WorldWideScience

Sample records for pt-carbon aerogel based

  1. Unsupported Pt-Ni Aerogels with Enhanced High Current Performance and Durability in Fuel Cell Cathodes.

    Science.gov (United States)

    Henning, Sebastian; Ishikawa, Hiroshi; Kühn, Laura; Herranz, Juan; Müller, Elisabeth; Eychmüller, Alexander; Schmidt, Thomas J

    2017-08-28

    Highly active and durable oxygen reduction catalysts are needed to reduce the costs and enhance the service life of polymer electrolyte fuel cells (PEFCs). This can be accomplished by alloying Pt with a transition metal (for example Ni) and by eliminating the corrodible, carbon-based catalyst support. However, materials combining both approaches have seldom been implemented in PEFC cathodes. In this work, an unsupported Pt-Ni alloy nanochain ensemble (aerogel) demonstrates high current PEFC performance commensurate with that of a carbon-supported benchmark (Pt/C) following optimization of the aerogel's catalyst layer (CL) structure. The latter is accomplished using a soluble filler to shift the CL's pore size distribution towards larger pores which improves reactant and product transport. Chiefly, the optimized PEFC aerogel cathodes display a circa 2.5-fold larger surface-specific ORR activity than Pt/C and maintain 90 % of the initial activity after an accelerated stress test (vs. 40 % for Pt/C). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Polymer-mediated synthesis of a nitrogen-doped carbon aerogel with highly dispersed Pt nanoparticles for enhanced electrocatalytic activity

    International Nuclear Information System (INIS)

    2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" data-affiliation=" (World Class University (WCU) Program of Chemical Convergence for Energy & Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" >Kim, Gil-Pyo; 2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" data-affiliation=" (World Class University (WCU) Program of Chemical Convergence for Energy & Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" >Lee, Minzae; Lee, Yoon Jae; 2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" data-affiliation=" (World Class University (WCU) Program of Chemical Convergence for Energy & Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" >Bae, Seongjun; 2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" data-affiliation=" (World Class University (WCU) Program of Chemical Convergence for Energy & Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" >Song, Hyeon Dong; Song, In Kyu; 2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" data-affiliation=" (World Class University (WCU) Program of Chemical Convergence for Energy & Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" >Yi, Jongheop

    2016-01-01

    Highlights: • Highly dispersed Pt nanoparticles on N-doped carbon aerogel were synthesized for ORR. • Poly(ethyleneimine) was used as nitrogen source and as nucleation sites for Pt. • Precise discussion were conducted to clarify the effect of poly(ethyleneimine). • High Pt dispersion and N-doping results in superior electrocatalytic activity. - Abstract: A simple chemical process for the direct synthesis of a nitrogen (N)-doped carbon aerogel (NCA) with highly dispersed Pt nanoparticles via a poly(ethyleneimine) (PEI)-assisted strategy is described. A resorcinol-formaldehyde (RF) gel was treated with water soluble cationic PEI, which mainly functions as an anchoring site for metal ions. The functionalized PEI chains on the surface of the RF gel resulted in the unique formation of chemical complexes, with PtCl 6 2− anchored to the RF gel, and subsequent homogeneous metal nanoparticle growth. The abundant amino groups containing PEI grafted to the RF gel also allowed the nitrogen atoms to be incorporated into the carbon framework, which can directly be converted into a NCA. The spherical Pt nanoparticles in the resulting material (Pt/NCA) were highly dispersed on the surface of the NCA without any evidenced of agglomeration, even after a thermal annealing at 900 °C. Compared with a Pt/CA synthesized by a conventional reduction method, the Pt/NCA showed enhanced electrochemical performance with a high electrochemically active surface area (191.1 cm 2 g −1 ) and electrocatalytic activity (V onset = 0.95 V vs. RHE) with respect to oxygen reduction. The superior electrocatalytic activities of the Pt/NCA can be attributed to the synergistic effect of the highly dispersed Pt nanoparticles and the N-doped carbon supports that were prepared using the PEI-assisted strategy. The findings reported herein suggest that the use of PEI can be effectively extended to broad applications that require the homogeneous deposition of metal nanoparticles.

  3. Novel polybenzoxazine-based carbon aerogel electrode for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Katanyoota, Porawee [Petroleum and Petrochemical College and National Center of Excellence for Petroleum, Petrochemicals and Advanced Materials, Chulalongkorn University, Bangkok 10330 (Thailand); Chaisuwan, Thayanlak, E-mail: thanyalak.c@hotmail.co [Petroleum and Petrochemical College and National Center of Excellence for Petroleum, Petrochemicals and Advanced Materials, Chulalongkorn University, Bangkok 10330 (Thailand); Wongchaisuwat, Atchana [Department of Chemistry, Kasetsart University, Bangkok 10900 (Thailand); Wongkasemjit, Sujitra, E-mail: dsujitra@chula.ac.t [Petroleum and Petrochemical College and National Center of Excellence for Petroleum, Petrochemicals and Advanced Materials, Chulalongkorn University, Bangkok 10330 (Thailand)

    2010-02-25

    In this study, polybenzoxazine, a new high performance thermosetting resin, was used to prepare carbon aerogels used as an electrode for supercapacitors. Two types of polybenzoxazines, derived from two different amines, aniline and triethylenetetramine, and denoted as BA-a and BA-teta, respectively, were chosen as the reactants for the organic precursor preparation. The surface area of carbon aerogels from both BA-a and BA-teta was 391 and 368 m{sup 2}/g, respectively. The pore size of each carbon aerogel was in the range of 2-5 nm, which is a suitable pore size for use as electrodes in electrochemical applications. The electrochemical properties of the obtained carbon aerogels showed good performance for supercapacitor applications with a specific capacitance of 55.78 and 20.53 F/g for BA-teta and BA-a, respectively. At low voltage scanning, 1 and 5 mV/s, the cyclic voltammogram of the carbon aerogel derived from BA-teta gave a better rectangular shape than that of the other carbon aerogel. The impedance spectra of both carbon aerogels confirmed the results of the capacitance and the cyclic voltammogram analyses.

  4. Novel polybenzoxazine-based carbon aerogel electrode for supercapacitors

    International Nuclear Information System (INIS)

    Katanyoota, Porawee; Chaisuwan, Thayanlak; Wongchaisuwat, Atchana; Wongkasemjit, Sujitra

    2010-01-01

    In this study, polybenzoxazine, a new high performance thermosetting resin, was used to prepare carbon aerogels used as an electrode for supercapacitors. Two types of polybenzoxazines, derived from two different amines, aniline and triethylenetetramine, and denoted as BA-a and BA-teta, respectively, were chosen as the reactants for the organic precursor preparation. The surface area of carbon aerogels from both BA-a and BA-teta was 391 and 368 m 2 /g, respectively. The pore size of each carbon aerogel was in the range of 2-5 nm, which is a suitable pore size for use as electrodes in electrochemical applications. The electrochemical properties of the obtained carbon aerogels showed good performance for supercapacitor applications with a specific capacitance of 55.78 and 20.53 F/g for BA-teta and BA-a, respectively. At low voltage scanning, 1 and 5 mV/s, the cyclic voltammogram of the carbon aerogel derived from BA-teta gave a better rectangular shape than that of the other carbon aerogel. The impedance spectra of both carbon aerogels confirmed the results of the capacitance and the cyclic voltammogram analyses.

  5. Nitrogen and Fluorine-Codoped Carbon Nanowire Aerogels as Metal-Free Electrocatalysts for Oxygen Reduction Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Shaofang [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Zhu, Chengzhou [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Song, Junhua [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Engelhard, Mark H. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Xiao, Biwei [Energy and Environmental Directory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Du, Dan [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Lin, Yuehe [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA

    2017-07-11

    The development of active, durable, and low-cost catalysts to replace noble metal-based materials is highly desirable to promote the sluggish oxygen reduction reaction in fuel cells. Herein, nitrogen and fluorine-codoped three-dimensional carbon nanowire aerogels, composed of interconnected carbon nanowires, were synthesized for the first time by a hydrothermal carbonization process. Owing to their porous nanostructures and heteroatom-doping, the as-prepared carbon nanowire aerogels, with optimized composition, present excellent electrocatalytic activity that is comparable to commercial Pt/C. Remarkably, the aerogels also exhibit superior stability and methanol tolerance. This synthesis procedure paves a new way to design novel heteroatomdoped catalysts.

  6. Preparation of lignin-based carbon aerogels as biomaterials for nano-supercapacitor

    Science.gov (United States)

    Yang, Bong Suk; Kang, Kyu-Young; Jeong, Myung-Joon

    2017-10-01

    Kraft and organosolv lignins, generally produced in chemical pulping and bio-refinery processes of lignocellulosic biomass, were used to prepare lignin-based carbon aerogels for supercapacitors as raw materials. The difference between lignins and lignin-based aerogels were compared by analyzing physical and chemical properties, including molecular weight, polydispersity, and reactivity with formaldehyde. Also, density, shrinkage, Brunauer-Emmett-Teller (BET) surface area and scanning electron microscope (SEM) images of the lignin-based aerogel were investigated. Kraft lignin consisting of coniferyl alcohol (G) and p-coumaryl alcohol (H) increased the reactivity of formaldehyde, formed a hydrogel well (porosity > 0.45), and specific surface area higher than organosolv lignin. In the case of kraft lignin, there were irregular changes such as oxidation and condensation in the pulping process. However, reaction sites with aromatic rings in lignin impacted the production of aerogel and required a long gelation period. The molecular weight of lignin influences the gelation time in producing lignin-based aerogel, and lignin composition affects the BET surface area and pore structures of the lignin-based carbon aerogels.

  7. Carbon aerogels; Les aerogels de carbone

    Energy Technology Data Exchange (ETDEWEB)

    Berthon-Fabry, S.; Achard, P

    2003-06-15

    The carbon aerogel is a nano-porous material at open porosity, electrical conductor. The aerogels morphology is variable in function of the different synthesis parameters. This characteristic offers to the aerogels a better adaptability to many applications: electrodes (super condensers, fuel cells). The author presents the materials elaboration and their applications. It provides also the research programs: fundamental research, realization of super-condenser electrodes, fuel cells electrodes, gas storage materials and opaque materials for thermal insulation. (A.L.B.)

  8. Flexible Carbon Aerogels

    Directory of Open Access Journals (Sweden)

    Marina Schwan

    2016-09-01

    Full Text Available Carbon aerogels are highly porous materials with a large inner surface area. Due to their high electrical conductivity they are excellent electrode materials in supercapacitors. Their brittleness, however, imposes certain limitations in terms of applicability. In that context, novel carbon aerogels with varying degree of flexibility have been developed. These highly porous, light aerogels are characterized by a high surface area and possess pore structures in the micrometer range, allowing for a reversible deformation of the aerogel network. A high ratio of pore size to particle size was found to be crucial for high flexibility. For dynamic microstructural analysis, compression tests were performed in-situ within a scanning electron microscope allowing us to directly visualize the microstructural flexibility of an aerogel. The flexible carbon aerogels were found to withstand between 15% and 30% of uniaxial compression in a reversible fashion. These findings might stimulate further research and new application fields directed towards flexible supercapacitors and batteries.

  9. Highly stretchable carbon aerogels.

    Science.gov (United States)

    Guo, Fan; Jiang, Yanqiu; Xu, Zhen; Xiao, Youhua; Fang, Bo; Liu, Yingjun; Gao, Weiwei; Zhao, Pei; Wang, Hongtao; Gao, Chao

    2018-02-28

    Carbon aerogels demonstrate wide applications for their ultralow density, rich porosity, and multifunctionalities. Their compressive elasticity has been achieved by different carbons. However, reversibly high stretchability of neat carbon aerogels is still a great challenge owing to their extremely dilute brittle interconnections and poorly ductile cells. Here we report highly stretchable neat carbon aerogels with a retractable 200% elongation through hierarchical synergistic assembly. The hierarchical buckled structures and synergistic reinforcement between graphene and carbon nanotubes enable a temperature-invariable, recoverable stretching elasticity with small energy dissipation (~0.1, 100% strain) and high fatigue resistance more than 10 6 cycles. The ultralight carbon aerogels with both stretchability and compressibility were designed as strain sensors for logic identification of sophisticated shape conversions. Our methodology paves the way to highly stretchable carbon and neat inorganic materials with extensive applications in aerospace, smart robots, and wearable devices.

  10. The monolithic carbon aerogels and aerogel composites for electronics and thermal protection applications

    Science.gov (United States)

    Lu, Sheng; Guo, Hui; Zhou, Yugui; Liu, Yuanyuan; Jin, Zhaoguo; Liu, Bin; Zhao, Yingmin

    2017-09-01

    Monolithic carbon aerogels have been prepared by condensation polymerization and high temperature pyrolysis. The morphology of carbon aerogels are characterized by SEM. The pore structure is characterized by N2 adsorption-desorption technique. Monolithic carbon aerogels are mesoporous nanomaterials. Carbon fiber reinforced carbon aerogel composites are prepared by in-situ sol-gel process. Fiber reinforced carbon aerogel composites are of high mechanical strength. The thermal response of the fiber reinforced aerogel composite samples are tested in an arc plasma wind tunnel. Carbon aerogel composites show good thermal insulation capability and high temperature resistance in inert atmosphere even at ultrahigh temperature up to 1800 °C. The results show that they are suitable for applications in electrodes for supercapacitors/ Lithium-ion batteries and aerospace thermal protection area.

  11. Carbon aerogels

    International Nuclear Information System (INIS)

    Berthon-Fabry, S.; Achard, P.

    2003-06-01

    The carbon aerogel is a nano-porous material at open porosity, electrical conductor. The aerogels morphology is variable in function of the different synthesis parameters. This characteristic offers to the aerogels a better adaptability to many applications: electrodes (super condensers, fuel cells). The author presents the materials elaboration and their applications. It provides also the research programs: fundamental research, realization of super-condenser electrodes, fuel cells electrodes, gas storage materials and opaque materials for thermal insulation. (A.L.B.)

  12. Polyolefin-Based Aerogels

    Science.gov (United States)

    Lee, Je Kyun; Gould, George

    2012-01-01

    An organic polybutadiene (PB) rubberbased aerogel insulation material was developed that will provide superior thermal insulation and inherent radiation protection, exhibiting the flexibility, resiliency, toughness, and durability typical of the parent polymer, yet with the low density and superior insulation properties associated with the aerogels. The rubbery behaviors of the PB rubber-based aerogels are able to overcome the weak and brittle nature of conventional inorganic and organic aerogel insulation materials. Additionally, with higher content of hydrogen in their structure, the PB rubber aerogels will also provide inherently better radiation protection than those of inorganic and carbon aerogels. Since PB rubber aerogels also exhibit good hydrophobicity due to their hydrocarbon molecular structure, they will provide better performance reliability and durability as well as simpler, more economic, and environmentally friendly production over the conventional silica or other inorganic-based aerogels, which require chemical treatment to make them hydrophobic. Inorganic aerogels such as silica aerogels demonstrate many unusual and useful properties. There are several strategies to overcoming the drawbacks associated with the weakness and brittleness of silica aerogels. Development of the flexible fiber-reinforced silica aerogel composite blanket has proven one promising approach, providing a conveniently fielded form factor that is relatively robust toward handling in industrial environments compared to silica aerogel monoliths. However, the flexible silica aerogel composites still have a brittle, dusty character that may be undesirable, or even intolerable, in certain applications. Although the cross-linked organic aerogels such as resorcinol-formaldehyde (RF), polyisocyanurate, and cellulose aerogels show very high impact strength, they are also very brittle with little elongation (i.e., less rubbery). Also, silica and carbon aerogels are less efficient

  13. Flexible, highly graphitized carbon aerogels based on bacterial cellulose/lignin: Catalyst-free synthesis and its application in energy storage devices

    KAUST Repository

    Xu, Xuezhu; Zhou, Jian; Nagaraju, Doddahalli H.; Jiang, Long; Marinov, Val R.; Lubineau, Gilles; Alshareef, Husam N.; Oh, Myungkeun

    2015-01-01

    Currently, most carbon aerogels are based on carbon nanotubes (CNTs) or graphene, which are produced through a catalyst-assisted chemical vapor deposition method. Biomass based organic aerogels and carbon aerogels, featuring low cost, high

  14. Flexible, highly graphitized carbon aerogels based on bacterial cellulose/lignin: Catalyst-free synthesis and its application in energy storage devices

    KAUST Repository

    Xu, Xuezhu

    2015-04-15

    Currently, most carbon aerogels are based on carbon nanotubes (CNTs) or graphene, which are produced through a catalyst-assisted chemical vapor deposition method. Biomass based organic aerogels and carbon aerogels, featuring low cost, high scalability, and small environmental footprint, represent an important new research direction in (carbon) aerogel development. Cellulose and lignin are the two most abundant natural polymers in the world, and the aerogels based on them are very promising. Classic silicon aerogels and available organic resorcinol-formaldehyde (RF) or lignin-resorcinol-formaldehyde (LRF) aerogels are brittle and fragile; toughening of the aerogels is highly desired to expand their applications. This study reports the first attempt to toughen the intrinsically brittle LRF aerogel and carbon aerogel using bacterial cellulose. The facile process is catalyst-free and cost-effective. The toughened carbon aerogels, consisting of blackberry-like, core-shell structured, and highly graphitized carbon nanofibers, are able to undergo at least 20% reversible compressive deformation. Due to their unique nanostructure and large mesopore population, the carbon materials exhibit an areal capacitance higher than most of the reported values in the literature. This property makes them suitable candidates for flexible solid-state energy storage devices. Besides energy storage, the conductive interconnected nanoporous structure can also find applications in oil/water separation, catalyst supports, sensors, and so forth. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Hydrogen storage property of nanoporous carbon aerogels

    International Nuclear Information System (INIS)

    Shen Jun; Liu Nianping; Ouyang Ling; Zhou Bin; Wu Guangming; Ni Xingyuan; Zhang Zhihua

    2011-01-01

    Carbon aerogels were prepared from resorcinol and formaldehyde via sol-gel process, high temperature carbonization and atmospheric pressure drying technology with solvent replacement. By changing the resorcinol-sodium carbonate molar ratio and the mass fraction of the reactants,resorcinol and formaldehyde, the pore structure of carbon aerogels can be controlled and the palladium-doped carbon aerogels were prepared.By transmission electron microscopy (TEM), X-ray diffraction (XRD) spectra, it is confirmed that the Pd exists in the skeleton structure of carbon aerogels as a form of nano simple substance pellet. The specific surface area is successfully raised by 2 times, and palladium-doped carbon aerogels with a specific surface area of 1 273 m 2 /g have been obtained by carrying out the activation process as the post-processing to the doped carbon aerogels. The hydrogen adsorption results show that the saturated hydrogen storage mass fraction of the carbon aerogels with the specific surface area of 3 212 m 2 /g is 3% in the condition of 92 K, 3.5 MPa, and 0.84% in the condition of 303 K, 3.2 MPa. In addition, the hydrogen adsorption test of palladium-doped carbon aerogels at room temperature (303 K) shows that the total hydrogen storage capacity of doped carbon aerogels is declined due to the relative small specific surface, but the hydrogen storage of unit specific surface area is enhanced. (authors)

  16. Highly sensitive room temperature organic vapor sensor based on polybenzoxazine-derived carbon aerogel thin film composite

    International Nuclear Information System (INIS)

    Thubsuang, Uthen; Sukanan, Darunee; Sahasithiwat, Somboon; Wongkasemjit, Sujitra; Chaisuwan, Thanyalak

    2015-01-01

    Graphical abstract: - Highlights: • Activated carbon aerogel with high surface area can be prepared from polybenzoxazine. • Activated carbon aerogel enhances the adsorption capacity of gas sensor. • Organic vapors with very low concentration can be detected by the as-prepared sensor. • The as-prepared sensor shows impressive short exposure and recovery time. • The response to different organic vapors can be tailored by changing polymer matrix. - Abstract: Gas sensing composites were fabricated using polybenzoxazine-based activated carbon aerogel as a conductive filler. The activated carbon aerogel is a nano-porous material, which has high pore volume of 0.57 cm 3 /g and surface area of 917 m 2 /g. The activated carbon aerogel/polybutadiene composite displayed good response of 11.2 and 6.7 to toluene and n-hexane, respectively, compared to those of graphite/polybutadiene composite. The activated carbon aerogel/polybutadiene composite also showed high sensitivity of 3.09 × 10 2 ppm −1 to toluene. However, the sensitivity of activated carbon aerogel/polybutadiene composite drastically decreased to 1.99 ppm −1 and zero when exposed to acetone and water, respectively. Contrarily, when polyvinyl alcohol was used as a matrix, the sensitivity was about 4.19 ppm −1 to water. While the composite was found to be not sensitive to toluene. The activated carbon aerogel/polybutadiene composite also showed good recovery as the electrical resistance came back to the original value within minutes when exposed to nitrogen gas

  17. Synthesis and Characterization Carbon Nanotubes Doped Carbon Aerogels

    Science.gov (United States)

    Xu, Yuelong; Yan, Meifang; Liu, Zhenfa

    2017-12-01

    Polycondensation of phloroglucinol, resorcinol and formaldehyde with carbon nanotube (CNT) as the additives, using sodium carbonate as the catalyst, leads to the formation of CNT - doped carbon aerogels. The structure of carbon aerogels (CAs) with carbon nanotubes (CNTs) were characterized by X-ray diffraction and scanning electron microscopy. The specific surface area, pore size distribution and pore volume were measured by surface area analyzer. The results show that when the optimum doping dosage is 5%, the specific surface area of CNT - doped carbon aerogel is up to 665 m2 g-1 and exhibit plentiful mesoporous.

  18. MOLECULAR DESCRIPTION OF ELECTROLYTE SOLUTION IN A CARBON AEROGEL ELECTRODE

    Directory of Open Access Journals (Sweden)

    A.Kovalenko

    2003-01-01

    Full Text Available We develop a molecular theory of aqueous electrolyte solution sorbed in a nanoporous carbon aerogel electrode, based on the replica reference interaction site model (replica RISM for realistic molecular quenched-annealed systems. We also briefly review applications of carbon aerogels for supercapacitor and electrochemical separation devices, as well as theoretical and computer modelling of disordered porous materials. The replica RISM integral equation theory yields the microscopic properties of the electrochemical double layer formed at the surface of carbon aerogel nanopores, with due account of chemical specificities of both sorbed electrolyte and carbon aerogel material. The theory allows for spatial disorder of aerogel pores in the range from micro- to macroscopic size scale. We considered ambient aqueous solution of 1 M sodium chloride sorbed in two model nanoporous carbon aerogels with carbon nanoparticles either arranged into branched chains or randomly distributed. The long-range correlations of the carbon aerogel nanostructure substantially affect the properties of the electrochemical double layer formed by the solution sorbed in nanopores.

  19. Highly sensitive room temperature organic vapor sensor based on polybenzoxazine-derived carbon aerogel thin film composite

    Energy Technology Data Exchange (ETDEWEB)

    Thubsuang, Uthen [Materials Science and Engineering, School of Engineering and Resources, Walailak University, Nakhon Si Thammarat 80160 (Thailand); Sukanan, Darunee [The Petroleum and Petrochemical College and the Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330 (Thailand); Sahasithiwat, Somboon [National Metal and Materials Technology Center, Thailand Science Park (TSP), Khlong Luang, Pathum Thani 12120 (Thailand); Wongkasemjit, Sujitra [The Petroleum and Petrochemical College and the Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330 (Thailand); Chaisuwan, Thanyalak, E-mail: thanyalak.c@chula.ac.th [The Petroleum and Petrochemical College and the Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330 (Thailand)

    2015-10-15

    Graphical abstract: - Highlights: • Activated carbon aerogel with high surface area can be prepared from polybenzoxazine. • Activated carbon aerogel enhances the adsorption capacity of gas sensor. • Organic vapors with very low concentration can be detected by the as-prepared sensor. • The as-prepared sensor shows impressive short exposure and recovery time. • The response to different organic vapors can be tailored by changing polymer matrix. - Abstract: Gas sensing composites were fabricated using polybenzoxazine-based activated carbon aerogel as a conductive filler. The activated carbon aerogel is a nano-porous material, which has high pore volume of 0.57 cm{sup 3}/g and surface area of 917 m{sup 2}/g. The activated carbon aerogel/polybutadiene composite displayed good response of 11.2 and 6.7 to toluene and n-hexane, respectively, compared to those of graphite/polybutadiene composite. The activated carbon aerogel/polybutadiene composite also showed high sensitivity of 3.09 × 10{sup 2} ppm{sup −1} to toluene. However, the sensitivity of activated carbon aerogel/polybutadiene composite drastically decreased to 1.99 ppm{sup −1} and zero when exposed to acetone and water, respectively. Contrarily, when polyvinyl alcohol was used as a matrix, the sensitivity was about 4.19 ppm{sup −1} to water. While the composite was found to be not sensitive to toluene. The activated carbon aerogel/polybutadiene composite also showed good recovery as the electrical resistance came back to the original value within minutes when exposed to nitrogen gas.

  20. Carbon aerogels by pyrolysis of TEMPO-oxidized cellulose

    Science.gov (United States)

    Zhang, Sizhao; Feng, Jian; Feng, Junzong; Jiang, Yonggang; Ding, Feng

    2018-05-01

    Although carbon aerogels derived from naturally occurring materials have been developed extensively, a reasonable synthetic approach using cellulose-resource remains unclear. Here, we report a strategy to prepare carbon aerogels originated from cellulose position-selectively oxidized by TEMPO-oxidized process. Contrary to non-TEMPO-oxidized cellulose-derived carbon aerogels (NCCA) with relative loose structure, TEMPO-oxidized cellulose-derived carbon aerogels (TCCA) with tight fibrillar-continuous network are monitored, suggesting the importance of TEMPO-oxidized modification towards creating the architecture of subsequently produced carbon aerogels. TCCA endows a higher BET area despite owning slightly dense bulk density comparing with that of NCCA. The structural texture of TCCA could be maintained in a way in comparison to TEMPO-oxidized cellulose-derived aerogel, due to the integration and aggregation effect by losing the electric double layer repulsion via ionization of the surface carboxyl groups. FTIR and XPS analyses signify the evidence of non-functionalized carbon-skeleton network formation in terms of TCCA. Further, the mechanism concerning the creation of carbon aerogels is also established. These findings not only provide new insights into the production of carbon aerogels but also open up a new opportunity in the field of functional carbon materials.

  1. Microwave-assisted synthesis of high-loading, highly dispersed Pt

    Indian Academy of Sciences (India)

    Cyclic voltammetry and chronoamperometry were used to evaluate the electrocatalytic activity of the Pt/carbon aerogel catalyst for methanol oxidation at room temperature. The Pt/carbon aerogel catalyst shows higher electrochemical catalytic activity and stability for methanol oxidation than a commercial Pt/C catalyst of the ...

  2. Nitrogen-doped carbon aerogels for electrical energy storage

    Science.gov (United States)

    Campbell, Patrick; Montalvo, Elizabeth; Baumann, Theodore F.; Biener, Juergen; Merrill, Matthew; Reed, Eric W.; Worsley, Marcus A.

    2017-10-03

    Disclosed here is a method for making a nitrogen-doped carbon aerogel, comprising: preparing a reaction mixture comprising formaldehyde, at least one nitrogen-containing resorcinol analog, at least one catalyst, and at least one solvent; curing the reaction mixture to produce a wet gel; drying the wet gel to produce a dry gel; and thermally annealing the dry gel to produce the nitrogen-doped carbon aerogel. Also disclosed is a nitrogen-doped carbon aerogel obtained according to the method and a supercapacitor comprising the nitrogen-doped carbon aerogel.

  3. Polyurea-Based Aerogel Monoliths and Composites

    Science.gov (United States)

    Lee, Je Kyun

    2012-01-01

    aerogel insulation material was developed that will provide superior thermal insulation and inherent radiation protection for government and commercial applications. The rubbery polyureabased aerogel exhibits little dustiness, good flexibility and toughness, and durability typical of the parent polyurea polymer, yet with the low density and superior insulation properties associated with aerogels. The thermal conductivity values of polyurea-based aerogels at lower temperature under vacuum pressures are very low and better than that of silica aerogels. Flexible, rubbery polyurea-based aerogels are able to overcome the weak and brittle nature of conventional inorganic and organic aerogels, including polyisocyanurate aerogels, which are generally prepared with the one similar component to polyurethane rubber aerogels. Additionally, with higher content of hydrogen in their structures, the polyurea rubber-based aerogels will also provide inherently better radiation protection than those of inorganic and carbon aerogels. The aerogel materials also demonstrate good hydrophobicity due to their hydrocarbon molecular structure. There are several strategies to overcoming the drawbacks associated with the weakness and brittleness of silica aerogels. Development of the flexible fiber-reinforced silica aerogel composite blanket has proven to be one promising approach, providing a conveniently fielded form factor that is relatively robust in industrial environments compared to silica aerogel monoliths. However, the flexible, silica aerogel composites still have a brittle, dusty character that may be undesirable, or even intolerable, in certain application environments. Although the cross - linked organic aerogels, such as resorcinol- formaldehyde (RF), polyisocyanurate, and cellulose aerogels, show very high impact strength, they are also very brittle with little elongation (i.e., less rubbery). Also, silica and carbon aerogels are less efficient radiation shielding materials due

  4. Properties of single-walled carbon nanotube-based aerogels as a function of nanotube loading

    International Nuclear Information System (INIS)

    Worsley, Marcus A.; Pauzauskie, Peter J.; Kucheyev, Sergei O.; Zaug, Joseph M.; Hamza, Alex V.; Satcher, Joe H.; Baumann, Theodore F.

    2009-01-01

    Here, we present the synthesis and characterization of low-density single-walled carbon nanotube-based aerogels (SWNT-CA). Aerogels with varying nanotube loading (0-55 wt.%) and density (20-350 mg cm -3 ) were fabricated and characterized by four-probe method, electron microscopy, Raman spectroscopy and nitrogen porosimetry. Several properties of the SWNT-CAs were highly dependent upon nanotube loading. At nanotube loadings of 55 wt.%, shrinkage of the aerogel monoliths during carbonization and drying was almost completely eliminated. Electrical conductivities are improved by an order of magnitude for the SWNT-CA (55 wt.% nanotubes) compared to those of foams without nanotubes. Surface areas as high as 184 m 2 g -1 were achieved for SWNT-CAs with greater than 20 wt.% nanotube loading.

  5. Carbon aerogel electrodes for direct energy conversion

    Science.gov (United States)

    Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.

    1997-01-01

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome.

  6. Ultra-fine Pt nanoparticles on graphene aerogel as a porous electrode with high stability for microfluidic methanol fuel cell

    Science.gov (United States)

    Kwok, Y. H.; Tsang, Alpha C. H.; Wang, Yifei; Leung, Dennis Y. C.

    2017-05-01

    Platinum-decorated graphene aerogel as a porous electrode for flow-through direct methanol microfluidic fuel cell is introduced. Ultra-fine platinum nanoparticles with size ranged from diameter 1.5 nm-3 nm are evenly anchored on the graphene nanosheets without agglomeration. The electrode is characterized by scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy. Catalytic activity is confirmed by cyclic voltammetry. The electroactive surface area and catalytic activity of platinum on graphene oxide (Pt/GO) are much larger than commercial platinum on carbon black (Pt/C). A counterflow microfluidic fuel cell is designed for contrasting the cell performance between flow-over type and flow-through type electrodes using Pt/C on carbon paper and Pt/GO, respectively. The Pt/GO electrode shows 358% increment in specific power compared with Pt/C anode. Apart from catalytic activity, the effect of porous electrode conductivity to cell performance is also studied. The conductivity of the porous electrode should be further enhanced to achieve higher cell performance.

  7. Enhancing substrate utilization and power production of a microbial fuel cell with nitrogen-doped carbon aerogel as cathode catalyst.

    Science.gov (United States)

    Tardy, Gábor Márk; Lóránt, Bálint; Lóka, Máté; Nagy, Balázs; László, Krisztina

    2017-07-01

    Catalytic efficiency of a nitrogen-doped, mesoporous carbon aerogel cathode catalyst was investigated in a two-chambered microbial fuel cell (MFC) applying graphite felt as base material for cathode and anode, utilizing peptone as carbon source. This mesoporous carbon aerogel containing catalyst layer on the cathode increased the maximum power density normalized to the anode volume to 2.7 times higher compared to the maximum power density obtained applying graphite felt cathode without the catalyst layer. At high (2 and 3) cathode/anode volume ratios, maximum power density exceeded 40 W m -3 . At the same time, current density and specific substrate utilization rate increased by 58% resulting in 31.9 A m -3 and 18.8 g COD m -3  h -1 , respectively (normalized to anode volume). Besides the increase of the power and the rate of biodegradation, the investigated catalyst decreased the internal resistance from the range of 450-600 to 350-370 Ω. Although Pt/C catalyst proved to be more efficient, a considerable decrease in the material costs might be achieved by substituting it with nitrogen-doped carbon aerogel in MFCs. Such cathode still displays enhanced catalytic effect.

  8. Lithium-Catalyzed Carbon Aerogel and Its Possible Application in Energy Storage Materials

    Science.gov (United States)

    Ciszewski, Mateusz; Szatkowska, Elżbieta; Koszorek, Andrzej

    2017-07-01

    A lithium-based catalyst for carbon aerogel compounds and carbon nanotubes synthesis was used. Lithium hydroxide-catalyzed and CNT-modified carbon aerogel was compared to traditionally synthesized sodium carbonate-catalyzed carbon aerogel, as well as to the same material modified with CNT to evaluate the real effect of lithium hydroxide addition. Enhancement in the specific surface area from 498 m2/g to 786 m2/g and significant change in pore size distribution were observed. Low temperature, supercritical drying in carbon dioxide was used to prepare an organic aerogel with subsequent pyrolysis in an inert gas flow to convert it into carbon aerogel. The as-obtained material was examined with respect to energy storage applications, i.e. symmetric hybrid supercapacitors. It was shown that lithium hydroxide was responsible for shorter gelation time, increased specific surface area, and a greater number of micropores within the structure. For both reference materials prepared using sodium carbonate, quite different data were recorded. It was presented that the proper choice of carbon matrix should combine both high specific surface area and appropriate pore size distribution. High surface area and a relatively large number of micropores were responsible for specific capacity loss.

  9. Carbon Papers and Aerogels Based on Graphene Layers and Chitosan: Direct Preparation from High Surface Area Graphite.

    Science.gov (United States)

    Barbera, Vincenzina; Guerra, Silvia; Brambilla, Luigi; Maggio, Mario; Serafini, Andrea; Conzatti, Lucia; Vitale, Alessandra; Galimberti, Maurizio

    2017-12-11

    In this work, carbon papers and aerogels based on graphene layers and chitosan were prepared. They were obtained by mixing chitosan (CS) and a high surface area nanosized graphite (HSAG) in water in the presence of acetic acid. HSAG/CS water dispersions were stable for months. High resolution transmission electron microscopy revealed the presence of few graphene layers in water suspensions. Casting or lyophilization of such suspensions led to the preparation of carbon paper and aerogel, respectively. In X-ray spectra of both aerogels and carbon paper, peaks due to regular stacks of graphene layers were not detected: graphene with unaltered sp 2 structure was obtained directly from graphite without the use of any chemical reaction. The composites were demonstrated to be electrically conductive thanks to the graphene. Chitosan thus makes it possible to obtain monolithic carbon aerogels and flexible and free-standing graphene papers directly from a nanosized graphite by avoiding oxidation to graphite oxide and successive reduction. Strong interaction between polycationic chitosan and the aromatic substrate appears to be at the origin of the stability of HSAG/CS adducts. Cation-π interaction is hypothesized, also on the basis of X-ray photoelectron spectroscopy findings. This work paves the way for the easy large-scale preparation of carbon papers through a method that has a low environmental impact and is based on a biosourced polymer, graphene, and water.

  10. Diffusion of gases in metal containing carbon aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Marques, L.M.; Conceicao, F.L.; Carrott, M.M.L. Ribeiro; Carrott, P.J.M. [Evora Univ. (Portugal). Centro de Quimica de Evora

    2011-02-15

    Carbon aerogels containing Fe, Ni, Cu or no metal were prepared by carbonisation of polymer aerogels synthesised from 2,4-dihydroxybenzoic acid and formaldehyde and modified by CVD of benzene. Uptakes and diffusion coefficients of CO{sub 2}, CH{sub 4}, N{sub 2} and O{sub 2} were measured and the results compared with those obtained using a commercial carbon molecular sieve. The results indicated that the diffusion of light gas molecules in carbon aerogels cannot be interpreted solely on the basis of micropore diffusion, but that the very high mesopore volumes of the aerogel monoliths exert a strong influence on the kinetics of diffusion in these materials. The mesoporosity is decreased when the % solids used during synthesis of the polymer precursor increases and this resulted in kinetic behaviour which was more similar to that predicted by Fickian or LDF models. Increasing % solids was also accompanied by generally slower diffusion rates and generally lower uptakes. The single gas uptakes and diffusion coefficients could be altered by varying the % solids used during synthesis of the polymer precursor, by introducing different metals into the polymer hydrogel by ion exchange, or by CVD of benzene on the carbon aerogel. (author)

  11. Diffusion of gases in metal containing carbon aerogels

    International Nuclear Information System (INIS)

    Marques, L.M.; Conceicao, F.L.; Carrott, M.M.L. Ribeiro; Carrott, P.J.M.

    2011-01-01

    Carbon aerogels containing Fe, Ni, Cu or no metal were prepared by carbonisation of polymer aerogels synthesised from 2,4-dihydroxybenzoic acid and formaldehyde and modified by CVD of benzene. Uptakes and diffusion coefficients of CO 2 , CH 4 , N 2 and O 2 were measured and the results compared with those obtained using a commercial carbon molecular sieve. The results indicated that the diffusion of light gas molecules in carbon aerogels cannot be interpreted solely on the basis of micropore diffusion, but that the very high mesopore volumes of the aerogel monoliths exert a strong influence on the kinetics of diffusion in these materials. The mesoporosity is decreased when the % solids used during synthesis of the polymer precursor increases and this resulted in kinetic behaviour which was more similar to that predicted by Fickian or LDF models. Increasing % solids was also accompanied by generally slower diffusion rates and generally lower uptakes. The single gas uptakes and diffusion coefficients could be altered by varying the % solids used during synthesis of the polymer precursor, by introducing different metals into the polymer hydrogel by ion exchange, or by CVD of benzene on the carbon aerogel. (author)

  12. Kinetically controlled synthesis of AuPt bi-metallic aerogels and their enhanced electrocatalytic performances

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Qiurong [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA; Zhu, Chengzhou [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA; Du, Dan [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA; Key Laboratory of Pesticides and Chemical Biology; Bi, Cuixia [Institute of Crystal Materials; Shandong University; Jinan 250100; P. R. China; Xia, Haibing [Institute of Crystal Materials; Shandong University; Jinan 250100; P. R. China; Feng, Shuo [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA; Engelhard, Mark H. [Environmental Molecular Sciences Laboratory; Pacific Northwest National Laboratory; Richland; USA; Lin, Yuehe [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA

    2017-01-01

    Kinetically controlled synthesis of AuPtxbi-metallic hydrogels/aerogels was efficiently achieved for the first timeviatuning the reaction temperature or adding a surfactant.

  13. Ultralight Graphene/Carbon Nanotubes Aerogels with Compressibility and Oil Absorption Properties

    Directory of Open Access Journals (Sweden)

    Da Zhao

    2018-04-01

    Full Text Available Graphene aerogels have many advantages, such as low density, high elasticity and strong adsorption. They are considered to be widely applicable in many fields. At present, the most valuable research area aims to find a convenient and effective way to prepare graphene aerogels with excellent properties. In this work graphene/carbon nanotube aerogels are prepared through hydrothermal reduction, freeze-drying and high temperature heat treatment with the blending of graphene oxide and carbon nanotubes. A new reducing agent-ascorbic acid is selected to explore the best preparation process. The prepared aerogels have compression and resilience and oil absorption properties due to the addition of carbon nanotubes as designed.

  14. Three-dimensional multichannel aerogel of carbon quantum dots for high-performance supercapacitors

    Science.gov (United States)

    Lv, Lingxiao; Fan, Yueqiong; Chen, Qing; Zhao, Yang; Hu, Yue; Zhang, Zhipan; Chen, Nan; Qu, Liangti

    2014-06-01

    A three-dimensional (3D) carbon quantum dot (CQD) aerogel has been prepared by in situ assembling CQDs in the sol-gel polymerization of resorcinol (R) and formaldehyde (F) and subsequently pyrolyzing the formed CQD gel. Compared to the supercapacitor based on the CQD-free aerogel, the supercapacitor fabricated with the CQD aerogel showed 20-fold higher specific capacitance (294.7 F g-1 at the current density of 0.5 A g-1) and an excellent stability over 1000 consecutive charge-discharge cycles.

  15. Clay exfoliation and polymer/clay aerogels by supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    Simona eLongo

    2013-11-01

    Full Text Available Supercritical carbon dioxide (scCO2 treatments of a montmorillonite (MMT intercalated with ammonium cations bearing two long hydrocarbon tails (organo-modified MMT, OMMT led to OMMT exfoliation, with loss of the long-range order in the packing of the hydrocarbon tails and maintenance of the long-range order in the clay layers. The intercalated and the derived exfoliated OMMT have been deeply characterized, mainly by X-ray diffraction analyses. Monolithic composite aerogels, with large amounts of both intercalated and exfoliated OMMT and including the nanoporous-crystalline δ form of syndiotactic polystyrene (s-PS, have been prepared, by scCO2 extractions of s-PS-based gels. Also for high OMMT content, the gel and aerogel preparation procedures occur without re-aggregation of the exfoliated clay, which is instead observed for other kinds of polymer processing. Aerogels with the exfoliated OMMT have more even dispersion of the clay layers, higher elastic modulus and larger surface area than aerogels with the intercalated OMMT. Extremely light materials with relevant transport properties could be prepared. Moreover, s-PS-based aerogels with exfoliated OMMT could be helpful for the handling of exfoliated clay minerals.

  16. Non-Parametric Kinetic (NPK Analysis of Thermal Oxidation of Carbon Aerogels

    Directory of Open Access Journals (Sweden)

    Azadeh Seifi

    2017-05-01

    Full Text Available In recent years, much attention has been paid to aerogel materials (especially carbon aerogels due to their potential uses in energy-related applications, such as thermal energy storage and thermal protection systems. These open cell carbon-based porous materials (carbon aerogels can strongly react with oxygen at relatively low temperatures (~ 400°C. Therefore, it is necessary to evaluate the thermal performance of carbon aerogels in view of their energy-related applications at high temperatures and under thermal oxidation conditions. The objective of this paper is to study theoretically and experimentally the oxidation reaction kinetics of carbon aerogel using the non-parametric kinetic (NPK as a powerful method. For this purpose, a non-isothermal thermogravimetric analysis, at three different heating rates, was performed on three samples each with its specific pore structure, density and specific surface area. The most significant feature of this method, in comparison with the model-free isoconversional methods, is its ability to separate the functionality of the reaction rate with the degree of conversion and temperature by the direct use of thermogravimetric data. Using this method, it was observed that the Nomen-Sempere model could provide the best fit to the data, while the temperature dependence of the rate constant was best explained by a Vogel-Fulcher relationship, where the reference temperature was the onset temperature of oxidation. Moreover, it was found from the results of this work that the assumption of the Arrhenius relation for the temperature dependence of the rate constant led to over-estimation of the apparent activation energy (up to 160 kJ/mol that was considerably different from the values (up to 3.5 kJ/mol predicted by the Vogel-Fulcher relationship in isoconversional methods

  17. Efficiently dense hierarchical graphene based aerogel electrode for supercapacitors

    Science.gov (United States)

    Wang, Xin; Lu, Chengxing; Peng, Huifen; Zhang, Xin; Wang, Zhenkun; Wang, Gongkai

    2016-08-01

    Boosting gravimetric and volumetric capacitances simultaneously at a high rate is still a discrepancy in development of graphene based supercapacitors. We report the preparation of dense hierarchical graphene/activated carbon composite aerogels via a reduction induced self-assembly process coupled with a drying post treatment. The compact and porous structures of composite aerogels could be maintained. The drying post treatment has significant effects on increasing the packing density of aerogels. The introduced activated carbons play the key roles of spacers and bridges, mitigating the restacking of adjacent graphene nanosheets and connecting lateral and vertical graphene nanosheets, respectively. The optimized aerogel with a packing density of 0.67 g cm-3 could deliver maximum gravimetric and volumetric capacitances of 128.2 F g-1 and 85.9 F cm-3, respectively, at a current density of 1 A g-1 in aqueous electrolyte, showing no apparent degradation to the specific capacitance at a current density of 10 A g-1 after 20000 cycles. The corresponding gravimetric and volumetric capacitances of 116.6 F g-1 and 78.1 cm-3 with an acceptable cyclic stability are also achieved in ionic liquid electrolyte. The results show a feasible strategy of designing dense hierarchical graphene based aerogels for supercapacitors.

  18. A synthesis method for cobalt doped carbon aerogels with high surface area and their hydrogen storage properties

    Energy Technology Data Exchange (ETDEWEB)

    Tian, H.Y.; Buckley, C.E. [Department of Imaging and Applied Physics, Curtin University of Technology, GPO Box U 1987, Perth 6845, WA (Australia); CSIRO National Hydrogen Materials Alliance, CSIRO Energy Centre, 10 Murray Dwyer Circuit, Steel River Estate, Mayfield West, NSW 2304 (Australia); Sheppard, D.A.; Paskevicius, M. [Department of Imaging and Applied Physics, Curtin University of Technology, GPO Box U 1987, Perth 6845, WA (Australia); Hanna, N. [CSIRO Process Science and Engineering, Waterford, WA (Australia)

    2010-12-15

    Carbon aerogels doped with nanoscaled Co particles were prepared by first coating activated carbon aerogels using a wet-thin layer coating process. The resulting metal-doped carbon aerogels had a higher surface area ({proportional_to}1667 m{sup 2} g{sup -1}) and larger micropore volume ({proportional_to}0.6 cm{sup 3} g{sup -1}) than metal-doped carbon aerogels synthesised using other methods suggesting their usefulness in catalytic applications. The hydrogen adsorption behaviour of cobalt doped carbon aerogel was evaluated, displaying a high {proportional_to}4.38 wt.% H{sub 2} uptake under 4.6 MPa at -196 C. The hydrogen uptake capacity with respect to unit surface area was greater than for pure carbon aerogel and resulted in {proportional_to}1.3 H{sub 2} (wt. %) per 500 m{sup 2} g{sup -1}. However, the total hydrogen uptake was slightly reduced as compared to pure carbon aerogel due to a small reduction in surface area associated with cobalt doping. The improved adsorption per unit surface area suggests that there is a stronger interaction between the hydrogen molecules and the cobalt doped carbon aerogel than for pure carbon aerogel. (author)

  19. Aerogel and xerogel composites for use as carbon anodes

    Science.gov (United States)

    Cooper, John F [Oakland, CA; Tillotson, Thomas M [Tracy, CA; Hrubesh, Lawrence W [Pleasanton, CA

    2008-08-12

    Disclosed herein are aerogel and xerogel composite materials suitable for use as anodes in fuel cells and batteries. Precursors to the aerogel and xerogel compounds are infused with inorganic polymeric materials or carbon particles and then gelled. The gels are then pyrolyzed to form composites with internal structural support.

  20. Organic carbon aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    Science.gov (United States)

    Pekala, R.W.

    1998-04-28

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes {<=}1000 {angstrom}, and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050 C to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors. 8 figs.

  1. Effect of Activation Temperature on CO{sub 2} Capture Behaviors of Resorcinol-based Carbon Aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Cheolwhan; Im, Seungsoon; Park, Soojin [Hanyang Univ., Seoul (Korea, Republic of); Kim, Youngjoo [Inha Univ., Incheon (Korea, Republic of)

    2014-01-15

    In this study, carbon aerogel (CA) was synthesized using a soft-template method, and the optimum conditions for the adsorption of carbon dioxide (CO{sub 2}) by the carbon aerogel were evaluated by controlling the activation temperature. KOH was used as the activation agent at a KOH/CA activation ratio of 4:1. Three types of activated CAs were synthesized at activation temperatures of 800 .deg. C (CA-K-800), 900 .deg. C (CA-K-900), and 1000 .deg. C (CA-K-1000), and their surface and pore characteristics along with the CO{sub 2} adsorption characteristics were examined. The results showed that with the increase in activation temperature from 800 to 900 .deg. C, the total pore volume and specific surface area sharply increased from 1.2165 to 1.2500 cm{sup 3}/g and 1281 to 1526 m{sup 2}/g, respectively. However, the values for both these parameters decreased at temperatures above 1000 .deg. C. The best CO{sub 2} adsorption capacity of 10.9 wt % was obtained for the CA-K-900 sample at 298 K and 1 bar. This result highlights the importance of the structural and textural characteristics of the carbon aerogel, prepared at different activation temperatures on CO{sub 2} adsorption behaviors.

  2. High-Performance Carbon Aerogel Air Cathodes for Microbial Fuel Cells

    KAUST Repository

    Zhang, Xiaoyuan

    2016-08-11

    Microbial fuel cells (MFCs) can generate electricity from the oxidation of organic substrates using anodic exoelectrogenic bacteria and have great potential for harvesting electric energy from wastewater. Improving oxygen reduction reaction (ORR) performance at a neutral pH is needed for efficient energy production. Here we show a nitrogen doped (≈4 wt%) ionothermal carbon aerogel (NDC) with a high surface area, large pore volume, and hierarchical porosity, with good electrocatalytic properties for ORR in MFCs. The MFCs using NDC air cathodes achieved a high maximum power density of 2300 mW m−2, which was 1.7 times higher than the most commonly used Pt/C air cathodes and also higher than most state-of-the-art ORR catalyst air cathodes. Rotating disk electrode measurements verified the superior electrocatalytic activity of NDC with an efficient four-electron transfer pathway (n=3.9). These findings highlight NDC as a better-performing and cost-efficient catalyst compared with Pt/C, making it highly viable for MFC applications.

  3. One-step Synthesis of Pt Nanoparticles Highly Loaded on Graphene Aerogel as Durable Oxygen Reduction Electrocatalyst

    International Nuclear Information System (INIS)

    Huang, Qinghong; Tao, Feifei; Zou, Liangliang; Yuan, Ting; Zou, Zhiqing; Zhang, Haifeng; Zhang, Xiaogang; Yang, Hui

    2015-01-01

    Synthesis of highly active and durable Pt based catalysts with a high metal loading for fuel cells’ applications still remains a big challenge. The three-dimensional (3D) graphene aerogel (GA) not only possess the intrinsic property of graphene, but also have abundant pore architecture for anchoring metal nanoparticles, thus would be suitable as metal catalysts’ support. This work reports a simple and mild one-step co-reduction synthesis of Pt nanoparticles highly loaded on 3D GA and the use as durable oxygen reduction catalyst. Both X-ray diffraction and TEM measurements confirm that Pt nanoparticles (ca. 60 wt.% Pt loading) with an average diameter of ca. 3.2 nm are uniformly decorated on the homogeneously interconnected pores of 3D GA even after a heat treatment at 300 °C. Such a Pt/GA catalyst exhibits significantly enhanced electrocatalytic activity and improved durability for the oxygen reduction reaction. The enhancement in both catalytic activity and durability may result from the unique 3-D architecture structure of GA, the uniform dispersion of Pt nanoparticles, and the interaction between the Pt nanoparticles and GA. The GA-supported Pt can serve as a highly active catalyst for fuel cell applications

  4. Nanoporous Cu-C composites based on carbon-nanotube aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Charnvanichborikarn, S.; Shin, S. J.; Worsley, M. A.; Tran, I. C.; Willey, T. M.; van Buuren, T.; Felter, T. E.; Colvin, J. D.; Kucheyev, S. O. [LLNL; (Sandia)

    2013-11-22

    Current synthesis methods of nanoporous Cu–C composites offer limited control of the material composition, structure, and properties, particularly for large Cu loadings of ≳20 wt%. Here, we describe two related approaches to realize novel nanoporous Cu–C composites based on the templating of recently developed carbon-nanotube aerogels (CNT-CAs). Our first approach involves the trapping of Cu nanoparticles while CNT-CAs undergo gelation. This method yields nanofoams with relatively high densities of ≳65 mg cm-3 for Cu loadings of ≳10 wt%. Our second approach overcomes this limitation by filling the pores of undoped CNT-CA monoliths with an aqueous solution of CuSO4 followed by (i) freeze-drying to remove water and (ii) thermal decomposition of CuSO4. With this approach, we demonstrate Cu–C composites with a C matrix density of -25 mg cm-3 and Cu loadings of up to 70 wt%. These versatile methods could be extended to fabricate other nanoporous metal–carbon composite materials geared for specific applications.

  5. Iron-Doped Carbon Aerogels: Novel Porous Substrates for Direct Growth of Carbon Nanotubes

    Science.gov (United States)

    Steiner, S. A.; Baumann, T. F.; Kong, J.; Satcher, J. H.; Dresselhaus, M. S.

    2007-02-20

    We present the synthesis and characterization of Fe-doped carbon aerogels (CAs) and demonstrate the ability to grow carbon nanotubes directly on monoliths of these materials to afford novel carbon aerogel-carbon nanotube composites. Preparation of the Fe-doped CAs begins with the sol-gel polymerization of the potassium salt of 2,4-dihydroxybenzoic acid with formaldehyde, affording K{sup +}-doped gels that can then be converted to Fe{sup 2+}- or Fe{sup 3+}-doped gels through an ion exchange process, dried with supercritical CO{sub 2} and subsequently carbonized under an inert atmosphere. Analysis of the Fe-doped CAs by TEM, XRD and XPS revealed that the doped iron species are reduced during carbonization to form metallic iron and iron carbide nanoparticles. The sizes and chemical composition of the reduced Fe species were related to pyrolysis temperature as well as the type of iron salt used in the ion exchange process. Raman spectroscopy and XRD analysis further reveal that, despite the presence of the Fe species, the CA framework is not significantly graphitized during pyrolysis. The Fe-doped CAs were subsequently placed in a thermal CVD reactor and exposed to a mixture of CH{sub 4} (1000 sccm), H{sub 2} (500 sccm), and C{sub 2}H{sub 4} (20 sccm) at temperatures ranging from 600 to 800 C for 10 minutes, resulting in direct growth of carbon nanotubes on the aerogel monoliths. Carbon nanotubes grown by this method appear to be multiwalled ({approx}25 nm in diameter and up to 4 mm long) and grow through a tip-growth mechanism that pushes catalytic iron particles out of the aerogel framework. The highest yield of CNTs were grown on Fe-doped CAs pyrolyzed at 800 C treated at CVD temperatures of 700 C.

  6. Iron-Doped Carbon Aerogels: Novel Porous Substrates for Direct Growth of Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, S A; Baumann, T F; Kong, J; Satcher, J H; Dresselhaus, M S

    2007-02-15

    We present the synthesis and characterization of Fe-doped carbon aerogels (CAs) and demonstrate the ability to grow carbon nanotubes directly on monoliths of these materials to afford novel carbon aerogel-carbon nanotube composites. Preparation of the Fe-doped CAs begins with the sol-gel polymerization of the potassium salt of 2,4-dihydroxybenzoic acid with formaldehyde, affording K{sup +}-doped gels that can then be converted to Fe{sup 2+}- or Fe{sup 3+}-doped gels through an ion exchange process, dried with supercritical CO{sub 2} and subsequently carbonized under an inert atmosphere. Analysis of the Fe-doped CAs by TEM, XRD and XPS revealed that the doped iron species are reduced during carbonization to form metallic iron and iron carbide nanoparticles. The sizes and chemical composition of the reduced Fe species were related to pyrolysis temperature as well as the type of iron salt used in the ion exchange process. Raman spectroscopy and XRD analysis further reveal that, despite the presence of the Fe species, the CA framework is not significantly graphitized during pyrolysis. The Fe-doped CAs were subsequently placed in a thermal CVD reactor and exposed to a mixture of CH{sub 4} (1000 sccm), H{sub 2} (500 sccm), and C{sub 2}H{sub 4} (20 sccm) at temperatures ranging from 600 to 800 C for 10 minutes, resulting in direct growth of carbon nanotubes on the aerogel monoliths. Carbon nanotubes grown by this method appear to be multiwalled ({approx}25 nm in diameter and up to 4 mm long) and grow through a tip-growth mechanism that pushes catalytic iron particles out of the aerogel framework. The highest yield of CNTs were grown on Fe-doped CAs pyrolyzed at 800 C treated at CVD temperatures of 700 C.

  7. Synthesis of Porous and Mechanically Compliant Carbon Aerogels Using Conductive and Structural Additives

    Directory of Open Access Journals (Sweden)

    Carlos Macias

    2016-01-01

    Full Text Available We report the synthesis of conductive and mechanically compliant monolithic carbon aerogels prepared by sol-gel polycondensation of melamine-resorcinol-formaldehyde (MRF mixtures by incorporating diatomite and carbon black additives. The resulting aerogels composites displayed a well-developed porous structure, confirming that the polymerization of the precursors is not impeded in the presence of either additive. The aerogels retained the porous structure after etching off the siliceous additive, indicating adequate cross-linking of the MRF reactants. However, the presence of diatomite caused a significant fall in the pore volumes, accompanied by coarsening of the average pore size (predominance of large mesopores and macropores. The diatomite also prevented structural shrinkage and deformation of the as-prepared monoliths upon densification by carbonization, even after removal of the siliceous framework. The rigid pristine aerogels became more flexible upon incorporation of the diatomite, favoring implementation of binderless monolithic aerogel electrodes.

  8. Preparation, microstructure and hydrogen sorption properties of nanoporous carbon aerogels under ambient drying

    International Nuclear Information System (INIS)

    Tian, H Y; Buckley, C E; Mule, S; Paskevicius, M; Dhal, B B

    2008-01-01

    Organic aerogels are prepared by the sol-gel method from polymerization of resorcinol with furfural. These aerogels are further carbonized in nitrogen in order to obtain their corresponding carbon aerogels (CA); a sample which was carbonized at 900 deg. C was also activated in a carbon dioxide atmosphere at 900 deg. C. The chemical reaction mechanism and optimum synthesis conditions are investigated by means of Fourier transform infrared spectroscopy and thermoanalyses (thermogravimetric/differential thermal analyses) with a focus on the sol-gel process. The carbon aerogels were investigated with respect to their microstructures, using small angle x-ray scattering (SAXS), transmission electron microscopy (TEM) and nitrogen adsorption measurements at 77 K. SAXS studies showed that micropores with a radius of gyration of 2 g -1 displayed a reasonably high hydrogen uptake at 77 K with a maximum hydrogen sorption of 3.6 wt% at 2.5 MPa. These results suggest that CA are promising candidate hydrogen storage materials.

  9. Use of Pd-Pt loaded graphene aerogel on nickel foam in direct ethanol fuel cell

    Science.gov (United States)

    Tsang, Chi Him A.; Leung, D. Y. C.

    2018-01-01

    A size customized binder-free bimetallic Pd-Pt loaded graphene aerogel deposited on nickel foam plate (Pd-Pt/GA/NFP) was prepared and used as an electrode for an alkaline direct ethanol fuel cell (DEFC) under room temperature. The effect of fuel concentration and metal composition on the output power density of the DEFC was systematically investigated. Under the optimum fuel concentration, the cell could achieve a value of 3.6 mW cm-2 at room temperature for the graphene electrode with Pd/Pt ratio approaching 1:1. Such results demonstrated the possibility of producing a size customized metal loaded GA/NFP electrode for fuel cell with high performance.

  10. Microwave-assisted synthesis of high-loading, highly dispersed Pt ...

    Indian Academy of Sciences (India)

    Keywords. Direct methanol fuel cell; carbon aerogel; Pt; microwave-assisted polyol process; electrocatalyst; ... obtained from the carbonization of the dried organic aero- gel in a ... 12 hours. The dried residue (0·01 g) was mixed with ethanol.

  11. Efficient Synthesis of MCu (M = Pd, Pt, and Au) Aerogels with Accelerated Gelation Kinetics and their High Electrocatalytic Activity.

    Science.gov (United States)

    Zhu, Chengzhou; Shi, Qiurong; Fu, Shaofang; Song, Junhua; Xia, Haibing; Du, Dan; Lin, Yuehe

    2016-10-01

    To accelerate hydrogel formation and further simplify the synthetic procedure, a series of MCu (M = Pd, Pt, and Au) bimetallic aerogels is synthesized from the in situ reduction of metal precursors through enhancement of the gelation kinetics at elevated temperature. Moreover, the resultant PdCu aerogel with ultrathin nanowire networks exhibits excellent electrocatalytic performance toward ethanol oxidation, holding promise in fuel-cell applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The hybrid nanostructure of MnCo2O4.5 nanoneedle/carbon aerogel for symmetric supercapacitors with high energy density

    Science.gov (United States)

    Hao, Pin; Zhao, Zhenhuan; Li, Liyi; Tuan, Chia-Chi; Li, Haidong; Sang, Yuanhua; Jiang, Huaidong; Wong, C. P.; Liu, Hong

    2015-08-01

    Current applications of carbon-based supercapacitors are limited by their low energy density. One promising strategy to enhance the energy density is to couple metal oxides with carbon materials. In this study, a porous MnCo2O4.5 nanoneedle/carbon aerogel hybrid nanostructure was synthesized by assembling MnCo2O4.5 nanoneedle arrays on the surface of channel walls of hierarchical porous carbon aerogels derived from chitosan for the supercapacitor application. The synthetic process of the hybrid nanostructure involves two steps, i.e. the growth of Mn-Co precursors on carbon aerogel by a hydrothermal process and the conversion of the precursor into MnCo2O4.5 nanoneedles by calcination. The carbon aerogel exhibits a high electrical conductivity, high specific surface area and porous structure, ensuring high electrochemical performance of the hybrid nanostructure when coupled with the porous MnCo2O4.5 nanoneedles. The symmetric supercapacitor using the MnCo2O4.5 nanoneedle/carbon aerogel hybrid nanostructure as the active electrode material exhibits a high energy density of about 84.3 Wh kg-1 at a power density of 600 W kg-1. The voltage window is as high as 1.5 V in neutral aqueous electrolytes. Due to the unique nanostructure of the electrodes, the capacitance retention reaches 86% over 5000 cycles.Current applications of carbon-based supercapacitors are limited by their low energy density. One promising strategy to enhance the energy density is to couple metal oxides with carbon materials. In this study, a porous MnCo2O4.5 nanoneedle/carbon aerogel hybrid nanostructure was synthesized by assembling MnCo2O4.5 nanoneedle arrays on the surface of channel walls of hierarchical porous carbon aerogels derived from chitosan for the supercapacitor application. The synthetic process of the hybrid nanostructure involves two steps, i.e. the growth of Mn-Co precursors on carbon aerogel by a hydrothermal process and the conversion of the precursor into MnCo2O4.5 nanoneedles by

  13. Carbon aerogels as electrode material for electrical double layer supercapacitors-Synthesis and properties

    Energy Technology Data Exchange (ETDEWEB)

    Halama, Agnieszka [Electrotechnical Institute, Division of Electrotechnology and Materials Science, Wroclaw (Poland); Szubzda, Bronislaw, E-mail: szubzda@iel.wroc.p [Electrotechnical Institute, Division of Electrotechnology and Materials Science, Wroclaw (Poland); Pasciak, Grzegorz [Electrotechnical Institute, Division of Electrotechnology and Materials Science, Wroclaw (Poland)

    2010-10-30

    This paper constitutes a description of technological research the aim of which was to design a symmetric supercapacitor dedicated for the system of quality of electrical energy improvement (supply interruption, voltage dip). The main task was to use the carbon aerogel technology as the efficient method for production of electrode material with desirable properties. Carbon aerogels were prepared by carbonization of resorcinol-formaldehyde (RF) polymer gels. RF-gels were synthesized by curing polycondensation and by the inverse emulsion polymerization of resorcinol with formaldehyde, followed by microwave drying. The morphostructural characteristics of the carbon aerogels were investigated by atomic force microscopy (AFM) and the N{sub 2} adsorption (BET method). The electrochemical properties were characterized by means of cycle voltammetry, galvanostatic charging/discharging, and self-discharge.

  14. Preparation, microstructure and hydrogen sorption properties of nanoporous carbon aerogels under ambient drying

    Science.gov (United States)

    Tian, H. Y.; Buckley, C. E.; Mulè, S.; Paskevicius, M.; Dhal, B. B.

    2008-11-01

    Organic aerogels are prepared by the sol-gel method from polymerization of resorcinol with furfural. These aerogels are further carbonized in nitrogen in order to obtain their corresponding carbon aerogels (CA); a sample which was carbonized at 900 °C was also activated in a carbon dioxide atmosphere at 900 °C. The chemical reaction mechanism and optimum synthesis conditions are investigated by means of Fourier transform infrared spectroscopy and thermoanalyses (thermogravimetric/differential thermal analyses) with a focus on the sol-gel process. The carbon aerogels were investigated with respect to their microstructures, using small angle x-ray scattering (SAXS), transmission electron microscopy (TEM) and nitrogen adsorption measurements at 77 K. SAXS studies showed that micropores with a radius of gyration of adsorption showed that larger mesopores were also present. Hydrogen storage properties of the CA were also investigated. An activated sample with a Brunauer-Emmett-Teller surface area of 1539 ± 20 m2 g-1 displayed a reasonably high hydrogen uptake at 77 K with a maximum hydrogen sorption of 3.6 wt% at 2.5 MPa. These results suggest that CA are promising candidate hydrogen storage materials.

  15. Polyaniline-Coated Activated Carbon Aerogel/Sulfur Composite for High-performance Lithium-Sulfur Battery

    Science.gov (United States)

    Tang, Zhiwei; Jiang, Jinglin; Liu, Shaohong; Chen, Luyi; Liu, Ruliang; Zheng, Bingna; Fu, Ruowen; Wu, Dingcai

    2017-12-01

    An activated carbon aerogel (ACA-500) with high surface area (1765 m2 g-1), pore volume (2.04 cm3 g-1), and hierarchical porous nanonetwork structure is prepared through direct activation of organic aerogel (RC-500) with a low potassium hydroxide ratio (1:1). Based on this substrate, a polyaniline (PANi)-coated activated carbon aerogel/sulfur (ACA-500-S@PANi) composite is prepared via a simple two-step procedure, including melt-infiltration of sublimed sulfur into ACA-500, followed by an in situ polymerization of aniline on the surface of ACA-500-S composite. The obtained ACA-500-S@PANi composite delivers a high reversible capacity up to 1208 mAh g-1 at 0.2C and maintains 542 mAh g-1 even at a high rate (3C). Furthermore, this composite exhibits a discharge capacity of 926 mAh g-1 at the initial cycle and 615 mAh g-1 after 700 cycles at 1C rate, revealing an extremely low capacity decay rate (0.48‰ per cycle). The excellent electrochemical performance of ACA-500-S@PANi can be attributed to the synergistic effect of hierarchical porous nanonetwork structure and PANi coating. Activated carbon aerogels with high surface area and unique three-dimensional (3D) interconnected hierarchical porous structure offer an efficient conductive network for sulfur, and a highly conductive PANi-coating layer further enhances conductivity of the electrode and prevents the dissolution of polysulfide species.

  16. Aerogel sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Begag, Redouane; Rhine, Wendell E.; Dong, Wenting

    2018-04-03

    The current invention describes methods and compositions of various sorbents based on aerogels of various silanes and their use as sorbent for carbon dioxide. Methods further provide for optimizing the compositions to increase the stability of the sorbents for prolonged use as carbon dioxide capture matrices.

  17. Preparation of activated carbon aerogel and its application to electrode material for electric double layer capacitor in organic electrolyte: Effect of activation temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Soon Hyung; Lee, Eunji; Kim, Myung-Soo; Jung, Ji Chul [Myongji University, Yongin (Korea, Republic of); Kim, Bum-Soo; Kim, Sang-Gil; Lee, Byung-Jun [Vitzrocell Co., Yesan (Korea, Republic of)

    2015-02-15

    Carbon aerogel was chemically activated with KOH at various activation temperatures with the aim of improving the electrochemical performance of carbon aerogel for EDLC electrode. Electrochemical performance of activated carbon aerogel electrode was determined by cyclic voltammetry and galvanostatic charge/discharge methods using coin-type EDLC cell in organic electrolyte. Activation temperature played an important role in determining the electrochemical performance of activated carbon aerogel for EDLC electrode. Specific capacitance of activated carbon aerogel at a high current density (5 A/g) showed a volcano-shaped curve with respect to activation temperature. Excessively high activation temperature could have an adverse effect on the electrochemical properties of activated carbon aerogel due to the low electrical conductivity caused by a collapse of characteristic structure of carbon aerogel. Among the carbon samples, carbon aerogel activated at 800 .deg. C with a high surface area and a well-developed porous structure exhibited the highest specific capacitance. In addition, carbon aerogel activated at 800 .deg. C retained a considerable specific capacitance at a high current density even after 1000 cycles of charge/discharge. Therefore, it is concluded that carbon aerogel activated with KOH at 800 .deg. C can serve as an efficient electrode material for commercial EDLC with a high power density.

  18. Methanol oxidation at carbon paste electrodes modified with (Pt–Ru)/carbon aerogels nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Fort, Carmen I., E-mail: iladiu@chem.ubbcluj.ro [Laboratory of Electrochemical Research and Nonconventional Materials, Babes-Bolyai University, Arany Janos 11, RO-400028, Cluj-Napoca (Romania); Cotet, Liviu C. [Laboratory of Electrochemical Research and Nonconventional Materials, Babes-Bolyai University, Arany Janos 11, RO-400028, Cluj-Napoca (Romania); Vasiliu, Florin [The National Institute of Materials Physics, Atomistilor str. 105 bis, PO Box MG. 7, Magurele, RO 077125, Bucharest (Romania); Marginean, Petre [National Institute for Research and Development of Isotopic and Molecular Technologies, RO 400293, Cluj-Napoca (Romania); Danciu, Virginia; Popescu, Ionel C. [Laboratory of Electrochemical Research and Nonconventional Materials, Babes-Bolyai University, Arany Janos 11, RO-400028, Cluj-Napoca (Romania)

    2016-04-01

    Mesoporous carbon aerogels (CAs) impregnated with (Pt–Ru) nanoparticles were prepared, incorporated into carbon paste electrodes (CPEs) and investigated as electrocatalysts for CH{sub 3}OH electro-oxidation. The sol–gel method, followed by supercritical drying with liquid CO{sub 2} and thermal pyrolysis in an inert atmosphere, was used to obtain high mesoporous CAs. (Pt–Ru)/CAs nanocomposites with various (Pt–Ru) loading were prepared by using Ru(AcAc){sub 3} and H{sub 2}PtCl{sub 6} as metal precursors and the impregnation method. The morpho-structural peculiarities of the so prepared (Pt–Ru)/CAs electrocatalysts were examined by using elemental analysis, N{sub 2} adsorption-desorption isotherms, transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray (EDX) and selected area electron diffraction (SAED). Cyclic voltammetry measurements, carried out at (Pt–Ru)/CA-CPEs incorporating nanocomposites with various Pt–Ru loading and different specific surface areas, showed that CA with the highest specific surface area (843 m{sup 2}/g) and impregnated with 6% (w/w) (Pt–Ru) nanoparticles exhibit the best CH{sub 3}OH electro-oxidation efficiency. The Michaelis–Menten formalism was used to describe the dependence of the oxidation peak current on the CH{sub 3}OH concentration, allowing the estimation of the modified electrodes sensitivities. Thus, for (Pt–Ru, 10%)/CA{sub 535}-CPE was observed the highest sensitivity (12.5 ± 0.8 mA/M) and, at the same time, the highest maximum current density ever reported (153.1 mA/cm{sup 2} for 2 M CH{sub 3}OH and an applied potential of 600 mV vs. SHE). - Highlights: • (Pt–Ru) nanoparticles were deposited on high mesoporous carbon aerogels (CAs). • (Pt–Ru)/CAs were characterized by TEM, EDX, SAED and N{sub 2} adsorption-desorption. • Carbon paste electrodes modified with (Pt–Ru)/CA were used for CH{sub 3}OH oxidation. • (Pt–Ru, 10

  19. Low Pt content Pt-Ru-Ir-Sn quaternary catalysts for anodic methanol oxidation in DMFC

    Energy Technology Data Exchange (ETDEWEB)

    Neburchilov, Vladimir; Wang, Haijiang; Zhang, Jiujun [Institute for Fuel Cell Innovation, National Research Council (Canada)

    2007-07-15

    In this communication we report our research work on low Pt content Pt-Ru-Ir-Sn quaternary catalysts for use in DMFC anodes. The carbon-supported quaternary metal alloy catalyst was synthesized according to the solution reduction method and was deposited onto a carbon fiber paper or a carbon aerogel nanofoam to form the anode for direct methanol fuel cells. The Pt loading of the electrode is 0.1 mg/cm{sup 2}. The testing results from a three-electrode electrochemical cell show that the simultaneous use of higher Ir (25-35 wt.%) and Sn (10 wt.%) content gives satisfactory stability and higher activity for methanol oxidation than the commercially available E-TEK anode (80%[0.5Pt 0.5Ru]/C on carbon cloth). Energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), scanning electron microscope (SEM), and Bruner-Emmett-Teller method (BET) measurements were carried out to characterize the composition, structure, morphology, and surface area of the developed catalysts. (author)

  20. Plasmonic Aerogels as a Three-Dimensional Nanoscale Platform for Solar Fuel Photocatalysis.

    Science.gov (United States)

    DeSario, Paul A; Pietron, Jeremy J; Dunkelberger, Adam; Brintlinger, Todd H; Baturina, Olga; Stroud, Rhonda M; Owrutsky, Jeffrey C; Rolison, Debra R

    2017-09-19

    We use plasmonic Au-TiO 2 aerogels as a platform in which to marry synthetically thickened particle-particle junctions in TiO 2 aerogel networks to Au∥TiO 2 interfaces and then investigate their cooperative influence on photocatalytic hydrogen (H 2 ) generation under both broadband (i.e., UV + visible light) and visible-only excitation. In doing so, we elucidate the dual functions that incorporated Au can play as a water reduction cocatalyst and as a plasmonic sensitizer. We also photodeposit non-plasmonic Pt cocatalyst nanoparticles into our composite aerogels in order to leverage the catalytic water-reducing abilities of Pt. This Au-TiO 2 /Pt arrangement in three dimensions effectively utilizes conduction-band electrons injected into the TiO 2 aerogel network upon exciting the Au SPR at the Au∥TiO 2 interface. The extensive nanostructured high surface-area oxide network in the aerogel provides a matrix that spatially separates yet electrochemically connects plasmonic nanoparticle sensitizers and metal nanoparticle catalysts, further enhancing solar-fuels photochemistry. We compare the photocatalytic rates of H 2 generation with and without Pt cocatalysts added to Au-TiO 2 aerogels and demonstrate electrochemical linkage of the SPR-generated carriers at the Au∥TiO 2 interfaces to downfield Pt nanoparticle cocatalysts. Finally, we investigate visible light-stimulated generation of conduction band electrons in Au-TiO 2 and TiO 2 aerogels using ultrafast visible pump/IR probe spectroscopy. Substantially more electrons are produced at Au-TiO 2 aerogels due to the incorporated SPR-active Au nanoparticle, whereas the smaller population of electrons generated at Au-free TiO 2 aerogels likely originate at shallow traps in the high surface-area mesoporous aerogel.

  1. Aerogels Handbook

    CERN Document Server

    Aegerter, Michel A; Koebel, Matthias M

    2011-01-01

    Aerogels are the lightest solids known. Up to 1000 times lighter than glass and with a density as low as only four times that of air, they show very high thermal, electrical and acoustic insulation values and hold many entries in Guinness World Records. Originally based on silica, R&D efforts have extended this class of materials to non-silicate inorganic oxides, natural and synthetic organic polymers, carbon, metal and ceramic materials, etc. Composite systems involving polymer-crosslinked aerogels and interpenetrating hybrid networks have been developed and exhibit remarkable mechanical strength and flexibility. Even more exotic aerogels based on clays, chalcogenides, phosphides, quantum dots, and biopolymers such as chitosan are opening new applications for the construction, transportation, energy, defense and healthcare industries. Applications in electronics, chemistry, mechanics, engineering, energy production and storage, sensors, medicine, nanotechnology, military and aerospace, oil and gas recove...

  2. Core-Shell Structuring of Pure Metallic Aerogels towards Highly Efficient Platinum Utilization for the Oxygen Reduction Reaction.

    Science.gov (United States)

    Cai, Bin; Hübner, René; Sasaki, Kotaro; Zhang, Yuanzhe; Su, Dong; Ziegler, Christoph; Vukmirovic, Miomir B; Rellinghaus, Bernd; Adzic, Radoslav R; Eychmüller, Alexander

    2018-03-05

    The development of core-shell structures remains a fundamental challenge for pure metallic aerogels. Here we report the synthesis of Pd x Au-Pt core-shell aerogels composed of an ultrathin Pt shell and a composition-tunable Pd x Au alloy core. The universality of this strategy ensures the extension of core compositions to Pd transition-metal alloys. The core-shell aerogels exhibited largely improved Pt utilization efficiencies for the oxygen reduction reaction and their activities show a volcano-type relationship as a function of the lattice parameter of the core substrate. The maximum mass and specific activities are 5.25 A mg Pt -1 and 2.53 mA cm -2 , which are 18.7 and 4.1 times higher than those of Pt/C, respectively, demonstrating the superiority of the core-shell metallic aerogels. The proposed core-based activity descriptor provides a new possible strategy for the design of future core-shell electrocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Carbide-derived carbon aerogels with tunable pore structure as versatile electrode material in high power supercapacitors

    NARCIS (Netherlands)

    Oschatz, M.; Boukhalfa, S.; Nickel, W.; Hofmann, J.P.; Fischer, C.; Yushin, G.; Kaskel, S.

    2017-01-01

    Carbide-derived carbon (CDC) aerogels with hierarchical porosity are prepared from cross-linked polycarbosilane aerogels by pyrolysis and chlorine treatment at 700 and 1000 °C. The low-temperature sample is further activated with carbon dioxide to introduce additional micropores. The influence of

  4. Thermal Protection Performance of Carbon Aerogels Filled with Magnesium Chloride Hexahydrate as a Phase Change Material

    Directory of Open Access Journals (Sweden)

    Ali Kazemi

    2014-02-01

    Full Text Available Carbon aerogels are comprised of a class of low density open-cell foams with large void space, nanometer pore size and composed of sparsely semi-colloidal nanometer sized particles forming an open porous structure. Phase change materials are those with high heat of fusion that could absorb and release a large amount of energy at the time of phase transition. These materials are mostly used as thermal energy storage materials but in addition they could serve as an obstacle for passage of heat during phase changes and this has led to their use in thermal protection systems. In this study, the effect of magnesium chloride hexahydrate, as a phase change material (melting point 115°C, on thermal properties of carbon aerogels is investigated. Thermal performance tests are designed and used for comparing the temperature-time behavior of the samples. DSC is applied to obtain the latent heat of melting of the phase change materials and the SEM tests are used to analyze the microstructure and morphology of carbon aerogels. The results show that the low percentage of phase change materials in carbon aerogels does not have any significant positive effect on carbon aerogels thermal properties. However, these properties are improved by increasing the percentage of phase change materials. With high percentage of phase change materials, a sample surface at 300°C would display an opposite surface with a significant drop in temperature increases, while at 115-200°C, with carbon aerogels, having no phase change materials, there is a severe reduction in the rate of temperature increase of the sample.

  5. Preparation and Characterization of a Calcium Carbonate Aerogel

    Directory of Open Access Journals (Sweden)

    Johann Plank

    2009-01-01

    Full Text Available We report on a facile method for the preparation of a calcium carbonate aerogel consisting of aggregated secondary vaterite particles with an approximate average diameter of 50 nm. It was synthesized via a sol-gel process by reacting calcium oxide with carbon dioxide in methanol and subsequent supercritical drying of the alcogel with carbon dioxide. The resulting monolith was opaque, brittle and had overall dimensions of 6×2×1 cm. It was characterized by X-ray powder diffraction, nitrogen adsorption method (BET, and scanning electron microscopy.

  6. Preparation and characterization of phloroglucinol-formaldehyde aerogel

    International Nuclear Information System (INIS)

    Huang Changgang; China Academy of Engineering Physics, Mianyang; Tang Yongjian; Wang Chaoyang; Yan Hongmei

    2006-01-01

    Phloroglucinol-formaldehyde (PF) aerogels and carbonized PF (CPF) aerogels were prepared from Phloroglucinol (P) and Formaldehyde (F) by sol-gel, solvent exchanging, supercritical drying and carbonization processes. The aerogel has a large specific surface area, continuous nano-network and porous structure. The density and mean porosity radius will enlarge after being carbonized, while the specific surface area will be influenced little. The micro-structure and density of aerogel are controlled by concentration of total reactants and catalyzer, respectively. Aerogels with different micro-structure and different density fit for ICF targets can be prepared by optimizing synthesis conditions. (authors)

  7. Structure Manipulation of Carbon Aerogels by Managing Solution Concentration of Precursor and Its Application for CO2 Capture

    Directory of Open Access Journals (Sweden)

    Pingping He

    2018-04-01

    Full Text Available A series of carbon aerogels were synthesized by polycondensation of resorcinol and formaldehyde, and their structure was adjusted by managing solution concentration of precursors. Carbon aerogels were characterized by X-ray diffraction (XRD, Raman, Fourier transform infrared spectroscopy (FTIR, N2 adsorption/desorption and scanning electron microscope (SEM technologies. It was found that the pore structure and morphology of carbon aerogels can be efficiently manipulated by managing solution concentration. The relative micropore volume of carbon aerogels, defined by Vmicro/Vtol, first increased and then decreased with the increase of solution concentration, leading to the same trend of CO2 adsorption capacity. Specifically, the CA-45 (the solution concentration of precursors is 45 wt% sample had the highest CO2 adsorption capacity (83.71 cm3/g and the highest selectivity of CO2/N2 (53 at 1 bar and 0 °C.

  8. A saxs study of silica aerogels

    International Nuclear Information System (INIS)

    Craievich, A.F.

    1986-01-01

    Aerogels produced by hypercritical drying of gels from hydrolysis of TMOS (Tetramethoxysilane) in various pH conditions and subjected to a densification process were studied by SAXS using LURE synchrotron facility. The evaluation of scattering data combined with BET measurements leads to a model of aerogels consisting of a light density matrix in which meso-and macro-pores are embedded. (Author) [pt

  9. 1D Ni-Co oxide and sulfide nanoarray/carbon aerogel hybrid nanostructures for asymmetric supercapacitors with high energy density and excellent cycling stability.

    Science.gov (United States)

    Hao, Pin; Tian, Jian; Sang, Yuanhua; Tuan, Chia-Chi; Cui, Guanwei; Shi, Xifeng; Wong, C P; Tang, Bo; Liu, Hong

    2016-09-15

    The fabrication of supercapacitor electrodes with high energy density and excellent cycling stability is still a great challenge. A carbon aerogel, possessing a hierarchical porous structure, high specific surface area and electrical conductivity, is an ideal backbone to support transition metal oxides and bring hope to prepare electrodes with high energy density and excellent cycling stability. Therefore, NiCo 2 S 4 nanotube array/carbon aerogel and NiCo 2 O 4 nanoneedle array/carbon aerogel hybrid supercapacitor electrode materials were synthesized by assembling Ni-Co precursor needle arrays on the surface of the channel walls of hierarchical porous carbon aerogels derived from chitosan in this study. The 1D nanostructures grow on the channel surface of the carbon aerogel vertically and tightly, contributing to the enhanced electrochemical performance with ultrahigh energy density. The energy density of NiCo 2 S 4 nanotube array/carbon aerogel and NiCo 2 O 4 nanoneedle array/carbon aerogel hybrid asymmetric supercapacitors can reach up to 55.3 Wh kg -1 and 47.5 Wh kg -1 at a power density of 400 W kg -1 , respectively. These asymmetric devices also displayed excellent cycling stability with a capacitance retention of about 96.6% and 92% over 5000 cycles.

  10. High-Performance Carbon Aerogel Air Cathodes for Microbial Fuel Cells

    KAUST Repository

    Zhang, Xiaoyuan; He, Weihua; Zhang, Rufan; Wang, Qiuying; Liang, Peng; Huang, Xia; Logan, Bruce E.; Fellinger, Tim-Patrick

    2016-01-01

    ) performance at a neutral pH is needed for efficient energy production. Here we show a nitrogen doped (≈4 wt%) ionothermal carbon aerogel (NDC) with a high surface area, large pore volume, and hierarchical porosity, with good electrocatalytic properties for ORR

  11. Aerogel-Based Multilayer Insulation with Micrometeoroid Protection

    Science.gov (United States)

    Begag, Redouane; White, Shannon

    2013-01-01

    Ultra-low-density, highly hydrophobic, fiber-reinforced aerogel material integrated with MLI (aluminized Mylar reflectors and B4A Dacron separators) offers a highly effective insulation package by providing unsurpassed thermal performance and significant robustness, delivering substantial MMOD protection via the addition of a novel, durable, external aerogel layer. The hydrophobic nature of the aerogel is an important property for maintaining thermal performance if the material is exposed to the environment (i.e. rain, snow, etc.) during ground installations. The hybrid aerogel/MLI/MMOD solution affords an attractive alternative because it will perform thermally in the same range as MLI at all vacuum levels (including high vacuum), and offers significant protection from micrometeoroid damage. During this effort, the required low-density and resilient aerogel materials have been developed that are needed to optimize the thermal performance for space (high vacuum) cryotank applications. The proposed insulation/MMOD package is composed of two sections: a stack of interleaved aerogel layers and MLI intended for cryotank thermal insulation, and a 1.5- to 1-in. (.2.5- to 3.8- cm) thick aerogel layer (on top of the insulation portion) for MMOD protection. Learning that low-density aerogel cannot withstand the hypervelocity impact test conditions, the innovators decided during the course of the program to fabricate a high-density and strong material based on a cross-linked aerogel (X-aerogel; developed elsewhere by the innovators) for MMOD protection. This system has shown a very high compressive strength that is capable of withstanding high-impact tests if a proper configuration of the MMOD aerogel layer is used. It was learned that by stacking two X-aerogel layers [1.5-in. (.3.8-cm) thick] separated by an air gap, the system would be able to hold the threat at a speed of 5 km/s and gpass h the test. The first aerogel panel stopped the projectile from damaging the second

  12. Carbon nanotube aerogel-CoS2 hybrid catalytic counter electrodes for enhanced photovoltaic performance dye-sensitized solar cells.

    Science.gov (United States)

    Liu, Tao; Mai, Xianmin; Chen, Haijun; Ren, Jing; Liu, Zheting; Li, Yingxiang; Gao, Lina; Wang, Ning; Zhang, Jiaoxia; He, Hongcai; Guo, Zhanhu

    2018-03-01

    The carbon nanotube aerogel (CNA) with an ultra-low density, three-dimensional network nanostructure, superior electronic conductivity and large surface area is being widely employed as a catalytic electrode and catalytic support. Impressively, dye-sensitized solar cells (DSSCs) assembled with a CNA counter electrode (CE) achieved a maximum power conversion efficiency (PCE) of 8.28%, which exceeded that of the conventional platinum (Pt)-based DSSC (7.20%) under the same conditions. Furthermore, highly dispersed CoS 2 nanoparticles endowed with excellent intrinsic catalytic activity were hydrothermally incorporated to form a CNA-supported CoS 2 (CNA-CoS 2 ) CE, which was due to the large number of catalytically active sites and sufficient connections between CoS 2 and the CNA. The electrocatalytic ability and stability were systematically evaluated by cyclic voltammetry (CV), electrochemical impedance spectra (EIS) and Tafel polarization, which confirmed that the resultant CNA-CoS 2 hybrid CE exhibited a remarkably higher electrocatalytic activity toward I 3 - reduction, and faster ion diffusion and electron transfer than the pure CNA CE. Such cost-effective DSSCs assembled with an optimized CNA-CoS 2 CE yielded an enhanced PCE of 8.92%, comparable to that of the cell fabricated with the CNA-Pt hybrid CE reported in our published literature (9.04%). These results indicate that the CNA-CoS 2 CE can be considered as a promising candidate for Pt-free CEs used in low-cost and high-performance DSSCs.

  13. Carbon-coated NiPt, CoPt nanoalloys: size control and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    El-Gendy, A.A. [Kirchhoff Institute for Physics, University of Heidelberg, D-69120 Heidelberg (Germany); Leibniz Institute for Solid State and Materials Research (IFW) Dresden (Germany); Hampel, S.; Leonhardt, A.; Khavrus, V.; Buechner, B. [Leibniz Institute for Solid State and Materials Research (IFW) Dresden (Germany); Klingeler, R. [Kirchhoff Institute for Physics, University of Heidelberg, D-69120 Heidelberg (Germany)

    2011-07-01

    Controlled synthesis of magnetic nanoparticles with well-defined size and composition is always a challenge in material-based nanoscience. Here, we apply the high pressure chemical vapour deposition technique (HPCVD) to obtain carbon-shielded magnetic alloy nanoparticles under control of the particle size. Carbon encapsulated NiPt, CoPt (NiPt rate at C, CoPt rate at C) nanoalloys were synthesized by means of HPCVD starting from sublimating appropriate metal-organic precursors. Structural characterization by means of high resolution transmission electron microscopy, energy dispersive X-ray analysis and X-ray diffraction indicated the formation of coated bimetallic Ni{sub x}Pt{sub 100-x} and CoxPt{sub 100-x} nanoparticles. Adjusting the sublimation temperature of the different precursors allowed tuning the core sizes with small size distribution. In addition, detailed studies of the magnetic properties are presented. AC magnetic heating studies imply the potential of the coated nanoalloys for hyperthermia therapy.

  14. Diffusion-controlled oxygen reduction on multi-copper oxidase-adsorbed carbon aerogel electrodes without mediator

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, S.; Kamitaka, Y.; Kano, K. [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto (Japan)

    2007-12-15

    Bioelectrocatalytic reduction of O{sub 2} into water was archived at diffusion-controlled rate by using enzymes (laccase from Trametes sp. and bilirubin oxidase from Myrothecium verrucaria, which belong to the family of multi-copper oxidase) adsorbed on mesoporous carbon aerogel particle without a mediator. The current density was predominantly controlled by the diffusion of dissolved O{sub 2} in rotating-disk electrode experiments, and reached a value as large as 10 mA cm{sup -2} at 1 atm O{sub 2}, 25 C, and 8,000 rpm on the laccase-adsorbed electrode. The overpotential of the bioelectrocatalytic reduction of O{sub 2} was 0.4-0.55 V smaller than that observed on a Pt disk electrode. Without any optimization, the laccase-adsorbed biocathode showed stable current intensity of the O{sub 2} reduction in an air-saturated buffer at least for 10 days under continuous flow system. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  15. An emerging platform for drug delivery: aerogel based systems.

    Science.gov (United States)

    Ulker, Zeynep; Erkey, Can

    2014-03-10

    Over the past few decades, advances in "aerogel science" have provoked an increasing interest for these materials in pharmaceutical sciences for drug delivery applications. Because of their high surface areas, high porosities and open pore structures which can be tuned and controlled by manipulation of synthesis conditions, nanostructured aerogels represent a promising class of materials for delivery of various drugs as well as enzymes and proteins. Along with biocompatible inorganic aerogels and biodegradable organic aerogels, more complex systems such as surface functionalized aerogels, composite aerogels and layered aerogels have also been under development and possess huge potential. Emphasis is given to the details of the aerogel synthesis and drug loading methods as well as the influence of synthesis parameters and loading methods on the adsorption and release of the drugs. Owing to their ability to increase the bioavailability of low solubility drugs, to improve both their stability and their release kinetics, there are an increasing number of research articles concerning aerogels in different drug delivery applications. This review presents an up to date overview of the advances in all kinds of aerogel based drug delivery systems which are currently under investigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Preparation of PtRu/Carbon hybrid materials by hydrothermal carbonization: A study of the Pt:Ru atomic ratio

    International Nuclear Information System (INIS)

    Tusi, Marcelo Marques; Brandalise, Michele; Correa, Olandir Vercino; Oliveira Neto, Almir; Linardi, Marcelo; Spinace, Estevam Vitorio; Villalba, Juan Carlo

    2009-01-01

    PtRu/Carbon materials with different Pt:Ru atomic ratios (30:70, 50:50, 60:40, 80:20 and 90:10) and 5 wt% of nominal metal load were prepared by hydrothermal carbonization using H 2 PtCl 6.6 H 2 O and RuCl 3. xH 2 O as metals sources and catalysts of the carbonization process and starch as carbon source and reducing agent. The obtained materials were treated at 900 deg C under argon and characterized by EDX, XRD and cyclic voltammetry. The electro-oxidation of methanol was studied by cyclic voltammetry and chronoamperometry using thin porous coating technique. The PtRu/Carbon materials showed Pt:Ru atomic ratios obtained by EDX similar to the nominal ones. XRD analysis showed that Pt face-cubic centered (FCC) and Ru hexagonal close-packed (HCP) phases coexist in the obtained materials. The average crystallite sizes of the Pt (FCC) phase were in the range of 8-12 nm. The material prepared with Pt:Ru atomic ratio of 50:50 showed the best performance for methanol electro-oxidation. (author)

  17. On the correlation between the porous structure and the electrochemical response of powdered and monolithic carbon aerogels as electrodes for capacitive deionization

    Energy Technology Data Exchange (ETDEWEB)

    Macías, C., E-mail: carlosmacias@nanoquimia.com [Nanoquimia S.L., PCT Rabanales 21, Ed. Aldebarán M.4.3., 14014 Córdoba (Spain); Lavela, P. [Laboratorio de Química Inorgánica, Universidad de Córdoba, Marie Curie, Campus de Rabanales, 14071 Córdoba (Spain); Rasines, G. [Nanoquimia S.L., PCT Rabanales 21, Ed. Aldebarán M.4.3., 14014 Córdoba (Spain); Zafra, M.C.; Tirado, J.L. [Laboratorio de Química Inorgánica, Universidad de Córdoba, Marie Curie, Campus de Rabanales, 14071 Córdoba (Spain); Ania, C.O. [ADPOR Group, Instituto Nacional del Carbón (INCAR), CSIC, Apdo. 73, 33080 Oviedo (Spain)

    2016-10-15

    The combined effect of resorcinol/catalyst (100≤R/C≤800) and resorcinol/water (0.04≤R/W≤0.13) molar ratio on the textural and capacitive properties of carbon aerogels with potential application for capacitive deionization has been evaluated. Activated and pyrolyzed aerogels were synthesized by the sol-gel polymerization of resorcinol-formaldehyde mixtures and dried in supercritical conditions. Data show that high R/C and R/W molar ratios lead to materials with large pores in the mesopore range, whereas the surface area and micropore volumes remain somewhat the same. The activation of the aerogels increased the differences in the specific surface and micropore volumes due to the development of microporosity. This effect was more remarkable for the samples with low R/C whatever the R/W ratio, indicating that the carbon aerogel obtained using high amounts of catalyst are more prone to be activated. Regarding the electrochemical features of the aerogels, low capacitance values were measured in aerogels combining low R/W and high R/C and reciprocally low R/C and high R/W molar ratios, due to their higher resistance. Polarization resistances were found to be slightly higher for the pyrolyzed than for activated aerogels, and followed a decreasing trend with the mesoporosity, indicating the outstanding contribution of the mesoporous network to provide a good kinetic response. The desalting capacity of monolithic aerogels showed a simultaneous dependence with the surface area and the resistivity of the electrodes, pointing out the importance of performing electrochemical measurements in adequate cell configurations (i.e., desalting units) upon the intended application. - Graphical abstract: The textural properties of carbon aerogels are strongly influenced by the synthesis parameters precursor to catalyst (R/C) and water (R/C) ratios. The volumetric capacitance measured in a symmetric cell with monolithic electrodes of carbon aerogel strongly correlates with both

  18. Pd-Pt loaded graphene aerogel on nickel foam composite as binder-free anode for a direct glucose fuel cell unit

    Science.gov (United States)

    Tsang, Chi Him A.; Leung, D. Y. C.

    2017-09-01

    Fabrication of electrocatalyst for direct glucose fuel cell (DGFC) operation involves destructive preparation methods with the use of stabilizer like binder, which may cause activity depreciation. Binder-free electrocatalytic electrode becomes a possible solution to the above problem. Binder-free bimetallic Pd-Pt loaded graphene aerogel on nickel foam plates with different Pd/Pt ratios (1:2.32, 1:1.62, and 1:0.98) are successfully fabricated through a green one-step mild reduction process producing a Pd-Pt/GO/nickel form plate (NFP) composite. Anode with the binder-free electrocatalysts exhibit a strong activity in a batch type DGFC unit under room temperature. The effects of glucose and KOH concentrations, and the Pd/Pt ratios of the electrocatalyst on the DGFC performance are also studied. Maximum power density output of 1.25 mW cm-2 is recorded with 0.5 M glucose/3 M KOH as the anodic fuel, and Pd1Pt0.98/GA/NFP as catalyst, which is the highest obtained so far among other types of electrocatalyst.

  19. A novel enzymatic glucose sensor based on Pt nanoparticles-decorated hollow carbon spheres-modified glassy carbon electrode

    Science.gov (United States)

    Luhana, Charles; Bo, Xiang-Jie; Ju, Jian; Guo, Li-Ping

    2012-10-01

    A new glucose biosensor was developed based on hollow carbon spheres decorated with platinum nanoparticles (Pt/HCSs)-modified glassy carbon electrode immobilized with glucose oxidase (GOx) with the help of Nafion. The Pt nanoparticles were well dispersed on the HCSs with an average size of 2.29 nm. The detection of glucose was achieved via electrochemical detection of the enzymatically liberated H2O2 at +0.5 V versus Ag/AgCl at physiologic pH of 7.4. The Pt/HCSs-modified electrode exhibited excellent electrocatalytic activities toward both the oxidation and reduction of H2O2. The glucose biosensor showed good electrocatalytic performance in terms of high sensitivity (4.1 μA mM-1), low detection limit (1.8 μM), fast response time tested with this biosensor and a good recovery was achieved for the two spiked serum samples.

  20. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode.

    Science.gov (United States)

    Hao, Pin; Zhao, Zhenhuan; Tian, Jian; Li, Haidong; Sang, Yuanhua; Yu, Guangwei; Cai, Huaqiang; Liu, Hong; Wong, C P; Umar, Ahmad

    2014-10-21

    Renewable, cost-effective and eco-friendly electrode materials have attracted much attention in the energy conversion and storage fields. Bagasse, the waste product from sugarcane that mainly contains cellulose derivatives, can be a promising candidate to manufacture supercapacitor electrode materials. This study demonstrates the fabrication and characterization of highly porous carbon aerogels by using bagasse as a raw material. Macro and mesoporous carbon was first prepared by carbonizing the freeze-dried bagasse aerogel; consequently, microporous structure was created on the walls of the mesoporous carbon by chemical activation. Interestingly, it was observed that the specific surface area, the pore size and distribution of the hierarchical porous carbon were affected by the activation temperature. In order to evaluate the ability of the hierarchical porous carbon towards the supercapacitor electrode performance, solid state symmetric supercapacitors were assembled, and a comparable high specific capacitance of 142.1 F g(-1) at a discharge current density of 0.5 A g(-1) was demonstrated. The fabricated solid state supercapacitor displayed excellent capacitance retention of 93.9% over 5000 cycles. The high energy storage ability of the hierarchical porous carbon was attributed to the specially designed pore structures, i.e., co-existence of the micropores and mesopores. This research has demonstrated that utilization of sustainable biopolymers as the raw materials for high performance supercapacitor electrode materials is an effective way to fabricate low-cost energy storage devices.

  1. Quantitative analysis of silica aerogel-based thermal insulation coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2015-01-01

    containing intact hollow glass or polymer spheres showed that silica aerogel particles are more efficient in an insulation coating than hollow spheres. In a practical (non-ideal) comparison, the ranking most likely cannot be generalized. A parameter study demonstrates how the model can be used, qualitatively......A mathematical heat transfer model for a silica aerogel-based thermal insulation coating was developed. The model can estimate the thermal conductivity of a two-component (binder-aerogel) coating with potential binder intrusion into the nano-porous aerogel structure. The latter is modelled using...... a so-called core–shell structure representation. Data from several previous experimental investigations with silica aerogels in various binder matrices were used for model validation. For some relevant cases with binder intrusion, it was possible to obtain a very good agreement between simulations...

  2. Polyvinyl alcohol (PVA)-cellulose nanofibril (CNF)-multiwalled carbon nanotube (MWCNT) hybrid organic aerogels with superior mechanical properties

    Science.gov (United States)

    Qifeng Zheng; Alireza Javadi; Ronald Sabo; Zhiyong Cai; Shaoqin Gong

    2013-01-01

    Polyvinyl alcohol (PVA)–cellulose nanofibril (CNF)–multiwalled carbon nanotube (MWCNT) hybrid organic aerogels were prepared using an environmentally friendly freeze-drying process with renewable materials. The material properties of these “green” hybrid aerogels were characterized extensively using various techniques. It was found that adding a small amount of CNFs...

  3. Aerogels in Chemical Engineering: Strategies Toward Tailor-Made Aerogels.

    Science.gov (United States)

    Smirnova, Irina; Gurikov, Pavel

    2017-06-07

    The present review deals with recent advances in the rapidly growing field of aerogel research and technology. The major focus of the review lies in approaches that allow tailoring of aerogel properties to meet application-driven requirements. The decisive properties of aerogels are discussed with regard to existing and potential application areas. Various tailoring strategies, such as modulation of the pore structure, coating, surface modification, and post-treatment, are illustrated by results of the last decade. In view of commercialization of aerogel-based products, a panorama of current industrial aerogel suppliers is given, along with a discussion of possible alternative sources for raw materials and precursors. Finally, growing points and perspectives of the aerogel field are summarized.

  4. Aerogel to simulate delamination and porosity defects in carbon-fiber reinforced polymer composites

    Science.gov (United States)

    Juarez, Peter; Leckey, Cara A. C.

    2018-04-01

    Representative defect standards are essential for the validation and calibration of new and existing inspection techniques. However, commonly used methods of simulating delaminations in carbon-fiber reinforced polymer (CFRP) composites do not accurately represent the behavior of the real-world defects for several widely-used NDE techniques. For instance, it is common practice to create a delamination standard by inserting Polytetrafluoroethylene (PTFE) in between ply layers. However, PTFE can transmit more ultrasonic energy than actual delaminations, leading to an unrealistic representation of the defect inspection. PTFE can also deform/wrinkle during the curing process and has a thermal effusivity two orders of magnitude higher than air (almost equal to that of a CFRP). It is therefore not effective in simulating a delamination for thermography. Currently there is also no standard practice for producing or representing a known porosity in composites. This paper presents a novel method of creating delamination and porosity standards using aerogel. Insertion of thin sheets of solid aerogel between ply layers during layup is shown to produce air-gap-like delaminations creating realistic ultrasonic and thermographic inspection responses. Furthermore, it is shown that depositing controlled amounts of aerogel powder can represent porosity. Micrograph data verifies the structural integrity of the aerogel through the composite curing process. This paper presents data from multiple NDE methods, including X-ray computed tomography, immersion ultrasound, and flash thermography to the effectiveness of aerogel as a delamination and porosity simulant.

  5. Flexible aerogel composite for mechanical stability and process of fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Coronado, P.R.; Poco, J.F.

    1999-10-26

    A flexible aerogel and process of fabrication are disclosed. An aerogel solution is mixed with fibers in a mold and allowed to gel. The gel is then processed by supercritical extraction, or by air drying, to produce a flexible aerogel formed to the shape of the mold. The flexible aerogel has excellent thermal and acoustic properties, and can be utilized in numerous applications, such as for energy absorption, insulation (temperature and acoustic), to meet the contours of aircraft shapes, and where space is limited since an inch of aerogel is a 4--5 times better insulator than an inch of fiberglass. The flexible aerogel may be of an inorganic (silica) type or an organic (carbon) type, but containing fibers, such as glass or carbon fibers.

  6. Flexible aerogel composite for mechanical stability and process of fabrication

    Science.gov (United States)

    Coronado, Paul R.; Poco, John F.

    1999-01-01

    A flexible aerogel and process of fabrication. An aerogel solution is mixed with fibers in a mold and allowed to gel. The gel is then processed by supercritical extraction, or by air drying, to produce a flexible aerogel formed to the shape of the mold. The flexible aerogel has excellent thermal and acoustic properties, and can be utilized in numerous applications, such as for energy absorption, insulation (temperature and acoustic), to meet the contours of aircraft shapes, and where space is limited since an inch of aerogel is a 4-5 times better insulator than an inch of fiberglass. The flexible aerogel may be of an inorganic (silica) type or an organic (carbon) type, but containing fibers, such as glass or carbon fibers.

  7. Flexible aerogel composite for mechanical stability and process of fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Coronado, P.R.; Poco, J.F.

    2000-07-11

    A flexible aerogel and process of fabrication are disclosed. An aerogel solution is mixed with fibers in a mold and allowed to gel. The gel is then processed by supercritical extraction, or by air drying, to produce a flexible aerogel formed to the shape of the mold. The flexible aerogel has excellent thermal and acoustic properties, and can be utilized in numerous applications, such as for energy absorption, insulation (temperature and acoustic), to meet the contours of aircraft shapes, and where space is limited since an inch of aerogel is a 4--5 times better insulator than an inch of fiberglass. The flexible aerogel may be of an inorganic (silica) type or an organic (carbon) type, but containing fibers, such as glass or carbon fibers.

  8. CoFe2O4/carbon nanotube aerogels as high performance anodes for lithium ion batteries

    Directory of Open Access Journals (Sweden)

    Xin Sun

    2017-04-01

    Full Text Available High-performance lithium ion batteries (LIBs require electrode material to have an ideal electrode construction which provides fast ion transport, short solid-state ion diffusion, large surface area, and high electric conductivity. Herein, highly porous three-dimensional (3D aerogels composed of cobalt ferrite (CoFe2O4, CFO nanoparticles (NPs and carbon nanotubes (CNTs are prepared using sustainable alginate as the precursor. The key feature of this work is that by using the characteristic egg-box structure of the alginate, metal cations such as Co2+ and Fe3+ can be easily chelated via an ion-exchange process, thus binary CFO are expected to be prepared. In the hybrid aerogels, CFO NPs interconnected by the CNTs are embedded in carbon aerogel matrix, forming the 3D network which can provide high surface area, buffer the volume expansion and offer efficient ion and electron transport pathways for achieving high performance LIBs. The as-prepared hybrid aerogels with the optimum CNT content (20 wt% delivers excellent electrochemical properties, i.e., reversible capacity of 1033 mAh g−1 at 0.1 A g−1 and a high specific capacity of 874 mAh g−1 after 160 cycles at 1 A g−1. This work provides a facile and low cost route to fabricate high performance anodes for LIBs. Keywords: Alginate, Aerogels, Cobalt ferrite, Anode, Lithium-ion battery

  9. Pt coating on flame-generated carbon particles

    International Nuclear Information System (INIS)

    Choi, In Dae; Lee, Dong Geun

    2008-01-01

    Carbon black, activated carbon and carbon nanotube have been used as supporting materials for precious metal catalysts used in fuel cell electrodes. One-step flame synthesis method is used to coat 2-5nm Pt dots on flame-generated carbon particles. By adjusting flame temperature, gas flow rates and resident time of particles in flame, we can obtain Pt/C nano catalyst-support composite particles. Additional injection of hydrogen gas facilitates pyrolysis of Pt precursor in flame. The size of as-incepted Pt dots increases along the flame due to longer resident time and sintering in high temperature flame. Surface coverage and dispersion of the Pt dots is varied at different sampling heights and confirmed by Transmission Electron Microscopy (TEM), Energy Dispersive Spectra (EDS) and X-Ray Diffraction (XRD). Crystallinity and surface bonding groups of carbon are investigated through X-ray Photoelectron Spectroscoy (XPS) and Raman spectroscopy

  10. Synthesis and characterization of a nanocrystalline diamond aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Pauzauskie, Peter J.; Crowhurst, Jonathan C.; Worsley, Marcus A.; Laurence, Ted A.; Kilcoyne, A. L. David; Wang, Yinmin; Willey, Trevor M.; Visbeck, Kenneth S.; Fakra, Sirine C.; Evans, William J.; Zaug, Joseph M.; Satcher, Jr., Joe H.

    2011-07-06

    Aerogel materials have myriad scientific and technological applications due to their large intrinsic surface areas and ultralow densities. However, creating a nanodiamond aerogel matrix has remained an outstanding and intriguing challenge. Here we report the high-pressure, high-temperature synthesis of a diamond aerogel from an amorphous carbon aerogel precursor using a laser-heated diamond anvil cell. Neon is used as a chemically inert, near-hydrostatic pressure medium that prevents collapse of the aerogel under pressure by conformally filling the aerogel's void volume. Electron and X-ray spectromicroscopy confirm the aerogel morphology and composition of the nanodiamond matrix. Time-resolved photoluminescence measurements of recovered material reveal the formation of both nitrogen- and silicon- vacancy point-defects, suggesting a broad range of applications for this nanocrystalline diamond aerogel.

  11. Aerogel nanocomposite materials

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A.J.; Ayers, M.; Cao, W. [Lawrence Berkeley Laboratory, CA (United States)] [and others

    1995-05-01

    Aerogels are porous, low density, nanostructured solids with many unusual properties including very low thermal conductivity, good transparency, high surface area, catalytic activity, and low sound velocity. This research is directed toward developing new nanocomposite aerogel materials for improved thermal insulation and several other applications. A major focus of the research has been to further increase the thermal resistance of silica aerogel by introducing infrared opacification agents into the aerogel to produce a superinsulating composite material. Opacified superinsulating aerogel permit a number of industrial applications for aerogel-based insulation. The primary benefits from this recently developed superinsulating composite aerogel insulation are: to extend the range of applications to higher temperatures, to provide a more compact insulation for space sensitive-applications, and to lower costs of aerogel by as much as 30%. Superinsulating aerogels can replace existing CFC-containing polyurethane in low temperature applications to reduce heat losses in piping, improve the thermal efficiency of refrigeration systems, and reduce energy losses in a variety of industrial applications. Enhanced aerogel insulation can also replace steam and process pipe insulation in higher temperature applications to substantially reduce energy losses and provide much more compact insulation.

  12. A multi-wavelength, high-contrast contact radiography system for the study of low-density aerogel foams

    Energy Technology Data Exchange (ETDEWEB)

    Opachich, Y. P., E-mail: opachiyp@nv.doe.gov; Koch, J. A.; Haugh, M. J.; Romano, E.; Lee, J. J.; Huffman, E.; Weber, F. A. [National Security Technologies, LLC, Livermore, California 94550 (United States); Bowers, J. W. [National Security Technologies, LLC, Livermore, California 94550 (United States); University of California at Berkeley, Berkeley, California 94720 (United States); Benedetti, L. R.; Wilson, M.; Prisbrey, S. T.; Wehrenberg, C. E.; Baumann, T. F.; Lenhardt, J. M.; Cook, A.; Arsenlis, A.; Park, H.-S.; Remington, B. A. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2016-07-15

    A multi-wavelength, high contrast contact radiography system has been developed to characterize density variations in ultra-low density aerogel foams. These foams are used to generate a ramped pressure drive in materials strength experiments at the National Ignition Facility and require precision characterization in order to reduce errors in measurements. The system was used to characterize density variations in carbon and silicon based aerogels to ∼10.3% accuracy with ∼30 μm spatial resolution. The system description, performance, and measurement results collected using a 17.8 mg/cc carbon based JX–6 (C{sub 20}H{sub 30}) aerogel are discussed in this manuscript.

  13. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications.

    Science.gov (United States)

    Nardecchia, Stefania; Carriazo, Daniel; Ferrer, M Luisa; Gutiérrez, María C; del Monte, Francisco

    2013-01-21

    Carbon nanotubes and graphene are some of the most intensively explored carbon allotropes in materials science. This interest mainly resides in their unique properties with electrical conductivities as high as 10(4) S cm(-1), thermal conductivities as high as 5000 W m(-1) K and superior mechanical properties with elastic moduli on the order of 1 TPa for both of them. The possibility to translate the individual properties of these monodimensional (e.g. carbon nanotubes) and bidimensional (e.g. graphene) building units into two-dimensional free-standing thick and thin films has paved the way for using these allotropes in a number of applications (including photocatalysis, electrochemistry, electronics and optoelectronics, among others) as well as for the preparation of biological and chemical sensors. More recently and while recognizing the tremendous interest of these two-dimensional structures, researchers are noticing that the performance of certain devices can experience a significant enhancement by the use of three-dimensional architectures and/or aerogels because of the increase of active material per projected area. This is obviously the case as long as the nanometre-sized building units remain accessible so that the concept of hierarchical three-dimensional organization is critical to guarantee the mass transport and, as consequence, performance enhancement. Thus, this review aims to describe the different synthetic processes used for preparation of these three-dimensional architectures and/or aerogels containing either any or both allotropes, and the different fields of application in which the particular structure of these materials provided a significant enhancement in the efficacy as compared to their two-dimensional analogues or even opened the path to novel applications. The unprecedented compilation of information from both CNT- and graphene-based three-dimensional architectures and/or aerogels in a single revision is also of interest because it allows

  14. Novel antimony doped tin oxide/carbon aerogel as efficient electrocatalytic filtration membrane

    Directory of Open Access Journals (Sweden)

    Zhimeng Liu

    2016-05-01

    Full Text Available A facile method was developed to prepare antimony doped tin oxide (Sb-SnO2/carbon aerogel (CA for use as an electrocatalytic filtration membrane. The preparation process included synthesis of a precursor sol, impregnation, and thermal decomposition. The Sb-SnO2, which was tetragonal in phase with an average crystallite size of 10.8 nm, was uniformly distributed on the CA surface and firmly attached via carbon-oxygen-tin chemical bonds. Preliminary filtration tests indicated that the Sb-SnO2/CA membrane had a high rate of total organic carbon removal for aqueous tetracycline owing to its high current efficiency and electrode stability.

  15. Ultrahigh specific capacitances for supercapacitors achieved by nickel cobaltite/carbon aerogel composites

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Hsing-Chi; Cheng, Wei-Yun; Wang, Yong-Hui; Lu, Shih-Yuan [Department of Chemical Engineering, National Tsing-Hua University, Taiwan (China)

    2012-12-05

    Nickel cobaltite, a low cost and an environmentally friendly supercapacitive material, is deposited as a thin nanostructure of 3-5 nm nanocrystals into carbon aerogels, a mesoporous host template of high specific surface areas and high electric conductivities, with a two-step wet chemistry process. This nickel cobaltite/carbon aerogel composite shows ultrahigh specific capacitances of around 1700 F g{sup -1} at a scan rate of 25 mV s{sup -1} within a potential window of -0.05 to 0.5 V in 1 M NaOH solutions. The composite also possesses an excellent high rate capability manifested by maintaining specific capacitances above 800 F g{sup -1} at a high scan rate of 500 mV s{sup -1}, and an outstanding cycling stability demonstrated by a negligible 2.4% decay in specific capacitances after 2000 cycles. The success is attributable to the fuller utilization of nickel cobaltite for pseudocapacitance generation, made possible by the composite structure enabling well exposed nickel cobaltite to the electrolyte and easy transport of charge carriers, ions, and electrons, within the composite electrode. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Durable polymer-aerogel based superhydrophobic coatings, a composite material

    Science.gov (United States)

    Kissel, David J; Brinker, Charles Jeffrey

    2014-03-04

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  17. Durable polymer-aerogel based superhydrophobic coatings: a composite material

    Science.gov (United States)

    Kissel, David J.; Brinker, Charles Jeffrey

    2016-02-02

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  18. Electro-oxidation of Ethanol on Carbon Supported PtSn and PtSnNi Catalysts

    Directory of Open Access Journals (Sweden)

    Nur Hidayati

    2016-03-01

    Full Text Available Even though platinum is known as an active electro-catalyst for ethanol oxidation at low temperatures (< 100 oC, choosing the electrode material for ethanol electro-oxidation is a crucial issue. It is due to its property which easily poisoned by a strong adsorbed species such as CO. PtSn-based electro-catalysts have been identified as better catalysts for ethanol electro-oxidation. The third material is supposed to improved binary catalysts performance. This work presents a study of the ethanol electro-oxidation on carbon supported Pt-Sn and Pt-Sn-Ni catalysts. These catalysts were prepared by alcohol reduction. Nano-particles with diameters between 2.5-5.0 nm were obtained. The peak of (220 crystalline face centred cubic (fcc Pt phase for PtSn and PtSnNi alloys was repositioned due to the presence of Sn and/or Ni in the alloy. Furthermore, the modification of Pt with Sn and SnNi improved ethanol and CO electro-oxidation. Copyright © 2016 BCREC GROUP. All rights reserved Received: 10th November 2015; Revised: 1st February 2016; Accepted: 1st February 2016 How to Cite: Hidayati, N., Scott, K. (2016. Electro-oxidation of Ethanol on Carbon Supported PtSn and PtSnNi Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 10-20. (doi:10.9767/bcrec.11.1.394.10-20 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.394.10-20

  19. Pt and PtRu nanoparticles supported on N-doped carbons as electrocatalysts for methanol electro oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Viviane Santos; Silva, Julio Cesar Martins; Oliveira Neto, Almir; Spinace, Estevam Vitorio, E-mail: viviane_sp_saopaulo@yahoo.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2016-07-01

    Full text: Methanol is a liquid transportation fuel that can be produced from fossil or renewable resources. Fuel cells employing methanol directly as fuel (Direct Methanol Fuel Cell - DMFC) are very attractive as power source for portable, mobile and stationary applications [1]. PtRu/C electrocatalyst has been considered the best electrocatalyst for methanol electro-oxidation, however, its performance is strongly dependent on the method of preparation and on the characteristics of the carbon support. N-doped carbons with different N contents (1, 2 and 5 wt%) were prepared by thermal treatment of carbon with urea at 800 deg C. Pt and PtRu nanoparticles were supported on N-doped carbons by coreduction of Pt(IV) and Ru(III) ions using an alcohol-reduction process [2]. The obtained materials were characterized by Energy Dispersive X-ray spectroscopy, X-ray diffraction, Transmission electron microscopy and Cyclic Voltammetry. Pt and PtRu nanoparticles supported on N-doped carbons showed superior performance for methanol electro-oxidation when compared to the materials supported on non-modified carbon and to Pt/C and PtRu/C commercial electrocatalysts. Pt/C and PtRu/C prepared with the carbon modified with 2.5 wt% of N content showed the best activities. (author) [1] Y. Zhou, K. Neyerlin, T.S. Olson, S. Pylypenko, J. Bult, H.N. Dinh, T. Gennett, Z. Shao and R. O'Hayre, Energy Environ. Sci. 3, 1437 (2010); [2] E.V. Spinace, A.Oliveira Neto, T.R.R. Vasconcellos, M. Linardi, J. Power Sources 137, 17 (2004)

  20. Organic aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    Science.gov (United States)

    Pekala, R.W.

    1995-12-19

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes{<=}1000{angstrom}, and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050 C to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors. 8 figs.

  1. Amperometric biosensor based on carbon nanotubes coated with polyaniline/dendrimer-encapsulated Pt nanoparticles for glucose detection

    International Nuclear Information System (INIS)

    Xu Lihuan; Zhu Yihua; Yang Xiaoling; Li Chunzhong

    2009-01-01

    A novel amperometric glucose biosensor based on the nanocomposites of multi-wall carbon nanotubes (CNT) coated with polyaniline (PANI) and dendrimer-encapsulated Pt nanoparticles (Pt-DENs) is prepared. CNT coated with protonated PANI is in situ synthesized and Pt-DENs is absorbed on PANI/CNT composite surface by self-assembly method. Then Glucose oxidase (GOx) is crosslink-immobilizated onto Pt-DENs/PANI/CNT composite film. The results show that the fabricated GOx/Pt-DENs/PANI/CNT electrode exhibits excellent response performance to glucose, such as low detection limit (0.5 μM), wide linear range (1 μM-12 mM), short response time (about 5 s), high sensitivity (42.0 μA mM -1 cm -2 ) and stability (83% remains after 3 weeks).

  2. Aerogel-Based Insulation for Industrial Steam Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    John Williams

    2011-03-30

    Thermal losses in industrial steam distribution systems account for 977 trillion Btu/year in the US, more than 1% of total domestic energy consumption. Aspen Aerogels worked with Department of Energy’s Industrial Technologies Program to specify, develop, scale-up, demonstrate, and deliver Pyrogel XT®, an aerogel-based pipe insulation, to market to reduce energy losses in industrial steam systems. The product developed has become Aspen’s best selling flexible aerogel blanket insulation and has led to over 60 new jobs. Additionally, this product has delivered more than ~0.7 TBTU of domestic energy savings to date, and could produce annual energy savings of 149 TBTU by 2030. Pyrogel XT’s commercial success has been driven by it’s 2-4X better thermal performance, improved durability, greater resistance to corrosion under insulation (CUI), and faster installation times than incumbent insulation materials.

  3. A novel enzymatic glucose sensor based on Pt nanoparticles-decorated hollow carbon spheres-modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Luhana, Charles; Bo Xiangjie; Ju Jian; Guo Liping

    2012-01-01

    A new glucose biosensor was developed based on hollow carbon spheres decorated with platinum nanoparticles (Pt/HCSs)-modified glassy carbon electrode immobilized with glucose oxidase (GOx) with the help of Nafion. The Pt nanoparticles were well dispersed on the HCSs with an average size of 2.29 nm. The detection of glucose was achieved via electrochemical detection of the enzymatically liberated H 2 O 2 at +0.5 V versus Ag/AgCl at physiologic pH of 7.4. The Pt/HCSs-modified electrode exhibited excellent electrocatalytic activities toward both the oxidation and reduction of H 2 O 2 . The glucose biosensor showed good electrocatalytic performance in terms of high sensitivity (4.1 μA mM −1 ), low detection limit (1.8 μM), fast response time m ) and the maximum current density (i max ) values for the biosensor were 10.94 mM and 887 μA cm −2 respectively. Furthermore, this biosensor showed an acceptable reproducibility and high stability. The interfering signals from ascorbic acid and uric acid at concentration levels normally found in human blood were not much compared with the response to glucose. Blood serum samples were also tested with this biosensor and a good recovery was achieved for the two spiked serum samples.

  4. Boosting Bifunctional Oxygen Electrocatalysis with 3D Graphene Aerogel-Supported Ni/MnO Particles.

    Science.gov (United States)

    Fu, Gengtao; Yan, Xiaoxiao; Chen, Yifan; Xu, Lin; Sun, Dongmei; Lee, Jong-Min; Tang, Yawen

    2018-02-01

    Electrocatalysts for oxygen-reduction and oxygen-evolution reactions (ORR and OER) are crucial for metal-air batteries, where more costly Pt- and Ir/Ru-based materials are the benchmark catalysts for ORR and OER, respectively. Herein, for the first time Ni is combined with MnO species, and a 3D porous graphene aerogel-supported Ni/MnO (Ni-MnO/rGO aerogel) bifunctional catalyst is prepared via a facile and scalable hydrogel route. The synthetic strategy depends on the formation of a graphene oxide (GO) crosslinked poly(vinyl alcohol) hydrogel that allows for the efficient capture of highly active Ni/MnO particles after pyrolysis. Remarkably, the resulting Ni-MnO/rGO aerogels exhibit superior bifunctional catalytic performance for both ORR and OER in an alkaline electrolyte, which can compete with the previously reported bifunctional electrocatalysts. The MnO mainly contributes to the high activity for the ORR, while metallic Ni is responsible for the excellent OER activity. Moreover, such bifunctional catalyst can endow the homemade Zn-air battery with better power density, specific capacity, and cycling stability than mixed Pt/C + RuO 2 catalysts, demonstrating its potential feasibility in practical application of rechargeable metal-air batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. PT AND PT/NI "NEEDLE" ELETROCATALYSTS ON CARBON NANOTUBES WITH HIGH ACTIVITY FOR THE ORR

    Energy Technology Data Exchange (ETDEWEB)

    Colon-Mercado, H.

    2011-11-10

    Platinum and platinum/nickel alloy electrocatalysts supported on graphitized (gCNT) or nitrogen doped carbon nanotubes (nCNT) are prepared and characterized. Pt deposition onto carbon nanotubes results in Pt 'needle' formations that are 3.5 nm in diameter and {approx}100 nm in length. Subsequent Ni deposition and heat treatment results in PtNi 'needles' with an increased diameter. All Pt and Pt/Ni materials were tested as electrocatalysts for the oxygen reduction reaction (ORR). The Pt and Pt/Ni catalysts showed excellent performance for the ORR, with the heat treated PtNi/gCNT (1.06 mA/cm{sup 2}) and PtNi/nCNT (0.664 mA/cm{sup 2}) showing the highest activity.

  6. Characterization of a surface modified carbon cryogel and a carbon supported Pt catalyst

    Directory of Open Access Journals (Sweden)

    BILJANA M. BABIĆ

    2007-08-01

    Full Text Available A carbon cryogel, synthesized by carbonization of a resorcinol/formaldehyde cryogel and oxidized in nitric acid, was used as catalyst support for Pt nano-particles. The Pt/C catalyst was prepared by a modified polyol synthesis method in an ethylene glycol (EG solution. Characterization by nitrogen adsorption showed that the carbon cryogel support and the Pt/C catalyst were mesoporous materials with high specific surface areas (SBET > 400 m2 g-1 and large mesoporous volumes. X-Ray diffraction of the catalyst demonstrated the successful reduction of the Pt precursor to metallic form. TEM Images of the Pt/C catalyst and Pt particle size distribution showed that the mean Pt particle size was about 3.3 nm. Cyclic voltammetry (CV experiments at various scan rates (from 2 to 200 mV s-1 were performed in 0.5 mol dm-3 HClO4 solution. The large capacitance of the oxidized carbon cryogel electrode, which arises from a combination of the double-layer capacitance and pseudocapacitance, associated with the participation of surface redox-type reactions was demonstrated. For the oxidized carbon cryogel, the total specific capacitance determined by 1/C vs. ν0.5 extrapolation method was found to be 386 F g-1. The hydrogen oxidation reaction at the investigated Pt/C catalyst proceeded as an electrochemically reversible, two-electron direct discharge reaction.

  7. Superinsulating Polyisocyanate Based Aerogels: A Targeted Search for the Optimum Solvent System.

    Science.gov (United States)

    Zhu, Zhiyuan; Snellings, Geert M B F; Koebel, Matthias M; Malfait, Wim J

    2017-05-31

    Polyisocyanate based aerogels combine ultralow thermal conductivities with better mechanical properties than silica aerogel, but these properties critically depend on the nature of the gelation solvent, perhaps more so than on any other parameter. Here, we present a systematic study of the relationship between the polyurethane-polyisocyanurate (PUR-PIR) aerogel microstructure, surface area, thermal conductivity, and density and the gelation solvent's Hansen solubility parameters for an industrially relevant PUR-PIR rigid foam formulation. We first investigated aerogels prepared in acetone-dimethyl sulfoxide (DMSO) blends and observed a minimum in thermal conductivity (λ) and maximum in specific surface area for an acetone:DMSO ratio of 85:15 v/v. We then prepared PUR-PIR aerogels in 32 different solvent blends, divided into three series with δ Dispersion , δ Polarity , and δ H-bonding fixed at 15.94, 11.30, and 7.48 MPa 1/2 , respectively, corresponding to the optimum parameters for the acetone:DMSO series. The aerogel properties display distinct dependencies on the various solubility parameters: aerogels with low thermal conductivity can be synthesized in solvents with a high δ H-bonding parameter (above 7.2) and δ Dispersion around 16.3 MPa 1/2 . In contrast, the δ Polarity parameter is of lesser importance. Our study highlights the importance of the gelation solvent, clarifies the influence of the different solvent properties, and provides a methodology for a targeted search across the solvent chemical space based on the Hansen solubility parameters.

  8. Ambient pressure dried tetrapropoxysilane-based silica aerogels with high specific surface area

    Science.gov (United States)

    Parale, Vinayak G.; Han, Wooje; Jung, Hae-Noo-Ree; Lee, Kyu-Yeon; Park, Hyung-Ho

    2018-01-01

    In the present paper, we report the synthesis of tetrapropoxysilane (TPOS)-based silica aerogels with high surface area and large pore volume. The silica aerogels were prepared by a two-step sol-gel process followed by surface modification via a simple ambient pressure drying approach. In order to minimize drying shrinkage and obtain hydrophobic aerogels, the surface of the alcogels was modified using trichloromethylsilane as a silylating agent. The effect of the sol-gel compositional parameters on the polymerization of aerogels prepared by TPOS, one of the precursors belonging to the Si(OR)4 family, was reported for the first time. The oxalic acid and NH4OH concentrations were adjusted to achieve good-quality aerogels with high surface area, low density, and high transparency. Controlling the hydrolysis and condensation reactions of the TPOS precursor turned out to be the most important factor to determine the pore characteristics of the aerogel. Highly transparent aerogels with high specific surface area (938 m2/g) and low density (0.047 g/cm3) could be obtained using an optimized TPOS/MeOH molar ratio with appropriate concentrations of oxalic acid and NH4OH.

  9. Octahedral Tin Dioxide Nanocrystals Anchored on Vertically Aligned Carbon Aerogels as High Capacity Anode Materials for Lithium-Ion Batteries

    Science.gov (United States)

    Liu, Mingkai; Liu, Yuqing; Zhang, Yuting; Li, Yiliao; Zhang, Peng; Yan, Yan; Liu, Tianxi

    2016-01-01

    A novel binder-free graphene - carbon nanotubes - SnO2 (GCNT-SnO2) aerogel with vertically aligned pores was prepared via a simple and efficient directional freezing method. SnO2 octahedrons exposed of {221} high energy facets were uniformly distributed and tightly anchored on multidimensional graphene/carbon nanotube (GCNT) composites. Vertically aligned pores can effectively prevent the emersion of “closed” pores which cannot load the active SnO2 nanoparticles, further ensure quick immersion of electrolyte throughout the aerogel, and can largely shorten the transport distance between lithium ions and active sites of SnO2. Especially, excellent electrical conductivity of GCNT-SnO2 aerogel was achieved as a result of good interconnected networks of graphene and CNTs. Furthermore, meso- and macroporous structures with large surface area created by the vertically aligned pores can provide great benefit to the favorable transport kinetics for both lithium ion and electrons and afford sufficient space for volume expansion of SnO2. Due to the well-designed architecture of GCNT-SnO2 aerogel, a high specific capacity of 1190 mAh/g with good long-term cycling stability up to 1000 times was achieved. This work provides a promising strategy for preparing free-standing and binder-free active electrode materials with high performance for lithium ion batteries and other energy storage devices. PMID:27510357

  10. Flexible Supercapacitors Based on Polyaniline Arrays Coated Graphene Aerogel Electrodes.

    Science.gov (United States)

    Yang, Yu; Xi, Yunlong; Li, Junzhi; Wei, Guodong; Klyui, N I; Han, Wei

    2017-12-01

    Flexible supercapacitors(SCs) made by reduced graphene oxide (rGO)-based aerogel usually suffer from the low energy density, short cycle life and bad flexibility. In this study, a new, synthetic strategy was developed for enhancing the electrochemical performances of rGO aerogel-based supercapacitor via electrodeposition polyaniline arrays on the prepared ultralight rGO aerogel. The novel hybrid composites with coated polyaniline (PANI) arrays growing on the rGO surface can take full advantage of the rich open-pore and excellent conductivity of the crosslinking framework structure of 3D rGO aerogel and high capacitance contribution from the PANI. The obtained hybrid composites exhibit excellent electrochemical performance with a specific capacitance of 432 F g -1 at the current density of 1 A g -1 , robust cycling stability to maintain 85% after 10,000 charge/discharge cycles and high energy density of 25 W h kg -1 . Furthermore, the flexible all-solid-state supercapacitor have superior flexibility and outstanding stability under different bending states from the straight state to the 90° status. The high-performance flexible all-solid-state SCs together with the lighting tests demonstrate it possible for applications in portable electronics.

  11. N, P-codoped Mesoporous Carbon Supported PtCox Nanoparticles and Their Superior Electrochemical toward Methanol Oxidation

    Science.gov (United States)

    Cui, Hangjun; Li, Yueming; Liu, Shimin

    2018-03-01

    In this report, a novel strategy by using the N, P co-doped mesoporous carbon structure as catalyst support to enhance the electrochemical catalytic activity of Pt-based catalysts is proposed. The as-synthesized PtCox@N, P-doped mesoporous carbon nanocomposties have been studied as an anode catalyst toward methanol oxidation, exhibiting greatly improved electrochemical activity and stability compared with Pt@mesoporous carbon. The synergistic effects of N, P dual-doping and porous carbon structure help to achieve better electron transport at the electrode surface, which eventually leads to greatly enhanced catalytic activity compared to the pristine Pt/mesoporous carbon.…

  12. Nanocellulose-assisted low-temperature synthesis and supercapacitor performance of reduced graphene oxide aerogels

    Science.gov (United States)

    Wang, Jie; Ran, Ran; Sunarso, Jaka; Yin, Chao; Zou, Honggang; Feng, Yi; Li, Xiaobao; Zheng, Xu; Yao, Jianfeng

    2017-04-01

    Here, we have synthesized reduced graphene oxide (rGO) aerogels using a nanocellulose-assisted low temperature (less than 500 °C) thermal treatment route where nanocelluloses promote the gelation of graphene oxide (GO) solution that benefits the fabrication of GO aerogels from low concentration dispersion (2.85 mg mL-1), and after their thermal decomposition the residual nanofibers act as spacer both prevent the re-stacking of graphene sheets and integrate with rGO sheets to give a particular kind of carbon-based aerogel along with numerous defects (holes). Thermal decomposition of nanocellulose appears to be complete beyond 350 °C thus its presence in form of amorphous carbon nanofibers in rGO sheets. The rGO aerogels synthesized at 350 °C provide the best balance in terms of wide interlayer spacing, high content of CO-type functional groups, and high defects content. This translates into a high discharge capacitance of 270 F g-1 at a current rate of 1 A g-1 for compressed rGO aerogels without any binder or conductive additive. Detailed electrochemical tests using 6 M KOH electrolyte establish the fact that pseudocapacitance component has substantial contribution towards the overall capacitance; closely approaching the contribution of the double layer capacitance that is the most dominant capacitance component.

  13. Adsorption and oxidation of acetaldehyde on carbon supported Pt, PtSn and PtSn-based trimetallic catalysts by in situ Fourier transform infrared spectroscopy

    Science.gov (United States)

    Beyhan, Seden; Léger, Jean-Michel; Kadırgan, Figen

    2013-11-01

    The adsorption and oxidation of acetaldehyde on carbon supported Pt, Pt90Sn10 and Pt80Sn10M10 (M = Ni, Co, Rh, Pd) catalysts have been investigated by using in situ Fourier transform infrared (FTIR) spectroscopy. The result revealed that Pt90Sn10/C catalyst is not very efficient for the conversion of acetaldehyde to CO2 due to the weak adsorption of acetaldehyde in the presence of Sn. However, the addition of a third metal to Pt--Sn facilitates the C-C bond cleavage of acetaldehyde. It seems that acetaldehyde is adsorbed dissociatively on the surface of Pt80Sn10Ni10/C, Pt80Sn10Co10/C, Pt80Sn10Rh10/C catalysts, producing CH3 and CHO adsorbate species, which can be further oxidized to CO2. However, the pathway forming CO2 for Pt80Sn10Pd10/C catalyst mainly originates from the oxidation of CH3CO species. Thus, the presence of third metal in the PtSn catalyst has a strong impact upon the acetaldehyde adsorption behaviour and its reaction products.

  14. Monolithic lithium-based aerogels via dispersed inorganic sol-gel method

    International Nuclear Information System (INIS)

    Xiao Shufang; Zhou Bin; Du Ai; Xu Xiang; Yang Xiaoyun; Shen Jun; Wu Guangming; Zhang Zhihua; Wan Huijun

    2008-01-01

    Monolithic lithium-based aerogels were prepared by poly acrylic acid (PAA) and propylene oxide (PO) via the dispersed inorganic sol-gel method and drying with CO 2 supercritical fluid dry process. The density of the prepared sample is about 150 g/m 3 . The microstructure of the lithium-based aerogels was characterized by TEM, IR, XPS and BET. The results show that the material mainly contains Li, C and O element s. BET surface area is up to 18.9 m 2 /g. (authors)

  15. Raman Spectroscopy and Electrochemical Investigations of Pt Electrocatalyst Supported on Carbon Prepared through Plasma Pyrolysis of Natural Gas

    Directory of Open Access Journals (Sweden)

    Tereza Cristina Santos Evangelista

    2015-01-01

    Full Text Available Physicochemical and electrochemical characterisations of Pt-based electrocatalysts supported on carbon (Vulcan carbon, C1, and carbon produced by plasma pyrolysis of natural gas, C2 toward ethanol electrooxidation were investigated. The Pt20/C180 and Pt20/C280 electrocatalysts were prepared by thermal decomposition of polymeric precursors at 350°C. The electrochemical and physicochemical characterisations of the electrocatalysts were performed by means of X-ray diffraction (XRD, transmission electron microscope (TEM, Raman scattering, cyclic voltammetry, and chronoamperometry tests. The XRD results show that the Pt-based electrocatalysts present platinum metallic which is face-centered cubic structure. The results indicate that the Pt20/C180 electrocatalyst has a smaller particle size (10.1–6.9 nm compared with the Pt20/C280 electrocatalyst; however, the Pt20/C280 particle sizes are similar (12.8–10.4 nm and almost independent of the reflection planes, which suggests that the Pt crystallites grow with a radial shape. Raman results reveal that both Vulcan carbon and plasma carbon are graphite-like materials consisting mostly of sp2 carbon. Cyclic voltammetry and chronoamperometry data obtained in this study indicate that the deposition of Pt on plasma carbon increases its electrocatalytic activity toward ethanol oxidation reaction.

  16. Electrocatalytic activity of Pt grown by ALD on carbon nanotubes for Si-based DMFC applications

    DEFF Research Database (Denmark)

    Johansson, Alicia Charlotte; Dalslet, Bjarke Thomas; Yang, R.B.

    2012-01-01

    in a top-flow ALD reactor at 250°C, using MeCpPtMe3 and O2 as precursors. The anode was tested for the methanol oxidation reaction (MOR) in a three-electrode electrochemical set-up and it showed improved catalytic activity compared to a reference sample of Pt deposited on flat Si. It is demonstrated......We present an anode design for silicon-based direct methanol fuel cell (DMFC) applications. Platinum was deposited conformally by atomic layer deposition (ALD) onto vertically aligned, nitrogendoped multi-walled carbon nanotubes (MWCNTs) grown on porous silicon. The deposition was carried out...... that ALD could be a MEMS compatible deposition technique for Si-based fuel cell applications. © The Electrochemical Society....

  17. Preparation of Pt Nanocatalyst on Carbon Materials via a Reduction Reaction of a Pt Precursor in a Drying Process.

    Science.gov (United States)

    Lee, Jae-Young; Lee, Woo-Kum; Rim, Hyung-Ryul; Joung, Gyu-Bum; Weidner, John W; Lee, Hong-Ki

    2016-06-01

    Platinum (Pt) nanocatalyst for a proton-exchange membrane fuel cell (PEMFC) was prepared on a carbon black particle or a graphite particle coated with a nafion polymer via a reduction of platinum(II) bis(acetylacetonate) denoted as Pt(acac)2 as a Pt precursor in a drying process. Sublimed Pt(acac)2 adsorbed on the nafion-coated carbon materials was reduced to Pt nanoparticles in a glass reactor at 180 degrees C of N2 atmosphere. The morphology of Pt nanoparticles on carbon materials was observed by scanning electron microscopy (SEM) and the distribution of Pt nanoparticles was done by transmission electron microscopy (TEM). The particle size was estimated by analyzing the TEM image using an image analyzer. It was found that nano-sized Pt particles were deposited on the surface of carbon materials, and the number density and the average particle size increased with increasing reduction time.

  18. Novel bioactive materials: silica aerogel and hybrid silica aerogel/pseudowollastonite

    Directory of Open Access Journals (Sweden)

    Reséndiz-Hernández, P. J.

    2014-10-01

    Full Text Available Silica aerogel and hybrid silica aerogel/pseudowollastonite materials were synthesized by controlled hydrolysis of tetraethoxysilane (TEOS using also methanol (MeOH and pseudowollastonite particles. The gels obtained were dried using a novel process based on an ambient pressure drying. Hexane and hexamethyl-disilazane (HMDZ were the solvents used to chemically modify the surface. In order to assess bioactivity, aerogels, without and with pseudowollastonite particles, were immersed in simulated body fluid (SBF for 7 and 14 days. The hybrid silica aerogel/pseudowollastonite showed a higher bioactivity than that observed for the single silica aerogel. However, as in both cases a lower bioactivity was observed, a biomimetic method was also used to improve it. In this particular method, samples of both materials were immersed in SBF for 7 days followed by their immersion in a more concentrated solution (1.5 SBF for 14 days. A thick and homogeneous bonelike apatite layer was formed on the biomimetically treated materials. Thus, bioactivity was successfully improved even on the aerogel with no pseudowollastonite particles. As expected, the hybrid silica aerogel/pseudowollastonite particles showed a higher bioactivity.Se sintetizaron aerogel de sílice y aerogel híbrido de sílice/partículas de pseudowollastonita por hidrólisis controlada de tetraetoxisilano (TEOS usando metanol (MeOH y partículas de pseudowollastonita. Los geles obtenidos se secaron utilizando un novedoso proceso basado en una presión de secado ambiental. Hexano y hexametil-disilazano fueron los solventes usados para modificar químicamente la superficie. Para evaluar la bioactividad, los aerogeles con y sin partículas de pseudowollastonita se sumergieron en un fluido fisiológico simulado (SBF por 7 y 14 días. El aerogel híbrido de sílice/partículas de pseudowollastonita mostró más alta bioactividad que la observada por el aerogel solo. Sin embargo, en ambos casos, se

  19. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity.

    Science.gov (United States)

    Si, Yang; Wang, Xueqin; Dou, Lvye; Yu, Jianyong; Ding, Bin

    2018-04-01

    Ultralight aerogels that are both highly resilient and compressible have been fabricated from various materials including polymer, carbon, and metal. However, it has remained a great challenge to realize high elasticity in aerogels solely based on ceramic components. We report a scalable strategy to create superelastic lamellar-structured ceramic nanofibrous aerogels (CNFAs) by combining SiO 2 nanofibers with aluminoborosilicate matrices. This approach causes the random-deposited SiO 2 nanofibers to assemble into elastic ceramic aerogels with tunable densities and desired shapes on a large scale. The resulting CNFAs exhibit the integrated properties of flyweight densities of >0.15 mg cm -3 , rapid recovery from 80% strain, zero Poisson's ratio, and temperature-invariant superelasticity to 1100°C. The integral ceramic nature also provided the CNFAs with robust fire resistance and thermal insulation performance. The successful synthesis of these fascinating materials may provide new insights into the development of ceramics in a lightweight, resilient, and structurally adaptive form.

  20. Mechanically Strong, Polymer Cross-linked Aerogels (X-Aerogels)

    Science.gov (United States)

    Leventis, Nicholas

    2006-01-01

    Aerogels comprise a class of low-density, high porous solid objects consisting of dimensionally quasi-stable self-supported three-dimensional assemblies of nanoparticles. Aerogels are pursued because of properties above and beyond those of the individual nanoparticles, including low thermal conductivity, low dielectric constant and high acoustic impedance. Possible applications include thermal and vibration insulation, dielectrics for fast electronics, and hosting of functional guests for a wide variety of optical, chemical and electronic applications. Aerogels, however, are extremely fragile materials, hence they have found only limited application in some very specialized environments, for example as Cerenkov radiation detectors in certain types of nuclear reactors, aboard spacecraft as collectors of hypervelocity particles (refer to NASA's Stardust program) and as thermal insulators on planetary vehicles on Mars (refer to Sojourner Rover in 1997 and Spirit and Opportunity in 2004). Along these lines, the X-Aerogel is a new NASA-developed strong lightweight material that has resolved the fragility problem of traditional (native) aerogels. X-Aerogels are made by applying a conformal polymer coating on the surfaces of the skeletal nanoparticles of native aerogels (see Scanning Electron Micrographs). Since the relative amounts of the polymeric crosslinker and the backbone are comparable, X-Aerogels can be viewed either as aerogels modified by the templated accumulation of polymer on the skeletal nanoparticles, or as nanoporous polymers made by remplated casting of polymer on a nanostructured framework. The most striking feature of X-Aerogels is that for a nominal 3-fold increase in density (still a ultralighweight material), the mechanical strength can be up to 300 times higher than the strength of the underlying native aerogel. Thus, X-Aerogels combine a multiple of the specific compressive strength of steel, with the the thermal conductivity of styrofoam. X-Aerogels

  1. A novel enzymatic glucose sensor based on Pt nanoparticles-decorated hollow carbon spheres-modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Luhana, Charles; Bo Xiangjie; Ju Jian; Guo Liping, E-mail: guolp078@nenu.edu.cn [Northeast Normal University, Faculty of Chemistry (China)

    2012-10-15

    A new glucose biosensor was developed based on hollow carbon spheres decorated with platinum nanoparticles (Pt/HCSs)-modified glassy carbon electrode immobilized with glucose oxidase (GOx) with the help of Nafion. The Pt nanoparticles were well dispersed on the HCSs with an average size of 2.29 nm. The detection of glucose was achieved via electrochemical detection of the enzymatically liberated H{sub 2}O{sub 2} at +0.5 V versus Ag/AgCl at physiologic pH of 7.4. The Pt/HCSs-modified electrode exhibited excellent electrocatalytic activities toward both the oxidation and reduction of H{sub 2}O{sub 2}. The glucose biosensor showed good electrocatalytic performance in terms of high sensitivity (4.1 {mu}A mM{sup -1}), low detection limit (1.8 {mu}M), fast response time <3 s, and wide linear range (0.04-8.62 mM). The apparent Michaelis-Menten constant (K{sub m}) and the maximum current density (i{sub max}) values for the biosensor were 10.94 mM and 887 {mu}A cm{sup -2} respectively. Furthermore, this biosensor showed an acceptable reproducibility and high stability. The interfering signals from ascorbic acid and uric acid at concentration levels normally found in human blood were not much compared with the response to glucose. Blood serum samples were also tested with this biosensor and a good recovery was achieved for the two spiked serum samples.

  2. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors.

    Science.gov (United States)

    Zheng, Qifeng; Cai, Zhiyong; Ma, Zhenqiang; Gong, Shaoqin

    2015-02-11

    A novel type of highly flexible and all-solid-state supercapacitor that uses cellulose nanofibril (CNF)/reduced graphene oxide (RGO)/carbon nanotube (CNT) hybrid aerogels as electrodes and H2SO4/poly(vinyl alcohol) (PVA) gel as the electrolyte was developed and is reported here. These flexible solid-state supercapacitors were fabricated without any binders, current collectors, or electroactive additives. Because of the porous structure of the CNF/RGO/CNT aerogel electrodes and the excellent electrolyte absorption properties of the CNFs present in the aerogel electrodes, the resulting flexible supercapacitors exhibited a high specific capacitance (i.e., 252 F g(-1) at a discharge current density of 0.5 A g(-1)) and a remarkable cycle stability (i.e., more than 99.5% of the capacitance was retained after 1000 charge-discharge cycles at a current density of 1 A g(-1)). Furthermore, the supercapacitors also showed extremely high areal capacitance, areal power density, and energy density (i.e., 216 mF cm(-2), 9.5 mW cm(-2), and 28.4 μWh cm(-2), respectively). In light of its excellent electrical performance, low cost, ease of large-scale manufacturing, and environmental friendliness, the CNF/RGO/CNT aerogel electrodes may have a promising application in the development of flexible energy-storage devices.

  3. Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties.

    Science.gov (United States)

    Seantier, Bastien; Bendahou, Dounia; Bendahou, Abdelkader; Grohens, Yves; Kaddami, Hamid

    2016-03-15

    Bio-composite aerogels based on bleached cellulose fibers (BCF) and cellulose nanoparticles having various morphological and physico-chemical characteristics are prepared by a freeze-drying technique and characterized. The various composite aerogels obtained were compared to a BCF aerogel used as the reference. Severe changes in the material morphology were observed by SEM and AFM due to a variation of the cellulose nanoparticle properties such as the aspect ratio, the crystalline index and the surface charge density. BCF fibers form a 3D network and they are surrounded by the cellulose nanoparticle thin films inducing a significant reduction of the size of the pores in comparison with a neat BCF based aerogel. BET analyses confirm the appearance of a new organization structure with pores of nanometric sizes. As a consequence, a decrease of the thermal conductivities is observed from 28mWm(-1)K(-1) (BCF aerogel) to 23mWm(-1)K(-1) (bio-composite aerogel), which is below the air conductivity (25mWm(-1)K(-1)). This improvement of the insulation properties for composite materials is more pronounced for aerogels based on cellulose nanoparticles having a low crystalline index and high surface charge (NFC-2h). The significant improvement of their insulation properties allows the bio-composite aerogels to enter the super-insulating materials family. The characteristics of cellulose nanoparticles also influence the mechanical properties of the bio-composite aerogels. A significant improvement of the mechanical properties under compression is obtained by self-organization, yielding a multi-scale architecture of the cellulose nanoparticles in the bio-composite aerogels. In this case, the mechanical property is more dependent on the morphology of the composite aerogel rather than the intrinsic characteristics of the cellulose nanoparticles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Carbon Corrosion at Pt/C Interface in Proton Exchange Membrane Fuel Cell Environment

    International Nuclear Information System (INIS)

    Choi, Min Ho; Beam, Won Jin; Park, Chan Jin

    2010-01-01

    This study examined the carbon corrosion at Pt/C interface in proton exchange membrane fuel cell environment. The Pt nano particles were electrodeposited on carbon substrate, and then the corrosion behavior of the carbon electrode was examined. The carbon electrodes with Pt nano electrodeposits exhibited the higher oxidation rate and lower oxidation overpotential compared with that of the electrode without Pt. This phenomenon was more active at 75 .deg. C than 25 .deg. C. In addition, the current transients and the corresponding power spectral density (PSD) of the carbon electrodes with Pt nano electrodeposits were much higher than those of the electrode without Pt. The carbon corrosion at Pt/C interface was highly accelerated by Pt nano electrodeposits. Furthermore, the polarization and power density curves of PEMFC showed degradation in the performance due to a deterioration of cathode catalyst material and Pt dissolution

  5. Evacuated aerogel glazings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Jensen, Karsten Ingerslev

    2008-01-01

    This paper describes the main characteristics of monolithic silica aerogel and its application in evacuated superinsulating aerogel glazing including the evacuation and assembling process. Furthermore, the energetic benefit of aerogel glazing is quantified. In evacuated aerogel glazing the space ......) combined with a solar energy transmittance above 0.75.......This paper describes the main characteristics of monolithic silica aerogel and its application in evacuated superinsulating aerogel glazing including the evacuation and assembling process. Furthermore, the energetic benefit of aerogel glazing is quantified. In evacuated aerogel glazing the space...... between the glass panes is filled with monolithic silica aerogel evacuated to a rough vacuum of approximately 1-10 hPa. The aerogel glazing does not depend on use of low emissive coatings that have the drawback of absorbing a relatively large part of the solar radiation that otherwise could reduce...

  6. Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: A review

    Energy Technology Data Exchange (ETDEWEB)

    Amonette, James E.; Matyáš, Josef

    2017-09-01

    Silica aerogels have a rich history and a unique, fascinating gas-phase chemistry that has lent them to many diverse applications. This review starts with a brief discussion of the fundamental issues driving the movement of gases in silica aerogels and then proceeds to provide an overview of the work that has been done with respect to the purification of gases, sensing of individual gases, and uses of silica aerogels as catalysts for gas-phase reactions. Salient features of the research behind these different applications are presented, and, where appropriate, critical aspects that affect the practical use of the aerogels are noted. Specific sections under the gas-purification category focus on the removal of airborne nanoparticles, carbon dioxide, volatile organic compounds, sulfur gases and radioactive iodine from gas streams. The use of silica aerogels as sensors for humidity, oxygen, hydrocarbons, volatile acids and bases, various non-ammoniacal nitrogen gases, and viral particles is discussed. With respect to catalysis, the demonstrated use of silica aerogels as supports for oxidation, Fischer-Tropsch, alkane isomerization, and hydrogenation reactions is reviewed, along with a section on untested catalytic formulations involving silica aerogels. A short section focuses on recent developments in thermomolecular Knudsen compressor pumps using silica aerogel membranes. The review continues with an overview of the production methods, locations of manufacturing facilities globally, and a brief discussion of the economics before concluding with a few remarks about the present and future trends revealed by the work presented.

  7. Nitrogen: Unraveling the Secret to Stable Carbon-Supported Pt-Alloy Electrocatalysts

    Science.gov (United States)

    2013-10-01

    release; distribution is unlimited. Nitrogen: unraveling the secret to stable carbon-supported Pt- alloy electrocatalysts The views, opinions and/or...Nitrogen: unraveling the secret to stable carbon-supported Pt-alloy electrocatalysts Report Title Nitrogen functionalities significantly improve...design and optimization of next generation high performance catalyst materials. Nitrogen: unraveling the secret to stable carbon-supported Pt-alloy

  8. Carbon supported nanoparticles Pt Ru (Pt Ru/C electrocatalysts) prepared using electron beam irradiation; Preparacao de nanoparticulas de PtRu suportadas em carbono (eletrocatalisadores PtRu/C) utilizando feixe de eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Dionisio F. da; Oliveira Neto, Almir; Pino, Eddy S.; Linardi, Marcelo; Spinace, Estevam V. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Programa de Celulas a Combustivel], e-mail: espinace@ipen.br, e-mail: dfsilva@ipen.br

    2006-07-01

    Carbon-supported Pt Ru (electrocatalysts PtRu/C nanoparticles) were prepared submitting a water/ethylene glycol mixture containing Pt(IV) and Ru(III) ions and the carbon support to electron beam irradiation. The PtRu/C electrocatalysts were characterized by EDX, XRD and cyclic voltammetry and tested for methanol electro-oxidation aiming fuel cell application. The obtained PtRu/C electrocatalysts were more active for methanol electro-oxidation than the commercial PtRu/C ETEK electrocatalyst at ambient temperature. (author)

  9. Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors.

    Science.gov (United States)

    Li, Gao-Ren; Feng, Zhan-Ping; Ou, Yan-Nan; Wu, Dingcai; Fu, Ruowen; Tong, Ye-Xiang

    2010-02-16

    MnO(2) as one of the most promising candidates for electrochemical supercapacitors has attracted much attention because of its superior electrochemical performance, low cost, and environmentally benign nature. In this Letter, we explored a novel route to prepare mesoporous MnO(2)/carbon aerogel composites by electrochemical deposition assisted by gas bubbles. The products were characterized by energy-dispersive spectrometry (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The MnO(2) deposits are found to have high purity and have a mesoporous structure that will optimize the electronic and ionic conductivity to minimize the total resistance of the system and thereby maximize the performance characteristics of this material for use in supercapacitor electrodes. The results of nitrogen adsorption-desorption experiments and electrochemical measurements showed that these obtained mesoporous MnO(2)/carbon aerogel composites had a large specific surface area (120 m(2)/g), uniform pore-size distribution (around 5 nm), high specific capacitance (515.5 F/g), and good stability over 1000 cycles, which give these composites potential application as high-performance supercapacitor electrode materials.

  10. Spectroelectrochemical Study of Carbon Monoxide and Ethanol Oxidation on Pt/C, PtSn(3:1/C and PtSn(1:1/C Catalysts

    Directory of Open Access Journals (Sweden)

    Rubén Rizo

    2016-09-01

    Full Text Available PtSn-based catalysts are one of the most active materials toward that contribute ethanol oxidation reaction (EOR. In order to gain a better understanding of the Sn influence on the carbon monoxide (principal catalyst poison and ethanol oxidation reactions in acidic media, a systematic spectroelectrochemical study was carried out. With this end, carbon-supported PtSnx (x = 0, 1/3 and 1 materials were synthesized and employed as anodic catalysts for both reactions. In situ Fourier transform infrared spectroscopy (FTIRS and differential electrochemical mass spectrometry (DEMS indicate that Sn diminishes the amount of bridge bonded CO (COB and greatly improves the CO tolerance of Pt-based catalysts. Regarding the effect of Sn loading on the EOR, it enhances the catalytic activity and decreases the onset potential. FTIRS and DEMS analysis indicate that the C-C bond scission occurs at low overpotentials and at the same potential values regardless of the Sn loading, although the amount of C-C bond breaking decreases with the rise of Sn in the catalytic material. Therefore, the elevated catalytic activity toward the EOR at PtSn-based electrodes is mainly associated with the improved CO tolerance and the incomplete oxidation of ethanol to form acetic acid and acetaldehyde species, causing the formation of a higher amount of both C2 products with the rise of Sn loading.

  11. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors

    Science.gov (United States)

    Qifeng Zheng; Zhiyong Cai; Zhenqiang Ma; Shaoqin Gong

    2015-01-01

    A novel type of highly flexible and all-solid-state supercapacitor that uses cellulose nanofibril (CNF)/reduced graphene oxide (RGO)/carbon nanotube (CNT) hybrid aerogels as electrodes and H2SO4 poly (vinyl alcohol) PVA gel as the electrolyte was developed and is reported here. These flexible solid-state supercapacitors...

  12. Optimum Pt and Ru atomic composition of carbon-supported Pt-Ru alloy electrocatalyst for methanol oxidation studied by the polygonal barrel-sputtering method

    International Nuclear Information System (INIS)

    Hiromi, Chikako; Inoue, Mitsuhiro; Taguchi, Akira; Abe, Takayuki

    2011-01-01

    Highlights: → The sputtered Pt and Ru form the Pt-Ru alloy nanoparticles on the carbon support. → The deposited Pt-Ru alloy particles have uniform Pt:Ru atomic ratios. → The optimum Pt:Ru ratio of the Pt-Ru/C for methanol oxidation is 58:42 at.% at 25 deg. C. → The optimum Pt:Ru ratio of 58:42 shifts to 50:50 at.% at 40 and 60 deg. C. → The polygonal barrel-sputtering method is useful to prepare the DMFC anode catalyst. - Abstract: The optimum Pt and Ru atomic composition of a carbon-supported Pt-Ru alloy (Pt-Ru/C) used in a practical direct methanol fuel cell (DMFC) anode was investigated. The samples were prepared by the polygonal barrel-sputtering method. Based on the physical properties of the prepared Pt-Ru/C samples, the Pt-Ru alloy was found to be deposited on a carbon support. The microscopic characterization showed that the deposited alloy forms nanoparticles, of which the atomic ratios of Pt and Ru (Pt:Ru ratios) are uniform and are in accordance with the overall Pt:Ru ratios of the samples. The formation of the Pt-Ru alloy is also supported by the electrochemical characterization. Based on these results, methanol oxidation on the Pt-Ru/C samples was measured by cyclic voltammetry and chronoamperometry. The results indicated that the methanol oxidation activities of the prepared samples depended on the Pt:Ru ratios, of which the optimum Pt:Ru ratio is 58:42 at.% at 25 deg. C and 50:50 at.% at 40 and 60 deg. C. This temperature dependence of the optimum Pt:Ru ratio is well explained by the relationship between the methanol oxidation reaction process and the temperature, which is reflected in the rate-determining steps considered from the activation energies. It should be noted that at 25-60 deg. C, the Pt-Ru/C with Pt:Ru = 50:50 at.% prepared by our sputtering method has the higher methanol oxidation activity than that of a commercially available sample with the identical overall Pt:Ru ratio. Consequently, the polygonal barrel-sputtering method

  13. Capacitive, deionization with carbon aerogel electrodes: Carbonate, sulfate, and phosphate

    International Nuclear Information System (INIS)

    Farmer, J.C.; Fix, D.V.; Mack, G.V.; Pekala, R.W.; Poco, J.F.

    1995-01-01

    A process for the capacitive deionization (CDI) of water with a stack of carbon aerogel electrodes has been developed by Lawrence Livermore National Laboratory. Unlike ion exchange, one of the more conventional deionization processes, no chemicals are required for regeneration of the system. Electricity is used instead. Water with various anions and cations is pumped through the electrochemical cell. After polarization, ions are electrostatically removed from the water and held in the electric double layers formed at the surfaces of electrodes. The water leaving the cell is purified, as desired. The effects of cell voltage on the electrosorption capacities for Na 2 SO 4 , Na 3 PO 4 , and Na 2 CO 3 have been investigated and are reported here. Results for NaCl and NaNO 3 have been reported previously. Possible applications for CDI are as a replacement for ion exchange processes which remove heavy metals and radioisotopes from process and waste water in various industries, as well as to remove inorganic ions from feedwater for fossil and nuclear power plants

  14. Synthesis and physical properties of TEOS-based silica aerogels prepared by two step (acid-base) sol-gel process

    International Nuclear Information System (INIS)

    Venkateswara Rao, A.; Bhagat, S.D.

    2004-01-01

    The experimental results on the synthesis and physical properties of tetra-ethoxy-silane- (TEOS) based silica aerogels produced by two step (acid-base) sol-gel process, are reported. The oxalic acid (A) and NH 4 OH (B) concentrations were varied from 0 to 0.1 M and from 0.4 to 3 M, respectively. Monolithic and transparent aerogels have been obtained for the values of A=0.001 M and B=1 M. The effect of time interval (t) before the base catalyst (NH 4 OH) addition to the acidic sol was studied from 0 to 72 h. The time interval at t=24 h of NH 4 OH addition was found to be the best, in terms of low volume shrinkage, high optical transmission and monolithicity. The molar ratio of EtOH/TEOS (S) was varied from 3 to 7.5. Monolithic and transparent aerogels were obtained for an S value of 6.9. Also, the effects of molar ratio of acidic water, i.e., H 2 O/TEOS (W1) and basic water, i.e., H 2 O/TEOS (W2) on the physical properties of the aerogels have been studied. Highly transparent (about 90%) and monolithic aerogels with lower volume shrinkage ( 2 O):basic (H 2 O). The results are discussed by taking into consideration the hydrolysis and poly-condensation reactions. The aerogels were characterized by scanning electron microscopy (SEM), optical transmission, bulk density, volume shrinkage and porosity measurements. (authors)

  15. Epoxy Crosslinked Silica Aerogels (X-Aerogels)

    Science.gov (United States)

    fabrizio, Eve; Ilhan, Faysal; Meador, Mary Ann; Johnston, Chris; Leventis, Nicholas

    2004-01-01

    NASA is interested in the development of strong lightweight materials for the dual role of thermal insulator and structural component for space vehicles; freeing more weight for useful payloads. Aerogels are very-low density materials (0.010 to 0.5 g/cc) that, due to high porosity (meso- and microporosity), can be, depending on the chemical nature of the network, ideal thermal insulators (thermal conductivity approx. 15 mW/mK). However, aerogels are extremely fragile. For practical application of aerogels, one must increase strength without compromising the physical properties attributed to low density. This has been achieved by templated growth of an epoxy polymer layer that crosslinks the "pearl necklace" network of nanoparticles: the framework of a typical silica aerogel. The requirement for conformal accumulation of the epoxy crosslinker is reaction both with the surface of silica and with itself. After cross-linking, the strength of a typical aerogel monolith increases by a factor of 200, in the expense of only a 2-fold increase in density. Strength is increased further by coupling residual unreacted epoxides with diamine.

  16. Preparation of nitrogen-doped biomass-derived carbon nanofibers/graphene aerogel as a binder-free electrode for high performance supercapacitors

    Science.gov (United States)

    Zhang, Yimei; Wang, Fei; Zhu, Hao; Zhou, Lincheng; Zheng, Xinliang; Li, Xinghua; Chen, Zhuang; Wang, Yue; Zhang, Dandan; Pan, Duo

    2017-12-01

    Carbon materials derived from various biomasses have aroused forceful interest from scientific community based on their abundant resource, low cost, environment friendly and easy fabrication. Herein, the method has been developed to prepare nitrogen-doped biomass-derived carbon nanofibers/graphene aerogel (NCGA) as the binder-free electrode for supercapacitors. Ethylenediamine (EDA) is select as nitrogen source for its high nitrogen content and strong interaction with graphene oxide (GO) and cellulose nanofibers (CNFs) via hydrothermal self-assembly method to form hybrid hydrogel, and finally converts to NCGA by freeze-drying and carbonization. After carbonization the insulated CNFs converted to high conductivity carbon nanofibers. The NCGA electrode exhibits a high specific capacitance of 289 F g-1 at 5 mV s-1 and high stability of 90.5% capacitance retention ratio after 5000 cycles at 3 A g-1. This novel biomass electrode could be potential candidate for high performance supercapacitors.

  17. Ambient Dried Aerogels

    Science.gov (United States)

    Jones, Steven M.; Paik, Jong-Ah

    2013-01-01

    A method has been developed for creating aerogel using normal pressure and ambient temperatures. All spacecraft, satellites, and landers require the use of thermal insulation due to the extreme environments encountered in space and on extraterrestrial bodies. Ambient dried aerogels introduce the possibility of using aerogel as thermal insulation in a wide variety of instances where supercritically dried aerogels cannot be used. More specifically, thermoelectric devices can use ambient dried aerogel, where the advantages are in situ production using the cast-in ability of an aerogel. Previously, aerogels required supercritical conditions (high temperature and high pressure) to be dried. Ambient dried aerogels can be dried at room temperature and pressure. This allows many materials, such as plastics and certain metal alloys that cannot survive supercritical conditions, to be directly immersed in liquid aerogel precursor and then encapsulated in the final, dried aerogel. Additionally, the metalized Mylar films that could not survive the previous methods of making aerogels can survive the ambient drying technique, thus making multilayer insulation (MLI) materials possible. This results in lighter insulation material as well. Because this innovation does not require high-temperature or high-pressure drying, ambient dried aerogels are much less expensive to produce. The equipment needed to conduct supercritical drying costs many tens of thousands of dollars, and has associated running expenses for power, pressurized gasses, and maintenance. The ambient drying process also expands the size of the pieces of aerogel that can be made because a high-temperature, high-pressure system typically has internal dimensions of up to 30 cm in diameter and 60 cm in height. In the case of this innovation, the only limitation on the size of the aerogels produced would be in the ability of the solvent in the wet gel to escape from the gel network.

  18. A facile route for 3D aerogels from nanostructured 1D and 2D materials

    Science.gov (United States)

    Jung, Sung Mi; Jung, Hyun Young; Dresselhaus, Mildred S.; Jung, Yung Joon; Kong, Jing

    2012-01-01

    Aerogels have numerous applications due to their high surface area and low densities. However, creating aerogels from a large variety of materials has remained an outstanding challenge. Here, we report a new methodology to enable aerogel production with a wide range of materials. The method is based on the assembly of anisotropic nano-objects (one-dimensional (1D) nanotubes, nanowires, or two-dimensional (2D) nanosheets) into a cross-linking network from their colloidal suspensions at the transition from the semi-dilute to the isotropic concentrated regime. The resultant aerogels have highly porous and ultrafine three-dimensional (3D) networks consisting of 1D (Ag, Si, MnO2, single-walled carbon nanotubes (SWNTs)) and 2D materials (MoS2, graphene, h-BN) with high surface areas, low densities, and high electrical conductivities. This method opens up a facile route for aerogel production with a wide variety of materials and tremendous opportunities for bio-scaffold, energy storage, thermoelectric, catalysis, and hydrogen storage applications. PMID:23152940

  19. Pt/XC-72 catalysts coated with nitrogen-doped carbon (Pt/XC-72@C–N) for methanol electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Jun; Chu, Yuanyuan; Tan, Xiaoyao, E-mail: cestanxy@aliyun.com

    2014-03-01

    Pt/XC-72 catalysts coated with N-doped carbon (denoted as Pt/XC-72@C–N) for the electro-oxidation of methanol are prepared through a combined microwave-assisted polyol with in-situ carbonization of N-doped carbon coating process using polyvinylpyrrolidone (PVP), 1-vinyl-3-ethylimidazolium nitrate (VEIN) or 1-ethyl-3-methylimidazolium dicyanamide (EMID) ionic liquid as the N-doped carbon precursor. X-ray diffraction, energy dispersive of X-ray, transmission electron microscopy, X-ray photoelectron spectroscopy, cyclic voltammograms and accelerated aging test techniques are applied to characterize the structure and the electro-catalytic activity of the catalysts. The results show that the Pt particles with the average size of around 2.5 nm are highly dispersed in face-centered cubic crystal structure in the carbon support. The structure of the N-doped carbon coating precursor has considerable influence on the electro-catalytic performance of the catalysts. The resultant catalyst with EMID ionic liquid as the N-doped carbon source exhibits 115.9 m{sup 2} g{sup −1}Pt electrochemical surface area (ESA) and 0.66 A mg{sup −1}Pt catalytic activity towards the electro-oxidation of methanol, which are 1.37 times the ESA and 1.35 times the catalytic activity of the PVP-derived catalyst, and 2.02 times the electrochemical surface area and 1.94 times the catalytic activity of the VEIN-derived catalyst. The appropriate amount of the EMID ionic liquid used in the catalyst synthesis process is around 10 uL for 100 mg XC-72 support so as to obtain the highest electro-catalytic activity. - Highlights: • N-doped carbon coated Pt/C catalyst is prepared for methanol electro-oxidation. • Pt/XC-72@C–N exhibits excellent electrocatalytic activity over uncoated catalysts. • Ionic liquid with anionic cyano groups is most suitable as N-doped carbon precursor. • The appropriate amount of ionic liquid for coating is around 10 μL for 100 mg carbon.

  20. Aerogel Projects Ongoing in MSFC's Engineering Directorate

    Science.gov (United States)

    Shular, David A.; Smithers, Gweneth A.; Plawsky, Joel L.; Whitaker, Ann F. (Technical Monitor)

    2000-01-01

    When we speak of an aerogel material, we are referring more to process and structure am to a specific substance. Aerogel, considered the lightest solid material, has been made from silica for seventy years. Resorcinol-formaldehyde, organic aerogels have been developed more recently. However, aerogel can be made from almost any type of substance, even lead. Because an aerogel is mostly air (about 99 %), the solid substance used will affect the weight very little. The term "aerogel" connotes the sol-gel process used to manufacture the material. The aerogel begins as a liquid "sol," becomes a solid "alcogel," and is then dried to become an "aerogel." The final product has a unique structure, useful for exploitation. It is an "open pore" system with nano-sized particles and pores, has very high surface area, and is highly interconnected. Besides low weight, aerogels have ultimate (lowest) values in other properties: thermal conductivity, refractive index, sound speed, and dielectric constant. Aerogels were first prepared in 1931 by Steven Kistler, who used a supercritical drying step to replace the liquid in a gel with air, preserving the structure (1). Kistler's procedure involved a water-to-alcohol exchange step; in the 1970's, this step was eliminated when a French investigator introduced the use of tetramethylorthosilicate. Still, alcohol drying involved dangerously high temperatures and pressures. In the 1980's, the Microstructured Materials Group at Berkeley Laboratory found that the alcohol in the gel could be replaced with liquid carbon dioxide before supercritical drying, which greatly improved safety (2). 'Me most recent major contribution has been that of Deshpande, Smith and Brinker in New Mexico, who are working to eliminate the supercritical drying step (3). When aerogels were first being developed, they were evaporatively dried. However, the wet gel, when dried, underwent severe shrinkage and cracking; this product was termed "xerogel." When the

  1. Pt-Ru nanoparticles supported on functionalized carbon as electrocatalysts for the methanol oxidation

    International Nuclear Information System (INIS)

    Salgado, J.R.C.; Fernandes, J.C.S.; Botelho do Rego, A.M.; Ferraria, A.M.; Duarte, R.G.; Ferreira, M.G.S.

    2011-01-01

    Highlights: → The functionalized carbon using acid solutions contains surface oxygenated groups. → Uniform dispersion of PtRu nanoparticles on the carbon surface was achieved. → Physical analysis showed the formation of PtRu alloy catalysts on functionalized carbon. → PtRu alloy catalysts on functionalized carbon enhanced the methanol oxidation rate. - Abstract: Platinum-ruthenium alloy electrocatalysts, for methanol oxidation reaction, were prepared on carbons thermally treated in helium atmosphere or chemically functionalized in H 2 O 2 , or in HNO 3 + H 2 SO 4 or in HNO 3 solutions. The functionalized carbon that is produced using acid solutions contains more surface oxygenated functional groups than carbon treated with H 2 O 2 solution or HeTT. The XRD/HR-TEM analysis have showed the existence of a higher alloying degree for Pt-Ru electrocatalysts supported on functionalized carbon, which present superior electrocatalytic performance, assessed by cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy, as compared to electrocatalysts on unfunctionalized carbon. It also was found that Pt-Ru alloy electrocatalysts on functionalized carbon improve the reaction rate compared to Pt-Ru on carbons treated with H 2 O 2 solution and thermally. A mechanism is discussed, where oxygenated groups generated from acid functionalization of carbon and adsorbed on Pt-Ru electrocatalysts are considered to enhance the electrocatalytic activity of the methanol oxidation reaction.

  2. Carbon aerogel with 3-D continuous skeleton and mesopore structure for lithium-ion batteries application

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoqing, E-mail: yxq-886@163.com [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Huang, Hong [Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275 (China); Zhang, Guoqing; Li, Xinxi [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Wu, Dingcai [Materials Science Institute, PCFM Laboratory, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Fu, Ruowen, E-mail: cesfrw@mail.sysu.edu.cn [Materials Science Institute, PCFM Laboratory, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2015-01-15

    Carbon aerogel (CA) with 3-D continuous skeleton and mesopore structure was prepared via a microemulsion-templated sol–gel polymerization method and then used as the anode materials of lithium-ion batteries. It was found that the reversible specific capacity of the as-prepared CAs could stay at about 470 mA h g{sup −1} for 80 cycles, much higher than the theoretical capacity of commercial graphite (372 mAh g{sup −1}). In addition, CA also showed a better rate capacity compared to commercial graphite. The good electrochemical properties could be ascribed to the following three factors: (1) the large BET surface area of 620 m{sup 2} g{sup −1}, which can provide more lithium ion insertion sites, (2) 3-D continuous skeleton of CAs, which favors the transport of the electrons, (3) 3-D continuous mesopore structure with narrow mesopore size distribution and high mesopore ratio of 87.3%, which facilitates the diffusion and transport of the electrolyte and lithium ions. - Highlights: • Carbon aerogel (CA) was prepared via a microemulsion-templated sol–gel method. • The CA presents high surface area, 3D continuous skeleton and mesopore structure. • The reversible capacity of CA is much higher than that of graphite.

  3. Carbon aerogel with 3-D continuous skeleton and mesopore structure for lithium-ion batteries application

    International Nuclear Information System (INIS)

    Yang, Xiaoqing; Huang, Hong; Zhang, Guoqing; Li, Xinxi; Wu, Dingcai; Fu, Ruowen

    2015-01-01

    Carbon aerogel (CA) with 3-D continuous skeleton and mesopore structure was prepared via a microemulsion-templated sol–gel polymerization method and then used as the anode materials of lithium-ion batteries. It was found that the reversible specific capacity of the as-prepared CAs could stay at about 470 mA h g −1 for 80 cycles, much higher than the theoretical capacity of commercial graphite (372 mAh g −1 ). In addition, CA also showed a better rate capacity compared to commercial graphite. The good electrochemical properties could be ascribed to the following three factors: (1) the large BET surface area of 620 m 2  g −1 , which can provide more lithium ion insertion sites, (2) 3-D continuous skeleton of CAs, which favors the transport of the electrons, (3) 3-D continuous mesopore structure with narrow mesopore size distribution and high mesopore ratio of 87.3%, which facilitates the diffusion and transport of the electrolyte and lithium ions. - Highlights: • Carbon aerogel (CA) was prepared via a microemulsion-templated sol–gel method. • The CA presents high surface area, 3D continuous skeleton and mesopore structure. • The reversible capacity of CA is much higher than that of graphite

  4. Pt/glassy carbon model catalysts prepared from PS-b-P2VP micellar templates.

    Science.gov (United States)

    Gu, Yunlong; St-Pierre, Jean; Ploehn, Harry J

    2008-11-04

    Poly(styrene)-block-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymer was used as a micellar template to fabricate arrays of Pt nanoparticles on mica and glassy carbon (GC) supports. Polymer micellar deposition yields Pt nanoparticles with tunable particle size and surface number density on both mica and GC. After deposition of precursor-loaded micelles onto GC, oxygen plasma etching removes the polymer shell, followed by thermal treatment with H2 gas to reduce the Pt. Etching conditions were optimized to maximize removal of the polymer while minimizing damage to the GC. Arrays of Pt nanoparticles with controlled size and surface number density can be prepared on mica (for particle size characterization) and GC to make Pt/GC model catalysts. These model catalysts were characterized by tapping mode atomic force microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry to measure activity for oxidation of carbon monoxide or methanol. Cyclic voltammetry results demonstrate the existence of a correlation between Pt particle size and electrocatalytic properties including onset potential, tolerance of carbonaceous adsorbates, and intrinsic activity (based on active Pt area from CO stripping voltammetry). Results obtained with Pt/GC model catalysts duplicate prior results obtained with Pt/porous carbon catalysts therefore validating the synthesis approach and offering a new, tunable platform to study catalyst structure and other effects such as aging on proton exchange membrane fuel cell (PEMFC) reactions.

  5. Surface science approach to Pt/carbon model catalysts: XPS, STM and microreactor studies

    Science.gov (United States)

    Motin, Abdul Md.; Haunold, Thomas; Bukhtiyarov, Andrey V.; Bera, Abhijit; Rameshan, Christoph; Rupprechter, Günther

    2018-05-01

    Pt nanoparticles supported on carbon are an important technological catalyst. A corresponding model catalyst was prepared by physical vapor deposition (PVD) of Pt on sputtered HOPG (highly oriented pyrolytic graphite). The carbon substrate before and after sputtering as well as the Pt/HOPG system before and after Pt deposition and annealing were examined by XPS and STM. This yielded information on the surface density of defects, which serve as nucleation centres for Pt, and on the size distribution (mean size/height) of the Pt nanoparticles. Two different model catalysts were prepared with mean sizes of 2.0 and 3.6 nm, both turned out to be stable upon UHV-annealing to 300 °C. After transfer into a UHV-compatible flow microreactor and subsequent cleaning in UHV and under mbar pressure, the catalytic activity of the Pt/HOPG model system for ethylene hydrogenation was examined under atmospheric pressure flow conditions. This enabled to determine temperature-dependent conversion rates, turnover frequencies (TOFs) and activation energies. The catalytic results obtained are in line with the characteristics of technological Pt/C, demonstrating the validity of the current surface science based model catalyst approach.

  6. Ethylene glycol oxidation on Pt and Pt-Ru nanoparticle decorated polythiophene/multiwalled carbon nanotube composites for fuel cell applications

    International Nuclear Information System (INIS)

    Selvaraj, Vaithilingam; Alagar, Muthukaruppan

    2008-01-01

    A novel supporting material containing polythiophene (PTh) and multiwalled carbon nanotubes (MWCNTs) (PTh-CNTs) is prepared by in situ polymerization of thiophene on carbon nanotubes using FeCl 3 as oxidizing agent under sonication. The prepared polythiophene/CNT composites are further decorated with Pt and Pt-Ru nanoparticles by chemical reduction of the corresponding metal salts using HCHO as reducing agent at pH = 11 (Pt/PTh-CNT and Pt-Ru/PTh-CNT). The fabricated composite films decorated with nanoparticles were investigated towards the electrochemical oxidation of ethylene glycol (EG). The presence of carbon nanotubes in conjugation with a conducting polymer produces a good catalytic effect, which might be due to the higher electrochemically accessible surface areas, electronic conductivity and easier charge-transfer at polymer/electrolyte interfaces, which allows higher dispersion of Pt and Pt-Ru nanoparticles. Such nanoparticle modified PTh-CNT electrodes exhibit better catalytic behavior towards ethylene glycol oxidation. Results show that Pt/PTh-CNT and Pt-Ru/PTh-CNT modified electrodes show enhanced electrocatalytic activity and stability towards the electro-oxidation of ethylene glycol than the Pt/PTh electrodes, which shows that the composite film is more promising for applications in fuel cells

  7. Coated Aerogel Beads

    Science.gov (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2014-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  8. KOH catalysed preparation of activated carbon aerogels for dye adsorption.

    Science.gov (United States)

    Ling, Sie King; Tian, H Y; Wang, Shaobin; Rufford, Thomas; Zhu, Z H; Buckley, C E

    2011-05-01

    Organic carbon aerogels (CAs) were prepared by a sol-gel method from polymerisation of resorcinol, furfural, and hexamethylenetetramine catalysed by KOH at around pH 9 using ambient pressure drying. The effect of KOH in the sol-gel on CA synthesis was studied. It was found that addition of KOH prior to the sol-gel polymerisation process improved thermal stability of the gel, prevented the crystallinity of the gel to graphite, increased the microporosity of CA and promoted activation of CA. The CAs prepared using the KOH catalyst exhibited higher porosity than uncatalysed prepared samples. Activation in CO(2) at higher temperature also enhanced the porosity of CAs. Adsorption tests indicated that the CAs were effective for both basic and acid dye adsorption and the adsorption increased with increasing surface area and pore volume. The kinetic adsorption of dyes was diffusion control and could be described by the second-order kinetic model. The equilibrium adsorption of dyes was higher than activated carbon. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Glucose sensing based on Pt-MWCNT and MWCNT

    Science.gov (United States)

    Aryasomayajula, Lavanya; Xie, Jining; Wang, Shouyan; Varadan, Vijay K.

    2007-04-01

    It is known that multi walled carbon nanotubes (MWCNTs) is an excellent materials for biosensing applications and with the introduction of Pt nanoparticles (Pt-MWCNTs) of about 3nm in diameter in MWCNTs greatly increases the current sensitivity and also the signal to noise ratio. We fabricated the CNT- based glucose sensor by immobilization the bio enzyme, glucose oxidase (GoX), on the Pt-MWCNT and electrode were prepared. The sensor has been tested effectively for both the abnormal blood glucose levels- greater than 6.9 mM and less than 3.5 mM which are the prediabetic and diabetic glucose levels, respectively. The current signal obtained from the Pt-MWCNT was much higher compared to the MWCNT based sensors.

  10. Alumina/silica aerogel with zinc chloride as an alkylation catalyst

    Directory of Open Access Journals (Sweden)

    DEJAN U. SKALA

    2001-10-01

    Full Text Available The alumina/silica with zinc chloride aerogel alkylation catalyst was obtained using a one step sol-gel synthesis, and subsequent drying with supercritical carbon dioxide. The aerogel catalyst activity was found to be higher compared to the corresponding xerogel catalyst, as a result of the higher aerogel surface area, total pore volume and favourable pore size distribution. Mixed Al–O–Si bonds were present in both gel catalyst types. Activation by thermal treatment in air was needed prior to catalytic alkylation, due to the presence of residual organic groups on the aerogel surface. The optimal activation temperature was found to be in the range 185–225°C, while higher temperatures resulted in the removal of zinc chloride from the surface of the aerogel catalyst with a consequential decrease in the catalytic activity. On varying the zinc chloride content, the catalytic activity of the aerogel catalyst exhibited a maximum. High zinc chloride contents decreased the catalytic activity of the aerogel catalyst as the result of the pores of the catalyst being plugged with this compound, and the separation of the alumina/silica support into Al-rich and Si-rich phases. The surface area, total pore volume, pore size distribution and zinc chloride content had a similar influence on the activity of the aerogel catalyst as was the case of xerogel catalyst and supported zinc chloride catalysts.

  11. Oxygen reduction and methanol oxidation behaviour of SiC based Pt nanocatalysts for proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Dhiman, Rajnish; Stamatin, Serban Nicolae; Andersen, Shuang Ma

    2013-01-01

    for carbon based commercial catalyst, when HClO4 is used as electrolyte. The Pt (110) & Pt (111) facets are shown to have higher electrochemical activities than Pt (100) facets. To the best of our knowledge, methanol oxidation studies and the comparison of peak deconvolutions of the H desorption region in CV...... and methanol oxidation reactions of SiC supported catalysts and measured them against commercially available carbon based catalysts. The deconvolution of the hydrogen desorption signals in CV cycles shows a higher contribution of Pt (110) & Pt (111) peaks compared to Pt (100) for SiC based supports than...... cyclic studies are here reported for the first time for SiC based catalysts. The reaction kinetics for the oxygen reduction and for methanol oxidation with Pt/SiC are observed to be similar to the carbon based catalysts. The SiC based catalyst shows a higher specific surface activity than BASF (Pt...

  12. Ethanol electrooxidation on novel carbon supported Pt/SnOx/C catalysts with varied Pt:Sn ratio

    International Nuclear Information System (INIS)

    Jiang, L.; Colmenares, L.; Jusys, Z.; Sun, G.Q.; Behm, R.J.

    2007-01-01

    Novel carbon supported Pt/SnO x /C catalysts with Pt:Sn atomic ratios of 5:5, 6:4, 7:3 and 8:2 were prepared by a modified polyol method and characterized with respect to their structural properties (X-ray diffraction (XRD) and transmission electron microscopy (TEM)), chemical composition (XPS), their electrochemical properties (base voltammetry, CO ad stripping) and their electrocatalytic activity and selectivity for ethanol oxidation (ethanol oxidation reaction (EOR)). The data show that the Pt/SnO x /C catalysts are composed of Pt and tin oxide nanoparticles with an average Pt particle diameter of about 2 nm. The steady-state activity of the Pt/SnO x /C catalysts towards the EOR decreases with tin content at room temperature, but increases at 80 deg. C. On all Pt/SnO x /C catalysts, acetic acid and acetaldehyde represent dominant products, CO 2 formation contributes 1-3% for both potentiostatic and potentiodynamic reaction conditions. With increasing potential, the acetaldehyde yield decreases and the acetic acid yield increases. The apparent activation energies of the EOR increase with tin content (19-29 kJ mol -1 ), but are lower than on Pt/C (32 kJ mol -1 ). The somewhat better performance of the Pt/SnO x /C catalysts compared to alloyed PtSn x /C catalysts is attributed to the presence of both sufficiently large Pt ensembles for ethanol dehydrogenation and C-C bond splitting and of tin oxide for OH generation. Fuel cell measurements performed for comparison largely confirm the results obtained in model studies

  13. Development of aerogel Cherenkov detectors at Novosibirsk

    International Nuclear Information System (INIS)

    Barnyakov, A.Yu.; Barnyakov, M.Yu.; Baehr, J.; Bellunato, T.; Beloborodov, K.I.; Bobrovnikov, V.S.; Buzykaev, A.R.; Calvi, M.; Danilyuk, A.F.; Djordjadze, V.; Golubev, V.B.; Kononov, S.A.; Kravchenko, E.A.; Lipka, D.; Matteuzzi, C.; Musy, M.; Onuchin, A.P.; Perego, D.; Rodiakin, V.A.; Savinov, G.A.; Serednyakov, S.I.; Shamov, A.G.; Stephan, F.; Tayursky, V.A.; Vorobiov, A.I.

    2005-01-01

    The development of aerogel Cherenkov counters with the light collection using a wavelength shifter is described. 80 counters of this type are working in the KEDR detector. A project of similar counters for the SND detector based on 'heavy' aerogel with n=1.13 has been developed. Aerogel with a refractive index of 1.006-1.13 and dimensions of blocks up to 200x200x50mm 3 is produced by the Novosibirsk group for use in Cherenkov counters of different types. The Novosibirsk group is participating in the development of LHCb RICH as well as a beam diagnostics for a photo-injector test facility at DESY-Zeuthen. Recently we started development of RICH based on focusing aerogel (FARICH) for the endcap of the SuperBaBar. For the first time in the world the focusing aerogel with layers of different refractive indices has been produced

  14. Particle identification system based on dense aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Barnyakov, A.Yu. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Barnyakov, M.Yu. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20, Karl Marx prospect, Novosibirsk, 630092 (Russian Federation); Beloborodov, K.I., E-mail: K.I.Beloborodov@inp.nsk.su [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2, Pirogova Street, Novosibirsk 630090 (Russian Federation); Bobrovnikov, V.S.; Buzykaev, A.R. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Danilyuk, A.F. [Boreskov Institute of Catalysis, 5, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Golubev, V.B. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2, Pirogova Street, Novosibirsk 630090 (Russian Federation); Gulevich, V.V. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Kononov, S.A.; Kravchenko, E.A. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2, Pirogova Street, Novosibirsk 630090 (Russian Federation); Onuchin, A.P.; Martin, K.A. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20, Karl Marx prospect, Novosibirsk, 630092 (Russian Federation); Serednyakov, S.I. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2, Pirogova Street, Novosibirsk 630090 (Russian Federation); and others

    2013-12-21

    A threshold Cherenkov counter based on dense aerogel with refraction index n=1.13 is described. This counter is used for kaon identification at momenta below 1 GeV/c in the SND detector, which takes data at the VEPP-2000 e{sup +}e{sup −} collider. The results of measurements of the counter efficiency using electrons, muons, pions, and kaons produced in e{sup +}e{sup −} annihilation are presented.

  15. Versatile fabrication of a superhydrophobic and ultralight cellulose-based aerogel for oil spillage clean-up.

    Science.gov (United States)

    Zhang, Hui; Li, Yuqi; Xu, Yaoguang; Lu, Zexiang; Chen, Lihui; Huang, Liulian; Fan, Mizi

    2016-10-12

    To deal with marine oil spillage and chemical leakage issues, a highly efficient absorbent (cellulose based aerogel) with a low density (ρ 98.5%) and high mechanical strength was fabricated via a novel physical-chemical foaming method, plasma treatment and subsequent silane modification process. This aerogel has a perfect 3D skeleton and interconnected pores similar to honeycomb, which are favorable to oil adsorption and storage. More importantly, without introducing additional micro/nanoparticles, the rough micro/nano structure of the surface was directly constructed using plasma irradiation in this study. The low surface energy substrate was further introduced using a simple physical-soaking method and the resulting aerogel exhibited excellent superhydrophobicity (WCA > 156°) and superoleophilicity (OCA = 0°), which can selectively and efficiently absorb various oils or organic solvents from polluted water. In addition, this aerogel has a high storage capacity and absorption capacity (up to 4300% and 99% of its weight and volume, respectively). More interestingly, this aerogel exhibits excellent mechanical abrasion resistance and corrosion resistance even in strong acid, alkali solution and salt marine environment. The aerogel could be reused more than 30 times after removal of the absorbed oil by rinsing with ethanol.

  16. Octahedral Tin Dioxide Nanocrystals Anchored on Vertically Aligned Carbon Aerogels as High Capacity Anode Materials for Lithium-Ion Batteries

    OpenAIRE

    Mingkai Liu; Yuqing Liu; Yuting Zhang; Yiliao Li; Peng Zhang; Yan Yan; Tianxi Liu

    2016-01-01

    A novel binder-free graphene - carbon nanotubes - SnO2 (GCNT-SnO2) aerogel with vertically aligned pores was prepared via a simple and efficient directional freezing method. SnO2 octahedrons exposed of {221} high energy facets were uniformly distributed and tightly anchored on multidimensional graphene/carbon nanotube (GCNT) composites. Vertically aligned pores can effectively prevent the emersion of ?closed? pores which cannot load the active SnO2 nanoparticles, further ensure quick immersio...

  17. Preparation of sponge-reinforced silica aerogels from tetraethoxysilane and methyltrimethoxysilane for oil/water separation

    Science.gov (United States)

    Li, Ming; Jiang, Hongyi; Xu, Dong

    2018-04-01

    Polyurethane sponge-reinforced silica aerogels based on tetraethoxysilane (TEOS) and methyltrimethoxysilane (MTMS) were fabricated by a facile method through sol-gel reaction followed by ambient pressure drying. In sponge-reinforced silica aerogels, nanoporous aerogel aggregates fill in the pores of polyurethane sponge. The sponge-reinforced aerogels are hydrophobic and oleophilic and show extremely high absorption for machine oil (10.6 g g‑1 for TEOS-based aerogel and 9.2 g g‑1 for MTMS-based aerogel). In addition, the sponge-reinforced aerogel composites exhibit notable improvements with regards to mechanical properties. The compressive strength was enhanced obviously up to about 349 KPa for TEOS-based aerogel and 60 KPa for MTMS-based aerogel. Specially, sponge-reinforced silica aerogels based on MTMS drastically shrank upon loading and then recovered to the original size when unloaded. The property differences of the sponge-reinforced silica aerogels caused by the two precursors were discussed in terms of morphologies, pore size distributions and chemical structure.

  18. Sorption Properties of Aerogel in Liquid Nitrogen

    Science.gov (United States)

    Johnson, Wesley L.

    2006-01-01

    Aerogel products are now available as insulation materials of the future. The Cryogenics Test Laboratory at the NASA Kennedy Space Center is developing aerogel-based thermal insulation systems for space launch applications. Aerogel beads (Cabot Nanogel ) and aerogel blankets (Aspen Aerogels Spaceloft ) have outstanding ambient pressure thermal performance that makes them useful for applications where sealing is not possible. Aerogel beads are open-celled silicone dioxide and have tiny pores that run throughout the body of the bead. It has also recently been discovered that aerogel beads can be used as a filtering device for aqueous compounds at room temperature. With their hydrophobic covering, the beads absorb any non-polar substance and they can be chemically altered to absorb hot gases. The combination of the absorption and cryogenic insulating properties of aerogel beads have never been studied together. For future cryogenic insulation applications, it is crucial to know how the beads react while immersed in cryogenic liquids, most notably liquid nitrogen. Aerogel beads in loose-fill situation and aerogel blankets with composite fiber structure have been tested for absorption properties. Depending on the type of aerogel used and the preparation, preliminary results show the material can absorb up to seven times its own weight of liquid nitrogen, corresponding to a volumetric ratio of 0.70 (unit volume nitrogen per unit volume aerogel). These tests allow for an estimate on how much insulation is needed in certain situations. The theory behind the different processes of sorption is necessary for a better understanding of the preparation of the beads before they are used in an insulation system.

  19. Aerogels Materials as Space Debris Collectors

    Directory of Open Access Journals (Sweden)

    Thierry Woignier

    2013-01-01

    Full Text Available Material degradation due to the specific space environment becomes a key parameter for space missions. The use of large surface of brittle materials on satellites can produce, if impacted by hypervelocity particles, ejected volumes of mater 100 times higher than the impacting one. The presented work is devoted to the use of silica aerogels as passive detectors. Aerogels have been exposed to the low earth orbit of the ISS for 18 months. The study describes the aerogels process and the choice of synthesis parameters in such a way to get expected features in terms of porosity, mechanical properties, internal stresses, and transparency. Low-density aerogels (0.09 g·cm−3 have been prepared. The control of transparency necessary to see and identify particles and fragments collected is obtained using a base catalysis during gel synthesis. After return to earth, the aerogels samples have been observed using optical microscopy to detect and quantify craters on the exposed surface. First results obtained on a small part of the aerogels indicate a large number of debris collected in the materials.

  20. Design and Development of Aerogel-Based Antennas for Aerospace Applications: A Final Report to the NARI Seedling

    Science.gov (United States)

    Meador, Mary Ann B.; Miranda, Felix A.

    2014-01-01

    As highly porous solids possessing low density and low dielectric permittivity combined with good mechanical properties, polyimide (PI) aerogels offer great promise as an enabling technology for lightweight aircraft antenna systems. While they have been aggressively explored for thermal insulation, barely any effort has been made to leverage these materials for antennas or other applications that take advantage of their aforementioned attributes. In Phase I of the NARI Seedling Project, we fabricated PI aerogels with properties tailored to enable new antenna concepts with performance characteristics (wide bandwidth and high gain) and material properties (low density, environmental stability, and robustness) superior to the state of practice (SOP). We characterized electromagnetic properties, including permittivity, reflectivity, and propagation losses for the aerogels. Simple, prototype planar printed circuit patch antennas from down-selected aerogel formulations were fabricated by molding the aerogels to net shapes and by gold-metalizing the pattern onto the templates via electron beam evaporation in a clean room environment. These aerogel based antennas were benchmarked against current antenna SOP, and exhibited both broader bandwidth and comparable or higher gain performance at appreciably lower mass. Phase II focused on the success of the Phase I results pushing the PI aerogel based antenna technology further by exploring alternative antenna design (i.e., slot coupled antennas) and by examining other techniques for fabricating the antennas including ink jet printing with the goal of optimizing antenna performance and simplifying production. We also examined new aerogel formulations with better moisture and solvent resistance to survive processing conditions. In addition, we investigated more complex antenna designs including passive phased arrays such as 2x4 and 4x8 element arrays to assess the scalability of the aerogel antenna concept. Furthermore, we

  1. Graphene aerogels

    Science.gov (United States)

    Pauzauskie, Peter J; Worsley, Marcus A; Baumann, Theodore F; Satcher, Jr., Joe H; Biener, Juergen

    2015-03-31

    Graphene aerogels with high conductivity and surface areas including a method for making a graphene aerogel, including the following steps: (1) preparing a reaction mixture comprising a graphene oxide suspension and at least one catalyst; (2) curing the reaction mixture to produce a wet gel; (3) drying the wet gel to produce a dry gel; and (4) pyrolyzing the dry gel to produce a graphene aerogel. Applications include electrical energy storage including batteries and supercapacitors.

  2. Aerogel-Based Insulation for High-Temperature Industrial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Owen Evans

    2011-10-13

    Under this program, Aspen Aerogels has developed an industrial insulation called Pyrogel HT, which is 4-5 times more thermally efficient than current non-aerogel technology. Derived from nanoporous silica aerogels, Pyrogel HT was specifically developed to address a high temperature capability gap not currently met with Aspen Aerogels{trademark} flagship product, Pyrogel XT. Pyrogel XT, which was originally developed on a separate DOE contract (DE-FG36-06GO16056), was primarily optimized for use in industrial steam processing systems, where application temperatures typically do not exceed 400 C. At the time, further improvements in thermal performance above 400 C could not be reasonably achieved for Pyrogel XT without significantly affecting other key material properties using the current technology. Cumulative sales of Pyrogel HT into domestic power plants should reach $125MM through 2030, eventually reaching about 10% of the total insulation market share in that space. Global energy savings would be expected to scale similarly. Over the same period, these sales would reduce domestic energy consumption by more than 65 TBtu. Upon branching out into all industrial processes in the 400 C-650 C regime, Pyrogel HT would reach annual sales levels of $150MM, with two-thirds of that being exported.

  3. Integrated high-efficiency Pt/carbon nanotube arrays for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weimin; Minett, Andrew I.; Zhao, Jie; Razal, Joselito M.; Wallace, Gordon G.; Romeo, Tony; Chen, Jun [Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, NSW 2522 (Australia); Gao, Mei [Division of Materials Science and Engineering, CSIRO, Bayview Ave, Clayton, VIC 3168 (Australia)

    2011-07-15

    A facile strategy to deposit Pt nanoparticles with various metal-loading densities on vertically aligned carbon nanotube (ACNT) arrays as electrocatalysts for proton exchange membrane (PEM) fuel cells is described. The deposition is achieved by electrostatic adsorption of the Pt precursor on the positively charged polyelectrolyte functionalized ACNT arrays and subsequent reduction by L-ascorbic acid. The application of the aligned electrocatalysts in fuel cells is realized by transferring from a quartz substrate to nafion membrane using a hot-press procedure to fabricate the membrane electrode assembly (MEA). It is shown that the MEA with vertically aligned structured electrocatalysts provides better Pt utilization than that with Pt on conventional carbon nanotubes or carbon black, resulting in higher fuel cell performance. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. B1 Aerogels

    DEFF Research Database (Denmark)

    Duer, Karsten; Svendsen, Sv Aa Højgaard

    1996-01-01

    , engineering and architectural basis which will support the appropriate use of aerogels in windows, solar collectors and passive solar applications, with the aim of saving or producing thermal energy for use in buildings".This objective is in very good agreement with the general scope of task 18 but where Task...... of aerogel as a material for window applications3. Construction of an aerogel DGU and measurement of key performance parameters. The goal for the aerogel DGU was to reach a Total Solar Energy Transmittance above 0.75 and a U-value below 0.5 W/m²K. These are values that can not be simultaneously reached......The report summarizes the work that has been carried out within the project "B1 AEROGELS" as a part of the IEA SH&CP Task 18 "Advanced Glazing and Associated Materials For Solar And Building Applications".By providing at the same time thermal insulation and transparency the silica aerogel is a very...

  5. Chemical modification of graphene aerogels for electrochemical capacitor applications.

    Science.gov (United States)

    Hong, Jin-Yong; Wie, Jeong Jae; Xu, Yu; Park, Ho Seok

    2015-12-14

    Graphene aerogel is a relatively new type of aerogel that is ideal for energy storage applications because of its large surface area, high electrical conductivity and good chemical stability. Also, three dimensional interconnected macropores offer many advantages such as low density, fast ion and mass transfer, and easy access to storage sites. Such features allow graphene aerogels to be intensively applied for electrochemical capacitor applications. Despite the growing interest in graphene aerogel-based electrochemical capacitors, however, the graphene aerogels still suffer from their low capacitive performances and high fragility. Both relatively low capacitance and brittleness of physically crosslinked graphene aerogels remain a critical challenge. Until now, a number of alternative attempts have been devoted to overcome these shortcomings. In this perspective, we summarize the recent research progress towards the development of advanced graphene aerogel-based electrochemical capacitors according to the different approaches (e.g. porosity, composition and structure controls). Then, the recently proposed chemical strategies to improve the capacitive performances and mechanical durability of graphene aerogels for practical applications are highlighted. Finally, the current challenges and perspectives in this emerging material are also discussed.

  6. CTAB assisted microwave synthesis of ordered mesoporous carbon supported Pt nanoparticles for hydrogen electro-oxidation

    International Nuclear Information System (INIS)

    Zhou, Jian-Hua; He, Jian-Ping; Ji, Ya-Jun; Dang, Wang-Juan; Liu, Xiao-Lei; Zhao, Gui-Wang; Zhang, Chuan-Xiang; Zhao, Ji-Shuang; Fu, Qing-Bin; Hu, Huo-Ping

    2007-01-01

    Mesoporous carbon with ordered hexagonal structure derived from the co-assembly of triblock copolymer F127 and resol was employed as the carbon support of Pt catalysts for hydrogen electro-oxidation. Structural characterizations revealed that the mesoporous carbon exhibited large surface area and uniform mesopores. The Pt nanoparticles supported on the novel mesoporous carbon were fabricated by a facile CTAB assisted microwave synthesis process, wherein CTAB was expected to improve the wettability of carbon support as well as the dispersion of Pt nanoparticles. X-ray diffraction and transmission electron microscopy were applied to characterize the Pt catalysts. It was found that the Pt nanoparticles were uniform in size and highly dispersed on the mesoporous carbon supports. The cyclic voltammograms in sulfuric acid demonstrated that the electrochemical active surface area of Pt catalysts prepared with CTAB was two times than that without CTAB

  7. The use of capacitive deionization with carbon aerogel electrodes to remove inorganic contaminants from water

    International Nuclear Information System (INIS)

    Farmer, J.C.; Fix, D.V.; Mack, G.V.; Pekala, R.W.; Poco, J.F.

    1995-01-01

    The capacitive deionization of water with a stack of carbon aerogel electrodes has been successfully demonstrated for the first time. Unlike ion exchange, one of the more conventional deionization processes, no chemicals were required for regeneration of the system. Electricity was used instead. Water with various anions and cations was pumped through the electrochemical cell. After polarization, ions were electrostatically removed from the water and held in the electric double layers formed at electrode surfaces. The water leaving the cell was purified, as desired

  8. Evaluations of Silica Aerogel-Based Flexible Blanket as Passive Thermal Control Element for Spacecraft Applications

    Science.gov (United States)

    Hasan, Mohammed Adnan; Rashmi, S.; Esther, A. Carmel Mary; Bhavanisankar, Prudhivi Yashwantkumar; Sherikar, Baburao N.; Sridhara, N.; Dey, Arjun

    2018-03-01

    The feasibility of utilizing commercially available silica aerogel-based flexible composite blankets as passive thermal control element in applications such as extraterrestrial environments is investigated. Differential scanning calorimetry showed that aerogel blanket was thermally stable over - 150 to 126 °C. The outgassing behavior, e.g., total mass loss, collected volatile condensable materials, water vapor regained and recovered mass loss, was within acceptable range recommended for the space applications. ASTM tension and tear tests confirmed the material's mechanical integrity. The thermo-optical properties remained nearly unaltered in simulated space environmental tests such as relative humidity, thermal cycling and thermo-vacuum tests and confirmed the space worthiness of the aerogel. Aluminized Kapton stitched or anchored to the blanket could be used to control the optical transparency of the aerogel. These outcomes highlight the potential of commercial aerogel composite blankets as passive thermal control element in spacecraft. Structural and chemical characterization of the material was also done using scanning electron microscopy, Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy.

  9. Aerogel

    Indian Academy of Sciences (India)

    Aerogel, a material not much denser than air on a foggy morning ... between a liquid and a gas, leading to minimum effect on surface ... approached by the French Government to design a method to ... catalysts. • Aerogel dust in grain and seed stocks was found to kill insects by mere ... radiation detectors in nuclear reactors.

  10. Silver-Loaded Aluminosilicate Aerogels As Iodine Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Kroll, Jared O. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Peterson, Jacob A. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Matyáš, Josef [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Olszta, Matthew J. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Li, Xiaohong [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Vienna, John D. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States

    2017-09-14

    This paper discusses the development of aluminosilicates aerogels as scaffolds for Ag0 nanoparticles used for chemisorption of I2(g). The starting materials for these scaffolds included both Na-Al-Si-O and Al-Si-O aerogels, both synthesized from metal alkoxides. The Ag0 particles are added by soaking the aerogels in AgNO3 followed by drying and flowing under H2/Ar to reduce Ag+ → Ag0. In some cases, samples were soaked in 3-(mercaptopropyl)trimethoxysilane under supercritical CO2 to add –SH tethers to the aerogel surfaces for more effective binding of Ag+. During the Ag+-impregnation steps, for the Na-Al-Si-O aerogels, Na was replaced with Ag, and for the Al-Si-O aerogel, Si was replaced with Ag. The Ag-loading of thiolated versus non-thiolated Na-Al-Si-O aerogels was comparable at ~35 at% whereas the Ag-loading in unthiolated Al-Si-O aerogels was significantly lower at ~ 7 at% after identical treatment. Iodine loadings in both thiolated and unthiolated Ag0-functionalized Na-Al-Si-O aerogels were > 0.5 g g-1 showing almost complete utilization of the Ag through chemisorption to form AgI. Iodine loading in the thiolated Al-Si-O aerogel was 0.31 g g-1. The control of Ag uptake over solution residence time and [AgNO3] demonstrates the ability to customize the Ag-loading in the base sorbent to regulate the capacity of iodine chemisorption. Consolidation experimental results are also presented.

  11. Parametric Analysis to Study the Influence of Aerogel-Based Renders' Components on Thermal and Mechanical Performance.

    Science.gov (United States)

    Ximenes, Sofia; Silva, Ana; Soares, António; Flores-Colen, Inês; de Brito, Jorge

    2016-05-04

    Statistical models using multiple linear regression are some of the most widely used methods to study the influence of independent variables in a given phenomenon. This study's objective is to understand the influence of the various components of aerogel-based renders on their thermal and mechanical performance, namely cement (three types), fly ash, aerial lime, silica sand, expanded clay, type of aerogel, expanded cork granules, expanded perlite, air entrainers, resins (two types), and rheological agent. The statistical analysis was performed using SPSS (Statistical Package for Social Sciences), based on 85 mortar mixes produced in the laboratory and on their values of thermal conductivity and compressive strength obtained using tests in small-scale samples. The results showed that aerial lime assumes the main role in improving the thermal conductivity of the mortars. Aerogel type, fly ash, expanded perlite and air entrainers are also relevant components for a good thermal conductivity. Expanded clay can improve the mechanical behavior and aerogel has the opposite effect.

  12. Parametric Analysis to Study the Influence of Aerogel-Based Renders’ Components on Thermal and Mechanical Performance

    Directory of Open Access Journals (Sweden)

    Sofia Ximenes

    2016-05-01

    Full Text Available Statistical models using multiple linear regression are some of the most widely used methods to study the influence of independent variables in a given phenomenon. This study’s objective is to understand the influence of the various components of aerogel-based renders on their thermal and mechanical performance, namely cement (three types, fly ash, aerial lime, silica sand, expanded clay, type of aerogel, expanded cork granules, expanded perlite, air entrainers, resins (two types, and rheological agent. The statistical analysis was performed using SPSS (Statistical Package for Social Sciences, based on 85 mortar mixes produced in the laboratory and on their values of thermal conductivity and compressive strength obtained using tests in small-scale samples. The results showed that aerial lime assumes the main role in improving the thermal conductivity of the mortars. Aerogel type, fly ash, expanded perlite and air entrainers are also relevant components for a good thermal conductivity. Expanded clay can improve the mechanical behavior and aerogel has the opposite effect.

  13. Fabrication of Highly Stable and Efficient PtCu Alloy Nanoparticles on Highly Porous Carbon for Direct Methanol Fuel Cells.

    Science.gov (United States)

    Khan, Inayat Ali; Qian, Yuhong; Badshah, Amin; Zhao, Dan; Nadeem, Muhammad Arif

    2016-08-17

    Boosting the durability of Pt nanoparticles by controlling the composition and morphology is extremely important for fuel cells commercialization. We deposit the Pt-Cu alloy nanoparticles over high surface area carbon in different metallic molar ratios and optimize the conditions to achieve desired material. The novel bimetallic electro-catalyst {Pt-Cu/PC-950 (15:15%)} offers exceptional electrocatalytic activity when tested for both oxygen reduction reaction and methanol oxidation reactions. A high mass activity of 0.043 mA/μgPt (based on Pt mass) is recorded for ORR. An outstanding longevity of this electro-catalyst is noticed when compared to 20 wt % Pt loaded either on PC-950 or commercial carbon. The high surface area carbon support offers enhanced activity and prevents the nanoparticles from agglomeration, migration, and dissolution as evident by TEM analysis.

  14. Enhancement in CO2 Adsorption Capacity and Selectivity in the Chalcogenide Aerogel CuSb2S4 by Post-synthetic Modification with LiCl

    KAUST Repository

    Ahmed, Ejaz

    2015-09-11

    The new chalcogel CuSb2S4 was obtained by reacting Cu(OAc)2·H2O with KSbS2 in a water/formamide mixture at room temperature. In order to modify the gas adsorption capacity the synthesized CuSb2S4 aerogel was loaded with different amounts of LiCl. CO2 adsorption measurements on the CuSb2S4 aerogel before and after treatment with LiCl showed more than three times increased uptake of the LiCl-modified chalcogel. The selectivities of the gas pairs CO2/H2 and CO2/CH4 in the LiCl-treated chalcogel are 235 and 105 respectively and amongst the highest reported for chalcogenide-based aerogels. In comparison with other porous materials like zeolites, activated carbon and most of the Metal Organic Frameworks (MOFs) or Porous Organic Frameworks (POFs), our synthesized aerogels show good air and moisture stability. Although, the CO2 storage capacity of our aerogels is relatively low, however the selectivity of CO2 over H2 or CH4 in LiCl-loaded aerogels are higher than in zeolites, activated carbon as well as some MOFs like Cu-BTC and MOF-5 etc.

  15. Transparent aerogel Windows

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Schultz, Jørgen Munthe

    the supercritical washing step included in the drying phase. At the same time the production plant have been modified to recycle most of the chemicals involved in the production process. A large number of aerogel glazing prototypes have been made with partly evacuated aerogel in between two layers of low iron...... and anti reflection treated glass panes with an airtight edge seal solution based on multi-layered plastic foil developed for vacuum insulation purposes. The edge seal solution shows only a very limited thermal bridge effect. The final glazing has a total solar energy transmittance about 87% and a U...

  16. Tetrapropylammonium ion influence on the synthesis of Pt Ru/carbon hybrids by hydrothermal carbonization

    International Nuclear Information System (INIS)

    Tusi, M.M.; Polanco, N.S.O.; Brandalise, M.; Correa, O.V.; Silva, A.C.; Oliveira Neto, A.; Linardi, M.; Spinace, E.V.

    2010-01-01

    PtRu/Carbon hybrid materials were prepared by hydrothermal carbonization using starch as carbon source and reducing agent and H 2 PtCl 6 .6H 2 O e RuCl 3 .xH 2 O as metals source and catalyst of the carbonization process. The materials were prepared in the following conditions: without pH adjustment, in the absence and in the presence of tetrapropylammonium chloride (TPACl), and adjusting the pH using potassium hydroxide (KOH) or tetrapropylammonium hydroxide (TPAOH). The obtained materials were treated under argon atmosphere at 900 deg C and characterized by SEM/EDX, BET isotherm, XRD and TEM. The electro-oxidation of methanol was studied by chronoamperometry. The material prepared using TPAOH showed the best performance for methanol electro-oxidation. (author)

  17. Methanol Electro-Oxidation on Pt-Ru Alloy Nanoparticles Supported on Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Yangchuan Xing

    2009-09-01

    Full Text Available Carbon nanotubes (CNTs have been investigated in recent years as a catalyst support for proton exchange membrane fuel cells. Improved catalyst activities were observed and attributed to metal-support interactions. We report a study on the kinetics of methanol electro-oxidation on CNT supported Pt-Ru alloy nanoparticles. Alloy catalysts with different compositions, Pt53Ru47/CNT, Pt69Ru31/CNT and Pt77Ru23/CNT, were prepared and investigated in detail. Experiments were conducted at various temperatures, electrode potentials, and methanol concentrations. It was found that the reaction order of methanol electro-oxidation on the PtRu/CNT catalysts was consistent with what has been reported for PtRu alloys with a value of 0.5 in methanol concentrations. However, the electro-oxidation reaction on the PtRu/CNT catalysts displayed much lower activation energies than that on the Pt-Ru alloy catalysts unsupported or supported on carbon black (PtRu/CB. This study provides an overall kinetic evaluation of the PtRu/CNT catalysts and further demonstrates the beneficial role of CNTs.

  18. Proton Exchange Membrane Fuel Cell With Enhanced Durability Using Fluorinated Carbon As Electrocatalyst

    Directory of Open Access Journals (Sweden)

    Ahmad Yasser

    2017-01-01

    Full Text Available This study evaluates the fluorination of a carbon aerogel and its effects on the durability of the resulting electrocatalyst for Proton Exchange Membrane Fuel Cell (PEMFC. Fluorine has been introduced before or after platinum deposition. The different electrocatalysts are physico-chemically and electrochemically characterized, and the results discussed by comparison with commercial Pt/XC72 from E-Tek. The results demonstrate that the level of fluorination of the carbon aerogel can be controlled. The fluorination modifies the texture of the carbons by increasing the pore size and decreasing the specific surface area, but the textures remain appropriate for PEMFC applications. Two fluorination sites are observed, leading to both high covalent C-F bond and weakened ones, the quantity of which depends on whether the treatment is done before or after platinum deposition. The order of the different treatments is very important. The presence of platinum contributes to the fluorination mechanism, but leads to amorphous platinum rather inactive towards the Oxygen Reduction Reaction. Finally, a better durability was demonstrated for the fluorinated then platinized catalyst compared both to the same but not fluorinated catalyst and to the reference commercial material (based on the loss of the electrochemical real surface area after accelerated stress tests.

  19. Influence of plasma treatment of carbon blacks on electrochemical activity of Pt/carbon blacks catalysts for DMFCs

    Science.gov (United States)

    Kim, Seok; Cho, Mi-Hwa; Lee, Jae-Rock; Park, Soo-Jin

    In this work, in order to improve the dispersion of platinum catalysts deposited on carbon materials, the effects of surface plasma treatment of carbon blacks (CBs) were investigated. The surface characteristics of the CBs were determined by fourier transformed-infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), and Boehm's titration method. The electrochemical properties of the plasma-treated CBs-supported Pt (Pt/CBs) catalysts were analyzed by linear sweep voltammetry (LSV) experiments. From the results of FT-IR and acid-base values, N 2-plasma treatment of the CBs at 300 W intensity led to a formation of a free radical on the CBs. The peak intensity increased with increase of the treatment time, due to the formation of new basic functional groups (such as C-N, C dbnd N, -NH 3 +, -NH, and dbnd NH) by the free radical on the CBs. Accordingly, the basic values were enhanced by the basic functional groups. However, after a specific reaction time, N 2-plasma treatment could hardly influence on change of the surface functional groups of CBs, due to the disappearance of free radical. Consequently, it was found that optimal treatment time was 30 s for the best electro activity of Pt/CBs catalysts and the N 2-plasma treated Pt/CBs possessed the better electrochemical properties than the pristine Pt/CBs.

  20. Influence of Aerogel Morphology and Reinforcement Architecture on Gas Convection in Aerogel Composites

    Science.gov (United States)

    Hurwitz, Frances I.; Meyer, Matthew; Guo, Haiquan; Rogers, Richard B.; DeMange, Jeffrey J.; Richardson, Hayley

    2016-01-01

    A variety of thermal protection applications require lightweight insulation capable of withstanding temperatures well above 900 C. Aerogels offer extremely low-density thermal insulation due to their mesoporous structure, which inhibits both gas convection and solid conduction. Silica aerogel systems are limited to use temperatures of 600-700 C, above which they sinter. Alumina aerogels maintain a porous structure to higher temperatures than silica, before transforming to -alumina and densifying. We have synthesized aluminosilicate aerogels capable of maintaining higher surface areas at temperatures above 1100 C than an all-alumina aerogel using -Boehmite as the aluminum source and tetraethoxysilane (TEOS) as the silicon source. The pore structure of these aerogels varies with thermal exposure temperature and time, as the aluminosilicate undergoes a variety of phase changes to form transition aluminas. Transformation to -alumina is inhibited by incorporation of silica into the alumina lattice. The aerogels are fragile, but can be reinforced using a large variety of ceramic papers, felts or fabrics. The objective of the current study is to characterize the influence of choice of reinforcement and architecture on gas permeability of the aerogel composites in both the as fabricated condition and following thermal exposure, as well as understand the effects of incorporating hydrophobic treatments in the composites.

  1. Pt Nanostructures/N-Doped Carbon hybrid, an Efficient Catalyst for Hydrogen Evolution/Oxidation Reactions: Enhancing its Base Media Activity through Bifunctionality of the Catalyst.

    Science.gov (United States)

    Barman, Sudip; Kundu, Manas; Bhowmik, Tanmay; Mishra, Ranjit

    2018-06-04

    Design and synthesis of active catalyst for HER/HOR are important for the development of hydrogen based renewable technologies. We report synthesis of Pt nanostructures-N-doped carbon hybrid (Pt-(PtO2)-NSs/C) for HER/HOR applications. The HER activity of this Pt-(PtOx)-NSs/C catalyst is 4 and 6.5 times better than commercial Pt/C in acid and base. The catalyst exhibits a current density of 10 mA/cm2 at overpotentials of 5 and 51 mV with tafel slopes of 29 and 64mV/dec in in 0.5 M H2SO4 and 0.5 M KOH. This catalyst also showed superior HOR activity at all pH values. The HER/HOR activity of Pt-(PtOx)-NSs/C and PtOx-free Pt-Nanostructures/C (PtNSs/C) catalysts are comparable in acid. The presence of PtOx in Pt-(PtOx)-NSs/C makes this Pt-catalyst more HER/HOR active in base media. The activity of Pt-(PtOx)NSs/C catalyst is 5 fold higher than that of PtNSs/C catalyst in basic medium although their activity is comparable in acid. Hydrogen binding energy and oxophilicity are the two equivalent descriptors for HER/HOR in basic media. We propose a bi-functional mechanism for the enhanced alkaline HER/HOR activity of Pt(PtOx)-NSs/C catalyst. In bi-functional Pt-(PtOx)-NSs/C catalyst, PtOx provide an active site for OH- adsorption to form OHads which reacts with hydrogen intermediate (Hads), present at neighbouring Pt sites to form H2O leading to enhancement of HOR activity in basic medium This work may provide opportunity to develop catalysts for various renewable energy technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Technical applications of aerogels

    International Nuclear Information System (INIS)

    Hrubesh, L.W.

    1997-01-01

    Aerogel materials posses such a wide variety of exceptional properties that a striking number of applications have developed for them. Many of the commercial applications of aerogels such as catalysts, thermal insulation, windows, and particle detectors are still under development and new application as have been publicized since the ISA4 Conference in 1994: e.g.; supercapacitors, insulation for heat storage in automobiles, electrodes for capacitive deionization, etc. More applications are evolving as the scientific and engineering community becomes familiar with the unusual and exceptional physical properties of aerogels, there are also scientific and technical application, as well. This paper discusses a variety of applications under development at Lawrence Livermore National Laboratory for which several types of aerogels are formed in custom sizes and shapes. Particular discussions will focus on the uses of aerogels for physics experiments which rely on the exceptional, sometimes unique, properties of aerogels

  3. Hydrothermal Synthesis of Pt-, Fe-, and Zn-doped SnO2 Nanospheres and Carbon Monoxide Sensing Properties

    Directory of Open Access Journals (Sweden)

    Weigen Chen

    2013-01-01

    Full Text Available Pure and M-doped (M = Pt, Fe, and Zn SnO2 nanospheres were successfully synthesized via a simple and facile hydrothermal method and characterized by X-ray powder diffraction, field-emission scanning electron microscopy, and energy dispersive spectroscopy. Chemical gas sensors were fabricated based on the as-synthesized nanostructures, and carbon monoxide sensing properties were systematically measured. Compared to pure, Fe-, and Zn-doped SnO2 nanospheres, the Pt-doped SnO2 nanospheres sensor exhibits higher sensitivity, lower operating temperature, more rapid response and recovery, better stability, and excellent selectivity. In addition, a theoretical study based on the first principles calculation was conducted. All results demonstrate the potential of Pt dopant for improving the gas sensing properties of SnO2-based sensors to carbon monoxide.

  4. Trapping and aerogelation of nanoparticles in negative gravity hydrocarbon flames

    International Nuclear Information System (INIS)

    Chakrabarty, Rajan K.; Novosselov, Igor V.; Beres, Nicholas D.; Moosmüller, Hans; Sorensen, Christopher M.; Stipe, Christopher B.

    2014-01-01

    We report the experimental realization of continuous carbon aerogel production using a flame aerosol reactor by operating it in negative gravity (−g; up-side-down configuration). Buoyancy opposes the fuel and air flow forces in −g, which eliminates convectional outflow of nanoparticles from the flame and traps them in a distinctive non-tipping, flicker-free, cylindrical flame body, where they grow to millimeter-size aerogel particles and gravitationally fall out. Computational fluid dynamics simulations show that a closed-loop recirculation zone is set up in −g flames, which reduces the time to gel for nanoparticles by ≈10 6  s, compared to positive gravity (upward rising) flames. Our results open up new possibilities of one-step gas-phase synthesis of a wide variety of aerogels on an industrial scale.

  5. Trapping and aerogelation of nanoparticles in negative gravity hydrocarbon flames

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, Rajan K., E-mail: rajan.chakrabarty@gmail.com [Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130 (United States); Laboratory for Aerosol Science, Spectroscopy, and Optics, Desert Research Institute, Nevada System of Higher Education, Reno, Nevada 89512 (United States); Novosselov, Igor V. [Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195 (United States); Enertechnix Inc., Maple Valley, Washington 98068 (United States); Beres, Nicholas D.; Moosmüller, Hans [Laboratory for Aerosol Science, Spectroscopy, and Optics, Desert Research Institute, Nevada System of Higher Education, Reno, Nevada 89512 (United States); Sorensen, Christopher M. [Condensed Matter Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506 (United States); Stipe, Christopher B. [TSI Incorporated, 500 Cardigan Rd, Shoreview, Minnesota 55126 (United States)

    2014-06-16

    We report the experimental realization of continuous carbon aerogel production using a flame aerosol reactor by operating it in negative gravity (−g; up-side-down configuration). Buoyancy opposes the fuel and air flow forces in −g, which eliminates convectional outflow of nanoparticles from the flame and traps them in a distinctive non-tipping, flicker-free, cylindrical flame body, where they grow to millimeter-size aerogel particles and gravitationally fall out. Computational fluid dynamics simulations show that a closed-loop recirculation zone is set up in −g flames, which reduces the time to gel for nanoparticles by ≈10{sup 6} s, compared to positive gravity (upward rising) flames. Our results open up new possibilities of one-step gas-phase synthesis of a wide variety of aerogels on an industrial scale.

  6. Controllable pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells.

    Science.gov (United States)

    Mu, Yongyan; Liang, Hanpu; Hu, Jinsong; Jiang, Li; Wan, Lijun

    2005-12-01

    We report a novel process to prepare well-dispersed Pt nanoparticles on CNTs. Pt nanoparticles, which were modified by the organic molecule triphenylphosphine, were deposited on multiwalled carbon nanotubes by the organic molecule, which acts as a cross linker. By manipulating the relative ratio of Pt nanoparticles and multiwalled carbon nanotubes in solution, Pt/CNT composites with different Pt content were achieved. The so-prepared Pt/CNT composite materials show higher electrocatalytic activity and better tolerance to poisoning species in methanol oxidation than the commercial E-TEK catalyst, which can be ascribed to the high dispersion of Pt nanoparticles on the multiwalled carbon nanotube surface.

  7. Point-Defect Mediated Bonding of Pt Clusters on (5,5) Carbon Nanotubes

    DEFF Research Database (Denmark)

    Wang, J. G.; Lv, Y. A.; Li, X. N.

    2009-01-01

    The adhesion of various sizes of Pt clusters on the metallic (5,5) carbon nanotubes (CNTs) with and without the point defect has been investigated by means of density functional theory (DFT). The calculations show that the binding energies of Pt-n (n = 1-6) clusters on the defect free CNTs are more......). The stronger orbital hybridization between the Pt atom and the carbon atom shows larger charge transfers on the defective CNTs than on the defect free CNTs, which allows the strong interaction between Pt clusters and CNTs. On the basis of DFT calculations, CNTs with point defect can be used as the catalyst...

  8. Thermal management of thermoacoustic sound projectors using a free-standing carbon nanotube aerogel sheet as a heat source.

    Science.gov (United States)

    Aliev, Ali E; Mayo, Nathanael K; Baughman, Ray H; Avirovik, Dragan; Priya, Shashank; Zarnetske, Michael R; Blottman, John B

    2014-10-10

    Carbon nanotube (CNT) aerogel sheets produce smooth-spectra sound over a wide frequency range (1-10(5) Hz) by means of thermoacoustic (TA) sound generation. Protective encapsulation of CNT sheets in inert gases between rigid vibrating plates provides resonant features for the TA sound projector and attractive performance at needed low frequencies. Energy conversion efficiencies in air of 2% and 10% underwater, which can be enhanced by further increasing the modulation temperature. Using a developed method for accurate temperature measurements for the thin aerogel CNT sheets, heat dissipation processes, failure mechanisms, and associated power densities are investigated for encapsulated multilayered CNT TA heaters and related to the thermal diffusivity distance when sheet layers are separated. Resulting thermal management methods for high applied power are discussed and deployed to construct efficient and tunable underwater sound projector for operation at relatively low frequencies, 10 Hz-10 kHz. The optimal design of these TA projectors for high-power SONAR arrays is discussed.

  9. Thermal management of thermoacoustic sound projectors using a free-standing carbon nanotube aerogel sheet as a heat source

    International Nuclear Information System (INIS)

    Aliev, Ali E; Mayo, Nathanael K; Baughman, Ray H; Avirovik, Dragan; Priya, Shashank; Zarnetske, Michael R; Blottman, John B

    2014-01-01

    Carbon nanotube (CNT) aerogel sheets produce smooth-spectra sound over a wide frequency range (1–10 5 Hz) by means of thermoacoustic (TA) sound generation. Protective encapsulation of CNT sheets in inert gases between rigid vibrating plates provides resonant features for the TA sound projector and attractive performance at needed low frequencies. Energy conversion efficiencies in air of 2% and 10% underwater, which can be enhanced by further increasing the modulation temperature. Using a developed method for accurate temperature measurements for the thin aerogel CNT sheets, heat dissipation processes, failure mechanisms, and associated power densities are investigated for encapsulated multilayered CNT TA heaters and related to the thermal diffusivity distance when sheet layers are separated. Resulting thermal management methods for high applied power are discussed and deployed to construct efficient and tunable underwater sound projector for operation at relatively low frequencies, 10 Hz–10 kHz. The optimal design of these TA projectors for high-power SONAR arrays is discussed. (paper)

  10. Infiltrated carbon foam composites

    Science.gov (United States)

    Lucas, Rick D. (Inventor); Danford, Harry E. (Inventor); Plucinski, Janusz W. (Inventor); Merriman, Douglas J. (Inventor); Blacker, Jesse M. (Inventor)

    2012-01-01

    An infiltrated carbon foam composite and method for making the composite is described. The infiltrated carbon foam composite may include a carbonized carbon aerogel in cells of a carbon foam body and a resin is infiltrated into the carbon foam body filling the cells of the carbon foam body and spaces around the carbonized carbon aerogel. The infiltrated carbon foam composites may be useful for mid-density ablative thermal protection systems.

  11. Ethanol electrooxidation on novel carbon supported Pt/SnO{sub x}/C catalysts with varied Pt:Sn ratio

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, L. [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany); Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian (China); Colmenares, L.; Jusys, Z. [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany); Sun, G.Q. [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian (China)], E-mail: gqsun@dicp.ac.cn; Behm, R.J. [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany)], E-mail: juergen.behm@uni-ulm.de

    2007-12-01

    Novel carbon supported Pt/SnO{sub x}/C catalysts with Pt:Sn atomic ratios of 5:5, 6:4, 7:3 and 8:2 were prepared by a modified polyol method and characterized with respect to their structural properties (X-ray diffraction (XRD) and transmission electron microscopy (TEM)), chemical composition (XPS), their electrochemical properties (base voltammetry, CO{sub ad} stripping) and their electrocatalytic activity and selectivity for ethanol oxidation (ethanol oxidation reaction (EOR)). The data show that the Pt/SnO{sub x}/C catalysts are composed of Pt and tin oxide nanoparticles with an average Pt particle diameter of about 2 nm. The steady-state activity of the Pt/SnO{sub x}/C catalysts towards the EOR decreases with tin content at room temperature, but increases at 80 deg. C. On all Pt/SnO{sub x}/C catalysts, acetic acid and acetaldehyde represent dominant products, CO{sub 2} formation contributes 1-3% for both potentiostatic and potentiodynamic reaction conditions. With increasing potential, the acetaldehyde yield decreases and the acetic acid yield increases. The apparent activation energies of the EOR increase with tin content (19-29 kJ mol{sup -1}), but are lower than on Pt/C (32 kJ mol{sup -1}). The somewhat better performance of the Pt/SnO{sub x}/C catalysts compared to alloyed PtSn{sub x}/C catalysts is attributed to the presence of both sufficiently large Pt ensembles for ethanol dehydrogenation and C-C bond splitting and of tin oxide for OH generation. Fuel cell measurements performed for comparison largely confirm the results obtained in model studies.

  12. Da-KGM based GO-reinforced FMBO-loaded aerogels for efficient arsenic removal in aqueous solution.

    Science.gov (United States)

    Ye, Shuxin; Jin, Weiping; Huang, Qing; Hu, Ying; Li, Yan; Li, Jing; Li, Bin

    2017-01-01

    Composites based on deacetylated konjac glucomannan (Da-KGM) and graphene oxide (GO) aerogels with iron and manganese oxides (FMBO) for effective removal of arsenic from contaminated water. Da-KGM, which was used as supporting composite matrix here, were firstly treated with GO and loaded FMBO. The obtained Da-KGM/GO/FMBO composite aerogels were characterized by compression test, thermo gravimetric analysis (TGA), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). The characteristic results showed that addition of GO exhibited enhanced mechanical properties towards Da-KGM aerogels. What's more, results of FTIR indicated the strong intermolecular hydrogen bond interaction between KGM and GO. Batch adsorption tests were used to evaluate arsenic removal capacity. Da-KGM/GO loaded FMBO composite aerogels exhibited high adsorption ability for arsenite [As(III)] and arsenate [As(V)]. The adsorption results showed that the arsenic for both arsenite [As(III)] and arsenate [As(V)] removal process followed a pseudo-second-order rate equation and Langmuir monolayer adsorption. The maximum As(III) and As(V) uptake capacity of Da-KGM/GO(10%)/FMBO composite aerogels reached 30.21mgg -1 and 12.08mgg -1 respectively according to Langmuir isotherm at pH 7 and 323K. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Reversible insertion of carbon dioxide into Pt(II)-hydroxo bonds.

    Science.gov (United States)

    Lohr, Tracy L; Piers, Warren E; Parvez, Masood

    2013-10-01

    The reactivity of three monomeric diimine Pt(II) hydroxo complexes, (NN)Pt(OH)R (NN = bulky diimine ligand; R = OH, ; R = C6H5, ; R = CH3, ) towards carbon dioxide has been investigated. Insertion into the Pt-OH bonds was found to be facile and reversible at low temperature for all compounds; the reaction with bis-hydroxide gives an isolable κ(2)-carbonato compound , with elimination of water.

  14. Effect of sulfonated carbon nanofiber-supported Pt on performance of Nafion {sup registered} -based self-humidifying composite membrane for proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Hung, T.F. [Department of Chemistry and Center for Nanotechnology, Chung Yuan Christian University, 200 Chung Pei Rd., Chung-Li, 32023 (China); Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 (China); Liao, S.H.; Li, C.Y.; Chen-Yang, Y.W. [Department of Chemistry and Center for Nanotechnology, Chung Yuan Christian University, 200 Chung Pei Rd., Chung-Li, 32023 (China)

    2011-01-01

    In the present study, the Nafion {sup registered} -based self-humidifying composite membrane (N-SHCM) with sulfonated carbon nanofiber-supported Pt (s-Pt/CNF) catalyst, N-s-Pt/CNF, is successfully prepared using the solution-casting method. The scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) images of N-s-Pt/CNF indicate that s-Pt/CNF is well dispersed in the Nafion {sup registered} matrix due to the good compatibility between Nafion {sup registered} and s-Pt/CNF. Compared with those of the non-sulfonated Pt/CNF-containing N-SHCM, N-Pt/CNF, the properties of N-s-Pt/CNF, including electronic resistivity, ion-exchange capacity (IEC), water uptake, dimensional stability, and catalytic activity, significantly increase. The maximum power density of the proton exchange membrane fuel cell (PEMFC) fabricated with N-s-Pt/CNF operated at 50 C under dry H{sub 2}/O{sub 2} condition is about 921 mW cm{sup -2}, which is approximately 34% higher than that with N-Pt/CNF. (author)

  15. Silica aerogel Cerenkov counter

    International Nuclear Information System (INIS)

    Yasumi, S.; Masaike, A.; Yamamoto, A.; Yoshimura, Y.; Kawai, H.

    1984-03-01

    In order to obtain silica aerogel radiators of good quality, the prescription used by Saclay group has been developed. We have done several experiments using beams from KEK.PS to test the performance of a Cerenkov counter with aerogel modules produced in KEK. It turned out that these modules had excellent quality. The production rate of silica aerogel in KEK is 15 -- 20 litres a week. Silica aerogel modules of 20 x 10 x 3 cm 3 having the refractive index of 1.058 are successfully being used by Kyoto University group in the KEK experiment E92 (Σ). Methodes to produce silica aerogel with higher refractive index than 1.06 has been investigated both by heating an module with the refractive index of 1.06 and by hydrolyzing tetraethyl silicate. (author)

  16. Pt/Al/sub 2/O/sub 3/- carbon nanocomposite as a catalyst for fuel cells

    International Nuclear Information System (INIS)

    Naeem, R.; Ahmed, R.; Ansari, M.S.

    2013-01-01

    Catalysts comprising platinum nanoparticles (Pt NPs) on carbon support are used in fuel cells for the hydrogen and electricity production by electrochemical oxidation of methanol. However, the catalyst is not the best in terms of its performance. Considering role of the support as significant towards efficiency and durability of the catalyst, there is need for introducing novel support materials to replace carbon alone. Deposition of various metallic NPs on ceramic-carbon (hybrid) supports has been reported to improve thermal, mechanical, electrical and chemical properties of different types of catalyst. In search of better performing catalysts for proton exchange membrane fuel cells (PEMFCs), hybrid supports having different ceramic materials should be synthesized. In this regard Pt/Al/sub 2/O/sub 3/-Carbon (nanocomposites) have been synthesized and applied as promising catalysts in the PEMFCs; results obtained for the nanocomposites were compared with Pt/carbon and Pt/Al/sub 2/O/sub 3/. Vulcan carbon was purified and functionalized prior to use; presence of oxygen containing functional groups on carbon was established from the FTIR spectrum, Hybrid support (1:8 by weight ratio of ceramic and carbon) were already prepared in aqueous 2-propanol employing sonication method on to which Pt NPs (10% by weight in all the cases) were deposited by simple chemical reduction of PtCl/sub 4/ by NaBH/sub 4/ under controlled conditions. The catalysts were subjected to various characterization techniques like TGA (for thermal stability), EDX (for chemical composition), SEM (for surface morphology) and XRD (for cell-shape and -volume, material density and average crystalline size). Catalysts efficiencies for the methanol oxidation were investigated through cyclic voltammetery (CV) by comparing electrochemical surface area, peak current, exchange current density and rate constant in the acidic and basic media. Pt/Al/sub 2/O/sub 3/-carbon exhibited better catalytic efficiencies

  17. Composite carbon foam electrode

    Science.gov (United States)

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  18. The performance and degradation of Pt electrocatalysts on novel carbon carriers for PEMFC applications

    Energy Technology Data Exchange (ETDEWEB)

    Mamat, M.S.; Grant, D.M.; Walker, G.S. [Energy and Sustainability Research Division, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Grigoriev, S.A.; Dzhus, K.A. [Hydrogen Energy and Plasma Technology Institute, Russian Research Center ' ' Kurchatov Institute' ' , Kurchatov sq. 1, 123182 Moscow (Russian Federation)

    2010-07-15

    Electrocatalyst stability is an important factor influencing the performance of polymer electrolyte membrane (PEM) fuel cells and is essential in maintaining the cell output. The aim of this work was to elucidate factors which influence the stability of platinum supported onto graphitic nanofibres (Pt/GNFs) and to compare the performance of these materials with the commonly used Pt/Vulcan electrocatalyst. Platinum nanoparticles (average diameter of 6.9 nm) were supported on GNFs which were prepared by chemical vapour deposition over an unsupported nickel oxide (NiO) catalyst precursor. The performance of Pt/GNFs based electrodes were studied by cyclic voltammetry and a single-cell fuel cell test and were compared with a commercially available carbon nanostructure, Vulcan XC-72, which was also impregnated with Pt nanoparticles. Characterisation of the pre- and post-operation of the Pt/GNFs by XRD and TEM showed that structural changes of the Pt had occurred during testing. It was found that the average diameter of each grain and the degree of agglomeration among particles was increased, creating elongated clusters of Pt along the carbon fibre. Analysis of electrocatalyst post-operation also identified that the sulphate from the Nafion membrane was reacting with the Pt surface forming platinum sulphide (PtS). These phases were confirmed by the presence of low intensity, but sharp XRD peaks, attributed to a few large diameter particles (49 nm). These two factors resulted in current density dropping from 0.2 A/cm{sup 2} to 0.1 A/cm{sup 2} (at 0.70 V) over a 25 h test period. (author)

  19. Co-Pt nanoparticles encapsulated in carbon cages prepared by sonoelectrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Luong, Nguyen Hoang; Hai, Nguyen Hoang; Phu, Nguyen Dang [Center for Materials Science, Faculty of Physics, Hanoi University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi (Viet Nam); MacLaren, D A, E-mail: luongnh@vnu.edu.vn [School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom)

    2011-07-15

    Co-Pt nanoparticles encapsulated in carbon cages have been prepared by sonoelectrodeposition followed by annealing in a CO atmosphere. Sonoelectrodeposition is a useful technique to make metallic nanoparticles, using ultrasound during electrodeposition to remove nanoparticles as they grow on the cathode surface. We used an electrolyte containing chloroplatinic acid and cobalt chloride and found that the atomic ratio of Co:Pt in the as-formed materials varied from 0.2 to 0.8 as the deposition current density was changed from 15 to 35 mA cm{sup -2}. However, the as-deposited materials were inhomogeneous, comprising a mixture of Pt-rich and Co-rich nanoparticles. X-ray diffraction indicated that subsequent heat treatment (700 deg. C for 1 h) under CO gas created an ordered CoPt alloy phase that exhibited hard magnetic properties. Transmission electron microscopy showed many of the resulting nanoparticles to be encapsulated in carbon cages, which we ascribe to Co-catalyzed decomposition of CO during annealing. The thickness of the carbon cages was about ten layers, which may have helped reduce sintering during annealing. The size of the resultant nanoparticles was about 100 nm diameter, larger than the typical 5-10 nm diameter of as-deposited nanoparticles.

  20. Development of aerogel-lined targets for inertial confinement fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Tom [Technical Univ. Munchen (Germany)

    2013-03-28

    This thesis explores the formation of ICF compatible foam layers inside of an ablator shell used for inertial confinement fusion experiments at the National Ignition Facility. In particular, the capability of p- DCPD polymer aerogels to serve as a scaffold for the deuterium-tritium mix was analyzed. Four different factors were evaluated: the dependency of different factors such as thickness or composition of a precursor solution on the uniformity of the aerogel layer, how to bring the optimal composition inside of the ablator shell, the mechanical stability of ultra-low density p-DCPD aerogel bulk pieces during wetting and freezing with hydrogen, and the wetting behavior of thin polymer foam layers in HDC carbon ablator shells with liquid deuterium. The research for thesis was done at Lawrence Livermore National Laboratory in cooperation with the Technical University Munich.

  1. Development of windows based on highly insulating aerogel glazings

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Schultz, Jørgen Munthe; Kristiansen, Finn Harken

    2004-01-01

    of buildings, the window area is the weakest part with respect to the heat loss, but at the same time, it also provides e.g. solar energy gain. Glazing prototypes have been made of aerogel tiles of about 55 cm sq. (elaborated within the projects). Those tiles are quickly evacuated and easily sealed between two...... glass panes and a specific rim seal. A heat treatment phase (after the supercritical CO2 drying) of the aerogel is currently being developed in order to improve its optical quality. This step increases the solar transmittance about 6 percent points. For glazing prototypes with an aerogel thickness...... of approx. 15 mm, a centre heat loss coefficient of below 0.7 W/m² K and a solar transmittance of 76% have been obtained. The research is funded in part by the European Commission within the frameworks of the Non-Nuclear Energy Programme – JOULE III and the Energy, Environment and Sustainable Development...

  2. N-Doped Carbon Xerogels as Pt Support for the Electro-Reduction of Oxygen

    Directory of Open Access Journals (Sweden)

    Cinthia Alegre

    2017-09-01

    Full Text Available Durability and limited catalytic activity are key impediments to the commercialization of polymer electrolyte fuel cells. Carbon materials employed as catalyst support can be doped with different heteroatoms, like nitrogen, to improve both catalytic activity and durability. Carbon xerogels are nanoporous carbons that can be easily synthesized in order to obtain N-doped materials. In the present work, we introduced melamine as a carbon xerogel precursor together with resorcinol for an effective in-situ N doping (3–4 wt % N. Pt nanoparticles were supported on nitrogen-doped carbon xerogels and their activity for the oxygen reduction reaction (ORR was evaluated in acid media along with their stability. Results provide new evidences of the type of N groups aiding the activity of Pt for the ORR and of a remarkable stability for N-doped carbon-supported Pt catalysts, providing appropriate physico-chemical features.

  3. In-Situ Liquid Hydrogenation of m-Chloronitrobenzene over Fe-Modified Pt/Carbon Nanotubes Catalysts

    Directory of Open Access Journals (Sweden)

    Feng Li

    2018-02-01

    Full Text Available In-situ liquid-phase hydrogenation of m-chloronitrobenzene (m-CNB based on aqueous-phase reforming (APR of ethanol and catalytic hydrogenation was carried out over Fe-modified Pt/carbon nanotubes (CNTs catalysts. The effects of Pt loading over CNTs and Fe modification on the catalytic performance of Pt/CNTs catalysts were studied. In-tube loading of Pt particles, compared with out-tube loading, considerably improved the catalytic activity. With in-tube loading, Fe-modified Pt/CNTs catalysts further improved the m-CNB in-situ hydrogenation performance. After Fe modification, Pt–Fe/CNTs catalysts formed, inside CNTs, a Pt–Fe alloy and iron oxides, which both improved catalytic hydrogenation performance and significantly enhanced ethanol APR hydrogen producing performance, thereby increasing the m-CNB in-situ hydrogenation reactivity.

  4. Aerogels: transparent and super-insulating materials; Les aerogels: isolants transparent-super isolants

    Energy Technology Data Exchange (ETDEWEB)

    Melka, S.; Rigacci, A.; Achard, P.; Bezian, J.J. [Ecole des Mines de Paris, 06 - Sophia-Antipolis (France); Sallee, H.; Chevalier, B. [Centre des Sciences et Techniques du Batiment, 38 - Saint-Martin-d`Heres (France)

    1996-12-31

    Recent studies have demonstrated the super-insulating properties of silica aerogel in its monolithic or finely divided state. In its monolithic state, this material conciliates excellent thermal insulation performances, a good transmission of visible light and interesting acoustic properties. Also its amazing structural characteristics (lightness, high global porosity, small diameter of pores) are particularly interesting for its use in double glazing windows as transparent insulating spacer. The aim of the work carried out by the Energetic Centre of the Ecole des Mines of Paris is to understand the thermal transfer phenomena in all forms of silica aerogel. In this paper, the main steps of the synthesis process of monolithic silica aerogel is presented with the thermal conductivities obtained. Then, a model is built to describe the thermal transfer mechanisms in finely divided aerogel beds. Finally, the hot wire thermal characterization method is presented and the results obtained on silica aerogels are discussed. (J.S.) 16 refs.

  5. Toward Aerogel Electrodes of Superior Rate Performance in Supercapacitors through Engineered Hollow Nanoparticles of NiCo2O4.

    Science.gov (United States)

    Li, Jianjiang; Chen, Shuai; Zhu, Xiaoyi; She, Xilin; Liu, Tongchao; Zhang, Huawei; Komarneni, Sridhar; Yang, Dongjiang; Yao, Xiangdong

    2017-12-01

    A biomass-templated pathway is developed for scalable synthesis of NiCo 2 O 4 @carbon aerogel electrodes for supercapacitors, where NiCo 2 O 4 hollow nanoparticles with an average outer diameter of 30-40 nm are conjoined by graphitic carbon forming a 3D aerogel structure. This kind of NiCo 2 O 4 aerogel structure shows large specific surface area (167.8 m 2 g -1 ), high specific capacitance (903.2 F g -1 at a current density of 1 A g -1 ), outstanding rate performance (96.2% capacity retention from 1 to 10 A g -1 ), and excellent cycling stability (nearly without capacitance loss after 3000 cycles at 10 A g -1 ). The unique structure of the 3D hollow aerogel synergistically contributes to the high performance. For instance, the 3D interconnected porous structure of the aerogel is beneficial for electrolyte ion diffusion and for shortening the electron transport pathways, and thus can improve the rate performance. The conductive carbon joint greatly enhances the specific capacity, and the hollow structure prohibits the volume changes during the charge-discharge process to significantly improve the cycling stability. This work represents a giant step toward the preparation of high-performance commercial supercapacitors.

  6. Dynamics of capillary condensation in aerogels.

    Science.gov (United States)

    Nomura, R; Miyashita, W; Yoneyama, K; Okuda, Y

    2006-03-01

    Dynamics of capillary condensation of liquid 4He in various density silica aerogels was investigated systematically. Interfaces were clearly visible when bulk liquid was rapidly sucked into the aerogel. Time evolution of the interface positions was consistent with the Washburn model and their effective pore radii were obtained. Condensation was a single step in a dense aerogel and two steps in a low density aerogel. Crossover between the two types of condensation was observed in an intermediate density aerogel. Variety of the dynamics may be the manifestation of the fractal nature of aerogels which had a wide range of distribution of pore radii.

  7. DNA-templated synthesis of Pt nanoparticles on single-walled carbon nanotubes.

    Science.gov (United States)

    Dong, Lifeng

    2009-11-18

    A series of electron microscopy characterizations demonstrate that single-stranded deoxyribonucleic acid (ssDNA) can bind to nanotube surfaces and disperse bundled single-walled carbon nanotubes (SWCNTs) into individual tubes. The ssDNA molecules on the nanotube surfaces demonstrate various morphologies, such as aggregated clusters and spiral wrapping around a nanotube with different pitches and spaces, indicating that the morphology of the SWCNT/DNA hybrids is not related solely to the base sequence of the ssDNA or the chirality or the diameter of the nanotubes. In addition to serving as a non-covalent dispersion agent, the ssDNA molecules bonded to the nanotube surface can provide addresses for localizing Pt(II) complexes along the nanotubes. The Pt nanoparticles obtained by a reduction of the Pt2+-DNA adducts are crystals with a size of direct ethanol/methanol fuel cells and nanoscale electronics.

  8. Synergetic Hybrid Aerogels of Vanadia and Graphene as Electrode Materials of Supercapacitors

    Directory of Open Access Journals (Sweden)

    Xuewei Fu

    2016-08-01

    Full Text Available The performance of synergetic hybrid aerogel materials of vanadia and graphene as electrode materials in supercapacitors was evaluated. The hybrid materials were synthesized by two methods. In Method I, premade graphene oxide (GO hydrogel was first chemically reduced by L-ascorbic acid and then soaked in vanadium triisopropoxide solution to obtain V2O5 gel in the pores of the reduced graphene oxide (rGO hydrogel. The gel was supercritically dried to obtain the hybrid aerogel. In Method II, vanadium triisopropoxide was hydrolyzed from a solution in water with GO particles uniformly dispersed to obtain the hybrid gel. The hybrid aerogel was obtained by supercritical drying of the gel followed by thermal reduction of GO. The electrode materials were prepared by mixing 80 wt % hybrid aerogel with 10 wt % carbon black and 10 wt % polyvinylidene fluoride. The hybrid materials in Method II showed higher capacitance due to better interactions between vanadia and graphene oxide particles and more uniform vanadia particle distribution.

  9. An Effective Approach towards the Immobilization of PtSn Nanoparticles on Noncovalent Modified Multi-Walled Carbon Nanotubes for Ethanol Electrooxidation

    Directory of Open Access Journals (Sweden)

    Xi Geng

    2016-03-01

    Full Text Available In this article, we describe an effective method to tether Pt and PtSn nanoparticles (NPs on polyelectrolyte modified multi-walled carbon nanotubes (MWCNTs for ethanol electrooxidation. By using a polymer wrapping technique, positively charged polyethyleneimine (PEI was attached onto carbon nanotubes (CNTs to provide preferential linking sites for metal precursors. Well-dispersed Pt and PtSn nanocrystals (2–5 nm were subsequently decorated on PEI-functionalized MWCNTs through the polyol reduction method. The successful non-covalent modification of MWCNTs was confirmed by Fourier transform infrared spectroscopy (FTIR and Zeta potential measurements. Energy dispersive X-ray (EDX spectrum indicates approximately 20 wt % Pt loading and a desirable Pt:Sn atomic ratio of 1:1. Electrochemical analysis demonstrated that the as-synthesized PtSn/PEI-MWCNTs nanocomposite exhibited improved catalytic activity and higher poison tolerance for ethanol oxidation as compared to Pt/PEI-MWCNTs and commercial Pt/XC-72 catalysts. The enhanced electrochemical performance may be attributed to the uniform dispersion of NPs as well as the mitigating of CO self-poisoning effect by the alloying of Sn element. This modification and synthetic strategy will be studied further to develop a diversity of carbon supported Pt-based hybrid nanomaterials for electrocatalysis.

  10. Magnetic mesoporous Fe/carbon aerogel structures with enhanced arsenic removal efficiency.

    Science.gov (United States)

    Lin, Yi-Feng; Chen, Jia-Ling

    2014-04-15

    Wastewater treatment has drawn significant research attention due to its associated environmental issues. Adsorption is a promising method for treating wastewater. The development of an adsorbent with a high surface area is important. Therefore, we successfully developed mesoporous Fe/carbon aerogel (CA) structures with high specific surface areas of 48 7m(2)/g via the carbonization of composite Fe3O4/phenol-formaldehyde resin structures, which were prepared using a hydrothermal process with the addition of phenol. The mesoporous Fe/CA structures were further used for the adsorption of arsenic ions with a maximum arsenic-ion uptake of calculated 216.9 mg/g, which is higher than that observed for other arsenic adsorbents. Ferromagnetic behavior was observed for the as-prepared mesoporous Fe/CA structures with an excellent response to applied external magnetic fields. As a result, the adsorbent Fe/CA structures can be easily separated from the solution using an external magnetic field. This study develops the mesoporous Fe/CA structures with high specific surface areas and an excellent response to an applied external magnetic field to provide a feasible approach for wastewater treatment including the removal of arsenic ions. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Melamine-formaldehyde aerogels

    Science.gov (United States)

    Pekala, Richard Walter

    1992-01-01

    Organic aerogels that are transparent and essentially colorless are prepa from the aqueous, sol-gel polymerization of melamine with formaldehyde. The melamine-formaldehyde (MF) aerogels have low densities, high surface areas, continuous porsity, ultrafine cell/pore sizes, and optical clarity.

  12. Preparation, Characterization and Activity of a Peptide-Cellulosic Aerogel Protease Sensor from Cotton

    Directory of Open Access Journals (Sweden)

    J. Vincent Edwards

    2016-10-01

    Full Text Available Nanocellulosic aerogels (NA provide a lightweight biocompatible material with structural properties, like interconnected high porosity and specific surface area, suitable for biosensor design. We report here the preparation, characterization and activity of peptide-nanocellulose aerogels (PepNA made from unprocessed cotton and designed with protease detection activity. Low-density cellulosic aerogels were prepared from greige cotton by employing calcium thiocyanate octahydrate/lithium chloride as a direct cellulose dissolving medium. Subsequent casting, coagulation, solvent exchange and supercritical carbon dioxide drying afforded homogeneous cellulose II aerogels of fibrous morphology. The cotton-based aerogel had a porosity of 99% largely dominated by mesopores (2–50 nm and an internal surface of 163 m2·g−1. A fluorescent tripeptide-substrate (succinyl-alanine-proline-alanine-4-amino-7-methyl-coumarin was tethered to NA by (1 esterification of cellulose C6 surface hydroxyl groups with glycidyl-fluorenylmethyloxycarbonyl (FMOC, (2 deprotection and (3 coupling of the immobilized glycine with the tripeptide. Characterization of the NA and PepNA included techniques, such as elemental analysis, mass spectral analysis, attenuated total reflectance infrared imaging, nitrogen adsorption, scanning electron microscopy and bioactivity studies. The degree of substitution of the peptide analog attached to the anhydroglucose units of PepNA was 0.015. The findings from mass spectral analysis and attenuated total reflectance infrared imaging indicated that the peptide substrate was immobilized on to the surface of the NA. Nitrogen adsorption revealed a high specific surface area and a highly porous system, which supports the open porous structure observed from scanning electron microscopy images. Bioactivity studies of PepNA revealed a detection sensitivity of 0.13 units/milliliter for human neutrophil elastase, a diagnostic biomarker for inflammatory

  13. Bioinspired Synthesis of Monolithic and Layered Aerogels.

    Science.gov (United States)

    Han, Xiao; Hassan, Khalil T; Harvey, Alan; Kulijer, Dejan; Oila, Adrian; Hunt, Michael R C; Šiller, Lidija

    2018-04-25

    Aerogels are the least dense and most porous materials known to man, with potential applications from lightweight superinsulators to smart energy materials. To date their use has been seriously hampered by their synthesis methods, which are laborious and expensive. Taking inspiration from the life cycle of the damselfly, a novel ambient pressure-drying approach is demonstrated in which instead of employing low-surface-tension organic solvents to prevent pore collapse during drying, sodium bicarbonate solution is used to generate pore-supporting carbon dioxide in situ, significantly reducing energy, time, and cost in aerogel production. The generic applicability of this readily scalable new approach is demonstrated through the production of granules, monoliths, and layered solids with a number of precursor materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Aerogels in Aerospace: An Overview

    Directory of Open Access Journals (Sweden)

    Nadiir Bheekhun

    2013-01-01

    Full Text Available Aerogels are highly porous structures prepared via a sol-gel process and supercritical drying technology. Among the classes of aerogels, silica aerogel exhibits the most remarkable physical properties, possessing lower density, thermal conductivity, refractive index, and dielectric constant than any solids. Its acoustical property is such that it can absorb the sound waves reducing speed to 100 m/s compared to 332 m/s for air. However, when it comes to commercialization, the result is not as expected. It seems that mass production, particularly in the aerospace industry, has dawdled behind. This paper highlights the evolution of aerogels in general and discusses the functions and significances of silica aerogel in previous astronautical applications. Future outer-space applications have been proposed as per the current research trend. Finally, the implementation of conventional silica aerogel in aeronautics is argued with an alternative known as Maerogel.

  15. Protective Skins for Aerogel Monoliths

    Science.gov (United States)

    Leventis, Nicholas; Johnston, James C.; Kuczmarski, Maria A.; Meador, Ann B.

    2007-01-01

    A method of imparting relatively hard protective outer skins to aerogel monoliths has been developed. Even more than aerogel beads, aerogel monoliths are attractive as thermal-insulation materials, but the commercial utilization of aerogel monoliths in thermal-insulation panels has been inhibited by their fragility and the consequent difficulty of handling them. Therefore, there is a need to afford sufficient protection to aerogel monoliths to facilitate handling, without compromising the attractive bulk properties (low density, high porosity, low thermal conductivity, high surface area, and low permittivity) of aerogel materials. The present method was devised to satisfy this need. The essence of the present method is to coat an aerogel monolith with an outer polymeric skin, by painting or spraying. Apparently, the reason spraying and painting were not attempted until now is that it is well known in the aerogel industry that aerogels collapse in contact with liquids. In the present method, one prevents such collapse through the proper choice of coating liquid and process conditions: In particular, one uses a viscous polymer precursor liquid and (a) carefully controls the amount of liquid applied and/or (b) causes the liquid to become cured to the desired hard polymeric layer rapidly enough that there is not sufficient time for the liquid to percolate into the aerogel bulk. The method has been demonstrated by use of isocyanates, which, upon exposure to atmospheric moisture, become cured to polyurethane/polyurea-type coats. The method has also been demonstrated by use of commercial epoxy resins. The method could also be implemented by use of a variety of other resins, including polyimide precursors (for forming high-temperature-resistant protective skins) or perfluorinated monomers (for forming coats that impart hydrophobicity and some increase in strength).

  16. Hydrogen spillover in Pt-single-walled carbon nanotube composites: formation of stable C-H bonds.

    Science.gov (United States)

    Bhowmick, Ranadeep; Rajasekaran, Srivats; Friebel, Daniel; Beasley, Cara; Jiao, Liying; Ogasawara, Hirohito; Dai, Hongjie; Clemens, Bruce; Nilsson, Anders

    2011-04-13

    Using in situ electrical conductivity and ex situ X-ray photoelectron spectroscopy (XPS) measurements, we have examined how the hydrogen uptake of single-walled carbon nanotubes (SWNTs) is influenced by the addition of Pt nanoparticles. The conductivity of platinum-sputtered single-walled carbon nanotubes (Pt-SWNTs) during molecular hydrogen exposure decreased more rapidly than that of the corresponding pure SWNTs, which supports a hydrogenation mechanism facilitated by "spillover" of dissociated hydrogen from the Pt nanoparticles. C 1s XPS spectra indicate that the Pt-SWNTs store hydrogen by means of chemisorption, that is, covalent C-H bond formation: molecular hydrogen charging at elevated pressure (8.27 bar) and room temperature yielded Pt-SWNTs with up to 16 ± 1.5 at. % sp(3)-hybridized carbon atoms, which corresponds to a hydrogen-storage capacity of 1.2 wt % (excluding the weight of Pt nanoparticles). Pt-SWNTs prepared by the Langmuir-Blodgett (LB) technique exhibited the highest Pt/SWNT ratio and also the best hydrogen uptake. © 2011 American Chemical Society

  17. Vertically aligned carbon nanotubes/carbon fiber paper composite to support Pt nanoparticles for direct methanol fuel cell application

    Science.gov (United States)

    Zhang, Jing; Yi, Xi-bin; Liu, Shuo; Fan, Hui-Li; Ju, Wei; Wang, Qi-Chun; Ma, Jie

    2017-03-01

    Vertically aligned carbon nanotubes (VACNTs) grown on carbon fiber paper (CFP) by plasma enhanced chemical vapor deposition is introduced as a catalyst support material for direct methanol fuel cells (DMFCs). Well dispersed Pt nanoparticles on VACNTs surface are prepared by impregnation-reduction method. The VACNTs on CFP possess well-maintained alignment, large surface area and good electrical conductivity, which leading to the formation of Pt particles with a smaller size and enhance the Pt utilization rate. The structure and nature of resulting Pt/VACNTs/CFP catalysts for methanol oxidation are investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD) and scanning electron microscope (SEM). With the aid of VACNTs, well-dispersed Pt catalysts enable the reversibly rapid redox kinetic since electron transport efficiently passes through a one-dimensional pathway, which leads to enhance the catalytic activity and Pt utilization rate. Compared with the Pt/XC-72/CFP electrode, the electrochemical measurements results display that the Pt/VACNTs/CFP catalyst shows much higher electrocatalytic activity and better stability for methanol oxidation. In addition, the oxidation current from 200 to 1200 s decayed more slowly for the Pt/VACNTs/CFP than that of the Pt/XC-72/CFP catalysts, indicating less accumulation of adsorbed CO species. All those results imply that the Pt/VACNTs/CFP has a great potential for applications in DMFCs.

  18. Aerogel Hybrid Composite Materials: Designs and Testing for Multifunctional Applications

    Science.gov (United States)

    Williams, Martha K.; Fesmire, James E.

    2016-01-01

    This webinar will introduce the broad spectrum of aerogel composites and their diverse performance properties such as reduced heat transfer to energy storage, and expands specifically on the aerogel/fiber laminate systems and testing methodologies. The multi-functional laminate composite system, AeroFiber, and its construction is designed by varying the type of fiber (e.g. polyester, carbon, Kevlar®, Spectra® or Innegral(TradeMark) and combinations thereof), the aerogel panel type and thickness, and overall layup configuration. The combination and design of materials may be customized and tailored to achieve a range of desired properties in the resulting laminate system. Multi-functional properties include structural strength, impact resistance, reduction in heat transfer, increased fire resistance, mechanical energy absorption, and acoustic energy dampening. Applications include aerospace, aircraft, automotive, boating, building and construction, lightweight portable structures, liquefied natural gas, cryogenics, transportation and energy, sporting equipment, and military protective gear industries.

  19. Carbon-Supported PtRuMo Electrocatalysts for Direct Alcohol Fuel Cells

    Directory of Open Access Journals (Sweden)

    José L.G. Fierro

    2013-10-01

    Full Text Available The review article discusses the current status and recent findings of our investigations on the synthesis and characterization of carbon-supported PtRuMo electrocatalysts for direct alcohol fuel cells. In particular, the effect of the carbon support and the composition on the structure, stability and the activity of the PtRuMo nanoparticles for the electrooxidation of CO, methanol and ethanol have been studied. Different physicochemical techniques have been employed for the analysis of the catalysts structures: X-ray analytical methods (XRD, XPS, TXRF, thermogravimetry (TGA and transmission electron microscopy (TEM, as well as a number of electrochemical techniques like CO adsorption studies, current-time curves and cyclic voltammetry measurements. Furthermore, spectroscopic methods adapted to the electrochemical systems for in situ studies, such as Fourier transform infrared spectroscopy (FTIRS and differential electrochemical mass spectrometry (DEMS, have been used to evaluate the oxidation process of CO, methanol and ethanol over the carbon-supported PtRuMo electrocatalysts.

  20. Activity and Stability of Dispersed Multi Metallic Pt-based Catalysts for CO Tolerance in Proton Exchange Membrane Fuel Cell Anodes.

    Science.gov (United States)

    Hassan, Ayaz; Ticianelli, Edson A

    2018-01-01

    Studies aiming at improving the activity and stability of dispersed W and Mo containing Pt catalysts for the CO tolerance in proton exchange membrane fuel cell (PEMFC) anodes are revised for the following catalyst systems: (1) a carbon supported PtMo electrocatalyst submitted to heat treatments; (2) Pt and PtMo nanoparticles deposited on carbon-supported molybdenum carbides (Mo2C/C); (3) ternary and quaternary materials formed by PtMoFe/C, PtMoRu/C and PtMoRuFe/C and; (4) Pt nanoparticles supported on tungsten carbide/carbon catalysts and its parallel evaluation with carbon supported PtW catalyst. The heat-treated (600 oC) Pt-Mo/C catalyst showed higher hydrogen oxidation activity in the absence and in the presence of CO and better stability, compared to all other Mo-containing catalysts. PtMoRuFe, PtMoFe, PtMoRu supported on carbon and Pt supported on Mo2C/C exhibited similar CO tolerances but better stability, as compared to as-prepared PtMo supported on carbon. Among the tungsten-based catalysts, tungsten carbide supported Pt catalyst showed reasonable performance and reliable stability in comparison to simple carbon supported PtW catalyst, though an uneven level of catalytic activity towards H2 oxidation in presence of CO is observed for the former as compared to Mo containing catalyst. However, a small dissolution of Mo, Ru, Fe and W from the anodes and their migration toward cathodes during the cell operation is observed. These results indicate that the fuel cell performance and stability has been improved but not yet totally resolved.

  1. Activity and Stability of Dispersed Multi Metallic Pt-based Catalysts for CO Tolerance in Proton Exchange Membrane Fuel Cell Anodes

    Directory of Open Access Journals (Sweden)

    AYAZ HASSAN

    2018-04-01

    Full Text Available ABSTRACT Studies aiming at improving the activity and stability of dispersed W and Mo containing Pt catalysts for the CO tolerance in proton exchange membrane fuel cell (PEMFC anodes are revised for the following catalyst systems: (1 a carbon supported PtMo electrocatalyst submitted to heat treatments; (2 Pt and PtMo nanoparticles deposited on carbon-supported molybdenum carbides (Mo2C/C; (3 ternary and quaternary materials formed by PtMoFe/C, PtMoRu/C and PtMoRuFe/C and; (4 Pt nanoparticles supported on tungsten carbide/carbon catalysts and its parallel evaluation with carbon supported PtW catalyst. The heat-treated (600 oC Pt-Mo/C catalyst showed higher hydrogen oxidation activity in the absence and in the presence of CO and better stability, compared to all other Mo-containing catalysts. PtMoRuFe, PtMoFe, PtMoRu supported on carbon and Pt supported on Mo2C/C exhibited similar CO tolerances but better stability, as compared to as-prepared PtMo supported on carbon. Among the tungsten-based catalysts, tungsten carbide supported Pt catalyst showed reasonable performance and reliable stability in comparison to simple carbon supported PtW catalyst, though an uneven level of catalytic activity towards H2 oxidation in presence of CO is observed for the former as compared to Mo containing catalyst. However, a small dissolution of Mo, Ru, Fe and W from the anodes and their migration toward cathodes during the cell operation is observed. These results indicate that the fuel cell performance and stability has been improved but not yet totally resolved.

  2. Bacterial Cellulose: A Robust Platform for Design of Three Dimensional Carbon-Based Functional Nanomaterials.

    Science.gov (United States)

    Wu, Zhen-Yu; Liang, Hai-Wei; Chen, Li-Feng; Hu, Bi-Cheng; Yu, Shu-Hong

    2016-01-19

    , converting cheap biomass into high value-added 3D carbon nanomaterials and designing diverse functional materials on 3D carbon structure. We first briefly introduce the history, constituent, and microstructure features of BC and discuss its advantages as a raw material for preparing the CNF aerogels. Then, we summarize the methods and strategies for preparing various 3D carbon-based nanomaterials from BC. In addition, the potential applications of the developed CNF aerogel based functional materials are also highlighted in this Account, including stretchable conductors, oxygen reduction reaction catalysts, supercapacitors, lithium-ion battery, and oil cleanup. Finally, we give some prospects on the future challenges in this emerging research area of designing CNF aerogel based functional nanomaterials from BC.

  3. Highly Porous, Rigid-Rod Polyamide Aerogels with Superior Mechanical Properties and Unusually High Thermal Conductivity.

    Science.gov (United States)

    Williams, Jarrod C; Nguyen, Baochau N; McCorkle, Linda; Scheiman, Daniel; Griffin, Justin S; Steiner, Stephen A; Meador, Mary Ann B

    2017-01-18

    We report here the fabrication of polyamide aerogels composed of poly-p-phenylene-terephthalamide, the same backbone chemistry as DuPont's Kevlar. The all-para-substituted polymers gel without the use of cross-linker and maintain their shape during processing-an improvement over the meta-substituted cross-linked polyamide aerogels reported previously. Solutions containing calcium chloride (CaCl 2 ) and para-phenylenediamine (pPDA) in N-methylpyrrolidinone (NMP) at low temperature are reacted with terephthaloyl chloride (TPC). Polymerization proceeds over the course of 5 min resulting in gelation. Removal of the reaction solvent via solvent exchange followed by extraction with supercritical carbon dioxide provides aerogels with densities ranging from 0.1 to 0.3 g/cm 3 , depending on the concentration of calcium chloride, the formulated number of repeat units, n, and the concentration of polymer in the reaction mixture. These variables were assessed in a statistical experimental study to understand their effects on the properties of the aerogels. Aerogels made using at least 30 wt % CaCl 2 had the best strength when compared to aerogels of similar density. Furthermore, aerogels made using 30 wt % CaCl 2 exhibited the lowest shrinkage when aged at elevated temperatures. Notably, whereas most aerogel materials are highly insulating (thermal conductivities of 10-30 mW/m K), the polyamide aerogels produced here exhibit remarkably high thermal conductivities (50-80 mW/(m K)) at the same densities as other inorganic and polymer aerogels. These high thermal conductivities are attributed to efficient phonon transport by the rigid-rod polymer backbone. In conjunction with their low cost, ease of fabrication with respect to other polymer aerogels, low densities, and high mass-normalized strength and stiffness properties, these aerogels are uniquely valuable for applications such as lightweighting in consumer electronics, automobiles, and aerospace where weight reduction is

  4. Novel synthesis of highly durable and active Pt catalyst encapsulated in nitrogen containing carbon for polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Lee, Hyunjoon; Sung, Yung-Eun; Choi, Insoo; Lim, Taeho; Kwon, Oh Joong

    2017-09-01

    Novel synthesis of a Pt catalyst encapsulated in a N-containing carbon layer for use in a polymer electrolyte membrane fuel cell is described in this study. A Pt-aniline complex, formed by mixing Pt precursor and aniline monomer, was used as the source of Pt, C, and N. Heat treatment of the Pt-aniline complex with carbon black yielded 5 nm Pt nanoparticles encapsulated by a N-containing carbon layer originating from aniline carbonization. The synthesized Pt catalyst exhibited higher mass specific activity to oxygen reduction reaction than that shown by conventional Pt/C catalyst because pyridinic N with graphitic carbon in the carbon layer provided active sites for oxygen reduction reaction in addition to those provided by Pt. In single cell testing, initial performance of the synthesized catalyst was limited because the thick catalyst layer increased resistance related to mass transfer. However, it was observed that the carbon layer successfully prevented Pt nanoparticles from growing via agglomeration and Ostwald ripening under fuel cell operation, thereby improving durability. Furthermore, a mass specific performance of the synthesized catalyst higher than that of a conventional Pt/C catalyst was achieved by modifying the synthesized catalyst's layer thickness.

  5. Atomistic nucleation sites of Pt nanoparticles on N-doped carbon nanotubes.

    Science.gov (United States)

    Sun, Chia-Liang; Pao, Chih-Wen; Tsai, Huang-Ming; Chiou, Jau-Wern; Ray, Sekhar C; Wang, Houng-Wei; Hayashi, Michitoshi; Chen, Li-Chyong; Lin, Hong-Ji; Lee, Jyh-Fu; Chang, Li; Tsai, Min-Hsiung; Chen, Kuei-Hsien; Pong, Way-Faung

    2013-08-07

    The atomistic nucleation sites of Pt nanoparticles (Pt NPs) on N-doped carbon nanotubes (N-CNTs) were investigated using C and N K-edge and Pt L3-edge X-ray absorption near-edge structure (XANES)/extended X-ray absorption fine structure (EXAFS) spectroscopy. Transmission electron microscopy and XANES/EXAFS results revealed that the self-organized Pt NPs on N-CNTs are uniformly distributed because of the relatively high binding energies of the adsorbed Pt atoms at the imperfect sites. During the atomistic nucleation process of Pt NPs on N-CNTs, stable Pt-C and Pt-N bonds are presumably formed, and charge transfer occurs at the surface/interface of the N-CNTs. The findings in this study were consistent with density functional theory calculations performed using cluster models for the undoped, substitutional-N-doped and pyridine-like-N-doped CNTs.

  6. Preparation and characterization of thermo- and pH dual-responsive 3D cellulose-based aerogel for oil/water separation

    Science.gov (United States)

    Zhao, Linyan; Li, Lian; Wang, Yixi; Wu, Jianning; Meng, Guihua; Liu, Zhiyong; Guo, Xuhong

    2018-01-01

    Oily wastewater caused by industrial production and crude oil leakage has attracted worldwide attention. Here, a thermo- and pH dual-responsive biodegradable cellulose-based aerogel for oil-water separation was designed and prepared via surface-initiated atom transfer radical polymerization (ATRP) of non-fluorine-containing 2-dimethylaminoethyl methacrylate (DMAEMA). The cellulose-based aerogel exhibit switchable superhydrophilicity with a water contact angle (WCA) of 0° and hydrophobicity (WCA 130°) by modulating pH or temperature. The functionalized cellulose-based aerogels could be used to absorb the water under 60 °C (pH 7.0) and pH is 1.0 (T = 25 °C), while absorb oil underwater when the temperature is above 60 °C (pH 7.0) or pH is 13.0 (T = 25 °C). So this adsorbent were suitable for the separation of water-rich or oil-rich oil/water mixtures, and it could adsorb oil over ten times its own weight, and had a good reusability. What's more, the cellulose-based aerogel is green, low cost, and environmental friendly, which makes it a promising candidate to be used for oil-water separation.

  7. Formic Acid Oxidation over Hierarchical Porous Carbon Containing PtPd Catalysts

    Directory of Open Access Journals (Sweden)

    Elena Pastor

    2013-10-01

    Full Text Available The use of high surface monolithic carbon as support for catalysts offers important advantage, such as elimination of the ohmic drop originated in the interparticle contact and improved mass transport by ad-hoc pore design. Moreover, the approach discussed here has the advantage that it allows the synthesis of materials having a multimodal porous size distribution, with each pore size contributing to the desired properties. On the other hand, the monolithic nature of the porous support also imposes new challenges for metal loading. In this work, the use of Hierarchical Porous Carbon (HPC as support for PtPd nanoparticles was explored. Three hierarchical porous carbon samples (denoted as HPC-300, HPC-400 and HPC-500 with main pore size around 300, 400 and 500 nm respectively, are used as porous support. PtPd nanoparticles were loaded by impregnation and subsequent chemical reduction with NaBH4. The resulting material was characterized by EDX, XRD and conventional electrochemical techniques. The catalytic activity toward formic acid and methanol electrooxidation was evaluated by electrochemical methods, and the results compared with commercial carbon supported PtPd. The Hierarchical Porous Carbon support discussed here seems to be promising for use in DFAFC anodes.

  8. Temperature-programmed reduction and cyclic voltammetry of Pt/carbon-fibre paper catalysts for methanol electrooxidation

    International Nuclear Information System (INIS)

    Attwood, P.A.; McNicol, B.D.; Short, R.T.

    1981-01-01

    Temperature-programmed reduction (TPR) and cyclic voltammetry (CV) studies of platinum catalysts supported on pyrographite-coated carbon-fibre paper, and prepared by either ion exchange or impregnation, clearly demonstrate the nature of the interactions between the platinum species and the support. After drying the above catalysts at 120 0 C, the ion-exchanged preparation exhibits the stronger interaction with the carbon support, as might be expected since a chemical interaction with carbon surface groups is known to occur in such catalysts. The presence of a fraction of bulk Pt(NH 3 ) 4 (OH) 2 impregnating salt in the impregnated catalyst has been detected using TPR. After air activation at 300 0 C, subambient reduction peaks were observed and the strength of binding of Pt in the ion-exchanged catalyst was reflected by its increased difficulty of reduction in comparison with that of the impregnated catalyst. The stoichiometry of reduction in ion-exchanged catalysts corresponds to Pt 2+ → Pt 0 in both dried and activated catalysts, with a small amount of Pt 4+ present in the latter. Upon activation the impregnated catalyst showed the presence of some Pt metal, which was thought to arise from the decomposition of the fraction of bulk Pt(NH 3 ) 4 (OH) 2 in the dried catalyst. Activation of ion-exchanged catalysts at temperatures higher than 300 0 C led to a progressive weakening of the Pt-support interaction and consequent smaller Pt surface areas. Activation at 500 0 C in air produced Pt metal exclusively and very low Pt surface areas. The strong interaction between Pt and the carbon support upon activation of the ion-exchanged catalyst at 300 0 C is thought to be the origin of the large metal surface area and the high catalytic activity for methanol electrooxidation found upon reduction

  9. Adherent diamond film deposited on Cu substrate by carbon transport from nanodiamond buried under Pt interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xuezhang [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Wei Qiuping, E-mail: qiupwei@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 (China); Yu Zhiming, E-mail: zhiming@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 (China); Yang Taiming; Zhai Hao [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Adherent polycrystalline diamond films were grown on copper substrate by carbon transport. Black-Right-Pointing-Pointer The nucleation density was increased to 10{sup 11} cm{sup -2}. Black-Right-Pointing-Pointer Diamond films were a composite structure of nano-crystalline diamond layer and micro-crystalline diamond layer. Black-Right-Pointing-Pointer Diamond nucleation was based by carbon dissolving from UDDs to Pt interlayer and formation of sp{sup 3}-bonded diamond clusters at the Pt surface. - Abstract: Diamond film deposited on Cu suffered from poor adhesion mainly due to the large mismatch of thermal expansion coefficients and the lack of affinity between carbon and Cu. Enhancing diamond nucleation by carbon transport from buried nanodiamond through a Pt ultrathin interlayer, adherent diamond film was then deposited on Cu substrate without distinctly metallic interlayer. This novel nucleation mechanism increased diamond nucleation density to 10{sup 11} cm{sup -2}, and developed diamond film with a composite structure of nano-crystalline diamond (NCD) layer and micro-crystalline diamond layer. Diamond film was characterized by the scanning electron microscope (SEM) and Raman spectroscope, respectively. The composition of diamond film/Cu substrate interface was examined by electron probe microanalysis (EPMA). The adhesion of diamond film was evaluated by indentation test. Those results show that a Pt ultrathin interlayer provides stronger chemically bonded interfaces and improve film adhesion.

  10. Adherent diamond film deposited on Cu substrate by carbon transport from nanodiamond buried under Pt interlayer

    International Nuclear Information System (INIS)

    Liu Xuezhang; Wei Qiuping; Yu Zhiming; Yang Taiming; Zhai Hao

    2013-01-01

    Highlights: ► Adherent polycrystalline diamond films were grown on copper substrate by carbon transport. ► The nucleation density was increased to 10 11 cm −2 . ► Diamond films were a composite structure of nano-crystalline diamond layer and micro-crystalline diamond layer. ► Diamond nucleation was based by carbon dissolving from UDDs to Pt interlayer and formation of sp 3 -bonded diamond clusters at the Pt surface. - Abstract: Diamond film deposited on Cu suffered from poor adhesion mainly due to the large mismatch of thermal expansion coefficients and the lack of affinity between carbon and Cu. Enhancing diamond nucleation by carbon transport from buried nanodiamond through a Pt ultrathin interlayer, adherent diamond film was then deposited on Cu substrate without distinctly metallic interlayer. This novel nucleation mechanism increased diamond nucleation density to 10 11 cm −2 , and developed diamond film with a composite structure of nano-crystalline diamond (NCD) layer and micro-crystalline diamond layer. Diamond film was characterized by the scanning electron microscope (SEM) and Raman spectroscope, respectively. The composition of diamond film/Cu substrate interface was examined by electron probe microanalysis (EPMA). The adhesion of diamond film was evaluated by indentation test. Those results show that a Pt ultrathin interlayer provides stronger chemically bonded interfaces and improve film adhesion.

  11. The Effect of Support on Advanced Pt-based Cathodes towards the Oxygen Reduction Reaction. State of the Art

    International Nuclear Information System (INIS)

    Luo, Yun; Alonso-Vante, Nicolas

    2015-01-01

    Graphical abstract: TOC: This mini-review summarizes advanced Pt catalysts towards enhanced ORR activity and stability. Tunable ORR activity and stability can be achieved in tailoring Pt active center, depending on nature of supporting materials. - Highlights: • Substrate effect leads to ORR activity and stability enhancement of catalyst centers. • Carbon-based materials and oxide-carbon composite influences favorably the Pt electronic environment. • Pt surface modification induced via ligand effect, geometric effect, metal-substrate strong interaction, and interaction of rare earth oxide and Pt surface atoms. • Sources for enhancement of ORR activity and stability were identified. - Abstract: This work summarizes the advanced materials developed by various research groups for improving the stability of platinum (Pt), and Pt-based catalysts center toward the oxygen reduction reaction (ORR) in acid medium. The ORR stability enhancement of Pt catalytic center can be classified according to the different nature of the supporting materials, namely, carbon-, oxide-based-, and oxide-carbon composites. The enhancement and stability of a catalytic center can be related to either its electronic modification induced by a strong interaction with the support, another metal (alloy), or to geometric effects. In addition, other parameters come into play, the size, the morphology of the catalytic center, the temperature, the dispersion, and mass loading, along with the measuring methods. This mini-review mainly focusses on the stability improvement, depending on the substrate nature. This latter can be further modified via functionalization or by the chemical interaction nature between the substrate and catalyst.

  12. Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties.

    Science.gov (United States)

    Jiménez-Saelices, Clara; Seantier, Bastien; Cathala, Bernard; Grohens, Yves

    2017-02-10

    Nanofibrillated cellulose (NFC) aerogels were prepared by spray freeze-drying (SFD). Their structural, mechanical and thermal insulation properties were compared to those of NFC aerogels prepared by conventional freeze-drying (CFD). The purpose of this investigation is to develop superinsulating bioaerogels by reducing their pore size. Severe reduction of the aerogel pore size and skeleton architecture were observed by SEM, aerogels prepared by SFD method show a fibril skeleton morphology, which defines a mesoporous structure. BET analyses confirm the appearance of a new organization structure with pores of nanometric sizes. As a consequence, the thermal insulation properties were significantly improved for SFD materials compared to CFD aerogel, reaching values of thermal conductivity as low as 0.018W/(mK). Moreover, NFC aerogels have a thermal conductivity below that of air in ambient conditions, making them one of the best cellulose based thermal superinsulating material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Electrocatalytic reduction of H2O2 by Pt nanoparticles covalently bonded to thiolated carbon nanostructures

    International Nuclear Information System (INIS)

    You, Jung-Min; Kim, Daekun; Jeon, Seungwon

    2012-01-01

    Highlights: ► Novel thiolated carbon nanostructures – platinum nanoparticles [t-GO-C(O)-pt and t-MWCNT-C(O)-S-pt] have been synthesized, and [t-GO-C(O)-pt and t-MWCNT-C(O)-S-pt] denotes as t-GO-pt and t-MWCNT-Pt in manuscript, respectively. ► The modified electrode denoted as PDDA/t-GO-pt/GCE was used for the electrochemical determination of H 2 O 2 for the first time. ► The results show that PDDA/t-GO-pt nanoparticles have the promising potential as the basic unit of the electrochemical biosensors for the detection of H 2 O 2 . ► The proposed H 2 O 2 biosensors exhibited wide linear ranges and low detection limits, giving fast responses within 10 s. - Abstract: Glassy carbon electrodes were coated with thiolated carbon nanostructures – multi-walled carbon nanotubes and graphene oxide. The subsequent covalent addition of platinum nanoparticles and coating with poly(diallydimethylammonium chloride) resulted in biosensors that detected hydrogen peroxide through its electrocatalytic reduction. The sensors were easily and quickly prepared and showed improved sensitivity to the electrocatalytic reduction of H 2 O 2 . The Pt nanoparticles covalently bonded to the thiolated carbon nanostructures were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive X-ray spectroscopy. Cyclic voltammetry and amperometry were used to characterize the biosensors’ performances. The sensors exhibited wide linear ranges and low detection limits, giving fast responses within 10 s, thus demonstrating their potential for use in H 2 O 2 analysis.

  14. Preparation and characterization of silica aerogels from diatomite via ambient pressure drying

    Science.gov (United States)

    Wang, Baomin; Ma, Hainan; Song, Kai

    2014-07-01

    The silica aerogels were successfully fabricated under ambient pressure from diatomite. The influence of different dilution ratios of diatomite filtrate on physical properties of aerogels were studied. The microstructure, surface functional groups, thermal stability, morphology and mechanical properties of silica aerogels based on diatomite were investigated by BET adsorption, FT-IR, DTA-TG, FESEM, TEM, and nanoindentation methods. The results indicate that the filtrate diluted with distilled water in a proportion of 1: 2 could give silica aerogels in the largest size with highest transparency. The obtained aerogels with density of 0.122-0.203 g/m3 and specific surface area of 655.5-790.7 m2/g are crack free amorphous solids and exhibited a sponge-like structure. Moreover, the peak pore size resided at 9 nm. The initial aerogels were hydrophobic, when being heat-treated around 400°C, the aerogels were transformed into hydrophilic ones. The obtained aerogel has good mechanical properties.

  15. Excellent performance of Pt-C/TiO2 for methanol oxidation: Contribution of mesopores and partially coated carbon

    Science.gov (United States)

    Wu, Xinbing; Zhuang, Wei; Lu, Linghong; Li, Licheng; Zhu, Jiahua; Mu, Liwen; Li, Wei; Zhu, Yudan; Lu, Xiaohua

    2017-12-01

    Partial deposition of carbon onto mesoporous TiO2 (C/TiO2) were prepared as supporting substrate for Pt catalyst development. Carbon deposition is achieved by in-situ carbonization of furfuryl alcohol. The hybrid catalysts were characterized by XRD, Raman, SEM and TEM and exhibited outstanding catalytic activity and stability in methanol oxidation reaction. The heterogeneous carbon coated on mesoporous TiO2 fibers provided excellent electrical conductivity and strong interfacial interaction between TiO2 support and Pt metal nanoparticles. Methanol oxidation reaction results showed that the activity of Pt-C/TiO2 is 3.0 and 1.5 times higher than that of Pt-TiO2 and Pt-C, respectively. In addition, the Pt-C/TiO2 exhibited a 6.7 times enhanced stability compared with Pt-C after 2000 cycles. The synergistic effect of C/TiO2 is responsible for the enhanced activity of Pt-C/TiO2, and its excellent durability could be ascribed to the strong interfacial interaction between Pt nanoparticles and C/TiO2 support.

  16. Observation of isolated carbon atoms and the study of their mobility on Pt clusters by NMR

    International Nuclear Information System (INIS)

    Wang, P.; Ansermet, J.; Slichter, C.P.; Sinfelt, J.H.

    1985-01-01

    The authors have used NMR to determine the structure of surface species after the C-C bond scission of adsorbed acetylene and ethylene on Pt clusters produced by heating the samples to 690 K. They have found the species to be predominantly isolated carbon atoms adsorbed on Pt surfaces. They have studied the mobility of adsorbed carbon atoms from motional narrowing of the 13 C line shapes and motion-induced shortening of the spin-lattice relaxation times. They have found that the carbon atoms on Pt clusters are very mobile, their activation energy of 7 +- 1 kcal/mole for translational motion being less than half that of CO on Pt clusters

  17. Electrochemical study of nitrobenzene reduction using novel Pt nanoparticles/macroporous carbon hybrid nanocomposites

    International Nuclear Information System (INIS)

    Zhang Yufan; Zeng Lijun; Bo Xiangjie; Wang Huan; Guo Liping

    2012-01-01

    Graphical abstract: A one-step microwave-assisted route for rapidly synthesizing Pt nanoparticles ensemble on macroporous carbon hybrid nanocomposites (PNMPC) has been reported. As a novel electrode material, the excellent electrochemical behavior of nitrobenzene was investigated thoroughly at the PNMPC modified glassy carbon electrode. And moreover, the modified electrode was successfully applied to the determination of nitrobenzene in real samples. Highlights: ► One-step microwave-assisted heating synthesis Pt nanoparticles/macroporous carbon hybrid nanocomposites (PNMPC). ► Catalytic rate constant being 3.14 × 10 4 M −1 s −1 for NB in pH 7.0. ► Sensitive electrochemical detection of NB at the PNMPC/Nafion/GC electrode. ► The electrode showing excellent anti-interference ability and good stability for NB. - Abstract: Novel Pt nanoparticles (PN) ensemble on macroporous carbon (MPC) hybrid nanocomposites (PNMPC) were prepared through a rapidly and simple one-step microwave-assisted heating procedure. The obtained PNMPC was characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and electrochemical methods. The electrochemical reduction of nitrobenzene (NB) was thoroughly investigated at the PNMPC modified glassy carbon (GC) electrode, and the catalytic rate constant was calculated to be 3.14 × 10 4 M −1 s −1 for NB. A sensitive NB sensor was developed based on the PNMPC/GC electrode, which showed a wide linear range (1–200 μM), low detection limit (50 nM), high sensitivity (6.93 μA μM −1 ), excellent anti-interference ability and good stability. And moreover, the electrode was successfully applied to the determination of NB in real samples.

  18. Facile and green fabrication of cellulosed based aerogels for lampblack filtration from waste newspaper.

    Science.gov (United States)

    Fan, Peidong; Yuan, Yali; Ren, Junkai; Yuan, Bin; He, Qian; Xia, Guangmei; Chen, Fengxia; Song, Rui

    2017-04-15

    In this study, the lightweight, hydrophobic and porous cellulose-based aerogels (CAGs) were synthesized through a freeze-drying process using waste newspaper as the only raw material. After crosslinking with glutaraldehyde and treatment with trimethylchlorosilane (TMCS) using a simple thermal chemical vapor deposition process, the resulting CAGs became hydrophobic and oleophilic. Furthermore, the as-prepared CAGs exhibited a low density (17.4-28.7mgcm -3 ) and mesoporous inner-structure. All these properties attributed the novel aerogel not only with a good adsorption capability of oils and organic solvents, including kerosene, nitrobenzene, and chloroform, but also an excellent filtration capacity of lampblack. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A highly active PtCu3 intermetallic core-shell, multilayered Pt-skin, carbon embedded electrocatalyst produced by a scale-up sol-gel synthesis.

    Science.gov (United States)

    Bele, M; Jovanovič, P; Pavlišič, A; Jozinović, B; Zorko, M; Rečnik, A; Chernyshova, E; Hočevar, S; Hodnik, N; Gaberšček, M

    2014-11-07

    We present a novel, scaled-up sol-gel synthesis which enables one to produce 20 g batches of highly active and stable carbon supported PtCu3 nanoparticles as cathode materials for low temperature fuel cell application. We confirm the presence of an ordered intermetallic phase underneath a multilayered Pt-skin together with firm embedment of nanoparticles in the carbon matrix.

  20. Controllable fabrication of Pt nanocatalyst supported on N-doped carbon containing nickel nanoparticles for ethanol oxidation.

    Science.gov (United States)

    Yu, Jianguo; Dai, Tangming; Cao, Yuechao; Qu, Yuning; Li, Yao; Li, Juan; Zhao, Yongnan; Gao, Haiyan

    2018-08-15

    In this paper, platinum nanoparticles were deposited on a carbon carrier with the partly graphitized carbon and the highly dispersive carbon-coated nickel particles. An efficient electron transfer structure can be fabricated by controlling the contents of the deposited platinum. The high resolution transmission electron microscopy images of Pt 2 /Ni@C N-doped sample prove the electron transfer channel from Pt (1 1 1) crystal planes to graphite (1 0 0) or Ni (1 1 1) crystal planes due to these linked together crystal planes. The Pt 3 /Ni@C N-doped with low Pt contents cannot form the electron transfer structure and the Pt 1 /Ni@C N-doped with high Pt contents show an obvious aggregation of Pt nanoparticles. The electrochemical tests of all the catalysts show that the Pt 2 /Ni@C N-doped sample presents the highest catalytic activity, the strongest CO tolerance and the best catalytic stability. The high performance is attributed to the efficient electronic transport structure of the Pt 2 /Ni@C N-doped sample and the synergistic effect between Pt and Ni nanoparticles. This paper provides a promising method for enhancing the conductivity of electrode material. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Synthesis and characterization of Pd-on-Pt and Au-on-Pt bimetallic nanosheaths on multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Wang Shuangyin; Jiang, San Ping; Wang Xin

    2011-01-01

    The authors have successfully synthesized Pd-on-Pt (thickness: 12 nm) and Au-on-Pt bimetallic nanosheaths on multiwalled carbon nanotubes (MWCNTs) via a seed-mediated growth approach. Pt nanoparticles as seeds were pre-deposited on MWCNTs with uniform distribution followed by the successive seed-mediated growth of metal atoms reduced by a weak reducing agent, ascorbic acid. The essential role of pre-deposited nanoseed particles on MWCNTs was demonstrated. The as-prepared materials were characterization by transition electron microscopy, energy-dispersive X-ray spectroscopy, and element mapping tools. The current strategy extends the classical seed-mediated growth method to prepare bimetallic nanosheath on MWCNT support.

  2. Incorporation of Pt, Ru and Pt-Ru nanoparticles into ordered mesoporous carbons for efficient oxygen reduction reaction in alkaline media

    International Nuclear Information System (INIS)

    Stojmenović, Marija; Momčilović, Milan; Gavrilov, Nemanja; Pašti, Igor A.; Mentus, Slavko; Jokić, Bojan; Babić, Biljana

    2015-01-01

    Ordered mesoporous carbon, volume-doped up to 3 w.% with Pt, Ru and Pt-Ru nanoparticles was synthesized by evaporation-induced self-assembly method, under acidic conditions. The content of incorporated metal was determined by EDX analysis. The X-ray diffractometry confirmed the existence of highly dispersed metallic phases in doped samples. Specific surface area was determined by N 2 -physisorption measurements to range between 452 and 545 m 2 g −1 . Raman spectroscopy of investigated materials indicated highly disordered carbon structure with crystallite sizes around 1.4 nm. In a form of thin-layer electrode on glassy carbon support, in 0.1 M KOH solution, the prepared materials displayed high activity toward oxygen reduction reaction (ORR) in alkaline media, with onset potentials more positive than −0.10 V vs. SCE. The kinetics of O 2 reduction was found to be affected by both the specific surface area and the concentration of metal dopants. The ethanol tolerance of (Pt, Ru)-doped OMCs was found to be higher than that of common Pt/C ORR catalysts. Presented study provides a new route for the synthesis of active and selective ORR catalysts in alkaline media, being competitive with, or superior to, the existing ones in terms of performance and price

  3. Te/Pt nanonetwork modified carbon fiber microelectrodes for methanol oxidation

    International Nuclear Information System (INIS)

    Tsai, Hsiang-Yu; Shih, Zih-Yu; Lin, Zong-Hong; Chang, Huan-Tsung

    2013-01-01

    Te/Pt nanonetwork-decorated carbon fiber microelectrodes (CFMEs) have been fabricated and employed as anodic catalysts in a direct methanol fuel cell (DMFC). Te nanowires were prepared from tellurite ions (TeO 3 2− ) through a seed-mediated growth process and were deposited onto CFMEs to form three-dimensional Te nanonetworks. The Te nanonetworks then acted as a framework and reducing agent to reduce PtCl 6 2− ions to form Te/Pt through a galvanic replacement reaction, leading to the formation of Te/PtCFMEs. By controlling the reaction time, the amount of Pt and morphology of Te/Pt nanonetworks were controlled, leading to various degrees of electrocatalytic activity. The Te/PtCFMEs provide a high electrochemical active surface area (129.2 m 2 g −1 ), good catalytic activity (1.2 A mg −1 ), high current density (20.0 mA cm −2 ), long durability, and tolerance toward the poisoning species for methanol oxidation in 0.5 M sulfuric acid containing 1 M methanol. We have further demonstrated an enhanced current density by separately using 3 and 5 Te/PtCFMEs. Our results show that the low-cost, stable, and effective Te/PtCFMEs have great potential in the fabrication of cost-effective fuel cells. (paper)

  4. Capacitor with a composite carbon foam electrode

    Science.gov (United States)

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1999-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid partides being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  5. Three dimensional nitrogen-doped graphene aerogels functionalized with melamine for multifunctional applications in supercapacitors and adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Ling-Bao; Hou, Shu-Fen; Zhou, Jin; Zhang, Jing-Li; Si, Weijiang; Dong, Yunhui, E-mail: hgxydyh@sdut.edu.cn; Zhuo, Shuping, E-mail: zhuosp_academic@yahoo.com

    2015-10-15

    In present work, we demonstrate an efficient and facile strategy to fabricate three-dimensional (3D) nitrogen-doped graphene aerogels (NGAs) based on melamine, which serves as reducing and functionalizing agent of graphene oxide (GO) in an aqueous medium with ammonia. Benefiting from well-defined and cross-linked 3D porous network architectures, the supercapacitor based on the NGAs exhibited a high specific capacitance of 170.5 F g{sup −1} at 0.2 A g{sup −1}, and this capacitance also showed good electrochemical stability and a high degree of reversibility in the repetitive charge/discharge cycling test. More interestingly, the prepared NGAs further exhibited high adsorption capacities and high recycling performance toward several metal ions such as Pb{sup 2+}, Cu{sup 2+} and Cd{sup 2+}. Moreover, the hydrophobic carbonized nitrogen-doped graphene aerogels (CNGAs) showed outstanding adsorption and recycling performance for the removal of various oils and organic solvents. - Graphical abstract: Three-dimensional nitrogen-doped graphene aerogels were prepared by using melamine as reducing and functionalizing agent in an aqueous medium with ammonia, which showed multifunctional applications in supercapacitors and adsorption. - Highlights: • Three-dimensional nitrogen-doped graphene aerogels (NGAs) were prepared. • Melamine was used as reducing and functionalizing agent. • NGAs exhibited relatively good electrochemical properties in supercapacitor. • NGAs exhibited high adsorption performance toward several metal ions. • CNGAs showed outstanding adsorption capacities for various oils and solvents.

  6. Optically Transparent Thermally Insulating Silica Aerogels for Solar Thermal Insulation.

    Science.gov (United States)

    Günay, A Alperen; Kim, Hannah; Nagarajan, Naveen; Lopez, Mateusz; Kantharaj, Rajath; Alsaati, Albraa; Marconnet, Amy; Lenert, Andrej; Miljkovic, Nenad

    2018-04-18

    Rooftop solar thermal collectors have the potential to meet residential heating demands if deployed efficiently at low solar irradiance (i.e., 1 sun). The efficiency of solar thermal collectors depends on their ability to absorb incoming solar energy and minimize thermal losses. Most techniques utilize a vacuum gap between the solar absorber and the surroundings to eliminate conduction and convection losses, in combination with surface coatings to minimize reradiation losses. Here, we present an alternative approach that operates at atmospheric pressure with simple, black, absorbing surfaces. Silica based aerogels coated on black surfaces have the potential to act as simple and inexpensive solar thermal collectors because of their high transmission to solar radiation and low transmission to thermal radiation. To demonstrate their heat-trapping properties, we fabricated tetramethyl orthosilicate-based silica aerogels. A hydrophilic aerogel with a thickness of 1 cm exhibited a solar-averaged transmission of 76% and thermally averaged transmission of ≈1% (at 100 °C). To minimize unwanted solar absorption by O-H groups, we functionalized the aerogel to be hydrophobic, resulting in a solar-averaged transmission of 88%. To provide a deeper understanding of the link between aerogel properties and overall efficiency, we developed a coupled radiative-conductive heat transfer model and used it to predict solar thermal performance. Instantaneous solar thermal efficiencies approaching 55% at 1 sun and 80 °C were predicted. This study sheds light on the applicability of silica aerogels on black coatings for solar thermal collectors and offers design priorities for next-generation solar thermal aerogels.

  7. Electrocatalytic activity of atomic layer deposited Pt-Ru catalysts onto N-doped carbon nanotubes

    NARCIS (Netherlands)

    Johansson, A.-C.; Larsen, J.V.; Verheijen, M.A.; Haugshøj, K.B.; Clausen, H.; Kessels, W.M.M.; Christensen, L.H.; Thomsen, E.V.

    2014-01-01

    Pt-Ru catalysts of various compositions, between 0 and 100 at.% of Ru, were deposited onto N-doped multi-walled carbon nanotubes (N-CNTs) by atomic layer deposition (ALD) at 250 C. The Pt and Ru precursors were trimethyl(methylcyclopentadienyl)platinum (MeCpPtMe3) and

  8. Aerogel Antennas Communications Study Using Error Vector Magnitude Measurements

    Science.gov (United States)

    Miranda, Felix A.; Mueller, Carl H.; Meador, Mary Ann B.

    2014-01-01

    This presentation discusses an aerogel antennas communication study using error vector magnitude (EVM) measurements. The study was performed using 2x4 element polyimide (PI) aerogel-based phased arrays designed for operation at 5 GHz as transmit (Tx) and receive (Rx) antennas separated by a line of sight (LOS) distance of 8.5 meters. The results of the EVM measurements demonstrate that polyimide aerogel antennas work appropriately to support digital communication links with typically used modulation schemes such as QPSK and 4 DQPSK. As such, PI aerogel antennas with higher gain, larger bandwidth and lower mass than typically used microwave laminates could be suitable to enable aerospace-to- ground communication links with enough channel capacity to support voice, data and video links from CubeSats, unmanned air vehicles (UAV), and commercial aircraft.

  9. Refractive index of silica aerogel: Uniformity and dispersion law

    International Nuclear Information System (INIS)

    Bellunato, T.; Calvi, M.; Matteuzzi, C.; Musy, M.; Perego, D.L.; Storaci, B.

    2008-01-01

    Two methods for the measurement of the uniformity of the refractive index n within a single block of silica aerogel are described. One is based on the deflection of a laser beam induced by transverse index gradients. The second exploits the Cherenkov effect, measuring the emission angle of photons radiated by 500 MeV electrons traversing the aerogel. The beam can scan the full aerogel surface providing information on point to point variations of n. The measurement of the dispersion law n(λ) is also reported. An Xe lamp coupled to a diffraction grating provides the monochromatic source. The index for each λ is measured by the prism method at a corner of an aerogel sample. A Sellmeier functional form for n(λ) is assumed, and the parameters best fitting the experimental data are given

  10. Aerogel Antennas Communications Study Using Error Vector Magnitude Measurements

    Science.gov (United States)

    Miranda, Felix A.; Mueller, Carl H.; Meador, Mary Ann B.

    2014-01-01

    This paper discusses an aerogel antennas communication study using error vector magnitude (EVM) measurements. The study was performed using 4x2 element polyimide (PI) aerogel-based phased arrays designed for operation at 5 GHz as transmit (Tx) and receive (Rx) antennas separated by a line of sight (LOS) distance of 8.5 meters. The results of the EVM measurements demonstrate that polyimide aerogel antennas work appropriately to support digital communication links with typically used modulation schemes such as QPSK and pi/4 DQPSK. As such, PI aerogel antennas with higher gain, larger bandwidth and lower mass than typically used microwave laminates could be suitable to enable aerospace-to-ground communication links with enough channel capacity to support voice, data and video links from cubesats, unmanned air vehicles (UAV), and commercial aircraft.

  11. Study of carbon-supported bimetallic PtCu nanoparticles by ASAXS

    International Nuclear Information System (INIS)

    Bulat, N.V.; Avakyan, L.A; Pryadchenko, V.V.; Srabionyan, V.V.; Belenov, S.V.; Bugaev, L.A.

    2017-01-01

    Bimetallic platinum-copper nanoparticles on carbon support are studied as a perspective electrochemical catalyst by anomalous small-angle X-ray scattering near the Pt absorption L 3 -edge. The simultaneous fitting of several diffraction patterns measured at different photon energies lead to a satisfactory agreement between experimental and model curves in the assumption of core-shell structure of the particles with Pt-rich shell and Cu-rich core. It is shown that the average size of as prepared nanoparticles is about 6 nm with distribution spread of about ±2 nm and with thickness of Pt-rich shell approximately 1.6 nm. After annealing at 350o C the average size of the particles increased by two times with additional enlargement of the Pt-rich shell thickness. (paper)

  12. Pressure resistance of copper benzene-1,3,5-tricarboxylate - carbon aerogel composites

    Science.gov (United States)

    Domán, Andrea; Nagy, Balázs; Nichele, Laura P.; Srankó, Dávid; Madarász, János; László, Krisztina

    2018-03-01

    The protective effect of a resorcinol - formaldehyde based carbon aerogel (CA) support was compared in two different forms of the hybrid made of copper benzene-1,3,5-tricarboxilate (HKUST-1) and CA. HKUST-1:CA with identical mass ratio (1:1). HKUST-1+CAis a physical mixture while in HKUST-1@CA the metal organic framework (MOF) crystals were grown on CA under solvothermal conditions. The effect of water vapour and the external pressure (25-200 bar) was investigated. TG/DTG data show that the prehistory of the samples has a strong influence on their thermal behaviour and nitrogen data suggest that part of the MOF grows in the wider pores of the HKUST-1@CA sample. Although there are no dramatic differences in the water adsorption isotherms, the physical mixture is slightly more proficient. In dry samples under compression the crystalline structure of the free HKUST-1 is well conserved. The nanoscale structure of the hybrids is sensitive to applied pressure and formation of mesopores of wide size distribution occurs. No significant difference was found between the corresponding CH4 adsorption isotherms of the composite samples, either in the as-prepared samples or after compression at 100 bar. After being exposed to high external pressure the CH4 uptake seems to be governed by the MOF.

  13. Design of Pt/Carbon Xerogel Catalysts for PEM Fuel Cells

    Directory of Open Access Journals (Sweden)

    Nathalie Job

    2015-01-01

    Full Text Available The design of efficient catalytic layers of proton exchange membrane fuel cells (PEMFCs requires the preparation of highly-loaded and highly-dispersed Pt/C catalysts. During the last few years, our work focused on the preparation of Pt/carbon xerogel electrocatalysts, starting from simple impregnation techniques that were further optimized via the strong electrostatic adsorption (SEA method to reach high dispersion and a high metal weight fraction. The SEA method, which consists of the optimization of the precursor/support electrostatic impregnation through an adequate choice of the impregnation pH with regard to the support surface chemistry, leads to very well-dispersed Pt/C samples with a maximum 8 wt.% Pt after drying and reduction under H2. To increase the metal loading, the impregnation-drying-reduction cycle of the SEA method can be repeated several times, either with fresh Pt precursor solution or with the solution recycled from the previous cycle. In each case, a high dispersion (Pt particle size ~3 nm is obtained. Finally, the procedure can be simplified by combination of the SEA technique with dry impregnation, leading to no Pt loss during the procedure.

  14. Co-deposition of Pt and ceria anode catalyst in supercritical carbon dioxide for direct methanol fuel cell applications

    International Nuclear Information System (INIS)

    You, Eunyoung; Guzmán-Blas, Rolando; Nicolau, Eduardo; Aulice Scibioh, M.; Karanikas, Christos F.; Watkins, James J.; Cabrera, Carlos R.

    2012-01-01

    Pt and mixed Pt-ceria catalysts were deposited onto gas diffusion layers using supercritical fluid deposition (SFD) to fabricate thin layer electrodes for direct methanol fuel cells. Dimethyl (1,5-cyclooctadiene) platinum (II) (CODPtMe 2 ) and tetrakis (2,2,6,6-tetramethyl 3,5-heptanedionato) cerium (IV) (Ce(tmhd) 4 ) were used as precursors. Hydrogen-assisted Pt deposition was performed in compressed carbon dioxide at 60 °C and 17.2 MPa to yield high purity Pt on carbon-black based gas diffusion layers. During the preparation of the mixed Pt-ceria catalyst, hydrogen reduction of CODPtMe 2 to yield Pt catalyzed the deposition of ceria from Ce(tmhd) 4 enabling co-deposition at 150 °C. The catalyst layers were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope-energy dispersive spectral (SEM-EDS) analyses. Their electrochemical performance toward methanol oxidation was examined in half cell mode using a three electrode assembly as well as in fuel cell mode. The thin layer electrodes formed via SFD exhibited higher performance in fuel cell operations compared to those prepared by the conventional brush-paint method. Furthermore, the Pt-ceria catalyst with an optimized composition exhibited greater methanol oxidation activity than pure platinum.

  15. Evacuation and assembly of aerogel glazings

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev

    1999-01-01

    The application of monolithic silica aerogel as transparent insulation material for windows has been investigated for some years. It has been realised that a major problem of an industrial production of aerogel glazings will be the time for evacuation of the aerogel material. However, in a previous...... process, it can be considered as semi-online, and especially the capital cost is significantly lower for this method in comparison with a true online process. So hereby, a major obstacle is overcome with respect to a first industrial production of aerogel glazings.The apparatus has been constructed...

  16. SYNTHESIS AND CHARACTERIZATION OF CELLULOSE BASED BIO-POLYMER AEROGEL ISOLATED FROM WASTE OF BLUEBERRY TREE (VACCINIUM MYRTILLUS

    Directory of Open Access Journals (Sweden)

    Mehmet KAYA

    2016-09-01

    Full Text Available Cellulose aerogel (CA has highly porous structure, environmentally friendly, thermally stable and flame retardant properties. These properties in material worlds have attracted large interest as a potentially industrial material. In this paper, cellulose aerogel with flame retardant was produced from pruned branches and bushes of blueberries wastes (PBBW. Firstly, cellulose raw material these wastes was obtained and then, cellulose aerogel via freeze-drying, followed by cellulose hydrogel production. Our reports showed that three dimensionally network aerogel structure prepared from NaOH/Urea as scaffold solution. The present cellulose aerogel has excellent flame retardancy, which can extinguish within 140 s. By the way, it was inferred thermal stability performance of cellulose aerogel could be efficient potential thermal insulating material. Besides, this process are sustainable, easily available at low cost and suitable for industrial applications.

  17. Transparent, Superflexible Doubly Cross-Linked Polyvinylpolymethylsiloxane Aerogel Superinsulators via Ambient Pressure Drying.

    Science.gov (United States)

    Zu, Guoqing; Shimizu, Taiyo; Kanamori, Kazuyoshi; Zhu, Yang; Maeno, Ayaka; Kaji, Hironori; Shen, Jun; Nakanishi, Kazuki

    2018-01-23

    Aerogels have many attractive properties but are usually costly and mechanically brittle, which always limit their practical applications. While many efforts have been made to reinforce the aerogels, most of the reinforcement efforts sacrifice the transparency or superinsulating properties. Here we report superflexible polyvinylpolymethylsiloxane, (CH 2 CH(Si(CH 3 )O 2/2 )) n , aerogels that are facilely prepared from a single precursor vinylmethyldimethoxysilane or vinylmethyldiethoxysilane without organic cross-linkers. The method is based on consecutive processes involving radical polymerization and hydrolytic polycondensation, followed by ultralow-cost, highly scalable, ambient-pressure drying directly from alcohol as a drying medium without any modification or additional solvent exchange. The resulting aerogels and xerogels show a homogeneous, tunable, highly porous, doubly cross-linked nanostructure with the elastic polymethylsiloxane network cross-linked with flexible hydrocarbon chains. An outstanding combination of ultralow cost, high scalability, uniform pore size, high surface area, high transparency, high hydrophobicity, excellent machinability, superflexibility in compression, superflexibility in bending, and superinsulating properties has been achieved in a single aerogel or xerogel. This study represents a significant progress of porous materials and makes the practical applications of transparent flexible aerogel-based superinsulators realistic.

  18. Point-Defect Mediated Bonding of Pt Clusters on (5,5) Carbon Nanotubes

    DEFF Research Database (Denmark)

    Wang, J. G.; Lv, Y. A.; Li, X. N.

    2009-01-01

    The adhesion of various sizes of Pt clusters on the metallic (5,5) carbon nanotubes (CNTs) with and without the point defect has been investigated by means of density functional theory (DFT). The calculations show that the binding energies of Pt-n (n = 1-6) clusters on the defect free CNTs are mo...

  19. Carbon nanocages: a new support material for Pt catalyst with remarkably high durability.

    Science.gov (United States)

    Wang, Xiao Xia; Tan, Zhe Hua; Zeng, Min; Wang, Jian Nong

    2014-03-24

    Low durability is the major challenge hindering the large-scale implementation of proton exchange membrane fuel cell (PEMFC) technology, and corrosion of carbon support materials of current catalysts is the main cause. Here, we describe the finding of remarkably high durability with the use of a novel support material. This material is based on hollow carbon nanocages developed with a high degree of graphitization and concurrent nitrogen doping for oxidation resistance enhancement, uniform deposition of fine Pt particles, and strong Pt-support interaction. Accelerated degradation testing shows that such designed catalyst possesses a superior electrochemical activity and long-term stability for both hydrogen oxidation and oxygen reduction relative to industry benchmarks of current catalysts. Further testing under conditions of practical fuel cell operation reveals almost no degradation over long-term cycling. Such a catalyst of high activity, particularly, high durability, opens the door for the next-generation PEMFC for "real world" application.

  20. Development of aerogel Cherenkov counters at Novosibirsk

    International Nuclear Information System (INIS)

    Barnyakov, A.Yu.; Barnyakov, M.Yu.; Baehr, J.; Bellunato, T.; Beloborodov, K.I.; Bobrovnikov, V.S.; Buzykaev, A.R.; Calvi, M.; Danilyuk, A.F.; Djordjadze, V.; Golubev, V.B.; Kononov, S.A.; Kravchenko, E.A.; Lipka, D.; Matteuzzi, C.; Musy, M.; Onuchin, A.P.; Perego, D.; Rodiakin, V.A.; Savinov, G.A.; Serednyakov, S.I.; Shamov, A.G.; Stephan, F.; Tayursky, V.A.; Vorobiov, A.I.

    2006-01-01

    The work on aerogel Cherenkov counters was started in Novosibirsk in 1986. Production of aerogels with refractive indices of 1.006-1.13 and thicknesses of blocks up to 50mm was developed. The light absorption length at 400nm is 5-7m, the scattering length is 4-5cm. By these parameters, the Novosibirsk aerogel is one of the best in the world. The ASHIPH Cherenkov counters with light collection on wavelength shifters have been developed. The ASHIPH system of the KEDR detector contains 1000l of aerogel. The π/K separation is 4.5σ. A project of ASHIPH counters for the SND detector has been developed. Aerogel RICH for LHCb gives a possibility to identify hadrons in the momentum range of 2-10GeV/c. The Novosibirsk group is developing an aerogel RICH for the endcap for the SuperBaBar project. Calculations performed by a group of physicists from Novosibirsk and DESY-Zeuthen have shown that aerogel radiators enable to achieve time resolution up to 20fs

  1. Three dimensional nitrogen-doped graphene aerogels functionalized with melamine for multifunctional applications in supercapacitors and adsorption

    Science.gov (United States)

    Xing, Ling-Bao; Hou, Shu-Fen; Zhou, Jin; Zhang, Jing-Li; Si, Weijiang; Dong, Yunhui; Zhuo, Shuping

    2015-10-01

    In present work, we demonstrate an efficient and facile strategy to fabricate three-dimensional (3D) nitrogen-doped graphene aerogels (NGAs) based on melamine, which serves as reducing and functionalizing agent of graphene oxide (GO) in an aqueous medium with ammonia. Benefiting from well-defined and cross-linked 3D porous network architectures, the supercapacitor based on the NGAs exhibited a high specific capacitance of 170.5 F g-1 at 0.2 A g-1, and this capacitance also showed good electrochemical stability and a high degree of reversibility in the repetitive charge/discharge cycling test. More interestingly, the prepared NGAs further exhibited high adsorption capacities and high recycling performance toward several metal ions such as Pb2+, Cu2+ and Cd2+. Moreover, the hydrophobic carbonized nitrogen-doped graphene aerogels (CNGAs) showed outstanding adsorption and recycling performance for the removal of various oils and organic solvents.

  2. Noncovalently functionalized graphitic mesoporous carbon as a stable support of Pt nanoparticles for oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yuyan; Zhang, Sheng; Kou, Rong; Wang, Chongmin; Viswanathan, Vilayanur; Liu, Jun; Wang, Yong; Lin, Yuehe [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Wang, Xiqing; Dai, Sheng [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2010-04-02

    We report a durable electrocatalyst support, highly graphitized mesoporous carbon (GMPC), for oxygen reduction in polymer electrolyte membrane (PEM) fuel cells. GMPC is prepared through graphitizing the self-assembled soft-template mesoporous carbon (MPC) under high temperature. Heat-treatment at 2800 C greatly improves the degree of graphitization while most of the mesoporous structures and the specific surface area of MPC are retained. GMPC is then noncovalently functionalized with poly(diallyldimethylammonium chloride) (PDDA) and loaded with Pt nanoparticles by reducing Pt precursor (H{sub 2}PtCl{sub 6}) in ethylene glycol. Pt nanoparticles of {proportional_to}3.0 nm in diameter are uniformly dispersed on GMPC. Compared to Pt supported on Vulcan XC-72 carbon black (Pt/XC-72), Pt/GMPC exhibits a higher mass activity towards oxygen reduction reaction (ORR) and the mass activity retention (in percentage) is improved by a factor of {proportional_to}2 after 44 h accelerated degradation test under the potential step (1.4-0.85 V) electrochemical stressing condition which focuses on support corrosion. The enhanced activity and durability of Pt/GMPC are attributed to the graphitic structure of GMPC which is more resistant to corrosion. These findings demonstrate that GMPC is a promising oxygen reduction electrocatalyst support for PEM fuel cells. The approach reported in this work provides a facile, eco-friendly promising strategy for synthesizing stable metal nanoparticles on hydrophobic support materials. (author)

  3. Insights into the Controllable Chemical Composition of Metal Oxide Nanowires and Graphene Aerogels

    Science.gov (United States)

    Goldstein, Anna Patrice

    briefly, then isolated pockets of MTiO3 are formed on the nanowire surface. This structure retains the conductive channel in the center of the nanowire, which can be useful for charge separation. Longer annealing times result in segmented nanowires; the segments formed from a Ni-coated nanowire are bounded by TiO2(01-1) twin planes and NiTiO 3{100}/TiO2{03-1} interfaces. An alternative strategy for storing solar energy takes advantage of the capacitance between a semiconductor surface and adsorbed ions in solution. This type of energy storage device is called an electric double layer capacitor (EDLC). Graphene-based aerogels, which are porous materials composed of few-layer graphitic sheets, have the potential for higher surface area and higher conductivity than standard carbon aerogels. These properties make graphene-based aerogels a good material candidate for EDLC electrodes. Graphene oxide (GO) is the precursor material for the synthesis of a graphene-based aerogel, and it has been widely studied. Yet its hydrothermal gelation is still not fully understood, due to the high pressure reaction conditions and the non-uniform nature of GO. We demonstrate a number of changes that occur to the GO sheets during gelation: wrinkling, formation of a densified monolith, deoxygenation, increasing thermal stability, and color change. Plotting the time evolution of all these properties shows that they are simultaneous and likely of common origin. Possible mechanisms for gelation are explored. Graphene aerogels are synthesized by vapor phase thermal reduction of GO aerogels at temperatures up to 1600 °C. Further deoxygenation is observed in the aerogel during thermal reduction, along with enhanced crystallinity and an associated change in the electronic structure. When graphene aerogels are exposed to high-temperature boron oxide vapor, they are converted to boron nitride (BN) aerogels. The structure of the BN aerogel is investigated and shown to be similar in nanoscale morphology

  4. Manufacturing at the Nanoscale. Report of the National Nanotechnology Initiative Workshops, 2002-2004

    Science.gov (United States)

    2007-01-01

    manufactured through the synthesis of carbon aerogels with grafted fluoropolymer electrolytes and dispersed nanoparticulate Pt catalysts in the...industries. Examples include nanostructured catalysts (on zeolites, aerogels , hydrogels, etc.) for reactors; consolidated nanoparticle or nanostructured...properties, i.e., anti-reflection and tailored refractive indices, with applications in helmet visors, aircraft canopies, and smart windows. Besides

  5. Architecture-dependent surface chemistry for Pt monolayers on carbon-supported Au.

    Science.gov (United States)

    Cheng, Shuang; Rettew, Robert E; Sauerbrey, Marc; Alamgir, Faisal M

    2011-10-01

    Pt monolayers were grown by surface-limited redox replacement (SLRR) on two types of Au nanostructures. The Au nanostructures were fabricated electrochemically on carbon fiber paper (CFP) by either potentiostatic deposition (PSD) or potential square wave deposition (PSWD). The morphology of the Au/CFP heterostructures, examined using scanning electron microscopy (SEM), was found to depend on the type of Au growth method employed. The properties of the Pt deposit, as studied using X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and cyclic voltammetry (CV), were found to depend strongly on the morphology of the support. Specifically, it was found that smaller Au morphologies led to a higher degree of cationicity in the resulting Pt deposit, with Pt(4+) and Pt(2+) species being identified using XPS and XAS. For fuel-cell catalysts, the resistance of ultrathin catalyst deposits to surface area loss through dissolution, poisoning, and agglomeration is critical. This study shows that an equivalent of two monolayers (ML) is the low-loading limit of Pt on Au. At 1 ML or below, the Pt film decreases in activity and durability very rapidly due to presence of cationic Pt. © 2011 American Chemical Society

  6. Microwave heated polyol synthesis of carbon supported PtAuSn/C nanoparticles for ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hong; Han, Kefei [School of Science, State key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Liu, Yingli; Chang, Zhaorong [College of Chemistry and Environmental Science, Henan Normal University, Xinxiang, Henan (China); Shen, Liangbo [Beijing No.4 High School, Beijing (China); Wei, Yongsheng; Guo, Zhijun (School of Science Beijing Jiaotong University Beijing P. R. China); Wang, Haijiang [Institute for Fuel Cell Innovation, National Research Council of (Canada)

    2010-04-15

    Carbon-supported PtAuSn/C nanoparticle catalyst was synthesized by a microwave-assisted polyol process. The process is a quick process that only requires a few minutes to complete. The catalyst thus obtained was characterized by transmission electron microscopy and X-ray diffraction analysis. The electrochemical performance of the catalyst, for the ethanol oxidation reaction, was also investigated. The results indicated that the PtAuSn/C catalyst was uniformly dispersed on carbon and was in the nano-size range. The electrochemical measurements indicated that PtAuSn/C nanoparticle catalyst synthesized by the microwave-assisted polyol method demonstrated a significantly higher electrochemically active area and higher catalytic activity than Pt/C for the ethanol oxidation reaction. (author)

  7. New Ti3C2 aerogel as promising negative electrode materials for asymmetric supercapacitors

    Science.gov (United States)

    Li, Lu; Zhang, Mingyi; Zhang, Xitian; Zhang, Zhiguo

    2017-10-01

    Novel 3D Ti3C2 aerogel has been first synthesized by a simple EDA-assisted self-assembly process. Its inside are channels and pores structure. The interconnected aerogel structure could efficiently restrain restacking of Ti3C2 flakes. Thus, it exhibits a large specific surface area as high as 176.3 m2 g-1. The electrochemical performances have been measured. The Ti3C2 aerogel achieves a quite high areal capacitance of 1012.5 mF cm-2 for the mass loading of 15 mg at a scan rate of 2 mV s-1 in 1 M KOH electrolyte. An asymmetric supercapacitor (ASC) has been assembled by using the Ti3C2 aerogel electrode as the negative electrode and electrospinning carbon nanofiber film as the positive electrode. The device can deliver a high energy density of 120.0 μWh cm-2 and a maximum power density of 26123 μW cm-2. A lamp panel with nineteen red light-emitting diodes has been powered by two ASCs in series.

  8. Low-temperature specific-heat and thermal-conductivity of silica aerogels

    DEFF Research Database (Denmark)

    Bernasconi, A.; Sleator, T.; Posselt, D.

    1992-01-01

    Specific heat, C(p), and thermal conductivity, lambda, have been measured on a series of base-catalyzed silica aerogels at temperatures between 0.05 and 20 K. Results for both C(p)(T) and lambda(T) confirm that the different length-scale regions observed in the aerogel structure are reflected...

  9. A new route for preparation of sodium-silicate-based hydrophobic silica aerogels via ambient-pressure drying

    International Nuclear Information System (INIS)

    Bangi, Uzma K H; Rao, A Venkateswara; Rao, A Parvathy

    2008-01-01

    An in-depth investigation into the synthesis of hydrophobic silica aerogels prepared by the surface derivatization of wet gels followed by subsequent drying at ambient pressure is reported. The following sol-gel parameters were examined for their effect on the physical properties of the derived aerogels: number of gel washings with water, percentage of hexane or methanol in silylating mixture, molar ratio of tartaric acid: Na 2 SiO 3 , gel aging period, weight% of silica, trimethylchlorosilane (TMCS) percentage, and silylation period. These parameters were varied from 1 to 4, 0 to 100%, 0.27 to 1.2, 0 to 4 h, 1.5 to 8 wt.%, 20 to 40% and 6 to 24 h, respectively. The properties of hydrophobic silica aerogels synthesized by this new route were investigated in terms of bulk density, percentage volume shrinkage, percentage porosity, thermal conductivity and contact angle with water, and by Fourier transform infrared spectroscopy (FTIR). The as-prepared hydrophobic silica aerogels exhibited high temperature stability (up to approximately 435 0 C) as measured by thermogravimetric/differential thermal analysis (TGA-DTA). The optimal sol-gel parameters were found to be a molar ratio of Na 2 SiO 3 :H 2 O : tartaric acid : TMCS of 1 : 146.67 : 0.86 : 9.46, an aging period of 3 h, four washings with water in 24 h and the use of a 50% hexane- or methanol-based silylating mixture. Aerogels prepared with these optimal parameters were found to exhibit 50% optical transparency in the visible range, 84 kg m -3 density, 0.090 W mK -1 thermal conductivity, 95% porosity and a contact angle of 146 0 with water

  10. MXP(M = Co/Ni)@carbon core-shell nanoparticles embedded in 3D cross-linked graphene aerogel derived from seaweed biomass for hydrogen evolution reaction.

    Science.gov (United States)

    Zhao, Wentong; Lu, Xiaoqing; Selvaraj, Manickam; Wei, Wei; Jiang, Zhifeng; Ullah, Nabi; Liu, Jie; Xie, Jimin

    2018-05-24

    Low-cost electrocatalysts play an important role in the hydrogen evolution reaction (HER). Particularly, transition metal phosphides (TMPs) are widely applied in the development of HER electrocatalysts. To improve the poor electrochemical reaction kinetics of HER, we introduce a facile way to synthesize carbon core-shell materials containing cobalt phosphide nanoparticles embedded in different graphene aerogels (GAs) (CoP@C-NPs/GA-x (x = 5, 10 and 20)) using seaweed biomass as precursors. The synthesized CoP@C-NPs/GA-5 exhibits efficient catalytic activity with small overpotentials of 120 and 225 mV at current densities of 10 mA cm-2, along with the low Tafel slopes of 57 and 66 mV dec-1, for HER in acidic and alkaline electrolytes, respectively. Compared with carbon aerogel (CA) containing cobalt phosphide nanoparticles (CoP-NPs@CA), the stability of CoP@C-NPs/GA-5 coated with carbon-shells (∼0.8 nm) was significantly improved in acidic electrolytes. We also prepared carbon core-shell materials containing nickel phosphide nanoparticles embedded in GA (Ni2P@C-NPs/GA) to further expand this synthetic route. The graphene-Ni2P@C aerogel shows a similar morphology and better catalytic activity for HER in acidic and alkaline electrolytes. In this work, the robust three-dimensional (3D) GA matrix with abundant open pores and large surface area provides unblocked channels for electrolyte contact and electronic transfer and enables very close contact between the catalyst and electrolyte. The MxP@C core-shell structure prevents the inactivation of MxP NPs during HER processes, and the thin graphene oxide (GO) layers and 3D CA together build up a 3D conductive matrix, which not only adjusts the volume expansion of MxP NPs as well as preventing their aggregation, but also provides a 3D conductive pathway for rapid charge transfer processes. The present synthetic strategy for phosphides via in situ phosphorization with 3D GA can be extended to other novel high

  11. Aerogel / Polymer Composite Materials

    Science.gov (United States)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)

    2017-01-01

    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  12. PtRu nanoparticles dispersed on nitrogen-doped carbon nanohorns as an efficient electrocatalyst for methanol oxidation reaction

    International Nuclear Information System (INIS)

    Zhang, Linwei; Gao, Ang; Liu, Yan; Wang, Yuan; Ma, Jiantai

    2014-01-01

    Highlights: • A novel anode catalyst is synthesized using N-doped carbon nanohorns as support. • PtRu/NCNHs exhibits an excellent activity for MOR relative to PtRu/C catalysts. • The enhancement is due to the electronic interaction between NCNHs and PtRu NPs. - Abstract: A novel anode catalyst (PtRu/NCNHs) assembled with nitrogen-doped carbon nanohorns (NCNHs) and PtRu nanoparticles (1.9 nm) exhibits an obvious enhancement in the tolerance to carbonaceous intermediates and the electocatalytic activity for methanol oxidation reaction (MOR) in comparison to a commercial PtRu/C-JM catalyst and a home-made PtRu/Vulcan catalyst. The MOR mass activity of PtRu/NCNHs (850 mA mg −1 PtRu ) is 2.5 times as high as that of PtRu/C-JM (341 mA mg −1 PtRu ). The MOR specific activity of PtRu/NCNHs is 1.8 times as high as that of PtRu/Vulcan having similar Pt/Ru atomic ratios, specific electrochemical surface areas and particle sizes of PtRu NPs. The electronic interaction between PtRu NPs and NCNHs is responsible for the enhancement in the MOR activity of PtRu/NCNHs

  13. PtRu nanoparticles embedded in nitrogen doped carbon with highly stable CO tolerance and durability

    Science.gov (United States)

    Ling, Ying; Yang, Zehui; Yang, Jun; Zhang, Yunfeng; Zhang, Quan; Yu, Xinxin; Cai, Weiwei

    2018-02-01

    As is well known, the lower durability and sluggish methanol oxidation reaction (MOR) of PtRu alloy electrocatalyst blocks the commercialization of direct methanol fuel cells (DMFCs). Here, we design a new PtRu electrocatalyst, with highly stable CO tolerance and durability, in which the PtRu nanoparticles are embedded in nitrogen doped carbon layers derived from carbonization of poly(vinyl pyrrolidone). The newly fabricated electrocatalyst exhibits no loss in electrochemical surface area (ECSA) and MOR activity after potential cycling from 0.6-1.0 V versus reversible hydrogen electrode, while commercial CB/PtRu retains only 50% of its initial ECSA. Meanwhile, due to the same protective layers, the Ru dissolution is decelerated, resulting in stable CO tolerance. Methanol oxidation reaction (MOR) testing indicates that the activity of newly fabricated electrocatalyst is two times higher than that of commercial CB/PtRu, and the fuel cell performance of the embedded PtRu electrocatalyst was comparable to that of commercial CB/PtRu. The embedded PtRu electrocatalyst is applicable in real DMFC operation. This study offers important and useful information for the design and fabrication of durable and CO tolerant electrocatalysts.

  14. Efficiency of bimetallic PtPd on polydopamine modified on various carbon supports for alcohol oxidations

    Science.gov (United States)

    Pinithchaisakula, A.; Ounnunkad, K.; Themsirimongkon, S.; Promsawan, N.; Waenkaew, P.; Saipanya, S.

    2017-02-01

    In this work, the preparation, characterization, and electrocatalytic analysis of the catalysts on various carbon substrates for direct alcohol fuel cells were studied. Selected carbons were modified with/without polydopamine (labelled as PDA-C and C) and further metal electrodeposited incorporated onto the glassy carbon (labelled as 5Pt1Pd/PDA-C and 5Pt1Pd/C). Four various carbon materials were used e.g. graphite (G), carbon nanotube (CNT), graphene (GP) and graphene oxide (GO) and the carbons were modified with PDA denoted as PDA-G, PDA-CNT, PDA-GP and PDA-GO, respectively. The transmission electron microscopy (TEM) and scanning electron microscopy (SEM) experimental observation showed narrow size distribution of metal anchored on the PDA-C and C materials. Chemical compositions and oxidation states of the catalysts were determined by X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX). The catalytic performances for small organic electro-oxidation (e.g. methanol and ethanol) were measured by cyclic voltammetry (CV). Among different PDA-C and C catalysts, monometallic Pt showed less activity than the bimetallic catalysts. Among catalysts with PDA, the 5Pt1Pd/PDA-GO catalyst facilitated methanol and ethanol oxidations with high oxidation currents and If/Ib value and stability with low potentials while among catalysts without PDA, the 5Pt1Pd/CNT provides highest activity and stability. It was found that the catalysts with PDA provided high activity and stability than the catalysts without PDA. The improved catalytic performance of the prepared catalysts could be related to the higher active surface area from polymer modification and bimetallic catalyst system in the catalyst composites.

  15. Aerogels: II. Applications in catalysis

    Directory of Open Access Journals (Sweden)

    Orlović Aleksandar M.

    2002-01-01

    Full Text Available Sol-gel synthesis, and the resulting materials (xerogels and aerogels are finding increasing application in the synthesis of catalysts, due to their unique characteristics. The most important features of the sol-gel process are: the ability to achieve homogeneity at the molecular level, the introduction of several species in only one step and the ability to stabilize metastable phases. The supercritical drying process produces aerogels with structural features quite different to conventional materials. Some of these characteristics of aerogels can make them very effective catalysts.

  16. Simulation and Analysis of Mechanical Properties of Silica Aerogels: From Rationalization to Prediction.

    Science.gov (United States)

    Ma, Hao; Zheng, Xiaoyang; Luo, Xuan; Yi, Yong; Yang, Fan

    2018-01-30

    Silica aerogels are highly porous 3D nanostructures and have exhibited excellent physio-chemical properties. Although silica aerogels have broad potential in many fields, the poor mechanical properties greatly limit further applications. In this study, we have applied the finite volume method (FVM) method to calculate the mechanical properties of silica aerogels with different geometric properties such as particle size, pore size, ligament diameter, etc. The FVM simulation results show that a power law correlation existing between relative density and mechanical properties (elastic modulus and yield stress) of silica aerogels, which are consistent with experimental and literature studies. In addition, depending on the relative densities, different strategies are proposed in order to synthesize silica aerogels with better mechanical performance by adjusting the distribution of pore size and ligament diameter of aerogels. Finally, the results suggest that it is possible to synthesize silica aerogels with ultra-low density as well as high strength and stiffness as long as the textural features are well controlled. It is believed that the FVM simulation methodology could be a valuable tool to study mechanical performance of silica aerogel based materials in the future.

  17. Simulation and Analysis of Mechanical Properties of Silica Aerogels: From Rationalization to Prediction

    Directory of Open Access Journals (Sweden)

    Hao Ma

    2018-01-01

    Full Text Available Silica aerogels are highly porous 3D nanostructures and have exhibited excellent physio-chemical properties. Although silica aerogels have broad potential in many fields, the poor mechanical properties greatly limit further applications. In this study, we have applied the finite volume method (FVM method to calculate the mechanical properties of silica aerogels with different geometric properties such as particle size, pore size, ligament diameter, etc. The FVM simulation results show that a power law correlation existing between relative density and mechanical properties (elastic modulus and yield stress of silica aerogels, which are consistent with experimental and literature studies. In addition, depending on the relative densities, different strategies are proposed in order to synthesize silica aerogels with better mechanical performance by adjusting the distribution of pore size and ligament diameter of aerogels. Finally, the results suggest that it is possible to synthesize silica aerogels with ultra-low density as well as high strength and stiffness as long as the textural features are well controlled. It is believed that the FVM simulation methodology could be a valuable tool to study mechanical performance of silica aerogel based materials in the future.

  18. Hydrogen peroxide sensor based on modified vitreous carbon with multiwall carbon nanotubes and composites of Pt nanoparticles-dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, C.; Orozco, G. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., P.O. Box 064, C.P. 76700, Pedro Escobedo, Queretaro (Mexico); Verde, Y. [Instituto Tecnologico de Cancun, Av. Kabah Km. 3, C.P. 77500, Cancun, Quintana Roo (Mexico); Jimenez, S. [Unidad Queretaro Centro de Investigacion y de Estudios Avanzados del I.P.N., Juriquilla, Santiago de Queretaro (Mexico); Godinez, Luis A. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., P.O. Box 064, C.P. 76700, Pedro Escobedo, Queretaro (Mexico); Juaristi, E. [Chemistry Department, Centro de Investigacion y de Estudios Avanzados del I.P.N., P.O. Box 14-740, C.P. 07360 Mexico, D.F. (Mexico); Bustos, E. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., P.O. Box 064, C.P. 76700, Pedro Escobedo, Queretaro (Mexico); Chemistry Department, Centro de Investigacion y de Estudios Avanzados del I.P.N., P.O. Box 14-740, C.P. 07360 Mexico, D.F. (Mexico)], E-mail: ebustos@cideteq.mx

    2009-02-15

    Sensors using nanostructured materials have been under development in the last decade due to their selectivity for the detection and quantification of different compounds. The physical and chemical characteristics of carbon nanotubes provide significant advantages when used as electrodes for electronic devices, fuel cells and electrochemical sensors. This paper presents preliminary results on the modification of vitreous carbon electrodes with Multiwall Carbon Nanotubes (MWCNTs) and composites of Pt nanoparticles-dopamine (DA) as electro-catalytic materials for the hydrogen peroxide (H{sub 2}O{sub 2}) reaction. Chemical pre-treatment and consequent functionalization of MWCNTs with carboxylic groups was necessary to increase the distribution of the composites. In addition, the presence of DA was important to protect the active sites and eliminate the pasivation of the surface after the electro-oxidation of H{sub 2}O{sub 2} takes place. The proposed H{sub 2}O{sub 2} sensor exhibited a linear response in the 0-5 mM range, with detection and quantification limits of 0.3441 mM and 1.1472 mM, respectively.

  19. Hydrogen peroxide sensor based on modified vitreous carbon with multiwall carbon nanotubes and composites of Pt nanoparticles-dopamine

    International Nuclear Information System (INIS)

    Guzman, C.; Orozco, G.; Verde, Y.; Jimenez, S.; Godinez, Luis A.; Juaristi, E.; Bustos, E.

    2009-01-01

    Sensors using nanostructured materials have been under development in the last decade due to their selectivity for the detection and quantification of different compounds. The physical and chemical characteristics of carbon nanotubes provide significant advantages when used as electrodes for electronic devices, fuel cells and electrochemical sensors. This paper presents preliminary results on the modification of vitreous carbon electrodes with Multiwall Carbon Nanotubes (MWCNTs) and composites of Pt nanoparticles-dopamine (DA) as electro-catalytic materials for the hydrogen peroxide (H 2 O 2 ) reaction. Chemical pre-treatment and consequent functionalization of MWCNTs with carboxylic groups was necessary to increase the distribution of the composites. In addition, the presence of DA was important to protect the active sites and eliminate the pasivation of the surface after the electro-oxidation of H 2 O 2 takes place. The proposed H 2 O 2 sensor exhibited a linear response in the 0-5 mM range, with detection and quantification limits of 0.3441 mM and 1.1472 mM, respectively

  20. Nitrogen Doped Ordered Mesoporous Carbon as Support of PtRu Nanoparticles for Methanol Electro-Oxidation

    Directory of Open Access Journals (Sweden)

    David Sebastián

    2018-04-01

    Full Text Available The low oxidation kinetics of alcohols and the need for expensive platinum group metals are still some of the main drawbacks for the commercialization of energy efficient direct alcohol fuel cells. In this work, we investigate the influence of nitrogen doping of ordered mesoporous carbon (CMK as support on the electrochemical activity of PtRu nanoparticles. Nitrogen doping procedures involve the utilization of pyrrole as both nitrogen and carbon precursor by means of a templating method using mesoporous silica. This method allows obtaining carbon supports with up to 14 wt. % nitrogen, with an effective introduction of pyridinic, pyrrolic and quaternary nitrogen. PtRu nanoparticles were deposited by sodium formate reduction method. The presence of nitrogen mainly influences the Pt:Ru atomic ratio at the near surface, passing from 50:50 on the bare (un-doped CMK to 70:30 for the N-doped CMK catalyst. The electroactivity towards the methanol oxidation reaction (MOR was evaluated in acid and alkaline electrolytes. The presence of nitrogen in the support favors a faster oxidation of methanol due to the enrichment of Pt at the near surface together with an increase of the intrinsic activity of PtRu nanoparticles.

  1. Flexible pressure sensor based on graphene aerogel microstructures functionalized with CdS nanocrystalline thin film

    Science.gov (United States)

    Plesco, Irina; Dragoman, Mircea; Strobel, Julian; Ghimpu, Lidia; Schütt, Fabian; Dinescu, Adrian; Ursaki, Veaceslav; Kienle, Lorenz; Adelung, Rainer; Tiginyanu, Ion

    2018-05-01

    In this paper, we report on functionalization of graphene aerogel with a CdS thin film deposited by magnetron sputtering and on the development of flexible pressure sensors based on ultra-lightweight CdS-aerogel nanocomposite. Analysis by scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray analysis disclose the uniform deposition of nanocrystalline CdS films with quasi-stoichiometric composition. The piezoresistive response of the aforementioned nanocomposite in the pressure range from 1 to 5 atm is found to be more than one order of magnitude higher than that inherent to suspended graphene membranes, leading to an average sensitivity as high as 3.2 × 10-4 kPa-1.

  2. Electrocatalytic reduction of H{sub 2}O{sub 2} by Pt nanoparticles covalently bonded to thiolated carbon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    You, Jung-Min; Kim, Daekun [Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Jeon, Seungwon [Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757 (Korea, Republic of)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Novel thiolated carbon nanostructures - platinum nanoparticles [t-GO-C(O)-pt and t-MWCNT-C(O)-S-pt] have been synthesized, and [t-GO-C(O)-pt and t-MWCNT-C(O)-S-pt] denotes as t-GO-pt and t-MWCNT-Pt in manuscript, respectively. Black-Right-Pointing-Pointer The modified electrode denoted as PDDA/t-GO-pt/GCE was used for the electrochemical determination of H{sub 2}O{sub 2} for the first time. Black-Right-Pointing-Pointer The results show that PDDA/t-GO-pt nanoparticles have the promising potential as the basic unit of the electrochemical biosensors for the detection of H{sub 2}O{sub 2}. Black-Right-Pointing-Pointer The proposed H{sub 2}O{sub 2} biosensors exhibited wide linear ranges and low detection limits, giving fast responses within 10 s. - Abstract: Glassy carbon electrodes were coated with thiolated carbon nanostructures - multi-walled carbon nanotubes and graphene oxide. The subsequent covalent addition of platinum nanoparticles and coating with poly(diallydimethylammonium chloride) resulted in biosensors that detected hydrogen peroxide through its electrocatalytic reduction. The sensors were easily and quickly prepared and showed improved sensitivity to the electrocatalytic reduction of H{sub 2}O{sub 2}. The Pt nanoparticles covalently bonded to the thiolated carbon nanostructures were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive X-ray spectroscopy. Cyclic voltammetry and amperometry were used to characterize the biosensors' performances. The sensors exhibited wide linear ranges and low detection limits, giving fast responses within 10 s, thus demonstrating their potential for use in H{sub 2}O{sub 2} analysis.

  3. Synthesis and Characterization of Pt-loaded carbon nanostructures derived from polyaniline nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Gong Da; Kim, Pil; Lee, Youn Sik [Div. of Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk NationalUniversity, Jeonju (Korea, Republic of)

    2017-03-15

    Proton exchange membrane fuel cells (PEMFC) are one of the most advanced fuel cells for future energy, owing to their high conversion efficiency, quick start-up, rapid response to variable loading, and relatively low operating temperature, compared with of her conventional energy conversion devices. PANTs were synthesized to have various aspect ratios and inner diameters. As the aniline concentration increased, the PANTs’ inner diameter greatly decreased, but their outer diameters only slightly increased, leading to a decrease in their aspect ratios. Carbonization of PANTs resulted in the formation of corresponding CNSs. Pt nanoparticles were successfully formed on the CNSs under N{sub 2} or N{sub 2}/NH{sub 3} flow. The Pt nanoparticles of the Pt- CNS-N{sub 2} /NH{sub 3} catalysts were smaller in size, less aggregated, and more uniformly dispersed than those of the Pt- CNS-N{sub 2} catalysts. The ECSA values of Pt-CNS-N{sub 2} /NH{sub 3} were larger than those of Pt-CNS-N{sub 2} and Pt/C. The half wave potentials of the Pt-CNS-N{sub 2} catalysts were lower than those of the Pt-CNS-N{sub 2} /NH{sub 3} , and close to those of the Pt/C. The Pt-CNS-N{sub 2} /NH{sub 3} catalysts exhibited better kinetic performance than the Pt-CNS -N{sub 2} catalysts and Pt/C.

  4. Aerogels from Chitosan Solutions in Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Gonzalo Santos-López

    2017-12-01

    Full Text Available Chitosan aerogels conjugates the characteristics of nanostructured porous materials, i.e., extended specific surface area and nano scale porosity, with the remarkable functional properties of chitosan. Aerogels were obtained from solutions of chitosan in ionic liquids (ILs, 1-butyl-3-methylimidazolium acetate (BMIMAc, and 1-ethyl-3-methyl-imidazolium acetate (EMIMAc, in order to observe the effect of the solvent in the structural characteristics of this type of materials. The process of elaboration of aerogels comprised the formation of physical gels through anti-solvent vapor diffusion, liquid phase exchange, and supercritical CO2 drying. The aerogels maintained the chemical identity of chitosan according to Fourier transform infrared spectrophotometer (FT-IR spectroscopy, indicating the presence of their characteristic functional groups. The internal structure of the obtained aerogels appears as porous aggregated networks in microscopy images. The obtained materials have specific surface areas over 350 m2/g and can be considered mesoporous. According to swelling experiments, the chitosan aerogels could absorb between three and six times their weight of water. However, the swelling and diffusion coefficient decreased at higher temperatures. The structural characteristics of chitosan aerogels that are obtained from ionic liquids are distinctive and could be related to solvation dynamic at the initial state.

  5. Nanoporous carbon actuator and methods of use thereof

    Science.gov (United States)

    Biener, Juergen [San Leandro, CA; Baumann, Theodore F [Discovery Bay, CA; Shao, Lihua [Karlsruhe, DE; Weissmueller, Joerg [Stutensee, DE

    2012-07-31

    An electrochemically driveable actuator according to one embodiment includes a nanoporous carbon aerogel composition capable of exhibiting charge-induced reversible strain when wetted by an electrolyte and a voltage is applied thereto. An electrochemically driven actuator according to another embodiment includes a nanoporous carbon aerogel composition wetted by an electrolyte; and a mechanism for causing charge-induced reversible strain of the composition. A method for electrochemically actuating an object according to one embodiment includes causing charge-induced reversible strain of a nanoporous carbon aerogel composition wetted with an electrolyte to actuate the object by the strain.

  6. Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Changwei; Cheng, Liqiang; Liu, Yingliang [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Shen, Peikang [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2007-05-15

    Noble metal (Pt, Pd) electrocatalysts supported on carbon microspheres (CMS) are used for methanol and ethanol oxidation in alkaline media. The results show that noble metal electrocatalysts supported on carbon microspheres give better performance than that supported on carbon black. It is well known that palladium is not a good electrocatalyst for methanol oxidation, but it shows excellently higher activity and better steady-state electrolysis than Pt for ethanol electrooxidation in alkaline media. The results show a synergistic effect by the interaction between Pd and carbon microspheres. The Pd supported on carbon microspheres in this paper possesses excellent electrocatalytic properties and may be of great potential in direct ethanol fuel cells. (author)

  7. Fabrication of Nonenzymatic Glucose Sensors Based on Multiwalled Carbon Nanotubes with Bimetallic Pt-M (M = Ru and Sn Catalysts by Radiolytic Deposition

    Directory of Open Access Journals (Sweden)

    Sun-Young Kwon

    2012-01-01

    Full Text Available Nonenzymatic glucose sensors employing multiwalled carbon nanotubes (MWNTs with highly dispersed Pt-M (M = Ru and Sn nanoparticles (Pt-M@PVP-MWNTs were fabricated by radiolytic deposition. The Pt-M nanoparticles on the MWNTs were characterized by transmittance electron microscopy, elemental analysis, and X-ray diffraction. They were found to be well dispersed and to exhibit alloy properties on the MWNT support. Electrochemical testing showed that these nonenzymatic sensors had larger currents (mA than that of a bare glassy carbon (GC electrode and one modified with MWNTs. The sensitivity (A mM−1, linear range (mM, and detection limit (mM (S/N = 3 of the glucose sensor with the Pt-Ru catalyst in NaOH electrolyte were determined as 18.0, 1.0–2.5, 0.7, respectively. The corresponding data of the sensor with Pt-Sn catalyst were 889.0, 1.00–3.00, and 0.3, respectively. In addition, these non-enzymatic sensors can effectively avoid interference arising from the oxidation of the common interfering species ascorbic acid and uric acid in NaOH electrolyte. The experimental results show that such sensors can be applied in the detection of glucose in commercial red wine samples.

  8. Pt-Fe catalyst nanoparticles supported on single-wall carbon nanotubes: Direct synthesis and electrochemical performance for methanol oxidation

    Science.gov (United States)

    Ma, Xiaohui; Luo, Liqiang; Zhu, Limei; Yu, Liming; Sheng, Leimei; An, Kang; Ando, Yoshinori; Zhao, Xinluo

    2013-11-01

    Single-wall carbon nanotubes (SWCNTs) supported Pt-Fe nanoparticles have been prepared by one-step hydrogen arc discharge evaporation of carbon electrode containing both Pt and Fe metal elements. The formation of SWCNTs and Pt-Fe nanoparticles occur simultaneously during the evaporation process. High-temperature hydrogen treatment and hydrochloric acid soaking have been carried out to purify and activate those materials in order to obtain a new type of Pt-Fe/SWCNTs catalyst for methanol oxidation. The Pt-Fe/SWCNTs catalyst performs much higher electrocatalytic activity for methanol oxidation, better stability and better durability than a commercial Pt/C catalyst according to the electrochemical measurements, indicating that it has a great potential for applications in direct methanol fuel cells.

  9. Functional multi-walled carbon nanotube/polysiloxane composite films as supports of PtNi alloy nanoparticles for methanol electro-oxidation

    International Nuclear Information System (INIS)

    Wang Zhicai; Ma Zhengming; Li Hulin

    2008-01-01

    We demonstrate the use of molecular monolayers to enhance the nucleation of electrocatalytically active PtNi alloy nanoparticles onto the multi-walled carbon nanotubes (MWCNTs). After the siloxane was polymerized on the nanotube surfaces, the carbon nanotubes were embedded within the polysiloxane shell with a hydrophilic amino group situated outside. Subsequent deposition of PtNi nanoparticles led to high density of 3-10 nm diameter PtNi alloy nanoparticles uniformly deposited along the length of the carbon nanotubes. The presence of MWCNTs and PtNi in the composite films was confirmed by transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersion X-ray spectra analysis (EDS). The electrocatalytic activity of the PtNi-modified MWCNT/polysiloxane (PtNi/Si-MWCNT) composite electrode for electro-oxidation of methanol was investigated by cyclic voltammetry (CV), and excellent electrocatalytic activity can be observed

  10. Larnite powders and larnite/silica aerogel composites as effective agents for CO{sub 2} sequestration by carbonation

    Energy Technology Data Exchange (ETDEWEB)

    Santos, A., E-mail: alberto.santos@uca.es [Departamento de Ciencias de la Tierra, Universidad de Cadiz, Puerto Real, 11510 Cadiz (Spain); Ajbary, M.; Morales-Florez, V. [Departamento de Fisica de la Materia Condensada, Universidad de Cadiz, Puerto Real, 11510 Cadiz (Spain); Kherbeche, A. [Universite Sidi Mohamed Ben Abdellah, Ecole Superieure de Technologie, Fes (Morocco); Pinero, M. [Departamento de Fisica Aplicada, Universidad de Cadiz, Puerto Real, 11510 Cadiz (Spain); Esquivias, L. [Departamento de Fisica de la Materia Condensada, Facultad de Fisica, Instituto de Ciencias de Materiales de Sevilla (CSIC), Universidad de Sevilla, 41012 Sevilla (Spain)

    2009-09-15

    This paper presents the results of the carbonation reaction of two sample types: larnite (Ca{sub 2}SiO{sub 4}) powders and larnite/silica aerogel composites, the larnite acting as an active phase in a process of direct mineral carbonation. First, larnite powders were synthesized by the reaction of colloidal silica and calcium nitrate in the presence of ethylene glycol. Then, to synthesize the composites, the surface of the larnite powders was chemically modified with 3-aminopropyltriethoxysilane (APTES), and later this mixture was added to a silica sol previously prepared from tetraethylorthosilicate (TEOS). The resulting humid gel was dried in an autoclave under supercritical conditions for the ethanol. The textures and chemical compositions of the powders and composites were characterized.The carbonation reaction of both types of samples was evaluated by means of X-ray diffraction and thermogravimetric analysis. Both techniques confirm the high efficiency of the reaction at room temperature and atmospheric pressure. A complete transformation of the silicate into carbonate resulted after submitting the samples to a flow of pure CO{sub 2} for 15 min. This indicates that for this reaction time, 1 t of larnite could eliminate about 550 kg of CO{sub 2}. The grain size, porosity, and specific surface area are the factors controlling the reaction.

  11. Fabricating solid carbon porous electrodes from powders

    Science.gov (United States)

    Kaschmitter, James L.; Tran, Tri D.; Feikert, John H.; Mayer, Steven T.

    1997-01-01

    Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.

  12. A highly order-structured membrane electrode assembly with vertically aligned carbon nanotubes for ultra-low Pt loading PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Zhi Qun; Lim, San Hua; Poh, Chee Kok; Lin, Jianyi [Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Tang, Zhe; Chua, Daniel [Department of Materials Science and Engineering, National University of Singapore, Singapore 117542 (Singapore); Xia, Zetao [Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602 (Singapore); Luo, Zhiqiang; Shen, Zexiang [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore (Singapore); Shen, Pei Kang [State Key Laboratory of Optoelectronic Materials and Technologies, and Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, School of Physics and Engineering, Sun Yat-sen University, Guangzhou, 510275 (China); Feng, Yuan Ping [Department of Physics, National University of Singapore, Singapore 117542 (Singapore)

    2011-11-15

    A simple method was developed to prepare ultra-low Pt loading membrane electrode assembly (MEA) using vertically aligned carbon nanotubes (VACNTs) as highly ordered catalyst support for PEM fuel cells application. In the method, VACNTs were directly grown on the cheap household aluminum foil by plasma enhanced chemical vapor deposition (PECVD), using Fe/Co bimetallic catalyst. By depositing a Pt thin layer on VACNTs/Al and subsequent hot pressing, Pt/VACNTs can be 100% transferred from Al foil onto polymer electrolyte membrane for the fabrication of MEA. The whole transfer process does not need any chemical removal and destroy membrane. The PEM fuel cell with the MEA fabricated using this method showed an excellent performance with ultra-low Pt loading down to 35 {mu}g cm{sup -2} which was comparable to that of the commercial Pt catalyst on carbon powder with 400 {mu}g cm{sup -2}. To the best of our knowledge, for the first time, we identified that it is possible to substantially reduce the Pt loading one order by application of order-structured electrode based on VACNTs as Pt catalysts support, compared with the traditional random electrode at a comparable performance through experimental and mathematical methods. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Radiolytic synthesis of carbon-supported PtRu nanoparticles using high-energy electron beam: effect of pH control on the PtRu mixing state and the methanol oxidation activity

    International Nuclear Information System (INIS)

    Ohkubo, Yuji; Kageyama, Satoru; Seino, Satoshi; Nakagawa, Takashi; Kugai, Junichiro; Nitani, Hiroaki; Ueno, Koji; Yamamoto, Takao A.

    2013-01-01

    Electrode catalysts composed of carbon-supported PtRu nanoparticles (PtRu/C) for use as a direct methanol fuel cell anode were synthesized by the reduction of precursor ions in an aqueous solution via irradiation with a high-energy electron beam. The effect of pH control in the precursor solution on the PtRu mixing state and the methanol oxidation activity was studied in order to enhance the catalytic activity for methanol oxidation. The PtRu/C structures were characterized by transmission electron microscopy, inductively coupled plasma atomic emission spectrometry, X-ray fluorescence spectrometry, and X-ray diffraction and X-ray absorption fine structure techniques. The methanol oxidation activity was evaluated by linear sweep voltammetry. The initial pH of the precursor solution has little influence on the average grain size for the metal particles (approximately 3.5 nm) on the carbon particle supports, but the dispersibility of the metal particles, PtRu mixing state, and methanol oxidation activity differed. The maintenance of a low pH in the precursor solution gave the best dispersibility of the PtRu nanoparticles supported on the surface of the carbon particles, whereas, a high pH gave the best PtRu mixing state and the highest oxidation current although a low dispersibility of the PtRu nanoparticles supported on the surface of the carbon particles was obtained. The PtRu mixing state strongly correlated with the methanol oxidation current. In addition, a high pH was more effective for PtRu mixing when using an electron beam irradiation reduction method, because the complexation reaction of the chelating agents was improved, which resulted in an enhancement of the catalytic activity for methanol oxidation.

  14. Radiolytic synthesis of carbon-supported PtRu nanoparticles using high-energy electron beam: effect of pH control on the PtRu mixing state and the methanol oxidation activity

    Energy Technology Data Exchange (ETDEWEB)

    Ohkubo, Yuji, E-mail: okubo@mit.eng.osaka-u.ac.jp; Kageyama, Satoru; Seino, Satoshi; Nakagawa, Takashi; Kugai, Junichiro [Osaka University, Graduate School of Engineering (Japan); Nitani, Hiroaki [High Energy Accelerator Research Organization (KEK), Institute of Materials Structure Science (Japan); Ueno, Koji [Japan Electron Beam Irradiation Service Ltd (Japan); Yamamoto, Takao A. [Osaka University, Graduate School of Engineering (Japan)

    2013-05-15

    Electrode catalysts composed of carbon-supported PtRu nanoparticles (PtRu/C) for use as a direct methanol fuel cell anode were synthesized by the reduction of precursor ions in an aqueous solution via irradiation with a high-energy electron beam. The effect of pH control in the precursor solution on the PtRu mixing state and the methanol oxidation activity was studied in order to enhance the catalytic activity for methanol oxidation. The PtRu/C structures were characterized by transmission electron microscopy, inductively coupled plasma atomic emission spectrometry, X-ray fluorescence spectrometry, and X-ray diffraction and X-ray absorption fine structure techniques. The methanol oxidation activity was evaluated by linear sweep voltammetry. The initial pH of the precursor solution has little influence on the average grain size for the metal particles (approximately 3.5 nm) on the carbon particle supports, but the dispersibility of the metal particles, PtRu mixing state, and methanol oxidation activity differed. The maintenance of a low pH in the precursor solution gave the best dispersibility of the PtRu nanoparticles supported on the surface of the carbon particles, whereas, a high pH gave the best PtRu mixing state and the highest oxidation current although a low dispersibility of the PtRu nanoparticles supported on the surface of the carbon particles was obtained. The PtRu mixing state strongly correlated with the methanol oxidation current. In addition, a high pH was more effective for PtRu mixing when using an electron beam irradiation reduction method, because the complexation reaction of the chelating agents was improved, which resulted in an enhancement of the catalytic activity for methanol oxidation.

  15. Pt/Ceria-based Catalysts for Small Alcohol Electrooxidation

    Science.gov (United States)

    Menendez-Mora, Christian L.

    High emissions of fossil-based energy sources have led to scientists around the world to develop new alternatives for the future. In this sense, fuel cells are a remarkable and promising energy option with less environmental impact. The most used fuels for this technology are hydrogen and small chain alcohols, which can be oxidized to transform their chemical energy into electrical power. To do this, fuel cells need catalysts that will act as an active surface where the oxidation can take place. The problem with platinum catalysts is its possible CO poisoning with intermediates that are produced before the complete oxidation of alcohol to CO2. Different approaches have been taken to try to resolve this issue. In this case, cerium oxide (ceria) was selected as a co-catalyst to mitigate the effect of CO poisoning of platinum. Ceria is a compound that has the ability to work as an "oxygen tank" and can donate oxygen to carbon monoxide that is strongly adsorbed at platinum surface to produce CO2 (carbon dioxide), regenerating the Pt surface for further alcohol oxidation. Therefore, enhancing the current density as well as the power output of a fuel cell. First, an occlusion deposition technique was used to prepare platinum/ceria composite electrodes and tested them towards small chain alcohol oxidation such as methanol oxidation reaction in acidic and alkaline media. The preliminary results demonstrated that the Pt/ceria electrodes were more efficient towards methanol electrooxidation when compared to Pt electrodes. This enhancement was attributed to the presence of ceria. A second preparation method was selected for the synthesis of ceria/Pt catalysts. In this case, a hydrothermal method was used and the catalysis were studied for the effect of MeOH, EtOH and n-BuOH oxidation. The observed effect was that electrodes made of Pt/Pt:CeO2-x showed better catalytic effect than Pt/ceria and platinum electrodes. Moreover, a comparison between ceria nanorods versus

  16. Carbon-supported ternary PtSnIr catalysts for direct ethanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, J.; Kokoh, K.B.; Coutanceau, C.; Leger, J.-M. [Equipe Electrocatalyse, UMR 6503 CNRS, Universite de Poitiers, 40 avenue du Recteur Pineau 86022 Poitiers Cedex (France); Dos Anjos, D.M. [Equipe Electrocatalyse, UMR 6503 CNRS, Universite de Poitiers, 40 avenue du Recteur Pineau 86022 Poitiers Cedex (France); Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal 780, 13560-970 Sao Carlos, SP (Brazil); Olivi, P.; De Andrade, A.R. [Departamento de Quimica da Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Av. Bandeirantes, 3900, 14040-901 Ribeirao Preto, SP (Brazil); Tremiliosi-Filho, G. [Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal 780, 13560-970 Sao Carlos, SP (Brazil)

    2007-08-01

    Binary PtIr, PtSn and ternary PtSnIr electrocatalysts were prepared by the Pechini-Adams modified method on carbon Vulcan XC-72, and these materials were characterized by TEM and XRD. The XRD results showed that the electrocatalysts consisted of the Pt displaced phase, suggesting the formation of solid solutions between the metals Pt/Ir and Pt/Sn. However, the increase in Sn loading promoted phase separation, with the formation of peaks typical of cubic Pt{sub 3}Sn. The electrochemical investigation of these different electrode materials was carried out as a function of the electrocatalyst composition, in a 0.5 mol dm{sup -3} H{sub 2}SO{sub 4} solution, with either the presence or the absence of ethanol. Cyclic voltammetric measurements and chronoamperometric results obtained at room temperature showed that PtSn/C and PtSnIr/C displayed better electrocatalytic activity for ethanol electrooxidation compared to PtIr/C and Pt/C, mainly at low potentials. The oxidation process was also investigated by in situ infrared reflectance spectroscopy, to identify the adsorbed species. Linearly adsorbed CO and CO{sub 2} were found, indicating that the cleavage of the C-C bond in the ethanol substrate occurred during the oxidation process. At 90 C, the Pt{sub 89}Sn{sub 11}/C and Pt{sub 68}Sn{sub 9}Ir{sub 23}/C electrocatalysts displayed higher current and power performances as anode materials in a direct ethanol fuel cell (DEFC). (author)

  17. Influence of surface morphology on methanol oxidation at a glassy carbon-supported Pt catalyst

    Directory of Open Access Journals (Sweden)

    S. STEVANOVIC

    2008-08-01

    Full Text Available Platinum supported on glassy carbon (GC was used as a model system for studying the influence of the surface morphology of a Pt catalyst on methanol oxidation in alkaline and acidic solutions. Platinum was deposited by the potential step method on GC samples from H2SO4 + H2PtCl6 solution under the same conditions with loadings from 10 to 80 mg cm-2. AFM and STM images of the GC/Pt electrodes showed that the Pt was deposited in the form of 3D agglomerates composed of spherical particles. Longer deposition times resulted in increased growth of Pt forms and a decrease in the specific area of the Pt. The real surface area of Pt increased with loading but the changes were almost negligible at higher loadings. Nevertheless, both the specific and mass activity of platinum supported on glassy carbon for methanol oxidation in acidic and in alkaline solutions exhibit a volcanic dependence with respect to the platinum loading. The increase in the activity can be explained by the increasing the particle size with the loading and thus an increase in the contiguous Pt sites available for adsorption and decomposition of methanol. However, the decrease in the activity of the catalyst with further increase of loading and particle size after reaching the maximum is related to the decrease of active sites available for methanol adsorption and their accessibility as a result of more close proximity and pronounced coalescence of the Pt particles.

  18. Preparation of Pt-mesoporous tungsten carbide/carbon composites via a soft-template method for electrochemical methanol oxidation

    International Nuclear Information System (INIS)

    Ma, Chun’an; Kang, Lingzhi; Shi, Meiqin; Lang, Xiaoling; Jiang, Yekun

    2014-01-01

    Highlights: • Mesoporous composite Pt-m(WC/C) is prepared by a soft template method. • The structure of phenolic gives a space limitation effect on the growth of WC. • Analysis of the effect of F127 on controlling the structure of composites. • Pt-m(WC/C) exhibits more than three times higher than Pt/C in catalytic activity. -- Abstract: This paper introduces a simple and reproducible chemical process for synthesis of Pt-mesoporous tungsten carbide/carbon composites composites Pt-m(WC/C) by means of a soft-template method. In this process, low-molecular-weight phenolic resol acted as the precursor both for carbon support and also the carbon resource of tungsten carbide. Tungsten hexachloride was used as a tungsten precursor along with different amount of triblock copolymer Pluronic F127 as pore-forming component. The best performance of Pt-m(WC/C) towards methanol oxidation is found when the mass ratios of WCl 6 :F127 is 1:0.6. The composite presents an improved methanol oxidation performance evidenced by a negative shift in onset potential, and increase of peak current density, compared with commercial Pt/C. The difference is explained by the adding of appropriate amount of F127 which facilitates the construction of mesoporous matrix structure of WC/C

  19. Fibrous-Ceramic/Aerogel Composite Insulating Tiles

    Science.gov (United States)

    White, Susan M.; Rasky, Daniel J.

    2004-01-01

    Fibrous-ceramic/aerogel composite tiles have been invented to afford combinations of thermal-insulation and mechanical properties superior to those attainable by making tiles of fibrous ceramics alone or aerogels alone. These lightweight tiles can be tailored to a variety of applications that range from insulating cryogenic tanks to protecting spacecraft against re-entry heating. The advantages and disadvantages of fibrous ceramics and aerogels can be summarized as follows: Tiles made of ceramic fibers are known for mechanical strength, toughness, and machinability. Fibrous ceramic tiles are highly effective as thermal insulators in a vacuum. However, undesirably, the porosity of these materials makes them permeable by gases, so that in the presence of air or other gases, convection and gas-phase conduction contribute to the effective thermal conductivity of the tiles. Other disadvantages of the porosity and permeability of fibrous ceramic tiles arise because gases (e.g., water vapor or cryogenic gases) can condense in pores. This condensation contributes to weight, and in the case of cryogenic systems, the heat of condensation undesirably adds to the heat flowing to the objects that one seeks to keep cold. Moreover, there is a risk of explosion associated with vaporization of previously condensed gas upon reheating. Aerogels offer low permeability, low density, and low thermal conductivity, but are mechanically fragile. The basic idea of the present invention is to exploit the best features of fibrous ceramic tiles and aerogels. In a composite tile according to the invention, the fibrous ceramic serves as a matrix that mechanically supports the aerogel, while the aerogel serves as a low-conductivity, low-permeability filling that closes what would otherwise be the open pores of the fibrous ceramic. Because the aerogel eliminates or at least suppresses permeation by gas, gas-phase conduction, and convection, the thermal conductivity of such a composite even at

  20. Refractive index dispersion law of silica aerogel

    International Nuclear Information System (INIS)

    Bellunato, T.; Calvi, M.; Matteuzzi, C.; Musy, M.; Perego, D.L.; Storaci, B.

    2007-01-01

    This paper presents measurements of the refractive index of a hygroscopic silica aerogel block at several wavelengths. The measurements, performed with a monochromator, have been compared with different parameterisations for n(λ), in order to determine the best chromaticity law for the aerogel. This is an important input for design and operation of RICH detectors with silica aerogel radiator. (orig.)

  1. High strength air-dried aerogels

    Science.gov (United States)

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  2. Refractive index inhomogeneity within an aerogel block

    International Nuclear Information System (INIS)

    Bellunato, T.; Calvi, M.; Da Silva Costa, C.F.; Matteuzzi, C.; Musy, M.; Perego, D.L.

    2006-01-01

    Evaluating local inhomogeneities of the refractive index inside aerogel blocks to be used as Cherenkov radiator is important for a high energy physics experiment where angular resolution is crucial. Two approaches are described and compared. The first one is based on the bending of a laser beam induced by refractive index gradients along directions normal to the unperturbed optical path. The second method exploits the Cherenkov effect itself by shooting an ultra-relativistic collimated electron beam through different points of the aerogel surface. Local refractive index variations result in sizable differences in the Cherenkov photons distribution

  3. SINTESIS SILIKA AEROGEL DENGAN BAHAN DASAR ABU BAGASSE

    Directory of Open Access Journals (Sweden)

    Nazriati Nazriati

    2012-05-01

    Full Text Available SYNTHESIS OF SILICA AEROGEL FROM BAGASSE ASH. Synthesis of silica aerogel from bagasse ash was done by alkaline extraction followed by sol-gel. Bagasse ash was extracted with NaOH at its boiling temperature for one hour with continue stirring, to produce sodium silicate. Subsequently, sodium silicate was pass through ionic exchanger resin, to produces silicic acid (SA. Silicic acid solution was then added with TMCS and HMDS as surface modifier agent. In order to form gel pH must be adjusted to final pH of 8-9 by addition of NH4OH solution. The resulting gel then was aged and dried at ambient pressure and at a certain time and temperature. Characterization of products was done by measuring its pore volume, surface area, and hydrophobisity (contact angle. TMCS serves as water expeller from the pores and subsequently surface was modified by HMDS and TMCS. HMDS content will linearly increase surface area, pore volume, and the contact angle of the resulting silica aerogel. Characteristics of silica aerogel was generated by varying the composition of the SA:TMCS:HMDS resulting has a surface area of 50-488 m2/g, pore volume from 0.2 to 0.9 m3 /g, the contact angle of 48-119 and pore diameter ranging from 5.7-22.56 nm. Based on the resulting pore diameter, the synthesized of silica aerogel categorized as mesoporous.      Abstrak   Sintesis silika aerogel dari bahan dasar abu bagasse dilakukan dengan ekstraksi basa dan diikuti dengan sol-gel. Abu bagasse diekstrak dengan NaOH pada suhu didihnya sambil diaduk selama satu jam, menghasilkan sodium silikat. Selanjutnya, sodium silikat dilewatkan resin penukar ion, menghasilkan asam silicic (SA. Larutan asam silicic kemudian ditambahkan trimethy­l­chlorosilane (TMCS dan hexamethyldisilazane (HMDS sebagai agen pemodifikasi permukaan. Untuk terjadinya gel pH diatur hingga mencapai 8-9 dengan penambahan larutan NH4OH. Gel yang dihasilkan kemudian di-aging dan dikeringkan pada tekanan ambien pada suhu dan

  4. In situ TEM study of the coarsening of carbon black supported Pt nanoparticles in hydrogen

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Wang, Yan; Jensen, Jens Oluf

    2017-01-01

    The control of sizes and shapes of nanostructures is of tremendous importance for the catalytic activity in electrochemistry and in catalysis more generally. However, due to relatively large surface free energies, nanostructures often sinter to form coarser and more stable structures that may...... not have the intended physicochemical properties. Pt is known to be a very active catalyst in several chemical reactions and for example as carbon supported nanoparticles in fuel cells. The presentation focusses on coarsening mechanisms of Pt nanoparticles supported on carbon black during exposure...... to hydrogen. By means of in situ transmission electron microscopy (TEM), Pt nanoparticle coarsening was monitored in 6 mbar 20 % H2/Ar while ramping up the temperature to ca. 900 °C. Time-resolved TEM images directly reveal that separated ca. 3 nm sized Pt nanoparticles in the pure hydrogen environment...

  5. Basic science of new aerogels. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    Feasibility of making monolithic composite aerogels containing silica and natural clay minerals, synthetic clay minerals or zeolites has been demonstrated, using two different processes; up to 30 wt% of the mineral phase has been successfully added. Addition of natural and synthetic clay minerals or zeolites to silica aerosols was shown to retard densification. Composite silica aerogels showed significant surface area still present after sintering at 800 or 1000 C. For most samples, 1 wt% of the second phase is equally effective in retarding densification as 10 wt%. Composite aerogels, in general, had lower hardness values than pure silica. Hardness values were inversely proportional to aerogel pore radius.

  6. Fabrication and characterization of Aerogel-Polydimethyl siloxane (PDMS) Insulation Film

    Science.gov (United States)

    Noh, Yeoung ah; Song, Sinae; Taik Kim, Hee

    2018-03-01

    The building has a large impact on the space heating demand and the indoor environment is affected by climate or daylight. Hence, silica aerogel has generally used as a film to reduce the coefficient of the window in the building. Silica aerogel is a suitable material to apply for insulation material with lower thermal conductivity than that of air to save interior energy. However expensive precursor and drying process were the main issue of the silica aerogel synthesis and practical usage. We attempt to fabricate aerogel insulation film for energy saving through the economic process under ambient pressure. Silica aerogel was synthesized from rice husk ash, which was an agricultural waste to be able to recycle. Taguchi design was used to optimize the parameters (amount of rice husk ash, pH, aging time) controlling the surface area of silica aerogel. The silica aerogel is prepared by sol-gel processing through acidic treatment and aging. The silica aerogel was obtained by modification of silica hydrogel surface and dry at ambient pressure. Finally, aerogel film was respectively fabricated by the different content of aerogel in polydimethylsiloxane (PDMS). Silica aerogel obtained 21 – 24nm average particle size was analyzed by SEM and silica aerogel with high surface area (832.26 m2/g), pore size ( 3.30nm ) was characterized by BET. Then silica Aerogel – PDMS insulation film with thermal conductivity (0.002 W/mK) was analyzed by thermal wave system. The study demonstrates an eco-friendly and low-cost route toward silica – PDMS insulation film with low thermal conductivity (0.002 W/mK).

  7. Electrospinning of polymer-aerogel composite fibres

    DEFF Research Database (Denmark)

    Christiansen, Lasse; Fojan, Peter

    En poster om produktion af polymer-aerogel kompositfibre ved hjælp af elektrospinning. Fiberne er produceret fra en opløsning af aerogel og polyethylene oxide i vand, som er elektrospundet gennem en enkeltnålsprocess....

  8. Aerogel for FARICH detector

    Energy Technology Data Exchange (ETDEWEB)

    Barnyakov, A.Yu. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Barnyakov, M.Yu. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, Karl Marks 20, Novosibirsk 630073 (Russian Federation); Bobrovnikov, V.S.; Buzykaev, A.R.; Gulevich, V.V. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Danilyuk, A.F. [Boreskov Institute of Catalysis, Lavrentieva 5, Novosibirsk 630090 (Russian Federation); Kononov, S.A.; Kravchenko, E.A. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogova 2, Novosibirsk 630090 (Russian Federation); Kuyanov, I.A. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Lopatin, S.A. [Boreskov Institute of Catalysis, Lavrentieva 5, Novosibirsk 630090 (Russian Federation); Onuchin, A.P.; Ovtin, I.V.; Podgornov, N.A. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, Karl Marks 20, Novosibirsk 630073 (Russian Federation); Porosev, V.V. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Predein, A.Yu.; Protsenko, R.S. [Boreskov Institute of Catalysis, Lavrentieva 5, Novosibirsk 630090 (Russian Federation)

    2014-12-01

    We present our current experience in preparation of focusing aerogels for the Focusing Aerogel RICH detector. Multilayer focusing aerogel tiles have been produced in Novosibirsk by a collaboration of the Budker Institute of Nuclear Physics and Boreskov Institute of Catalysis since 2004. We have obtained 2–3–4-layer blocks with the thickness of 30–45 mm. In 2012, the first samples of focusing blocks with continuous density (refractive index) gradient along thickness were produced. This technology can significantly reduce the contribution from the geometric factor of the radiator thickness to the resolution of the measured Cherenkov angle in the FARICH detector. The special installation was used for automatic control of reagents ratio during the synthesis process. The first samples were tested using the digital radiography method and on the electron beam with the FARICH prototype.

  9. Super insulating aerogel glazing

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Jensen, Karsten Ingerslev; Kristiansen, Finn Harken

    2004-01-01

    form the weakest part of the thermal envelope with respect to heat loss coefficient, but on the other hand also play an important role for passive solar energy utilisation. For window orientations other than south, the net energy balance will be close to or below zero. However, the properties......Monolithic silica aerogel offers the possibility of combining super insulation and high solar energy transmittance, which has been the background for a previous and a current EU project on research and development of monolithic silica aerogel as transparent insulation in windows. Generally, windows...... of aerogel glazing will allow for a positive net energy gain even for north facing vertical windows in a Danish climate during the heating season. This means that high quality daylight can be obtained even with additional energy gain. On behalf of the partners of the two EU projects, results related...

  10. Mechanically Strong Lightweight Materials for Aerospace Applications (x-aerogels)

    Science.gov (United States)

    Leventis, Nicholas

    2005-01-01

    The X-Aerogel is a new NASA-developed strong lightweight material made by reacting the mesoporous surfaces of 3-D networks of inorganic nanoparticles with polymeric crosslinkers. Since the relative amount of the crosslinker and the backbone are comparable, X-Aerogels can be viewed either as aerogels modified by templated accumulation of polymer on the skeletal nanoparticles, or as nanoporous polymers made by templated casting of polymeric precursors on a nanostructured framework. The most striking feature of X-Aerogels is that for a nominal 3-fold increase in density (still a ultralightweight material), the mechanical strength can be up to 300 times higher than the strength of the underlying native aerogel. Thus, X-Aerogels combine a multiple of the specific compressive strength of steel, with the thermal conductivity of styrofoam. XAerogels have been demonstrated with several polymers such as polyurethanes/polyureas, epoxies and polyolefins, while crosslinking of approximately 35 different oxide aerogels yields a wide variety of dimensionally stable, porous lightweight materials with interesting structural, magnetic and optical properties. X-Aerogels are evaluated for cryogenic rocket fuel storage tanks and for Advanced EVA suits, where they will play the dual role of the thermal insulator/structural material. Along the same lines, major impact is also expected by the use of X-Aerogels in structural components/thermal protection for small satellites, spacecrafts, planetary vehicles and habitats.

  11. Aerogel-Based Antennas for Aerospace and Terrestrial Applications

    Science.gov (United States)

    Meador, Mary Ann (Inventor); Miranda, Felix (Inventor); Van Keuls, Frederick (Inventor)

    2016-01-01

    Systems and methods for lightweight, customizable antenna with improved performance and mechanical properties are disclosed. In some aspects, aerogels can be used, for example, as a substrate for antenna fabrication. The reduced weight and expense, as well as the increased ability to adapt antenna designs, permits a systems to mitigate a variety of burdens associated with antennas while providing added benefits.

  12. Silica aerogel and space astrophysics

    International Nuclear Information System (INIS)

    Koch-Miramond, L.

    1985-09-01

    Silica aerogels have been produced in large and transparent blocks for space astrophysics experiments since the beginning of the 1970's. They were used in cosmic ray experiments on board balloons by the Saclay group. A new space venture where aerogel Cerenkov radiators will play a decisive role is currently being prepared by a large collaboration of European and US Institutes. It will be part of the so-called International Solar Polar Mission (ISPM) which will explore the heliosphere over the full range of solar latitudes from the ecliptic (equatorial) plane to the magnetic poles of the sun. Comments on properties and long term behaviour of silica aerogel cerenkov radiators in space environment are given

  13. Preparation of Pt-mesoporous tungsten carbide/carbon composites via a soft-template method for electrochemical methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Chun’an, E-mail: science@zjut.edu.cn; Kang, Lingzhi; Shi, Meiqin; Lang, Xiaoling; Jiang, Yekun

    2014-03-05

    Highlights: • Mesoporous composite Pt-m(WC/C) is prepared by a soft template method. • The structure of phenolic gives a space limitation effect on the growth of WC. • Analysis of the effect of F127 on controlling the structure of composites. • Pt-m(WC/C) exhibits more than three times higher than Pt/C in catalytic activity. -- Abstract: This paper introduces a simple and reproducible chemical process for synthesis of Pt-mesoporous tungsten carbide/carbon composites composites Pt-m(WC/C) by means of a soft-template method. In this process, low-molecular-weight phenolic resol acted as the precursor both for carbon support and also the carbon resource of tungsten carbide. Tungsten hexachloride was used as a tungsten precursor along with different amount of triblock copolymer Pluronic F127 as pore-forming component. The best performance of Pt-m(WC/C) towards methanol oxidation is found when the mass ratios of WCl{sub 6}:F127 is 1:0.6. The composite presents an improved methanol oxidation performance evidenced by a negative shift in onset potential, and increase of peak current density, compared with commercial Pt/C. The difference is explained by the adding of appropriate amount of F127 which facilitates the construction of mesoporous matrix structure of WC/C.

  14. Effects of Microgravity on the Formation of Aerogels

    Science.gov (United States)

    Hunt, A. J.; Ayers, M. R.; Sibille, L.; Cronise, R. J.; Noever, D. A.

    1999-01-01

    This paper describes research to investigate fundamental aspects of the effects of microgravity on the formation of the microstructure of metal oxide alcogels and aerogels. We are studying the role of gravity on pore structure and gel uniformity in collaboration with Marshall Space Flight Center (MSFC) on gelling systems under microgravity conditions. While this project was just initiated in May 1998, related research performed earlier is described along with the plans and rationale for the current microgravity investigation to provide background and describe newly developing techniques that should be useful for the current gellation studies. The role of gravity in materials processing must be investigated through the study of well-mastered systems. Sol-gel processed materials are near-perfect candidates to determine the effect of gravity on the formation and growth of random clusters from hierarchies of aggregated units. The processes of hydrolysis, condensation, aggregation and gellation in the formation of alcogels are affected by gravity and therefore provide a rich system to study under microgravity conditions. Supercritical drying of the otherwise unstable wet alcogel preserves the alcogel structure produced during sol-gel processing as aerogel. Supercritically dried aerogel provides for the study of material microstructures without interference from the effects of surface tension, evaporation, and solvent flow. Aerogels are microstructured, low density open-pore solids. They have many unusual properties including: transparency, excellent thermal resistance, high surface area, very low refractive index, a dielectric constant approaching that of air, and extremely low sound velocity. Aerogels are synthesized using sol-gel processing followed by supercritical solvent extraction that leaves the original gel structure virtually intact. These studies will elucidate the effects of microgravity on the homogeneity of the microstructure and porosity of aerogel. The

  15. On the improvement of mechanical properties of monolithic silica aerogels (for transparent insulating material); Silica aerogel (tomei dannetsu zairyo) kyodo no kaizen ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Tajiri, K; Igarashi, K; Tanemura, S [National Industrial Research Institute of Nagoya, Nagoya (Japan)

    1997-11-25

    Study was made on improvement of the strength of silica aerogel as transparent insulating material. Silica aerogel is a low-density porous material with high heat insulation and transparency. To develop a insulating material with high transparency, monolithic silica aerogel was studied. For direct use of it for windows, its strength improvement was attempted. The aerogel was prepared by supercritical drying (alcohol or CO2) of silica wet gel obtained by hydrolysis and condensation of silicon alkoxide solution. To prepare the aerogel bonded on plate glass for strength improvement, the aerogel was bonded to alkoxide by exposing active silanol radical through F-etching of plate glass surface. However, to obtain the practical large-area bonded aerogel, shrinkage control of the aerogel in supercritical drying was necessary. Addition of Laponite into a silica network for strength improvement by polymer increased the bending strength by 50%. Although some reduction of its transparency was observed because of clouding, its heat insulation was stable. Further strength improvement is necessary for its practical use. 5 figs., 1 tab.

  16. Interaction of carbon dioxide with Cu overlayers on Pt(111)

    DEFF Research Database (Denmark)

    Schumacher, N.; Andersson, Klas Jerker; Grabow, L.C.

    2008-01-01

    Experimental and theoretical studies on the interaction of carbon dioxide with pseudomorphic and rough copper layers deposited on a platinum (111) single crystal are reported. Evidence for carbon dioxide dissociation and carbonate formation is presented and the relevance to methanol synthesis......) reveals a broad high temperature desorption state for CO2 with peak maximum around 450 K. X-ray photoelectron spectroscopy (XPS) shows that approximately one third of the oxygen accumulated on the surface upon CO2 exposure remains after TPD, indicative of carbonate formation via CO2 dissociation supplying...... O-ads and then facile CO2 + O-ads association, as well as subsequent decomposition at higher temperatures. Density functional theory studies of stepped Cu and Cu/Pt slabs reproduce vibrational frequencies of the carbonate, suggesting a nearly flat tridentate configuration at steps/defect sites....

  17. Advanced cathode materials for polymer electrolyte fuel cells based on pt/ metal oxides: from model electrodes to catalyst systems.

    Science.gov (United States)

    Fabbri, Emiliana; Pătru, Alexandra; Rabis, Annett; Kötz, Rüdiger; Schmidt, Thomas J

    2014-01-01

    The development of stable catalyst systems for application at the cathode side of polymer electrolyte fuel cells (PEFCs) requires the substitution of the state-of-the-art carbon supports with materials showing high corrosion resistance in a strongly oxidizing environment. Metal oxides in their highest oxidation state can represent viable support materials for the next generation PEFC cathodes. In the present work a multilevel approach has been adopted to investigate the kinetics and the activity of Pt nanoparticles supported on SnO2-based metal oxides. Particularly, model electrodes made of SnO2 thin films supporting Pt nanoparticles, and porous catalyst systems made of Pt nanoparticles supported on Sb-doped SnO2 high surface area powders have been investigated. The present results indicate that SnO2-based supports do not modify the oxygen reduction reaction mechanism on the Pt nanoparticle surface, but rather lead to catalysts with enhanced specific activity compared to Pt/carbon systems. Different reasons for the enhancement in the specific activity are considered and discussed.

  18. An environmentally benign route for the development of compressible, thermally insulating and fire retardant aerogels through self-assembling the silk fibroin biopolymer inside the silica structure - An approach towards 3D printing of aerogels.

    Science.gov (United States)

    Maleki, Hajar; Montes, Susan; Hayati-Roodbari, Nastaran; Putz, Florian; Huesing, Nicola

    2018-06-04

    Thanks to the exceptional materials properties of silica aerogels, this fascinating highly porous material has found high performance and real-life applications in various modern industries. However, a requirement for a broadening of these applications is based on the further improvement of their properties especially with regard to mechanical strength and post-synthesis processability with minimum compromise to the other physical properties. Here, we report an entirely novel, simple and aqueous based synthesis approach to prepare mechanically robust aerogel hybrids by co-gelation of silk fibroin (SF) biopolymer, extracted from silkworm cocoons. The synthesis is based on a one-step sequential processes of acid catalysis (physical) crosslinking of the SF biopolymer and simultaneous polycondensation of tetramethyl orthosilicate (TMOS), in the presence of 5-(trimethoxysilyl)pentanoic acid (TMSPA) as a coupling agent and subsequent solvent exchange and supercritical drying. Extensive characterizations by solid-state 1H-NMR, 29Si-NMR, and 2D 1H-29Si heteronuclear correlation (HETCOR) MAS NMR spectroscopy as well as various microscopic techniques (SEM, TEM) and mechanical assessment, confirmed the molecular-level homogeneity of the hybrid nanostructure. The developed silica-SF aerogel hybrids contained an improved set of material properties, such as low density (ρb, average = 0.11 - 0.2 g cm-3), high porosity (~90%), high specific surface area (~ 400-800 m2 g-1), excellent flexibility in compression (up to 80% of strain) with three-order of magnitude improvement in the Young's modulus over that of pristine silica aerogels. In addition, the silica-SF hybrid aerogels are fire retardant and demonstrated excellent thermal insulation performance with thermal conductivities (λ) of (0.033-0.039 Wm-1 K-1). As a further advantage, the formulated hybrid silica-SF aerogel showed an excellent printability in the wet state using a micro-extrusion based 3D printing approach. The

  19. Nitrogen-Doped Ordered Mesoporous Carbon Supported Bimetallic PtCo Nanoparticles for Upgrading of Biophenolics.

    Science.gov (United States)

    Wang, Guang-Hui; Cao, Zhengwen; Gu, Dong; Pfänder, Norbert; Swertz, Ann-Christin; Spliethoff, Bernd; Bongard, Hans-Josef; Weidenthaler, Claudia; Schmidt, Wolfgang; Rinaldi, Roberto; Schüth, Ferdi

    2016-07-25

    Hydrodeoxygenation (HDO) is an attractive route for the upgrading of bio-oils produced from lignocellulose. Current catalysts require harsh conditions to effect HDO, decreasing the process efficiency in terms of energy and carbon balance. Herein we report a novel and facile method for synthesizing bimetallic PtCo nanoparticle catalysts (ca. 1.5 nm) highly dispersed in the framework of nitrogen-doped ordered mesoporous carbon (NOMC) for this reaction. We demonstrate that NOMC with either 2D hexagonal (p6m) or 3D cubic (Im3‾ m) structure can be easily synthesized by simply adjusting the polymerization temperature. We also demonstrate that PtCo/NOMC (metal loading: Pt 9.90 wt %; Co 3.31 wt %) is a highly effective catalyst for HDO of phenolic compounds and "real-world" biomass-derived phenolic streams. In the presence of PtCo/NOMC, full deoxygenation of phenolic compounds and a biomass-derived phenolic stream is achieved under conditions of low severity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Bluedec in product design : Isolatiemateriaal op basis van aerogel

    NARCIS (Netherlands)

    Beurden, van K.M.M. (Karin); Goselink, E.A. (Erik)

    2014-01-01

    Aerogel is een zeer kostbaar voor de ruimtevaart ontwikkeld basismateriaal. Bluedec is een isolatiemateriaal bestaande uit een non woven kunststof dat met deze aerogel geïmpregneerd is. Hierdoor ontstaat een zeer goed isolerend materiaal dat goedkoper is dan aerogel. De

  1. Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation.

    Science.gov (United States)

    Jiang, Feng; Liu, He; Li, Yiju; Kuang, Yudi; Xu, Xu; Chen, Chaoji; Huang, Hao; Jia, Chao; Zhao, Xinpeng; Hitz, Emily; Zhou, Yubing; Yang, Ronggui; Cui, Lifeng; Hu, Liangbing

    2018-01-10

    The global fresh water shortage has driven enormous endeavors in seawater desalination and wastewater purification; among these, solar steam generation is effective in extracting fresh water by efficient utilization of naturally abundant solar energy. For solar steam generation, the primary focus is to design new materials that are biodegradable, sustainable, of low cost, and have high solar steam generation efficiency. Here, we designed a bilayer aerogel structure employing naturally abundant cellulose nanofibrils (CNFs) as basic building blocks to achieve sustainability and biodegradability as well as employing a carbon nanotube (CNT) layer for efficient solar utilization with over 97.5% of light absorbance from 300 to 1200 nm wavelength. The ultralow density (0.0096 g/cm 3 ) of the aerogel ensures that minimal material is required, reducing the production cost while at the same time satisfying the water transport and thermal-insulation requirements due to its highly porous structure (99.4% porosity). Owing to its rationally designed structure and thermal-regulation performance, the bilayer CNF-CNT aerogel exhibits a high solar-energy conversion efficiency of 76.3% and 1.11 kg m -2 h -1 at 1 kW m -2 (1 Sun) solar irradiation, comparable or even higher than most of the reported solar steam generation devices. Therefore, the all-nanofiber aerogel presents a new route for designing biodegradable, sustainable, and scalable solar steam generation devices with superb performance.

  2. Impact of polishing on the light scattering at aerogel surface

    International Nuclear Information System (INIS)

    Barnyakov, A.Yu.; Barnyakov, M.Yu.; Bobrovnikov, V.S.; Buzykaev, A.R.; Danilyuk, A.F.; Katcin, A.A.; Kononov, S.A.; Kirilenko, P.S.; Kravchenko, E.A.; Kuyanov, I.A.; Onuchin, A.P.; Ovtin, I.V.; Predein, A.Yu.; Protsenko, R.S.

    2016-01-01

    Particle identification power of modern aerogel RICH detectors strongly depends on optical quality of radiators. It was shown that wavelength dependence of aerogel tile transparency after polishing cannot be described by the standard Hunt formula. The Hunt formula has been modified to describe scattering in a thin layer of silica dust on the surface of aerogel tile. Several procedures of polishing of aerogel tile have been tested. The best result has been achieved while using natural silk tissue. The resulting block has optical smooth surfaces. The measured decrease of aerogel transparency due to surface scattering is about few percent. This result could be used for production of radiators for the Focusing Aerogel RICH detectors.

  3. Pt based PEMFC catalysts prepared from colloidal particle suspensions--a toolbox for model studies.

    Science.gov (United States)

    Speder, Jozsef; Altmann, Lena; Roefzaad, Melanie; Bäumer, Marcus; Kirkensgaard, Jacob J K; Mortensen, Kell; Arenz, Matthias

    2013-03-14

    A colloidal synthesis approach is presented that allows systematic studies of the properties of supported proton exchange membrane fuel cell (PEMFC) catalysts. The applied synthesis route is based on the preparation of monodisperse nanoparticles in the absence of strong binding organic stabilizing agents. No temperature post-treatment of the catalyst is required rendering the synthesis route ideally suitable for comparative studies. We report work concerning a series of catalysts based on the same colloidal Pt nanoparticle (NP) suspension, but with different high surface area (HSA) carbon supports. It is shown that for the prepared catalysts the carbon support has no catalytic co-function, but carbon pre-treatment leads to enhanced sticking of the Pt NPs on the support. An unwanted side effect, however, is NP agglomeration during synthesis. By contrast, enhanced NP sticking without agglomeration can be accomplished by the addition of an ionomer to the NP suspension. The catalytic activity of the prepared catalysts for the oxygen reduction reaction is comparable to industrial catalysts and no influence of the particle size is found in the range of 2-5 nm.

  4. Novel synthesis of core-shell Au-Pt dendritic nanoparticles supported on carbon black for enhanced methanol electro-oxidation

    Science.gov (United States)

    Cao, Ribing; Xia, Tiantian; Zhu, Ruizhi; Liu, Zhihua; Guo, Jinming; Chang, Gang; Zhang, Zaoli; Liu, Xiong; He, Yunbin

    2018-03-01

    Core-shell Au-Pt dendritic nanoparticles (Au-Pt NPs) has been synthesized via a facile seed-mediated growth method, in which dendritic Pt nanoparticles as shell grow on the surface of gold nanocores by using ascorbic acid (AA) as "green" reducing reagents. The morphologies and compositions of the as-prepared nanocomposites with core-shell structure are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Electrochemical experiments, including cyclic voltammetry (CV) and chronoamperometry (CA) are performed to investigate the electrocatalytic properties of the Au-Pt NPs loaded carbon black composites (Au-Pt NPs/V) towards methanol oxidation in an alkaline solution. It is found that the reduction time of AA could regulate the thickness and amount of Pt on the Au nanocores, which significantly affect catalytic activity of the Au-Pt NPs/V toward methanol oxidation. Au-Pt NPs/V with optimum reduction time 4 h exhibit 2.3-times higher electrocatalytic activity than that of a commercial catalyst (Pt/carbon black) and an excellent CO tolerance toward methanol oxidation. This behavior is attributed to large active electrochemical area of the bimetallic nanocomposites and the change in the electronic structure of Pt when Au surface modified with fewer Pt nanoparticles.

  5. Electronic structure of titania aerogels: Soft x-ray absorption study

    International Nuclear Information System (INIS)

    Kucheyev, S.O.; Van Buuren, T.V.; Baumann, T.F.; Satcher, J.H.; Willey, T.M.; Muelenberg, R.W.; Felter, T.E.; Poco, J.E.; Gammon, S.A.; Terminello, L.J.

    2004-01-01

    Full text: Titania aerogels - a somewhat extreme form of nanoporous TiO 2 - are open-cell solid foams derived from highly crosslinked gels by drying them under supercritical conditions. In this presentation, the unoccupied electronic states of TiO 2 aerogels are studied by soft x-ray absorption near-edge structure (XANES) spectroscopy. High-resolution O K-edge and Ti L 2,3 -edge XANES spectra of aerogels are compared with those of rutile, anatase, and unrelaxed amorphous phases of full- density TiO 2 . Results show that all the main spectroscopic features of aerogels, reflecting the element-specific partial density of empty electronic states and correlation effects, can be attributed to the absence of long-range order in stoichiometric amorphous TiO 2 . Based on these results, we discuss the effects of short- and long-range order on the electronic structure of TiO 2 . This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48

  6. Preparation, Characterization, and Cationic Functionalization of Cellulose-Based Aerogels for Wastewater Clarification

    Directory of Open Access Journals (Sweden)

    Yang Hu

    2016-01-01

    Full Text Available Aerogels are a series of materials with porous structure and light weight which can be applied to many industrial divisions as insulators, sensors, absorbents, and cushions. In this study, cellulose-based aerogels (aerocelluloses were prepared from cellulosic material (microcrystalline cellulose in sodium hydroxide/water solvent system followed by supercritical drying operation. The average specific surface area of aerocelluloses was 124 m2/g. The nitrogen gas (N2 adsorption/desorption isotherms revealed type H1 hysteresis loops for aerocelluloses, suggesting that aerocelluloses may possess a porous structure with cylindrically shaped pores open on both ends. FTIR and XRD analyses showed that the crystallinity of aerocelluloses was significantly decreased as compared to microcrystalline cellulose and that aerocelluloses exhibited a crystalline structure of cellulose II as compared to microcrystalline cellulose (cellulose I. To perform cationic functionalization, a cationic agent, (3-chloro-2-hydroxypropyl trimethylammonium chloride, was used to introduce positively charged sites on aerocelluloses. The cationized aerocelluloses exhibited a strong ability to remove anionic dyes from wastewater. Highly porous and low cost aerocelluloses prepared in this study would be also promising as a fast absorbent for environmental pollutants.

  7. The electrocatalytic properties of carbon supported PtRu/C nanoalloys in oxidation of small organic molecules: Comparison with Pt/C catalyst

    Directory of Open Access Journals (Sweden)

    Lović Jelena D.

    2012-01-01

    Full Text Available The electrocatalytic activity of carbon supported PtRu/C catalysts, with different composition, toward the electrooxidation of methanol, CO and formic acid were examined in acid and alkaline solution at ambient temperature using thin-film rotating disk electrode (RDE method and compared with activity of Pt/C. The catalysts were characterized by XRD, AFM and STM techniques. XRD pattern revealed that PtRu-1/C catalyst is consisted of two structures e.g. Pt-Ru-fcc and Ru-hcp (the solid solution of Ru in Pt and the small amount of Ru or solid solution of Pt in Ru, as opposed to PtRu-2/C catalyst which is consisted of one structure mostly, Pt-Ru-fcc. According to STM images, PtRu as well as Pt, particles size were between 2 and 6 nm, which is in a good agreement with the mean particles size determined by XRD. To establish the activity and stability of the catalysts potentiodynamic and quasi steady-state measurements were performed. It was found that the activity of Pt and PtRu for CO and methanol oxidation is a strong function of pH of solution. The kinetics are much higher in alkaline than in acid solution and the difference between Pt/C and PtRu/C is much less pronounced in alkaline media. Results presented in this work indicate that activity of PtRu catalysts depends on catalyst composition, e.g. on Pt/Ru atomic ratio, as well as on alloying degree of catalysts. Comparison of CO, methanol and formic acid oxidation on PtRu-2/C, PtRu-1/C and Pt/C catalysts revealed that PtRu-2/C is the most active one. It was shown that the PtRu-2/C catalyst, due to fact that it is consisted of only one phase, with high alloying degree, through the bifunctional mechanism improved by electronic effect, achieve the activity two times higher related to PtRu-1/C in the oxidation of all organic molecules investigated, and about three times higher compared to Pt/C in the oxidation of methanol and CO, and five times higher in formic acid oxidation.

  8. Polyimide-Foam/Aerogel Composites for Thermal Insulation

    Science.gov (United States)

    Williams, Martha; Fesmire, James; Sass, Jared; Smith, Trent; Weoser. Erol

    2009-01-01

    Composites of specific types of polymer foams and aerogel particles or blankets have been proposed to obtain thermal insulation performance superior to those of the neat polyimide foams. These composites have potential to also provide enhanced properties for vibration dampening or acoustic attenuation. The specific type of polymer foam is denoted "TEEK-H", signifying a series, denoted H, within a family of polyimide foams that were developed at NASA s Langley Research Center and are collectively denoted TEEK (an acronym of the inventors names). The specific types of aerogels include Nanogel aerogel particles from Cabot Corporation in Billerica, MA. and of Spaceloft aerogel blanket from Aspen Aerogels in Northborough, MA. The composites are inherently flame-retardant and exceptionally thermally stable. There are numerous potential uses for these composites, at temperatures from cryogenic to high temperatures, in diverse applications that include aerospace vehicles, aircraft, ocean vessels, buildings, and industrial process equipment. Some low-temperature applications, for example, include cryogenic storage and transfer or the transport of foods, medicines, and chemicals. Because of thermal cycling, aging, and weathering most polymer foams do not perform well at cryogenic temperatures and will undergo further cracking over time. The TEEK polyimides are among the few exceptions to this pattern, and the proposed composites are intended to have all the desirable properties of TEEK-H foams, plus improved thermal performance along with enhanced vibration or acoustic-attenuation performance. A composite panel as proposed would be fabricated by adding an appropriate amount of TEEK friable balloons into a mold to form a bottom layer. A piece of flexible aerogel blanket material, cut to the desired size and shape, would then be placed on the bottom TEEK layer and sandwiched between another top layer of polyimide friable balloons so that the aerogel blanket would become

  9. Pt based anode catalysts for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Weijiang; Zhou, Zhenhua; Song, Shuqin; Li, Wenzhen; Sun, Gongquan; Xin, Qin [Direct Alcohol Fuel Cell Laboratory, Dalian Institute of Chemical Physics, CAS, P.O. Box 110, Dalian 116023 (China); Tsiakaras, Panagiotis [Department of Mechanical and Industrial Engineering, University of Thessalia, Pedion Areos, GR 38334 Volos (Greece) 7

    2003-11-10

    In the present work several Pt-based anode catalysts supported on carbon XC-72R were prepared with a novel method and characterized by means of XRD, TEM and XPS analysis. It was found that all these catalysts are consisted of uniform nanosized particles with sharp distribution and Pt lattice parameter decreases with the addition of Ru or Pd and increases with the addition of Sn or W. Cyclic voltammetry (CV) measurements and single direct ethanol fuel cell (DEFC) tests jointly showed that the presence of Sn, Ru and W enhances the activity of Pt towards ethanol electro-oxidation in the following order: Pt{sub 1}Sn{sub 1}/C>Pt{sub 1}Ru{sub 1}/C>Pt{sub 1}W{sub 1}/C>Pt{sub 1}Pd{sub 1}/C>Pt/C. Moreover, Pt{sub 1}Ru{sub 1}/C further modified by W and Mo showed improved ethanol electro-oxidation activity, but its DEFC performance was found to be inferior to that measured for Pt{sub 1}Sn{sub 1}/C. Under this respect, several PtSn/C catalysts with different Pt/Sn atomic ratio were also identically prepared and characterized and their direct ethanol fuel cell performances were evaluated. It was found that the single direct ethanol fuel cell having Pt{sub 1}Sn{sub 1}/C or Pt{sub 3}Sn{sub 2}/C or Pt{sub 2}Sn{sub 1}/C as anode catalyst showed better performances than those with Pt{sub 3}Sn{sub 1}/C or Pt{sub 4}Sn{sub 1}/C. It was also found that the latter two cells exhibited higher performances than the single cell using Pt{sub 1}Ru{sub 1}/C, which is exclusively used in PEMFC as anode catalyst for both methanol electro-oxidation and CO-tolerance. This distinct difference in DEFC performance between the catalysts examined here would be attributed to the so-called bifunctional mechanism and to the electronic interaction between Pt and additives. It is thought that an amount of -OH{sub ads}, an amount of surface Pt active sites and the conductivity effect of PtSn/C catalysts would determine the activity of PtSn/C with different Pt/Sn ratios. At lower temperature values or at low

  10. Synthesis, Processing, and Characterization of Inorganic-Organic Hybrid Cross-Linked Silica, Organic Polyimide, and Inorganic Aluminosilicate Aerogels

    Science.gov (United States)

    Nguyen, Baochau N.; Guo, Haiquan N.; McCorkle, Linda S.

    2014-01-01

    As aerospace applications become ever more demanding, novel insulation materials with lower thermal conductivity, lighter weight and higher use temperature are required to fit the aerospace application needs. Having nanopores and high porosity, aerogels are superior thermal insulators, among other things. The use of silica aerogels in general is quite restricted due to their inherent fragility, hygroscopic nature, and poor mechanical properties, especially in extereme aerospace environments. Our research goal is to develop aerogels with better mechanical and environmental stability for a variety of aeronautic and space applications including space suit insulation for planetary surface missions, insulation for inflatable structures for habitats, inflatable aerodynamic decelerators for entry, descent and landing (EDL) operations, and cryotank insulation for advance space propulsion systems. Different type of aerogels including organic-inorganic polymer reinforced (hybrid) silica-based aerogels, polyimide aerogels and inorganic aluminosilicate aerogels have been developed and examined.

  11. Evaluation of supercritical CO2 dried cellulose aerogels as nano-biomaterials

    Science.gov (United States)

    Lee, Sinah; Kang, Kyu-Young; Jeong, Myung-Joon; Potthast, Antje; Liebner, Falk

    2017-10-01

    Cellulose is the renewable, biodegradable and abundant resource and is suggested as an alternative material to silica due to the high price and environmental load of silica. The first step for cellulose aerogel production is to dissolve cellulose, and hydrated calcium thiocyanate molten salt is one of the most effective solvents for preparing porous material. Cellulose aerogels were prepared from dissolved cellulose samples of different degree of polymerization (DP) and drying methods, and tested with shrinkage, density and mechanical strength. Supercritical CO2 dried cellulose aerogels shrank less compared to freeze-dried cellulose aerogels, whereas the densities were increased according to the DP increases in both cellulose aerogels. Furthermore, scanning electron microscope (SEM) images showed that the higher DP cellulose aerogels were more uniform with micro-porous structure. Regarding the mechanical strength of cellulose aerogels, supercritical CO2 dried cellulose aerogels with higher molecular weight were much more solid.

  12. Polyimide Cellulose Nanocrystal Composite Aerogels

    Science.gov (United States)

    Nguyen, Baochau N.; Meador, Mary Ann; Rowan, Stuart; Cudjoe, Elvis; Sandberg, Anna

    2014-01-01

    Polyimide (PI) aerogels are highly porous solids having low density, high porosity and low thermal conductivity with good mechanical properties. They are ideal for various applications including use in antenna and insulation such as inflatable decelerators used in entry, decent and landing operations. Recently, attention has been focused on stimuli responsive materials such as cellulose nano crystals (CNCs). CNCs are environmentally friendly, bio-renewable, commonly found in plants and the dermis of sea tunicates, and potentially low cost. This study is to examine the effects of CNC on the polyimide aerogels. The CNC used in this project are extracted from mantle of a sea creature called tunicates. A series of polyimide cellulose nanocrystal composite aerogels has been fabricated having 0-13 wt of CNC. Results will be discussed.

  13. Pt nanoparticles embedded on reduced graphite oxide with excellent electrocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, Gengan, E-mail: saravanan3che@gmail.com [Central University of Tamil Nadu, Department of Chemistry, Thiruvarur, 610101 (India); Mohan, Subramanian, E-mail: sanjnamohan@yahoo.com [EMFT Division, CSIR-Central Electrochemical Research Institute, Tamilnadu, Karaikudi 630 006 (India)

    2016-11-15

    Graphical abstract: RGO/Nano Pt: This study explore the electrocatalytic oxidation performance of reduced graphite oxide (RGO) anchored with nano Pt. This graphene composite reveal superior electrooxidation performance that is associated with the flexible RGO matrix and the uniform distribution of Pt particles, which enhances surface area, fast electron transfer, uniform particle size distribution; consequently, the RGO matrix provides more stability to Pt particles during electrooxidation process. Display Omitted - Highlights: • Greener electrochemical method applied to prepare well-dispersed Pt-rGO. • Pt-rGO large surface area excellent charge transfer better catalytic activity. • Low-cost highly efficient carbon-based electrodes for direct formic acid fuel cell. • rGO an excellent support to anchor Pt nanoparticles on its surface. • Pt-rGO distinctly enhanced current density towards formic acid electrooxidation. - Abstract: Economically viable electrochemical approach has been developed for the synthesis of Pt nanoparticles through electrodeposition technique on the surface of Reduced Graphite Oxide (RGO). Pt nanoparticles embedded Reduced Graphite Oxide on Glassy Carbon Electrode are employed (Pt-rGO/GCE) for electrooxidation of formic acid. Scanning Electron Microscopy (SEM) image and Transmission Electron Microscopy (TEM) image shows that reduced graphite oxide act as an excellent support to anchor the Pt nanoparticles. Cyclic voltammetry results confirmed that Pt-rGO/GCE enhanced current density as many folds than that of bare platinum electrode for electrooxidation of formic acid. X-ray diffraction (XRD) patterns for Pt-graphene composites illustrate that peaks at 69.15 and 23° for Pt (220) and graphene carbon (002) respectively. {sup 13}C NMR spectrum of the electrochemically reduced graphite oxide resonance contains only one peak at 133 ppm which retains graphitic sp{sup 2} carbon and does not contain any oxygenated carbon and the carbonyl

  14. Synthesis and Electrochemical Evaluation of Carbon Supported Pt-Co Bimetallic Catalysts Prepared by Electroless Deposition and Modified Charge Enhanced Dry Impregnation

    Directory of Open Access Journals (Sweden)

    John Meynard M. Tengco

    2016-06-01

    Full Text Available Carbon-supported bimetallic Pt-Co cathode catalysts have been previously identified as higher activity alternatives to conventional Pt/C catalysts for fuel cells. In this work, a series of Pt-Co/C catalysts were synthesized using electroless deposition (ED of Pt on a Co/C catalyst prepared by modified charge enhanced dry impregnation. X-ray diffraction (XRD and scanning transmission electron microscopy (STEM characterization of the base catalyst showed highly dispersed particles. A basic ED bath containing PtCl62− as the Pt precursor, dimethylamine borane as reducing agent, and ethylenediamine as stabilizing agent successfully targeted deposition of Pt on Co particles. Simultaneous action of galvanic displacement and ED resulted in Pt-Co alloy formation observed in XRD and energy dispersive X-ray spectroscopy (XEDS mapping. In addition, fast deposition kinetics resulted in hollow shell Pt-Co alloy particles while particles with Pt-rich shell and Co-rich cores formed with controlled Pt deposition. Electrochemical evaluation of the Pt-Co/C catalysts showed lower active surface but much higher mass and surface activities for oxygen reduction reaction compared to a commercial Pt/C fuel cell catalyst.

  15. Oxidation-mediated chitosan as additives for creation of chitosan aerogels with diverse three-dimensional interconnected skeletons

    International Nuclear Information System (INIS)

    Zhang, Sizhao; Feng, Jian; Feng, Junzong; Jiang, Yonggang

    2017-01-01

    Highlights: • A new synthetic method for controlling morphology of chitosan aerogels is proposed. • Chitosan aerogels with nanoflake-like and nanofiber-like were prepared. • Textures of chitosan aerogels are strongly dependent upon the oxidation pattern. - Abstract: Naturally occurring polymer-based aerogels have myriad practical utilizations due to environmentally benign and fruitful resources. However, engineering morphology-controllable biomass aerogels still represents a great challenge. Here we present a facile solution to synthesize chitosan aerogels having distinguished textures by reacting oxidized chitosan with formaldehyde and chitosan sol. In more detail, chitosan was chemically oxidized using two types of oxidation agents such as ammonium persulphate (SPD) and sodium periodate (APS) to obtain corresponding oxidized chitosan, subsequently cross-linked with chitosan solution containing formaldehyde to harvest SPD-oxidized chitosan aerogels (SCAs) and APS-SPD-oxidized ones (ASCAs) after aging, solvent exchange and supercritical drying processes. We found that the morphologies of as-prepared chitosan aerogels are strongly dependent upon the oxidation pattern towards chitosan. The structural textures of SCAs and ASCAs appear nanoflake-like and nanofiber-like structures, which may be related to spatial freedom of active groups located in chitosan. Selected area electron diffraction analysis reveals that the crystalline properties of chitosan aerogels generally appear the serious deterioration comparing to raw chitosan owing to their interconnected skeletal structure formation. The occurrence of characteristic groups displays cross-linked chain construction by using chemical state measurements such as FT-IR and XPS. Further, a plausible mechanism for controlling morphology of chitosan aerogels is also established. This new family of method for creation of chitosan aerogels may open up a perspective for biomass aerogels with controllable textures.

  16. Oxidation-mediated chitosan as additives for creation of chitosan aerogels with diverse three-dimensional interconnected skeletons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Sizhao, E-mail: bule-soul@hotmail.com; Feng, Jian, E-mail: fengj@nudt.edu.cn; Feng, Junzong; Jiang, Yonggang

    2017-02-28

    Highlights: • A new synthetic method for controlling morphology of chitosan aerogels is proposed. • Chitosan aerogels with nanoflake-like and nanofiber-like were prepared. • Textures of chitosan aerogels are strongly dependent upon the oxidation pattern. - Abstract: Naturally occurring polymer-based aerogels have myriad practical utilizations due to environmentally benign and fruitful resources. However, engineering morphology-controllable biomass aerogels still represents a great challenge. Here we present a facile solution to synthesize chitosan aerogels having distinguished textures by reacting oxidized chitosan with formaldehyde and chitosan sol. In more detail, chitosan was chemically oxidized using two types of oxidation agents such as ammonium persulphate (SPD) and sodium periodate (APS) to obtain corresponding oxidized chitosan, subsequently cross-linked with chitosan solution containing formaldehyde to harvest SPD-oxidized chitosan aerogels (SCAs) and APS-SPD-oxidized ones (ASCAs) after aging, solvent exchange and supercritical drying processes. We found that the morphologies of as-prepared chitosan aerogels are strongly dependent upon the oxidation pattern towards chitosan. The structural textures of SCAs and ASCAs appear nanoflake-like and nanofiber-like structures, which may be related to spatial freedom of active groups located in chitosan. Selected area electron diffraction analysis reveals that the crystalline properties of chitosan aerogels generally appear the serious deterioration comparing to raw chitosan owing to their interconnected skeletal structure formation. The occurrence of characteristic groups displays cross-linked chain construction by using chemical state measurements such as FT-IR and XPS. Further, a plausible mechanism for controlling morphology of chitosan aerogels is also established. This new family of method for creation of chitosan aerogels may open up a perspective for biomass aerogels with controllable textures.

  17. Preparation of activated carbon aerogels with hierarchically porous structures for electrical double layer capacitors

    International Nuclear Information System (INIS)

    Liu, Dong; Shen, Jun; Liu, Nianping; Yang, Huiyu; Du, Ai

    2013-01-01

    Activated carbon aerogels (ACAs) with hierarchically porous structures and high specific surface area have been prepared via CO 2 and KOH activation processes. The pore structures of ACAs are characterized by N 2 adsorption/desorption and scanning electron microscopy. The experimental results show that the ACAs contain three types of pores: micropores with diameters below 2 nm, small mesopores with diameters from 2 to 4 nm and large pores or channels with diameters over 30 nm. The typical sample ACAs-4, which possess pore volume of 2.73 cm 3 g −1 and specific surface area of 2119 m 2 g −1 , exhibits high specific capacitances of 250 F g −1 and 198 F g −1 at the current densities of 0.5 A g −1 and 20 A g −1 respectively in 6 M KOH aqueous solution. Furthermore, the resultant ACAs electrode materials also exhibit high power density, good cycling stability and long lifetime. With these features, ACAs are expected to be promising electrode materials for electrical double layer capacitors

  18. In Situ Synthesis and Characterization of Polyethyleneimine-Modified Carbon Nanotubes Supported PtRu Electrocatalyst for Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Xi Geng

    2015-01-01

    Full Text Available PtRu bimetallic nanoparticles were successfully synthesized on polyethyleneimine- (PEI- functionalized multiwalled carbon nanotubes (MWCNTs via an effective and facile polyol reduction approach. Noncovalent surface modification of MWCNTs with PEI was confirmed by FTIR and zeta potential measurements. The morphology, crystalline structure, and composition of the hybrid material were characterized by transmission electron microscopy (TEM, scanning electron microscopy (SEM, X-ray powder diffraction (XRD, and energy dispersive X-ray spectroscopy (EDX, respectively. According to SEM and TEM observations, PtRu nanoparticles with narrow size distribution were homogeneously deposited on PEI-MWCNTs. Cyclic voltammetry tests demonstrated that the as-prepared PtRu/PEI-MWCNTs nanocomposite had a large electrochemical surface area and exhibited enhanced electrocatalytic activity towards methanol oxidation in comparison with oxidized MWCNTs as catalyst support. PEI-functionalized CNTs, as useful building blocks for the assembly of Pt-based electrocatalyst, may have great potential for applications such as direct methanol fuel cell (DMFC.

  19. Synthesis of honeycomb-like mesoporous nitrogen-doped carbon nanospheres as Pt catalyst supports for methanol oxidation in alkaline media

    Science.gov (United States)

    Zhang, Yunmao; Liu, Yong; Liu, Weihua; Li, Xiying; Mao, Liqun

    2017-06-01

    This paper reports the convenient synthesis of honeycomb-like mesoporous nitrogen-doped carbon spheres (MNCS) using a self-assembly strategy that employs dopamine (DA) as a carbon and nitrogen precursor and a polystyrene-b-poly(ethylene oxide) (PS173-b-PEO170) diblock copolymer as a soft template. The MNCS have large BET surface areas of up to 554 m2 g-1 and high nitrogen contents of up to 6.9 wt%. The obtained MNCS are used as a support for Pt catalysts, which promote methanol oxidation in alkaline media. The MNCS-supported Pt (Pt/MNCS) catalyst has a larger electrochemically active surface area (ESA) (89.2 m2 g-1) than does a commercially available Vulcan XC-72R supported Pt/C catalyst. Compared to the Pt/C catalyst, Pt/MNCS displays a higher peak current density (1007 mA mg-1) and is more stable during methanol oxidation. These improvements are attributed to the honeycomb-like porous structure of the MNCS and the introduction of nitrogen to the carbon support. The MNCS effectively stabilize Pt nanoparticles and assuage the agglomeration of the nanoparticles, suggesting that MNCS are potential and promising application as electrocatalyst supports in alkaline direct methanol fuel cells.

  20. Sol-gel derived flexible silica aerogel as selective adsorbent for water decontamination from crude oil.

    Science.gov (United States)

    Abolghasemi Mahani, A; Motahari, S; Mohebbi, A

    2018-04-01

    Oil spills are the most important threat to the sea ecosystem. The present study is an attempt to investigate the effects of sol-gel parameters on seawater decontamination from crude oil by use of flexible silica aerogel. To this goal, methyltrimethoxysilane (MTMS) based silica aerogels were prepared by two-step acid-base catalyzed sol-gel process, involving ambient pressure drying (APD) method. To investigate the effects of sol-gel parameters, the aerogels were prepared under two different acidic and basic pH values (i.e. 4 and 8) and varied ethanol/MTMS molar ratios from 5 to 15. The adsorption capacity of the prepared aerogels was evaluated for two heavy and light commercial crude oils under multiple adsorption-desorption cycles. To reduce process time, desorption cycles were carried out by using roll milling for the first time. At optimum condition, silica aerogels are able to uptake heavy and light crude oils with the order of 16.7 and 13.7, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Electrocatalytic activity of Pt nanoparticles on bamboo shaped carbon nanotubes for ethanol oxidation

    International Nuclear Information System (INIS)

    Zhu Zanzan; Wang Jianlong; Munir, Ahsan; Zhou, H. Susan

    2010-01-01

    Recently, bamboo shaped carbon nanotubes (BCNTs) have received increased attention for its bamboo shaped structure associated properties and its application in direct methanol/ethanol fuel cell. In this work, the potential to use BCNTs as the support material of high loaded Pt nanoparticles for improving the efficiency of ethanol/methanol fuel cell is explored. The structure and nature of the resulting Pt-BCNTS composite were characterized by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) spectrum, it was found that Pt nanoparticles were homogeneously dispersed on the BCNTs surfaces with 23.5% by weight. Cyclic voltammogram (CV) indicated that the Pt-BCNTs catalyst displayed excellent electrocatalytic activity and long-term stability toward ethanol oxidation. The excellent performance may be attributed to the high dispersion of nanoscale Pt catalysts and the unique nature of BCNTs. The results imply that doping N atom introduces some defective sites and active sites onto the surface of CNTs. In general, this paper demonstrates that BCNTs are promising support material for Pt-nanoparticles catalyst and can be used to enhance the efficiency of fuel cell.

  2. The synthesis of PdPt/carbon paper via surface limited redox replacement reactions for oxygen reduction reaction

    CSIR Research Space (South Africa)

    Motsoeneng, RG

    2015-09-01

    Full Text Available Surface-limited redox replacement reactions using the electrochemical atomic layer deposition (EC-ALD) technique were used to synthesize PdPt bimetallic electrocatalysts on carbon paper substrate. Electrocatalysts having different Pd:Pt ratio were...

  3. A low-temperature synthesis of electrochemical active Pt nanoparticles and thin films by atomic layer deposition on Si(111) and glassy carbon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rui [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Han, Lihao [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Photovoltaic Materials and Devices (PVMD) Laboratory, Delft University of Technology, P.O. Box 5031, GA Delft 2600 (Netherlands); Huang, Zhuangqun; Ferrer, Ivonne M. [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Division of Chemistry and Chemical Engineering, California Institute of Technology, 210 Noyes Laboratory 127-72, Pasadena, CA 91125 (United States); Smets, Arno H.M.; Zeman, Miro [Photovoltaic Materials and Devices (PVMD) Laboratory, Delft University of Technology, P.O. Box 5031, GA Delft 2600 (Netherlands); Brunschwig, Bruce S., E-mail: bsb@caltech.edu [Beckman Institute, California Institute of Technology, Pasadena, CA 91125 (United States); Lewis, Nathan S., E-mail: nslewis@caltech.edu [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Beckman Institute, California Institute of Technology, Pasadena, CA 91125 (United States); Division of Chemistry and Chemical Engineering, California Institute of Technology, 210 Noyes Laboratory 127-72, Pasadena, CA 91125 (United States); Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-07-01

    Atomic layer deposition (ALD) was used to deposit nanoparticles and thin films of Pt onto etched p-type Si(111) wafers and glassy carbon discs. Using precursors of MeCpPtMe{sub 3} and ozone and a temperature window of 200–300 °C, the growth rate was 80–110 pm/cycle. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to analyze the composition, structure, morphology, and thickness of the ALD-grown Pt nanoparticle films. The catalytic activity of the ALD-grown Pt for the hydrogen evolution reaction was shown to be equivalent to that of e-beam evaporated Pt on glassy carbon electrode. - Highlights: • Pure Pt films were grown by atomic layer deposition (ALD) using MeCpPtMe3 and ozone. • ALD-grown Pt thin films had high growth rates of 110 pm/cycle. • ALD-grown Pt films were electrocatalytic for hydrogen evolution from water. • Electrocatalytic activity of the ALD Pt films was equivalent to e-beam deposited Pt. • No carbon species were detected in the ALD-grown Pt films.

  4. A low-temperature synthesis of electrochemical active Pt nanoparticles and thin films by atomic layer deposition on Si(111) and glassy carbon surfaces

    International Nuclear Information System (INIS)

    Liu, Rui; Han, Lihao; Huang, Zhuangqun; Ferrer, Ivonne M.; Smets, Arno H.M.; Zeman, Miro; Brunschwig, Bruce S.; Lewis, Nathan S.

    2015-01-01

    Atomic layer deposition (ALD) was used to deposit nanoparticles and thin films of Pt onto etched p-type Si(111) wafers and glassy carbon discs. Using precursors of MeCpPtMe 3 and ozone and a temperature window of 200–300 °C, the growth rate was 80–110 pm/cycle. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to analyze the composition, structure, morphology, and thickness of the ALD-grown Pt nanoparticle films. The catalytic activity of the ALD-grown Pt for the hydrogen evolution reaction was shown to be equivalent to that of e-beam evaporated Pt on glassy carbon electrode. - Highlights: • Pure Pt films were grown by atomic layer deposition (ALD) using MeCpPtMe3 and ozone. • ALD-grown Pt thin films had high growth rates of 110 pm/cycle. • ALD-grown Pt films were electrocatalytic for hydrogen evolution from water. • Electrocatalytic activity of the ALD Pt films was equivalent to e-beam deposited Pt. • No carbon species were detected in the ALD-grown Pt films

  5. Assessment of Methods to Consolidate Iodine-Loaded Silver-Functionalized Silica Aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, Josef; Engler, Robert K.

    2013-09-01

    The U.S. Department of Energy is currently investigating alternative sorbents for the removal and immobilization of radioiodine from the gas streams in a nuclear fuel reprocessing plant. One of these new sorbents, Ag0-functionalized silica aerogels, shows great promise as a potential replacement for Ag-bearing mordenites because of its high selectivity and sorption capacity for iodine. Moreover, a feasible consolidation of iodine-loaded Ag0-functionalized silica aerogels to a durable SiO2-based waste form makes this aerogel an attractive choice for sequestering radioiodine. This report provides a preliminary assessment of the methods that can be used to consolidate iodine-loaded Ag0-functionalized silica aerogels into a final waste form. In particular, it focuses on experimental investigation of densification of as prepared Ag0-functionalized silica aerogels powders, with or without organic moiety and with or without sintering additive (colloidal silica), with three commercially available techniques: 1) hot uniaxial pressing (HUP), 2) hot isostatic pressing (HIP), and 3) spark plasma sintering (SPS). The densified products were evaluated with helium gas pycnometer for apparent density, with the Archimedes method for apparent density and open porosity, and with high-resolution scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS) for the extent of densification and distribution of individual elements. The preliminary investigation of HUP, HIP, and SPS showed that these sintering methods can effectively consolidate powders of Ag0-functionalized silica aerogel into products of near-theoretical density. Also, removal of organic moiety and adding 5.6 mass% of colloidal silica to Ag0-functionalized silica aerogel powders before processing provided denser products. Furthermore, the ram travel data for SPS indicated that rapid consolidation of powders can be performed at temperatures below 950°C.

  6. Flower-Like Nanoparticles of Pt-BiIII Assembled on Agmatine Sulfate Modified Glassy Carbon Electrode and Their Electrocatalysis of H2O2

    Science.gov (United States)

    Xiao, Mingshu; Yan, Yuhua; Feng, Kai; Tian, Yanping; Miao, Yuqing

    2015-04-01

    A new electrochemical technique to detect hydrogen peroxide (H2O2) was developed. The Pt nanoparticles and BiIII were subsequently assembled on agmatine sulfate (AS) modified glassy carbon electrode (GCE) and the prepared GCE-AS-Pt-BiIII was characterized by scanning electron microscopy (SEM) with result showing that the flower-like nanostructure of Pt-BiIII was yielded. Compared with Pt nanoparticles, the flower-like nanostructure of Pt-BiIII greatly enhanced the electrocatalysis of GCE-AS-Pt-BiIII towards H2O2, which is ascribed to more Pt-OH obtained on GCE-AS-Pt-BiIII surface for the presence of BiIII. Based on its high electrocatalysis, GCE-AS-Pt-BiIII was used to determine the content of H2O2 in the sample of sheet bean curd with standard addition method. Meantime, its electrocatalytic activity also was studied.

  7. Optical sensing of triethylamine using CdSe aerogels

    International Nuclear Information System (INIS)

    Yao Qinghong; Brock, Stephanie L

    2010-01-01

    The photoluminescence (PL) response of highly porous CdSe aerogels to triethylamine (TEA) is investigated and compared to results from prior studies on single crystals and nanoparticle-polymer composites. As-prepared CdSe aerogels show significant and reversible enhancement of luminescence intensity upon exposure to TEA relative to the intensity in pure argon carrier gas. The enhancement in the PL response is dependent on the concentration and linear over the range of TEA concentration studied (4.7 x 10 3 -75 x 10 3 ppm). The sensing response of previously tested samples exhibits saturation behavior that is modeled using Langmuir adsorption isotherms, yielding adsorption equilibrium constants in the range 300-380 atm -1 . The response is sensitively affected by the surface characteristics of the aerogel; when the wet gels are treated with pyridine prior to aerogel formation, the response to TEA is diminished, and when as-prepared aerogels are heated in a vacuum, no subsequent response is observed. Deactivation is attributed to an increase in surface oxide (SeO 2 ) and decrease in surface Cd 2+ Lewis acid sites. Sensing runs of approximately one hour have little impact on the morphology or crystallinity of the aerogels, but do result in partial removal of residual thiolate ligands left over from the gelation process.

  8. Characterization and evaluation of Pt-Ru catalyst supported on multi-walled carbon nanotubes by electrochemical impedance

    Energy Technology Data Exchange (ETDEWEB)

    Ocampo, A.L.; Miranda-Hernandez, M.; Sebastian, P.J. [Centro de Investigacion en Energia-UNAM, Temixco, 62580 Morelos (Mexico); Morgado, J.; Montoya, J.A. [IMP, Eje Central Lazaro Cardenas 152, 07730 D.F. Mexico (Mexico)

    2006-10-06

    In this work the authors present the results of a systematic characterization and evaluation of the carbon nanotube supported Pt-Ru (Pt-Ru/CNT) for its use as methanol oxidation catalyst. Its activity was compared with that of Pt and Pt-Ru catalysts supported on Vulcan and synthesized from carbonyl precursors, and another commercial Pt-Ru catalyst. The cyclic voltammetry, CO stripping and electrochemical impedance techniques were employed to determine the electrocatalytic activity of the catalysts. The electrochemical studies were performed in 0.5M H{sub 2}SO{sub 4} containing different concentrations of methanol (0.05-1M). The results showed a noticeable influence of the catalyst support (CNT) on the performance of the catalyst for CO oxidation. The electrochemical impedance studies allowed us to separate the different steps in the methanol oxidation reaction and to control these steps or reactions by varying the applied potential and the methanol concentration. At low methanol concentration and potentials the de-hydrogenation of methanol predominated. But, at high potential and methanol concentrations, the CO oxidation predominated. These results allowed us to clearly describe at what potential and concentration ranges the bi-functional effect of Ru becomes evident. Our results indicated that the CO oxidation occurs both on Pt and Ru. Compared to other catalysts, Pt-Ru supported on carbon nanotubes showed superior catalytic activity for CO and methanol oxidation. (author)

  9. Hg and Pt-metals in meteorite carbon-rich residues - Suggestions for possible host phase for Hg

    Science.gov (United States)

    Jovanovic, S.; Reed, G. W., Jr.

    1980-01-01

    Carbon-rich and oxide residual phases have been isolated from Allende and Murchison by acid demineralization for the determination of their Hg, Pt-metal, Cr, Sc, Co, and Fe contents. Experimental procedures used eliminated the possibility of exogenous and endogenous contaminant trace elements from coprecipitating with the residues. Large enrichments of Hg and Pt-metals were found in Allende but not in Murchison residues. Hg-release profiles from stepwise heating experiments suggest a sulfide as the host for Hg. Diffusion calculations for Hg based on these experiments indicate an activation energy of 7-8 kcal/mol, the same as that for Hg in troilite from an iron meteorite. This is further support for a sulfide host phase for Hg. Equilibration of Hg with this phase at approximately 900 K is indicated. Reasons for the presence of Pt-metals in noncosmic relative abundances are explored.

  10. Improving the stability and ethanol electro-oxidation activity of Pt catalysts by selectively anchoring Pt particles on carbon-nanotubes-supported-SnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.J.; Wang, J.S.; Zhao, J.H.; Song, C.Y.; Wang, L.C. [School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou (China); Guo, X. [Department of Chemistry, Tsinghua University, Beijing (China)

    2012-10-15

    To improve the stability and activity of Pt catalysts for ethanol electro-oxidation, Pt nanoparticles were selectively deposited on carbon-nanotubes (CNTs)-supported-SnO{sub 2} to prepare Pt/SnO{sub 2}/CNTs and Pt/CNTs was prepared by impregnation method for reference study. X-ray diffraction (XRD) was used to confirm the crystalline structures of Pt/SnO{sub 2}/CNTs and Pt/CNTs. The stabilities of Pt/SnO{sub 2}/CNTs and Pt/CNTs were compared by analyzing the Pt size increase amplitude using transmission electron microscopy (TEM) images recorded before and after cyclic voltammetry (CV) sweeping. The results showed that the Pt size increase amplitude is evidently smaller for Pt/SnO{sub 2}/CNTs, indicating the higher stability of Pt/SnO{sub 2}/CNTs. Although both catalysts exhibit degradation of electrochemical active surface area (EAS) after CV sweeping, the EAS degradation for the former is lower, further confirming the higher stability of Pt/SnO{sub 2}/CNTs. CV and potentiostatic current-time curves were recorded for ethanol electro-oxidation on both catalysts before and after CV sweeping and the results showed that the mass specific activity of Pt/CNTs increases more than that of Pt/SnO{sub 2}/CNTs, indicating that Pt/CNTs experiences more severe evolution and is less stable. The calculated area specific activity of Pt/SnO{sub 2}/CNTs is larger than that of Pt/CNTs, indicating SnO{sub 2} can co-catalyze Pt due to plenty of interfaces between SnO{sub 2} and Pt. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Tunable and selective hydrogenation of furfural to furfuryl alcohol and cyclopentanone over Pt supported on biomass-derived porous heteroatom doped carbon.

    Science.gov (United States)

    Liu, Xiuyun; Zhang, Bo; Fei, Benhua; Chen, Xiufang; Zhang, Junyi; Mu, Xindong

    2017-09-21

    The search for and exploitation of efficient catalytic systems for selective conversion of furfural into various high value-added chemicals remains a huge challenge for green synthesis in the chemical industry. Here, novel Pt nanoparticles supported on bamboo shoot-derived porous heteroatom doped carbon materials were designed as highly active catalysts for controlled hydrogenation of furfural in aqueous media. The porous heteroatom doped carbon supported Pt catalysts were endowed with a large surface area with a hierarchical porous structure, a high content of nitrogen and oxygen functionalities, a high dispersion of the Pt nanoparticles, good water dispersibility and reaction stability. Benefiting from these features, the novel Pt catalysts displayed a high activity and controlled tunable selectivity for furfural hydrogenation to produce furfuryl alcohol and cyclopentanone in water. The product selectivity could be easily modulated by controlling the carbonization temperature of the porous heteroatom doped carbon support and the reaction conditions (temperature and H 2 pressure). Under mild conditions (100 °C, 1 MPa H 2 ), furfuryl alcohol was obtained in water with complete conversion of the furfural and an impressive furfuryl alcohol selectivity of >99% in the presence of Pt/NC-BS-500. A higher reaction temperature, in water, favored rearrangement of the furfural (FFA) with Pt/NC-BS-800 as the catalyst, which resulted in a high cyclopentanone yield of >76% at 150 °C and 3 MPa H 2 . The surface properties and pore structure of the heteroatom doped carbon support, adjusted using the carbonization temperature, might determine the interactions between the Pt nanoparticles, carbon support and catalytic reactants in water, which in turn could have led to a good selectivity control. The effect of different reaction temperatures and reaction times on the product selectivity was also explored. Combined with exploration of the distribution of the reaction products, a

  12. Hybrid aerogels and bioactive aerogels under uniaxial compression: an in situ SAXS study

    Directory of Open Access Journals (Sweden)

    Esquivias, L.

    2010-12-01

    Full Text Available The complex structure of hybrid organic/inorganic aerogels is composed by an inorganic phase covalently bonded to an organic chain forming a copolymer. Conventional hybrid aerogels were studied as well as bioactive hybrid aerogels, that is, aerogels with a calcium active phase added. In this work, the relationship between mechanical response and nanostructure was studied, using a specifically designed sample-holder for in situ uniaxial compression obtaining at the same time the small-angle X-ray pattern from synchrotron radiation (SAXS. Structural elements can be described as a particulated silica core surrounded by the organic chains. These chains are compressed on the direction parallel to the load, and a relationship between macroscopic uniaxial compression and particle and pore deformations can be established.

    La compleja estructura de los aerogeles híbridos orgánico/inorgánicos está compuesta por una fase inorgánica de sílice, unida mediante enlaces covalentes a una red de cadenas orgánicas. Se han estudiado composites híbridos convencionales y bioactivos, esto es, con una fase activa de calcio añadida. En este trabajo se ha investigado la relación entre la respuesta mecánica y la nanoestructura, con ayuda de un portamuestras específicamente diseñado para el estudio in situ de muestras bajo compresión uniaxial, a la vez que se obtiene el espectro de rayos-X a bajo-ángulo de radiación sincrotrón (SAXS. Los elementos estructurales se pueden describir como núcleos particulados de sílice rodeados de las cadenas orgánicas. Estas, se comprimen en la dirección paralela a la carga pudiéndose establecer una relación entre la compresión uniaxial macroscópica y la deformación de las partículas y poros que forman la estructura.

  13. Silica aerogel Cherenkov counter for the KEK B-factory experiment

    CERN Document Server

    Sumiyoshi, T; Enomoto, R; Iijima, T; Suda, R; Leonidopoulos, C; Marlow, D R; Prebys, E; Kawabata, R; Kawai, H; Ooba, T; Nanao, M; Suzuki, K; Ogawa, S; Murakami, A; Khan, M H R

    1999-01-01

    Low-refractive-index silica aerogel is a convenient radiator for threshold-type Cherenkov counters, which are used for particle identification in high-energy physics experiments. For the BELLE detector at the KEK B-Factory we have produced about 2 m sup 3 of hydrophobic silica aerogels of n=1.01-1.03 using a new production method. The particle identification capability of the aerogel Cherenkov counters was tested and 3 sigma pion/proton separation has been achieved at 3.5 GeV/c. Radiation hardness of the aerogels was confirmed up to 9.8 Mrad. The Aerogel Cherenkov counter system (ACC) was successfully installed in the BELLE just before this conference.

  14. Monolithic Silica aerogel in superinsulating glazings

    DEFF Research Database (Denmark)

    Duer, Karsten; Svendsen, Sv Aa Højgaard

    1988-01-01

    . This phenomenon is considered being the main obstacle to incorporate the material in clear glazings but a significant improvement of the optical quality of aerogel has been observed during the last five years. A number of prototypical evacuated 500x500x28 mm aerogel double glazed units employing a new edge seal...... competetion in heating dominated climates....

  15. Robust, Flexible and Lightweight Dielectric Barrier Discharge Actuators Using Nanofoams/Aerogels

    Science.gov (United States)

    Sauti, Godfrey (Inventor); Xu, Tian-Bing (Inventor); Siochi, Emilie J. (Inventor); Wilkinson, Stephen P. (Inventor); Meador, Mary Ann B. (Inventor); Guo, Haiquan N. (Inventor)

    2015-01-01

    Robust, flexible, lightweight, low profile enhanced performance dielectric barrier discharge actuators (plasma actuators) based on aerogels/nanofoams with controlled pore size and size distribution as well as pore shape. The plasma actuators offer high body force as well as high force to weight ratios (thrust density). The flexibility and mechanical robustness of the actuators allows them to be shaped to conform to the surface to which they are applied. Carbon nanotube (CNT) based electrodes serve to further decrease the weight and profile of the actuators while maintaining flexibility while insulating nano-inclusions in the matrix enable tailoring of the mechanical properties. Such actuators are required for flow control in aeronautics and moving machinery such as wind turbines, noise abatement in landing gear and rotary wing aircraft and other applications.

  16. 1-Aminoanthraquinone bridged small Pt nanoparticles on carbon nanotubes as efficient electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xun; Huang, Hao; Du, Cuicui; Wang, Xiaolu [College of Chemistry, Jilin University, Changchun 130012 (China); Wang, Rui [Stomatology Hospital of Jilin University, Changchun 130021 (China); Song, Wenbo, E-mail: wbsong@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130012 (China)

    2015-11-30

    Graphical abstract: - Highlights: • π–π stacking of 1-Aminoanthraquinone (AAQ) on MWCNT surface. • NH{sub 2}-terminated AAQ as a linker leading to small Pt NPs with good dispersity. • Pt NPs display higher electrocatalytic activity towards H{sub 2}O{sub 2} reduction. - Abstract: Smaller nanosized Pt nanoparticles (Pt NPs) highly dispersed on the surface of multi-walled carbon nanotubes (MWCNTs) were prepared via a microwave-assisted approach by using 1-Aminoanthraquinone (AAQ) as the binding agent. As an alternative to the oxidative acid modification process, this noncovalent AAQ functionalization procedure was performed at room temperature, simplifying the experimental operation and getting rid of the corrosive acid at meanwhile. Raman spectroscopic analysis revealed that the AAQ modification preserved the intrinsic properties of MWCNTs without damaging their surface structure, unlike the oxidative acid treatment. Scanning electron microscopy, transmission electron microscopy and cyclic voltammetric measurements manifested that Pt-AAQ-MWCNTs was superior to those of pristine-MWCNTs in the following respects: (1) a smaller size and higher dispersion; (2) a larger electrochemical activity surface; (3) a higher electrocatalytic activity towards reduction H{sub 2}O{sub 2}. It was concluded that the Pt-AAQ-MWCNTs would be a promising candidate as an electrochemical material in construction of chemical/biosensor.

  17. Silica aerogel radiator for use in the A-RICH system utilized in the Belle II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tabata, Makoto, E-mail: makoto@hepburn.s.chiba-u.ac.jp [Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara (Japan); Department of Physics, Chiba University, Chiba (Japan); Adachi, Ichiro [Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Hamada, Nao [Department of Physics, Toho University, Funabashi (Japan); Hara, Koji [Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Iijima, Toru [Kobayashi–Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya (Japan); Iwata, Shuichi; Kakuno, Hidekazu [Department of Physics, Tokyo Metropolitan University, Hachioji (Japan); Kawai, Hideyuki [Department of Physics, Chiba University, Chiba (Japan); Korpar, Samo [Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor (Slovenia); Experimental High Energy Physics Department, Jožef Stefan Institute, Ljubljana (Slovenia); Križan, Peter [Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana (Slovenia); Experimental High Energy Physics Department, Jožef Stefan Institute, Ljubljana (Slovenia); Kumita, Tetsuro [Department of Physics, Tokyo Metropolitan University, Hachioji (Japan); Nishida, Shohei [Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Ogawa, Satoru [Department of Physics, Toho University, Funabashi (Japan); Pestotnik, Rok; Šantelj, Luka; Seljak, Andrej [Experimental High Energy Physics Department, Jožef Stefan Institute, Ljubljana (Slovenia); Sumiyoshi, Takayuki [Department of Physics, Tokyo Metropolitan University, Hachioji (Japan); and others

    2014-12-01

    This paper presents recent progress in the development and mass production of large-area hydrophobic silica aerogels for use as radiators in the aerogel-based ring-imaging Cherenkov (A-RICH) counter, which will be installed in the forward end cap of the Belle II detector. The proximity-focusing A-RICH system is especially designed to identify charged kaons and pions. The refractive index of the installed aerogel Cherenkov radiators is approximately 1.05, and we aim for a separation capability exceeding 4σ at momenta up to 4 GeV/c. Large-area aerogel tiles (over 18×18×2 cm{sup 3}) were first fabricated in test productions by pin drying in addition to conventional methods. We proposed to fill the large end-cap region (area 3.5 m{sup 2}) with 124 water-jet-trimmed fan-shaped dual-layer-focusing aerogel combinations of different refractive indices (1.045 and 1.055). Guided by the test production results, we decided to manufacture aerogels by the conventional method and are currently proceeding with mass production. In an electron beam test undertaken at the DESY, we confirmed that the K/π separation capability of a prototype A-RICH counter exceeded 4σ at 4 GeV/c. - Highlights: • Aerogel tiling as a RICH radiator in the end cap of Belle II detector is proposed. • Conventional method for producing real-size aerogels is established. • No crack-free, real-size aerogels attained in the test production by pin drying. • Beam test confirms the utility of real-size aerogels made by conventional method. • Mass aerogel production for an actual RICH system started by conventional method.

  18. Preparation and characterization of multi-walled carbon nanotube (MWCNTs)-supported Pt-Ru catalyst for methanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yang Chunwei [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)], E-mail: cw.yang@hit.edu.cn; Wang Dianlong; Hu Xinguo; Dai Changsong [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Zhang Liang [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2008-01-10

    Multi-walled carbon nanotubes (MWCNTs) as a support of PtRu catalyst nanocomposites were prepared by colloid method in this work. Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) all indicate that ultrasonic treatment can effectively functionalize MWCNTs, endowing them with groups that can act as nucleation sites which can favor well-dispersed deposition of PtRu clusters on their surface. The PtRu/MWCNTs catalysts have a high and homogeneous dispersion of spherical PtRu metal particles with a narrow particle-size distribution. From XPS tests, in PtRu/MWCNTs catalysts Ru can weaken the out-shell electrons of Pt because a part of Ru form alloy with Pt. The remnant Ru exists in oxidation and provides abundant oxygen to nearby Pt, as accelerated desorption and oxidation of intermediate products of methanol oxidation at surface of Pt. By a series of electrochemistry measurements, the PtRu/MWCNTs catalysts display significantly higher performance than the PtRu/XC-72 catalysts. Finally, schematic procedures for the oxidation of MWCNTs and synthesis of PtRu/MWCNTs catalysts were given.

  19. Preparation and characterization of multi-walled carbon nanotube (MWCNTs)-supported Pt-Ru catalyst for methanol electrooxidation

    International Nuclear Information System (INIS)

    Yang Chunwei; Wang Dianlong; Hu Xinguo; Dai Changsong; Zhang Liang

    2008-01-01

    Multi-walled carbon nanotubes (MWCNTs) as a support of PtRu catalyst nanocomposites were prepared by colloid method in this work. Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) all indicate that ultrasonic treatment can effectively functionalize MWCNTs, endowing them with groups that can act as nucleation sites which can favor well-dispersed deposition of PtRu clusters on their surface. The PtRu/MWCNTs catalysts have a high and homogeneous dispersion of spherical PtRu metal particles with a narrow particle-size distribution. From XPS tests, in PtRu/MWCNTs catalysts Ru can weaken the out-shell electrons of Pt because a part of Ru form alloy with Pt. The remnant Ru exists in oxidation and provides abundant oxygen to nearby Pt, as accelerated desorption and oxidation of intermediate products of methanol oxidation at surface of Pt. By a series of electrochemistry measurements, the PtRu/MWCNTs catalysts display significantly higher performance than the PtRu/XC-72 catalysts. Finally, schematic procedures for the oxidation of MWCNTs and synthesis of PtRu/MWCNTs catalysts were given

  20. Aerogel RICH for the Belle II forward PID

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, S., E-mail: shohei.nishida@kek.jp [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Adachi, I. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Hamada, N. [Toho University, Funabashi (Japan); Hara, K. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Iijima, T. [Nagoya University, Nagoya (Japan); Iwata, S.; Kakuno, H. [Tokyo Metropolitan University, Hachioji (Japan); Kawai, H. [Chiba University, Chiba (Japan); Korpar, S.; Krizan, P. [Jozef Stefan Institute, Ljubljana (Slovenia); Ogawa, S. [Toho University, Funabashi (Japan); Pestotnik, R.; Ŝantelj, L.; Seljak, A. [Jozef Stefan Institute, Ljubljana (Slovenia); Sumiyoshi, T. [Tokyo Metropolitan University, Hachioji (Japan); Tabata, M. [Japan Aerospace Exploration Agency (JAXA), Sagamihara (Japan); Tahirovic, E. [Jozef Stefan Institute, Ljubljana (Slovenia); Yoshida, K. [Tokyo Metropolitan University, Hachioji (Japan); Yusa, Y. [Niigata University, Niigata (Japan)

    2014-12-01

    The Belle II spectrometer, a follow up of the very successful Belle experiment, is under construction at the SuperKEKB electron–positron collider at KEK in Japan. For the PID system in the forward region of the spectrometer, a proximity focusing ring-imaging Cherenkov (RICH) counter with an aerogel radiator is being developed. The counter will provide a 4σ separation of pions and kaons up to momenta of 4 GeV/c. For the position sensitive photon sensor, a 144-channel Hybrid Avalanche Photo-Detector (HAPD) has been developed with Hamamatsu Photonics K.K. The readout electronics is based on the custom developed ASIC. The design of the components is currently being finalized and part of their mass production have already started. Herein, we report the final design of the counter and a prototype test conducted with test beams at DESY. - Highlights: • We are constructing a RICH counter with aerogel radiator for Belle II. • Beam test for the prototype Aerogel RICH shows its good performance. • The effect of the neutron irradiation of the photodetector is examined.

  1. Transparent Ethenylene-Bridged Polymethylsiloxane Aerogels: Mechanical Flexibility and Strength and Availability for Addition Reaction.

    Science.gov (United States)

    Shimizu, Taiyo; Kanamori, Kazuyoshi; Maeno, Ayaka; Kaji, Hironori; Doherty, Cara M; Nakanishi, Kazuki

    2017-05-09

    Transparent, low-density ethenylene-bridged polymethylsiloxane [Ethe-BPMS, O 2/2 (CH 3 )Si-CH═CH-Si(CH 3 )O 2/2 ] aerogels from 1,2-bis(methyldiethoxysilyl)ethene have successfully been synthesized via a sol-gel process. A two-step sol-gel process composed of hydrolysis under acidic conditions and polycondensation under basic conditions in a liquid surfactant produces a homogeneous pore structure based on cross-linked nanosized colloidal particles. Visible-light transmittance of the aerogels varies with the concentration of the base catalyst and reaches as high as 87% (at a wavelength of 550 nm for a 10 mm thick sample). Gelation and aging temperature strongly affect the deformation behavior of the resultant aerogels against uniaxial compression, and the obtained aerogels prepared at 80 °C show high elasticity after being unloaded. This highly resilient behavior is primarily derived from the rigidity of ethenylene groups, which is confirmed by a comparison with other aerogels with similar molecular structures, ethylene-bridged polymethylsiloxane and polymethylsilsesquioxane. Applicability of the addition reaction using a Diels-Alder reaction of benzocyclobutene has also been investigated, revealing that a successful addition takes place on the ethenylene linkings, which is verified using Raman and solid-state NMR spectroscopies. Insights into the effect of molecular structure on mechanical properties and the availability of surface functionalization provided in this study are important for realizing transparent aerogels with the desired functionality.

  2. The Dependence of CNT Aerogel Synthesis on Sulfur-driven Catalyst Nucleation Processes and a Critical Catalyst Particle Mass Concentration.

    Science.gov (United States)

    Hoecker, Christian; Smail, Fiona; Pick, Martin; Weller, Lee; Boies, Adam M

    2017-11-06

    The floating catalyst chemical vapor deposition (FC-CVD) process permits macro-scale assembly of nanoscale materials, enabling continuous production of carbon nanotube (CNT) aerogels. Despite the intensive research in the field, fundamental uncertainties remain regarding how catalyst particle dynamics within the system influence the CNT aerogel formation, thus limiting effective scale-up. While aerogel formation in FC-CVD reactors requires a catalyst (typically iron, Fe) and a promotor (typically sulfur, S), their synergistic roles are not fully understood. This paper presents a paradigm shift in the understanding of the role of S in the process with new experimental studies identifying that S lowers the nucleation barrier of the catalyst nanoparticles. Furthermore, CNT aerogel formation requires a critical threshold of Fe x C y  > 160 mg/m 3 , but is surprisingly independent of the initial catalyst diameter or number concentration. The robustness of the critical catalyst mass concentration principle is proved further by producing CNTs using alternative catalyst systems; Fe nanoparticles from a plasma spark generator and cobaltocene and nickelocene precursors. This finding provides evidence that low-cost and high throughput CNT aerogel routes may be achieved by decoupled and enhanced catalyst production and control, opening up new possibilities for large-scale CNT synthesis.

  3. Ignition capsules with aerogel-supported liquid DT fuel for the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Ho D.D.-M.

    2013-11-01

    Full Text Available For high repetition-rate fusion power plant applications, capsules with aerogel-supported liquid DT fuel can have much reduced fill time compared to β-layering a solid DT fuel layer. The melting point of liquid DT can be lowered once liquid DT is embedded in an aerogel matrix, and the DT vapor density is consequently closer to the desired density for optimal capsule design requirement. We present design for NIF-scale aerogel-filled capsules based on 1-D and 2-D simulations. An optimal configuration is obtained when the outer radius is increased until the clean fuel fraction is within 65 – 75% at peak velocity. A scan (in ablator and fuel thickness parameter space is used to optimize the capsule configurations. The optimized aerogel-filled capsule has good low-mode robustness and acceptable high-mode mix.

  4. Pt nanocrystals electrodeposited on reduced graphene oxide/carbon fiber paper with efficient electrocatalytic properties

    Directory of Open Access Journals (Sweden)

    Zhiling Chen

    2017-08-01

    Full Text Available Carbon fiber paper (CFP wrapped with reduced graphene oxide (rGO film as the composite support (rGO/CFP of Pt catalysts was studied. It was found that rGO could affect the size and morphology of Pt nanocrystals (NCs. Concave nanocubes (CNC Pt NCs ~ 20 nm were uniformly electrodeposited on high reduced HrGO/CFP while irregular Pt NCs ~ 62 nm were loaded on low reduced LrGO. Compared with Pt-LrGO/CFP and Pt-MrGO/CFP, the CNC Pt-HrGO/CFP exhibited a higher electrochemically active surface area (121.7 m2 g−1, as well as enhanced electrooxidation activity of methanol (499 mA mg−1 and formic acid (950 mA mg−1. The results further demonstrated that the CNC Pt-HrGO/CFP could serve as the gas diffusion electrode in fuel cells and yielded a satisfactory performance (1855 mW mg−1. The work can provide an attractive perspective on the convenient preparation of the novel gas diffusion electrode for proton exchange membrane fuel cells.

  5. Synthesis and electrochemical study of Pt-based nanoporous materials

    International Nuclear Information System (INIS)

    Wang Jingpeng; Holt-Hindle, Peter; MacDonald, Duncan; Thomas, Dan F.; Chen Aicheng

    2008-01-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells

  6. Synthesis and electrochemical study of Pt-based nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jingpeng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Holt-Hindle, Peter; MacDonald, Duncan [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Thomas, Dan F. [Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Chen Aicheng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada)], E-mail: aicheng.chen@lakeheadu.ca

    2008-10-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells.0.

  7. Synthesis and electrochemical study of Pt-based nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingpeng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Holt-Hindle, Peter; MacDonald, Duncan; Chen, Aicheng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Thomas, Dan F. [Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada)

    2008-10-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells. (author)

  8. Monolithic silica aerogel - material design on the nano-scale

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Schultz, Jørgen Munthe; Kristiansen, Finn Harken

    structure of aerogel could be used for gas filters in the 20 to 100 nm region. - The sound velocity within aerogel is in the range of 100 to 300 m/s, which should be one of lowest for an inorganic material. Due to the low density, low acoustic impedance of aerogel could help boost the efficiency...... of piezoelectric transducers. - Other applications could be; waste encapsulation, spacers for vacuum insulation panels, membranes, etc. Department of Civil Engineering is co-ordinator of a current EU FP5 research project1, which deals with the application of aerogel as transparent insulation materials in windows....... Due to the excellent optical and thermal properties of aerogel, it is possible to develop windows with both high insulation and high transmittance, which is impossible applying the conventional window techniques, i.e. extra layers of glass, low-e coatings and gas fillings. It can be shown...

  9. Low dielectric constant and moisture-resistant polyimide aerogels containing trifluoromethyl pendent groups

    Science.gov (United States)

    Wu, Tingting; Dong, Jie; Gan, Feng; Fang, Yuting; Zhao, Xin; Zhang, Qinghua

    2018-05-01

    Conventional polyimide aerogels made from biphenyl-3,3‧,4,4‧-tetracarboxylic dianydride (BPDA) and 4,4‧-oxidianiline (ODA) exhibit poor resistance to moisture and mechanical properties. In this work, a versatile diamine, 2,2‧-bis-(trifluoromethyl)-4,4‧-diaminobiphenyl (TFMB), is introduced to BPDA/ODA backbone to modify the comprehensive performance of this aerogel. Among all formulations, the resulted polyimide aerogels exhibit the lowest shrinkage and density as well as highest porosity, at the ODA/TFMB molar ratio of 5/5. Dielectric constants and loss tangents of the aerogels fall in the range of 1.29-1.33 and 0.001-0.004, respectively, and more TFMB fractions results in a slightly decrease of dielectric constant and loss tangent. In addition, moisture-resistance of the aerogels are dramatically enhanced as the water absorption decreasing from 415% for BPDA/ODA to 13% for the polyimide aerogel at the ODA/TFMB molar ratio of 7/3, and even to 4% for the homo-BPDA/TFMB polyimide aerogel, showing a superhydrophobic characteristic, which is a great advantage for polyimide aerogels used as low dielectric materials. Meanwhile, all of formulations of aerogels exhibit high absorption capacities for oils and common organic solvents, indicating that these fluorinated polyimide aerogels are good candidates for the separation of oils/organic solvents and water. Mechanical properties and thermal stability of the polyimide aerogels are also raised to varying degrees due to the rigid-rod biphenyl structure introduced by TFMB.

  10. Synthesis of aerogel tiles with high light scattering length

    CERN Document Server

    Danilyuk, A F; Okunev, A G; Onuchin, A P; Shaurman, S A

    1999-01-01

    The possibility of aerogel tiles production for RICH detectors is described. Monolithic blocks of silica aerogel were synthesized by two-step sol-gel processing of tetraethoxysilane Si(OEt) sub 4 followed by high temperature supercritical drying with organic solvent. The important characteristic of aerogel is the light scattering length. In the wide range of refraction indexes the light scattering length exceeds 4 cm at 400 nm.

  11. Kinetic study of methanol oxidation on carbon-supported PtRu electrocatalyst

    International Nuclear Information System (INIS)

    Gojkovic, S.Lj.; Vidakovic, T.R.; Durovic, D.R.

    2003-01-01

    Methanol electrooxidation was investigated on the carbon-supported PtRu electrocatalyst (1:1 atomic ratio) in acid media. X-ray diffraction measurement indicated alloying of Pt and Ru. Cyclic voltammetry of the sample reflects the amount of Ru in the catalyst and its ability to adsorb OH radicals. Tafel plots for the oxidation of 0.02-3 M methanol in the solutions containing 0.05-1 M HClO 4 and in the temperature range 27-40 deg. C showed reasonably well-defined linear region with the slope of about 115 mV dec -1 at the low currents, irrespective of the experimental conditions employed. Reaction order with respect to methanol was found to be 0.5. A correlation between methanol oxidation rate and pseudocapacitive current of OH adsorption on Ru sites was established. It was proposed that bifunctional mechanism is operative with the reaction between methanol residues adsorbed on Pt sites and OH radicals adsorbed on Ru sites as the rate-determining step

  12. Robust superhydrophobic bridged silsesquioxane aerogels with tunable performances and their applications.

    Science.gov (United States)

    Wang, Zhen; Wang, Dong; Qian, Zhenchao; Guo, Jing; Dong, Haixia; Zhao, Ning; Xu, Jian

    2015-01-28

    Aerogels are a family of highly porous materials whose applications are commonly restricted by poor mechanical properties. Herein, thiol-ene chemistry is employed to synthesize a series of novel bridged silsesquioxane (BSQ) precursors with various alkoxy groups. On the basis of the different hydrolyzing rates of the methoxy and ethoxy groups, robust superhydrophobic BSQ aerogels with tailorable morphology and mechanical performances have been prepared. The flexible thioether bridge contributes to the robustness of the as-formed aerogels, and the property can be tuned on the basis of the distinct combinations of alkoxy groups with the density of the aerogels almost unchanged. To the best of our knowledge, the lowest density among the ambient pressure dried aerogels is obtained. Further, potential application of the aerogels for oil/water separation and acoustic materials has also been presented.

  13. Controlled synthesis of carbon-supported Pt{sub 3}Sn by impregnation-reduction and performance on the electrooxidation of CO and ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Rodriguez, S.; Pena, M.A.; Fierro, J.L.G.; Rojas, S. [Grupo Energia y Quimica Sostenibles, Instituto de Catalisis y Petroleoquimica, CSIC, C/Marie Curie 2, E-28049 Madrid (Spain)

    2010-09-01

    The paper discusses experimental features relevant to the synthesis of carbon-supported Pt{sub 3}Sn nanosized particles by impregnation-reduction of the salt precursors in carbon. Colloidal techniques are proposed as the most suitable ones for obtaining carbon-supported nanosized Pt{sub 3}Sn particles. In most cases, the electrocatalysts obtained have a wide range of Pt and Sn phases, including bimetallic ones. The synthesis of similar materials by impregnating readily available precursors such as SnCl{sub 2} and H{sub 2}PtCl{sub 6} yields Pt-enriched catalyst precursors. In order to obtain electrocatalysts with the desired Pt:Sn = 3 atomic stoichiometry, it is necessary to eliminate chloride ions prior to thermal treatments. Microscopy characterization and thermal stability studies of the fresh and treated bimetallic materials reveal that if such ions are present, Sn is eliminated as volatile SnCl{sub x} species at around 120-130 C. Chloride elimination is achieved by ageing the catalyst precursor in water to ensure the complete hydrolysis of the SnCl{sub 2} precursor. This treatment should be performed once SnCl{sub 2} has been deposited on the carbon to avoid the formation of large Sn-oxide aggregates. A further thermal treatment in hydrogen results in the formation of the desired Pt{sub 3}Sn intermetallic phase. The performance of the Pt{sub 3}Sn/C samples in the CO and ethanol electrooxidation reaction has been studied by means of electrochemical techniques. The electrocatalysts prepared by the impregnation-reduction approach match the performance of the state-of-the-art Pt{sub 3}Sn samples prepared by colloidal techniques. (author)

  14. Improving thermal insulation of TC4 using YSZ-based coating and SiO2 aerogel

    Directory of Open Access Journals (Sweden)

    Lei Jin

    2015-04-01

    Full Text Available In this paper, air plasmas spray (APS was used to prepare YSZ and Sc2O3–YSZ (ScYSZ coating in order to improve the thermal insulation ability of TC4 alloy. SiO2 aerogel was also synthesized and affixed on TC4 titanium alloy to inhabit thermal flow. The microstructures, phase compositions and thermal insulation performance of three coatings were analyzed in detail. The results of thermal diffusivity test by a laser flash method showed that the thermal diffusivities of YSZ, Sc2O3–YSZ and SiO2 aerogel are 0.553, 0.539 and 0.2097×10−6 m2/s, respectively. Then, the thermal insulation performances of three kinds of coating were investigated from 20 °C to 400 °C using high infrared radiation heat flux technology. The experimental results indicated that the corresponding temperature difference between the top TC4 alloy (400 °C and the bottom surface of YSZ is 41.5 °C for 0.6 mm thickness coating. For 1 mm thickness coating, the corresponding temperature difference between the top TC4 alloys (400 °C and the bottom surface of YSZ, ScYSZ, SiO2 aerogel three specimens is 54, 54.6 and 208 °C, respectively. The coating thickness and species were found to influence the heat insulation ability. In these materials, YSZ and ScYSZ exhibited a little difference for heat insulation behavior. However, SiO2 aerogel was the best one among them and it can be taken as protection material on TC4 alloys. In outer space, SiO2 aerogel can meet the need of thermal insulation of TC4 of high-speed aircraft.

  15. High Methanol Oxidation Activity of Well-Dispersed Pt Nanoparticles on Carbon Nanotubes Using Nitrogen Doping

    Directory of Open Access Journals (Sweden)

    Fang Wei-Chuan

    2009-01-01

    Full Text Available Abstract Pt nanoparticles (NPs with the average size of 3.14 nm well dispersed on N-doped carbon nanotubes (CNTs without any pretreatment have been demonstrated. Structural properties show the characteristic N bonding within CNTs, which provide the good support for uniform distribution of Pt NPs. In electrochemical characteristics, N-doped CNTs covered with Pt NPs show superior current density due to the fact that the so-called N incorporation could give rise to the formation of preferential sites within CNTs accompanied by the low interfacial energy for immobilizing Pt NPs. Therefore, the substantially enhanced methanol oxidation activity performed by N-incorporation technique is highly promising in energy-generation applications.

  16. Practical chemical analysis of Pt and Pd based heterogeneous catalysts with hard X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, H., E-mail: YOSHIKAWA.Hideki@nims.go.jp [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Matolínová, I.; Matolín, V. [Charles University in Prague, Faculty of Mathematics and Physics, V Holešovičkách 2, 18000 Prague 8 (Czech Republic)

    2013-10-15

    Highlights: •Hard X-ray photoelectron spectroscopy (HAXPES) enables interface analysis of catalyst. •HAXPES enables overall analysis of porous film of Pt-doped CeO{sub 2} and related catalyst. •HAXPES enables analysis of trace elements for Pd and Pt{sub 3}Ni nanoparticle catalysts. -- Abstract: Interfacial properties including configuration, porosity, chemical states, and atomic diffusion greatly affect the performance of supported heterogeneous catalysts. Hard X-ray photoelectron spectroscopy (HAXPES) can be used to analyze the interfaces of heterogeneous catalysts because of its large information depth of more than 20 nm. We use HAXPES to examine Pt-doped CeO{sub 2} and related thin film catalysts evaporated on Si, carbon, and carbon nanotube substrates, because Pt-doped CeO{sub 2} has great potential as a noble metal-based heterogeneous catalyst for fuel cells. The HAXPES measurements clarify that the dopant material, substrate material, and surface pretreatment of substrate are important parameters that affect the interfacial properties of Pt-doped CeO{sub 2} and related thin film catalysts. Another advantage of HAXPES measurement of heterogeneous catalysts is that it can be used for chemical analysis of trace elements by detecting photoelectrons from deep core levels, which have large photoionization cross-sections in the hard X-ray region. We use HAXPES for chemical analysis of trace elements in Pd nanoparticle catalysts immobilized on sulfur-terminated substrates and Pt{sub 3}Ni nanoparticle catalysts enveloped by dendrimer molecules.

  17. Nonlinear hydrodynamic equations for superfluid helium in aerogel

    International Nuclear Information System (INIS)

    Brusov, Peter N.; Brusov, Paul P.

    2003-01-01

    Aerogel in superfluids is studied very intensively during last decade. The importance of these systems is connected to the fact that this allows to investigate the influence of impurities on superfluidity. We have derived for the first time nonlinear hydrodynamic equations for superfluid helium in aerogel. These equations are generalization of McKenna et al. equations for nonlinear hydrodynamics case and could be used to study sound propagation phenomena in aerogel-superfluid system, in particular--to study sound conversion phenomena. We have obtained two alternative sets of equations, one of which is a generalization of a traditional set of nonlinear hydrodynamics equations for the case of an aerogel-superfluid system and, the other one represents a la Putterman equations (equation for v→ s is replaced by equation for A→=((ρ n )/(ρσ))w→, where w→=v→ n -v→ s )

  18. Decoration of carbon nanotube with size-controlled L10-FePt nanoparticles for storage media

    Science.gov (United States)

    Moradi, Reza; Sebt, Seyed Ali; Arabi, Hadi; Larijani, Majid Mojtahedzadeh

    2013-10-01

    In this work, first multi-wall carbon nanotubes (MWCNTs) with outer diameter about 20-30 nm are synthesized by a CVD method; they have been purified and functionalized with a two-step process. The approach consists of thermal oxidation and subsequent chemical oxidation. Then, monosize FePt nanoparticles along carbon nanotubes surface are synthesized by a Polyol process. The synthesized FePt nanoparticles are about 2.5 nm in size and they have superparamagnetic behavior with fcc structure. The CNTs surfaces as a substrate prevent the coalescence of particles during thermal annealing. Annealing at the temperature higher than 600 ∘C for 2 h under a reducing atmosphere (90 % Ar + 10 % H2) leads to phase transition from fcc to fct-L10 structure. So, the magnetic behavior changes from the superparamagnetic to the ferromagnetic. Furthermore, after the phase transition, the FePt nanoparticles have finite size with an average of about 3.5 nm and the coercivity of particles reaches 5.1 kOe.

  19. Study of ageing effects in aerogel

    International Nuclear Information System (INIS)

    Bellunato, T.; Calvi, M.; Coluzza, C.; Longo, G.; Matteuzzi, C.; Musy, M.; Negri, P.; Perego, D.L.

    2004-01-01

    Ageing effects on aerogel due to irradiation and absorption of humidity have been investigated. Aerogel tiles have been exposed to γ radiation from a 60 Co source and to proton and neutron high intensity beams. The transmittance has been monitored in the wavelength range between 200 and 800 nm, determining the clarity factor C as a function of the increasing dose of irradiation. The index of refraction n was also measured

  20. Stress sensitive electricity based on Ag/cellulose nanofiber aerogel for self-reporting.

    Science.gov (United States)

    Yao, Qiufang; Fan, Bitao; Xiong, Ye; Wang, Chao; Wang, Hanwei; Jin, Chunde; Sun, Qingfeng

    2017-07-15

    A self-reporting aerogel toward stress sensitive slectricity (SSE) was presented using an interconnected 3D fibrous network of Ag nanoparticles/cellulose nanofiber aerogel (Ag/CNF), which was prepared via combined routes of silver mirror reaction and ultrasonication. Sphere-like Ag nanoparticles (AgNPs) with mean diameter of 74nm were tightly anchored in the cellulose nanofiber through by the coherent interfaces as the conductive materials. The as-prepared Ag/CNF as a self-reporting material for SSE not only possessed quick response and sensitivity, but also be easily recovered after 100th compressive cycles without plastic deformation or degradation in compressive strength. Consequently, Ag/CNF could play a viable role in self-reporting materials as a quick electric-stress responsive sensor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Synthesis of nano-Au doped SiO2 aerogels by seeding method

    International Nuclear Information System (INIS)

    Ren Hongbo; Wan Xiaobo; Zhang Lin; Du Aiming; Xiu Peng

    2006-01-01

    A new approach to synthesize gold nano cluster doped aerogel on the basis of surface-catalyzed reduction of metal ions was described. Au nano particles were formed in a silica aerogel matrix by hydroxylamine seeding method of reducing gold ions on the silica colloidal surface. Subsequently, the pH value of system was adjusted to about 7-8, the gel formed within 2 h. After aging for 2 d, the gels were washed in aceton, and then dried supercritically (from CO 2 ) to yield aerogels. The reduction process was attributed to hydroxylamine-induced surface catalysis. Au clusters in the aerogel monoliths were characterized with optical adsorption, transmission electron microscopy. These techniques have shown the cluster size and weight content in the aerogels. Brunauer-emmett-teller surface area measurements show that the specific surface area of silica aerogels and doped aerogels are higher than 800 m 2 /g. (authors)

  2. Hexadecane trapped in nano-pores of silica-aerogel

    International Nuclear Information System (INIS)

    Slavikova, B.; Jesenak, K.; Iskrova, M.; Majernik, V.; Sausa, O.; Kristiak, J.

    2009-01-01

    Ways of filling of the high-porous silica-aerogel with hydrocarbon C 16 H 34 and its efficient removal from the pores by physical method of the Positron Annihilation Spectroscopy were studied. As the most effective way to fill the SiO 2 aerogel appears through the implementation of a liquid phase, while the most appropriate way of removing of hexadecane is firing at an elevated temperature. Molecular system of hexadecane closed in nano-pores of silica-aerogel behaves otherwise than volume system of the same molecules. In the case of pure hexadecane phase transition was observed at 291 K, while solidification process is gradual with decrease of temperature in cetane trapped in pores of silica-aerogel. The results of the periods of life of o-Ps indicate greater turbidity in the pores of the molecular system compared to the volume sample of hexadecane.

  3. Formate stability and carbonate hydrogenation on strained Cu overlayers on Pt(111)

    DEFF Research Database (Denmark)

    Schumacher, Nana Maria Pii; Andersson, Klas Jerker; Nerlov, Jesper

    2008-01-01

    Formate (HCOO) synthesis, decomposition and the hydrogenation of carbonate (CO3) on Cu overlayers deposited on a Pt(111) single crystal are investigated to examine the reactivity of a Cu surface under tensile strain with defects present. Formate is synthesized from a 0.5 bar mixture of 70% CO2...

  4. Study of ageing effects in aerogel

    CERN Document Server

    Bellunato, T F; Coluzza, C; Longo, G; Matteuzzi, C; Musy, M; Negri, P; Perego, D L

    2004-01-01

    Ageing effects on aerogel due to irradiation and absorption of humidity have been investigated. Aerogel tiles have been exposed to gamma radiation from a 60-Co source and to proton and neutron high intensity beams. The transmittance has been monitored in the wavelength range between 200 nm and 800 nm, determining the clarity factor C as a function of the increasing dose of irradiation. The index of refraction n was also measured.

  5. Bluedec in product design: Isolatiemateriaal op basis van aerogel

    OpenAIRE

    Beurden, van, K.M.M. (Karin); Goselink, E.A. (Erik)

    2014-01-01

    Aerogel is een zeer kostbaar voor de ruimtevaart ontwikkeld basismateriaal. Bluedec is een isolatiemateriaal bestaande uit een non woven kunststof dat met deze aerogel geïmpregneerd is. Hierdoor ontstaat een zeer goed isolerend materiaal dat goedkoper is dan aerogel. De warmtegeleidingscoëfficiënt van Bluedec in de basisuitvoering is 0,0135 W/m*K . Dat is lager dan conventionele isolatiematerialen, zie ook pagina 4. Voordeel hiervan is dat vergelijkbare of betere warmte-isolati...

  6. Structure/Function Analysis of Cotton-Based Peptide-Cellulose Conjugates: Spatiotemporal/Kinetic Assessment of Protease Aerogels Compared to Nanocrystalline and Paper Cellulose

    Directory of Open Access Journals (Sweden)

    J. Vincent Edwards

    2018-03-01

    Full Text Available Nanocellulose has high specific surface area, hydration properties, and ease of derivatization to prepare protease sensors. A Human Neutrophil Elastase sensor designed with a nanocellulose aerogel transducer surface derived from cotton is compared with cotton filter paper, and nanocrystalline cellulose versions of the sensor. X-ray crystallography was employed along with Michaelis–Menten enzyme kinetics, and circular dichroism to contrast the structure/function relations of the peptide-cellulose conjugate conformation to enzyme/substrate binding and turnover rates. The nanocellulosic aerogel was found to have a cellulose II structure. The spatiotemporal relation of crystallite surface to peptide-cellulose conformation is discussed in light of observed enzyme kinetics. A higher substrate binding affinity (Km of elastase was observed with the nanocellulose aerogel and nanocrystalline peptide-cellulose conjugates than with the solution-based elastase substrate. An increased Km observed for the nanocellulosic aerogel sensor yields a higher enzyme efficiency (kcat/Km, attributable to binding of the serine protease to the negatively charged cellulose surface. The effect of crystallite size and β-turn peptide conformation are related to the peptide-cellulose kinetics. Models demonstrating the orientation of cellulose to peptide O6-hydroxymethyl rotamers of the conjugates at the surface of the cellulose crystal suggest the relative accessibility of the peptide-cellulose conjugates for enzyme active site binding.

  7. Structure/Function Analysis of Cotton-Based Peptide-Cellulose Conjugates: Spatiotemporal/Kinetic Assessment of Protease Aerogels Compared to Nanocrystalline and Paper Cellulose

    Science.gov (United States)

    Edwards, J. Vincent; Fontenot, Krystal; Liebner, Falk; Pircher, Nicole Doyle nee; French, Alfred D.; Condon, Brian D.

    2018-01-01

    Nanocellulose has high specific surface area, hydration properties, and ease of derivatization to prepare protease sensors. A Human Neutrophil Elastase sensor designed with a nanocellulose aerogel transducer surface derived from cotton is compared with cotton filter paper, and nanocrystalline cellulose versions of the sensor. X-ray crystallography was employed along with Michaelis–Menten enzyme kinetics, and circular dichroism to contrast the structure/function relations of the peptide-cellulose conjugate conformation to enzyme/substrate binding and turnover rates. The nanocellulosic aerogel was found to have a cellulose II structure. The spatiotemporal relation of crystallite surface to peptide-cellulose conformation is discussed in light of observed enzyme kinetics. A higher substrate binding affinity (Km) of elastase was observed with the nanocellulose aerogel and nanocrystalline peptide-cellulose conjugates than with the solution-based elastase substrate. An increased Km observed for the nanocellulosic aerogel sensor yields a higher enzyme efficiency (kcat/Km), attributable to binding of the serine protease to the negatively charged cellulose surface. The effect of crystallite size and β-turn peptide conformation are related to the peptide-cellulose kinetics. Models demonstrating the orientation of cellulose to peptide O6-hydroxymethyl rotamers of the conjugates at the surface of the cellulose crystal suggest the relative accessibility of the peptide-cellulose conjugates for enzyme active site binding. PMID:29534033

  8. 1D-2D carbon heterostructure with low Pt loading as a superior cathode electrode for dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Nechiyil, Divya; Ramaprabhu, S., E-mail: ramp@iitm.ac.in [Indian Institute of Technology Madras, Alternative Energy and Nanotechnology Laboratory (AENL), Nano Functional Materials Technology Centre (NFMTC), Department of Physics (India)

    2017-02-15

    Cost-effective counter electrode (CE) with high electrocatalytic performance is very much essential for the wide application of dye-sensitized solar cells (DSSC). The 1D-2D carbon heterostructure (Pt/GR@CNT) with low platinum (Pt) loading has been synthesized by a facile in situ microwave-assisted polyol-reduction method. The excellent electrocatalytic activity as well as photovoltaic performance was achieved due to the combination of 2D graphene nanoribbons (GR) and 1D multi-walled carbon nanotubes (CNT) with high catalytically active Pt nanoparticles. Microwave-assisted longitudinal unzipping of few outer layers of CNTs along with co-reduction of Pt nanoparticles is an effective method to create electrochemically active defective edge sites, which have a crucial role in enhancing electrochemical performance. Synergistic effect of ultra-fine Pt nanoparticles, partially unzipped graphene nanoribbons and inner core tubes of CNTs modulates the power conversion efficiency of solar cell to 5.57% ± 0.03 as compared with 4.73% ± 0.13 of CNTs. Pt/GR@CNT CE even with low Pt loading of 14 μg cm{sup −2} showcases equivalent performance with that of pure Pt counter electrode.

  9. Pt-modified carbon nanotube networked layers for enhanced gas microsensors

    International Nuclear Information System (INIS)

    Penza, M.; Rossi, R.; Alvisi, M.; Suriano, D.; Serra, E.

    2011-01-01

    Carbon nanotubes (CNTs) networked films have been grown by chemical vapor deposition (CVD) technology onto miniaturized low-cost alumina substrates, coated by nanosized Co-catalyst for growing CNTs, to perform chemical detection of toxic gasses (NO 2 and NH 3 ), greenhouse gasses (CO 2 and CH 4 ) and domestic safety gasses (CO and C 2 H 5 OH) at an operating sensor temperature of 120 °C. The morphology and structure of the CNTs networks have been characterized by scanning electron microscopy (SEM). A dense network of bundles of multiple tubes consisting of multi-walled carbon nanostructures appears with a maximum length of 1–5 μm and single-tube diameter varying in the range of 5–40 nm. Surface modifications of the CNTs networks with sputtered Platinum (Pt) nanoclusters, at tuned loading of 8, 15 and 30 nm, provide higher sensitivity for significantly enhanced gas detection compared to un-decorated CNTs. This could be caused by a spillover of the targeted gas molecules onto Pt-catalyst surface with a chemical gating into CNTs layers. The measured electrical conductance of the functionalized CNTs upon exposures of a given oxidizing and reducing gas is modulated by a charge transfer model with p-type semiconducting characteristics. The effect of activated carbons as chemical filters to reduce the influence of the domestic interfering alcohols on CO gas detection has been studied. Functionalized CNT gas sensors exhibited better performances compared to unmodified CNTs, making them highly promising candidates for functional applications of gas control and alarms.

  10. Dynamic properties of silica aerogels as deduced from specific-heat and thermal-conductivity measurements

    DEFF Research Database (Denmark)

    Bernasconi, A.; Sleator, T.; Posselt, D.

    1992-01-01

    The specific heat C(p) and the thermal conductivity lambda of a series of base-catalyzed silica aerogels have been measured at temperatures between 0.05 and 20 K. The results confirm that the different length-scale regions observed in the aerogel structure are reflected in the dynamic behavior of...... SiO2 are most likely not due to fractal behavior....... the possibility of two spectral dimensions characterizing the fracton modes. Our data imply important differences between the physical mechanisms dominating the low-temperature behavior of aerogels and dense glasses, respectively. From our analysis we also conclude that the low-temperature properties of amorphous...

  11. Modeling silica aerogel optical performance by determining its radiative properties

    Science.gov (United States)

    Zhao, Lin; Yang, Sungwoo; Bhatia, Bikram; Strobach, Elise; Wang, Evelyn N.

    2016-02-01

    Silica aerogel has been known as a promising candidate for high performance transparent insulation material (TIM). Optical transparency is a crucial metric for silica aerogels in many solar related applications. Both scattering and absorption can reduce the amount of light transmitted through an aerogel slab. Due to multiple scattering, the transmittance deviates from the Beer-Lambert law (exponential attenuation). To better understand its optical performance, we decoupled and quantified the extinction contributions of absorption and scattering separately by identifying two sets of radiative properties. The radiative properties are deduced from the measured total transmittance and reflectance spectra (from 250 nm to 2500 nm) of synthesized aerogel samples by solving the inverse problem of the 1-D Radiative Transfer Equation (RTE). The obtained radiative properties are found to be independent of the sample geometry and can be considered intrinsic material properties, which originate from the aerogel's microstructure. This finding allows for these properties to be directly compared between different samples. We also demonstrate that by using the obtained radiative properties, we can model the photon transport in aerogels of arbitrary shapes, where an analytical solution is difficult to obtain.

  12. Synthesis of ZnO-CuO Nanocomposite Aerogels by the Sol-Gel Route

    Directory of Open Access Journals (Sweden)

    Rula M. Allaf

    2014-01-01

    Full Text Available The epoxide addition sol-gel method has been utilized to synthesize porous zinc-copper composite aerogels in the zinc-to-copper molar ratios of 50 : 50 to 90 : 10. A two-step mixing approach has been employed to produce aerogels composed of nano- to micrometer sized particles. The aerogels were characterized by ultrahigh resolution scanning electron microscopy, transmission electron microscopy, and powder X-ray diffraction. The as-synthesized aerogels had a thin flake- or petal-like microstructure comprised of clustered flakes on two size scales; they were identified as being crystalline with the crystalline species identified as copper nitrate hydroxide, zinc hydroxide chloride hydrate, and zinc hydroxide nitrate hydrate. Annealing of the aerogel materials at a relatively low temperature (400°C resulted in a complete phase transition of the material to give highly crystalline ZnO-CuO aerogels; the aerogels consisted of networked nanoparticles in the ~25–550 nm size range with an average crystallite size of ~3 nm and average crystallinity of 98%. ZnO-CuO aerogels are of particular interest due to their particular catalytic and sensing properties. This work emphasizes the versatility of this sol-gel route in synthesizing aerogels; this method offers a possible route for the fabrication of aerogels of different metal oxides and their composites.

  13. Pulse-electrodeposited PtSn nanocatalyst on pedot/graphene-based electrode for direct ethanol fuel cell application

    International Nuclear Information System (INIS)

    Mendoza, Maria Krisandra L.; Tongol, Bernard John V.

    2015-01-01

    Fuel cells are one of the most promising sources of renewable and clean energy because it offers higher energy densities and energy efficiencies. Improvements of catalyst material and catalyst preparation method have been one of the major topics studied on fuel cell technology. In this research, a method was optimized for the synthesis of PtSn nanocatalyst on PEDOT-modified graphene-based electrodes for direct ethanol fuel cells. The preparation of the electrode was done in three steps. First, a 20μL electrochemically exfoliated graphene (0.5 mg/mL) was dispersed on the surface of glassy carbon electrode and the electrode was dried at 60°C. Second, potentiodynamic electropolymerization of ethylenedioxythiophene (EDOT) was done using 0.01 M EDOT and 0.10 M HClO 4 on the graphene-based electrode at a potential range from 0 to 1.10 V (vs. Ag/AgCl) for 20 cycles at a scan rate of 50 mV/s. Lastly, pulse deposition of PtSn on the PEDOT/graphene electrode was done using 10 mM H 2 PtCl 6 ·6H 2 O in 0.10 M H 2 SO 4 solution and 10 mM SnCl 2 ·2H 2 O in 0.10 M HCl. Pulse deposition of PtSn nanoparticles was carried out using the following optimized parameters: -1.235 V of pulse potential for Pt and -0.362 V of pulse potential for Sn, with t o n/t o ff ratio of 0.1/5 s at 175 pulses. Electrocatalytic activity of the prepared nanocomposites was evaluated and compared towards ethanol oxidation using 1.0 M ethanol in 0.10 M H 2 SO 4 electrolyte solution from E= 0.0 V to E= 0.90 V (vs. Ag/AgCl) at a scan rate of 100 mV·s -1 . Atomic Force Microscopy (AFM) characterization is carried out for the pulse electrodeposited Pt nanocatalyst on glassy carbon electrode and PEDOT and on host matrices, i.e. PEDOT and graphene. AFM image of Pt nanoparticles on glassy carbon electrode shows bright particles that are uniformly distributed with average diameter of around 30-40 nm. Structural and physical characterization of the composites will be done using Energy Dispersive X-ray (EDX

  14. Environmental transmission electron microscopy investigations of Pt-Fe2O3 nanoparticles for nucleating carbon nanotubes

    DEFF Research Database (Denmark)

    He, Maoshuai; Jin, Hua; Zhang, Lili

    2016-01-01

    electron microscopy, restructuring of the acorn-like Pt-Fe2O3 nanoparticles at reaction conditions is investigated. Upon heating to reaction temperature, ε-Fe2O3 is converted to β-Fe2O3, which can be subsequently reduced to metallic Fe once introducing CO. As Pt promotes the carburization of Fe, part...... of the metallic Fe reacts with active carbon atoms to form Fe2.5C instead of Fe3C, catalyzing the nucleation of carbon nanotubes. Nanobeam electron diffraction characterizations on SWCNTs grown under ambient pressure at 800 °C demonstrate that their chiral angle and diameter distributions are similar to those...

  15. Electrocatalytic properties of carbon-supported Pt-Ru catalysts with the high alloying degree for formic acid electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu.; Zhou, Yiming; Tang, Yawen; Lu, Tianhong [College of Chemistry and Environmental Science, Nanjing Normal University, Nanjing 210097 (China)

    2010-07-01

    A series of carbon-supported bimetallic Pt-Ru catalysts with high alloying degree and different Pt/Ru atomic ratio have been prepared by a chemical reduction method in the H{sub 2}O/ethanol/tetrahydrofuran (THF) mixture solvent. The structural and electronic properties of catalysts are characterized using X-ray reflection (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM). The electrooxidation of formic acid on these Pt-Ru nanoparticles are investigated by using cyclic voltammetry, chronoamperometry and CO-stripping measurements. The results of electrochemical measurements illustrate that the alloying degree and Pt/Ru atomic ratio of Pt-Ru catalyst play an important role in the electrocatalytic activity of the Pt-Ru/C catalyst for formic acid electrooxidation due to the bifunctional mechanism and the electronic effect. Since formic acid is an intermediate in the methanol electrooxidation on Pt electrode in acidic electrolyte, the observation provides an additional fundamental understanding of the structure-activity relationship of Pt-Ru catalyst for methanol electrooxidation. (author)

  16. Synthesis and Properties of Cross-Linked Polyamide Aerogels

    Science.gov (United States)

    Williams, Jarrod C.; Meador, Mary Ann; McCorkle, Linda

    2015-01-01

    We report the first synthesis of cross-linked polyamide aerogels through step growth polymerization using a combination of diamines, diacid chloride and triacid chloride. Polyamide oligomers endcapped with amines are prepared as stable solutions in N-methylpyrrolidinone from several different diamine precursors and 1,3-benzenedicarbonyl dichloride. Addition of 1,3,5-benzenetricarbonyl trichloride yields gels which form in under five minutes according to the scheme shown. Solvent exchange of the gels into ethanol, followed by drying using supercritical CO2 extraction gives colorless aerogels with densities around 0.1 to 0.2 gcm3. Thicker monolithes of the polyamide aerogels are stiff and strong, while thin films of certain formulations are highly flexible, durable, and even translucent. These materials may have use as insulation for deployable space structures, rovers, habitats or extravehicular activity suits as well as in many terrestrial applications. Strucure property relationships of the aerogels, including surface area, mechanical properties, and thermal conductivity will be discussed.

  17. KFeSbTe3: A quaternary chalcogenide aerogel for preferential adsorption of polarizable hydrocarbons and gases

    KAUST Repository

    Ahmed, Ejaz; Rothenberger, Alexander

    2015-01-01

    The first telluride-based quaternary aerogel KFeSbTe3 is synthesized by a sol-gel metathesis reaction between Fe(OAc)2 and K3SbTe3 in dimethyl formamide. The aerogel has an exceptionally large surface area 652 m2 g-1 which is amongst the highest

  18. Magnetic and Mössbauer spectroscopy studies of nanocrystalline iron oxide aerogels

    DEFF Research Database (Denmark)

    Carpenter, E.E.; Long, J.W.; Rolison, D.R.

    2006-01-01

    A sol-gel synthesis was used to produce iron oxide aerogels. These nanocrystalline aerogels have a pore-solid structure similar to silica aerogels but are composed entirely of iron oxides. Mössbauer experiments and x-ray diffraction showed that the as-prepared aerogel is an amorphous or poorly...... crystalline iron oxide, which crystallized as a partially oxidized magnetite during heating in argon. After further heat treatment in air, the nanocrystallites are fully converted to maghemite. The particles are superparamagnetic at high temperatures, but the magnetic properties are strongly influenced...

  19. Thermal Failure Analysis of Fiber-Reinforced Silica Aerogels under Liquid Nitrogen Thermal Shock

    Directory of Open Access Journals (Sweden)

    Ai Du

    2018-06-01

    Full Text Available Aerogel materials are recognized as promising candidates for the thermal insulator and have achieved great successes for the aerospace applications. However, the harsh environment on the exoplanet, especially for the tremendous temperature difference, tends to affect the tenuous skeleton and performances of the aerogels. In this paper, an evaluation method was proposed to simulate the environment of exoplanet and study the influence on the fiber-reinforced silica aerogels with different supercritical point drying (SPD technology. Thermal conductivity, mechanical property and the microstructure were characterized for understanding the thermal failure mechanism. It was found that structure and thermal property were significantly influenced by the adsorbed water in the aerogels under the thermal shocks. The thermal conductivity of CO2-SPD aerogel increased 35.5% after the first shock and kept in a high value, while that of the ethanol-SPD aerogel increased only 19.5% and kept in a relatively low value. Pore size distribution results showed that after the first shock the peak pore size of the CO2-SPD aerogel increased from 18 nm to 25 nm due to the shrinkage of the skeleton, while the peak pore size of the ethanol-SPD aerogel kept at ~9 nm probably induced by the spring-back effect. An 80 °C treatment under vacuum was demonstrated to be an effective way for retaining the good performance of ethanol-SPD aerogels under the thermal shock. The thermal conductivity increases of the ethanol-SPD aerogels after 5 shocks decreased from ~30 to ~0% via vacuum drying, while the increase of the CO2-SPD aerogels via the same treatments remains ~28%. The high-strain hardening and low-strain soften behaviors further demonstrated the skeleton shrinkage of the CO2-SPD aerogel.

  20. Electrochemical atomic layer deposition of Pt nanostructures on carbon paper and Ni foam; poster

    CSIR Research Space (South Africa)

    Louw, EK

    2012-07-01

    Full Text Available characteristic of polycrystalline Pt electrodes. ECALD produced good quality deposits that uniformly covered the carbon paper support. The advantages of preparing nanoparticles with this method include ease, flexibility and cost effectiveness. This could provide...

  1. Property control of graphene aerogels by in situ growth of silicone polymer

    Science.gov (United States)

    Zhou, Shuai; Zhou, Xiang; Hao, Gazi; Jiang, Wei; Wang, Tianhe

    2018-05-01

    Modulation of the density (from 3.5 to 64 mg cm-3), hydrophobicity and oil-uptake capability of graphene aerogels in extensive ranges were achieved by reacting (3-Mercaptopropyl)trimethoxysilane (MPS) with graphene oxide solutions under heating. The reaction allowed a characteristic silicone substructure to be formed on graphene and joint the graphene layers firmly together. With the increase of MPS concentrations (≤ca. 0.2 vol%), the nano silicone polymer grown on graphene functioned as a "linker" and "spacer", leading to a substantial decrease of the aerogel density. Because of the formation of silicone polymer and the characteristic nano-micro substructures on the backbones of graphene aerogels, the graphene aerogels exhibited a high hydrophobicity with the water contact angle consistently exceeding 142 degrees. Functionalized graphene aerogels with a density of 3.5 mg cm-3 were conveniently fabricated that displayed an extraordinary oil absorption capacity, 182 times for lubricating oil and 143 times for n-hexane of its own weight. Furthermore, the aerogels maintained their ultra-high absorption capability even after 20 absorption-distillation cycles, due to structural integrity held by the strong interfacial adhesion between graphene sheets and polymer chains of aerogels. This study offers a promising graphene aerogels and also provides a strategy for fabricating extra low dense functional materials.

  2. Complete oxidation of 1,2-dichlorobenzene over V{sub 2}O{sub 5}-TiO{sub 2} and MnO{sub x}-TiO{sub 2} aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jinsoon [Research Institute of Industrial Science and Technology, Pohang (Korea, Republic of); Suh, Dong Jin [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2014-10-15

    Catalytic destruction of 1,2-dichlorobenzene was carried out over two types of aerogels, vanadia-titania and manganese oxide-titania. Reactions were performed in a plug flow reactor in the range of 150-600 .deg. C. Both catalysts resulted in very high selectivity to carbon oxides and produced negligible amount of hydrocarbon byproducts. Over the vanadia-titania catalysts, the chlorinated compound was relatively more efficiently destructed at lower temperature, while selectivity towards carbon dioxide was much higher over manganese oxide-titania aerogel catalysts. Regardless of the preparation methods, showed a tendency to produce carbon monoxide with 35-45% selectivity throughout the reaction temperature range while manganese oxide-titania exhibited more than 90% CO{sub 2} selectivity at above 400 .deg. C.

  3. KFeSbTe3: A quaternary chalcogenide aerogel for preferential adsorption of polarizable hydrocarbons and gases

    KAUST Repository

    Ahmed, Ejaz

    2015-01-01

    The first telluride-based quaternary aerogel KFeSbTe3 is synthesized by a sol-gel metathesis reaction between Fe(OAc)2 and K3SbTe3 in dimethyl formamide. The aerogel has an exceptionally large surface area 652 m2 g-1 which is amongst the highest reported for chalcogenide-based aerogels. This predominantly mesoporous material shows preferential adsorption for toluene vapors over cyclohexane or cyclopentane and CO2 over CH4 or H2. The remarkably high adsorption capacity for toluene (9.31 mmol g-1) and high selectivity for gases (CO2/H2: 121 and CO2/CH4: 75) suggest a potential use of such materials in adsorption-based separation processes for the effective purification of hydrocarbons and gases. © The Royal Society of Chemistry 2015.

  4. Pt-Ru/CeO2/carbon nanotube nanocomposites: an efficient electrocatalyst for direct methanol fuel cells.

    Science.gov (United States)

    Sun, Zhenyu; Wang, Xiang; Liu, Zhimin; Zhang, Hongye; Yu, Ping; Mao, Lanqun

    2010-07-20

    Pt-Ru/CeO(2)/multiwalled carbon nanotube (MWNT) electrocatalysts were prepared using a rapid sonication-facilitated deposition method and were characterized by X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), and voltammetry. Morphological characterization by TEM revealed that CeO(2) nanoparticles (NPs) were in intimate contact with Pt-Ru NPs, and both were highly dispersed on the exteriors of nanotubes with a small size and a very narrow size distribution. Compared with the Pt-Ru/MWNT and Pt/MWNT electrocatalysts, the as-prepared Pt-Ru/CeO(2)/MWNT exhibited a significantly improved electrochemically active surface area (ECSA) and a remarkably enhanced activity toward methanol oxidation. The effects of the Pt-Ru loading and the Pt-to-Ru molar ratio on the electrocatalytic activity of Pt-Ru/CeO(2)/MWNT for methanol oxidation were investigated. We found that a maximum activity toward methanol oxidation reached at the 10 wt % of Pt-Ru loading and 1:1 of Pt-to-Ru ratio. Moreover, the role of CeO(2) in the catalysts for the enhancement of methanol oxidation was discussed in terms of both bifunctional mechanism and electronic effects.

  5. Test of aerogel as Cherenkov radiator

    CERN Document Server

    Alemi, M; Calvi, M; Matteuzzi, C; Negri, P; Paganoni, M; Liko, D; Neufeld, N; Chesi, Enrico Guido; Joram, C; Séguinot, Jacques; Ypsilantis, Thomas

    2001-01-01

    Two different stacks of aerogel were tested in a pion/proton beam of momentum between 3 and 10 GeV/c. The optical characteristics of the aerogel samples were different: one sample was hygroscopic while the other was hydrophobic. Two HPD tubes were used as photodetectors, and different thicknesses of the stacks were used, in order to determine the photoelectron yield, the Cherenkov angle and its precision. Pion/proton separation has been demonstrated at momenta up to 10 GeV/c.

  6. Synthesis of well-dispersed magnetic CoFe2O4 nanoparticles in cellulose aerogels via a facile oxidative co-precipitation method.

    Science.gov (United States)

    Wan, Caichao; Li, Jian

    2015-12-10

    With the increasing emphasis on green chemistry, it is becoming more important to develop environmentally friendly matrix materials for the synthesis of nanocomposites. Cellulose aerogels with hierarchical micro/nano-scale three-dimensional network beneficial to control and guide the growth of nanoparticles, are suitable as a class of ideal green nanoparticles hosts to fabricate multifunctional nanocomposites. Herein, a facile oxidative co-precipitation method was carried out to disperse CoFe2O4 nanoparticles in the cellulose aerogels matrixes, and the cellulose aerogels were prepared from the native wheat straw based on a green NaOH/polyethylene glycol solution. The mean diameter of the well-dispersed CoFe2O4 nanoparticles in the hybrid aerogels is 98.5 nm. Besides, the hybrid aerogels exhibit strong magnetic responsiveness, which could be flexibly actuated by a small magnet. And this feature also makes this class of magnetic aerogels possibly useful as recyclable adsorbents and some magnetic devices. Meanwhile, the mild green preparation method could also be extended to fabricate other miscellaneous cellulose-based nanocomposites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Highly dispersed Pt-Ni nanoparticles on nitrogen-doped carbon nanotubes for application in direct methanol fuel cells.

    Science.gov (United States)

    Jiang, Shujuan; Ma, Yanwen; Tao, Haisheng; Jian, Guoqiang; Wang, Xizhang; Fan, Yining; Zhu, Jianmin; Hu, Zheng

    2010-06-01

    Binary Pt-Ni alloyed nanoparticles supported on nitrogen-doped carbon nanotubes (NCNTs) have been facilely constructed without pre-modification by making use of the active sites in NCNTs due to the N-participation. So-obtained binary Pt-Ni alloyed nanoparticles have been highly dispersed on the outer surface of the support with the size of about 3-4 nm. The electrochemical properties of the catalysts for methanol oxidation have been systematically evaluated. Binary Pt-Ni alloyed composites with molar ratio (Pt:Ni) of 3:2 and 3:1 present enhanced electrocatalytic activities and improved tolerance to CO poisoning as well as the similar stability, in comparison with the commercial Pt/C catalyst and the monometallic Pt/NCNTs catalysts. These results imply that so-constructed nanocomposite catalysts have the potential for applications in direct methanol fuel cells.

  8. Van der Waal Interactions in Ultrafine Nanocellulose Aerogels

    Science.gov (United States)

    Fritch, Byron; Bradley, Derek; Kidd, Tim

    Nanocellulose aerogels have shown an ability to be used in many different applications ranging from oil sponges to conductive materials to possibly a low calorie food substitute. Not much is known about the structural and physical property changes that occur when the composition of the aerogel changes. We studied what properties change when the aerogel amounts change, as well as how sticky the aerogels are and how strong they are. The higher concentrations appeared to have more plate-like structures while the lower concentrations had a more fibrous material. These fibers in the low concentrations had a smaller diameter than a human hair. Only the low concentration aerogels were able to stick to a glass surface in the adhesion test, but were able to support a mass much larger than their own. These low concentrations also would stick to your finger when lightly touched. Preliminary tests show that a concentration that is not too low, but not too high, is best for tensile strength. All concentrations were able to hold many times their own mass. Cellulose should be studied more because it is a renewable material and is easily accessed. Nanocellulose is also not environmentally dangerous allowing it to be used in applications involving humans and the environment like noted above. National Science Foundation Grant DMR-1410496.

  9. Pulse electrodeposition of Pt and Pt–Ru methanol-oxidation nanocatalysts onto carbon nanotubes in citric acid aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Huei-Yu [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Hsieh, Chien-Kuo [Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC (China); Tsai, Ming-Chi; Wei, Yu-Hsuan; Yeh, Tsung-Kuang [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Tsai, Chuen-Horng, E-mail: tsai@aec.gov.tw [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China)

    2015-06-01

    In this study, platinum nanoparticle/carbon nanotube (Pt NP/CNT) and platinum–ruthenium nanoparticle (Pt–Ru NP/CNT) hybrid nanocatalysts were prepared by the pulse-electrodeposition method in different aqueous solutions containing citric acid (CA) or sulfuric acid (SA). The electrocatalytic properties of the Pt NP/CNT and Pt–Ru NP/CNT electrodes prepared using different aqueous solutions were investigated for methanol oxidation. The results show that the electrochemical mass activities of these hybrid nanocatalysts prepared in the CA aqueous solution were increased by factors of 1.46 and 2.77 for Pt NPs and Pt–Ru NPs, respectively, compared with those prepared in SA aqueous solutions using the same procedure. These increased mass activities are attributed to the CA playing dual roles as both a stabilizing agent and a particle size reducing agent in the aqueous solutions. The approach developed in this work enables further reductions in the particle sizes of noble-metal nanocatalysts. - Highlights: • Pulse-electrodeposition of Pt or Pt–Ru nanoparticles on carbon nanotubes • Carbon nanotubes used as a catalyst-supporting material • Citric acid used as reducing agent in the aqueous electrodeposition solutions • Electrochemical activity for methanol oxidation improved by a factor of 1.46 to 2.77.

  10. Preparation and characterization of Pt/C and Pt-Ru/C electrocatalysts for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhaolin; Ling, Xing Yi; Su, Xiaodi; Lee, Jim Yang; Gan, Leong Ming [Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602 (Singapore)

    2005-09-26

    Nano-sized Pt and Pt-Ru colloids are prepared by a microwave-assisted polyol process, and transferred to a toluene solution of decanthiol. Vulcan XC-72 is then added to the toluene solution to adsorb the thiolated Pt and Pt-Ru colloids. Transmission electron microscopy examinations show nearly spherical particles and narrow size distributions for both supported and unsupported metals. The carbon-supported Pt and Pt-Ru nanoparticles are activated by thermal treatment to remove the thiol stabilizing shell. All Pt and Pt-Ru catalysts (except Pt{sub 23}-Ru{sub 77}) give the X-ray diffraction pattern of a face-centered cubic (fcc) crystal structure, whereas the Pt{sub 23}-Ru{sub 77} alloy is more typical of the hexagonal close packed (hcp) structure. The electro-oxidation of liquid ethanol on these catalysts is investigated at room temperature by cyclic voltammetry. The results demonstrate that the alloy catalyst is catalytically more active than pure platinum. Preliminary tests on a single cell of a direct ethanol fuel cell (DEFC) indicate that a Pt{sub 52}-Ru{sub 48}/C anode catalyst gives the best electrocatalytic performance among all the carbon-supported Pt and Pt-Ru catalysts. (author)

  11. Photoelectrocatalytic reduction of CO2 into chemicals using Pt-modified reduced graphene oxide combined with Pt-modified TiO2 nanotubes.

    Science.gov (United States)

    Cheng, Jun; Zhang, Meng; Wu, Gai; Wang, Xin; Zhou, Junhu; Cen, Kefa

    2014-06-17

    The photoelectrocatalytic (PEC) reduction of CO2 into high-value chemicals is beneficial in alleviating global warming and advancing a low-carbon economy. In this work, Pt-modified reduced graphene oxide (Pt-RGO) and Pt-modified TiO2 nanotubes (Pt-TNT) were combined as cathode and photoanode catalysts, respectively, to form a PEC reactor for converting CO2 into valuable chemicals. XRD, XPS, TEM, AFM, and SEM were employed to characterize the microstructures of the Pt-RGO and Pt-TNT catalysts. Reduction products, such as C2H5OH and CH3COOH, were obtained from CO2 under band gap illumination and biased voltage. A combined liquid product generation rate (CH3OH, C2H5OH, HCOOH, and CH3COOH) of approximately 600 nmol/(h·cm(2)) was observed. Carbon atom conversion rate reached 1,130 nmol/(h·cm(2)), which were much higher than those achieved using Pt-modified carbon nanotubes and platinum carbon as cathode catalysts.

  12. Highly porous ceramic oxide aerogels having improved flexibility

    Science.gov (United States)

    Meador, Mary Ann B. (Inventor); Nguyen, Baochau N. (Inventor); Guo, Haiquan (Inventor)

    2012-01-01

    Ceramic oxide aerogels having improved flexibility are disclosed. Preferred embodiments exhibit high modulus and other strength properties despite their improved flexibility. The gels may be polymer cross-linked via organic polymer chains to further improve strength properties, without substantially detracting from the improved flexibility. Methods of making such aerogels are also disclosed.

  13. ANALISIS TOTAL PRODUCTIVE MAINTENANCE PADA LINE 8/CARBONATED SOFT DRINK PT COCA-COLA BOTTLING INDONESIA CENTRAL JAVA

    Directory of Open Access Journals (Sweden)

    Darminto Pujotomo

    2012-02-01

    Full Text Available PT. Coca-Cola Bottling Indonesia (CCBI Central Java merupakan salah satu perusahaan produsen minuman ringan yang terkemuka di Indonesia, dengan dua jenis kelompok produk yang dihasilkan yaitu minuman karbonasi/Carbonated Soft Drink (Coca-Cola, Sprite, dan Fanta dan non-karbonasi (Frestea dan Ades. Dalam usaha untuk mempertahankan mutu dan meningkatkan produktifitas, salah satu faktor yang harus diperhatikan adalah masalah perawatan fasilitas/mesin produksi.  Makalah ini membahas mengenai penyebab dan akibat yang ditimbulkan oleh breakdown mesin terjadi pada Line 8/Carbonated Soft Drink, khususnya pada conveyor, filler machine, dan bottle washer machine. Untuk mendapatkan mesin yang dapat terjaga keterandalannya dibutuhkan suatu konsep yang baik. Total Productive Maintenance (TPM merupakan sebuah konsep yang baik untuk merealisasikan hal tersebut. Konsep ini, selain melibatkan semua personil dalam perusahaan, juga bertujuan untuk merawat semua fasilitas produksi yang dimiliki perusahaan.Data yang digunakan merupakan data breakdown conveyor, filler machine, dan bottle washer machine dari ME Monthly Report PT.CCBI selama bulan Januari-Desember 2005 khususnya line 8. Selain itu makalah ini juga membahas performance maintenance PT. Coca-Cola Bottling Indonesia-Central Java, dengan memperhitungkan nilai Mean Time Beetwen Failure (MTBF, Mean Time To Repair (MTTR, serta Availability mesin, dengan menggunakan data record Line 8 selama bulan Mei 2006 sampai bulan Juli 2006. Sehingga nantinya akan diketahui informasi keadaan aktual dari perusahaan tentang sistem perawatannya, khususnya pada Line 8/Carbonated Soft Drink apakah baik atau buruk. Kata kunci : Total Production Maintenance, Conveyor, Filler Machine, Bottle Washer Machine, Performance Maintenance   PT. Coca-Cola Bottling Indonesia (CCBI-Central Java represent one of notable light beverage producer company in Indonesia, with two product group type yielded is carbonated beverage/Carbonated Soft

  14. Pt20RuxSny nanoparticles dispersed on mesoporous carbon CMK-3 and their application in the oxidation of 2-carbon alcohols and fermentation effluent

    International Nuclear Information System (INIS)

    Lo, An-Ya; Chung, Yi-Chen; Hung, Wei-Hsuan; Hsu, Yun-Chi; Tseng, Chuan-Ming; Zhang, Wei-Lun; Wang, Fu-Kai; Lin, Chiu-Yue

    2017-01-01

    Highlights: • Pt 20 Ru x Sn y @C catalysts are formed by dispersing Pt-Sn and Pt-Ru-Sn NPs on CMK-3. • They are tested in fuel cells using ethanol, ethylene glycol, and CFHPE as fuels. • Higher Sn contents improve catalytic efficiency of Pt 20 Ru x Sn y when x = 0 or x = 10. • Role of Sn in C−C bond cleavage and improving poisoning tolerance is explained. • Pt 20 Ru 10 Sn 15 @C is used to show feasibility of using bioalcohol from CFHPE as fuel. - Abstract: We report the synthesis of Pt-Sn binary and Pt-Ru-Sn ternary alloy nanoparticles (NPs) dispersed on mesoporous carbon CMK-3 for bioalcohol fuel cell applications where ethanol, ethylene glycol, and fermentative hydrogen production effluent were used as the fuels. The proposed alloy electrocatalysts, denoted as Pt 20 Ru x Sn y @C (where 20, x, and y represent the weight fractions of Pt, Ru, and Sn, respectively), were examined using scanning electron microscopy, energy-dispersive X-ray spectroscopy mapping, transmission electron microscopy, Brunauer-Emmett-Teller measurements, X-ray diffraction analysis, and electrochemical measurements, in order to determine their morphologies, microstructures, compositions, phase structures, and electrochemical characteristics. The effects of the Sn content on the following factors were examined: 1) average particle size of the alloy NPs, 2) mesoporosity, 3) electrochemically active surfaces of Pt 20 Ru x Sn y @C, and 4) ethanol oxidation reaction and ethylene glycol oxidation reaction activities. Higher Sn contents improved the catalytic efficiency of Pt 20 Ru x Sn y when x = 0 or x = 10, with the optimized compositions being Pt 20 Sn 30 and Pt 20 Ru 10 Sn 15 for the binary and ternary alloys, respectively. Based on the ethanol and ethylene glycol oxidation reactions, we explain the role of Sn in promoting C−C bond cleavage and in improving catalyst tolerance against poisoning. Overall, for both the ethanol system and the ethylene glycol system, the catalytic

  15. Silica aerogel radiator for use in the A-RICH system utilized in the Belle II experiment

    Science.gov (United States)

    Tabata, Makoto; Adachi, Ichiro; Hamada, Nao; Hara, Koji; Iijima, Toru; Iwata, Shuichi; Kakuno, Hidekazu; Kawai, Hideyuki; Korpar, Samo; Križan, Peter; Kumita, Tetsuro; Nishida, Shohei; Ogawa, Satoru; Pestotnik, Rok; Šantelj, Luka; Seljak, Andrej; Sumiyoshi, Takayuki; Tahirović, Elvedin; Yoshida, Keisuke; Yusa, Yosuke

    2014-12-01

    This paper presents recent progress in the development and mass production of large-area hydrophobic silica aerogels for use as radiators in the aerogel-based ring-imaging Cherenkov (A-RICH) counter, which will be installed in the forward end cap of the Belle II detector. The proximity-focusing A-RICH system is especially designed to identify charged kaons and pions. The refractive index of the installed aerogel Cherenkov radiators is approximately 1.05, and we aim for a separation capability exceeding 4σ at momenta up to 4 GeV/c. Large-area aerogel tiles (over 18×18×2 cm3) were first fabricated in test productions by pin drying in addition to conventional methods. We proposed to fill the large end-cap region (area 3.5 m2) with 124 water-jet-trimmed fan-shaped dual-layer-focusing aerogel combinations of different refractive indices (1.045 and 1.055). Guided by the test production results, we decided to manufacture aerogels by the conventional method and are currently proceeding with mass production. In an electron beam test undertaken at the DESY, we confirmed that the K/π separation capability of a prototype A-RICH counter exceeded 4σ at 4 GeV/c.

  16. N-Doped Carbon Nanofibrous Network Derived from Bacterial Cellulose for the Loading of Pt Nanoparticles for Methanol Oxidation Reaction.

    Science.gov (United States)

    Yuan, Fanshu; Huang, Yang; Fan, Mengmeng; Chen, Chuntao; Qian, Jieshu; Hao, Qingli; Yang, Jiazhi; Sun, Dongping

    2018-02-06

    The large-scale, low-cost preparation of Pt-based catalysts with high activity and durability for the methanol oxidation reaction is still challenging. The key to achieving this aim is finding suitable supporting materials. In this paper, N-doped carbon nanofibrous networks are prepared by annealing a gel containing two inexpensive and ecofriendly precursors, that is, bacterial cellulose and urea, for the loading of Pt nanoparticles. An undoped analogue is also prepared for comparison. Meanwhile, the effect of the annealing temperature on the performance of the catalysts is evaluated. The results show that the N doping and higher annealing temperature can improve the electron conductivity of the catalyst and provide more active sites for the loading of ultrafine Pt nanoparticles with a narrow size distribution. The best catalyst exhibits a remarkably high electrocatalytic activity (627 mA mg -1 ), excellent poison tolerance, and high durability. This work demonstrates an ideal Pt supporting material for the methanol oxidation reaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Three-Dimensionally Hierarchical Graphene Based Aerogel Encapsulated Sulfur as Cathode for Lithium/Sulfur Batteries

    Science.gov (United States)

    Li, Haipeng; Sun, Liancheng; Wang, Zhuo; Zhang, Yongguang; Tan, Taizhe; Wang, Gongkai

    2018-01-01

    A simple and effective method was developed to obtain the electrode for lithium/sulfur (Li/S) batteries with high specific capacity and cycling durability via adopting an interconnected sulfur/activated carbon/graphene (reduced graphene oxide) aerogel (S/AC/GA) cathode architecture. The AC/GA composite with a well-defined interconnected conductive network was prepared by a reduction-induced self-assembly process, which allows for obtaining compact and porous structures. During this process, reduced graphene oxide (RGO) was formed, and due to the presence of oxygen-containing functional groups on its surface, it not only improves the electronic conductivity of the cathode but also effectively inhibits the polysulfides dissolution and shuttle. The introduced activated carbon allowed for lateral and vertical connection between individual graphene sheets, completing the formation of a stable three-dimensionally (3D) interconnected graphene framework. Moreover, a high specific surface area and 3D interconnected porous structure efficiently hosts a higher amount of active sulfur material, about 65 wt %. The designed S/AC/GA composite electrodes deliver an initial capacity of 1159 mAh g−1 at 0.1 C and can retain a capacity of 765 mAh g−1 after 100 cycles in potential range from 1 V to 3 V. PMID:29373525

  18. Three-Dimensionally Hierarchical Graphene Based Aerogel Encapsulated Sulfur as Cathode for Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Haipeng Li

    2018-01-01

    Full Text Available A simple and effective method was developed to obtain the electrode for lithium/sulfur (Li/S batteries with high specific capacity and cycling durability via adopting an interconnected sulfur/activated carbon/graphene (reduced graphene oxide aerogel (S/AC/GA cathode architecture. The AC/GA composite with a well-defined interconnected conductive network was prepared by a reduction-induced self-assembly process, which allows for obtaining compact and porous structures. During this process, reduced graphene oxide (RGO was formed, and due to the presence of oxygen-containing functional groups on its surface, it not only improves the electronic conductivity of the cathode but also effectively inhibits the polysulfides dissolution and shuttle. The introduced activated carbon allowed for lateral and vertical connection between individual graphene sheets, completing the formation of a stable three-dimensionally (3D interconnected graphene framework. Moreover, a high specific surface area and 3D interconnected porous structure efficiently hosts a higher amount of active sulfur material, about 65 wt %. The designed S/AC/GA composite electrodes deliver an initial capacity of 1159 mAh g−1 at 0.1 C and can retain a capacity of 765 mAh g−1 after 100 cycles in potential range from 1 V to 3 V.

  19. Effect of catalyst on melamine-formaldehyde organic aerogel

    International Nuclear Information System (INIS)

    Sun Zhipeng; Yang Xi; Fu Zhibing; Zhong Minglong; Wang Chaoyang; Ma Kangfu; Huang Xiaoli; Chang Lijuan

    2013-01-01

    A series of melamine-formaldehyde(MF) organic aerogel templates were prepared with different categories and concentration of catalyst. Their molecular structure, thermal stability and pore structure were tested by Fourier transform infrared spectroscopy, thermogravimetric analysis and nitrogen adsorption. It is indicated that the type and concentration of catalyst do not affect molecular structure and thermal stability of the MF organic aerogel template. The specific surface area and pore volume of the MF organic aerogel template using Na 2 CO 3 as catalyst are higher than those using NaOH, NaHCO 3 as catalyst. When the ratio of the concentration of melamine to that of catalyst is 500, the specific surface area is maximized. (authors)

  20. Low-cost carbon-based counter electrodes for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Barberio, M; Imbrogno, A; Bonanno, A; Xu, F; Grosso, D R

    2015-01-01

    In this work, we present the realization of four carbon-based counter electrodes for dye-sensitized solar cells. The photovoltaic behaviours of counter electrodes realized with graphene, multiwalled carbon nanotubes, and nanocomposites of multiwalled carbon nanotubes and metal nanoparticles are compared with those of classical electrodes (amorphous carbon and platinum). Our results show an increase of about 50% in PCE for graphene and Ag/carbon nanotube electrodes with respect to amorphous carbon and of 25% in comparison to platinum. An improvement in cell stability is also observed; in fact, the PCE of all carbon-based cells assumes a constant value during a period of one month while that with the Pt electrode decreases by 50% in one week. (paper)

  1. Pt-MWCNT modified carbon electrode strip for rapid and quantitative detection of H2O2 in food

    Directory of Open Access Journals (Sweden)

    Tai-Cheng Chou

    2018-04-01

    Full Text Available A single-use screen-printed carbon electrode strip was designed and fabricated. Nanohybrids, prepared by deposition of platinum (Pt nanoparticles on multi-wall carbon nanotube (MWCNT, was modified on the surface of screen-printed carbon electrode for the development of a fast, sensitive and cost-effective hydrogen peroxide (H2O2 detection amperometric sensor strip. With Pt-MWCNT nanohybrids surface modification, current generated in response to H2O2 by the screen-printed carbon electrode strip was enhanced 100 fold with an applied potential of 300 mV. Quality of as-prepared electrode strip was assured by the low coefficient of variation (CV (<5% of currents measured at 5 s. Three linear detection ranges with sensitivity of 75.2, 120.7, and 142.8 μA mM−1 cm−2 were observed for H2O2 concentration in the range of 1–15 mM, 0.1–1 mM, and 10–100 μM, respectively. The lowest H2O2 concentration could be measured by the as-prepared strip was 10 μM. H2O2 levels in green tea infusion and pressed Tofu could be rapidly detected with results comparable to that measured by ferrous oxidation xylenol orange (FOX assay and peroxidase colorimetric method. Keywords: Platinum-multi-wall carbon nanotube (Pt-MWCNT, Disposable carbon electrode, Hydrogen peroxide (H2O2, Amperometric sensor

  2. The RICH with Aerogel for the LHCb Experiment

    CERN Document Server

    Bellunato, T; Matteuzzi, C; Musy, M; Negri, P; Perego, D L

    2006-01-01

    We report on the status of the art of the aerogel project for LHCb, from the production, in terms of specifications and achieved quality, to the optical and beam tests performed to qualify the material as a Cherenkov radiator. A brief summary of the ageing and radiation tolerance tests performed on some aerogel tiles is also given.

  3. The RICH with Aerogel for the LHCb Experiment

    International Nuclear Information System (INIS)

    Bellunato, T.; Calvi, M.; Matteuzzi, C.; Musy, M.; Negri, P.; Perego, D.L.

    2006-01-01

    We report on the status of the art of the aerogel project for LHCb, from the production, in terms of specifications and achieved quality, to the optical and beam tests performed to qualify the material as a Cherenkov radiator. A brief summary of the ageing and radiation tolerance tests performed on some aerogel tiles is also given

  4. Carbon supported Pt-NiO nanoparticles for ethanol electro-oxidation in acid media

    Science.gov (United States)

    Comignani, Vanina; Sieben, Juan Manuel; Brigante, Maximiliano E.; Duarte, Marta M. E.

    2015-03-01

    In the present work, the influence of nickel oxide as a co-catalyst of Pt nanoparticles for the electro-oxidation of ethanol in the temperature range of 23-60 °C was investigated. The carbon supported nickel oxide and platinum nanoparticles were prepared by hydrothermal synthesis and microwave-assisted polyol process respectively, and characterized by XRD, EDX, TEM and ICP analysis. The electrocatalytic activity of the as-prepared materials was studied by cyclic voltammetry and chronoamperometry. Small metal nanoparticles with sizes in the range of 3.5-4.5 nm were obtained. The nickel content in the as-prepared Pt-NiO/C catalysts was between 19 and 35 at.%. The electrochemical experiments showed that the electrocatalytic activity of the Pt-NiO/C materials increase with NiO content in the entire temperature range. The apparent activation energy (Ea,app) for the overall ethanol oxidation reaction was found to decrease with NiO content (24-32 kJ mol-1 at 0.3 V), while for Pt/C the activation energy exceeds 48 kJ mol-1. The better performance of the Pt-NiO/C catalysts compared to Pt/C sample is ascribed to the activation of both the C-H and O-H bonds via oxygen-containing species adsorbed on NiO molecules and the modification of the surface electronic structure (changes in the density of states near the Fermi level).

  5. Preparation and characterization of Pt/C and Pt sbnd Ru/C electrocatalysts for direct ethanol fuel cells

    Science.gov (United States)

    Liu, Zhaolin; Ling, Xing Yi; Su, Xiaodi; Lee, Jim Yang; Gan, Leong Ming

    Nano-sized Pt and Pt sbnd Ru colloids are prepared by a microwave-assisted polyol process, and transferred to a toluene solution of decanthiol. Vulcan XC-72 is then added to the toluene solution to adsorb the thiolated Pt and Pt sbnd Ru colloids. Transmission electron microscopy examinations show nearly spherical particles and narrow size distributions for both supported and unsupported metals. The carbon-supported Pt and Pt sbnd Ru nanoparticles are activated by thermal treatment to remove the thiol stabilizing shell. All Pt and Pt sbnd Ru catalysts (except Pt 23sbnd Ru 77) give the X-ray diffraction pattern of a face-centered cubic (fcc) crystal structure, whereas the Pt 23sbnd Ru 77 alloy is more typical of the hexagonal close packed (hcp) structure. The electro-oxidation of liquid ethanol on these catalysts is investigated at room temperature by cyclic voltammetry. The results demonstrate that the alloy catalyst is catalytically more active than pure platinum. Preliminary tests on a single cell of a direct ethanol fuel cell (DEFC) indicate that a Pt 52sbnd Ru 48/C anode catalyst gives the best electrocatalytic performance among all the carbon-supported Pt and Pt sbnd Ru catalysts.

  6. Adsorption and desorption of cationic malachite green dye on cellulose nanofibril aerogels.

    Science.gov (United States)

    Jiang, Feng; Dinh, Darren M; Hsieh, You-Lo

    2017-10-01

    Ultra-light aerogels have been assembled from cellulose nanofibrils into hierarchically macroporous (several hundred μm) honeycomb cellular structure surrounded with mesoporous (8-60nm) thin walls. The high specific surface (193m 2 /g) and surface carboxyl content (1.29mmol/g) of these aerogels were demonstrated to be highly capable of removing cationic malachite green (MG) dye from aqueous media. The rapid MG adsorption was driven by electrostatic interactions and followed a pseudo-second-order adsorption kinetic and monolayer Langmuir adsorption isotherm. At a low 1:5mg/mL aerogel/MG ratio, both initial MG adsorption rate (2.3-59.8mgg -1 min -1 ) and equilibrium adsorption capacity (53.0-203.7mgg -1 ) increased with increasing initial MG concentrations from 10 to 200mg/L, reaching a maximum adsorption of 212.7mgg -1 . The excellent dye removal efficiency was demonstrated by complete MG removal through four repetitive adsorptions at a low 1:5mg/mL aerogel/MG ratio and 10mg/L dye concentration as well as 92% MG adsorption in a single batch at one order of magnitude higher10:5mg/mL aerogel/MG ratio and 100mg/L dye concentration. The adsorbed MG in aerogels could be desorbed in aqueous media by increasing ionic strength, demonstrating facile recovery of both dye and aerogel as well as the robust capability of this aerogel for repetitive applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. How Well Does Carbon Handle Stress? - A Brief Overview of Carbons in Structural Applications

    Science.gov (United States)

    2004-06-09

    strong-- PAN fibers… or weak-- aerogel be stiff—pitch carbon fibers...or flexible--Grafoil 4 A2705V2004. Approved for public release; distribution...distribution unlimited Carbon Fiber Reinforcement Aeronautics • Carbon-epoxy and carbon-phenolic are used in military aircraft . 39 A2705V2004. Approved...performance aircraft Gossamer Albatross Gossamer Penguin Voyager 40 A2705V2004. Approved for public release; distribution unlimited Carbon Fiber

  8. An efficient polymeric micromotor doped with Pt nanoparticle@carbon nanotubes for complex bio-media.

    Science.gov (United States)

    Li, Yana; Wu, Jie; Xie, Yuzhe; Ju, Huangxian

    2015-04-14

    A highly efficient polymeric tubular micromotor doped with Pt nanoparticle@carbon nanotubes is fabricated by template-assisted electrochemical growth. The micromotors preserve good navigation in multi-media and surface modification, along with simple synthesis, easy functionalization and good biocompatibility, displaying great promise in biological applications.

  9. Aerogel as a Sample Collector and Sample Mount for Transmission XRD Analysis

    Science.gov (United States)

    Bish, D. L.; Vaniman, D. T.; Chipera, S. J.; Yen, A. S.; Jones, S. M.

    2001-01-01

    Silica aerogel can be used for dust collection and in situ X-ray analysis. Aerogels can be less absorbing than Be, and it is feasible to obtain X-ray transmission factors >50% using typical aerogels together with a 100-micrometer Be backing foil. Additional information is contained in the original extended abstract.

  10. Green synthesis of hybrid graphene oxide/microcrystalline cellulose aerogels and their use as superabsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiao; Huang, Ting; Yang, Jing-hui; Zhang, Nan; Wang, Yong, E-mail: yongwang1976@163.com; Zhou, Zuo-wan

    2017-08-05

    Highlights: • Hybrid GO/MCC aerogels were prepared using LiBr aqueous solution as the solvent. • GO was exfoliated by MCC through the strong interaction between them. • The adsorption ability of GO per unit mass in the hybrid aerogels was greatly enhanced. - Abstract: In this work, we developed a green synthesis method to prepare the hybrid aerogels containing graphene oxide (GO) and microcrystalline cellulose (MCC) using lithium bromide (LiBr) aqueous solution as the solvent, which insured the complete dissolution of MCC. The interaction between GO and MCC was investigated through different methods The results demonstrate that there is a strong interaction between GO and MCC molecules, which promotes the exfoliation of GO in the hybrid aerogels. The hybrid GO/MCC aerogels exhibit typical three dimensional porous structure and the pore morphology can be well adjusted by changing the content of GO. The adsorption ability of the hybrid aerogels was measured using methylene blue (MB) as an adsorbate. The results show that the adsorption ability of GO per unit mass is greatly enhanced compared with the pure GO aerogel, especially at relatively low GO content the adsorption amount of GO per unit mass is enhanced up to 2630 mg/g. Further results demonstrate that the hybrid GO/MCC aerogels still obey the pseudo-second-order adsorption model, which is similar to that of the pure GO aerogel. The mechanism for the amplified adsorption ability of GO in the hybrid GO/MCC aerogels is then analyzed.

  11. Green synthesis of hybrid graphene oxide/microcrystalline cellulose aerogels and their use as superabsorbents

    International Nuclear Information System (INIS)

    Wei, Xiao; Huang, Ting; Yang, Jing-hui; Zhang, Nan; Wang, Yong; Zhou, Zuo-wan

    2017-01-01

    Highlights: • Hybrid GO/MCC aerogels were prepared using LiBr aqueous solution as the solvent. • GO was exfoliated by MCC through the strong interaction between them. • The adsorption ability of GO per unit mass in the hybrid aerogels was greatly enhanced. - Abstract: In this work, we developed a green synthesis method to prepare the hybrid aerogels containing graphene oxide (GO) and microcrystalline cellulose (MCC) using lithium bromide (LiBr) aqueous solution as the solvent, which insured the complete dissolution of MCC. The interaction between GO and MCC was investigated through different methods The results demonstrate that there is a strong interaction between GO and MCC molecules, which promotes the exfoliation of GO in the hybrid aerogels. The hybrid GO/MCC aerogels exhibit typical three dimensional porous structure and the pore morphology can be well adjusted by changing the content of GO. The adsorption ability of the hybrid aerogels was measured using methylene blue (MB) as an adsorbate. The results show that the adsorption ability of GO per unit mass is greatly enhanced compared with the pure GO aerogel, especially at relatively low GO content the adsorption amount of GO per unit mass is enhanced up to 2630 mg/g. Further results demonstrate that the hybrid GO/MCC aerogels still obey the pseudo-second-order adsorption model, which is similar to that of the pure GO aerogel. The mechanism for the amplified adsorption ability of GO in the hybrid GO/MCC aerogels is then analyzed.

  12. Sonochemical synthesis and characterization of Pt/CNT, Pt/TiO2, and Pt/CNT/TiO2 electrocatalysts for methanol electro-oxidation

    International Nuclear Information System (INIS)

    Bedolla-Valdez, Z.I.; Verde-Gómez, Y.; Valenzuela-Muñiz, A.M.; Gochi-Ponce, Y.; Oropeza-Guzmán, M.T.; Berhault, Gilles; Alonso-Núñez, G.

    2015-01-01

    Highlights: • Pt/CNT/TiO 2 electrocatalyst was successfully prepared by the sonochemical method. • The electrocatalyst Pt/CNT/TiO 2 was synthesized without heat treatments, additives or surfactants. • The TiO 2 -Pt interaction improves the CO-tolerance of Pt/CNT/TiO 2 , as well as the electrocatalyst stability. • Low amount of multi-walled carbon nanotubes increases the current density of Pt/CNT/TiO 2 significantly compared to Pt/TiO 2 . - Abstract: Pt electrocatalyst supported on composite formed of multi-walled carbon nanotubes and titanium oxide (CNT/TiO 2 ) was successfully synthesized by a sonochemical method without heat treatments, surfactants or additives. This electrocatalyst could be used for direct methanol fuel cells (DMFC) applications. For comparison, Pt/CNT and Pt/TiO 2 electrocatalysts were prepared as reference samples. Structural properties and morphology of the synthesized materials were examined by X-ray diffraction, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and their specific surface areas were determined by the Brunauer-Emmett-Teller method. The Pt and acid-treated CNT contents were analyzed by inductively coupled plasma atomic emission spectroscopy and thermogravimetric analysis, respectively. The electrochemical properties of the synthesized electrocatalysts were evaluated by cyclic voltammetry (CV) and chronoamperometry in a three-electrode cell at room temperature. The evaluation performed using electrochemical techniques suggests that TiO 2 promotes the CO-tolerance due to TiO 2 -Pt interaction. The CV tests demonstrated that 6 wt.% of acid-treated CNT increases significantly the current density when Pt selectively interacts with TiO 2 .

  13. Evaluation of new 5 inch photomultiplier for use in threshold Cherenkov detectors with aerogel radiator

    International Nuclear Information System (INIS)

    Wojtsekhowski, B.; Zorn, C.; Flyckt, S.O.

    2000-01-01

    A cost effective alternative to UV-sensitive 5 inch PMTs often used with threshold Aerogel Cherenkov detectors has been developed and tested. The photomultiplier -XP4572-is a variation of the Photonis XP4512 glass window tube with improved electron collection efficiency. Fast timing and high gain were only moderately compromised. The effective quantum efficiency has been measured as twice that of a Burle 8854 Quantacon when exposed to a Cherenkov spectrum generated by Ru-106 electrons (les;3.54 MeV) through 1 cm of high index, high transparency Matsushita Electric aerogel (n=1.05). This new phototube is being installed in an aerogel-based Cherenkov detector for Hall A at Jefferson Lab

  14. X-ray radiographic technique for measuring density uniformity of silica aerogel

    International Nuclear Information System (INIS)

    Tabata, Makoto; Hatakeyama, Yoshikiyo; Adachi, Ichiro; Morita, Takeshi; Nishikawa, Keiko

    2013-01-01

    This paper proposes a new X-ray radiographic technique for measuring density uniformity of silica aerogels used as radiator in proximity-focusing ring-imaging Cherenkov detectors. To obtain high performance in a large-area detector, a key characteristic of radiator is the density (i.e. refractive index) uniformity of an individual aerogel monolith. At a refractive index of n=1.05, our requirement for the refractive index uniformity in the transverse plane direction of an aerogel tile is |δ(n−1)/(n−1)|<4% in a focusing dual layer radiator (with different refractive indices) scheme. We applied the radiographic technique to evaluate the density uniformity of our original aerogels from a trial production and that of Panasonic products (SP-50) as a reference, and to confirm they have sufficient density uniformity within ±1% along the transverse plane direction. The measurement results show that the proposed technique can quantitatively estimate the density uniformity of aerogels.

  15. Supercritical methanol drying as a convenient route to phenolic-furfural aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Albert, Donald F.; Bruno, Joseph W. [Department of Chemistry, Wesleyan University, 06459 Middletown, CT (United States); Andrews, Greg R.; Mendenhall, Robert S. [American Aerogel Corporation, 1000 Corporate Row, 06416 Cromwell, CT (United States)

    2001-12-01

    Organic aerogels are prepared by the acid catalyzed cross-linking of phenolic-furfural (PF) precursors in methanol solution, and the solvent is subsequently removed at high temperature as the supercritical fluid. The resulting aerogel is a brown opaque solid and has been prepared as 30 ml cylindrical monoliths exhibiting little or no shrinkage during formation. These solids, which are routinely available with a density as low as ca. 125mg/cm{sup 3}, have been characterized by chemical methods (infrared spectroscopy and CP-MAS 13C NMR spectrometry) and physical techniques (Brunauer-Emmet-Teller surface area, transmission and scanning electron microscopy). In addition, thermal conductivities have been determined, and show that the PF aerogels are excellent thermal insulators. These studies establish that the materials described herein exhibit chemical and physical properties very similar to those seen for organic aerogels prepared with low temperature processing techniques. The current method constitutes a convenient and rapid route to organic aerogels.

  16. Sol–gel synthesis of highly TiO2 aerogel photocatalyst via high temperature supercritical drying

    Directory of Open Access Journals (Sweden)

    Rebah Moussaoui

    2017-09-01

    Full Text Available Nanocrystalline powders of TiO2 xerogel and aerogel were prepared by using acid-modified sol–gel approach. For TiO2 aerogel material (TA, the solvent was high temperature supercritically extracted at 300 °C and 100 bars. However, the TiO2 xerogel material (TX was dried at 200 °C and ambient pressure. The effects of the drying processes on the crystalline structure, phase transformation and grain growth were determined by Raman spectroscopy, SAED and X-ray diffraction (XRD analyses using Rietveld refinement method. The TiO2 aerogel was composed of anatase crystalline structure. The TiO2 xerogel material was composed of anatase, brookite and small amount of amorphous phase with anatase as dominant phase. The TX sample still contains a relatively high concentration of carbon than that of TA, indicating the amorphous character of TiO2 xerogel. These materials were applied as catalyst for the degradation of indigo carmine in aqueous medium. Photo-degradation ability of TA and TX was compared to the TiO2 commercial Degussa P25. The photo-catalytic results showed that the degradation efficiency was in the order TA > P25 > TX. The photo-degradation of indigo carmine followed pseudo first order reaction kinetics.

  17. Hydrophobic and low density silica aerogels dried at ambient pressure using TEOS precursor

    International Nuclear Information System (INIS)

    Gurav, Jyoti L.; Rao, A. Venkateswara; Bangi, Uzma K.H.

    2009-01-01

    In the conventional ambient pressure drying of silica aerogels, tedious repetitive gel washing and solvent exchange steps (∼6 days) are involved. Therefore, in the present studies, we intended to reduce the processing time of TEOS based ambient pressure dried silica aerogels. Solvents such as methanol, hexane and Hexamethyldisilazane (HMDZ) as surface chemical modification agents have been used. To get good quality aerogels in terms of low density, high porosity, high contact angle and low volume shrinkage in less processing time, we varied MeOH/TEOS, HMDZ/TEOS molar ratios, oxalic acid (A) and NH 4 OH (B) concentrations and stirring time from 1 to 27.7, 0.34 to 2.1, 0 to 0.1 M, 0 to 2 M and 15 to 90 min respectively. The transparent and low-density aerogels were obtained for TEOS:MeOH:acidic H 2 O:basic H 2 O:HMDZ molar ratio of 1:16.5:0.81:0.50:0.681 respectively. The thermal stability and hydrophobicity have been confirmed with Thermogravimetric and Differential Thermal (TG-DT) analyses and Fourier Transform Infrared Spectroscopy. Microstructural study was carried out by Scanning Electron Microscopy (SEM)

  18. Effects of the Electrodeposition Time in the Synthesis of Carbon-Supported Pt(Cu and Pt-Ru(Cu Core-Shell Electrocatalysts for Polymer Electrolye Fuel Cells

    Directory of Open Access Journals (Sweden)

    Griselda Caballero-Manrique

    2016-08-01

    Full Text Available Pt(Cu/C and Pt-Ru(Cu/C electrocatalysts with core-shell structure supported on Vulcan Carbon XC72R have been synthesized by potentiostatic deposition of Cu nanoparticles on the support, galvanic exchange with Pt and spontaneous deposition of Ru species. The duration of the electrodeposition time of the different species has been modified and the obtained electrocatalysts have been characterized using electrochemical and structural techniques. The High Resolution Transmission Electron Microscopy (HRTEM, Fast Fourier Transform (FFT and Energy Dispersive X-ray (EDX microanalyses allowed the determining of the effects of the electrodeposition time on the nanoparticle size and composition. The best conditions identified from Cyclic Voltammetry (CV corresponded to onset potentials for CO and methanol oxidation on Pt-Ru(Cu/C of 0.41 and 0.32 V vs. the Reversible Hydrogen Electrode (RHE, respectively, which were smaller by about 0.05 V than those determined for Ru-decorated commercial Pt/C. The CO oxidation peak potentials were about 0.1 V smaller when compared to commercial Pt/C and Pt-Ru/C. The positive effect of Cu was related to its electronic effect on the Pt shells and also to the generation of new active sites for CO oxidation. The synthesis conditions to obtain the best performance for CO and methanol oxidation on the core-shell Pt-Ru(Cu/C electrocatalysts were identified. When compared to previous results in literature for methanol, ethanol and formic acid oxidation on Pt(Cu/C catalysts, the present results suggest an additional positive effect of the deposited Ru species due to the introduction of the bifunctional mechanism for CO oxidation.

  19. Methods for controlling pore morphology in aerogels using electric fields and products thereof

    Science.gov (United States)

    Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.; Olson, Tammy Y.; Kuntz, Joshua D.; Rose, Klint A.

    2017-12-16

    In one embodiment, an aerogel or xerogel includes column structures of a material having minor pores therein and major pores devoid of the material positioned between the column structures, where longitudinal axes of the major pores are substantially parallel to one another. In another embodiment, a method includes heating a sol including aerogel or xerogel precursor materials to cause gelation thereof to form an aerogel or xerogel and exposing the heated sol to an electric field, wherein the electric field causes orientation of a microstructure of the sol during gelation, which is retained by the aerogel or xerogel. In one approach, an aerogel has elongated pores extending between a material arranged in column structures having structural characteristics of being formed from a sol exposed to an electric field that causes orientation of a microstructure of the sol during gelation which is retained by the elongated pores of the aerogel.

  20. Radiolytic Synthesis of Pt-Ru Catalysts Based on Functional Polymer-Grafted MWNT and Their Catalytic Efficiency for CO and MeOH

    Directory of Open Access Journals (Sweden)

    Dae-Soo Yang

    2011-01-01

    Full Text Available Pt-Ru catalysts based on functional polymer-grafted MWNT (Pt-Ru@FP-MWNT were prepared by radiolytic deposition of Pt-Ru nanoparticles on functional polymer-grafted multiwalled carbon nanotube (FP-MWNT. Three different types of functional polymers, poly(acrylic acid (PAAc, poly(methacrylic acid (PMAc, and poly(vinylphenyl boronic acid (PVPBAc, were grafted on the MWNT surface by radiation-induced graft polymerization (RIGP. Then, Pt-Ru nanoparticles were deposited onto the FP-MWNT supports by the reduction of metal ions using γ-irradiation to obtain Pt-Ru@FP-MWNT catalysts. The Pt-Ru@FP-MWNT catalysts were then characterized by XRD, XPS, TEM ,and elemental analysis. The catalytic efficiency of Pt-Ru@FP-MWNT catalyst was examined for CO stripping and MeOH oxidation for use in a direct methanol fuel cell (DMFC. The Pt-Ru@PVPBAc-MWNT catalyst shows enhanced activity for electro-oxidation of CO and MeOH oxidation over that of the commercial E-TEK catalyst.

  1. Biodiesel synthesis using K2CO3/Al–O–Si aerogel catalysts

    Directory of Open Access Journals (Sweden)

    IVANA LUKIĆ

    2010-06-01

    Full Text Available In this study, catalysts for fatty acid methyl esters (FAME or bio-diesel synthesis with K2CO3 as the active component on an alumina/silica support were synthesized using the sol–gel method, which was followed by drying the “dense” wet gels with supercritical carbon dioxide to obtain the aerogels. The prepared catalysts were characterized by XRD analysis, FTIR spectroscopy and N2 physisorption at 77 K, and tested in the methanolysis of sunflower oil. The effects of reaction variables, such as reaction time, temperature and methanol to oil molar ratio, on the yield of FAME were investigated. The aerogel catalysts with K2CO3 as the active component on an alumina/silica support exhibited good activity in the methanolysis of sunflower oil. The leaching of potassium when the catalyst was in contact with pure methanol under the working conditions of methanolysis was also tested in this study, indicating that it occurred only at higher temperatures, while at lower ones, it was negligible.

  2. Effective adsorption/electrocatalytic degradation of perchlorate using Pd/Pt supported on N-doped activated carbon fiber cathode

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Fubing; Zhong, Yu [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Yang, Qi, E-mail: yangqi@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Wang, Dongbo, E-mail: dongbowang@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Chen, Fei; Zhao, Jianwei; Xie, Ting; Jiang, Chen; An, Hongxue; Zeng, Guangming; Li, Xiaoming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China)

    2017-02-05

    Highlights: • Pd/Pt-NACF served as an adsorption/electrocatalysis electrode to reduce perchlorate. • The possible mechanisms involved in the reaction process were explained. • The reusability and stability of Pd/Pt-NACF bifunctional material was evaluated. - Abstract: In this work, Pd/Pt supported on N-doped activated carbon fiber (Pd/Pt-NACF) was employed as the electrode for electrocatalytic degradation of perchlorate through adsorption/electroreduction process. Perchlorate in solution was firstly adsorbed on Pd/Pt-NACF and then reduced to non-toxic chloride by the catalytic function of Pd/Pt at a constant current (20 mA). Compared with Pd/Pt-ACF, the adsorption capacity and electrocatalytic degradation efficiency of Pd/Pt-NACF for perchlorate increased 161% and 28%, respectively. Obviously, positively charged N-functional groups on NACF surface enhanced the adsorption capacity of Pd/Pt-NACF, and the dissociation of hydrogen to atomic H* by the Pd/Pt nanostructures on the cathode might drastically promote the electrocatalytic reduction of perchlorate. The role of atomic H* in the electroreduction process was identified by tertiary butanol inhibition test. Meanwhile, the perchlorate degradation performance was not substantially lower after three successive adsorption/electrocatalytic degradation experiments, demonstrating the electrochemical reusability and stability of the as-prepared electrode. These results showed that Pd/Pt-NACF was effective for electrocatalytic degradation of perchlorate and had great potential in perchlorate removal from water.

  3. Modeling silica aerogel optical performance by determining its radiative properties

    Directory of Open Access Journals (Sweden)

    Lin Zhao

    2016-02-01

    Full Text Available Silica aerogel has been known as a promising candidate for high performance transparent insulation material (TIM. Optical transparency is a crucial metric for silica aerogels in many solar related applications. Both scattering and absorption can reduce the amount of light transmitted through an aerogel slab. Due to multiple scattering, the transmittance deviates from the Beer-Lambert law (exponential attenuation. To better understand its optical performance, we decoupled and quantified the extinction contributions of absorption and scattering separately by identifying two sets of radiative properties. The radiative properties are deduced from the measured total transmittance and reflectance spectra (from 250 nm to 2500 nm of synthesized aerogel samples by solving the inverse problem of the 1-D Radiative Transfer Equation (RTE. The obtained radiative properties are found to be independent of the sample geometry and can be considered intrinsic material properties, which originate from the aerogel’s microstructure. This finding allows for these properties to be directly compared between different samples. We also demonstrate that by using the obtained radiative properties, we can model the photon transport in aerogels of arbitrary shapes, where an analytical solution is difficult to obtain.

  4. Elastic properties of silica aerogels from a new rapid supercritical extraction process

    Energy Technology Data Exchange (ETDEWEB)

    Gross, J.; Coronado, P.R.; Hair, L.M.; Hrubesh, L.W.

    1997-08-11

    Silica aerogels were produced by a new process from Tetramethoxysilane (TMOS) with ammonia as base catalyst. the process involves pouring the liquid sol in a stainless steel mold and immediately heating it to supercritical conditions. Gelation and aging occurs during heating and reaction rates are high die to high average temperatures. the gel fills the container completely, which enables relatively fast venting of the supercritical fluid by providing a constraint for swelling and failure of the gel monolith. The whole process can be completed in 6 h or less. Longitudinal and shear moduli were measured in the dried aerogels by ultrasonic velocity measurements both as a function of chemical composition of the original sol and of position in the aerogel. It was found that the sound velocity exhibits marked maxima on the surface of the cylindrical specimens and specifically close to the ends, where the fluid left during venting. Specimens with high catalyst concentration and high water:TMOS ratio exhibited higher average moduli.

  5. Performance of aerogel as Cherenkov radiator

    International Nuclear Information System (INIS)

    Bellunato, T.; Calvi, M.; Matteuzzi, C.; Musy, M.; Negri, P.; Braem, A.; Chesi, E.; Hansen, C.; Liko, D.; Joram, C.; Neufeld, N.; Seguinot, J.; Weilhammer, P.; Buzykaev, A.R.; Kravchenko, E.A.; Onuchin, A.P.; Danilyuk, A.F.; Easo, S.; Wotton, S.; Jolly, S.

    2004-01-01

    Aerogel with index of refraction around 1.03 has been studied as Cherenkov radiator in a test at CERN PS using a π - and a mixed π + /p beam of momenta between 6 and 10 GeV/c. The Cherenkov photons were detected by means of four large HPD tubes designed and constructed at CERN. Results on the photoelectron yield, the Cherenkov angle and its resolution, and the π/p separation are obtained. The performances measured demonstrate that a RICH with aerogel is a viable detector for experiments with high multiplicity of particles in the final state

  6. Measurements of scattering, transmittance/reflectance, IR-transmittance and thermal conductivity of small aerogel samples

    DEFF Research Database (Denmark)

    Duer, Karsten; Svendsen, Sv Aa Højgaard

    1997-01-01

    By providing at the same time thermal insulation and transparency the silica aerogel is a very attractive material for the purpose of improving the thermal performance of windows. Nevertheless a lot of problems have to be solved on the way from concept to the developed product. The B1 Aerogels...... project deals with some of these problems.This report summarizes the work that has been carried out on the subject of characterizing the optical and thermal performance of different types of aerogels and aerogel-like materials for the purpose of using aerogel in clear glazings.All measurements presented...

  7. Carbon nanotubes-supported PtAu-alloy nanoparticles for electro-oxidation of formic acid with remarkable activity

    International Nuclear Information System (INIS)

    Bai Yancui; Zhang Weide; Chen Caihong; Zhang Jiaqi

    2011-01-01

    Research highlights: → Electro-oxidation of HCOOH over PtAu at lower potential, higher peak current. → The stability of the PtAu catalyst is high. → Au in the PtAu catalyst promotes utilization of Pt. - Abstract: PtAu-alloy nanoparticles supported on multi-walled carbon nanotubes (MWCNTs) were successfully prepared by simultaneous reduction of H 2 PtCl 6 .6H 2 O and HAuCl 4 .3H 2 O with sodium borohydride as a reducing reagent and sodium citrate as a stabilizing reagent. The morphology and composition of the composite catalyst were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction. The results show that the PtAu alloy nanoparticles with an average diameter of about 3.5 nm and narrow size distribution are supported on MWCNTs. Electrocatalytic oxidation of formic acid at the PtAu/MWCNTs nanocomposite electrode was investigated in a solution containing 0.50 M H 2 SO 4 as a supporting electrolyte and 0.50 M formic acid by cyclic voltammogram and chronoamperometry. The results demonstrate that the PtAu/MWCNTs catalyst exhibits higher activity and stability for electro-oxidation of formic acid than the commercial Pt/C catalyst, reflecting by its lower onset potential (-0.05 V), oxidation mainly occurring in low potential range of -0.05 ± 0.65 V and higher peak current density of 3.12 mA cm -2 . The result of CO stripping voltammetry discloses that gold in the PtAu/MWCNTs nanocomposite enhances the catalytic activity and stability.

  8. A Special Material or a New State of Matter: A Review and Reconsideration of the Aerogel

    Directory of Open Access Journals (Sweden)

    Jun Shen

    2013-03-01

    Full Text Available The ultrahighly nanoporous aerogel is recognized as a state of matter rather than as a functional material, because of its qualitative differences in bulk properties, transitional density and enthalpy between liquid and gas, and diverse chemical compositions. In this review, the characteristics, classification, history and preparation of the aerogel were introduced. More attention was paid to the sol-gel method for preparing different kinds of aerogels, given its important role on bridging the synthetic parameters with the properties. At last, preparation of a novel single-component aerogel, design of a composite aerogel and industrial application of the aerogel were regarded as the research tendency of the aerogel state in the near future.

  9. Nano-Pt/C electrocatalysts: synthesis and activity for alcohol oxidation

    International Nuclear Information System (INIS)

    Huong Nguyen, Thi Giang; Anh Pham, Thi Van; Phuong, Thi Xuan; Binh Lam, Thi Xuan; Tran, Van Man; Thoa Nguyen, Thi Phuong

    2013-01-01

    Nano-sized platinum electrocatalysts on a carbon support (Pt/C) have been synthesized by the polyol reduction method under microwave irradiation using ethylene glycol (EG) as the reductant and carbon vulcan XC-72R as the support material. The physical characteristics of the Pt/C materials were analyzed using transmission electron microscopy and Brunauer–Emmet–Teller nitrogen adsorption theory. The glycerol and EG electro-oxidation in alkaline media on the Pt/C catalysts was investigated with cyclic voltammetry and chronoamperometry. The particle size of Pt on carbon was about 3.0 nm. The catalytic activity for the alcohol electro-oxidation of Pt/C materials synthesized in various pH values (7.9–9.5) was found to be significantly higher than that of commercial Pt/C (Aldrich Sigma, 10 wt% Pt/activated carbon). The Pt/C catalyst synthesized in pH 9.5 showed the best electrochemical behavior. At all the synthesized Pt/C electrodes, compared with glycerol, the oxidation rate of EG was about ten times higher. (paper)

  10. Highly effective and CO-tolerant PtRu electrocatalysts supported on poly(ethyleneimine) functionalized carbon nanotubes for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Cheng, Yi; Jiang, San Ping

    2013-01-01

    A highly efficient and CO tolerant PtRu electrocatalysts supported on amino-rich, cationic poly(ethyleneimine) polyelectrolyte functionalized multi-walled carbon nanotubes (PtRu/PEI-MWCNTs) has been developed. The catalysts were characterized by thermogravimetric analysis, Raman spectroscopy, cyclic voltammograms, CO stripping, chronoamperometry, transmission electron microscopy (TEM) and X-ray diffraction (XRD). The PtRu particles with average size ∼2.5 nm are well dispersed on PEI-MWCNTs. The peak current for the methanol oxidation reaction on 40% PtRu/PEI-MWCNTs is 636mAmg Pt −1 , 5.7 times higher than 112mA mg Pt −1 measured on the 40% PtRu supported on acid treated MWCNTs (PtRu/AO-MWCNTs) under identical conditions. PtRu/PEI-MWCNTs catalysts exhibit a superior electrocatalytic activity and stability for the methanol oxidation reaction due to its high tolerance toward CO poisoning as compared with PtRu/AO-MWCNTs for direct methanol fuel cells

  11. Electrochemical investigation of functionalized graphene aerogel with different amount of p-phenylenediamine as an advanced electrode material for supercapacitors

    Science.gov (United States)

    Gholipour-Ranjbar, Habib; Ganjali, Mohammad Reza; Norouzi, Parviz; Naderi, Hamid Reza

    2016-07-01

    Graphene aerogel has attracted great attention as a new and efficient electrode material for supercapacitors. It can be expected that functionalization of graphene aerogels can further improve their capability. In this study, graphene aerogel functionalized with different amount of p-phenylenediamine (PPD) and the effect of PPD amount on the supercapacitive performance of functionalized graphene aerogel (FGA) was investigated. Structural characterizations showed that PPD molecules initiated graphene aerogel sheets assembly into three-dimensional structures and also increasing PPD amount led to increase in surface area. Electrochemical investigations proved that the FGA with larger pore size showed enhanced supercapacitive performance compared with the FGA with smaller pore size. The optimized FGA-based electrode exhibited outstanding specific capacitance (SC) of 385 F g-1 at a discharge current density of 1 A g-1, good rate capability (215 F g-1 at 20 A g-1), and exceptionally high cyclic stability by displaying 25% increase in SC after 5000 cycle.

  12. Hydrogenation of Phenol over Pt/CNTs: The Effects of Pt Loading and Reaction Solvents

    OpenAIRE

    Feng Li; Bo Cao; Wenxi Zhu; Hua Song; Keliang Wang; Cuiqin Li

    2017-01-01

    Carbon nanotubes (CNTs)-supported Pt nanoparticles were prepared with selective deposition of Pt nanoparticles inside and outside CNTs (Pt–in/CNTs and Pt–out/CNTs). The effects of Pt loading and reaction solvents on phenol hydrogenation were investigated. The Pt nanoparticles in Pt–in/CNTs versus Pt–out/CNTs are smaller and better dispersed. The catalytic activity and reuse stability toward phenol hydrogenation both improved markedly. The dichloromethane–water mixture as the reaction solvent,...

  13. Effect of carbon additive on microstructure evolution and magnetic properties of epitaxial FePt (001) thin films

    International Nuclear Information System (INIS)

    Ding, Y.F.; Chen, J.S.; Liu, E.; Lim, B.C.; Hu, J.F.; Liu, B.

    2009-01-01

    FePt:C thin films were deposited on CrRu underlayers by DC magnetron co-sputtering. The effects of C content, FePt:C film thickness and substrate temperature on the microstructural and magnetic properties of the epitaxial FePt (001) films were studied. Experimental results showed that even with 30 vol.% C doping, the FePt films could keep a (001) preferred orientation at 350 deg. C . When a FePt:C film was very thin (< 5 nm), the film had a continuous microstructure instead of a granual structure with C diffused onto the film surface. With further increased film thickness, the film started to nucleate and formed a column microstructure over continuous FePt films. A strong exchange coupling in the FePt:C films was believed to be due to the presence of a thin continuous FePt layer attributed to the carbon diffusion during the initial stage of the FePt:C film growth. Despite the presence of a strong exchange coupling in the FePt:C (20 vol.% C) film, the SNR ratio of the FePt:C media was about 10 dB better than that of the pure FePt media. The epitaxial growth of the FePt:C films on the Pt layers was observed from high resolution TEM cross sectional images even for the films grown at about 200 deg. C . The TEM images did not show an obvious change in the morphology of the FePt:C films deposited at different temperatures (from 200 deg. C to 350 deg. C ), though the ordering degree and coercivity of the films increased with increased substrate temperature

  14. Synthesis of Fe3O4/Pt Nanoparticles Decorated Carbon Nanotubes and Their Use as Magnetically Recyclable Catalysts

    Directory of Open Access Journals (Sweden)

    Hongkun He

    2011-01-01

    Full Text Available We report a facile approach to prepare Fe3O4/Pt nanoparticles decorated carbon nanotubes (CNTs. The superparamagnetic Fe3O4 nanoparticles with average size of 4∼5 nm were loaded on the surfaces of carboxyl groups functionalized CNTs via a high-temperature solution-phase hydrolysis method from the raw material of FeCl3. The synthesis process of magnetic CNTs is green and readily scalable. The loading amounts of Fe3O4 nanopartilces and the magnetizations of the resulting magnetic CNTs show good tunability. The Pt nanopaticles with average size of 2.5 nm were deposited on the magnetic CNTs through a solution-based method. It is demonstrated that the Fe3O4/Pt nanoparticles decorated CNTs have high catalytic activity in the reduction reaction of 4-nitrophenol and can be readily recycled by a magnet and reused in the next reactions with high efficiencies for at least fifteen successive cycles. The novel CNTs-supported magnetically recyclable catalysts are promising in heterogeneous catalysis applications.

  15. Ultrasonically treated multi-walled carbon nanotubes (MWCNTs) as PtRu catalyst supports for methanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chunwei; Hu, Xinguo; Wang, Dianlong; Dai, Changsong [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Zhang, Liang; Jin, Haibo [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Agathopoulos, Simeon [Department of Materials Science and Engineering, University of Ioannina, GR-451 10 Ioannina (Greece)

    2006-09-29

    In the quest of fabricating supported catalysts, experimental results of transmission electron microscopy, Raman and infrared spectroscopy indicate that ultrasonic treatment effectively functionalizes multi-walled carbon nanotubes (MWCNTs), endowing them with groups that can act as nucleation sites which can favor well-dispersed depositions of PtRu clusters on their surface. Ultrasonic treatment seems to be superior than functionalization via regular refluxing. This is confirmed by the determination of the electrochemistry active surface area (ECA) and the CO-tolerance performance of the PtRu catalysts, measured by adsorbed CO-stripping voltammetry in 0.5M sulfuric acid solution, and the real surface area of the PtRu catalysts, evaluated by Brunauer-Emmett-Teller (BET) measurements. Finally, the effectiveness for methanol oxidation is assessed by cyclic voltammetry (CV) in a sulfuric acid and methanol electrolyte. (author)

  16. Chalcogen-based aerogels as a multifunctional platform for remediation of radioactive iodine

    International Nuclear Information System (INIS)

    Riley, Brian J.; Chun, Jaehun; Ryan, Joseph V.; Matyas, Josef; Li, Xiaohong S.; Matson, Dean W.; Sundaram, S.K.; Strachan, Denis M.; Vienna, John D.

    2011-01-01

    Aerogels employing chalcogen-based (i.e., S, Se, and/or Te) structural units and interlinking metals are termed chalcogels and have many emerging applications. Here, chalcogels are discussed in the context of nuclear fuel reprocessing and radioactive waste remediation. Motivated by previous work on removal of heavy metals in aqueous solution, we explored the application of germanium sulfide chalcogels as a sorbent for gas-phase I2 based on Pearson's Hard/Soft Acid-Base (HSAB) principle. This work was driven by a significant need for high-efficiency sorbents for I-129, a long-lived isotope evolved during irradiated UO2 nuclear fuel reprocessing. These chalcogel compositions are shown to possess an affinity for iodine gas, I2(g), at various concentrations in air and the affinity is attributed to a strong chemical attraction between the chalcogen and I2(g), according to the HSAB principle. The high sorption efficiency is facilitated by the high porosity as well as the exceptionally large surface area of the chalcogels.

  17. Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process

    Science.gov (United States)

    Neto, Almir Oliveira; Dias, Ricardo R.; Tusi, Marcelo M.; Linardi, Marcelo; Spinacé, Estevam V.

    PtRu/C, PtSn/C and PtSnRu/C electrocatalysts were prepared by the alcohol reduction process using ethylene glycol as the solvent and reduction agent and Vulcan Carbon XC72 as the support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry. The electrochemical oxidation of methanol and ethanol were studied by chronoamperometry using a thin porous coating technique. The PtSn/C electrocatalyst prepared by this methodology showed superior performance compared to the PtRu/C and PtSnRu/C electrocatalysts for methanol and ethanol oxidation at room temperature.

  18. Cellulose aerogels functionalized with polypyrrole and silver nanoparticles: In-situ synthesis, characterization and antibacterial activity.

    Science.gov (United States)

    Wan, Caichao; Li, Jian

    2016-08-01

    Green porous and lightweight cellulose aerogels have been considered as promising candidates to substitute some petrochemical host materials to support various nanomaterials. In this work, waste wheat straw was collected as feedstock to fabricate cellulose hydrogels, and a green inexpensive NaOH/polyethylene glycol solution was used as cellulose solvent. Prior to freeze-drying treatment, the cellulose hydrogels were integrated with polypyrrole and silver nanoparticles by easily-operated in-situ oxidative polymerization of pyrrole using silver ions as oxidizing agent. The tri-component hybrid aerogels were characterized by scanning electron microscope, transmission electron microscope, energy dispersive X-ray spectroscopy, selected area electron diffraction, X-ray photoelectron spectroscopy, and X-ray diffraction. Moreover, the antibacterial activity of the hybrid aerogels against Escherichia coli (Gram-negative), Staphylococcus aureus (Gram-positive) and Listeria monocytogenes (intracellular bacteria) was qualitatively and quantitatively investigated by parallel streak method and determination of minimal inhibitory concentration, respectively. This work provides an example of combining cellulose aerogels with nanomaterials, and helps to develop novel forms of cellulose-based functional materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Platinum assisted by carbon quantum dots for methanol electro-oxidation

    Science.gov (United States)

    Pan, Dan; Li, Xingwei; Zhang, Aofeng

    2018-01-01

    Various types of fuel cells as clean and portable power sources show a great attraction, especially direct methanol fuel cell (DMFC) having high energy density, low operating temperature and convenient fuel storage. However, the preparation of low-cost Pt-based catalysts with satisfactory catalytic performance still faces many challenges for its commercialization on large scale. Here, Pt catalysts assisted by carbon quantum dots (CQDs) are reported. The synergistic effect of carbon quantum dots and Pt metals is similar to a bi-component catalyst, such as PtRu. First, carbon quantum dots derived from Vulcan XC-72 carbon black are synthesized by mixed acid etching. Then, carbon black (Vulcan XC-72) is soaked in carbon quantum dots solution for several days to obtain carbon black modified by carbon quantum dots (XC-72-CQDs). Finally, Pt catalysts are supported on XC-72-CQDs (Pt/XC-72-CQDs) through a simple chemical reduction method. For methanol electro-oxidation reaction, the catalytic performance of Pt/XC-72-CQDs is compared with commercial PtRu/C (30% Pt + 15% Ru). Results show that a typical product (Pt/XC-72-CQDs5) exhibits a better catalytic activity than PtRu/C. In cyclic voltammetry test, the specific activity of Pt/XC-72-CQDs5 is 1.06 mA cm-2 Pt and 477.6 mA mg-1 Pt, while that of PtRu/C is 0.77 mA cm-2 Pt and 280.6 mA mg-1 Pt.

  20. Pt-Ni and Pt-Co Catalyst Synthesis Route for Fuel Cell Applications

    Science.gov (United States)

    Firdosy, Samad A.; Ravi, Vilupanur A.; Valdez, Thomas I.; Kisor, Adam; Narayan, Sri R.

    2013-01-01

    Oxygen reduction reactions (ORRs) at the cathode are the rate-limiting step in fuel cell performance. The ORR is 100 times slower than the corresponding hydrogen oxidation at the anode. Speeding up the reaction at the cathode will improve fuel cell efficiency. The cathode material is generally Pt powder painted onto a substrate (e.g., graphite paper). Recent efforts in the fuel cell area have focused on replacing Pt with Pt-X alloys (where X = Co, Ni, Zr, etc.) in order to (a) reduce cost, and (b) increase ORR rates. One of these strategies is to increase ORR rates by reducing the powder size, which would result in an increase in the surface area, thereby facilitating faster reaction rates. In this work, a process has been developed that creates Pt-Ni or Pt-Co alloys that are finely divided (on the nano scale) and provide equivalent performance at lower Pt loadings. Lower Pt loadings will translate to lower cost. Precursor salts of the metals are dissolved in water and mixed. Next, the salt mixtures are dried on a hot plate. Finally, the dried salt mixture is heattreated in a furnace under flowing reducing gas. The catalyst powder is then used to fabricate a membrane electrode assembly (MEA) for electrochemical performance testing. The Pt- Co catalyst-based MEA showed comparable performance to an MEA fabri cated using a standard Pt black fuel cell catalyst. The main objective of this program has been to increase the overall efficiencies of fuel cell systems to support power for manned lunar bases. This work may also have an impact on terrestrial programs, possibly to support the effort to develop a carbon-free energy source. This catalyst can be used to fabricate high-efficiency fuel cell units that can be used in space as regenerative fuel cell systems, and terrestrially as primary fuel cells. Terrestrially, this technology will become increasingly important when transition to a hydrogen economy occurs.

  1. Sonoelectrochemical one-pot synthesis of Pt - Carbon black nanocomposite PEMFC electrocatalyst.

    Science.gov (United States)

    Karousos, Dionysios S; Desdenakis, Kostantinos I; Sakkas, Petros M; Sourkouni, Georgia; Pollet, Bruno G; Argirusis, Christos

    2017-03-01

    Simultaneous electrocatalytic Pt-nanoparticle synthesis and decoration of Vulcan XC-72 carbon black substrate was achieved in a novel one-step-process, combining galvanostatic pulsed electrodeposition and pulsed ultrasonication with high power, low-frequency (20kHz) ultrasound. Aqueous chloroplatinic acid precursor baths, as well as carbon black suspensions in the former, were examined and decoration was proven by a combination of characterization methods, namely: dynamic light scattering, transmission electron microscopy, scanning electron microscopy with EDX-analysis and cyclic voltammetry. In particular, PVP was shown to have a beneficial stabilizing effect against free nanoparticle aggregation, ensuring narrow size distributions of the nanoparticles synthesized, but is also postulated to prevent the establishment of a strong metal-substrate interaction. Current pulse amplitude was identified as the most critical nanoparticle size-determining parameters, while only small size particles, under 10nm, appeared to be attached to carbon black. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Microwave sinthesys and characterization of Pt and Pt-Rh-Sn electrocatalysts for ethanol oxidation

    Directory of Open Access Journals (Sweden)

    Jovanović Vladislava M.

    2011-01-01

    Full Text Available Carbon supported Pt and Pt-Rh-Sn catalysts were synthesized by microwave-polyol method in ethylene glycol solution and investigated for the ethanol electro-oxidation reaction. The catalysts were characterized in terms of structure, morphology and composition by employing XRD, STM and EDX techniques. STM analysis indicated rather uniform particles and particle size of below 2 nm for both catalysts. XRD analysis of the Pt/C catalyst revealed two phases, one with the main characteristic peaks of face centered cubic crystal structure (fcc of platinum and another related to graphite like structure of carbon support Vulcan XC-72R. However, in XRD pattern of the Pt-Rh-Sn/C catalyst diffraction peaks for Pt, Rh or Sn cannot be resolved, indicating an extremely low crystallinity. The small particle sizes and homogeneous size distributions of both catalysts should be attributed to the advantages of microwave assisted modified polyol process in ethylene glycol solution. Pt-Rh- Sn/C catalyst is highly active for the ethanol oxidation with the onset potential shifted for more than 150 mV to negative values and with currents nearly 5 times higher in comparison to Pt/C catalyst. The stability tests of the catalysts, as studied by the chronoamperometric experiments, reveal that the Pt-Rh-Sn/C catalyst is evidently less poisoned then Pt/C catalyst. The increased activity of Pt-Rh-Sn/C in comparison to Pt/C catalyst is most probably promoted by bifunctional mechanism and the electronic effect of alloyed metals.

  3. Highly Stable and Active Pt/Nb-TiO2 Carbon-Free Electrocatalyst for Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Shuhui Sun

    2012-01-01

    Full Text Available The current materials used in proton exchange membrane fuel cells (PEMFCs are not sufficiently durable for commercial deployment. One of the major challenges lies in the development of an inexpensive, efficient, and highly durable and active electrocatalyst. Here a new type of carbon-free Pt/Nb-TiO2 electrocatalyst has been reported. Mesoporous Nb-TiO2 hollow spheres were synthesized by the sol-gel method using polystyrene (PS sphere templates. Pt nanoparticles (NPs were then deposited onto mesoporous Nb-TiO2 hollow spheres via a simple wet-chemical route in aqueous solution, without the need for surfactants or potentiostats. The growth densities of Pt NPs on Nb-TiO2 supports could be easily modulated by simply adjusting the experimental parameters. Electrochemical studies of Pt/Nb-TiO2 show much enhanced activity and stability than commercial E-TEK Pt/C catalyst. PtNP/Nb-TiO2 is a promising new cathode catalyst for PEMFC applications.

  4. Low-temperature specific heat and thermal conductivity of silica aerogels

    DEFF Research Database (Denmark)

    Sleator, T.; Bernasconi, A.; Posselt, D.

    1991-01-01

    Specific-heat and thermal-conductivity measurements were made on a series of base-catalyzed silica aerogels at temperatures between 0.05 and 20 K. Evidence for a crossover between regimes of characteristically different excitations was observed. The data analysis indicates a "bump" in the density...

  5. Highly Insulating and Light Transmitting Aerogel Glazing for Super Insulating Windows (HILIT+)

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Kristiansen, Finn Harken; Schultz, Jørgen Munthe

    2005-01-01

    to 1000 m²/g), the material is proposed to serve as substrate for catalytic materials. • The special pore structure of aerogel could be used for gas filters in the 20 to 100 nm region. • The sound velocity within aerogel is in the range of 100 to 300 m/s, which should be one of the lowest for an inorganic......-free nano-structured aerogel materials through a reasonably fast and reproducible process. The applicative part of this project aimed at elaborating, studying and optimising “state-of-the-art” (0.5 W/m2 K) aerogel glazings for windows. An important issue was the risk of outside condensation and rime and its....... No other known glazing exhibits such an excellent combination of solar transmittance and heat loss coefficient. The annual energy savings compared to triple low energy glazing is in the range of 10 – 20% depending on type of building. Beside the application in glazing production the HILIT+ aerogel material...

  6. Aerogel Cherenkov detector for characterizing the intense flash x-ray source, Cygnus, spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y., E-mail: yhkim@lanl.gov; Herrmann, H. W.; McEvoy, A. M.; Young, C. S.; Hamilton, C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Schwellenbach, D. D.; Malone, R. M.; Kaufman, M. I.; Smith, A. S. [National Security Technologies, LLC, Los Alamos, New Mexico 87544 (United States)

    2016-11-15

    An aerogel Cherenkov detector is proposed to measure the X-ray energy spectrum from the Cygnus—intense flash X-ray source operated at the Nevada National Security Site. An array of aerogels set at a variety of thresholds between 1 and 3 MeV will be adequate to map out the bremsstrahlung X-ray production of the Cygnus, where the maximum energy of the spectrum is normally around 2.5 MeV. In addition to the Cherenkov radiation from aerogels, one possible competing light-production mechanism is optical transition radiation (OTR), which may be significant in aerogels due to the large number of transitions from SiO{sub 2} clusters to vacuum voids. To examine whether OTR is a problem, four aerogel samples were tested using a mono-energetic electron beam (varied in the range of 1–3 MeV) at NSTec Los Alamos Operations. It was demonstrated that aerogels can be used as a Cherenkov medium, where the rate of the light production is about two orders magnitude higher when the electron beam energy is above threshold.

  7. Capillary Condensation of Liquid 4He in Aerogel on Cooling Through λ Point

    International Nuclear Information System (INIS)

    Miyashita, W.; Yoneyama, K.; Kato, H.; Nomura, R.; Okuda, Y.

    2006-01-01

    Capillary condensation of liquid 4He in silica aerogel with a 90% porosity was investigated visually. The initial condition of the experiment was such that liquid 4He was present in the sample cell but not in the aerogel. This situation was realized by introducing the liquid into the cell at a fast rate to avoid liquefaction in the aerogel. The free surface of the liquid rose up in the cell with filling and eventually reached the bottom of the aerogel. Then, the aerogel absorbed the liquid by capillary condensation. The height of the liquid in the aerogel rose with time t roughly as t1/2 in the normal fluid phase. This behavior was consistent with the Washburn model. When the system was cooled through the λ point during the condensation, the liquid height started to rise faster in the superfluid phase with a constant velocity of about 0.3 mm/sec. The dynamics of capillary condensation was strongly dependent on whether the liquid 4He was in the normal or the superfluid phase

  8. Carbon nanotube network varactor

    International Nuclear Information System (INIS)

    Generalov, A A; Anoshkin, I V; Lioubtchenko, D V; Räisänen, A V; Erdmanis, M; Ovchinnikov, V; Nasibulin, A G

    2015-01-01

    Microelectromechanical system (MEMS) varactors based on a freestanding layer of single-walled carbon nanotube (SWCNT) films were designed, fabricated and tested. The freestanding SWCNT film was employed as a movable upper patch in the parallel plate capacitor of the MEMS. The measurements of the SWCNT varactors show very high tunability, nearly 100%, of the capacitance with a low actuation voltage of 10 V. The functionality of the varactor is improved by implementing a flexible nanocellulose aerogel filling. (paper)

  9. XMCD study of CoPt nanoparticles embedded in MgO and amorphous carbon matrices

    International Nuclear Information System (INIS)

    Tournus, F.; Blanc, N.; Tamion, A.; Ohresser, P.; Perez, A.; Dupuis, V.

    2008-01-01

    We report the synthesis and characterization of CoPt nanoparticles, using X-ray magnetic circular dichroism (XMCD) at the Co L 2,3 edges. Clusters are produced in ultra-high vacuum conditions, following a physical route, and embedded in non-metallic matrices: MgO and amorphous carbon (a-C). In MgO, Co atoms are partially oxidized, which goes with a μ L /μ S enhancement. On the contrary, a-C appears as a very suitable matrix. In particular, annealing of CoPt cluster embedded in a-C is able to promote L 1 0 chemical order, without alteration of the sample. This transformation, which has been directly evidenced by transmission electron microscopy observations, is accompanied by a striking augmentation of μ S , μ L and the μ L /μ S ratio of Co. The presence of Pt leads to an enhanced Co magnetic moment, as compared to Co bulk, even for the chemically disordered alloy. Moreover, the high value of 1.91μ B /at. measured for μ S is unusual for Co and must be a signature of chemical order in CoPt alloy nanoparticles

  10. Stardust: An overview of the tracks in the aerogel (calibration, classification and particle size distribution)

    Science.gov (United States)

    Burchell, M. J.; Fairey, S. J.; Hörz, F.; Wozniakiewicz, P. J.; Kearsley, A. T.; Brownlee, D. E.; See, T. H.; Westphal, A.; Green, S. F.; Trigo-Rodríguez, J. M.

    2007-08-01

    The NASA Stardust mission (1) to comet P/Wild-2 returned to Earth in January 2006 carrying a cargo of dust captured in aerogel and residue rich craters in aluminium foils (2). Aerogel is a low density, highly porous material (3, 4). The aerogel that was carried by Stardust in the cometary dust collector trays was a SiO2 aerogel, arranged in blocks 4 cm x 2 cm (front face) and 3 cm deep, with density which varied smoothly from 5 mg/cc at the front surface to 50 mg/cc at the rear surface (5). A first look at the whole cometary dust tray at NASA showed that there were many impact features in the aerogel. During the Preliminary Examination period about 15% of the aerogel blocks were removed and studied in detail. The tracks observed in these blocks were classified into three groups: Type A were long relatively narrow tracks of "carrot shape", Type B tracks were again fairly long but had a large bulbous region at the top and appear like the bowl and stem of a flute champagne glass, Type C were purely bulbous tracks with no stem emerging beneath them. Data on the sizes and relative populations of these tracks will be given (also see (6)) along with a discussion of their implications for impactor composition. Laboratory calibrations of the impacts in aerogel have been carried out using glass beads and these permit an estimate of the size of the impactor based on the measured track properties (6). When applied to the tracks measured in the Stardust aerogel, a cumulative particle size distribution was obtained (7) which will be discussed. References (1) Brownlee D.E. et al., J. Geophys. Res. 108, E10, 8111, 2003. (2) Brownlee D.E. et al., Science 314, 1711 - 1716. 2006. (3) Kistler S.S., Nature 127, 741, 1931. (4) Burchell M.J. et al., Ann. Rev. Earth. Planet. Sci. 34, 385 - 418, 2006. (5) Tsou P. et al., J. Geophys. Res. 108(E10), 8113, 2003. (6) Burchell et al., submitted to MAPS, 2006. (7) Hörz F. et al., Science 314, 1716 - 1719, 2006.

  11. Sol–gel method to prepare graphene/Fe{sub 2}O{sub 3} aerogel and its catalytic application for the thermal decomposition of ammonium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Yuanfei; Li, Xiaoyu; Li, Guoping; Luo, Yunjun, E-mail: yjluo@bit.edu.cn [Beijing Institute of Technology, School of Materials Science and Engineering (China)

    2015-10-15

    Graphene/Fe{sub 2}O{sub 3} (Gr/Fe{sub 2}O{sub 3}) aerogel was synthesized by a simple sol–gel method and supercritical carbon dioxide drying technique. In this study, the morphology and structure were characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and nitrogen sorption tests. The catalytic performance of the as-synthesized Gr/Fe{sub 2}O{sub 3} aerogel on the thermal decomposition of ammonium perchlorate (AP) was investigated by thermogravimetric and differential scanning calorimeter. The experimental results showed that Fe{sub 2}O{sub 3} with particle sizes in the nanometer range was anchored on the Gr sheets and Gr/Fe{sub 2}O{sub 3} aerogel exhibits promising catalytic effects for the thermal decomposition of AP. The decomposition temperature of AP was obviously decreased and the total heat release increased as well.

  12. Polymeric carbon nitride/mesoporous silica composites as catalyst support for Au and Pt nanoparticles.

    Science.gov (United States)

    Xiao, Ping; Zhao, Yanxi; Wang, Tao; Zhan, Yingying; Wang, Huihu; Li, Jinlin; Thomas, Arne; Zhu, Junjiang

    2014-03-03

    Small and homogeneously dispersed Au and Pt nanoparticles (NPs) were prepared on polymeric carbon nitride (CNx )/mesoporous silica (SBA-15) composites, which were synthesized by thermal polycondensation of dicyandiamide-impregnated preformed SBA-15. By changing the condensation temperature, the degree of condensation and the loading of CNx can be controlled to give adjustable particle sizes of the Pt and Au NPs subsequently formed on the composites. In contrast to the pure SBA-15 support, coating of SBA-15 with polymeric CNx resulted in much smaller and better-dispersed metal NPs. Furthermore, under catalytic conditions the CNx coating helps to stabilize the metal NPs. However, metal NPs on CNx /SBA-15 can show very different catalytic behaviors in, for example, the CO oxidation reaction. Whereas the Pt NPs already show full CO conversion at 160 °C, the catalytic activity of Au NPs seems to be inhibited by the CNx support. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Coupling Mo2C@C core-shell nanocrystals on 3D graphene hybrid aerogel for high-performance lithium ion battery

    Science.gov (United States)

    Xin, Hailin; Hai, Yang; Li, Dongzhi; Qiu, Zhaozheng; Lin, Yemao; Yang, Bo; Fan, Haosen; Zhu, Caizhen

    2018-05-01

    Hybrid aerogel by dispersing Mo2C@C core-shell nanocrystals into three-dimensional (3D) graphene (Mo2C@C-GA) has been successfully prepared through two-step methods. Firstly, carbon-coated MoO2 nanocrystals uniformly anchor on 3D graphene aerogel (MoO2@C-GA) via hydrothermal reaction. Then the MoO2@C-GA precursor is transformed into Mo2C@C-GA after the following carbonization process. Furthermore, the freeze-drying step plays an important role in the resulting pore size distribution of the porous networks. Moreover, graphene aerogels exhibit extremely low densities and superior electrical properties. When evaluated as anode material for lithium ion battery, Mo2C@C-GA delivers excellent rate capability and stable cycle performance when compared with C-GA and Mo2C nanoparticles. Mo2C@C-GA exhibits the initial discharge capacity of 1461.4 mA h g-1 at the current density of 0.1 A g-1, and retains a reversible capacity of 1089.8 mA h g-1 after 100 cycles at a current density of 0.1 A g-1. Even at high current density of 5 A g-1, a discharge capacity of 623.5 mA h g-1 can be still achieved. The excellent performance of Mo2C@C-GA could be attributed to the synergistic effect of Mo2C@C nanocrystals and the 3D graphene conductive network.

  14. Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Almir Oliveira; Dias, Ricardo R.; Tusi, Marcelo M.; Linardi, Marcelo; Spinace, Estevam V. [Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, Cidade Universitaria, CEP 05508-900 Sao Paulo, SP (Brazil)

    2007-03-30

    PtRu/C, PtSn/C and PtSnRu/C electrocatalysts were prepared by the alcohol reduction process using ethylene glycol as the solvent and reduction agent and Vulcan Carbon XC72 as the support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry. The electrochemical oxidation of methanol and ethanol were studied by chronoamperometry using a thin porous coating technique. The PtSn/C electrocatalyst prepared by this methodology showed superior performance compared to the PtRu/C and PtSnRu/C electrocatalysts for methanol and ethanol oxidation at room temperature. (author)

  15. Pt nanoparticle modified single walled carbon nanotube network electrodes for electrocatalysis: control of the specific surface area over three orders of magnitude

    NARCIS (Netherlands)

    Miller, T.S.; Sansuk, S.; Lai, Stanley; Macpherson, J.V.; Unwin, P.R.

    2015-01-01

    The electrodeposition of Pt nanoparticles (NPs) on two-dimensional single walled carbon nanotube (SWNT) network electrodes is investigated as a means of tailoring electrode surfaces with a well-defined amount of electrocatalytic material. Both Pt NP deposition and electrocatalytic studies are