WorldWideScience

Sample records for pt-ir coil electrode

  1. Electrochemical Decolorization of Reactive Violet 5 Textile Dye using Pt/Ir Electrodes

    Directory of Open Access Journals (Sweden)

    Bahadır K. Körbahti

    2016-08-01

    Full Text Available Electrochemical decolorization of textile dyeing wastewater containing Reactive Violet 5 (RV5 were investigated at Pt/Ir electrodes in the presence of 75%NaCl+25%Na2CO3 (w/w supporting electrolyte mixture in a batch electrochemical reactor. Experimental parameters were operated in the range of 300-1500 mg/L textile dye concentration, 4-20 g/L 75%NaCl+25%Na2CO3 electrolyte concentration, 5-15 mA/cm2 current density, and 20-60°C reaction temperature in 15 min electrolysis time. Reactive Violet 5 decolorization increased with increasing current density and electrolyte concentration, and decreasing the textile dye concentration. Although a slight increase obtained in color removal efficiency, the temperature was not show much significant effect on decolorization. Depending on electrochemical reaction conditions, Reactive Violet 5 textile dye decolorization were obtained between 42.8-100%.

  2. Electrochemical treatment of olive oil mill wastewater using a Ti/Ta/Pt/Ir electrode

    Energy Technology Data Exchange (ETDEWEB)

    Giannes, A.; Diamadopoulos, E. [Lab. of Environmental Engineering and Management, Technical Univ. of Crete, Chania (Greece); Ninolakis, M. [Ferecarpos SA, Agia Paraskevi, Athens (Greece)

    2003-07-01

    Olive oil mill wastewater, an ecotoxic liquid associated with the production of olive oil, was treated by an electrochemical method using Ti/Ta/Pt/Ir as anode and Stainless Steel 316L as cathode. A number of experiments were run in a batch, laboratory-scale pilot-plant. The experimental plant consisted of the electrolytic cell, the recirculation reactor with cooling system and the wastewater feed system. The efficiency of the electrolytic cell was studied in relation to sodium chloride concentration, voltage and time of electrochemical treatment. Optimal conditions were at a sodium chloride concentration 3% (w/v) and 16V. At these conditions COD removal reached 70.8% after 8 h of electrolysis. Color, odor and turbidity were completely removed after short periods of treatment. However, bio-essays with Daphnia Magna and Artemia Salina indicated that the ecotoxicity of the treated wastewater remained unchanged, possibly due to the formation of chlorinated by-products. (orig.)

  3. Crumpled rGO-supported Pt-Ir bifunctional catalyst prepared by spray pyrolysis for unitized regenerative fuel cells

    Science.gov (United States)

    Kim, In Gyeom; Nah, In Wook; Oh, In-Hwan; Park, Sehkyu

    2017-10-01

    Three-dimensional (3D) crumpled reduced graphene oxide supported Pt-Ir alloys that served as bifunctional oxygen catalysts for use in untized regenerative fuel cells were synthesized by a facile spray pyrolysis method. Pt-Ir catalysts supported on rGO (Pt-Ir/rGOs) were physically characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA) to observe change in composition by heat treatment, alloying, and morphological transition of the catalysts. Their catalytic activities and stabilities for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) conditions were electrochemically investigated using cyclic voltammetry (CV), linear sweep voltammetry (LSV), potential cycling and hold tests on the rotating disk electrode (RDE). Pt-Ir/rGO with no post heat-treatment (Pt-Ir/rGO_NP) showed a lower activity for ORR and OER although metal nanoparticles decorated on the support are relatively small. However, Pt-Ir/rGO showed remarkably enhanced activity following heat treatment, depending on temperature. Pt-Ir/rGO heat-treated at 600 °C after spray pyrolysis (Pt-Ir/rGO_P600) exhibited a higher activity and stability than a commercially available Pt/C catalyst kept under the ORR condition, and it also revealed a comparable OER activity and durability versus the commercial unsupported Ir catalyst.

  4. Shock efficacy of single and dual coil electrodes-new insights from the NORDIC ICD Trial

    DEFF Research Database (Denmark)

    Bänsch, Dietmar; Bonnemeier, Hendrik; Brandt, Johan

    2017-01-01

    Aims: Dual coil (DC) electrodes are preferred to single coil (SC) electrodes because of an assumed higher shock efficacy. However, DC-electrodes may be associated with an increased difficulty and risk of lead extraction. We aimed to compare SC- and DC-electrodes with respect to the first shock ef...

  5. Modifications of Poly(o-phenylenediamine Permselective Layer on Pt-Ir for Biosensor Application in Neurochemical Monitoring

    Directory of Open Access Journals (Sweden)

    Robert D. O’Neill

    2007-04-01

    Full Text Available Reports that globular proteins could enhance the interference blocking ability ofthe PPD (poly(o-phenylenediamine layer used as a permselective barrier in biosensordesign, prompted this study where a variety of modifying agents were incorporated into PPDduring its electrosynthesis on Pt-Ir electrodes. Trapped molecules, including fibrous proteinsand β-cyclodextrin, altered the polymer/modifier composite selectivity by affecting thesensitivity to both H2O2 (signal molecule in many enzyme-based biosensors and thearchetypal interference species, ascorbic acid. A comparison of electrochemical properties ofPt and a Pt-Ir alloy suggests that the benefits of the latter, more rigid, metal can be exploitedin PPD-based biosensor design without significant loss of backward compatibility withstudies involving pure Pt.

  6. Electrolysis of ammonia for hydrogen production catalyzed by Pt and Pt-Ir deposited on nickel foam

    Institute of Scientific and Technical Information of China (English)

    Min; Jiang; Dandan; Zhu; Xuebo; Zhao

    2014-01-01

    Electrolysis of ammonia in alkaline electrolyte solution was applied for the production of hydrogen. Both Pt-loaded Ni foam and Pt-Ir loaded Ni foam electrodes were prepared by electrodeposition and served as anode and cathode in ammonia electrolytic cell, respectively. The electrochemical behaviors of ammonia in KOH solution were individually investigated via cyclic voltammetry on three electrodes, i.e. bare Ni foam electrode, Pt-loaded Ni foam electrode and Pt-Ir loaded Ni foam electrode. The morphology and composition of the prepared Ni foam electrode were analyzed by scanning electron microscopy(SEM) and X-ray diffraction(XRD). Effects of the concentration of electrolyte solution and temperature of electrolytic cell on the electrolysis reaction were examined in order to enhance the efficiency of ammonia electrolysis. The competition of ammonia electrolysis and water electrolysis in the same alkaline solution was firstly proposed to explain the changes of cell voltage with the electrolysis proceeding. At varying current densities, different cell voltages could be obtained from galvanostatic curves.The low cell voltage of 0.58 V, which is less than the practical electrolysis voltage of water(1.6 V), can be obtained at a current density of2.5 mA/cm2. Based on some experimental parameters, such as the applied current, the resulting cell voltage and output of hydrogen gas, the power consumption per gram of H2produced can be estimated.

  7. High performance 3-coil wireless power transfer system for the 512-electrode epiretinal prosthesis.

    Science.gov (United States)

    Zhao, Yu; Nandra, Mandheerej; Yu, Chia-Chen; Tai, Yu-chong

    2012-01-01

    The next-generation retinal prostheses feature high image resolution and chronic implantation. These features demand the delivery of power as high as 100 mW to be wireless and efficient. A common solution is the 2-coil inductive power link, used by current retinal prostheses. This power link tends to include a larger-size extraocular receiver coil coupled to the external transmitter coil, and the receiver coil is connected to the intraocular electrodes through a trans-sclera trans-choroid cable. In the long-term implantation of the device, the cable may cause hypotony (low intraocular pressure) and infection. However, when a 2-coil system is constructed from a small-size intraocular receiver coil, the efficiency drops drastically which may induce over heat dissipation and electromagnetic field exposure. Our previous 2-coil system achieved only 7% power transfer. This paper presents a fully intraocular and highly efficient wireless power transfer system, by introducing another inductive coupling link to bypass the trans-sclera trans-choroid cable. With the specific equivalent load of our customized 512-electrode stimulator, the current 3-coil inductive link was measured to have the overall power transfer efficiency around 36%, with 1-inch separation in saline. The high efficiency will favorably reduce the heat dissipation and electromagnetic field exposure to surrounding human tissues. The effect of the eyeball rotation on the power transfer efficiency was investigated as well. The efficiency can still maintain 14.7% with left and right deflection of 30 degree during normal use. The surgical procedure for the coils' implantation into the porcine eye was also demonstrated.

  8. Electromagnetic receiver with capacitive electrodes and triaxial induction coil for tunnel exploration

    Science.gov (United States)

    Kai, Chen; Sheng, Jin; Wang, Shun

    2017-09-01

    A new type of electromagnetic (EM) receiver has been developed by integrating four capacitive electrodes and a triaxial induction coil with an advanced data logger for tunnel exploration. The new EM receiver can conduct EM observations in tunnels, which is one of the principal goals of surface-tunnel-borehole EM detection for deep ore deposit mapping. The use of capacitive electrodes enables us to record the electrical field (E-field) signals from hard rock surfaces, which are high-resistance terrains. A compact triaxial induction coil integrates three independent induction coils for narrow-tunnel exploration applications. A low-time-drift-error clock source is developed for tunnel applications where GPS signals are unavailable. The three main components of our tunnel EM receiver are: (1) four capacitive electrodes for measuring the E-field signal without digging in hard rock regions; (2) a triaxial induction coil sensor for audio-frequency magnetotelluric and controlled-source audio-frequency magnetotelluric signal measurements; and (3) a data logger that allows us to record five-component MT signals with low noise levels, low time-drift-error for the clock source, and high dynamic range. The proposed tunnel EM receiver was successfully deployed in a mine that exhibited with typical noise characteristics. [Figure not available: see fulltext. Caption: The new EM receiver can conduct EM observations in tunnels, which is one of the principal goals of the surface-tunnel-borehole EM (STBEM) detection for deep ore deposit mapping. The use of a capacitive electrode enables us to record the electrical field (E-field) signals from hard rock surfaces. A compact triaxial induction coil integrated three induction coils, for narrow-tunnel applications.

  9. Structural and Electrocatalytic Properties of PtIrCo/C Catalysts for Oxygen Reduction Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Loukrakpam, Rameshwori; Wanjala, Bridgid N.; Yin, Jun; Fang, Bin; Luo, Jin; Shao, Minhua; Protsailo, Lesia; Kawamura, Tetsuo; Chen, Yongsheng; Petkov, Valeri; Zhong, Chuan-Jian (Binghamton); (Penn); (UTC Power); (Toyota); (CMU)

    2015-10-15

    This paper describes the results of an investigation of the synthesis of PtIrCo nanoparticles (2-3 nm) for electrocatalytic oxygen reduction reaction. The carbon-supported PtIrCo catalysts (PtIrCo/C) were thermally treated at temperatures ranging from 400 to 900 C. The size, composition, and atomic-scale structures of the PtIrCo/C catalysts were characterized for establishing their correlation with the electrocatalytic activity toward oxygen reduction reaction. The specific activity was found to increase by a factor of 3-5 for the PtIrCo/C catalysts in comparison with Pt/C catalysts. A correlation was identified between the specific activity and the nanoparticle's fcc-type lattice parameter. The specific activity increases whereas the fcc-type lattice parameter decreases with the thermal treatment temperature. This correlation was further substantiated by analyzing the interatomic spatial parameters in the trimetallic nanoparticles based on X-ray absorption fine structure spectroscopic and high-energy XRD experiments. Implications of these findings, along with the durability of the catalysts, to the design of active electrocatalysts were also discussed.

  10. Composition dependence of phase transformation behavior and shape memory effect of Ti(Pt, Ir)

    Energy Technology Data Exchange (ETDEWEB)

    Yamabe-Mitarai, Y., E-mail: mitarai.yoko@nims.go.jp [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Hara, T.; Kitashima, T. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Miura, S. [Materials and Process Design, Division of Materials Science and Engineering, Hokkaido University, Sapporo 060-0813 (Japan); Hosoda, H. [Precision and Intelligence Laboratory (P and I Lab), Tokyo Institute of Technology, Yokohama 226-8503 (Japan)

    2013-11-15

    Highlights: ► The partial isothemal section at 1523 K was determined in Ti–Pt–Ir. ► The high-temperature shape memory effect of Ti(Pt, Ir) was investigated. ► The shape recovery ratio was 72% in Ti–10Pt–32Ir after deformation at 1123 K. ► Ir addition to TiPt is effective to improve shape memory effect of TiPt. -- Abstract: The phase transformation and high-temperature shape memory effect of Ti(Pt, Ir) were investigated. First, the Ti-rich phase boundary of Ti(Pt, Ir) was investigated by phase composition analysis by secondary electron microscopy (SEM) using an electron probe X-ray micro analyzer (EPMA), X-ray diffraction analysis and transmission electron microscopy (TEM). Then, the three alloys Ti–35Pt–10Ir, Ti–22Pt–22Ir, and Ti–10Pt–32Ir (at%) close to the phase boundary but in the single phase of Ti(Pt, Ir) were prepared by the arc melting method. The shape memory effect and crystal structure were investigated by compression loading–unloading tests and high-temperature X-ray diffraction analysis, respectively.

  11. Helically coiled carbon nanotube forests for use as electrodes in supercapacitors

    Science.gov (United States)

    Childress, Anthony; Ferri, Kevin; Podila, Ramakrishna; Rao, Apparao

    Supercapacitors are a class of devices which combine the high energy density of batteries with the power delivery of capacitors, and have benefitted greatly from the incorporation of carbon nanomaterials. In an effort to improve the specific capacitance of these devices, we have produced binder-free electrodes composed of helically coiled carbon nanotube forests grown on stainless steel current collectors with a performance superior to traditional carbon nanomaterials. By virtue of their helicity, the coiled nanotubes provide a greater surface area for energy storage than their straight counterparts, thus improving the specific capacitance. Furthermore, we used an Ar plasma treatment to increase the electronic density of states, and thereby the quantum capacitance, through the introduction of defects.

  12. Four-point probe resistance measurements using PtIr-coated carbon nanotube tips.

    Science.gov (United States)

    Yoshimoto, Shinya; Murata, Yuya; Kubo, Keisuke; Tomita, Kazuhiro; Motoyoshi, Kenji; Kimura, Takehiko; Okino, Hiroyuki; Hobara, Rei; Matsuda, Iwao; Honda, Shin-Ichi; Katayama, Mitsuhiro; Hasegawa, Shuji

    2007-04-01

    We performed four-terminal conductivity measurements on a CoSi2 nanowire (NW) at room temperature by using PtIr-coated carbon nanotube (CNT) tips in a four-tip scanning tunneling microscope. The physical stability and high aspect ratio of the CNT tips made it possible to reduce the probe spacing down to ca. 30 nm. The probe-spacing dependence of resistance showed diffusive transport even at 30 nm and no current leakage to the Si substrate.

  13. Mechanical properties of Pt-Ir and Ni-Ir binary alloys for glass-molding dies coating.

    Science.gov (United States)

    Tseng, Shih-Feng; Lee, Chao-Te; Huang, Kuo-Cheng; Chiang, Donyau; Huang, Chien-Yao; Chou, Chang-Pin

    2011-10-01

    In this study, the different compositions of Pt-Ir and Ni-Ir alloys were deposited by utilizing ion source assisted magnetron sputtering system (ISAMSS). The surface roughness and crystallite size of the Pt-Ir and Ni-Ir coatings were analyzed by atomic force microscopy (AFM) and X-ray diffraction (XRD), respectively. In addition, coatings were soaked at 700 degrees and maintained 10 min under N2 atmosphere using a glass-molding machine. The annealed coatings for oxidation test were examined by energy dispersive X-ray spectrometry (EDS) and for microhardness and reduced modulus test were evaluated by nanoindentation instrucment. The cross-sectional structures between the Pt-Ir and Ni-Ir coating layer and substrates were also examined by field emission scanning electron microscope (FESEM). The results show that surface roughness Ra from 1.25 nm to 3.426 nm was observed with increasing the Ni elements. However, the Ra is less than 2 nm measured in Ir-based coatings doped with Pt concentrations under this study. With increasing Pt and Ni doping, the microhardness of both coatings decreased significantly and the values of reduced modulus of Pt-Ir alloys are larger than that of Ni-Ir alloys. After oxidation process, the oxygen concentration of Pt-Ir coatings is less than that of Ni-Ir coatings and the Pt-Ir coatings exhibit superior properties including oxidation resistance, low surface roughness and high reduced modulus over Ni-Ir coatings, especially for the high Pt concentration coatings such as Pt-Ir 2 (55.25 at.% Pt) and Pt-Ir 3 (79.42 at.% Pt) coatings. The surface roughnesses of all specimens annealed at 700 degrees C were slightly larger than as-deposited coatings. Moreover, due to the serious oxidation occurred in Ni-Ir 3 (73.45 at.% Ni) coatings, the value of reduced modulus of this specimen coating is the lowest and the corrsponding Ra value is the largest compared with the rest of Ir-based coatings in the oxidation testing.

  14. Pt-Ir-SnO2/C Electrocatalysts for Ethanol Oxidation in Acidic Media%酸性介质中Pt-Ir-SnO2/C电催化氧化乙醇

    Institute of Scientific and Technical Information of China (English)

    赵莲花; 光岛重德; 石原顕光; 松泽幸一; 太田健一郎

    2011-01-01

    A series of Pt-Ir-SnCVC catalysts were synthesized by a modified Bonnemann method. An electrochemical study showed that the Pt-Iro.o7-Sn02/C catalyst had a three times higher ethanol oxidation current and a two times higher CO2 formation selectivity compared with the Pt/C catalyst under an application voltage of 0.5 V vs the RHE at 25 ℃. This demonstrates that the Pt-Ir0.07-SnO2/C catalyst is a potentially ideal ethanol oxidation catalyst for direct ethanol fuel cells.%采用改良的B(o)nnemann法合成了一系列新型炭载Pt-Ir-SnO2催化剂.电化学结果表明,在室温下新型电催化剂Pt-Iro.07-SnO2/C可有效断裂乙醇中C-C键,促进乙醇在低电位下完全氧化,其CO2生成量为Pt/C催化剂的2倍.另外,该三元催化剂显著增强乙醇的氧化反应,在室温下其电流密度为Pt/C的3倍.

  15. Study of the Material Transfer Characteristics and Surface Morphology Due to Arc Erosion of PtIr Contact Materials

    Institute of Scientific and Technical Information of China (English)

    WANG Saibei; XIE Ming; YANG Youcai; ZHANG Jiming; CHEN Yongtai; LIU Manmen; YANG Yunfeng; HU Jieqiong; CUI Hao

    2012-01-01

    By means of breaking tests on PtIr contact materials via a JF04C contact material testing machine,it was attempted to elucidate the characterstics of the various surface morphology and material transfer after the arc erosion process caused by break arc.The material transfer characteristics appeared in the experiments were concluded and analyzed.Meanwhile,the morphology of the anode and cathode surface were observed and analyzed by SEM.

  16. Supergene neoformation of Pt-Ir-Fe-Ni alloys: multistage grains explain nugget formation in Ni-laterites

    Science.gov (United States)

    Aiglsperger, Thomas; Proenza, Joaquín A.; Font-Bardia, Mercè; Baurier-Aymat, Sandra; Galí, Salvador; Lewis, John F.; Longo, Francisco

    2016-11-01

    Ni-laterites from the Dominican Republic host rare but extremely platinum-group element (PGE)-rich chromitites (up to 17.5 ppm) without economic significance. These chromitites occur either included in saprolite (beneath the Mg discontinuity) or as `floating chromitites' within limonite (above the Mg discontinuity). Both chromitite types have similar iridium-group PGE (IPGE)-enriched chondrite normalized patterns; however, chromitites included in limonite show a pronounced positive Pt anomaly. Investigation of heavy mineral concentrates, obtained via hydroseparation techniques, led to the discovery of multistage PGE grains: (i) Os-Ru-Fe-(Ir) grains of porous appearance are overgrown by (ii) Ni-Fe-Ir and Ir-Fe-Ni-(Pt) phases which are overgrown by (iii) Pt-Ir-Fe-Ni mineral phases. Whereas Ir-dominated overgrowths prevail in chromitites from the saprolite, Pt-dominated overgrowths are observed within floating chromitites. The following formation model for multistage PGE grains is discussed: (i) hypogene platinum-group minerals (PGM) (e.g. laurite) are transformed to secondary PGM by desulphurization during serpentinization; (ii) at the stages of serpentinization and/or at the early stages of lateritization, Ir is mobilized and recrystallizes on porous surfaces of secondary PGM (serving as a natural catalyst) and (iii) at the late stages of lateritization, biogenic mediated neoformation (and accumulation) of Pt-Ir-Fe-Ni nanoparticles occurs. The evidence presented in this work demonstrates that in situ growth of Pt-Ir-Fe-Ni alloy nuggets of isometric symmetry is possible within Ni-laterites from the Dominican Republic.

  17. Photonics of a conjugated organometallic Pt-Ir polymer and its model compounds exhibiting hybrid CT excited states.

    Science.gov (United States)

    Soliman, Ahmed M; Fortin, Daniel; Zysman-Colman, Eli; Harvey, Pierre D

    2012-04-13

    Trans- dichlorobis(tri-n-butylphosphine)platinum(II) reacts with bis(2- phenylpyridinato)-(5,5'-diethynyl-2,2'-bipyridine)iridium(III) hexafluorophosphate to form the luminescent conjugated polymer poly[trans-[(5,5'-ethynyl-2,2'-bipyridine)bis(2- phenylpyridinato)-iridium(III)]bis(tri-n-butylphosphine)platinum(II)] hexafluorophosphate ([Pt]-[Ir])n. Gel permeation chromatography indicates a degree of polymerization of 9 inferring the presence of an oligomer. Comparison of the absorption and emission band positions and their temperature dependence, emission quantum yields, and lifetimes with those for models containing only the [Pt] or the [Ir] units indicates hybrid excited states including features from both chromophores.

  18. Strategic modulation of the photonic properties of conjugated organometallic Pt-Ir polymers exhibiting hybrid CT-excited states.

    Science.gov (United States)

    Soliman, Ahmed M; Zysman-Colman, Eli; Harvey, Pierre D

    2015-04-01

    Polymer 6, ([trans-Pt(PBu3 )2 (C≡C)2 ]-[Ir(dFMeppy)2 (N^N)](PF6 ))n , (([Pt]-[Ir](PF6 ))n ; N^N = 5,5'-disubstituted-2,2'-bipyridyl; dFMeppy = 2-(2,4-difluoro-phenyl)-5-methylpyridine) is prepared along with model compounds. These complexes are investigated by absorption and emission spectroscopy and their photophysical and electrochemical properties are measured and compared with their corresponding non fluorinated complexes. Density functional theory (DFT) and time-dependent DFT computations corroborate the nature of the excited state as being a hybrid between the metal-to-ligand charge transfer ((1,3) MLCT) for the trans-Pt(PBu3 )2 (C≡CAr)2 unit, [Pt] and the metal-to-ligand/ligand-to-ligand' charge transfer ((1,3) ML'CT/LL'CT) for [Ir] with L = dFMeppy. Overall, the fluorination of the phenylpyridine group expectedly does not change the nature of the excited state but desirably induces a small blue shift of the absorption and emission bands along a slight decrease in emission quantum yields and lifetimes.

  19. Microemulsion Preparation and Electrochemical Characterization of Pt/C,PtIr/C Electrocatalysts%微乳法合成Pt/C、PtIr/C催化剂及其电化学性能表征

    Institute of Scientific and Technical Information of China (English)

    曾亚平; 隋升

    2011-01-01

    以碳纳米粉(XC-72R)作为载体,以3种不同方法合成Pt/C负载型催化剂.并由X射线衍射(XRD)、透射电镜(TEM)、循环伏安法(CV)、恒电位测试(Potentiostatic)以及线性极化分析(Potentiodynamic polarization)等方法表征该催化剂.结果表明,由微乳法制得的负载型催化剂Pt/C,活性组分的颗粒尺寸为5~10 nm,均匀地分散在载体表面,电化学性能良好.而以同一微乳法由异辛烷/Triton X100/正己醇/水体系合成的含有不同Pt、Ir比例的负载型的Pt100-xIrx/C催化剂,则其中以Pt85Ir15表现出更为良好的电化学综合性能.%The Pt/C electrocatalysts were prepared by three different systems and the PtIr/C electrocatalysts were prepared with four different Ir contents.The samples were characterized by X-ray diffraction(XRD),transmission electron microscope(TEM),cyclic voltammetry(CV),potentiostatic and potentiodynamic polarizations measurements.The experimental results confirmed that the electrocatalyst particles prepared by the microemulsion method were well distributed on XC-72R supports with the active particle sizes of 5~10 nm and good electrocatalysts activity.The Pt85Ir15/C electrocatalysts showed the highest overall electrochemical activity in unitized regenerative fuel cell.

  20. Surface enrichment of Pt in stable Pt-Ir nano-alloy particles on MgAl 2 O 4 spinel in oxidizing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei-Zhen; Nie, Lei; Cheng, Yingwen; Kovarik, Libor; Liu, Jun; Wang, Yong

    2017-04-01

    With the capability of MgAl2O4 spinel {111} nano-facets in stabilizing small Rh, Ir and Pt particles, bimetallic Ir-Pt catalysts on the same support were investigated, aiming at further lowering the catalyst cost by substituting expensive Pt with cheaper Ir in the bulk. Small Pt-Ir nano-alloy particles (< 2nm) were successfully stabilized on the spinel {111} nano-facets as expected. Interestingly, methanol oxidative dehydrogenation (ODH) rate on the surface Pt atoms increases with oxidizing aging but decreases upon reducing treatment, where Ir is almost inactive under the same reaction conditions. Up to three times enhancement in Pt exposure was achieved when the sample was oxidized at 800 °C in air for 1 week and subsequently reduced by H2 for 2 h, demonstrating successful surface enrichment of Pt on Pt-Ir nano-alloy particles. A dynamic stabilization mechanism involving wetting\

  1. Sputtered platinum-iridium layers as electrode material for functional electrostimulation

    Energy Technology Data Exchange (ETDEWEB)

    Ganske, G., E-mail: ganske@iwe1.rwth-aachen.d [Institute of Materials in Electrical Engineering I, RWTH Aachen University, Sommerfeldstr. 24, D-52074 Aachen (Germany); Slavcheva, E. [Institute of Materials in Electrical Engineering I, RWTH Aachen University, Sommerfeldstr. 24, D-52074 Aachen (Germany); Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Ooyen, A. van; Mokwa, W.; Schnakenberg, U. [Institute of Materials in Electrical Engineering I, RWTH Aachen University, Sommerfeldstr. 24, D-52074 Aachen (Germany)

    2011-03-31

    In this study co-sputtered layers of platinum-iridium (PtIr) are investigated as stimulation electrode material. The effects of different sputter parameters on the morphology and the electrochemical behavior are examined. It is shown that films sputtered at the lowest incident energy possess the highest charge storage capacity (CSC). At a Pt:Ir atomic-ratio of 55:45 the obtained CSC of 22 mC/cm{sup 2} is enhanced compared to the standard stimulation material platinum (16 mC/cm{sup 2}) but inferior to iridium which has a CSC of 35 mC/cm{sup 2}. Long term cyclic voltammetry measurements show that PtIr can be activated which increases the CSC to 29 mC/cm{sup 2}. Also a change in the film morphology is observed. Sputtered platinum-iridium films promise to combine high mechanical strength and increased charge storage capacity.

  2. Millisecond dynamics of thermal expansion of mechanically controllable break junction electrodes studied in the tunneling regime

    Science.gov (United States)

    Kolesnychenko, O. Yu.; Toonen, A. J.; Shklyarevskii, O. I.; van Kempen, H.

    2001-10-01

    The thermal expansion dynamics of W, Pt-Ir, and Au mechanically controllable break junction electrodes was studied in the millisecond range. By measuring a transient tunnel current as a function of time, we found that, at low temperatures, the electrode elongation Δs˜t1/2 due to the large values of thermal diffusivity of metals. The magnitude of Δs varies in direct proportion to the power P dissipated in the electrodes.

  3. Synthesis and Compatibility of Ionic Liquid Containing Rod-Coil Polyimide Gel Electrolytes with Lithium Metal Electrodes

    Science.gov (United States)

    Tigelaar, Dean M.; Palker, Allyson E.; Meador, Mary Ann B.; Bennett, William R.

    2008-01-01

    A highly cross-linked polyimide-polyethylene oxide copolymer has been synthesized that is capable of holding large volumes of liquid component, simultaneously maintaining good dimensional stability. An amine end capped oligomer was made that was imidized in solution, followed by reaction with a triisocyanate in the presence of desired additives at ambient temperature. Polymer films are able to hold over 4 times their weight in room temperature ionic liquid RTIL or carbonate solvent. Electrolytes were studied that contained varying amounts of RTIL, lithium trifluoromethanesulfonimide LiTFSi, and alumina nanoparticles. Electrochemical stability of these electrolytes with lithium metal electrodes was studied by galvanic cycling and impedance spectroscopy. Improved cycling stability and decreased interfacial resistance were observed when increasing amounts of RTIL and LiTFSi were added. The addition of small amounts of alumina further decreased interfacial resistance by nearly an order of magnitude. During the course of the study, cycling stability increased from less than 3 to greater than 1000 h at 60 C and 0.25 mA/cm2 current density.

  4. Synthesis and Compatibility of Ionic Liquid Containing Rod-Coil Polyimide Gel Electrolytes with Lithium Metal Electrodes

    Science.gov (United States)

    Tigelaar, Dean M.; Palker, Allyson E.; Meador, Mary Ann B.; Bennett, William R.

    2008-01-01

    A highly cross-linked polyimide-polyethylene oxide copolymer has been synthesized that is capable of holding large volumes of liquid component, simultaneously maintaining good dimensional stability. An amine end capped oligomer was made that was imidized in solution, followed by reaction with a triisocyanate in the presence of desired additives at ambient temperature. Polymer films are able to hold over 4 times their weight in room temperature ionic liquid RTIL or carbonate solvent. Electrolytes were studied that contained varying amounts of RTIL, lithium trifluoromethanesulfonimide LiTFSi, and alumina nanoparticles. Electrochemical stability of these electrolytes with lithium metal electrodes was studied by galvanic cycling and impedance spectroscopy. Improved cycling stability and decreased interfacial resistance were observed when increasing amounts of RTIL and LiTFSi were added. The addition of small amounts of alumina further decreased interfacial resistance by nearly an order of magnitude. During the course of the study, cycling stability increased from less than 3 to greater than 1000 h at 60 C and 0.25 mA/cm2 current density.

  5. Asymmetric Hydrogenation of Ethyl 2-Oxo-4-Phenylbutyrate on Pt-Ir/Al2O3 Catalysts%Pt-Ir/Al2O3催化剂催化2-氧-4-苯基丁酸乙酯不对称加氢

    Institute of Scientific and Technical Information of China (English)

    张学勤; 何年志; 肖美添; 刘勇军; 叶静

    2013-01-01

    A series of Pt/γ-Al2O3 、Ir/γ-Al2O3 and Pt-Ir/γ-Al2O3 catalysts with different ratios of Pt and Ir were prepared by impregnation methods.The catalytic performance for asymmetric hydrogenation of ethyl 2-oxo-4-phenylbutyrate to ethyl (R)-2-hydroxy-4-phenylbutyrate was tested.The mechanism of chiral induction on cinchona-modified platinum and iridium catalysts and their physical and chemical properties were investigated by X-ray diffraction (XRD),transmission electron microscopy(TEM),H2-temperature programmed reduction (H2-TPR),X-ray photoelectron spectroscopy(XPS) and ultraviolet-visible spectroscopy(UV-Vis).The average metal particles size for Pt/γ-Al2O3 and Pt-Ir/γ-Al2O3 catalγsts were 3-4 nm; Pt and Ir existed as Pt(0) and Ir(0) for Pt-Ir/γ-Al2O3 ; Ir acted as an inactive species,covering and diluting the Pt active site in the surface.The results showed that a small amount of Ir obviously suppressed the hydrogenation activity and selectivity of Pt/γ-Al2O3.The notable differences in reaction rate and enantioselectivity of platinum and iridium attributed to different behaviour adsorption (adsorption strength,mode and conformation) of chiral modifier on the metal surface.%用浸渍法制备了一系列γ-Al2O3负载的Pt、Ir单金属及不同Pt/Ir比例的双金属催化剂,在辛可尼定修饰下用于对2-氧-4-苯基丁酸乙酯不对称加氢合成(R)-2-羟基-4-苯基丁酸乙酯反应.运用XRD、TEM、TPR、XPS、UV-Vis等表征手段,对催化剂的物化性质进行了研究,并对Pt、Ir金属表面辛可尼定手性诱导机理进行了初步探讨.结果表明,金属组分在催化剂上分散均匀,无团聚现象,平均粒径为3 ~4 nm; Pt-Ir/γ-Al2O3上Pt、Ir组分以单质形式存在;Ir作为低活性物种,在Pt/γ-Al2O3催化剂掺杂Ir组分遮盖和稀释了催化剂表面总体Pt活性位点数目,降低了Pt-Ir/γ-Al2O3催化剂加氢性能.辛可尼定在Pt、Ir表面的不同吸附行为(吸附方式、吸附强度、吸附

  6. α/β coiled coils.

    Science.gov (United States)

    Hartmann, Marcus D; Mendler, Claudia T; Bassler, Jens; Karamichali, Ioanna; Ridderbusch, Oswin; Lupas, Andrei N; Hernandez Alvarez, Birte

    2016-01-15

    Coiled coils are the best-understood protein fold, as their backbone structure can uniquely be described by parametric equations. This level of understanding has allowed their manipulation in unprecedented detail. They do not seem a likely source of surprises, yet we describe here the unexpected formation of a new type of fiber by the simple insertion of two or six residues into the underlying heptad repeat of a parallel, trimeric coiled coil. These insertions strain the supercoil to the breaking point, causing the local formation of short β-strands, which move the path of the chain by 120° around the trimer axis. The result is an α/β coiled coil, which retains only one backbone hydrogen bond per repeat unit from the parent coiled coil. Our results show that a substantially novel backbone structure is possible within the allowed regions of the Ramachandran space with only minor mutations to a known fold.

  7. 用于质子交换膜燃料电池的高活性、高稳定性PtIrFe/C三元合金催化剂∗%Remarkably Active and Durable PtIrFe/C Ternary Alloy Catalysts with Potential Application to Proton Exchange Membrane Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    杜鑫鑫; 王晓霞; 贺阳; 王健农

    2016-01-01

    采用催化裂解法制备了多孔碳,将其作为催化剂载体,利用液相还原和真空热处理工艺制备出PtIrFe/C三元合金催化剂。采用 X射线衍射、透射电子显微镜等手段对样品的结构形貌进行表征。使用电化学测试手段研究了不同热处理温度对其催化性能的影响。实验结果表明,热处理带来的合金化作用使催化剂的催化活性和耐久性得到了极大的提高。经过700℃热处理的样品,其面积比活性和质量比活性分别是传统商业 Pt/C 催化剂的3~4倍。%Using a mesoporous carbon (prepared via catalyzed pyrolysis)as a support material,PtIrFe/C alloy catalysts were synthesized by a liquid reduction and heat treatment method,and characterized by transmission electron microscopy and powder X-ray diffraction to explore and study the morphologies and crystallization properties.The an-nealing of the as prepared catalysts was performed at different temperatures,tested by electrochemical measurements, and proved to be of great importance for the improvement of the catalyst′s activity and durability due to the alloying effect.The catalysts annealed at 700 ℃ exhibited the highest area-specific activity and mass-specific activity which were 3-4 times higher than those of a commercial Pt/C catalyst.

  8. Direct ethanol fuel cell, CO and ethanol oxidation on core-shell C/Ni-Au-[Pt and (Pt- Ir)] catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, C.A.D.; Tremiliosi-Filho, G. [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil). Inst. de Quimica], Email: cesaraug@sc.usp.br; Kokoh, K.B.; Coutanceau, C.; Baranton, S. [Universite de Poitiers (France). Lab. de Catalyse en Chimie Organique (LACCO). Equipe Electrocatalyse

    2010-07-01

    In this paper presents to study of the Pt and Pt-Ir monolayer that were deposited on core-shell Ni-Au nanoparticles supported on carbon. Catalysts with the following molar ratios were prepared: Pt and Pt{sub 65}Ir{sub 35}, Pt{sub 75}Ir{sub 2}5, Pt{sub 80}Ir{sub 20} and Pt{sub 85}Ir{sub 15}. The means particle sizes were in the range of 2 - 6 nm for all catalysts. The electrochemical properties examined in the ethanol and CO oxidation by cyclic voltammetry, and In situ IR spectroscopy measurements (SPAIRS) enabled to determine intermediates and reaction products as a function of the metallic compositions of catalysts. All of the catalysts were tested as anodes of a single direct ethanol fuel cell (DEFC) tests in 1.0 M ethanol solution. As a result, higher power densities were obtained with the core-shell particles in comparison to those issued from the commercial catalyst (Pt-ETEK). Thus, the maximum power densities at 90 deg C for the different systems are: (i) commercial C/Pt catalyst (E-TEK): ca. 0.010 W cm{sup -2}, C/Ni-Au-(Pt{sub 85}Ir{sub 15}): ca. 0.013 W cm{sup -2} and C/Ni-Au-Pt: ca. 0.018 W cm{sup -2} (all core-shell systems were normalization by Pt load). As a result, the performance of the core-shell nanoparticles is much better than that produced for the commercial catalyst and the C/Ni-Au-Pt system showed the best performance. (author)

  9. 阴极保护用涂层钦电极(二)%Coated titanium electrodes used for cathodic protection—Part Ⅱ

    Institute of Scientific and Technical Information of China (English)

    徐永海; 罗小军; 张招贤

    2011-01-01

    The introduction of Ti/Pt/IrTa electrode used for electrochemical anti-biofouling, Ti/RuTiSnMn electrode used for cathodic protection of reinforced concrete, and Ti/RuTilrZr electrode used for cathodic protection in soil was given. Some examples of auxiliary anodes applied to cathodic protection were described.%介绍了电化学法除海洋生物用Ti/Pt/IrTa涂层电极,钢筋混凝土阴极保护用Ti/RuTiSnMn涂层电极,以及土壤阴极保护用Ti/RuTilrZr涂层电极.给出了几个阴极保护用辅助阳极的实例.

  10. Coiled-Coil Design: Updated and Upgraded.

    Science.gov (United States)

    Woolfson, Derek N

    2017-01-01

    α-Helical coiled coils are ubiquitous protein-folding and protein-interaction domains in which two or more α-helical chains come together to form bundles. Through a combination of bioinformatics analysis of many thousands of natural coiled-coil sequences and structures, plus empirical protein engineering and design studies, there is now a deep understanding of the sequence-to-structure relationships for this class of protein architecture. This has led to considerable success in rational design and what might be termed in biro de novo design of simple coiled coils, which include homo- and hetero-meric parallel dimers, trimers and tetramers. In turn, these provide a toolkit for directing the assembly of both natural proteins and more complex designs in protein engineering, materials science and synthetic biology. Moving on, the increased and improved use of computational design is allowing access to coiled-coil structures that are rare or even not observed in nature, for example α-helical barrels, which comprise five or more α-helices and have central channels into which different functions may be ported. This chapter reviews all of these advances, outlining improvements in our knowledge of the fundamentals of coiled-coil folding and assembly, and highlighting new coiled coil-based materials and applications that this new understanding is opening up. Despite considerable progress, however, challenges remain in coiled-coil design, and the next decade promises to be as productive and exciting as the last.

  11. Designing Stable Antiparallel Coiled Coil Dimers

    Institute of Scientific and Technical Information of China (English)

    曾宪纲; 周海梦

    2001-01-01

    The history of antiparallel coiled coil dimer design is briefly reviewed and the main principles governing the successful designs are explained. They include analysis of the inter-subunit electrostatic repulsion for determining partners for dimerization and of the buried polar interaction for determining the relative orientation of the partners. A theory is proposed to explain the lack of antiparallel coiled coil homodimers in nature.

  12. Coil Welding Aid

    Science.gov (United States)

    Wiesenbach, W. T.; Clark, M. C.

    1983-01-01

    Positioner holds coil inside cylinder during tack welding. Welding aid spaces turns of coil inside cylinder and applies contact pressure while coil is tack-welded to cylinder. Device facilitates fabrication of heat exchangers and other structures by eliminating hand-positioning and clamping of individual coil turns.

  13. Starfire poloidal coil systems

    Energy Technology Data Exchange (ETDEWEB)

    Evans, K. Jr.; Kim, S.H.; Turner, L.R.; Wang, S.T.

    1980-01-01

    The poloidal coils for STARFIRE consists of three systems: (1) equilibrium field (EF) coils; (2) ohmic heating (OH) coils; and (3) correction field (CF) coils. The EF coils are superconducting and lie outside the toroidal field (TF) coils. These coils provide the bulk of the equilibrium field necessary to keep the plasma positioned in the vacuum chamber with the desired cross sectional shape and pressure and current distributions. Having these coils outside of the TF coils requires that they have a larger stored energy and larger currents but eases the assembly, maintenance, and reliability of the coils. The STARFIRE OH system is relatively small compared to tokamaks in which the current is entirely ohmically driven. It is designed to provide sufficient flux in the early startup to raise the plasma current to the point (1 to 2 MA) where the rf current drive can take over.

  14. Protective link for superconducting coil

    Science.gov (United States)

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  15. Dual coil ignition system

    Energy Technology Data Exchange (ETDEWEB)

    Huberts, Garlan J.; Qu, Qiuping; Czekala, Michael Damian

    2017-03-28

    A dual coil ignition system is provided. The dual coil ignition system includes a first inductive ignition coil including a first primary winding and a first secondary winding, and a second inductive ignition coil including a second primary winding and a second secondary winding, the second secondary winding connected in series to the first secondary winding. The dual coil ignition system further includes a diode network including a first diode and a second diode connected between the first secondary winding and the second secondary winding.

  16. Electrochemical oxidation of reverse osmosis concentrate on mixed metal oxide (MMO) titanium coated electrodes.

    Science.gov (United States)

    Bagastyo, Arseto Y; Radjenovic, Jelena; Mu, Yang; Rozendal, René A; Batstone, Damien J; Rabaey, Korneel

    2011-10-15

    Reverse osmosis (RO) membranes have been successfully applied around the world for wastewater reuse applications. However, RO is a physical separation process, and besides the clean water stream (permeate) a reverse osmosis concentrate (ROC) is produced, usually representing 15-25% of the feed water flow and containing the organic and inorganic contaminants at higher concentrations. In this study, electrochemical oxidation was investigated for the treatment of ROC generated during the reclamation of municipal wastewater effluent. Using laboratory-scale two-compartment electrochemical systems, five electrode materials (i.e. titanium coated with IrO2-Ta2O5, RuO2-IrO2, Pt-IrO2, PbO2, and SnO2-Sb) were tested as anodes in batch mode experiments, using ROC from an advanced water treatment plant. The best oxidation performance was observed for Ti/Pt-IrO2 anodes, followed by the Ti/SnO2-Sb and Ti/PbO2 anodes. The effectiveness of the treatment appears to correlate with the formation of oxidants such as active chlorine (i.e. Cl2/HClO/ClO-). As a result, electro-generated chlorine led to the abundant formation of harmful by-products such as trihalomethanes (THMs) and haloacetic acids (HAAs), particularly at Ti/SnO2-Sb and Ti/Pt-IrO2 anodes. The highest concentration of total HAAs (i.e. 2.7 mg L(-1)) was measured for the Ti/SnO2-Sb electrode, after 0.55 Ah L(-1) of supplied specific electrical charge. Irrespective of the used material, electrochemical oxidation of ROC needs to be complemented by a polishing treatment to alleviate the release of halogenated by-products. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Coil system for plasmoid thruster

    Science.gov (United States)

    Eskridge, Richard H. (Inventor); Lee, Michael H. (Inventor); Martin, Adam K. (Inventor); Fimognari, Peter J. (Inventor)

    2010-01-01

    A coil system for a plasmoid thruster includes a bias coil, a drive coil and field coils. The bias and drive coils are interleaved with one another as they are helically wound about a conical region. A first field coil defines a first passage at one end of the conical region, and is connected in series with the bias coil. A second field coil defines a second passage at an opposing end of the conical region, and is connected in series with the bias coil.

  18. The coiling of electrified liquid jets

    Science.gov (United States)

    Rivero Rodriguez, Javier; Pérez-Saborid, Miguel

    2013-11-01

    We have carried out a numerical study of the coiling regime which takes place when an electrified liquid jet issuing from an orifice drilled in a metal plate electrode reaches the counter electrode. Based on the slenderness assumption, we have derived the set of one-dimensional dynamical equations by averaging the underlying balance laws over the jet cross sections (Cosserat rod model). Therefore, our equations and boundary conditions are related to those obtained by N.M. Ribe (Ann. Rev Fluid Mech., 2012) for the coiling of liquid ropes, but including electrostatic effects. In a first approach, we have simplified the electrical terms entering the problem by assuming a constant external electric field between electrodes, and that the charges are convected by the jet surface interacting electrostatically with each other via the local interaction approximation (Yarin et al., 2001). We have numerically investigated the problem in order to analize how the coiling regime depends on the dimensionless parameters of the problem, i.e., the Reynolds number, the electrical Bond number and the capillary number. In particular, we have found that both the displacement of the centerline of the jet and its cross-sectional stretching greatly depend on the electrostatic effects. Thanks to the MINECO (Spain) for partial support under grant DPI2010-20450-C03-02.

  19. Liquid rope coiling

    NARCIS (Netherlands)

    N.M. Ribe; M. Habibi; D. Bonn

    2012-01-01

    A thin stream or rope of viscous fluid falling from a sufficient height onto a surface forms a steadily rotating helical coil. Tabletop laboratory experiments in combination with a numerical model for slender liquid ropes reveal that finite-amplitude coiling can occur in four distinct regimes (visco

  20. Force modulated conductance of artificial coiled-coil protein monolayers.

    Science.gov (United States)

    Atanassov, Alexander; Hendler, Ziv; Berkovich, Inbal; Ashkenasy, Gonen; Ashkenasy, Nurit

    2013-01-01

    Studies of charge transport through proteins bridged between two electrodes have been the subject of intense research in recent years. However, the complex structure of proteins makes it difficult to elucidate transport mechanisms, and the use of simple peptide oligomers may be an over simplified model of the proteins. To bridge this structural gap, we present here studies of charge transport through artificial parallel coiled-coil proteins conducted in dry environment. Protein monolayers uniaxially oriented at an angle of ∼ 30° with respect to the surface normal were prepared. Current voltage measurements, obtained using conductive-probe atomic force microscopy, revealed the mechano-electronic behavior of the protein films. It was found that the low voltage conductance of the protein monolayer increases linearly with applied force, mainly due to increase in the tip contact area. Negligible compression of the films for loads below 26 nN allowed estimating a tunneling attenuation factor, β(0) , of 0.5-0.6 Å(-1) , which is akin to charge transfer by tunneling mechanism, despite the comparably large charge transport distance. These studies show that mechano-electronic behavior of proteins can shed light on their complex charge transport mechanisms, and on how these mechanisms depend on the detailed structure of the proteins. Such studies may provide insightful information on charge transfer in biological systems.

  1. Optimal Bitter Coil Solenoid

    CERN Document Server

    Kobelev, V

    2016-01-01

    Bitter coil is an electromagnet used for the generation of exceptionally strong magnetic fields. The upper bound of magnet flux density is restricted by several factors. One principal restriction is the high stresses due to Lorentz forces in the coil. The Lorentz forces generate the distributed body force, which acts as the pressure of magnetic field. The common radial thickness profile of the Bitter coil is constant. In this paper the possibility of optimization by means of non-constant radial thickness profile of the Bitter coil is studied. The close form expression for optimal thickness profile is obtained. Both designs are compared and the considerable improvement of magnetic flux density is demonstrated. Moreover, the optimal design improves the shape of cooling channels. Namely, the highest cross-section of cooling channel is at the most thermally loaded inner surface of the coil.

  2. Commercial applications for COIL

    Science.gov (United States)

    Solomon, Wayne C.; Carroll, David L.; King, D. M.; Fockler, L. A.; Stromberg, D. S.; Sexauer, M.; Milmoe, A.; Sentman, Lee H.

    2000-01-01

    The chemical oxygen-iodine laser (COIL) is a high power, fiber deliverable tool, which can be used for a number of different industrial applications. COIL is of particular interest because of its short fiber deliverable wavelength, high scaleable continuous wave power, and excellent material interaction properties. In past research the University of Illinois at Urbana-Champaign identified and decommissioning and decontamination (DD) of nuclear facilities as a primary focus for COIL technology. DD will be a major challenge in the coming decades. The use of a robotically driven fiber delivered cutting/ablation tool in contaminated areas promises to lower risks to workers for the DD mission. Further, the high cutting speed of COIL will significantly reduce the time required to cut contaminated equipment, reducing costs. The high power of COIL will permit the dismantling of thick stacks of piping and equipment as well as reactor vessels. COIL is very promising for the removal of material from contaminated surfaces, perhaps to depths thicker than an inch. Laser cutting and ablation minimizes dust and fumes, which reduces the required number of high efficiency particulate accumulator filters, thus reducing costly waste disposal. Other potential industrial applications for COIL are shipbuilding, automotive manufacturing, heavy machinery manufacturing, tasks requiring underwater cutting or welding, and there appear to be very promising applications for high powers lasers in the oil industry.

  3. A periodic table of coiled-coil protein structures.

    Science.gov (United States)

    Moutevelis, Efrosini; Woolfson, Derek N

    2009-01-23

    Coiled coils are protein structure domains with two or more alpha-helices packed together via interlacing of side chains known as knob-into-hole packing. We analysed and classified a large set of coiled-coil structures using a combination of automated and manual methods. This led to a systematic classification that we termed a "periodic table of coiled coils," which we have made available at http://coiledcoils.chm.bris.ac.uk/ccplus/search/periodic_table. In this table, coiled-coil assemblies are arranged in columns with increasing numbers of alpha-helices and in rows of increased complexity. The table provides a framework for understanding possibilities in and limits on coiled-coil structures and a basis for future prediction, engineering and design studies.

  4. LHCb magnet coils arrive

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Each of the two coils for the LHCb magnet comprises 15 individual monolayer 'pancakes' of identical trapezoidal racetrack shape, and is bent at 45 degrees on the two transverse sides. Each pancake consists of eight turns of conductor, wound from a single length (approx. 290 m) of extruded aluminium. The coils have arrived at CERN; one of them is seen here being unloaded above the LHCb experimental cavern.

  5. Coiling of yield stress fluids

    NARCIS (Netherlands)

    Y. Rahmani; M. Habibi; A. Javadi; D. Bonn

    2011-01-01

    We present an experimental investigation of the coiling of a filament of a yield stress fluid falling on a solid surface. We use two kinds of yield stress fluids, shaving foam and hair gel, and show that the coiling of the foam is similar to the coiling of an elastic rope. Two regimes of coiling (el

  6. Linear Rogowski coil

    Science.gov (United States)

    Nassisi, V.; Delle Side, D.

    2017-02-01

    Nowadays, the employment and development of fast current pulses require sophisticated systems to perform measurements. Rogowski coils are used to diagnose cylindrical shaped beams; therefore, they are designed and built with a toroidal structure. Recently, to perform experiments of radiofrequency biophysical stresses, flat transmission lines have been developed. Therefore, in this work we developed a linear Rogowski coil to detect current pulses inside flat conductors. The system is first approached by means of transmission line theory. We found that, if the pulse width to be diagnosed is comparable with the propagation time of the signal in the detector, it is necessary to impose a uniform current as input pulse, or to use short coils. We further analysed the effect of the resistance of the coil and the influence of its magnetic properties. As a result, the device we developed is able to record pulses lasting for some hundreds of nanoseconds, depending on the inductance, load impedance, and resistance of the coil. Furthermore, its response is characterized by a sub-nanosecond rise time (˜100 ps). The attenuation coefficient depends mainly on the turn number of the coil, while the fidelity of the response depends both on the magnetic core characteristics and on the current distribution along the plane conductors.

  7. Stretchable, weavable coiled carbon nanotube/MnO2/polymer fiber solid-state supercapacitors

    National Research Council Canada - National Science Library

    Choi, Changsoon; Kim, Shi Hyeong; Sim, Hyeon Jun; Lee, Jae Ah; Choi, A Young; Kim, Youn Tae; Lepró, Xavier; Spinks, Geoffrey M; Baughman, Ray H; Kim, Seon Jeong

    2015-01-01

    .... The elastomeric electrodes of the present solid-state supercapacitors are made by using giant inserted twist to coil a nylon sewing thread that is helically wrapped with a carbon nanotube sheet...

  8. Coiled coils and SAH domains in cytoskeletal molecular motors.

    Science.gov (United States)

    Peckham, Michelle

    2011-10-01

    Cytoskeletal motors include myosins, kinesins and dyneins. Myosins move along tracks of actin filaments, whereas kinesins and dyneins move along microtubules. Many of these motors are involved in trafficking cargo in cells. However, myosins are mostly monomeric, whereas kinesins are mostly dimeric, owing to the presence of a coiled coil. Some myosins (myosins 6, 7 and 10) contain an SAH (single α-helical) domain, which was originally thought to be a coiled coil. These myosins are now known to be monomers, not dimers. The differences between SAH domains and coiled coils are described and the potential roles of SAH domains in molecular motors are discussed.

  9. TESLA Coil Research

    Science.gov (United States)

    1992-05-01

    Sloan’s work was actually predated by the earlier work of Nikola Tesla . Sloan mistakenly identified " Tesla Coils" as lumped tuned resonators. The...Lefvw WsnJ L REPORT o]i 3. REPRT TYPE AND OATES COVEIRD May 1992 Special/Aug 1992 - May 1992 Z TITLE AND 5U§nUT S. FUNDING NUMIHRS Tesla Coil Research...STATEMENT 1211. ’ISTRIUUTION COOD Approved for public release; dis~ribution is unlimited 13. ABSTRACT (Masrmum 200 worw) High repetition rate Tesla

  10. Meiosis specific coiled-coil proteins in Shizosaccharomyces pombe

    Directory of Open Access Journals (Sweden)

    Okuzaki Daisuke

    2007-05-01

    Full Text Available Abstract Many meiosis-specific proteins in Schizosaccharomyces pombe contain coiled-coil motifs which play essential roles for meiotic progression. For example, the coiled-coil motifs present in Meu13 and Mcp7 are required for their function as a putative recombinase cofactor complex during meiotic recombination. Mcp6/Hrs1 and Mcp5/Num1 control horsetail chromosome movement by astral microtubule organization and anchoring dynein respectively. Dhc1 and Ssm4 are also required for horsetail chromosome movement. It is clear from these examples that the coiled-coil motif in these proteins plays an important role during the progression of cells through meiosis. However, there are still many unanswered questions on how these proteins operate. In this paper, we briefly review recent studies on the meiotic coiled-coil proteins in Sz. pombe.

  11. Planar, monolithically integrated coil

    NARCIS (Netherlands)

    Roozeboom, F.; Reefman, D.; Klootwijk, J.H.; Tiemeijer, L.F.; Ruigrok, J.

    2013-01-01

    The present invention provides a means to integrate planar coils on silicon, while providing a high inductance. This high inductance is achieved through a special back- and front sided shielding of a material. In many applications, high-value inductors are a necessity. In particular, this holds for

  12. An orientable search coil

    Science.gov (United States)

    Holt, P. J.; Poblocki, M.

    2017-01-01

    We provide a design for a low cost orientable search coil that can be used to investigate the variation of magnetic flux with angle. This experiment is one of the required practical activities in the current A level physics specification for the AQA examination board in the UK. We demonstrate its performance and suggest other suitable investigations that can be undertaken.

  13. Regenerated Sciatic Nerve Axons Stimulated through a Chronically Implanted Macro-Sieve Electrode

    Science.gov (United States)

    MacEwan, Matthew R.; Zellmer, Erik R.; Wheeler, Jesse J.; Burton, Harold; Moran, Daniel W.

    2016-01-01

    Sieve electrodes provide a chronic interface for stimulating peripheral nerve axons. Yet, successful utilization requires robust axonal regeneration through the implanted electrode. The present study determined the effect of large transit zones in enhancing axonal regeneration and revealed an intimate neural interface with an implanted sieve electrode. Fabrication of the polyimide sieve electrodes employed sacrificial photolithography. The manufactured macro-sieve electrode (MSE) contained nine large transit zones with areas of ~0.285 mm2 surrounded by eight Pt-Ir metallized electrode sites. Prior to implantation, saline, or glial derived neurotropic factor (GDNF) was injected into nerve guidance silicone-conduits with or without a MSE. The MSE assembly or a nerve guidance conduit was implanted between transected ends of the sciatic nerve in adult male Lewis rats. At 3 months post-operation, fiber counts were similar through both implant types. Likewise, stimulation of nerves regenerated through a MSE or an open silicone conduit evoked comparable muscle forces. These results showed that nerve regeneration was comparable through MSE transit zones and an open conduit. GDNF had a minimal positive effect on the quality and morphology of fibers regenerating through the MSE; thus, the MSE may reduce reliance on GDNF to augment axonal regeneration. Selective stimulation of several individual muscles was achieved through monopolar stimulation of individual electrodes sites suggesting that the MSE might be an optimal platform for functional neuromuscular stimulation. PMID:28008303

  14. Electrodeposited iridium oxide for neural stimulation and recording electrodes.

    Science.gov (United States)

    Meyer, R D; Cogan, S F; Nguyen, T H; Rauh, R D

    2001-03-01

    Iridium oxide films formed by electrodeposition onto noniridium metal substrates are compared with activated iridium oxide films (AIROFs) as a low impedance, high charge capacity coating for neural stimulation and recording electrodes. The electrodeposited iridium oxide films (EIROFs) were deposited on Au, Pt, PtIr, and 316 LVM stainless steel substrates from a solution of IrCl4, oxalic acid, and K2CO3. A deposition protocol involving 50 potential sweeps at 50 mV/s between limits of 0.0 V and 0.55 V (versus Ag AgCl) followed by potential pulsing between the same limits produced adherent films with a charge storage capacity of >25 mC/cm2. Characterization by cyclic voltammetry and impedance spectroscopy revealed no differences in the electrochemical behavior of EIROF on non-Ir substrates and AIROF. The mechanical stability of the oxides was evaluated by ultrasonication in distilled water followed by dehydration and rehydration. Stability under charge injection was evaluated using 200 micros, 5.9 A/cm2 (1.2 mC/cm2) cathodal pulses. Loss of iridium oxide charge capacity was comparable for AIROFs and the EIROFs, ranging from 1% to 8% of the capacity immediately after activation or deposition. The EIROFs were deposited and evaluated on silicon microprobe electrodes and on metallized polyimide electrodes being developed for neural recording and stimulation applications.

  15. Minimax Current Density Coil Design

    CERN Document Server

    Poole, Michael; Lopez, Hector Sanchez; Ng, Michael; Crozier, Stuart; 10.1088/0022-3727/43/9/095001

    2010-01-01

    'Coil design' is an inverse problem in which arrangements of wire are designed to generate a prescribed magnetic field when energized with electric current. The design of gradient and shim coils for magnetic resonance imaging (MRI) are important examples of coil design. The magnetic fields that these coils generate are usually required to be both strong and accurate. Other electromagnetic properties of the coils, such as inductance, may be considered in the design process, which becomes an optimization problem. The maximum current density is additionally optimized in this work and the resultant coils are investigated for performance and practicality. Coils with minimax current density were found to exhibit maximally spread wires and may help disperse localized regions of Joule heating. They also produce the highest possible magnetic field strength per unit current for any given surface and wire size. Three different flavours of boundary element method that employ different basis functions (triangular elements...

  16. Introduction to COIL

    OpenAIRE

    Kane, David

    2008-01-01

    By reciprocal arrangement between WIT and the National College of Ireland, you are now able to access their collection directly - more than 100,000 items. This form of direct consortial borrowing has never been tried before in Ireland. Before you borrow your first book, you will have to set up a COIL account, which is straightforward. The items which you reserve online will be posted to us, for you to collect, at the front desk in the Luke Wadding library, afterwards. The Initiat...

  17. Triple Halo Coil: Development and Comparison with Other TMS Coils

    Science.gov (United States)

    Rastogi, Priyam; Hadimani, Ravi; Jiles, David

    Transcranial Magnetic Stimulation (TMS) is a non-invasive stimulation technique that can be used for the treatment of various neurological disorders such as Parkinson's Disease, PTSD, TBI and anxiety by regulating synaptic activity. TMS is FDA approved for the treatment of major depressive disorder. There is a critical need to develop deep TMS coils that can stimulate deeper regions of the brain without excessively stimulating the cortex in order to provide an alternative to surgical methods. We have developed a novel multi-coil configuration called ``Triple Halo Coil'' (THC) that can stimulate deep brain regions. Investigation of induced electric and magnetic field in these regions have been achieved by computer modelling. Comparison of the results due to THC configuration have been conducted with other TMS coils such as ``Halo Coil'', circular coil and ``Figure of Eight'' coil. There was an improvement of more than 15 times in the strength of magnetic field, induced by THC configuration at 10 cm below the vertex of the head when compared with the ``Figure of Eight'' coil alone. Carver Charitable Trust.

  18. Structural and biochemical characterizations of an intramolecular tandem coiled coil protein.

    Science.gov (United States)

    Shin, Donghyuk; Kim, Gwanho; Kim, Gyuhee; Zheng, Xu; Kim, Yang-Gyun; Lee, Sangho

    2014-12-12

    Coiled coil has served as an excellent model system for studying protein folding and developing protein-based biomaterials. Most designed coiled coils function as oligomers, namely intermolecular coiled coils. However, less is known about structural and biochemical behavior of intramolecular coiled coils where coiled coil domains are covalently linked in one polypeptide. Here we prepare a protein which harbors three coiled coil domains with two short linkers, termed intramolecular tandem coiled coil (ITCC) and characterize its structural and biochemical behavior in solution. ITCC consists of three coiled coil domains whose sequences are derived from Coil-Ser and its domain swapped dimer. Modifications include positioning E (Glu) residue at "e" and K (Lys) at "g" positions throughout heptad repeats to enhance ionic interaction among its constituent coiled coil domains. Molecular modeling of ITCC suggests a compact triple helical bundle structure with the second and the third coiled coil domains forming a canonical coiled coil. ITCC exists as a mixture of monomeric and dimeric species in solution. Small-angle X-ray scattering reveals ellipsoidal molecular envelopes for both dimeric and monomeric ITCC in solution. The theoretically modeled structures of ITCC dock well into the envelopes of both species. Higher ionic strength shifts the equilibrium into monomer with apparently more compact structure while secondary structure remains unchanged. Taken together, our results suggest that our designed ITCC is predominantly monomeric structure through the enhanced ionic interactions, and its conformation is affected by the concentration of ionic species in the buffer.

  19. Magnetohydrodynamic electrode

    Science.gov (United States)

    Boquist, Carl W.; Marchant, David D.

    1978-01-01

    A ceramic-metal composite suitable for use in a high-temperature environment consists of a refractory ceramic matrix containing 10 to 50 volume percent of a continuous high-temperature metal reinforcement. In a specific application of the composite, as an electrode in a magnetohydrodynamic generator, the one surface of the electrode which contacts the MHD fluid may have a layer of varying thickness of nonreinforced refractory ceramic for electrode temperature control. The side walls of the electrode may be coated with a refractory ceramic insulator. Also described is an electrode-insulator system for a MHD channel.

  20. CCHMM_PROF: a HMM-based coiled-coil predictor with evolutionary information

    DEFF Research Database (Denmark)

    Bartoli, Lisa; Fariselli, Piero; Krogh, Anders;

    2009-01-01

    MOTIVATION: The widespread coiled-coil structural motif in proteins is known to mediate a variety of biological interactions. Recognizing a coiled-coil containing sequence and locating its coiled-coil domains are key steps towards the determination of the protein structure and function. Different...... tools are available for predicting coiled-coil domains in protein sequences, including those based on position-specific score matrices and machine learning methods. RESULTS: In this article, we introduce a hidden Markov model (CCHMM_PROF) that exploits the information contained in multiple sequence...... alignments (profiles) to predict coiled-coil regions. The new method discriminates coiled-coil sequences with an accuracy of 97% and achieves a true positive rate of 79% with only 1% of false positives. Furthermore, when predicting the location of coiled-coil segments in protein sequences, the method reaches...

  1. Coiled-coil conformation of a pentamidine-DNA complex.

    Science.gov (United States)

    Moreno, Tadeo; Pous, Joan; Subirana, Juan A; Campos, J Lourdes

    2010-03-01

    The coiled-coil structure formed by the complex of the DNA duplex d(ATATATATAT)(2) with pentamidine is presented. The duplex was found to have a mixed structure containing Watson-Crick and Hoogsteen base pairs. The drug stabilizes the coiled coil through the formation of cross-links between neighbouring duplexes. The central part of the drug is found in the minor groove as expected, whereas the charged terminal amidine groups protrude and interact with phosphates from neighbouring molecules. The formation of cross-links may be related to the biological effects of pentamidine, which is used as an antiprotozoal agent in trypanosomiasis, leishmaniasis and pneumonias associated with AIDS. The DNA sequence that was used is highly abundant in most eukaryotic genomes. However, very few data are available on DNA sequences which only contain A.T base pairs.

  2. Can Magnetic Coil Ease Tinnitus?

    Science.gov (United States)

    ... Research Updates Technology Horizons Can magnetic coil ease tinnitus? VA trial aims to find out February 3, ... pain. See, for example, this 2009 review study . Tinnitus and Veterans Tinnitus has been one of the ...

  3. First coil for the SC

    CERN Multimedia

    CERN PhotoLab

    1955-01-01

    The coils for the SC magnet were stored in the large hangar of the Cointrin Airport (to make sure that they would be available before snow and ice would block the roads and canals from Belgium, where they were built).

  4. Adjustable Induction-Heating Coil

    Science.gov (United States)

    Ellis, Rod; Bartolotta, Paul

    1990-01-01

    Improved design for induction-heating work coil facilitates optimization of heating in different metal specimens. Three segments adjusted independently to obtain desired distribution of temperature. Reduces time needed to achieve required temperature profiles.

  5. Nylon screws make inexpensive coil forms

    Science.gov (United States)

    Aucoin, G.; Rosenthal, C.

    1978-01-01

    Standard nylon screws act as coil form copper wire laid down in spiral thread. Completed coil may be bonded to printed-circuit board. However, it is impossible to tune coil by adjusting spacing between windings, technique sometimes used with air-core coils.

  6. Nylon screws make inexpensive coil forms

    Science.gov (United States)

    Aucoin, G.; Rosenthal, C.

    1978-01-01

    Standard nylon screws act as coil form copper wire laid down in spiral thread. Completed coil may be bonded to printed-circuit board. However, it is impossible to tune coil by adjusting spacing between windings, technique sometimes used with air-core coils.

  7. HELMHOLTZ COILS FOR MEASURING MAGNETIC MOMENTS

    Directory of Open Access Journals (Sweden)

    P. N. Dobrodeyev

    2013-01-01

    Full Text Available The optimal configuration of the double Helmholtz coils for measuring of the magnetic dipole moments was defined. It was determined that measuring coils should have round shape and compensative coils – the square one. Analytically confirmed the feasibility of the proposed configuration of these coils as primary transmitters of magnetic dipole moments.

  8. Investigation of the Alkaline Electrochemical Interface and Development of Composite Metal/Metal-Oxides for Hydrogen and Oxygen Electrodes

    Science.gov (United States)

    Bates, Michael

    electrolyte. The HER kinetics of numerous binary & ternary Ni-alloys and composite Ni/metal-oxide/C samples were evaluated in aqueous 0.1 M KOH electrolyte. Furthermore a model of the double layer interface is proposed, which helps explain the observed ensemble effect in the presence of AEI. In Chapter 3, Ni-Fe and Ni-Fe-Co mixed-metal-oxide (MMO) films were investigated for oxygen evolution reaction (OER) activity in 0.1M KOH on high surface area Raney-Nickel supports. During investigations of MMO activity, aniline was identified as a useful "capping agent" for synthesis of high-surface area MMO-polyaniline (PANI) composite materials. A Ni-Fe-Co/PANI-Raney-Ni catalyst was developed which exhibits enhanced mass-activity compared to state-of-the-art Ni-Fe OER electrocatalysts reported to date. The morphology of the MMO catalyst film on PANI/Raney-Ni support provides excellent dispersion of active-sites and should maintain high active-site utilization for catalyst loading on gas-diffusion electrodes. In Chapter 4, the de-activation of reversible-hydrogen electrode catalysts was investigated and the development of a Pt-Ir-Nx/C catalyst is reported, which exhibits significantly increased stability in the HBr/Br 2 electrolyte. In contrast a Pt-Ir/C catalyst exhibited increased tolerance to high-voltage cycling and in particular showed recovery of electrocatalytic activity after reversible de-activation (presumably from bromide adsorption and subsequent oxidative bromide stripping). Under the harshest testing conditions of high-voltage cycling or exposure to Br2 the Pt-based catalyst showed a trend in stability: Pt < Pt-Ir < Pt-Ir-Nx. (Abstract shortened by UMI.).

  9. Computational analysis of residue contributions to coiled-coil topology.

    Science.gov (United States)

    Ramos, Jorge; Lazaridis, Themis

    2011-11-01

    A variety of features are thought to contribute to the oligomeric and topological specificity of coiled coils. In previous work, we examined the determinants of oligomeric state. Here, we examine the energetic basis for the tendency of six coiled-coil peptides to align their α-helices in antiparallel orientation using molecular dynamics simulations with implicit solvation (EEF1.1). We also examine the effect of mutations known to disrupt the topology of these peptides. In agreement with experiment, ARG or LYS at a or d positions were found to stabilize the antiparallel configuration. The modeling suggests that this is not due to a-a' or d-d' repulsions but due to interactions with e' and g' residues. TRP at core positions also favors the antiparallel configuration. Residues that disfavor parallel dimers, such as ILE at d, are better tolerated in, and thus favor the antiparallel configuration. Salt bridge networks were found to be more stabilizing in the antiparallel configuration for geometric reasons: antiparallel helices point amino acid side chains in opposite directions. However, the structure with the largest number of salt bridges was not always the most stable, due to desolvation and configurational entropy contributions. In tetramers, the extent of stabilization of the antiparallel topology by core residues is influenced by the e' residue on a neighboring helix. Residues at b and c positions in some cases also contribute to stabilization of antiparallel tetramers. This work provides useful rules toward the goal of designing coiled coils with a well-defined and predictable three-dimensional structure.

  10. The structure of the GemC1 coiled coil and its interaction with the Geminin family of coiled-coil proteins

    Energy Technology Data Exchange (ETDEWEB)

    Caillat, Christophe; Fish, Alexander [The Netherlands Cancer Institute, 1066 CX Amsterdam (Netherlands); Pefani, Dafni-Eleftheria; Taraviras, Stavros; Lygerou, Zoi [University of Patras, 26505 Rio, Patras (Greece); Perrakis, Anastassis, E-mail: a.perrakis@nki.nl [The Netherlands Cancer Institute, 1066 CX Amsterdam (Netherlands)

    2015-10-31

    The GemC1 coiled-coil structure has subtle differences compared with its homologues Geminin and Idas. Co-expression experiments in cells and biophysical stability analysis of the Geminin-family coiled coils suggest that the GemC1 coiled coil alone is unstable. GemC1, together with Idas and Geminin, an important regulator of DNA-replication licensing and differentiation decisions, constitute a superfamily sharing a homologous central coiled-coil domain. To better understand this family of proteins, the crystal structure of a GemC1 coiled-coil domain variant engineered for better solubility was determined to 2.2 Å resolution. GemC1 shows a less typical coiled coil compared with the Geminin homodimer and the Geminin–Idas heterodimer structures. It is also shown that both in vitro and in cells GemC1 interacts with Geminin through its coiled-coil domain, forming a heterodimer that is more stable that the GemC1 homodimer. Comparative analysis of the thermal stability of all of the possible superfamily complexes, using circular dichroism to follow the unfolding of the entire helix of the coiled coil, or intrinsic tryptophan fluorescence of a unique conserved N-terminal tryptophan, shows that the unfolding of the coiled coil is likely to take place from the C-terminus towards the N-terminus. It is also shown that homodimers show a single-state unfolding, while heterodimers show a two-state unfolding, suggesting that the dimer first falls apart and the helices then unfold according to the stability of each protein. The findings argue that Geminin-family members form homodimers and heterodimers between them, and this ability is likely to be important for modulating their function in cycling and differentiating cells.

  11. Deformation of Linked Polymer Coils

    Institute of Scientific and Technical Information of China (English)

    董朝霞; 李明远; 吴肇亮; 林梅钦

    2003-01-01

    Linked polymer solution (LPS) is defined as the solution of linked polymer coils (LPCs) dispersed in water, composed of low concentration partially hydrolyzed polyacrylamide (HPAM) and aluminum citrate (crosslinker). In the work, the conformational changes of LPCs under different conditions were investigated by the methods of membrane filtering under low pressure, dynamic light scattering and core flooding experiments. The results showed that in some conditions the LPCs could be compressed mechanically to 1/158.5 of their original volume because of relatively lower HPAM cross-linking. The hydration property of LPCs was similar to that of normal polymer coils. The deformation of LPCs was more restricted than that of ordinary polymer coils under the flow shear stress or the shift of hydration equilibrium caused in the variation of the electrolyte concentration which is responsible for the effective plugging in the throats of porous media when LPCs are used for deep diverting.

  12. Coil Optimization for HTS Machines

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Abrahamsen, Asger Bech

    for different tape parameters Ici, ni and Ci, where Ici, ni and Ci are critical current, n - value and price of the ith tape respectively and i=1, 2, 3…, further optimization with respect to cost vs. HTS losses has been performed. Allowing for different types of HTS tapes in the coils, a guidance to which tape....... The proposed coil design is optimized with respect to minimizing the perpendicular field while still maximizing the amplitude of fundamental space harmonic. This guarantees the lowest HTS loss density and best utilization of expensive HTS material in the field winding of the SM. Additionally, accounting...

  13. Electromagnetic Gun With Commutated Coils

    Science.gov (United States)

    Elliott, David G.

    1991-01-01

    Proposed electromagnetic gun includes electromagnet coil, turns of which commutated in sequence along barrel. Electrical current fed to two armatures by brushes sliding on bus bars in barrel. Interaction between armature currents and magnetic field from coil produces force accelerating armature, which in turn, pushes on projectile. Commutation scheme chosen so magnetic field approximately coincides and moves with cylindrical region defined by armatures. Scheme has disadvantage of complexity, but in return, enables designer to increase driving magnetic field without increasing armature current. Attainable muzzle velocity increased substantially.

  14. [Two Cases of Ruptured Cerebral Aneurysm Complicated with Delayed Coil Protrusion after Coil Embolization].

    Science.gov (United States)

    Furukawa, Takashi; Ogata, Atsushi; Ebashi, Ryo; Takase, Yukinori; Masuoka, Jun; Kawashima, Masatou; Abe, Tatsuya

    2016-07-01

    We report two cases of delayed coil protrusion after coil embolization for ruptured cerebral aneurysms. Case 1:An 82-year-old woman with a subarachnoid hemorrhage due to a ruptured small anterior communicating artery aneurysm underwent successful coil embolization. Eighteen days after the procedure, coil protrusion from the aneurysm into the right anterior cerebral artery was observed without any symptoms. Further coil protrusion did not develop after 28 days. Case 2:A 78-year-old woman with a subarachnoid hemorrhage due to a ruptured small left middle cerebral artery aneurysm underwent successful coil embolization. Twenty days after the procedure, coil protrusion from the aneurysm into the left middle cerebral artery was observed, with a transient ischemic attack. Further coil protrusion did not develop. Both patients recovered with antithrombotic treatment. Even though delayed coil protrusion after coil embolization is rare, it should be recognized as a long-term complication of coil embolization for cerebral aneurysms.

  15. Coupled Coils, Magnets and Lenz's Law

    Science.gov (United States)

    Thompson, Frank

    2010-01-01

    Great scientists in the past have experimented with coils and magnets. Here we have a variation where coupling occurs between two coils and the oscillatory motion of two magnets to give somewhat surprising results. (Contains 6 figures and 1 footnote.)

  16. Generalization of Helmholtz coil problem

    Directory of Open Access Journals (Sweden)

    Petković Dejan M.

    2015-01-01

    Full Text Available The primary intent of this work is to propose a simple analytical method for designing coil systems for homogeneous and gradient magnetostatic field generation. Coil system consists of two identical coaxial (regular polygonal current loops. In the space between the loops, there is nearly homogeneous or nearly linear distribution of the magnetic field along the axes depending on the currents' direction. First, we derived a suitable, simple and general expression for the magnetic field along the axes due to a polygonal current loop. We emphasize the importance of the role of this expression for further analysis. The total on-axes magnetic field is the result of superposition of the magnetic fields that each loop generates separately. The proper distance between the loops and the current orientation make the system to become either Helmholtz coil or anti-Helmholtz coil. In this paper we give exact, analytical and general expression for this optimal distance that provides the magnetic field to be homogeneous (linear as much as possible. We based our study on Taylor series expansion of the total magnetic field, demanding that the first contaminating term must be canceled, in both, symmetric and asymmetric case.

  17. Rotor assembly including superconducting magnetic coil

    Energy Technology Data Exchange (ETDEWEB)

    Snitchler, Gregory L. (Shrewsbury, MA); Gamble, Bruce B. (Wellesley, MA); Voccio, John P. (Somerville, MA)

    2003-01-01

    Superconducting coils and methods of manufacture include a superconductor tape wound concentrically about and disposed along an axis of the coil to define an opening having a dimension which gradually decreases, in the direction along the axis, from a first end to a second end of the coil. Each turn of the superconductor tape has a broad surface maintained substantially parallel to the axis of the coil.

  18. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif

    DEFF Research Database (Denmark)

    Céspedes, Nora; Habel, Catherine; Lopez-Perez, Mary

    2014-01-01

    Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous...

  19. The many types of interhelical ionic interactions in coiled coils - an overview.

    Science.gov (United States)

    Meier, Markus; Stetefeld, Jörg; Burkhard, Peter

    2010-05-01

    Coiled coils represent the most frequent protein oligomerization motif in nature and are involved in many important biological processes. The prototype interhelical ionic interaction for coiled coils described in literature is an i to i+5 ionic interaction from heptad position g to e', but other possible ionic interactions have also been described. Here we use a statistical approach to systematically analyze all high-quality coiled-coil structures in the RCSB protein database for their interhelical ionic interactions. We provide a complete listing of all possible arrangements and analyze the frequency of their occurrence in the primary sequence together with their probability of formation in the quaternary structure of the coiled coils. We show that the classical i to i+5 ionic interaction is indeed characteristic for parallel dimeric and trimeric coiled coils. But we also show that there are many more i to i+2 ionic interactions in parallel tetrameric and pentameric coiled coils, and in antiparallel coiled coils the classical i to i+5 ionic interaction is in none of the oligomerizations states the most frequently observed ionic interaction. We also demonstrate that many ionic interactions involve residues at the core positions that are usually occupied by hydrophobic residues and that such interhelical ionic interactions are a hallmark feature of dimeric coiled coils.

  20. Design of a shielded coil element of a matrix gradient coil

    Science.gov (United States)

    Jia, Feng; Littin, Sebastian; Layton, Kelvin J.; Kroboth, Stefan; Yu, Huijun; Zaitsev, Maxim

    2017-08-01

    The increasing interest in spatial encoding with non-linear magnetic fields has intensified the need for coils that generates such fields. Matrix coils consisting of multiple coil elements appear to offer a high flexibility in generating customized encoding fields and are particularly promising for localized high resolution imaging applications. However, coil elements of existing matrix coils were primarily designed and constructed for better shimming and therefore are not expected to achieve an optimal performance for local spatial encoding. Moreover, eddy current properties of such coil elements were not fully explored. In this work, an optimization problem is formulated based on the requirement of local non-linear encoding and eddy current reduction that results in novel designs of coil elements for an actively-shielded matrix gradient coil. Two metrics are proposed to assess the performance of different coil element designs. The results are analyzed to reveal new insights into coil element design.

  1. Scaffolds, levers, rods and springs: diverse cellular functions of long coiled-coil proteins.

    Science.gov (United States)

    Rose, A; Meier, I

    2004-08-01

    Long alpha-helical coiled-coil proteins are involved in a variety of organizational and regulatory processes in eukaryotic cells. They provide cables and networks in the cyto- and nucleoskeleton, molecular scaffolds that organize membrane systems, motors, levers, rotating arms and possibly springs. A growing number of human diseases are found to be caused by mutations in long coiled-coil proteins. This review summarizes our current understanding of the multifaceted group of long coiled-coil proteins in the cytoskeleton, nucleus, Golgi and cell division apparatus. The biophysical features of coiled-coil domains provide first clues toward their contribution to the diverse protein functions and promise potential future applications in the area of nanotechnology. Combining the power of fully sequenced genomes and structure prediction algorithms, it is now possible to comprehensively summarize and compare the complete inventory of coiled-coil proteins of different organisms.

  2. Repeats in transforming acidic coiled-coil (TACC) genes.

    Science.gov (United States)

    Trivedi, Seema

    2013-06-01

    Transforming acidic coiled-coil proteins (TACC1, 2, and 3) are essential proteins associated with the assembly of spindle microtubules and maintenance of bipolarity. Dysregulation of TACCs is associated with tumorigenesis, but studies of microsatellite instability in TACC genes have not been extensive. Microsatellite or simple sequence repeat instability is known to cause many types of cancer. The present in silico analysis of SSRs in human TACC gene sequences shows the presence of mono- to hexa-nucleotide repeats, with the highest densities found for mono- and di-nucleotide repeats. Density of repeats is higher in introns than in exons. Some of the repeats are present in regulatory regions and retained introns. Human TACC genes show conservation of many repeat classes. Microsatellites in TACC genes could be valuable markers for monitoring numerical chromosomal aberrations and or cancer.

  3. Coil Migration through a Neuroform 3 Stent during Endovascular Coiling. A Case Report.

    LENUS (Irish Health Repository)

    O'Hare, A

    2009-07-29

    Summary: A 43-year-old woman attended for stent assisted coiling. A Neuroform 30 x 4.5 mm stent had been successfully placed over the left periophthalmic aneurysm. During the coiling the first coil migrated through the crowns in the stent, lodging at the MCA bifurcation. We believe that the coil herniated through the overlying stent due to the carotid siphon curvature and the open cell design. Furthermore the distal markers of the stent impeded coil extraction with a MERCI device.

  4. Improved transcranial magnetic stimulation coil design with realistic head modeling

    Science.gov (United States)

    Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2013-03-01

    We are investigating Transcranial magnetic stimulation (TMS) as a noninvasive technique based on electromagnetic induction which causes stimulation of the neurons in the brain. TMS can be used as a pain-free alternative to conventional electroconvulsive therapy (ECT) which is still widely implemented for treatment of major depression. Development of improved TMS coils capable of stimulating subcortical regions could also allow TMS to replace invasive deep brain stimulation (DBS) which requires surgical implantation of electrodes in the brain. Our new designs allow new applications of the technique to be established for a variety of diagnostic and therapeutic applications of psychiatric disorders and neurological diseases. Calculation of the fields generated inside the head is vital for the use of this method for treatment. In prior work we have implemented a realistic head model, incorporating inhomogeneous tissue structures and electrical conductivities, allowing the site of neuronal activation to be accurately calculated. We will show how we utilize this model in the development of novel TMS coil designs to improve the depth of penetration and localization of stimulation produced by stimulator coils.

  5. Performance evaluation of matrix gradient coils.

    Science.gov (United States)

    Jia, Feng; Schultz, Gerrit; Testud, Frederik; Welz, Anna Masako; Weber, Hans; Littin, Sebastian; Yu, Huijun; Hennig, Jürgen; Zaitsev, Maxim

    2016-02-01

    In this paper, we present a new performance measure of a matrix coil (also known as multi-coil) from the perspective of efficient, local, non-linear encoding without explicitly considering target encoding fields. An optimization problem based on a joint optimization for the non-linear encoding fields is formulated. Based on the derived objective function, a figure of merit of a matrix coil is defined, which is a generalization of a previously known resistive figure of merit for traditional gradient coils. A cylindrical matrix coil design with a high number of elements is used to illustrate the proposed performance measure. The results are analyzed to reveal novel features of matrix coil designs, which allowed us to optimize coil parameters, such as number of coil elements. A comparison to a scaled, existing multi-coil is also provided to demonstrate the use of the proposed performance parameter. The assessment of a matrix gradient coil profits from using a single performance parameter that takes the local encoding performance of the coil into account in relation to the dissipated power.

  6. Quenching in coupled adiabatic coils

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.E.C.

    1985-03-01

    The prediction of the effects of a quench on stress and temperature is an important aspect of the design of superconducting magnets. Of particular interest, and the exclusive topic of this study, is the prediction of the effects of quenching in coupled adiabatic coils, such as the multi-section windings of a high field NMR spectrometer magnet. The predictive methods used here are based on the measurement of the time of propagation of quench between turns. From this measurement an approximate algorithum for the propagation time is used in a code which solves the linear differential equations for the coil currents and calculates the movement of normal zone boundaries and hence the associated winding resistance.

  7. Starch gelatinization in coiled heaters.

    Science.gov (United States)

    Kelder, J D H; Ptasinski, K J; Kerkhof, P J A M

    2004-01-01

    A gelatinizing model food derived from a 5% w/w cross-linked waxy maize starch suspension was simulated in coiled heaters to assess the impact of centrifugal forces on flow and heat transfer. For four coil diameters (D = 0.25, 1, 2.5, and infinity m) and three flow rates (w = 0.5, 1, and 2 m/s), heat transfer, viscous development, and the severity of channeling were evaluated. Increasing curvature proved to suppress channeling as a result of more uniform heating and gelatinization. The maximum attainable viscosity was also higher, implying a lower starch consumption for a target viscosity. Higher flow rates necessitated longer heaters, and the maximum viscosity decreased. Moderate product velocities are therefore recommended.

  8. Coiled transmission line pulse generators

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Kenneth Fox (Columbia, MO)

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  9. Microvoltammetric Electrodes.

    Science.gov (United States)

    1985-09-25

    Microvoltammetric Electrodes, J. 0. Howell, R. M. Wightman, Anal. Chem., 56, 524-529 (1984). 2. Flow Rate Independent Amperometric Cell , W. L. Caudill...Electroanal. Chem., 182, 113-122 (1985). C. List of all publications 1. Flow Rate Independent Amperometric Cell , W. L. Caudill, J. 0. Howell, R. M

  10. Self-correction coil: operation mechanism of self-correction coil

    Energy Technology Data Exchange (ETDEWEB)

    Hosoyama, K.

    1983-06-01

    We discuss here the operation mechanism of self-correction coil with a simple model. At the first stage, for the ideal self-correction coil case we calculate the self-inductance L of self-correction coil, the mutual inductance M between the error field coil and the self-correction coil, and using the model the induced curent in the self-correction coil by the external magnetic error field and induced magnetic field by the self-correction coil. And at the second stage, we extend this calculation method to non-ideal self-correction coil case, there we realize that the wire distribution of self-correction coil is important to get the high enough self-correction effect. For measure of completeness of self-correction effect, we introduce the efficiency eta of self-correction coil by the ratio of induced magnetic field by the self-correction coil and error field. As for the examples, we calculate L, M and eta for two cases; one is a single block approximation of self-correction coil winding and the other is a two block approximation case. By choosing the adequate angles of self-correction coil winding, we can get about 98% efficiency for single block approximation case and 99.8% for two block approximation case. This means that by using the self-correction coil we can improve the field quality about two orders.

  11. Coiled-coil protein composition of 22 proteomes – differences and common themes in subcellular infrastructure and traffic control

    Directory of Open Access Journals (Sweden)

    Meier Iris

    2005-11-01

    Full Text Available Abstract Background Long alpha-helical coiled-coil proteins are involved in diverse organizational and regulatory processes in eukaryotic cells. They provide cables and networks in the cyto- and nucleoskeleton, molecular scaffolds that organize membrane systems and tissues, motors, levers, rotating arms, and possibly springs. Mutations in long coiled-coil proteins have been implemented in a growing number of human diseases. Using the coiled-coil prediction program MultiCoil, we have previously identified all long coiled-coil proteins from the model plant Arabidopsis thaliana and have established a searchable Arabidopsis coiled-coil protein database. Results Here, we have identified all proteins with long coiled-coil domains from 21 additional fully sequenced genomes. Because regions predicted to form coiled-coils interfere with sequence homology determination, we have developed a sequence comparison and clustering strategy based on masking predicted coiled-coil domains. Comparing and grouping all long coiled-coil proteins from 22 genomes, the kingdom-specificity of coiled-coil protein families was determined. At the same time, a number of proteins with unknown function could be grouped with already characterized proteins from other organisms. Conclusion MultiCoil predicts proteins with extended coiled-coil domains (more than 250 amino acids to be largely absent from bacterial genomes, but present in archaea and eukaryotes. The structural maintenance of chromosomes proteins and their relatives are the only long coiled-coil protein family clearly conserved throughout all kingdoms, indicating their ancient nature. Motor proteins, membrane tethering and vesicle transport proteins are the dominant eukaryote-specific long coiled-coil proteins, suggesting that coiled-coil proteins have gained functions in the increasingly complex processes of subcellular infrastructure maintenance and trafficking control of the eukaryotic cell.

  12. Mosquito coil emissions and health implications.

    Science.gov (United States)

    Liu, Weili; Zhang, Junfeng; Hashim, Jamal H; Jalaludin, Juliana; Hashim, Zailina; Goldstein, Bernard D

    2003-09-01

    Burning mosquito coils indoors generates smoke that can control mosquitoes effectively. This practice is currently used in numerous households in Asia, Africa, and South America. However, the smoke may contain pollutants of health concern. We conducted the present study to characterize the emissions from four common brands of mosquito coils from China and two common brands from Malaysia. We used mass balance equations to determine emission rates of fine particles (particulate matter pollutant concentrations resulting from burning mosquito coils could substantially exceed health-based air quality standards or guidelines. Under the same combustion conditions, the tested Malaysian mosquito coils generated more measured pollutants than did the tested Chinese mosquito coils. We also identified a large suite of volatile organic compounds, including carcinogens and suspected carcinogens, in the coil smoke. In a set of experiments conducted in a room, we examined the size distribution of particulate matter contained in the coil smoke and found that the particles were ultrafine and fine. The findings from the present study suggest that exposure to the smoke of mosquito coils similar to the tested ones can pose significant acute and chronic health risks. For example, burning one mosquito coil would release the same amount of PM(2.5) mass as burning 75-137 cigarettes. The emission of formaldehyde from burning one coil can be as high as that released from burning 51 cigarettes.

  13. The coiled coils of cohesin are conserved in animals, but not in yeast.

    Directory of Open Access Journals (Sweden)

    Glenn E White

    Full Text Available BACKGROUND: The SMC proteins are involved in DNA repair, chromosome condensation, and sister chromatid cohesion throughout Eukaryota. Long, anti-parallel coiled coils are a prominent feature of SMC proteins, and are thought to serve as spacer rods to provide an elongated structure and to separate domains. We reported recently that the coiled coils of mammalian condensin (SMC2/4 showed moderate sequence divergence (approximately 10-15% consistent with their functioning as spacer rods. The coiled coils of mammalian cohesins (SMC1/3, however, were very highly constrained, with amino acid sequence divergence typically <0.5%. These coiled coils are among the most highly conserved mammalian proteins, suggesting that they make extensive contacts over their entire surface. METHODOLOGY/PRINCIPAL FINDINGS: Here, we broaden our initial analysis of condensin and cohesin to include additional vertebrate and invertebrate organisms and multiple species of yeast. We found that the coiled coils of SMC1/3 are highly constrained in Drosophila and other insects, and more generally across all animal species. However, in yeast they are no more constrained than the coils of SMC2/4 and Ndc80/Nuf2p, suggesting that they are serving primarily as spacer rods. CONCLUSIONS/SIGNIFICANCE: SMC1/3 functions for sister chromatid cohesion in all species. Since its coiled coils apparently serve only as spacer rods in yeast, it is likely that this is sufficient for sister chromatid cohesion in all species. This suggests an additional function in animals that constrains the sequence of the coiled coils. Several recent studies have demonstrated that cohesin has a role in gene expression in post-mitotic neurons of Drosophila, and other animal cells. Some variants of human Cornelia de Lange Syndrome involve mutations in human SMC1/3. We suggest that the role of cohesin in gene expression may involve intimate contact of the coiled coils of SMC1/3, and impose the constraint on sequence

  14. Optimum coil insertion speed of various coils in brain aneurysm embolization in vitro.

    Science.gov (United States)

    Konishi, Yoshifumi; Takeuchi, Masataka; Fukasaku, Kazuaki

    2016-10-01

    A coil must comprise material with shape memory to perform optimal coil embolization. To achieve this, the alloy characteristics of the coil (hardness, shape, and thickness) must be understood. In this experiment, a catheter was fixed in the bright position and the movement of the coil was observed under a constant rate of insertion; the optimal insertion rate during clinical use was investigated. The first coil insertion speed was evaluated using simulated aneurysms in an in vivo arterial model. The results showed that the insertion force relates to the deployment shape of the coil, that the feedback through the force indicator using sound is very effective, and that the recorder is useful for analysis of coil embolization. The inserted coils during aneurysm embolization were able to wind uniformly within the aneurysm due to a variety of factors (guiding or micro-catheter position and kick-back phenomenon such as delivery wire). Optimal speed is achieved with proper coil design, which allows the coil to be inserted into the aneurysm. The shape and size of the aneurysm can help determine the necessary size and design of the coil that should be used during the optimal speed range. Aneurysm wall and coil characteristics are considered, along with the friction state of the coil (hardness, shape, and thickness), leading to improvements in safety during the insertion procedure at optimum speed.

  15. Unusually Stable Helical Coil Allotrope of Phosphorus.

    Science.gov (United States)

    Liu, Dan; Guan, Jie; Jiang, Jingwei; Tománek, David

    2016-12-14

    We have identified an unusually stable helical coil allotrope of phosphorus. Our ab initio density functional theory calculations indicate that the uncoiled, isolated straight one-dimensional chain is equally stable as a monolayer of black phosphorus dubbed phosphorene. The coiling tendency and the attraction between adjacent coil segments add an extra stabilization energy of ∼12 meV/atom to the coil allotrope, similar in value to the ∼16 meV/atom interlayer attraction in bulk black phosphorus. Thus, the helical coil structure is essentially as stable as black phosphorus, the most stable phosphorus allotrope known to date. With an optimum radius of 2.4 nm, the helical coil of phosphorus may fit well and even form inside wide carbon nanotubes.

  16. The Golgin Family of Coiled-Coil Tethering Proteins

    Directory of Open Access Journals (Sweden)

    Tomasz M Witkos

    2016-01-01

    Full Text Available The golgins are a family of predominantly coiled-coil proteins that are localized to the Golgi apparatus. Golgins are present in all eukaryotes, suggesting an evolutionary conserved function. Golgins are anchored to the Golgi membrane by their carboxy terminus and are predicted to adopt an extended conformation that projects into the surrounding cytoplasm. This arrangement is ideal for the capture or tethering of nearby membranes or cytoskeletal elements. Golgin-mediated tethering is thought to be important for vesicular traffic at the Golgi apparatus, the maintenance of Golgi architecture, as well as the positioning of the Golgi apparatus within cells. In addition to acting as tethers, some golgins can also sequester various factors at the Golgi membrane, allowing for the spatiotemporal regulation of downstream cellular functions. Although it is now established that golgins are membrane and cytoskeleton tethers, the mechanisms underlying tethering remain poorly defined. Moreover, the importance of golgin-mediated tethering in a physiological context remains to be fully explored. This review will describe our current understanding of golgin function, highlighting recent progress that has been made, and goes on to discuss outstanding questions and potential avenues for future research with regard to this family of conserved Golgi-associated proteins.

  17. An Experimental Study on Constraint Cooling Process of Hot-rolled CoilS

    Institute of Scientific and Technical Information of China (English)

    Lijuan WANG; Chunli ZHANG

    2003-01-01

    In order to master mechanical property, surface quality and microstructure of constraint cooling (CC) coils undervarious water cooling parameters, more than 100 coils cooling experiments were done with real production process,of which is designed a coolin

  18. Transport vesicle tethering at the trans Golgi network: coiled coil proteins in action

    Directory of Open Access Journals (Sweden)

    Pak-yan Patricia Cheung

    2016-03-01

    Full Text Available The Golgi complex is decorated with so-called Golgin proteins that share a common feature: a large proportion of their amino acid sequences are predicted to form coiled-coil structures. The possible presence of extensive coiled coils implies that these proteins are highly elongated molecules that can extend a significant distance from the Golgi surface. This property would help them to capture or trap inbound transport vesicles and to tether Golgi mini-stacks together. This review will summarize our current understanding of coiled coil tethers that are needed for the receipt of transport vesicles at the trans Golgi network. How do long tethering proteins actually catch vesicles? Golgi-associated, coiled coil tethers contain numerous binding sites for small GTPases, SNARE proteins, and vesicle coat proteins. How are these interactions coordinated and are any or all of them important for the tethering process? Progress towards understanding these questions and remaining, unresolved mysteries will be discussed.

  19. Superconducting Coil of Po Dipole

    CERN Multimedia

    1983-01-01

    The Po superconducting dipole was built as a prototype beam transport magnet for the SPS extracted proton beam P0. Its main features were: coil aperture 72 mm, length 5 m, room-temperature yoke, NbTi cable conductor impregnated with solder, nominal field 4.2 T at 4.7 K (87% of critical field). It reached its nominal field without any quench.After this successful test up to its nominal field of 4.2 T, the power was not raised to reach a quench. The magnet was not installed in a beam and had no other further use. Nevertheless its construction provided knowledges and experience which became useful in the design and construction of the LHC magnets. The photo shows a detail of the inner layer winding before superposing the outer layer to form the complete coil of a pole. Worth noticing is the interleaved glass-epoxy sheet (white) with grooved channels for the flow of cooling helium. See also 8211532X.

  20. Multicoil2: predicting coiled coils and their oligomerization states from sequence in the twilight zone.

    Directory of Open Access Journals (Sweden)

    Jason Trigg

    Full Text Available The alpha-helical coiled coil can adopt a variety of topologies, among the most common of which are parallel and antiparallel dimers and trimers. We present Multicoil2, an algorithm that predicts both the location and oligomerization state (two versus three helices of coiled coils in protein sequences. Multicoil2 combines the pairwise correlations of the previous Multicoil method with the flexibility of Hidden Markov Models (HMMs in a Markov Random Field (MRF. The resulting algorithm integrates sequence features, including pairwise interactions, through multinomial logistic regression to devise an optimized scoring function for distinguishing dimer, trimer and non-coiled-coil oligomerization states; this scoring function is used to produce Markov Random Field potentials that incorporate pairwise correlations localized in sequence. Multicoil2 significantly improves both coiled-coil detection and dimer versus trimer state prediction over the original Multicoil algorithm retrained on a newly-constructed database of coiled-coil sequences. The new database, comprised of 2,105 sequences containing 124,088 residues, includes reliable structural annotations based on experimental data in the literature. Notably, the enhanced performance of Multicoil2 is evident when tested in stringent leave-family-out cross-validation on the new database, reflecting expected performance on challenging new prediction targets that have minimal sequence similarity to known coiled-coil families. The Multicoil2 program and training database are available for download from http://multicoil2.csail.mit.edu.

  1. Accommodation of structural rearrangements in the huntingtin-interacting protein 1 coiled-coil domain

    Energy Technology Data Exchange (ETDEWEB)

    Wilbur, Jeremy D., E-mail: jwilbur@msg.ucsf.edu [Graduate Program in Biophysics, University of California, San Francisco, California 94143 (United States); Hwang, Peter K. [Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143 (United States); Brodsky, Frances M. [The G. W. Hooper Foundation, Departments of Microbiology and Immunology and of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94143 (United States); Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143 (United States); Fletterick, Robert J. [Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143 (United States); Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143 (United States); Graduate Program in Biophysics, University of California, San Francisco, California 94143 (United States)

    2010-03-01

    Variable packing interaction related to the conformational flexibility within the huntingtin-interacting protein 1 coiled coil domain. Huntingtin-interacting protein 1 (HIP1) is an important link between the actin cytoskeleton and clathrin-mediated endocytosis machinery. HIP1 has also been implicated in the pathogenesis of Huntington’s disease. The binding of HIP1 to actin is regulated through an interaction with clathrin light chain. Clathrin light chain binds to a flexible coiled-coil domain in HIP1 and induces a compact state that is refractory to actin binding. To understand the mechanism of this conformational regulation, a high-resolution crystal structure of a stable fragment from the HIP1 coiled-coil domain was determined. The flexibility of the HIP1 coiled-coil region was evident from its variation from a previously determined structure of a similar region. A hydrogen-bond network and changes in coiled-coil monomer interaction suggest that the HIP1 coiled-coil domain is uniquely suited to allow conformational flexibility.

  2. Flow electrification characteristics of transformer oil by rotating electrode systems

    Energy Technology Data Exchange (ETDEWEB)

    Jagadish, R.; Poovamma, P.K. [Central Power Research Inst., Bangalore (India)

    1995-07-01

    Flow electrification has been found to be the principal cause of a number of failures of forced oil cooled power transformers. Flow charging characteristics of oil/cellulose system with factors like electrode configuration, electrode material, presence of Benzotriazole (BTA), metallic contaminants and Copper coils were investigated for paraffinic oil by employing rotating electrode system. A few hydrodynamic parameters viz. Reynolds number, boundary layer thickness and friction factor were correlated with flow charging characteristics of oil for varying temperatures and concentrations of BTA. With lower concentrations of BTA in oil viz. 10 ppm and 25 ppm a marginal reduction in flow charging of oil was noticed, but about 40% reduction was observed with 150 ppm of BTA. A significant reduction in the flow charging characteristics of untreated and BTA treated oils was also observed in the presence of Copper coils and metallic particle contaminants.

  3. 49 CFR 236.730 - Coil, receiver.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Coil, receiver. 236.730 Section 236.730 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Coil, receiver. Concentric layers of insulated wire wound around the core of a receiver of an...

  4. Operator coil monitoring Acceptance Test Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Erhart, M.F.

    1995-05-16

    The readiness of the Data Acquisition and Control System (DACS) to provide monitoring and control of the Programmable Logic Controller (PLC) abort coils from the Master and RSS stations will be systematically tested during performance of this procedure. It should be noted that these are not physical abort coils but software coils controlled by the software`s ladder logic. The readiness of the DACS to properly interface with the ENRAF wire level gauge installed in the SY-101 storage tank will also be tested. During this test, a verification of all abort coil indications will be conducted at the DACS Development Facility in the 306E Building by injecting an input signal for each DACS sensor that has an associated abort coil until the abort coil actuates, and then ensuring that the status of the abort coil indicated at the Master and RSS stations is correct. Each abort coil will also be tested to ensure that the ``ENABLE`` and ``DISABLE`` controls from the Master and RSS stations function correctly, and only with the use of proper passwords.

  5. Evidence-based pathology: umbilical cord coiling.

    Science.gov (United States)

    Khong, T Y

    2010-12-01

    The generation of a pathology test result must be based on criteria that are proven to be acceptably reproducible and clinically relevant to be evidence-based. This review de-constructs the umbilical cord coiling index to illustrate how it can stray from being evidence-based. Publications related to umbilical cord coiling were retrieved and analysed with regard to how the umbilical coiling index was calculated, abnormal coiling was defined and reference ranges were constructed. Errors and other influences that can occur with the measurement of the length of the umbilical cord or of the number of coils can compromise the generation of the coiling index. Definitions of abnormal coiling are not consistent in the literature. Reference ranges defining hypocoiling or hypercoiling have not taken those potential errors or the possible effect of gestational age into account. Even the way numerical test results in anatomical pathology are generated, as illustrated by the umbilical coiling index, warrants a critical analysis into its evidence base to ensure that they are reproducible or free from errors.

  6. Coil Optimization for High Temperature Superconductor Machines

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Abrahamsen, Asger Bech

    2011-01-01

    This paper presents topology optimization of HTS racetrack coils for large HTS synchronous machines. The topology optimization is used to acquire optimal coil designs for the excitation system of 3 T HTS machines. Several tapes are evaluated and the optimization results are discussed. The optimiz...

  7. Functional investigation of the plant-specific long coiled-coil proteins PAMP-INDUCED COILED-COIL (PICC and PICC-LIKE (PICL in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Sowmya Venkatakrishnan

    Full Text Available We have identified and characterized two Arabidopsis long coiled-coil proteins PAMP-INDUCED COILED-COIL (PICC and PICC-LIKE (PICL. PICC (147 kDa and PICL (87 kDa are paralogs that consist predominantly of a long coiled-coil domain (expanded in PICC, with a predicted transmembrane domain at the immediate C-terminus. Orthologs of PICC and PICL were found exclusively in vascular plants. PICC and PICL GFP fusion proteins are anchored to the cytoplasmic surface of the endoplasmic reticulum (ER membrane by a C-terminal transmembrane domain and a short tail domain, via a tail-anchoring mechanism. T-DNA-insertion mutants of PICC and PICL as well as the double mutant show an increased sensitivity to the plant abiotic stress hormone abscisic acid (ABA in a post-germination growth response. PICC, but not PICL gene expression is induced by the bacterial pathogen-associated molecular pattern (PAMP flg22. T-DNA insertion alleles of PICC, but not PICL, show increased susceptibility to the non-virulent strain P. syringae pv. tomato DC3000 hrcC, but not to the virulent strain P. syringae pv. tomato DC3000. This suggests that PICC mutants are compromised in PAMP-triggered immunity (PTI. The data presented here provide first evidence for the involvement of a plant long coiled-coil protein in a plant defense response.

  8. Magnetic Fields at the Center of Coils

    Science.gov (United States)

    Binder, Philippe; Hui, Kaleonui; Goldman, Jesse

    2014-01-01

    In this note we synthesize and extend expressions for the magnetic field at the center of very short and very long current-carrying coils. Elementary physics textbooks present the following equation for the magnetic field inside a very long current-carrying coil (solenoid): B[subscript sol] = µ[subscript 0] (N/L) I, (1) where I is the current, N…

  9. NMR local coil with adjustable spacing

    Energy Technology Data Exchange (ETDEWEB)

    Dembinski, G.T.

    1988-03-22

    A local coil assembly for use in NMR imaging is described which comprises: a base; a first local coil module mounted to the base and extending upward therefrom; sockets disposed in the base, each at a different distance from the first local coil module; a second local coil module having a connector therein which mates with each of the sockets to enable the second local coil module to be connected to the base at any one of the sockets; and a set of reactive components. The values of the respective reactive components are selected such that the second local oil module may be connected to any of the sockets without any substantial change in the resonant frequency of the assembly.

  10. A study on geometry effect of transmission coil for micro size magnetic induction coil

    Science.gov (United States)

    Lee, Kyung Hwa; Jun, Byoung Ok; Kim, Seunguk; Lee, Gwang Jun; Ryu, Mingyu; Choi, Ji-Woong; Jang, Jae Eun

    2016-05-01

    The effects of transmission (Tx) coil structure have been studied for micro-size magnetic induction coil. The size of the receiving (Rx) coil should be shrunk to the micrometer level for the various new applications such as micro-robot and wireless body implanted devices. In case of the macro-scale magnetic induction coil, the power transmission efficiency is generally considered to be higher as the inductance of the transmission coil became larger; however, the large size difference between macro-size Tx coil and micro-size Rx coil can decrease the power transmission efficiency due to the difference of resonance frequency. Here, we study a correlation of the power transmission with the size and distance between the macro-size Tx and micro-size Rx coils using magnetic induction technique. The maximum power efficiency was 0.28/0.23/0.13/0.12% at the distance of 0.3/1/3/5 cm between Rx and Tx coil. In addition, more efficient wireless power transferring method is suggested with a floating coil for the body implantable devices. The voltage output increased up to 5.4 mV than the original one Tx coil system. The results demonstrated the foundational wireless power transferring system with enhanced power efficiency.

  11. Detection of alpha-helical coiled-coil dimer formation by spin-labeled synthetic peptides: a model parallel coiled-coil peptide and the antiparallel coiled coil formed by a replica of the ProP C-terminus.

    Science.gov (United States)

    Hillar, Alexander; Tripet, Brian; Zoetewey, David; Wood, Janet M; Hodges, Robert S; Boggs, Joan M

    2003-12-30

    Electron paramagnetic resonance spectroscopy was used to determine relative peptide orientation within homodimeric, alpha-helical coiled-coil structures. Introduction of cysteine (Cys) residues into peptides/proteins for spin labeling allows detection of their oligomerization from exchange broadening or dipolar interactions between residues within 25 A of each other. Two synthetic peptides containing Cys substitutions were used: a 35-residue model peptide and the 30-residue ProP peptide. The model peptide is known to form a stable, parallel homodimeric coiled coil, which is partially destabilized by Cys substitutions at heptad a and d positions (peptides C30a and C33d). The ProP peptide, a 30-residue synthetic peptide, corresponds to residues 468-497 of osmoregulatory transporter ProP from Escherichia coli. It forms a relatively unstable, homodimeric coiled coil that is predicted to be antiparallel in orientation. Cys was introduced in heptad g positions of the ProP peptide, near the N-terminus (K473C, creating peptide C473g) or closer to the center of the sequence (E480C, creating peptide C480g). In contrast to the destabilizing effect of Cys substitution at the core heptad a or d positions of model peptides C30a and C33d, circular dichroism spectroscopy showed that Cys substitutions at the heptad g positions of the ProP peptide had little or no effect on coiled-coil stability. Thermal denaturation analysis showed that spin labeling increased the stability of the coiled coil for all peptides. Strong exchange broadening was detected for both C30a and C33d, in agreement with a parallel structure. EPR spectra of C480g had a large hyperfine splitting of about 90 G, indicative of strong dipole-dipole interactions and a distance between spin-labeled residues of less than 9 A. Spin-spin interactions were much weaker for C473g. These results supported the hypothesis that the ProP peptide primarily formed an antiparallel coiled coil, since formation of a parallel dimer

  12. Simultaneous formation of right- and left-handed anti-parallel coiled-coil interfaces by a coil2 fragment of human lamin A.

    Science.gov (United States)

    Kapinos, Larisa E; Burkhard, Peter; Herrmann, Harald; Aebi, Ueli; Strelkov, Sergei V

    2011-04-22

    The elementary building block of all intermediate filaments (IFs) is a dimer featuring a central α-helical rod domain flanked by the N- and C-terminal end domains. In nuclear IF proteins (lamins), the rod domain consists of two coiled-coil segments, coil1 and coil2, that are connected by a short non-helical linker. Coil1 and the C-terminal part of coil2 contain the two highly conserved IF consensus motifs involved in the longitudinal assembly of dimers. The previously solved crystal structure of a lamin A fragment (residues 305-387) corresponding to the second half of coil2 has yielded a parallel left-handed coiled coil. Here, we present the crystal structure and solution properties of another human lamin A fragment (residues 328-398), which is largely overlapping with fragment 305-387 but harbors a short segment of the tail domain. Unexpectedly, no parallel coiled coil forms within the crystal. Instead, the α-helices are arranged such that two anti-parallel coiled-coil interfaces are formed. The most significant interface has a right-handed geometry, which is accounted for by a characteristic 15-residue repeat pattern that overlays with the canonical heptad repeat pattern. The second interface is a left-handed anti-parallel coiled coil based on the predicted heptad repeat pattern. In solution, the fragment reveals only a weak dimerization propensity. We speculate that the C-terminus of coil2 might unzip, thereby allowing for a right-handed coiled-coil interface to form between two laterally aligned dimers. Such an interface might co-exist with a heterotetrameric left-handed coiled-coil assembly, which is expected to be responsible for the longitudinal A(CN) contact.

  13. N@a and N@d: Oligomer and Partner Specification by Asparagine in Coiled-Coil Interfaces.

    Science.gov (United States)

    Fletcher, Jordan M; Bartlett, Gail J; Boyle, Aimee L; Danon, Jonathan J; Rush, Laura E; Lupas, Andrei N; Woolfson, Derek N

    2017-02-17

    The α-helical coiled coil is one of the best-studied protein-protein interaction motifs. As a result, sequence-to-structure relationships are available for the prediction of natural coiled-coil sequences and the de novo design of new ones. However, coiled coils adopt a wide range of oligomeric states and topologies, and our understanding of the specification of these and the discrimination between them remains incomplete. Gaps in our knowledge assume more importance as coiled coils are used increasingly to construct biomimetic systems of higher complexity; for this, coiled-coil components need to be robust, orthogonal, and transferable between contexts. Here, we explore how the polar side chain asparagine (Asn, N) is tolerated within otherwise hydrophobic helix-helix interfaces of coiled coils. The long-held view is that Asn placed at certain sites of the coiled-coil sequence repeat selects one oligomer state over others, which is rationalized by the ability of the side chain to make hydrogen bonds, or interactions with chelated ions within the coiled-coil interior of the favored state. We test this with experiments on de novo peptide sequences traditionally considered as directing parallel dimers and trimers, and more widely through bioinformatics analysis of natural coiled-coil sequences and structures. We find that when located centrally, rather than near the termini of such coiled-coil sequences, Asn does exert the anticipated oligomer-specifying influence. However, outside of these bounds, Asn is observed less frequently in the natural sequences, and the synthetic peptides are hyperthermostable and lose oligomer-state specificity. These findings highlight that not all regions of coiled-coil repeat sequences are equivalent, and that care is needed when designing coiled-coil interfaces.

  14. Spaced-based search coil magnetometers

    Science.gov (United States)

    Hospodarsky, George B.

    2016-12-01

    Search coil magnetometers are one of the primary tools used to study the magnetic component of low-frequency electromagnetic waves in space. Their relatively small size, mass, and power consumption, coupled with a good frequency range and sensitivity, make them ideal for spaceflight applications. The basic design of a search coil magnetometer consists of many thousands of turns of wire wound on a high permeability core. When a time-varying magnetic field passes through the coil, a time-varying voltage is induced due to Faraday's law of magnetic induction. The output of the coil is usually attached to a preamplifier, which amplifies the induced voltage and conditions the signal for transmission to the main electronics (usually a low-frequency radio receiver). Search coil magnetometers are usually used in conjunction with electric field antenna to measure electromagnetic plasma waves in the frequency range of a few hertz to a few tens of kilohertzs. Search coil magnetometers are used to determine the properties of waves, such as comparing the relative electric and magnetic field amplitudes of the waves, or to investigate wave propagation parameters, such as Poynting flux and wave normal vectors. On a spinning spacecraft, they are also sometimes used to determine the background magnetic field. This paper presents some of the basic design criteria of search coil magnetometers and discusses design characteristics of sensors flown on a number of spacecraft.

  15. Switching transients in a superconducting coil

    Energy Technology Data Exchange (ETDEWEB)

    Owen, E.W.; Shimer, D.W.

    1983-11-18

    A study is made of the transients caused by the fast dump of large superconducting coils. Theoretical analysis, computer simulation, and actual measurements are used. Theoretical analysis can only be applied to the simplest of models. In the computer simulations two models are used, one in which the coil is divided into ten segments and another in which a single coil is employed. The circuit breaker that interrupts the current to the power supply, causing a fast dump, is represented by a time and current dependent conductance. Actual measurements are limited to measurements made incidental to performance tests on the MFTF Yin-yang coils. It is found that the breaker opening time is the critical factor in determining the size and shape of the transient. Instantaneous opening of the breaker causes a lightly damped transient with large amplitude voltages to ground. Increasing the opening time causes the transient to become a monopulse of decreasing amplitude. The voltages at the external terminals are determined by the parameters of the external circuit. For fast opening times the frequency depends on the dump resistor inductance, the circuit capacitance, and the amplitude on the coil current. For slower openings the dump resistor inductance and the current determine the amplitude of the voltage to ground at the terminals. Voltages to ground are less in the interior of the coil, where transients related to the parameters of the coil itself are observed.

  16. Crystal structure of a coiled-coil domain from human ROCK I.

    Directory of Open Access Journals (Sweden)

    Daqi Tu

    Full Text Available The small GTPase Rho and one of its targets, Rho-associated kinase (ROCK, participate in a variety of actin-based cellular processes including smooth muscle contraction, cell migration, and stress fiber formation. The ROCK protein consists of an N-terminal kinase domain, a central coiled-coil domain containing a Rho binding site, and a C-terminal pleckstrin homology domain. Here we present the crystal structure of a large section of the central coiled-coil domain of human ROCK I (amino acids 535-700. The structure forms a parallel α-helical coiled-coil dimer that is structurally similar to tropomyosin, an actin filament binding protein. There is an unusual discontinuity in the coiled-coil; three charged residues (E613, R617 and D620 are positioned at what is normally the hydrophobic core of coiled-coil packing. We speculate that this conserved irregularity could function as a hinge that allows ROCK to adopt its autoinhibited conformation.

  17. Crystal Structure of the Central Coiled-Coil Domain from Human Liprin-[beta]2

    Energy Technology Data Exchange (ETDEWEB)

    Stafford, Ryan L.; Tang, Ming-Yun; Sawaya, Michael R.; Phillips, Martin L.; Bowie, James U. (UCLA)

    2012-02-07

    Liprins are a conserved family of scaffolding proteins important for the proper regulation and development of neuronal synapses. Humans have four liprin-{alpha}s and two liprin-{beta}s which all contain long coiled-coil domains followed by three tandem SAM domains. Complex interactions between the coiled-coil and SAM domains are thought to create liprin scaffolds, but the structural and biochemical properties of these domains remain largely uncharacterized. In this study we find that the human liprin-{beta}2 coiled-coil forms an extended dimer. Several protease-resistant subdomains within the liprin-{beta}1 and liprin-{beta}2 coiled-coils were also identified. A 2.0 {angstrom} crystal structure of the central, protease-resistant core of the liprin-{beta}2 coiled-coil reveals a parallel helix orientation. These studies represent an initial step toward determining the overall architecture of liprin scaffolds and understanding the molecular basis for their synaptic functions.

  18. Coil migration after endovascular coil occlusion of internal carotid artery pseudoaneurysms within the sphenoid sinus.

    Science.gov (United States)

    Struffert, T; Buhk, J H; Buchfelder, M; Rohde, V; Doerfler, A; Knauth, M

    2009-04-01

    We report two cases of coil migration after endovascular treatment of pseudoaneurysm of the internal carotid artery within the sphenoid sinus with coils and noncovered stents. Two patients underwent sphenoid sinus exposure for pituitary adenoma and chronic infection, respectively. As a complication pseudoaneurysms of the internal carotid artery within the sphenoid sinus developed. One patient was treated with stent and coils, the second with coils alone. Both patients experienced coil migration after 9 and 26 months, respectively, with the necessity for further treatment. Imaging was performed using flat detector computed tomography (FD-CT). Literature review revealed two additional cases of coil migration and four patients with the same treatment in stable condition. Pseudoaneurysms of the internal carotid artery are a special entity and the environment of the aneurysm within the sphenoid sinus may change over a long time. Coil embolization may lead to the late onset complication of coil migration with the possible risk of acute epistaxis. As a consequence, these patients need a careful and prolonged follow up. FD-CT is an appropriate technique to visualize the implanted coils and if present the migration of coil material.

  19. Superconducting coil development and motor demonstration: Overview

    Science.gov (United States)

    Gubser, D. U.

    1995-12-01

    Superconducting bismuth-cuprate wires, coils, and magnets are being produced by industry as part of a program to test the viability of using such magnets in Naval systems. Tests of prototype magnets, coils, and wires reveal progress in commercially produced products. The larger magnets will be installed in an existing superconducting homopolar motor and operated initially at 4.2K to test the performance. It is anticipated that approximately 400 Hp will be achieved by the motor. This article reports on the initial tests of the magnets, coils, and wires as well as the development program to improve their performance.

  20. Magnetic field mapper based on rotating coils

    CERN Document Server

    AUTHOR|(CDS)2087244; Arpaia, Pasquale

    This thesis presents a magnetic field mapper based on rotating coils. The requirements, the architecture, the conceptual design, and the prototype for straight magnets were shown. The proposed system is made up of a rotating coil transducer and a train-like system for longitudinal motion and positioning inside magnet bore. The mapper allows a localized measurement of magnetic fields and the variation of the harmonic multipole content in the magnet ends. The proof-of-principle demonstration and the experimental characterization of the rotating-coil transducer specifically conceived for mapping validated the main objective of satisfying the magnetic measurement needs of the next generation of compact accelerators.

  1. Helical coil thermal hydraulic model

    Science.gov (United States)

    Caramello, M.; Bertani, C.; De Salve, M.; Panella, B.

    2014-11-01

    A model has been developed in Matlab environment for the thermal hydraulic analysis of helical coil and shell steam generators. The model considers the internal flow inside one helix and its associated control volume of water on the external side, both characterized by their inlet thermodynamic conditions and the characteristic geometry data. The model evaluates the behaviour of the thermal-hydraulic parameters of the two fluids, such as temperature, pressure, heat transfer coefficients, flow quality, void fraction and heat flux. The evaluation of the heat transfer coefficients as well as the pressure drops has been performed by means of the most validated literature correlations. The model has been applied to one of the steam generators of the IRIS modular reactor and a comparison has been performed with the RELAP5/Mod.3.3 code applied to an inclined straight pipe that has the same length and the same elevation change between inlet and outlet of the real helix. The predictions of the developed model and RELAP5/Mod.3.3 code are in fairly good agreement before the dryout region, while the dryout front inside the helical pipes is predicted at a lower distance from inlet by the model.

  2. Coil measurement data acquisition and curing press control system for SSC dipole magnet coils

    Energy Technology Data Exchange (ETDEWEB)

    Dickey, C.E.

    1989-03-01

    A coil matching program, similar in theory to the methods used to match Tevatron coils, is being developed at Fermilab. Modulus of elasticity and absolute coil size will be determined at 18-inch intervals along the coils while in the coil curing press immediately following the curing process. A data acquisition system is under construction to automatically acquire and manage the large quantities of data that result. Data files will be transferred to Fermilab's VAX Cluster for long-term storage and actual coil matching. The data acquisition system will also provide the control algorithm for the curing press hydraulic system. A description of the SSC Curing Press Data Acquisition and Controls System will be reported. 20 figs.

  3. Coil geometry effects on scanning single-coil magnetic induction tomography

    Science.gov (United States)

    Feldkamp, Joe R.; Quirk, Stephen

    2017-09-01

    Alternative coil designs for single coil magnetic induction tomography are considered in this work, with the intention of improving upon the standard design used previously. In particular, we note that the blind spot associated with this coil type, a portion of space along its axis where eddy current generation can be very weak, has an important effect on performance. The seven designs tested here vary considerably in the size of their blind spot. To provide the most discerning test possible, we use laboratory phantoms containing feature dimensions similar to blind spot size. Furthermore, conductivity contrasts are set higher than what would occur naturally in biological systems, which has the effect of weakening eddy current generation at coil locations that straddle the border between high and low conductivity features. Image reconstruction results for the various coils show that coils with smaller blind spots give markedly better performance, though improvements in signal-to-noise ratio could alter that conclusion.

  4. Magnetic propulsion of a magnetic device using three square-Helmholtz coils and a square-Maxwell coil.

    Science.gov (United States)

    Ha, Yong H; Han, Byung H; Lee, Soo Y

    2010-02-01

    We introduce a square coil system for remote magnetic navigation of a magnetic device without any physical movements of the coils. We used three square-Helmholtz coils and a square-Maxwell coil for magnetic propulsion of a small magnet along the desired path. All the square coils are mountable on a cubic frame that has an opening to accommodate a living subject. The square-Helmholtz coils control the magnetic propulsion direction by generating uniform magnetic field along the desired direction while the square-Maxwell coil controls the propulsion force by generating magnetic gradient field. We performed magnetic propulsion experiments with a down-scaled coil set and a three-channel coil driver. Experimental results demonstrate that we can use the square coil set for magnetic navigation of a magnetic device without any physical movements of the coils.

  5. Functional Analysis of the Bacteriophage T4 Rad50 Homolog (gp46) Coiled-coil Domain.

    Science.gov (United States)

    Barfoot, Tasida; Herdendorf, Timothy J; Behning, Bryanna R; Stohr, Bradley A; Gao, Yang; Kreuzer, Kenneth N; Nelson, Scott W

    2015-09-25

    Rad50 and Mre11 form a complex involved in the detection and processing of DNA double strand breaks. Rad50 contains an anti-parallel coiled-coil with two absolutely conserved cysteine residues at its apex. These cysteine residues serve as a dimerization domain and bind a Zn(2+) cation in a tetrathiolate coordination complex known as the zinc-hook. Mutation of the zinc-hook in bacteriophage T4 is lethal, indicating the ability to bind Zn(2+) is critical for the functioning of the MR complex. In vitro, we found that complex formation between Rad50 and a peptide corresponding to the C-terminal domain of Mre11 enhances the ATPase activity of Rad50, supporting the hypothesis that the coiled-coil is a major conduit for communication between Mre11 and Rad50. We constructed mutations to perturb this domain in the bacteriophage T4 Rad50 homolog. Deletion of the Rad50 coiled-coil and zinc-hook eliminates Mre11 binding and ATPase activation but does not affect its basal activity. Mutation of the zinc-hook or disruption of the coiled-coil does not affect Mre11 or DNA binding, but their activation of Rad50 ATPase activity is abolished. Although these mutants excise a single nucleotide at a normal rate, they lack processivity and have reduced repetitive exonuclease rates. Restricting the mobility of the coiled-coil eliminates ATPase activation and repetitive exonuclease activity, but the ability to support single nucleotide excision is retained. These results suggest that the coiled-coiled domain adopts at least two conformations throughout the ATPase/nuclease cycle, with one conformation supporting enhanced ATPase activity and processivity and the other supporting nucleotide excision.

  6. A Calibrating Device for Rogowski Coil Development

    Institute of Scientific and Technical Information of China (English)

    LV Liang; LI Junhao; HUANG Jianjun; JI Shengchang; LI Yanming

    2007-01-01

    A calibrating device for the Rogowski coil is developed,which can be used to calibrate the Rogowski coil having a partial response time within tens of nanoseconds.Its key component is a step current generator,which can generate the output with a rise time of less than 2 ns and a duration of larger than 300 ns.The step current generator is composed by a pulse forming line(PFL)and a pulse transmission line(PTL).A TEM(transverse electromagnetic mode)coaxial measurement unit is used as PTL,and the coil to be calibrated and the referenced standard Rogowski coil can be fixed in the unit.The effect of the dimensions of the TEM unit is discussed theoretically as well as experimentally.

  7. Screen-printed flexible MRI receive coils.

    Science.gov (United States)

    Corea, Joseph R; Flynn, Anita M; Lechêne, Balthazar; Scott, Greig; Reed, Galen D; Shin, Peter J; Lustig, Michael; Arias, Ana C

    2016-03-10

    Magnetic resonance imaging is an inherently signal-to-noise-starved technique that limits the spatial resolution, diagnostic image quality and results in typically long acquisition times that are prone to motion artefacts. This limitation is exacerbated when receive coils have poor fit due to lack of flexibility or need for padding for patient comfort. Here, we report a new approach that uses printing for fabricating receive coils. Our approach enables highly flexible, extremely lightweight conforming devices. We show that these devices exhibit similar to higher signal-to-noise ratio than conventional ones, in clinical scenarios when coils could be displaced more than 18 mm away from the body. In addition, we provide detailed material properties and components performance analysis. Prototype arrays are incorporated within infant blankets for in vivo studies. This work presents the first fully functional, printed coils for 1.5- and 3-T clinical scanners.

  8. Coiling Temperature Control in Hot Strip Mill

    Science.gov (United States)

    Imanari, Hiroyuki; Fujiyama, Hiroaki

    Coiling temperature is one of the most significant factors in products of hot strip mill to determine material properties such as strength, toughness of steel, so it is very important to achieve accurate coiling temperature control (CTC). Usually there are a few pyrometers on the run out table in hot strip mill, therefore temperature model and its adapting system have large influences on the accuracy of CTC. Also unscheduled change of rolling speed has a bad effect to keep coiling temperature as its target. Newly developed CTC system is able to get very accurate coiling temperature against uncertain factors and disturbances by adopting easily identified temperature model, learning method and dynamic set up function. The features of the CTC system are discussed with actual data, and the effectiveness of the system is shown by actual control results.

  9. MR angiography after coiling of intracranial aneurysms

    NARCIS (Netherlands)

    Schaafsma, J.D.

    2012-01-01

    Introduction Endovascular occlusion with detachable coils has become an alternative treatment to neurosurgical clipping of intracranial aneurysms over the last two decades. Its minimal invasiveness is the most important advantage of this treatment compared to clipping. The disadvantage of occlusion

  10. Mechanical resonances of helically coiled carbon nanowires

    National Research Council Canada - National Science Library

    Saini, D; Behlow, H; Podila, R; Dickel, D; Pillai, B; Skove, M J; Serkiz, S M; Rao, A M

    2014-01-01

    ...) mainly due to their geometrical complexity. The advent of helically coiled micro/nanoscale structures in nano-robotics, nano-inductors, and impact protection coatings has necessitated the development of new methodologies for determining...

  11. The Magnetic Field of Helmholtz Coils

    Science.gov (United States)

    Berridge, H. J. J.

    1975-01-01

    Describes the magnetic field of Helmholtz coils qualitatively and then provides the basis for a quantitative expression. Since the mathematical calculations are very involved, a computer program for solving the mathematical expression is presented and explained. (GS)

  12. Constraint Cooling of Hot Rolled Coil

    Institute of Scientific and Technical Information of China (English)

    WANG Li-juan; ZHANG Chun-li

    2004-01-01

    The layer thermal conductivity during constraint cooling of hot rolled coil was described by using equivalent thermal conductivity model and finite element method. Two radial stress concentration zones in constraint cooled coil were shown by numerical analysis, and the tension stress was assumed to be the main factor to induce stress corrosion. The experimental results show that the longer the water cooling time is, the smaller the grain size and the more uniform the grains are.

  13. NUMERICAL INVESTIGATION FOR THE HEAT TRANSFER ENHANCEMENT IN HELICAL CONE COILS OVER ORDINARY HELICAL COILS

    Directory of Open Access Journals (Sweden)

    M. M. ABO ELAZM

    2013-02-01

    Full Text Available This numerical research is introducing the concept of helical cone coils and their enhanced heat transfer characteristics compared to the ordinary helical coils. Helical and spiral coils are known to have better heat and mass transfer than straight tubes, which is attributed to the generation of a vortex at the helical coil known as Dean Vortex. The Dean number which is a dimensionless number used to describe the Dean vortex is a function of Reynolds number and the square root of the curvature ratio, so varying the curvature ratio for the same coil would vary the Dean number. Two scenarios were adopted to study the effect of changing the taper angle (curvature ratio on the heat transfer characteristics of the coil; the commercial software FLUENT was used in the investigation. It was found that Nusselt number increased with increasing the taper angle. A MATLAB code was built based on empirical correlation of Manlapaz and Churchill for ordinary helical coils to calculate the Nusselt number at each coil turn, and then calculate the average Nusselt number for the entire coil turns, the CFD simulation results were found acceptable when compared with the MATLAB results.

  14. AC loss measurements in HTS coil assemblies with hybrid coil structures

    Science.gov (United States)

    Jiang, Zhenan; Long, Nicholas J.; Staines, Mike; Badcock, Rodney A.; Bumby, Chris W.; Buckley, Robert G.; Amemiya, Naoyuki

    2016-09-01

    Both AC loss and wire cost in coil windings are critical factors for high temperature superconductor (HTS) AC machinery applications. We present AC loss measurement results in three HTS coil assemblies at 77 K and 65 K which have a hybrid coil structure comprising one central winding (CW) and two end windings (EWs) wound with ReBCO and BSCCO wires with different self-field I c values at 77 K. All AC loss results in the coil assemblies are hysteretic and the normalized AC losses in the coil assemblies at different temperatures can be scaled with the I c value of the coil assemblies. The normalised results show that AC loss in a coil assembly with BSCCO CW can be reduced by using EWs wound with high I c ReBCO wires, whilst further AC loss reduction can be achieved by replacing the BSCCO CW with ReBCO CW. The results imply that a flexible hybrid coil structure is possible which considers both AC loss and wire cost in coil assemblies.

  15. A Condition for a Translation Quiver to Be a Coil

    Institute of Scientific and Technical Information of China (English)

    Bin ZHU; Zong Yi HU

    2003-01-01

    We single out a class of translation quivers and prove combinatorially that the translationquivers in this class are coils. These coils form a class of special coils. They are easier to visualize, butstill show all the strange behaviour of general coils, and contain quasi-stable tubes as special examples.

  16. A classic zinc finger from friend of GATA mediates an interaction with the coiled-coil of transforming acidic coiled-coil 3.

    Science.gov (United States)

    Simpson, Raina J Y; Yi Lee, Stella Hoi; Bartle, Natalie; Sum, Eleanor Y; Visvader, Jane E; Matthews, Jacqueline M; Mackay, Joel P; Crossley, Merlin

    2004-09-17

    Classic zinc finger domains (cZFs) consist of a beta-hairpin followed by an alpha-helix. They are among the most abundant of all protein domains and are often found in tandem arrays in DNA-binding proteins, with each finger contributing an alpha-helix to effect sequence-specific DNA recognition. Lone cZFs, not found in tandem arrays, have been postulated to function in protein interactions. We have studied the transcriptional co-regulator Friend of GATA (FOG), which contains nine zinc fingers. We have discovered that the third cZF of FOG contacts a coiled-coil domain in the centrosomal protein transforming acidic coiled-coil 3 (TACC3). Although FOG-ZF3 exhibited low solubility, we have used a combination of mutational mapping and protein engineering to generate a derivative that was suitable for in vitro and structural analysis. We report that the alpha-helix of FOG-ZF3 recognizes a C-terminal portion of the TACC3 coiled-coil. Remarkably, the alpha-helical surface utilized by FOG-ZF3 is the same surface responsible for the well established sequence-specific DNA-binding properties of many other cZFs. Our data demonstrate the versatility of cZFs and have implications for the analysis of many as yet uncharacterized cZF proteins.

  17. Embroidered Coils for Magnetic Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Michael I. Newton

    2013-04-01

    Full Text Available Magnetic resonance imaging is a widely used technique for medical and materials imaging. Even though the objects being imaged are often irregularly shaped, suitable coils permitting the measurement of the radio-frequency signal in these systems are usually made of solid copper. One problem often encountered is how to ensure the coils are both in close proximity and conformal to the object being imaged. Whilst embroidered conductive threads have previously been used as antennae in mobile telecommunications applications, they have not previously been reported for use within magnetic resonance. In this paper we show that an embroidered single loop coil can be used in a commercial unilateral nuclear magnetic resonance system as an alternative to a solid copper. Data is presented showing the determination of both longitudinal (T1 and effective transverse (T2eff relaxation times for a flat fabric coil and the same coil conformed to an 8 cm diameter cylinder. We thereby demonstrate the principles required for the wider use of fabric based conformal coils within nuclear magnetic resonance and magnetic resonance imaging.

  18. Solid catalytic growth mechanism of micro-coiled carbon fibers

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Micro-coiled carbon fibers were prepared by catalytic pyrolysisof acetylene with nano-sized nickel powder catalyst using the substrate method. The morphology of micro-coiled carbon fibers was observed through field emission scanning electron microscopy. It was found that the fiber and coil diameter of the obtained micro-coiled carbon fibers is about 500—600 nm and 4—5 μm, respectively. Most of the micro-coiled carbon fibers obtained were regular double carbon coils, but a few irregular ones were also observed. On the basis of the experimental observation, a solid catalytic growth mechanism of micro-coiled carbon fibers was proposed.

  19. Minimum Inductance Optimal Design for the Gradient Coil

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In MRI (Magnetic Resonance Imaging), a crucial role of gradient coils is to image organism, meanwhile the inductance of the coils determines the speed of imaging. So it is of great importance to optimize designs of the gradient coils. The target field approach is an effective method to design the gradient coils. Having applied this method and performing many numerical tests, we achieved the designs of the x-、y-、z- gradient coils , with the linearity of the fields generated by the coils in a sphere of radius 0.30 m less than 5%, in which the inductance and resistance of the coils also meet the requirements.

  20. Induced current magnetic resonance electrical impedance tomography with z-gradient coil.

    Science.gov (United States)

    Eroğlu, Hasan H; Eyüboğlu, B Murat

    2014-01-01

    Magnetic Resonance Electrical Impedance Tomography (MREIT) is a medical imaging method that provides images of electrical conductivity at low frequencies (0-1 kHz). In MREIT, electrical current is applied to the body via surface electrodes and corresponding magnetic flux density is measured by means of Magnetic Resonance (MR) phase imaging techniques. By utilizing the magnetic flux density measurements and surface potential measurements images of true conductivity distribution can be reconstructed. In order to overcome difficulties regarding current application via surface electrodes, Induced Current MREIT (ICMREIT) have been proposed in the past. In ICMREIT, electrical currents and corresponding magnetic flux density are generated in the object through electromagnetic induction by means of externally placed coils driven with time varying currents. In this study, use of z-gradient, z-Helmholtz, and circular coil configurations in ICMREIT are proposed and investigated. Finite Element Method (FEM) is used to solve the forward problem of ICMREIT. Consequently, excitation performances and clinical applicability of different coil configurations are analyzed.

  1. Surgical management of an ACM aneurysm eight years after coiling.

    Science.gov (United States)

    Pogády, P; Fellner, F; Trenkler, J; Wurm, G

    2007-04-01

    The authors present a case report on rebleeding of a medial cerebral aneurysm (MCA) eight years after complete endovascular coiling. The primarily successfully coiled MCA aneurysm showed a local regrowth which, however, was not the source of the rebleeding. The angiogram demonstrated no evidence of contrast filling of the coiled segment, but according to intraoperative findings (haematoma location, displacement of coils, evident place of rupture) there is no doubt that the coiled segment of the aneurysm was responsible for the haemorrhage.

  2. Covering sleeves can shield the high-voltage coils from lead chatter in an integrated bipolar ICD lead.

    Science.gov (United States)

    Cooper, Joshua M; Sauer, William H; Garcia, Fermin C; Krautkramer, Michael J; Verdino, Ralph J

    2007-02-01

    Integrated bipolar implantable cardioverter-defibrillator (ICD) leads use the distal high-voltage coil as both the ventricular sensing anode and the distal shocking electrode. Mechanical interactions between the distal ICD coil and other intracardiac leads have been reported to result in electrical oversensing and inappropriate ICD therapies. We sought to determine whether covering sleeves over the high-voltage coils of an integrated bipolar ICD lead could prevent sensed artefact from mechanical lead interactions. Endotak Reliance 0157 and Endotak Reliance-G 0185 leads, the latter with expanded polytetrafluoroethylene (ePTFE) sleeves covering the high-voltage coils, were connected to ICD generators and the leads were submerged in saline. Device programmers were used to communicate with the ICD generators, providing real-time electrogram recording throughout testing. A series of mechanical interactions were performed with the ICD leads, including sliding and striking each distal coil against metal and non-metal components of other ICD and pacemaker leads. All direct metal-metal interactions resulted in sensed electrical artefact, including interactions between the bare ICD coil and another bare ICD coil or metal pacemaker ring. Identical mechanical interactions where metal-metal contact was prevented due to an interposed ePTFE covering sleeve were electrically silent with no sensed artefact. A covering sleeve over the distal high-voltage coil of an integrated bipolar ICD lead can mechanically shield the lead from metal-metal interactions, which might otherwise result in sensed artefact and inappropriate ICD therapies or withholding of pacing output. This finding has implications for lead selection when a new ICD lead is to be implanted adjacent to abandoned intracardiac leads or lead fragments.

  3. Quench Protection of DI-BSCCO Coil

    Science.gov (United States)

    Yamaguchi, T.; Ueno, E.; Kato, T.; Hayashi, K.

    Quench protection is one of the most important requirements for the practical application of high-temperature-superconducting (HTS) coils. Quench protection requires that early detection of a developing quench event is followed by rapid reduction of the operating current. However, such quench detection is very difficult because HTS wire produces heat only locally due to the very slow propagation velocity of a normal zone. Excellent high voltage insulation performance is required if the current is to be reduced rapidly in a large-scale superconducting application with very large inductance. Thus it is important to investigate the behavior of coils with various decay time constants, and to detect voltages on very short time scales. This goal remains to be achieved. In the present study we built test coil and a full-scale pole coil for a 20 MW motor for use in experiments on quench protection, and parameterized the relation between the decay time constant and the detecting voltage, using a conventional balance circuit to detect the quench, which was generated by gradually raising the temperature of the coils. The results verify that a balance circuit can be used for quench detection. For example, when the current decay time constant is 4 seconds, the test coil can be protected even with a detecting voltage of 0.15 volts, despite a significant heat production rate of 126 W. We also confirmed that the full-scale pole coil, with a decay time constant of 20 seconds, can be protected with a detecting voltage of 0.06 V.

  4. In vitro and in vivo delivery of functionalized nanoparticles via coiled-coil interactions

    NARCIS (Netherlands)

    Yang, J.

    2016-01-01

    This thesis presents another approach for direct cytosolic delivery via membrane fusion. This approach is based on a complementary pair of coiled-coil forming peptides, K (KIAALKE)4 and E (EIAALEK)4 and is mimicking the action of the SNARE-complex. The SNARE-complex is responsible for fusion between

  5. Growth Factor Tethering to Protein Nanoparticles via Coiled-Coil Formation for Targeted Drug Delivery.

    Science.gov (United States)

    Assal, Yasmine; Mizuguchi, Yoshinori; Mie, Masayasu; Kobatake, Eiry

    2015-08-19

    Protein-based nanoparticles are attractive carriers for drug delivery because they are biodegradable and can be genetically designed. Moreover, modification of protein-based nanoparticles with cell-specific ligands allows for active targeting abilities. Previously, we developed protein nanoparticles comprising genetically engineered elastin-like polypeptides (ELPs) with fused polyaspartic acid tails (ELP-D). Epidermal growth factor (EGF) was displayed on the surface of the ELP-D nanoparticles via genetic design to allow for active cell-targeting abilities. Herein, we focused on the coiled-coil structural motif as a means for noncovalent tethering of growth factor to ELP-D. Specifically, two peptides known to form a heterodimer via a coiled-coil structural motif were fused to ELP-D and single-chain vascular endothelial growth factor (scVEGF121), to facilitate noncovalent tethering upon formation of the heterodimer coiled-coil structure. Drug-loaded growth factor-tethered ELP-Ds were found to be effective against cancer cells by provoking cell apoptosis. These results demonstrate that tethering growth factor to protein nanoparticles through coiled-coil formation yields a promising biomaterial candidate for targeted drug delivery.

  6. An iterative method for coil sensitivity estimation in multi-coil MRI systems.

    Science.gov (United States)

    Ling, Qiang; Li, Zhaohui; Song, Kaikai; Li, Feng

    2014-12-01

    This paper presents an iterative coil sensitivity estimation method for multi-coil MRI systems. The proposed method works with coil images in the magnitude image domain. It determines a region of support (RoS), a region being composed of the same type of tissues, by a region growing algorithm, which makes use of both intensities and intensity gradients of pixels. By repeating this procedure, it can determine multiple regions of support, which together cover most of the concerned image area. The union of these regions of support provides a rough estimate of the sensitivity of each coil through dividing the intensities of pixels by the average intensity inside every region of support. The obtained rough coil sensitivity estimate is further approached with the product of multiple low-order polynomials, rather than a single one. The product of these polynomials provides a smooth estimate of the sensitivity of each coil. With the obtained sensitivities of coils, it can produce a better reconstructed image, which determines more correct regions of support and yields preciser estimates of the sensitivities of coils. In other words, the method can be iteratively implemented to improve the estimation performance. The proposed method was verified through both simulated data and clinical data from different body parts. The experimental results confirm the superiority of our method to some conventional methods.

  7. A coiled-coil domain acts as a molecular ruler in LPS chain length regulation

    Science.gov (United States)

    Tuukkanen, Anne; Danciu, Iulia; Svergun, Dmitri I.; Hussain, Rohanah; Liu, Huanting; Whitfield, Chris; Naismith, James H.

    2014-01-01

    Long-chain bacterial polysaccharides play important roles in pathogenicity. In Escherichia coli O9a, a model for ABC transporter dependent polysaccharide assembly, a large extracellular carbohydrate with a narrow distribution of size is polymerized from monosaccharides by a complex of two proteins, WbdA (polymerase) and WbdD (terminating protein). Such careful control of polymerization is recurring theme in biology. Combining crystallography and small angle X-ray scattering, we show that the C-terminal domain of WbdD contains an extended coiled-coil that physically separates WbdA from the catalytic domain of WbdD. The effects of insertions and deletions within the coiled-coil region were analyzed in vivo, revealing that polymer size is controlled by varying the length of the coiled-coil domain. Thus, the coiled-coil domain of WbdD functions as a molecular ruler that, along with WbdA:WbdD stoichiometry, controls the chain length of a model bacterial polysaccharide. PMID:25504321

  8. Minimax current density gradient coils: analysis of coil performance and heating.

    Science.gov (United States)

    Poole, Michael S; While, Peter T; Lopez, Hector Sanchez; Crozier, Stuart

    2012-08-01

    Standard gradient coils are designed by minimizing the inductance or resistance for an acceptable level of gradient field nonlinearity. Recently, a new method was proposed to minimize the maximum value of the current density in a coil additionally. The stated aim of that method was to increase the minimum wire spacing and to reduce the peak temperature in a coil for fixed efficiency. These claims are tested in this study with experimental measurements of magnetic field and temperature as well as simulations of the performance of many coils. Experimental results show a 90% increase in minimum wire spacing and 40% reduction in peak temperature for equal coil efficiency and field linearity. Simulations of many more coils indicate increase in minimum wire spacing of between 50 and 340% for the coils studied here. This method is shown to be able to increase coil efficiency when constrained by minimum wire spacing rather than switching times or total power dissipation. This increase in efficiency could be used to increase gradient strength, duty cycle, or buildability.

  9. Golgi coiled-coil proteins contain multiple binding sites for Rab family G proteins

    NARCIS (Netherlands)

    Sinka, Rita; Gillingham, Alison K.; Kondylis, Vangelis; Munro, Sean

    2008-01-01

    Vesicles and other carriers destined for the Golgi apparatus must be guided to the correct cisternae. Golgins, long coiled-coil proteins that localize to particular Golgi subdomains via their C termini, are candidate regulators of vesicle sorting. In this study, we report that the GRIP domain

  10. Golgi coiled-coil proteins contain multiple binding sites for Rab family G proteins

    NARCIS (Netherlands)

    Sinka, Rita; Gillingham, Alison K.; Kondylis, Vangelis; Munro, Sean

    2008-01-01

    Vesicles and other carriers destined for the Golgi apparatus must be guided to the correct cisternae. Golgins, long coiled-coil proteins that localize to particular Golgi subdomains via their C termini, are candidate regulators of vesicle sorting. In this study, we report that the GRIP domain golgin

  11. Advanced approaches for the characterization of a de novo designed antiparallel coiled coil peptide

    NARCIS (Netherlands)

    Pagel, K; Seeger, K; Seiwert, B; Villa, Alessandra; Mark, AE; Berger, S; Koksch, B

    2005-01-01

    We report here an advanced approach for the characterization of the folding pattern of a de novo designed antiparallel coiled coil peptide by high-resolution methods. Incorporation of two fluorescence labels at the C- and N-terminus of the peptide chain as well as modi. cation of two hydrophobic cor

  12. A high-resolution structure that provides insight into coiled-coil thiodepsipeptide dynamic chemistry.

    Science.gov (United States)

    Dadon, Zehavit; Samiappan, Manickasundaram; Shahar, Anat; Zarivach, Raz; Ashkenasy, Gonen

    2013-09-16

    Stable and reactive: A crystal structure at 1.35 Å of a thioester coiled-coil protein reveals high similarity to all-peptide-bond proteins. In these assemblies, the thioester bonds are kept reactive towards thiol molecules in the mixture. This enables efficient domain exchange between proteins in response to changes in folding conditions or introduction of external templates.

  13. Allosteric effects in coiled-coil proteins folding and lanthanide-ion binding.

    Science.gov (United States)

    Samiappan, Manickasundaram; Alasibi, Samaa; Cohen-Luria, Rivka; Shanzer, Abraham; Ashkenasy, Gonen

    2012-10-07

    Peptide sequences modified with lanthanide-chelating groups at their N-termini, or at their lysine side chains, were synthesized, and new Ln(III) complexes were characterized. We show that partial folding of the conjugates to form trimer coiled coil structures induces coordination of lanthanides to the ligand, which in turn further stabilizes the 3D structure.

  14. Feasibility of tracked electrodes for use in epilepsy surgery

    Science.gov (United States)

    Holmes, David; Brinkmann, Benjamin; Hanson, Dennis; Worrell, Gregory; Robb, Richard; Holton, Leslie

    2016-03-01

    Subdural electrode recording is commonly used to evaluate intractable epilepsy. In order to accurately record electrical activity responsible for seizure, electrodes must be positioned precisely near targets of interest, often indicated preoperatively through imaging studies. To achieve accurate placement, a large craniotomy is used to expose the brain surface. With the intent of limiting the size and improving the location of craniotomy for electrode placement, we examined magnetic tracking for localization of electrode strips. Commercially available electrode strips were attached to specialized magnetic tracking sensors developed by Medtronic plc. In a rigid phantom we evaluated the strips to determine the accuracy of electrode placement on targets. We further conducted an animal study to evaluate the impact of magnetic field interference during data collection. The measured distance between the physical fiducial and lead coil of the electrode strip was 1.32 +/- 1.03mm in the phantom experiments. The tracking system induces a very strong signal in the electrodes in the Very Low Frequency, an International Telecommunication Union (ITU) designated frequency band, from 3 kHz to 30 kHz. The results of the animal experiment demonstrated both tracking feasibility and data collection.

  15. Analysis and experimental study of wireless power transfer with HTS coil and copper coil as the intermediate resonators system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiufang [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Physics and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Nie, Xinyi [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Liang, Yilang [School of Physics and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Lu, Falong [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Yan, Zhongming, E-mail: wangxiufanghappy@163.com [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Wang, Yu [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2017-01-15

    Highlights: • We investigated a kind of system architecture with three coils which the repeater is copper coil or HTS coil. • We simulated the different repeater system and obtained the magnetic field distribution at different distance. • We used helical coil instead of pancake coil which does not use capacitors. • HTS intermediate coil has significant effect on improving the transmission efficiency and lengthening transmission distance than copper intermediate coil. - Abstract: Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.

  16. Baculovirus FP25K Localization: Role of the Coiled-Coil Domain.

    Science.gov (United States)

    Garretson, Tyler A; McCoy, Jason C; Cheng, Xiao-Wen

    2016-11-01

    Two types of viruses are produced during the baculovirus life cycle: budded virus (BV) and occlusion-derived virus (ODV). A particular baculovirus protein, FP25K, is involved in the switch from BV to ODV production. Previously, FP25K from the model alphabaculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) was shown to traffic ODV envelope proteins. However, FP25K localization and the domains involved are inconclusive. Here we used a quantitative approach to study FP25K subcellular localization during infection using an AcMNPV bacmid virus that produces a functional AcMNPV FP25K-green fluorescent protein (GFP) fusion protein. During cell infection, FP25K-GFP localized primarily to the cytoplasm, particularly amorphous structures, with a small fraction being localized in the nucleus. To investigate the sequences involved in FP25K localization, an alignment of baculovirus FP25K sequences revealed that the N-terminal putative coiled-coil domain is present in all alphabaculoviruses but absent in betabaculoviruses. Structural prediction indicated a strong relatedness of AcMNPV FP25K to long interspersed element 1 (LINE-1) open reading frame 1 protein (ORF1p), which contains an N-terminal coiled-coil domain responsible for cytoplasmic retention. Point mutations and deletions of this domain lead to a change in AcMNPV FP25K localization from cytoplasmic to nuclear. The coiled-coil and C-terminal deletion viruses increased BV production. Furthermore, a betabaculovirus FP25K protein lacking this N-terminal coiled-coil domain localized predominantly to the nucleus and exhibited increased BV production. These data suggest that the acquisition of this N-terminal coiled-coil domain in FP25K is important for the evolution of alphabaculoviruses. Moreover, with the divergence of preocclusion nuclear membrane breakdown in betabaculoviruses and membrane integrity in alphabaculoviruses, this domain represents an alphabaculovirus adaptation for nuclear trafficking

  17. Response of an on-chip coil-integrated superconducting tunnel junction to x-rays

    CERN Document Server

    Maehata, K; Taino, T

    2003-01-01

    An on-chip coil-integrated superconducting tunnel junction (OC sup 2 -STJ) was irradiated by X-rays emitted from an sup 5 sup 5 Fe source to the examine the performance of X-ray detection by applying a magnetic field produced by a superconducting microstrip coil integrated into the junction chip. Response characteristics were obtained for a diamond-shaped Nd-based tunnel junction with a sensitive area of 100 x 100 mu m sup 2 in the OC sup 2 -STJ chip. Two kinds of stable operation modes with different pulse heights were observed by changing the magnetic flux density in the barrier region of the junction. In the low-pulse-height mode, the pulse height distribution exhibits two full-energy peaks corresponding to signals created in the top and base electrodes. Stable operation of the OC sup 2 -STJ was demonstrated without using conventional external electromagnets. (author)

  18. Critical current studies of a HTS rectangular coil

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Z. [Department of Engineering, University of Cambridge (United Kingdom); Chudy, M., E-mail: Michal.chudy@stuba.sk [Graduate School of Technology Management, University of Pretoria (South Africa); Institute of Power and Applied Electrical Engineering, Slovak University of Technology in Bratislava (Slovakia); Ruiz, H.S. [Department of Engineering, University of Leicester, Leicester LE1 7RH (United Kingdom); Zhang, X.; Coombs, T. [Department of Engineering, University of Cambridge (United Kingdom)

    2017-05-15

    Highlights: • Unique square pancake coil was manufactured. • Measurements in relatively high magnetic field were performed. • Different sections of the coil were characterized. • Parts of the coil which are limiting critical current were identified. - Abstract: Nowadays, superconducting high field magnets are used in numerous applications due to their superior properties. High temperature superconductors (HTS) are usually used for production of circular pancake or racetrack coils. However different geometries of HTS coils might be required for some specific applications. In this study, the HTS coil wound on a rectangular frame was fully characterized in homogeneous DC background field. The study contains measurements of critical current angular dependencies. The critical current of the entire coil and two selected strands under different magnitudes and orientations of external magnetic fields are measured. The critical regions of the coil in different angular regimes are determined. This study brings better understanding of the in- field performance of HTS coils wound on frames with right-angles.

  19. Fabrication of the planar coils for WENDELSTEIN 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Viebke, H. [Max-Planck-Institut fuer Plasmaphysik, Greifswald Branch, Euratom Association, Wendelsteinstrasse 1, D-17491 Greifswald (Germany)]. E-mail: holger.viebke@ipp.mpg.de; Rummel, Th. [Max-Planck-Institut fuer Plasmaphysik, Greifswald Branch, Euratom Association, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Risse, K. [Max-Planck-Institut fuer Plasmaphysik, Greifswald Branch, Euratom Association, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Schroeder, R. [Max-Planck-Institut fuer Plasmaphysik, Greifswald Branch, Euratom Association, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Winter, R. [Tesla Engineering Ltd., Water Lane, Storrington, Sussex RH20 3EA (United Kingdom)

    2005-11-15

    WENDELSTEIN 7-X (W7-X) is a superconducting stellarator, which uses 50 non-planar coils for the main field and 20 planar coils to modify the magnetic configuration. The planar coils are cut into two differently shaped types and designed for 3 T on the plasma axis. A planar coil has an outer diameter of around 4 m. The main elements of planar coils are the winding package, the coil case, the interlayer joints to connect the double layers, and the case cooling with instrumentation. The connection to the coil support structure is performed through forged blocks welded to the casing and bolts. The manufacturing is being performed with a high accuracy to maintain the required symmetry of the magnetic configuration of W7-X. Prior to dispatch the coils pass a works acceptance test at Tesla. After production, all coils are subjected to a functional test at cryogenic temperatures at the Low Temperature Laboratory of CEA at Saclay.

  20. Wireless power transmission applied the mutual coupling between coils

    Science.gov (United States)

    Furuta, Kenta; Baba, Ryouichi; Shun, Endo; Nunokawa, Kazuki; Takahashi, Wataru; Maruyama, Tamami

    2017-07-01

    Recently, the studies of wireless power transfer (WPT) to electric vehicles in motion on the snow-piled road have been reported. In WPT by magnetic field resonance method, transmission coefficient S21, which is one of the scattering parameters, from transmission coil to received coil are degraded because of misalignment of transmitting and receiving coil, the distance between these coils, and the effects of the ice and snow. This paper adopts parasitic coil as a solution to improve the reception power in which the parasitic coil is inserted between transmitting and receiving coils. Analysis and experimental results show that parasitic coil could improve the value of S21 by 15 dB using mutual coupling. LED could be light by this solution when the distance between transmitting and receiving coils are 150 mm.

  1. Surface Coil for Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Beatriz Taimy Ricardo Ferro

    2015-01-01

    Full Text Available Currently Magnetic Resonance Imaging (MRI, has become a vital tool for the clinical diagnosis of various diseases, especially in the Nervisos Central System and the Musculos keletal System. Coils(RF are an essential component in the generation of these images, are responsible for exciting thespins of nuclei in a sample and/or detect the resultant signal coming from them. The use of surface RF coils has increased considerably, because they have a high signal to noise ratio, a parameter that defines the quality of the image. In the present work, there was realized the theoretical design and practical implementation of a circular surface RF coil. The experimental prototype was optimized to be used in the tomograph Giroimag03  built in Medical Biophysics Center

  2. Determination of Coil Inductances Cylindrical Iron Nucleus

    Directory of Open Access Journals (Sweden)

    Azeddine Mazouz

    2014-03-01

    Full Text Available The paper describes the investigation and development of a structure and performance characteristics of a coil iron nucleus cylindrical (C.I.N.C. The coil iron nucleus cylindrical is a nonlinear electro radio in which the moving of the nucleus in a sense or in other causes change in inductance and can reach extreme values at the superposition of nucleus and coil centers. The variation of the inductance and the degree of freedom of movement of the nucleus can lead to a device with electromechanical conversion The aim of this paper is the determination and visualization of self inductance and mutual of the (C.I.N.C based on geometric dimensions and the displacement of the nucleus.  

  3. CS model coil experimental log book

    Energy Technology Data Exchange (ETDEWEB)

    Nishijima, Gen; Sugimoto, Makoto; Nunoya, Yoshihiko; Wakabayashi, Hiroshi; Tsuji, Hiroshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2001-02-01

    Charging test of the ITER CS Model Coil which is the world's largest superconducting pulse coil and the CS Insert Coil had started at April 11, 2000 and had completed at August 18, 2000. In the campaign, total shot numbers were 356 and the size of the data file in the DAS (Data Acquisition System) was over 20 GB. This report is a database that consists of the log list and the log sheets of every shot. One can access the database, make a search, and browse results via Internet (http://1ogwww.naka.jaeri.go.jp). The database will be useful to quick search to choose necessary shots. (author)

  4. Acoustic rainbow trapping by coiling up space

    KAUST Repository

    Ni, Xu

    2014-11-13

    We numerically realize the acoustic rainbow trapping effect by tapping an air waveguide with space-coiling metamaterials. Due to the high refractive-index of the space-coiling metamaterials, our device is more compact compared to the reported trapped-rainbow devices. A numerical model utilizing effective parameters is also calculated, whose results are consistent well with the direct numerical simulation of space-coiling structure. Moreover, such device with the capability of dropping different frequency components of a broadband incident temporal acoustic signal into different channels can function as an acoustic wavelength division de-multiplexer. These results may have potential applications in acoustic device design such as an acoustic filter and an artificial cochlea.

  5. Measuring the orthogonality error of coil systems

    Science.gov (United States)

    Heilig, B.; Csontos, A.; Pajunpää, K.; White, Tim; St. Louis, B.; Calp, D.

    2012-01-01

    Recently, a simple method was proposed for the determination of pitch angle between two coil axes by means of a total field magnetometer. The method is applicable when the homogeneous volume in the centre of the coil system is large enough to accommodate the total field sensor. Orthogonality of calibration coil systems used for calibrating vector magnetometers can be attained by this procedure. In addition, the method can be easily automated and applied to the calibration of delta inclination–delta declination (dIdD) magnetometers. The method was tested by several independent research groups, having a variety of test equipment, and located at differing geomagnetic observatories, including: Nurmijärvi, Finland; Hermanus, South Africa; Ottawa, Canada; Tihany, Hungary. This paper summarizes the test results, and discusses the advantages and limitations of the method.

  6. MFTF test coil construction and performance

    Energy Technology Data Exchange (ETDEWEB)

    Cornish, D.N.; Zbasnik, J.P.; Leber, R.L.; Hirzel, D.G.; Johnston, J.E.; Rosdahl, A.R.

    1978-09-25

    A solenoid coil, 105 cm inside the 167 cm outside diameter, has been constructed and tested to study the performance of the stabilized Nb--Ti conductor to be used in the Mirror Fusion Test Facility (MFTF) being built at Lawrence Livermore Laboratory. The insulation system of the test coil is identical to that envisioned for MFTF. Cold-weld joints were made in the conductor at the start and finish of each layer; heaters were fitted to some of these joints and also to the conductor at various locations in the winding. This paper gives details of the construction of the coil and the results of the tests carried out to determine its propagation and recovery characteristics.

  7. Resistive demountable toroidal-field coils for tokamak reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jassby, D.L.; Jacobsen, R.A.; Kalnavarns, J.; Masson, L.S.; Sekot, J.P.

    1981-07-01

    Readily demountable TF (toroidal-field) coils allow complete access to the internal components of a tokamak reactor for maintenance of replacement. The requirement of readily demountable joints dictates the use of water-cooled resistive coils, which have a host of decisive advantages over superconducting coils. Previous papers have shown that resistive TF coils for tokamak reactors can operate in the steady state with acceptable power dissipation (typically, 175 to 300 MW). This paper summarizes results of parametric studies of size optimization of rectangular TF coils and of a finite-element stress analysis, and examines several candidate methods of implementing demountable joints for rectangular coils constructed of plate segments.

  8. Analytical and experimental analysis of tube coil heat exchanger

    Science.gov (United States)

    Smusz, R.

    2016-09-01

    The paper presents the analytical and experimental analysis of heat transfer for the finned tube coil heat exchanger immersed in thermal storage tank. The tank is equipped with three helical-shaped heating coils and cylindrical- shaped stratification device. Two coils, upper and lower, use the water as a heating medium. The third, double wall heat exchanger coil, located at the bottom head on the tank is filled by the refrigerant (freon). Calculations of thermal power of water coil were made. Correlations of heat transfer coefficients in curved tubes were applied. In order to verify the analytical calculations the experimental studies of heat transfer characteristic for coil heat exchanger were performed.

  9. Final design and construction of the Wendelstein7-X coils

    Energy Technology Data Exchange (ETDEWEB)

    Wegener, L. E-mail: lutz.wegener@ipp.mpg.de; Feist, J.-H.; Sapper, J.; Kerl, F.; Werner, F

    2001-11-01

    The Stellarator of the Wendelstein 7-X (W7-X) experiment contains a system of 50 non-planar and 20 planar superconducting coils. The coils were designed by the IPP. The coil manufacturing and inspection is shared between several European enterprises and consortiums. The coils consist of the winding pack embedded in a stainless steel casing and of the related instrumentation. Design details, tolerances and guarantee values and differences between the coils types are described in the contribution. The features of the superconductor are described separately. Finally, the contribution indicates measures adopted by the W7-X project to ensure the quality of the coil design and manufacturing.

  10. Coiled coil interactions for the targeting of liposomes for nucleic acid delivery

    Science.gov (United States)

    Oude Blenke, Erik E.; van den Dikkenberg, Joep; van Kolck, Bartjan; Kros, Alexander; Mastrobattista, Enrico

    2016-04-01

    Coiled coil interactions are strong protein-protein interactions that are involved in many biological processes, including intracellular trafficking and membrane fusion. A synthetic heterodimeric coiled-coil forming peptide pair, known as E3 (EIAALEK)3 and K3 (KIAALKE)3 was used to functionalize liposomes encapsulating a splice correcting oligonucleotide or siRNA. These peptide-functionalized vesicles are highly stable in solution but start to cluster when vesicles modified with complementary peptides are mixed together, demonstrating that the peptides quickly coil and crosslink the vesicles. When one of the peptides was anchored to the cell membrane using a hydrophobic cholesterol anchor, vesicles functionalized with the complementary peptide could be docked to these cells, whereas non-functionalized cells did not show any vesicle tethering. Although the anchored peptides do not have a downstream signaling pathway, microscopy pictures revealed that after four hours, the majority of the docked vesicles were internalized by endocytosis. Finally, for the first time, it was shown that the coiled coil assembly at the interface between the vesicles and the cell membrane induces active uptake and leads to cytosolic delivery of the nucleic acid cargo. Both the siRNA and the splice correcting oligonucleotide were functionally delivered, resulting respectively in the silencing or recovery of luciferase expression in the appropriate cell lines. These results demonstrate that the docking to the cell by coiled coil interaction can induce active uptake and achieve the successful intracellular delivery of otherwise membrane impermeable nucleic acids in a highly specific manner.Coiled coil interactions are strong protein-protein interactions that are involved in many biological processes, including intracellular trafficking and membrane fusion. A synthetic heterodimeric coiled-coil forming peptide pair, known as E3 (EIAALEK)3 and K3 (KIAALKE)3 was used to functionalize liposomes

  11. Self-assembling segmented coiled tubing

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W.

    2016-09-27

    Self-assembling segmented coiled tubing is a concept that allows the strength of thick-wall rigid pipe, and the flexibility of thin-wall tubing, to be realized in a single design. The primary use is for a drillstring tubular, but it has potential for other applications requiring transmission of mechanical loads (forces and torques) through an initially coiled tubular. The concept uses a spring-loaded spherical `ball-and-socket` type joint to interconnect two or more short, rigid segments of pipe. Use of an optional snap ring allows the joint to be permanently made, in a `self-assembling` manner.

  12. Multiple coil closure of isolated aortopulmonary collateral

    Directory of Open Access Journals (Sweden)

    Padhi Sumanta

    2010-01-01

    Full Text Available A 7-month-old girl was diagnosed to have large aortopulmonary collateral during evaluation for congestive heart failure. There was no other evidence of cardiopulmonary disease. The collateral was successfully closed with multiple coils delivered sequentially. We describe the issues associated during closure of the aortopulmonary collateral in this case. To the best of our knowledge, this is the first reported case of large aortopulmonary collateral presenting with heart failure in an otherwise structurally normal heart that was closed successfully with multiple coils delivered sequentially.

  13. A HTS dipole insert coil constructed

    CERN Document Server

    Ballarino, A; Rey, J M; Stenvall, A; Sorbi, M; Tixador, P

    2013-01-01

    This report is the deliverable report 7.4.1 “A HTS dipole insert coil constructed“. The report has three parts: “Design report for the HTS dipole insert”, “One insert pancake prototype coil constructed with the setup for a high field test”, and “All insert components ordered”. The three report parts show that, although the insert construction will be only completed by end 2013, all elements are present for a successful completion and that, given the important investments done by the participants, there is a full commitment of all of them to finish the project

  14. Estimation and measurement of flat or solenoidal coil inductance for radiofrequency NMR coil design.

    Science.gov (United States)

    Rainey, Jan K; DeVries, Jeffrey S; Sykes, Brian D

    2007-07-01

    The inductance of a radiofrequency coil determines its compatibility with a given NMR probe circuit. However, calculation (or estimation) of inductance for radiofrequency coils of dimensions suitable for use in an NMR probe is not trivial, particularly for flat-coils. A comparison of a number of formulae for calculation of inductance is presented through the use of a straightforward inductance measurement circuit. This technique relies upon instrumentation available in many NMR laboratories rather than upon more expensive and specialized instrumentation often utilized in the literature. Inductance estimation methods are suggested and validated for both flat-coils and solenoids. These have proven very useful for fabrication of a number of new coils in our laboratory for use in static solid-state NMR probes operating at (1)H frequencies of 300 and 600MHz. Solenoidal coils with very similar measured and estimated inductances having inner diameters from 1 to 5mm are directly compared as an example of the practical application of inductance estimation for interchange of coils within an existing solid-state NMR probe.

  15. Research and development of MRI surface coil for TMJ MR imaging; Modulated Helmholtz surface coil

    Energy Technology Data Exchange (ETDEWEB)

    Kukimoto, Yoshiaki; Kukimoto, Kyoko (Kameda General Hospital, Kamogawa, Chiba (Japan)); Shirakawa, Toyomi

    1989-12-01

    Internal derangements of the temporomandibular joint (TMJ) are a major cause of jaw pain and dysfunction as well as other related clinical symptoms. TMJ diagnosis is the abnormal position and appearance of the disk. Most X-ray-based methods are useful for evaluating bony abnormalities, but their reduced soft-tissue contrast often makes the diagnostic evaluation of TMJ disorders difficult. Magnetic resonance (MR) imaging is a very recent addition to the medical diagnostic of TMJ diseases. MR imaging can produce high-quality tomographic images of greater soft-tissue contrast without ionizing radiation or known biological hazards. MR system was circular type Simens Magnetom 1.5 tesla. Display matrix was 256x256. A Modulated Helmholtz type coil of 17 cm in diameter was developed in Kameda General Hospital in order to increase signal to noise ratio in the area of bilateral TMJs. The distance between two coils was 16-20 cm. The head was placed in supine position in the center of two surface coils. A Modulated Helmholtz type coil: 1. Modulated Helmholtz type coil was used as an emitter and a receiver. 2. Modulated Helmholtz type coil had a pair of 17 cm coils, which were movable according to head width of each patient. 3. MR imaging of bilateral TMJs was taken at once because of no necessity to reset a surfacecoil. 4. It was easy to set positioning of the head. (author).

  16. FUEL CELL ELECTRODE MATERIALS

    Science.gov (United States)

    FUEL CELL ELECTRODE MATERIALS. RAW MATERIAL SELECTION INFLUENCES POLARIZATION BUT IS NOT A SINGLE CONTROLLING FACTOR. AVAILABLE...DATA INDICATES THAT AN INTERRELATIONSHIP OF POROSITY, AVERAGE PORE VOLUME, AND PERMEABILITY CONTRIBUTES TO ELECTRODE FUEL CELL BEHAVIOR.

  17. Microresonator electrode design

    Science.gov (United States)

    Olsson, III, Roy H.; Wojciechowski, Kenneth; Branch, Darren W.

    2016-05-10

    A microresonator with an input electrode and an output electrode patterned thereon is described. The input electrode includes a series of stubs that are configured to isolate acoustic waves, such that the waves are not reflected into the microresonator. Such design results in reduction of spurious modes corresponding to the microresonator.

  18. A Simple Hydrogen Electrode

    Science.gov (United States)

    Eggen, Per-Odd

    2009-01-01

    This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…

  19. The Composite Insertion Electrode

    DEFF Research Database (Denmark)

    Atlung, Sven; Zachau-Christiansen, Birgit; West, Keld

    1984-01-01

    The specific energy obtainable by discharge of porous insertion electrodes is limited by electrolyte depletion in thepores. This can be overcome using a solid ion conductor as electrolyte. The term "composite" is used to distinguishthese electrodes from porous electrodes with liquid electrolyte...

  20. A Simple Hydrogen Electrode

    Science.gov (United States)

    Eggen, Per-Odd

    2009-01-01

    This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…

  1. Insulated ECG electrodes

    Science.gov (United States)

    Portnoy, W. M.; David, R. M.

    1973-01-01

    Insulated, capacitively coupled electrode does not require electrolyte paste for attachment. Other features of electrode include wide range of nontoxic material that may be employed for dielectric because of sputtering technique used. Also, electrode size is reduced because there is no need for external compensating networks with FET operational amplifier.

  2. Effects of electrode geometry on the performance of dielectric barrier/packed-bed discharge plasmas in benzene degradation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Nan [Institute of Electrostatics and Special Power, Dalian University of Technology, Dalian 116024 (China); Lu, Na; Shang, Kefeng [Institute of Electrostatics and Special Power, Dalian University of Technology, Dalian 116024 (China); Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education of the People' s Republic of China, Dalian 116024 (China); Li, Jie, E-mail: lijie@dlut.edu.cn [Institute of Electrostatics and Special Power, Dalian University of Technology, Dalian 116024 (China); Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education of the People' s Republic of China, Dalian 116024 (China); Wu, Yan [Institute of Electrostatics and Special Power, Dalian University of Technology, Dalian 116024 (China); Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education of the People' s Republic of China, Dalian 116024 (China)

    2013-11-15

    Highlights: • Benzene was successfully degraded by dielectric barrier/packed-bed discharge plasmas. • Different electrode geometry has distinct effect on plasmas oxidation performance. • Benzene degradation and energy performance were enhanced when using the coil electrode. • The reaction products were well determined by online FTIR analysis. -- Abstract: In this study, the effects of electrode geometry on benzene degradation in a dielectric barrier/packed-bed discharge plasma reactor with different electrodes were systematically investigated. Three electrodes were employed in the experiments, these were coil, bolt, and rod geometries. The reactor using the coil electrode showed better performance in reducing the dielectric loss in the barrier compared to that using the bolt or rod electrodes. In the case of the coil electrode, both the benzene degradation efficiency and energy yield were higher than those for the other electrodes, which can be attributed to the increased role of surface mediated reactions. Irrespective of the electrode geometry, the packed-bed discharge plasma was superior to the dielectric barrier discharge plasma in benzene degradation at any specific applied voltage. The main gaseous products of benzene degradation were CO, CO{sub 2}, H{sub 2}O, and formic acid. Discharge products such as O{sub 3}, N{sub 2}O, N{sub 2}O{sub 5}, and HNO{sub 3} were also detected in the outlet gas. Moreover, the presence of benzene inhibited the formation of ozone because of the competing reaction of oxygen atoms with benzene. This study is expected to offer an optimized approach combining dielectric barrier discharge and packed-bed discharge to improve the degradation of gaseous pollutants.

  3. Tx/Rx Head Coil Induces Less RF Transmit-Related Heating than Body Coil in Conductive Metallic Objects Outside the Active Area of the Head Coil.

    Science.gov (United States)

    Nagy, Zoltan; Oliver-Taylor, Aaron; Kuehne, Andre; Goluch, Sigrun; Weiskopf, Nikolaus

    2017-01-01

    The transmit-receive (Tx/Rx) birdcage head coil is often used for excitation instead of the body coil because of the presumably lower risk of heating in and around conductive implants. However, this common practice has not been systematically tested. To investigate whether the Tx/Rx birdcage head coil produces less heating than the body coil when scanning individuals with implants, we used a 3T clinical scanner and made temperature measurements around a straight 15 cm conductor using either the Tx/Rx body or the head coil for excitation. Additionally, the transmitted fields of a Tx/Rx head coil were measured both in air and in gel using a resonant and a non-resonant B field probes as well as a non-resonant E field probe. Simulations using a finite-difference time domain solver were compared with the experimental findings. When the body coil was used for excitation, we observed heating around the 15 cm wire at various anatomical locations (both within and outside of the active volume of the head coil). Outside its active area, no such heating was observed while using the Tx/Rx head coil for excitation. The E and B fields of the Tx/Rx birdcage head coil extended well-beyond the physical dimensions of the coil. In air, the fields were monotonically decreasing, while in gel they were more complex with local maxima at the end of the ASTM phantom. These experimental findings were line with the simulations. While caution must always be exercised when scanning individuals with metallic implants, these findings support the use of the Tx/Rx birdcage head coil in place of the body coil at 3T in order to reduce the risk of heating in and around conductive implants that are remote from the head coil.

  4. Tx/Rx Head Coil Induces Less RF Transmit-Related Heating than Body Coil in Conductive Metallic Objects Outside the Active Area of the Head Coil

    Science.gov (United States)

    Nagy, Zoltan; Oliver-Taylor, Aaron; Kuehne, Andre; Goluch, Sigrun; Weiskopf, Nikolaus

    2017-01-01

    The transmit–receive (Tx/Rx) birdcage head coil is often used for excitation instead of the body coil because of the presumably lower risk of heating in and around conductive implants. However, this common practice has not been systematically tested. To investigate whether the Tx/Rx birdcage head coil produces less heating than the body coil when scanning individuals with implants, we used a 3T clinical scanner and made temperature measurements around a straight 15 cm conductor using either the Tx/Rx body or the head coil for excitation. Additionally, the transmitted fields of a Tx/Rx head coil were measured both in air and in gel using a resonant and a non-resonant B field probes as well as a non-resonant E field probe. Simulations using a finite-difference time domain solver were compared with the experimental findings. When the body coil was used for excitation, we observed heating around the 15 cm wire at various anatomical locations (both within and outside of the active volume of the head coil). Outside its active area, no such heating was observed while using the Tx/Rx head coil for excitation. The E and B fields of the Tx/Rx birdcage head coil extended well-beyond the physical dimensions of the coil. In air, the fields were monotonically decreasing, while in gel they were more complex with local maxima at the end of the ASTM phantom. These experimental findings were line with the simulations. While caution must always be exercised when scanning individuals with metallic implants, these findings support the use of the Tx/Rx birdcage head coil in place of the body coil at 3T in order to reduce the risk of heating in and around conductive implants that are remote from the head coil.

  5. Optimization of a conduction-cooled LTS pulse coil

    Energy Technology Data Exchange (ETDEWEB)

    Kawagoe, A. [Kagoshima University, Kohrimoto 1-21-40, Kagoshima-shi, Kagoshima 890-0065 (Japan)]. E-mail: kawagoe@eee.kagoshima-u.ac.jp; Yamamuro, H. [Kagoshima University, Kohrimoto 1-21-40, Kagoshima-shi, Kagoshima 890-0065 (Japan); Sumiyoshi, F. [Kagoshima University, Kohrimoto 1-21-40, Kagoshima-shi, Kagoshima 890-0065 (Japan); Mito, T. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Chikaraishi, H. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Hemmi, T. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Baba, T. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Yokota, M. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Morita, Y. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Ogawa, H. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Abe, R. [Shibuya Kogyo Co., Ltd., Kanazawa, Ishikawa 920-0054 (Japan); Okumura, K. [Technova Inc., Chiyoda-ku, Tokyo 100-0011 (Japan); Iwakuma, M. [Kyushu University, Higashi-ku, Fukuoka 812-8581 (Japan)

    2006-11-15

    The output limit of the available power of a prototype conduction-cooled low temperature superconducting (LTS) pulse coil is clarified for the optimization of the coil. The winding conductor of this coil is a NbTi/Cu Rutherford cable, which is extruded with aluminum. Dyneema[reg] fiber reinforced plastics (DFRP) and Litz wires are used as the spacers of this coil. A prototype coil with a stored energy of 100 kJ was successfully fabricated and tested, and the coil performed excellently. In this paper, the stability margin of this coil is clarified by thermal analysis, using a two-dimensional finite element method, taking into account the effects of both types of spacers, DFRP and Litz wires. Additionally, the maximum output power of the coil is estimated at about three times the rated output.

  6. Modular Coils and Plasma Configurations for Quasi-axisymmetric Stellarators

    Energy Technology Data Exchange (ETDEWEB)

    L.P. Ku and A.H. Boozer

    2010-09-10

    Characteristics of modular coils for quasi-axisymmetric stellarators that are related to the plasma aspect ratio, number of field periods and rotational transform have been examined systematically. It is observed that, for a given plasma aspect ratio, the coil complexity tends to increase with the increased number of field periods. For a given number of field periods, the toroidal excursion of coil winding is reduced as the plasma aspect ratio is increased. It is also clear that the larger the coil-plasma separation is, the more complex the coils become. It is further demonstrated that it is possible to use other types of coils to complement modular coils to improve both the physics and the modular coil characteristics.

  7. Constrained length minimum inductance gradient coil design.

    Science.gov (United States)

    Chronik, B A; Rutt, B K

    1998-02-01

    A gradient coil design algorithm capable of controlling the position of the homogeneous region of interest (ROI) with respect to the current-carrying wires is required for many advanced imaging and spectroscopy applications. A modified minimum inductance target field method that allows the placement of a set of constraints on the final current density is presented. This constrained current minimum inductance method is derived in the context of previous target field methods. Complete details are shown and all equations required for implementation of the algorithm are given. The method has been implemented on computer and applied to the design of both a 1:1 aspect ratio (length:diameter) central ROI and a 2:1 aspect ratio edge ROI gradient coil. The 1:1 design demonstrates that a general analytic method can be used to easily obtain very short gradient coil designs for use with specialized magnet systems. The edge gradient design demonstrates that designs that allow imaging of the neck region with a head sized gradient coil can be obtained, as well as other applications requiring edge-of-cylinder regions of uniformity.

  8. Thermophoresis of polymers: nondraining vs draining coil.

    Science.gov (United States)

    Morozov, Konstantin I; Köhler, Werner

    2014-06-10

    Present theories for the thermophoretic mobility of polymers in dilute solution without long-ranged electrostatic interaction are based on a draining coil model with short-ranged segment-solvent interaction. We show that the characteristic thermophoretic interaction decays as r(-2) with the distance from the chain segment, which is of much longer range than the underlying rapidly decaying binary van der Waals interaction (∝ r(-6)). As a consequence, thermophoresis on the monomer level is governed by volume forces, resulting in hydrodynamic coupling between the chain segments. The inner parts of the nondraining coil do not actively participate in thermophoresis. The flow lines penetrate only into a thin surface layer of the coil and cause tangential stresses along the surface of the entire coil, not the individual segments. This model is motivated by recent experimental findings for thermoresponsive polymers and core-shell particles, and it explains the well-known molar mass independent thermophoretic mobility of polymers in dilute solution.

  9. Coil in bottom part of splitter magnet

    CERN Multimedia

    1976-01-01

    Radiation-resistant coil being bedded into the bottom part of a splitter magnet. This very particular magnet split the beam into 3 branches, for 3 target stations in the West-Area. See Annual Report 1975, p.176, Figs.14 and 15.

  10. Stellarator Coil Design and Plasma Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Long-Poe Ku and Allen H. Boozer

    2010-11-03

    The rich information contained in the plasma response to external magnetic perturbations can be used to help design stellarator coils more effectively. We demonstrate the feasibility by first devel- oping a simple, direct method to study perturbations in stellarators that do not break stellarator symmetry and periodicity. The method applies a small perturbation to the plasma boundary and evaluates the resulting perturbed free-boundary equilibrium to build up a sensitivity matrix for the important physics attributes of the underlying configuration. Using this sensitivity information, design methods for better stellarator coils are then developed. The procedure and a proof-of-principle application are given that (1) determine the spatial distributions of external normal magnetic field at the location of the unperturbed plasma boundary to which the plasma properties are most sen- sitive, (2) determine the distributions of external normal magnetic field that can be produced most efficiently by distant coils, (3) choose the ratios of the magnitudes of the the efficiently produced magnetic distributions so the sensitive plasma properties can be controlled. Using these methods, sets of modular coils are found for the National Compact Stellarator Experiment (NCSX) that are either smoother or can be located much farther from the plasma boundary than those of the present design.

  11. Penile hair coil strangulation of the child

    African Journals Online (AJOL)

    shanker

    We report the case of a child with a delayed presentation of penile strangulation with a coil of hair that resulted in a complete ... erection in some of them and with autoerotic intentions in others. ... in children with underlying urological problems.

  12. High-resolution MR imaging of triangular fibrocartilage complex (TFCC): comparison of microscopy coils and a conventional small surface coil

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Hiroshi [Department of Radiology, University of Tsukuba, Tsukuba (Japan); Department of Radiology, Brigham and Women' s Hospital, 75 Francis Street, 02115, Boston, MA (United States); Ueno, Teruko; Itai, Yuji [Department of Radiology, University of Tsukuba, Tsukuba (Japan); Tanaka, Toshikazu [Department of Orthopedic Surgery, Tsukuba Kinen Hospital, Tsukuba (Japan); Shindo, Masashi [Tsukuba University Hospital, Tsukuba (Japan)

    2003-10-01

    To compare MR images of the triangular fibrocartilage complex (TFCC) using microscopy coils with those using a conventional surface coil qualitatively and quantitatively. Proton density-weighted images and T2*-weighted images of the TFCC from ten normal volunteers were obtained with a conventional surface coil (C4 coil; 80 mm in diameter), a 47-mm microscopy surface coil and a 23-mm microscopy surface coil at 1.5 T. Qualitative image analysis of MR images with three coils was performed by two radiologists who assigned one of five numerical scores (0, nonvisualization; 1, poor; 2, average; 3, good; 4, excellent) for five TFCC components, which were disc proper, triangular ligament, meniscus homologue, ulnotriquetral and ulnolunate ligament. Quantitative analysis included the signal-to-noise ratio (S/N) of the disc proper of TFCC, the lunate cartilage, the lunate bone and the contrast-noise-ratio (C/N) between articular cartilage and disc proper or bone marrow were measured. All structures show higher scores qualitatively on MR with microscopy coils than those with a C4 coil, and the difference was significant with the exception of the ulnolunate ligament. MR with microscopy coils showed significantly higher S/N values than those with a conventional surface coil (P<0.05 to P<0.001). T2*-weighted images using microscopy coils showed significantly higher cartilage-disc proper C/N and cartilage-bone marrow C/N (P<0.01 to P<0.001). On proton density-weighted images, the C/N between cartilage and disc proper with two microscopy coils was significantly higher (P<0.01) than that with a conventional coil. High-resolution MR images of the normal wrist using microscopy coils were superior to those using a conventional surface coil qualitatively and quantitatively. High-resolution MR imaging with a microscopy coil would be a promising method to diagnose TFCC lesions. (orig.)

  13. Comparison of an Electromagnetic Energy Harvester Performance using Wound Coil Wire and PCB Coil

    Science.gov (United States)

    Resali, MSM; Salleh, H.

    2016-03-01

    This paper presents the performance of two types of electromagnetic energy harvester, one using manually wound coil wire (EH-EC) and the other one using printed circuit board (PCB) coil (EH-EP). The objective of the study is to measure the corresponding output voltage and power by varying the number of coils and the position of the magnet. The experiment was conducted at a fix 50 Hz of frequency and at 0.25g of acceleration. The EH-EP was found to be more effective than the 350 turns of the wound coil wire, with maximum power of 26 μW. Overall, the performance of the EH-EC showed better result with maximum power of 125 μW for 1050 turns when compared to the EH-EP.

  14. Coiled-Coil Irregularities and Instabilities in Group A Streptococcus M1 Are Required for Virulence

    Energy Technology Data Exchange (ETDEWEB)

    McNamara, Case; Zinkernagel, Annelies S.; Macheboeuf, Pauline; Cunningham, Madeleine W.; Nizet, Victor; Ghosh, Partho (UO-HSC); (UCSD)

    2008-07-21

    Antigenically variable M proteins are major virulence factors and immunogens of the human pathogen group A Streptococcus (GAS). Here, we report the -3 angstrom resolution structure of a GAS M1 fragment containing the regions responsible for eliciting type-specific, protective immunity and for binding fibrinogen, which promotes M1 proinflammatory and antiphagocytic functions. The structure revealed substantial irregularities and instabilities throughout the coiled coil of the M1 fragment. Similar structural irregularities occur in myosin and tropomyosin, explaining the patterns of cross-reactivity seen in autoimmune sequelae of GAS infection. Sequence idealization of a large segment of the M1 coiled coil enhanced stability but diminished fibrinogen binding, proinflammatory effects, and antibody cross-reactivity, whereas it left protective immunogenicity undiminished. Idealized M proteins appear to have promise as vaccine immunogens.

  15. Multiple-Coil, Pulse-Induction Metal Detector

    Science.gov (United States)

    Lesky, Edward S.; Reid, Alan M.; Bushong, Wilton E.; Dickey, Duane P.

    1988-01-01

    Multiple-head, pulse-induction metal detector scans area of 72 feet squared with combination of eight detector heads, each 3 ft. square. Head includes large primary coil inducing current in smaller secondary coils. Array of eight heads enables searcher to cover large area quickly. Pulses applied to primary coil, induced in secondary coils measured to determine whether metal present within range of detector head. Detector designed for recovery of Space Shuttle debris.

  16. Design and Testing of Coils for Pulsed Electromagnetic Forming

    OpenAIRE

    Golovashchenko, S.; Bessonov, N.; Davies, R

    2006-01-01

    Coil design influences the distribution of electromagnetic forces applied to both the blank and the coil. The required energy of the process is usually defined by deformation of the blank. However, the discharge also results in a significant amount of heat being generated and accumulating in the coil. Therefore, EMF process design involves working with three different problems: 1) propagation of an electromagnetic field through the coil-blank system and generation of pulsed electromagnetic pr...

  17. Effect of Inductive Coil Geometry on the Thrust Efficiency of a Microwave Assisted Discharge Inductive Plasma Accelerator

    Science.gov (United States)

    Hallock, Ashley; Polzin, Kurt; Emsellem, Gregory

    2012-01-01

    Pulsed inductive plasma thrusters [1-3] are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, pulsed inductive plasma thrusters require high pulse energies to inductively ionize propellant. The Microwave Assisted Discharge Inductive Plasma Accelerator (MAD-IPA) [4, 5] is a pulsed inductive plasma thruster that addressees this issue by partially ionizing propellant inside a conical inductive coil via an electron cyclotron resonance (ECR) discharge. The ECR plasma is produced using microwaves and permanent magnets that are arranged to create a thin resonance region along the inner surface of the coil, restricting plasma formation, and in turn current sheet formation, to a region where the magnetic coupling between the plasma and the inductive coil is high. The use of a conical theta-pinch coil is under investigation. The conical geometry serves to provide neutral propellant containment and plasma plume focusing that is improved relative to the more common planar geometry of the Pulsed Inductive Thruster (PIT) [2, 3], however a conical coil imparts a direct radial acceleration of the current sheet that serves to rapidly decouple the propellant from the coil, limiting the direct axial electromagnetic acceleration in favor of an indirect acceleration mechanism that requires significant heating of the propellant within the volume bounded by the current sheet. In this paper, we describe thrust stand measurements performed to characterize the performance

  18. GBNV encoded movement protein (NSm) remodels ER network via C-terminal coiled coil domain

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pratibha; Savithri, H.S., E-mail: bchss@biochem.iisc.ernet.in

    2015-08-15

    Plant viruses exploit the host machinery for targeting the viral genome–movement protein complex to plasmodesmata (PD). The mechanism by which the non-structural protein m (NSm) of Groundnut bud necrosis virus (GBNV) is targeted to PD was investigated using Agrobacterium mediated transient expression of NSm and its fusion proteins in Nicotiana benthamiana. GFP:NSm formed punctuate structures that colocalized with mCherry:plasmodesmata localized protein 1a (PDLP 1a) confirming that GBNV NSm localizes to PD. Unlike in other movement proteins, the C-terminal coiled coil domain of GBNV NSm was shown to be involved in the localization of NSm to PD, as deletion of this domain resulted in the cytoplasmic localization of NSm. Treatment with Brefeldin A demonstrated the role of ER in targeting GFP NSm to PD. Furthermore, mCherry:NSm co-localized with ER–GFP (endoplasmic reticulum targeting peptide (HDEL peptide fused with GFP). Co-expression of NSm with ER–GFP showed that the ER-network was transformed into vesicles indicating that NSm interacts with ER and remodels it. Mutations in the conserved hydrophobic region of NSm (residues 130–138) did not abolish the formation of vesicles. Additionally, the conserved prolines at positions 140 and 142 were found to be essential for targeting the vesicles to the cell membrane. Further, systematic deletion of amino acid residues from N- and C-terminus demonstrated that N-terminal 203 amino acids are dispensable for the vesicle formation. On the other hand, the C-terminal coiled coil domain when expressed alone could also form vesicles. These results suggest that GBNV NSm remodels the ER network by forming vesicles via its interaction through the C-terminal coiled coil domain. Interestingly, NSm interacts with NP in vitro and coexpression of these two proteins in planta resulted in the relocalization of NP to PD and this relocalization was abolished when the N-terminal unfolded region of NSm was deleted. Thus, the NSm

  19. Compressing DNA sequence databases with coil

    Directory of Open Access Journals (Sweden)

    Hendy Michael D

    2008-05-01

    Full Text Available Abstract Background Publicly available DNA sequence databases such as GenBank are large, and are growing at an exponential rate. The sheer volume of data being dealt with presents serious storage and data communications problems. Currently, sequence data is usually kept in large "flat files," which are then compressed using standard Lempel-Ziv (gzip compression – an approach which rarely achieves good compression ratios. While much research has been done on compressing individual DNA sequences, surprisingly little has focused on the compression of entire databases of such sequences. In this study we introduce the sequence database compression software coil. Results We have designed and implemented a portable software package, coil, for compressing and decompressing DNA sequence databases based on the idea of edit-tree coding. coil is geared towards achieving high compression ratios at the expense of execution time and memory usage during compression – the compression time represents a "one-off investment" whose cost is quickly amortised if the resulting compressed file is transmitted many times. Decompression requires little memory and is extremely fast. We demonstrate a 5% improvement in compression ratio over state-of-the-art general-purpose compression tools for a large GenBank database file containing Expressed Sequence Tag (EST data. Finally, coil can efficiently encode incremental additions to a sequence database. Conclusion coil presents a compelling alternative to conventional compression of flat files for the storage and distribution of DNA sequence databases having a narrow distribution of sequence lengths, such as EST data. Increasing compression levels for databases having a wide distribution of sequence lengths is a direction for future work.

  20. Improved coiled-coil design enhances interaction with Bcr-Abl and induces apoptosis.

    Science.gov (United States)

    Dixon, Andrew S; Miller, Geoffrey D; Bruno, Benjamin J; Constance, Jonathan E; Woessner, David W; Fidler, Trevor P; Robertson, James C; Cheatham, Thomas E; Lim, Carol S

    2012-01-01

    The oncoprotein Bcr-Abl drives aberrant downstream activity through trans-autophosphorylation of homo-oligomers in chronic myelogenous leukemia (CML).(1, 2) The formation of Bcr-Abl oligomers is achieved through the coiled-coil domain at the N-terminus of Bcr.(3, 4) We have previously reported a modified version of this coiled-coil domain, CCmut2, which exhibits disruption of Bcr-Abl oligomeric complexes and results in decreased proliferation of CML cells and induction of apoptosis.(5) A major contributing factor to these enhanced capabilities is the destabilization of the CCmut2 homodimers, increasing the availability to interact with and inhibit Bcr-Abl. Here, we included an additional mutation (K39E) that could in turn further destabilize the mutant homodimer. Incorporation of this modification into CCmut2 (C38A, S41R, L45D, E48R, Q60E) generated what we termed CCmut3, and resulted in further improvements in the binding properties with the wild-type coiled-coil domain representative of Bcr-Abl [corrected]. A separate construct containing one revert mutation, CCmut4, did not demonstrate improved oligomeric properties and indicated the importance of the L45D mutation. CCmut3 demonstrated improved oligomerization via a two-hybrid assay as well as through colocalization studies, in addition to showing similar biologic activity as CCmut2. The improved binding between CCmut3 and the Bcr-Abl coiled-coil may be used to redirect Bcr-Abl to alternative subcellular locations with interesting therapeutic implications.

  1. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif.

    Directory of Open Access Journals (Sweden)

    Nora Céspedes

    Full Text Available Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Plasmodium falciparum were identified in the P. vivax genome. The peptides identified in silico were chemically synthesized; circular dichroism studies indicated partial or high α-helical content. Antigenicity was evaluated using human sera samples from malaria-endemic areas of Colombia and Papua New Guinea. Eight of these fragments were selected and used to assess immunogenicity in BALB/c mice. ELISA assays indicated strong reactivity of serum samples from individuals residing in malaria-endemic regions and sera of immunized mice, with the α-helical coiled coil structures. In addition, ex vivo production of IFN-γ by murine mononuclear cells confirmed the immunogenicity of these structures and the presence of T-cell epitopes in the peptide sequences. Moreover, sera of mice immunized with four of the eight antigens recognized native proteins on blood-stage P. vivax parasites, and antigenic cross-reactivity with three of the peptides was observed when reacted with both the P. falciparum orthologous fragments and whole parasites. Results here point to the α-helical coiled coil peptides as possible P. vivax malaria vaccine candidates as were observed for P. falciparum. Fragments selected here warrant further study in humans and non-human primate models to assess their protective efficacy as single components or assembled as hybrid linear epitopes.

  2. Coiled-coil forming peptides for the induction of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Božič Abram, Sabina [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Graduate School of Biomedicine, University of Ljubljana, Ljubljana 1000 (Slovenia); Aupič, Jana [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Doctoral Programme in Chemical Sciences, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000 (Slovenia); Dražić, Goran [Laboratory for Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Gradišar, Helena [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); EN-FIST, Centre of Excellence, Trg Osvobodilne fronte 13, Ljubljana 1000 (Slovenia); Jerala, Roman, E-mail: roman.jerala@ki.si [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); EN-FIST, Centre of Excellence, Trg Osvobodilne fronte 13, Ljubljana 1000 (Slovenia)

    2016-04-08

    Biopolymers with defined sequence patterns offer an attractive alternative for the formation of silver nanoparticle (AgNP). A set of coiled-coil dimer forming peptides was tested for their AgNP formation ability. Seventeen of those peptides mediated the formation of AgNPs in aqueous solution at neutral pH, while the formation of a coiled-coil dimer inhibited the nanoparticle generation. A QSAR regression model on the relationship between sequence and function suggests that in this peptide type the patterns KXQQ and KXEE are favorable, whereas Ala residues appear to have an inhibitory effect. UV–VIS spectra of the obtained nanoparticles gave a peak at around 420 nm, typical for AgNPs in the size range around 40 nm, which was confirmed by dynamic light scattering and transmission electron microscopy. Peptide-induced AgNPs exhibited good antibacterial activity, even after a 15 min contact time, while they had low toxicity to human cells at the same concentrations. These results show that our designed peptides generate AgNPs with antibacterial activity at mild conditions and might be used for antibacterial coatings. - Highlights: • 17 of the 30 tested coiled-coil forming peptides induce AgNP formation. • Coiled-coil dimer formation suppresses AgNP generation of individual peptides. • Size of the peptide-induced silver nanoparticles is around 40 nm. • QSAR analysis points to the importance of KXQQ and KXEE motifs for AgNP generation. • Peptide-induced silver nanoparticles exhibit antibacterial activity.

  3. Data-driven prediction and design of bZIP coiled-coil interactions.

    Science.gov (United States)

    Potapov, Vladimir; Kaplan, Jenifer B; Keating, Amy E

    2015-02-01

    Selective dimerization of the basic-region leucine-zipper (bZIP) transcription factors presents a vivid example of how a high degree of interaction specificity can be achieved within a family of structurally similar proteins. The coiled-coil motif that mediates homo- or hetero-dimerization of the bZIP proteins has been intensively studied, and a variety of methods have been proposed to predict these interactions from sequence data. In this work, we used a large quantitative set of 4,549 bZIP coiled-coil interactions to develop a predictive model that exploits knowledge of structurally conserved residue-residue interactions in the coiled-coil motif. Our model, which expresses interaction energies as a sum of interpretable residue-pair and triplet terms, achieves a correlation with experimental binding free energies of R = 0.68 and significantly out-performs other scoring functions. To use our model in protein design applications, we devised a strategy in which synthetic peptides are built by assembling 7-residue native-protein heptad modules into new combinations. An integer linear program was used to find the optimal combination of heptads to bind selectively to a target human bZIP coiled coil, but not to target paralogs. Using this approach, we designed peptides to interact with the bZIP domains from human JUN, XBP1, ATF4 and ATF5. Testing more than 132 candidate protein complexes using a fluorescence resonance energy transfer assay confirmed the formation of tight and selective heterodimers between the designed peptides and their targets. This approach can be used to make inhibitors of native proteins, or to develop novel peptides for applications in synthetic biology or nanotechnology.

  4. 49 CFR 236.555 - Repaired or rewound receiver coil.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Repaired or rewound receiver coil. 236.555 Section 236.555 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... or rewound receiver coil. Receiver coil which has been repaired or rewound shall have the...

  5. The Roach muscle bundle and umbilical cord coiling

    NARCIS (Netherlands)

    de Laat, Monique W. M.; Nikkels, Peter G. J.; Franx, Arie; Visser, Gerard H. A.

    2007-01-01

    Objective: To determine if presence of the Roach muscle, a small muscle bundle tying just beside the umbilical artery, contributes to umbilical cord coiling. Methods: 251 umbilical cords were examined. The umbilical coiling index (UCI) was calculated as the number of coils divided by the cord length

  6. Transport of one SC coil through the village of Meyrin

    CERN Multimedia

    1956-01-01

    The energizing coils of the Synchro-cyclotron magnet were manufactured in Belgium before travelling to Basel in Switzerland by boat and continuing by road to Geneva. The first coil reached Geneva in December 1955, with the second following in early 1956. The coils were stored in a hangar at the Geneva airport before they were brought to CERN in May 1956.

  7. The training in epoxy-impregnated superconducting coils

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, H.; Bobrov, E.S.; Iwasa, Y.; Takaghi, T.; Tsukamoto, O.

    1985-03-01

    The authors have investigated the training of epoxy-impregnated superconducting coils. It has been observed that the boundary conditions at the coil ends have a crucial effect on shear-stress-induced epoxy cracks in the winding and consequently on the coil training. The results were quantified using acoustic emission data.

  8. Unconventional gradient coil designs in magnetic resonance imaging.

    Science.gov (United States)

    Zhu, Minhua; Xia, Ling; Liu, Feng

    2014-01-01

    In magnetic resonance imaging (MRI), the gradient coils are used to encode the spatial positions of protons by varying the magnetic field linearly across the imaging subject. With the latest development of MRI technique and new clinical and research applications, the gradient coil system requires increasingly innovative designs. In this paper, four unconventional gradient coil designs are reviewed: (1) local gradient coils; (2) new coil configurations with reduced peripheral nerve stimulation (PNS); (3) dedicated structures designed for hybrid systems (combining MRI with other medical devices); and (4) the full 3D coil designs. For the first type, the development of local gradient coils (mainly head coils) is discussed chronologically and divided into three stages: the "golden" stage in the 1990s, the "wane" stage in the 2000s, and the "revival" stage in the 2010s. For the second type, various designs for the reduction of PNS problems have been described, including local and whole-body gradient coil systems. For the third design, a dedicated gradient coil design for multi-modality combination is illustrated with an MRI-LINAC system. Finally, gradient systems with non-layered coil structure are described in the fourth design type. We hope that this review on unconventional gradient coil designs will be useful for the new development of MRI technology and emerging medical applications.

  9. Needleless Electrospinning of Uniform Nanofibers Using Spiral Coil Spinnerets

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2012-01-01

    Full Text Available Polyvinyl alcohol nanofibers were prepared by a needleless electrospinning technique using a rotating spiral wire coil as spinneret. The influences of coil dimension (e.g., coil length, coil diameter, spiral distance, and wire diameter and operating parameters (e.g., applied voltage and spinning distance on electrospinning process, nanofiber diameter, and fiber productivity were examined. It was found that the coil dimension had a considerable influence on the nanofiber production rate, but minor effect on the fiber diameter. The fiber production rate increased with the increased coil length or coil diameter, or the reduced spiral distance or wire diameter. Higher applied voltage or shorter collecting distance also improved the fiber production rate but had little influence on the fiber diameter. Compared with the conventional needle electrospinning, the coil electrospinning produced finer fibers with a narrower diameter distribution. A finite element method was used to analyze the electric field on the coil surface and in electrospinning zone. It was revealed that the high electric field intensity was concentrated on the coil surface, and the intensity was highly dependent on the coil dimension, which can be used to explain the electrospinning performances of coils. In addition, PAN nanofibers were prepared using the same needleless electrospinning technique to verify the improvement in productivity.

  10. Modeling Endovascular MRI Coil Coupling with Transmit RF Excitation

    Science.gov (United States)

    Venkateswaran, Madhav; Unal, Orhan; Hurley, Samuel; Samsonov, Alexey; Wang, Peng; Fain, Sean; Kurpad, Krishna

    2016-01-01

    Objective To model inductive coupling of endovascular coils with transmit RF excitation for selecting coils for MRI-guided interventions. Methods Independent and computationally efficient FEM models are developed for the endovascular coil, cable, transmit excitation and imaging domain. Electromagnetic and circuit solvers are coupled to simulate net B1+ fields and induced currents and voltages. Our models are validated using the Bloch Siegert B1+ mapping sequence for a series-tuned multimode coil, capable of tracking, wireless visualization and high resolution endovascular imaging. Results Validation shows good agreement at 24, 28 and 34 μT background RF excitation within experimental limitations. Quantitative coil performance metrics agree with simulation. A parametric study demonstrates trade off in coil performance metrics when varying number of coil turns. Tracking, imaging and wireless marker multimode coil features and their integration is demonstrated in a pig study. Conclusion Developed models for the multimode coil were successfully validated. Modeling for geometric optimization and coil selection serves as a precursor to time-consuming and expensive experiments. Specific applications demonstrated include parametric optimization, coil selection for a cardiac intervention and an animal imaging experiment. Significance Our modular, adaptable and computationally efficient modeling approach enables rapid comparison, selection and optimization of inductively-coupled coils for MRI-guided interventions. PMID:26960218

  11. A coiled-coil domain acts as a molecular ruler to regulate O-antigen chain length in lipopolysaccharide.

    Science.gov (United States)

    Hagelueken, Gregor; Clarke, Bradley R; Huang, Hexian; Tuukkanen, Anne; Danciu, Iulia; Svergun, Dmitri I; Hussain, Rohanah; Liu, Huanting; Whitfield, Chris; Naismith, James H

    2015-01-01

    Long-chain bacterial polysaccharides have important roles in pathogenicity. In Escherichia coli O9a, a model for ABC transporter-dependent polysaccharide assembly, a large extracellular carbohydrate with a narrow size distribution is polymerized from monosaccharides by a complex of two proteins, WbdA (polymerase) and WbdD (terminating protein). Combining crystallography and small-angle X-ray scattering, we found that the C-terminal domain of WbdD contains an extended coiled-coil that physically separates WbdA from the catalytic domain of WbdD. The effects of insertions and deletions in the coiled-coil region were analyzed in vivo, revealing that polymer size is controlled by varying the length of the coiled-coil domain. Thus, the coiled-coil domain of WbdD functions as a molecular ruler that, along with WbdA:WbdD stoichiometry, controls the chain length of a model bacterial polysaccharide.

  12. Tailored Presentation of Carbohydrates on a Coiled Coil-Based Scaffold for Asialoglycoprotein Receptor Targeting.

    Science.gov (United States)

    Zacco, Elsa; Hütter, Julia; Heier, Jason L; Mortier, Jérémie; Seeberger, Peter H; Lepenies, Bernd; Koksch, Beate

    2015-09-18

    The coiled-coil folding motif represents an ideal scaffold for the defined presentation of ligands due to the possibility of positioning them at specific distances along the axis. We created a coiled-coil glycopeptide library to characterize the distances between the carbohydrate-binding sites of the asialoglycoprotein receptors (ASGPR) on hepatocytes. The components of the glycopeptide library vary for the number of displayed ligands (galactose), their position on the peptide sequence, and the space between peptide backbone and carbohydrate. We determined the binding of the glycopeptides to the hepatocytes, and we established the optimal distance and orientation of the galactose moieties for interaction with the ASGPR using flow cytometry. We confirmed that the binding occurs through endocytosis mediated by ASGPR via inhibition studies with cytochalasin D; fluorescence microscopy studies display the uptake of the carrier peptides inside the cell. Thus, this study demonstrates that the coiled-coil motif can be used as reliable scaffold for the rational presentation of ligands.

  13. CENP-K and CENP-H may form coiled-coils in the kinetochores

    Institute of Scientific and Technical Information of China (English)

    QIU ShuLan; WANG JiaNing; YU Chuang; HE DaCheng

    2009-01-01

    Kinetochores are large proteinaceous structure on the surface of chromosomes' primary constriction during mitosis. They link chromosomes to spindle microtubules and also regulate the spindle assem-bly checkpoint, which is crucial for correct chromosome segregation in all eukaryotes. The better known core networks of kinetochores include the KMN network (K, KNL1; M, Mis12 complex; N, Ndc80 complex)and CCAN (constitutive centromere-associated network). However, the detailed molecular mechanism of the kinetochore protein network remains unclear. This study demonstrates that CENP-H and CENP-K form quite stable subcomplex by TAP (tandem affinity purification) with HEK 293 cells which express TAP-CENP-K, with the ratio of purified CENP-H and CENP-K being close to 1 : 1 even with high salt. Bioinformatic analysis suggests that CENP-H and CENP-K are enriched with coiled-coil regions. This implies that CENP-H and CENP-K form heterodimeric coiled-coils. Furthermore, the func-tional regions which form the complex are respectively located on their N- and C-terminals, but the association between the C-terminals is more complex. It is possible that this is the first identified het-erodimeric coiled-coils within the inner kinetochore, which is directly involved in the attachment be-tween kinetochores and the spindle microtubules.

  14. Coiled-Coil Proteins Facilitated the Functional Expansion of the Centrosome

    Science.gov (United States)

    Kuhn, Michael; Hyman, Anthony A.; Beyer, Andreas

    2014-01-01

    Repurposing existing proteins for new cellular functions is recognized as a main mechanism of evolutionary innovation, but its role in organelle evolution is unclear. Here, we explore the mechanisms that led to the evolution of the centrosome, an ancestral eukaryotic organelle that expanded its functional repertoire through the course of evolution. We developed a refined sequence alignment technique that is more sensitive to coiled coil proteins, which are abundant in the centrosome. For proteins with high coiled-coil content, our algorithm identified 17% more reciprocal best hits than BLAST. Analyzing 108 eukaryotic genomes, we traced the evolutionary history of centrosome proteins. In order to assess how these proteins formed the centrosome and adopted new functions, we computationally emulated evolution by iteratively removing the most recently evolved proteins from the centrosomal protein interaction network. Coiled-coil proteins that first appeared in the animal–fungi ancestor act as scaffolds and recruit ancestral eukaryotic proteins such as kinases and phosphatases to the centrosome. This process created a signaling hub that is crucial for multicellular development. Our results demonstrate how ancient proteins can be co-opted to different cellular localizations, thereby becoming involved in novel functions. PMID:24901223

  15. CENP-K and CENP-H may form coiled-coils in the kinetochores

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Kinetochores are large proteinaceous structure on the surface of chromosomes’ primary constriction during mitosis. They link chromosomes to spindle microtubules and also regulate the spindle assem- bly checkpoint, which is crucial for correct chromosome segregation in all eukaryotes. The better known core networks of kinetochores include the KMN network (K, KNL1; M, Mis12 complex; N, Ndc80 complex)and CCAN (constitutive centromere-associated network). However, the detailed molecular mechanism of the kinetochore protein network remains unclear. This study demonstrates that CENP-H and CENP-K form quite stable subcomplex by TAP (tandem affinity purification) with HEK 293 cells which express TAP-CENP-K, with the ratio of purified CENP-H and CENP-K being close to 1︰1 even with high salt. Bioinformatic analysis suggests that CENP-H and CENP-K are enriched with coiled-coil regions. This implies that CENP-H and CENP-K form heterodimeric coiled-coils. Furthermore, the func- tional regions which form the complex are respectively located on their N- and C-terminals, but the association between the C-terminals is more complex. It is possible that this is the first identified het- erodimeric coiled-coils within the inner kinetochore, which is directly involved in the attachment be- tween kinetochores and the spindle microtubules.

  16. Solutions for Safe Hot Coil Evacuation and Coil Handling in Case of Thick and High Strength Steel

    OpenAIRE

    Sieberer Stefan; Pichler Lukas; Hackl Manfred

    2016-01-01

    Currently hot rolling plants are entering the market segment for thick gauges and high strength steel grades where the elastic bending property of the strip leads to internal forces in the coil during coiling operation. The strip tends to open. Primetals is investigating several possibilities to facilitate safe coil evacuation and coil handling under spring-back conditions. The contribution includes finite element models of such mechanical solutions. Results of parameter variation and stabili...

  17. Computational study for the effects of coil configuration on blood flow characteristics in coil-embolized cerebral aneurysm.

    Science.gov (United States)

    Otani, Tomohiro; Ii, Satoshi; Shigematsu, Tomoyoshi; Fujinaka, Toshiyuki; Hirata, Masayuki; Ozaki, Tomohiko; Wada, Shigeo

    2016-07-21

    Coil embolization of cerebral aneurysms with inhomogeneous coil distribution leads to an incomplete occlusion of the aneurysm. However, the effects of this factor on the blood flow characteristics are still not fully understood. This study investigates the effects of coil configuration on the blood flow characteristics in a coil-embolized aneurysm using computational fluid dynamics (CFD) simulation. The blood flow analysis in the aneurysm with coil embolization was performed using a coil deployment (CD) model, in which the coil configuration was constructed using a physics-based simulation of the CD. In the CFD results, total flow momentum and kinetic energy in the aneurysm gradually decayed with increasing coil packing density (PD), regardless of the coil configuration attributed to deployment conditions. However, the total shear rate in the aneurysm was relatively high and the strength of the local shear flow varied based on the differences in coil configuration, even at adequate PDs used in clinical practice (20-25 %). Because the sufficient shear rate reduction is a well-known factor in the blood clot formation occluding the aneurysm inside, the present study gives useful insight into the effects of coil configuration on the treatment efficiency of coil embolization.

  18. Study on the performance improvement of the high temperature superconducting coil with several separated coils at the edges

    Science.gov (United States)

    Ishiguri, S.; Oka, T.; Fukui, S.; Ogawa, J.; Sato, T.

    2008-09-01

    In designing high temperature superconducting (HTS) coils, it is important to secure large magnetic fields and stored energy using shorter tape length. Thus, it is necessary to improve the transport current performance of the coils. The critical current and n-value of an HTS tape depend on magnetic fields and flux angles under constant temperature. Considering these dependencies, we established a model to analyze coil critical current. This model clarifies that relatively large electric fields are generated at the coil edges. This adversely affects the transport current performance. In this study, the coil edge is separated into several coils, keeping the total tape length constant. This increases the coil critical current, stored energy, central magnetic field, and also the coil volume, which contains vacancies created by the separation. To estimate coil performance, we calculated the stored energy density, whose denominator is the increased coil volume. This stored energy density reaches its maximum value when the number of the separated coils is eight. At this optimum separation, the central magnetic field increases by 13%, and the stored energy improves by 43%, compared to a rectangular coil wound with the same tape length.

  19. Structural attributes for the recognition of weak and anomalous regions in coiled-coils of myosins and other motor proteins

    Directory of Open Access Journals (Sweden)

    Sunitha Margaret S

    2012-09-01

    Full Text Available Abstract Background Coiled-coils are found in different proteins like transcription factors, myosin tail domain, tropomyosin, leucine zippers and kinesins. Analysis of various structures containing coiled-coils has revealed the importance of electrostatic and hydrophobic interactions. In such domains, regions of different strength of interactions need to be identified since they could be biologically relevant. Findings We have updated our coiled-coil validation webserver, now called COILCHECK+, where new features were added to efficiently identify the strength of interaction at the interface region and measure the density of charged residues and hydrophobic residues. We have examined charged residues and hydrophobic ladders, using a new algorithm called CHAHO, which is incorporated within COILCHECK + server. CHAHO permits the identification of spatial charged residue patches and the continuity of hydrophobic ladder which stabilizes and destabilizes the coiled-coil structure. Conclusions The availability of such computational tools should be useful to understand the importance of spatial clustering of charged residues and the continuity of hydrophobic residues at the interface region of coiled-coil dimers. COILCHECK + is a structure based tool to validate coiled-coil stability; it can be accessed at http://caps.ncbs.res.in/coilcheckplus.

  20. Subunit b-dimer of the Escherichia coli ATP synthase can form left-handed coiled-coils.

    Science.gov (United States)

    Wise, John G; Vogel, Pia D

    2008-06-01

    One remaining challenge to our understanding of the ATP synthase concerns the dimeric coiled-coil stator subunit b of bacterial synthases. The subunit b-dimer has been implicated in important protein interactions that appear necessary for energy conservation and that may be instrumental in energy conservation during rotary catalysis by the synthase. Understanding the stator structure and its interactions with the rest of the enzyme is crucial to the understanding of the overall catalytic mechanism. Controversy exists on whether subunit b adopts a classic left-handed or a presumed right-handed dimeric coiled-coil and whether or not staggered pairing between nonhomologous residues in the homodimer is required for intersubunit packing. In this study we generated molecular models of the Escherichia coli subunit b-dimer that were based on the well-established heptad-repeat packing exhibited by left-handed, dimeric coiled-coils by employing simulated annealing protocols with structural restraints collected from known structures. In addition, we attempted to create hypothetical right-handed coiled-coil models and left- and right-handed models with staggered packing in the coiled-coil domains. Our analyses suggest that the available structural and biochemical evidence for subunit b can be accommodated by classic left-handed, dimeric coiled-coil quaternary structures.

  1. Planar quadrature coil design using shielded-loop resonators

    DEFF Research Database (Denmark)

    Stensgaard, A

    1997-01-01

    The shielded-loop resonator is known to have a low capacitive sample loss due to a perfect balancing. In this paper, it is demonstrated that shielded-loop technology also can be used to improve design of planar quadrature coils. Both a dual-loop circuit and especially a dual-mode circuit may...... benefit from use of shielded-loop resonators. Observations in measurements agree with theory for both a dual-loop coil and a dual-mode coil. The coils were designed for use as transmit/receive coil for 1H imaging and spectroscopy at 4.7 T in rat brain....

  2. Application of Microstructure Engineering in Steel Coil Cooling Process

    Institute of Scientific and Technical Information of China (English)

    LIU Zheng-dong; D Q Jin; I V Samarasekera; J K Brimacombe

    2005-01-01

    The coil cooling and its role in a hot strip mill were reviewed.A mathematical model was developed to describe and analyze the thermal history and its impact on precipitation phenomena during coil cooling for plain car bon,HSLA-V and HSLA-Nb steels.The predicted result of the thermal model was compared with that measured from industrial coil.The effect of cooling condition and coil dimension on the thermal history and final mechanical properties of the steel strip was examined.The coiling temperature and cooling rate have crucial influence on the precipitation strengthening.

  3. Superconducting coil system and methods of assembling the same

    Science.gov (United States)

    Rajput-Ghoshal, Renuka; Rochford, James H.; Ghoshal, Probir K.

    2016-01-19

    A superconducting magnet apparatus is provided. The superconducting magnet apparatus includes a power source configured to generate a current; a first switch coupled in parallel to the power source; a second switch coupled in series to the power source; a coil coupled in parallel to the first switch and the second switch; and a passive quench protection device coupled to the coil and configured to by-pass the current around the coil and to decouple the coil from the power source when the coil experiences a quench.

  4. Mechanical characteristics of the ATLAS B0 model coil

    CERN Document Server

    Foussat, A; Dudarev, A; Mayri, C; Miele, P; Sun, Z; ten Kate, H H J; Volpini, G

    2003-01-01

    The ATLAS B0 model coil has been tested at CERN to verify the design parameters of the Barrel Toroid coils (BT). The mechanical behavior of the B0 superconducting coil and its support structure is reported and compared with coil design calculations. The mechanical stresses and structural force levels during cooling down and excitation phases were monitored using strain gauges, position sensors and capacitive force transducers instrumentation. In the ATLAS magnet test facility, a magnetic mirror is used to reproduce the electromagnetic forces present in the BT coils, once these are assembled in toroid in the underground cavern in 2004. (8 refs).

  5. SSC (Superconducting Super Collider) dipole coil production tooling

    Energy Technology Data Exchange (ETDEWEB)

    Carson, J.A.; Barczak, E.J.; Bossert, R.C.; Brandt, J.S.; Smith, G.A.

    1989-03-01

    Superconducting Super Collider dipole coils must be produced to high precision to ensure uniform prestress and even conductor distribution within the collared coil assembly. Tooling is being prepared at Fermilab for the production of high precision 1M and 16.6M SSC dipole coils suitable for mass production. The design and construction methods builds on the Tevatron tooling and production experience. Details of the design and construction methods and measured coil uniformity of 1M coils will be presented. 4 refs., 10 figs.

  6. Random coil chemical shift for intrinsically disordered proteins

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Brander, Søren; Poulsen, Flemming Martin

    2011-01-01

    . Temperature has a non-negligible effect on the (13)C random coil chemical shifts, so temperature coefficients are reported for the random coil chemical shifts to allow extrapolation to other temperatures. The pH dependence of the histidine random coil chemical shifts is investigated in a titration series......, which allows the accurate random coil chemical shifts to be obtained at any pH. By correcting the random coil chemical shifts for the effects of temperature and pH, systematic biases of the secondary chemical shifts are minimized, which will improve the reliability of detection of transient secondary...

  7. Spontaneous quenches of a high temperature superconducting pancake coil

    Energy Technology Data Exchange (ETDEWEB)

    Lue, J.W.; Lubell, M.S. [Oak Ridge National Lab., TN (United States); Aized, D.; Campbell, J.M.; Schwall, R.E. [American Superconductor Corp., Westborough, MA (United States)

    1995-09-01

    A double-pancake coil made of Bi-2223/Ag high temperature superconducting (HTS) tape was constructed with an embedded heater and graded conductors to study the stability and quench propagation in HTS coils. The experiments were performed with liquid nitrogen and gaseous helium cooling in temperatures ranging from 5 to 77 K. The coil was very stable, and no ``normal`` zone was sustained or propagated with local pulsed heating. However, spontaneous quenches of the cod were experienced. This was found to be the result of having the coil current higher than that of the lower I{sub c} sections of the coil for a long time. This quench process took minutes to develop--much longer than would be expected in a low temperature superconducting coil. The quench behaved more like a spreading and continuous heating of an increasingly larger partially resistive section of the coil than like a sequential ``normal`` front propagation.

  8. Fabrication of the superconducting coils for Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Risse, Konrad E-mail: konrad.risse@ipp.mpg.de; Rummel, Th.; Wegener, L.; Holzthuem, R.; Jaksic, N.; Kerl, F.; Sapper, J

    2003-09-01

    The Max Planck Institute of Plasma Physics is building up the stellarator fusion experiment Wendelstein 7-X (W7-X) at the branch institute in Greifswald. W7-X continues the line of stellarator experiments at IPP. To allow for steady state operation W7-X has a superconducting coil system with 50 non-planar and 20 planar coils. The coil system is grouped in five equal modules, each consisting of two mirror symmetric half modules. The half modules are assembled from five different non-planar coils, two planar coils and a sector of the coil support structure. All cryogenic parts are enclosed in a cryostat to protect them from ambient temperature. The magnet system was ordered from the European industry. The production of superconductor, winding packs and encasings are under way. The main focus of this contribution aims on the fabrication state of the coil system.

  9. Output beam analysis of high power COIL

    Institute of Scientific and Technical Information of China (English)

    Deli Yu(于德利); Fengting Sang(桑凤亭); Yuqi Jin(金玉奇); Yizhu Sun(孙以珠)

    2003-01-01

    As the output power of a chemical oxygen iodine laser (COIL) increases, the output laser beam instabilityappears as the far-field beam spot drift and deformation for the large Fresnel number unstable resonator.In order to interpret this phenomenon, an output beam mode simulation code was developed with the fastFourier transform method. The calculation results show that the presence of the nonuniform gain in COILproduces a skewed output intensity distribution, which causes the mirror tilt and bulge due to the thermalexpansion. With the output power of COIL increases, the mirror surfaces, especially the back surface ofthe scraper mirror, absorb more and more heat, which causes the drift and deformation of far field beamspot seriously. The initial misalignment direction is an important factor for the far field beam spot driftingand deformation.

  10. Theory of the quadrature elliptic birdcage coil.

    Science.gov (United States)

    Leifer, M C

    1997-11-01

    This paper presents the theory of the quadrature birdcage coil wound on an elliptic cylindrical former. A conformal transformation of the ellipse to a circular geometry is used to derive the optimal sampling of the continuous surface current distribution to produce uniform magnetic fields within an elliptic cylinder. The analysis is rigorous for ellipses of any aspect ratio and shows how to produce quadrature operation of the elliptic birdcage with a conventional hybrid combiner. Insight gained from the transformation is also used to analyze field homogeneity, find the optimal RF shield shape, and specify component values to produce the correct current distribution in practice. Measurements and images from a 16-leg elliptic birdcage coil at both low and high frequencies show good quadrature performance, homogeneity, and sensitivity.

  11. Magnetically Damped Furnace Bitter Magnet Coil 1

    Science.gov (United States)

    Bird, M. D.

    1997-01-01

    A magnet has been built by the National High Magnetic Field Laboratory for NASA on a cost reimbursement contract. The magnet is intended to demonstrate the technology and feasibility of building a magnet for space based crystal growth. A Bitter magnet (named after Francis Bitter, its inventor) was built consisting of four split coils electrically in series and hydraulically in parallel. The coils are housed in a steel vessel to reduce the fringe field and provide some on-axis field enhancement. The steel was nickel plated and Teflon coated to minimize interaction with the water cooling system. The magnet provides 0.14 T in a 184 mm bore with 3 kW of power.

  12. DC SQUIDS with planar input coils

    Energy Technology Data Exchange (ETDEWEB)

    Pegrum, C.M.; Donaldson, G.B.; Hutson, D.; Tugwell, A.

    1985-03-01

    We describe the key parts of our recent work to develop a planar thin-film DC SQUID with a closely-coupled spiral input coil. Our aim has been to make a device that is superior to present RF SQUID sensors in terms of sensitivity and long-term reliability. To be compatible with an RF SQUID the inductance of the input coils must be relatively large, typically 2..mu..H, and the input noise current in the white noise region should be below 10pA Hz /SUP -1/2/ . A low level of 1/f noise is also necessary for many applications and should be achieved without the use of complex noisecancelling circuitry. Our devices meet these criteria. We include a description of work on window and edge junction fabrication using ion beam cleaning, thermal oxidation and RF plasma processing.

  13. Acute lung injury following refrigeration coil deicing.

    Science.gov (United States)

    McKeown, Nathanael J; Burton, Brent T

    2012-03-01

    We report a case of a worker who developed ALI requiring mechanical ventilatory support after attempting to melt ice condensate by applying the flame of an oxy-acetylene torch to refrigeration coils charged with a halocarbon refrigerant in a closed environment. A discussion of possible etiologies are discussed, including phosgene, carbonyl fluoride, and nitrogen oxides. Primary prevention with adequate respiratory protection is recommended whenever deicing is performed in a closed space environment.

  14. Pocket ECG electrode

    Science.gov (United States)

    Lund, Gordon F. (Inventor)

    1982-01-01

    A low-noise electrode suited for sensing electrocardiograms when chronically and subcutaneously implanted in a free-ranging subject. The electrode comprises a pocket-shaped electrically conductive member with a single entrance adapted to receive body fluids. The exterior of the member and the entrance region is coated with electrical insulation so that the only electrolyte/electrode interface is within the member remote from artifact-generating tissue. Cloth straps are bonded to the member to permit the electrode to be sutured to tissue and to provide electrical lead flexure relief.

  15. Handbook of reference electrodes

    CERN Document Server

    Inzelt, György; Scholz, Fritz

    2013-01-01

    Reference Electrodes are a crucial part of any electrochemical system, yet an up-to-date and comprehensive handbook is long overdue. Here, an experienced team of electrochemists provides an in-depth source of information and data for the proper choice and construction of reference electrodes. This includes all kinds of applications such as aqueous and non-aqueous solutions, ionic liquids, glass melts, solid electrolyte systems, and membrane electrodes. Advanced technologies such as miniaturized, conducting-polymer-based, screen-printed or disposable reference electrodes are also covered. Essen

  16. Mechanical Resonances of Helically Coiled Carbon Nanowires

    Science.gov (United States)

    Saini, D.; Behlow, H.; Podila, R.; Dickel, D.; Pillai, B.; Skove, M. J.; Serkiz, S. M.; Rao, A. M.

    2014-07-01

    Despite their wide spread applications, the mechanical behavior of helically coiled structures has evaded an accurate understanding at any length scale (nano to macro) mainly due to their geometrical complexity. The advent of helically coiled micro/nanoscale structures in nano-robotics, nano-inductors, and impact protection coatings has necessitated the development of new methodologies for determining their shear and tensile properties. Accordingly, we developed a synergistic protocol which (i) integrates analytical, numerical (i.e., finite element using COMSOL®) and experimental (harmonic detection of resonance; HDR) methods to obtain an empirically validated closed form expression for the shear modulus and resonance frequency of a singly clamped helically coiled carbon nanowire (HCNW), and (ii) circumvents the need for solving 12th order differential equations. From the experimental standpoint, a visual detection of resonances (using in situ scanning electron microscopy) combined with HDR revealed intriguing non-planar resonance modes at much lower driving forces relative to those needed for linear carbon nanotube cantilevers. Interestingly, despite the presence of mechanical and geometrical nonlinearities in the HCNW resonance behavior the ratio of the first two transverse modes f2/f1 was found to be similar to the ratio predicted by the Euler-Bernoulli theorem for linear cantilevers.

  17. Numerical dosimetry of transcranial magnetic stimulation coils

    Science.gov (United States)

    Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2014-03-01

    Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique capable of stimulating neurons by means of electromagnetic induction. TMS can be used to map brain function and shows promise for the diagnosis and treatment of neurological and psychiatric disorders. Calculation of fields induced in the brain are necessary to accurately identify stimulated neural tissue during TMS. This allows the development of novel TMS coil designs capable of stimulating deeper brain regions and increasing the localization of stimulation that can be achieved. We have performed numerical calculations of magnetic and electric field with high-resolution anatomically realistic human head models to find these stimulated brain regions for a variety of proposed TMS coil designs. The realistic head models contain heterogeneous tissue structures and electrical conductivities, yielding superior results to those obtained from the simplified homogeneous head models that are commonly employed. The attenuation of electric field as a function of depth in the brain and the localization of stimulating field have been methodically investigated. In addition to providing a quantitative comparison of different TMS coil designs the variation of induced field between subjects has been investigated. We also show the differences in induced fields between adult, adolescent and child head models to preemptively identify potential safety issues in the application of pediatric TMS.

  18. Finite Element Analyses and Instrumentation Layout for Single Coil Testing of TF Coils in HT-7U

    Institute of Scientific and Technical Information of China (English)

    陈文革; 翁佩德

    2003-01-01

    The HT-7U tokamak is a magnetically-confined full superconducting fusion device,consisting of superconducting toroidal field (TF) coils and superconducting poloidal field (PF)coils. These coils are wound with cable-in-conductor (CICC) which is based on UNK NbTi wiresmade in Russian [1]. A single D-shaped toroidal field magnet coil will be tested for large andexpensive magnets systems before assembling them in the toroidal configuration. This paperdescribes the layout of the instrumentation for a superconducting test facility based on the resultsof a finite element modeling of the single coil of toroidal magnetic field (TF) coils in HT-7Utokamak device. At the same time, the design of coil support structure in the test facility isparticularly discussed in some detail.

  19. Design of Electromagnetic Moving-coil type Voice Coil Motor for Scanning mirror of Barcode reader

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Bu Hyun; Lee, Jeong Woo; Shim, Hyun Ho; Park, Sang Goo [Hanbat National Univ., Daejeon (Korea, Republic of); Lee, Seung Yop [Sogang Univ., Seoul (Korea, Republic of)

    2016-01-15

    A voice coil actuator with moving coil type for scanning mirror system of barcode reader has been developed. The actuator has a simple structure including a magnet, a coil and a pin. The performance of the actuator is analyzed by a linearized theoretical model. And the dynamic performance of the proposed actuator is predicted through motor constant and restoring constant obtained by finite element simulations. The theoretical model was verified by the prototype which has 64 Hz resonance frequency and 60 deg reflecting angle. We also discovered that that 3 V input can make the actuator rotate over 61.8 deg reflecting angle at 50 Hz resonance frequency. The proposed actuator can simplify its driving configuration because of its implementation of open-loop control.

  20. Transcranial Magnetic Stimulation-coil design with improved focality

    Science.gov (United States)

    Rastogi, P.; Lee, E. G.; Hadimani, R. L.; Jiles, D. C.

    2017-05-01

    Transcranial Magnetic Stimulation (TMS) is a technique for neuromodulation that can be used as a non-invasive therapy for various neurological disorders. In TMS, a time varying magnetic field generated from an electromagnetic coil placed on the scalp is used to induce an electric field inside the brain. TMS coil geometry plays an important role in determining the focality and depth of penetration of the induced electric field responsible for stimulation. Clinicians and basic scientists are interested in stimulating a localized area of the brain, while minimizing the stimulation of surrounding neural networks. In this paper, a novel coil has been proposed, namely Quadruple Butterfly Coil (QBC) with an improved focality over the commercial Figure-8 coil. Finite element simulations were conducted with both the QBC and the conventional Figure-8 coil. The two coil's stimulation profiles were assessed with 50 anatomically realistic MRI derived head models. The coils were positioned on the vertex and the scalp over the dorsolateral prefrontal cortex to stimulate the brain. Computer modeling of the coils has been done to determine the parameters of interest-volume of stimulation, maximum electric field, location of maximum electric field and area of stimulation across all 50 head models for both coils.

  1. Retrieval of prolapsed coils during endovascular treatment of cerebral aneurysms

    Energy Technology Data Exchange (ETDEWEB)

    Dinc, Hasan [Karadeniz Technical University, Department of Radiology, Faculty of Medicine, Trabzon (Turkey); KTU Farabi Hospital, Department of Radiology, Trabzon (Turkey); Kuzeyli, Kayhan [Karadeniz Technical University, Department of Neurosurgery, Faculty of Medicine, Trabzon (Turkey); Kosucu, Polat; Sari, Ahmet [Karadeniz Technical University, Department of Radiology, Faculty of Medicine, Trabzon (Turkey); Cekirge, Saruhan [Hacettepe University, Department of Radiology, Faculty of Medicine, Ankara (Turkey)

    2006-04-15

    One of the feared complications during detachable coil embolization of cerebral aneurysms is herniation of a coil loop into the parent artery. Although coil protrusion of one or two loops into the parent vessel may not cause adverse events and in some instances can be ignored, the authors believe that coil retrieval is indicated if a free end is seen pulsating along the blood flow stream to prevent migration of the entire coil mass. In one patient, a microballoon was inflated across the neck of the aneurysm during retrieval of a herniated coil to prevent further coil herniation from the aneurysm sac. We present two cases in which prolapsed coils were successfully retrieved either using a microsnare and balloon combination or a microsnare alone. This report focuses on the efficacy of the Amplatz microsnare for such retrievals and the circumstances in which a herniated coil needs to be retrieved. We report two cases in which embolization coils partially migrated into the parent artery during endovascular treatment of cerebral aneurysm and were retrieved using the Amplatz Nitinol microsnare. (orig.)

  2. Durable fuel electrode

    DEFF Research Database (Denmark)

    2017-01-01

    the composite. The invention also relates to the use of the composite as a fuel electrode, solid oxide fuel cell, and/or solid oxide electrolyser. The invention discloses a composite for an electrode, comprising a three-dimensional network of dispersed metal particles, stabilised zirconia particles and pores...

  3. Membrane Bioprobe Electrodes

    Science.gov (United States)

    Rechnitz, Garry A.

    1975-01-01

    Describes the design of ion selective electrodes coupled with immobilized enzymes which operate either continuously or on drop-sized samples. Cites techniques for urea, L-phenylalanine and amygdalin. Micro size electrodes for use in single cells are discussed. (GH)

  4. Membrane Bioprobe Electrodes

    Science.gov (United States)

    Rechnitz, Garry A.

    1975-01-01

    Describes the design of ion selective electrodes coupled with immobilized enzymes which operate either continuously or on drop-sized samples. Cites techniques for urea, L-phenylalanine and amygdalin. Micro size electrodes for use in single cells are discussed. (GH)

  5. A semiconductor based electrode

    Energy Technology Data Exchange (ETDEWEB)

    Khamatani, A.; Kobayasi, K.

    1983-03-30

    The semiconductor electrode is submerged into an electrolyte which is held in the illuminated chamber. The other electrode is placed in a dark chamber connected with the channel to be illuminated, which has a partition in the form of a membrane. An electric current flows in the external circuit of the element with illumination of the first electrode. The illuminated electrode is covered with a thin film of a substance which is stable with the action of the electrolyte. The film is made of Si02, A1203, GaN or A1N. The protective coating makes it possible to use materials less stable than Ti02 in a rutile modification, but which have higher characteristics than the GaP, GaAs, CdS and InP, for making the electrode.

  6. The heterotrimeric laminin coiled-coil domain exerts anti-adhesive effects and induces a pro-invasive phenotype.

    Directory of Open Access Journals (Sweden)

    Patricia Santos-Valle

    Full Text Available Laminins are large heterotrimeric cross-shaped extracellular matrix glycoproteins with terminal globular domains and a coiled-coil region through which the three chains are assembled and covalently linked. Laminins are key components of basement membranes, and they serve as attachment sites for cell adhesion, migration and proliferation. In this work, we produced a recombinant fragment comprising the entire laminin coiled-coil of the α1-, β1-, and γ1-chains that assemble into a stable heterotrimeric coiled-coil structure independently of the rest of the molecule. This domain was biologically active and not only failed to serve as a substrate for cell attachment, spreading and focal adhesion formation but also inhibited cell adhesion to laminin when added to cells in a soluble form at the time of seeding. Furthermore, gene array expression profiling in cells cultured in the presence of the laminin coiled-coil domain revealed up-regulation of genes involved in cell motility and invasion. These findings were confirmed by real-time quantitative PCR and zymography assays. In conclusion, this study shows for the first time that the laminin coiled-coil domain displays anti-adhesive functions and has potential implications for cell migration during matrix remodeling.

  7. Nucleocapsid formation and RNA synthesis of Marburg virus is dependent on two coiled coil motifs in the nucleoprotein

    Directory of Open Access Journals (Sweden)

    Lander Angelika

    2007-10-01

    Full Text Available Abstract The nucleoprotein (NP of Marburg virus (MARV is responsible for the encapsidation of viral genomic RNA and the formation of the helical nucleocapsid precursors that accumulate in intracellular inclusions in infected cells. To form the large helical MARV nucleocapsid, NP needs to interact with itself and the viral proteins VP30, VP35 and L, which are also part of the MARV nucleocapsid. In the present study, a conserved coiled coil motif in the central part of MARV NP was shown to be an important element for the interactions of NP with itself and VP35, the viral polymerase cofactor. Additionally, the coiled coil motif was essential for the formation of NP-induced intracellular inclusions and for the function of NP in the process of transcription and replication of viral RNA in a minigenome system. Transfer of the coiled coil motif to a reporter protein was sufficient to mediate interaction of the constructed fusion protein with the N-terminus of NP. The coiled coil motif is bipartite, constituted by two coiled coils which are separated by a flexible linker.

  8. The heterotrimeric laminin coiled-coil domain exerts anti-adhesive effects and induces a pro-invasive phenotype.

    Science.gov (United States)

    Santos-Valle, Patricia; Guijarro-Muñoz, Irene; Cuesta, Angel M; Alonso-Camino, Vanesa; Villate, Maider; Alvarez-Cienfuegos, Ana; Blanco, Francisco J; Sanz, Laura; Alvarez-Vallina, Luis

    2012-01-01

    Laminins are large heterotrimeric cross-shaped extracellular matrix glycoproteins with terminal globular domains and a coiled-coil region through which the three chains are assembled and covalently linked. Laminins are key components of basement membranes, and they serve as attachment sites for cell adhesion, migration and proliferation. In this work, we produced a recombinant fragment comprising the entire laminin coiled-coil of the α1-, β1-, and γ1-chains that assemble into a stable heterotrimeric coiled-coil structure independently of the rest of the molecule. This domain was biologically active and not only failed to serve as a substrate for cell attachment, spreading and focal adhesion formation but also inhibited cell adhesion to laminin when added to cells in a soluble form at the time of seeding. Furthermore, gene array expression profiling in cells cultured in the presence of the laminin coiled-coil domain revealed up-regulation of genes involved in cell motility and invasion. These findings were confirmed by real-time quantitative PCR and zymography assays. In conclusion, this study shows for the first time that the laminin coiled-coil domain displays anti-adhesive functions and has potential implications for cell migration during matrix remodeling.

  9. Retrieval of unintended migrated detached coil: case report.

    Science.gov (United States)

    Oh, Jiwoong; Kim, Jongyun; Hong, Sunki; Hu, Chul; Pyen, Jinsu; Whang, Kum; Cho, Sungmin; You, Do-Sung

    2014-09-01

    Owing to the rapid development of intervention techniques and devices, endovascular coil embolization of cerebral arteries has become standardized. It is particularly preferred when a patient presents with an unruptured intracranial aneurysm of the posterior communicating artery (PcomA). However, the risk of thrombogenic complications of the coil migration may also result in a large cerebral infarction. When coil migration occurs during embolization, a procedure for removal of the embolic coil should be performed immediately. We experienced a clinically rare case of migration of a framing coil to the distal middle cerebral artery aneurysm during endovascular embolization of an unruptured PcomA aneurysm. The migrated coil was barely retrieved using snare techniques.

  10. Toroid cavity/coil NMR multi-detector

    Science.gov (United States)

    Gerald, II, Rex E.; Meadows, Alexander D.; Gregar, Joseph S.; Rathke, Jerome W.

    2007-09-18

    An analytical device for rapid, non-invasive nuclear magnetic resonance (NMR) spectroscopy of multiple samples using a single spectrometer is provided. A modified toroid cavity/coil detector (TCD), and methods for conducting the simultaneous acquisition of NMR data for multiple samples including a protocol for testing NMR multi-detectors are provided. One embodiment includes a plurality of LC resonant circuits including spatially separated toroid coil inductors, each toroid coil inductor enveloping its corresponding sample volume, and tuned to resonate at a predefined frequency using a variable capacitor. The toroid coil is formed into a loop, where both ends of the toroid coil are brought into coincidence. Another embodiment includes multiple micro Helmholtz coils arranged on a circular perimeter concentric with a central conductor of the toroid cavity.

  11. Effects of coil length on tube compression in electromagnetic forming

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effects of the length of solenoid coil on tube compression in electromagnetic forming were investigated either by theory analysis or through sequential coupling numerical simulation. The details of the electromagnetic and the mechanical models in the simulation were described. The results show that the amplitude of coil current waveform and the current frequency decrease with the increase of the coil length. And the peak value of magnetic pressure is inversely proportional to the coil length. The distribution of the magnetic force acting on the tube is inhomogeneous while the tube is longer than the coil. The shortened coil length causes the increases of the maximum deformation and energy efficiency. The numerically calculated result and the experimental one of the final tube profile are in good agreement.

  12. Ferrite core non-linearity in coils for magnetic neurostimulation.

    Science.gov (United States)

    RamRakhyani, Anil Kumar; Lazzi, Gianluca

    2014-10-01

    The need to correctly predict the voltage across terminals of mm-sized coils, with ferrite core, to be employed for magnetic stimulation of the peripheral neural system is the motivation for this work. In such applications, which rely on a capacitive discharge on the coil to realise a transient voltage curve of duration and strength suitable for neural stimulation, the correct modelling of the non-linearity of the ferrite core is critical. A demonstration of how a finite-difference model of the considered coils, which include a model of the current-controlled inductance in the coil, can be used to correctly predict the time-domain voltage waveforms across the terminals of a test coil is presented. Five coils of different dimensions, loaded with ferrite cores, have been fabricated and tested: the measured magnitude and width of the induced pulse are within 10% of simulated values.

  13. Coils and transformers - often used but seldomly explained correctly

    CERN Document Server

    Lenz, Michael

    2011-01-01

    The devices coil and transformer are subjects of interest in numerous schoolbooks, in introductory scientific textbooks of physics and engineering, and in laboratory courses at universities. Many descriptions, however, draw a somewhat distorted picture of the underlying physical mechanisms and provide half-knowledge or even clear misconceptions that should not be left uncommented and are therefore studied in detail: (1) Primary and secondary voltage at a transformer have a different sign. (2) Electromagnetic induction is the only mechanism of importance for coils and transformers. (3) The terminal voltage at coils and transformers is compensated by the so-called "induced voltage" (emf), which explains why Kirchhoff's voltage law also applies to coils and transformers. (4) The cores of coils and transformers are used for their ability to store energy. Energy is transported from the primary to the secondary coil within the magnetic core. (5) The stray magnetic and electric fields are sencondary effects not havi...

  14. Improving heat transfer in stirred tanks cooled by helical coils

    Directory of Open Access Journals (Sweden)

    S.M.C.P. Pedrosa

    2003-06-01

    Full Text Available Stirred Tank Reactors are extensively used in chemical industries. When they are used for highly exothermic reactions, jackets or coils are employed for heat removal. Internal coils can be either helical or axial and they considerably affect the flow inside the reactor because they impose an additional resistance to flow circulation. The aim of this work is to show that the design of vessels cooled by helical coils can be further improved. The design of these reactors follows very much the geometry proposed by Oldshue and Gretton (1954, and some minor modifications in the coil arrangements are likely to improve internal circulation inside these vessels mainly in the region between coils and wall of the vessel. Results show a gain in performance when small alterations are made specially in the shape of the coil arrangement.

  15. Experimental Study of Free Convection in Coiled Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Harith Mohammed

    2013-05-01

    Full Text Available An experimental study has been conducted on steady-state natural convection heat transfer from helical coil tubes in vertical orientation. Water was used as a bath liquid without any mixing and cold water was used as a coolant fluid. A straight copper tube of 6 mm ID, 8 mm OD and 3 m length was bend to fabricate the helical coil. Four coils are used in this experiment has different curvature ratios and pitches. The data were correlated using tube diameter as the characteristic length. The results show that the overall heat transfer coefficient and Nusselt number increase when the flow rate of coolant and curvature ratio increase. The effect of coil pitch was investigated and the results show that when of the coil pitch (angle of inclination increases Nusselt number increase. A correlation was presented to calculate the outside average Nusselt number of coil.

  16. Performance of an induction coil gun

    Energy Technology Data Exchange (ETDEWEB)

    Shokair, I.R.; Cowan, M.; Kaye, R.J.; Marder, B.M.

    1993-10-01

    Performance of an electromagnetic induction launcher is considered for three types of armatures. These are: Solid, 1-element wound and 16-element wound aluminum ar natures. The one element wound armature has uniform current density throughout. Because of the radial distribution of the current density, the wound armature can withstand field reversal (working against embedded flux in the armature) and still maintain low temperature. Slingshot simulations were performed, for several configurations. Best performance was obtained for a single element wound armature with two field reversals. For a 60 kg projectile, 10.5 cm coil inner radius and 5.5 cm coil build, the velocity after 50 meters of launcher length (670 stages) exceeded 3.5 km/sec with an overall efficiency of about 45%. For the same parameters the solid and 16-element wound armatures reach a velocity of about 3.3 km/sec after 800 stages (60 meters of launcher length) but without field reversal. A velocity of 3.5 km/sec is possible after 60 meters of launcher length with the 16-element wound armature with one field reversal, but the temperature is close to the melting temperature of aluminum. In all simulations with a solid armature, melting of some of the surface material occurs. However, it is shown that most of the melting occurs after contribution has been made to the forward going pressure, that is, melting does not affect the electrical performance of the launcher. The effect of coil firing tune jitter on launcher performance is also considered and is found to be very small for realistic perturbations. For {plus_minus}2 {mu}-secs random jitter, the reduction in the final velocity for a 60 meter launcher with a solid armature is less than 0.1% and the increase in temperature is only 2%. This result holds for all types of armatures.

  17. Intelligent Control on Hot Strip Coiling Temperature

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new intelligent control scheme for hot strip coiling temperature is presented. In this scheme, the prediction model of finishing temperature and the presetting model of main cooling zone are establish based on BP neural network, the feed-forward open-loop control model of main cooling zone is constructed based on T-S fuzzy neural network, a new improved structure of T-S fuzzy neural network is developed, and the feedback close-loop control model of precision cooling zone is obtained based on fuzzy control. The effectiveness of the proposed scheme has been demonstrated by computer simulation with a satisfactory result.

  18. Extreme acoustic metamaterial by coiling up space.

    Science.gov (United States)

    Liang, Zixian; Li, Jensen

    2012-03-16

    We show that by coiling up space using curled perforations, a two-dimensional acoustic metamaterial can be constructed to give a frequency dispersive spectrum of extreme constitutive parameters, including double negativity, a density near zero, and a large refractive index. Such an approach has band foldings at the effective medium regime without using local resonating subwavelength structures, while the principle can be easily generalized to three dimensions. Negative refraction with a double negative prism and tunneling with a density-near-zero metamaterial are numerically demonstrated.

  19. Sound Coiled-Tubing Drilling Practices

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Thomas; Deskins, Greg (Maurer Technology Inc.); Ward, Stephen L. (Advantage Energy Services Ltd); Hightower, Mel

    2001-09-30

    This Coiled-Tubing Drilling (CTD) Sound Practices Manual provides tools needed by CTD engineers and supervisors to plan, design and perform safe, successful CTD operations. As emphasized throughout, both careful planning and attention to detail are mandatory for success. A bibliography of many useful CTD references is presented in Chapter 6. This manual is organized according to three processes: 1) Pre-Job Planning Process, 2) Operations Execution Process, and 3) Post-Job Review Process. Each is discussed in a logical and sequential format.

  20. MRI surface-coil pair with strong inductive coupling.

    Science.gov (United States)

    Mett, Richard R; Sidabras, Jason W; Hyde, James S

    2016-12-01

    A novel inductively coupled coil pair was used to obtain magnetic resonance phantom images. Rationale for using such a structure is described in R. R. Mett et al. [Rev. Sci. Instrum. 87, 084703 (2016)]. The original rationale was to increase the Q-value of a small diameter surface coil in order to achieve dominant loading by the sample. A significant improvement in the vector reception field (VRF) is also seen. The coil assembly consists of a 3-turn 10 mm tall meta-metallic self-resonant spiral (SRS) of inner diameter 10.4 mm and outer diameter 15.1 mm and a single-loop equalization coil of 25 mm diameter and 2 mm tall. The low-frequency parallel mode was used in which the rf currents on each coil produce magnetic fields that add constructively. The SRS coil assembly was fabricated and data were collected using a tissue-equivalent 30% polyacrylamide phantom. The large inductive coupling of the coils produces phase-coherency of the rf currents and magnetic fields. Finite-element simulations indicate that the VRF of the coil pair is about 4.4 times larger than for a single-loop coil of 15 mm diameter. The mutual coupling between coils influences the current ratio between the coils, which in turn influences the VRF and the signal-to-noise ratio (SNR). Data on a tissue-equivalent phantom at 9.4 T show a total SNR increase of 8.8 over the 15 mm loop averaged over a 25 mm depth and diameter. The experimental results are shown to be consistent with the magnetic resonance theory of the emf induced by spins in a coil, the theory of inductively coupled resonant circuits, and the superposition principle. The methods are general for magnetic resonance and other types of signal detection and can be used over a wide range of operating frequencies.

  1. pH-dependent Response of Coiled Coils: A Coarse-Grained Molecular Simulation Study

    CERN Document Server

    Enciso, Marta; Site, Luigi Delle

    2013-01-01

    In a recent work we proposed a coarse-grained methodology for studying the response of peptides when simulated at different values of pH; in this work we extend the methodology to analyze the pH-dependent behavior of coiled coils. This protein structure presents a remarkable chain stiffness andis formed by two or more long helical peptides that are interacting like the strands of a rope. Chain length and rigidity are the key aspects needed to extend previous peptide interaction potentials to this particular case; however the original model is naturally recovered when the length or the ridigity of the simulated chain are reduced. We apply the model and discuss results for two cases: (a) the folding/unfolding transition of a generic coiled coil as a function of pH; (b) behavior of a specific sequence as a function of the acidity conditions. In this latter case results are compared with experimental data from the literature in order to comment about the consistency of our approach.

  2. An autoinhibited coiled-coil design strategy for split-protein protease sensors.

    Science.gov (United States)

    Shekhawat, Sujan S; Porter, Jason R; Sriprasad, Akshay; Ghosh, Indraneel

    2009-10-28

    Proteases are widely studied as they are integral players in cell-cycle control and apoptosis. We report a new approach for the design of a family of genetically encoded turn-on protease biosensors. In our design, an autoinhibited coiled-coil switch is turned on upon proteolytic cleavage, which results in the complementation of split-protein reporters. Utilizing this new autoinhibition design paradigm, we present the rational construction and optimization of three generations of protease biosensors, with the final design providing a 1000-fold increase in bioluminescent signal upon addition of the TEV protease. We demonstrate the generality of the approach utilizing two different split-protein reporters, firefly luciferase and beta-lactamase, while also testing our design in the context of a therapeutically relevant protease, caspase-3. Finally, we present a dual protease sensor geometry that allows for the use of these turn-on sensors as potential AND logic gates. Thus, these studies potentially provide a new method for the design and implementation of genetically encoded turn-on protease sensors while also providing a general autoinhibited coiled-coil strategy for controlling the activity of fragmented proteins.

  3. Peptidyl Materials Formed Through Click Chemistry Enhanced Coiled-Coil Interactions

    Science.gov (United States)

    Koehler, Kenneth

    2014-03-01

    Biologically derived materials offer a level of sophistication synthetically fabricated materials have only attempted to mimic. This level of complexity may be found in materials such as peptides. Implementing new theory and modeling, peptides with the propensity to form coiled-coil (CC) bundles were designed and synthesized. Through the use of this de novo approach, modeling allowed prediction of the feasibility to include non-natural amino acids conducive to click chemistry into the peptide. Amino acids showcasing thiol or alkyne functionalities were considered owing to the ability of these moieties to participate in the thiol-ene and copper click reactions respectively. Once synthesized, the peptides decorated with these clickable motifs were placed in solution and allowed to self-assemble into CC's. CD spectroscopy and DLS experiments confirmed the formation and assembly of CC's. Click reactions were then incited to link the CC assemblies together and form a network with predictable dimensionality and pore size between CC bundles. To incite network formation, click reactions between CC side chain residues and suitably functionalized crosslinkers were implemented. The linking of coiled-coils and material formation were assessed using DLS and TEM.

  4. Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments.

    Science.gov (United States)

    Gradišar, Helena; Božič, Sabina; Doles, Tibor; Vengust, Damjan; Hafner-Bratkovič, Iva; Mertelj, Alenka; Webb, Ben; Šali, Andrej; Klavžar, Sandi; Jerala, Roman

    2013-06-01

    Protein structures evolved through a complex interplay of cooperative interactions, and it is still very challenging to design new protein folds de novo. Here we present a strategy to design self-assembling polypeptide nanostructured polyhedra based on modularization using orthogonal dimerizing segments. We designed and experimentally demonstrated the formation of the tetrahedron that self-assembles from a single polypeptide chain comprising 12 concatenated coiled coil-forming segments separated by flexible peptide hinges. The path of the polypeptide chain is guided by a defined order of segments that traverse each of the six edges of the tetrahedron exactly twice, forming coiled-coil dimers with their corresponding partners. The coincidence of the polypeptide termini in the same vertex is demonstrated by reconstituting a split fluorescent protein in the polypeptide with the correct tetrahedral topology. Polypeptides with a deleted or scrambled segment order fail to self-assemble correctly. This design platform provides a foundation for constructing new topological polypeptide folds based on the set of orthogonal interacting polypeptide segments.

  5. Double Negativity in 3D Space Coiling Metamaterials

    Science.gov (United States)

    Maurya, Santosh K.; Pandey, Abhishek; Shukla, Shobha; Saxena, Sumit

    2016-09-01

    Metamaterials displaying negative refractive index has remarkable potential to facilitate the manipulation of incident waves for wide variety of applications such as cloaking, superlensing and the like. Space-coiling approach is a recently explored technique to achieve extreme properties. The space coiling phenomena cause less energy absorption as compared to local resonating phenomena for obtaining extreme parameters. Here we show extreme properties in doubly negative 3D space coiling acoustic metamaterials. Frequency dispersive spectrum of extreme constitutive parameters has been calculated for 2D maze and 3D space coiling labyrinthine structure. This is in good agreement to the calculated acoustic band dispersion.

  6. Performance verification tests of JT-60SA CS model coil

    Energy Technology Data Exchange (ETDEWEB)

    Obana, Tetsuhiro, E-mail: obana.tetsuhiro@LHD.nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Murakami, Haruyuki [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Takahata, Kazuya; Hamaguchi, Shinji; Chikaraishi, Hirotaka; Mito, Toshiyuki; Imagawa, Shinsaku [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Kizu, Kaname; Natsume, Kyohei; Yoshida, Kiyoshi [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2015-11-15

    Highlights: • The performance of the JT-60SA CS model coil was verified. • The CS model coil comprised a quad-pancake wound with a Nb{sub 3}Sn CIC conductor. • The CS model coil met the design requirements. - Abstract: As a final check of the coil manufacturing method of the JT-60 Super Advanced (JT-60SA) central solenoid (CS), we verified the performance of a CS model coil. The model coil comprised a quad-pancake wound with a Nb{sub 3}Sn cable-in-conduit conductor. Measurements of the critical current, joint resistance, pressure drop, and magnetic field were conducted in the verification tests. In the critical-current measurement, the critical current of the model coil coincided with the estimation derived from a strain of −0.62% for the Nb{sub 3}Sn strands. As a result, critical-current degradation caused by the coil manufacturing process was not observed. The results of the performance verification tests indicate that the model coil met the design requirements. Consequently, the manufacturing process of the JT-60SA CS was established.

  7. Synthesis, characterisation and applications of coiled carbon nanotubes.

    Science.gov (United States)

    Hanus, Monica J; Harris, Andrew T

    2010-04-01

    Coiled carbon nanotubes are helical carbon structures formed when heptagonal and pentagonal rings are inserted into the hexagonal backbone of a 'straight' nanotube. Coiled carbon nanotubes have been reported with both regular and irregular helical structures. In this work the structure, growth mechanism(s), synthesis, properties and potential applications of coiled carbon nanotubes are reviewed. Published data suggests that coiled carbon nanotube synthesis occurs due to nonuniform extrusion of carbon from a catalyst surface. To date, coiled carbon nanotubes have been synthesised using catalyst modification techniques including: (i) the addition of S or P containing compounds during synthesis; (ii) the use of binary or ternary metal catalysts; (iii) the use of microwaves to create a local temperature gradient around individual catalyst particles and; (iv) the use of pH control during catalyst preparation. In most instances coiled carbon nanotubes are produced as a by-product; high yield and/or large-scale synthesis of coiled carbon nanotubes remains problematic. The qualitative analysis of coiled carbon nanotubes is currently hindered by the absence of specific characterisation data in the literature, e.g., oxidation profiles measured by thermogravimetric analysis and Raman spectra of pure coiled carbon nanotube samples.

  8. The Whole Elephant: A Synoptic View of Liquid Rope Coiling

    Science.gov (United States)

    Ribe, Neil

    2016-11-01

    Liquid rope coiling is the instability that occurs when e.g. a thin stream of honey is poured onto toast. While we now have a fine-grained understanding of each of the four principal coiling modes (viscous, gravitational, inertio-gravitational and inertial), we still lack a global view of how the modes cohere to form a larger whole. Using a numerical continuation procedure, I determine how the dimensionless coiling frequency depends on the dimensionless fall height and flow rate, for several values of the dimensionless nozzle diameter. Starting with the onset of coiling, I propose a purely geometrical definition of the critical surface between coiling and no coiling as the locus of points where the radius a1 of the rope at the contact point is just equal to the coil radius R. Coiling with a1 > R is impossible because the rope would intersect itself. I characterize the asymptotic limits of the critical surface as well as the structure of the supercritical volume inside that surface. The procedure reveals a new mode of coiling onset that has not yet been identified.

  9. Double Negativity in 3D Space Coiling Metamaterials.

    Science.gov (United States)

    Maurya, Santosh K; Pandey, Abhishek; Shukla, Shobha; Saxena, Sumit

    2016-09-21

    Metamaterials displaying negative refractive index has remarkable potential to facilitate the manipulation of incident waves for wide variety of applications such as cloaking, superlensing and the like. Space-coiling approach is a recently explored technique to achieve extreme properties. The space coiling phenomena cause less energy absorption as compared to local resonating phenomena for obtaining extreme parameters. Here we show extreme properties in doubly negative 3D space coiling acoustic metamaterials. Frequency dispersive spectrum of extreme constitutive parameters has been calculated for 2D maze and 3D space coiling labyrinthine structure. This is in good agreement to the calculated acoustic band dispersion.

  10. Magnetic resonance imaging receiver coil decoupling using circumferential shielding structures.

    Science.gov (United States)

    Yeh, Jhy-Neng Tasso; Fa-Hsuan Lin

    2016-08-01

    We propose a flexible phased-array design using circular coils with circumferential shielding structure to achieve robust decoupling between coil elements when the array is either bended or on a flat plane. Two types of circumferential shielding were tested through numerical simulation and imaging experiment. The results demonstrated that our arrays have good decoupling between coils when they are on a curved surface with S21 coil array. Future work will empirically construct a multi-channel array with the number of channel matched to commercial phased array in order to validate the performance in vivo.

  11. Dirty air conditioners: Energy implications of coil fouling

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, Jeffrey; Walker, Iain; Sherman, Max

    2002-03-01

    Residential air conditioning is responsible for a substantial amount of peak electrical demand and energy consumption throughout most of the United States. Coil fouling, the deposition of indoor dusts and other particulate matter on evaporator heat exchangers, increases system pressure drop and, correspondingly, decreases system air flow and air conditioner performance. In this paper, we apply experimental and simulation results describing particle deposition on evaporator coils as well as research about indoor particle and dust concentrations to determine coil fouling rates. The results suggest that typical coils foul enough to double evaporator pressure drop in about 7.5 years, much sooner than the expected 15-30 year life time for an evaporator coil. The most important parameters in determining coil fouling times are the efficiency of the filter and indoor particle concentrations, although filter bypass and duct and coil design are important as well. The reduced air flows that result from coil fouling cause typical efficiency and capacity degradations of less than 5%, however they can be much greater for marginal systems or extreme conditions. These energy issues, as well as possible indoor air quality issues resulting from fouling by biological aerosols, suggest that regular coil cleaning to ameliorate low flow and the elimination of filter bypass should be an important part of residential air conditioning commissioning and maintenance practices.

  12. Developments of RF Coil for P in vivo NMR Spectroscopy .

    Directory of Open Access Journals (Sweden)

    S. Khushu

    1993-07-01

    Full Text Available RF receiver coils are very important parts of an NMR System. The design of these coils is very critical and has a dramatic effect on the SNR of the NMR signal and are generally developed in TRA/REC mode. This paper reports the developments of a 3.5 cm TRA/REC 26 MHz RF coil for P spectroscopy of small organs like thyroid. The coil is small in size, fits well in the neck for thyroid spectroscopy and is successfully working with the 1.5 tesla whole body Superconducting NMR System available at INMAS.

  13. Analysis of the cooldown of the ITER central solenoid model coil and insert coil

    Science.gov (United States)

    Bonifetto, R.; Brighenti, A.; Isono, T.; Martovetsky, N.; Kawano, K.; Savoldi, L.; Zanino, R.

    2017-01-01

    A series of superconducting insert coils (ICs) made of different materials has been tested since 2000 at JAEA Naka in the bore of the central solenoid model coil at fields up to 13 T and currents up to several tens of kA, fully representative of the ITER operating conditions. Here we focus on the 2015 test of the presently last IC of the series, the central solenoid (CS) insert coil, which was aimed at confirming the performance and properties of the Nb3Sn conductor, manufactured in Japan and used to wind the ITER CS modules in the US. As typical for these large scale applications, the cooldown (CD) from ambient to supercritical He temperature may take a long time, of the order of several weeks, so that it should be useful, also in the perspective of future IC tests, to optimize it. To that purpose, a comprehensive CD model implemented in the 4C code is developed and presented in this paper. The model is validated against the experimental data of an actual CD scenario, showing a very good agreement between simulation and measurements, from 300 to 4.5 K. The maximum temperature difference across the coil, which can only be roughly estimated from the measurements, is then extracted from the results of the simulation and shown to be much larger than the maximum value of 50 K, prescribed on the basis of the allowable thermal stress on the materials. An optimized CD scenario is finally designed using the model for the initial phase of the CD between 300 and 80 K, which allows reducing the needed time by ∼20%, while still satisfying the major constraints. Recommendations are also given for a better location/choice of the thermometers to be used for the monitoring of the maximum temperature difference across the coil.

  14. The Search Coil Magnetometer for THEMIS

    Science.gov (United States)

    Roux, A.; Le Contel, O.; Coillot, C.; Bouabdellah, A.; de La Porte, B.; Alison, D.; Ruocco, S.; Vassal, M. C.

    2008-12-01

    THEMIS instruments incorporate a tri-axial Search Coil Magnetometer (SCM) designed to measure the magnetic components of waves associated with substorm breakup and expansion. The three search coil antennas cover the same frequency bandwidth, from 0.1 Hz to 4 kHz, in the ULF/ELF frequency range. They extend, with appropriate Noise Equivalent Magnetic Induction (NEMI) and sufficient overlap, the measurements of the fluxgate magnetometers. The NEMI of the searchcoil antennas and associated pre-amplifiers is smaller than 0.76 pT /sqrt{Hz} at 10 Hz. The analog signals produced by the searchcoils and associated preamplifiers are digitized and processed inside the Digital Field Box (DFB) and the Instrument Data Processing Unit (IDPU), together with data from the Electric Field Instrument (EFI). Searchcoil telemetry includes waveform transmission, FFT processed data, and data from a filter bank. The frequency range covered depends on the available telemetry. The searchcoils and their three axis structures have been precisely calibrated in a calibration facility, and the calibration of the transfer function is checked on board, usually once per orbit. The tri-axial searchcoils implemented on the five THEMIS spacecraft are working nominally.

  15. A novel method for coiled tubing installation

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Peter J. [2H Offshore, Houston, TX (United States); Tibbetts, David [Aquactic Engineering and Construction Ltd., Aberdeen (United Kingdom)

    2009-12-19

    Installation of flexible pipe for offshore developments is costly due to the physical cost of the flexible pipe, expensive day rates and the availability of suitable installation vessels. Considering the scarcity of flexible pipe in today's increasingly demanding and busy market, operators are seeking a cost effective solution for installing piping in a range of water depths using vessels which are readily on hand. This paper describes a novel approach to installing reeled coiled tubing, from 1 inch to 5 inch diameter, from the back of a small vessel in water depths from 40 m up to around 1000 m. The uniqueness of the system is the fact that the equipment design is modular and compact. This means that when disassembled, it fits into standard 40 ft shipping containers, and the size allows it to be installed on even relatively small vessels of opportunity, such as anchor handling or installation vessels, from smaller, and cheaper quay side locations. Such an approach is the ideal solution to the problem faced by operators, in that it allows the installation of cheaper, readily available coiled tubing, from cost-effective vessels, which do not need to transit to a pick up the system. (author)

  16. Note: electrode polarization of Galinstan electrodes for liquid impedance spectroscopy.

    Science.gov (United States)

    Mellor, Brett L; Kellis, Nathan A; Mazzeo, Brian A

    2011-04-01

    Electrode polarization is a significant obstacle in the impedance measurements of ionic liquids. An atomically smooth electrode surface could potentially reduce unwanted impedance contributions from electrode polarization. Liquid metal electrodes were formed by adhering Galinstan to acrylic plates in a parallel-plate capacitor arrangement. Electrode polarization was compared to a similar cell with stainless steel electrodes. The impedance of salt and protein solutions (β-lactoglobulin) was measured from 40 Hz to 110 MHz. Because of oxide layer formation, the performance of the Galinstan electrode is significantly different than the theoretical ideal.

  17. Solutions for Safe Hot Coil Evacuation and Coil Handling in Case of Thick and High Strength Steel

    Directory of Open Access Journals (Sweden)

    Sieberer Stefan

    2016-01-01

    Full Text Available Currently hot rolling plants are entering the market segment for thick gauges and high strength steel grades where the elastic bending property of the strip leads to internal forces in the coil during coiling operation. The strip tends to open. Primetals is investigating several possibilities to facilitate safe coil evacuation and coil handling under spring-back conditions. The contribution includes finite element models of such mechanical solutions. Results of parameter variation and stability limits of case studies are presented in the paper.

  18. Self-assembly of designed coiled coil peptides studied by small-angle X-ray scattering and analytical ultracentrifugation

    DEFF Research Database (Denmark)

    Malik, Leila; Nygaard, Jesper; Christensen, Niels Johan;

    2013-01-01

    α-Helical coiled coil structures, which are noncovalently associated heptad repeat peptide sequences, are ubiquitous in nature. Similar amphipathic repeat sequences have also been found in helix-containing proteins and have played a central role in de novo design of proteins. In addition......, they are promising tools for the construction of nanomaterials. Small-angle X-ray scattering (SAXS) has emerged as a new biophysical technique for elucidation of protein topology. Here, we describe a systematic study of the self-assembly of a small ensemble of coiled coil sequences using SAXS and analytical...

  19. Effect of inductive coil shape on sensing performance of linear displacement sensor using thin inductive coil and pattern guide.

    Science.gov (United States)

    Misron, Norhisam; Ying, Loo Qian; Firdaus, Raja Nor; Abdullah, Norrimah; Mailah, Nashiren Farzilah; Wakiwaka, Hiroyuki

    2011-01-01

    This paper discusses the effect of inductive coil shape on the sensing performance of a linear displacement sensor. The linear displacement sensor consists of a thin type inductive coil with a thin pattern guide, thus being suitable for tiny space applications. The position can be detected by measuring the inductance of the inductive coil. At each position due to the change in inductive coil area facing the pattern guide the value of inductance is different. Therefore, the objective of this research is to study various inductive coil pattern shapes and to propose the pattern that can achieve good sensing performance. Various shapes of meander, triangular type meander, square and circle shape with different turn number of inductive coils are examined in this study. The inductance is measured with the sensor sensitivity and linearity as a performance evaluation parameter of the sensor. In conclusion, each inductive coil shape has its own advantages and disadvantages. For instance, the circle shape inductive coil produces high sensitivity with a low linearity response. Meanwhile, the square shape inductive coil has a medium sensitivity with higher linearity.

  20. Development of Ground Coils with Low Eddy Current Loss by Applying the Compression Molding Method after the Coil Winding

    Science.gov (United States)

    Suzuki, Masao; Aiba, Masayuki; Takahashi, Noriyuki; Ota, Satoru; Okada, Shigenori

    In a magnetically levitated transportation (MAGLEV) system, a huge number of ground coils will be required because they must be laid for the whole line. Therefore, stable performance and reduced cost are essential requirements for the ground coil development. On the other hand, because the magnetic field changes when the superconducting magnet passes by, an eddy current will be generated in the conductor of the ground coil and will result in energy loss. The loss not only increases the magnetic resistance for the train running but also brings an increase in the ground coil temperature. Therefore, the reduction of the eddy current loss is extremely important. This study examined ground coils in which both the eddy current loss and temperature increase were small. Furthermore, quantitative comparison for the eddy current loss of various magnet wire samples was performed by bench test. On the basis of the comparison, a round twisted wire having low eddy current loss was selected as an effective ground coil material. In addition, the ground coils were manufactured on trial. A favorable outlook to improve the size accuracy of the winding coil and uneven thickness of molded resin was obtained without reducing the insulation strength between the coil layers by applying a compression molding after winding.

  1. Meta-analysis of stent-assisted coiling versus coiling-only for the treatment of intracranial aneurysms.

    Science.gov (United States)

    Phan, Kevin; Huo, Ya R; Jia, Fangzhi; Phan, Steven; Rao, Prashanth J; Mobbs, Ralph J; Mortimer, Alex M

    2016-09-01

    Endovascular coil embolization is a widely accepted and useful treatment modality for intracranial aneurysms. However, the principal limitation of this technique is the high aneurysm recurrence. The adjunct use of stents for coil embolization procedures has revolutionized the field of endovascular aneurysm management, however its safety and efficacy remains unclear. Two independent reviewers searched six databases from inception to July 2015 for trials that reported outcomes according to those who received stent-assisted coiling versus coiling-only (no stent-assistance). There were 14 observational studies involving 2698 stent-assisted coiling and 29,388 coiling-only patients. The pooled immediate occlusion rate for stent-assisted coiling was 57.7% (range: 20.2%-89.2%) and 48.7% (range: 31.7%-89.2%) for coiling-only, with no significant difference between the two (odds ratio [OR}=1.01; 95% confidence intervals [CI}: 0.68-1.49). However, progressive thrombosis was significantly more likely in stent-assisted coiling (29.9%) compared to coiling-only (17.5%) (OR=2.71; 95% CI: 1.95-3.75). Aneurysm recurrence was significantly lower in stent-assisted coiling (12.7%) compared to coiling-only (27.9%) (OR=0.43; 95% CI: 0.28-0.66). In terms of complications, there was no significant difference between the two techniques for all-complications, permanent complications or thrombotic complications. Mortality was significantly higher in the stent-assisted group 1.4% (range: 0%-27.5%) compared to the coiling-only group 0.2% (range: 0%-19.7%) (OR=2.16; 95% CI: 1.33-3.52). Based on limited evidence, stent-assisted coiling shows similar immediate occlusion rates, improved progressive thrombosis and decreased aneurysm recurrence compared to coiling-only, but is associated with a higher mortality rate. Future randomized controlled trials are warranted to clarify the safety of stent-associated coiling.

  2. Porous Electrode Studies.

    Science.gov (United States)

    1980-07-01

    representation and analysis for their observed current distributions. Simonsson won the young author’s award of the Electrochemical Society for his paper...and T. Katan, Proc. Symp. Energy Storage and Conversion, the Electrochemical Society 77-6, 770 (1977) The optimum thickness of porous electrodes is...Chloride Electrodes; Surface Morphology on Charging and Dis- charging," T. Katan, S. Szpak, and D. N. Bennion, The Electrochemical Society , 143rd National

  3. Techniques of Electrode Fabrication

    Science.gov (United States)

    Guo, Liang; Li, Xinyong; Chen, Guohua

    Electrochemical applications using many kinds of electrode materials as an advanced oxidation/reduction technique have been a focus of research by a number of groups during the last two decades. The electrochemical approach has been adopted successfully to develop various environmental applications, mainly including water and wastewater treatment, aqueous system monitoring, and solid surface analysis. In this chapter, a number of methods for the fabrication of film-structured electrode materials were selectively reviewed. Firstly, the thermal decomposition method is briefly described, followed by introducing chemical vapor deposition (CVD) strategy. Especially, much attention was focused on introducing the methods to produce diamond novel film electrode owing to its unique physical and chemical properties. The principle and influence factors of hot filament CVD and plasma enhanced CVD preparation were interpreted by refereeing recent reports. Finally, recent developments that address electro-oxidation/reduction issues and novel electrodes such as nano-electrode and boron-doped diamond electrode (BDD) are presented in the overview.

  4. Sensor employing internal reference electrode

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same.......The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same....

  5. Simulations of Twin-Box Joints for ITER PF Coils

    NARCIS (Netherlands)

    Ilyin, Y.; Rolando, G.; Nijhuis, A.; Simon, F.; Lim, B.S.; Mitchell, N.; Turck, B.

    2014-01-01

    An ITER Poloidal Field coil winding consists of stacked double pancakes wound with NbTi cable-in-conduit conductors. One of the critical components of the coil is the electrical joint connecting either two conductor lengths within a double pancake or two double pancakes. All joints utilize the twin-

  6. Temperature Profile Measurements During Heat Treatment of BSCCO 2212 Coils

    CERN Document Server

    ,

    2012-01-01

    The temperature profile of two different BSCCO 2212 coils has been analyzed. The profiles are obtained from thermocouples imbedded in the windings during the heat treatment that activates the 2212. The melting and freezing of the 2212 is clearly observed. A model that describes the data and can be used to guide the processing of new coils has been developed.

  7. ATLAS-Lowering the first Barrel Toroid coil

    CERN Multimedia

    CERN Audiovisual Unit

    2004-01-01

    Cranes lowered the first of ATLAS's eight Barrel Toroid coils into the cavern. The part is 25 meters long and the cranes had to hold the 100 tonne coil at a sharp angle while it passed through the 18-meter diameter vertical shaft into the cavern. Then they laid the magnet to a horizontal robust platform. Images from Camera 2

  8. An Air Bearing Rotating Coil Magnetic Measurement System

    CERN Document Server

    Gottschalk, Stephen C; Taylor, David J; Thayer, William

    2005-01-01

    This paper describes a rotating coil magnetic measurement system supported on air bearings. The design is optimized for measurements of 0.1micron magnetic centerline changes on long, small aperture quadrupoles. Graphite impregnated epoxy resin is used for the coil holder and coil winding forms. Coil holder diameter is 11 mm with a length between supports of 750mm. A pair of coils is used to permit quadrupole bucking during centerline measurements. Coil length is 616mm, inner radius 1.82mm, outer radius 4.74mm. The key features of the mechanical system are simplicity; air bearings for accurate, repeatable measurements without needing warm up time and a vibration isolated stand that uses a steel-topped Newport optical table with air suspension. Coil rotation is achieved by a low noise servo motor controlled by a standalone Ethernet servo board running custom servo software. Coil calibration procedures that correct wire placement errors, tests for mechanical resonances, and other system checks will also be discu...

  9. First assembly phase for the ATLAS toroid coils

    CERN Multimedia

    Patrice Loïez

    2003-01-01

    The ATLAS barrel toroid system consists of eight coils, each of axial length 25.3 m, assembled radially and symmetrically around the beam axis. The coils are of a flat racetrack type with two double-pancake windings made of 20.5 kA aluminium-stabilized niobium-titanium superconductor. In the first phase of assembly, the two 'pancakes' are packed into their vacuum vessel. This is done using bladders filled with resin and glass microbeads under pressure. The resin is heated and, once cooled, holds the pancakes in place. The operation has to be performed on both sides of the coil, which necessitated a special technique to turn the coils over and then transport them to the heating table. Photos 01, 02, 03: Use of the overhead travelling crane to hoist the coil up and then tilt it over, the coil frame's metal feet being used as rotational pivots, supporting half the coil's weight. Once it has been turned over, the coil, now with only half the frame, is transported to the heating table using a special lifting gant...

  10. Bioaerosol deposition on an air-conditioning cooling coil

    Science.gov (United States)

    Wu, Yan; Chen, Ailu; Luhung, Irvan; Gall, Elliott T.; Cao, Qingliang; Chang, Victor Wei-Chung; Nazaroff, William W.

    2016-11-01

    This study is concerned with the role of a fin-and-tube heat exchanger in modifying microbial indoor air quality. Specifically, depositional losses of ambient bioaerosols and particles onto dry (not cooled) and wet (cool) coil surfaces were measured for different airspeeds passing through the test coil. Total, bacterial and fungal DNA concentrations in condensate water produced by a wet coil were also quantified by means of fluorescent dsDNA-binding dye and qPCR assays. Results revealed that the deposition of bioaerosols and total particles is substantial on coil surfaces, especially when wet and cool. The average deposition fraction was 0.14 for total DNA, 0.18 for bacterial DNA and 0.22 for fungal DNA on the dry coil, increasing to 0.51 for total DNA, 0.50 for bacterial DNA and 0.68 for fungal DNA on the wet coil. Overall, as expected, deposition fractions increased with increasing particle size and increasing airspeed. Deposited DNA was removed from the cooling coil surfaces through the flow of condensing water at a rate comparable to the rate of direct deposition from air. A downward trend of bacterial and fungal DNA measured in condensate water over time provides suggestive evidence of biological growth on heat exchangers during nonoperational times of a ventilation system. This investigation provides new information about bioaerosol deposition onto a conventional fin-and-tube cooling coil, a potentially important factor influencing indoor exposure to microbial aerosols in air-conditioned buildings.

  11. Magnetic field measurements of JT-60SA CS model coil

    Energy Technology Data Exchange (ETDEWEB)

    Obana, Tetsuhiro, E-mail: obana.tetsuhiro@LHD.nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Takahata, Kazuya; Hamaguchi, Shinji; Chikaraishi, Hirotaka; Mito, Toshiyuki; Imagawa, Shinsaku [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Kizu, Kaname; Murakami, Haruyuki; Natsume, Kyohei; Yoshida, Kiyoshi [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2015-01-15

    Highlights: • Magnetic fields of the JT-60SA CS model coil were measured. • While the coil current was held constant at 20 kA, magnetic fields varied slightly with several different long time constants. • We investigated coils consisting of CIC conductors and having long time constants. - Abstract: In a cold test of the JT-60SA CS model coil, which has a quad-pancake configuration consisting of a Nb{sub 3}Sn cable-in-conduit (CIC) conductor, magnetic fields were measured using Hall sensors. For a holding coil current of 20 kA, measured magnetic fields varied slightly with long time constants in the range 17–571 s, which was much longer than the time constant derived from a measurement using a short straight sample. To validate the measurements, the magnetic fields of the model coil were calculated using a computational model representing the positions of Nb{sub 3}Sn strands inside the CIC conductor. The calculated results were in good agreement with the measurements. Consequently, the validity of the magnetic field measurements was confirmed. Next, we investigated other coils consisting of CIC conductors and having long time constants. The only commonality among the coils was the use of CIC conductors. At present, there is no obvious way to prevent generation of such magnetic-field variations with long time constants.

  12. Impulse and Frequency Response of a Moving Coil Galvanometer.

    Science.gov (United States)

    McNeill, D. J.

    1985-01-01

    Describes an undergraduate laboratory experiment in which a moving coil galvanometer is studied and the electromotive force generated by the swinging coil provides the impulse response information in a form suitable for digitizing and inputing to a microcomputer. Background information and analysis of typical data are included. (JN)

  13. Second Barrel Toroid Coil Installed in ATLAS Cavern

    CERN Multimedia

    Tappern, G.

    The second barrel toroid coil was lowered into the ATLAS Cavern on Friday, 26 November. The operation takes approximately five hours of precision crane and winch operations. Before lowering, several checks are made to ensure that no loose items have been left on the coil which would fall during the lowering down the shaft. This is a very difficult, but very important check, with the first coil in position, and partly below the shaft. After changing the winch tooling on Wednesday December 1st, the coil was lifted, rotated and placed into the feet. The girders which support the coil and the Z direction stops had all been pre-set before putting the coil in the feet. The angle is controlled by an inclinometer. When the final adjustments of position have been made, which will locate the coils at the plus/minus two mm level, the connection beams (voussoirs and struts) will be put in place; this requires a complex shimming procedure. This will lock together the two coils into the feet and forms the foundation for th...

  14. ATLAS-Lowering the first Barrel Toroid coil

    CERN Multimedia

    2004-01-01

    Cranes lowered the first of ATLAS's eight Barrel Toroid coils into the cavern. The part is 25 metres long and the cranes had to hold the 100 tonne coil at a sharp angle while it passed through the 18-metre diameter vertical shaft into the cavern. Then they laid the magnet to a horisontal robust platform. Images from Camera 1

  15. Performance correlation between YBa2Cu3O7-δ coils and short samples for coil technology development

    Science.gov (United States)

    Wang, X.; Dietderich, D. R.; Godeke, A.; Gourlay, S. A.; Marchevsky, M.; Prestemon, S. O.; Sabbi, G. L.

    2016-06-01

    A robust fabrication technology is critical to achieve the high performance in YBa2Cu3O{}7-δ (YBCO) coils as the critical current of the brittle YBCO layer is subject to the strain-induced degradation during coil fabrication. The expected current-carrying capability of the magnet and its temperature dependence are two key inputs to the coil technology development. However, the expected magnet performance is not straightforward to determine because the short-sample critical current depends on both the amplitude and orientation of the applied magnetic field with respect to the broad surface of the tape-form conductor. In this paper, we present an approach to calculate the self-field performance limit for YBCO racetrack coils at 77 and 4.2 K. Critical current of short YBCO samples was measured as a function of the applied field perpendicular to the conductor surface from 0 to 15 T. This field direction limited the conductor critical current. Two double-layer racetrack coils, one with three turns and the other with 10 turns, were wound and tested at 77 and 4.2 K. The test coils reached at least 80% of the expected critical current. The ratio between the coil critical currents at 77 and 4.2 K agreed well with the calculation. We conclude that the presented approach can determine the performance limit in YBCO racetrack coils based on the short-sample critical current and provide a useful guideline for assessing the coil performance and fabrication technology. The correlation of the coil critical current between 77 K and 4.2 K was also observed, allowing the 77 K test to be a cost-effective tool for the development of coil technology.

  16. Impact of coil price knowledge by the operator on the cost of aneurysm coiling. A single center study.

    Science.gov (United States)

    Finitsis, Stephanos; Fahed, Robert; Gaulin, Ian; Roy, Daniel; Weill, Alain

    2017-09-15

    Endovascular treatment of aneurysms with coils is among the most frequent treatments in interventional neuroradiology, and represents an important expense. Each manufacturer has created several types of coils, with prices varying among brands and coil types. The objective of this study was to assess the impact of cost awareness of the exact price of each coil by the operating physician on the total cost of aneurysm coiling. This was a comparative study conducted over 1 year in a single tertiary care center. The reference cohort and the experimental cohort consisted of all aneurysm embolization procedures performed during the first 6 months and the last 6 months, respectively. During the second period, physicians were given an information sheet with the prices of all available coils and were requested to look at the sheet during each procedure with the instruction to try to reduce the total cost of the coils used. Expenses related to the coiling procedures during each period were compared. 77 aneurysms (39 ruptured) in the reference cohort and 73 aneurysms (36 ruptured) in the experimental cohort were treated, respectively. There was no statistically significant difference regarding aneurysm location and mean size. The overall cost of the coiling procedures, the mean number of coils used per procedure, and the median cost of each procedure did not differ significantly between the two cohorts. Awareness of the precise price of coils by operators without any additional measure did not have a scientifically proven impact on the cost of aneurysm embolization. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Temperature dependence of the PER in PM-PCF coil

    Institute of Scientific and Technical Information of China (English)

    Hong Zhao; Meng Chen; Gang Li

    2012-01-01

    A piece of domestic polarization-maintaining photonic crystal fiber (PM-PCF,964 m in length) is made into a fiber coil,and its polarization extinction ratio (PER) is measured in a temperature range of -45-80 ℃ before and after PM-PCF is wound and solidified.A fiber coil made of commercial panda PM fiber (PMF) is also fabricated and measured for comparison.Our experiments show that the PER variation of the PM-PCF coil (2.25 dB) is far smaller than that of the panda PMF coil (10 dB) in the whole temperature range because PM-PCF is intrinsically insensitive to the temperature variation and stress in the fiber coil induced by the winding and solidification process.This characteristic is important for the real application of PM-PCFs in temperature-insensitive fiber interferometers,fiber sensors,and optical fiber gyroscopes.

  18. Vehicle to wireless power transfer coupling coil alignment sensor

    Energy Technology Data Exchange (ETDEWEB)

    Miller, John M.; Chambon, Paul H.; Jones, Perry T.; White, Clifford P.

    2016-02-16

    A non-contacting position sensing apparatus includes at least one vehicle-mounted receiver coil that is configured to detect a net flux null when the vehicle is optimally aligned relative to the primary coil in the charging device. Each of the at least one vehicle-mounted receiver coil includes a clockwise winding loop and a counterclockwise winding loop that are substantially symmetrically configured and serially connected to each other. When the non-contacting position sensing apparatus is located directly above the primary coil of the charging device, the electromotive forces from the clockwise winding loop and the counterclockwise region cancel out to provide a zero electromotive force, i.e., a zero voltage reading across the coil that includes the clockwise winding loop and the counterclockwise winding loop.

  19. Electromagnetic Design of Superconducting Dipoles Based on Sector Coils

    CERN Document Server

    Todesco, Ezio

    2007-01-01

    We study the coil lay-outs of superconducting dipoles for particle accelerators based on the sector geometry. We show that a simple model based on a sector coil with a wedge allows us to derive an equation giving the short sample field as a function of the aperture, coil width, cable properties and superconducting material. The equation agrees well with the actual results of several dipole coils that have been built in the last 30 years. The improvements due to the grading technique and the iron yoke are also studied. The proposed equation can be used as a benchmark to judge the efficiency of the coil design, and to carry out a global optimization of an accelerator lay-out.

  20. First assembly phase for the ATLAS toroid coils

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The ATLAS barrel toroid system consists of eight coils, each of axial length 25.3 m, assembled radially and symmetrically around the beam axis. The coils are of a flat racetrack type with two double-pancake windings made of 20.5 kA aluminium-stabilized niobium-titanium superconductor. In the first phase of assembly, the two 'pancakes' are packed into their vacuum vessel. This is done using bladders filled with resin and glass microbeads under pressure. The resin is heated and, once cooled, holds the pancakes in place. The operation has to be performed on both sides of the coil, which necessitated a special technique to turn the coils over and then transport them to the heating table. Photos 01, 02, 03: Transporting the coil to the heating table using a special lifting gantry manufactured at JINR-Dubna, Russia in preparation for the 'bladderisation' operation.

  1. Dual cervical thoracic coil for spine magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Totterman, S.; Foster, T.H.; Plewes, D.B.; Simon, J.H.; Ekholm, S.; Wicks, A. (Rochester Univ., NY (USA). Dept. of Radiology Rochester Univ., NY (USA). Dept. of Physics and Astronomy)

    The need for repositioning of surface coils and patients in MR examinations of the cervical and thoracic spin prolongs examination time. A new receiver design is proposed which overcomes this problem. The device is composed of two actively decoupled receiver coils mounted on the frame of a Philadelphia collar. These coils may be used separately to image either the thoracic or cervical spine or together to produce larger field-of-view images of the combined region. Signal-to-noise ratios of the separate cervical and thoracic spine images are not degraded as a result of mounting the receivers together. The full cervical and thoracic region is shown to be imaged at a signal-to-noise ratio significantly higher than that afforded by the body coil. A retrospective review of our case load suggests that a time saving could be achieved in approximately 1/3 of spine examinations by using this coil. (orig.).

  2. Nonlinear Dynamics of Coiling in Viscoelastic Jets

    CERN Document Server

    Majmudar, Trushant; Hartt, William; McKinley, Gareth

    2010-01-01

    Instabilities in free surface continuous jets of non-Newtonian fluids, although relevant for many industrial processes, remain less well understood in terms of fundamental fluid dynamics. Inviscid, and viscous Newtonian jets have been studied in great detail; buckling instability in viscous jets leads to regular periodic coiling of the jet that exhibits a non-trivial frequency dependence with the height of the fall. Very few experimental or theoretical studies exist for continuous viscoelastic jets beyond the onset of the first instability. Here, we present a systematic study of the effects of viscoelasticity on the dynamics of free surface continuous jets of surfactant solutions that form worm-like micelles. We observe complex nonlinear spatio-temporal dynamics of the jet and uncover a transition from periodic to doubly-periodic or quasi-periodic to a multi-frequency, possibly chaotic dynamics. Beyond this regime, the jet dynamics smoothly crosses over to exhibit the "leaping shampoo effect" or the Kaye effe...

  3. Transformer current sensor for superconducting magnetic coils

    Science.gov (United States)

    Shen, Stewart S.; Wilson, C. Thomas

    1988-01-01

    A transformer current sensor having primary turns carrying a primary current for a superconducting coil and secondary turns only partially arranged within the primary turns. The secondary turns include an active winding disposed within the primary turns and a dummy winding which is not disposed in the primary turns and so does not experience a magnetic field due to a flow of current in the primary turns. The active and dummy windings are wound in opposite directions or connected in series-bucking relationship, and are exposed to the same ambient magnetic field. Voltages which might otherwise develop in the active and dummy windings due to ambient magnetic fields thus cancel out. The resultant voltage is purely indicative of the rate of change of current flowing in the primary turns.

  4. Antibody engineering using phage display with a coiled-coil heterodimeric Fv antibody fragment.

    Directory of Open Access Journals (Sweden)

    Xinwei Wang

    Full Text Available A Fab-like antibody binding unit, ccFv, in which a pair of heterodimeric coiled-coil domains was fused to V(H and V(L for Fv stabilization, was constructed for an anti-VEGF antibody. The anti-VEGF ccFv showed the same binding affinity as scFv but significantly improved stability and phage display level. Furthermore, phage display libraries in the ccFv format were constructed for humanization and affinity maturation of the anti-VEGF antibody. A panel of V(H frameworks and V(H-CDR3 variants, with a significant improvement in affinity and expressibility in both E. coli and yeast systems, was isolated from the ccFv phage libraries. These results demonstrate the potential application of the ccFv antibody format in antibody engineering.

  5. De novo designed coiled-coil proteins with variable conformations as components of molecular electronic devices.

    Science.gov (United States)

    Shlizerman, Clara; Atanassov, Alexander; Berkovich, Inbal; Ashkenasy, Gonen; Ashkenasy, Nurit

    2010-04-14

    Conformational changes of proteins are widely used in nature for controlling cellular functions, including ligand binding, oligomerization, and catalysis. Despite the fact that different proteins and artificial peptides have been utilized as electron-transfer mediators in electronic devices, the unique propensity of proteins to switch between different conformations has not been used as a mechanism to control device properties and performance. Toward this aim, we have designed and prepared new dimeric coiled-coil proteins that adopt different conformations due to parallel or antiparallel relative orientations of their monomers. We show here that controlling the conformation of these proteins attached as monolayers to gold, which dictates the direction and magnitude of the molecular dipole relative to the surface, results in quantitative modulation of the gold work function. Furthermore, charge transport through the proteins as molecular bridges is controlled by the different protein conformations, producing either rectifying or ohmic-like behavior.

  6. Treatment of Intracranial Aneurysms: Clipping Versus Coiling.

    Science.gov (United States)

    Liu, Ann; Huang, Judy

    2015-09-01

    Intracranial aneurysms (IAs) have an estimated incidence of up to 10 % and can lead to serious morbidity and mortality. Because of this, the natural history of IAs has been studied extensively, with rupture rates ranging from 0.5 to 7 %, depending on aneurysm characteristics. The spectrum of presentation of IAs ranges from incidental detection to devastating subarachnoid hemorrhage. Although the gold standard imaging technique is intra-arterial digital subtraction angiography, other modalities such as computed tomography angiography (CTA) and magnetic resonance angiography (MRA) are being increasingly used for screening and treatment planning. Management of these patients depends upon a number of factors including aneurysmal, patient, institutional, and operator factors. The ultimate goal of treating patients with IAs is complete and permanent occlusion of the aneurysm sac in order to eliminate future hemorrhagic risk, while preserving or restoring the patient's neurological function. The most common treatment approaches include microsurgical clipping and endovascular coiling, and multiple studies have compared these two techniques. To date, three large prospective, randomized studies have been done: a study from Finland, International Subarachnoid Aneurysm Trial (ISAT), and the Barrow Ruptured Aneurysm Trial (BRAT). Despite differences in methodology, the results were similar: in patients undergoing coiling, although rates of rebleeding and retreatment are higher, the overall rate of poor outcomes at 12 months was significantly lower. As minimally invasive procedures and devices continue to be refined, endovascular strategies are likely to increase in popularity. However, as long-term outcome studies become available, it is increasingly apparent that they are complementary treatment strategies, with patient selection of critical importance.

  7. D-Cysteine Ligands Control Metal Geometries within de Novo Designed Three-Stranded Coiled Coils.

    Science.gov (United States)

    Pecoraro, Vincent Louis; Ruckthong, Leela; Peacock, Anna F A; Pascoe, Cherilyn E; Hemmingsen, Lars; Stuckey, Jeanne A

    2017-04-06

    While metal ion binding to naturally occurring L-amino acid proteins is well documented, understanding the impact of the opposite chirality (D) amino acids on the structure and stereochemistry of metals is in its infancy. We examine the effect of a D-configuration cysteine within a designed L-amino acid three-stranded coiled coil in order to enforce a precise coordination number on a metal center. The D-chirality does not alter the native fold, but the side-chain reorientation modifies the sterics of the metal binding pocket. L-Cys side-chains within the coiled-coil have previously been shown to rotate substantially from their preferred positions in the apo structure to create a binding site for a tetra-coordinate metal ion. However, here we show by x-ray crystallography that D-Cys side chains are preorganized with suitable geometry to bind such a ligand. This is confirmed by comparison of the Zn(II)Cl(CSL16DC)₃²¯ to the published Zn(II)(H₂O)(GRAND-CSL12AL16LC)₃¯.¹ Spectroscopic analysis indicates that the Cd(II) geometry observed using L-Cys ligands (a mixture of 3- and 4- coordinate Cd(II)) is altered to a single 4-coordinate specie when D-Cys is present. This work opens a new avenue for the control of metal site environment in man-made proteins, by simply altering the binding ligand with its mirror imaged D-configuration. Thus, use of D amino acids in a metal's coordination sphere promises to be a powerful tool for controlling the properties of future metalloproteins.

  8. A coiled coil trigger site is essential for rapid binding of synaptobrevin to the SNARE acceptor complex

    DEFF Research Database (Denmark)

    Wiederhold, Katrin; Kloepper, Tobias H; Walter, Alexander M;

    2010-01-01

    to the preformed syntaxin 1.SNAP-25 dimer. Exactly how this step relates to neurotransmitter release is not well understood. Here, we combined different approaches to gain insights into this reaction. Using computational methods, we identified a stretch in synaptobrevin 2 that may function as a coiled coil...

  9. Analysis and experimental study of wireless power transfer with HTS coil and copper coil as the intermediate resonators system

    Science.gov (United States)

    Wang, Xiufang; Nie, Xinyi; Liang, Yilang; Lu, Falong; Yan, Zhongming; Wang, Yu

    2017-01-01

    Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.

  10. The cytoplasmic coiled-coil mediates cooperative gating temperature sensitivity in the voltage-gated H(+) channel Hv1.

    Science.gov (United States)

    Fujiwara, Yuichiro; Kurokawa, Tatsuki; Takeshita, Kohei; Kobayashi, Megumi; Okochi, Yoshifumi; Nakagawa, Atsushi; Okamura, Yasushi

    2012-05-08

    Hv1/VSOP is a dimeric voltage-gated H(+) channel in which the gating of one subunit is reportedly coupled to that of the other subunit within the dimer. The molecular basis for dimer formation and intersubunit coupling, however, remains unknown. Here we show that the carboxy terminus ends downstream of the S4 voltage-sensor helix twist in a dimer coiled-coil architecture, which mediates cooperative gating. We also show that the temperature-dependent activation of H(+) current through Hv1/VSOP is regulated by thermostability of the coiled-coil domain, and that this regulation is altered by mutation of the linker between S4 and the coiled-coil. Cooperative gating within the dimer is also dependent on the linker structure, which circular dichroism spectrum analysis suggests is α-helical. Our results indicate that the cytoplasmic coiled-coil strands form continuous α-helices with S4 and mediate cooperative gating to adjust the range of temperatures over which Hv1/VSOP operates.

  11. Stenting plus coiling: dangerous or helpful?; Stenting plus Coiling bei akut rupturierten intrakraniellen Aneurysmen

    Energy Technology Data Exchange (ETDEWEB)

    Wanke, I.; Gizewski, E.; Doerfler, A.; Stolke, D.; Forsting, M. [Essen Univ. (Germany). Inst. fuer Radiologie und Neuroradiologie

    2005-09-01

    Purpose: the purpose of this study was to evaluate the procedural risk of treating acute ruptured aneurysms with a stentcoil combination. Material and methods: between August 2001 and January 2004 we treated nine acute subarachnoid hemorrhage (SAH) patients with a combination of stents and platinum coils. Results: six aneurysms were 100% eliminated; the residual three aneurysms had a 95% to 99% occlusion. A transient thrombosis in the stent in one patient could be recanalized by intravenous application of ReoPro {sup registered}. In another patient an occlusive vasospasm at the distal end of the stent was successfully treated with intraarterial Nimotop {sup registered}. Neurological complications occurred in none of the patients. Conclusion: in broad-based aneurysms which cannot be clipped or in which any neurosurgical treatment presents an unacceptably high risk (posterior circulation and paraophthalmic aneurysms), treatment using a combination of stent and platinum coils might be an option even in the acute phase of an SAH. Platelet aggregation can be treated with Aspirin registered and Plavix {sup registered} after placement of the first coil, vasospasms with intraarterial Nimotop {sup registered}, and acute stent thrombosis with GP IIa/IIIb-antagonists. (orig.)

  12. Design of transverse head gradient coils using a layer-sharing scheme

    Science.gov (United States)

    Wang, Yaohui; Liu, Feng; Zhou, Xiaorong; Crozier, Stuart

    2017-05-01

    In this paper, a new design for transverse asymmetric head gradient coils is proposed for Magnetic Resonance Imaging (MRI). Unlike the conventional coil designs where the x and y coils are placed onto separate radial layers, the new design has windings for both the x and y coils in each transverse coil layer. The coil performance using the new design was compared with the conventional coils with the same dimensions and constraints. The results showed that the new design can improve coil performance in terms of a lower inductance, lower resistance and a higher figure of merit.

  13. Composite carbon foam electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  14. Composite carbon foam electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  15. Ion-selective electrodes

    CERN Document Server

    Mikhelson, Konstantin N

    2013-01-01

    Ion-selective electrodes (ISEs) have a wide range of applications in clinical, environmental, food and pharmaceutical analysis as well as further uses in chemistry and life sciences. Based on his profound experience as a researcher in ISEs and a course instructor, the author summarizes current knowledge for advanced teaching and training purposes with a particular focus on ionophore-based ISEs. Coverage includes the basics of measuring with ISEs, essential membrane potential theory and a comprehensive overview of the various classes of ion-selective electrodes. The principles of constructing I

  16. Single Electrode Heat Effects

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Broers, G. H. J.

    1977-01-01

    SP, of theelectrode reaction. eta is the overvoltage at the electrode. This equation is appliedto a high temperature carbonate fuel cell. It is shown that the Peltier entropyterm by far exceeds the heat production due to the irreversible losses, and thatthe main part of heat evolved at the cathode is reabsorbed......The heat evolution at a single irreversibly working electrode is treated onthe basis of the Brønsted heat principle. The resulting equation is analogous to the expression for the total heat evolution in a galvanic cellwith the exception that –DeltaS is substituted by the Peltier entropy, Delta...

  17. Review of the ATLAS B0 model coil test program

    CERN Document Server

    Dolgetta, N; Acerbi, E; Berriaud, C; Boxman, H; Broggi, F; Cataneo, F; Daël, A; Delruelle, N; Dudarev, A; Foussat, A; Haug, F; ten Kate, H H J; Mayri, C; Paccalini, A; Pengo, R; Rivoltella, G; Sbrissa, E

    2004-01-01

    The ATLAS B0 model coil has been extensively tested, reproducing the operational conditions of the final ATLAS Barrel Toroid coils. Two test campaigns have taken place on B0, at the CERN facility where the individual BT coils are about to be tested. The first campaign aimed to test the cool-down, warm-up phases and to commission the coil up to its nominal current of 20.5 kA, reproducing Lorentz forces similar to the ones on the BT coil. The second campaign aimed to evaluate the margins above the nominal conditions. The B0 was tested up to 24 kA and specific tests were performed to assess: the coil temperature margin with respect to the design value, the performance of the double pancake internal joints, static and dynamic heat loads, behavior of the coil under quench conditions. The paper reviews the overall test program with emphasis on second campaign results not covered before. 10 Refs.

  18. SIMULATION OF STEEL COIL HEAT TRANSFER IN HPH FURNACE

    Institute of Scientific and Technical Information of China (English)

    M.Y. Gu; G. Chen; M.C. Zhang; X.C. Dai

    2005-01-01

    The mathematical model has been established for the simulation of steel coil's heat transfer during annealing thermal process in HPH (high performance hydrogen) furnace. The equivalent radial thermal conductivity is adopted by statistical analysis regression approach through the combination of a large quantity of production data collected in practice and theoretical analyses. The effect of the number of coils on circulating flow gas is considered for calculating the convection heat transfer coefficient. The temperature within the coil is predicted with the developed model during the annealing cycle including heating process ard cooling process. The good consistency between the predicted results and the experimental data has demonstrated that the mathematical model established and the parameters identified by this paper are scientifically feasible and the effective method of calculation for coil equivalent radial heat transfer coefficient and circulating gas flow has been identified successfully, which largely enhances the operability and feasibility of the mathematic model. This model provides a theoretical basis and an effective means to conduct studies on the impact that foresaid factors may imposed on the steel coil's temperature field, to analyze the stress within coils, to realize online control and optimal production and to increase facility output by increasing heating and cooling rates of coils without producing higher thermal stress.

  19. The noise factor of receiver coil matching networks in MRI.

    Science.gov (United States)

    Cao, Xueming; Fischer, Elmar; Gruschke, Oliver; Korvink, Jan G; Hennig, Jürgen; Maunder, Adam M; De Zanche, Nicola; Zaitsev, Maxim

    2017-04-01

    In typical MRI applications the dominant noise sources in the received signal are the sample, the coil loop and the preamplifier. We hypothesize that in some cases (e.g. for very small receiver coils) the matching network noise has to be considered explicitly. Considering the difficulties of direct experimental determinations of the noise factor of matching networks with sufficient accuracy, it is helpful to estimate the noise factor by calculation. A useful formula of the coil matching network is obtained by separating commonly used coil matching network into different stages and calculating their noise factor analytically by a combination of the noise from these stages. A useful formula of the coil matching network is obtained. ADS simulations are performed to verify the theoretical predictions. Thereafter carefully-designed proof-of-concept phantom experiments are carried out to qualitatively confirm the predicted SNR behavior. The matching network noise behavior is further theoretically investigated for a variety of scenarios. It is found that in practice the coil matching network noise can be improved by adjusting the coil open port resonant frequency.

  20. MANUFACTURING OF MAGNETIC PROBE COILS FOR DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    BOZEK,A.S; STRAIT,E.J

    2003-10-01

    OAK-B135 The magnetic diagnostics program at DIII-D adds to its in-vessel installations of induction-type loops and coils almost every year. The current design of toroidal and poloidal magnetic field coils (45-50 kHz, N {center_dot} A = 0.06 m{sup 2}) has been in existence since 1987. Many coils were installed in DIII-D during that year and are still operating and reliable today. The high reliability of the coils is owing to the use of a continuous length of mineral-insulated cable, eliminating any electrical connections inside the vacuum vessel. The geometry of the probes was designed to achieve a bandwidth of 50 kHz, despite the conducting shell formed by the stainless steel sheath of the mineral-insulated cable. The bandwidth is sensitive to the details of the cable dimensions and winding technique, and care must be taken in the fabrication in order to maintain this specification. With possible future magnetic diagnostics installations IN ITER and other long-pulse machines requiring large numbers of coils and/or multiple layers per coil, the manufacturing scale-up, quality control, and the development of layered coils should all be investigated in addition to the obvious issues such as irradiation effects.

  1. Endothelial cell proliferation in swine experimental aneurysm after coil embolization.

    Directory of Open Access Journals (Sweden)

    Yumiko Mitome-Mishima

    Full Text Available After coil embolization, recanalization in cerebral aneurysms adversely influences long-term prognosis. Proliferation of endothelial cells on the coil surface may reduce the incidence of recanalization and further improve outcomes after coil embolization. We aimed to map the expression of proliferating tissue over the aneurysmal orifice and define the temporal profile of tissue growth in a swine experimental aneurysm model. We compared the outcomes after spontaneous thrombosis with those of coil embolization using histological and morphological techniques. In aneurysms that we not coiled, spontaneous thrombosis was observed, and weak, easily detachable proliferating tissue was evident in the aneurysmal neck. In contrast, in the coil embolization group, histological analysis showed endothelial-like cells lining the aneurysmal opening. Moreover, immunohistochemical and morphological analysis suggested that these cells were immature endothelial cells. Our results indicated the existence of endothelial cell proliferation 1 week after coil embolization and showed immature endothelial cells in septal tissue between the systemic circulation and the aneurysm. These findings suggest that endothelial cells are lead to and proliferate in the former aneurysmal orifice. This is the first examination to evaluate the temporal change of proliferating tissue in a swine experimental aneurysm model.

  2. Fetal MRI on a multi-element digital coil platform

    Energy Technology Data Exchange (ETDEWEB)

    Serai, Suraj D.; Merrow, Arnold C.; Kline-Fath, Beth M. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, 3333 Burnett Ave., MLC 5031, Cincinnati, OH (United States)

    2013-09-15

    Fetal MRI has an increasing list of indications and is most commonly employed when anomalies detected by prenatal ultrasonography require further characterization. This may occur when sonography is technically challenging or where specific MRI findings will determine pre- and postnatal management, including critical in utero and/or peripartum interventions. In these circumstances, there are high expectations for MRI to sort out complex diagnostic dilemmas through exquisite anatomical imaging that fetal surgeons and obstetricians can comprehend and relay to their patients. These expectations, in light of evolving clinical innovations, continue to drive advances in fetal imaging. Increasing signal-to-noise ratio (SNR) is fundamental to improving MR image quality, and proper coil selection is a key component of this pursuit. Since the introduction of parallel imaging techniques, the numbers of elements in phased-array coils have been continuously increased to achieve high SNR and shorter scan times. With the invention of a digital coil platform, it is now possible to connect combinations of multiple coil elements to enhance SNR beyond the capabilities of the adult eight-channel torso-coil routinely used in fetal imaging. This paper describes the application of multi-element radiofrequency coils on a digital broadband imaging platform with unique coil combinations to perform dedicated fetal MRI. (orig.)

  3. Reference Electrodes in Metal Corrosion

    Directory of Open Access Journals (Sweden)

    S. Szabó

    2010-01-01

    Full Text Available With especial regard to hydrogen electrode, the theoretical fundamentals of electrode potential, the most important reference electrodes and the electrode potential measurement have been discussed. In the case of the hydrogen electrode, it have been emphasised that there is no equilibrium between the hydrogen molecule (H2 and the hydrogen (H+, hydronium (H3O+ ion in the absence of a suitable catalyst. Taking into account the practical aspects as well, the theorectical basis of working of hydrogen, copper-copper sulphate, mercury-mercurous halide, silver-silver halide, metal-metal oxide, metal-metal sulphate and “Thalamid” electrodes, has been discussed.

  4. Virtual electrodes for high-density electrode arrays

    Energy Technology Data Exchange (ETDEWEB)

    Cela, Carlos Jose; Lazzi, Gianluca

    2017-05-23

    The present embodiments are directed to implantable electrode arrays having virtual electrodes. The virtual electrodes may improve the resolution of the implantable electrode array without the burden of corresponding complexity of electronic circuitry and wiring. In a particular embodiment, a virtual electrode may include one or more passive elements to help steer current to a specific location between the active electrodes. For example, a passive element may be a metalized layer on a substrate that is adjacent to, but not directly connected to an active electrode. In certain embodiments, an active electrode may be directly coupled to a power source via a conductive connection. Beneficially, the passive elements may help to increase the overall resolution of the implantable array by providing additional stimulation points without requiring additional wiring or driver circuitry for the passive elements.

  5. MEMS switch integrated radio frequency coils and arrays for magnetic resonance imaging

    Science.gov (United States)

    Bulumulla, S. B.; Park, K. J.; Fiveland, E.; Iannotti, J.; Robb, F.

    2017-02-01

    Surface coils are widely used in magnetic resonance imaging and spectroscopy. While smaller diameter coils produce higher signal to noise ratio (SNR) closer to the coil, imaging larger fields of view or greater distance into the sample requires a larger overall size array or, in the case of a channel count limited system, larger diameter coils. In this work, we consider reconfiguring the geometry of coils and coil arrays such that the same coil or coil array may be used in multiple field of view imaging. A custom designed microelectromechanical systems switch, compatible with magnetic resonance imaging, is used to switch in/out conductive sections and components to reconfigure coils. The switch does not degrade the SNR and can be opened/closed in 10 μ s, leading to rapid reconfiguration. Results from a single coil, configurable between small/large configurations, and a two-coil phased array, configurable between spine/torso modes, are presented.

  6. Improvement of Prediction Method for Strip Coiling Temperature

    Institute of Scientific and Technical Information of China (English)

    YU Qing-bo; WANG Zhao-dong; WANG Zhe-ying; LIU Xiang-hua; WANG Guo-dong

    2003-01-01

    In order to improve the control precision of strip coiling temperature for hot strip mill, the BP neural network was combined with mathematical model to calculate convective heat-transfer coefficient of laminar flow cooling. The off-line calculated results indicate that the standard deviation of coiling temperature prediction is reduced by 22.84 % with the convective heat-transfer coefficient calculated by BP neural network. The prospects of this method for on-line application are bright. This method is more helpful to increasing the control precision of coiling temperature for hot strip steel.

  7. Design and manufacturing of a Wendelstein 7-X demonstration coil

    Energy Technology Data Exchange (ETDEWEB)

    Kronhardt, H. [Preussag Noell GmbH, Wuerzburg (Germany); Dormicchi, O. [Ansalto Energia, Genoa (Italy); Sapper, J. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1998-07-01

    The large Stellarator experiment Wendelstein 7-X is currently being constructed at the Max-Planck-Institute for Plasma physics (IPP). The magnet system consists of 50 non-planar and 20 planar superconducting coils. A full-size non-planar DEMO coil was built under industrial conditions, to be tested in the background field of the EU-LCT coil at the Forschungszentrum Karlsruhe (FZK). This paper reports the final manufacturing results and data from the warm acceptance test, as well as cryogenic data from strandmeasurements. (author)

  8. Magnetic mirror structure for testing shell-type quadrupole coils

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Tartaglia, N.; Turrioni, D.; /Fermilab

    2009-10-01

    This paper presents magnetic and mechanical designs and analyses of the quadrupole mirror structure to test single shell-type quadrupole coils. Several quadrupole coils made of different Nb{sub 3}Sn strands, cable insulation and pole materials were tested using this structure at 4.5 and 1.9 K. The coils were instrumented with voltage taps, spot heaters, temperature sensors and strain gauges to study their mechanical and thermal properties and quench performance. The results of the quadrupole mirror model assembly and test are reported and discussed.

  9. Magnetic mirror structure for testing shell-type quadrupole coils

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Tartaglia, N.; Turrioni, D.; /Fermilab

    2009-10-01

    This paper presents magnetic and mechanical designs and analyses of the quadrupole mirror structure to test single shell-type quadrupole coils. Several quadrupole coils made of different Nb{sub 3}Sn strands, cable insulation and pole materials were tested using this structure at 4.5 and 1.9 K. The coils were instrumented with voltage taps, spot heaters, temperature sensors and strain gauges to study their mechanical and thermal properties and quench performance. The results of the quadrupole mirror model assembly and test are reported and discussed.

  10. Parametric design of tri-axial nested Helmholtz coils.

    Science.gov (United States)

    Abbott, Jake J

    2015-05-01

    This paper provides an optimal parametric design for tri-axial nested Helmholtz coils, which are used to generate a uniform magnetic field with controllable magnitude and direction. Circular and square coils, both with square cross section, are considered. Practical considerations such as wire selection, wire-wrapping efficiency, wire bending radius, choice of power supply, and inductance and time response are included. Using the equations provided, a designer can quickly create an optimal set of custom coils to generate a specified field magnitude in the uniform-field region while maintaining specified accessibility to the central workspace. An example case study is included.

  11. A transition from strong right-handed to canonical left-handed supercoiling in a conserved coiled-coil segment of trimeric autotransporter adhesins.

    Science.gov (United States)

    Alvarez, Birte Hernandez; Gruber, Markus; Ursinus, Astrid; Dunin-Horkawicz, Stanislaw; Lupas, Andrei N; Zeth, Kornelius

    2010-05-01

    Trimeric autotransporter adhesins (TAAs) represent an important class of pathogenicity factors in proteobacteria. Their defining feature is a conserved membrane anchor, which forms a 12-stranded beta-barrel through the outer membrane. The proteins are translocated through the pore of this barrel and, once export is complete, the pore is occluded by a three-stranded coiled coil with canonical heptad (7/2) sequence periodicity. In many TAAs this coiled coil is extended by a segment of varying length, which has pentadecad (15/4) periodicity. We used X-ray crystallography and biochemical methods to analyze the transition between these two periodicities in the coiled-coil stalk of the Yersinia adhesin YadA. Our results show how the strong right-handed supercoil of the 15/4-periodic part locally undergoes further over-winding to 19/5, before switching at a fairly constant rate over 14 residues to the canonical left-handed supercoil of the 7/2-periodic part. The transition region contains two YxD motifs, which are characteristic for right-handed coiled-coil segments of TAAs. This novel coiled-coil motif forms a defined network of inter- and intrahelical hydrogen bonds, thus serving as a structural determinant. Supercoil fluctuations have hitherto been described in coiled coils whose main sequence periodicity is disrupted locally by discontinuities. Here we present the first detailed analysis of two fundamentally different coiled-coil periodicities being accommodated in the same structure.

  12. The Role of Filtration in Maintaining Clean Heat Exchanger Coils

    Energy Technology Data Exchange (ETDEWEB)

    Li Yang; James E. Braun; Eckhard A. Groll

    2004-06-30

    The main purpose of the study was to investigate the role of filtration in maintaining clean heat exchanger coils and overall performance. Combinations of 6 different levels of filtration (MERV 14, 11, 8, 6, 4, and no filter) and 4 different coils (an eight-row lanced-fin coil, HX8L), (an eight-row wavy-fin coil, HX8W), (a four-row lanced-fin coil, HX4L) and (a two-row lanced-fin coil, HX2L) were tested at 4 different air velocities (1.52, 2.03, 2.54,3.05 m/s (300, 400, 500, 600 ft/min)). The fouled conditions were obtained after injection of 600 grams of ASHRAE standard dust upstream of the filter/coil combination. This magnitude of dust is representative of a year of normal operation for an air conditioning system. The air-side pressure drops of the coils and filters and air-side heat transfer coefficients of the coils were determined from the measurements under the clean and fouled conditions. Depending upon the filter and coil test, the coil pressure drops increased in the range of 6%-30% for an air velocity at 2.54 m/s (500 ft/min). The impact was significantly greater for tests performed without a filter. The largest relative effect of fouling on pressure drop occurs for coils with fewer rows and having lanced fins. Coils with a greater number of rows can hold more dust so that a fixed amount of dust has a relatively smaller impact. The impact of fouling on air-side heat transfer coefficients was found to be relatively small. In some cases, heat transfer was actually enhanced due to additional turbulence caused by the presence of dust. The experimental results for pressure drops and heat transfer coefficients were correlated and the correlations were implemented within computer models of prototypical rooftop air conditioners and used to evaluate the impact of fouling on cooling capacity and EER. The equipment cooling capacity is reduced with fouling primarily because of a decrease in air flow due to the increase pressure drop rather than due to changes in h

  13. Submicron electrode gaps fabricated by gold electrodeposition at interdigitated electrodes

    NARCIS (Netherlands)

    Megen, M.J.J; Olthuis, W.; Berg, van den A.

    2014-01-01

    Electrodes with submicron gaps are desired for achieving high amplification redox cycling sensors. In this contribution we report the use of electrodeposition of gold in order to decrease the inter-electrode spacing at interdigitated electrodes. Using this method submicron spacings can be obtained w

  14. Shielding Electric Fields to Prevent Coalescence of Emulsions in Microfluidic Channels Using a 3D Metallic Coil

    Directory of Open Access Journals (Sweden)

    Jingmei Li

    2015-09-01

    Full Text Available In microfluidics, electric fields are widely used to assist the generation and the manipulation of droplets or jets. However, uncontrolled electric field can disrupt the operation of an integrated microfluidic system, for instance, through undesired coalescence of droplets, undesired changes in the wettability of the channel wall or unexpected death of cells. Therefore, an approach to control the distribution of electric fields inside microfluidic channels is needed. Inspired by the electro-magnetic shielding effect in electrical and radiation systems, we demonstrate the shielding of electric fields by incorporating 3D metallic coils in microfluidic devices. Using the degree of coalescence of emulsion drops as an indicator, we have shown that electric fields decrease dramatically in micro-channels surrounded by these conductive metallic coils both experimentally and numerically. Our work illustrates an approach to distribute electric fields in integrated microfluidic networks by selectively installing metallic coils or electrodes, and represents a significant step towards large-scale electro-microfluidic systems.

  15. Single Electrode Heat Effects

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Broers, G. H. J.

    1977-01-01

    for the oxygen electrode reaction is estimatedfrom thermodynamic data and reasonable agreement with the experimentalresults is found. It is concluded that the main contribution to the Peltierentropy arises from the transition from gaseous to liquid state, whereas thetransfer entropies of the ionic species...

  16. Dry EEG Electrodes

    Directory of Open Access Journals (Sweden)

    M. A. Lopez-Gordo

    2014-07-01

    Full Text Available Electroencephalography (EEG emerged in the second decade of the 20th century as a technique for recording the neurophysiological response. Since then, there has been little variation in the physical principles that sustain the signal acquisition probes, otherwise called electrodes. Currently, new advances in technology have brought new unexpected fields of applications apart from the clinical, for which new aspects such as usability and gel-free operation are first order priorities. Thanks to new advances in materials and integrated electronic systems technologies, a new generation of dry electrodes has been developed to fulfill the need. In this manuscript, we review current approaches to develop dry EEG electrodes for clinical and other applications, including information about measurement methods and evaluation reports. We conclude that, although a broad and non-homogeneous diversity of approaches has been evaluated without a consensus in procedures and methodology, their performances are not far from those obtained with wet electrodes, which are considered the gold standard, thus enabling the former to be a useful tool in a variety of novel applications.

  17. Balance between Coiled-Coil Stability and Dynamics Regulates Activity of BvgS Sensor Kinase in Bordetella

    Directory of Open Access Journals (Sweden)

    E. Lesne

    2016-03-01

    Full Text Available The two-component system BvgAS controls the expression of the virulence regulon of Bordetella pertussis. BvgS is a prototype of bacterial sensor kinases with extracytoplasmic Venus flytrap perception domains. Following its transmembrane segment, BvgS harbors a cytoplasmic Per-Arnt-Sim (PAS domain and then a predicted 2-helix coiled coil that precede the dimerization-histidine-phosphotransfer domain of the kinase. BvgS homologs have a similar domain organization, or they harbor only a predicted coiled coil between the transmembrane and the dimerization-histidine-phosphotransfer domains. Here, we show that the 2-helix coiled coil of BvgS regulates the enzymatic activity in a mechanical manner. Its marginally stable hydrophobic interface enables a switch between a state of great rotational dynamics in the kinase mode and a more rigid conformation in the phosphatase mode in response to signal perception by the periplasmic domains. We further show that the activity of BvgS is controlled in the same manner if its PAS domain is replaced with the natural α-helical sequences of PAS-less homologs. Clamshell motions of the Venus flytrap domains trigger the shift of the coiled coil’s dynamics. Thus, we have uncovered a general mechanism of regulation for the BvgS family of Venus flytrap-containing two-component sensor kinases.

  18. The significant impact of framing coils on long-term outcomes in endovascular coiling for intracranial aneurysms: how to select an appropriate framing coil.

    Science.gov (United States)

    Ishida, Wataru; Sato, Masayuki; Amano, Tatsuo; Matsumaru, Yuji

    2016-09-01

    OBJECTIVE The importance of a framing coil (FC)-the first coil inserted into an aneurysm during endovascular coiling, also called a lead coil or a first coil-is recognized, but its impact on long-term outcomes, including recanalization and retreatment, is not well established. The purposes of this study were to test the hypothesis that the FC is a significant factor for aneurysmal recurrence and to provide some insights on appropriate FC selection. METHODS The authors retrospectively reviewed endovascular coiling for 280 unruptured intracranial aneurysms and gathered data on age, sex, aneurysm location, aneurysm morphology, maximal size, neck width, adjunctive techniques, recanalization, retreatment, follow-up periods, total volume packing density (VPD), volume packing density of the FC, and framing coil percentage (FCP; the percentage of FC volume in total coil volume) to clarify the associated factors for aneurysmal recurrence. RESULTS Of 236 aneurysms included in this study, 33 (14.0%) had recanalization, and 18 (7.6%) needed retreatment during a mean follow-up period of 37.7 ± 16.1 months. In multivariate analysis, aneurysm size (odds ratio [OR] = 1.29, p < 0.001), FCP < 32% (OR 3.54, p = 0.009), and VPD < 25% (OR 2.96, p = 0.015) were significantly associated with recanalization, while aneurysm size (OR 1.25, p < 0.001) and FCP < 32% (OR 6.91, p = 0.017) were significant predictors of retreatment. VPD as a continuous value or VPD with any cutoff value could not predict retreatment with statistical significance in multivariate analysis. CONCLUSIONS FCP, which is equal to the FC volume as a percentage of the total coil volume and is unaffected by the morphology of the aneurysm or the measurement error in aneurysm length, width, or height, is a novel predictor of recanalization and retreatment and is more significantly predictive of retreatment than VPD. To select FCs large enough to meet the condition of FCP ≥ 32% is a potential relevant factor for better

  19. Formation of current coils in geodynamo simulations.

    Science.gov (United States)

    Kageyama, Akira; Miyagoshi, Takehiro; Sato, Tetsuya

    2008-08-28

    Computer simulations have been playing an important role in the development of our understanding of the geodynamo, but direct numerical simulation of the geodynamo with a realistic parameter regime is still beyond the power of today's supercomputers. Difficulties in simulating the geodynamo arise from the extreme conditions of the core, which are characterized by very large or very small values of the non-dimensional parameters of the system. Among them, the Ekman number, E, has been adopted as a barometer of the distance of simulations from real core conditions, in which E is of the order of 10(-15). Following the initial computer simulations of the geodynamo, the Ekman number achieved has been steadily decreasing, with recent geodynamo simulations performed with E of the order of 10(-6). Here we present a geodynamo simulation with an Ekman number of the order of 10(-7)-the highest-resolution simulation yet achieved, making use of 4,096 processors of the Earth Simulator. We have found that both the convection flow and magnetic field structures are qualitatively different from those found in larger-Ekman-number dynamos. The convection takes the form of sheet plumes or radial sheet jets, rather than the columnar cell structures that are usually found. We have found that this sheet plume convection is an effective dynamo and the generated current is organized as a set of coils in the shape of helical springs or at times as a torus.

  20. The Search-Coil Magnetometer for MMS

    Science.gov (United States)

    Le Contel, O.; Leroy, P.; Roux, A.; Coillot, C.; Alison, D.; Bouabdellah, A.; Mirioni, L.; Meslier, L.; Galic, A.; Vassal, M. C.; Torbert, R. B.; Needell, J.; Rau, D.; Dors, I.; Ergun, R. E.; Westfall, J.; Summers, D.; Wallace, J.; Magnes, W.; Valavanoglou, A.; Olsson, G.; Chutter, M.; Macri, J.; Myers, S.; Turco, S.; Nolin, J.; Bodet, D.; Rowe, K.; Tanguy, M.; de la Porte, B.

    2016-03-01

    The tri-axial search-coil magnetometer (SCM) belongs to the FIELDS instrumentation suite on the Magnetospheric Multiscale (MMS) mission (Torbert et al. in Space Sci. Rev. (2014), this issue). It provides the three magnetic components of the waves from 1 Hz to 6 kHz in particular in the key regions of the Earth's magnetosphere namely the subsolar region and the magnetotail. Magnetospheric plasmas being collisionless, such a measurement is crucial as the electromagnetic waves are thought to provide a way to ensure the conversion from magnetic to thermal and kinetic energies allowing local or global reconfigurations of the Earth's magnetic field. The analog waveforms provided by the SCM are digitized and processed inside the digital signal processor (DSP), within the Central Electronics Box (CEB), together with the electric field data provided by the spin-plane double probe (SDP) and the axial double probe (ADP). On-board calibration signal provided by DSP allows the verification of the SCM transfer function once per orbit. Magnetic waveforms and on-board spectra computed by DSP are available at different time resolution depending on the selected mode. The SCM design is described in details as well as the different steps of the ground and in-flight calibrations.

  1. Coil-Type Asymmetric Supercapacitor Electrical Cables.

    Science.gov (United States)

    Yu, Zenan; Moore, Julian; Calderon, Jean; Zhai, Lei; Thomas, Jayan

    2015-10-21

    Cable-shaped supercapacitors (SCs) have recently aroused significant attention due to their attractive properties such as small size, lightweight, and bendability. Current cable-shaped SCs have symmetric device configuration. However, if an asymmetric design is used in cable-shaped supercapacitors, they would become more attractive due to broader cell operation voltages, which results in higher energy densities. Here, a novel coil-type asymmetric supercapacitor electrical cable (CASEC) is reported with enhanced cell operation voltage and extraordinary mechanical-electrochemical stability. The CASECs show excellent charge-discharge profiles, extraordinary rate capability (95.4%), high energy density (0.85 mWh cm(-3)), remarkable flexibility and bendability, and superior bending cycle stability (≈93.0% after 4000 cycles at different bending states). In addition, the CASECs not only exhibit the capability to store energy but also to transmit electricity simultaneously and independently. The integrated electrical conduction and storage capability of CASECS offer many potential applications in solar energy storage and electronic gadgets. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. ITER coils insulation R and D program

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, R.F.; Sugimoto, M.; Osaki, O.; Fujioka, T.; Korsunsky, V.; Reed, R.P.; Katheder, H.; Broadbent, A.

    1995-12-31

    The ITER coil insulation systems are required for operating voltages up to 10 KV and to support shear and normal compression loads through the winding pack. Manufacturing considerations and nuclear radiation resistance also influence the choice of suitable systems. A screening program of candidate systems is being conducted in stages. The first stage is reported in this paper. Present R and D data based on small samples indicate a static shear strength of about 85 MPa for a glass or alumina and epoxy resin vacuum pressure impregnation system and 50 MPa for a pre-impregnated glass/epoxy resin system with polyimide interleaved at a temperature of 4K. The preliminary irradiation results show that coating the steel surface with inorganic materials such as Al{sub 2}O{sub 3} or ZrO{sub 2}/8 Y{sub 2}O{sub 3} is beneficial in increasing the radiation resistance as far as shear strength is concerned. In addition Tetrafunctional epoxy (TGDM) systems appear to be more radiation resistant than Diglycidyl Ether of Bisphenol-A (DGEBA) systems. Further R and D work will focus on prototypical samples to continue evaluation of the performance of the insulation systems.

  3. Revisiting Coiled Flocculator Performance for Particle Aggregation.

    Science.gov (United States)

    2017-09-08

    This work summarizes recent studies evaluating the torsion and curvature parameters in the flocculation efficiency using a hydraulic plug-flow flocculator named as Flocs Generator Reactor (FGR). Colloidal Fe(OH)3 and coal particles were used as suspension models and a cationic polyacrylamide was used for the flocculation. The effectiveness of the aggregation process (in the distinct curvature and torsion parameters and hydrodynamic conditions) was evaluated by the settling rate of the Fe(OH)3 flocs and flocs size by photographic analysis. Due to curvature, a secondary flow is induced and the profiles of the flow quantities differ from those for a straight pipe. Results showed that the difference in the flocculator design influences the Fe(OH)3 flocs size and settling rates, reaching values about 13 and 4 mh-1, for the coiled and straight pipes respectively. Coal flocs generation also showed to be dependent on the flocculator design and shear rate. Results showed that turbulent kinetic energy increases due to curvature when the torsion parameter is kept constant (pitch close to zero) enhancing the flocs formation.

  4. Integrated induction coil and fluxgate magnetometers for EM analysis and monitoring

    Science.gov (United States)

    Hanstein, T.; Strack, K.; Jiang, J.

    2013-12-01

    The concept of a full field array electromagnetic system is an ideal tool to support hydrocarbon and geothermal E & P as well as various engineering monitoring applications. Some of the key questions are defining the reservoir, mapping of the fractures and reservoir depletion monitoring. The reservoirs are all too often relative thin and give an anomalous electromagnetic (EM) response, which is often small in amplitude and challenging for the EM measuring system. A digital fluxgate magnetometer (32-bit) is connected to the KMS magnetotelluric acquisition system with analogue induction coils and electrodes to extend the range of application of a single recording site. Since the noise level is above that of the induction coil for periods shorter than 20 s, the apparent resistivity is biased. For longer periods the apparent resistivity is consistent and eventually better than the induction coil. However, phase and tipper are not biased and agree well with the induction data even for shorter periods. This allows us to develop algorithms that significantly extend the range of application of the fluxgate beyond what was done in the past. The highest frequency of the fluxgate magnetometer is about 180 Hz and the hightest sampling of the FG-board is 4 kHz.The different induction coils and fluxgate magnetometer have intensively been tested in the magnetic chamber and at the field test site near Houston for noise performance by parallel recordings. They show that even in an environment with high cultural noise, the specification can be met. In Northeast China, a 30-day monitoring test with MT was carried out for seismologic applications. Acquisitition schedule included different recordings times and sampling rates. Daily, the data was collected and processed via the internet from either Europe or the US. Even with long recording, we still had to select the time windows for data averaging and coherences are not a good threshhold criteria in this case. During another MT

  5. Electroanalysis with carbon paste electrodes

    CERN Document Server

    Svancara, Ivan; Walcarius, Alain; Vytras, Karel

    2011-01-01

    Introduction to Electrochemistry and Electroanalysis with Carbon Paste-Based ElectrodesHistorical Survey and GlossaryField in Publication Activities and LiteratureCarbon Pastes and Carbon Paste ElectrodesCarbon Paste as the Binary MixtureClassification of Carbon Pastes and Carbon Paste ElectrodesConstruction of Carbon Paste HoldersCarbon Paste as the Electrode MaterialPhysicochemical Properties of Carbon PastesElectrochemical Characteristics of Carbon PastesTesting of Unmodified CPEsIntera

  6. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1985-01-01

    Ion-Selective Electrode Reviews, Volume 7 is a collection of papers that covers the applications of electrochemical sensors, along with the versatility of ion-selective electrodes. The coverage of the text includes solid contact in membrane ion-selective electrodes; immobilized enzyme probes for determining inhibitors; potentiometric titrations based on ion-pair formation; and application of ion-selective electrodes in soil science, kinetics, and kinetic analysis. The text will be of great use to chemists and chemical engineers.

  7. Implementation of a planar coil of wires as a sinus-galvanometer. Analysis of the coil magnetic field

    CERN Document Server

    Stoyanov, Dimitar G

    2010-01-01

    The paper presents a theoretical analysis on the interaction between the Earth's magnetic field of a compass needle and the magnetic field of a straight infinite current-carrying wire. Implementation of a planar horizontal coil of wires has been shown as a sinus galvanometer. The magnetic field over the planar coil of wires has been examined by experiment. The coil could be used as a model for straight infinite current wire in demonstration set-ups or could be given as an assignment in Physics laboratory workshops.

  8. Implementation of a planar coil of wires as a sinus-galvanometer. Analysis of the coil magnetic field

    OpenAIRE

    Stoyanov, Dimitar G.

    2010-01-01

    The paper presents a theoretical analysis on the interaction between the Earth's magnetic field of a compass needle and the magnetic field of a straight infinite current-carrying wire. Implementation of a planar horizontal coil of wires has been shown as a sinus galvanometer. The magnetic field over the planar coil of wires has been examined by experiment. The coil could be used as a model for straight infinite current wire in demonstration set-ups or could be given as an assignment in Physic...

  9. Novel Coil Winding Method to Realize Pot Heated Evenly

    Institute of Scientific and Technical Information of China (English)

    Mao-Yan Wang; Hai-Long Li; Meng Zhang; Zhi-Tao Xu; Cui-Lin Zhong; Jun Xu

    2015-01-01

    To solve the problem about the inhomogeneous thermal effect of pot heated by coils along the circumference, a novel coil winding method is proposed and compared with the general winding method in the paper. First, based on the Biot-Savart law and Ampere’s rule, the magnetic induction generated by a straight current carrying conductor and a current loop is discussed, respectively. Then the novel coil winding method is developed by adjusting the location of inhomogeneous joints. The joints are periodically scattered along the circumferential direction and symmetrically designed around the central axis. Numerical results show that the quite non-uniform temperature in the base of pot at the circular direction is effectively improved by using the proposed winding method. The potential danger produced by high temperature at some region of coils plate is minimized. It is energy-efficient and safe for residential appliances.

  10. High-quality Critical Heat Flux in Horizontally Coiled Tubes

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    An investigation on the high-quality dryout in two electrically heated coiled tubes with horizontally helix axes is reported.The temperature profiles both along the tube and around the circumference are measured.and it is found that the temperature profiles around the circumference are not identical for the corss-sections at different parts of the coil.The “local condition hypothesis” seems applicable under present conditions,and the critical heat flux qcr decreases with increasing critical quality xcr.The CHF increases as mass velocity and ratio of tube diameter to coil diameter(d/D) increases,and it seems not to be affected hby the system pressure.The CHF is larger with coils than that with straight tubes,and the difference increases with increasing mass velocity and d/D.

  11. Characterization of coiled SMA actuators for humanoid robot

    Science.gov (United States)

    Potnuru, Akshay; Tadesse, Yonas

    2017-04-01

    In this paper, we present modeling and characterization of coiled SMA spring actuators that are fabricated by coiling cylindrical SMA wires on to a threaded screw mandrel and applying heat treatment. Here, we evaluate a theoretical model that describes the actuation behavior of SMA coiled springs based on the constitutive model of SMA. We have experimentally verified the developed theoretical model and analyzed various parameters with respect to temperature change during actuation. The model was coded in Simulink® and the effects of various parameters with respect to temperature change were investigated. Simulations were compared with experiments and good agreement was obtained. We also show, how the high tension winding of SMA on the mandrel help in better performance and understanding of the fabricated coiled SMAs.

  12. Coiled Brine Recovery Assembly (CoBRA) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Coiled Brine Recovery Assembly (CoBRA) project will result in a proof-of-concept demonstration for a lightweight, compact, affordable, regenerable and disposable...

  13. Critical Current Measurements in Commercial Tapes, Coils, and Magnets.

    Science.gov (United States)

    Gubser, D. U.; Soulen, R. J., Jr.; Fuller-Mora, W. W.; Francavilla, T. L.

    1996-03-01

    We have measured a number of tapes, coils, and magnets produced by commercial vendors and determined their properties as functions of magnetic field and temperature. The tapes were measured at the National High Magnetic Field Laboratory in magnetic fields to 20 tesla and at temperatures of 4.2 K, 27 K, 65 K, and 77 K. For the tapes we report critical currents and current-voltage characteristics. Six inch diameter coils were measured at NRL in zero magnetic field. Critical currents, current-voltage characteristics, and reliability studies are reported for the coils. Larger 10 inch diameter coils, which are to be used in a 200 hp superconducting motor, were also measured and results will be presented. The talk will also review the status of the most recent tests of the superconducting motor.

  14. Foldable micro coils for a transponder system measuring intraocular pressure

    Energy Technology Data Exchange (ETDEWEB)

    Ullerich, S.; Schnakenberg, U. [Technische Hochschule Aachen (Germany). Inst. of Materials in Electrical Engineering 1; Mokwa, W. [Technische Hochschule Aachen (Germany). Inst. of Materials in Electrical Engineering 1]|[Fraunhofer Inst. of Microelectronic Circuits and Systems, Duisburg (Germany); Boegel, G. vom [Fraunhofer Inst. of Microelectronic Circuits and Systems, Duisburg (Germany)

    2001-07-01

    A foldable transponder system consisting of a chip and a micro coil for measuring intraocular pressure continuously is presented. The system will be integrated in the haptic of a soft artificial intraocular lens. Calculations of planar micro coils with 6 mm and 10.3 mm in diameter show the limits for planar coils with an outer diameter of 6 mm. For the realisation of the transponder system a 20 {mu}m thick coil with an outer diameter of 10.3 mm, an inner diameter of 7.7 mm, 16 turns and a gap of 20 {mu}m between the windings was selected. Measurements show a good agreement between calculated and measured values. Wireless pressure measurements were carried out showing a linear behaviour of the output signal with respect to the applied pressure. (orig.)

  15. Photonic crystal fiber coil sensor for water-depth sensing

    Science.gov (United States)

    Fan, Chen-Feng; Yu, Chin-Ping

    2013-05-01

    We fabricate a PCF coil sensor for water-depth sensing by winding a PCF on a plastic straw. Due to the bending-induced birefringence along the PCF, we can observe clear interference pattern in the output spectrum by placing the PCF coil into a Sagnac fiber loop. As we horizontally immerse the fabricated PCF coil into water, a nonlinear relationship between the water depth and the wavelength shift can be obtained. We have also measured the interference spectrum by vertically immersing the PCF coil into water. We can observe a linear relationship between the water depth and the wavelength shift, and the measured water-depth sensitivity for vertical immersion is -1.17 nm/mm.

  16. Control of critical coupling in a coiled coaxial cable resonator.

    Science.gov (United States)

    Huang, Jie; Wei, Tao; Wang, Tao; Fan, Jun; Xiao, Hai

    2014-05-01

    This paper reports a coiled coaxial cable resonator fabricated by cutting a slot in a spring-like coiled coaxial cable to produce a periodic perturbation. Electromagnetic coupling between two neighboring slots was observed. By manipulating the number of slots, critical coupling of the coiled coaxial cable resonator can be well controlled. An ultrahigh signal-to-noise ratio (over 50 dB) at the resonant frequency band was experimentally achieved from a coiled coaxial cable resonator with 38 turns. A theoretic model is developed to understand the device physics. The proposed device can be potentially used as a high quality and flexibly designed band-stop filter or a sensor in structural health monitoring.

  17. Experiment of low resistance joints for the ITER correction coil.

    Science.gov (United States)

    Liu, Huajun; Wu, Yu; Wu, Weiyue; Liu, Bo; Shi, Yi; Guo, Shuai

    2013-01-01

    A test method was designed and performed to measure joint resistance of the ITER correction coil (CC) in liquid helium (LHe) temperature. A 10 kA superconducting transformer was manufactured to provide the joints current. The transformer consisted of two concentric layer-wound superconducting solenoids. NbTi superconducting wire was wound in the primary coil and the ITER CC conductor was wound in the secondary coil. The primary and the secondary coils were both immersed in liquid helium of a 300 mm useful bore diameter cryostat. Two ITER CC joints were assembled in the secondary loop and tested. The current of the secondary loop was ramped to 9 kA in several steps. The two joint resistances were measured to be 1.2 nΩ and 1.65 nΩ, respectively.

  18. Rapid mixing of viscous liquids by electrical coiling

    Science.gov (United States)

    Kong, Tiantian; Li, Jingmei; Liu, Zhou; Zhou, Zhuolong; Ng, Peter Hon Yu; Wang, Liqiu; Shum, Ho Cheung

    2016-02-01

    The control for the processing of precursor liquids determines whether the properties and functions of the final material product can be engineered. An inherent challenge of processing viscous liquids arises from their large resistance to deform. Here, we report on the discovery of an electric approach that can significantly contribute to address this challenge. The applied electric force can induce a straight viscous jet to coil, and the resulting coiling characteristics are governed by the electric stress. We demonstrate the promising use of electrical coiling in the rapid and efficient mixing of viscous liquids. Remarkably, the degree of mixing can be precisely adjusted by tuning the applied electric stress. Our approach of controlling the coiling electrically has important implications on applications such as dispensing and printing of resins, printing patterned surfaces and scaffolds, processing of food and generating non-woven fabrics.

  19. Test data from the US-Demonstration Poloidal Coil experiment

    Energy Technology Data Exchange (ETDEWEB)

    Painter, T.A.; Steeves, M.M.; Takayasu, M.; Gung, C.; Hoenig, M.O. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Plasma Fusion Center; Tsuji, H.; Ando, T.; Hiyama, T.; Takahashi, Y.; Nishi, M.; Yoshida, K.; Okuno, K.; Nakajima, H.; Kato, T.; Sugimoto, M.; Isono, T.; Kawano, K.; Koizumi, N.; Osikiri, M.; Hanawa, H.; Ouchi, H.; Ono, M.; Ishida, H.; Hiue, H.; Yoshida, J.; Kamiyauchi, Y.; Ouchi, T.; Tajiri, F.; Kon, Y.; Shimizu, H.; Matsuzaki, Y.; Oomori, S.; Tani, T.; Oomori, K.; Terakado, T.; Yagyu, J.; Oomori, H. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Superconducting Magnet Lab.

    1992-01-01

    The US Demonstration Poloidal Field Coil (US-DPC) experiment took place successfully at the Japan Atomic Energy Research Institute (JAERI) in late 1990. The 8 MJ niobium-tin coil was leak tight; it performed very well in DC tests; it performed well in AC tests, achieving approximately 70% of its design goal. An unexpected ramp-rate barrier at high currents was identified. The barrier could not be explored in the regime of higher fields and slower ramp rates due to limitations of the background-field coils. This document presents the results of the experiment with as little editing as possible. The coil, conductor, and operating conditions are given. The intent is to present data in a form that can be used by magnet analysts and designers.

  20. Convective heat transfer enhancement inside tubes using inserted helical coils

    Science.gov (United States)

    Ali, R. K.; Sharafeldeen, M. A.; Berbish, N. S.; Moawed, M. A.

    2016-01-01

    Convective heat transfer was experimentally investigated in tubes with helical coils inserts in turbulent flow regime within Reynolds number range of 14400 ≤ Re ≤ 42900. The present work aims to extend the experimental data available on wire coil inserts to cover wire diameter ratio from 0.044 to 0.133 and coil pitch ratio from 1 to 5. Uniform heat flux was applied to the external surface of the tube and air was selected as fluid. The effects of Reynolds number and wire diameter and coil pitch ratios on the Nusselt number and friction factor were studied. The enhancement efficiency and performance criteria ranges are of (46.9-82.6%) and (100.1-128%) within the investigated range of the different parameters, respectively. Correlations are obtained for the average Nusselt number and friction factor utilizing the present measurements within the investigated range of geometrical parameters and Re.

  1. Progress of the ITER Correction Coils in China

    CERN Document Server

    Wei, J; Han, S; Yu, X; Du, S; Li, C; Fang, C; Wang, L; Zheng, W; Liu, L; Wen, J; Li, H; Libeyre, P; Dolgetta, N; Cormany, C; Sgobba, S

    2014-01-01

    The ITER Correction Coils (CC) include three sets of six coils each, distributed symmetrically around the tokamak to correct error fields. Each pair of coils, located on opposite sides of the tokamak, is series connected with polarity to produce asymmetric fields. The manufacturing of these superconducting coils is undergoing qualification of the main fabrication processes: winding into multiple pancakes, welding helium inlet/outlet on the conductor jacket, turn and ground insulation, vacuum pressure impregnation, inserting into an austenitic stainless steel case, enclosure welding, and assembling the terminal service box. It has been proceeding by an intense phase of R\\&D, trials tests, and final adjustment of the tooling. This paper mainly describes the progress in ASIPP for the CC manufacturing process before and on qualification phase and the status of corresponding equipment which are ordered or designed for each process. Some test results for the key component and procedure are also presented.

  2. Experimental evaluation of helically coiled tube flocculators for ...

    African Journals Online (AJOL)

    Experimental evaluation of helically coiled tube flocculators for turbidity removal ... clarification system, while varying hydraulic and geometrical parameters in HCTs. ... of baffled tank processing times) were observed for high efficiency process ...

  3. A hybrid optimization method for biplanar transverse gradient coil design

    Energy Technology Data Exchange (ETDEWEB)

    Qi Feng [Key Laboratory for Quantum Information and Measurements, Ministry of Education, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China); Tang Xin [Beijing Key Laboratory of Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China); Jin Zhe [Key Laboratory for Quantum Information and Measurements, Ministry of Education, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China); Jiang Zhongde [Beijing Key Laboratory of Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China); Shen Yifei [Key Laboratory for Quantum Information and Measurements, Ministry of Education, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China); Meng Bin [Key Laboratory for Quantum Information and Measurements, Ministry of Education, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China); Zu Donglin [Beijing Key Laboratory of Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China); Wang Weimin [Key Laboratory for Quantum Information and Measurements, Ministry of Education, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China)

    2007-05-07

    The optimization of transverse gradient coils is one of the fundamental problems in designing magnetic resonance imaging gradient systems. A new approach is presented in this paper to optimize the transverse gradient coils' performance. First, in the traditional spherical harmonic target field method, high order coefficients, which are commonly ignored, are used in the first stage of the optimization process to give better homogeneity. Then, some cosine terms are introduced into the series expansion of stream function. These new terms provide simulated annealing optimization with new freedoms. Comparison between the traditional method and the optimized method shows that the inhomogeneity in the region of interest can be reduced from 5.03% to 1.39%, the coil efficiency increased from 3.83 to 6.31 mT m{sup -1} A{sup -1} and the minimum distance of these discrete coils raised from 1.54 to 3.16 mm.

  4. NSTX-U Digital Coil Protection System Software Detailed Design

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-06-01

    The National Spherical Torus Experiment (NSTX) currently uses a collection of analog signal processing solutions for coil protection. Part of the NSTX Upgrade (NSTX-U) entails replacing these analog systems with a software solution running on a conventional computing platform. The new Digital Coil Protection System (DCPS) will replace the old systems entirely, while also providing an extensible framework that allows adding new functionality as desired.

  5. Development and testing of the cooling coil cleaning end effector

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K.I.; Mullen, O.D.; Powell, M.R.; Daly, D.S.; Engel, D.W.

    1997-09-30

    The Retrieval Process Development and Enhancement (KPD{ampersand}E) program has developed and tested an end effector to support the waste retrieval mission at the Idaho National Engineering and Environmental Laboratory (INEEL). The end effector was developed specifically to remove a sticky waste material from the cooling coils in the High Level Liquid Waste (HLLW) tank, and to vacuum up a sediment layer that has settled beneath the cooling coils. An extensive testing program was conducted in the hydraulic test bed (HTB) at the Pacific Northwest National Laboratory (PNNL) to evaluate the performance of the end effector under simulated in-tank conditions. A mock up of the cooling coils was installed in the test bed tank, and simulated waste materials were included to represent the sticky waste on the tubes and the particulate waste settled beneath them. The testing program focused on assessing long-duration mining strategies for cleaning the cooling coils and removing the particulate waste forms. The report describes the results of the end effector testing program at PNNL. Section 2 describes the physical characteristics of the HLLW tanks, including the layout of the cooling coils, and it also describes what is known of the waste forms in the tanks. Section 3 describes the cleaning and retrieval strategy that was used in developing the end effector design. Section 4 describes the cooling coil mockup in the hydraulic test bed. Section 5 discusses the rationale used in selecting the simulants for the tarry waste and particulate waste forms. Section 6 describes the tests that were performed to evaluate cleaning of the cooling coils and retrieval of the particulate simulant. Section 7 summarizes the cleaning and retrieval tests, assesses the relative importance of cleaning the cooling coils and retrieving the particulate waste, and suggests modifications that would simplify the end effector design.

  6. Treatment of pulmonary arteriovenous malformation using platinum coils: case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Man Deuk; Kim, Jeung Sook; Lim, Chang Young [College of Medicine, Pochon CHA University, Pochon (China)

    2005-07-15

    Pulmonary arteriovenous malformation (PAVM) is an abnormal direct communication between the pulmonary arteries and veins without any capillary network. The patients may be completely asymptomatic or may they develop serious complications including hemoptysis and brain abscess. We present here a case of incidentally found PAVM in a 33-year-old male who underwent embolization using platinum coils. Coil embolization is a safe, highly effective procedure that should be considered more often for the treatment of PAVM.

  7. High-Q Antennas with built-in coils

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Svendsen, Simon; Pedersen, Gert Frølund

    2014-01-01

    Efficiency and isolation, at low frequencies (700 MHz), are two of the most important metrics for successful multicommunication implementation. This paper presents an antenna concept, that exhibits a very high isolation between high-Q Tx and Rx antennas at 700 MHz. Furthermore, it is shown how...... coils can be integrating into the antenna structure for obtaining better efficiency. It is shown that by integrated coils into the antenna structure, the efficiency can be improved by 2dB for each antenna....

  8. Support system for the W7-X coil assembly

    Energy Technology Data Exchange (ETDEWEB)

    Jaksic, N.; Simon-Weidner, J.; Sapper, J. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1998-07-01

    The WENDELSTEIN 7-X (W7-X) stellarator experiment is now in the state of its final design. The basic confinement system consists of 50 nonplanar and 20 planar superconducting coils. Meanwhile the geometrical data of the coils have been fixed. The changes with respect to the first design influenced the support concept taking into account needs on enlarged space for the different ports and nozzles. (author)

  9. How long does it take to coil an intracranial aneurysm?

    Energy Technology Data Exchange (ETDEWEB)

    Gast, Anjob N. de; Soepboer, Aelwyn; Sluzewski, Menno; Rooij, Willem J. van [St. Elisabeth Ziekenhuis, Department of Radiology, Tilburg (Netherlands); Beute, Guus N. [St. Elisabeth Ziekenhuis, Department of Neurosurgery, Tilburg (Netherlands)

    2008-01-15

    The change in the treatment of choice for intracranial aneurysms from clipping to coiling has been associated with an important change in logistics. The time needed for coiling is variable and depends on many factors. In this study, we assessed the procedural time for the coiling of 642 aneurysms and tried to identify predictors of a long procedural time. The procedural time for coiling was defined as the number of minutes between the first diagnostic angiographic run and the last angiographic run after embolization. Thus, induction of general anesthesia and catheterization of the first vessel were not included in the procedural time. A long procedural time was defined as the upper quartile of procedural times (70-158 min). Logistic regression analysis was performed for several variables. The mean procedural time was 57.3 min (median 52 min, range 15-158 min). More than half of the coiling procedures lasted between 30 and 60 min. Multiple logistic regression analysis identified the use of a supportive device (OR 5.4), procedural morbidity (OR 4.5) and large aneurysm size (OR 3.0) as independent predictors of a long procedural time. A poor clinical condition of the patient, the rupture status of the aneurysm, gender, the occurrence of procedural rupture, and aneurysm location were not related to a long procedural time. The mean time for the first 321 coiling procedures was not statistically significantly different from mean time for the last 321 procedures. With optimal logistics, coiling of most intracranial aneurysms can be performed in one to two hours, including patient handling before and after the actual coiling procedure. (orig.)

  10. Electroformed Electrodes for Electrical-Discharge Machining

    Science.gov (United States)

    Werner, A.; Cassidenti, M.

    1984-01-01

    Copper electrodes replace graphite electrodes in many instances of electrical-discharge machining (EDM) of complex shapes. Copper electrodes wear longer and cause less contamination of EDM dielectric fluid than do graphite electrodes.

  11. Design of an MgB2 race track coil for a wind generator pole demonstration

    NARCIS (Netherlands)

    Abrahamsen, A.B.; Magnusson, N.; Jensen, B.B.; Liu, D.; Polinder, H.

    2014-01-01

    An MgB2 race track coil intended for demonstrating a down scaled pole of a 10 MW direct drive wind turbine generator has been designed. The coil consists of 10 double pancake coils stacked into a race track coil with a cross section of 84 mm x 80 mm. The length of the straight section is 0.5 m and t

  12. Design of an MgB2 race track coil for a wind generator pole demonstration

    NARCIS (Netherlands)

    Abrahamsen, A.B.; Magnusson, N.; Jensen, B.B.; Liu, D.; Polinder, H.

    2014-01-01

    An MgB2 race track coil intended for demonstrating a down scaled pole of a 10 MW direct drive wind turbine generator has been designed. The coil consists of 10 double pancake coils stacked into a race track coil with a cross section of 84 mm x 80 mm. The length of the straight section is 0.5 m and

  13. Retrieval of a Migrated Coil Using an X6 MERCI Device.

    LENUS (Irish Health Repository)

    O'Hare, A

    2009-03-31

    Summary: Coil migration is a recognised but rare complication of endovascular coiling. Many techniques are available commercially for coil retrieval. We report the case of an acute subarachnoid hemorrhage in a 54-year-old woman in which a migrated coil was successfully retrieved using an X6 MERCI device.

  14. Piezoelectric response of a PZT thin film to magnetic fields from permanent magnet and coil combination

    Science.gov (United States)

    Guiffard, B.; Seveno, R.

    2015-01-01

    In this study, we report the magnetically induced electric field E 3 in Pb(Zr0.57Ti0.43)O3 (PZT) thin films, when they are subjected to both dynamic magnetic induction (magnitude B ac at 45 kHz) and static magnetic induction ( B dc) generated by a coil and a single permanent magnet, respectively. It is found that highest sensitivity to B dc——is achieved for the thin film with largest effective electrode. This magnetoelectric (ME) effect is interpreted in terms of coupling between eddy current-induced Lorentz forces (stress) in the electrodes of PZT and piezoelectricity. Such coupling was evidenced by convenient modelling of experimental variations of electric field magnitude with both B ac and B dc induction magnitudes, providing imperfect open circuit condition was considered. Phase angle of E 3 versus B dc could also be modelled. At last, the results show that similar to multilayered piezoelectric-magnetostrictive composite film, a PZT thin film made with a simple manufacturing process can behave as a static or dynamic magnetic field sensor. In this latter case, a large ME voltage coefficient of under B dc = 0.3 T was found. All these results may provide promising low-cost magnetic energy harvesting applications with microsized systems.

  15. The Effect of Axial Stress on YBCO Coils

    Energy Technology Data Exchange (ETDEWEB)

    Sampson, W.; Anerella, M.; Cozzolino, J.P.; Gupta, R.C.; Shiroyanagi, Y.; Evangelou, E.

    2011-03-28

    The large aspect ratio of typical YBCO conductors makes them ideal for constructing solenoids from pancake style coils. An advantage of this method is that each subunit can be tested before assembly into the finished magnet. The fact that conductors are available in relatively short lengths is another reason for using such a fabrication technique. The principal drawback is the large number of joints required to connect the coils together. When very high field solenoids such as those contemplated for the muon collider are built in this way the magnetic forces between pancakes can be very large. Extensive measurements have been made on the effect of stress on short lengths of conductor, but there is little or no data on the effect of intercoil loading. The experiment described in this paper was designed to test the ability of YBCO coils to withstand these forces. A spiral wound 'pancake' coil made from YBCO coated conductor has been stressed to a pressure of 100MPa in the axial direction at 77K. In this case axial refers to the coil so that the force is applied to the edge of the conductor. The effect on the critical current was small and completely reversible. Repeatedly cycling the pressure had no measureable permanent effect on the coil. The small current change observed exhibited a slight hysteretic behaviour during the loading cycle.

  16. Low Impedance Voice Coils for Improved Loudspeaker Efficiency

    DEFF Research Database (Denmark)

    Iversen, Niels Elkjær; Knott, Arnold; Andersen, Michael A. E.

    2015-01-01

    In modern audio systems utilizing switch-mode amplifiers the total efficiency is dominated by the rather poor efficiency of the loudspeaker. For decades voice coils have been designed so that nominal resistances of 4 to 8 Ohms is obtained, despite modern audio amplifiers, using switch-mode techno......In modern audio systems utilizing switch-mode amplifiers the total efficiency is dominated by the rather poor efficiency of the loudspeaker. For decades voice coils have been designed so that nominal resistances of 4 to 8 Ohms is obtained, despite modern audio amplifiers, using switch......-mode technology, can be designed to much lower loads. A thorough analysis of the loudspeaker efficiency is presented and its relation to the voice coil fill factor is described. A new parameter, the drivers mass ratio, is introduced and it indicates how much a fill factor optimization will improve a driver......’s efficiency. Different voice coil winding layouts are described and their fill factors analyzed. It is found that by lowering the nominal resistance of a voice coil, using rectangular wire, one can increase the fill factor. Three voice coils are designed for a standard 10” woofer and corresponding frequency...

  17. Effect of Metal Proximity on a Pulsed Copper Coil

    Science.gov (United States)

    Johnson, H. K.; Schaffner, D. A.; Brown, M. R.; Kaur, M.; Fiedler-Kawaguchi, C.

    2016-10-01

    Generating and accelerating plasma in a stainless steel chamber affects the magnetic fields inside. These effects will decrease the field due to a pulsed coil (which will later be used to accelerate plasma) inside the chamber. This work is being done in conjunction with the Swarthmore Spheromak Experiment. Both facilities are collaborating in an attempt to accelerate and compress plasma as part of ARPA-E's Accelerating Low-Cost Plasma Heating and Assembly (ALPHA) program. Measurements of the impact of the chamber on the coil's magnetic fields were made using a B-dot probe inside the coil, which was placed at incremental distances from a metal plate. As the coil is moved from the plate, the plate's interference with the field was seen to exponentially decay. This process was repeated for stainless steel, aluminum, and copper, and a range of voltages (500-800V). At least seventy percent of the original signal was recovered within two inches. Pulsing the coil inside the stainless steel chamber resulted in signals about one third the strength of those measured outside of the chamber. The results of this experiment will be used to guide development of the stainless steel pulse-coil system for the Swarthmore ALPHA project. Work supported by ARPA-E ALPHA program.

  18. NMR of thin layers using a meanderline surface coil

    Science.gov (United States)

    Cowgill, Donald F.

    2001-01-01

    A miniature meanderline sensor coil which extends the capabilities of nuclear magnetic resonance (NMR) to provide analysis of thin planar samples and surface layer geometries. The sensor coil allows standard NMR techniques to be used to examine thin planar (or curved) layers, extending NMRs utility to many problems of modern interest. This technique can be used to examine contact layers, non-destructively depth profile into films, or image multiple layers in a 3-dimensional sense. It lends itself to high resolution NMR techniques of magic angle spinning and thus can be used to examine the bonding and electronic structure in layered materials or to observe the chemistry associated with aging coatings. Coupling this sensor coil technology with an arrangement of small magnets will produce a penetrator probe for remote in-situ chemical analysis of groundwater or contaminant sediments. Alternatively, the sensor coil can be further miniaturized to provide sub-micron depth resolution within thin films or to orthoscopically examine living tissue. This thin-layer NMR technique using a stationary meanderline coil in a series-resonant circuit has been demonstrated and it has been determined that the flat meanderline geometry has about he same detection sensitivity as a solenoidal coil, but is specifically tailored to examine planar material layers, while avoiding signals from the bulk.

  19. Automatic tuning of flexible interventional RF receiver coils.

    Science.gov (United States)

    Venook, Ross D; Hargreaves, Brian A; Gold, Garry E; Conolly, Steven M; Scott, Greig C

    2005-10-01

    Microcontroller-based circuitry was built and tested for automatically tuning flexible RF receiver coils at the touch of a button. This circuitry is robust to 10% changes in probe center frequency, is in line with the scanner, and requires less than 1 s to tune a simple probe. Images were acquired using this circuitry with a varactor-tunable 1-inch flexible probe in a phantom and in an in vitro porcine knee model. The phantom experiments support the use of automatic tuning by demonstrating 30% signal-to-noise ratio (SNR) losses for 5% changes in coil center frequency, in agreement with theoretical calculations. Comparisons between patellofemoral cartilage images obtained using a 3-inch surface coil and the surgically-implanted 1-inch flexible coil reveal a worst-case local SNR advantage of a factor of 4 for the smaller coil. This work confirms that surgically implanted coils can greatly improve resolution in small-field-of-view (FOV) applications, and demonstrates the importance and feasibility of automatically tuning such probes.

  20. First ATLAS Barrel Toroid coil casing arrives at CERN

    CERN Multimedia

    2002-01-01

    The first of eight 25-metre long coil casings for the ATLAS experiment's barrel toroid magnet system arrived at CERN on Saturday 2 March by road from Heidelberg. This structure will be part of the largest superconducting toroid magnet ever made.   The first coil casing for the toroidal magnets of Atlas arrives at Building 180. This is the start of an enormous three-dimensional jigsaw puzzle. Each of the eight sets of double pancake coils will be housed inside aluminium coil casings, which in turn will be held inside a stainless steel vacuum vessel. A huge construction, the casing that arrived at CERN measures 25 metres in length and 5 metres in width. It weighs 20 tones. And this is just the beginning of the toroid jigsaw: by early April a batch of four double pancake coils, which altogether weighs 65 tones, will arrive from Ansaldo in Italy. The first vacuum vessel will also be arriving from Felguera in Spain this month. It will take about two years for all these 25 m long structures of casings, coils a...

  1. COMPLICATION ANALYSIS OF INTRACRANIAL ANEURYSM EMBOLIZATION WITH CONTROLLABLE COILS

    Institute of Scientific and Technical Information of China (English)

    王大明; 凌锋; 王安顺

    2004-01-01

    Objective To explore the causes, prevention, and management of the complications during intracranial aneurysm embolization with controllable coils (mechanical detachable spiral, MDS; and Guglielmi detachable coil, GDC). Methods Retrospective review of 120 cases with 125 intracranial aneurysms embolized with controllable coils from March 1995 to July 1999 was conducted. The 20 accidents (in 18 cases) including aneurysm rupture, over-embolization, protrusion of coil end into the parent artery, and thrombosis of the parent artery were analyzed. Results Among the 20 accidents, there were 6 aneurysm ruptures, 6 over-embolizations (in 5cases), 6 coil protrusions, and 2 thromboses (one was secondary to coil protrusion). The embolizationrelated mortality was 3.33% (4/120), the permanent neurological deficit was 1.67% (2/120), and the transitory neurological deficit was 3.33% (4/120). The occurrence and outcome of the complications were related to the embolizing technique, the pattern of aneurysm and its parent artery, the imperfection of embolic materials, and the observation and management during embolization. Conclusion Skilled embolizing technique, better understanding of the angio-anatomy of an aneurysm and its parent artery, correct judgement and management during embolization, and improvement of embolic materials are beneficial to the reduction of complications and to the melioration of the outcome of complications.

  2. Endovascular therapy of arteriovenous fistulae with electrolytically detachable coils

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, O.; Doerfler, A.; Forsting, M.; Hartmann, M.; Kummer, R. von; Tronnier, V.; Sartor, K. [Dept. of Neuroradiology, University of Heidelberg Medical School (Germany)

    1999-12-01

    We report our experience in using Guglielmi electrolytically detachable coils (GDC) alone or in combination with other materials in the treatment of intracranial or cervical high-flow fistulae. We treated 14 patients with arteriovenous fistulae on brain-supplying vessels - three involving the external carotid or the vertebral artery, five the cavernous sinus and six the dural sinuses - by endovascular occlusion using electrolytically detachable platinum coils. The fistula was caused by trauma in six cases. In one case Ehlers-Danlos syndrome was the underlying disease, and in the remaining seven cases no aetiology could be found. Fistulae of the external carotid and vertebral arteries and caroticocavernous fistulae were reached via the transarterial route, while in all dural fistulae a combined transarterial-transvenous approach was chosen. All fistulae were treated using electrolytically detachable coils. While small fistulae could be occluded with electrolytically detachable coils alone, large fistulae were treated by using coils to build a stable basket for other types of coil or balloons. In 11 of the 14 patients, endovascular treatment resulted in complete occlusion of the fistula; in the remaining three occlusion was subtotal. Symptoms and signs were completely abolished by this treatment in 12 patients and reduced in 2. On clinical and neuroradiological follow-up (mean 16 months) no reappearance of symptoms was recorded. (orig.)

  3. Electrode models in electrical impedance tomography

    Institute of Scientific and Technical Information of China (English)

    WANG M.

    2005-01-01

    This paper presents different views on electrode modelling, which include electrode electrochemistry models for modelling the effects of electrode-electrolyte interface, electric field electrode models for modelling electrode geometry, and electrode models for modelling the effects of electrode common mode voltage and double layer capacitance. Taking the full electrode models into consideration .in electrical impedance tomography (EIT) will greatly help the optimised approach to a good solution and further understanding of the measurement principle.

  4. [Surgical Removal of Migrated Coil after Embolization of Jejunal Variceal Bleeding: A Case Report].

    Science.gov (United States)

    Kim, Junhwan; Lee, Danbi; Oh, Kyunghwan; Lee, Mingee; So, Seol; Yang, Dong Hoon; Kim, Chan Wook; Gwon, Dong Il; Chung, Young Hwa

    2017-01-25

    Jejunal variceal bleeding is less common compared with esophagogastric varices in patients with portal hypertension. However, jejunal variceal bleeding can be fatal without treatment. Treatments include surgery, transjugular intrahepatic porto-systemic shunt (TIPS), endoscopic sclerotherapy, percutaneous coil embolization, and balloon-occluded retrograde transvenous obliteration (BRTO). Percutaneous coil embolization can be considered as an alternative treatment option for those where endoscopic sclerotherapy, surgery, TIPS or BRTO are not possible. Complications of percutaneous coil embolization have been reported, including coil migration. Herein, we report a case of migration of the coil into the jejunal lumen after percutaneous coil embolization for jejunal variceal bleeding. The migrated coil was successfully removed using surgery.

  5. Improved SNR of phased-array PERES coils via simulation study

    Energy Technology Data Exchange (ETDEWEB)

    RodrIguez, Alfredo O [Centro de Investigacion en Imagenologia e Instrumentacion Medica, Universidad Autonoma Metropolitana Iztapalapa, Av. San Rafael Atlixco 186, Mexico, DF, 09340 (Mexico); Medina, LucIa [DISCA, Instituto de Investigacion en Matematicas Aplicadas y Sistemas, Universidad Nacional Autonoma de Mexico, AP 20-728, Admo. No. 20, 01000 Mexico, DF (Mexico); Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 Mexico, DF (Mexico)

    2005-09-21

    A computational comparison of signal-to-noise ratio (SNR) was performed between a conventional phased array of two circular-shaped coils and a petal resonator surface array. The quasi-static model and phased-array optimum SNR were combined to derive an SNR formula for each array. Analysis of mutual inductance between coil petals was carried out to compute the optimal coil separation and optimum number of petal coils. Mutual interaction between coil arrays was not included in the model because this does not drastically affect coil performance. Phased arrays of PERES coils show a 114% improvement in SNR over that of the simplest circular configuration. (note)

  6. Rationally designed coiled-coil DNA looping peptides control DNA topology.

    Science.gov (United States)

    Gowetski, Daniel B; Kodis, Erin J; Kahn, Jason D

    2013-09-01

    Artificial DNA looping peptides were engineered to study the roles of protein and DNA flexibility in controlling the geometry and stability of protein-mediated DNA loops. These LZD (leucine zipper dual-binding) peptides were derived by fusing a second, C-terminal, DNA-binding region onto the GCN4 bZip peptide. Two variants with different coiled-coil lengths were designed to control the relative orientations of DNA bound at each end. Electrophoretic mobility shift assays verified formation of a sandwich complex containing two DNAs and one peptide. Ring closure experiments demonstrated that looping requires a DNA-binding site separation of 310 bp, much longer than the length needed for natural loops. Systematic variation of binding site separation over a series of 10 constructs that cyclize to form 862-bp minicircles yielded positive and negative topoisomers because of two possible writhed geometries. Periodic variation in topoisomer abundance could be modeled using canonical DNA persistence length and torsional modulus values. The results confirm that the LZD peptides are stiffer than natural DNA looping proteins, and they suggest that formation of short DNA loops requires protein flexibility, not unusual DNA bendability. Small, stable, tunable looping peptides may be useful as synthetic transcriptional regulators or components of protein-DNA nanostructures.

  7. Transforming the Energy Landscape of a Coiled-Coil Peptide via Point Mutations.

    Science.gov (United States)

    Röder, Konstantin; Wales, David J

    2017-03-14

    We analyze the effect of point mutations on the energy landscape of a coiled-coil peptide, GCN4-pLI, where the native state is a parallel tetrameric configuration formed from two identical dimers. Experimentally, a single mutation, E20S, supports both antiparallel and parallel structures. Here, we analyze the potential energy landscapes of the dimeric units for the parent sequence and four mutants, namely E20S, E20A, E20P, and E20G. Despite sharing characteristic funnels containing the parallel and antiparallel structures, the point mutations change some parts of the landscape quite dramatically, and we predict new intermediate structures and characterize the associated heat capacities. For the mutants we predict that kinked intermediate structures facilitate the transition between parallel and antiparallel morphologies, in contrast to the parent sequence. Furthermore, we predict a change from a multifunnel energy landscape in the E20S mutant to a landscape dominated by an underlying single funnel in the parent sequence, with accompanying heat capacity signatures. Our results imply that changes in the landscape due to mutations might provide useful tools for functional protein design.

  8. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1983-01-01

    Ion-Selective Electrode Reviews, Volume 5 is a collection of articles that covers ion-speciation. The book aims to present the advancements of the range and capabilities of selective ion-sensors. The topics covered in the selection are neutral carrier based ion-selective electrodes; reference electrodes and liquid junction effects in ion-selective electrode potentiometry; ion transfer across water/organic phase boundaries and analytical; and carbon substrate ion-selective electrodes. The text will be of great use to chemists and chemical engineers.

  9. Magnetohydrodynamic generator electrode

    Science.gov (United States)

    Marchant, David D.; Killpatrick, Don H.; Herman, Harold; Kuczen, Kenneth D.

    1979-01-01

    An improved electrode for use as a current collector in the channel of a magnetohydrodynamid (MHD) generator utilizes an elongated monolithic cap of dense refractory material compliantly mounted to the MHD channel frame for collecting the current. The cap has a central longitudinal channel which contains a first layer of porous refractory ceramic as a high-temperature current leadout from the cap and a second layer of resilient wire mesh in contact with the first layer as a low-temperature current leadout between the first layer and the frame. Also described is a monolithic ceramic insulator compliantly mounted to the frame parallel to the electrode by a plurality of flexible metal strips.

  10. Biochemical and molecular dynamic simulation analysis of a weak coiled coil association between kinesin-II stalks.

    Directory of Open Access Journals (Sweden)

    Harinath Doodhi

    Full Text Available DEFINITION: Kinesin-2 refers to the family of motor proteins represented by conserved, heterotrimeric kinesin-II and homodimeric Osm3/Kif17 class of motors. BACKGROUND: Kinesin-II, a microtubule-based anterograde motor, is composed of three different conserved subunits, named KLP64D, KLP68D and DmKAP in Drosophila. Although previous reports indicated that coiled coil interaction between the middle segments of two dissimilar motor subunits established the heterodimer, the molecular basis of the association is still unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here, we present a detailed heterodimeric association model of the KLP64D/68D stalk supported by extensive experimental analysis and molecular dynamic simulations. We find that KLP64D stalk is unstable, but forms a weak coiled coil heteroduplex with the KLP68D stalk when coexpressed in bacteria. Local instabilities, relative affinities between the C-terminal stalk segments, and dynamic long-range interactions along the stalks specify the heterodimerization. Thermal unfolding studies and independent simulations further suggest that interactions between the C-terminal stalk fragments are comparatively stable, whereas the N-terminal stalk reversibly unfolds at ambient temperature. CONCLUSIONS/SIGNIFICANCE: Results obtained in this study suggest that coiled coil interaction between the C-terminal stalks of kinesin-II motor subunits is held together through a few hydrophobic and charged interactions. The N-terminal stalk segments are flexible and could uncoil reversibly during a motor walk. This supports the requirement for a flexible coiled coil association between the motor subunits, and its role in motor function needs to be elucidated.

  11. Nitroxid-vermittelte Polymerisation mittels NMR-Sonden tragender Initiatoren zur Darstellung von coil-rod-coil-Blockcopolymeren

    OpenAIRE

    Tietz, Marco

    2016-01-01

    A systematic synthesis for coil-rod-coil(c-r-c) block copolymers with differing material characteristics should lead to the usage of c-r-c block copolymers as surface probes and for the study of the self assembling behavior of c-r-c block copolymers. Therefor 2,2,5-Trimethyl-4-phenyl-3-azahexane-3-nitroxide (TIPNO) based alkoxyamines with covalently attached NMR probes where synthesized starting from nitroxides and functionalized styrenes. These alkoxyamines were used as initiators f...

  12. Electrocatalysts for oxygen electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Yeager, E.B. (Case Western Reserve Univ., Cleveland, OH (United States))

    1991-10-01

    The objectives of the research were: to develop further understanding of the factors controlling O{sub 2} reduction and generation on various electrocatalysts, including transition metal macrocycles and oxides: to use this understanding to identify and develop much higher activity catalysts, both monofunction and bifunction; and to establish how catalytic activity for a given O{sub 2} electrocatalyst depends on catalyst-support interactions and to identify stable catalyst supports for bifunctional electrodes.

  13. Composite electrodes for lithium batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Hackney, S. A.; Johnson, C. S.; Kahaian, A. J.; Kepler, K. D.; Shao-Horn, Y.; Thackeray, M. M.; Vaughey, J. T.

    1999-02-03

    The stability of composite positive and negative electrodes for rechargeable lithium batteries is discussed. Positive electrodes with spinel-type structures that are derived from orthorhombic-LiMnO{sub 2} and layered-MnO{sub 2} are significantly more stable than standard spinel Li[Mn{sub 2}]O{sub 4} electrodes when cycled electrochemically over both the 4-V and 3-V plateaus in lithium cells. Transmission electron microscope data of cycled electrodes have indicated that a composite domain structure accounts for this greater electrochemical stability. The performance of composite Cu{sub x}Sn materials as alternative negative electrodes to amorphous SnO{sub x} electrodes for lithium-ion batteries is discussed in terms of the importance of the concentration of the electrochemically inactive copper component in the electrode.

  14. Testing of a Single 11 T $Nb_3Sn$ Dipole Coil Using a Dipole Mirror Structure

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, Alexander [Fermilab; Andreev, Nicolai [Fermilab; Barzi, Emanuela [Fermilab; Chlachidze, Guram [Fermilab; Kashikhin, Vadim [Fermilab; Nobrega, Alfred [Fermilab; Novitski, Igor [Fermilab; Turrioni, Daniele [Fermilab; Karppinen, Mikko [CERN; Smekens, David [CERN

    2014-07-01

    FNAL and CERN are developing an 11 T Nb3Sn dipole suitable for installation in the LHC. To optimize coil design parameters and fabrication process and study coil performance, a series of 1 m long dipole coils is being fabricated. One of the short coils has been tested using a dipole mirror structure. This paper describes the dipole mirror magnetic and mechanical designs, and reports coil parameters and test results.

  15. [High resolution MR imaging of the hip using pelvic phased-array coil].

    Science.gov (United States)

    Niitsu, M; Mishima, H; Itai, Y

    1997-01-01

    A pelvic phased-array coil was applied to obtain high resolution MR images of the hip. Three-mm-thick fast spinecho images were obtained in seven hips. Images with a pelvic coil enhanced delineation of acetabular labrum and articular cartilage more clearly than those with a body coil or flexible-surface coil. The use of a pelvic coil in imaging of the hip may be of diagnostic value because of its superior delineation.

  16. Liquid Crystalline Assembly of Coil-Rod-Coil Molecules with Lateral Methyl Groups into 3-D Hexagonal and Tetragonal Assemblies

    Science.gov (United States)

    Wang, Zhuoshi; Lan, Yu; Zhong, Keli; Liang, Yongri; Chen, Tie; Jin, Long Yi

    2014-01-01

    In this paper, we report the synthesis and self-assembly behavior of coil-rod-coil molecules, consisting of three biphenyls linked through a vinylene unit as a conjugated rod segment and poly(ethylene oxide) (PEO) with a degree of polymerization (DP) of 7, 12 and 17, incorporating lateral methyl groups between the rod and coil segments as the coil segment. Self-organized investigation of these molecules by means of differential scanning calorimetry (DSC), thermal polarized optical microscopy (POM) and X-ray diffraction (XRD) reveals that the lateral methyl groups attached to the surface of rod and coil segments, dramatically influence the self-assembling behavior in the liquid-crystalline mesophase. Molecule 1 with a relatively short PEO coil length (DP = 7) self-assembles into rectangular and oblique 2-dimensional columnar assemblies, whereas molecules 2 and 3 with DP of 12 and 17 respectively, spontaneously self-organize into unusual 3-dimensional hexagonal close-packed or body-centered tetragonal assemblies. PMID:24699045

  17. Rice Cellulose SynthaseA8 Plant-Conserved Region Is a Coiled-Coil at the Catalytic Core Entrance

    Energy Technology Data Exchange (ETDEWEB)

    Rushton, Phillip S.; Olek, Anna T.; Makowski, Lee; Badger, John; Steussy, C. Nicklaus; Carpita, Nicholas C.; Stauffacher, Cynthia V.

    2016-11-22

    The crystallographic structure of a rice (Oryza sativa) cellulose synthase, OsCesA8, plant-conserved region (P-CR), one of two unique domains in the catalytic domain of plant CesAs, was solved to 2.4 Å resolution. Two antiparallel α-helices form a coiled-coil domain linked by a large extended connector loop containing a conserved trio of aromatic residues. The P-CR structure was fit into a molecular envelope for the P-CR domain derived from small-angle X-ray scattering data. The P-CR structure and molecular envelope, combined with a homology-based chain trace of the CesA8 catalytic core, were modeled into a previously determined CesA8 small-angle X-ray scattering molecular envelope to produce a detailed topological model of the CesA8 catalytic domain. The predicted position for the P-CR domain from the molecular docking models places the P-CR connector loop into a hydrophobic pocket of the catalytic core, with the coiled-coil aligned near the entrance of the substrate UDP-glucose into the active site. In this configuration, the P-CR coiled-coil alone is unlikely to regulate substrate access to the active site, but it could interact with other domains of CesA, accessory proteins, or other CesA catalytic domains to control substrate delivery.

  18. Liquid Crystalline Assembly of Coil-Rod-Coil Molecules with Lateral Methyl Groups into 3-D Hexagonal and Tetragonal Assemblies

    Directory of Open Access Journals (Sweden)

    Zhuoshi Wang

    2014-04-01

    Full Text Available In this paper, we report the synthesis and self-assembly behavior of coil-rod-coil molecules, consisting of three biphenyls linked through a vinylene unit as a conjugated rod segment and poly(ethylene oxide (PEO with a degree of polymerization (DP of 7, 12 and 17, incorporating lateral methyl groups between the rod and coil segments as the coil segment. Self-organized investigation of these molecules by means of differential scanning calorimetry (DSC, thermal polarized optical microscopy (POM and X-ray diffraction (XRD reveals that the lateral methyl groups attached to the surface of rod and coil segments, dramatically influence the self-assembling behavior in the liquid-crystalline mesophase. Molecule 1 with a relatively short PEO coil length (DP = 7 self-assembles into rectangular and oblique 2-dimensional columnar assemblies, whereas molecules 2 and 3 with DP of 12 and 17 respectively, spontaneously self-organize into unusual 3-dimensional hexagonal close-packed or body-centered tetragonal assemblies.

  19. Design of the dummy coil for magnet power supply

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Hwan, E-mail: kch2004@nfri.re.kr; Choi, Jae-Hoon; Jin, Jong-Kook; Lee, Dong-Keun; Kong, Jong-Dea; Joung, Nam-Young; Kim, Sang-Tae; Kim, Young-Jin; Kim, Yang-Soo; Kwon, Myeun

    2013-11-15

    Highlights: • It is necessary to confirm safety of the MPS on a dummy coil before the operating it. • We selected and designed the water cooling type dummy coil to test on the MPS's rating (12.5 kA) test. • For the design of the dummy coil, we considered requirements about electrical, structural and water cooling. • We will test as the rating power after MPS upgrade and that test will do before every KSTAR campaign. -- Abstract: It is necessary to test it on a dummy coil, before using a magnet power supply (MPS) to energize a Poloidal Field (PF) coil in the Korea Superconducting Tokamak Advanced Research (KSTAR) device. The dummy coil should accept the same large current from the MPS as the PF coil and be within the capability of the utilities located at the KSTAR site. Therefore a coil design based on the characteristics of the MPS and other restrictive conditions needed to be made. There are three requirements to be met in the design: an electrical requirement, a structural requirement, and a water cooling requirement. The electrical requirement was that the coil should have an inductance of 40 mH. For the structural requirement, the material should be non magnetic. The coil support structure and water cooling manifold were made of SUS 304. The water cooling requirement was that there should be sufficient flow rate so that the temperature rise ΔT should not exceed 12 °C for operation at 12.5 kA for 5 min. Square cross-section hollow conductor with dimensions of 38.1 mm × 38.1 mm was used with a 25.4 mm center hole for cooling water. However, as a result of tests, it was found that the electrical and structural requirements were satisfied but that the water cooling was over designed. It is imperative that the verification will be redone for a test with 12.5 kA for 5 min.

  20. Electrical engineering. Coiling of rotating machines; Genie electrique. Bobinage des machines tournantes a courant alternatif

    Energy Technology Data Exchange (ETDEWEB)

    Saint-Michel, J. [Moteurs Leroy Somer, 16 - Angouleme (France)

    2001-02-01

    This article treats of the poly-phase coiling of AC rotating machines. For simplification reasons, the study has been limited to tri-phase coils, but the theoretical calculations can be extended to any other number of phases. The coils described are those encountered in the stators of synchronous and asynchronous machines and in the rotors of asynchronous machines with rings. The qualitative, quantitative and practical aspects are presented successively: 1 - magnetic field produced by a coil (single turn, distributed coil, coil schemes, multi-polarity coils); 2 - field generated by a tri-phase coil (rotating field theorem, qualitative influence of space harmonics); 3 - quantitative analysis of coil properties (magneto-motive force generated by coils, harmonic decomposition of the magneto-motive force wave, global coiling coefficients); 4 - comparative study of different regular coils (diametrical step, shortened step, distributed); 5 - irregular coils; 6 - other double polarity coils (Dahlander coupling, other multiple polarity possibilities); 7 - reduction of teething harmonics (determination of optimal twisting, influence of inclination on the dimensioning of machines); 8 - practical realization of coils (insulation, insertion inside the machine). (J.S.)

  1. [Development of RF coil of permanent magnet mini-magnetic resonance imager and mouse imaging experiments].

    Science.gov (United States)

    Hou, Shulian; Xie, Huantong; Chen, Wei; Wang, Guangxin; Zhao, Qiang; Li, Shiyu

    2014-10-01

    In the development of radio frequency (RF) coils for better quality of the mini-type permanent magnetic resonance imager for using in the small animal imaging, the solenoid RF coil has a special advantage for permanent magnetic system based on analyses of various types.of RF coils. However, it is not satisfied for imaging if the RF coils are directly used. By theoretical analyses of the magnetic field properties produced from the solenoid coil, the research direction was determined by careful studies to raise further the uniformity of the magnetic field coil, receiving coil sensitivity for signals and signal-to-noise ratio (SNR). The method had certain advantages and avoided some shortcomings of the other different coil types, such as, birdcage coil, saddle shaped coil and phased array coil by using the alloy materials (from our own patent). The RF coils were designed, developed and made for keeled applicable to permanent magnet-type magnetic resonance imager, multi-coil combination-type, single-channel overall RF receiving coil, and applied for a patent. Mounted on three instruments (25 mm aperture, with main magnetic field strength of 0.5 T or 1.5 T, and 50 mm aperture, with main magnetic field strength of 0.48 T), we performed experiments with mice, rats, and nude mice bearing tumors. The experimental results indicated that the RF receiving coil was fully applicable to the permanent magnet-type imaging system.

  2. Structural mapping of the coiled-coil domain of a bacterial condensin and comparative analyses across all domains of life suggest conserved features of SMC proteins.

    Science.gov (United States)

    Waldman, Vincent M; Stanage, Tyler H; Mims, Alexandra; Norden, Ian S; Oakley, Martha G

    2015-06-01

    The structural maintenance of chromosomes (SMC) proteins form the cores of multisubunit complexes that are required for the segregation and global organization of chromosomes in all domains of life. These proteins share a common domain structure in which N- and C- terminal regions pack against one another to form a globular ATPase domain. This "head" domain is connected to a central, globular, "hinge" or dimerization domain by a long, antiparallel coiled coil. To date, most efforts for structural characterization of SMC proteins have focused on the globular domains. Recently, however, we developed a method to map interstrand interactions in the 50-nm coiled-coil domain of MukB, the divergent SMC protein found in γ-proteobacteria. Here, we apply that technique to map the structure of the Bacillus subtilis SMC (BsSMC) coiled-coil domain. We find that, in contrast to the relatively complicated coiled-coil domain of MukB, the BsSMC domain is nearly continuous, with only two detectable coiled-coil interruptions. Near the middle of the domain is a break in coiled-coil structure in which there are three more residues on the C-terminal strand than on the N-terminal strand. Close to the head domain, there is a second break with a significantly longer insertion on the same strand. These results provide an experience base that allows an informed interpretation of the output of coiled-coil prediction algorithms for this family of proteins. A comparison of such predictions suggests that these coiled-coil deviations are highly conserved across SMC types in a wide variety of organisms, including humans. © 2015 Wiley Periodicals, Inc.

  3. Magnetic field modeling with a set of individual localized coils.

    Science.gov (United States)

    Juchem, Christoph; Nixon, Terence W; McIntyre, Scott; Rothman, Douglas L; de Graaf, Robin A

    2010-06-01

    A set of generic, circular individual coils is shown to be capable of generating highly complex magnetic field distributions in a flexible fashion. Arbitrarily oriented linear field gradients can be generated in three-dimensional as well as sliced volumes at amplitudes that allow imaging applications. The multi-coil approach permits the simultaneous generation of linear MRI encoding fields and complex shim fields by the same setup, thereby reducing system complexity. The choice of the sensitive volume over which the magnetic fields are optimized remains temporally and spatially variable at all times. The restriction of the field synthesis to experimentally relevant, smaller volumes such as single slices directly translates into improved efficiency, i.e. higher magnetic field amplitudes and/or reduced coil currents. For applications like arterial spin labeling, signal spoiling and diffusion weighting, perfect linearity of the gradient fields is not required and reduced demands on accuracy can also be readily translated into improved efficiency. The first experimental realization was achieved for mouse head MRI with 24 coils that were mounted on the surface of a cylindrical former. Oblique linear field gradients of 20 kHz/cm (47 mT/m) were generated with a maximum current of 1.4A which allowed radial imaging of a mouse head. The potential of the new approach for generating arbitrary magnetic field shapes is demonstrated by synthesizing the more complex, higher order spherical harmonic magnetic field distributions X2-Y2, Z2 and Z2X. The new multi-coil approach provides the framework for the integration of conventional imaging and shim coils into a single multi-coil system in which shape, strength, accuracy and spatial coverage of the magnetic field can be specifically optimized for the application at hand.

  4. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game?

    Science.gov (United States)

    Weinberger, Oliver; Winter, Lukas; Dieringer, Matthias A; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf

    2016-01-01

    The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants.

  5. Temperature Profile Measurements During Heat Treatment of BSCCO 2212 Coils

    Energy Technology Data Exchange (ETDEWEB)

    Tollestrup, Alvin; /Fermilab

    2011-04-14

    The temperature profile of two different BSCCO 2212 coils has been analyzed. The profiles are obtained from thermocouples imbedded in the windings during the heat treatment that activates the 2212. The melting and freezing of the 2212 is clearly observed. A model that describes the data and can be used to guide the processing of new coils has been developed. We have obtained the thermal history of two BSCCO coils, one from NHMFL (1) that had 10 layers of 1 mm diameter wire with 0.15 mm insulation and a second coil from OST that had 24 layers with similar insulation and conductor size. Both coils had thermocouples imbedded in the windings and excellent recordings of the temperature over the whole reaction cycle were available for analysis. There are several features that we will address in this note. Measurements have shown that the I{sub c} of the conductor is a sensitive function of its thermal history. This brings up the question of the absolute accuracy of the thermometry in the range around 882 C, the MP of 2212. The reference for the treatment profile is really related to this MP and to small deviations around it. Since the heat of fusion of 2212 is rather large, it generates a clear signal during the melting and cooling transition that automatically generates the relative temperature markers. The physics is the same as the way ice in water maintains an isothermal environment until it is all melted. A related question is the thermal response time of the coil package. The temperature cycles that are being used to optimize strand and small coils can have rapid changes easily implemented whereas a large coil may have such a large thermal time constant that the optimum cycle may not be attainable. A simple analytical model that works well for small solenoids has been developed and an ANSYS (5) program that works for larger coils with more complicated geometry has been set up but will not be discussed in this note.

  6. Gas sensor with multiple internal reference electrodes and sensing electrodes

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a potentiometric gas sensor, or potentiometric gas detection element, with multiple internal reference electrodes and multiple sensing electrodes for determining the concentrations of gas components in a gaseous mixture. The sensor for gas detection comprises: a solid...... electrolyte, at least two sensing electrodes (SEs) in solid contact with the electrolyte, and at least two internal reference electrodes (IREs) in solid contact with the electrolyte, wherein each IRE comprises a composite material, comprising a binary mixture of a metal and a metal oxide dispersed to form...

  7. Hinderin, a five-domains protein including coiled-coil motifs that binds to SMC3

    Directory of Open Access Journals (Sweden)

    Ghiselli Giancarlo

    2005-01-01

    Full Text Available Abstract Background The structural maintenance of chromosome proteins SMC1 and SMC3 play an important role in the maintenance of chromosomal integrity by preventing the premature separation of the sister chromatids at the onset of anaphase. The two proteins are constitutive components of the multimeric complex cohesin and form dimers by interacting at their central globular regions. Results In order to identify proteins that by binding to SMC3 may interfere with the protein dimerization process, a human cDNA library was screened by the yeast two-hybrid system by using the hinge region of SMC3 as bait. This has lead to the identification of Hinderin, a novel five domains protein including two coiled-coil motifs and sharing a strikingly structural similarity to the SMC family of proteins. Hinderin is ubiquitously expressed in human tissues. Orthologue forms of the protein are present in other vertebrates but not in lower organisms. A mapping of the interaction sites revealed that the N- and C-terminal globular domains mediate the binding of Hinderin to SMC3. Hinderin/SMC3 complexes could be recovered by immunoprecipitation from cell lysates using an anti-SMC3 antibody, thus demonstrating that the two proteins interact in vivo. On the contrary, Hinderin did not interact with SMC1. In vivo the rate of SMC1/SMC3 interaction was decreased by the ectopic expression of Hinderin. Conclusions Hinderin is a novel binding partner of SMC3. Based on its ability to modulate SMC1/SMC3 interaction we postulate that Hinderin affects the availability of SMC3 to engage in the formation of multimeric protein complexes.

  8. Association of polyalanine and polyglutamine coiled coils mediates expansion disease-related protein aggregation and dysfunction.

    Science.gov (United States)

    Pelassa, Ilaria; Corà, Davide; Cesano, Federico; Monje, Francisco J; Montarolo, Pier Giorgio; Fiumara, Ferdinando

    2014-07-01

    The expansion of homopolymeric glutamine (polyQ) or alanine (polyA) repeats in certain proteins owing to genetic mutations induces protein aggregation and toxicity, causing at least 18 human diseases. PolyQ and polyA repeats can also associate in the same proteins, but the general extent of their association in proteomes is unknown. Furthermore, the structural mechanisms by which their expansion causes disease are not well understood, and these repeats are generally thought to misfold upon expansion into aggregation-prone β-sheet structures like amyloids. However, recent evidence indicates a critical role for coiled-coil (CC) structures in triggering aggregation and toxicity of polyQ-expanded proteins, raising the possibility that polyA repeats may as well form these structures, by themselves or in association with polyQ. We found through bioinformatics screenings that polyA, polyQ and polyQA repeats have a phylogenetically graded association in human and non-human proteomes and associate/overlap with CC domains. Circular dichroism and cross-linking experiments revealed that polyA repeats can form--alone or with polyQ and polyQA--CC structures that increase in stability with polyA length, forming higher-order multimers and polymers in vitro. Using structure-guided mutagenesis, we studied the relevance of polyA CCs to the in vivo aggregation and toxicity of RUNX2--a polyQ/polyA protein associated with cleidocranial dysplasia upon polyA expansion--and found that the stability of its polyQ/polyA CC controls its aggregation, localization and toxicity. These findings indicate that, like polyQ, polyA repeats form CC structures that can trigger protein aggregation and toxicity upon expansion in human genetic diseases. © The Author 2014. Published by Oxford University Press.

  9. Novel Anti-Nicotine Vaccine Using a Trimeric Coiled-Coil Hapten Carrier.

    Directory of Open Access Journals (Sweden)

    Keith D Miller

    Full Text Available Tobacco addiction represents one of the largest public health problems in the world and is the leading cause of cancer and heart disease, resulting in millions of deaths a year. Vaccines for smoking cessation have shown considerable promise in preclinical models, although functional antibody responses induced in humans are only modestly effective in preventing nicotine entry into the brain. The challenge in generating serum antibodies with a large nicotine binding capacity is made difficult by the fact that this drug is non-immunogenic and must be conjugated as a hapten to a protein carrier. To circumvent the limitations of traditional carriers like keyhole limpet hemocyanin (KLH, we have synthesized a short trimeric coiled-coil peptide (TCC that creates a series of B and T cell epitopes with uniform stoichiometry and high density. Here we compared the relative activities of a TCC-nic vaccine and two control KLH-nic vaccines using Alum as an adjuvant or GLA-SE, which contains a synthetic TLR4 agonist formulated in a stable oil-in-water emulsion. The results showed that the TCC's high hapten density correlated with a better immune response in mice as measured by anti-nicotine Ab titer, affinity, and specificity, and was responsible for a reduction in anti-carrier immunogenicity. The Ab responses achieved with this synthetic vaccine resulted in a nicotine binding capacity in serum that could prevent >90% of a nicotine dose equivalent to three smoked cigarettes (0.05 mg/kg from reaching the brain.

  10. Performance of Upgraded Cooling System for Lhd Helical Coils

    Science.gov (United States)

    Hamaguchi, S.; Imagawa, S.; Obana, T.; Yanagi, N.; Moriuchi, S.; Sekiguchi, H.; Oba, K.; Mito, T.; Motojima, O.; Okamura, T.; Semba, T.; Yoshinaga, S.; Wakisaka, H.

    2008-03-01

    Helical coils of the Large Helical Device (LHD) are large scale superconducting magnets for heliotron plasma experiments. The helical coils had been cooled by saturated helium at 4.4 K, 120 kPa until 2005. An upgrade of the cooling system was carried out in 2006 in order to improve the cryogenic stability of the helical coils and then it has been possible to supply the coils with subcooled helium at 3.2 K, 120 kPa. A designed mass flow of the supplied subcooled helium is 50 g/s. The subcooled helium is generated at a heat exchanger in a saturated helium bath. A series of two centrifugal cold compressors with gas foil bearing is utilized to lower the helium pressure in the bath. The supplied helium temperature is regulated by rotational speed of the cold compressors and power of a heater in the bath. The mass flow of the supplied helium is also controlled manually by a supply valve and its surplus is evaporated by ten heaters at the outlet above the coils. In the present study, the performance of the cooling system has been investigated and a stable operating method has also developed. As the result, it was confirmed that the performance of the upgraded cooling system satisfies the requirements.

  11. Novel TMS coils designed using an inverse boundary element method

    Science.gov (United States)

    Cobos Sánchez, Clemente; María Guerrero Rodriguez, Jose; Quirós Olozábal, Ángel; Blanco-Navarro, David

    2017-01-01

    In this work, a new method to design TMS coils is presented. It is based on the inclusion of the concept of stream function of a quasi-static electric current into a boundary element method. The proposed TMS coil design approach is a powerful technique to produce stimulators of arbitrary shape, and remarkably versatile as it permits the prototyping of many different performance requirements and constraints. To illustrate the power of this approach, it has been used for the design of TMS coils wound on rectangular flat, spherical and hemispherical surfaces, subjected to different constraints, such as minimum stored magnetic energy or power dissipation. The performances of such coils have been additionally described; and the torque experienced by each stimulator in the presence of a main magnetic static field have theoretically found in order to study the prospect of using them to perform TMS and fMRI concurrently. The obtained results show that described method is an efficient tool for the design of TMS stimulators, which can be applied to a wide range of coil geometries and performance requirements.

  12. Background field coils for the High Field Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Zbasnik, J.P.; Cornish, D.N.; Scanlan, R.M.; Jewell, A.M.; Leber, R.L.; Rosdahl, A.R.; Chaplin, M.R.

    1980-09-22

    The High Field Test Facility (HFTF), presently under construction at LLNL, is a set of superconducting coils that will be used to test 1-m-o.d. coils of prototype conductors for fusion magnets in fields up to 12 T. The facility consists of two concentric sets of coils; the outer set is a stack of Nb-Ti solenoids, and the inner set is a pair of solenoids made of cryogenically-stabilized, multifilamentary Nb/sub 3/Sn superconductor, developed for use in mirror-fusion magnets. The HFTF system is designed to be parted along the midplane to allow high-field conductors, under development for Tokamak fusion machines, to be inserted and tested. The background field coils were wound pancake-fashion, with cold-welded joints at both the inner and outer diameters. Turn-to-turn insulation was fabricated at LLNL from epoxy-fiberglass strip. The coils were assembled and tested in our 2-m-diam cryostat to verify their operation.

  13. Cryocooled Facilities for Superconducting Coils Testing in Gaseous Helium

    Science.gov (United States)

    Naumov, A. V.; Keilin, V. E.; Kovalev, I. A.; Surin, M. I.; Shcherbakov, V. I.; Shevchenko, S. A.; Ilin, A. A.

    Two superconducting coil test facilities equipped by Sumitomo SRDK-415D cryocoolers were developed, manufactured and tested. The motivation for their constructing was to make cheaper the testing (and especially training of LTS magnets) by liquid helium (LHe) saving. It is well known that the helium price increases rapidly and this tendency most probably will continue for a long time, as the demand of helium grows faster than its production. The utilization of heat-exchange gas considerably reduces many problems, that arise in the design of completely dry LTS magnets. The goal was to decrease or even completely avoid the consumption of rather expensive liquid helium for testing the laboratory size Nb-Ti and Nb3Sn coils including their training process. Several superconducting magnets were tested by using these facilities. For example, the first facility was successfully used for testing of 13 T, 60 kg coil cooled by cryocooler in helium gas (several torr pressure) heat exchange atmosphere. The precooling time was about 45 hours. The quench current (240 A at 4.2 K) was equal to that reached in the pool boiling LHe cryostat. The second facility with 420 mm wide access bore can be used for testing of corresponding size superconducting coils with very modest consumption of liquid helium with its level well below the lower flange of the coil. Each test facility is equipped by 2 pairs of HTS current leads. Design and operational experience of one of them is described.

  14. Power Supply Changes for NSTX Resistive Wall Mode Coils

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, S S.

    2013-06-28

    The National Spherical Torus Experiment (NSTX) has been designed and installed in the existing facilities at Princeton Plasma Physics Laboratory (PPPL). Most of the hardware, plant facilities, auxiliary sub-systems, and power systems originally used for the Tokamak Fusion Test Reactor (TFTR) have been used with suitable modifications to reflect NSTX needs. Prior to 2004, the NSTX power system was feeding twelve (12) circuits in the machine. In 2004 the Resistive Wall Mode (RWM) Coils were installed on the machine to correct error fields. There are six of these coils installed around the machine in the mid-plane. Since these coils need fast and accurate controls, a Switching Power Amplifier (SPA) with three sub-units was procured, installed and commissioned along with other power loop components. Two RWM Coils were connected in series and fed from one SPA sub-unit. After the initial RWM campaign, operational requirements evolved such that each of the RWM coils now requires separate power and control. Hence a second SPA with three sub-units has been procured and installed. The second unit is of improved design and has the controls and power components completely isolated. The existing thyristor rectifier is used as DC Link to both of the Switching Power Amplifiers. The controls for the RWM are integrated into the overall computer control of the DC Power systems for NSTX. This paper describes the design changes in the RWM Power system for NSTX.

  15. Magnetic resonance butterfly coils: Design and application for hyperpolarized 13C studies

    DEFF Research Database (Denmark)

    Giovannetti, Giulio; Frijia, Francesca; Attanasio, Simona

    2013-01-01

    of dedicated coils capable of providing large field of view with high Signal-to-Noise Ratio (SNR) data is of fundamental importance. This work presents magnetostatic simulations and tests of two butterfly coils with different geometries, both designed for 13C hyperpolarized studies of pig heart with a clinical...... 3T scanner. In particular, the paper provides details of the design, modeling, construction and application of the butterfly style coils. While both coils could be successfully employed in single configuration (linear mode), the second prototype was used to design a quadrature surface coil...... constituted by the butterfly and a circular loop both in receive (RX) mode while using a birdcage coil as transmitter (TX). The performance of this coils configuration was compared with the single TX/RX birdcage coil, in order to verify the advantage of the proposed configuration over the volume coil...

  16. Flow diverter assisted coil embolization of a very small ruptured ophthalmic artery aneurysm.

    Science.gov (United States)

    Dornbos, David; Pillai, Promod; Sauvageau, Eric

    2016-06-01

    Small ruptured aneurysms present a unique problem to endovascular therapy. We report a case in which a patient presented with subarachnoid hemorrhage and a very small ruptured ophthalmic artery aneurysm, for which endovascular therapy was preferred secondary to severe cardiac comorbidities. Due to the aneurysm size, a small 1.5 mm coil was needed, but presented a significant risk of migration. Conventional stent assisted coiling was considered suboptimal as the small coil could have easily migrated through the strut. We present a novel technique of flow diverter assisted coil embolization in which a coil was placed within the aneurysm and a pipeline embolization device was then partially deployed, jailing the microcatheter and coil mass. Once in place, the coil was detached, securing the aneurysm, and preventing coil migration. Through the use of a flow diverter, some degree of aneurysm protection would still be expected in the event of coil migration toward the ophthalmic artery origin.

  17. Design of a quadrature surface coil for hyperpolarized 13C MRS cardiac metabolism studies in pigs

    DEFF Research Database (Denmark)

    Giovannetti, G.; Frijia, F.; Hartwig, V.;

    2013-01-01

    This work describes the design of a quadrature surface coil constituted by a circular loop and a butterfly coil, employed in transmit/receive (TX/RX) mode for hyperpolarized 13C studies of pig heart with a clinical 3T scanner. The coil characterization is performed by developing an SNR model...... for coil performance evaluation in terms of coil resistance, sample-induced resistance and magnetic field pattern. Experimental SNR-vs.-depth profiles, extracted from the [1-13C]acetate phantom chemical shift image (CSI), showed good agreement with the theoretical SNR-vs.-depth profiles. Moreover......, the performance of the quadrature coil was compared with the single TX/RX circular and TX/RX butterfly coil, in order to verify the advantage of the proposed configuration over the single coils throughout the volume of interest for cardiac imaging in pig. Finally, the quadrature surface coil was tested...

  18. Theoretical signal-to-noise ratio of a slotted surface coil for magnetic resonance imaging

    CERN Document Server

    Ocegueda, K; Solis, S E; Rodriguez, A O

    2011-01-01

    The analytical expression for the signal-to-noise ratio of a slotted surface coil with an arbitrary number of slots was derived using the quasi-static approach. This surface coil based on the vane-type magnetron tube. To study the coil perfomance, the theoretical signal-to-noise ratio predictions of this coil design were computed using a different number of slots. Results were also compared with theoretical results obtained for a circular coil with similar dimensions. It can be appreciated that slotted surface coil performance improves as the number of coils increases and, outperformed the circular-shaped coil. This makes it a good candidate for other MRI applications involving coil array techniques.

  19. Gold electrodes from recordable CDs

    Science.gov (United States)

    Angnes; Richter; Augelli; Kume

    2000-11-01

    Gold electrodes are widely used in electrochemistry and electroanalytical chemistry. The notable performance when used in stripping analysis of many ionic species and the extraordinary affinity of thio compounds for its surface make these electrodes very suitable for many applications. This paper reports a simple and novel way to construct gold electrodes (CDtrodes) using recordable CDs as the gold source. The nanometer thickness of the gold layer of recordable disks (50-100 nm) favors the construction of band nanoelectrodes with areas as small as 10(-6) cm2. The plane surface can be easily used for the construction of conventional-sized gold electrodes for batch or flow injection analysis or even to obtain electrodes as large as 100 cm2. The low price of commercial recordable CDs allows a "one way use". The evaluation and applicability of these electrodes in the form of nanoelectrodes, in batch and associated with flow cells, are illustrated in this paper.

  20. Transparent Electrodes for Efficient Optoelectronics

    KAUST Repository

    Morales-Masis, Monica

    2017-03-30

    With the development of new generations of optoelectronic devices that combine high performance and novel functionalities (e.g., flexibility/bendability, adaptability, semi or full transparency), several classes of transparent electrodes have been developed in recent years. These range from optimized transparent conductive oxides (TCOs), which are historically the most commonly used transparent electrodes, to new electrodes made from nano- and 2D materials (e.g., metal nanowire networks and graphene), and to hybrid electrodes that integrate TCOs or dielectrics with nanowires, metal grids, or ultrathin metal films. Here, the most relevant transparent electrodes developed to date are introduced, their fundamental properties are described, and their materials are classified according to specific application requirements in high efficiency solar cells and flexible organic light-emitting diodes (OLEDs). This information serves as a guideline for selecting and developing appropriate transparent electrodes according to intended application requirements and functionality.

  1. Electrodynamic Arrays Having Nanomaterial Electrodes

    Science.gov (United States)

    Trigwell, Steven (Inventor); Biris, Alexandru S. (Inventor); Calle, Carlos I. (Inventor)

    2013-01-01

    An electrodynamic array of conductive nanomaterial electrodes and a method of making such an electrodynamic array. In one embodiment, a liquid solution containing nanomaterials is deposited as an array of conductive electrodes on a substrate, including rigid or flexible substrates such as fabrics, and opaque or transparent substrates. The nanomaterial electrodes may also be grown in situ. The nanomaterials may include carbon nanomaterials, other organic or inorganic nanomaterials or mixtures.

  2. Jointed Holder For Welding Electrodes

    Science.gov (United States)

    Gilbert, Jeffrey L.

    1991-01-01

    Adjustable-angle holder enables use of standard straight electrode with custom-fabricated bent gas cup for welding in difficult-to-reach places. Electrode replaced easily, without removing cup, with aid of tool loosening miniature collet nut on holder. Consumes fewer electrodes for given amount of welding. Angle of holder continuously adjustable to fit angle of gas cup or geometry of part welded. Holder made double-jointed to accommodate gas cup having compound angles.

  3. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1982-01-01

    Ion-Selective Electrode Reviews, Volume 3, provides a review of articles on ion-selective electrodes (ISEs). The volume begins with an article on methods based on titration procedures for surfactant analysis, which have been developed for discrete batch operation and for continuous AutoAnalyser use. Separate chapters deal with detection limits of ion-selective electrodes; the possibility of using inorganic ion-exchange materials as ion-sensors; and the effect of solvent on potentials of cells with ion-selective electrodes. Also included is a chapter on advances in calibration procedures, the d

  4. Electrodes for Semiconductor Gas Sensors.

    Science.gov (United States)

    Lee, Sung Pil

    2017-03-25

    The electrodes of semiconductor gas sensors are important in characterizing sensors based on their sensitivity, selectivity, reversibility, response time, and long-term stability. The types and materials of electrodes used for semiconductor gas sensors are analyzed. In addition, the effect of interfacial zones and surface states of electrode-semiconductor interfaces on their characteristics is studied. This study describes that the gas interaction mechanism of the electrode-semiconductor interfaces should take into account the interfacial zone, surface states, image force, and tunneling effect.

  5. Rebleeding of a Splenic Artery Aneurysm after Coil Embolisation

    Directory of Open Access Journals (Sweden)

    Kyra D. Kingma

    2016-01-01

    Full Text Available Background. Splenic artery aneurysm (SAA is an uncommon and difficult diagnosis. SAA is more common in females. Only 20% of SAA is symptomatic and may present as a rupture. A ruptured SAA is associated with a 25% mortality rate. Case Presentation. We present a case of a male patient with a bleeding SAA that rapidly increased in size. Distal coiling was technically impossible and despite proximal coil embolisation the SAA continued to bleed. A laparotomy including splenectomy and partial pancreatectomy was performed with an uneventful patient recovery. Discussion. Endovascular management is currently considered the optimal treatment of SAA. However, careful monitoring and follow-up is needed after embolisation as rapid recanalization of the SAA may possibly occur, especially when distal coiling of the aneurysm is unsuccessful. Conclusion. Endovascular treatment of an SAA is not necessarily effective. Surgeons must be prepared to perform open procedures to further reduce mortality rates.

  6. Impact response by a foamlike forest of coiled carbon nanotubes

    Science.gov (United States)

    Daraio, Chiara; Nesterenko, Vitali F.; Jin, Sungho; Wang, Wei; Rao, Apparao M.

    2006-09-01

    We studied the dynamic response of a foamlike forest of coiled carbon nanotubes under high strain rate deformation using a simple drop-ball test. The method is based on measuring the dynamic force between the ball and the foam on the substrate during the stages of penetration and restitution. The analysis of the forest's morphology after impact has shown no trace of plastic deformation and a full recovery of the foamlike layer of coiled carbon nanotubes under various impact velocities. The contact force exhibits a strongly nonlinear dependence on displacement and appears fundamentally different from the response of a forest of straight carbon nanotubes, and from the Hertzian type of plane-sphere interaction. "Brittle" fracture of the foamlike layer is observed after repeated high velocity impacts. Such layers of coiled nanotubes may be used as a strongly nonlinear spring in discrete systems for monitoring their dynamic behavior and as a nanostructure for localized microimpact protection.

  7. Thickness Effect of Micro Speaker Copper Coil Fabrication Process

    Directory of Open Access Journals (Sweden)

    F. L. AYAT

    2011-07-01

    Full Text Available This paper present the advantage of using electroplating for making the thick layer of copper over the sputtering. The purpose of this paper is to fabricate the copper coil for microspeaker. The design and simulation of this copper coil shows that the 15 um thickness is needed. In order to fabricate this coil, copper plating is used. The electro-deposition process is well suited to make films of metals such as copper, gold and nickel. The films can be made in any thickness from ~1 µm to >100 µm. The deposition is best controlled when used with an external electrical potentiostate. However, it requires electrical contact to the substrate when immersed in the liquid bath. In any process, the surface of the substrate must have an electrically conducting coating before the deposition can be done. The result of this experimental research shows the easy and cheap way to fabricate the thick layer of copper for microspeacker fabrication.

  8. Voice Coil Percussive Mechanism Concept for Hammer Drill

    Science.gov (United States)

    Okon, Avi

    2009-01-01

    A hammer drill design of a voice coil linear actuator, spring, linear bearings, and a hammer head was proposed. The voice coil actuator moves the hammer head to produce impact to the end of the drill bit. The spring is used to store energy on the retraction and to capture the rebound energy after each impact for use in the next impact. The maximum actuator stroke is 20 mm with the hammer mass being 200 grams. This unit can create impact energy of 0.4 J with 0.8 J being the maximum. This mechanism is less complex than previous devices meant for the same task, so it has less mass and less volume. Its impact rate and energy are easily tunable without changing major hardware components. The drill can be driven by two half-bridges. Heat is removed from the voice coil via CO2 conduction.

  9. Progress on the Coupling Coil for the MICE Channel

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.A.; Li, D.; Virostek, S.P.; Lau, W.; Witte, H.; Yang,S.Q.; Drumm, P.; Ivanyushenkov, Y.

    2005-05-08

    This report describes the progress on the coupling magnet for the international Muon Ionization Cooling Experiment (MICE). MICE consists of two cells of a SFOFO cooling channel that is similar to that studied in the level 2 study of a neutrino factory. The MICE RF coupling coil module (RFCC module) consists of a 1.56 m diameter superconducting solenoid, mounted around four cells of conventional 201.25 MHz closed RF cavities. This report discusses the progress that has been made on the superconducting coupling coil that is around the center of the RF coupling module. This report describes the process by which one would cool the coupling coil using a single small 4 K cooler. In addition, the coupling magnet power system and quench protection system are also described.

  10. The correspondence between water temperature and coiling direction in Bulimina

    Science.gov (United States)

    Collins, Laurel S.

    1990-06-01

    The influence of temperature on the direction of coiling in the benthic foraminifera Bulimina marginata d'Orbigny and B. aculeata d'Orbigny is investigated by direct comparison of specimens and temperature data measured at or near the sites of collection. Nine samples from the Gulf of Mexico and 16 samples from the Gulf of Maine south to New Jersey are used. These areas include cold temperate and subtropical regions, the continental shelf, slope, and a semirestricted gulf. Complicating factors of life cycle stage and possible ontogenetic change are eliminated. Dextrality is strongly associated with warm temperatures, but cold temperatures do not produce predominantly sinistrally coiled individuals. This is the first demonstration of an unambiguous correlation between temperature and coiling direction in benthic foraminifera.

  11. A current limiter with superconducting coil for magnetic field shielding

    Science.gov (United States)

    Kaiho, K.; Yamaguchi, H.; Arai, K.; Umeda, M.; Yamaguchi, M.; Kataoka, T.

    2001-05-01

    The magnetic shield type superconducting fault current limiter have been built and successfully tested in ABB corporate research and so on. The device is essentially a transformer in which the secondary winding is the superconducting tube. However, due to the large AC losses and brittleness of the superconducting bulk tube, they have not yet entered market. A current limiter with superconducting coil for the magnetic field shielding is considered. By using the superconducting coil made by the multi-filamentary high Tc superconductor instead of the superconducting bulk tube, the AC losses can be reduced due to the reduced superconductor thickness and the brittleness of the bulk tube can be avoidable. This paper presents a preliminary consideration of the magnetic shield type superconducting fault current limiter with superconducting coil as secondary winding and their AC losses in comparison to that of superconducting bulk in 50 Hz operation.

  12. Stability improvement for coil position locking of joule balance

    Science.gov (United States)

    Bai, Yang; Liu, Yongmeng; Lu, Yunfeng; Hu, Pengcheng; Wang, Dawei; Li, Zhengkun; Tan, Jiubin; Zhang, Zhonghua

    2017-08-01

    The relative vertical position locking precision between the exciting and suspended coils is an important uncertainty for the Planck constant traceability in joule balance. In order to improve the relative vertical position locking precision, several stability experiments are conducted. The stability characteristics of the suspended and exciting coils are measured using a six-axis laser interferometer system; meanwhile, the effectiveness of the active vibration isolation table is measured using a vibration measurement sensor. The piezoelectric ceramic actuators with PID controller are used to compensate the relative vertical displacement drifts while a six-axis laser interferometer system is used to measure the positions of two coils. Experimental results show that the relative vertical position is stably locked.

  13. The normal zone propagation in ATLAS B00 model coil

    CERN Document Server

    Boxman, E W; ten Kate, H H J

    2002-01-01

    The B00 model coil has been successfully tested in the ATLAS Magnet Test Facility at CERN. The coil consists of two double pancakes wound with aluminum stabilized cables of the barrel- and end-cap toroids conductors for the ATLAS detector. The magnet current is applied up to 24 kA and quenches are induced by firing point heaters. The normal zone velocity is measured over a wide range of currents by using pickup coils, voltage taps and superconducting quench detectors. The signals coming from various sensors are presented and analyzed. The results extracted from the various detection methods are in good agreement. It is found that the characteristic velocities vary from 5 to 20 m/s at 15 and 24 kA respectively. In addition, the minimum quench energies at different applied magnet currents are presented. (6 refs).

  14. Miniature coils for producing pulsed inplane magnetic fields for nanospintronics

    Energy Technology Data Exchange (ETDEWEB)

    Pawliszak, Łukasz; Zgirski, Maciej [Institute of Physics, Polish Academy of Sciences, al.Lotnikow 32/46, PL 02-668 Warszawa (Poland); Tekielak, Maria [Faculty of Physics, University of Białystok, ul.Lipowa 41, PL 15-424 Białystok (Poland)

    2015-03-15

    Nanospintronic and related research often requires the application of quickly rising magnetic field pulses in the plane of the studied planar structure. We have designed and fabricated sub-millimeter-sized coils capable of delivering pulses of the magnetic field up to ∼500 Oe in the plane of the sample with the rise time of the order of 10 ns. The placement of the sample above the coil allows for easy access to its surface with manipulators or light beams for, e.g., Kerr microscopy. We use the fabricated coil to drive magnetic domain walls in 1 μm wide permalloy wires and measure magnetic domain wall velocity as a function of the applied magnetic field.

  15. Magnetic shielding structure optimization design for wireless power transmission coil

    Science.gov (United States)

    Dai, Zhongyu; Wang, Junhua; Long, Mengjiao; Huang, Hong; Sun, Mingui

    2017-09-01

    In order to improve the performance of the wireless power transmission (WPT) system, a novel design scheme with magnetic shielding structure on the WPT coil is presented in this paper. This new type of shielding structure has great advantages on magnetic flux leakage reduction and magnetic field concentration. On the basis of theoretical calculation of coil magnetic flux linkage and characteristic analysis as well as practical application feasibility consideration, a complete magnetic shielding structure was designed and the whole design procedure was represented in detail. The simulation results show that the coil with the designed shielding structure has the maximum energy transmission efficiency. Compared with the traditional shielding structure, the weight of the new design is significantly decreased by about 41%. Finally, according to the designed shielding structure, the corresponding experiment platform is built to verify the correctness and superiority of the proposed scheme.

  16. Magnetic Barkhausen noise measurement by resonant coil method

    Energy Technology Data Exchange (ETDEWEB)

    Capo-Sanchez, J. [Departamento de Fisica, Facultad de Ciencias Naturales, Universidad de Oriente, Av. Patricio Lumumba s/n, 90500 Santiago de Cuba (Cuba)], E-mail: jcapo@usp.br; Padovese, L. [Departamento de Engenharia Mecanica, Escola Politecnica, Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231, 05508-900 Sao Paulo (Brazil)

    2009-09-15

    This paper describes a powerful new technique for nondestructive evaluation of ferromagnetic material. A method has been developed for measuring magnetic Barkhausen signals under different coil resonance frequencies. The measurements allow one to establish the behavior relating the power spectral density maximum and the resonant coil frequency. Time-frequency analysis of Barkhausen signals puts in evidence the tuning regions for each coil, and allows clear identification of each contribution to the Barkhausen signal spectrum. This concept was used in order to evaluate the relation between the degree of plastic deformation in carbon steel samples, and the power spectral density maximum at different resonance frequencies. This result also makes it possible to the selectively modify measurement sensibility to the magnetic Barkhausen signal by using different resonance frequencies.

  17. Physics design of a saddle coil system for TCV

    Energy Technology Data Exchange (ETDEWEB)

    Rossel, J.X., E-mail: jonathan.rossel@epfl.ch; Moret, J.-M.; Martin, Y.; Pochon, G.

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The design of a saddle coil system for TCV is presented. Black-Right-Pointing-Pointer The system is designed for ELM control, error field correction and vertical control. Black-Right-Pointing-Pointer The issue of optimal design determination is addressed. Black-Right-Pointing-Pointer Electrical properties in the presence of a conducting wall are quantified. Black-Right-Pointing-Pointer Coil heating due to Joule effect and impact of plasma disruptions are considered. - Abstract: The upgrade project for TCV (Tokamak a Configuration Variable) includes the installation of a set of saddle coils, namely the saddle coil system (SCS), located and powered such as to create a helical magnetic perturbation. Using independent power supplies, the toroidal periodicity of this perturbation is tunable, allowing simultaneously edge localized modes (ELM) control through resonant magnetic perturbation (RMP), error field correction and vertical control. Other experimental applications, like resistive wall mode and rotation control, are also in view. In this article, the adequacy of two SCS designs, an in-vessel one and an ex-vessel one, is assessed with respect to the desired experimental applications. The current requirements and the system performances are also characterized. The conducting vessel wall is accounted for in a model used to determine the coupled response functions of the SCS, the screening of the magnetic perturbation by the wall, the induced voltages and currents during a plasma disruption and the maximal magnetic forces exerted on the SCS. A scaling of the SCS parameters with the number of coil turns is presented and the issue of coil heating and cooling is discussed.

  18. Planar gradient coil design by scaling the spatial frequencies of minimum-inductance current density.

    Science.gov (United States)

    Lee, S Y; Park, B S; Yi, J H; Yi, W

    1997-11-01

    Gradient coil inductance has been remarkably reduced by the minimum-inductance design technique, which minimizes the magnetic energy stored by the gradient coil. The planar gradient coil designed by this technique, however, often has poor magnetic field linearity. Scaling the spatial frequencies of the current density function derived by this method, the magnetic field linearity of the planar gradient coil can be greatly improved with a small sacrifice of gradient coil inductance. A figure of merit of the planar gradient coil has been found to be improved by scaling the spatial frequencies.

  19. Practical aspects of 13C surface receive coils with active decoupling and tuning circuit

    DEFF Research Database (Denmark)

    Nilsson, Daniel; Mohr, Johan Jacob; Zhurbenko, Vitaliy

    2012-01-01

    Magnetic Resonance Imaging (MRI) of nuclei other than 1H (e.g. 13C) allows for characterisation of metabolic processes. Imaging of such nuclei, however, requires development of sensitive MRI coils. This paper describes the design of surface receive coils for 13C imaging in small animals. The design...... is based on application-specified coil profile and includes impedance matching and balancing circuits. Active decoupling is implemented in order to minimize the influence of the receiving coil on the homogeneity of the transmit-coil field. Measurement results for a coil prototype are presented, including...

  20. Coil End Parts Development Using BEND and Design for MQXF by LARP

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Miao [Fermilab; Ambrosio, G. [Fermilab; Bermudez, S. Izquierdo [CERN; Bossert, R. [Fermilab; Ferracin, P. [CERN; Krave, S. [Fermilab

    2016-09-06

    End parts are critical components for saddle-shaped coils. They have a structural function where the cables are deformed in order to cross over the magnet aperture. Based on the previous design of the US LARP program for 90 mm aperture quadrupoles (TQ/LQ) and 120 mm aperture quadrupoles (HQ/LHQ) using BEND, the coil ends of the low-β quadruples (MQXF) for the HiLumi LHC upgrade were developed. This paper shows the design of the MQXF coil ends, the analysis of the coil ends during the coil fabrication, the autopsy analysis of the coil ends and the feedback to BEND parameters.

  1. Design, Analysis, Prototyping, and Experimental Evaluation of an Efficient Double Coil Magnetorheological Valve

    Directory of Open Access Journals (Sweden)

    Guoliang Hu

    2014-05-01

    Full Text Available A double coil magnetorheological (MR valve with an outer annular resistance gap was designed and prototyped. The finite element modeling and analysis of double coil MR valve were carried out using ANSYS/Emag software, and the optimal magnetic field distribution and magnetic flux density of the double coil MR valve were achieved. The mechanism of the pressure drop was studied by building a mathematical model of pressure drop in the double coil MR valve. The proposed double coil MR valve was prototyped and its performance was experimentally evaluated. The new MR valve design has improved the efficiency of double coil MR valve significantly.

  2. Coil End Parts Development Using BEND and Design for MQXF by LARP

    CERN Document Server

    Yu, Miao; Izquierdo Bermudez, S; Bossert, R; Ferracin, P; Krave, S

    2016-01-01

    End parts are critical components for saddle-shaped coils. They have a structural function where the cables are deformed in order to cross over the magnet aperture. Based on the previous design of the US LARP program for 90 mm aperture quadrupoles (TQ/LQ) and 120 mm aperture quadrupoles (HQ/LHQ) using BEND, the coil ends of the low-β quadruples (MQXF) for the HiLumi LHC upgrade were developed. This paper shows the design of the MQXF coil ends, the analysis of the coil ends during the coil fabrication, the autopsy analysis of the coil ends and the feedback to BEND parameters.

  3. Modeling of Lossy Inductance in Moving-Coil Loudspeakers

    DEFF Research Database (Denmark)

    Kong, Xiao-Peng; Agerkvist, Finn T.; Zeng, Xin-Wu

    2015-01-01

    The electrical impedance of moving-coil loudspeakers is dominated by the lossy inductance in high frequency range. Using the equivalent electrical circuit method, a new model for the lossy inductance based on separate functions for the magnitude and phase of the impedance is presented. The electr......The electrical impedance of moving-coil loudspeakers is dominated by the lossy inductance in high frequency range. Using the equivalent electrical circuit method, a new model for the lossy inductance based on separate functions for the magnitude and phase of the impedance is presented...

  4. Stabilization of the vertical instability by non-axisymmetric coils

    Science.gov (United States)

    Turnbull, A. D.; Reiman, A. H.; Lao, L. L.; Cooper, W. A.; Ferraro, N. M.; Buttery, R. J.

    2016-08-01

    In a published Physical Review Letter (Reiman 2007 Phys. Rev. Lett. 99 135007), it was shown that axisymmetric (or vertical) stability can be improved by placing a set of parallelogram coils above and below the plasma oriented at an angle to the constant toroidal planes. The physics of this stabilization can be understood as providing an effective additional positive stability index. The original work was based on a simplified model of a straight tokamak and is not straightforwardly applicable to a finite aspect ratio, strongly shaped plasma such as in DIII-D. Numerical calculations were performed in a real DIII-D -like configuration to provide a proof of principal that 3-D fields can, in fact raise the elongation limits as predicted. A four field period trapezioid-shaped coil set was developed in toroidal geometry and 3D equilibria were computed using trapezium coil currents of 10 kA , 100 kA , and 500 kA . The ideal magnetohydrodynamics growth rates were computed as a function of the conformal wall position for the n = 0 symmetry-preserving family. The results show an insignificant relative improvement in the stabilizing wall location for the two lower coil current cases, of the order of 10-3 and less. In contrast, the marginal wall position is increased by 7% as the coil current is increased to 500 kA , confirming the main prediction from the original study in a real geometry case. In DIII-D the shift in marginal wall position of 7% would correspond to being able to move the existing wall outward by 5 to 10 cm. While the predicted effect on the axisymmetric stability is real, it appears to require higher coil currents than could be provided in an upgrade to existing facilities. Additional optimization over the pitch of the coils, the number of field periods and the coil positions, as well as plasma parameters, such as the internal inductivity {{\\ell}\\text{i}} , β , and {{q}95} would mitigate this but seem unlikely to change the conclusion.

  5. Multi-turn, printed surface coil inductance, and Q optimization.

    Science.gov (United States)

    Raad, A; Kan, S

    1993-03-01

    Wheeler's empirical inductance formula for a multi-turn, close-wound flat coil shows that the maximum inductance for a given length of wire occurs when the outer to inner radius ratios is equal to 15/7. A similar expression is proposed for a flat, printed spiral for surface coil antenna design by modifying one of the coefficients in Wheeler's formula. Measured inductance is in good agreement with this new formula and the optimum radius ratio for maximum inductance or Q is now of the order of 9/5.

  6. Impact response by a foamlike forest of coiled carbon nanotubes

    OpenAIRE

    Daraio, Chiara; Nesterenko, Vitali F.; Jin, Sungho; Wang, Wei; Rao, Apparao M

    2006-01-01

    We studied the dynamic response of a foamlike forest of coiled carbon nanotubes under high strain rate deformation using a simple drop-ball test. The method is based on measuring the dynamic force between the ball and the foam on the substrate during the stages of penetration and restitution. The analysis of the forest’s morphology after impact has shown no trace of plastic deformation and a full recovery of the foamlike layer of coiled carbon nanotubes under various impact velocities. The co...

  7. Transcranial magnetic stimulation: Improved coil design for deep brain investigation

    Science.gov (United States)

    Crowther, L. J.; Marketos, P.; Williams, P. I.; Melikhov, Y.; Jiles, D. C.; Starzewski, J. H.

    2011-04-01

    This paper reports on a design for a coil for transcranial magnetic stimulation. The design shows potential for improving the penetration depth of the magnetic field, allowing stimulation of subcortical structures within the brain. The magnetic and induced electric fields in the human head have been calculated with finite element electromagnetic modeling software and compared with empirical measurements. Results show that the coil design used gives improved penetration depth, but also indicates the likelihood of stimulation of additional tissue resulting from the spatial distribution of the magnetic field.

  8. Characterization of closed nickel-titanium orthodontic coil springs

    Energy Technology Data Exchange (ETDEWEB)

    Langeron, T. [Rene Descartes Univ., Paris V, Pontoise (France). Faculte de Chirurgie Dentaire; Filleul, M.P. [Rene Descartes Univ., Paris V, Pontoise (France). Faculte de Chirurgie Dentaire; ENSCP, Paris (France). Lab. de Metallurgie Structurale; Humbeeck, J. van [Katholieke Univ. Leuven, Heverlee (Belgium). Faculteit Toegepaste Wetenschappen, Metaalkunde en Toegepaste Materialkund

    2001-11-01

    Nickel-titanium orthodontic coil springs are used to move teeth with low forces and slow deactivation. The present paper provides data on transformation temperatures and on load-deflection rate at buccal temperature of closed Nickel-Titanium coil springs available on the market from ORMCO {sup trademark} and GAC {sup trademark}. All the springs exhibited superelasticity but their properties were not stable in the range of buccal temperatures and varied not only from one manufacturer to the other but they also varied from one batch to the other of each supplier. The need for more stability is stressed. (orig.)

  9. Coil end design for the SSC collider dipole magnet

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, J.; Bartlett, N.; Bossert, R.; Carson, J.; Konc, J.; Lee, G. [Fermi National Accelerator Lab., Batavia, IL (United States); Cook, J. [Argonne National Lab., IL (United States); Caspi, S. [Lawrence Berkeley Lab., CA (United States); Gordon, M.; Nobrega, F. [Superconducting Super Collider Lab., Dallas, TX (United States)

    1991-07-01

    This paper describes the design of the coil end for the 50mm aperture SSC collider dipole magnets built at Fermilab. The cable paths are determined from both magnetic and mechanical considerations. The end spacers are designed using the developable surface, grouped end approach, which allows the analysis of strain energy within the conductor groups. Techniques for strain energy minimization are presented and the behavior of individual conductors within a group is analyzed. The relationship between optimization of magnetic and mechanical variables is discussed. Requirements of manufacturing and inspection of coil end parts are outlined. 7 refs.

  10. Ventriculoperitoneal shunt migration and coiling: A report of two cases

    Directory of Open Access Journals (Sweden)

    Shahram Shahsavaran

    2012-01-01

    Full Text Available Migration of the proximal and distal catheters of the ventriculoperitoneal shunt is a very rare event. Here, we report two infants with hydrocephalus and ventriculoperitoneal shunt who presented later with shunt coiling and migration. The first infant was admitted with scalp swelling around proximal incision 3 months after shunt insertion and migration and coiling of both ventricular and peritoneal catheters occurred under the scalp at that point. The second patient was referred 1 month after shunting with tense fontanel and vomiting. New brain imaging confirmed the whole shunt inside both lateral ventricles. The possible mechanisms causing this very uncommon complication and the management are explained.

  11. SERPENTINE COIL TOPOLOGY FOR BNL DIRECT WIND SUPERCONDUCTING MAGNETS.

    Energy Technology Data Exchange (ETDEWEB)

    PARKER, B.; ESCALLIER, J.

    2005-05-16

    Serpentine winding, a recent innovation developed at BNL for direct winding superconducting magnets, allows winding a coil layer of arbitrary multipolarity in one continuous winding process and greatly simplifies magnet design and production compared to the planar patterns used before. Serpentine windings were used for the BEPC-II Upgrade and JPARC magnets and are proposed to make compact final focus magnets for the EC. Serpentine patterns exhibit a direct connection between 2D body harmonics and harmonics derived from the integral fields. Straightforward 2D optimization yields good integral field quality with uniformly spaced (natural) coil ends. This and other surprising features of Serpentine windings are addressed in this paper.

  12. Optimal configuration of receiving coils of SQUID-magnetometer

    CERN Document Server

    Ishikaev, S M

    2002-01-01

    Paper describes a SQUID-magnetometer receiving system based on the second order symmetric gradiometer. Four series connected coils of a superconducting transformer consisting of one niobium-titanium wire turn are cemented onto dewar outside. Due to signal compensation in all coils the given receiving system is unsusceptible to signal from specimen holder and it improves measurement accuracy. Using the described magnetometer one managed to observe abrupt changes of magnetization curves of a 100 x 100 cell square superconducting grid with the Josephson tunnel transitions

  13. Unruptured Basilar Tip Aneurysm with Internal Septation: Coiling Implications?

    Directory of Open Access Journals (Sweden)

    Ayman Khalil

    2016-01-01

    Full Text Available An internal septum within a basilar artery aneurysm is an infrequent anomaly and is very rarely reported in the literature. We report a 62-year-old lady that was incidentally diagnosed with basilar tip aneurysm. Further imaging with magnetic resonance imaging (MRI revealed internal septation within this aneurysm which was later confirmed with digital subtraction angiography (DSA. She underwent coil embolisation, which involved technical manipulation of the microcatheter and the balloon to enable coiling of each separate aneurysm compartment. We present this case to illustrate the effect of this anatomical variation on the selection of endovascular treatment strategy.

  14. Optimization of Moving Coil Actuators for Digital Displacement Machines

    DEFF Research Database (Denmark)

    Nørgård, Christian; Bech, Michael Møller; Roemer, Daniel Beck;

    2016-01-01

    This paper focuses on deriving an optimal moving coil actuator design, used as force pro-ducing element in hydraulic on/off valves for Digital Displacement machines. Different moving coil actuator geometry topologies (permanent magnet placement and magnetiza-tion direction) are optimized...... for actuating annular seat valves in a digital displacement machine. The optimization objectives are to the minimize the actuator power, the valve flow losses and the height of the actuator. Evaluation of the objective function involves static finite element simulation and simulation of an entire operation...

  15. Transcatheter Coil Embolization of an Arc of Buhler Aneurysm

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Su Jin; Lim, Nam Yeul; Choi, Soo Jin Nah; Kim, Jae Kyu; Jeong, Yong Yeon; Kang, Heoung Keun [Chonnam National University Hospital, Gwangju (Korea, Republic of); Jang, Nam Kyu [Hwasun Chonnam National University Hospital, Hwasun (Korea, Republic of)

    2008-07-15

    We report the findings of a patient with an asymptomatic Arc of Buhler (AOB) aneurysm, which was successfully treated by transcatheter coil embolization. An abdominal CT and angiography revealed an intact pancreaticoduodenal artery arcade (PDAA) and an anomalous communication between the SMA and celiac axis, termed an AOB. An aneurysm was observed at the origin of the AOB and treated with a transcatheter embolization using coils. A follow-up CT imaging confirmed the total occlusion of the aneurysm with a patent PDAA. The successful results of this treatment suggest that the endovascular therapy of an AOB aneurysm with a celiac axis occlusion and an intact PDAA is feasible and safe.

  16. Synthesis, model and stability of helically coiled carbon nanotubes

    DEFF Research Database (Denmark)

    Fejes, Dora; Raffai, Manuella; Hernadi, Klara

    2013-01-01

    Structural model of helically coiled carbon nanotubes is proposed. It is constructed by means of topological coordinate method. Relaxation and cohesive energy calculation are performed by molecular mechanics, using second-generation bond order potential for hydrocarbons introduced by D. W. Brenner....... Our experiments focused on the production and development of catalysts for the synthesis of helically coiled CNTs (carbon nanotubes). The catalysts were tested in the decomposition of acetylene by CCVD (Catalytic Chemical Vapor Deposition) method. The carbon deposit was imaged by TEM (Transmission...

  17. Dual inductive link coil design for a neural recording system.

    Science.gov (United States)

    Rush, Alexander; Troyk, Philip R

    2011-01-01

    This paper reports an approach to the physical design of the coils used in a dual inductive link to provide two-way wireless communication and power for a neural recording system. The design approach makes use of an analytic model of the link performance in terms of the physical parameters of the link, which allows physical parameters to be iterated on a computer rather than on the bench to find the optimal design within the physical restrictions imposed. In particular, this approach was used to choose the optimal implant data coil sizing to maximize the difference between the contributions of the constructive and destructive paths of the reverse telemetry signal.

  18. Technical aspects and manufacturing methods for JT-60SA toroidal field coil casings

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Paolo, E-mail: paolo.rossi@enea.it [ENEA, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Cucchiaro, A.; Brolatti, G.; Cocilovo, V.; Ginoulhiac, G.; Polli, G. [ENEA, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Gabriele, M.; Di Muzio, F. [Walter Tosto, Via Erasmo Piaggio, 66100 Chieti (Italy); Philips, G.; Tomarchio, V. [JT-60SA European Home Team, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2014-10-15

    Highlights: • A contract between ENEA and Walter Tosto started on July 2012 for the construction of 18 TF coil casings for JT-60SA. • Design and manufacturing of mock-ups representative of straight and curved legs of the casings have been completed. • Final design of the casings has been completed and manufacturing activities have already started and are ongoing. • The completion of the first three casings will be completed within the end of 2013 and the production of all the 18 casings is foreseen by the end of 2015. - Abstract: JT-60SA is a superconducting tokamak machine to be assembled in Naka site, Japan, designed to contribute to the early realization of fusion energy by supporting the exploitation of ITER and research toward DEMO. In the frame of the Broader Approach Agreement a contract between ENEA and Walter Tosto (Chieti, Italy) started on July 2012 for the construction of 18 TF coil casings for JT-60SA. Two different sets of 9 casings each will be progressively delivered, from 2013 to the end of 2015, to ASG Superconductors (Genoa, Italy) and to Alstom (Belfort, France), where the integration of the winding pack into the casing will be carried out. Each TF coil casing (height 7.5 m and width 4.5 m) consists of four main components: one “Straight Leg Outboard” and one “Curved Leg Outboard” both with their own covers, “Straight Leg Inboard” and “Curved Leg Inboard”. The casing components are segmented in forgings and plates made of FM316LNL. The straight leg outboard is composed of two wings welded to a central core and two elbows welded at the ends with a cooling channel installed inside. Elbows of straight leg outboard are segmented in two half-elbows machined from 1 rough forging and welded to the central core made by plate. Welding of wings to the central core is performed in EBW (electron beam welding) and the straight part is welded to the elbows by NGTIG (TIG narrow gap) process. The curved leg outboard is composed of two

  19. Magnetic field sensitivity at 7-T using dual-helmholtz transmit-only coil and 12-channel receive-only bended coil.

    Science.gov (United States)

    Kim, Kyoung-Nam; Ryu, Yeunchul; Seo, Jeung-Hoon; Kim, Young-Bo

    2016-11-01

    The purpose of this study was to combine a dual-Helmholtz (DH) transmit (Tx)-only coil and 12-channel receive (Rx)-only bended phased array (PA) coil to improve the magnetic flux (|B1 |) sensitivity in the superior-to-inferior (S-I) direction during human brain magnetic resonance imaging (MRI) at 7-T. The proposed coil combination was primarily implemented by electromagnetic (EM) simulation and compared with the 16-leg birdcage coil and 8-channel PA coil, which are generally used for the Tx- and Rx-only modes, respectively. The optimal coil combinations for the proposed structure were determined by |B1 | field calculations using the |BT(+) | and |BR(-) | fields, which are respectively the transmit and receive components of the |B1 | field. The coil performance was then evaluated by a bench test and 7-T MRI experiment. The results of the computational calculations indicated that the |BT(+) | field of the DH coil was distributed similarly to that of the 16-leg birdcage coil despite the fewer conducting legs of the former. However, the 12-channel Rx-only bended PA coil had clearly higher |BR(-) | profiles compared to the 8-channel PA coil. The results of the 7-T in vivo experiment showed that the proposed combination of the DH Tx-only coil and 12-channel Rx-only bended PA coil had better |B1 | field homogeneity in the sagittal slice as well as higher |B1 | field sensitivity during human brain MRI compared to an 8-channel Rx-only PA coil. SCANNING 38:515-524, © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  20. Point Electrode Studies of the Solid Electrolyte-Electrode Interface

    DEFF Research Database (Denmark)

    Jacobsen, Torben

    \\parbox[t]{7.3cm}{Strong anodic activation due to computer communication error.} It is seen that as long as the electrode is kept at the equilibrium potential, the capacity pr.\\,unit area is constant, indicating a stable reaction zone. Polarising the electrode a decrease in this ratio is observed. Although......In the development of new electrode materials for high temperature Solid Oxide Fuel Cells methods are needed for the electrochemical evaluation of the catalytic properties of the materials. A major problem in the comparison of materials is how to determine the geometry and the effective length...... of the active reaction zone, the triple phase boundary. One way of solving this is by the application of point electrodes where the electrode-electrolyte contact is assumed to be circular with a radius calculated from the high frequency impedance. The perimeter is the taken as the length of the reaction zone...

  1. Light addressable gold electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, Waqas

    2011-07-01

    The main objective carried out in this dissertation was to fabricate Light Amplified Potentiometric sensors (LAPS) based upon the semiconductor nanoparticles (quantum dots) instead of its bulk form. Quantum dots (QDs) were opted for this device fabrication because of their superior fluorescent, electric and catalytic properties. Also in comparison to their bulk counterparts they will make device small, light weighted and power consumption is much lower. QDs were immobilized on a Au substrate via 1,4 benzene dithiol (BDT) molecule. Initially a self-assembled monolayer (SAM) of BDT was established on Au substrate. Because of SAM, the conductivity of Au substrate decreased dramatically. Furthermore QDs were anchored with the help of BDT molecule on Au substrate. When QDs immobilized on Au substrate (QD/Au) via BDT molecule were irradiated with UV-visible light, electron-hole pairs were generated in QDs. The surface defect states in QDs trapped the excited electrons and long lived electron-hole pairs were formed. By the application of an appropriate bias potential on Au substrate the electrons could be supplied or extracted from the QDs via tunneling through BDT. Thus a cathodic or anodic current could be observed depending upon bias potential under illumination. However without light illumination the QD/Au electrode remained an insulator. To improve the device different modifications were made, including different substrates (Au evaporated on glass, Au evaporated on mica sheets and Au sputtered on SiO{sub 2}/Si) and different dithiol molecules (capped and uncapped biphenyl 4,4' dithiol and capped and uncapped 4,4' dimercaptostilbenes) were tried. Also different QD immobilization techniques (normal incubation, spin coating, layer by layer assembly (LbL) of polyelectrolytes and heat immobilization) were employed. This device was able to detect electrochemically different analytes depending upon the QDs incorporated. For example CdS QDs were able to detect 4

  2. CLOSURE OF HLW TANKS FORMULATION FOR A COOLING COIL GROUT

    Energy Technology Data Exchange (ETDEWEB)

    Harbour, J; Vickie Williams, V; Erich Hansen, E

    2008-05-23

    The Tank Closure and Technology Development Groups are developing a strategy for closing the High Level Waste (HLW) tanks at the Savannah River Site (SRS). Two Type IV tanks, 17 and 20 in the F-Area Tank Farm, have been successfully filled with grout. Type IV tanks at SRS do not contain cooling coils; on the other hand, the majority of the tanks (Type I, II, III and IIIA) do contain cooling coils. The current concept for closing tanks equipped with cooling coils is to pump grout into the cooling coils to prevent pathways for infiltrating water after tank closure. This task addresses the use of grout to fill intact cooling coils present in most of the remaining HLW tanks on Site. The overall task was divided into two phases. Phase 1 focused on the development of a grout formulation (mix design) suitable for filling the HLW tank cooling coils. Phase 2 will be a large-scale demonstration of the filling of simulated cooling coils under field conditions using the cooling coil grout mix design recommended from Phase 1. This report summarizes the results of Phase 1, the development of the cooling coil grout formulation. A grout formulation is recommended for the full scale testing at Clemson Environmental Technology Laboratory (CETL) that is composed by mass of 90% Masterflow (MF) 816 (a commercially available cable grout) and 10% blast furnace slag, with a water to cementitious material (MF 816 + slag) ratio of 0.33. This formulation produces a grout that meets the fresh and cured grout requirements detailed in the Task Technical Plan (2). The grout showed excellent workability under continuous mixing with minimal change in rheology. An alternative formulation using 90% MF 1341 and 10% blast furnace slag with a water to cementitious material ratio of 0.29 is also acceptable and generates less heat per gram than the MF 816 plus slag mix. However this MF 1341 mix has a higher plastic viscosity than the MF 816 mix due to the presence of sand in the MF 1341 cable grout and a

  3. Coiling vs. clipping. Hospital stay and procedure time in intracranial aneurysm treatment

    Energy Technology Data Exchange (ETDEWEB)

    Brunken, Martin; Kehler, U. [Abt. fuer Neurochirurgie, Asklepios-Klinik Altona (Germany); Fiehler, J. [Neuroradiology, Universitaetskrankenhaus Hamburg-Eppendorf (Germany); Leppien, A.; Eckert, B. [Fachbereich Neuroradiologie, Asklepios-Klinik Altona (Germany)

    2009-10-15

    Purpose: evaluation of hospital resource allocation in intracranial aneurysm treatment in a medium-volume neurovascular center. Materials and methods: retrospective data analysis included 653 procedures performed on 598 patients with 667 aneurysms (A) from 1990 to 2004. 515 treatments were carried out in ruptured A (clip: n = 370; coil: n = 145) and 138 procedures in non-ruptured A (clip: n = 51, coil: n = 87). Patient management data included procedure time (min), length of stay in the intensive care unit (days), total length of hospital stay (days), and discharge to home ratio. Results: clinical admission grade (rupt. A: Hunt and Hess grade 1-3: clip: 73% coil: 72%) and clinical outcome at discharge (good neurological outcome/mortality rate: rupt. A: clip: 51.1/13.8% coil: 45.5/10.3% non-rupt. A: 88.2/0% coil: 88.5/1.3%) were similar for both treatment modes. The coil procedure time was found to be significantly shorter (rupt. A: coil: 145 min; clip: 203 min; p < 0.01; non-rupt. A: coil: 164 min, clip: 200 min; p < 0.01). Coiling reduced the length of stay in the ICU (rupt. A: coil: 5.3 d; clip: 6d, p < 0.01; non-rupt. A: coil: 1.5d; clip: 2d; p = 0.21) and coiling significantly reduced the length of hospital stay (rupt. A: coil: 21.4d; clip: 26.8 d, p < 0.01; non-rupt. A: coil: 9.2d; clip: 17.5d; p = 0.01). The discharge to home ratio did not differ (rupt. A: clip: 31.6% coil: 29.7% nonrupt. A: clip: 74.5% coil: 80.5%). Conclusion: in a medium-volume neurovascular center, coiling significantly reduced the procedure time, the stay in the ICU, and the length of hospital stay suggesting favorable resource allocation in endovascular therapy. (orig.)

  4. Mid-Range Coil Array for Magnetic Resonance Imaging of Small Animals

    Science.gov (United States)

    Solis, S. E.; Tomasi, D.; Rodríguez, A. O.

    2008-08-01

    The vast majority of articles on MRI RF coils over the past two decades have focused on large coils, where sample losses dominate, or on micro-coils, where sample and capacitor losses are negligible. Few have addressed the mid-range coils, seen in the majority of small-animal applications, where all the sources of loss are important, for example, mouse brain and body coils from 125 to 750 MHz. We developed a four-saddle coil array for magnetic resonance imaging of small animals. The saddle coil elements in the array were evenly distributed to cover the rat's head. The coil array was tuned to the resonant frequency of 170 MHz. Due to the close proximity of the coil elements, it was necessary to decouple the coil array using nonmagnetic trimmers and, it was operated in the transceiver mode and quadrature-driven. To test the coil array performance at high field, phantom images were acquired with our saddle coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. Ex vivo brain images of a rat were also acquired, and proved the feasibility of the scaled version of a saddle coil array and, its compatibility with standard pulse sequences when used in a high field magnetic resonance imager.

  5. Formulation for a practical implementation of electromagnetic induction coils optimized using stream functions

    Science.gov (United States)

    Reed, Mark A.; Scott, Waymond R.

    2016-05-01

    Continuous-wave (CW) electromagnetic induction (EMI) systems used for subsurface sensing typically employ separate transmit and receive coils placed in close proximity. The closeness of the coils is desirable for both packaging and object pinpointing; however, the coils must have as little mutual coupling as possible. Otherwise, the signal from the transmit coil will couple into the receive coil, making target detection difficult or impossible. Additionally, mineralized soil can be a significant problem when attempting to detect small amounts of metal because the soil effectively couples the transmit and receive coils. Optimization of wire coils to improve their performance is difficult but can be made possible through a stream-function representation and the use of partially convex forms. Examples of such methods have been presented previously, but these methods did not account for certain practical issues with coil implementation. In this paper, the power constraint introduced into the optimization routine is modified so that it does not penalize areas of high current. It does this by representing the coils as plates carrying surface currents and adjusting the sheet resistance to be inversely proportional to the current, which is a good approximation for a wire-wound coil. Example coils are then optimized for minimum mutual coupling, maximum sensitivity, and minimum soil response at a given height with both the earlier, constant sheet resistance and the new representation. The two sets of coils are compared both to each other and other common coil types to show the method's viability.

  6. Development of Computational Models for Coiling Process with the Belt Wrapper

    Science.gov (United States)

    Park, Yonghui; Park, Hyunchul

    2016-10-01

    This study introduces coiling mechanism with the belt wrapper to understand a force equilibrium for successful coiling. By establishing a finite element (FE) model, strips were coiled 2 to 3 rotations by the belt wrapper on the sleeve without coiling tension T, then T was applied to the opposite side of the strips near the pinch roller, and the belt wrapper was removed from the strip coil at the same time. Additionally, analytical model corresponding to FE model was defined by thick and thin cylinder theorems to quantize coiling mechanisms. Especially elasticity of the belt wrapper E [N/m2], coiling tension T [N/m2], and friction coefficient μ were checked on how these variables affect each other, were converted into pressure P [N/m2], and P were used to calculate when the strip coil come untied. For instance, the strip coil came untied when E was lower than 1 × 109 N/m2 corresponding to ( {{{{Pressure}} {{on}} {{outmost}} {{of the belt wrapper}} P_{{o,belt}} }/{{{Pressure} {{on}} {{innermost}} {{of the sleeve}} P_{{i,sleeve}} }} = 0.877} ) . Lastly, radial stress on the outmost of the sleeve σ r,o,sleeve [N/m2] according to E were compared to the previous coiling method with the grooved joint to see how these methods are different. Based on these results, this paper suggests coiling criteria to avoid coiling failure of slip of the strip coil.

  7. A multi-slot surface coil for MRI of dual-rat imaging at 4 T

    Energy Technology Data Exchange (ETDEWEB)

    Solis, S E; Rodriguez, A O [Departamento de Ingenieria Electrica, Universidad Autonoma Metropolitana Iztapalapa, Mexico, DF 09340 (Mexico); Wang, R; Tomasi, D, E-mail: arog@xanum.uam.mx [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2011-06-21

    A slotted surface coil inspired by the hole-and-slot cavity magnetron was developed for magnetic resonance imaging of obese rats at 4 T. Full-wave analysis of the magnetic field was carried out at 170 MHz for both the slotted and circular-shaped coils. The noise figure values of two coils were investigated via the numerical calculation of the quality factors. Fat simulated phantoms to mimic overweight rats were included in the analysis with weights ranging from 300 to 900 g. The noise figures were 1.2 dB for the slotted coil and 2.4 dB for the circular coil when loaded with 600 g of simulated phantom. A slotted surface coil with eight circular slots and a circular coil with similar dimensions were built and operated in the transceiver mode, and their performances were experimentally compared. The imaging tests in phantoms demonstrated that the slotted surface coil has a deeper RF-sensitivity and better field uniformity than the single-loop RF-coil. High quality images of two overweight Zucker rats were acquired simultaneously with the slotted surface coil using standard spin-echo pulse sequences. Experimental results showed that the slotted surface coil outperformed the circular coil for imaging considerably overweight rats. Thus, the slotted surface coil can be a good tool for MRI experiments in rats on a human whole-body 4 T scanner.

  8. A multi-slot surface coil for MRI of dual-rat imaging at 4T

    Energy Technology Data Exchange (ETDEWEB)

    Solis, S.E.; Tomasi, D.; Solis, S.E.; Wang, R.; Tomasi, D.; Rodriguez, A.O.

    2011-07-01

    A slotted surface coil inspired by the hole-and-slot cavity magnetron was developed for magnetic resonance imaging of obese rats at 4 T. Full-wave analysis of the magnetic field was carried out at 170 MHz for both the slotted and circular-shaped coils. The noise figure values of two coils were investigated via the numerical calculation of the quality factors. Fat simulated phantoms to mimic overweight rats were included in the analysis with weights ranging from 300 to 900 g. The noise figures were 1.2 dB for the slotted coil and 2.4 dB for the circular coil when loaded with 600 g of simulated phantom. A slotted surface coil with eight circular slots and a circular coil with similar dimensions were built and operated in the transceiver mode, and their performances were experimentally compared. The imaging tests in phantoms demonstrated that the slotted surface coil has a deeper RF-sensitivity and better field uniformity than the single-loop RF-coil. High quality images of two overweight Zucker rats were acquired simultaneously with the slotted surface coil using standard spin-echo pulse sequences. Experimental results showed that the slotted surface coil outperformed the circular coil for imaging considerably overweight rats. Thus, the slotted surface coil can be a good tool for MRI experiments in rats on a human whole-body 4 T scanner.

  9. Atomic hydrodynamics of DNA: coil-uncoil-coil transitions in a wall-bounded shear flow.

    Science.gov (United States)

    Sandberg, William C; Wang, Guan M

    2008-12-01

    Extensive experimental work on the response of DNA molecules to externally applied forces and on the dynamics of DNA molecules flowing in microchannels and nanochannels has been carried out over the past two decades, however, there has not been available, until now, any atomic-scale means of analyzing nonequilibrium DNA response dynamics. There has not therefore been any way to investigate how the backbone and side-chain atoms along the length of a DNA molecule interact with the molecules and ions of the flowing solvent and with the atoms of passing boundary surfaces. We report here on the application of the nonequilibrium biomolecular dynamics simulation method that we developed [G. M. Wang and W. C. Sandberg, Nanotechnology 18, 4819 (2007)] to analyze, at the atomic interaction force level, the conformational dynamics of short-chain single-stranded DNA molecules in a shear flow near a surface. This is a direct atomic computational analysis of the hydrodynamic interaction between a biomolecule and a flowing solvent. The DNA molecules are observed to exhibit conformational behaviors including coils, hairpin loops, and figure-eight shapes that have neither been previously measured experimentally nor observed computationally, as far as we know. We relate the conformational dynamics to the atomic interaction forces experienced throughout the length of a molecule as it moves in the flowing solvent past the surface boundary. We show that the DNA conformational dynamics is related to the asymmetry in the molecular environment induced by the motion of the surrounding molecules and the atoms of the passing surface. We also show that while the asymmetry in the environment is necessary, it is not sufficient to produce the observed conformational dynamics. A time variation in the asymmetry, due in our case to a shear flow, must also exist. In order to contrast these results with the usual experimental situation of purely diffusive motion in thermal equilibrium we have also

  10. Oncogenic TPM3-ALK activation requires dimerization through the coiled-coil structure of TPM3

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Yosuke; Ishikawa, Rie; Sakatani, Toshio [Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Ichinose, Junji [Department of Cardiothoracic Surgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Sunohara, Mitsuhiro; Watanabe, Kousuke; Kage, Hidenori [Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Nakajima, Jun [Department of Cardiothoracic Surgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Nagase, Takahide; Ohishi, Nobuya [Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Takai, Daiya, E-mail: dtakai-ind@umin.ac.jp [Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Department of Clinical Laboratory, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan)

    2015-02-13

    Inflammatory myofibroblastic tumor (IMT) is a mesenchymal tumor that can arise from anywhere in the body. Anaplastic lymphoma kinase (ALK) gene rearrangements, most often resulting in the tropomyosin 3 (TPM3)-ALK fusion gene, are the main causes of IMT. However, the mechanism of malignant transformation in IMT has yet to be elucidated. The purpose of this study was to clarify the role of the TPM3 region in the transformation of IMT via TPM3-ALK. Lentivirus vectors containing a TPM3-ALK fusion gene lacking various lengths of TPM3 were constructed and expressed in HEK293T and NIH3T3 cell lines. Focus formation assay revealed loss of contact inhibition in NIH3T3 cells transfected with full-length TPM3-ALK, but not with ALK alone. Blue-native polyacrylamide gel electrophoresis (BN-PAGE) revealed that TPM3-ALK dimerization increased in proportion to the length of TPM3. Western blot showed phosphorylation of ALK, ERK1/2, and STAT3 in HEK293T cells transfected with TPM3-ALK. Thus, the coiled-coil structure of TPM3 contributes to the transforming ability of the TPM3-ALK fusion protein, and longer TPM3 region leads to higher dimer formation. - Highlights: • TPM3-ALK fusion protein dimerizes through the coiled-coil structure of TPM3. • Longer coiled-coil structure of TPM3 leads to higher TPM3-ALK dimer formation. • Presence of TPM3-ALK dimer leads to ALK, STAT3, and ERK1/2 phosphorylation. • Presence of TPM3-ALK leads to loss of contact inhibition. • BN-PAGE is a simple technique for visualizing oncogenic dimerization.

  11. Septin phosphorylation and coiled-coil domains function in cell and septin ring morphology in the filamentous fungus Ashbya gossypii.

    Science.gov (United States)

    Meseroll, Rebecca A; Occhipinti, Patricia; Gladfelter, Amy S

    2013-02-01

    Septins are a class of GTP-binding proteins conserved throughout many eukaryotes. Individual septin subunits associate with one another and assemble into heteromeric complexes that form filaments and higher-order structures in vivo. The mechanisms underlying the assembly and maintenance of higher-order structures in cells remain poorly understood. Septins in several organisms have been shown to be phosphorylated, although precisely how septin phosphorylation may be contributing to the formation of high-order septin structures is unknown. Four of the five septins expressed in the filamentous fungus, Ashbya gossypii, are phosphorylated, and we demonstrate here the diverse roles of these phosphorylation sites in septin ring formation and septin dynamics, as well as cell morphology and viability. Intriguingly, the alteration of specific sites in Cdc3p and Cdc11p leads to a complete loss of higher-order septin structures, implicating septin phosphorylation as a regulator of septin structure formation. Introducing phosphomimetic point mutations to specific sites in Cdc12p and Shs1p causes cell lethality, highlighting the importance of normal septin modification in overall cell function and health. In addition to discovering roles for phosphorylation, we also present diverse functions for conserved septin domains in the formation of septin higher-order structure. We previously showed the requirement for the Shs1p coiled-coil domain in limiting septin ring size and reveal here that, in contrast to Shs1p, the coiled-coil domains of Cdc11p and Cdc12p are required for septin ring formation. Our results as a whole reveal novel roles for septin phosphorylation and coiled-coil domains in regulating septin structure and function.

  12. Restructuring of porous nickel electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lenhart, S.J.; Macdonald, D.D.; Pound, B.G.

    1984-08-01

    A transmission line model for the electrochemical impedance of porous electrodes was used to study the degradation of nickel battery plates throughout their cycle life. The model was shown to successfully account for changes in the observed electrode properties in terms of simultaneous restructuring of the active mass and rupture of particleparticle ohmic contacts.

  13. Ion-selective electrodes, 3

    Energy Technology Data Exchange (ETDEWEB)

    Pungor, E. (ed.)

    1981-01-01

    Thirty-two papers which were presented at the Third Symposium on Ion-Selective Electrodes are presented in this Proceedings. These papers dealt with standardization, fabrication, chemical properties of ion-selective electrodes and their application. Selected papers have been abstracted and indexed separately for the data base. (ATT)

  14. ELECTROCHEMISTRY OF FUEL CELL ELECTRODES.

    Science.gov (United States)

    optimization of fuel cell electrodes. Hydrogen oxidation and reduction, the reduction of oxygen, and the oxidation of formic acid, a soluble organic...substance, were selected for these studiees because of their relevance to fuel cell systems and because of their relative simplicity. The electrodes

  15. Making EDM Electrodes By Stereolithography

    Science.gov (United States)

    Barlas, Philip A.

    1988-01-01

    Stereolithography is computer-aided manufacturing technique. Used to make models and molds of electrodes for electrical-discharge machining (EDM). Eliminates intermediate steps in fabrication of plastic model of object used in making EDM electrode to manufacture object or mold for object.

  16. [Importance of an automatic measurement base on the first coil diameter in regard to coil embolization of a cerebral aneurysm].

    Science.gov (United States)

    Kuriyama, Takumi; Furukawa, Hajime; Shimizu, Keiji; Oonishi, Kumiko; Sakai, Shinji; Imamura, Hirotoshi; Sakai, Chiaki; Sakai, Nobuyuki

    2012-01-01

    We compared the accuracy in evaluating an unrapture aneurysm between NV and 3D-DSA. In vitro, we evaluated the accuracy in calculating the volume of the Aneurysm model. We compared the diameter of the first coil and estimated the diameter of the Aneurysm. The Aneurysm size calculated by NV resembled the first coil more than the size measured by 3D-DSA. In clinical cases, the measurement of NV is objective; the measurement of 3D-DSA, however, is subjective by person. NV has an automatic measurement that is useful for clinical cases.

  17. Crystal structure of tetranectin, a trimeric plasminogen-binding protein with an alpha-helical coiled coil

    DEFF Research Database (Denmark)

    Nielsen, B B; Kastrup, J S; Rasmussen, H

    1997-01-01

    Tetranectin is a plasminogen kringle 4-binding protein. The crystal structure has been determined at 2.8 A resolution using molecular replacement. Human tetranectin is a homotrimer forming a triple alpha-helical coiled coil. Each monomer consists of a carbohydrate recognition domain (CRD) connected...... to a long alpha-helix. Tetranectin has been classified in a distinct group of the C-type lectin superfamily but has structural similarity to the proteins in the group of collectins. Tetranectin has three intramolecular disulfide bridges. Two of these are conserved in the C-type lectin superfamily, whereas...

  18. Gel electrolytes and electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Fleischmann, Sven; Bunte, Christine; Mikhaylik, Yuriy V.; Viner, Veronika G.

    2017-09-05

    Gel electrolytes, especially gel electrolytes for electrochemical cells, are generally described. In some embodiments, the gel electrolyte layers comprise components a) to c). Component a) may be at least one layer of at least one polymer comprising polymerized units of: a1) at least one monomer containing an ethylenically unsaturated unit and an amido group and a2) at least one crosslinker. Component b) may be at least one conducting salt and component c) may be at least one solvent. Electrodes may comprise the components a), d) and e), wherein component a) may be at least one layer of at least one polymer as described herein. Component d) may be at least one electroactive layer and component e) may be at least one ceramic layer. Furthermore, electrochemical cells comprising component a) which may be at least one layer of at least one polymer as described herein, are also provided.

  19. Composite electrode/electrolyte structure

    Science.gov (United States)

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2004-01-27

    Provided is an electrode fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. Onto this electrode in the green state, a green ionic (e.g., electrolyte) film is deposited and the assembly is co-fired at a temperature suitable to fully densify the film while the substrate retains porosity. Subsequently, a catalytic material is added to the electrode structure by infiltration of a metal salt and subsequent low temperature firing. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems.

  20. Electrode for a lithium cell

    Science.gov (United States)

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2008-10-14

    This invention relates to a positive electrode for an electrochemical cell or battery, and to an electrochemical cell or battery; the invention relates more specifically to a positive electrode for a non-aqueous lithium cell or battery when the electrode is used therein. The positive electrode includes a composite metal oxide containing AgV.sub.3O.sub.8 as one component and one or more other components consisting of LiV.sub.3O.sub.8, Ag.sub.2V.sub.4O.sub.11, MnO.sub.2, CF.sub.x, AgF or Ag.sub.2O to increase the energy density of the cell, optionally in the presence of silver powder and/or silver foil to assist in current collection at the electrode and to improve the power capability of the cell or battery.

  1. RWM Feedback Stabilization with the New Internal Coil (I-Coil)

    Science.gov (United States)

    Okabayashi, M.; Chance, M. S.; Bialek, J.; Garofalo, A. M.; Navratil, G. A.; Reimerdes, H.; Chu, M. S.; Jackson, G. L.; Jensen, T. H.; La Haye, R. J.; Scoville, J. T.; Strait, E. J.; Jayakumar, R. J.; Edgell, D. H.

    2003-10-01

    RWM stabilization by rotational viscosity has been observed as a quite robust approach for achieving the stable n=1 kink plasma beta up to ideal wall limit. For less rotation configurations, such as expected in burning plasma, it is highly desirable to establish the same level of robust RWM stabilizing system. VALEN code predicts that newly installed I-coil with upgraded digital control system can provide RWM stabilization up to the ideal wall beta limit using direct feedback even without plasma rotation. A major advantage of new system is the adjustability of poloidal m-component to the plasma eigen mode. To demonstrate the effectiveness of direct feedback stabilization in the highly rotating NBI heated plasma, the plasma rotation was reduced either by resonant n=1 braking or non-resonant n=3 braking. It was found that the feedback can sustain the plasma above no-wall limit even when the rotation outside q>2 was reduced to nearly zero. Issues related to the feedback performance improvement will be discussed.

  2. Evaluation of the heat transfer performance of helical coils of non-circular tubes

    Institute of Scientific and Technical Information of China (English)

    Jundika C.KURNIA; Agus P.SASMITO; Arun S.MUJUMDAR

    2011-01-01

    This study addresses heat transfer performance of various configurations of coiled non-circular tubes, e. g. , in-plane spiral ducts, helical spiral ducts, and conical spiral ducts. The laminar flow of a Newtonian fluid in helical coils made of square cross section tubes is simulated using the computational fluid dynamic approach. The effects of tube Reynolds number, fluid Prandtl number, coil diameter, etc. , are quantified and discussed. Both constant wall temperature and constant heat flux conditions are simulated. The effect of in-plane coil versus a cylindrical design of constant coil, as well as a conical coil design is discussed. Results are compared with those for a straight square tube of the same length as that used to form the coils. Advantages and limitations of using coiled tubes are discussed in light of the numerical results.

  3. The reciprocity between coiling direction and dimorphic reproduction in benthic foraminifera

    Digital Repository Service at National Institute of Oceanography (India)

    Nigam, R.; Khare, N.

    There are various opinions as to what parameter influences the coiling directions in foraminifera. "Do microspheric and megalospheric generations have different coiling ratios?" is an unanswered question in foraminiferal studies. Per view of this...

  4. High-Tc Superconductor Detection Coils for a Magnetic Resonance System

    Institute of Scientific and Technical Information of China (English)

    康琳; 吴培亨; 潘俊; 蔡卫星; 杨森祖; 曹春海

    2002-01-01

    Considering that in a magnetic resonance system, if the detection coil contributes dominantly to the system noise, the performance of the whole system can certainly be improved by switching to a detection coil made of a high-temperature superconductor, and using YBa2Cu3O7 thinfilms on 25 × 25 mm2 LaAIO3 substrates, we have prepared two kinds of detection coils: single-coil and two-coil. Encouragingly, their quality factors are measured to be Q > 2500 for two-coil (at 22.566MHz and 77K) and Q > 5500 for single-coil (at 92.3MHz and 77K),respectively. Here, we describe the details of the design, fabrication and testing of the coils.

  5. Lightweight Design of an HTS Coil for the VASIMR Experiment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Tai-Yang Research of Delaware proposes to design and fabricate an HTS double-pancake coil in support of the VASIMR experiment. The proposed HTS coil will implement...

  6. Comparing Saddle, Slotted-tube and Parallel-plate Coils for Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Nespor D.

    2014-06-01

    Full Text Available The paper is concerned with a comparison of the properties of RF coils of three configurations for MRI measurements on small animals. In comparison with the classical saddle coil the proposed modification of slotted-tube coil exhibits identical homogeneity of B1 field in a larger space. The parallel-plate coil has a satisfactory homogeneity of B1 field over the whole internal space. The signal-to-noise ratio measured for all three coils is roughly the same and is given by the magnitude of RF pre-amplifier noise. As the slotted-tube and parallel-plate coils have a lower inductance compared with the saddle coil, they can be tuned to resonance on the 200 MHz frequency even at larger dimensions. The results show that the parallel-plate coil has very good properties for the measurement of small animals.

  7. A method for estimating tokamak poloidal field coil currents which incorporates engineering constraints

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, W.A.

    1990-05-01

    This thesis describes the development of a design tool for the poloidal field magnet system of a tokamak. Specifically, an existing program for determining the poloidal field coil currents has been modified to: support the general case of asymmetric equilibria and coil sets, determine the coil currents subject to constraints on the maximum values of those currents, and determine the coil currents subject to limits on the forces those coils may carry. The equations representing the current limits and coil force limits are derived and an algorithm based on Newton's method is developed to determine a set of coil currents which satisfies those limits. The resulting program allows the designer to quickly determine whether or not a given coil set is capable of supporting a given equilibrium. 25 refs.

  8. Coil optimization for electromagnetic levitation using a genetic like algorithm

    Science.gov (United States)

    Royer, Z. L.; Tackes, C.; LeSar, R.; Napolitano, R. E.

    2013-06-01

    The technique of electromagnetic levitation (EML) provides a means for thermally processing an electrically conductive specimen in a containerless manner. For the investigation of metallic liquids and related melting or freezing transformations, the elimination of substrate-induced nucleation affords access to much higher undercooling than otherwise attainable. With heating and levitation both arising from the currents induced by the coil, the performance of any EML system depends on controlling the balance between lifting forces and heating effects, as influenced by the levitation coil geometry. In this work, a genetic algorithm is developed and utilized to optimize the design of electromagnetic levitation coils. The optimization is targeted specifically to reduce the steady-state temperature of the stably levitated metallic specimen. Reductions in temperature of nominally 70 K relative to that obtained with the initial design are achieved through coil optimization, and the results are compared with experiments for aluminum. Additionally, the optimization method is shown to be robust, generating a small range of converged results from a variety of initial starting conditions. While our optimization criterion was set to achieve the lowest possible sample temperature, the method is general and can be used to optimize for other criteria as well.

  9. Design and development of coil casing MRF brake system

    Directory of Open Access Journals (Sweden)

    Siti Lydia R.

    2017-01-01

    Full Text Available Nowadays magneto-rheological brakes has been introduce to overcome the drawback of conventional braking such as bulky, leakage and late build up pressure. Magnetic field is a main parameter need to be maximized in order to increase the efficiency of the brake. In MRF brake system the magnetic field directly affected by coil casing shapes. This paper focused on the study of the effect of coil casing shapes to the magnetic field distribution in MR brake. Finite Element Method will be used to analyze the magnetic field distribution produced by the coil. Five coils shape that different angle from 50° to 90° used in this study. As the result magnetic field was change quadratically by increasing the angle size. The best angle is between 60° to 70°. The peak value is at 70°. If more than that the magnetic field will drop. The significant of this study is to get the most efficient angle for the electromagnet casing for the MR brakes.

  10. Typical application of Rogowski coils in inspection of electrobath

    Institute of Scientific and Technical Information of China (English)

    郭红; 贾正春

    2004-01-01

    During the aluminum electrolytic roasting process, each component of the electrobath of aluminum performs unsteadily when the electrolytic bath is in the pre-roasting stage. It is important to monitor the currents of the anodes and the cathodes of the aluminum electrobath at regular intervals. Both practice and investigation indicate that Rogowski coil can be adopted to measure heavy direct current of the anodes and the cathodes of the aluminum electrobath. The paper not only introduces the typical application of the Rogowski coil to inspect the state of aluminum electrobath in the roasting process, but also analyzes the principles of the coil sensor including its dynamic properties and some important measurement results respectively. The optimal parameters of the coil can be simulated by means of an advanced simulation tool: simulink tools based on MATLAB soft environment. Based on the gathered current data, an even-current coefficient has been introduced, and the current curve can be drawn. Since they are applied in AL-Electrolyzing, it is possible to distinguish the anode of which the current is not evenly distributed, and to take adjusting measures over a period of time to ensure that the current is evenly distributed.

  11. Coil size oscillatory packing in polymer solutions near a surface

    NARCIS (Netherlands)

    Gucht, van der J.; Besseling, N.A.M.; Male, van J.; Cohen Stuart, M.A.

    2000-01-01

    The theory developed by Scheutjens and Fleer to describe polymer adsorption and depletion is used to calculate the density profile of nonadsorbing polymers near a surface. The theory predicts damped oscillations in the segment density profile with a wavelength of about the coil size. As a consequenc

  12. Optimum Construction of Heating Coil for Domestic Induction Cooker

    Science.gov (United States)

    Sinha, Dola; Bandyopadhyay, Atanu; Sadhu, Pradip Kumar; Pal, Nitai

    2010-10-01

    The design and optimization of the parameters of heating coil is very important for the analytical analysis of high frequency inverter fed induction cooker. Moreover, accurate prediction of high frequency winding loss (i.e., losses due to skin and proximity effects) is necessary as the induction cooker used in power electronics applications. At high frequency current penetration in the induction coil circuit is very difficult for conducting wire due to skin-effect. To eradicate the skin effect heating coil is made up of bundle conductor i.e., litz wire. In this paper inductances and AC resistances of a litz-wire are calculated and optimized by considering the input parameters like wire type, shape, number of strand, number of spiral turn, number of twist per feet of heating coil and operating frequency. A high frequency half bridge series resonant mirror inverter circuit is used in this paper and taking the optimum values of inductance and ac resistance the circuit is simulated through PSPICE simulations. It has been noticed that the results are feasible enough for real implementation.

  13. Equilibrium modeling of the TFCX poloidal field coil system

    Energy Technology Data Exchange (ETDEWEB)

    Strickler, D.J.; Miller, J.B.; Rothe, K.E.; Peng, Y.K.M.

    1984-04-01

    The Toroidal Fusion Core Experiment (TFCX) isproposed to be an ignition device with a low safety factor (q approx. = 2.0), rf or rf-assisted startup, long inductive burn pulse (approx. 300 s), and an elongated plasma cross section (kappa = 1.6) with moderate triangularity (delta = 0.3). System trade studies have been carried out to assist in choosing an appropriate candidate for TFCX conceptual design. This report describes an important element in these system studies - the magnetohydrodynamic (MHD) equilibrium modeling of the TFCX poloidal field (PF) coil system and its impact on the choice of machine size. Reference design points for the all-super-conducting toroidal field (TF) coil (TFCX-S) and hybrid (TFCX-H) options are presented that satisfy given PF system criteria, including volt-second requirements during burn, mechanical configuration constraints, maximum field constraints at the superconducting PF coils, and plasma shape parameters. Poloidal coil current waveforms for the TFCX-S and TFCX-H reference designs consistent with the equilibrium requirements of the plasma startup, heating, and burn phases of a typical discharge scenario are calculated. Finally, a possible option for quasi-steady-state operation is discussed.

  14. An improved trap design for decoupling multinuclear RF coils.

    Science.gov (United States)

    Meyerspeer, Martin; Serés Roig, Eulalia; Gruetter, Rolf; Magill, Arthur W

    2014-08-01

    Multinuclear magnetic resonance spectroscopy and imaging require a radiofrequency probe capable of transmitting and receiving at the proton and non-proton frequencies. To minimize coupling between probe elements tuned to different frequencies, LC (inductor-capacitor) traps blocking current at the (1)H frequency can be inserted in non-proton elements. This work compares LC traps with LCC traps, a modified design incorporating an additional capacitor, enabling control of the trap reactance at the low frequency while maintaining (1)H blocking. Losses introduced by both types of trap were analysed using circuit models. Radiofrequency coils incorporating a series of LC and LCC traps were then built and evaluated at the bench. LCC trap performance was then confirmed using (1)H and (13)C measurements in a 7T human scanner. LC and LCC traps both effectively block interaction between non-proton and proton coils at the proton frequency. LCC traps were found to introduce a sensitivity reduction of 5±2%, which was less than half of that caused by LC traps. Sensitivity of non-proton coils is critical. The improved trap design, incorporating one extra capacitor, significantly reduces losses introduced by the trap in the non-proton coil. Copyright © 2013 Wiley Periodicals, Inc.

  15. Modelling of a Coil Steam Generator for CSP applications

    DEFF Research Database (Denmark)

    Pelagotti, Leonardo; Sørensen, Kim; Condra, Thomas Joseph;

    2014-01-01

    The project investigates a new design for a CSP plant steam generation system, the Coil Steam Generator (CSG). This system allows faster start-ups and therefore higher daily energy production from the Sun. An analytical thermodynamic simulation model of the evaporator and a mechanical analysis...

  16. Speed Control and Coiling Temperature Control of Strip

    Institute of Scientific and Technical Information of China (English)

    CAI Xiao-hui; ZHANG Dian-hua; WANG Guo-dong; LIU Xiang-hua; FAN Lei

    2004-01-01

    Considering the strip speed during controlled laminar cooling on Baosteel 1580 hot strip mill in China, the influence of strip speed fluctuation on coiling temperature control for the tail and "neck" of the strip was analyzed. The optimization strategies were put forward and proved effective in operation.

  17. Insulating process for HT-7U central solenoid model coils

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The HT-7U superconducting Tokamak is a whole superconducting magnetically confined fusion device. The insulating system of its central solenoid coils is critical to its properties. In this paper the forming of the insulating system and the vacuum-pressure-impregnating (VPI) are introduced, and the whole insulating process is verified under the superconducting experiment condition.

  18. Flux Redux: The Spinning Coil Comes around Again

    Science.gov (United States)

    Lund, Daniel; Dietz, Eric; Zou, Xueli; Ard, Christopher; Lee, Jaydie; Kaneshiro, Chris; Blanton, Robert; Sun, Steven

    2017-01-01

    An essential laboratory exercise for our lower-division electromagnetism course involves the measurement of Earth's local magnetic field from the emf induced in a rotating coil of wire. Although many methods exist for the measurement of Earth's field, this one gives our students some practical experience with Faraday's law. The apparatus we had…

  19. Coil embolization of an anastomotic leak after ascending aorta replacement

    DEFF Research Database (Denmark)

    Nørgaard, Anders; Andersen, Lars Ib; Haahr, P.E.

    2008-01-01

    Surgical treatment of diseases of the thoracic aorta (aneurysms, dissections, and ruptures) may be associated with serious postoperative complications. Endovascular repair of thoracic aorta pathology is less invasive and offers a therapeutic alternative in high-surgical-risk patients, particularly...... accepted--embolization with endovascular coils--successfully resulting in occlusion of the leakage....

  20. Flux Redux: The Spinning Coil Comes around Again

    Science.gov (United States)

    Lund, Daniel; Dietz, Eric; Zou, Xueli; Ard, Christopher; Lee, Jaydie; Kaneshiro, Chris; Blanton, Robert; Sun, Steven

    2017-01-01

    An essential laboratory exercise for our lower-division electromagnetism course involves the measurement of Earth's local magnetic field from the emf induced in a rotating coil of wire. Although many methods exist for the measurement of Earth's field, this one gives our students some practical experience with Faraday's law. The apparatus we had…