States)

    Wang, Fang-Hsing; Kuo, Hsin-Hui; Yang, Cheng-Fu; Liu, Min-Chu

    2014-01-01

    In this study, silicon nitride (SiNx) thin films were deposited on polyimide (PI) substrates as barrier layers by a plasma enhanced chemical vapor deposition (PECVD) system. The gallium-doped zinc oxide (GZO) thin films were deposited on PI and SiNx/PI substrates at room temperature (RT), 100 and 200 °C by radio frequency (RF) magnetron sputtering. The thicknesses of the GZO and SiNx thin films were controlled at around 160 ± 12 nm and 150 ± 10 nm, respectively. The optimal deposition parameters for the SiNx thin films were a working pressure of 800 × 10−3 Torr, a deposition power of 20 W, a deposition temperature of 200 °C, and gas flowing rates of SiH4 = 20 sccm and NH3 = 210 sccm, respectively. For the GZO/PI and GZO-SiNx/PI structures we had found that the GZO thin films deposited at 100 and 200 °C had higher crystallinity, higher electron mobility, larger carrier concentration, smaller resistivity, and higher optical transmittance ratio. For that, the GZO thin films deposited at 100 and 200 °C on PI and SiNx/PI substrates with thickness of ~000 nm were used to fabricate p-i-n hydrogenated amorphous silicon (α-Si) thin film solar cells. 0.5% HCl solution was used to etch the surfaces of the GZO/PI and GZO-SiNx/PI substrates. Finally, PECVD system was used to deposit α-Si thin film onto the etched surfaces of the GZO/PI and GZO-SiNx/PI substrates to fabricate α-Si thin film solar cells, and the solar cells’ properties were also investigated. We had found that substrates to get the optimally solar cells’ efficiency were 200 °C-deposited GZO-SiNx/PI. PMID:28788494

  6. Role of SiNx Barrier Layer on the Performances of Polyimide Ga2O3-doped ZnO p-i-n Hydrogenated Amorphous Silicon Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Fang-Hsing Wang

    2014-02-01

    Full Text Available In this study, silicon nitride (SiNx thin films were deposited on polyimide (PI substrates as barrier layers by a plasma enhanced chemical vapor deposition (PECVD system. The gallium-doped zinc oxide (GZO thin films were deposited on PI and SiNx/PI substrates at room temperature (RT, 100 and 200 °C by radio frequency (RF magnetron sputtering. The thicknesses of the GZO and SiNx thin films were controlled at around 160 ± 12 nm and 150 ± 10 nm, respectively. The optimal deposition parameters for the SiNx thin films were a working pressure of 800 × 10−3 Torr, a deposition power of 20 W, a deposition temperature of 200 °C, and gas flowing rates of SiH4 = 20 sccm and NH3 = 210 sccm, respectively. For the GZO/PI and GZO-SiNx/PI structures we had found that the GZO thin films deposited at 100 and 200 °C had higher crystallinity, higher electron mobility, larger carrier concentration, smaller resistivity, and higher optical transmittance ratio. For that, the GZO thin films deposited at 100 and 200 °C on PI and SiNx/PI substrates with thickness of ~1000 nm were used to fabricate p-i-n hydrogenated amorphous silicon (α-Si thin film solar cells. 0.5% HCl solution was used to etch the surfaces of the GZO/PI and GZO-SiNx/PI substrates. Finally, PECVD system was used to deposit α-Si thin film onto the etched surfaces of the GZO/PI and GZO-SiNx/PI substrates to fabricate α-Si thin film solar cells, and the solar cells’ properties were also investigated. We had found that substrates to get the optimally solar cells’ efficiency were 200 °C-deposited GZO-SiNx/PI.

  7. A spin echo study of A15 intermetallic compounds

    International Nuclear Information System (INIS)

    Schoep, G.K.

    1976-01-01

    This thesis mainly concerns the measurement of spin-lattice relaxation times in intermetallic compounds of the bcc lattice structure, having the formula V 3 X (C = Pt, Ir, Os, Pd, Rh, Ni, Co, Au). When, in a spin echo experiment, a two-pulse sequence was applied, several quadrupolar echoes were observed. Special attention is given to the 'forbidden' echoes (absol.(Δm')GT1) in V 3 Au and V 3 Co. In relation to the V 3 X compounds, several characteristics are discussed including temperature dependence and concentration dependence of spin relaxation times, superconductivity and the importance of d-state electrons in determination of the spin relaxation times. Finally, the above characteristics were determined for 6 different samples of the vanadium-gold alloy, V 3 Au, specifically

  8. Intermetallics as innovative CRM-free materials

    Science.gov (United States)

    Novák, Pavel; Jaworska, Lucyna; Cabibbo, Marcello

    2018-03-01

    Many of currently used technical materials cannot be imagined without the use of critical raw materials. They require chromium (e.g. in stainless and tool steels), tungsten and cobalt (tool materials, heat resistant alloys), niobium (steels and modern biomaterials). Therefore there is a need to find substitutes to help the European economy. A promising solution can be the application of intermetallics. These materials offer wide variety of interesting properties, such as high hardness and wear resistance or high chemical resistance. In this paper, the overview of possible substitute materials among intermetallics is presented. Intermetallics based on aluminides and silicides are shown as corrosion resistant materials, composites composed of ceramics in intermetallic matrix as possible tool materials. The manufacturing processes are being developed to minimize the disadvantages of these materials, mainly the room-temperature brittleness.

  9. Progress in atomizing high melting intermetallic titanium based alloys by means of a novel plasma melting induction guiding gas atomization facility (PIGA)

    Energy Technology Data Exchange (ETDEWEB)

    Gerling, R.; Schimansky, F.P.; Wagner, R. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    1994-12-31

    For the production of intermetallic titanium based alloy powders a novel gas atomization facility has been put into operation: By means of a plasma torch the alloy is melted in a water cooled copper crucible in skull melting technique. To the tap hole of the crucible, a novel transfer system is mounted which forms a thin melt stream and guides it into the gas nozzle. This transfer system consists of a ceramic free induction heated water cooled copper funnel. Gas atomization of {gamma}-TiAl (melting temperature 1400 C) and Ti{sub 5}Si{sub 3} (2130 C) proved the possibility to produce ceramic free pre-alloyed powders with this novel facility. The TiAl powder particles are spherical; about 20 wt.% are smaller than 45 {mu}m. The oxygen and copper pick up during atomization do not exceed 250 and 35 {mu}g/g respectively. The Ti{sub 5}Si{sub 3} powder particles are almost spherical. Only about 10 wt.% are <45 {mu}m whereas the O{sub 2} and Cu contamination is also kept at a very low level (250 and 20 {mu}g/g respectively). (orig.)

  10. The electrical, elemental, optical, and surface properties of Si-doped ZnO thin films prepared by thermionic vacuum arc

    Science.gov (United States)

    Mohammadigharehbagh, Reza; Özen, Soner; Yudar, Hafizittin Hakan; Pat, Suat; Korkmaz, Şadan

    2017-09-01

    The purpose of this work is to study the properties of Si-doped ZnO (SZO) thin films, which were prepared using the non-reactive thermionic vacuum arc technique. The analysis of the elemental, optical, and surface properties of ZnO:Si thin films was carried out using energy dispersive x-ray spectroscopy, UV-VIS spectrophotometry, atomic force microscopy, and scanning electron microscopy, respectively. The current-voltage measurement was employed in order to study the electrical properties of the films. The effect of Si doping on the physical properties of ZnO films was investigated. The film thicknesses were measured as 55 and 35 nm for glass and PET substrates, respectively. It was clearly observed from the x-ray diffraction results that the Si and ZnO peaks were present in the coated SZO films for all samples. The morphological studies showed that the deposited surfaces are homogenous, dense, and have a uniform surface, with the existence of some cracks only on the glass substrate. The elemental composition has confirmed the existence of Zn, Si, and O elements within the prepared films. Using a UV-VIS spectrophotometer, the optical parameters such as transmittance, absorbance, refractive index, and reflectance were calculated. It should be noted that the transparency and refractive indices obtained from the measurements decrease with increasing Si concentration. The obtained optical bandgap values using transmittance spectra were determined to be 3.74 and 3.84 eV for the glass and PET substrates, respectively. An increase in the bandgap results demonstrates that the Si doping concentration is comparable to the pure ZnO thin films. The current versus voltage curves revealed the ohmic nature of the films. Subsequently, the development and fabrication of excellent transparent conducting electrodes enabled the appropriate use of Si-doped ZnO thin films.

  11. Calculated mechanical and thermal properties of CePt{sub 3}Si and CePt{sub 3}B above their magnetic-ordering temperatures by an LDA-based ab-initio theory

    Energy Technology Data Exchange (ETDEWEB)

    Sykora, Rudolf [Nanotechnology Centre, VSB-TU Ostrava (Czech Republic); Legut, Dominik [IT4Innovations Centre, VSB-TU Ostrava (Czech Republic); Rogl, Gerda [Institute of Physical Chemistry, University of Vienna (Austria); Institute of Solid State Physics, University of Technology, Wien (Austria); Faculty of Physics, University of Vienna (Austria); Mueller, Peter; Mueller, Herbert; Bauer, Ernst [Institute of Solid State Physics, University of Technology, Wien (Austria); Puchegger, Stephan [Faculty of Physics, University of Vienna (Austria); Rogl, Peter [Institute of Physical Chemistry, University of Vienna (Austria)

    2015-07-01

    Adopting the plane-wave pseudopotential VASP[1] DFT package, using a simple local density approximation for electronic exchange and correlation effects, and disregarding spin-orbit interaction we calculate (a necessarily naive) electronic structure of CePt{sub 3}Si and CePt{sub 3}B materials (the former being known as a heavy-fermion superconductor with no inversion centre) under several discrete values of stress and strain. For each such configuration we calculate its phonon spectrum with a direct (supercell) method as supplied by the Phonopy program. Combining the results we obtain materials' thermal and mechanical properties within the quasi-harmonic approximation, presumably applicable to temperatures above magnetic-ordering temperatures. Results are compared to experimental data.

  12. Thin film solar modules: the low cost, high throughput and versatile alternative to Si wafers

    Energy Technology Data Exchange (ETDEWEB)

    Hegedus, S. [Delaware Univ., Inst. of Energy Conversion, Newark, DE (United States)

    2006-07-01

    Thin film solar cells (TFSC) have passed adolescence and are ready to make a substantial contribution to the world's electricity generation. They can have advantages over c-Si solar modules in ease of large area, lower cost manufacturing and in several types of applications. Factors which limit TFSC module performance relative to champion cell performance are discussed along with the importance of increased throughput and yield. The consensus of several studies is that all TFSC can achieve costs below 1 $/W if manufactured at sufficiently large scale >100 MW using parallel lines of cloned equipment with high material utilization and spray-on encapsulants. There is significant new commercial interest in TFSC from small investors and large corporations, validating the thin film approach. Unique characteristics are discussed which give TFSC an advantage over c-Si in two specific markets: small rural solar home systems and building integrated photovoltaic installations. TFSC have outperformed c-Si in annual energy production (kWhrs/kW), have demonstrated outdoor durability comparable to c-Si and are being used in MW scale installations worldwide. The merits of the thin film approach cannot be judged on the basis of efficiency alone but must also account for module performance and potential for low cost. TFSC advocates should promote their unique virtues compared to c-Si: lower cost, higher kWhr/kW output, higher battery charging current, attractive visual appearance, flexible substrates, long-term stability comparable to c-Si, and multiple pathways for deposition with room for innovation and evolutionary improvement. There is a huge market for TFSC even at today's efficiency if costs can be reduced. A brief window of opportunity exists for TFSC over the next few years due the Si shortage. The demonstrated capabilities and advantages of TFSC must be proclaimed more persistently to funding decision-makers and customers without minimizing the remaining

  13. Origin of open recoil curves in L1_0-A1 FePt exchange coupled nanocomposite thin film

    International Nuclear Information System (INIS)

    Goyal, Rajan; Kapoor, Akanksha; Lamba, S.; Annapoorni, S.

    2016-01-01

    Mixed phase FePt systems with intergranular coupling may be looked upon as natural exchange spring systems. The coupling strength between the soft and hard phase in these systems can be analyzed using recoil curves. However, the origin of open recoil curves depicting the breakdown of exchange coupling or anisotropy variation in hard phase is still an ambiguity and requires an in-depth analysis. In order to investigate this, an analysis of the recoil curves for L1_0–A1 FePt nanocomposite thin films of varying thickness have been performed. The switching field distribution reveals that the maximum of openness of recoil curve is directly proportional to the amount of uncoupled soft phase present in the system. The coupling between the hard and soft phase is also found to increase with the thickness of the film. Monte Carlo simulations on a model three dimensional array of interacting nanomagnetic grains provide further insight into the effect of inter granular exchange interactions between the soft and hard phases. - Highlights: • L1_0-A1 FePt nanocomposites thin films of different thickness have been fabricated by DC sputtering. • Hysteresis curve measurements exhibit perfect single phase (L1_0) like behavior for thicker films. • SFD reveals that the openness of recoil curves is directly linked with the amount of uncoupled soft (A1) phase. • Monte Carlo simulation predicts that the extent of exchange interaction increases with thickness of the film.

  14. Electrical resistivity of the Kondo system Ce{sub 1-x}La{sub x}Pt{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Bouziane, K.; Du Plessis, P. de V [f-Electron Magnetism and Heavy-Fermion Physics Programme, Department of Physics, University of the Witwatersrand, Private Bag 3, PO Wits 2050, Johannesburg (South Africa)

    1999-04-19

    The electrical resistivities of the Kondo system Ce{sub 1-x}La{sub x}Pt{sub 2}Si{sub 2} (0 {<=} x {<=} 1) are reported. It is observed that the resistivities of the alloy samples are reduced considerably as a result of annealing the samples. The results furthermore indicate the evolution from dense Kondo behaviour to single-ion incoherent Kondo scattering as x is increased. The resistivity in the dense Kondo regime shows a maximum which drops from T{sub max}=62 K for CePt{sub 2}Si{sub 2} to T{sub max}=36 K for x=0.2. Using the relationship T{sub max} {proportional_to} T{sub K} {proportional_to} exp(-1/JN(E{sub F})) where T{sub K} is the Kondo temperature, J is the exchange integral and N(E{sub F}) is the density of states at the Fermi level E{sub F}, and the experimentally observed values of T{sub max}(X) leads to vertical bar JN(E{sub F})vertical bar {sub 0} = 0.0645 {+-} 0.0004. (author)

  15. 640 X 480 MOS PtSi IR sensor

    Science.gov (United States)

    Sauer, Donald J.; Shallcross, Frank V.; Hseuh, Fu-Lung; Meray, Grazyna M.; Levine, Peter A.; Gilmartin, Harvey R.; Villani, Thomas S.; Esposito, Benjamin J.; Tower, John R.

    1991-12-01

    The design of a 1st and 2nd generation 640(H) X 480(V) element PtSi Schottky-barrier infrared image sensor employing a low-noise MOS X-Y addressable readout multiplexer and on-chip low-noise output amplifier is described. Measured performance characteristics for Gen 1 devices are presented along with calculated performance for the Gen 2 design. A multiplexed horizontal/vertical input address port and on-chip decoding is used to load scan data into CMOS horizontal and vertical scanning registers. This allows random access to any sub-frame in the 640 X 480 element focal plane array. By changing the digital pattern applied to the vertical scan register, the FPA can be operated in either an interlaced or non- interlaced format, and the integration time may be varied over a wide range (60 microsecond(s) to > 30 ms, for RS170 operation) resulting in a form of 'electronic shutter,' or variable exposure control. The pixel size of 24-micrometers X 24-micrometers results in a fill factor of 38% for 1.5-micrometers process design rules. The overall die size for the IR imager is 13.7 mm X 17.2 mm. All digital inputs to the chip are TTL compatible and include ESD protection.

  16. Effects of Mev Si Ions and Thermal Annealing on Thermoelectric and Optical Properties of SiO2/SiO2+Ge Multi-nanolayer thin Films

    Science.gov (United States)

    Budak, S.; Alim, M. A.; Bhattacharjee, S.; Muntele, C.

    Thermoelectric generator devices have been prepared from 200 alternating layers of SiO2/SiO2+Ge superlattice films using DC/RF magnetron sputtering. The 5 MeV Si ionsbombardmenthasbeen performed using the AAMU Pelletron ion beam accelerator to formquantum dots and / or quantum clusters in the multi-layer superlattice thin films to decrease the cross-plane thermal conductivity, increase the cross-plane Seebeck coefficient and increase the cross-plane electrical conductivity to increase the figure of merit, ZT. The fabricated devices have been annealed at the different temperatures to tailor the thermoelectric and optical properties of the superlattice thin film systems. While the temperature increased, the Seebeck coefficient continued to increase and reached the maximum value of -25 μV/K at the fluenceof 5x1013 ions/cm2. The decrease in resistivity has been seen between the fluence of 1x1013 ions/cm2 and 5x1013 ions/cm2. Transport properties like Hall coefficient, density and mobility did not change at all fluences. Impedance spectroscopy has been used to characterize the multi-junction thermoelectric devices. The loci obtained in the C*-plane for these data indicate non-Debye type relaxation displaying the presence of the depression parameter.

  17. Formation of thin DLC films on SiO{sub 2}/Si substrate using FCVAD technique

    Energy Technology Data Exchange (ETDEWEB)

    Bootkul, D. [Department of General Science, Faculty of Science, Srinakharinwirot University, Bangkok 10110 (Thailand); Thailand Centre of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Intarasiri, S., E-mail: saweat@gmail.com [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Centre of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Aramwit, C.; Tippawan, U. [Plasma and Beam Physics Research Facility (PBP), Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D. [Plasma and Beam Physics Research Facility (PBP), Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Centre of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2013-07-15

    Diamond-like carbon (DLC) films deposited on SiO{sub 2}/Si substrate are attractive for novel sensitive and selective chemical sensors. According to the almost never ending of size reduction, a nm-thickness layer of the film is greatly required. However, formation of such a very thin DLC film on SiO{sub 2}/Si substrate is challenging. In this experiment, DLC films were formed using our in-house Filtered Cathodic Vacuum Arc Deposition (FCVAD) facility by varying the bias voltage of 0 V, −250 V and −450 V with the arc voltage of 350 V, 450 V, 550 V, 650 V and 750 V for 10 min. Raman spectroscopy was applied for characterization of the film qualities and Transmission Electron Microscopy (TEM) was applied for cross sectional analysis. Results showed that films of thickness ranging from 10–50 nm were easily acquired depending on deposition conditions. Deconvolution of Raman spectra of these samples revealed that, when fixing the substrate bias but increasing the arc voltage from 350 to 750 V, the ratio between D-peak and G-peak intensity, namely I{sub D}/I{sub G} ratio, tended to reduce up to the arc voltage of 450 V, then increased up to the arc voltage of 650 V and finally decreased again. On the other hand, when fixing the arc voltage, the I{sub D}/I{sub G} ratio tended to decrease continuously as the increasing of bias voltage. It can be concluded that the bonding structure would evolve from a graphitic-like structure to a diamond-like structure as the substrate bias increases. Additionally, the sp{sup 3} site should be maximized at the arc voltage ∼450 V for fixed bias voltage. It is expected that, at −450 V bias and 450 V arc, sp{sup 3} fractions could be higher than 60%. However, in some cases, e.g. at low arc voltages, voids formed between the film and the amorphous SiO{sub 2} substrate. Electron energy loss spectroscopy (EELS) of the C edge across the DLC indicated that the thicker DLC film had uniform chemistry and structure, whereas the thin DLC

  18. Rare-earth transition-metal intermetallics: Structure-bonding-property relationships

    Energy Technology Data Exchange (ETDEWEB)

    Han, M. K. [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding property relationships. The work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe13-xSix system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn{sub 13}-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides Re2-xFe4Si14-y and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi2: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb3Zn3.6Al7.4: Partially ordered structure of Tb3Zn3.6Al7.4 compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn39(CrxAl1-x)81

  19. Rare-Earth Transition-Metal Intermetallics: Structure-bonding-Property Relationships

    Energy Technology Data Exchange (ETDEWEB)

    Han, Mi-Kyung [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Our explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding-property relationships. Our work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe13-xSix system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn13-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides RE2-xFe4Si14-y and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi2: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb3Zn3.6Al7.4: Partially ordered structure of Tb3.6Zn13-xAl7.4 compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn39(CrxAl1-x

  20. Investigation of optical and electrical properties of Pb(Zr1-xTix)O3 thin films on different substrates

    International Nuclear Information System (INIS)

    Kafadaryan, Eugenia; Aghamalyan, Natella; Nikogosyan, Sergey

    2006-01-01

    Pb(Zr 1-x Ti x )O 3 (PZT) polycrystalline thin films were prepared by sol-gel and pulsed laser deposition techniques on Pt/Ti/SiO 2 /Si (Pt) and SrRuO 3 /LaAlO 3 (SRO/LAO) substrates. Infrared reflectivity spectroscopy with oblique (45deg) light incidence revealed both the 3LO (688cm -1 ) phonon lineshape asymmetry decrease with increasing in thickness and the thinner, disordered boundary layer at the SRO/PZT interface independently of the film preparation method. The fatigue properties of PZT films were studied for various crystallographic orientations. It was observed that in the 52/48 PZT/SRO/LAO film, when the field is applied along the (001) direction, excellent fatigue resistance is obtained. (author)

  1. Electron microscopy study of Ni induced crystallization in amorphous Si thin films

    International Nuclear Information System (INIS)

    Radnóczi, G. Z.; Battistig, G.; Pécz, B.; Dodony, E.; Vouroutzis, N.; Stoemenos, J.; Frangis, N.; Kovács, A.

    2015-01-01

    The crystallization of amorphous silicon is studied by transmission electron microscopy. The effect of Ni on the crystallization is studied in a wide temperature range heating thinned samples in-situ inside the microscope. Two cases of limited Ni source and unlimited Ni source are studied and compared. NiSi 2 phase started to form at a temperature as low as 250°C in the limited Ni source case. In-situ observation gives a clear view on the crystallization of silicon through small NiSi 2 grain formation. The same phase is observed at the crystallization front in the unlimited Ni source case, where a second region is also observed with large grains of Ni 3 Si 2 . Low temperature experiments show, that long annealing of amorphous silicon at 410 °C already results in large crystallized Si regions due to the Ni induced crystallization

  2. Analysis of the crystalline characteristics of nc-Si:H thin film using a hyperthermal neutral beam generated by an inclined slot-excited antenna

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong-Bae; Kim, Young-Woo; Kim, Dae Chul; Kim, Jongsik; Hong, Seung Pyo; Yoo, Suk Jae; Oh, Kyoung Suk, E-mail: ksoh@nfri.re.kr

    2013-11-29

    The deposition of hydrogenated nano-crystal silicon (nc-Si:H) thin film for manufacturing quantum dot solar cells, which has received attention due to the use of this film third-generation solar cells, is studied here. A hyperthermal neutral beam (HNB) generated by an inclined slot-excited antenna plasma source is used to reduce damage to the silicon thin film and deposition of the crystalline thin film is carried out on a substrate at a low temperature (< 200 °C). The size and the crystalline fraction of the nc-Si:H of the deposited thin film were analyzed by scanning transmission electron microscopy and a Raman microscope. As a result, silicon crystals 1–10 nm in size were observed in the amorphous silicon matrix. According to previous studies, the size and the crystalline fraction of nc-Si:H in deposited thin films increase as the hydrogen flow rate is increased. However, the increment of hydrogen flow rate decreases the deposition rate rapidly. The size and the crystalline fraction of nc-Si:H are adjustable by varying the substrate temperature and HNB energy without a change of the hydrogen flow rate. There are optimum conditions between the HNB energy and the substrate temperature for an appropriate amount of nc-Si:H in silicon thin film. - Highlights: • The appropriate hyperthermal neutral beam energy seems to assist film formation. • The Si crystal size can be adjusted by varying hyperthermal neutral beam energy. • The nc-Si:H 1 ∼ 10 in nm size was observed in the amorphous silicon matrix.

  3. Modification of energy band alignment and electric properties of Pt/Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3}/Pt thin-film ferroelectric varactors by Ag impurities at interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, S.; Komissinskiy, P., E-mail: komissinskiy@oxide.tu-darmstadt.de; Flege, S.; Li, S.; Rachut, K.; Klein, A.; Alff, L. [Institute of Materials Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany)

    2014-06-28

    We report on the effects of Ag impurities at interfaces of parallel-plate Pt/Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3}/Pt thin film ferroelectric varactors. Ag impurities occur at the interfaces due to diffusion of Ag from colloidal silver paint used to attach the varactor samples with their back side to the plate heated at 600–750 °C during deposition of Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3}. X-ray photoelectron spectroscopy and secondary ion mass spectrometry suggest that amount and distribution of Ag adsorbed at the interfaces depend strongly on the adsorbent surface layer. In particular, Ag preferentially accumulates on top of the Pt bottom electrode. The presence of Ag significantly reduces the barrier height between Pt and Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} leading to an increased leakage current density and, thus, to a severe degradation of the varactor performance.

  4. Fracture and fatigue considerations in the development of ductile-phase reinforced intermetallic-matrix composites

    International Nuclear Information System (INIS)

    Venkateswara Rao, K.T.; Ritchie, R.O.

    1994-01-01

    The salient microstructural factors influencing fracture and fatigue-crack growth resistance of ductile-particle reinforced intermetallic-matrix composites at ambient temperature are reviewed through examples from the Nb/MoSi 2 , TiNb/TiAl, Nb/TiAl and Nb/Nb 3 Al systems; specific emphasis is placed on properties and morphology of the reinforcement and its interfacial properties with the matrix. It is shown that composites must be fabricated with a high aspect ratio ductile-reinforcement morphology in order to promote crack-particle interception and resultant crack bridging for improved fracture and fatigue properties. Concurrently, however, the ductile phases have contrasting effects on crack growth under monotonic vs. cyclic loading suggesting that composite microstructures tailored for optimal toughness may not necessarily yield optimal fatigue resistance. Perspectives for the future development of damage-tolerant intermetallic-composite microstructures are discussed

  5. Retention Characteristics of CBTi144 Thin Films Explained by Means of X-Ray Photoemission Spectroscopy

    Directory of Open Access Journals (Sweden)

    G. Biasotto

    2010-01-01

    Full Text Available CaBi4Ti4O15 (CBTi144 thin films were grown on Pt/Ti/SiO2/Si substrates using a soft chemical solution and spin-coating method. Structure and morphology of the films were characterized by the X-ray Diffraction (XRD, Fourier-transform infrared spectroscopy (FT-IR, Raman analysis, X-ray photoemission spectroscopy (XPS, and transmission electron microscopy (TEM. The films present a single phase of layered-structured perovskite with polar axis orient. The a/b-axis orientation of the ferroelectric film is considered to be associated with the preferred orientation of the Pt bottom electrode. XPS measurements were employed to understand the nature of defects on the retention behavior of CBTi144 films. We have observed that the main source of retention-free characteristic of the capacitors is the oxygen environment in the CBTi144 lattice.

  6. Electronic Structure of GdCuGe Intermetallic Compound

    Science.gov (United States)

    Lukoyanov, A. V.; Knyazev, Yu. V.; Kuz'min, Yu. I.

    2018-04-01

    The electronic structure of GdCuGe intermetallic compound has been studied. Spin-polarized energy spectrum calculations have been performed by the band method with allowance for strong electron correlations in the 4 f-shell of gadolinium ions. Antiferromagnetic ordering of GdCuGe at low temperatures has been obtained in a theoretical calculation, with the value of the effective magnetic moment of gadolinium ions reproduced in fair agreement with experimental data. The electronic density of states has been analyzed. An optical conductivity spectrum has been calculated for GdCuGe; it reveals specific features that are analogous to the ones discovered previously in the GdCuSi compound with a similar hexagonal structure.

  7. Application of rapid thermal processing on SiNx thin film to solar cells

    Institute of Scientific and Technical Information of China (English)

    Youjie LI; Peiqing LUO; Zhibin ZHOU; Rongqiang CUI; Jianhua HUANG; Jingxiao WANG

    2008-01-01

    Rapid thermal processing (RTP) of SiNx thin films from PECVD with low temperature was investigated. A special processing condition of this technique which could greatly increase the minority lifetime was found in the experiments. The processing mechanism and the application of the technique to silicon solar cells fabrication were dis-cussed. A main achievement is an increase of the minority lifetime in silicon wafer with SiNx thin film by about 200% after the RTP was reached. PC-1D simulation results exhibit an enhancement of the efficiency of the solar cell by 0.42% coming from the minority lifetime improvement. The same experiment was also conducted with P-diffusion silicon wafers, but the increment of minority lifetime is just about 55%. It could be expected to improve the solar cell efficiency if it would be used in silicon solar cells fabrication with the combination of laser firing contact technique.

  8. Compositionally graded SiCu thin film anode by magnetron sputtering for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Polat, B.D., E-mail: bpolat@itu.edu.tr [Department of Metallurgical and Materials Engineering, Istanbul Technical University, Maslak, Istanbul 34469 (Turkey); Eryilmaz, O.L. [Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Keleş, O., E-mail: ozgulkeles@itu.edu.tr [Department of Metallurgical and Materials Engineering, Istanbul Technical University, Maslak, Istanbul 34469 (Turkey); Erdemir, A. [Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Amine, K. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2015-12-01

    Compositionally graded and non-graded composite SiCu thin films were deposited by magnetron sputtering technique on Cu disks for investigation of their potentials in lithium ion battery applications. The compositionally graded thin film electrodes with 30 at.% Cu delivered a 1400 mAh g{sup −1} capacity with 80% Coulombic efficiency in the first cycle and still retained its capacity at around 600 mAh g{sup −1} (with 99.9% Coulombic efficiency) even after 100 cycles. On the other hand, the non-graded thin film electrodes with 30 at.% Cu exhibited 1100 mAh g{sup −1} as the first discharge capacity with 78% Coulombic efficiency but the cycle life of this film degraded very quickly, delivering only 250 mAh g{sup −1} capacity after 100th cycles. Not only the Cu content but also the graded film thickness were believed to be the main contributors to the much superior performance of the compositionally graded SiCu films. We also believe that the Cu-rich region of the graded film helped reduce internal stress build-up and thus prevented film delamination during cycling. In particular, the decrease of Cu content from interface region to the top of the coating reduced the possibility of stress build-up across the film during cycling, thus leading to a high electrochemical performance.b - Highlights: • Highly adherent SiCu films are deposited by magnetron sputtering. • Compositionally graded SiCu film is produced and characterized. • Decrease of Cu content diverted the propagation of stress in the anode. • Cu rich layer at the bottom improves the adherence of the film.

  9. Controlled fabrication of Si nanocrystal delta-layers in thin SiO2 layers by plasma immersion ion implantation for nonvolatile memories

    International Nuclear Information System (INIS)

    Bonafos, C.; Ben-Assayag, G.; Groenen, J.; Carrada, M.; Spiegel, Y.; Torregrosa, F.; Normand, P.; Dimitrakis, P.; Kapetanakis, E.; Sahu, B. S.; Slaoui, A.

    2013-01-01

    Plasma Immersion Ion Implantation (PIII) is a promising alternative to beam line implantation to produce a single layer of nanocrystals (NCs) in the gate insulator of metal-oxide semiconductor devices. We report herein the fabrication of two-dimensional Si-NCs arrays in thin SiO 2 films using PIII and rapid thermal annealing. The effect of plasma and implantation conditions on the structural properties of the NC layers is examined by transmission electron microscopy. A fine tuning of the NCs characteristics is possible by optimizing the oxide thickness, implantation energy, and dose. Electrical characterization revealed that the PIII-produced-Si NC structures are appealing for nonvolatile memories

  10. Selective hydrogenation of citral over supported Pt catalysts: insight into support effects

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaofeng [Missouri University of Science and Technology, Department of Chemical and Biochemical Engineering (United States); Hu, Weiming; Deng, Baolin [University of Missouri, Department of Civil and Environmental Engineering (United States); Liang, Xinhua, E-mail: liangxin@mst.edu [Missouri University of Science and Technology, Department of Chemical and Biochemical Engineering (United States)

    2017-04-15

    Highly dispersed platinum (Pt) nanoparticles (NPs) were deposited on various substrates by atomic layer deposition (ALD) in a fluidized bed reactor at 300 °C. The substrates included multi-walled carbon nanotubes (MWCNTs), silica gel (SiO{sub 2}), commercial γ-Al{sub 2}O{sub 3}, and ALD-prepared porous Al{sub 2}O{sub 3} particles (ALD-Al{sub 2}O{sub 3}). The results of TEM analysis showed that ~1.3 nm Pt NPs were highly dispersed on all different supports. All catalysts were used for the reaction of selective hydrogenation of citral to unsaturated alcohols (UA), geraniol, and nerol. Both the structure and acidity of supports affected the activity and selectivity of Pt catalysts. Pt/SiO{sub 2} showed the highest activity due to the strong acidity of SiO{sub 2} and the conversion of citral reached 82% after 12 h with a selectivity of 58% of UA. Pt/MWCNTs showed the highest selectivity of UA, which reached 65% with a conversion of 38% due to its unique structure and electronic effect. The cycling experiments indicated that Pt/MWCNTs and Pt/ALD-Al{sub 2}O{sub 3} catalysts were more stable than Pt/SiO{sub 2}, as a result of the different interactions between the Pt NPs and the supports.

  11. Cesium platinide hydride 4Cs{sub 2}Pt.CsH: an intermetallic double salt featuring metal anions

    Energy Technology Data Exchange (ETDEWEB)

    Smetana, Volodymyr [Ames Laboratory, US Department of Energy, and Critical Materials Institute, Ames, Iowa, 50011-3020 (United States); Mudring, Anja-Verena [Ames Laboratory, US Department of Energy, and Critical Materials Institute, Ames, Iowa, 50011-3020 (United States); Department of Materials Sciences and Engineering, Iowa State University, Ames, Iowa, 50011-3111 (United States)

    2016-11-14

    With Cs{sub 9}Pt{sub 4}H a new representative of ionic compounds featuring metal anions can be added to this rare-membered family. Cs{sub 9}Pt{sub 4}H exhibits a complex crystal structure containing Cs{sup +} cations, Pt{sup 2-} and H{sup -} anions. Being a red, transparent compound its band gap is in the visible range of the electromagnetic spectrum and the ionic type of bonding is confirmed by quantum chemical calculations. This cesium platinide hydride can formally be considered as a double salt of the ''alloy'' cesium-platinum, or better cesium platinide, Cs{sub 2}Pt, and the salt cesium hydride CsH according to Cs{sub 9}Pt{sub 4}H≡4 Cs{sub 2}Pt.CsH. (copyright 2016 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Thermal phase separation of ZrSiO4 thin films and frequency- dependent electrical characteristics of the Al/ZrSiO4/p-Si/Al MOS capacitors

    Science.gov (United States)

    Lok, R.; Kaya, S.; Yilmaz, E.

    2018-05-01

    In this work, the thermal phase separation and annealing optimization of ZrSiO4 thin films have been carried out. Following annealing optimization, the frequency-dependent electrical characteristics of the Al/ZrSiO4/p-Si/Al MOS capacitors were investigated in detail. The chemical evolution of the films under various annealing temperatures was determined by Fourier transform infrared spectroscopy (FTIR) measurements. The phase separation was determined by x-ray diffraction (XRD) measurements. The electrical parameters were determined via the capacitance–voltage (C–V), conductance–voltage (G/ω) and leakage-current–voltage (Ig–Vg ). The results demonstrate that zirconium silicate formations are present at 1000 °C annealing with the SiO2 interfacial layer. The film was in amorphous form after annealing at 250 °C. The tetragonal phases of ZrO2 were obtained after annealing at 500 °C. When the temperature approaches 750 °C, transitions from the tetragonal phase to the monoclinic phase were observed. The obtained XRD peaks after 1000 °C annealing matched the crystalline peaks of ZrSiO4. This means that the crystalline zirconium dioxide in the structure has been converted into a crystalline silicate phase. The interface states increased to 5.71 × 1010 and the number of border traps decreased to 7.18 × 1010 cm‑2 with the increasing temperature. These results indicate that an excellent ZrSiO4/Si interface has been fabricated. The order of the leakage current varied from 10‑9 Acm‑2 to 10‑6 Acm‑2. The MOS capacitor fabricated with the films annealed at 1000 °C shows better behavior in terms of its structural, chemical and electrical properties. Hence, detailed frequency-dependent electrical characteristics were performed for the ZrSiO4 thin film annealed at 1000 °C. Very slight capacitance variations were observed under the frequency variations. This shows that the density of frequency-dependent charges is very low at the ZrSiO4/Si interface. The

  13. LPCVD homoepitaxy of Si doped β-Ga2O3 thin films on (010) and (001) substrates

    Science.gov (United States)

    Rafique, Subrina; Karim, Md Rezaul; Johnson, Jared M.; Hwang, Jinwoo; Zhao, Hongping

    2018-01-01

    This paper presents the homoepitaxy of Si-doped β-Ga2O3 thin films on semi-insulating (010) and (001) Ga2O3 substrates via low pressure chemical vapor deposition with a growth rate of ≥1 μm/h. Both high resolution scanning transmission electron microscopy and X-ray diffraction measurements demonstrated high crystalline quality homoepitaxial growth of these thin films. Atomic resolution STEM images of the as-grown β-Ga2O3 thin films on (010) and (001) substrates show high quality material without extended defects or dislocations. The charge carrier transport properties of the as-grown Si-doped β-Ga2O3 thin films were characterized by the temperature dependent Hall measurement using van der Pauw patterns. The room temperature carrier concentrations achieved for the (010) and (001) homoepitaxial thin films were ˜1.2 × 1018 cm-3 and ˜9.5 × 1017 cm-3 with mobilities of ˜72 cm2/V s and ˜42 cm2/V s, respectively.

  14. In-situ determination of the effective absorbance of thin μc-Si:H layers growing on rough ZnO:Al

    Directory of Open Access Journals (Sweden)

    Meier Matthias

    2013-10-01

    Full Text Available In this study optical transmission measurements were performed in-situ during the growth of microcrystalline silicon (μc-Si:H layers by plasma enhanced chemical vapor deposition (PECVD. The stable plasma emission was used as light source. The effective absorption coefficient of the thin μc-Si:H layers which were deposited on rough transparent conductive oxide (TCO surfaces was calculated from the transient transmission signal. It was observed that by increasing the surface roughness of the TCO, the effective absorption coefficient increases which can be correlated to the increased light scattering effect and thus the enhanced light paths inside the silicon. A correlation between the in-situ determined effective absorbance of the μc-Si:H absorber layer and the short-circuit current density of μc-Si:H thin-film silicon solar cells was found. Hence, an attractive technique is demonstrated to study, on the one hand, the absorbance and the light trapping in thin films depending on the roughness of the substrate and, on the other hand, to estimate the short-circuit current density of thin-film solar cells in-situ, which makes the method interesting as a process control tool.

  15. Contact resistance and stability study for Au, Ti, Hf and Ni contacts on thin-film Mg2Si

    KAUST Repository

    Zhang, Bo

    2016-12-28

    We present a detailed study of post-deposition annealing effects on contact resistance of Au, Ti, Hf and Ni electrodes on Mg2Si thin films. Thin-film Mg2Si and metal contacts were deposited using magnetron sputtering. Various post-annealing temperatures were studied to determine the thermal stability of each contact metal. The specific contact resistivity (SCR) was determined using the Cross Bridge Kelvin Resistor (CBKR) method. Ni contacts exhibits the best thermal stability, maintaining stability up to 400 °C, with a SCR of approximately 10−2 Ω-cm2 after annealing. The increased SCR after high temperature annealing is correlated with the formation of a Mg-Si-Ni mixture identified by cross-sectional scanning transmission electron microscopy (STEM) characterization, X-ray diffraction characterization (XRD) and other elemental analyses. The formation of this Mg-Si-Ni mixture is attributed to Ni diffusion and its reaction with the Mg2Si film.

  16. Low cost back contact heterojunction solar cells on thin c-Si wafers. integrating laser and thin film processing for improved manufacturability

    Energy Technology Data Exchange (ETDEWEB)

    Hegedus, Steven S. [Univ. of Delaware, Newark, DE (United States)

    2015-09-08

    An interdigitated back contact (IBC) Si wafer solar cell with deposited a-Si heterojunction (HJ) emitter and contacts is considered the ultimate single junction Si solar cell design. This was confirmed in 2014 by both Panasonic and Sharp Solar producing IBC-HJ cells breaking the previous record Si solar cell efficiency of 25%. But manufacturability at low cost is a concern for the complex IBC-HJ device structure. In this research program, our goals were to addressed the broad industry need for a high-efficiency c-Si cell that overcomes the dominant module cost barriers by 1) developing thin Si wafers synthesized by innovative, kerfless techniques; 2) integrating laser-based processing into most aspects of solar cell fabrication, ensuring high speed and low thermal budgets ; 3) developing an all back contact cell structure compatible with thin wafers using a simplified, low-temperature fabrication process; and 4) designing the contact patterning to enable simplified module assembly. There were a number of significant achievements from this 3 year program. Regarding the front surface, we developed and applied new method to characterize critical interface recombination parameters including interface defect density Dit and hole and electron capture cross-section for use as input for 2D simulation of the IBC cell to guide design and loss analysis. We optimized the antireflection and passivation properties of the front surface texture and a-Si/a-SiN/a-SiC stack depositions to obtain a very low (< 6 mA/cm2) front surface optical losses (reflection and absorption) while maintaining excellent surface passivation (SRV<5 cm/s). We worked with kerfless wafer manufacturers to apply defect-engineering techniques to improve bulk minority-carrier lifetime of thin kerfless wafers by both reducing initial impurities during growth and developing post-growth gettering techniques. This led insights about the kinetics of nickel, chromium, and dislocations in PV-grade silicon and to

  17. Low cost back contact heterojunction solar cells on thin c-Si wafers. Integrating laser and thin film processing for improved manufacturability

    Energy Technology Data Exchange (ETDEWEB)

    Hegedus, Steven S. [Univ. of Delaware, Newark, DE (United States)

    2015-09-08

    An interdigitated back contact (IBC) Si wafer solar cell with deposited a-Si heterojunction (HJ) emitter and contacts is considered the ultimate single junction Si solar cell design. This was confirmed in 2014 by both Panasonic and Sharp Solar producing IBC-HJ cells breaking the previous record Si solar cell efficiency of 25%. But manufacturability at low cost is a concern for the complex IBC-HJ device structure. In this research program, our goals were to addressed the broad industry need for a high-efficiency c-Si cell that overcomes the dominant module cost barriers by 1) developing thin Si wafers synthesized by innovative, kerfless techniques; 2) integrating laser-based processing into most aspects of solar cell fabrication, ensuring high speed and low thermal budgets ; 3) developing an all back contact cell structure compatible with thin wafers using a simplified, low-temperature fabrication process; and 4) designing the contact patterning to enable simplified module assembly. There were a number of significant achievements from this 3 year program. Regarding the front surface, we developed and applied new method to characterize critical interface recombination parameters including interface defect density Dit and hole and electron capture cross-section for use as input for 2D simulation of the IBC cell to guide design and loss analysis. We optimized the antireflection and passivation properties of the front surface texture and a-Si/a-SiN/a-SiC stack depositions to obtain a very low (< 6 mA/cm2) front surface optical losses (reflection and absorption) while maintaining excellent surface passivation (SRV<5 cm/s). We worked with kerfless wafer manufacturers to apply defect-engineering techniques to improve bulk minority-carrier lifetime of thin kerfless wafers by both reducing initial impurities during growth and developing post-growth gettering techniques. This led insights about the kinetics of nickel, chromium, and dislocations in PV-grade silicon and to

  18. Perovskite oxynitride LaTiOxNy thin films: Dielectric characterization in low and high frequencies

    International Nuclear Information System (INIS)

    Lu, Y.; Ziani, A.; Le Paven-Thivet, C.; Benzerga, R.; Le Gendre, L.; Fasquelle, D.; Kassem, H.

    2011-01-01

    Lanthanum titanium oxynitride (LaTiO x N y ) thin films are studied with respect to their dielectric properties in low and high frequencies. Thin films are deposited by radio frequency magnetron sputtering on different substrates. Effects of nitrogen content and crystalline quality on dielectric properties are investigated. In low-frequency range, textured LaTiO x N y thin films deposited on conductive single crystal Nb–STO show a dielectric constant ε′ ≈ 140 with low losses tanδ = 0.012 at 100 kHz. For the LaTiO x N y polycrystalline films deposited on conductive silicon substrates with platinum (Pt/Ti/SiO 2 /Si), the tunability reached up to 57% for a weak electric field of 50 kV/cm. In high-frequency range, epitaxial LaTiO x N y films deposited on MgO substrate present a high dielectric constant with low losses (ε′ ≈ 170, tanδ = 0.011, 12 GHz).

  19. Synthesis of Pt-immobilized on silica and polystyrene-encapsulated silica and their applications as electrocatalysts in the proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Yi, Sung-Chul; Kim, Chang Young; Jung, Chi Young; Jeong, Sung Hoon; Kim, Wha Jung

    2011-01-01

    Nano sized Pt particles were successfully immobilized onto SiO 2 and polystyrene-encapsulated silica core shell (SiO 2 @PS). To make the immobilization of Pt onto both silica and polystyrene-encapsulated silica core shell, SiO 2 was first functionalized with -NH 2 using 3-amino propyl trimethoxysilane (APTMS) while for core shell, the negatively charged surface of polystyrene (PS) was changed with positive charge by cationic surfactant such as cetyltrimethylammonium chloride (CTACl) to make the formation of SiO 2 shell on preformed PS sphere. Transmission electron micrograph (TEM) images shows that Pt nanoparticles immobilized onto SiO 2 and SiO 2 @PS were to be 3-4 nm without agglomeraiton. The energy dispersive spectroscope (EDS) shows that Pt contents on both SiO 2 and SiO 2 @PS were to be 21.45% and 20.28%, respectively. In case of Pt-SiO 2 @PS, it is believed that Pt should have been immobilized onto PS surface and pore within SiO 2 shell as well as SiO 2 surface. The MEA fabricated with Pt-SiO 2 @PS shows better cell performance than of Pt-SiO 2 .

  20. Pt/Pb(Zr, Ti)O3/Pt capacitor with excellent fatigue properties prepared by sol-gel process applied to FeRAM

    International Nuclear Information System (INIS)

    Jia Ze; Ren Tianling; Zhang Zhigang; Liu Tianzhi; Wen Xinyi; Hu Hong; Shao Tianqi; Xie Dan; Liu Litian

    2006-01-01

    Lead zirconate titanate (PZT) film is prepared on Pt/Ti/SiO 2 /Si substrate by proposed processes based on the sol-gel method and rapid thermal anneal (RTA). The ratio of Zr/Ti in the PZT film is 40/60. The PZT film has a mixture of perovskite orientations in which the (110) orientation is dominant. The Pt/PZT/Pt capacitor has remanent polarization of approximately 28.8 μC cm -2 and coercive voltage of approximately 0.76 V at 3 V voltage amplitude. The Pt/PZT/Pt capacitor has excellent fatigue properties. Switch polarizations decrease to 93.1% after 6 x 10 12 switch cycles. The excellent fatigue properties result from the ameliorations of PZT/Pt interface conditions, restraining Pb volatilization and the directions of crystal domains in the RTA process. Some electric properties of the PZT capacitor proposed are contrasted with those of PZT capacitors with a different anneal process in the preparation