WorldWideScience

Sample records for pt working electrode

  1. Characterization of azo dyes on Pt and Pt/polyaniline/dispersed Pt electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Molina, J.; Fernandez, J.; Rio, A.I. del; Bonastre, J. [Departamento de Ingenieria Textil y Papelera, EPS de Alcoy, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy (Spain); Cases, F., E-mail: fjcases@txp.upv.es [Departamento de Ingenieria Textil y Papelera, EPS de Alcoy, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy (Spain)

    2012-06-15

    The electrochemical characterization of two organic dyes (amaranth and procion orange MX-2R) has been performed on Pt electrodes and Pt electrodes coated with polyaniline and dispersed Pt. Electrodes with different Pt loads have been synthesized and characterized obtaining that a load of 300 {mu}g cm{sup -2} was the optimum one. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was employed to observe the distribution and morphology of the Pt nanoparticles. The electroactivity of the electrodes has also been characterized by means of scanning electrochemical microscopy (SECM). The chemical characterization of Pt dispersed Pani coated Pt electrodes (Pt-Pani-Pt) was performed by means of X-ray photoelectron spectroscopy (XPS). The electrochemical characterization of the dyes has been performed by means of cyclic voltammetry. Voltammograms have shown that the presence of the dyes diminishes characteristic Pt oxidation and reduction peaks. However, redox processes due to the dyes, appeared in the voltammograms. The different species responsible of these redox processes were generated in the vicinity of the electrode and were not adsorbed on the electrode surface since after stirring, the different redox processes disappeared. Characterization with different scan rates showed that redox processes of both dyes were controlled by diffusion.

  2. Effect of Pt coverage in Pt-deposited Pd nanostructure electrodes on electrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ah-Reum; Lee, Young-Woo; Kwak, Da-Hee; Park, Kyung-Won [Soongsil University, Seoul (Korea, Republic of)

    2015-06-15

    We have fabricated Pt-deposited Pd electrodes via a two-gun sputtering deposition system by separately operating Pd and Pt target as a function of sputtering time of Pt target. For Pt-deposited Pd electrodes (Pd/Pt-X), Pd were first deposited on the substrates at 20 W for 5min, followed by depositing Pt on the Pd-only electrodes as a function of sputtering time (X=1, 3, 5, 7, and 10min) at 20W on the Pt target. As the sputtering time of Pt target increased, the portion of Pt on the Pd electrodes increased, representing an increased coverage of Pt on the Pd electrodes. The Pd/Pt-7 electrode having an optimized Pt coverage exhibits an excellent electrocatalytic activity for methanol oxidation reaction.

  3. Electrochemistry of Phosphorous and Hypophosphorous Acid on a Pt electrode

    International Nuclear Information System (INIS)

    Prokop, M.; Bystron, T.; Bouzek, K.

    2015-01-01

    Highlights: • H 3 PO 3 and H 3 PO 2 oxidation on Pt electrode proceed at high overpotential. • H 3 PO 2 oxidation proceeds via H 3 PO 3 as intermediate. • H 3 PO 3 and H 3 PO 2 adsorb on Pt electrode, adsorption isotherms determined. • Adsorption is more pronounced at elevated temperature. • Tautomeric equilibria plays an important role in the acids behaviour. - Abstract: H 3 PO 4 is commonly used as a proton-conducting phase in high temperature proton exchange membrane fuel cell membranes. However, its reduction with hydrogen at elevated temperatures yields compounds like H 3 PO 3 and phosphorus. The aim of this work was to describe the basic electrochemical behaviour of H 3 PO 3 and H 3 PO 2 on a Pt electrode in diluted aqueous H 2 SO 4 solutions. The results show that adsorption of both phosphorus acids studied becomes important at an oxoacid bulk concentration around and below 10 mol dm −3 . Adsorption isotherms at 25 and 70 °C were determined for both acids. Unusually, the extent of adsorption increases with rising temperature. H 3 PO 3 is anodically oxidised on a bare Pt as well as on a PtO surface. H 3 PO 2 oxidation proceeds mainly on a PtO surface, with the intermediate product being H 3 PO 3 . High overvoltage around 1 V is characteristic of all anodic oxidation reactions occurring in the temperature range studied

  4. Pt-graphene electrodes for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Hoshi, Hajime; Tanaka, Shumpei; Miyoshi, Takashi

    2014-01-01

    Highlights: • Graphene films with Pt nanoparticles were prepared from commercial graphene. • Pt consumption can be reduced by using Pt-graphene films. • The film showed improved catalytic activity for the reaction I 3 − /I − . • The film can be used as the counter electrode of dye-sensitized solar cells (DSSCs). • The performance of DSSC was superior to that of the Pt electrode. - Abstract: A simple paste method for fabricating graphene films with Pt nanoparticles was developed. First, graphene pastes with Pt nanoparticles were prepared from commercially available graphene. The resulting films of graphene nanoplatelet aggregates with Pt nanoparticles (Pt-GNA) contained Pt nanoparticles distributed over the entire three-dimensional surface of the GNA. Then, the catalytic activity for the I 3 − /I − redox reaction was evaluated by cyclic voltammetry. The GNA electrode exhibited higher activity than a graphene nanoplatelet electrode because of its higher effective surface area. Addition of Pt nanoparticles to the electrodes improved the catalytic activity. In particular, a large Faradaic current for the I 3 − /I − reaction was observed for the Pt-GNA electrode. As the counter electrodes of dye-sensitized solar cells (DSSCs), their performance was consistent with the cyclic voltammetry results. In particular, the DSSC performance of the Pt-GNA electrode was superior to that of the Pt electrodes commonly used in DSSCs

  5. Pt-graphene electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hoshi, Hajime, E-mail: hoshi@ed.tus.ac.jp; Tanaka, Shumpei; Miyoshi, Takashi

    2014-12-15

    Highlights: • Graphene films with Pt nanoparticles were prepared from commercial graphene. • Pt consumption can be reduced by using Pt-graphene films. • The film showed improved catalytic activity for the reaction I{sub 3}{sup −}/I{sup −}. • The film can be used as the counter electrode of dye-sensitized solar cells (DSSCs). • The performance of DSSC was superior to that of the Pt electrode. - Abstract: A simple paste method for fabricating graphene films with Pt nanoparticles was developed. First, graphene pastes with Pt nanoparticles were prepared from commercially available graphene. The resulting films of graphene nanoplatelet aggregates with Pt nanoparticles (Pt-GNA) contained Pt nanoparticles distributed over the entire three-dimensional surface of the GNA. Then, the catalytic activity for the I{sub 3}{sup −}/I{sup −} redox reaction was evaluated by cyclic voltammetry. The GNA electrode exhibited higher activity than a graphene nanoplatelet electrode because of its higher effective surface area. Addition of Pt nanoparticles to the electrodes improved the catalytic activity. In particular, a large Faradaic current for the I{sub 3}{sup −}/I{sup −} reaction was observed for the Pt-GNA electrode. As the counter electrodes of dye-sensitized solar cells (DSSCs), their performance was consistent with the cyclic voltammetry results. In particular, the DSSC performance of the Pt-GNA electrode was superior to that of the Pt electrodes commonly used in DSSCs.

  6. Highly sensitive room temperature ammonia gas sensor based on Ir-doped Pt porous ceramic electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenlong [College of pharmacy and biological engineering, Chengdu University, Chengdu, 610106 (China); Department of chemical and materials engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Liu, Yen-Yu [Department of chemical and materials engineering, Tunghai University, Taichung 407, Taiwan (China); Do, Jing-Shan, E-mail: jsdo@ncut.edu.tw [Department of chemical and materials engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Li, Jing, E-mail: lijing@cdu.edu.cn [College of pharmacy and biological engineering, Chengdu University, Chengdu, 610106 (China)

    2016-12-30

    Highlights: • Water vapors seem to hugely improve the electrochemical activity of the Pt and Pt-Ir porous ceramic electrodes. • The gas sensors based on the Pt and Pt-Ir alloy electrodes possess good sensing performances. • The reaction path of the ammonia on platinum has been discussed. - Abstract: Room temperature NH{sub 3} gas sensors based on Pt and Pt-Ir (Ir doping Pt) porous ceramic electrodes have been fabricated by both electroplating and sputtering methods. The properties of the gaseous ammonia sensors have been examined by polarization and chronoamperometry techniques. The influence of humidity on the features of the resulting sensors in the system has also been discussed, and the working potential was optimized. Water vapors seem to hugely improve the electrochemical activity of the electrode. With increasing the relative humidity, the response of the Pt-Ir(E)/Pt(S)/PCP sensor to NH{sub 3} gas could be enhanced remarkably, and the sensitivity increases from 1.14 to 12.06 μA ppm{sup −1} cm{sup −2} .Then we have also discussed the sensing mechanism of the Pt-Ir sensor and the result has been confirmed by X-ray photoelectron spectroscopy of the electrode surface before and after reaction in the end.

  7. Evaluation of the Scaffolding Effect of Pt Nanowires Supported on Reduced Graphene Oxide in PEMFC Electrodes

    Directory of Open Access Journals (Sweden)

    Peter Mardle

    2018-01-01

    Full Text Available The stacking and overlapping effect of two-dimensional (2D graphene nanosheets in the catalyst coating layer is a big challenge for their practical application in proton exchange membrane fuel cells (PEMFCs. These effects hinder the effective transfer of reactant gases to reach the active catalytic sites on catalysts supported on the graphene surface and the removal of the produced water, finally leading to large mass transfer resistances in practical electrodes and poor power performance. In this work, we evaluate the catalytic power performance of aligned Pt nanowires grown on reduced graphene oxide (rGO (PtNW/rGO as cathodes in 16-cm2 single PEMFCs. The results are compared to Pt nanoparticles deposited on rGO (Pt/rGO and commercial Pt/C nanoparticle catalysts. It is found that the scaffolding effect from the aligned Pt nanowire structure reduces the mass transfer resistance in rGO-based catalyst electrodes, and a nearly double power performance is achieved as compared with the Pt/rGO electrodes. However, although a higher mass activity was observed for PtNW/rGO in membrane electrode assembly (MEA measurement, the power performance obtained at a large current density region is still lower than the Pt/C in PEMFCs because of the stacking effect of rGO.

  8. High Pt utilization PEMFC electrode obtained by alternative ion-exchange/electrodeposition.

    Science.gov (United States)

    Chen, Siguo; Wei, Zidong; Li, Hua; Li, Li

    2010-12-14

    High Pt utilization PEMFC electrodes were prepared by an alternative ion-exchange/electrodeposition (AIEE) technique. The results demonstrated that the MEA employing an AIEE electrode with a Pt loading of 0.014 mg Pt cm(-2) exhibits performance approximately 2.2 times larger than that employing a conventional Nafion-bonded Pt/C electrode with a same Pt loading.

  9. Assessment for the role of rare earth oxide in the R2O3 - RuO2 - Pt composite electrode

    International Nuclear Information System (INIS)

    Do Ngoc Lien; Nguyen Van Sinh

    2004-01-01

    Our work has showed several results related to assessment for the role of rare earth oxide in the R 2 O 3 - RuO 2 - Pt composite electrode. The precursor method was used for preparing composite electrode in the following forms: a- RuO 2 - Pt electrode b- La 2 O 3 (55%) - RuO 2 (45%) - Pt electrode c- CeO 2 (60%) - RuO 2 (40%) - Pt electrode By measurements of anodic polarization and cyclic potential for the types of a, b, c electrodes we can see that the La 2 O 3 (55%) - 45% RuO 2 - Pt electrode will be the best anodic electrode. It means that the partial replacement of ruthenium oxide by lanthanum oxide in composite oxide electrode will be an effective one. (author)

  10. SFG study of methanol dissociative adsorption at Pt(1 0 0), Pt(1 1 0) and Pt(1 1 1) electrodes surfaces

    Science.gov (United States)

    Vidal, F.; Busson, B.; Six, C.; Pluchery, O.; Tadjeddine, A.

    2002-04-01

    The Pt( hkl)/methanol in acidic solution interface which constitutes a model of the anodic part of a fuel cell is studied by infrared-visible sum frequency generation vibrational spectroscopy. Methanol dissociative adsorption leads to CO poisoning of the Pt electrode surfaces. The structure of the CO/Pt( hkl) interface depends strongly on the orientation of the surface electrode.

  11. Ethanol electrooxidation using Ti/(RuO2)(x) Pt(1-x) electrodes prepared by the polymeric precursor method

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, R.G.; Marchesi, L.F.Q.P.; Forim, M.R.; Pereira, E.C. [Departamento de Quimica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil); Bulhoes, L.O.S [CENIP, Centro Universitario Central Paulista, Sao Carlos, SP (Brazil); Santos, M.C. [LEMN, Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Santo Andre, SP (Brazil); Oliveira, R.T.S., E-mail: robson@icbn.uftm.edu.br [Instituto de Ciencias Biologicas e Naturais, Universidade Federal do Triangulo Mineiro, Uberaba, MG (Brazil)

    2011-09-15

    This work describes a detailed study of the ethanol electrooxidation on Ti/(RuO{sub 2}){sub (x)}Pt{sub (1-x)} electrodes using several compositions prepared by the polymeric precursor method. The results obtained using cyclic voltammetry and chronoamperometry showed that the best composition of Ti/(RuO{sub 2}){sub (x)}Pt{sub (1-x)} electrodes for CO and ethanol oxidation processes is Ti/(RuO{sub 2}){sub 0.50}Pt{sub 0.50}. On this electrode composition the onset of CO and the ethanol oxidation occurred at 380 mV and 220 mV more negative than on Ti/Pt, respectively. Besides, there was an increase of 2.5-fold in the current density for ethanol electrooxidation under constant potential polarization. The Ti/(RuO{sub 2}){sub 0.50}Pt{sub 0.50}. electrodes produced lower amount of acetic acid compared to Ti/Pt and polycrystalline Pt electrodes using in situ HPLC spectrometric analysis. Also, a non common product from ethanol oxidation could be observed on higher RuO{sub 2} loads: ethyl acetate. Finally, the impedance data showed that Ti/(RuO{sub 2}){sub 0.50}Pt{sub 0.50}. electrode composition had the smallest charge transfer resistance for ethanol oxidation among those compositions investigated. (author)

  12. Investigation of the electrochemical behaviour of thermally prepared Pt-IrO2 electrodes

    Directory of Open Access Journals (Sweden)

    Konan Honoré Kondro

    2008-04-01

    Full Text Available Different IrO2 electrodes in which the molar percentage of platinum (Pt varies from 0 %mol Pt to 100 %mol Pt were prepared on titanium (Ti substrate by thermal decomposition techniques. The electrodes were characterized physically (SEM, XPS and electrochemically and then applied to methanol oxidation. The SEM micrographs indicated that the electrodes present different morphologies depending on the amount of platinum in the deposit and the cracks observed on the 0 %mol Pt electrode diminish in size tending to a compact and rough surface for 70 %mol Pt electrode. XPS results indicate good quality of the coating layer deposited on the titanium substrate. The voltammetric investigations in the supporting electrolyte indicate that the electrodes with low amount of platinum (less than 10 %mol Pt behave as pure IrO2. But in the case of electrodes containing more than 40 %mol Pt, the voltammograms are like that of platinum. Electrocatalytic activity towards methanol oxidation was observed with the electrodes containing high amount of platinum. Its oxidation begins at a potential of about 210 mV lower on such electrodes than the pure platinum electrode (100 %mol Pt. But for electrode containing low quantity of Pt, the surface of the coating is essentially composed of IrO2 and methanol oxidation occurs in the domain of water decomposition solely. The increase of the electrocatalytic behaviour of the electrodes containing high amount of Pt towards methanol oxidation is due to the bifunctional behaviour of the electrodes.

  13. Methanol oxidation on stepped Pt[n(111) x (110)] electrodes: a chronoamperometric study

    NARCIS (Netherlands)

    Housmans, T.H.M.; Koper, M.T.M.

    2003-01-01

    The methanol oxidation reaction has been studied on Pt[n(111) × (110)]-type electrodes in a 0.5 M sulfuric acid and 0.025 M methanol solution, using cyclic voltammetry and chronoamperometry. The voltammetric behavior of methanol on the three electrodes under investigation [Pt(111), Pt(554), and

  14. Pt/AlPO{sub 4} nanocomposite thin-film electrodes for ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Yuhong; Kang, Joonhyeon; Nam, Seunghoon; Byun, Sujin [WCU Hybrid Materials Program, Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 151-744 (Korea, Republic of); Park, Byungwoo, E-mail: byungwoo@snu.ac.kr [WCU Hybrid Materials Program, Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2012-07-16

    The enhanced catalytic properties toward ethanol electrooxidation on Pt/AlPO{sub 4} nanocomposite thin-film electrodes were investigated. The Pt/AlPO{sub 4} nanocomposites with various Al/Pt ratios (0.27, 0.57, and 0.96) were fabricated by a co-sputtering method. All of the Pt/AlPO{sub 4} nanocomposites showed a negative shift in the onset potential and a higher current density than those of pure Pt electrode for the electrooxidation of ethanol. Among the various Pt/AlPO{sub 4} nanocomposite thin-film electrodes, the electrode with an atomic ratio of Al to Pt of 0.57 showed the highest electrocatalytic activity for ethanol electrooxidation. The activation enthalpy for the optimum Pt/AlPO{sub 4} nanocomposite was approximately 0.05 eV lower than that of pure Pt. It is believed that the enhancement in catalytic activity is due to the electron-rich Pt resulting from the Fermi-energy difference between Pt and AlPO{sub 4}. - Highlights: Black-Right-Pointing-Pointer The enhanced ethanol electrooxidation on Pt/AlPO{sub 4} nanocomposites is investigated. Black-Right-Pointing-Pointer The Pt/AlPO{sub 4} exhibits higher current density and lower onset potential than pure Pt. Black-Right-Pointing-Pointer The activation enthalpy for optimum Pt/AlPO{sub 4} electrode is {approx}0.05 eV lower than pure Pt. Black-Right-Pointing-Pointer XPS shows electron-rich Pt due to Fermi-energy difference between Pt and AlPO{sub 4}.

  15. Characteristics of ferroelectric Pb(Zr,Ti)O3 thin films having Pt/PtOx electrode barriers

    International Nuclear Information System (INIS)

    Lee, Kwangbae; Rhee, Byung Roh; Lee, Chanku

    2001-01-01

    We have investigated the feasibility of the Pt/PtO x multilayer as an electrode barrier for Pb(Zr,Ti)O 3 (PZT)-based ferroelectric random access memories. PtO x and Pt layers were prepared on polycrystalline-Si/SiO 2 /Si substrates by means of the sputtering method in Ar and O 2 ambience, and the Pb(Zr 0.53 Ti 0.47 )O 3 layer was prepared by the sol-gel method. A capacitor consisting of Pt/PtO x /PZT/PtO x /Pt/PtO x /poly-Si had a remanent polarization of 18 μC/cm 2 and a low coercive field of 32 kV/cm. The polarization fatigue behavior of test capacitors was improved as compared with that of Pt/PZT/Pt, which showed negligible fatigue loss of 15% after 10 11 switching repetitions with a frequency of 1 MHz. Copyright 2001 American Institute of Physics

  16. Shape resonances and EXAFS scattering in the $Pt L_{2,3}$ XANES from a Pt electrode

    CERN Document Server

    O'Grady, W E

    1999-01-01

    Atomic hydrogen and oxygen adsorption on a platinum electrode in H /sub 2/SO/sub 4/ and HClO/sub 4/ electrolytes were studied by Pt L /sub 23/ XANES. The Pt electrode was formed of highly dispersed 1.5-3.0 nm particles supported on $9 carbon. A difference procedure utilizing the L/sub 2/ and L/sub 3/ spectra at various applied voltages was used to isolate the electronic and geometric effects in the XANES spectra. At 0.54 V (relative to RHE) the Pt electrode in $9 HClO/sub 4/ is assumed to be "clean". By taking the difference between the spectra at 0.0 and 0.54 V, the Pt-H antibonding state (electronic effect) is isolated and found to have a Fano-resonance line shape. In addition, a $9 significant Pt-H EXAFS scattering (geometric effect) was found for photon energies 0 to 20 eV above the edge. The difference between the spectra at 1.14 and 0.54 V allows isolation of the Pt-O antibonding state and the Pt-O EXAFS $9 scattering. (7 refs).

  17. Methanol and ethanol electroxidation using Pt electrodes prepared by the polymeric precursor method

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, R.G.; Santos, M.C.; Oliveira, R.T.S.; Bulhoes, L.O.S.; Pereira, E.C. [Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Centro Multidisciplinar para o Desenvolvimento de Materiais Ceramicos, Departamento de Quimica. Universidade Federal de Sao Carlos, C.P. 676, CEP 13565-905, Sao Carlos, SP (Brazil)

    2006-07-14

    The results of methanol and ethanol oxidation in acidic medium on Pt electrodes deposited on Ti substrate using the Pechini method are presented. In this route the metallic salts were dissolved in a mixture of ethylene glycol (EG) and citric acid (CA) forming a polyester network, which is painted onto a Ti substrate and then heat treated at 600{sup o}C in order to obtain the metallic Pt thin films. The X-ray diffraction analysis showed the presence of Pt pattern peaks. The presence of the (420) plane in a higher amount compared to bulk Pt was observed and the peak position of the planes (200) and (420) were displaced by approximately -0.3{sup o}. The roughness data presented almost the same values for Ti and Ti/Pt. The electrochemical characterization of the electrodes in 0.1M HClO{sub 4} showed a typical Pt voltammetric profile. Although the voltammetric profiles of Ti/Pt and bulk Pt were the same, the electrocatalytical behavior for methanol oxidation showed an enhancement of the oxidation current density peak, which increased by 170% compared to bulk platinum. Although, the current density peak for ethanol oxidation on Ti/Pt is smaller than for Pt, it began at 0.11V less positive than the same process on bulk Pt. The chronoamperometric experiments for methanol and ethanol oxidation on Ti/Pt increased by almost 934% and 440%, respectively, compared with Pt bulk. (author)

  18. Methanol and ethanol electroxidation using Pt electrodes prepared by the polymeric precursor method

    Science.gov (United States)

    Freitas, R. G.; Santos, M. C.; Oliveira, R. T. S.; Bulhões, L. O. S.; Pereira, E. C.

    The results of methanol and ethanol oxidation in acidic medium on Pt electrodes deposited on Ti substrate using the Pechini method are presented. In this route the metallic salts were dissolved in a mixture of ethylene glycol (EG) and citric acid (CA) forming a polyester network, which is painted onto a Ti substrate and then heat treated at 600 °C in order to obtain the metallic Pt thin films. The X-ray diffraction analysis showed the presence of Pt pattern peaks. The presence of the (4 2 0) plane in a higher amount compared to bulk Pt was observed and the peak position of the planes (2 0 0) and (4 2 0) were displaced by approximately -0.3°. The roughness data presented almost the same values for Ti and Ti/Pt. The electrochemical characterization of the electrodes in 0.1 M HClO 4 showed a typical Pt voltammetric profile. Although the voltammetric profiles of Ti/Pt and bulk Pt were the same, the electrocatalytical behavior for methanol oxidation showed an enhancement of the oxidation current density peak, which increased by 170% compared to bulk platinum. Although, the current density peak for ethanol oxidation on Ti/Pt is smaller than for Pt, it began at 0.11 V less positive than the same process on bulk Pt. The chronoamperometric experiments for methanol and ethanol oxidation on Ti/Pt increased by almost 934% and 440%, respectively, compared with Pt bulk.

  19. Transition voltages of vacuum-spaced and molecular junctions with Ag and Pt electrodes

    KAUST Repository

    Wu, Kunlin; Bai, Meilin; Sanvito, Stefano; Hou, Shimin

    2014-01-01

    The transition voltage of vacuum-spaced and molecular junctions constructed with Ag and Pt electrodes is investigated by non-equilibrium Green's function formalism combined with density functional theory. Our calculations show that, similarly

  20. O2-enhanced methanol oxidation reaction at novel Pt-Ru-C co-sputtered electrodes

    International Nuclear Information System (INIS)

    Umeda, Minoru; Matsumoto, Yosuke; Inoue, Mitsuhiro; Shironita, Sayoko

    2013-01-01

    Highlights: ► Novel Pt-Ru-C electrodes were prepared by a co-sputtering technique. ► Co-sputtered electrodes with C result in highly efficient O 2 -enhanced methanol oxidation. ► Pt–Ru-alloy-based co-sputtered electrode induces a negative onset potential of methanol oxidation. ► The Pt-Ru-C electrodes allow a negative onset potential of O 2 -enhanced methanol oxidation. ► The optimum atomic ratios of Pt-Ru-C are Pt: 0.24–0.80, Ru: 0.14–0.61, C: 0.06–0.37. -- Abstract: A Pt-Ru-C electrode has been developed using a co-sputtering technique for use as the anode catalyst of a mixed-reactant fuel cell. The physical and electrochemical characteristics of the electrodes demonstrate that co-sputtered Pt and Ru form a Pt–Ru alloy. The crystallite sizes of the catalysts investigated in this study are reduced by the addition of C to the Pt–Ru alloy. Cu stripping voltammograms suggest that the sputtering of C and the formation of the Pt–Ru alloy synergically increase the electrochemical surface area of the electrodes. The methanol oxidation performances of the prepared electrodes were evaluated in N 2 and O 2 atmospheres; the Pt-Ru-C electrodes achieve an O 2 -induced negative shift in the onset potential of the methanol oxidation (E onset ) and enhance the methanol oxidation current density in the O 2 atmosphere. The mechanism of O 2 -enhanced methanol oxidation with a negative E onset at the Pt-Ru-C electrodes is attributed to a change in the electronic structure of Pt due to the formation of Pt–Ru alloy and the generation of O-based adsorption species by the reduction of O 2 . Finally, the composition of the Pt-Ru-C electrode for the O 2 -enhanced methanol oxidation with a negative E onset was found to be optimal at an atomic ratio of Pt: 0.24–0.80, Ru: 0.14–0.61, and C: 0.06–0.37

  1. Electrooxidation of C{sub 1} to C{sub 3} alcohols with Pt and Pt-Ru sputter deposited interdigitated array electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choong-Gon [Department of Chemical Engineering, Faculty of Engineering, Hanbat National University, San 16-1, Dukmyeong-dong, Yuseong-gu, Daejeon 305-719 (Korea, Republic of)], E-mail: leecg@hanbat.ac.kr; Ojima, Hiroyuki [Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aramaki-Aoba 07, Aoba-ku, Sendai 980-8579 (Japan); Umeda, Minoru [Department of Materials Science and Technology, Faculty of Engineering, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata 940-2188 (Japan)], E-mail: mumeda@vos.nagaokaut.ac.jp

    2008-02-25

    The electrooxidation of methanol, ethanol, and 2-propanol was investigated with interdigitated array electrodes (IDAEs). The IDAE oxidizes alcohol at the generator and reduces the reaction intermediates produced by the oxidation process at the collector. Thus, the reaction intermediates can be estimated with the IDAE. The IDAE in the present work was made of sputter deposited Pt and Pt-Ru. The use of Ru free and added electrodes provides information on the effect of Ru addition on the alcohol oxidation. Cyclic voltammetric analyses revealed that Ru addition enhances the oxidation currents and reduces the E{sub onset} of the alcohols. The detectable reaction intermediate at the methanol and ethanol oxidation was proton, while the intermediate species was acetone in 2-propnaol oxidation.

  2. Electrochemical quartz crystal microbalance analysis of the oxygen reduction reaction on Pt-based electrodes. Part 2: adsorption of oxygen species and ClO4(-) anions on Pt and Pt-Co alloy in HClO4 solutions.

    Science.gov (United States)

    Omura, J; Yano, H; Tryk, D A; Watanabe, M; Uchida, H

    2014-01-14

    To gain deeper insight into the role of adsorbed oxygenated species in the O2 reduction reaction (ORR) kinetics on platinum and platinum-cobalt alloys for fuel cells, we carried out a series of measurements with the electrochemical quartz crystal microbalance (EQCM) and the rotating disk electrode (RDE) in acid solution. The effects of anion adsorption on the activities for the ORR were first assessed in HClO4 and HF electrolyte solutions at various concentrations. In our previous work (Part 1), we reported that the perchlorate anion adsorbs specifically on bulk-Pt, with a Frumkin-Temkin isotherm, that is, a linear relationship between Δm and log[HClO4]. Here, we find that the specific adsorption on the Pt-skin/Pt3Co alloy was significantly stronger than that on bulk-Pt, in line with its modified electronic properties. The kinetically controlled current density j(k) for the O2 reduction at the Pt-skin/Pt3Co-RDE was about 9 times larger than that of the bulk-Pt-RDE in 0.01 M HClO4 saturated with air, but the j(k) values on Pt-skin/Pt3Co decreased with increasing [HClO4] more steeply than in the case of Pt, due to the blocking of the active sites by the specifically adsorbed ClO4(-). We have detected reversible mass changes for one or more adsorbed oxygen-containing species (Ox = O2, O, OH, H2O) on the Pt-skin/Pt3Co-EQCM and Pt-EQCM in O2-saturated and He-purged 0.01 M HClO4 solutions, in which the specific adsorption of ClO4(-) anions was negligible. The coverages of oxygen species θ(Ox) on the Pt-skin/Pt3Co in the potential range from 0.86 to 0.96 V in the O2-saturated solution were found to be larger than those on pure Pt, providing strong evidence that the higher O2 reduction activity on the Pt3Co is correlated with higher θ(Ox), contrary to the conventional view.

  3. Note: A quartz cell with Pt single crystal bead electrode for electrochemical scanning tunneling microscope measurements.

    Science.gov (United States)

    Xia, Zhigang; Wang, Jihao; Hou, Yubin; Lu, Qingyou

    2014-09-01

    In this paper, we provide and demonstrate a design of a unique cell with Pt single crystal bead electrode for electrochemical scanning tunneling microscope (ECSTM) measurements. The active metal Pt electrode can be protected from air contamination during the preparation process. The transparency of the cell allows the tip and bead to be aligned by direct observation. Based on this, a new and effective alignment method is introduced. The high-quality bead preparations through this new cell have been confirmed by the ECSTM images of Pt (111).

  4. Transition voltages of vacuum-spaced and molecular junctions with Ag and Pt electrodes

    KAUST Repository

    Wu, Kunlin

    2014-07-07

    The transition voltage of vacuum-spaced and molecular junctions constructed with Ag and Pt electrodes is investigated by non-equilibrium Green\\'s function formalism combined with density functional theory. Our calculations show that, similarly to the case of Au-vacuum-Au previously studied, the transition voltages of Ag and Pt metal-vacuum-metal junctions with atomic protrusions on the electrode surface are determined by the local density of states of the p-type atomic orbitals of the protrusion. Since the energy position of the Pt 6p atomic orbitals is higher than that of the 5p/6p of Ag and Au, the transition voltage of Pt-vacuum-Pt junctions is larger than that of both Ag-vacuum-Ag and Au-vacuum-Au junctions. When one moves to analyzing asymmetric molecular junctions constructed with biphenyl thiol as central molecule, then the transition voltage is found to depend on the specific bonding site for the sulfur atom in the thiol group. In particular agreement with experiments, where the largest transition voltage is found for Ag and the smallest for Pt, is obtained when one assumes S binding at the hollow-bridge site on the Ag/Au(111) surface and at the adatom site on the Pt(111) one. This demonstrates the critical role played by the linker-electrode binding geometry in determining the transition voltage of devices made of conjugated thiol molecules. © 2014 AIP Publishing LLC.

  5. Preparation of carbon paste electrodes including poly(styrene) attached glycine-Pt(IV) for amperometric detection of glucose.

    Science.gov (United States)

    Dönmez, Soner; Arslan, Fatma; Sarı, Nurşen; Kurnaz Yetim, Nurdan; Arslan, Halit

    2014-04-15

    In this study, a novel carbon paste electrode that is sensitive to glucose was prepared using the nanoparticles modified (4-Formyl-3-methoxyphenoxymethyl) with polystyren (FMPS) with L-Glycine-Pt(IV) complexes. Polymeric nanoparticles having Pt(IV) ion were prepared from (4-Formyl-3-methoxyphenoxymethyl) polystyren, glycine and PtCl4 by template method. Glucose oxidase enzyme was immobilized to a modified carbon paste electrode (MCPE) by cross-linking with glutaraldehyde. Determination of glucose was carried out by oxidation of enzymatically produced H2O2 at 0.5 V vs. Ag/AgCl. Effects of pH and temperature were investigated, and optimum parameters were found to be 8.0 and 55°C, respectively. Linear working range of the electrode was 5.0×10(-6)-1.0×10(-3) M, R(2)=0.997. Storage stability and operational stability of the enzyme electrode were also studied. Glucose biosensor gave perfect reproducible results after 10 measurements with 2.3% relative standard deviation. Also, it had good storage stability (gave 53.57% of the initial amperometric response at the end of 33th day). © 2013 Published by Elsevier B.V.

  6. Photoelectrocatalytic property of microporous Pt-TiO2/Ti electrodes

    International Nuclear Information System (INIS)

    Hung, Chung-Hsuang; Wu, Kee-Rong; Yeh, Chung-Wei; Sun, Jui-Ching; Hsu, Chuan-Jen

    2013-01-01

    This study investigates the photoelectrocatalytic (PEC) property of microporous WO 3 -loaded TiO 2 /Ti layer, prepared via micro-arc oxidation (MAO) of Ti plate, followed by sputtering deposition of a thin Pt layer as a Pt-TiO 2 /Ti electrode. The WO 3 -loaded TiO 2 layer which is associated with a more acidic surface forms many local electrochemical cells on its micro-pores immersed in cationic dye solution. The electrocatalytic (EC) reactions can take place in the local cells by the applied electrons. A low resistivity that is accomplished by MAO technique and by platinization offers an easy path for the electron motions in the Pt-TiO 2 /Ti electrode. All these features make the EC oxidation of aqueous dye pollutants practically feasible without using counter electrodes and supporting electrolytes. Our experiments demonstrate that, under PEC condition, the Pt-TiO 2 /Ti shows the highest degradation rate constant of 0.83 h − 1 at an applied bias of 1.0 V and exhibits significantly high PEC and EC oxidation activities at a low applied bias of 0.25 V. This is attributable to high anodic currents generated in the Pt-TiO 2 /Ti even at low bias. The modified microporous electrodes conclusively reveal a very interesting EC property as a two double-sided device that functions the PEC and EC oxidation simultaneously without a need of supporting electrolyte and expensive Pt cathode. - Highlights: ► Pt-TiO 2 /Ti exhibits enhanced photoelectrocatalytic (PEC) activity at low applied bias. ► The proposed device uses low applied bias (< 1.0 V) with no explicit cathode. ► PEC oxidation can be performed without supporting electrolyte and Pt cathode

  7. Correlação entre a estrutura atômica superficial e o processo de adsorção-dessorção reversível de hidrogênio em eletrodos monocristalinos Pt(111, Pt(100 e Pt(110 The correlation between the atomic surface structure and the reversible adsorption-desorption of hydrogen on single crystal Pt (111, Pt (100 and Pt (110 electrodes

    Directory of Open Access Journals (Sweden)

    Valderi Pacheco dos Santos

    2001-12-01

    Full Text Available Platinum is widely used as electrode in electrocatalytic processes, however the use of polycrystalline electrodes introduces a series of variables in the electrochemical system due to the aleatory contribution of all the crystallographic orientations with different surface packing of atoms. Single crystal platinum electrodes of low Miller index present surface structure of high regularity and serve as model to establish a correlation among the macroscopic and microscopic properties of the electrochemical interface. Therefore, the main aim of this work is the study of the voltammetric profiles of the reversible adsorption-desorption of hydrogen on Pt(100, Pt(110 and Pt(111, in order to correlate the electrochemical properties of each different orientation with the surface atomic structure.

  8. Fuel cell electrodes: Electrochemical characterization and electrodeposition of Pt nanoparticles

    CSIR Research Space (South Africa)

    Modibedi, M

    2008-05-01

    Full Text Available Fuel Cell (PEMFC) Electrolyte: solid polymer membrane (typically Nafion) Types of fuel cells (FC) ? CSIR 2007 www.csir.co.za PEMFC http://fuelcellsworks.com/ ? CSIR 2007 www.csir.co.za Electrodes...

  9. Broader energy distribution of CO adsorbed at polycrystalline Pt electrode in comparison with that at Pt(111) electrode in H_2SO_4 solution confirmed by potential dependent IR/visible double resonance sum frequency generation spectroscopy

    International Nuclear Information System (INIS)

    Yang, Shuo; Noguchi, Hidenori; Uosaki, Kohei

    2017-01-01

    Highlights: • Electrochemical SFG spectroscopy is an efficient in situ probe of electronic structure at electrochemical interface. • Electrooxidation performances of CO adsorbed on polycrystalline Pt and Pt(111) electrodes were compared. • The enhanced SFG signal of CO on Pt electrodes was observed due to a vibrational-electronic double resonance effect. • The broader energy distribution of 5sa state of CO on polycrystalline Pt than on Pt(111) is proved by SFG results. - Abstract: Electrochemical cyclic voltammetry and potential dependent double resonance sum frequency generation (DR-SFG) spectroscopy were performed on CO adsorbed on polycrystalline Pt and Pt(111) electrodes in H_2SO_4 solution to examine the effect of substrate on the electronic structure of CO. The dependence of SFG intensity on potential and visible energy for atop CO band was observed on both polycrystalline and single crystalline Pt electrodes. Enhancement of the SFG intensity was determined to be a direct result of a surface electronic resonance of the visible/SF light with the electronic transition from Fermi level of Pt to the 5σ_a anti-bonding state of adsorbed CO, in agreement with previous results. Interestingly, when compared to the Pt(111) electrode, the distribution width of the intensity enhancement region on polycrystalline Pt is broader than on Pt(111). This suggests that the energy distribution of the 5σ_a state of CO on polycrystalline Pt surface is broader than that on Pt(111) due to the complex surface structure of the polycrystalline Pt electrode.

  10. Amperometric Morphine Detection Using Pt-Co Alloy Nanowire Array-modified Electrode

    International Nuclear Information System (INIS)

    Tao, Manlan; Xu, Feng; Li, Yueting; Xu, Quanqing; Chang, Yanbing; Yang, Yunhui; Wu, Zaisheng

    2010-01-01

    Pt-Co alloy nanowire array was directly synthesized by electrochemical deposition with polycarbonate template at -1.0V and subsequent chemical etching of the template. The use of Pt-Co alloy nanowire array-modified electrode (Pt- Co NAE) for the determination of morphine (MO) is described. The morphology of the Pt-Co alloy nanowire array has been investigated by scanning electron microscopy (SEM) and energy disperse X-ray spectroscopy (EDS) analysis), respectively. The resulting Pt-Co NAE offered a linear amperometric response for morphine ranging from 2.35 x 10 -5 to 2.39 x 10 -3 M with a detection limit of 7.83 x 10 -6 M at optimum conditions. This sensor displayed high sensitivity and long-term stability

  11. Nanoscale Tapered Pt Bottom Electrode Fabricated by FIB for Low Power and Highly Stable Operations of Phase Change Memory

    International Nuclear Information System (INIS)

    Shi-Long, Lv; Zhi-Tang, Song; Yan, Liu; Song-Lin, Feng

    2010-01-01

    Phase change random access memory (PC-RAM) based on Si 2 Sb 2 Te 5 with a Pt tapered heating electrode (Pt-THE), which is fabricated using a focus ion beam (FIB), is investigated. Compared with the tungsten electrode, the Pt-THE facilitates the temperature rise in phase change material, which causes the decrease of reset voltage from 3.6 to 2.7 V. The programming region of the cell with the Pt-THE is smaller than that of the cell with a cylindrical tungsten heating electrode. The improved performance of the PC-RAM with a Pt-THE is attributed to the higher resistivity and lower thermal conductivity of the Pt electrode, and the reduction of the programming region, which is also verified by thermal simulation. (cross-disciplinary physics and related areas of science and technology)

  12. Effects of the top-electrode preparation method on the ferroelectric properties of Pt/Pb(Zr,Ti)O3/Pt thin film capacitors

    International Nuclear Information System (INIS)

    Lee, Eun Gu; Lee, Jae Gab; Kim, Sun Jae

    2006-01-01

    The deformation in the hysteresis loop of Pt/PZT/Pt thin-film capacitors due to deposition and patterning of the top electrode has been investigated. The PZT film was aged during the deposition of the top electrode and was positively poled during reactive ion etching (RIE). The PZT film having sputtered top electrode was very sensitive to the RIE process. The film with a thinner top electrode showed less initial switching polarization due to less compressive stress, but better fatigue characteristics due to an enhanced partial-switching region.

  13. ETEM observation of Pt/C electrode catalysts in a moisturized cathode atmosphere

    International Nuclear Information System (INIS)

    Yoshida, K; Zhang, X; Tanaka, N; Boyes, E D; Gai, P L

    2014-01-01

    There have been reports of challenges in designing platinum carbon (Pt/C) electrode catalysts for PEMFC. Pt/C electrode catalysts deactivate much faster on the cathode (in moisturized O 2 ) than on the anode (in H 2 ). To understand influences of moisture and oxygen on the deactivation of the Pt/C catalysts in proton-exchange-membrane fuel cells (PEMFCs), spherical-aberration-corrected environmental transmission electron microscopy (AC-ETEM) was applied with a high-speed CCD camera. Structural changes of the Pt/C electrode catalysts were dynamically recorded in moisturized nitrogen, oxygen and hydrogen. The mass spectrometry confirmed the moisture content (between 5 to 30 %) of nitrogen driving gas through a humidifier. Coalescence of platinum nanoparticles (D = 3.24 nm) was carefully evaluated in pure N 2 and moisturized N 2 atmosphere. The Pt/C showed considerable structural weakness in a moisturized N2 atmosphere. Comparable results obtained by AC-ETEM in different gas atmospheres also suggested ways to improve the oxygen reduction reaction (ORR). In this paper, the deactivation process due to moisture (hydroxylation) of carbon supports is discussed using for comparison the movement of platinum nanoparticles measured in moisturized nitrogen and pure nitrogen atmospheres

  14. Nitric oxide reduction and oxidation on stepped Pt[n(111)x(111)] electrodes

    NARCIS (Netherlands)

    Beltramo, G.L.; Koper, M.T.M.

    2003-01-01

    The structure sensitivity of the reduction and oxidation of saturated and subsaturated NO adlayers has been studied on a series of stepped Pt[n(111)×(111)] electrodes by cyclic and stripping voltammetry experiments in sulfuric and perchloric acid solution. In agreement with earlier experimental

  15. Sputter deposition on gas diffusion electrodes of Pt-Au nanoclusters for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Giorgi, L.; Giorgi, R.; Gagliardi, S.; Serra, E. [ENEA Casaccia Research Center, Rome (Italy). Physics Technologies and New Materials; Alvisi, M.; Signore, M.A. [ENEA Brindisi Research Center, Brindisi (Italy). Physics Technologies and New Materials

    2008-07-01

    Polymer electrolyte fuel cells (PEFCs) are suited for use in commercial electrical vehicle and electric power applications. The gas diffusion electrodes of PEFCs are catalyzed by the deposition of platinum (Pt) nanoparticles on carbon powder. The particles must be localized on the electrode surface in order to achieve high electrocatalyst utilization. This study discussed a method of preparing PEFC electrodes using sputter deposition of a Pt-gold (Au) alloy nanoparticles on carbon powders. The method was designed to improve electrode performance and catalyst utilization. The nano-sized alloy clusters were deposited on a gas diffusion electrode at room temperature. The deposits were then characterized using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) in order to examine the effect of the deposition technique on the nano-morphology and electrocatalytic performance of the electrode. Results of the study showed that the technique can be used in the large-scale manufacture of fuel cell electrodes. 3 refs., 1 fig.

  16. Influence of Pt Gate Electrode Thickness on the Hydrogen Gas Sensing Characteristics of Pt/In2O3/SiC Hetero-Junction Devices

    Directory of Open Access Journals (Sweden)

    S. Kandasamy

    2007-09-01

    Full Text Available Hetero-junction Pt/In2O3/SiC devices with different Pt thickness (30, 50 and 90nm were fabricated and their hydrogen gas sensing characteristics have been studied. Pt and In2O3 thin films were deposited by laser ablation. The hydrogen sensitivity was found to increase with decreasing Pt electrode thickness. For devices with Pt thickness of 30 nm, the sensitivity gradually increased with increasing temperature and reached a maximum of 390 mV for 1% hydrogen in air at 530°C. Atomic force microscopy (AFM analysis revealed a decrease in Pt grain size and surface roughness for increasing Pt thickness. The relationship between the gas sensing performance and the Pt film thickness and surface morphology is discussed.

  17. Characterization of self-assembled electrodes based on Au-Pt nanoparticles for PEMFC application

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, E. [Politecnica Univ. de Chiapas, Tuxtla Gutierrez, Chiapas (Mexico). Energia y Sustentabilidad; Sebastian, P.J. [Politecnica Univ. de Chiapas, Chiapas (Mexico). Energia y Sustentabilidad; Centro de Investigacion en Energia, UNAM, Morelos (Mexico); Gamboa, S.A. [Centro de Investigacion en Energia, UNAM, Morelos (Mexico); Pal, U. [Inst. de Fisica, Universidad Autonoma de Puebla Univ., Puebla (Mexico). Inst. de Fisica; Gonzalez, I. [Autonoma Metropolitana Univ. (Mexico). Dept. de Quimica

    2008-07-01

    This paper reported on a study in which membrane electrode assemblies (MEAs) were fabricated by depositing Au, Pt and AuPt nanoparticles on Nafion 115 membrane for use in a proton exchange membrane fuel cell (PEMFC). A Rotating Disc Electrode (RDE) was used to measure the nanoparticle catalyst activity. After deposition of the nanoparticles on the membrane, the surface was studied by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The membrane proton conduction process was studied by Electrochemical Impedance Spectroscopy (EIS) with the 4 probe technique. The MEAs fabricated with Nafion/Metal membranes were evaluated in a PEMFC under standard conditions. Colloidal solutions were used to prepare self-assembled electrodes with nanoparticles deposited on Nafion membrane. The particles deposited on Nafion showed good stability and had homogeneous distribution along the membrane surface. The impedance results revealed an increase in the membrane proton resistance of the self-assembled electrodes compared to unmodified Nafion. The Au-Pt nanoparticles were obtained by chemical reduction. The nanoparticle size in the three systems was about 2 nm. The self-assembled electrodes performed well in standard conditions. The optimum colloidal concentration and immersion time must be determined in order to obtain good catalytic activity and high membrane conductance. The self-assembled Nafion/AuPt had the best open circuit potential (887 mV). The Au and Pt self-assemblies showed a similar performance in terms of maximum power and maximum current density. The performance of the Nafion/Au self-assembly was influenced more by ohmic losses, particularly in the membrane. The maximum power generation was obtained at 0.35 V. The mass transport losses increased after this value, thereby affecting the efficiency of the PEMFC. 2 figs.

  18. Advanced cathode materials for polymer electrolyte fuel cells based on pt/ metal oxides: from model electrodes to catalyst systems.

    Science.gov (United States)

    Fabbri, Emiliana; Pătru, Alexandra; Rabis, Annett; Kötz, Rüdiger; Schmidt, Thomas J

    2014-01-01

    The development of stable catalyst systems for application at the cathode side of polymer electrolyte fuel cells (PEFCs) requires the substitution of the state-of-the-art carbon supports with materials showing high corrosion resistance in a strongly oxidizing environment. Metal oxides in their highest oxidation state can represent viable support materials for the next generation PEFC cathodes. In the present work a multilevel approach has been adopted to investigate the kinetics and the activity of Pt nanoparticles supported on SnO2-based metal oxides. Particularly, model electrodes made of SnO2 thin films supporting Pt nanoparticles, and porous catalyst systems made of Pt nanoparticles supported on Sb-doped SnO2 high surface area powders have been investigated. The present results indicate that SnO2-based supports do not modify the oxygen reduction reaction mechanism on the Pt nanoparticle surface, but rather lead to catalysts with enhanced specific activity compared to Pt/carbon systems. Different reasons for the enhancement in the specific activity are considered and discussed.

  19. Fabrication and performance of the Pt-Ru/Ni-P/FTO counter electrode for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Ma, Huanmei; Tian, Jianhua; Bai, Shuming; Liu, Xiaodong; Shan, Zhongqiang

    2014-01-01

    Highlights: • Pt-Ru alloy acts as the catalyst of counter electrodes in dye-sensitized solar cell. • Ni-P/FTO (fluorine-doped SnO 2 ) substrate is prepared by electroless plating method. • Pt-Ru/Ni-P/FTO counter electrode is fabricated by electrodeposition method. • The Ni-P sublayer improves the conductivity and light reflectance of FTO substrate. • The cell with Pt-Ru/Ni-P/FTO counter electrode exhibits an improved efficiency. - Abstract: In this paper, Pt-Ru/Ni-P/FTO has been designed and fabricated as the counter electrode for dye-sensitized solar cells. The Pt-Ru catalytic layer and Ni-P alloy sublayer are prepared by traditional electrodeposition method and a simple electroless plating method, respectively, and the preparation conditions have been optimized. The scanning electron microscopy (SEM) images show that the Pt-Ru particles are evenly distributed on FTO and Ni-P/FTO substrate. By X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), it is confirmed that the Ni-P amorphous alloy has been formed, and no other compounds involved Ni and P have been formed. The electrochemical measurement results reveal that the Pt-Ru electrode has higher catalytic activity and stability towards tri-iodine reduction reaction than Pt electrode in the organic medium. The Ni-P sublayer deposited on FTO glasses increases the conductivity and light-reflection ability of the counter electrode, and this contributes to lowering the inner resistance of the cell and improving the light utilization efficiency. Through the photovoltaic test, it is confirmed that the energy conversion efficiency of a single DSSC with the optimized Pt-Ru/Ni-P/FTO counter electrode is increased by 29% compared with that of the cell based on the Pt/FTO counter electrode under the same conditions

  20. Methanol oxidation reaction on Ti/RuO{sub 2(x)}Pt{sub (1-x)} electrodes prepared by the polymeric precursor method

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, R.G.; Marchesi, L.F.; Mattos-Costa, F.I.; Pereira, E.C. [Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Centro Multidisciplinar para o Desenvolvimento de Materiais Ceramicos, Departamento de Quimica, Universidade Federal de Sao Carlos, Caixa Postal 676, 13560-905 Sao Carlos, SP (Brazil); Oliveira, R.T.S. [Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Centro Multidisciplinar para o Desenvolvimento de Materiais Ceramicos, Departamento de Quimica, Universidade Federal de Sao Carlos, Caixa Postal 676, 13560-905 Sao Carlos, SP (Brazil); Grupo de Materiais Eletroquimicos e Metodos Eletroanaliticos, Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal 780, 13566-590 Sao Carlos, SP (Brazil); LEMN, Laboratorio de Eletroquimica e Materiais Nanoestruturados, CCNH-Centro de Ciencias Naturais e Humanas, UFABC-Universidade Federal do ABC, CEP 09.210-170, Rua Santa Adelia 166, Bairro Bangu, Santo Andre, SP (Brazil); Bulhoes, L.O.S. [Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Centro Multidisciplinar para o Desenvolvimento de Materiais Ceramicos, Departamento de Quimica, Universidade Federal de Sao Carlos, Caixa Postal 676, 13560-905 Sao Carlos, SP (Brazil); CENIP, Centro Universitario Central Paulista, UNICEP, Rua Miguel Petroni, 5111, CEP 13563-470, Sao Carlos, SP (Brazil); Santos, M.C. [Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Centro Multidisciplinar para o Desenvolvimento de Materiais Ceramicos, Departamento de Quimica, Universidade Federal de Sao Carlos, Caixa Postal 676, 13560-905 Sao Carlos, SP (Brazil); LEMN, Laboratorio de Eletroquimica e Materiais Nanoestruturados, CCNH-Centro de Ciencias Naturais e Humanas, UFABC-Universidade Federal do ABC, CEP 09.210-170, Rua Santa Adelia 166, Bairro Bangu, Santo Andre, SP (Brazil)

    2007-09-27

    In this work, ruthenium oxide films containing platinum nanoparticles were prepared using the polymeric precursor method on Ti substrates with several molar ratios. This paper aims at presenting the characterization of the Pt content effect in the methanol electrochemical oxidation reaction. The films were physically characterized using X-ray diffraction and both Pt and RuO{sub 2} (rutile) phases were observed. The mean crystallite sizes were 6 nm for Pt and 25 nm for RuO{sub 2}. The X-ray photoelectronic results indicated that on the electrodes surfaces, depending on the substrate, there was RuO{sub 2}, Ru metal and Pt metal. Besides, it was not observed the formation of PtRu alloys. The atomic force microscopy images of the films showed highly rough surfaces. A decrease in the roughness mean square values is observed as the Pt content increases. These last results are similar to electroactive surface area values calculated by redox-couple (K{sub 4}FeCN{sub 6}/K{sub 3}FeCN{sub 6}). There was an increase in the globular size observed on the electrode surface and lower particle dispersion as the Pt content is increased from 12.5 to 75 mol%. Regarding the eletrode electrocatalytical behavior for methanol oxidation, it was observed that the onset oxidation overpotential is displaced towards more negative values as Pt content is decreased. Besides, an increase has been shown in the current density for methanol oxidation of 600% using a Ti/RuO{sub 2}-Pt (87.5:12.5) electrode compared to polycrystalline Pt. (author)

  1. Electrochemical degradation of Ibuprofen on Ti/Pt/PbO2 and Si/BDD electrodes

    International Nuclear Information System (INIS)

    Ciriaco, L.; Anjo, C.; Correia, J.; Pacheco, M.J.; Lopes, A.

    2009-01-01

    The electrochemical oxidation of Ibuprofen (Ibu) was performed using a Ti/Pt/PbO 2 electrode as the anode, prepared according to literature, and a boron doped diamond (BDD) electrode, commercially available at Adamant Technologies. Tests were performed with model solutions of Ibu, with concentrations ranging from 0.22 to 1.75 mM for the Ti/Pt/PbO 2 electrode and 1.75 mM for the BDD electrode, using 0.035 M Na 2 SO 4 as the electrolyte, in a batch cell, at different current densities (10, 20 and 30 mA cm -2 ). Absorbance measurements, Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) tests were conducted for all samples. The results have shown a very good degradation of Ibu, with COD removals between 60 and 95% and TOC removals varying from 48 to 92%, in 6 h experiments, with higher values obtained with the BDD electrode. General Current Efficiency and Mineralization Current Efficiency, determined for both electrodes, show a similar behaviour for 20 mA cm -2 but a very different one at 30 mA cm -2 . The combustion efficiency was also determined for both anodes, and found to be slightly higher with BDD at lower current density and equal to 100% for both anodes at 30 mA cm -2

  2. Determination of Ascorbic Acid Content of Some Fruit Juices and Wine by Voltammetry Performed at Pt and Carbon Paste Electrodes

    Directory of Open Access Journals (Sweden)

    Aurel Pisoschi

    2011-02-01

    Full Text Available A method was developed for assessing ascorbic acid concentration in fruit juices and wine by differential pulse voltammetry. The oxidation peak for ascorbic acid occurs at about 530 mV (versus SCE on a Pt strip working electrode and at about 470 mV on a carbon paste working electrode. The influence of the operational parameters like the pulse amplitude and the pulse period on the analytical signal was investigated. The obtained calibration graph shows a linear dependence between the peak height and ascorbic acid concentration within the range 0.31-20 mM with a Pt working electrode, and within the range 0.07-20 mM with a carbon paste working electrode. The equation of the calibration graph was y = 21.839x + 35.726, r2 = 0.9940, when a Pt strip electrode was used (where y represents the value of the current intensity measured for the peak height, expressed as µA and x the analyte concentration, as mM. R.S.D. = 2.09%, n = 10, Cascorbic acid = 2.5 mM. The equation of the calibration graph was y = 3.4429x + 5.7334, r2 = 0.9971, when a carbon paste electrode was used (where y represents the value of intensity measured for the peak height, expressed as µA and x the analyte concentration, as mM. R.S.D. = 2.35%, n = 10, Cascorbic acid = 2.5 mM. The developed method was applied to ascorbic acid assessment in fruit juices and wine. The ascorbic acid content determined ranged between 6.83 mg/100 mL juice for soft drinks (Fanta Madness and 54.74 mg/100 mL for citrus (lemon juices obtained by squeezing fruit. Different ascorbic acid concentrations (from standard solutions were added to the analysed samples, the degree of recovery being comprised between 94.74 and 104.97%. The results of ascorbic acid assessment by differential pulse voltammetry were compared with those obtained by cyclic voltammetry. The results obtained by the two methods were in good agreement.

  3. Electrochemical deposition of the first Cd monolayer on polycrystalline Pt and Au electrodes: an Upd study

    Directory of Open Access Journals (Sweden)

    Santos Mauro C. dos

    1998-01-01

    Full Text Available The underpotential deposition of Cd on polycrystalline Pt and Au was studied by voltammetry at stationary and rotating ring-disc electrodes. On Pt, the Cd ads dissolution peaks overlap those related to the oxidation of Hads, thus hindering the precise evaluation of desorption charges. A model proposed to calculate such charges from voltammetry at stationary electrodes revealed a value of 285 muC cm-2 for the monolayer dissolution, which corresponds to a coverage of 90% with Cd ads presenting an electrosorption valence of 0.5. Rotating ring-disc experiments fully confirmed such values. The misfit between atomic radii of Cd and Pt justifies the less-than-100% coverage. On the other hand, on Au, the absence of Hads simplifies the procedure for determination of dissolution charges for the Cd monolayer. Here, a value of only 41 muC cm-2 was calculated, which corresponds to a maximum coverage of 15%, with the electrosorption valence of 0.5. The results obtained in the collecting experiments with the rotating electrode are in complete agreement with those values.

  4. Ultra-fine Pt nanoparticles on graphene aerogel as a porous electrode with high stability for microfluidic methanol fuel cell

    Science.gov (United States)

    Kwok, Y. H.; Tsang, Alpha C. H.; Wang, Yifei; Leung, Dennis Y. C.

    2017-05-01

    Platinum-decorated graphene aerogel as a porous electrode for flow-through direct methanol microfluidic fuel cell is introduced. Ultra-fine platinum nanoparticles with size ranged from diameter 1.5 nm-3 nm are evenly anchored on the graphene nanosheets without agglomeration. The electrode is characterized by scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy. Catalytic activity is confirmed by cyclic voltammetry. The electroactive surface area and catalytic activity of platinum on graphene oxide (Pt/GO) are much larger than commercial platinum on carbon black (Pt/C). A counterflow microfluidic fuel cell is designed for contrasting the cell performance between flow-over type and flow-through type electrodes using Pt/C on carbon paper and Pt/GO, respectively. The Pt/GO electrode shows 358% increment in specific power compared with Pt/C anode. Apart from catalytic activity, the effect of porous electrode conductivity to cell performance is also studied. The conductivity of the porous electrode should be further enhanced to achieve higher cell performance.

  5. Work session on the SAR. Pt. 2

    International Nuclear Information System (INIS)

    Burkart, K.

    1980-01-01

    The present paper contains the tables of the contribution of K. Burkart 'Work Session on the SAR' to the IAEA Interregional Training Course held in Sept/Oct. 1980 at the Kernforschungszentrum Karlsruhe. (RW)

  6. Cyclic voltammetric analysis of C 1-C 4 alcohol electrooxidations with Pt/C and Pt-Ru/C microporous electrodes

    Science.gov (United States)

    Lee, Choong-Gon; Umeda, Minoru; Uchida, Isamu

    The effect of temperature on methanol, ethanol, 2-propanol, and 2-butanol electrooxidation is investigated with Pt/C and Pt-Ru/C microporous electrodes. Cyclic voltammetry is employed in temperatures ranging from 25 to 80 °C to provide quantitative and qualitative information on the kinetics of alcohol oxidation. Methanol displays the greatest activity atom alcohols. The addition of ruthenium reduces the poisoning effect, although it is ineffective with secondary alcohols. Secondary alcohols undergo a different oxidation mechanism at higher temperatures. Microporous electrodes provide detailed information on alcohol oxidation.

  7. Cyclic voltammetric analysis of C{sub 1}-C{sub 4} alcohol electrooxidations with Pt/C and Pt-Ru/C microporous electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choong-Gon [Department of Chemical Engineering, Hanbat National University, San 16-1 Dukmyung-dong, Yusong-gu, Daejon (Korea); Umeda, Minoru [Department of Chemistry, Nagaoka University of Technology, Kamitomioka, Nagaoka (Japan); Uchida, Isamu [Department of Applied Chemistry, Tohoku University, Aramaki-aoba, Aoba-ku, Sendai (Japan)

    2006-09-29

    The effect of temperature on methanol, ethanol, 2-propanol, and 2-butanol electrooxidation is investigated with Pt/C and Pt-Ru/C microporous electrodes. Cyclic voltammetry is employed in temperatures ranging from 25 to 80{sup o}C to provide quantitative and qualitative information on the kinetics of alcohol oxidation. Methanol displays the greatest activity atom alcohols. The addition of ruthenium reduces the poisoning effect, although it is ineffective with secondary alcohols. Secondary alcohols undergo a different oxidation mechanism at higher temperatures. Microporous electrodes provide detailed information on alcohol oxidation. (author)

  8. Characterization of self-assembled electrodes based on Au-Pt nanoparticles for PEMFC application

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, E. [Univ. Politecnica de Chiapas (Mexico). Energia y Sustentabilidad; Sebastian, P.J.; Gamboa, S.A.; Joseph, S. [Univ. Nacional Autonoma de Mexico, Morelos (Mexico). Centrode Investigacion en Energia; Pal, U. [Univ. Autonoma de Puebla, Pue (Mexico). Inst. de Fisica; Gonzalez, I. [Univ. Autonoma Metropolitana, Mexico City (Mexico). Dept. de Quimica

    2010-07-01

    This paper described the synthesis and characterization of gold (Au), platinum (Pt) and Au-Pt nanoparticles impregnated on a Nafion membrane in a proton exchange membrane fuel cell (PEMFC). The aim of the study was to fabricate the membrane electrode assembly (MEA) by depositing the nanoparticles on the membrane using an immersion technique. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to study the deposition process. Electrochemical impedance spectroscopy (EIS) was used to study the membrane proton conduction process. An elemental mapping analysis was performed in order to study the location of the Au and Pt in the self-assemblies. Results of the study showed that the particles deposited on the Nafion had good stability and a homogenous distribution along the membrane surface. The particles showed a direct relation in size and location with the hydrophilic and hydrophobic distribution phases of the membrane. The main membrane resistance was located between the membrane and the electrolyte. The self-assembled electrodes demonstrated a good performance at standard conditions. 33 refs., 4 tabs., 11 figs.

  9. Improving electromechanical output of IPMC by high surface area Pd-Pt electrodes and tailored ionomer membrane thickness

    Directory of Open Access Journals (Sweden)

    Viljar Palmre

    2014-04-01

    Full Text Available In this study, we attempt to improve the electromechanical performance of ionic polymer–metal composites (IPMCs by developing high surface area Pd-Pt electrodes and tailoring the ionomer membrane thickness. With proper electroless plating techniques, a high dispersion of palladium particles is achieved deep in the ionomer membrane, thereby increasing notably the interfacial surface area of electrodes. The membrane thickness is increased using 0.5 and 1 mm thick ionomer films. For comparison, IPMCs with the same ionomer membranes, but conventional Pt electrodes, are also prepared and studied. The electromechanical, mechanoelectrical, electrochemical and mechanical properties of different IPMCs are characterized and discussed. Scanning electron microscopy-energy dispersive X-ray (SEM-EDS is used to investigate the distribution of deposited electrode metals in the cross section of Pd-Pt IPMCs. Our experiments demonstrate that IPMCs assembled with millimeter thick ionomer membranes and newly developed Pd-Pt electrodes are superior in mechanoelectrical transduction, and show significantly higher blocking force compared to conventional type of IPMCs. The blocking forces of more than 0.3 N were measured at 4V DC input, exceeding the force output of typical Nafion® 117-based Pt IPMCs more than two orders of magnitude. The newly designed Pd-Pt IPMCs can be useful in more demanding applications, e.g., in biomimetic underwater robotics, where high stress and drag forces are encountered.

  10. Pt hierarchical structure catalysts on BaTiO{sub 3}/Ti electrode for methanol and ethanol electrooxidations

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Chenguo; He, Xiaoshan; Xia, Chuanhui [Department of Applied Physics, Chongqing University, Chongqing 400044 (China)

    2010-03-15

    Electrooxidations of methanol and ethanol have been investigated on different Pt catalytic titanium-supported electrodes in both acidic and alkaline media using cyclic voltammetry. BaTiO{sub 3} is used for the first time to make a nanoscaled roughness on the surface of Ti foil in order to effectively deposit Pt hierarchical structure and block foulness in solution reactions. The morphology of BaTiO{sub 3} nanocube on Ti foil, Pt catalysts deposited on BaTiO{sub 3}/Ti and Ti foil electrodes are characterized by field emission scanning electron microscopy. The results indicate that Pt nanoflowers can be effectively grown on the Ti foil covered with 1 {mu}m layer of BaTiO{sub 3} nanocubes and the catalytic oxidation behaviors to methanol and ethanol are much better than those of the Pt/Ti electrode as Pt nanoparticles can hardly be deposited on the smooth surface of the Ti foil. The Pt/BaTiO{sub 3}/Ti electrode could be adopted as excellent catalytic anode in fuel cells. (author)

  11. Nano-assemblies consisting of Pd/Pt nanodendrites and poly (diallyldimethylammonium chloride)-coated reduced graphene oxide on glassy carbon electrode for hydrogen peroxide sensors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanyan; Zhang, Cong; Zhang, Di; Ma, Min; Wang, Weizhen; Chen, Qiang, E-mail: qiangchen@nankai.edu.cn

    2016-01-01

    Non-enzymatic hydrogen peroxide (H{sub 2}O{sub 2}) sensors were fabricated on the basis of glassy carbon (GC) electrode modified with palladium (Pd) core-platinum (Pt) nanodendrites (Pt-NDs) and poly (diallyldimethylammonium chloride) (PDDA)-coated reduced graphene oxide (rGO). A facile wet-chemical method was developed for preparing Pd core-Pt nanodendrites. In this approach, the growth of Pt NDs was directed by Pd nanocrystal which could be regarded as seed. The PDDA-coated rGO could form uniform film on the surface of GC electrode, which provided a support for Pd core- Pt NDs adsorption by self-assembly. The morphologies of the nanocomposites were characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction (spectrum). Electrocatalytic ability of the nanocomposites was evaluated by cyclic voltammetry and chronoamperometric methods. The sensor fabricated by Pd core-Pt NDs/PDDA-rGO/GCE exhibited high sensitivity (672.753 μA mM{sup −1} cm{sup −2}), low detection limit (0.027 μM), wider linear range (0.005–0.5 mM) and rapid response time (within 5 s). Besides, it also exhibited superior reproducibility, excellent anti-interference performance and long-term stability. The present work could afford a viable method and efficient platform for fabricating all kinds of amperometric sensors and biosensors. - Highlights: • A facial wet-chemical method was developed for preparing Pd core-Pt nanodendrites. • The morphologies of graphene and Pd core-Pt nanodendrites were characterized. • A novel H{sub 2}O{sub 2} sensor was fabricated by nano-assembly. • The performance of H{sub 2}O{sub 2} sensor was evaluated by cyclic voltammetry and chronoamperometric methods.

  12. Anodic oxidation of ammonia in alkaline solutions at Pt/Pt electrodes. Hakkin denkyokujo ni okeru enkisei ammonia yoeki no anodo sanka

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Ryoichiro; Katsuta, Masahiro; Matsumoto, Tamotsu; Kobayashi, Yoshikazu; Asami, Yusaku; Hirano, Katsuhiko (Shibaura Inst. of Tech., Tokyo (Japan))

    1989-01-05

    Anodic oxidation of ammonia in alkaline solutions on Pt/Pt electrode, in which NH {sub 3} is oxidized producing N {sub 2}, is a promising reaction in application to a fuel cell and water treatment. In this study, the relations between electrode potential and adsorbed intermediates, reaction process were elucidated by potentiodynamic method and potential step method. In measurement, a transient memory device and a microprocessor were connected to an electrolysis device as a new method, then measurement of electric potential and current and integral calculation were perfromed at high speed. Active sites of electrode were covered by Pt NH {sub x}. Faradic current corresponds to the N {sub 2} evolution was shown markedly by anodic scanning. The relation between electrode potential and reaction process was revealed by potential step method. It is found that Pt-NH {sub 2} is the active intermediate for the N {sub 2} evolution, and when current shows maximum, its coverage is nearly 0.5. 15 refs., 7 figs.

  13. Synthesis and characterization of DSSC by using Pt nano-counter electrode: photosensor applications

    Science.gov (United States)

    Yahia, I. S.; AlFaify, S.; Al-ghamdi, Attieh A.; Hafez, Hoda S.; EL-Bashir, S.; Al-Bassam, A.; El-Naggar, A. M.; Yakuphanoglu, F.

    2016-06-01

    Pt electrode prepared by chemical method has been employed as counter electrode in dye-sensitized solar cell. TiO2 nanomaterial was deposited on fluorine-doped tin oxide substrate to be used as photoanode. Structure of the TiO2 and Pt films was investigated by atomic force microscope. The effect of illumination intensity on the photovoltaic parameters such as open circuit voltage, short circuit current density, output power, fill factor and efficiency of these cells was investigated in the range 2.5-130 mW/cm-2. The cell efficiency is stable above 70 mW/cm2. The fill factor is almost constant all over the studied range of illumination intensity. Impedance spectroscopy of the studied device as the summary measurements of the capacitance-voltage, conductance-voltage and series resistance-voltage characteristics were investigated in a wide range of frequencies (5 kHz-1 MHz). At low frequencies, the capacitance has positive values with peak around the origin due to the interfaces. At 200 and 300 kHz, the capacitance is inverted to negative with further increasing of the positive biasing voltage. Above 400 kHz, C-V profile shows complete negative behavior. Also, the impedance-voltage and phase-voltage characteristics were investigated. This cell shows a new promising device for photosensor applications due to high sensitivity in low and high illuminations.

  14. Fabrication and characterization of implantable and flexible nerve cuff electrodes with Pt, Ir and IrOx films deposited by RF sputtering

    International Nuclear Information System (INIS)

    Lee, Soo Hyun; Jung, Jung Hwan; Chae, Youn Mee; Kang, Ji Yoon; Suh, Jun-Kyo Francis

    2010-01-01

    This paper presents the fabrication and characterization of implantable and flexible nerve cuff electrodes for neural interfaces using the conventional BioMEMS technique. In order to fabricate a flexible nerve electrode, polyimide (PI) was chosen as the substrate material. Then, nerve electrodes were thermally re-formed in a cuff shape so as to increase the area in which the charges were transferred to the nerve. Platinum (Pt), iridium (Ir) and iridium oxide (IrO x ) films, which were to serve as conducting materials for the nerve electrodes, were deposited at different working pressures by RF magnetron sputtering. The electrochemical properties of the deposited films were characterized by electrochemical impedance spectroscopy (EIS). The charge delivery capacities of the films were recorded and calculated by cyclic voltammetry (CV). The deposited films of Pt, Ir and IrO x have strong differences in electrochemical properties, which depend on the working pressure of sputter. Each film deposited at 30 mTorr of working pressure shows the highest value of charge delivery capacity (CDC). For the IrO x films, the electrochemical properties were strongly affected by the working pressure as well as the Ar:O 2 gas ratio. The IrO x film deposited with an Ar:O 2 gas ratio of 8:1 showed the highest CDC of 59.5 mC cm −2 , which was about five times higher than that of films deposited with a 1:1 gas ratio.

  15. Fabrication and application of flexible graphene silk composite film electrodes decorated with spiky Pt nanospheres

    Science.gov (United States)

    Liang, Bo; Fang, Lu; Hu, Yichuan; Yang, Guang; Zhu, Qin; Ye, Xuesong

    2014-03-01

    A free-standing graphene silk composite (G/S) film was fabricated via vacuum filtration of a mixed suspension of graphene oxide and silk fibres, followed by chemical reduction. Spiky structured Pt nanospheres were grown on the film substrate by cyclic voltammetry electrodeposition. The electrical and mechanical performance of a single graphene coated silk fibre was investigated. The conductivity of a single graphene coated silk fibre is 57.9 S m-1. During 1000 bending measurements, the conductivity was stable and showed negligible variation. The G/S film has a sheet resistivity of 90 Ω □-1 with a porous and hierarchical structure. The spiky Pt nanosphere decorated G/S film was directly used as a H2O2 electrode with a sensitivity of 0.56 mA mM-1 cm-2, a linear range of 0-2.5 mM and an ultralow detection limit of 0.2 μM (S/N = 3). A glucose biosensor electrode was further fabricated by enzyme immobilization. The results show a sensitivity of 150.8 μA mM-1 cm-2 and a low detection limit of 1 μM (S/N = 3) for glucose detection. The strategy of coating graphene sheets on a silk fibre surface provides a new approach for developing electrically conductive biomaterials, tissue engineering scaffolds, bendable electrodes, and wearable biomedical devices.A free-standing graphene silk composite (G/S) film was fabricated via vacuum filtration of a mixed suspension of graphene oxide and silk fibres, followed by chemical reduction. Spiky structured Pt nanospheres were grown on the film substrate by cyclic voltammetry electrodeposition. The electrical and mechanical performance of a single graphene coated silk fibre was investigated. The conductivity of a single graphene coated silk fibre is 57.9 S m-1. During 1000 bending measurements, the conductivity was stable and showed negligible variation. The G/S film has a sheet resistivity of 90 Ω □-1 with a porous and hierarchical structure. The spiky Pt nanosphere decorated G/S film was directly used as a H2O2 electrode with a

  16. STRATEGI KONVERSI ENERGI DI PT. LION METAL WORKS Tbk.

    Directory of Open Access Journals (Sweden)

    Daud Sudradjad

    2011-08-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} PT Lion Metal Works is a company producing office equipment, racking system, building material, security and fireproof safe, and cold forming. The production activity has high dependence on the usage of diesel, which influences the quality of the product and the cost of total business. The price fluctuation is one of the reasons for the company to convert the usage of diesel to some energy alternatives. Gas is the best alternative to replace diesel due to some advantages such as price, installation cost, distribution issue, calorie level, and environmental issue. There are some resistances from internal organization emerge in the implementation of the conversion. The alternatives strategy has been explored to reduce the resistances considering the goal of the organization, the actors (department in the company, and the type of resistance using analytical hierarchy process method. The priority strategy is establishing a new division for handling the conversion program and installing the gas facility gradually.

  17. An in-situ X-ray diffraction study on the electrochemical formation of PtZn alloys on Pt(1 1 1) single crystal electrode

    Energy Technology Data Exchange (ETDEWEB)

    Drnec, J., E-mail: drnec@esrf.fr [ESRF, Grenoble (France); Bizzotto, D. [Department of Chemistry, AMPEL, University of British Columbia, Vancouver, BC (Canada); Carlà, F. [ESRF, Grenoble (France); Fiala, R. [Charles University, Faculty of Mathematics and Physics, Prague (Czech Republic); Sode, A. [Ruhr-Universität Bochum, Bochum (Germany); Balmes, O.; Detlefs, B.; Dufrane, T. [ESRF, Grenoble (France); Felici, R., E-mail: felici@esrf.fr [ESRF, Grenoble (France)

    2015-11-01

    Highlights: • PtZn electrochemical alloying is observed on single crystal Pt electrodes. • In-situ X-ray characterization during alloy formation and dissolution is provided. • Structural model of the surface during alloying and dissolution is discussed. • X-ray based techniques can be used in in-operando studies of bimetallic fuel cell catalysts. - Abstract: The electrochemical formation and dissolution of the oxygen reduction reaction (ORR) PtZn catalyst on Pt(1 1 1) surface is followed by in-situ X-ray diffraction (XRD) and X-ray reflectivity (XRR) measurements. When the crystalline Pt surface is polarized to sufficiently negative potential values, with respect to an Ag/AgCl|KCl reference electrode, the electrodeposited zinc atoms diffuse into the bulk and characteristic features are observed in the X-ray patterns. The surface structure and composition during deposition and dissolution is determined from analysis of XRR curves and measurements of crystal truncation rods. Thin Zn-rich surface layer is present during the alloy formation while a Zn-depleted layer forms during dissolution.

  18. Role of Ti and Pt electrodes on resistance switching variability of HfO2-based Resistive Random Access Memory

    International Nuclear Information System (INIS)

    Cabout, T.; Buckley, J.; Cagli, C.; Jousseaume, V.; Nodin, J.-F.; Salvo, B. de; Bocquet, M.; Muller, Ch.

    2013-01-01

    This paper deals with the role of platinum or titanium–titanium nitride electrodes on variability of resistive switching characteristics and electrical performances of HfO 2 -based memory elements. Capacitor-like Pt/HfO 2 (10 nm)/Pt and Ti/HfO 2 (10 nm)/TiN structures were fabricated on top of a tungsten pillar bottom electrode and integrated in-between two interconnect metal lines. First, quasi-static measurements were performed to apprehend the role of electrodes on electroforming, set and reset operations and their corresponding switching parameters. Memory elements with Pt as top and bottom electrodes exhibited a non-polar behavior with sharp decrease of current during reset operation while Ti/HfO 2 /TiN capacitors showed a bipolar switching behavior, with a gradual reset. In a second step, statistical distributions of switching parameters (voltage and resistance) were extracted from data obtained on few hundreds of capacitors. Even if the resistance in low resistive state and reset voltage was found to be comparable for both types of electrodes, the progressive reset operation observed on samples with Ti/TiN electrodes led to a lower variability of resistance in high resistive state and concomitantly of set voltage. In addition Ti–TiN electrodes enabled gaining: (i) lower forming and set voltages with significantly narrower capacitor-to-capacitor distributions; (ii) a better data retention capability (10 years at 65 °C instead of 10 years at 50 °C for Pt electrodes); (iii) satisfactory dynamic performances with lower set and reset voltages for ramp speed ranging from 10 −2 to 10 7 V/s. The significant improvement of switching behavior with Ti–TiN electrodes is mainly attributed to the formation of a native interface layer between HfO 2 oxide and Ti top electrode. - Highlights: ► HfO2 based capacitor-like structures were fabricated with Pt and Ti based electrodes. ► Influence of electrode materials on switching parameter variability is assessed.

  19. Systems and methods for producing low work function electrodes

    Science.gov (United States)

    Kippelen, Bernard; Fuentes-Hernandez, Canek; Zhou, Yinhua; Kahn, Antoine; Meyer, Jens; Shim, Jae Won; Marder, Seth R.

    2015-07-07

    According to an exemplary embodiment of the invention, systems and methods are provided for producing low work function electrodes. According to an exemplary embodiment, a method is provided for reducing a work function of an electrode. The method includes applying, to at least a portion of the electrode, a solution comprising a Lewis basic oligomer or polymer; and based at least in part on applying the solution, forming an ultra-thin layer on a surface of the electrode, wherein the ultra-thin layer reduces the work function associated with the electrode by greater than 0.5 eV. According to another exemplary embodiment of the invention, a device is provided. The device includes a semiconductor; at least one electrode disposed adjacent to the semiconductor and configured to transport electrons in or out of the semiconductor.

  20. Measurement of the Ru surface content of electrodeposited PtRu electrodes with the electrochemical quartz crystal microbalance: implications for methanol and CO electrooxidation

    NARCIS (Netherlands)

    Frelink, T.; Visscher, W.; Veen, van J.A.R.

    1996-01-01

    To obtain the surface content of Ru in rough electrocodeposited PtRu electrodes, the mass change of a Pt electrode during Ru deposition was measured with the electrochemical quartz crystal microbalance (EQCMB). It is shown that there is a correlation between the potential of the surface oxide

  1. Pt nanoparticle modified single walled carbon nanotube network electrodes for electrocatalysis: control of the specific surface area over three orders of magnitude

    NARCIS (Netherlands)

    Miller, T.S.; Sansuk, S.; Lai, Stanley; Macpherson, J.V.; Unwin, P.R.

    2015-01-01

    The electrodeposition of Pt nanoparticles (NPs) on two-dimensional single walled carbon nanotube (SWNT) network electrodes is investigated as a means of tailoring electrode surfaces with a well-defined amount of electrocatalytic material. Both Pt NP deposition and electrocatalytic studies are

  2. Pulse-electrodeposited PtSn nanocatalyst on pedot/graphene-based electrode for direct ethanol fuel cell application

    International Nuclear Information System (INIS)

    Mendoza, Maria Krisandra L.; Tongol, Bernard John V.

    2015-01-01

    Fuel cells are one of the most promising sources of renewable and clean energy because it offers higher energy densities and energy efficiencies. Improvements of catalyst material and catalyst preparation method have been one of the major topics studied on fuel cell technology. In this research, a method was optimized for the synthesis of PtSn nanocatalyst on PEDOT-modified graphene-based electrodes for direct ethanol fuel cells. The preparation of the electrode was done in three steps. First, a 20μL electrochemically exfoliated graphene (0.5 mg/mL) was dispersed on the surface of glassy carbon electrode and the electrode was dried at 60°C. Second, potentiodynamic electropolymerization of ethylenedioxythiophene (EDOT) was done using 0.01 M EDOT and 0.10 M HClO 4 on the graphene-based electrode at a potential range from 0 to 1.10 V (vs. Ag/AgCl) for 20 cycles at a scan rate of 50 mV/s. Lastly, pulse deposition of PtSn on the PEDOT/graphene electrode was done using 10 mM H 2 PtCl 6 ·6H 2 O in 0.10 M H 2 SO 4 solution and 10 mM SnCl 2 ·2H 2 O in 0.10 M HCl. Pulse deposition of PtSn nanoparticles was carried out using the following optimized parameters: -1.235 V of pulse potential for Pt and -0.362 V of pulse potential for Sn, with t o n/t o ff ratio of 0.1/5 s at 175 pulses. Electrocatalytic activity of the prepared nanocomposites was evaluated and compared towards ethanol oxidation using 1.0 M ethanol in 0.10 M H 2 SO 4 electrolyte solution from E= 0.0 V to E= 0.90 V (vs. Ag/AgCl) at a scan rate of 100 mV·s -1 . Atomic Force Microscopy (AFM) characterization is carried out for the pulse electrodeposited Pt nanocatalyst on glassy carbon electrode and PEDOT and on host matrices, i.e. PEDOT and graphene. AFM image of Pt nanoparticles on glassy carbon electrode shows bright particles that are uniformly distributed with average diameter of around 30-40 nm. Structural and physical characterization of the composites will be done using Energy Dispersive X-ray (EDX

  3. SFG study on potential-dependent structure of water at Pt electrode/electrolyte solution interface

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Hidenori; Okada, Tsubasa; Uosaki, Kohei [Physical Chemistry Laboratory, Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan)

    2008-10-01

    Structure of water at Pt/electrolyte solution interface was investigated by sum frequency generation (SFG) spectroscopy. Two broad peaks were observed in OH stretching region at ca. 3200 cm{sup -1} and ca. 3400 cm{sup -1}, which are known to be due to the symmetric OH stretching (U{sub 1}) of tetrahedrally coordinated, i.e., strongly hydrogen bonded 'ice-like' water, and the asymmetric OH stretching (U{sub 3}) of water molecules in a more random arrangement, i.e., weakly hydrogen bonded 'liquid-like' water, respectively. The SFG intensity strongly depended on electrode potential. Several possibilities are suggested for the potential dependence of the SFG intensity. (author)

  4. A long-term analysis of Pt counter electrodes for Dye-sensitized Solar Cells exploiting a microfluidic housing system

    Energy Technology Data Exchange (ETDEWEB)

    Sacco, Adriano, E-mail: adriano.sacco@iit.it [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Pugliese, Diego; Lamberti, Andrea [Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Castellino, Micaela; Chiodoni, Angelica [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Virga, Alessandro [Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Bianco, Stefano [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2015-07-01

    The study of the degradation process occurring in Dye-sensitized Solar Cells (DSCs) is still a hot topic, in view of the final industrialization and application of this class of devices. Currently the long-term analysis of DSCs is carried out on the entire devices, while the monitoring of cell components cannot be performed in situ directly on the materials, but only through indirect methods. In this paper we report on the analysis of two different kinds of Pt counter electrodes through direct measurements performed under real operating conditions, thanks to the use of a home-made microfluidic housing system, which allows the opening and the investigation of the cell components. The counter electrode samples were studied through X-Ray Photoelectron Spectroscopy, Field Emission Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, UV–visible Spectroscopy and Electrochemical Impedance Spectroscopy for a period longer than 1 year. The results showed that the performances of both classes of Pt counter electrodes remained stable for all the investigation period, despite some slight variation of the morphology. DSCs fabricated employing aged counter electrodes exhibited the same photovoltaic performance behavior of reference cells using fresh-produced counter electrodes, thus demonstrating that both class of materials do not undergo degradation during normal operating conditions. - Highlights: • The analysis of Pt counter electrodes for Dye-sensitized Solar Cells was carried out. • Two families of counter electrodes were studied for a period longer than 1 year. • The analyzed samples were investigated in real operating condition. • A small detachment of the Pt clusters in the thermal samples was observed. • The charge transfer properties remained unchanged for all the investigation period.

  5. Detection of dopamine in non-treated urine samples using glassy carbon electrodes modified with PAMAM dendrimer-Pt composites

    International Nuclear Information System (INIS)

    Garcia, M.G.; Armendariz, G.M.E.; Godinez, Luis A.; Torres, J.; Sepulveda-Guzman, S.; Bustos, E.

    2011-01-01

    Composites of hydroxyl-terminated PAMAM dendrimers, generation 4.0 (64 peripheral OH groups) containing Pt nanoparticles were synthesized at different reaction times using a microwave reactor. The synthetic procedure resulted in dendrimer encapsulated nanoparticles of Pt (DENs-Pt) of 1.53 ± 0.17 nm diameter that was calculated from transmission electron microscopy, and the Pt nanoparticles had single crystal plane in (1 1 1) orientation determinate by selective area diffraction. Each composite was electrochemically immobilized on a pre-functionalized glassy carbon (GC) electrode that was incorporated as a flow injection amperometric (FIA) detector, for the selective detection and quantification of dopamine (DA) in untreated urine samples. Comparison of the analytical performance of the novel electrochemical detector revealed that the DENs-Pt modified GC electrode with the composite synthesized for 30 min in the microwave reactor, showed the best response for the detection of DA in samples of non-treated urine, being the detection and quantification limits smaller (19 and 9 ppb, respectively) than those corresponding to the naked a GC electrode (846 and 423 ppb, respectively) using the FIA detector. In addition, it was found that this electroanalytical approach suffers minimal matrix effects that arise in the analysis of DA in untreated samples of urine.

  6. Detection of dopamine in non-treated urine samples using glassy carbon electrodes modified with PAMAM dendrimer-Pt composites

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.G. [Laboratory of Bioelectrochemistry, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S. C., Parque Tecnologico, Queretaro, Sanfandila, Pedro Escobedo 76703, Queretaro (Mexico); Department of Chemistry, Universidad de Guanajuato, Cerro de la Venada S/N Col. Pueblito de Rocha, 36040 Guanajuato, Gto (Mexico); Armendariz, G.M.E.; Godinez, Luis A.; Torres, J. [Laboratory of Bioelectrochemistry, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S. C., Parque Tecnologico, Queretaro, Sanfandila, Pedro Escobedo 76703, Queretaro (Mexico); Sepulveda-Guzman, S. [Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Universidad, San Nicolas de los Garza, Nuevo Leon, 66451 Nuevo Leon (Mexico); Bustos, E., E-mail: ebustos@cideteq.mx [Laboratory of Bioelectrochemistry, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S. C., Parque Tecnologico, Queretaro, Sanfandila, Pedro Escobedo 76703, Queretaro (Mexico)

    2011-09-01

    Composites of hydroxyl-terminated PAMAM dendrimers, generation 4.0 (64 peripheral OH groups) containing Pt nanoparticles were synthesized at different reaction times using a microwave reactor. The synthetic procedure resulted in dendrimer encapsulated nanoparticles of Pt (DENs-Pt) of 1.53 {+-} 0.17 nm diameter that was calculated from transmission electron microscopy, and the Pt nanoparticles had single crystal plane in (1 1 1) orientation determinate by selective area diffraction. Each composite was electrochemically immobilized on a pre-functionalized glassy carbon (GC) electrode that was incorporated as a flow injection amperometric (FIA) detector, for the selective detection and quantification of dopamine (DA) in untreated urine samples. Comparison of the analytical performance of the novel electrochemical detector revealed that the DENs-Pt modified GC electrode with the composite synthesized for 30 min in the microwave reactor, showed the best response for the detection of DA in samples of non-treated urine, being the detection and quantification limits smaller (19 and 9 ppb, respectively) than those corresponding to the naked a GC electrode (846 and 423 ppb, respectively) using the FIA detector. In addition, it was found that this electroanalytical approach suffers minimal matrix effects that arise in the analysis of DA in untreated samples of urine.

  7. A novel enzymatic glucose sensor based on Pt nanoparticles-decorated hollow carbon spheres-modified glassy carbon electrode

    Science.gov (United States)

    Luhana, Charles; Bo, Xiang-Jie; Ju, Jian; Guo, Li-Ping

    2012-10-01

    A new glucose biosensor was developed based on hollow carbon spheres decorated with platinum nanoparticles (Pt/HCSs)-modified glassy carbon electrode immobilized with glucose oxidase (GOx) with the help of Nafion. The Pt nanoparticles were well dispersed on the HCSs with an average size of 2.29 nm. The detection of glucose was achieved via electrochemical detection of the enzymatically liberated H2O2 at +0.5 V versus Ag/AgCl at physiologic pH of 7.4. The Pt/HCSs-modified electrode exhibited excellent electrocatalytic activities toward both the oxidation and reduction of H2O2. The glucose biosensor showed good electrocatalytic performance in terms of high sensitivity (4.1 μA mM-1), low detection limit (1.8 μM), fast response time tested with this biosensor and a good recovery was achieved for the two spiked serum samples.

  8. Electrochemical oxidation of ammonia-containing wastewater using Ti/RuO2-Pt electrode

    Directory of Open Access Journals (Sweden)

    Wei-wu Hu

    2009-12-01

    Full Text Available The electrochemical oxidation degradation processes for artificial and actual wastewater containing ammonia were carried out with a Ti/RuO2-Pt anode and a Ti plate cathode. We studied the effects of different current densities, space sizes between the two electrodes, and amounts of added NaCl on ammonia-containing wastewater treatment. It was shown that, after a 30-min treatment under the optimal conditions, which were a current density of 20 mA/cm2, a space size between the two electrodes of 1 cm, and an added amount of 0.5 g/L of NaCl, the COD concentration in municipal wastewater was 40 mg/L, a removal rate of 90%; and the NH3-N concentration was 7 mg/L, a removal rate of 88.3%. The effluent of municipal wastewater qualified for Class A of the Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB18918-2002.

  9. Electrochemical degradation of Ibuprofen on Ti/Pt/PbO{sub 2} and Si/BDD electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ciriaco, L.; Anjo, C.; Correia, J.; Pacheco, M.J. [Department of Chemistry, UMTP, University of Beira Interior, 6201-001 Covilha (Portugal); Lopes, A. [Department of Chemistry, UMTP, University of Beira Interior, 6201-001 Covilha (Portugal)], E-mail: analopes@ubi.pt

    2009-02-01

    The electrochemical oxidation of Ibuprofen (Ibu) was performed using a Ti/Pt/PbO{sub 2} electrode as the anode, prepared according to literature, and a boron doped diamond (BDD) electrode, commercially available at Adamant Technologies. Tests were performed with model solutions of Ibu, with concentrations ranging from 0.22 to 1.75 mM for the Ti/Pt/PbO{sub 2} electrode and 1.75 mM for the BDD electrode, using 0.035 M Na{sub 2}SO{sub 4} as the electrolyte, in a batch cell, at different current densities (10, 20 and 30 mA cm{sup -2}). Absorbance measurements, Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) tests were conducted for all samples. The results have shown a very good degradation of Ibu, with COD removals between 60 and 95% and TOC removals varying from 48 to 92%, in 6 h experiments, with higher values obtained with the BDD electrode. General Current Efficiency and Mineralization Current Efficiency, determined for both electrodes, show a similar behaviour for 20 mA cm{sup -2} but a very different one at 30 mA cm{sup -2}. The combustion efficiency was also determined for both anodes, and found to be slightly higher with BDD at lower current density and equal to 100% for both anodes at 30 mA cm{sup -2}.

  10. First principles study of (Cd, Hg, In, Tl, Sn, Pb, As, Sb, Bi, Se) modified Pt(111), Pt(100) and Pt(211) electrodes as CO oxidation catalysts

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir

    2015-01-01

    . The coverage dependence as a function of potential for ten different adatom species (Cd, Hg, In, Tl, Sn, Pb, As, Sb, Bi, Se) on bare and CO saturated Pt(111), Pt(100) and Pt(211) surfaces has been established by means of Density Functional Theory calculations. Most of the adatoms are very stable under standard......, given by the OH formation potentials from water, is dependent on the oxophilicity of the adatoms, and is found to scale almost inversely with the adatom stability. In electrolyte solutions saturated with CO, the stability reduces to roughly half of that on bare Pt surfaces. Irrespective of the CO...

  11. Influence of Nafion film on oxygen reduction reaction and hydrogen peroxide formation on Pt electrode for proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Ohma, Atsushi; Fushinobu, Kazuyoshi; Okazaki, Ken

    2010-01-01

    The influence of Nafion film on ORR kinetics and H 2 O 2 formation on a Pt electrode was investigated using RRDE in 0.1 M HClO 4 . It was found that the Nafion-coated Pt system showed lower apparent ORR activity and more H 2 O 2 production than the bare Pt electrode system. From the temperature sensitivity, it was revealed that the apparent activation energies of ORR in the Nafion-coated Pt system were lower than the bare Pt electrode system, and the H 2 O 2 formation was suppressed with the increase of the temperature. In order to analyze the results furthermore, other systems (0.1/1.0 M, HClO 4 /CF 3 SO 3 H) with the bare Pt electrodes were also examined as references. It was exhibited that the ORR kinetic current, the H 2 O 2 formation, and the apparent activation energies of 1.0 M CF 3 SO 3 H system were close to those of the Nafion-coated Pt system. We concluded that the orientation of anion species of Nafion and CF 3 SO 3 H to the Pt surface via water molecules, as well as a fluorocarbon polymer network of Nafion, might block O 2 adsorption, resulting in the smaller effective surface area of the Pt electrode for ORR, the smaller ORR kinetic current, and the more H 2 O 2 production.

  12. Effects of Nanowire Length and Surface Roughness on the Electrochemical Sensor Properties of Nafion-Free, Vertically Aligned Pt Nanowire Array Electrodes

    Directory of Open Access Journals (Sweden)

    Zhiyang Li

    2015-09-01

    Full Text Available In this paper, vertically aligned Pt nanowire arrays (PtNWA with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H2O2 detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM−1·cm−2 among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors.

  13. Flower-Like Nanoparticles of Pt-BiIII Assembled on Agmatine Sulfate Modified Glassy Carbon Electrode and Their Electrocatalysis of H2O2

    Science.gov (United States)

    Xiao, Mingshu; Yan, Yuhua; Feng, Kai; Tian, Yanping; Miao, Yuqing

    2015-04-01

    A new electrochemical technique to detect hydrogen peroxide (H2O2) was developed. The Pt nanoparticles and BiIII were subsequently assembled on agmatine sulfate (AS) modified glassy carbon electrode (GCE) and the prepared GCE-AS-Pt-BiIII was characterized by scanning electron microscopy (SEM) with result showing that the flower-like nanostructure of Pt-BiIII was yielded. Compared with Pt nanoparticles, the flower-like nanostructure of Pt-BiIII greatly enhanced the electrocatalysis of GCE-AS-Pt-BiIII towards H2O2, which is ascribed to more Pt-OH obtained on GCE-AS-Pt-BiIII surface for the presence of BiIII. Based on its high electrocatalysis, GCE-AS-Pt-BiIII was used to determine the content of H2O2 in the sample of sheet bean curd with standard addition method. Meantime, its electrocatalytic activity also was studied.

  14. Dielectric and magnetic characterizations of capacitor structures with an ionic liquid/MgO barrier and a ferromagnetic Pt electrode

    Directory of Open Access Journals (Sweden)

    D. Hayakawa

    2016-11-01

    Full Text Available The dielectric and magnetic properties of electric double layer (EDL capacitor structures with a perpendicularly magnetized Pt/Co/Pt electrode and an insulating cap layer (MgO are investigated. An electric field is applied through a mixed ionic liquid/MgO barrier to the surface of the top Pt layer, at which the magnetic moment is induced by the ferromagnetic proximity effect. The basic dielectric properties of the EDL capacitor are studied by varying the thickness of the MgO cap layer. The results indicate that the capacitance, i.e., the accumulated charge density at the Pt surface, is reduced with increasing the MgO thickness. From the MgO thickness dependence of the capacitance value, the effective dielectric constant of the ionic liquid is evaluated. Almost no electric field effect on the magnetic moment, the coercivity, or the Curie temperature is confirmed in the top Pt layer with the thickness of 1.3 nm, regardless of the presence or absence of the MgO cap layer, whereas the a clear change in the magnetic moment is observed when the top Pt layer is replaced by a Pd layer of 1.7 nm.

  15. Hydrogen spillover phenomenon: Enhanced reversible hydrogen adsorption/desorption at Ta{sub 2}O{sub 5}-coated Pt electrode in acidic media

    Energy Technology Data Exchange (ETDEWEB)

    Sata, Shunsuke [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259-G1-5 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Awad, Mohamed I.; El-Deab, Mohamed S. [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259-G1-5 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Department of Chemistry, Faculty of Science, Cairo University, Cairo (Egypt); Okajima, Takeyoshi [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259-G1-5 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Ohsaka, Takeo, E-mail: ohsaka@echem.titech.ac.j [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259-G1-5 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan)

    2010-04-01

    The current study is concerned with the preparation and characterization of tantalum oxide-loaded Pt (TaO{sub x}/Pt) electrodes for hydrogen spillover application. XPS, SEM, EDX and XRD techniques are used to characterize the TaO{sub x}/Pt surfaces. TaO{sub x}/Pt electrodes were prepared by galvanostatic electrodeposition of Ta on Pt from LiF-NaF (60:40 mol%) molten salts containing K{sub 2}TaF{sub 7} (20 wt%) at 800 deg. C and then by annealing in air at various temperatures (200, 400 and 600 deg. C). The thus-fabricated TaO{sub x}/Pt electrodes were compared with the non-annealed Ta/Pt and the unmodified Pt electrodes for the hydrogen adsorption/desorption (H{sub ads}/H{sub des}) reaction. The oxidation of Ta to the stoichiometric oxide (Ta{sub 2}O{sub 5}) increases with increasing the annealing temperature as revealed from XPS and X-ray diffraction (XRD) measurements. The higher the annealing temperature the larger is the enhancement in the H{sub ads}/H{sub des} reaction at TaO{sub x}/Pt electrode. The extraordinary increase in the hydrogen adsorption/desorption at the electrode annealed at 600 deg. C is explained on the basis of a hydrogen spillover-reverse spillover mechanism. The hydrogen adsorption at the TaO{sub x}/Pt electrode is a diffusion-controlled process.

  16. Voltammetric measurement of the Pt electrode capacity and the determination of the polyvalent ions diffusion coefficients in the glass melt

    Czech Academy of Sciences Publication Activity Database

    Vondrák, Jiří; Rohanová, D.; Klápště, Břetislav; Velická, Jana

    2003-01-01

    Roč. 47, č. 2 (2003), s. 51-55 ISSN 0862-5468 R&D Projects: GA AV ČR IAA4032002 Institutional research plan: CEZ:AV0Z4032918; CEZ:MSM 262200010 Keywords : electric capacity of pt electrode * polyvalent ions * Fe3- and Cr3- ions Subject RIV: CA - Inorganic Chemistry Impact factor: 0.449, year: 2003

  17. Influence of thin film thickness of working electrodes on photovoltaic characteristics of dye-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Lai Yeong-Lin

    2017-01-01

    Full Text Available This paper presents the study of the influence of thin film thickness of working electrodes on the photovoltaic characteristics of dye-sensitized solar cells. Titanium dioxide (TiO2 thin films, with the thickness from 7.67 to 24.3 μm, were used to fabricate the working electrodes of dye-sensitized solar cells (DSSCs. A TiO2 film was coated on a fluorine-doped tin oxide (FTO conductive glass substrate and then sintered in a high-temperature furnace. On the other hand, platinum (Pt solution was coated onto an FTO substrate for the fabrication of the counter electrode of a DSSC. The working electrode immersed in a dye, the counter electrode, and the electrolyte were assembled to complete a sandwich-structure DSSC. The material analysis of the TiO2 films of DSSCs was carried out by scanning electron microscopy (SEM and ultraviolet-visible (UV-Vis spectroscopy, while the photovoltaic characteristics of DSSCs were measured by an AM-1.5 sunlight simulator. The light transmittance characteristics of the TiO2 working electrode depend on the TiO2 film thickness. The thin film thickness of the working electrode also affects the light absorption of a dye and results in the photovoltaic characteristics of the DSSC, including open-circuited voltage (VOC, short-circuited current density (JSC, fill factor, and photovoltaic conversion efficiency.

  18. On the Electrooxidation and Amperometric Detection of NO Gas at the Pt/Nafion® Electrode

    Directory of Open Access Journals (Sweden)

    Jin-Cherng Yang

    2003-08-01

    Full Text Available The electrochemical oxidation of nitric oxide (NO gas at the Pt/Nafion® electrode has been studied at a concentration of 500 ppm. The electrooxidation of NO taking place over a wide potential range can be described by a transcendental equation, from which the half-wave potential of the reaction can be determined. For NO oxidation with appreciable overpotentials but negligible mass-transfer effects, the Tafel kinetics applies. The obtained charge transfer coefficient (a and the exchange current density (io are 0.77 and 14 mA/cm2, respectively. An amperometric NO gas sensor based on the Pt/Nafion® electrode has been fabricated and tested over the NO concentration range from 0 to 500 ppm. The Pt/Nafion® electrode was used as an anode at a fixed potential, preferably 1.15 V (vs. Ag/AgCl/sat. KCl, which assures current limitation by diffusion only. The sensitivity of the electrochemical sensor was found to be 1.86 mA/ppm/cm2. The potential interference by other gases, such as nitrogen dioxide (NO2 and carbon monoxide (CO, was also studied in the range 0-500 ppm. Both sensitivity for NO and selectivity of NO over NO2/CO show significant enhancement upon using a cyclic voltammetric (CV activation, or cleaning procedure.

  19. Pt-MWCNT modified carbon electrode strip for rapid and quantitative detection of H2O2 in food

    Directory of Open Access Journals (Sweden)

    Tai-Cheng Chou

    2018-04-01

    Full Text Available A single-use screen-printed carbon electrode strip was designed and fabricated. Nanohybrids, prepared by deposition of platinum (Pt nanoparticles on multi-wall carbon nanotube (MWCNT, was modified on the surface of screen-printed carbon electrode for the development of a fast, sensitive and cost-effective hydrogen peroxide (H2O2 detection amperometric sensor strip. With Pt-MWCNT nanohybrids surface modification, current generated in response to H2O2 by the screen-printed carbon electrode strip was enhanced 100 fold with an applied potential of 300 mV. Quality of as-prepared electrode strip was assured by the low coefficient of variation (CV (<5% of currents measured at 5 s. Three linear detection ranges with sensitivity of 75.2, 120.7, and 142.8 μA mM−1 cm−2 were observed for H2O2 concentration in the range of 1–15 mM, 0.1–1 mM, and 10–100 μM, respectively. The lowest H2O2 concentration could be measured by the as-prepared strip was 10 μM. H2O2 levels in green tea infusion and pressed Tofu could be rapidly detected with results comparable to that measured by ferrous oxidation xylenol orange (FOX assay and peroxidase colorimetric method. Keywords: Platinum-multi-wall carbon nanotube (Pt-MWCNT, Disposable carbon electrode, Hydrogen peroxide (H2O2, Amperometric sensor

  20. Enhanced dielectric constant and fatigue-resistance of PbZr0.4Ti0.6O3 capacitor with magnetic intermetallic FePt top electrode

    Science.gov (United States)

    Liu, B. T.; Zhao, J. W.; Li, X. H.; Zhou, Y.; Bian, F.; Wang, X. Y.; Zhao, Q. X.; Wang, Y. L.; Guo, Q. L.; Wang, L. X.; Zhang, X. Y.

    2010-06-01

    Both FePt/PbZr0.4Ti0.6O3(PZT)/Pt and Pt/PZT/Pt ferroelectric capacitors have been fabricated on Si substrates. It is found that up to 109 switching cycles, the FePt/PZT/Pt capacitor, measured at 50 kHz, with polarization decreased by 57%, is superior to the Pt/PZT/Pt capacitor by 82%, indicating that an intermetallic FePt top electrode can also improve the fatigue-resistance of a PZT capacitor. Maximum dielectric constants are 980 and 770 for PZT capacitors with FePt and Pt, respectively. This is attributed to the interface effect between PZT film and the top electrode since the interfacial capacitance of FePt/PZT is 3.5 times as large as that of Pt/PZT interface.

  1. Nonenzymatic sensing of glucose at neutral pH values using a glassy carbon electrode modified with graphene nanosheets and Pt-Pd bimetallic nanocubes

    International Nuclear Information System (INIS)

    Chen, Xiaomei; Tian, Xiaotian; Zhao, Limin; Huang, Zhiyong; Oyama, Munetaka

    2014-01-01

    We report on a nonenzymatic method for the determination of glucose using an electrode covered with graphene nanosheets (GNs) modified with Pt-Pd nanocubes (PtPdNCs). The latter were prepared on GNs by using N,N-dimethylformamide as a bifunctional solvent for the reduction of both metallic precursors and graphene oxide, and for confining the growth of PtPdNCs on the surface. The modified electrode displays strong and sensitive current response to the electrooxidation of glucose, notably at pH 7. The sensitivities increase in the order of Pt 1 Pd 5 NCs< Pt 1 Pd 3 NCs< Pt 5 Pd 1 NCs< Pt 3 Pd 1 NCs< Pt 1 Pd 1 NCs. At an applied potential of +0.25 V, the electrode responds linearly (R = 0.9987) to glucose in up to 24.5 mM concentration, with a sensitivity of 1.4 μA cm −2 M −1 . The sensor is not poisoned by chloride, and not interfered by ascorbic acid, uric acid and p-acetamidophenol under normal physiological conditions. The modified electrode also displays a wide linear range, good stability and fast amperometric response, thereby indicating the potential of the bimetallic materials for nonenzymatic sensing of glucose. (author)

  2. Synthesis and electrochemical study of Pt-based nanoporous materials

    International Nuclear Information System (INIS)

    Wang Jingpeng; Holt-Hindle, Peter; MacDonald, Duncan; Thomas, Dan F.; Chen Aicheng

    2008-01-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells

  3. Synthesis and electrochemical study of Pt-based nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jingpeng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Holt-Hindle, Peter; MacDonald, Duncan [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Thomas, Dan F. [Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Chen Aicheng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada)], E-mail: aicheng.chen@lakeheadu.ca

    2008-10-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells.0.

  4. Synthesis and electrochemical study of Pt-based nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingpeng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Holt-Hindle, Peter; MacDonald, Duncan; Chen, Aicheng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Thomas, Dan F. [Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada)

    2008-10-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells. (author)

  5. The influence of boron dopant on the electrochemical properties of graphene as an electrode material and a support for Pt catalysts

    International Nuclear Information System (INIS)

    Bo, Xiangjie; Li, Mian; Han, Ce; Guo, Liping

    2013-01-01

    Highlights: •More defective sites in graphene after the doping of boron atoms. •Fine dispersion of Pt nanoparticles supported on boron-doped graphene. •Low electron transfer resistance at boron-doped graphene. •High performance of boron-doped graphene as an electrode material or a support for Pt catalysts. -- Abstract: Boron-doped graphene (BGR) is prepared by thermal annealing of graphene oxide (GO) in the presence of boric acid. More defective sites are introduced into GR accompanied by the doping of boron. Low electron transfer resistance towards redox probe is observed at BGR. The BGR modified electrode can effectively distinguish the anodic peaks for ascorbic acid (AA), dopamine (DA), and uric acid (UA). The defective sites of BGR can also act as anchoring sites for the deposition of Pt nanoparticles. When used as a support for Pt electrocatalysts, Pt nanoparticles with an average diameter of 3.2 nm are deposited on BGR. The doping of boron into GR facilitates the dispersion of Pt nanoparticles and increases the utilization efficiency of Pt nanoparticles. The Pt/BGR exhibits significant catalytic activity towards the oxidation of methanol. The results demonstrate that BGR is a good support for Pt catalysts or an electrode material compared with the undoped GR

  6. The nonenzyme ethanol sensor based on pt nps and fe/sub 3/O/sub 4/ mnps modified au electrode

    International Nuclear Information System (INIS)

    Wan, J.; Ma, X.; Yin, G.

    2013-01-01

    The none enzyme ethanol sensor was prepared using Pt nanoparticles (NPs) and Fe/sub 3/O/sub 4/ magnetic nanoparticles (MNPs) modified Au electrode. Pt NPs were deposited on the gold plated electrode through the method of potentiostatic deposition. Fe/sub 3/O/sub 4/ magnetic nanoparticles were added to the surface of Pt NPs modified Au electrode to obtain the Au/Pt/ Fe/sub 3/O/sub 4/ MNPs electrode. The as-prepared Au/Pt/Fe/sub 3/O/sub 4/ MNPs electrode was used for the detection of liquid ethanol without using enzyme. Cyclic voltammetry and differential pulse voltammetry were used to study the behavior of ethanol electro-catalytic oxidation on Pt/Au/Fe/sub 3/O/sub 4/ electrode. It was found that Pt NPs played strong catalytic oxidation role of ethanol with the presence of Fe/sub 3/O/sub 4/ MNPs. The linear range of Au/Pt/Fe/sub 3/O/sub 4/ MNPs electrode for the detection of ethanol was of 2 x 10 /sup -5/ 1.1 x 10/sup -4/ mol L/sup -1/ and the detection limit was of 3.2 x 10/sup -6/ mol L/sup -5/ when signal to noise ratio was 3sigma. The sensibility of the sensor is 420.4 microA mmol/sup -1/ /sup -2cm/. The simple method provided an effective means for fabricating the novel sensors. (author)

  7. Economical low-light photovoltaics by using the Pt-free dye-sensitized solar cell with graphene dot/PEDOT:PSS counter electrodes

    KAUST Repository

    Lee, Chuan Pei

    2015-10-23

    Graphene dots (GDs) are used for enhancing the performance of the poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS)-based counter electrodes in Pt-free dye-sensitized solar cells (DSSCs). As compared to PEDOT:PSS CEs, GD-PEDOT:PSS films possess a rough surface morphology, high conductivity and electrocatalytic activity, and low charge-transfer resistance toward I/I redox reaction, pushing cell efficiency to 7.36%, which is 43% higher than that of the cell with PEDOT:PSS CEs (5.14%). Without much impact on efficiency, the DSSCs with GD-PEDOT:PSS CEs work well under low-light conditions (light intensity <13.5mWcm and angle of incidence >60°), such as indoor and low-level outdoor lighting and of the sun while the other traditional cells would fail to work. The concurrent advantage in low cost in Pt-free materials, simple fabrication processes, comparable efficiency with Pt CEs, and high performance under low-light conditions makes the DSSC with GD-PEDOT:PSS CEs suitable to harvest light for a diverse range of indoor and low-level outdoor lighting locations.

  8. Flexible conductive-bridging random-access-memory cell vertically stacked with top Ag electrode, PEO, PVK, and bottom Pt electrode

    Science.gov (United States)

    Seung, Hyun-Min; Kwon, Kyoung-Cheol; Lee, Gon-Sub; Park, Jea-Gun

    2014-10-01

    Flexible conductive-bridging random-access-memory (RAM) cells were fabricated with a cross-bar memory cell stacked with a top Ag electrode, conductive polymer (poly(n-vinylcarbazole): PVK), electrolyte (polyethylene oxide: PEO), bottom Pt electrode, and flexible substrate (polyethersulfone: PES), exhibiting the bipolar switching behavior of resistive random access memory (ReRAM). The cell also exhibited bending-fatigue-free nonvolatile memory characteristics: i.e., a set voltage of 1.0 V, a reset voltage of -1.6 V, retention time of >1 × 105 s with a memory margin of 9.2 × 105, program/erase endurance cycles of >102 with a memory margin of 8.4 × 105, and bending-fatigue-free cycles of ˜1 × 103 with a memory margin (Ion/Ioff) of 3.3 × 105.

  9. Bifunctional electrodes with ir and Ru oxide mixtures and pt for unified regenerative cells; Electrodos bifuncionales basados en mezclas de oxidos de Ir y Ru con Pt para celdas regenerativas unificadas

    Energy Technology Data Exchange (ETDEWEB)

    Duron-Torres, S.M.; Escalante-Garcia, I.L. [Universidad Autonoma de Zacatecas, Zacatecas (Mexico); Cruz, J. C.; Arriaga-Hurtado; L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Pedro Escobedo, Queretaro (Mexico)]. E-mail: duronsm@prodigy.net.mx

    2009-09-15

    Unified regenerative fuel cells (URFC) represent an attractive option to obtain hydrogen and generate energy using a compact device. Nevertheless, the fusion of a fuel cell (PEMFC) and a water electrolyzer continue to be a challenge because of the wide range of conditions to which this type of device is subject. Because of its kinetic characteristics, oxygen reduction reaction (ORR) in PEMFC and oxygen evolution reaction (OER) in PEMWE are the limiting stages of the URFC depending on the mode of operation. The primary focus of research related to URFC is the obtainment of bifunctional electrocatalysts that satisfactorily perform in both oxygen reactions and support the different working conditions found in a fuel cell and an electrolyzer. The present work contributes to the research on bifunctional electrocatalysts and shows some preliminary results from the electrochemical study of different Pt gcc, IrO{sub 2} and RuO{sub 2} mixtures supported in Ebonex® as oxygen electrodes. The electrochemical characterization with cyclic voltamperometry (CV), linear voltamperometry (LV) and electrochemical impedance spectroscopy (EIS) in H{sub 2}SO{sub 4} 0.5 M, in the absence and present of oxygen shows that Ebonex®-supported bifunctional electrodes IrO{sub 2}-Pt and RuO{sub 2}-Pt present reasonable electrocatalytic properties for oxygen evolution and reduction reactions and present the possibility of their use in an URFC. The Ir- based oxide electrodes show greater stability than ruthenium-oxide electrodes. [Spanish] Las celdas de combustible regenerativas unificadas (URFC) representan una atractiva opcion para la obtencion de hidrogeno y generacion de energia en un dispositivo compacto. Sin embargo, la fusion de una celda de combustible (PEMFC) y un electrolizador de agua (PEMWE) sigue siendo un reto por la amplia gama de condiciones a que se sujeta un dispositivo de este tipo. Por sus caracteristicas cineticas, la reaccion de reduccion de oxigeno (ORR) en la PEMFC y la

  10. A novel enzymatic glucose sensor based on Pt nanoparticles-decorated hollow carbon spheres-modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Luhana, Charles; Bo Xiangjie; Ju Jian; Guo Liping

    2012-01-01

    A new glucose biosensor was developed based on hollow carbon spheres decorated with platinum nanoparticles (Pt/HCSs)-modified glassy carbon electrode immobilized with glucose oxidase (GOx) with the help of Nafion. The Pt nanoparticles were well dispersed on the HCSs with an average size of 2.29 nm. The detection of glucose was achieved via electrochemical detection of the enzymatically liberated H 2 O 2 at +0.5 V versus Ag/AgCl at physiologic pH of 7.4. The Pt/HCSs-modified electrode exhibited excellent electrocatalytic activities toward both the oxidation and reduction of H 2 O 2 . The glucose biosensor showed good electrocatalytic performance in terms of high sensitivity (4.1 μA mM −1 ), low detection limit (1.8 μM), fast response time m ) and the maximum current density (i max ) values for the biosensor were 10.94 mM and 887 μA cm −2 respectively. Furthermore, this biosensor showed an acceptable reproducibility and high stability. The interfering signals from ascorbic acid and uric acid at concentration levels normally found in human blood were not much compared with the response to glucose. Blood serum samples were also tested with this biosensor and a good recovery was achieved for the two spiked serum samples.

  11. Temperature effect on the electrode kinetics of ethanol oxidation on Pd modified Pt electrodes and the estimation of intermediates formed in alkali medium

    International Nuclear Information System (INIS)

    Mahapatra, S.S.; Dutta, A.; Datta, J.

    2010-01-01

    Ethanol has been recognized as the ideal fuel for direct alcohol fuel cell (DAFC) systems due to its high energy density, non-toxicity and its bio-generation. However the complete conversion of ethanol to CO 2 is still met with challenges, due to dearth of suitable catalysts for the electro-oxidation. In the present work the effect of temperature on the catalytic oxidation of ethanol in alkaline medium over electrodeposited Pt and Pt-Pd alloyed nano particles on carbon support and also on the product formation during the course of reaction have been studied within the temperature range of 20-80 o C. The information on surface morphology, structural characteristics and bulk composition of the catalyst was obtained using SEM, XRD and EDX. BET surface area and pore widths of the catalyst particles were calculated by applying the BET equation to the adsorption isotherms. The electrochemical techniques like cyclic voltammetry, chronoamperometry and impedance spectroscopy were employed to investigate the electrochemical parameters related to electro-oxidation of ethanol in alkaline pH on the catalyst surfaces under the influence of temperature. The results show that the oxidation kinetics of ethanol on the alloyed Pt-Pd/C catalysts is significantly improved compared to that on Pt alone. The observations were interpreted in terms of the synergistic effect of higher electrochemical surface area, preferred OH - adsorption on the surface and the ad-atom contribution of the alloyed matrix. A pronounced influence of temperature on the reaction kinetics was manifested in the diminution of charge transfer resistance and activation energy of the ethanol oxidation with Pd incorporation into the Pt matrix, ensuring greater tolerance of the alloyed catalyst towards ethanolic residues. The higher yield of the reaction products like acetate and CO 3 -2 on the alloyed catalyst compared to Pt alone in alkaline medium, as estimated by ion chromatography, further substantiates the

  12. The CdS/CdSe/ZnS Photoanode Cosensitized Solar Cells Basedon Pt, CuS, Cu2S, and PbS Counter Electrodes

    Directory of Open Access Journals (Sweden)

    Tung Ha Thanh

    2014-01-01

    Full Text Available Highly ordered mesoporous TiO2 modified by CdS, CdSe, and ZnS quantum dots (QDs was fabricated by successive ionic layer adsorption and reaction (SILAR method. The quantity of material deposition seems to be affected not only by the employed deposition method but also and mainly by the nature of the underlying layer. The CdS, CdSe, and ZnS QDs modification expands the photoresponse range of mesoporous TiO2 from ultraviolet region to visible range, as confirmed by UV-Vis spectrum. Optimized anode electrodes led to solar cells producing high current densities. Pt, CuS, PbS, and Cu2S have been used as electrocatalysts on counter electrodes. The maximum solar conversion efficiency reached in this work was 1.52% and was obtained by using Pt electrocatalyst. CuS, PbS, and Cu2S gave high currents and this was in line with the low charge transfer resistances recorded in their case.

  13. High performance polymer electrolyte fuel cells with ultra-low Pt loading electrodes prepared by dual ion-beam assisted deposition

    International Nuclear Information System (INIS)

    Saha, Madhu Sudan; Gulla, Andrea F.; Allen, Robert J.; Mukerjee, Sanjeev

    2006-01-01

    Ultra-low pure Pt-based electrodes (0.04-0.12 mg Pt /cm 2 ) were prepared by dual ion-beam assisted deposition (dual IBAD) method on the surface of a non-catalyzed gas diffusion layer (GDL) substrate. Film thicknesses ranged between 250 and 750 A, these are compared with a control, a conventional Pt/C (1.0 mg Pt(MEA) /cm 2 , E-TEK). The IBAD electrode constituted a significantly different morphology, where low density Pt deposits (largely amorphous) were formed with varying depths of penetration into the gas diffusion layer, exhibiting a gradual change towards increasing crystalline character (from 250 to 750 A). Mass specific power density of 0.297 g Pt /kW is reported with 250 A IBAD deposit (0.04 mg Pt /cm 2 for a total MEA loading of 0.08 mg Pt /cm 2 ) at 0.65 V. This is contrasted with the commercial MEA with a loading of 1 mg Pt(MEA) /cm 2 where mass specific power density obtained was 1.18 g Pt /kW (at 0.65 V), a value typical of current state of the art commercial electrodes containing Pt/C. The principal shortcoming in this effort is the area specific power density which was in the range of 0.27-0.43 W/cm 2 (for 250-750 A IBAD) at 0.65 V, hence much below the automotive target value of 0.8-0.9 W/cm 2 (at 0.65 V). An attempt to mitigate these losses is reported with the use of patterning. In this context a series of patterns ranging from 45 to 80% Pt coverage were used in conjunction with a hexagonal hole geometry. Up to 30% lowering of mass transport losses were realized

  14. Preferential growth and enhanced dielectric properties of Ba0.7Sr0.3TiO3 thin films with preannealed Pt bottom electrode

    International Nuclear Information System (INIS)

    Zhu Xiaohong; Ren Yinjuan; Zhang Caiyun; Zhu Jiliang; Zhu Jianguo; Xiao Dingquan; Defaÿ, Emmanuel; Aïd, Marc

    2013-01-01

    Ba 0.7 Sr 0.3 TiO 3 (BST) thin films, about 100 nm in thickness, were prepared on unannealed and 700 °C-preannealed Pt bottom electrodes by the ion beam sputtering and post-deposition annealing method. It was found that the preannealed Pt layer has a more compact structure, making it not only a bottom electrode but also a good template for high-quality BST thin film growth. The BST films deposited on preannealed Pt bottom electrodes showed (0 0 l)-preferred orientation, dense and uniform microstructure with no intermediate phase formed at the film/electrode interface, and thus enhanced dielectric properties. As a result, the typical relative dielectric constant and tunability (under a dc electric field of 1 MV cm −1 ) reach 180 and 50.1%, respectively, for the BST thin films with preannealed Pt bottom electrodes, which are significantly higher than those (166 and 41.3%, respectively) for the BST thin films deposited on unannealed Pt bottom electrodes. (paper)

  15. Preferential growth and enhanced dielectric properties of Ba0.7Sr0.3TiO3 thin films with preannealed Pt bottom electrode

    Science.gov (United States)

    Zhu, Xiaohong; Defaÿ, Emmanuel; Aïd, Marc; Ren, Yinjuan; Zhang, Caiyun; Zhu, Jiliang; Zhu, Jianguo; Xiao, Dingquan

    2013-03-01

    Ba0.7Sr0.3TiO3 (BST) thin films, about 100 nm in thickness, were prepared on unannealed and 700 °C-preannealed Pt bottom electrodes by the ion beam sputtering and post-deposition annealing method. It was found that the preannealed Pt layer has a more compact structure, making it not only a bottom electrode but also a good template for high-quality BST thin film growth. The BST films deposited on preannealed Pt bottom electrodes showed (0 0 l)-preferred orientation, dense and uniform microstructure with no intermediate phase formed at the film/electrode interface, and thus enhanced dielectric properties. As a result, the typical relative dielectric constant and tunability (under a dc electric field of 1 MV cm-1) reach 180 and 50.1%, respectively, for the BST thin films with preannealed Pt bottom electrodes, which are significantly higher than those (166 and 41.3%, respectively) for the BST thin films deposited on unannealed Pt bottom electrodes.

  16. A comprehensive study on the effect of Ru addition to Pt electrodes ...

    Indian Academy of Sciences (India)

    Administrator

    The electro-oxidation of ethanol was studied over nanosized Pt and different compositions of ... The onset potential of ethanol electro-oxidation is lowered on bimetallic PtRu ..... Hogarth M P and Ralph T R 2002 Platinum Metals Review 46.

  17. Electrodeposition of a Pt-PrO{sub 2-x} electrocatalyst on diamond electrodes for the oxidation of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liang; Hu, Jingping; Foord, John S. [Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA (United Kingdom)

    2012-09-15

    The electrodeposition of Pt-PrO{sub 2-x} nanostructures on boron-doped diamond electrodes was explored by decorating platinum nanoparticles with praseodymium oxide, for application as an electrocatalyst in the electrooxidation of methanol in direct methanol fuel cells. A high loading of platinum with good stability was deposited by adopting a two-stage protocol, which involved a stepped potential route and a chronoamperometric approach. Praseodymium oxide was then coated on the platinum particles from solutions containing praseodymium nitrate and hydrogen peroxide. The porous microstructure of the resulting catalyst was characterized by X-ray photoelectron spectroscopy and scanning electron microscope, along with electrochemical measurement. The addition of praseodymium oxide to the Pt resulted in a higher catalytic activity profile for methanol oxidation along with an improved resistance to poisoning effects caused by incompletely oxidized carbonaceous species. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. A highly order-structured membrane electrode assembly with vertically aligned carbon nanotubes for ultra-low Pt loading PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Zhi Qun; Lim, San Hua; Poh, Chee Kok; Lin, Jianyi [Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Tang, Zhe; Chua, Daniel [Department of Materials Science and Engineering, National University of Singapore, Singapore 117542 (Singapore); Xia, Zetao [Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602 (Singapore); Luo, Zhiqiang; Shen, Zexiang [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore (Singapore); Shen, Pei Kang [State Key Laboratory of Optoelectronic Materials and Technologies, and Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, School of Physics and Engineering, Sun Yat-sen University, Guangzhou, 510275 (China); Feng, Yuan Ping [Department of Physics, National University of Singapore, Singapore 117542 (Singapore)

    2011-11-15

    A simple method was developed to prepare ultra-low Pt loading membrane electrode assembly (MEA) using vertically aligned carbon nanotubes (VACNTs) as highly ordered catalyst support for PEM fuel cells application. In the method, VACNTs were directly grown on the cheap household aluminum foil by plasma enhanced chemical vapor deposition (PECVD), using Fe/Co bimetallic catalyst. By depositing a Pt thin layer on VACNTs/Al and subsequent hot pressing, Pt/VACNTs can be 100% transferred from Al foil onto polymer electrolyte membrane for the fabrication of MEA. The whole transfer process does not need any chemical removal and destroy membrane. The PEM fuel cell with the MEA fabricated using this method showed an excellent performance with ultra-low Pt loading down to 35 {mu}g cm{sup -2} which was comparable to that of the commercial Pt catalyst on carbon powder with 400 {mu}g cm{sup -2}. To the best of our knowledge, for the first time, we identified that it is possible to substantially reduce the Pt loading one order by application of order-structured electrode based on VACNTs as Pt catalysts support, compared with the traditional random electrode at a comparable performance through experimental and mathematical methods. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Carbon monoxide oxidation on Pt single crystal electrodes: understanding the catalysis for low temperature fuel cells.

    Science.gov (United States)

    García, Gonzalo; Koper, Marc T M

    2011-08-01

    Herein the general concepts of fuel cells are discussed, with special attention to low temperature fuel cells working in alkaline media. Alkaline low temperature fuel cells could well be one of the energy sources in the next future. This technology has the potential to provide power to portable devices, transportation and stationary sectors. With the aim to solve the principal catalytic problems at the anode of low temperature fuel cells, a fundamental study of the mechanism and kinetics of carbon monoxide as well as water dissociation on stepped platinum surfaces in alkaline medium is discussed and compared with those in acidic media. Furthermore, cations involved as promoters for catalytic surface reactions are also considered. Therefore, the aim of the present work is not only to provide the new fundamental advances in the electrocatalysis field, but also to understand the reactions occurring at fuel cell catalysts, which may help to improve the fabrication of novel electrodes in order to enhance the performance and to decrease the cost of low temperature fuel cells. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. 1D-2D carbon heterostructure with low Pt loading as a superior cathode electrode for dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Nechiyil, Divya; Ramaprabhu, S., E-mail: ramp@iitm.ac.in [Indian Institute of Technology Madras, Alternative Energy and Nanotechnology Laboratory (AENL), Nano Functional Materials Technology Centre (NFMTC), Department of Physics (India)

    2017-02-15

    Cost-effective counter electrode (CE) with high electrocatalytic performance is very much essential for the wide application of dye-sensitized solar cells (DSSC). The 1D-2D carbon heterostructure (Pt/GR@CNT) with low platinum (Pt) loading has been synthesized by a facile in situ microwave-assisted polyol-reduction method. The excellent electrocatalytic activity as well as photovoltaic performance was achieved due to the combination of 2D graphene nanoribbons (GR) and 1D multi-walled carbon nanotubes (CNT) with high catalytically active Pt nanoparticles. Microwave-assisted longitudinal unzipping of few outer layers of CNTs along with co-reduction of Pt nanoparticles is an effective method to create electrochemically active defective edge sites, which have a crucial role in enhancing electrochemical performance. Synergistic effect of ultra-fine Pt nanoparticles, partially unzipped graphene nanoribbons and inner core tubes of CNTs modulates the power conversion efficiency of solar cell to 5.57% ± 0.03 as compared with 4.73% ± 0.13 of CNTs. Pt/GR@CNT CE even with low Pt loading of 14 μg cm{sup −2} showcases equivalent performance with that of pure Pt counter electrode.

  1. Evaluation of H{sub 2}O{sub 2}-generation during oxygen reduction at electrodeposited Pt particles on mask scratched electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kishi, Akira; Inoue, Mitsuhiro; Umeda, Minoru, E-mail: mumeda@vos.nagaokaut.ac.jp

    2013-08-15

    In this study, the Pt particle deposition was systematically performed by our proposed mask scratch and subsequent Pt electrodeposition in order to investigate the H{sub 2}O{sub 2}-byproduct generation efficiency during O{sub 2} reduction. By peeling a part of polymer layer coated on a glassy carbon substrate using an atomic force microscope cantilever, scratched areas are regularly made. The Pt particles are deposited only on the above-mentioned scratched areas, indicating that the controlled Pt deposition has been achieved. The background cyclic voltammetry of the prepared electrodes showed that the deposited nanoparticles are certainly composed of Pt. Moreover, the electrochemical surface area of the deposited Pt (Pt-ESA) linearly increases with the increasing scratched area, revealing that the Pt-ESAs can be controlled by the mask scratch-based Pt electrodeposition method. It should be noted that an increase in the Pt-ESA not only increases the O{sub 2} reduction currents, but also enhances the H{sub 2}O{sub 2} generation efficiency.

  2. A novel enzymatic glucose sensor based on Pt nanoparticles-decorated hollow carbon spheres-modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Luhana, Charles; Bo Xiangjie; Ju Jian; Guo Liping, E-mail: guolp078@nenu.edu.cn [Northeast Normal University, Faculty of Chemistry (China)

    2012-10-15

    A new glucose biosensor was developed based on hollow carbon spheres decorated with platinum nanoparticles (Pt/HCSs)-modified glassy carbon electrode immobilized with glucose oxidase (GOx) with the help of Nafion. The Pt nanoparticles were well dispersed on the HCSs with an average size of 2.29 nm. The detection of glucose was achieved via electrochemical detection of the enzymatically liberated H{sub 2}O{sub 2} at +0.5 V versus Ag/AgCl at physiologic pH of 7.4. The Pt/HCSs-modified electrode exhibited excellent electrocatalytic activities toward both the oxidation and reduction of H{sub 2}O{sub 2}. The glucose biosensor showed good electrocatalytic performance in terms of high sensitivity (4.1 {mu}A mM{sup -1}), low detection limit (1.8 {mu}M), fast response time <3 s, and wide linear range (0.04-8.62 mM). The apparent Michaelis-Menten constant (K{sub m}) and the maximum current density (i{sub max}) values for the biosensor were 10.94 mM and 887 {mu}A cm{sup -2} respectively. Furthermore, this biosensor showed an acceptable reproducibility and high stability. The interfering signals from ascorbic acid and uric acid at concentration levels normally found in human blood were not much compared with the response to glucose. Blood serum samples were also tested with this biosensor and a good recovery was achieved for the two spiked serum samples.

  3. High Work Output Ni-Ti-Pt High Temperature Shape Memory Alloys and Associated Processing Methods

    Science.gov (United States)

    Noebe, Ronald D. (Inventor); Draper, Susan L. (Inventor); Nathal, Michael V. (Inventor); Garg, Anita (Inventor)

    2009-01-01

    According to the invention, compositions of Ni-Ti-Pt high temperature, high force, shape memory alloys are disclosed that have transition temperatures above 100 C.; have narrow hysteresis; and produce a high specific work output.

  4. Electrocatalytical activity of Pt, SnO2 and RuO2 mixed electrodes for the electrooxidation of formic acid and formaldehyde

    International Nuclear Information System (INIS)

    Profeti, L.P.R.; Profeti, D.; Olivi, P.

    2005-01-01

    The electrocatalytical activity of binary electrodes of Pt and SnO 2 and ternary electrodes of Pt and SnO 2 and RuO 2 for the electrooxidation of formic acid and formaldehyde was investigated by cyclic voltammetry and chronoamperometry techniques. The electrode materials were prepared by the thermal decomposition of polymeric precursors at 400 deg C. The cyclic voltammetry results showed that the methanol electrooxidation process presents peak potentials for those electrodes approximately 100 mV lower than the values obtained for metallic platinum electrodes. The Pt 0.6 Ru 0.2 Sn 0.2 O y electrodes presented the highest current density values for potentials lower than the peak potential values. The chronoamperometric experiments also showed that the addition of SnO 2 and RuO 2 contributed for the enhancement of the electrode activity in low potential values. The preparation method was found to be useful to obtain high active materials. (author)

  5. Temperature effect on the electrode kinetics of ethanol oxidation on Pd modified Pt electrodes and the estimation of intermediates formed in alkali medium

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, S.S.; Dutta, A. [Department of Chemistry, Bengal Engineering and Science University, PO-B. Garden, Shibpur, Howrah 711 103, West Bengal (India); Datta, J., E-mail: jayati_datta@rediffmail.co [Department of Chemistry, Bengal Engineering and Science University, PO-B. Garden, Shibpur, Howrah 711 103, West Bengal (India)

    2010-12-01

    Ethanol has been recognized as the ideal fuel for direct alcohol fuel cell (DAFC) systems due to its high energy density, non-toxicity and its bio-generation. However the complete conversion of ethanol to CO{sub 2} is still met with challenges, due to dearth of suitable catalysts for the electro-oxidation. In the present work the effect of temperature on the catalytic oxidation of ethanol in alkaline medium over electrodeposited Pt and Pt-Pd alloyed nano particles on carbon support and also on the product formation during the course of reaction have been studied within the temperature range of 20-80 {sup o}C. The information on surface morphology, structural characteristics and bulk composition of the catalyst was obtained using SEM, XRD and EDX. BET surface area and pore widths of the catalyst particles were calculated by applying the BET equation to the adsorption isotherms. The electrochemical techniques like cyclic voltammetry, chronoamperometry and impedance spectroscopy were employed to investigate the electrochemical parameters related to electro-oxidation of ethanol in alkaline pH on the catalyst surfaces under the influence of temperature. The results show that the oxidation kinetics of ethanol on the alloyed Pt-Pd/C catalysts is significantly improved compared to that on Pt alone. The observations were interpreted in terms of the synergistic effect of higher electrochemical surface area, preferred OH{sup -} adsorption on the surface and the ad-atom contribution of the alloyed matrix. A pronounced influence of temperature on the reaction kinetics was manifested in the diminution of charge transfer resistance and activation energy of the ethanol oxidation with Pd incorporation into the Pt matrix, ensuring greater tolerance of the alloyed catalyst towards ethanolic residues. The higher yield of the reaction products like acetate and CO{sub 3}{sup -2} on the alloyed catalyst compared to Pt alone in alkaline medium, as estimated by ion chromatography, further

  6. Morphology-Tuned Synthesis of Nickel Cobalt Selenides as Highly Efficient Pt-Free Counter Electrode Catalysts for Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Qian, Xing; Li, Hongmei; Shao, Li; Jiang, Xiancai; Hou, Linxi

    2016-11-02

    In this work, morphology-tuned ternary nickel cobalt selenides based on different Ni/Co molar ratios have been synthesized via a simple precursor conversion method and used as counter electrode (CE) materials for dye-sensitized solar cells (DSSCs). The experimental facts and mechanism analysis clarified the possible growth process of product. It can be found that the electrochemical performance and structures of ternary nickel cobalt selenides can be optimized by tuning the Ni/Co molar ratio. Benefiting from the unique morphology and tunable composition, among the as-prepared metal selenides, the electrochemical measurements showed that the ternary nickel cobalt selenides exhibited a more superior electrocatalytic activity in comparison with binary Ni and Co selenides. In particular, the three-dimensional dandelion-like Ni 0.33 Co 0.67 Se microspheres delivered much higher power conversion efficiency (9.01%) than that of Pt catalyst (8.30%) under AM 1.5G irradiation.

  7. Effects of different additives on bimetallic Au-Pt nanoparticles electrodeposited onto indium tin oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ballarin, Barbara, E-mail: ballarin@ms.fci.unibo.i [Dipartimento di Chimica Fisica ed Inorganica, Universita di Bologna, V.le Risorgimento, 4, 40136-Bologna (Italy)] [INSTM, UdR Bologna (Italy); Gazzano, Massimo [ISOF-CNR, V. Selmi, 40126-Bologna (Italy); Tonelli, Domenica [Dipartimento di Chimica Fisica ed Inorganica, Universita di Bologna, V.le Risorgimento, 4, 40136-Bologna (Italy)] [INSTM, UdR Bologna (Italy)

    2010-09-01

    Bimetallic Au-Pt nanoparticles (Au-Pt{sub NPs}) have been synthesized using an electrochemical reduction approach. The effects of the addition of different additives in the electrodeposition bath namely KI, 1-nonanesulfonic acid sodium salt and Triton X-100 have been investigated. The structural characterization of the bimetallic nanoparticles has been carried out using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), UV-vis spectroscopy, X-ray diffraction (XRD) and cyclic voltammetry (CV). The Au-Pt{sub NPs} prepared in the presence of KI and Triton X-100 characterized by a relatively narrow size distribution as well as a higher particle density and surface coverage whereas no changes in the morphology were observed. These results suggest a dependence of the size and distribution of the bimetallic nanoparticles from the type and concentration of the additives employed.

  8. Fabrication of a nanosize-Pt-embedded membrane electrode assembly to enhance the utilization of Pt in proton exchange membrane fuel cells.

    Science.gov (United States)

    Choe, Junseok; Kim, Doyoung; Shim, Jinyong; Lee, Inhae; Tak, Yongsug

    2011-08-01

    A procedure to locate the Pt nanostructure inside the hydrophilic channel of a Nafion membrane was developed in order to enhance Pt utilization in PEMFCs. Nanosize Pt-embedded MEA was constructed by Cu electroless plating and subsequent Pt electrodeposition inside the hydrophilic channels of the Nafion membrane. The metallic Pt nanostructure fabricated inside the membrane was employed as an oxygen reduction catalyst for a PEMFC and facilitated effective use of the hydrophilic channels inside the membrane. Compared to the conventional MEA, a Pt-embedded MEA with only 68% Pt loading showed better PEMFC performance.

  9. The memory characteristics of submicron feature-size PZT capacitors with PtOx top electrode by using dry-etching

    International Nuclear Information System (INIS)

    Huang, C.-K.; Wang, C.-C.; Wu, T.-B.

    2007-01-01

    Dry etching and its effect on the characteristics of submicron feature-size PbZr 1-x Ti x O 3 (PZT) capacitors with PtO x top electrode were investigated. The photoresist (PR)-masked PtO x films were etched by an Ar/(20%)Cl 2 /O 2 helicon wave plasma. A fence-free pattern with a significantly high etch rate and sidewall slope was obtained by the addition of O 2 into the etching gas mixture, due to the chemical instability of PtO x and the formation of a PtO 2 passivation layer to suppress redeposition of the etch by-products on the etched surface. The patterned PtO x electrode can be further used as a hard mask for etching the PZT film, subsequently, with the gas mixture of Ar, CF 4 and O 2 . A high etching rate of PZT and a good etching selectivity to PtO x can be obtained at 30% O 2 addition into the Ar/(50%)CF 4 plasma. The etched capacitors have a steep, 72 0 , sidewall angle with a clean surface. Moreover, the addition of O 2 into the etching gas can well preserve the properties and the fatigue endurance of PtO x /PZT capacitors

  10. Preparation of Platinum (Pt) Counter Electrode Coated by Electrochemical Technique at High Temperature for Dye-sensitized Solar Cell (DSSC) Application

    Science.gov (United States)

    Ponken, Tanachai; Tagsin, Kamonlapron; Suwannakhun, Chuleerat; Luecha, Jakkrit; Choawunklang, Wijit

    2017-09-01

    Pt counter electrode was coated by electrochemical method. Electrolyte solution was synthesized by platinum (IV) choloride (PtCl4) powder dissolved in hydrochloric acid solution. Pt films were deposited on the FTO substrate. Deposition time of 10, 30 and 60 minutes, the coating current of 5, 10, 15 and 20 mA and electrolyte solution temperatures for Pt layer synthesis of 25, 30 and 40°C were varied. Surface morphology and optical properties was analyzed by digital microscopic and UV-vis spectrophotometer. Pt films exhibit uniform surface area highly for all the conditions of coating current in the deposition time of 30 and 40 minutes at 40°C. Transmittance values of Pt films deposited on FTO substrate has approximately of 5 to 50 % show that occur high reflection corresponding to dye molecule absorption increases. DSSC device was fabricated from the TiO2 standard and immersed in dye N719 for 24 hours. Efficiency was measured by solar simulator. Efficiency value obtains as high as 5.91 % for the coating current, deposition time and solution temperature of 15 mA, 30 minutes and 40°C. Summary, influence of temperature effects efficiency increasing. Pt counter electrode can be prepared easily and the suitable usefully for DSSC.

  11. Conductimetric Biosensor for the Detection of Uric Acid by Immobilization Uricase on Nata de Coco Membrane—Pt Electrode

    Directory of Open Access Journals (Sweden)

    Ani Mulyasuryani

    2011-01-01

    Full Text Available A conductimetric enzyme biosensor for uric acid detection has been developed. The uricase, as enzyme, is isolated from Candida utilis and immobilized on a nata de coco membrane-Pt electrode. The biosensor demonstrates a linear response to urate over the concentration range 1-6 ppm and has good selectivity properties. The response is affected by the membrane thickness and pH change in the range 7.5-9.5. The response time is three minutes in aqueous solutions and in human serum samples. Application of the biosensor to the determination of uric acid in human serum gave results that compared favourably with those obtained by medical laboratory. The operational stability of the biosensor was not less than three days and the relative error is smaller than 10%.

  12. The effect of loading and particle size on the oxygen reaction in CGO impregnated Pt electrodes

    DEFF Research Database (Denmark)

    Lund, Anders; Hansen, Karin Vels; Jacobsen, Torben

    2012-01-01

    Porous platinum electrodes impregnated with Gd x Ce1−x O2−δ (CGO) are investigated to characterise how nano-sized CGO grains affect the oxygen reaction. Impedance measurements were performed at temperatures between 450 and 750 °C and at oxygen partial pressures of 0.2 and 5 × 10−5 bar for electro......Porous platinum electrodes impregnated with Gd x Ce1−x O2−δ (CGO) are investigated to characterise how nano-sized CGO grains affect the oxygen reaction. Impedance measurements were performed at temperatures between 450 and 750 °C and at oxygen partial pressures of 0.2 and 5 × 10−5 bar...... for electrodes with various CGO loadings and electrodes annealed at various temperatures. The morphology was characterised by scanning electron microscopy and the CGO grain size was determined from X-ray diffraction peak broadening. The results showed that the polarisation resistance decreased with increasing...

  13. Benchmarking Pt-based electrocatalysts for low temperature fuel cell reactions with the rotating disk electrode

    DEFF Research Database (Denmark)

    Pedersen, Christoffer Mølleskov; Escribano, Maria Escudero; Velazquez-Palenzuela, Amado Andres

    2015-01-01

    We present up-to-date benchmarking methods for testing electrocatalysts for polymer exchange membrane fuel cells (PEMFC), using the rotating disk electrode (RDE) method. We focus on the oxygen reduction reaction (ORR) and the hydrogen oxidation reaction (HOR) in the presence of CO. We have chosen...

  14. Trends with coverage and pH in Stark tuning rates for CO on Pt(1 1 1) electrodes

    International Nuclear Information System (INIS)

    Uddin, Jamal; Anderson, Alfred B.

    2013-01-01

    The general understanding of so-called electrochemical Stark tuning rates, that is, the potential dependence of vibrational frequency of CO adsorbed on Pt(1 1 1), has developed over the past thirty years in terms of two semiempirical models. The first is the Fermi level shift model used in non-self-consistent-field one-electron molecular orbital theory. This approach has provided qualitative understanding in terms of Fermi level-dependent variations in σ and π orbital bonding between CO and the electrode surface atoms. The second is the use of self-consistent-field theory with surface charging to create adjustable electric fields. Adsorbed CO then reacts to the field in a classical Stark effect with some small uncharacterized Fermi level shift superimposed. It is now possible, using two-dimensional density functional theory, including electrolyte polarization from surface charging, and the dielectric continuum to approximate solvation energy, to calculate the tuning rate in response to shifts in the Fermi level and electrode potential caused by changing the surface charge density. Here we apply this first principles method to calculate trends in the tuning rate for CO adsorbed on 1-fold Pt(1 1 1) sites with changes in CO(ads) coverage and with changes in electrolyte pH. The tuning rate is calculated to decrease as the coverage is increased and, for high coverage, to increase as the pH is increased. These trends are shown to be in qualitative agreement with the very little existing experimental data for these trends

  15. Ultrasonic-electrodeposition of PtPd alloy nanoparticles on ionic liquid-functionalized graphene paper: towards a flexible and versatile nanohybrid electrode

    Science.gov (United States)

    Sun, Yimin; Zheng, Huaming; Wang, Chenxu; Yang, Mengmeng; Zhou, Aijun; Duan, Hongwei

    2016-01-01

    Here we fabricate a new type of flexible and versatile nanohybrid paper electrode by ultrasonic-electrodeposition of PtPd alloy nanoparticles on freestanding ionic liquid (IL)-functionalized graphene paper, and explore its multifunctional applications in electrochemical catalysis and sensing systems. The graphene-based paper materials demonstrate intrinsic flexibility, exceptional mechanical strength and high electrical conductivity, and therefore can serve as an ideal freestanding flexible electrode for electrochemical devices. Furthermore, the functionalization of graphene with IL (i.e., 1-butyl-3-methylimidazolium tetrafluoroborate) not only increases the electroactive surface area of a graphene-based nanohybrid paper electrode, but also improves the adhesion and dispersion of metal nanoparticles on the paper surface. These unique attributes, combined with the merits of an ultrasonic-electrodeposition method, lead to the formation of PtPd alloy nanoparticles on IL-graphene paper with high loading, uniform distribution, controlled morphology and favourable size. Consequently, the resultant nanohybrid paper electrode exhibits remarkable catalytic activity as well as excellent cycle stability and improved anti-poisoning ability towards electrooxidation of fuel molecules such as methanol and ethanol. Furthermore, for nonenzymatic electrochemical sensing of some specific biomarkers such as glucose and reactive oxygen species, the nanohybrid paper electrode shows high selectivity, sensitivity and biocompatibility in these bio-catalytic processes, and can be used for real-time tracking hydrogen peroxide secretion by living human cells. All these features demonstrate its promising application as a versatile nanohybrid electrode material in flexible and lightweight electrochemical energy conversion and biosensing systems such as bendable on-chip power sources, wearable/implantable detectors and in vivo micro-biosensors.Here we fabricate a new type of flexible and

  16. Electrocatalytic oxidation behavior of NADH at Pt/Fe{sub 3}O{sub 4}/reduced-graphene oxide nanohybrids modified glassy carbon electrode and its determination

    Energy Technology Data Exchange (ETDEWEB)

    Roushani, Mahmoud, E-mail: mahmoudroushani@yahoo.com [Department of Chemistry, Faculty of Sciences, Ilam University, Ilam, 69315516 (Iran, Islamic Republic of); Hoseini, S. Jafar [Department of Chemistry, Faculty of Sciences, Yasouj University, Yasouj, 7591874831 (Iran, Islamic Republic of); Azadpour, Mitra [Department of Chemistry, Faculty of Sciences, Ilam University, Ilam, 69315516 (Iran, Islamic Republic of); Heidari, Vahid; Bahrami, Mehrangiz; Maddahfar, Mahnaz [Department of Chemistry, Faculty of Sciences, Yasouj University, Yasouj, 7591874831 (Iran, Islamic Republic of)

    2016-10-01

    We have developed Pt/Fe{sub 3}O{sub 4}/reduced-graphene oxide nanohybrids modified glassy carbon (Pt/Fe{sub 3}O{sub 4}/RGO/GC) electrode as a novel system for the preparation of electrochemical sensing platform. Characterization of as-made composite was determined using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM) and energy-dispersive analysis of X-ray (EDAX) where the Pt, Fe, Si, O and C elements were observed. The Pt/Fe{sub 3}O{sub 4}/RGO/GC electrode was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Due to the synergistic effect between Pt, Fe{sub 3}O{sub 4} and RGO, the nanohybrid exhibited excellent performance toward dihydronicotinamide adenine dinucleotide (NADH) oxidation in 0.1 M phosphate buffer solution, pH 7.0, with a low detection limit of 5 nM. - Highlights: • Preparation of a novel electrochemical sensing platform system • Excellent performance of Pt/Fe{sub 3}O{sub 4}/reduced-graphene oxide nanohybrids • Dihydronicotinamide adenine dinucleotide oxidation with a low detection limit of 5 nM.

  17. Synthesis of Pt{sub 75}Sn{sub 25}/SnO{sub 2}/CNT nanoscaled electrode: Low onset potential of ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Tabet-Aoul, Amel [Institut National de la Recherche Scientifique (INRS)-Énergie, Matériaux et Télécommunications (EMT), 1650 Boulevard Lionel Boulet, Varennes, Québec, Canada J3X 1S2 (Canada); Mohamedi, Mohamed, E-mail: mohamedi@emt.inrs.ca [Institut National de la Recherche Scientifique (INRS)-Énergie, Matériaux et Télécommunications (EMT), 1650 Boulevard Lionel Boulet, Varennes, Québec, Canada J3X 1S2 (Canada)

    2013-03-15

    Highlights: ► A pulsed laser synthesis is used for the deposition of Pt, SnO{sub 2} and PtSn alloy thin films onto carbon nanotubes. ► These nanoscaled materials were characterized by FESEM, TEM, XRD and XPS. ► Enhanced electrocatalytic properties toward ethanol oxidation. -- Abstract: With the objective of lowering the potential oxidation of ethanol at PtSn nanocatalyst, we present the synthesis of free-standing catalyst layer comprising a current collector/carbon nanotubes (catalyst support)/SnO{sub 2}/Pt{sub 75}Sn{sub 25} (catalyst) nanostructured layers, each layer constructed upon the one below it. The CNTs are grown by chemical vapor deposition (CVD), whereas SnO{sub 2} and Pt{sub 75}Sn{sub 25} are synthesized by pulsed laser deposition and cross-beam laser deposition, respectively. FESEM revealed that Pt{sub 75}Sn{sub 25} nanoparticles assemble into cauliflower-like arrangement. TEM and HR-TEM showed that the Pt{sub 75}Sn{sub 25} layer thickness is of ca. 25 nm with a particle mean diameter of 4.3 nm. It was found that addition of SnO{sub 2} to Pt{sub 75}Sn{sub 25} promotes significantly the oxidation of ethanol at Pt{sub 75}Sn{sub 25} nanoparticles relative to a carbon nanotubes support. Indeed, the electrooxidation of ethanol at CNTs/SnO{sub 2}/Pt{sub 75}Sn{sub 25} electrode starts at about 100 mV negative with respect to that at CNT/Pt{sub 75}Sn{sub 25}. This decreased overpotential required to oxidize ethanol is very significant and has profound implications to developing high performing anodes for direct ethanol fuel cells technology.

  18. Properties of RF-Sputtered PZT Thin Films with Ti/Pt Electrodes

    Directory of Open Access Journals (Sweden)

    Cui Yan

    2014-01-01

    Full Text Available Effect of annealing temperature and thin film thickness on properties of Pb(Zr0.53Ti0.47O3 (PZT thin film deposited via radiofrequency magnetron sputtering technique onto Pt/Ti/SiO2/Si substrate was investigated. Average grain sizes of the PZT thin film were measured by atomic force microscope; their preferred orientation was studied through X-ray diffraction analysis. Average residual stress in the thin film was estimated according to the optimized Stoney formula, and impedance spectroscopy characterization was performed via an intelligent LCR measuring instrument. Average grain sizes of PZT thin films were 60 nm~90 nm and their average roughness was less than 2 nm. According to X-ray diffraction analysis, 600°C is the optimal annealing temperature to obtain the PZT thin film with better crystallization. Average residual stress showed that thermal mismatch was the decisive factor of residual stress in Pt/Ti/SiO2/Si substrate; the residual stress in PZT thin film decreased as their thickness increased and increased with annealing temperature. The dielectric constant and loss angle tangent were extremely increased with the thickness of PZT thin films. The capacitance of the device can be adjusted according to the thickness of PZT thin films.

  19. Comparison of unusual carbon-based working electrodes for electrochemiluminescence sensors.

    Science.gov (United States)

    Noman, Muhammad; Sanginario, Alessandro; Jagadale, Pravin; Demarchi, Danilo; Tagliaferro, Alberto

    2017-06-01

    In this work, unconventional carbon-based materials were investigated for use in electrochemiluminescence (ECL) working electrodes. Precursors such as bamboo, pistachio shells, kevlar ® fibers and camphor were differently treated and used as working electrodes in ECL experiments. After a proper process they were assembled as electrodes and tested in an electrochemical cell. Comparison among them and with a commercial glassy carbon electrode (GCE) shows a very good response for all of them thus demonstrating their potential use as disposable low-cost electrodes for early detection electrochemical analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Hydrogen evolution reaction on electrodes with different PT/C loadings by electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ortega-Chavez, L. [Inst. Tecnologico de Chihuahua 2, Chihuahua, Chih (Mexico); Ortega-Chavez, L.; Herrera-Peraza, E. [Centro de Investigacion en Materiales Avanzados, Chiuahua, Chih (Mexico); Verde, Y. [Inst. Tecnologico de Cancun, Cancun, Quintana Roo (Mexico)

    2008-04-15

    One of the most widely studied reactions in electrochemistry is the hydrogen evolution reaction (HER). HER is important for the development of water hydrolysis and fuel cell technologies. Because hydrogen-substrate interaction determines oxygen reduction efficiency, an understanding of the chemical and electronic state of hydrogen adsorbed on the electrocatalyst surface is required. Electrochemical impedance spectroscopy (EIS) is a proven highly efficient technique for interface characterization and kinetic parameter determination for different reactions carried out on interfaces. This article presented a study that utilized EIS for characterizing electrodes under HER by implementing a rotating disc electrode with different carbon supported platinum nanoparticles loadings and different potentials in acidic solutions. The results collected by EIS were analyzed in terms of equivalent circuits to calculate different parameters which were compared by statistical analysis. The study also considered the Volmer, Heyrovsky and Tafel steps in the HER reaction as well as a single electro-absorbed intermediate species. The article discussed the experimental set-up with reference to measurements, simulation and fitting. Parameters analysis using ANOVA were reviewed. It was concluded that an increase in impedance occurs when platinum loading decreases in both high and low frequencies. 22 refs., 1 tab., 5 figs.

  1. (110)-Textured Ca-doped BiFeO_3 film on refined Pt(111) electrode layer on glass substrate at reduced temperature

    International Nuclear Information System (INIS)

    Chang, H.W.; Shen, C.Y.; Yuan, F.T.; Tien, S.H.; Lin, S.Y.; Chen, W.A.; Wang, C.R.; Tu, C.S.; Jen, S.U.

    2016-01-01

    Multiferroic and photovoltaic properties of polycrystalline Bi_0_._8_5Ca_0_._1_5FeO_3 (BCFO) film on refined Pt(111) electrode buffered glass substrate have been studied. Optimized Pt(111) electrode layer having large grain size and smooth morphology enables the development of highly (110)-textured BCFO film at a temperature as low as 450 °C. The prepared BCFO film has dense microstructure, fine grain size, and smooth surface morphology. Good ferroelectric properties with the remanent polarization (2P_r) of 108 μC/cm"2 and electrical coercive field of 405 kV/cm are achieved. Improved ferromagnetic properties with magnetization of 9.2 emu/cm"3 and coercivity of 1250 Oe are also attained. Significant PV properties with open-circuit photovoltage of 0.49 V and the short-circuit photocurrent of 67.4 μA/cm"2 at illumination intensity of 228 mW/cm"2 are observed, which are comparable to BCFO ceramics or BFO epitaxial films. - Highlights: • BCFO polycrystalline film with (110) texture is formed on Pt(111) electrode. • Pt(111) underlayer induces BCFO(110) film with fine grain and flat surface. • Good multiferroic and photovoltaic properties are achieved simultaneously. • Improved multiferroic and photovoltaic properties makes BCFO film a multifunctional material for advanced applications.

  2. Fabrication of reduced graphene oxide/macrocyclic cobalt complex nanocomposites as counter electrodes for Pt-free dye-sensitized solar cells

    Science.gov (United States)

    Tsai, Chih-Hung; Shih, Chun-Jyun; Wang, Wun-Shiuan; Chi, Wen-Feng; Huang, Wei-Chih; Hu, Yu-Chung; Yu, Yuan-Hsiang

    2018-03-01

    In this study, macrocyclic Co complexes were successfully grafted onto graphene oxide (GO) to produce GO/Co nanocomposites with a large surface area, high electrical conductivity, and excellent catalytic properties. The novel GO/Co nanocomposites were applied as counter electrodes for Pt-free dye-sensitized solar cells (DSSCs). Various ratios of macrocyclic Co complexes were used as the reductant to react with the GO, with which the surface functional groups of the GO were reduced and the macrocyclic ligand of the Co complexes underwent oxidative dehydrogenation, after which the conjugated macrocyclic Co systems were grafted onto the surface of the reduced GO to form GO/Co nanocomposites. The surface morphology, material structure, and composition of the GO/Co composites and their influences on the power-conversion efficiency of DSSC devices were comprehensively investigated. The results showed that the GO/Co (1:10) counter electrode (CE) exhibited an optimal power conversion efficiency of 7.48%, which was higher than that of the Pt CE. The GO/Co (1:10) CE exhibited superior electric conductivity, catalytic capacity, and redox capacity. Because GO/Co (1:10) CEs are more efficient and cheaper than Pt CEs, they could potentially be used as a replacement for Pt electrodes.

  3. Sensors for Highly Toxic Gases: Methylamine and Hydrogen Chloride Detection at Low Concentrations in an Ionic Liquid on Pt Screen Printed Electrodes

    Directory of Open Access Journals (Sweden)

    Krishnan Murugappan

    2015-10-01

    Full Text Available Commercially available Pt screen printed electrodes (SPEs have been employed as possible electrode materials for methylamine (MA and hydrogen chloride (HCl gas detection. The room temperature ionic liquid (RTIL 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonylimide ([C2mim][NTf2] was used as a solvent and the electrochemical behaviour of both gases was first examined using cyclic voltammetry. The reaction mechanism appears to be the same on Pt SPEs as on Pt microelectrodes. Furthermore, the analytical utility was studied to understand the behaviour of these highly toxic gases at low concentrations on SPEs, with calibration graphs obtained from 10 to 80 ppm. Three different electrochemical techniques were employed: linear sweep voltammetry (LSV, differential pulse voltammetry (DPV and square wave voltammetry (SWV, with no significant differences in the limits of detection (LODs between the techniques (LODs were between 1.4 to 3.6 ppm for all three techniques for both gases. The LODs achieved on Pt SPEs were lower than the current Occupational Safety and Health Administration Permissible Exposure Limit (OSHA PEL limits of the two gases (5 ppm for HCl and 10 ppm for MA, suggesting that Pt SPEs can successfully be combined with RTILs to be used as cheap alternatives for amperometric gas sensing in applications where these toxic gases may be released.

  4. Enhanced Efficiency of Dye-Sensitized Solar Counter Electrodes Consisting of Two-Dimensional Nanostructural Molybdenum Disulfide Nanosheets Supported Pt Nanoparticles

    Directory of Open Access Journals (Sweden)

    Chao-Kuang Cheng

    2017-10-01

    Full Text Available This paper reports architecturally designed nanocomposites synthesized by hybridizing the two-dimensional (2D nanostructure of molybdenum disulfide (MoS2 nanosheet (NS-supported Pt nanoparticles (PtNPs as counter electrodes (CEs for dye-sensitized solar cells (DSSCs. MoS2 NSs were prepared using the hydrothermal method; PtNPs were subsequently reduced on the MoS2 NSs via the water–ethylene method to form PtNPs/MoS2 NSs hybrids. The nanostructures and chemical states of the PtNPs/MoS2 NSs hybrids were characterized by high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy. Detailed electrochemical characterizations by electrochemical impedance spectroscopy, cyclic voltammetry, and Tafel-polarization measurement demonstrated that the PtNPs/MoS2 NSs exhibited excellent electrocatalytic activities, afforded a higher charge transfer rate, a decreased charge transfer resistance, and an improved exchange current density. The PtNPs/MoS2 NSs hybrids not only provided the exposed layers of 2D MoS2 NSs with a great deal of catalytically active sites, but also offered PtNPs anchored on the MoS2 NSs enhanced I3− reduction. Accordingly, the DSSCs that incorporated PtNPs/MoS2 NSs CE exhibited an outstanding photovoltaic conversion efficiency (PCE of 7.52%, which was 8.7% higher than that of a device with conventional thermally-deposited platinum CE (PCE = 6.92%.

  5. Study of pressing effects and variation in Pt charge in the anode on the performance of membrane electrode assemblies; Estudio de los efectos de prensado y variacion de la carga de Pt en el anodo en el rendimiento de ensambles membrana-electrodo

    Energy Technology Data Exchange (ETDEWEB)

    Albarran S, Irma Lorena; Flores Hernandez, J. Roberto; Cano Castillo, Ulises [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico). E-mail: ilas@iie.org.mx; Loyola, Felix (UNAM, Facultad de Quimica, Mexico D.F. (Mexico)

    2009-09-15

    Fabricating membrane electrode assemblies (MEA) involves different variables that determine their performance, such as: amount of the catalyst, concentration of the different solvents used in the fabrication of the catalyst dye, use of a thermomechanical process to increase the degree of adhesion between the catalyst layers and the membrane, etc. This work studied the effect of the Pt charge in the anode on performance, as well as the effect of the thermomechanical process on the fabrication of MEAs. It is evident that the optimal Pt charge should be that which provides good performance during an acceptable useful lifetime at a competitive cost. This work presents the results obtained by varying the Pt charge in the anode between 1.0 and 0.4 mgPt/cm{sup ²} while maintaining a constant charge of 1 mgPt/cm{sup ²} in the cathode. It also shows the comparison between the polarization curves and the active areas obtained in the MEAs with and without pressing during their fabrication. [Spanish] En la fabricacion de los Ensambles Membrana-Electrodo (MEA's) intervienen diferentes variables que determinan su desempeno, como lo son: cantidad de catalizador, concentracion de los diferentes solventes que se emplean en la fabricacion de la tinta catalitica, el uso de un proceso termomecanico para incrementar el grado de adherencia entre las capas cataliticas y la membrana, etc. De las variables anteriormente mencionadas, en este trabajo se estudio el efecto de la carga anodica de Pt en el desempeno, asi como del proceso termomecanico en la fabricacion de MEA's. Es evidente que la carga optima de Pt debe ser aquella que proporcione un buen rendimiento por un periodo de vida util aceptable a un costo competitivo. En este trabajo se presentan los resultados obtenidos al variar la carga de Pt en el anodo entre 1.0 a 0.4 mgPt/cm{sup ²} manteniendo una carga constante de 1 mgPt/cm{sup ²} en el catodo. Tambien se muestra la comparacion de las curvas de polarizacion y las

  6. Mechanism of aromatic hydroxylation of lidocaine at a Pt electrode under acidic conditions

    International Nuclear Information System (INIS)

    Gul, Turan; Bischoff, Rainer; Permentier, Hjalmar P.

    2017-01-01

    Aromatic hydroxylation reactions, which are mainly catalyzed by cytochrome P450 (CYP) enzymes in vivo, are some of the most important reactions of Phase I metabolism, because insertion of a hydroxyl group into a lipophilic drug compound increases its hydrophilicity and prepares it for subsequent Phase II metabolic conjugation reactions as a prerequisite to excretion. Aromatic hydroxylation metabolites of pharmaceuticals may be obtained through various synthetic and enzymatic methods Electrochemical oxidation is an alternative with advantages in terms of mild reaction conditions and less hazardous chemicals. In the present study, we report that aromatic hydroxylation metabolites of lidocaine can be readily obtained electrochemically under aqueous acidic conditions at platinum electrodes. Our results show that the dominant N-dealkylation reaction can be suppressed by decreasing the solution pH below 0.5 resulting in selective 3-hydroxylidocaine, which is an in vivo metabolite of lidocaine. Experiments in 18 O labelled water indicated that water is the primary source of oxygen, while dissolved molecular oxygen contributes to a minor extent to the hydroxylation reaction.

  7. Fatigue-resistant epitaxial Pb(Zr,Ti)O3 capacitors on Pt electrode with ultra-thin SrTiO3 template layers

    International Nuclear Information System (INIS)

    Takahara, Seiichi; Morimoto, Akiharu; Kawae, Takeshi; Kumeda, Minoru; Yamada, Satoru; Ohtsubo, Shigeru; Yonezawa, Yasuto

    2008-01-01

    Lead zirconate-titanate Pb(Zr,Ti)O 3 (PZT) capacitors with Pt bottom electrodes were prepared on MgO substrates by pulsed laser deposition (PLD) technique employing SrTiO 3 (STO) template layer. Perovskite PZT thin films are prepared via stoichiometric target using the ultra-thin STO template layers while it is quite difficult to obtain the perovskite PZT on Pt electrode via stoichiometric target in PLD process. The PZT capacitor prepared with the STO template layer showed good hysteresis and leakage current characteristics, and it showed an excellent fatigue resistance. The ultra-thin STO template layers were characterized by angle-resolved X-ray photoelectron spectroscopy measurement. The effect of the STO template layer is discussed based on the viewpoint of the perovskite nucleation and diffusion of Pb and O atoms

  8. PENGARUH WORK-LIFE BALANCE TERHADAP KEPUASAN KERJA KARYAWAN (STUDI PADA PT. BIO FARMA PERSERO)

    OpenAIRE

    I Made Devan Ganapathi

    2016-01-01

    Abstrak - Sumber daya manusia merupakan sumber daya yang berperan penting dalam rangka mencapai tujuan perusahaan. Pengelolaan sumber daya manusia yang baik akan berdampak positif bagi perusahaan yang bersangkutan. Penelitian ini dilakukan untuk mengetahui pengaruh Work-Life Balance terhadap kepuasan kerja karyawan pada PT. Bio Farma (Persero). Work-Life Balance sebagai variabel bebas terdiri dari tiga keseimbangan yaitu keseimbangan waktu, keseimbangan keterlibatan dan keseimbangan kepuasan....

  9. Insight into the Role of Surface Wettability in Electrocatalytic Hydrogen Evolution Reactions Using Light-Sensitive Nanotubular TiO2 Supported Pt Electrodes

    Science.gov (United States)

    Meng, Chenhui; Wang, Bing; Gao, Ziyue; Liu, Zhaoyue; Zhang, Qianqian; Zhai, Jin

    2017-02-01

    Surface wettability is of importance for electrochemical reactions. Herein, its role in electrochemical hydrogen evolution reactions is investigated using light-sensitive nanotubular TiO2 supported Pt as hydrogen evolution electrodes (HEEs). The HEEs are fabricated by photocatalytic deposition of Pt particles on TiO2 nanotubes followed by hydrophobization with vaporized octadecyltrimethoxysilane (OTS) molecules. The surface wettability of HEEs is subsequently regulated in situ from hydrophobicity to hydrophilicity by photocatalytic decomposition of OTS molecules using ultraviolet light. It is found that hydrophilic HEEs demonstrate a larger electrochemical active area of Pt and a lower adhesion force to a gas bubble when compared with hydrophobic ones. The former allows more protons to react on the electrode surface at small overpotential so that a larger current is produced. The latter leads to a quick release of hydrogen gas bubbles from the electrode surface at large overpotential, which ensures the contact between catalysts and electrolyte. These two characteristics make hydrophilic HEEs generate a much high current density for HERs. Our results imply that the optimization of surface wettability is of significance for improving the electrocatalytic activity of HEEs.

  10. Improvement of High-Temperature Stability of Al2O3/Pt/ZnO/Al2O3 Film Electrode for SAW Devices by Using Al2O3 Barrier Layer

    Directory of Open Access Journals (Sweden)

    Xingpeng Liu

    2017-12-01

    Full Text Available In order to develop film electrodes for the surface acoustic wave (SAW devices operating in harsh high-temperature environments, novel Al2O3/Pt/ZnO/Al2O3 multilayered film electrodes were prepared by laser molecular beam epitaxy (LMBE at 150 °C. The first Al2O3 layer was used as a barrier layer to prevent the diffusion of Ga, La, and Si atoms from the La3Ga5SiO14 (LGS substrate to the film electrode and thus improved the crystalline quality of ZnO and Pt films. It was found that the resistance of the Al2O3/Pt/ZnO/Al2O3 electrode did not vary up to a temperature of 1150 °C, suggesting a high reliability of electrode under harsh high-temperature environments. The mechanism of the stable resistance of the Al2O3/Pt/ZnO/Al2O3 film electrodes at high temperature was investigated by analyzing its microstructure. The proposed Al2O3/Pt/ZnO/Al2O3 film electrode has great potential for application in high-temperature SAW devices.

  11. Pt skin coated hollow Ag-Pt bimetallic nanoparticles with high catalytic activity for oxygen reduction reaction

    Science.gov (United States)

    Fu, Tao; Huang, Jianxing; Lai, Shaobo; Zhang, Size; Fang, Jun; Zhao, Jinbao

    2017-10-01

    The catalytic activity and stability of electrocatalyst is critical for the commercialization of fuel cells, and recent reports reveal the great potential of the hollow structures with Pt skin coat for developing high-powered electrocatalysts due to their highly efficient utilization of the Pt atoms. Here, we provide a novel strategy to prepare the Pt skin coated hollow Ag-Pt structure (Ag-Pt@Pt) of ∼8 nm size at room temperature. As loaded on the graphene, the Ag-Pt@Pt exhibits a remarkable mass activity of 0.864 A/mgPt (at 0.9 V, vs. reversible hydrogen electrode (RHE)) towards oxygen reduction reaction (ORR), which is 5.30 times of the commercial Pt/C catalyst, and the Ag-Pt@Pt also shows a better stability during the ORR catalytic process. The mechanism of this significant enhancement can be attributed to the higher Pt utilization and the unique Pt on Ag-Pt surface structure, which is confirmed by the density functional theory (DFT) calculations and other characterization methods. In conclusion, this original work offers a low-cost and environment-friendly method to prepare a high active electrocatalyst with cheaper price, and this work also discloses the correlation between surface structures and ORR catalytic activity for the hollow structures with Pt skin coat, which can be instructive for designing novel advanced electrocatalysts for fuel cells.

  12. HUBUNGAN ANTARA PSYCHOLOGICAL CAPITAL DENGAN WORK ENGAGEMENT PADA KARYAWAN PT. BANK MEGA REGIONAL AREA SEMARANG

    Directory of Open Access Journals (Sweden)

    Dwi Ari Setyo Nugroho

    2015-07-01

    Full Text Available This study aimed to assess the relationship between psychological capital with work engagement employees of PT. Bank Mega Regional Area Semarang. Psychological capital is an individual’s positive psychological state of development and is characterized by self- efficacy, optimism, hope and resiliency. Then, work engagement is defined as a positive, fulfilling, work-related state of mind that is characterized by vigor, dedication, and absorption. This study used proportional sampling technique. The subjects were all employees of PT. Bank Mega Regional Area Semarang which have staff levels (N=73. The research instrument was psychological capital scales with 28 items (α = 0.953 and work engagement scales with 29 items (α = 0.938. The results by simple regression analysis obtained rxy = 0.716, with p value = 0.000 (p <0.05. The results indicated that there was a positive correlation between psychological capital and work engagement. The higher psychological capital was higher work engagement. Coefficient of determination by 51,3, it meaning that psychological capital effectively contributed for 51,3 % of work engagement. The remaining 48,7 % determined by other factors that are not revealed in this study, for example: job resources and job demands. Keywords: Psychological capital, work engagement, employee

  13. Local work function analysis of Pt/TiO2 photocatalyst by a Kelvin probe force microscope

    International Nuclear Information System (INIS)

    Hiehata, K; Sasahara, A; Onishi, H

    2007-01-01

    Nanometre-sized Pt clusters were prepared on a TiO 2 (110)-(1 x 1) surface, and the lateral distribution of work function was examined by using a Kelvin probe force microscope. Local work function on the Pt clusters was smaller than that on the surrounding TiO 2 surface. Assuming that the dipole moments which perturb the work function are produced by uneven electron distribution, the decrease of the work function indicates electron transfer from the clusters to the TiO 2 surface. After decomposition of pivalate anions on the surfaces by UV irradiation, the work function increased on some Pt clusters. It is known that holes photoexcited in TiO 2 attach to pivalate anions to cause a decomposition reaction. Hence the increase of the observed work function by UV irradiation can be ascribed to the trapping of the accompanying electrons to the Pt clusters

  14. Work function mediated by deposition of ultrathin polar FeO on Pt(111)

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shuangzan; Qin, Zhihui; Guo, Qinmin; Cao, Gengyu, E-mail: gycao@wipm.ac.cn

    2017-01-15

    Highlights: • Growth of FeO layers on Pt(111) is found to consecutively reduce the work function of the system. • The electrostatic compression effect and the structural relaxation make major contributions to the reductions. • Significant rectifying effect observed in the FeO layer is induced by band alignment shift as work function changing. - Abstract: Significant work function changes from bare Pt(111) surface to 1 monolayer and 2 monolayers of ultrathin iron oxide (FeO) films on it are investigated by means of scanning tunneling microscopy/spectroscopy (STM/STS). With FeO layer-by-layer growth, a continuous reduction of the work function along with the surface vacuum level (VL) shifting is observed. We found that the compression of the electron spill-out at the metal-oxide interface and the substantial reconstruction of 2 ML FeO film, respectively, make major contributions to the first and the second reductions of the work function. The rectifying effect in FeO films is also observed, which is attributed to the downward shift of band alignment imposed by the total change in surface dipole. Our work shows that the polar oxide films play an important role to adjust surface electronic structures for enhancing device functionality.

  15. Work function mediated by deposition of ultrathin polar FeO on Pt(111)

    International Nuclear Information System (INIS)

    Lu, Shuangzan; Qin, Zhihui; Guo, Qinmin; Cao, Gengyu

    2017-01-01

    Highlights: • Growth of FeO layers on Pt(111) is found to consecutively reduce the work function of the system. • The electrostatic compression effect and the structural relaxation make major contributions to the reductions. • Significant rectifying effect observed in the FeO layer is induced by band alignment shift as work function changing. - Abstract: Significant work function changes from bare Pt(111) surface to 1 monolayer and 2 monolayers of ultrathin iron oxide (FeO) films on it are investigated by means of scanning tunneling microscopy/spectroscopy (STM/STS). With FeO layer-by-layer growth, a continuous reduction of the work function along with the surface vacuum level (VL) shifting is observed. We found that the compression of the electron spill-out at the metal-oxide interface and the substantial reconstruction of 2 ML FeO film, respectively, make major contributions to the first and the second reductions of the work function. The rectifying effect in FeO films is also observed, which is attributed to the downward shift of band alignment imposed by the total change in surface dipole. Our work shows that the polar oxide films play an important role to adjust surface electronic structures for enhancing device functionality.

  16. ANALISIS PENGARUH GOAL ORIENTATION DAN WORK MOTIVATION TERHADAP WORK ROLE INNOVATION DENGAN SELF-LEADERSHIP SEBAGAI MEDIATOR; STUDI PADA PERUSAHAAN MEDIA (PT. SURYA CITRA TELEVISI)

    OpenAIRE

    Masruroh; Andana Sasriya

    2015-01-01

    This research has an aim to discover an understand the influence of Goal Orientation and Work Motivation against Work Role Innovation through Self-leadership at PT. Surya Citra Televisi. PT. Surya Citra Televisi engaged in TV broadcasting sector. To see the influence of Goal Orientation and Work Motivation against Work Role Innovation through Self-leadership, this research use a quantitative approach where questionaire used to collect data from a total of 150 employees correspondent and the r...

  17. Printing graphene-carbon nanotube-ionic liquid gel on graphene paper: Towards flexible electrodes with efficient loading of PtAu alloy nanoparticles for electrochemical sensing of blood glucose.

    Science.gov (United States)

    He, Wenshan; Sun, Yimin; Xi, Jiangbo; Abdurhman, Abduraouf Alamer Mohamed; Ren, Jinghua; Duan, Hongwei

    2016-01-15

    The increasing demands for portable, wearable, and implantable sensing devices have stimulated growing interest in innovative electrode materials. In this work, we have demonstrated that printing a conductive ink formulated by blending three-dimensional (3D) porous graphene-carbon nanotube (CNT) assembly with ionic liquid (IL) on two-dimensional (2D) graphene paper (GP), leads to a freestanding GP supported graphene-CNT-IL nanocomposite (graphene-CNT-IL/GP). The incorporation of highly conductive CNTs into graphene assembly effectively increases its surface area and improves its electrical and mechanical properties. The graphene-CNT-IL/GP, as freestanding and flexible substrates, allows for efficient loading of PtAu alloy nanoparticles by means of ultrasonic-electrochemical deposition. Owing to the synergistic effect of PtAu alloy nanoparticles, 3D porous graphene-CNT scaffold, IL binder and 2D flexible GP substrate, the resultant lightweight nanohybrid paper electrode exhibits excellent sensing performances in nonenzymatic electrochemical detection of glucose in terms of sensitivity, selectivity, reproducibility and mechanical properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Working electrodes from amalgam paste for electrochemical measurements

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Bohdan; Šestáková, Ivana

    2008-01-01

    Roč. 20, č. 4 (2008), s. 426-433 ISSN 1040-0397 R&D Projects: GA ČR GA203/07/1195; GA ČR GA521/06/0496 Institutional research plan: CEZ:AV0Z40400503 Keywords : voltammetry * paste amalgam * silver amalgam * paste electrode Subject RIV: CG - Electrochemistry Impact factor: 2.901, year: 2008

  19. Effect of temperature on compact layer of Pt electrode in PEMFCs by first-principles molecular dynamics calculations

    Energy Technology Data Exchange (ETDEWEB)

    He, Yang [Department of Materials Science and Engineering, China University of Petroleum (Beijing), Beijing 102249 (China); Beijing Key Laboratory of Failure, Corrosion and Protection of Oil/gas Facilities, China University of Petroleum (Beijing), Beijing 102249 (China); Chen, Changfeng, E-mail: chen_c_f@163.com [Department of Materials Science and Engineering, China University of Petroleum (Beijing), Beijing 102249 (China); Beijing Key Laboratory of Failure, Corrosion and Protection of Oil/gas Facilities, China University of Petroleum (Beijing), Beijing 102249 (China); Yu, Haobo [Department of Materials Science and Engineering, China University of Petroleum (Beijing), Beijing 102249 (China); Beijing Key Laboratory of Failure, Corrosion and Protection of Oil/gas Facilities, China University of Petroleum (Beijing), Beijing 102249 (China); Lu, Guiwu [Department of Materials Science and Engineering, China University of Petroleum (Beijing), Beijing 102249 (China)

    2017-01-15

    Highlights: • The structures of water compact layer on Pt(111) at different temperature were calculated. • The feature of chemical bond between water molecules and Pt (111) surface was discussed with temperature increased. • Temperature dependence of electrical strengths and capacitances of compact layer on Pt (111) surface was calculated. - Abstract: Formation of the double-layer electric field and capacitance of the water-metal interface is of significant interest in physicochemical processes. In this study, we perform first- principles molecular dynamics simulations on the water/Pt(111) interface to investigate the temperature dependence of the compact layer electric field and capacitance based on the calculated charge densities. On the Pt (111) surface, water molecules form ice-like structures that exhibit more disorder along the height direction with increasing temperature. The O−H bonds of more water molecules point toward the Pt surface to form Pt−H covalent bonds with increasing temperature, which weaken the corresponding O−H bonds. In addition, our calculated capacitance at 300 K is 15.2 mF/cm{sup 2}, which is in good agreement with the experimental results. As the temperature increases from 10 to 450 K, the field strength and capacitance of the compact layer on Pt (111) first increase and then decrease slightly, which is significant for understanding the water/Pt interface from atomic level.

  20. Pedoman Tata Kelola Teknologi Informasi Menggunakan It Governance Design Frame Work (Cobit Pada PT. X

    Directory of Open Access Journals (Sweden)

    I Ketut Adi Purnawan

    2015-12-01

    Full Text Available Implementation of  Information Technology (IT in an organization require significant costs with high risk  of  failure [3]. Managing data is  a matter that must be done continuously by the organization and accompanied by monitoring and measurement of achievement that has been done as to meet the aspect of integrity, availablility. In this study using COBIT as a frame work in preparing the guidelines for information technology governance at PT.  X  on  DS11,  which  focuses  on  management of  data  about  the  level  of  concern  for management (management awareness and  maturity level (maturity level.  The study and analysis indicates that the level of concern for management (management awareness PT. X already on a fairly level and maturity level for the current maturity level (as is at level 3 (defined process and to the expected level of maturity located at level 5 (optimized. From the overall study results showed that PT. X has recognized that the data is an important organizational asset.

  1. Pengaruh Fundamental Safe Work Practice Terhadap Pencegahan Kecelakaan Kerja Bagian Workover di PT. ACS Duri

    Directory of Open Access Journals (Sweden)

    M. Saifullah

    2012-05-01

    Full Text Available PT. Asrindo Citraseni Satria (ACS is a company engaged in oil and gas and is a sub contractor PT.CPI. PT. ACS has implemented FSWP whose objective which is to identify, assess, reduce, control or eliminate the risks associated with the work, but until now there is still a work accident that occurred even in small quantities. The author would like to know about the effect of application of the section Fundamental Safe Work Practice (FSWP can prevent the accident in workover PT. ACS Duri. This research uses quantitative analytical survey, with the design of Cross Sectional conducted from May to June 2012 with a large sample of 122 of the 360 people who work in the workover. Samples were taken by using a system Accidental Sampling, and the data processed using a computer program to analyze the independent variables in the form of application as well as the dependent variable is FSWP occupational accidents and tested using Chi-square. The results showed that, the application of FSWP can prevent accidents which includes Standard Operating Procedure (SOP with the value of P = 0.01 is smaller than the value of α = 0.05 that means there are a significant correlation between the application of SOP with workplace accidents, PTW with a value of P = 0.02 is more smaller than the value of α = 0.05 means that there are significant correlation between the application of Permit To Work (PTW accidents, and tagged with a value of P = 0.01 is smaller than the value of α= 0.05 means there is a significant correlation between the application of Log Out/Tag Out (LOTO by accident. It was concluded that, the application of FSWP can reduce / reduce the number of occupational accidents in the workover, and is expected for the management of HES to improving the knowledge for employee about the aspects of FSWP (SWA, Hazard Analysis, SOP, Access Control, PPE, MSDS, Housekeeping, PTW & Other Safe Work Practices.

  2. In-situ thermoelectrochemistry working with heated electrodes

    CERN Document Server

    Gründler, Peter

    2015-01-01

    This book represents the first rigorous treatment of thermoelectrochemistry, providing an overview that will stimulate electrochemists to develop and apply modern thermoelectrochemical methods. While classical static approaches are also covered, the emphasis lies on methods that make it possible to independently vary temperature such as in-situ heating of electrodes by means of electric current, microwaves or lasers. For the first time, "hot-wire electrochemistry" is examined in detail. The theoretical background presented addresses all aspects of temperature impacts in the context of electroc

  3. Effect of cold working on ordering of an equiatomic CuPt alloy

    International Nuclear Information System (INIS)

    Hisatsune, Kunihiro; Shiraishi, Takanobu; Takuma, Yasuko; Tanaka, Yasuhiro; Miura, Eri

    2005-01-01

    Effect of cold working on the ordering of an equiatomic CuPt alloy during continuous heating was studied by means of electrical resistivity measurements, hardness tests, differential scanning calorimetry, and X-ray diffraction. The ordering after cold working occurred in three stages with remarkable acceleration, namely, the migration and the annihilation of excess vacancies (I a ), those of secondary defects (I b ) and the migration of equilibrium vacancies (II) as well as that of quenched sample. The lattice defects introduced by cold working advanced the stages I a and I b , and therefore decreased the stage II. There existed two temperature regions with softening due to ordering enhanced recrystallization and normal recrystallization

  4. PENGARUH WORK LIFE BALANCE DAN KEPUASAN KERJA TERHADAP TURNOVER INTENTION KARYAWAN PADA PT BANK AGRONIAGA TBK CABANG BANDUNG

    OpenAIRE

    udin, Nafi

    2017-01-01

    The objective from this research is to investigate the effect of work life balance and job satisfaction on employee turnover intention at PT Bank Agroniaga Tbk Bandung Branch.This type of research is descriptive and verification with descriptive survey and explanatory survey method. Data obtained from all employees PT Bank Agroniaga Tbk Bandung Branch, amounting to 30 people. The data was collected using a questionnaire instrument.The analytical method used is descriptive analysis that descri...

  5. Pt Electrodes Enable the Formation of μ4-O Centers in MOF-5 from Multiple Oxygen Sources.

    Science.gov (United States)

    Li, Minyuan M; Dincă, Mircea

    2017-10-04

    The μ 4 -O 2- ions in the Zn 4 O(O 2 C-) 6 secondary building units of Zn 4 O(1,4-benzenedicarboxylate) 3 (MOF-5) electrodeposited under cathodic bias can be sourced from nitrate, water, and molecular oxygen when using platinum gauze as working electrodes. The use of Zn(ClO 4 ) 2 ·6H 2 O, anhydrous Zn(NO 3 ) 2 , or anhydrous Zn(CF 3 SO 3 ) 2 as Zn 2+ sources under rigorous control of other sources of oxygen, including water and O 2 , confirm that the source of the μ 4 -O 2- ions can be promiscuous. Although this finding reveals a relatively complicated manifold of electrochemical processes responsible for the crystallization of MOF-5 under cathodic bias, it further highlights the importance of hydroxide intermediates in the formation of the Zn 4 O(O 2 C-R) secondary building units in this iconic material and is illustrative of the complicated crystallization mechanisms of metal-organic frameworks in general.

  6. PENGARUH WORK-LIFE BALANCE TERHADAP KEPUASAN KERJA KARYAWAN (STUDI PADA PT. BIO FARMA PERSERO

    Directory of Open Access Journals (Sweden)

    I Made Devan Ganapathi

    2016-04-01

    Full Text Available Abstrak - Sumber daya manusia merupakan sumber daya yang berperan penting dalam rangka mencapai tujuan perusahaan. Pengelolaan sumber daya manusia yang baik akan berdampak positif bagi perusahaan yang bersangkutan. Penelitian ini dilakukan untuk mengetahui pengaruh Work-Life Balance terhadap kepuasan kerja karyawan pada PT. Bio Farma (Persero. Work-Life Balance sebagai variabel bebas terdiri dari tiga keseimbangan yaitu keseimbangan waktu, keseimbangan keterlibatan dan keseimbangan kepuasan. Adapun kepuasan kerja sebagai variabel terikat dibagi menjadi empat faktor yaitu faktor psikologis, faktor sosial, faktor fisik dan faktor finansial. Jenis penelitian ini menggunakan metode deskriptif dan kausal. Data yang digunakan dalam penelitian ini adalah data primer yang diperoleh dari wawancara dan kuesioner yang disebarkan kepada 92 responden serta data sekunder berupa dokumen dari perusahaan. Teknik pengumpulan sampel yang digunakan adalah simple random sampling. Metode analisis data yang digunakan adalah regresi linier berganda. Untuk menganalisis data tersebut dibantu menggunakan program SPSS. Hasil dari penelitian ini menunjukkan bahwa Work-Life Balance berpengaruh secara simultan terhadap kepuasan kerja karyawan sebesar 42,2% dan sisanya 57,8% dipengaruhi oleh variabel lain yang tidak diteliti pada penelitian ini. Secara parsial, keseimbangan kepuasan berpengaruh secara signifikan terhadap kepuasan kerja karyawan. Sedangkan keseimbangan waktu dan keseimbangan keterlibatan tidak berpengaruh secara signifikan terhadap kepuasan kerja karyawan. Kata Kunci : work-life balance, kepuasan kerja karyawan, keseimbangan kepuasan. Abstract - Human resource is a resource that plays an important role in order to achieve the company's goals. Good management of the human resource will have a positive impact for the company concerned. This study was conducted to determine the effect of Work-Life Balance on job satisfaction of employees at PT. Bio Farma (Persero

  7. Fabrication and characterization of nanostructured mechanically alloyed Pt-Co catalyst for oxygen gas-diffusion-electrode

    International Nuclear Information System (INIS)

    Pharkya, P.; Farhat, Z.; Czech, E.; Hawthorne, H.; Alfantazi, A.

    2003-01-01

    The use of PEM fuel cells depends largely upon the cost of materials, processing and fabrication. The cost of Pt catalyst is a significant cost of a fuel cell. Alternative low cost catalyst that promotes high rate of oxygen reduction is needed. To achieve this, a mechanochemical technique was employed to refine the catalyst layer structure (i.e. increasing the effective catalyst surface area) and reducing the amount of Pt used, by alloying with a cheaper element. An investigation is carried out to study the relationship between the new catalyst structure refinement, morphology, microstructure and its electrocatalytic behaviour. Nanostructured Pt, Co and Pt 0.2 5 Co 0.75 alloy was fabricated from high purity Pt (99.9%) and Co (99.5%) powders using a Laboratory Planetary Ball Mill 'Pulverisette 6'. Optimum milling conditions, that produce fine, uniform and mechanically alloyed microstructure, were determined during fabrication, by varying process parameters (i.e., rpm, milling time, ball to powder ratio, milling atmosphere, surface-agents and milling/cooling cycle). Mechanically induced chemical and physical reactions and thermal effects were monitored 'in-situ' using a GTM system, which recorded temperature and pressure changes during milling. The alloy catalysts were characterized using TEM, SEM, EDX, XRD and BET techniques. Electrochemical tests were carried out on prepared powders. Exchange currents were determined from a potentiodynamic polarization tests and used to compare relative electrocatalytic behaviour of the new catalyst. Structure/property relationships were discussed and conclusions were drawn on the production of improved low cost catalyst. (author)

  8. Quantum conductance of 4,4-bipyridine molecular junctions: Role of electrode work function and local d band

    DEFF Research Database (Denmark)

    Rauba, J.M.C.; Strange, Mikkel; Thygesen, Kristian Sommer

    2008-01-01

    conductance than the Pt-BPD junction due to the smaller work function of Au as compared to Pt. On the other hand, coupling to the local d band is stronger in the case of Pt and this broadens the LUMO resonance. We find that these effects largely outbalance each other leading to conductances of 0.01G(0) and 0......-principles results within a simple single-level model....

  9. Catalytic oxidation of methanol on Pt/X (X = CaTP, NaTP electrodes in sulfuric acid solution

    Directory of Open Access Journals (Sweden)

    Said Benmokhtar

    2013-10-01

    Full Text Available In this paper, we report the synthesis and characterization of electrodes based on NASICON type phosphates. The study of the electrochemical oxidation of methanol at ambient temperature on electrodes based on NASICON type Ca0,5Ti2(PO43 (CaTP and Na5Ti(PO43 (NaTP compared to that of the platinum electrode model has been conducted by cyclic voltammetry in acidic medium. The results showed a significant increase of current density on the electro oxidation of methanol on the material developed based NASICON structure CaTP, cons deactivation of the electro oxidation is observed the closed structure type NaTP.

  10. Atomic layer deposition of highly dispersed Pt nanoparticles on a high surface area electrode backbone for electrochemical promotion of catalysis

    NARCIS (Netherlands)

    Hajar, Y.; di Palma, V.; Kyriakou, V.; Verheijen, M. A.; Baranova, E. A.; Vernoux, P.; Kessels, W. M. M.; Creatore, M.; van de Sanden, M. C. M.; Tsampas, M. N.

    2017-01-01

    A novel catalyst design for electrochemical promotion of catalysis (EPOC) is proposed which overcomes the main bottlenecks that limit EPOC commercialization, i.e., the low dispersion and small surface area of metal catalysts. We have increased the surface area by using a porous composite electrode

  11. Characterization of hierarchical α-MoO3 plates toward resistive heating synthesis: electrochemical activity of α-MoO3/Pt modified electrode toward methanol oxidation at neutral pH

    Science.gov (United States)

    Filippo, Emanuela; Baldassarre, Francesca; Tepore, Marco; Guascito, Maria Rachele; Chirizzi, Daniela; Tepore, Antonio

    2017-05-01

    The growth of MoO3 hierarchical plates was obtained by direct resistive heating of molybdenum foils at ambient pressure in the absence of any catalysts and templates. Plates synthesized after 60 min resistive heating typically grow in an single-crystalline orthorhombic structure that develop preferentially in the [001] direction, and are characterized by high resolution transmission electron microscopy, selected area diffraction pattern and Raman-scattering measurements. They are about 100-200 nm in thickness and a few tens of micrometers in length. As heating time proceeds to 80 min, plates of α-MoO3 form a branched structure. A more attentive look shows that primary plates formed at until 60 min could serve as substrates for the subsequent growth of secondary belts. Moreover, a full electrochemical characterization of α-MoO3 plates on platinum electrodes was done by cyclic voltammetric experiments, at pH 7 in phosphate buffer, to probe the activity of the proposed composite material as anode to methanol electro-oxidation. Reported results indicate that Pt MoO3 modified electrodes are appropriate to develop new an amperometric non-enzymatic sensor for methanol as well as to make anodes suitable to be used in direct methanol fuel cells working at neutral pH.

  12. Oxygen reduction reaction (orr) on bimetallic AuPt and AuPd(1 0 0)-electrodes: Effects of the heteroatomic junction on the reaction paths

    Science.gov (United States)

    Schulte, E.; Belletti, G.; Arce, M.; Quaino, P.

    2018-05-01

    The seek for materials to enhance the oxygen reduction reaction (orr) rate is a highly relevant topic due to its implication in fuel cell devices. Herein, the orr on bimetallic electrocatalysts based on Au-M (M = Pt, Pd) has been studied computationally, by performing density functional theory calculations. Bimetallic (1 0 0) electrode surfaces with two different Au:M ratios were proposed, and two possible pathways, associative and dissociative, were considered for the orr. Changes in the electronic properties of these materials with respect to the pure metals were acknowledged to gain understanding in the overall reactivity trend. The effect of the bimetallic junction on the stability of the intermediates O2 and OOH was also evaluated by means of geometrical and energetic parameters; being the intermediates preferably adsorbed on Pt/Pd atoms, but presenting in some cases higher adsorption energies compared with bare metals. Finally, the kinetics of the Osbnd O bond breaking in O2∗ and OOH∗ adsorbed intermediates in the bimetallic materials and the influence of the Au-M junction were studied by means of the nudge elastic-band method. A barrierless process for the scission of O2∗ was found in Au-M for the higher M ratios. Surprisingly, for Au-M with lower M ratios, the barriers were much lower than for pure Au surfaces, suggesting a highly reactive surface towards the orr. The Osbnd O scission of the OOH∗ was found to be a barrierless process in Ausbnd Pt systems and nearly barrierless in all Ausbnd Pd systems, implying that the reduction ofO2 in these systems proceeds via the full reduction of O2 to H2O , avoiding H2O2 formation.

  13. High-performance membrane electrode assembly with multi-functional Pt/SnO2eSiO2/C catalyst for proton exchange membrane fuel cell operated under low-humidity conditions

    CSIR Research Space (South Africa)

    Hou, S

    2016-06-01

    Full Text Available A novel self-humidifying membrane electrode assembly (MEA) with homemade multifunctional Pt/SnO(sub2)-SiO(sub2)/C as the anode was developed to improve the performance of a proton exchange membrane fuel cell under low humidity. The MEAs' performance...

  14. The Effect of Job Characteristic, Welfare and Work Environment to Employee Performance at PT. Federal International Finance Manado

    OpenAIRE

    Walangitan, Mac Donald; Mandey, S. L.; Tulandi, Christy

    2015-01-01

    Job characteristic is the determinant of the fit between person with a particular line of work that explored. Welfare is the remuneration provided by the company based on the company rules. Work environment is physical and non-physical workplaces that have direct effect on employee. The purpose of this study is to determine the influence of job characteristic, welfare and work environment on employee performance at PT. Federal International Finance Manado. The population in the study is 65 e...

  15. A Novel Activated-Charcoal-Doped Multiwalled Carbon Nanotube Hybrid for Quasi-Solid-State Dye-Sensitized Solar Cell Outperforming Pt Electrode.

    Science.gov (United States)

    Arbab, Alvira Ayoub; Sun, Kyung Chul; Sahito, Iftikhar Ali; Qadir, Muhammad Bilal; Choi, Yun Seon; Jeong, Sung Hoon

    2016-03-23

    Highly conductive mesoporous carbon structures based on multiwalled carbon nanotubes (MWCNTs) and activated charcoal (AC) were synthesized by an enzymatic dispersion method. The synthesized carbon configuration consists of synchronized structures of highly conductive MWCNT and porous activated charcoal morphology. The proposed carbon structure was used as counter electrode (CE) for quasi-solid-state dye-sensitized solar cells (DSSCs). The AC-doped MWCNT hybrid showed much enhanced electrocatalytic activity (ECA) toward polymer gel electrolyte and revealed a charge transfer resistance (RCT) of 0.60 Ω, demonstrating a fast electron transport mechanism. The exceptional electrocatalytic activity and high conductivity of the AC-doped MWCNT hybrid CE are associated with its synchronized features of high surface area and electronic conductivity, which produces higher interfacial reaction with the quasi-solid electrolyte. Morphological studies confirm the forms of amorphous and conductive 3D carbon structure with high density of CNT colloid. The excessive oxygen surface groups and defect-rich structure can entrap an excessive volume of quasi-solid electrolyte and locate multiple sites for iodide/triiodide catalytic reaction. The resultant D719 DSSC composed of this novel hybrid CE fabricated with polymer gel electrolyte demonstrated an efficiency of 10.05% with a high fill factor (83%), outperforming the Pt electrode. Such facile synthesis of CE together with low cost and sustainability supports the proposed DSSCs' structure to stand out as an efficient next-generation photovoltaic device.

  16. High work function transparent middle electrode for organic tandem solar cells

    NARCIS (Netherlands)

    Moet, D. J. D.; de Bruyn, P.; Blom, P. W. M.

    2010-01-01

    The use of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) in combination with ZnO as middle electrode in solution-processed organic tandem solar cells requires a pH modification of the PEDOT:PSS dispersion. We demonstrate that this neutralization leads to a reduced work function

  17. Atomic layer deposition synthesis and evaluation of core–shell Pt-WC electrocatalysts

    International Nuclear Information System (INIS)

    Hsu, Irene J.; Chen, Jingguang G.; Jiang, Xiaoqiang; Willis, Brian G.

    2015-01-01

    Pt-WC core shell particles were produced using atomic layer deposition (ALD) to deposit Pt layers onto WC particle substrates. A range of Pt depositions were used to determine the growth mechanism for the Pt-WC powder system. TEM imaging and Cu stripping voltammetry found that Pt ALD growth on WC powder substrates was similar to that on WC thin films. However, excess free carbon was found to affect Pt ALD by blocking adsorption sites on WC. The Pt-WC samples were evaluated for the oxygen reduction reaction using a rotating disk electrode to obtain quantitative activity information. The mass and specific activities for the 30 and 50 ALD cycle samples were found to be comparable to a 10 wt. % Pt/C catalyst. However, higher overpotentials and lower limiting currents were observed with ALD Pt-WC compared to Pt/C catalysts, indicating that the oxygen reduction mechanism is not as efficient on Pt-WC as on bulk Pt. Additionally, these Pt-WC catalysts were used to demonstrate hydrogen evolution reaction activity and were found to perform as well as bulk Pt catalyst but with a fraction of the Pt loading, in agreement with the previous work on Pt-WC thin film catalysts

  18. Dynamics of oxide growth on Pt nanoparticles electrodes in the presence of competing halides by operando energy dispersive X-Ray absorption spectroscopy

    KAUST Repository

    Minguzzi, Alessandro

    2018-03-17

    In this work we studied the kinetics of oxide formation and reduction on Pt nanoparticles in HClO4 in the absence and in the presence of Br− and Cl− ions. The study combines potential step methods (i.e. chronoamperometry and choronocoulometry) with energy dispersive X-ray absorption spectroscopy (ED-XAS), which in principle allows to record a complete XAS spectrum in the timescale of milliseconds. Here, the information on the charge state and on the atomic surrounding of the considered element provided by XAS was exploited to monitor the degree of occupancy of 5d states of Pt in the course of oxide formation and growth, and to elucidate the competing halide adsorption/desorption phenomena. Electrochemical methods and XAS agree on the validity of a log(t) depending growth of Pt oxide, that is significantly delayed in the presence of Cl− and Br− anions. In the proximity of formation of one monolayer, the growth is further slowed down.

  19. Dynamics of oxide growth on Pt nanoparticles electrodes in the presence of competing halides by operando energy dispersive X-Ray absorption spectroscopy

    KAUST Repository

    Minguzzi, Alessandro; Montagna, Linda; Falqui, Andrea; Vertova, Alberto; Rondinini, Sandra; Ghigna, Paolo

    2018-01-01

    In this work we studied the kinetics of oxide formation and reduction on Pt nanoparticles in HClO4 in the absence and in the presence of Br− and Cl− ions. The study combines potential step methods (i.e. chronoamperometry and choronocoulometry) with energy dispersive X-ray absorption spectroscopy (ED-XAS), which in principle allows to record a complete XAS spectrum in the timescale of milliseconds. Here, the information on the charge state and on the atomic surrounding of the considered element provided by XAS was exploited to monitor the degree of occupancy of 5d states of Pt in the course of oxide formation and growth, and to elucidate the competing halide adsorption/desorption phenomena. Electrochemical methods and XAS agree on the validity of a log(t) depending growth of Pt oxide, that is significantly delayed in the presence of Cl− and Br− anions. In the proximity of formation of one monolayer, the growth is further slowed down.

  20. Sample preparation and electrochemical data of Co3O4 working electrode for seawater splitting

    Directory of Open Access Journals (Sweden)

    Malkeshkumar Patel

    2017-10-01

    Full Text Available In this data article, we presented the electrochemical data of the working electrode made of Co3O4 semi-transparent film. Electrochemically stable, porous nature of Kirkendall-diffusion grown Co3O4 films were applied to generate hydrogen from the seawater splitting (Patel et al., 2017 [1]. The data presented in this article includes the photograph of prepared samples, polarization curves for water oxidation and Tafel plot, linear sweep voltammetry measurements under the pulsed light condition in 0.1 M Na2S2O3 electrolyte, and transient photoresponses with natural sea water. Moreover, seawater splitting using the Co3O4 working electrode is demonstrated.

  1. Determination of work function of graphene under a metal electrode and its role in contact resistance.

    Science.gov (United States)

    Song, Seung Min; Park, Jong Kyung; Sul, One Jae; Cho, Byung Jin

    2012-08-08

    Although the work function of graphene under a given metal electrode is critical information for the realization of high-performance graphene-based electronic devices, relatively little relevant research has been carried out to date. In this work, the work function values of graphene under various metals are accurately measured for the first time through a detailed analysis of the capacitance-voltage (C-V) characteristics of a metal-graphene-oxide-semiconductor (MGOS) capacitor structure. In contrast to the high work function of exposed graphene of 4.89-5.16 eV, the work function of graphene under a metal electrode varies depending on the metal species. With a Cr/Au or Ni contact, the work function of graphene is pinned to that of the contacted metal, whereas with a Pd or Au contact the work function assumes a value of ∼4.62 eV regardless of the work function of the contact metal. A study of the gate voltage dependence on the contact resistance shows that the latter case provides lower contact resistance.

  2. WORKING POSTURE ANALYSIS AND DESIGN USING RULA (RAPID UPPER LIMB ASSESSMENT METHOD IN PRODUCTION PROCESS AT PT. INDANA PAINT

    Directory of Open Access Journals (Sweden)

    Yongky Kusnandar Djiono

    2013-12-01

    Full Text Available Working posture can affect the comfort and productivity of labor in doing manual work. In this study, RULA method is used to determine the risk level of musculoskeletal disorders (MSDs injury in the production process at PT. Indana Paint (consists of mixing and packaging steps for water-based paint, solvent-based paint, and base paint production, and then given proposed improvements to reduce the risk level. Method used in this research is direct observation and video recording of every work element to determine some awkward postures that will be assessed using RULA method. Thirty awkward postures are found, there are 7 working posture (23.3% have low risk level, 11 working posture (36.7% have medium risk level, and 12 working posture (40% have high risk level. Proposed improvements given is to brief the workers on appropriate lifting technique and working methods, adding mechanical aids for handling drums, and working position height adjustment.

  3. Preparation of Pb(Zr0.52Ti0.48)O3 thin films on Pt/RuO2 double electrode by a new sol-gel route

    International Nuclear Information System (INIS)

    Kim, S.; Choi, Y.; Kim, C.; Oh, Y.

    1997-01-01

    Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) thin film on Pt/RuO 2 double electrode was successfully prepared by using new alkoxide endash alkanolamine, sol-gel method. It was observed that the use of Pt/RuO 2 double electrode reduced leakage current, resulting in a marked improvement in the leakage characteristics and more reliable capacitors. Typical P-E hysteresis behavior was observed even at low applied voltage of 5 V, manifesting greatly improved remanance and coercivity. Fatigue and breakdown characteristic, measured at 5 V, showed stable behavior and no degradation in polarization was observed up to 10 11 cycles.copyright 1997 Materials Research Society

  4. Low-Temperature Preparation of (111)-oriented Pb(Zr,Ti)O3 Films Using Lattice-Matched (111)SrRuO3/Pt Bottom Electrode by Metal-Organic Chemical Vapor Deposition

    Science.gov (United States)

    Kuwabara, Hiroki; Sumi, Akihiro; Okamoto, Shoji; Hoko, Hiromasa; Cross, Jeffrey S.; Funakubo, Hiroshi

    2009-04-01

    Pb(Zr0.35Ti0.65)O3 (PZT) films 170 nm thick were prepared at 415 °C by pulsed metal-organic chemical vapor deposition. The (111)-oriented PZT films with local epitaxial growth were obtained on (111)SrRuO3/(111)Pt/TiO2/SiO2/Si substrates and their ferroelectricities were ascertained. Ferroelectricity was improved by postannealing under O2 gas flow up to 550 °C. Larger remanent polarization and better fatigue endurance were obtained using a SrRuO3 top electrode compared to a Pt top electrode for PZT films after annealing at 500 °C.

  5. Direct chronopotentiometric analysis of riboflavin using a glassy carbon vessel as the working electrode

    Directory of Open Access Journals (Sweden)

    Brezo Tanja Ž.

    2016-01-01

    Full Text Available A new method for the determination of riboflavin (vitamin B2 was developed based on chronopotentiometry with a glassy carbon process vessel macroelectrode. The method optimisation included investigation of the most important experimental parameters: type and concentration of the supporting electrolyte, initial potential, reduction current, and the working electrode surface area. The reduction signal of riboflavin appeared at about -0.12 V vs. Ag/AgCl (3.5 mol/dm3 KCl electrode in 0.025 mol/dm3 HCl as the supporting electrolyte. A linear response was obtained in the the range of 0.05-4 mg/dm3. The limit of detection and limit of quantitation were 0.018 mg/dm3 and 0.054 mg/dm3, respectively. Due to the use of specific working electrode, a significant enhancement of the method relative sensitivity of about 10 times was achieved. The accuracy of the defined method was confirmed by HPLC analyses. The developed method was successfully applied for the quantitation of riboflavin in various pharmaceutical multivitamin preparations. [Projekat Ministarstva nauke Republike Srbije, br. III 46009

  6. A high sensitive biosensor based on FePt/CNTs nanocomposite/N-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified carbon paste electrode for simultaneous determination of glutathione and piroxicam.

    Science.gov (United States)

    Karimi-Maleh, Hassan; Tahernejad-Javazmi, Fahimeh; Ensafi, Ali A; Moradi, Reza; Mallakpour, Shadpour; Beitollahi, Hadi

    2014-10-15

    This study describes the development, electrochemical characterization and utilization of novel modified N-(4-hydroxyphenyl)-3,5-dinitrobenzamide-FePt/CNTs carbon paste electrode for the electrocatalytic determination of glutathione (GSH) in the presence of piroxicam (PXM) for the first time. The synthesized nanocomposite was characterized with different methods such as TEM and XRD. The modified electrode exhibited a potent and persistent electron mediating behavior followed by well-separated oxidation peaks of GSH and PXM. The peak currents were linearly dependent on GSH and PXM concentrations in the range of 0.004-340 and 0.5-550 µmol L(-1), with detection limits of 1.0 nmol L(-1) and 0.1 µmolL(-1), respectively. The modified electrode was successfully used for the determination of the analytes in real samples with satisfactory results. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Effective adsorption/electrocatalytic degradation of perchlorate using Pd/Pt supported on N-doped activated carbon fiber cathode

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Fubing; Zhong, Yu [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Yang, Qi, E-mail: yangqi@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Wang, Dongbo, E-mail: dongbowang@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Chen, Fei; Zhao, Jianwei; Xie, Ting; Jiang, Chen; An, Hongxue; Zeng, Guangming; Li, Xiaoming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China)

    2017-02-05

    Highlights: • Pd/Pt-NACF served as an adsorption/electrocatalysis electrode to reduce perchlorate. • The possible mechanisms involved in the reaction process were explained. • The reusability and stability of Pd/Pt-NACF bifunctional material was evaluated. - Abstract: In this work, Pd/Pt supported on N-doped activated carbon fiber (Pd/Pt-NACF) was employed as the electrode for electrocatalytic degradation of perchlorate through adsorption/electroreduction process. Perchlorate in solution was firstly adsorbed on Pd/Pt-NACF and then reduced to non-toxic chloride by the catalytic function of Pd/Pt at a constant current (20 mA). Compared with Pd/Pt-ACF, the adsorption capacity and electrocatalytic degradation efficiency of Pd/Pt-NACF for perchlorate increased 161% and 28%, respectively. Obviously, positively charged N-functional groups on NACF surface enhanced the adsorption capacity of Pd/Pt-NACF, and the dissociation of hydrogen to atomic H* by the Pd/Pt nanostructures on the cathode might drastically promote the electrocatalytic reduction of perchlorate. The role of atomic H* in the electroreduction process was identified by tertiary butanol inhibition test. Meanwhile, the perchlorate degradation performance was not substantially lower after three successive adsorption/electrocatalytic degradation experiments, demonstrating the electrochemical reusability and stability of the as-prepared electrode. These results showed that Pd/Pt-NACF was effective for electrocatalytic degradation of perchlorate and had great potential in perchlorate removal from water.

  8. Audit TI Kinerja Manajemen PT. X Dengan Frame Work Cobit 4.1

    Directory of Open Access Journals (Sweden)

    I Putu Ade Ambara Putra

    2015-11-01

    Full Text Available The development of information technology is now widely used by companies of airport to improve service to customers. The use of such technology to facilitates of information, communication, and banking transactions. The use of information technology in the operations of PT. X have many risks. The Risks that exist on the PT. X requires the existence of information technology governance to minimize it. The objective is to obtain information regarding the level of IT maturity and gaps. The framework used is COBIT 4.1. The  Results found the maturity level on the current state is level 3 and the expected conditions to be reached is level 5. The analysis carried out on the gap and then made a recommendation strategies to existing gaps, so that the level of maturity that expected to be achieved. To minimize the gap maturity level, need the suggestions for improvement that taken from the high control objectives COBIT 3rd edition. The importance level give the process is a standard model, among others Critical Sucess Factor (CSF, indicators such as the Key Goal Indicators (KGI and Key Performance Indicator (KPI.

  9. Temperature dependence of the work function of ruthenium-based gate electrodes

    International Nuclear Information System (INIS)

    Alshareef, H.N.; Wen, H.C.; Luan, H.F.; Choi, K.; Harris, H.R.; Senzaki, Y.; Majhi, P.; Lee, B.H.; Foran, B.; Lian, G.

    2006-01-01

    The effect of device fabrication temperature on the work function of ruthenium (Ru) metal gate and its bilayers was investigated. The work function shows strong temperature dependence when Ru electrodes are deposited on silicon oxide, SiO 2 , but not on hafnium silicates (HfSiO x ). Specifically, the work function of Ru on SiO 2 increased from 4.5 eV at 500 deg. C to 5.0 eV at 700 deg. C. On further annealing to 900 deg. C or higher, the work function dropped to about 4.4 eV. In the case of HfSiO x , the work function of Ru changed by less than 100 mV over the same temperature range. Identical temperature dependence was observed using hafnium (Hf)/Ru and tantalum (Ta)/Ru bilayers. However, the peak values of the work function decreased with increasing Hf/Ru and Ta/Ru thickness ratios. Materials analysis suggests that these trends are driven by interactions at the Ru metal gate-dielectric interface

  10. Wearable Solid-State Supercapacitors Operating at High Working Voltage with a Flexible Nanocomposite Electrode.

    Science.gov (United States)

    Li, Xiaoyan; Wang, Jun; Zhao, Yaping; Ge, Fengyan; Komarneni, Sridhar; Cai, Zaisheng

    2016-10-05

    The proposed approach for fabricating ultralight self-sustained electrodes facilitates the structural integration of highly flexible carbon nanofibers, amino-modified multiwalled carbon nanotubes (AM-MWNT), and MnO 2 nanoflakes for potential use in wearable supercapacitors. Because of the higher orientation of AM-MWNT and the sublimation of terephthalic acid (PTA) in the carbonization process, freestanding electrodes could be realized with high porosity and flexibility and could possess remarkable electrochemical properties without using polymer substrates. Wearable symmetric solid-state supercapacitors were further assembled using a LiCl/PVA gel electrolyte, which exhibit a maximum energy density of 44.57 Wh/kg (at a power density of 337.1 W/kg) and a power density of 13330 W/kg (at an energy density of 19.64 Wh/kg) with a working voltage as high as 1.8 V. Due to the combination of several favorable traits such as flexibility, high energy density, and excellent electrochemical cyclability, the presently developed wearable supercapacitors with wide potential windows are expected to be useful for new kinds of portable electric devices.

  11. Analisis Kepuasan Kerja Karyawan Melalui Faktor-Faktor Quality of Work Life (QWL) Pada PT. Pertamina (Persero) Perkapalan

    OpenAIRE

    Kartika, Lindawati; Maarif, Syamsul

    2011-01-01

    PT. Pertamina (Persero) Shipping as shipping division of PT. Pertamina (Persero) since 1959 is affecting by a new transformation strategy of PT. Pertamina, as holding, to face the oil and gas regulation - UU No. 22 year 2001, which change Indonesian oil market from monopoly into competitive market. As competitiveness strategy, the transformation is a necessary condition to achieve PT. Pertamina goal to be world class Oil Company. Employee commitments to service and performance quality are cri...

  12. Noise analysis of gate electrode work function engineered recessed channel (GEWE-RC) MOSFET

    International Nuclear Information System (INIS)

    Agarwala, Ajita; Chaujar, Rishu

    2012-01-01

    This paper discusses the noise assessment, using ATLAS device simulation software, of a gate electrode work function engineered recessed channel (GEWE-RC) MOSFET involving an RC and GEWE design integrated onto a conventional MOSFET. Furthermore, the behaviour of GEWE-RC MOSFET is compared with that of a conventional MOSFET having the same device parameters. This paper thus optimizes and predicts the feasibility of a novel design, i.e., GEWE-RC MOSFET for high-performance applications where device and noise reduction is a major concern. The noise metrics taken into consideration are: minimum noise figure and optimum source impedance. The statistical tools auto correlation and cross correlation are also analysed owing to the random nature of noise.

  13. The electrocatalytic properties of carbon supported PtRu/C nanoalloys in oxidation of small organic molecules: Comparison with Pt/C catalyst

    Directory of Open Access Journals (Sweden)

    Lović Jelena D.

    2012-01-01

    Full Text Available The electrocatalytic activity of carbon supported PtRu/C catalysts, with different composition, toward the electrooxidation of methanol, CO and formic acid were examined in acid and alkaline solution at ambient temperature using thin-film rotating disk electrode (RDE method and compared with activity of Pt/C. The catalysts were characterized by XRD, AFM and STM techniques. XRD pattern revealed that PtRu-1/C catalyst is consisted of two structures e.g. Pt-Ru-fcc and Ru-hcp (the solid solution of Ru in Pt and the small amount of Ru or solid solution of Pt in Ru, as opposed to PtRu-2/C catalyst which is consisted of one structure mostly, Pt-Ru-fcc. According to STM images, PtRu as well as Pt, particles size were between 2 and 6 nm, which is in a good agreement with the mean particles size determined by XRD. To establish the activity and stability of the catalysts potentiodynamic and quasi steady-state measurements were performed. It was found that the activity of Pt and PtRu for CO and methanol oxidation is a strong function of pH of solution. The kinetics are much higher in alkaline than in acid solution and the difference between Pt/C and PtRu/C is much less pronounced in alkaline media. Results presented in this work indicate that activity of PtRu catalysts depends on catalyst composition, e.g. on Pt/Ru atomic ratio, as well as on alloying degree of catalysts. Comparison of CO, methanol and formic acid oxidation on PtRu-2/C, PtRu-1/C and Pt/C catalysts revealed that PtRu-2/C is the most active one. It was shown that the PtRu-2/C catalyst, due to fact that it is consisted of only one phase, with high alloying degree, through the bifunctional mechanism improved by electronic effect, achieve the activity two times higher related to PtRu-1/C in the oxidation of all organic molecules investigated, and about three times higher compared to Pt/C in the oxidation of methanol and CO, and five times higher in formic acid oxidation.

  14. Pt-Ni and Pt-Co Catalyst Synthesis Route for Fuel Cell Applications

    Science.gov (United States)

    Firdosy, Samad A.; Ravi, Vilupanur A.; Valdez, Thomas I.; Kisor, Adam; Narayan, Sri R.

    2013-01-01

    Oxygen reduction reactions (ORRs) at the cathode are the rate-limiting step in fuel cell performance. The ORR is 100 times slower than the corresponding hydrogen oxidation at the anode. Speeding up the reaction at the cathode will improve fuel cell efficiency. The cathode material is generally Pt powder painted onto a substrate (e.g., graphite paper). Recent efforts in the fuel cell area have focused on replacing Pt with Pt-X alloys (where X = Co, Ni, Zr, etc.) in order to (a) reduce cost, and (b) increase ORR rates. One of these strategies is to increase ORR rates by reducing the powder size, which would result in an increase in the surface area, thereby facilitating faster reaction rates. In this work, a process has been developed that creates Pt-Ni or Pt-Co alloys that are finely divided (on the nano scale) and provide equivalent performance at lower Pt loadings. Lower Pt loadings will translate to lower cost. Precursor salts of the metals are dissolved in water and mixed. Next, the salt mixtures are dried on a hot plate. Finally, the dried salt mixture is heattreated in a furnace under flowing reducing gas. The catalyst powder is then used to fabricate a membrane electrode assembly (MEA) for electrochemical performance testing. The Pt- Co catalyst-based MEA showed comparable performance to an MEA fabri cated using a standard Pt black fuel cell catalyst. The main objective of this program has been to increase the overall efficiencies of fuel cell systems to support power for manned lunar bases. This work may also have an impact on terrestrial programs, possibly to support the effort to develop a carbon-free energy source. This catalyst can be used to fabricate high-efficiency fuel cell units that can be used in space as regenerative fuel cell systems, and terrestrially as primary fuel cells. Terrestrially, this technology will become increasingly important when transition to a hydrogen economy occurs.

  15. Effects of electrodes on the properties of sol-gel PZT based capacitors in FeRAM

    Science.gov (United States)

    Zhang, Ming-Ming; Jia, Ze; Ren, Tian-Ling

    2009-05-01

    The effects of electrodes on the properties of capacitors applied in ferroelectric random access memories (FeRAM) are investigated in this work. Pt and Ir are used as bottom and top electrodes (BE and TE), respectively, in sol-gel Pb(Zr xTi 1-x)O 3 (PZT) based capacitors. Bottom electrodes are found to play a dominant role in the properties of PZT films and capacitors. Capacitors using Pt as bottom electrode have larger remnant polarization (2Pr) than those using Ir which may result from the different orientations of PZT films. The higher Schottky barrier, more dense film and smaller roughness are believed to be the reasons for the better leakage performance of capacitors using Pt as bottom electrodes. Different vacancies types and interface conditions are believed to be the main reasons for the better fatigue (less than 10% initial 2Pr loss after 10 11 fatigue cycles) and better imprint properties of TE/PZT/Ir capacitors. Top electrodes are found to have smaller impact on the properties of capacitors compared with bottom electrodes. A decrease in 2Pr is found when Ir is used as top electrode instead of Pt for PZT/Pt, which is believed to be caused by the stress resulting from lattice mismatch. The different thermal processes that top and bottom electrodes suffered are believed to be the reason for the different impacts they have on capacitors.

  16. The Effect of Work Stress and Workplace Conflict on Job Performance at PT. Tirta Investama, Airmadidi

    OpenAIRE

    Massie, Patricia Magda Yull

    2013-01-01

    Many companies are trying to avoid the workplace stress, since it could effects the performance of employee. That's why negative effects of work stress and workplace conflict also become a concern of HR manager. Since those things can bring so many problem like cardiovascular problem, depression and increase the possibility to catch another disease. Work Stress is the adverse reaction people have to exercise pressures and Workplace Conflict contains a variety of personalities that can someth...

  17. The Analysis of Personality and Work Ability on the Performance of Outsourcing Employees with Work Motivation as Intervening Variable at Pt Inalum (Persero in Kuala Tanjung

    Directory of Open Access Journals (Sweden)

    Zulkifli Osro

    2018-06-01

    Full Text Available One of the factors for good achievement is employees’ best performance. Performance is a work result in quality and quantity achieved by an employee or a group in performing the duties. The level of employees’ performance is influenced by several factors such as personality, capability and motivation. This research has purpose to identify and analyze the influence of personality and capability toward outsourcing employees under supervision of General Affairs Department in PT Inalum (Persero Kuala Tanjung, North Sumatera, Indonesia. The type of this research is descriptive correlation which means describing free and bound variables, and analyzing the correlation of both variables to figure out the contribution of each variable. Meanwhile, the nature of this research is an explanatory research describing the fenomena which happen at research objects regarding the influence of personality and capability toward outsourcing employees with motivation as an intervening variable. The population of this research is all outsourcing employees under supervision of General Affairs Department as many as 301 persons, and 172 persons as sample of this research with the margin error α 5%. The data are collected by interview, questionnaire and documentation study. The data were analyzed by using path analysis and the research result has showed that the variables of personality and capability simultaneously have positive and significant effects to outsourcing employees’ performance through motivation, and partially the personality and capability positively and significantly effects to outsourcing employees’ performance in PT Inalum (Persero Kuala Tanjung.

  18. Evaluation of Pt/C catalyst degradation and H2O2 formation changes under simulated PEM fuel cell condition by a rotating ring-disk electrode

    International Nuclear Information System (INIS)

    Ono, Kenshiro; Yasuda, Yuki; Sekizawa, Koshi; Takeuchi, Norimitsu; Yoshida, Toshihiko; Sudoh, Masao

    2013-01-01

    Potential cycling tests using 42.2 wt% and 19.1 wt% Pt/C catalysts were conducted by the RRDE technique to evaluate the changes in the electrochemical surface area (ECSA) and H 2 O 2 formation ability of the catalysts. As the typical operating conditions of a proton exchange membrane fuel cell (PEMFC), square wave potential cycling (0.7–0.9 V) was applied to the catalysts for 150,000 cycles in an O 2 -saturated 0.1 M HClO 4 electrolyte. During the potential cycling test, electrochemical measurements were carried out to characterize the ECSA, oxygen reduction reaction (ORR) activity and H 2 O 2 formation. After 150,000 potential cyclings, while the ECSA of the 42.2 wt% Pt/C dropped by 35%, the ECSA loss for the 19.1 wt% Pt/C was 55%. This result implies that the Pt content in the cathode catalyst affects the ECSA loss during the long-term PEMFC operation. Additionally, the H 2 O 2 formation ratio obviously increased with the potential cycling only in the case of the 19.1 wt% Pt/C. In order to verify the H 2 O 2 formation dependence on the ECSA, four types of catalysts, which included different Pt loading amounts (42.2, 28.1, 19.1 and 9.5 wt% Pt/C), were evaluated, and these results explained the relationship between the ECSA decay and H 2 O 2 formation increase in the durability tests

  19. Fabrication and Optimization of a Nanoporous Platinum Electrode and a Non-enzymatic Glucose Micro-sensor on Silicon

    Directory of Open Access Journals (Sweden)

    Younghun Kim

    2008-10-01

    Full Text Available In this paper, optimal conditions for fabrication of nanoporous platinum (Pt were investigated in order to use it as a sensitive sensing electrode for silicon CMOS integrable non-enzymatic glucose micro-sensor applications. Applied charges, voltages, and temperatures were varied during the electroplating of Pt into the formed nonionic surfactant C16EO8 nano-scaled molds in order to fabricate nanoporous Pt electrodes with large surface roughness factor (RF, uniformity, and reproducibility. The fabricated nanoporous Pt electrodes were characterized using atomic force microscopy (AFM and electrochemical cyclic voltammograms. Optimal electroplating conditions were determined to be an applied charge of 35 mC/mm2, a voltage of -0.12 V, and a temperature of 25 °C, respectively. The optimized nanoporous Pt electrode had an electrochemical RF of 375 and excellent reproducibility. The optimized nanoporous Pt electrode was applied to fabricate non-enzymatic glucose micro-sensor with three electrode systems. The fabricated sensor had a size of 3 mm x 3 mm, air gap of 10 µm, working electrode (WE area of 4.4 mm2, and sensitivity of 37.5 µA•L/mmol•cm2. In addition, it showed large detection range from 0.05 to 30 mmolL-1 and stable recovery responsive to the step changes in glucose concentration.

  20. Design of mathematical models assessment of working achievements based on spencer competency in PT. Z

    Science.gov (United States)

    Siregar, K.; Siregar, S. F.

    2018-02-01

    This research is design employee performance assessment by considering work result of employee based on competency. Relevant competencies are identified according to Spencer’s competence of employees that subsequently processed by Analytical Hierarchy Process (AHP) method. The results of weighting AHP indicate the highest priority order of criteria, there are; concern of customer satisfaction (0.1325), group work (0.1324) and technical expertise (0.0826). The weight of the criteria is used to design the Work Performance Value (WPV) to be used as the basis for calculating the incentive index. The higher incentive index of an employee, the greater amount of incentives was earned. The calculation of incentives is made to four employees of chopsticks production. From employee incentives A, B, C and D, employee D has the highest incentive index and increment of IDR 2,700,675 compared to previous incentive system. The incentive division system based on the Work Performance Values (WPV) of this proposal reflects a real incentive so that the incapacity of incentive can be reduced.

  1. ANALISA ELECTRODE CONSUMABLE TYPE OK AUTROD 12.10 PENGELASAN SUBMERGED ARC WELDING PADA BLOK-BLOK KAPAL DCV 18500 DWT DI PT. JASA MARINA INDAH UNIT II SEMARANG

    Directory of Open Access Journals (Sweden)

    Sukanto Jatmiko

    2012-07-01

    Full Text Available In this globalization era technological advances growed very fast. In shipping industry of development process shipbuilding of principal feedstock to used steel plate, with construction tacking on using welder method.In this research purpose of lifted is know number of requirement (consumable electrode for welder SAW at block-block ship DCV 18500 DWT in PT. Jasa Marina Indah Semarang.At this experiment specimen applied is low carbon steel of type ST 42 with thickness of 12, 13, 14, 17, 19 dan 24 mm. Research is done by the way of making specimen at every plate thickness. Then is done path measurement of length, used electrode length, and weight flux applied at the welder.From result of gauging and data calculation welder at block DB 5(p/c/s, SS5A(p/s, SS 5B(p/s, UD 5C, and TB 102 (p/c/s will be known number of electrodes applied in welder SAW and number of flux used.

  2. An Analysis of Laser-Welded Nicr-Ir and Nicr-Pt Micro Joints on Spark Plug Electrodes in Biogas-Fuelled Engines

    Directory of Open Access Journals (Sweden)

    Grabas B.

    2016-06-01

    Full Text Available The paper deals with the laser beam welding of tips to central and side spark plug electrodes made of a nickel-chromium alloy. The tips attached to the central electrodes were made from a solid iridium wire 0.8 mm in diameter and 2 mm in length, while the tips connected to the side electrodes were made from a platinum wire 1.5 mm in diameter and 0.25 mm in thickness. In both cases, accurate positioning of the tips was required before they were resistance welded to the electrodes. Then, a fillet weld was produced with an Nd:YAG laser using single, partly overlapping conductive pulses. The laser welding was performed at different laser power levels and pulse durations. Metallographic sections of the joints were prepared to observe changes in the microstructure and determine their correlation with the changes in the process parameters. The results were used to select appropriate welding parameters for the materials joined. The microscopic analysis indicated welding imperfections such as micro cracks at the interface between the elements joined. The tips welded to the spark plug electrodes can help extend the service life of spark plugs in highly corrosive environments.

  3. Low Pt content Pt-Ru-Ir-Sn quaternary catalysts for anodic methanol oxidation in DMFC

    Energy Technology Data Exchange (ETDEWEB)

    Neburchilov, Vladimir; Wang, Haijiang; Zhang, Jiujun [Institute for Fuel Cell Innovation, National Research Council (Canada)

    2007-07-15

    In this communication we report our research work on low Pt content Pt-Ru-Ir-Sn quaternary catalysts for use in DMFC anodes. The carbon-supported quaternary metal alloy catalyst was synthesized according to the solution reduction method and was deposited onto a carbon fiber paper or a carbon aerogel nanofoam to form the anode for direct methanol fuel cells. The Pt loading of the electrode is 0.1 mg/cm{sup 2}. The testing results from a three-electrode electrochemical cell show that the simultaneous use of higher Ir (25-35 wt.%) and Sn (10 wt.%) content gives satisfactory stability and higher activity for methanol oxidation than the commercially available E-TEK anode (80%[0.5Pt 0.5Ru]/C on carbon cloth). Energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), scanning electron microscope (SEM), and Bruner-Emmett-Teller method (BET) measurements were carried out to characterize the composition, structure, morphology, and surface area of the developed catalysts. (author)

  4. Electrochemical Oxidation of Cyanide Using Platinized Ti Electrodes

    Directory of Open Access Journals (Sweden)

    Aušra VALIŪNIENĖ

    2013-12-01

    Full Text Available The cyanide-containing effluents are dangerous ecological hazards and must be treated before discharging into the environment. Anodic oxidation is one of the best ways to degrade cyanides. Pt anodes as the most efficient material for the cyanide electrochemical degradation are widely used. However, these electrodes are too expensive for industrial purposes. In this work Ti electrodes covered with nano-sized Pt particle layer were prepared and used for the anodic oxidation of cyanide ions. Surface images of Ti electrodes and Ti electrodes covered with different thickness layer of Pt were compared and characterized by the atomic force microscopy (AFM. The products formed in the solution during the CN- ions electrooxidation were examined by the Raman spectroscopy. An electrochemical Fast Fourier transformation (FFT impedance spectroscopy was used to estimate the parameters that reflect real surface roughness of Pt-modified Ti electrodes.DOI: http://dx.doi.org/10.5755/j01.ms.19.4.2514

  5. The different electron transport of two nanotubes incorporated in working electrode of dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaobo, E-mail: zhangxiaobo@chnu.edu.cn [School of Physics, Huaibei Normal University, Huaibei 235000, Anhui (China); Eco-Materials and Renewable Energy Research Centre (ERERC), Nanjing University, Nanjing 210093 (China); Tian, Hanmin; Wang, Xiangyan; Xue, Guogang; Tian, Zhipeng; Zhang, Jiyuan; Yuan, Shikui [Eco-Materials and Renewable Energy Research Centre (ERERC), Nanjing University, Nanjing 210093 (China); Yu, Tao; Zou, Zhigang [Eco-Materials and Renewable Energy Research Centre (ERERC), Nanjing University, Nanjing 210093 (China); National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China)

    2013-11-25

    Highlights: •Two TiO{sub 2} nanotubes are separately incorporated in working electrode of DSSCs. •The 6-μm-tubes incorporation improves electron transport in the cell. •The 1-μm-tubes incorporation impedes electron transport in the cell. •Both 1-D electron diffusion and nanotube percolation promote electron transport. •Electron residing at the end of 1-μm-tubes maybe impedes electron transport. -- Abstract: Two different-length (6 μm and 1 μm) TiO{sub 2} nanotubes were prepared and incorporated in working electrode of dye-sensitized solar cells (DSSCs). The analyses of the electrochemical impedance spectra of cells demonstrate that, the electron transport resistance R{sub w} decreases and increases separately to 0.3 Ω in 6-μm-tubes-cell and to 15.1 Ω in 1-μm-tubes-cell comparing with that 1.4 Ω in P25-cell, reflecting the improved electron transport in 6-μm-tubes-cell and impeded electron transport in 1-μm-tubes-cell. The reason is ascribed to the different electron transport in working electrode due to the incorporation of nanotubes. For the 6-μm-tubes incorporation, both 1-D electron diffusion along nanotubes and nanotube percolation improve electron transport in working electrode, but they cannot improve electron transport for the 1-μm-tubes incorporation. On the contrary, the 1-μm-tubes incorporation may impede electron transport because of electron residing occurring seriously at the end of 1-μm-tubes. The results of this work will help to understand the specific nature of electron transport in TiO{sub 2} nanotubes in DSSCs.

  6. Pt nanocrystals electrodeposited on reduced graphene oxide/carbon fiber paper with efficient electrocatalytic properties

    Directory of Open Access Journals (Sweden)

    Zhiling Chen

    2017-08-01

    Full Text Available Carbon fiber paper (CFP wrapped with reduced graphene oxide (rGO film as the composite support (rGO/CFP of Pt catalysts was studied. It was found that rGO could affect the size and morphology of Pt nanocrystals (NCs. Concave nanocubes (CNC Pt NCs ~ 20 nm were uniformly electrodeposited on high reduced HrGO/CFP while irregular Pt NCs ~ 62 nm were loaded on low reduced LrGO. Compared with Pt-LrGO/CFP and Pt-MrGO/CFP, the CNC Pt-HrGO/CFP exhibited a higher electrochemically active surface area (121.7 m2 g−1, as well as enhanced electrooxidation activity of methanol (499 mA mg−1 and formic acid (950 mA mg−1. The results further demonstrated that the CNC Pt-HrGO/CFP could serve as the gas diffusion electrode in fuel cells and yielded a satisfactory performance (1855 mW mg−1. The work can provide an attractive perspective on the convenient preparation of the novel gas diffusion electrode for proton exchange membrane fuel cells.

  7. Analisa Beban Kerja Dengan Menggunakan Work Sampling Dan Nasa-tlx Untuk Menentukan Jumlah Operator (Studi Kasus: PT Xyz)

    OpenAIRE

    Ramadhan, Rahadian; Tama, Ishardita Pambudi; Efranto, Remba Yanuar

    2014-01-01

    PT. XYZ merupakan pabrik yang bergerak di bidang sandang. Dalam penelitian ini, metode yang digunakan adalah pengukuran beban secara fisik dan pengukuran beban secara mental. Pada PT XYZ para pelaksana mesin sering sekali mengeluh tentang kelelahan karena harus mengoperasikan mesin yang banyak dalam sekali kerja. Untuk mengurangi kelelahan tersebut maka dibuatlah rencana penambahan jumlah karyawan tetap untuk mengurangi beban kerja setiap pelaksana mesin.. Pengukuran beban kerja menggunakan m...

  8. Ga-Doped Pt-Ni Octahedral Nanoparticles as a Highly Active and Durable Electrocatalyst for Oxygen Reduction Reaction.

    Science.gov (United States)

    Lim, JeongHoon; Shin, Hyeyoung; Kim, MinJoong; Lee, Hoin; Lee, Kug-Seung; Kwon, YongKeun; Song, DongHoon; Oh, SeKwon; Kim, Hyungjun; Cho, EunAe

    2018-04-11

    Bimetallic PtNi nanoparticles have been considered as a promising electrocatalyst for oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells (PEMFCs) owing to their high catalytic activity. However, under typical fuel cell operating conditions, Ni atoms easily dissolve into the electrolyte, resulting in degradation of the catalyst and the membrane-electrode assembly (MEA). Here, we report gallium-doped PtNi octahedral nanoparticles on a carbon support (Ga-PtNi/C). The Ga-PtNi/C shows high ORR activity, marking an 11.7-fold improvement in the mass activity (1.24 A mg Pt -1 ) and a 17.3-fold improvement in the specific activity (2.53 mA cm -2 ) compared to the commercial Pt/C (0.106 A mg Pt -1 and 0.146 mA cm -2 ). Density functional theory calculations demonstrate that addition of Ga to octahedral PtNi can cause an increase in the oxygen intermediate binding energy, leading to the enhanced catalytic activity toward ORR. In a voltage-cycling test, the Ga-PtNi/C exhibits superior stability to PtNi/C and the commercial Pt/C, maintaining the initial Ni concentration and octahedral shape of the nanoparticles. Single cell using the Ga-PtNi/C exhibits higher initial performance and durability than those using the PtNi/C and the commercial Pt/C. The majority of the Ga-PtNi nanoparticles well maintain the octahedral shape without agglomeration after the single cell durability test (30,000 cycles). This work demonstrates that the octahedral Ga-PtNi/C can be utilized as a highly active and durable ORR catalyst in practical fuel cell applications.

  9. Effect of carbon nano tube working electrode thickness on charge transport kinetics and photo-electrochemical characteristics of dye-sensitized solar cells

    Science.gov (United States)

    Gacemi, Yahia; Cheknane, Ali; Hilal, Hikmat S.

    2018-02-01

    Physiochemical processes at the photo-electrode and the counter electrode of dye sensitized solar cells (DSSCs) involving having carbon nanotubes (CNTs) instead of the TiO2 layer, within the working electrode, are simulated in this work. Attention is paid to find the effect of CNT layer thickness on photo-electrochemical (PEC) characteristics of the CNT-DSSCs. Comparison with other conventional TiO2-DSSC systems, taking into account the working electrode film thickness, is also described here. To achieve these goals, a model is presented to explain charge transport and electron recombination which involve electron photo-excitation in dye molecules, injection of electrons from the excited dye to CNT working electrode conduction band, diffusion of electrons inside the CNT electrode, charge transfer between oxidized dye and (I-) and recombination of electrons. The simulation is based on solving non-linear equations using the Newton-Raphson numerical method. This concept is proposed for modelling numerical Faradaic impedance at the photo-electrode and the platinum counter electrode. It then simulates the cell impedance spectrum describing the locus of the three semicircles in the Nyquist diagram. The transient equivalent circuit model is also presented based on optimizing current-voltage curves of CNT-DSSCs so as to optimize the fill factor (FF) and conversion efficiency (η). The results show that the simulated characteristics of CNT-DSSCs, with different active CNT layer thicknesses, are superior to conventional TiO2-DSSCs.

  10. Spontaneous deposition of Ru on Pt (100: morphological and electrochemical studies. Preliminary results of ethanol oxidation at Pt(100/Ru

    Directory of Open Access Journals (Sweden)

    Colle Vinicius D.

    2003-01-01

    Full Text Available In the present work ruthenium was deposited in submonolayer amounts on Pt(100 by spontaneous deposition at several deposition times. The Pt (100/Ru surfaces were analyzed using ex-situ STM to image the deposits characteristic of ruthenium on Pt (100. It was observed the formation of ruthenium islands with diameters between 1.0 and 4.5 nm with bi-atomic thickness in the center of the islands. A homogeneous distribution of the ruthenium islands on the platinum terraces was found, with no preferential deposition on steps or surface defect sites. The ruthenium coverage degree had been calculated by the decrease of charge of the hydrogen adsorption-desorption peaks in the cyclic voltammograms of the Pt(100/Ru electrodes. The Pt(100/Ru electrodes with a ruthenium coverage degree of ca. 0.3 showed a high activity for the ethanol electrooxidation. The electrochemical experimental results support strongly the bifunctional mechanism for the enhanced ethanol oxidation.

  11. The effects of electron and hole transport layer with the electrode work function on perovskite solar cells

    Science.gov (United States)

    Deng, Quanrong; Li, Yiqi; Chen, Lian; Wang, Shenggao; Wang, Geming; Sheng, Yonglong; Shao, Guosheng

    2016-09-01

    The effects of electron and hole transport layer with the electrode work function on perovskite solar cells with the interface defects were simulated by using analysis of microelectronic and photonic structures-one-dimensional (AMPS-1D) software. The simulation results suggest that TiO2 electron transport layer provides best device performance with conversion efficiency of 25.9% compared with ZnO and CdS. The threshold value of back electrode work function for Spiro-OMeTAD, NiO, CuI and Cu2O hole transport layer are calculated to be 4.9, 4.8, 4.7 and 4.9 eV, respectively, to reach the highest conversion efficiency. The mechanisms of device physics with various electron and hole transport materials are discussed in details. The device performance deteriorates gradually as the increased density of interface defects located at ETM/absorber or absorber/HTM. This research results can provide helpful guidance for materials and metal electrode choice for perovskite solar cells.

  12. First meeting of the International Working Group on Advanced Technologies for Water Cooled Reactors, Vienna, 18-21 May 1987. (Pt. 2)

    International Nuclear Information System (INIS)

    1987-12-01

    The First Meeting of the IAEA International Working Group on Advanced Technologies for Water Cooled Reactors was held in Vienna, Austria from 18-21 May 1987. The Summary Report (Pt. 2) contains the papers which review the national programmes in the field of Advanced Technologies for Water Cooled Reactors and other presentations at the Meeting. A separate abstract was prepared for each of the 10 papers presented at this meeting. Refs, figs

  13. The Influences of Women Leadershp, Organizational Culture, Working Climate and Effective Communication on Employee€™s Productivity at PT. Bank Mandiri Area Manado

    OpenAIRE

    Tololiu, Melisa I.M

    2015-01-01

    In this global era, every organization seeks to improve employee€™s performance to create productive employees as their asset. PT. Bank Mandiri Area Manado is one of the organizations on the banking sector which has the main task of managing and marketing loans especially micro-credit segment. The aim of this study is to determine the influences of women leadership, organizational culture, working climate and effective communication on employee€™s productivity. In this study, population refer...

  14. Immobilization of flavin adenine dinucleotide (FAD) onto carbon cloth and its application as working electrode in an electroenzymatic bioreactor.

    Science.gov (United States)

    Jayabalan, R; Sathishkumar, M; Jeong, E S; Mun, S P; Yun, S E

    2012-11-01

    A high porosity carbon cloth with immobilized FAD was employed as working electrode in electrochemical NADH-regeneration procedure. Carbon cloth was oxidized with hot acids to create surface carboxyl group and then coupled by adenine amino group of FAD with carbodiimide in the presence of N-hydroxysulfosuccinimide. The bioelectrocatalytic NADH-regeneration was coupled to the conversion of achiral substrate pyruvate into chiral product l-lactate by l-lactate dehydrogenase (l-LDH) within the same reactor. The conversion was completed at 96h in bioreactor with FAD-modified carbon cloth, resulting in about 6mM of l-lactate from 10mM of pyruvate. While with bare carbon cloth, the yield at 120h was around 5mM. Immobilized FAD on the surface of carbon cloth electrode facilitated it to carry electrons from electrode to electron transfer enzymes; thereby NADH-regeneration was accelerated to drive the enzymatic reaction efficiently. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Influence of the concentration of borohydride towards hydrogen production and escape for borohydride oxidation reaction on Pt and Au electrodes - experimental and modelling insights

    Science.gov (United States)

    Olu, Pierre-Yves; Bonnefont, Antoine; Braesch, Guillaume; Martin, Vincent; Savinova, Elena R.; Chatenet, Marian

    2018-01-01

    The Borohydride Oxidation Reaction (BOR), the anode reaction in a Direct borohydride fuel cell (DBFC), is complex and still poorly understood, which impedes the development and deployment of the DBFC technology. In particular, no practical electrocatalyst is capable to prevent gaseous hydrogen generation and escape from its anode upon operation, which lowers the fuel-efficiency of the DBFC and raises safety issues in operation. The nature of the anode electrocatalysts strongly influences the hydrogen escape characteristics of the DBFC, which demonstrates how important it is to isolate the BOR mechanism in conditions relevant to DBFC operation. In this paper, from a selected literature review and BOR experiments performed in differential electrochemical mass spectrometry (DEMS) in a wide range of NaBH4 concentration (5-500 mM), a microkinetic model of the BOR for both Pt and Au surfaces is proposed; this model takes into account the hydrogen generation and escape.

  16. Electro-oxidation of Ethanol on Carbon Supported PtSn and PtSnNi Catalysts

    Directory of Open Access Journals (Sweden)

    Nur Hidayati

    2016-03-01

    Full Text Available Even though platinum is known as an active electro-catalyst for ethanol oxidation at low temperatures (< 100 oC, choosing the electrode material for ethanol electro-oxidation is a crucial issue. It is due to its property which easily poisoned by a strong adsorbed species such as CO. PtSn-based electro-catalysts have been identified as better catalysts for ethanol electro-oxidation. The third material is supposed to improved binary catalysts performance. This work presents a study of the ethanol electro-oxidation on carbon supported Pt-Sn and Pt-Sn-Ni catalysts. These catalysts were prepared by alcohol reduction. Nano-particles with diameters between 2.5-5.0 nm were obtained. The peak of (220 crystalline face centred cubic (fcc Pt phase for PtSn and PtSnNi alloys was repositioned due to the presence of Sn and/or Ni in the alloy. Furthermore, the modification of Pt with Sn and SnNi improved ethanol and CO electro-oxidation. Copyright © 2016 BCREC GROUP. All rights reserved Received: 10th November 2015; Revised: 1st February 2016; Accepted: 1st February 2016 How to Cite: Hidayati, N., Scott, K. (2016. Electro-oxidation of Ethanol on Carbon Supported PtSn and PtSnNi Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 10-20. (doi:10.9767/bcrec.11.1.394.10-20 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.394.10-20

  17. Carbon Corrosion at Pt/C Interface in Proton Exchange Membrane Fuel Cell Environment

    International Nuclear Information System (INIS)

    Choi, Min Ho; Beam, Won Jin; Park, Chan Jin

    2010-01-01

    This study examined the carbon corrosion at Pt/C interface in proton exchange membrane fuel cell environment. The Pt nano particles were electrodeposited on carbon substrate, and then the corrosion behavior of the carbon electrode was examined. The carbon electrodes with Pt nano electrodeposits exhibited the higher oxidation rate and lower oxidation overpotential compared with that of the electrode without Pt. This phenomenon was more active at 75 .deg. C than 25 .deg. C. In addition, the current transients and the corresponding power spectral density (PSD) of the carbon electrodes with Pt nano electrodeposits were much higher than those of the electrode without Pt. The carbon corrosion at Pt/C interface was highly accelerated by Pt nano electrodeposits. Furthermore, the polarization and power density curves of PEMFC showed degradation in the performance due to a deterioration of cathode catalyst material and Pt dissolution

  18. Evaluation of the behavior of PtPd/MWCNT electrocatalysts as ethylene glycol-tolerant electrodes for oxygen oxidation reaction (ORR); Evaluacion del comportamiento de electrocatalizadores tipo PtPd/MWCNT como electrodos para la reaccion de oxidacion del oxigeno (ORR) tolerantes al etilenglicol

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Acosta, D.; Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Pedro Escobedo, Queretaro (Mexico)]. E-mail: dmorales@cideteq.mx; Alvarez-Contreras, L. [Centro de Investigacion en Materiales Avanzados S. C., Chihuahua, Chihuahua (Mexico); Fraire Luna, S.; Rodriguez Varela, F.J. [Cinvestav, Unidad Saltillo, Ramos Arizpe, Coahuila, (Mexico)

    2009-09-15

    Pt-Pd/MWCNTs (atomic ratio Pt:Pd 43:57) and Pt/MWCNTs electrocatalysts were synthesized and evaluated as cathodes for oxygen reduction reaction (ORR) with the application of direct ethylene glycol fuel cells (DEGFC). A commercial PtC material was also evaluated as a reference. It was found that Pt-Pd/MWCNT has a capability for high tolerance to ethylene glycol (EG) and higher selectivity for ORR compared to a single Pt- cathode. As a result, the change in onset potential of the ORR, Eonset, in Pt-Pd/MWCNTs was considerably less than the change in Pt/MWCNTs or Pt/C. The average particle size (XRD) was 3.5nm and 4nm for Pt/MWCNTs and Pt-Pd/MWCNTs, respectively. A moderate degree of alloying was determined for the material. The application of Pt-Pd electrocatalysts in DEGFCs should be advantageous. [Spanish] Electrocatalizadores Pt-Pd/MWCNTs (relacion atomic Pt:Pd 43:57) y Pt/MWCNTs fueron sintetizados y evaluados como catodos para la reaccion de reduccion del oxigeno (ORR) con aplicacion del celdas de consumo directo de etilenglicol (Direct Ethylene Glycol Fuel Cells, o DEGFC). Como referencia, un material comercial tipo Pt/C fue tambien evaluado. Se encontro que Pt-Pd/MWCNTs tiene una alta capacidad de tolerancia al etilenglicol (EG) y una selectividad mayor hacia la ORR comparado con el catodo basado en Pt-solo. Como resultado, el cambio en potencial de inicio de la ORR, Eonset, en Pt-Pd/MWCNTs fue considerablemente menor que el cambio en Pt/MWCNTs o Pt/C. La talla de particula promedio (de XRD) fue 3.5 nm y 4 nm para Pt/MWCNTs y Pt-Pd/MWCNTs, respectivamente. Un moderado grado de aleacion fue determinado para el material. Una aplicacion ventajosa para electrocatalizadores tipo Pt-Pd debe ser en DEGFCs.

  19. Management system of health and safety work (SMK3) with job safety analysis (JSA) in PT. Nira Murni construction

    Science.gov (United States)

    Melliana, Armen, Yusrizal, Akmal, Syarifah

    2017-11-01

    PT Nira Murni construction is a contractor of PT Chevron Pacific Indonesia which engaged in contractor, fabrication, maintenance construction suppliers, and labor services. The high of accident rate in this company is caused the lack of awareness of workplace safety. Therefore, it requires an effort to reduce the accident rate on the company so that the financial losses can be minimized. In this study, Safe T-Score method is used to analyze the accident rate by measuring the level of frequency. Analysis is continued using risk management methods which identify hazards, risk measurement and risk management. The last analysis uses Job safety analysis (JSA) which will identify the effect of accidents. From the result of this study can be concluded that Job Safety Analysis (JSA) methods has not been implemented properly. Therefore, JSA method needs to follow-up in the next study, so that can be well applied as prevention of occupational accidents.

  20. High performance electrodes for reduced temperature solide oxide fuel cells with doped lanthanum gallate electrolyte. Pt. 1. Ni-SDC cermet anode

    Energy Technology Data Exchange (ETDEWEB)

    Ohara, S.; Maric, R.; Zhang, X.; Mukai, K.; Fukui, T. [Japan Fine Ceramics Center, Nagoya (Japan); Yoshida, H.; Inagaki, T. [The Kansai Electroc Power Co. Inc., Hyogo (Japan); Miura, K. [Kanden Kakou Co. Ltd., Hyogo (Japan)

    2000-03-01

    A Ni-samaria-doped ceria (SDC) cermet was selected as the anode material for reduced temperature (800 C) solid oxide fuel cells. The NiO-SDC composite powder, synthesized by spray pyrolysis, was employed as the starting anode powder in this study. The influence of Ni content in Ni-SDC cermets on the electrode performance was investigated in order to create the most suitable microstructures. It was found that anodic polarization was strongly influenced by the Ni content in Ni-SDC cermets. The best results were obtained for anode cermets with Ni content of around 50 vol.%; anodic polarization was about 30 mV at a current density of 300 mA/cm{sup 2}. This high performance seems to be attributable to the microstructure, in which Ni grains form a skeleton with well-connected SDC grains finely distributed over the Ni grains surfaces; such microstructure was also conducive to high stability of the anode. (orig.)

  1. New method for characterizing electron mediators in microbial systems using a thin-layer twin-working electrode cell.

    Science.gov (United States)

    Hassan, Md Mahamudul; Cheng, Ka Yu; Ho, Goen; Cord-Ruwisch, Ralf

    2017-01-15

    Microbial biofilms are significant ecosystems where the existence of redox gradients drive electron transfer often via soluble electron mediators. This study describes the use of two interfacing working electrodes (WEs) to simulate redox gradients within close proximity (250µm) for the detection and quantification of electron mediators. By using a common counter and reference electrode, the potentials of the two WEs were independently controlled to maintain a suitable "voltage window", which enabled simultaneous oxidation and reduction of electron mediators as evidenced by the concurrent anodic and cathodic currents, respectively. To validate the method, the electrochemical properties of different mediators (hexacyanoferrate, HCF, riboflavin, RF) were characterized by stepwise shifting the "voltage window" (ranging between 25 and 200mV) within a range of potentials after steady equilibrium current of both WEs was established. The resulting differences in electrical currents between the two WEs were recorded across a defined potential spectrum (between -1V and +0.5V vs. Ag/AgCl). Results indicated that the technique enabled identification (by the distinct peak locations at the potential scale) and quantification (by the peak of current) of the mediators for individual species as well as in an aqueous mixture. It enabled a precise determination of mid-potentials of the externally added mediators (HCF, RF) and mediators produced by pyocyanin-producing Pseudomonas aeruginosa (WACC 91) culture. The twin working electrode described is particularly suitable for studying mediator-dependent microbial electron transfer processes or simulating redox gradients as they exist in microbial biofilms. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Preparation of a Counter Electrode with P-Type NiO and Its Applications in Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Chuen-Shii Chou

    2010-01-01

    Full Text Available This study investigates the applicability of a counter electrode with a P-type semiconductor oxide (such as NiO on a dye-sensitized solar cell (DSSC. The counter electrode is fabricated by depositing an NiO film on top of a Pt film, which has been deposited on a Fluorine-doped tin oxide (FTO glass using an ion-sputtering coater (or E-beam evaporator, using a simple spin coating method. This study also examines the effect of the average thickness of TiO2 film deposited on a working electrode upon the power conversion efficiency of a DSSC. This study shows that the power conversion efficiency of a DSSC with a Pt(E/NiO counter electrode (4.28% substantially exceeds that of a conventional DSSC with a Pt(E counter electrode (3.16% on which a Pt film was deposited using an E-beam evaporator. This result is attributed to the fact that the NiO film coated on the Pt(E counter electrode improves the electrocatalytic activity of the counter electrode.

  3. Electronic structure of low work function electrodes modified by C{sub 16}H{sub 33}SH

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyunbok [Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, 01003 (United States); Cho, Sang Wan, E-mail: dio8027@yonsei.ac.kr [Department of Physics, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do, 220-710 (Korea, Republic of); Park, Sang Han; Cho, Mann-Ho; Yi, Yeonjin [Institute of Physics and Applied Physics, Yonsei University, 50 Yonsei-ro, Seodaemoon-Gu, Seoul, 120-749 (Korea, Republic of)

    2014-10-15

    Highlights: • The electronic structure of pentacene/C{sub 16}H{sub 33}SH/Au is investigated. • The work function of Au is significantly decreased with C{sub 16}H{sub 33}SH treatment. • The reduced work function is attributed to its permanent dipole moment. - Abstract: Organic and printed electronics technologies require electrodes with low work functions to facilitate the transport of electrons in and out of various optoelectronic devices. We show that the surface modifier of 1-hexadecanethiol reduces the work function of conductors using in situ ultraviolet photoemission spectroscopy, and we combine experimental and theoretical methods to investigate the origin of the work function changes. The interfacial electronic structures of pentacene/1-hexadecanethiol/Au were investigated via in situ ultraviolet photoemission spectroscopy and X-ray photoemission spectroscopy in order to understand the change in the carrier injection barrier and chemical reactions upon surface modification. Theoretical calculations using density functional theory were also performed to understand the charge distribution of 1-hexadecanethiol, which affects the reduction of the work function. The 1-hexadecanethiol surface modifier is processed in air from solution, providing an appealing alternative to chemically-reactive low-work-function metals.

  4. Facile fabrication of hollow mesosphere of crystalline SnO2 nanoparticles and synthesis of SnO2@SWCNTs@Reduced Graphene Oxide nanocomposite as efficient Pt-Free counter electrode for dye-sensitized solar cells

    Science.gov (United States)

    Khan, Muhammad Wasim; Yao, Jixin; Zhang, Kang; Zuo, Xueqin; Yang, Qun; Tang, Huaibao; Ur Rehman, Khalid Mehmood; Li, Guang; Wu, Mingzai; Zhu, Kerong; Zhang, Haijun

    2018-06-01

    In this research, SnO2@SWCNTs@Reduced Graphene Oxide based nanocomposite was synthesized by a one step hydrothermal method and reported new cost effective platinum-free counter-electrodes (CEs) in dye-sensitized solar cells (DSSCs). The CEs were formed by using the nanocomposites with the help of a pipette using a doctor-blade technique. The efficiency of this nanocomposite revealed significant elctrocatalytic properties upon falling the triiodide, possessing to synergistic effect of SnO2 nano particles and improved conductivity when SWCNTs dispersed on graphene sheet. Therefore, the power conversion efficiency (PCE) of prepared SnO2@SWCNTs@RGO nanocomposite CE attained of (6.1%) in DSSCs which is equivalent to the value (6.2%) which attained to the value (6.2%) with pure Pt CE as a reference. SnO2@SWCNTs@RGO nanocomposite CEs give more stable catalytic activities for triiodide reduction than SnO2 and SWCNTs CEs in the cyclic voltammetry (CV) analysis. Furthermore, to the subsistence of graphene oxide, the nanocomposite acquired both higher stability and efficiency in the nanocomposite.

  5. Performance assessments of vertically aligned carbon nanotubes multi-electrode arrays using Cath.a-differentiated (CAD) cells

    Science.gov (United States)

    Jeong, Du Won; Jung, Jongjin; Kim, Gook Hwa; Yang, Cheol-Soo; Kim, Ju Jin; Jung, Sang Don; Lee, Jeong-O.

    2015-08-01

    In this work, Cath.a-differentiated (CAD) cells were used in place of primary neuronal cells to assess the performance of vertically aligned carbon nanotubes (VACNTs) multi-electrode arrays (MEA). To fabricate high-performance MEA, VACNTs were directly grown on graphene/Pt electrodes via plasma enhanced chemical deposition technique. Here, graphene served as an intermediate layer lowering contact resistance between VACNTs and Pt electrode. In order to lower the electrode impedance and to enhance the cell adhesion, VACNTs-MEAs were treated with UV-ozone for 20 min. Impedance of VACNTs electrode at 1 kHz frequency exhibits a reasonable value (110 kΩ) for extracellular signal recording, and the signal to noise ratio the is good enough to measure low signal amplitude (15.7). Spontaneous firing events from CAD cells were successfully measured with VACNTs MEAs that were also found to be surprisingly robust toward the biological interactions.

  6. Performance assessments of vertically aligned carbon nanotubes multi-electrode arrays using Cath.a-differentiated (CAD) cells

    International Nuclear Information System (INIS)

    Jeong, Du Won; Jin Kim, Ju; Jung, Jongjin; Yang, Cheol-Soo; Lee, Jeong-O; Hwa Kim, Gook; Don Jung, Sang

    2015-01-01

    In this work, Cath.a-differentiated (CAD) cells were used in place of primary neuronal cells to assess the performance of vertically aligned carbon nanotubes (VACNTs) multi-electrode arrays (MEA). To fabricate high-performance MEA, VACNTs were directly grown on graphene/Pt electrodes via plasma enhanced chemical deposition technique. Here, graphene served as an intermediate layer lowering contact resistance between VACNTs and Pt electrode. In order to lower the electrode impedance and to enhance the cell adhesion, VACNTs-MEAs were treated with UV–ozone for 20 min. Impedance of VACNTs electrode at 1 kHz frequency exhibits a reasonable value (110 kΩ) for extracellular signal recording, and the signal to noise ratio the is good enough to measure low signal amplitude (15.7). Spontaneous firing events from CAD cells were successfully measured with VACNTs MEAs that were also found to be surprisingly robust toward the biological interactions. (paper)

  7. Barium Staminate as Semiconductor Working Electrodes for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Fu-an Guo

    2010-01-01

    Full Text Available Dye-sensitized solar cells (DSSCs are fabricated with perovskite-type BaSnO3 as the photoelectrode materials. Different preparation methods including coprecipitation, hydrothermal, and solid state reaction are employed to synthesize BaSnO3 particles to optimize the photoelectric activities of electrode materials. The photoelectric properties of BaSnO3 particles and the performances of DSSCs are investigated by surface photovoltage spectroscopy and current-voltage measurements. The light-to-electricity conversion of 1.1% is preliminarily reached on the DSSC made of the coprecipitation-derived BaSnO3 particles. Large current density of hole injection into the HOMO level of N719 dye from the valence band of BaSnO3 and reduced photogenerated charge recombination in BaSnO3 could be responsible for the observed solar cell performance of the DSSC fabricated from the coprecipitation-derived BaSnO3 particles.

  8. Economical low-light photovoltaics by using the Pt-free dye-sensitized solar cell with graphene dot/PEDOT:PSS counter electrodes

    KAUST Repository

    Lee, Chuan Pei; Lin, Chin An; Wei, Tzu Chiao; Tsai, Meng Lin; Meng, Ying; Li, Chun Ting; Ho, Kuo Chuan; Wu, Chih I.; Lau, Shu Ping; He, Jr-Hau

    2015-01-01

    .14%). Without much impact on efficiency, the DSSCs with GD-PEDOT:PSS CEs work well under low-light conditions (light intensity <13.5mWcm and angle of incidence >60°), such as indoor and low-level outdoor lighting and of the sun while the other traditional cells

  9. Work function tuning of tin-doped indium oxide electrodes with solution-processed lithium fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Ow-Yang, C.W., E-mail: cleva@sabanciuniv.edu [Materials Science and Engineering Program, Sabanci University, Orhanli, Tuzla, 34956 Istanbul (Turkey); Nanotechnology Application Center, Sabanci University, Orhanli, Tuzla, 34956 Istanbul (Turkey); Jia, J. [Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5258 (Japan); Aytun, T. [Materials Science and Engineering Program, Sabanci University, Orhanli, Tuzla, 34956 Istanbul (Turkey); Zamboni, M.; Turak, A. [Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L8 (Canada); Saritas, K. [Materials Science and Engineering Program, Sabanci University, Orhanli, Tuzla, 34956 Istanbul (Turkey); Shigesato, Y. [Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5258 (Japan)

    2014-05-30

    Solution-processed lithium fluoride (sol-LiF) nanoparticles synthesized in polymeric micelle nanoreactors enabled tuning of the surface work function of tin-doped indium oxide (ITO) films. The micelle reactors provided the means for controlling surface coverage by progressively building up the interlayer through alternating deposition and plasma etch removal of the polymer. In order to determine the surface coverage and average interparticle distance, spatial point pattern analysis was applied to scanning electron microscope images of the nanoparticle dispersions. The work function of the sol-LiF modified ITO, obtained from photoelectron emission yield spectroscopy analysis, was shown to increase with surface coverage of the sol-LiF particles, suggesting a lateral depolarization effect. Analysis of the photoelectron emission energy distribution in the near threshold region revealed the contribution of surface states for surface coverage in excess of 14.1%. Optimization of the interfacial barrier was achieved through contributions from both work function modification and surface states. - Highlights: • Work function of indium tin oxide increased with LiF nanoparticle coverage. • Work function was analyzed via photoelectron emission yield (PEYS). • At higher surface coverage, the energy distribution of PEYS increased. • Pre-threshold increase in PEYS consistent with emission from surface states.

  10. Analytical expression for the tunnel current through the redox-mediated tunneling contact in the case of the adiabatic electron transfer at one of the working electrodes and any possible type of the electron transfer at the other electrode.

    Science.gov (United States)

    Medvedev, Igor G

    2017-11-21

    We study the tunnel current through a one-level redox molecule immersed into the electrolyte solution for the case when the coupling of the molecule to one of the working electrodes is strong while it is arbitrary to the other electrode. Using the Feynman-Vernon influence functional theory and the perturbation expansion of the effective action of the classical oscillator coupled both to the valence level of the redox molecule and to the thermal bath representing the classical fluctuations of the polarization of the solvent, we obtain, following the canonical way, the Langevin equation for the oscillator. It is found that for the aqueous electrolyte solution, the damping and the stochastic forces which arise due to the tunnel current are much smaller than those due to the thermal bath and therefore can be neglected. We estimate the higher-order corrections to the effective action and show that the Langevin dynamics takes place in this case for arbitrary parameters of the tunneling junction under the condition of the strong coupling of the redox molecule to one of the working electrodes. Then the steady-state coordinate distribution function of the oscillator resulting from the corresponding Fokker-Planck equation is the Boltzmann distribution function which is determined by the adiabatic free energy surface arising from the mean current-induced force. It enables us to obtain the expression for the tunnel current in the case when the coupling of the redox molecule to one of the working electrodes is strong while it is arbitrary to the other electrode.

  11. Perovskites as electrodes of solid cells in sensitive elements of oxygen ion

    International Nuclear Information System (INIS)

    Gandurska, J.; Sniezynska, I.; Marek, A.; Szwagierczak, D.; Kulawik, J.

    1997-01-01

    The perovskite family comprises many compounds used in electronic applications. In this work perovskite materials based on LaCrO 3 were investigated, destined for electrodes of solid electrolyte oxygen sensors. lanthanum chromite powders modified by calcium, strontium and aluminium were prepared by the coprecipitation-calcination technique. The powders were examined using thermal analysis, x-ray diffraction analysis, scanning electron microscopy and transmission electron microscopy. Introductory studies of electromotive force of oxygen cells with yttria stabilized zirconia as solid electrolyte and perovskite-based electrodes proved that it is possible to replace expensive Pt electrodes by much cheaper perovskite ones. (author)

  12. Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells

    Science.gov (United States)

    Du, Shangfeng; Lin, Kaijie; Malladi, Sairam K.; Lu, Yaxiang; Sun, Shuhui; Xu, Qiang; Steinberger-Wilckens, Robert; Dong, Hanshan

    2014-09-01

    In this work, we demonstrate an innovative approach, combing a novel active screen plasma (ASP) technique with green chemical synthesis, for a direct fabrication of uniform Pt nanowire arrays on large-area supports. The ASP treatment enables in-situ N-doping and surface modification to the support surface, significantly promoting the uniform growth of tiny Pt nuclei which directs the growth of ultrathin single-crystal Pt nanowire (2.5-3 nm in diameter) arrays, forming a three-dimensional (3D) nano-architecture. Pt nanowire arrays in-situ grown on the large-area gas diffusion layer (GDL) (5 cm2) can be directly used as the catalyst electrode in fuel cells. The unique design brings in an extremely thin electrocatalyst layer, facilitating the charge transfer and mass transfer properties, leading to over two times higher power density than the conventional Pt nanoparticle catalyst electrode in real fuel cell environment. Due to the similar challenges faced with other nanostructures and the high availability of ASP for other material surfaces, this work will provide valuable insights and guidance towards the development of other new nano-architectures for various practical applications.

  13. Near-Electrode Imager

    Energy Technology Data Exchange (ETDEWEB)

    Rathke, Jerome W.; Klingler, Robert J.; Woelk, Klaus; Gerald, Rex E.,II

    1999-05-01

    An apparatus, near-electrode imager, for employing nuclear magnetic resonance imaging to provide in situ measurements of electrochemical properties of a sample as a function of distance from a working electrode. The near-electrode imager use the radio frequency field gradient within a cylindrical toroid cavity resonator to provide high-resolution nuclear magnetic resonance spectral information on electrolyte materials.

  14. Investigation of ethanol electrooxidation on a Pt-Ru-Ni/C catalyst for a direct ethanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhen-Bo; Yin, Ge-Ping; Zhang, Jian; Sun, Ying-Chao; Shi, Peng-Fei [Department of Applied Chemistry, Harbin Institute of Technology, Harbin (China 150001)

    2006-09-29

    This research is aimed to improve the utilization and activity of anodic alloy catalysts and thus to lower the contents of noble metals and the catalyst loading on anodes for ethanol electrooxidation. The DEFC anodic catalysts, Pt-Ru-Ni/C and Pt-Ru/C, were prepared by a chemical reduction method. Their performances were tested by using a glassy carbon working electrode and cyclic voltammetric curves, chronoamperometric curves and half cell measurement in a solution of 0.5molL{sup -1} CH{sub 3}CH{sub 2}OH and 0.5molL{sup -1} H{sub 2}SO{sub 4}. The composition of the Pt-Ru-Ni and Pt-Ru surface particles were determined by EDAX analysis. The particle size and lattice parameter of the catalysts were determined by means of X-ray diffraction (XRD). XRD analysis showed that both of the catalysts exhibited face centered cubic structures and had smaller lattice parameters than a Pt-alone catalyst. Their particle sizes were small, about 4.5nm. No significant differences in the ethanol electrooxidation on both electrodes were found using cyclic voltammetry, especially regarding the onset potential for ethanol electrooxidation. The electrochemically active specific areas of the Pt-Ru-Ni/C and Pt-Ru/C catalysts were almost the same. But, the catalytic activity of the Pt-Ru-Ni/C catalyst was higher for ethanol electrooxidation than that of the Pt-Ru/C catalyst. Their tolerance to CO formed as one of the intermediates of ethanol electrooxidation, was better than that of the Pt-Ru/C catalyst. (author)

  15. Large-area functionalized CVD graphene for work function matched transparent electrodes

    Science.gov (United States)

    Bointon, Thomas H.; Jones, Gareth F.; de Sanctis, Adolfo; Hill-Pearce, Ruth; Craciun, Monica F.; Russo, Saverio

    2015-11-01

    The efficiency of flexible photovoltaic and organic light emitting devices is heavily dependent on the availability of flexible and transparent conductors with at least a similar workfunction to that of Indium Tin Oxide. Here we present the first study of the work function of large area (up to 9 cm2) FeCl3 intercalated graphene grown by chemical vapour deposition on Nickel, and demonstrate values as large as 5.1 eV. Upon intercalation, a charge density per graphene layer of 5 ṡ 1013 ± 5 ṡ 1012 cm-2 is attained, making this material an attractive platform for the study of plasmonic excitations in the infrared wavelength spectrum of interest to the telecommunication industry. Finally, we demonstrate the potential of this material for flexible electronics in a transparent circuit on a polyethylene naphthalate substrate.

  16. An improved method for direct estimation of free cyanide in drinking water by Ion Chromatography-Pulsed Amperometry Detection (IC-PAD) on gold working electrode.

    Science.gov (United States)

    Kumar Meher, Alok; Labhsetwar, Nitin; Bansiwal, Amit

    2018-02-01

    In the present work a fast, reliable and safe Ion Exchange Chromatography-Pulsed Amperometry Detection (IC-PAD) method for direct determination of free cyanide in drinking water has been reported. To the best of our knowledge for the first time we are reporting the application of Gold working electrode for detection of free cyanide in a chromatography system. The system shows a wide linear range up to 8000µg/L. The electrode was found to have improved sensitivity and selectivity in the presence of interfering ions. The detection limit of the system was calculated to be 2µg/L. Long term evaluation of the electrode was found to be stable. Reproducible results were obtained from analysis of drinking water samples with recoveries of 98.3-101.2% and Relative Standard Deviations (RSD) of cyanide in drinking water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Ethanol electrooxidation on Pt-Sn and Pt-Sn-W bulk alloys

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, D.M. dos; Hahn, F.; Leger, J.M.; Kokoh, K.B. [Universite de Poitiers, Poitiers Cedex (France). Centre National de la Recherche Scientifique (CNRS). Equipe Electrocatalyse; Tremiliosi-Filho, G. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Inst. de Quimica

    2008-07-01

    Ethanol oxidation has been studied on Pt-Sn and Pt-Sn-W electrodes prepared in an arc-melting furnace. Different electrochemical techniques like cyclic voltammetry and chronoamperometry were used to evaluate the catalytic activity of these materials. The electro-oxidation process was also investigated by in situ infrared reflectance spectroscopy in order to determine adsorbed intermediates and reaction products. Experimental results indicated that Pt-Sn and Pt-Sn-W alloys are able to oxidize ethanol mainly to acetaldehyde and acetic acid. Adsorbed CO was also detected, demonstrating the viability of splitting the C-C bond in the ethanol molecule during the oxidation process. The adsorbed CO was further oxidized to CO{sub 2}.This reaction product was clearly detected by SNIFTIRS. Pt-Sn-W catalyst showed a better electrochemical performance than Pt-Sn that, in it turn, is better than Pt-alone. (author)

  18. Enhancing the efficiency of dye-sensitized solar cells by adding diatom frustules into TiO{sub 2} working electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Der-Ray, E-mail: derray@mail.ndhu.edu.tw; Jiang, Yan-Jang; Liou, Run-Lin; Chen, Chih-Han; Chen, Yi-An; Tsai, Chih-Hung, E-mail: cht@mail.ndhu.edu.tw

    2015-08-30

    Graphical abstract: - Highlights: • High-speed centrifugal processing and sedimentation-rate separation techniques were used to obtain diatom frustules. • Diatom frustules were added into TiO{sub 2} paste to prepare a TiO{sub 2}-diatom paste mixture. • TiO{sub 2}-diatom paste mixture was used to fabricate working electrodes for DSSCs. • TiO{sub 2}-diatom electrodes improved the light-trapping effect and DSSC efficiency. • DSSCs with using the TiO{sub 2}-diatom electrode exhibited a 38% increase in efficiency. - Abstract: In this study, diatom frustules were added into TiO{sub 2} paste to prepare a TiO{sub 2}-diatom paste mixture. Spin-coating and high-temperature sintering techniques were then used to fabricate working electrodes for dye-sensitized solar cells (DSSCs). Mixing the diatom frustules with the TiO{sub 2} paste improved the light-trapping effect and scattering properties of the incident light in the TiO{sub 2}-diatom working electrodes, thereby enhancing the power conversion efficiency of the DSSCs. In this study, a high-speed centrifugal processing technology and sedimentation-rate separation techniques were first used to obtain the diatom frustules, which were then mixed with the TiO{sub 2} paste at a weight ratio of 1:50; a spin-coating technique was then used to fabricate the working electrodes. Finally, a high-temperature sintering process (500 °C) was performed. In this study, optical microscopy, scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and a surface profiler and spectrometer were used to analyze the characteristics of the working electrodes. The TiO{sub 2} or TiO{sub 2}-diatom working electrodes were prepared under various spin-coating conditions for fabricating and analyzing the characteristics of the DSSCs. The results indicated that under identical conditions, the power conversion efficiency of the DSSCs was 3.81% when coated three times with a conventional TiO{sub 2

  19. Synthesis and characterization of PtRuMo/C nanoparticle electrocatalyst for direct ethanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhen-Bo; Yin, Ge-Ping [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Lin, Yong-Ge [Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00931 (United States)

    2007-07-10

    This research aims at enhancement of the performance of anodic catalysts for the direct ethanol fuel cell (DEFC). Two distinct DEFC nanoparticle electrocatalysts, PtRuMo/C and PtRu/C, were prepared and characterized, and one glassy carbon working electrode for each was employed to evaluate the catalytic performance. The cyclic-voltammetric, chronoamperometric, and amperometric current-time measurements were done in the solution 0.5 mol L{sup -1} CH{sub 3}CH{sub 2}OH and 0.5 mol L{sup -1} H{sub 2}SO{sub 4}. The composition, particle sizes, lattice parameters, morphology, and the oxidation states of the metals on nanoparticle catalyst surfaces were determined by energy dispersive analysis of X-ray (EDAX), X-ray diffraction (XRD), transmission electron micrographs (TEM) and X-ray photoelectron spectrometer (XPS), respectively. The results of XRD analysis showed that both PtRuMo/C and PtRu/C had a face-centered cubic (fcc) structure with smaller lattice parameters than that of pure platinum. The typical particle sizes were only about 2.5 nm. Both electrodes showed essentially the same onset potential as shown in the CV for ethanol electrooxidation. Despite their comparable active specific areas, PtRuMo/C was superior to PtRu/C in respect of the catalytic activity, durability and CO-tolerance. The effect of Mo in the PtRuMo/C nanoparticle catalyst was illustrated with a bifunctional mechanism, hydrogen-spillover effect and the modification on the Pt electronic states. (author)

  20. Effect of Particle Size and Operating Conditions on Pt3Co PEMFC Cathode Catalyst Durability

    Directory of Open Access Journals (Sweden)

    Mallika Gummalla

    2015-05-01

    Full Text Available The initial performance and decay trends of polymer electrolyte membrane fuel cells (PEMFC cathodes with Pt3Co catalysts of three mean particle sizes (4.9 nm, 8.1 nm, and 14.8 nm with identical Pt loadings are compared. Even though the cathode based on 4.9 nm catalyst exhibited the highest initial electrochemical surface area (ECA and mass activity, the cathode based on 8.1 nm catalyst showed better initial performance at high currents. Owing to the low mass activity of the large particles, the initial performance of the 14.8 nm Pt3Co-based electrode was the lowest. The performance decay rate of the electrodes with the smallest Pt3Co particle size was the highest and that of the largest Pt3Co particle size was lowest. Interestingly, with increasing number of decay cycles (0.6 to 1.0 V, 50 mV/s, the relative improvement in performance of the cathode based on 8.1 nm Pt3Co over the 4.9 nm Pt3Co increased, owing to better stability of the 8.1 nm catalyst. The electron microprobe analysis (EMPA of the decayed membrane-electrode assembly (MEA showed that the amount of Co in the membrane was lower for the larger particles, and the platinum loss into the membrane also decreased with increasing particle size. This suggests that the higher initial performance at high currents with 8.1 nm Pt3Co could be due to lower contamination of the ionomer in the electrode. Furthermore, lower loss of Co from the catalyst with increased particle size could be one of the factors contributing to the stability of ECA and mass activity of electrodes with larger cathode catalyst particles. To delineate the impact of particle size and alloy effects, these results are compared with prior work from our research group on size effects of pure platinum catalysts. The impact of PEMFC operating conditions, including upper potential, relative humidity, and temperature on the alloy catalyst decay trends, along with the EMPA analysis of the decayed MEAs, are reported.

  1. Recovery of fluoride ion selective electrode

    International Nuclear Information System (INIS)

    Monteiro, R.P.G.

    1988-01-01

    A recovery procedure of fluoride ion selective electrode based upon the body radiography of inactive electrode and introduction of suitable internal regeneration solution, is developed. The recovered electrode was tested in standard solutions of fluoride ions (10 sup5) to 10 -1M showing as good performance as the new one. The fluor determination by potentiometric measurements with selective electrode is used in nuclear fuel cycle for quality control of thorium and uranium mixed oxide pellets and pellets of uranium dioxides. (author) [pt

  2. Electrochemical behaviour of PES ionomer and Pt-free catalyst for PEMFCs

    Directory of Open Access Journals (Sweden)

    STEFANIA GIORDANO

    2013-06-01

    Full Text Available Proton Exchange Membrane Fuel Cells (PEMFCs represent promising technologies to the world economy, with many applications and low environmental impact. A most important aspect concerning their widespread implementation is the cost of polymeric membranes, typically perfluorinated membranes and platinum-based catalytic electrode materials, all of which are necessary to promote electrode reactions, thus increasing fuel cell energy efficiency. In this work, we present some data about non-fluorinated polyetheresulphone (PES membranes and Pt-free catalysts, as possible substitutes of the above materials. Their electrochemical behaviour in oxygen reduction reaction in acidic media are investigated and compared with available reference materials.

  3. Two-dimensional threshold voltage model and design considerations for gate electrode work function engineered recessed channel nanoscale MOSFET: I

    International Nuclear Information System (INIS)

    Chaujar, Rishu; Kaur, Ravneet; Gupta, Mridula; Gupta, R S; Saxena, Manoj

    2009-01-01

    This paper discusses a threshold voltage model for novel device structure: gate electrode work function engineered recessed channel (GEWE-RC) nanoscale MOSFET, which combines the advantages of both RC and GEWE structures. In part I, the model accurately predicts (a) surface potential, (b) threshold voltage and (c) sub-threshold slope for single material gate recessed channel (SMG-RC) and GEWE-RC structures. Part II focuses on the development of compact analytical drain current model taking into account the transition regimes from sub-threshold to saturation. Furthermore, the drain conductance evaluation has also been obtained, reflecting relevance of the proposed device for analogue design. The analysis takes into account the effect of gate length and groove depth in order to develop a compact model suitable for device design. The analytical results predicted by the model confirm well with the simulated results. Results in part I also provide valuable design insights in the performance of nanoscale GEWE-RC MOSFET with optimum threshold voltage and negative junction depth (NJD), and hence serves as a tool to optimize important device and technological parameters for 40 nm technology

  4. Oxygen Reduction Reaction on PtCo Nanocatalyst: (Bi)sulfate Anion Poisoning

    Science.gov (United States)

    Liu, Jie; Huang, Yan

    2018-05-01

    Pt alloy electrocatalysts are susceptible to anion adsorption in the working environment of fuel cells. In this work, the unavoidable bisulfate and sulfate ((bi)sulfate) poisoning of the oxygen reduction reaction (ORR) on a common PtCo nanocatalyst was studied by the rotating disk electrode (RDE) technique, for the first time to the best of our knowledge. The specific activity decreases linearly with the logarithm of (bi)sulfate concentration under various high potentials. This demonstrates that the (bi)sulfate adsorption does not affect the free energy of ORR activation at a given potential. Moreover, it is speculated that these two conditions, the adsorption of one O2 molecule onto two Pt sites and this adsorption as a rate-determining step of ORR reaction, are unlikely to exist simultaneously.

  5. Facial synthesis of porous hematite supported Pt catalyst and its photo enhanced electrocatalytic ethanol oxidation performance

    International Nuclear Information System (INIS)

    Kang, Shuai; Shen, Pei Kang

    2015-01-01

    Graphical Abstract: A porous α-Fe 2 O 3 supported Pt catalyst has been synthesized by a facial thermal treatment assisted precipitation method and the materials show a illumination enhanced performance for ethanol oxidation. Display Omitted -- Highlights: •A porous α-Fe 2 O 3 supported Pt catalyst has been synthesized for the first time. •With the addition of α-Fe 2 O 3 , the current density of Pt/C grows about 51% under illumination and 32% in the dark compared with unsupported catalyst. •The current increases under illuminationin chronoamperometric experiments at a given potential of 0.7 V due to the photons from light provide energy for CO stripping. •This work demostrates an optical strategy to accelerate electrode reactions towards ethanol oxidation reaction. -- Abstract: The porous α-Fe 2 O 3 supported Pt catalyst is synthesized by a facial thermal treatment assisted precipitation method. The particle size of Pt is less than 3 nm. The pore diameters of α-Fe 2 O 3 particles are concentrated to 2.46 nm in a mesooporous scale. Its electrochemical performance is tested. The ethanol oxidation current of the Pt/Fe 2 O 3 catalsyt obviously improves under illumination, compared with that in the dark, during the optical switching operation. Moreover, with the addition of α-Fe 2 O 3 , the ethanol oxidation current of Pt/C grows about 51% under illumination and 32% in the dark; the onset potential shifts negtively for about 20 mV. This work demostrates an optical strategy which can be a potential alternative to accelerate electrode reactions towards ethanol oxidation reaction

  6. Experimental shift work studies of permanent night, and rapidly rotating, shift systems. Pt. 1. Behaviour of various characteristics of sleep

    Energy Technology Data Exchange (ETDEWEB)

    Knauth, P.; Rutenfranz, J.; Romberg, H.P.; Decoster, F.; Kiesswetter, E. (Dortmund Univ. (Germany, F.R.). Inst. fuer Arbeitsphysiologie); Schulz, H. (Max-Planck-Institut fuer Psychiatrie, Muenchen (Germany, F.R.). Klinisches Inst.)

    1980-06-01

    In connection with experimental shift work 20 volunteers were examined while working on different rapidly or slowly rotating shift systems. Sleep was analyzed over a total of 112 days. Sleep was disturbed by children's noise or traffic noise. Sleep duration and sleep quality were particularly badly affected by noise with a high information value (children's noise). The ultradian rhythmicity of sleep did not appear to be disrupted by the change from day to night work. There were no significant differences between morning sleep and afternoon sleep after night work. In the laboratory experiments with fixed sleep durations, no separate effects on sleep quality could be established for different shift systems.

  7. Low-potential sensitive H2O2 detection based on composite micro tubular Te adsorbed on platinum electrode.

    Science.gov (United States)

    Guascito, M R; Chirizzi, D; Malitesta, C; Mazzotta, E; M Siciliano; Siciliano, T; Tepore, A; Turco, A

    2011-04-15

    In this work a new original amperometric sensor for H(2)O(2) detection based on a Pt electrode modified with Te-microtubes was developed. Te-microtubes, synthesized by the simple thermal evaporation of Te powder, have a tubular structure with a hexagonal cross-section and are open ended. Modified electrode was prepared by direct drop casting of the mixture of Te-microtubes dispersed in ethanol on Pt surface. The spectroscopic characterization of synthesized Te-microtubes and Pt/Te-microtubes modified electrodes was performed by scanning electron microscopy (SEM), energy-dispersive X-rays microanalysis (EDX), X-ray diffraction analysis (XRD) and X-ray photoelectron spectroscopy (XPS). Moreover a complete electrochemical characterization of the new composite material Pt/Te-microtubes was performed by cyclic voltammetry (CV) and cronoamperometry (CA) in phosphate buffer solution (PBS) at pH 7. Electrochemical experiments showed that the presence of Te-microtubes on modified electrode was responsible for an increment of both cathodic and anodic currents in presence of H(2)O(2) with respect to bare Pt. Specifically, data collected from amperometric experiments at -150 mV vs. SCE in batch and -200 mV vs. SCE in flow injection analysis (FIA) experiments show a remarkable increment of the cathodic current. The electrochemical performances of tested sensors make them suitable for the quantitative determination of H(2)O(2) substrate both in batch and in FIA. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Use of lanthanide catalysts in air electrodes

    International Nuclear Information System (INIS)

    Souza Parente, L.T. de

    1982-01-01

    A review on the lanthanide catalysts suitable for the reduction catalysis of oxygen in air electrodes is presented. The kinds of lanthanide indicated to be used as catalysts of oxygen reduction are shown. (A.R.H.) [pt

  9. Fluctuations at electrode-YSZ interfaces

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Hansen, Karin Vels; Skou, Eivind

    2005-01-01

    Current fluctuations at potentiostatically controlled point electrodes of Pt, La$_{0.85}$Sr$_{0.15}$MnO$_3$ and Ni on YSZ surfaces are determined at 1000$^\\circ$C. For the oxygen reduction process on Pt electrodes characteristic sawtooth shaped low frequency fluctuations are observed. At temperat......Current fluctuations at potentiostatically controlled point electrodes of Pt, La$_{0.85}$Sr$_{0.15}$MnO$_3$ and Ni on YSZ surfaces are determined at 1000$^\\circ$C. For the oxygen reduction process on Pt electrodes characteristic sawtooth shaped low frequency fluctuations are observed....../water atmosphere are presented for discussion. The origin of the observations is not known at present but it appears likely that they are related to the activation/deactivation mechanism of SOFCs....

  10. Synthesis and electrocatalytic activity of Au/Pt bimetallic nanodendrites for ethanol oxidation in alkaline medium.

    Science.gov (United States)

    Han, Xinyi; Wang, Dawei; Liu, Dong; Huang, Jianshe; You, Tianyan

    2012-02-01

    Gold/Platinum (Au/Pt) bimetallic nanodendrites were successfully synthesized through seeded growth method using preformed Au nanodendrites as seeds and ascorbic acid as reductant. Cyclic voltammograms (CVs) of a series of Au/Pt nanodendrites modified electrodes in 1M KOH solution containing 1M ethanol showed that the electrocatalyst with a molar ratio (Au:Pt) of 3 exhibited the highest peak current density and the lowest onset potential. The peak current density of ethanol electro-oxidation on the Au(3)Pt(1) nanodendrites modified glassy carbon electrode (Au(3)Pt(1) electrode) is about 16, 12.5, and 4.5 times higher than those on the polycrystalline Pt electrode, polycrystalline Au electrode, and Au nanodendrites modified glassy carbon electrode (Au dendrites electrode), respectively. The oxidation peak potential of ethanol electro-oxidation on the Au(3)Pt(1) electrode is about 299 and 276 mV lower than those on the polycrystalline Au electrode and Au dendrites electrode, respectively. These results demonstrated that the Au/Pt bimetallic nanodendrites may find potential application in alkaline direct ethanol fuel cells (ADEFCs). Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Low-cost carbon-based counter electrodes for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Barberio, M; Imbrogno, A; Bonanno, A; Xu, F; Grosso, D R

    2015-01-01

    In this work, we present the realization of four carbon-based counter electrodes for dye-sensitized solar cells. The photovoltaic behaviours of counter electrodes realized with graphene, multiwalled carbon nanotubes, and nanocomposites of multiwalled carbon nanotubes and metal nanoparticles are compared with those of classical electrodes (amorphous carbon and platinum). Our results show an increase of about 50% in PCE for graphene and Ag/carbon nanotube electrodes with respect to amorphous carbon and of 25% in comparison to platinum. An improvement in cell stability is also observed; in fact, the PCE of all carbon-based cells assumes a constant value during a period of one month while that with the Pt electrode decreases by 50% in one week. (paper)

  12. Electrocatalytic oxidation of methanol on (Pb) lead modified by Pt, Pt-Ru and Pt-Sn microparticles dispersed into poly(o-phenylenediamine) film

    Energy Technology Data Exchange (ETDEWEB)

    Golikand, Ahmad Nozad; Maragheh, Mohammad Ghannadi; Irannejad, Leila [Jaber Ibn Hayan Research Lab., Atomic Energy Organization of Iran (AEOI), Tehran (Iran); Golabi, Seyed Mehdi [Electroanalytical Chemistry Lab., Faculty of Chemistry, University of Tabriz, Tabriz (Iran)

    2005-08-18

    The electrocatalytic oxidation of methanol at a (Pb) lead electrode modified by Pt, Pt-Ru and Pt-Sn microparticles dispersed into poly(o-phenylenediamine) (PoPD) film has been investigated using cyclic voltammetry as analytical technique and 0.5M sulfuric acid as supporting electrolyte. It has been shown that the presence of PoPD film increases considerably the efficiency of deposited Pt and Pt alloys microparticles toward the electrocatalytic oxidation of methanol. The catalytic activity of Pt particles is further enhanced when Ru and especially Sn, is co-deposited in the polymer film. The effects of various parameters such as concentration of methanol, medium temperature as well as the long term stability of modified electrodes have also been investigated. (author)

  13. Surface coverage of Pt atoms on PtCo nanoparticles and catalytic kinetics for oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Rongzhong, E-mail: rongzhong.jiang@us.army.mi [Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783-1197 (United States); Rong, Charles; Chu, Deryn [Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783-1197 (United States)

    2011-02-01

    The surface coverage of Pt atoms on PtCo nanoparticles and its effect on catalytic kinetics for oxygen reduction were investigated. The PtCo nanoparticles with different surface coverage of Pt atoms were synthesized with various methods, including normal chemical method, microemulsion synthesis, and ultrasound-assisted microemulsion. A model of Pt atoms filling into a spherical nanoparticle was proposed to explain the relationship of surface metal atoms and nanoparticle size. The catalytic activity of the PtCo nano-particles is highly dependent on the synthetic methods, even if they have the same chemical composition. The PtCo nano-particles synthesized with ultrasound-assisted microemulsion showed the highest activity, which is attributed to an increase of active surface coverage of Pt atoms on the metal nanoparticles. The rate of oxygen reduction at 0.5 V (vs. SCE) catalyzed by the PtCo synthesized with ultrasound-assisted micro-emulsion was about four times higher than that of the PtCo synthesized with normal chemical method. As demonstrated with rotating-ring disk electrode measurement, the PtCo nano-particles can catalyze oxygen 4-electron reduction to water without intermediate H{sub 2}O{sub 2} detected.

  14. Impact Analysis of Working Condition, Salary, Corporate Ownership and Fairness on Employee Job Satisfaction in PT. Bpr Prismadana Manado

    OpenAIRE

    Lasut, Gilbert

    2014-01-01

    Nowadays a lot of people not really think about the job satisfaction in their work place especially the chief at some company, while the job satisfaction is very important for employee performance. Job satisfaction is simply how people feel about jobs and different aspects of their jobs it is the extent to which people like (satisfaction) or dislike (dissatisfaction) their jobs. Job Satisfaction is a part that is always related to the employee and the productivity that can increase employee...

  15. Improved open-circuit voltage in Cu(In,Ga)Se2 solar cells with high work function transparent electrodes

    International Nuclear Information System (INIS)

    Jäger, Timo; Romanyuk, Yaroslav E.; Bissig, Benjamin; Pianezzi, Fabian; Nishiwaki, Shiro; Reinhard, Patrick; Steinhauser, Jérôme; Tiwari, Ayodhya N.; Schwenk, Johannes

    2015-01-01

    Hydrogenated indium oxide (IOH) is implemented as transparent front contact in Cu(In,Ga)Se 2 (CIGS) solar cells, leading to an open circuit voltage V OC enhanced by ∼20 mV as compared to reference devices with ZnO:Al (AZO) electrodes. This effect is reproducible in a wide range of contact sheet resistances corresponding to various IOH thicknesses. We present the detailed electrical characterization of glass/Mo/CIGS/CdS/intrinsic ZnO (i-ZnO)/transparent conductive oxide (TCO) with different IOH/AZO ratios in the front TCO contact in order to identify possible reasons for the enhanced V OC . Temperature and illumination intensity-dependent current-voltage measurements indicate that the dominant recombination path does not change when AZO is replaced by IOH, and it is mainly limited to recombination in the space charge region and at the junction interface of the solar cell. The main finding is that the introduction of even a 5 nm-thin IOH layer at the i-ZnO/TCO interface already results in a step-like increase in V OC . Two possible explanations are proposed and verified by one-dimensional simulations using the SCAPS software. First, a higher work function of IOH as compared to AZO is simulated to yield an V OC increase by 21 mV. Second, a lower defect density in the i-ZnO layer as a result of the reduced sputter damage during milder sputter-deposition of IOH can also add to a maximum enhanced V OC of 25 mV. Our results demonstrate that the proper choice of the front TCO contact can reduce the parasitic recombination and boost the efficiency of CIGS cells with improved corrosion stability

  16. Electrochemical pulsed deposition of platinum nanoparticles on indium tin oxide/polyethylene terephthalate as a flexible counter electrode for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Wei, Yu-Hsuan; Chen, Chih-Sheng; Ma, Chen-Chi M.; Tsai, Chuen-Horng; Hsieh, Chien-Kuo

    2014-01-01

    In this study, a pulsed-mode electrochemical deposition (Pulse-ECD) technique was employed to deposit platinum nanoparticles (PtNPs) on the indium tin oxide/polyethylene terephthalate (ITO/PET) substrate as a flexible counter electrode for dye-sensitized solar cells (DSSCs). The characteristic properties of the Pulse-ECD PtNPs were prepared and compared to the traditional (electron beam) Pt film. The surface morphologies of the PtNPs were examined by field emission scanning electron microscopy (FE-SEM) and the atomic force microscope (AFM). The FE-SEM results showed that our PtNPs were deposited uniformly on the ITO/PET flexible substrates via the Pulse-ECD technique. The AFM results indicated that the surface roughness of the pulsed PtNPs influenced the power conversion efficiency (PCE) of DSSCs, due to the high specific surface area of PtNPs which enhanced the catalytic activities for the reduction (I 3 − to I − ) of redox electrolyte. In combination with a N719 dye-sensitized TiO 2 working electrode and an iodine-based electrolyte, the DSSCs with the PtNPs flexible counter electrode showed a PCE of 4.3% under the illumination of AM 1.5 (100 mW cm −2 ). The results demonstrated that the Pulse-ECD PtNPs are good candidate for flexible DSSCs. - Highlights: • We used indium tin oxide/polyethylene terephthalate as a flexible substrate. • We utilized pulse electrochemical deposition to deposit platinum nanoparticles. • We synthesized a flexible counter electrode for dye-sensitized solar cell (DSSC). • The power conversion efficiency of DSSC was measured to be 4.3%

  17. The performance and degradation of Pt electrocatalysts on novel carbon carriers for PEMFC applications

    Energy Technology Data Exchange (ETDEWEB)

    Mamat, M.S.; Grant, D.M.; Walker, G.S. [Energy and Sustainability Research Division, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Grigoriev, S.A.; Dzhus, K.A. [Hydrogen Energy and Plasma Technology Institute, Russian Research Center ' ' Kurchatov Institute' ' , Kurchatov sq. 1, 123182 Moscow (Russian Federation)

    2010-07-15

    Electrocatalyst stability is an important factor influencing the performance of polymer electrolyte membrane (PEM) fuel cells and is essential in maintaining the cell output. The aim of this work was to elucidate factors which influence the stability of platinum supported onto graphitic nanofibres (Pt/GNFs) and to compare the performance of these materials with the commonly used Pt/Vulcan electrocatalyst. Platinum nanoparticles (average diameter of 6.9 nm) were supported on GNFs which were prepared by chemical vapour deposition over an unsupported nickel oxide (NiO) catalyst precursor. The performance of Pt/GNFs based electrodes were studied by cyclic voltammetry and a single-cell fuel cell test and were compared with a commercially available carbon nanostructure, Vulcan XC-72, which was also impregnated with Pt nanoparticles. Characterisation of the pre- and post-operation of the Pt/GNFs by XRD and TEM showed that structural changes of the Pt had occurred during testing. It was found that the average diameter of each grain and the degree of agglomeration among particles was increased, creating elongated clusters of Pt along the carbon fibre. Analysis of electrocatalyst post-operation also identified that the sulphate from the Nafion membrane was reacting with the Pt surface forming platinum sulphide (PtS). These phases were confirmed by the presence of low intensity, but sharp XRD peaks, attributed to a few large diameter particles (49 nm). These two factors resulted in current density dropping from 0.2 A/cm{sup 2} to 0.1 A/cm{sup 2} (at 0.70 V) over a 25 h test period. (author)

  18. Roughening of Pt nanoparticles induced by surface-oxide formation

    NARCIS (Netherlands)

    Zhu, T.; Hensen, E.J.M.; Santen, van R.A.; Tian, N.; Sun, S.-G.; Kaghazchi, P.; Jacob, T.

    2013-01-01

    Using density functional theory (DFT) and thermodynamic considerations we studied the equilibrium shape of Pt nanoparticles (NPs) under electrochemical conditions. We found that at very high oxygen coverage, obtained at high electrode potentials, the experimentally-observed tetrahexahedral (THH) NPs

  19. Sculptured platinum nanowire counter electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeonseok [Department of Electrical Engineering, Pennsylvania State University, University Park 16802 (United States); Horn, Mark W., E-mail: MHorn@engr.psu.edu [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park 16802-6812 (United States)

    2013-07-01

    Sculptured platinum nanowire thin films were formed by oblique angle electron beam evaporation with a 5° vapor incidence angle and incorporated as counter electrodes for dye-sensitized solar cells (DSSCs). For the comparison of the performance, bare fluorine doped tin oxide, planar Pt electrodes and counter electrodes treated with chloroplatinic acid were prepared. The sculptured Pt nanowire electrodes showed five times lower charge transfer resistance (0.121 [Ω∗cm{sup 2}]) than that of Pt planar electrode (0.578 [Ω∗cm{sup 2}]) and when the Pt nanowire electrodes are treated with an H{sub 2}PtCl{sub 6} solution have more than ten times lower charge transfer resistance (0.04025 [Ω∗cm{sup 2}]). Moreover, Pt nanowire films used as a counter electrode lead to enhancement in current density and efficiency in comparison with Pt planar counter electrodes. The conversion efficiency with planar electrodes was 5.1 [%] while the efficiency of DSSC with platinum nanowire counter electrodes reached to 5.63 [%] under AM 1.5 illumination. - Highlights: • Pt sculptured thin films (STFs) fabricated by electron beam evaporator. • The STFs featured higher roughness and lower charge transfer resistance. • Improved performance of dye-sensitized solar cells by Pt STFs counter electrodes.

  20. Au-based/electrochemically etched cavity-microelectrodes as optimal tool for quantitative analyses on finely dispersed electrode materials: Pt/C, IrO2-SnO2 and Ag catalysts

    International Nuclear Information System (INIS)

    Minguzzi, Alessandro; Locatelli, Cristina; Lugaresi, Ottavio; Vertova, Alberto; Rondinini, Sandra

    2013-01-01

    In this work, we report the preparation and properties of Au-based cavity-microelectrodes. The use of gold as cavity current collector allows obtaining a regular cylindrical recess, whose volume is easily determined with good accuracy and precision. This in turn leads to an improved and much more reliable use of the cavity microelectrode (C-ME) as a tool for the quantitative characterization of finely dispersed materials and for their quantitative rapid screening. The features of Au/C-MEs are well demonstrated by the good linear correlation between the cavity volume (determined by electrochemical methods) and the quantity of charge related to the amount of electroactive powder inserted into the cavity. To prove this point, we adopted two different test systems: Pt/C and an IrO 2 -based material. Finally, we proved the adequacy of Au/C-MEs in the case of Ag particles as electrocatalysts for the hydrodehalogenation of trichloromethane. In this last part, C-ME interestingly appears as a flexible and versatile tool that presents peculiar features: the voltammetric signal can be controlled by either the electron transfer or by mass transport and can be associated to the outer surface or to the whole amount of material inserted into the cavity. This means that C-MEs can be used either as a microdisk of a desired material (that is very useful, especially in scanning electrochemical microscopy) or for precise quantitative studies of the material inserted inside it

  1. Tuning of platinum nano-particles by Au usage in their binary alloy for direct ethanol fuel cell: Controlled synthesis, electrode kinetics and mechanistic interpretation

    Science.gov (United States)

    Dutta, Abhijit; Mondal, Achintya; Datta, Jayati

    2015-06-01

    Understanding of the electrode-kinetics and mechanism of ethanol oxidation reaction (EOR) is of considerable interest for optimizing electro-catalysis in direct ethanol fuel cell (DEFC). This work attempts to design Pt based electro-catalyst on carbon support, tuned with gold nano-particles (NPs), for their use in DEFC operating in alkaline medium. The platinum-gold alloyed NPs are synthesized at desired compositions and size (2-10 nm) by controlled borohydride reduction method and successfully characterized by XRD, TEM, EDS and XPS techniques. The kinetic parameters along with the activation energies for the EOR are evaluated over the temperature range 20-80 °C and the oxidation reaction products estimated through ion chromatographic analysis. Compared to single Pt/C catalyst, the over potential of EOR is reduced by ca. 500 mV, at the onset during the reaction, for PtAu/C alloy with only 23% Pt content demonstrating the ability of Au and/or its surface oxides providing oxygen species at much lower potentials compared to Pt. Furthermore, a considerable increase in the peak power density (>191%) is observed in an in-house fabricated direct ethanol anion exchange membrane fuel cell, DE(AEM)FC using the best performing Au covered Pt electrode (23% Pt) compared to the monometallic Pt catalyst.

  2. Psychosocial aspects of work and health in the North Sea oil and gas industry. Pt. 5: offshore work/leave schedules: data analyses and review

    Energy Technology Data Exchange (ETDEWEB)

    Parkes, K.R.; Clark, M.J.

    1997-09-01

    The work described in this report draws on a variety of sources to examine the psychosocial implications of three-week offshore tours as compared with the more usual two-week tour duration. Little of the information currently available about the psychosocial environment offshore, and the mental and physical health of offshore employees, relates to personnel working three-week tours. The present study, intended as a preliminary exploration of responses to three-week offshore schedules, brings together the several different kinds of information. The report includes: A brief review of relevant literature; a comparison of different work/leave patterns in terms of the attitudes and preferences of offshore personnel (N=1462); Analysis of questionnaire data evaluating the reactions of offshore personnel (N=113) to plans to change from two-week to three-week tours; A pilot study of mood and sleep patterns among personnel working either a two-week or a three-week tour at the time of data collection; material from interviews with wives of offshore personnel, focusing on family issues associated with offshore employment, including work/leave cycles. (UK)

  3. Pt-Al{sub 2}O{sub 3} dual layer atomic layer deposition coating in high aspect ratio nanopores

    Energy Technology Data Exchange (ETDEWEB)

    Pardon, Gaspard; Gatty, Hithesh K; Stemme, Goeran; Wijngaart, Wouter van der; Roxhed, Niclas [KTH Royal Institute of Technology, School of Electrical Engineering, Micro and Nanosystems, Osquldas Vaeg 10, SE-10044 Stockholm (Sweden)

    2013-01-11

    Functional nanoporous materials are promising for a number of applications ranging from selective biofiltration to fuel cell electrodes. This work reports the functionalization of nanoporous membranes using atomic layer deposition (ALD). ALD is used to conformally deposit platinum (Pt) and aluminum oxide (Al{sub 2}O{sub 3}) on Pt in nanopores to form a metal-insulator stack inside the nanopore. Deposition of these materials inside nanopores allows the addition of extra functionalities to nanoporous materials such as anodic aluminum oxide (AAO) membranes. Conformal deposition of Pt on such materials enables increased performances for electrochemical sensing applications or fuel cell electrodes. An additional conformal Al{sub 2}O{sub 3} layer on such a Pt film forms a metal-insulator-electrolyte system, enabling field effect control of the nanofluidic properties of the membrane. This opens novel possibilities in electrically controlled biofiltration. In this work, the deposition of these two materials on AAO membranes is investigated theoretically and experimentally. Successful process parameters are proposed for a reliable and cost-effective conformal deposition on high aspect ratio three-dimensional nanostructures. A device consisting of a silicon chip supporting an AAO membrane of 6 mm diameter and 1.3 {mu}m thickness with 80 nm diameter pores is fabricated. The pore diameter is reduced to 40 nm by a conformal deposition of 11 nm Pt and 9 nm Al{sub 2}O{sub 3} using ALD. (paper)

  4. Pt-Al2O3 dual layer atomic layer deposition coating in high aspect ratio nanopores

    Science.gov (United States)

    Pardon, Gaspard; Gatty, Hithesh K.; Stemme, Göran; van der Wijngaart, Wouter; Roxhed, Niclas

    2013-01-01

    Functional nanoporous materials are promising for a number of applications ranging from selective biofiltration to fuel cell electrodes. This work reports the functionalization of nanoporous membranes using atomic layer deposition (ALD). ALD is used to conformally deposit platinum (Pt) and aluminum oxide (Al2O3) on Pt in nanopores to form a metal-insulator stack inside the nanopore. Deposition of these materials inside nanopores allows the addition of extra functionalities to nanoporous materials such as anodic aluminum oxide (AAO) membranes. Conformal deposition of Pt on such materials enables increased performances for electrochemical sensing applications or fuel cell electrodes. An additional conformal Al2O3 layer on such a Pt film forms a metal-insulator-electrolyte system, enabling field effect control of the nanofluidic properties of the membrane. This opens novel possibilities in electrically controlled biofiltration. In this work, the deposition of these two materials on AAO membranes is investigated theoretically and experimentally. Successful process parameters are proposed for a reliable and cost-effective conformal deposition on high aspect ratio three-dimensional nanostructures. A device consisting of a silicon chip supporting an AAO membrane of 6 mm diameter and 1.3 μm thickness with 80 nm diameter pores is fabricated. The pore diameter is reduced to 40 nm by a conformal deposition of 11 nm Pt and 9 nm Al2O3 using ALD.

  5. Discharge amplified photo-emission from ultra-thin films applied to tuning work function of transparent electrodes in organic opto-electronic devices

    International Nuclear Information System (INIS)

    Gentle, A.R.; Smith, G.B.; Watkins, S.E.

    2013-01-01

    A novel photoemission technique utilising localised discharge amplification of photo-yield is reported. It enables fast, accurate measurement of work function and ionisation potential for ultra-thin buffer layers vacuum deposited onto single and multilayer transparent conducting electrodes for organic solar cells and OLED's. Work function in most traditional transparent electrodes has to be raised to maximise charge transfer while high transmittance and high conductance must be retained. Results are presented for a range of metal oxide buffers, which achieve this goal. This compact photo-yield spectroscopy tool with its fast turn-around has been a valuable development aid since ionisation potential can vary significantly as deposition conditions change slightly, and as ultra-thin films grow. It has also been useful in tracking the impact of different post deposition cleaning treatments along with some storage and transport protocols, which can adversely reduce ionisation potential and hence subsequent device performance.

  6. Co-catalytic effect of Ni in the methanol electro-oxidation on Pt-Ru/C catalyst for direct methanol fuel cell

    International Nuclear Information System (INIS)

    Wang, Z.B.; Yin, G.P.; Zhang, J.; Sun, Y.C.; Shi, P.F.

    2006-01-01

    This research is aimed to improve the utilization and activity of anodic catalysts, thus to lower the contents of noble metals loading in anodes for methanol electro-oxidation. The direct methanol fuel cell anodic catalysts, Pt-Ru-Ni/C and Pt-Ru/C, were prepared by chemical reduction method. Their performances were tested by using a glassy carbon working electrode through cyclic voltammetric curves, chronoamperometric curves and half-cell measurement in a solution of 0.5 mol/L CH 3 OH and 0.5 mol/L H 2 SO 4 . The composition of the Pt-Ru-Ni and Pt-Ru surface particles were determined by EDAX analysis. The particle size and lattice parameter of the catalysts were determined by means of X-ray diffraction (XRD). XRD analysis showed that both of the catalysts exhibited face-centered cubic structures and had smaller lattice parameters than Pt-alone catalyst. Their sizes are small, about 4.5 nm. No significant differences in the methanol electro-oxidation on both electrodes were found by using cyclic voltammetry, especially regarding the onset potential for methanol electro-oxidation. The electrochemically active-specific areas of the Pt-Ru-Ni/C and Pt-Ru/C catalysts are almost the same. But, the catalytic activity of the Pt-Ru-Ni/C catalyst is higher for methanol electro-oxidation than that of the Pt-Ru/C catalyst. Its tolerance performance to CO formed as one of the intermediates of methanol electro-oxidation is better than that of the Pt-Ru/C catalyst

  7. Pt/Ceria-based Catalysts for Small Alcohol Electrooxidation

    Science.gov (United States)

    Menendez-Mora, Christian L.

    High emissions of fossil-based energy sources have led to scientists around the world to develop new alternatives for the future. In this sense, fuel cells are a remarkable and promising energy option with less environmental impact. The most used fuels for this technology are hydrogen and small chain alcohols, which can be oxidized to transform their chemical energy into electrical power. To do this, fuel cells need catalysts that will act as an active surface where the oxidation can take place. The problem with platinum catalysts is its possible CO poisoning with intermediates that are produced before the complete oxidation of alcohol to CO2. Different approaches have been taken to try to resolve this issue. In this case, cerium oxide (ceria) was selected as a co-catalyst to mitigate the effect of CO poisoning of platinum. Ceria is a compound that has the ability to work as an "oxygen tank" and can donate oxygen to carbon monoxide that is strongly adsorbed at platinum surface to produce CO2 (carbon dioxide), regenerating the Pt surface for further alcohol oxidation. Therefore, enhancing the current density as well as the power output of a fuel cell. First, an occlusion deposition technique was used to prepare platinum/ceria composite electrodes and tested them towards small chain alcohol oxidation such as methanol oxidation reaction in acidic and alkaline media. The preliminary results demonstrated that the Pt/ceria electrodes were more efficient towards methanol electrooxidation when compared to Pt electrodes. This enhancement was attributed to the presence of ceria. A second preparation method was selected for the synthesis of ceria/Pt catalysts. In this case, a hydrothermal method was used and the catalysis were studied for the effect of MeOH, EtOH and n-BuOH oxidation. The observed effect was that electrodes made of Pt/Pt:CeO2-x showed better catalytic effect than Pt/ceria and platinum electrodes. Moreover, a comparison between ceria nanorods versus

  8. Improved Internal Reference Oxygen Sensors with Composite Ceramic Electrodes

    DEFF Research Database (Denmark)

    Hu, Qiang; Jacobsen, Torben; Hansen, Karin Vels

    2012-01-01

    Potentiometric oxygen sensors with an internal reference electrode, which uses the equilibrium pO2 of the binary mixture of Ni/NiO as the reference, are demonstrated. The cells employ Pt or composite ceramics as the sensing electrode. The cells are fabricated by a flexible and potentially low cost...... and performance are highly reproducible. The composite ceramics, based on strontium doped manganite and yttria doped zirconia, are proven superior over Pt to serve as the electrode material....

  9. Dynamics of the YSZ-Pt Interface

    DEFF Research Database (Denmark)

    Bay, Lasse; Jacobsen, Torben

    1997-01-01

    Yttria stabilized zirconia (YSZ)-Pt point electrodes were examined by linear potential sweep, potential step and impedance measurements at 1000 degrees C in air. Inductive loops and hysteresis phenomena with long relaxation times were found. Atomic force microscopy showed changes of the interface...

  10. Cyclic voltammograms for H on Pt(111) and Pt(100) from first principles

    DEFF Research Database (Denmark)

    Karlberg, Gustav; Jaramillo, Thomas; Skulason, Egill

    2007-01-01

    Cyclic voltammetry is a fundamental experimental method for characterizing electrochemical surfaces. Despite its wide use, a way to quantitatively and directly relate cyclic voltammetry to ab initio calculations has been lacking. We derive the cyclic voltammogram for H on Pt(111) and Pt(100), bas...... solely on density functional theory calculations and standard molecular tables. By relating the gas phase adsorption energy to the electrochemical electrode potential, we provide a direct link between surface science and electrochemistry....

  11. Advantages of electrodes with dendrimer-protected platinum nanoparticles and carbon nanotubes for electrochemical methanol oxidation.

    Science.gov (United States)

    Siriviriyanun, Ampornphan; Imae, Toyoko

    2013-04-14

    Electrochemical sensors consisting of electrodes loaded with carbon nanotubes and Pt nanoparticles (PtNPs) protected by dendrimers have been developed using a facile method to fabricate them on two types of disposable electrochemical printed chips with a screen-printed circular gold or a screen-printed circular glassy carbon working electrode. The electrochemical performance of these sensors in the oxidation of methanol was investigated by cyclic voltammetry. It was revealed that such sensors possess stable durability and high electrocatalytic activity: the potential and the current density of an anodic peak in the oxidation of methanol increased with increasing content of PtNPs on the electrodes, indicating the promotion of electrocatalytic activity in relation to the amount of catalyst. The low anodic potential suggests the easy electrochemical reaction, and the high catalyst tolerance supports the almost complete oxidation of methanol to carbon dioxide. The significant performance of these sensors in the detection of methanol oxidation comes from the high electrocatalytic ability of PtNPs, excellent energy transfer of carbon nanotubes and the remarkable ability of dendrimers to act as binders. Thus these systems are effective for a wide range of applications as chemical, biomedical, energy and environmental sensors and as units of direct methanol fuel cells.

  12. Dispersion capacitive de l'interface H 2 SO 4 /Pt | Hammadi ...

    African Journals Online (AJOL)

    Capacitive dispersion of Pt/H2SO4 interface. Impedance measurements by EIS and voltammograms measurements by CV on pretreated Pt electrodes immersed in an electrolytic solution of 0.5M H2SO4 are presented. Two electrochemical pretreatment techniques of the WE (thin Pt wire) are used: cleaning and etching.

  13. Measurement of benzenethiol adsorption to nanostructured Pt, Pd, and PtPd films using Raman spectroelectrochemistry.

    Science.gov (United States)

    Pomfret, Michael B; Pietron, Jeremy J; Owrutsky, Jeffrey C

    2010-05-04

    Raman spectroscopy and electrochemical methods were used to study the behavior of the model adsorbate benzenethiol (BT) on nanostructured Pt, Pd, and PtPd electrodes as a function of applied potential. Benzenethiol adsorbs out of ethanolic solutions as the corresponding thiolate, and voltammetric stripping data reveal that BT is oxidatively removed from all of the nanostructured metals upon repeated oxidative and reductive cycling. Oxidative stripping potentials for BT increase in the order Pt oxidizing potentials via cleavage of the Pt-S bond. In contrast, on nanoscale Pd and PtPd, BT is irreversibly lost due to cleavage of BT C-S bonds at oxidizing potentials, which leaves adsorbed sulfur oxides on Pd and PtPd films and effects the desulfurization of BT. While Pd and PtPd films are less sulfur-resistant than Pt films, palladium oxides, which form at higher potentials than Pt oxides, oxidatively desulfurize BT. In situ spectroelectrochemical Raman spectroscopy provides real-time, chemically specific information that complements the cyclic voltammetric data. The combination of these techniques affords a powerful and convenient method for guiding the development of sulfur-tolerant PEMFC catalysts.

  14. Investigation of Top/bottom Electrode and Diffusion Barrier Layer for PZT thick film MEMS Sensors

    DEFF Research Database (Denmark)

    Pedersen, Thomas; Hindrichsen, Christian Carstensen; Lou-Møller, R.

    2007-01-01

    In this work screen printed piezoelectric Ferroperm PZ26 lead zirconate titanate (PZT) thick film is used for two MEMS devices. A test structure is used to investigate several aspects regarding bottom and top electrodes. 450 nm ZrO2 thin film is found to be an insufficient diffusion barrier layer...... for thick film PZT sintered at 850degC. E-beam evaporated Al and Pt is patterned on PZT with a lift-off process with a line width down to 3 mum. The roughness of the PZT is found to have a strong influence on the conductance of the top electrode....

  15. Impedance study of tea with added taste compounds using conducting polymer and metal electrodes.

    Science.gov (United States)

    Dhiman, Mopsy; Kapur, Pawan; Ganguli, Abhijit; Singla, Madan Lal

    2012-09-01

    In this study the sensing capabilities of a combination of metals and conducting polymer sensing/working electrodes for tea liquor prepared by addition of different compounds using an impedance mode in frequency range 1 Hz-100 KHz at 0.1 V potential has been carried out. Classification of six different tea liquor samples made by dissolving various compounds (black tea liquor + raw milk from milkman), (black tea liquor + sweetened clove syrup), (black tea liquor + sweetened ginger syrup), (black tea liquor + sweetened cardamom syrup), (black tea liquor + sweet chocolate syrup) and (black tea liquor + vanilla flavoured milk without sugar) using six different working electrodes in a multi electrode setup has been studied using impedance and further its PCA has been carried out. Working electrodes of Platinum (Pt), Gold (Au), Silver (Ag), Glassy Carbon (GC) and conducting polymer electrodes of Polyaniline (PANI) and Polypyrrole (PPY) grown on an ITO surface potentiostatically have been deployed in a three electrode set up. The impedance response of these tea liquor samples using number of working electrodes shows a decrease in the real and imaginary impedance values presented on nyquist plots depending upon the nature of the electrode and amount of dissolved salts present in compounds added to tea liquor/solution. The different sensing surfaces allowed a high cross-selectivity in response to the same analyte. From Principal Component Analysis (PCA) plots it was possible to classify tea liquor in 3-4 classes using conducting polymer electrodes; however tea liquors were well separated from the PCA plots employing the impedance data of both conducting polymer and metal electrodes.

  16. Radiolytic Preparation of Electrocatalysts with Pt-Co and Pt-Sn Nanoparticles for a Proton Exchange Membrane Fuel Cell

    Directory of Open Access Journals (Sweden)

    Sang Kyum Kim

    2014-01-01

    Full Text Available Nanosized Pt-Sn/VC and Pt-Co/VC electrocatalysts were prepared by a one-step radiation-induced reduction (30 kGy process using distilled water as the solvent and Vulcan XC72 as the supporting material. While the Pt-Co/VC electrodes were compared with Pt/VC (40 wt%, HiSpec 4000, in terms of their electrocatalytic activity towards the oxidation of H2, the Pt-Co/VC electrodes were evaluated in terms of their activity towards the hydrogen oxidation reaction (HOR and compared with Pt/VC (40 wt%, HiSpec 4000, Pt-Co/VC, and Pt-Sn/VC in a single cell. Additionally, the prepared electrocatalyst samples (Pt-Co/VC and Pt-Sn/VC were characterized by transmission electron microscopy (TEM, scanning electron microscope (SEM, thermogravimetric analysis (TGA, X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, electrochemical surface area (ECSA, and fuel cell polarization performance.

  17. Helium Ion Microscopy of proton exchange membrane fuel cell electrode structures

    Directory of Open Access Journals (Sweden)

    Serguei Chiriaev

    2017-12-01

    Full Text Available Characterization of composite materials with microscopy techniques is an essential route to understanding their properties and degradation mechanisms, though the observation with a suitable type of microscopy is not always possible. In this work, we present proton exchange membrane fuel cell electrode interface structure dependence on ionomer content, systematically studied by Helium Ion Microscopy (HIM. A special focus was on acquiring high resolution images of the electrode structure and avoiding interface damage from irradiation and tedious sample preparation. HIM demonstrated its advantages in surface imaging, which is paramount in studies of the interface morphology of ionomer covered or absorbed catalyst structures in a combination with electrochemical characterization and accelerated stress test. The electrode porosity was found to depend on the ionomer content. The stressed electrodes demonstrated higher porosity in comparison to the unstressed ones on the condition of no external mechanical pressure. Moreover, formation of additional small grains was observed for the electrodes with the low ionomer content, indicating Pt redeposition through Ostwald ripening. Polymer nanofiber structures were found in the crack regions of the catalyst layer, which appear due to the internal stress originated from the solvent evaporation. These fibers have fairly uniform diameters of a few tens of nanometers, and their density increases with the increasing ionomer content in the electrodes. In the hot-pressed electrodes, we found more closed contact between the electrode components, reduced particle size, polymer coalescence and formation of nano-sized polymer fiber architecture between the particles.

  18. Surface effects of electrode-dependent switching behavior of resistive random-access memory

    KAUST Repository

    Ke, Jr Jian; Wei, Tzu Chiao; Tsai, Dung Sheng; Lin, Chun-Ho; He, Jr-Hau

    2016-01-01

    of the oxygen chemisorption process was proposed to explain this electrode-dependent switching behavior. The temperature-dependent switching voltage demonstrates that the ReRAM devices fabricated with Pt electrodes have a lower activation energy

  19. Diamond nanoparticles as a support for Pt and PtRu catalysts for direct methanol fuel cells.

    Science.gov (United States)

    La-Torre-Riveros, Lyda; Guzman-Blas, Rolando; Méndez-Torres, Adrián E; Prelas, Mark; Tryk, Donald A; Cabrera, Carlos R

    2012-02-01

    Diamond in nanoparticle form is a promising material that can be used as a robust and chemically stable catalyst support in fuel cells. It has been studied and characterized physically and electrochemically, in its thin film and powder forms, as reported in the literature. In the present work, the electrochemical properties of undoped and boron-doped diamond nanoparticle electrodes, fabricated using the ink-paste method, were investigated. Methanol oxidation experiments were carried out in both half-cell and full fuel cell modes. Platinum and ruthenium nanoparticles were chemically deposited on undoped and boron doped diamond nanoparticles through the use of NaBH(4) as reducing agent and sodium dodecyl benzene sulfonate (SDBS) as a surfactant. Before and after the reduction process, samples were characterized by electron microscopy and spectroscopic techniques. The ink-paste method was also used to prepare the membrane electrode assembly with Pt and Pt-Ru modified undoped and boron-doped diamond nanoparticle catalytic systems, to perform the electrochemical experiments in a direct methanol fuel cell system. The results obtained demonstrate that diamond supported catalyst nanomaterials are promising for methanol fuel cells.

  20. Nanostructured electrocatalyst for fuel cells : silica templated synthesis of Pt/C composites.

    Energy Technology Data Exchange (ETDEWEB)

    Stechel, Ellen Beth; Switzer, Elise E.; Fujimoto, Cy H.; Atanassov, Plamen Borissov; Cornelius, Christopher James; Hibbs, Michael R.

    2007-09-01

    Platinum-based electrocatalysts are currently required for state-of-the-art fuel cells and represent a significant portion of the overall fuel cell cost. If fuel cell technology is to become competitive with other energy conversion technologies, improve the utilization of precious metal catalysts is essential. A primary focus of this work is on creating enhanced nanostructured materials which improve precious-metal utilization. The goal is to engineer superior electrocatalytic materials through the synthesis, development and investigation of novel templated open frame structures synthesized in an aerosol-based approach. Bulk templating methods for both Pt/C and Pt-Ru composites are evaluated in this study and are found to be limited due to the fact that the nanostructure is not maintained throughout the entire sample. Therefore, an accurate examination of structural effects was previously impossible. An aerosol-based templating method of synthesizing nanostructured Pt-Ru electrocatalysts has been developed wherein the effects of structure can be related to electrocatalytic performance. The aerosol-based templating method developed in this work is extremely versatile as it can be conveniently modified to synthesize alternative materials for other systems. The synthesis method was able to be extended to nanostructured Pt-Sn for ethanol oxidation in alkaline media. Nanostructured Pt-Sn electrocatalysts were evaluated in a unique approach tailored to electrocatalytic studies in alkaline media. At low temperatures, nanostructured Pt-Sn electrocatalysts were found to have significantly higher ethanol oxidation activity than a comparable nanostructured Pt catalyst. At higher temperatures, the oxygen-containing species contribution likely provided by Sn is insignificant due to a more oxidized Pt surface. The importance of the surface coverage of oxygen-containing species in the reaction mechanism is established in these studies. The investigations in this work present

  1. Silicon Nano wires with MoS_x and Pt as Electrocatalysts for Hydrogen Evolution Reaction

    International Nuclear Information System (INIS)

    Hsieh, S.H.; Ho, S.T.; Chen, W.J.

    2016-01-01

    A convenient method was used for synthesizing Pt-nanoparticle//silicon nano wires nano composites. Obtained Pt-/silicon nano wires electrocatalysts were characterized by transmission electron microscopy (TEM). The hydrogen evolution reaction efficiency of the Pt-/silicon nano wire nano composite catalysts was assessed by examining polarization and electrolysis measurements under solar light irradiations. The electrochemical characterizations demonstrate that Pt-/silicon nano wire electrodes exhibited an excellent catalytic activity for hydrogen evolution reaction in an acidic electrolyte. The hydrogen production capability of Pt-/silicon nano wires is also comparable to /silicon nano wires and Pt/silicon nano wires. Electrochemical impedance spectroscopy experiments suggest that the enhanced performance of Pt-/silicon nano wires can be attributed to the fast electron transfer between Pt-/silicon nano wire electrodes and electrolyte interfaces.

  2. Platinum porphyrins as ionophores in polymeric membrane electrodes

    DEFF Research Database (Denmark)

    Lvova, Larisa; Verrelli, Giorgio; Nardis, Sara

    2011-01-01

    A comparative study of Pt(II)- and Pt(IV)-porphyrins as novel ionophores for anion-selective polymeric membrane electrodes is performed. Polymeric membranes of different compositions, prepared by varying plasticizers, cationic and anionic additives and Pt porphyrins, have been examined...... within the electrode membranes, while those based on Pt(IV)TPPCl2 operate via a mixed mode carrier mechanism, evidencing also a partial reduction of the starting ionophore to Pt(II)TPP. Spectrophotometric measurements of thin polymeric films indicate that no spontaneous formation of hydroxide ion bridged...... porphyrin dimers occurs in the membrane plasticized both with high or low dielectric constant plasticizer, due to a low oxophilicity of central Pt. The computational study of various anion–Pt(IV)TPPCl2 complex formation by means of semi-empirical and density functional theory (DFT) methods revealed a good...

  3. Effect of Thermomechanical Processing on the Microstructure, Properties, and Work Behavior of a Ti50.5 Ni29.5 Pt20 High-Temperature Shape Memory Alloy

    Science.gov (United States)

    Noebe, Ronald; Draper, Susan; Gaydosh, Darrell; Garga, Anita; Lerch, Brad; Penney, Nicholas; Begelow, Glen; Padula, Santo, II; Brown, Jeff

    2006-01-01

    TiNiPt shape memory alloys are particularly promising for use as solid state actuators in environments up to 300 C, due to a reasonable balance of properties, including acceptable work output. However, one of the challenges to commercializing a viable high-temperature shape memory alloy (HTSMA) is to establish the appropriate primary and secondary processing techniques for fabrication of the material in a required product form such as rod and wire. Consequently, a Ti(50.5)Ni(29.5)Pt20 alloy was processed using several techniques including single-pass high-temperature extrusion, multiple-pass high-temperature extrusion, and cold drawing to produce bar stock, thin rod, and fine wire, respectively. The effects of heat treatment on the hardness, grain size, room temperature tensile properties, and transformation temperatures of hot- and cold-worked material were examined. Basic tensile properties as a function of temperature and the strain-temperature response of the alloy under constant load, for the determination of work output, were also investigated for various forms of the Ti(50.5)Ni(29.5)Pt20 alloy, including fine wire.

  4. Comparing two methods to record maximal voluntary contractions and different electrode positions in recordings of forearm extensor muscle activity: Refining risk assessments for work-related wrist disorders.

    Science.gov (United States)

    Dahlqvist, Camilla; Nordander, Catarina; Granqvist, Lothy; Forsman, Mikael; Hansson, Gert-Åke

    2018-01-01

    Wrist disorders are common in force demanding industrial repetitive work. Visual assessment of force demands have a low reliability, instead surface electromyography (EMG) may be used as part of a risk assessment for work-related wrist disorders. For normalization of EMG recordings, a power grip (hand grip) is often used as maximal voluntary contraction (MVC) of the forearm extensor muscles. However, the test-retest reproducibility is poor and EMG amplitudes exceeding 100% have occasionally been recorded during work. An alternative MVC is resisted wrist extension, which may be more reliable. To compare hand grip and resisted wrist extension MVCs, in terms of amplitude and reproducibility, and to examine the effect of electrode positioning. Twelve subjects participated. EMG from right forearm extensors, from four electrode pairs, was recorded during MVCs, on three separate occasions. The group mean EMG amplitudes for resisted wrist extension were 1.2-1.7 times greater than those for hand grip. Resisted wrist extension showed better reproducibility than hand grip. The results indicate that the use of resisted wrist extension is a more accurate measurement of maximal effort of wrist extensor contractions than using hand grip and should increase the precision in EMG recordings from forearm extensor muscles, which in turn will increase the quality of risk assessments that are based on these.

  5. Pt catalysts on PANI coated WC/C nanocomposites for methanol electro-oxidation and oxygen electro-reduction in DMFC

    International Nuclear Information System (INIS)

    Yaldagard, Maryam; Jahanshahi, Mohsen; Seghatoleslami, Naser

    2014-01-01

    Highlights: • In this work nanosized WC/C were successfully coated by PANI. • Pt particles (10.56 nm) were uniformly dispersed on the surface of PANI/WC/C support. • The Pt/PANI/WC/C exhibited higher MOR activity and CO tolerance than Pt/C. • The Pt/PANI/WC/C exhibited higher activity for ORR than Pt/C in RDE experiments. • Pt/PANI/WC/C showed good stability than that of Pt/C in the presence of methanol. - Abstract: In the present study a Pt/PANI/WC/C electrocatalyst was developed to increase the methanol electro-oxidation and oxygen electro-reduction activity and stability of commercial Pt/C electrocatalyst. WC/C was coated with protonated polyaniline (PANI) in situ during the polymerization of aniline. Fourier transform infrared (FTIR) results illustrate the presence of PANI in the composite. The conductivity of PANI coated – WC/C has been compared with the conductivity of the corresponding mixtures of WC/C and Vulcan XC-72. X-ray diffraction results showed that Pt particles were dispersed on the support with mean particle size of about 10.56 nm. Transition electron microscopy images showed that the nanosized WC/C were successfully coated by PANI. Based on the electrochemical properties characterized by cyclic voltammetry, CO stripping and rotating disk electrode measurements it was found that the as prepared Pt/PANI/WC/C electrocatalyst exhibited a comparable activity for methanol oxidation reaction and oxygen reduction reaction with respect to the commercial one. A significant reduction in the potential of CO electro-oxidation peak from 0.75 V for Pt/C to 0.52 V for Pt/PANI/WC/C electrocatalyst indicates that an increase in the activity for CO electro-oxidation is achieved by replacing the carbon support by PANI coated WC/C. Chronoamerometry results also showed, in the presence of methanol the Pt/PANI/WC/C electrocatalyst still maintains a higher current density than Pt/WC/C and Pt/C

  6. Pt catalysts on PANI coated WC/C nanocomposites for methanol electro-oxidation and oxygen electro-reduction in DMFC

    Energy Technology Data Exchange (ETDEWEB)

    Yaldagard, Maryam, E-mail: m_yaldagard@yahoo.com [Department of Chemical Engineering, Ferdowsi University of Mashhad, P.O. Box 91775-1111 (Iran, Islamic Republic of); Nanotechnology Research Institute, School of Chemical Engineering, Babol University of Technology (Iran, Islamic Republic of); Jahanshahi, Mohsen, E-mail: mjahan@nit.um.ac.ir [Nanotechnology Research Institute, School of Chemical Engineering, Babol University of Technology (Iran, Islamic Republic of); Seghatoleslami, Naser, E-mail: Slami@um.ac.ir [Department of Chemical Engineering, Ferdowsi University of Mashhad, P.O. Box 91775-1111 (Iran, Islamic Republic of)

    2014-10-30

    Highlights: • In this work nanosized WC/C were successfully coated by PANI. • Pt particles (10.56 nm) were uniformly dispersed on the surface of PANI/WC/C support. • The Pt/PANI/WC/C exhibited higher MOR activity and CO tolerance than Pt/C. • The Pt/PANI/WC/C exhibited higher activity for ORR than Pt/C in RDE experiments. • Pt/PANI/WC/C showed good stability than that of Pt/C in the presence of methanol. - Abstract: In the present study a Pt/PANI/WC/C electrocatalyst was developed to increase the methanol electro-oxidation and oxygen electro-reduction activity and stability of commercial Pt/C electrocatalyst. WC/C was coated with protonated polyaniline (PANI) in situ during the polymerization of aniline. Fourier transform infrared (FTIR) results illustrate the presence of PANI in the composite. The conductivity of PANI coated – WC/C has been compared with the conductivity of the corresponding mixtures of WC/C and Vulcan XC-72. X-ray diffraction results showed that Pt particles were dispersed on the support with mean particle size of about 10.56 nm. Transition electron microscopy images showed that the nanosized WC/C were successfully coated by PANI. Based on the electrochemical properties characterized by cyclic voltammetry, CO stripping and rotating disk electrode measurements it was found that the as prepared Pt/PANI/WC/C electrocatalyst exhibited a comparable activity for methanol oxidation reaction and oxygen reduction reaction with respect to the commercial one. A significant reduction in the potential of CO electro-oxidation peak from 0.75 V for Pt/C to 0.52 V for Pt/PANI/WC/C electrocatalyst indicates that an increase in the activity for CO electro-oxidation is achieved by replacing the carbon support by PANI coated WC/C. Chronoamerometry results also showed, in the presence of methanol the Pt/PANI/WC/C electrocatalyst still maintains a higher current density than Pt/WC/C and Pt/C.

  7. Platinum single crystal electrodes for the electrocatalysis of methane oxidation

    Directory of Open Access Journals (Sweden)

    Mayara Munaretto

    2011-03-01

    Full Text Available The main objective of this paper is to characterize the voltammetric profiles of platinum single crystals of low Miller indexes Pt(100 and Pt(110 and study their catalytic activities on the oxidation of methane. In this way, it was developed a metallic surface modified by presence of other metal oxide, which presents catalytic activity for this reaction. It is well known that the electrooxidation of methane (CH4 leads mainly to the formation of CO2 and H2O, however, the oxidation can also lead to the formation of CO, a reaction intermediate that has strong interaction with metal surfaces, such as platinum. This molecule tends to accumulate on the platinum surface and to passive it, due to the self-poisoning, decreasing its catalytic activity. Therefore, the main aim of this work was the development of a platinum electrode modified by deposition of titanium oxide, which presented electrocatalytic properties for the oxidation of methane.

  8. To alloy or not to alloy? Cr modified Pt/C cathode catalysts for PEM fuel cells.

    Science.gov (United States)

    Wells, Peter P; Qian, Yangdong; King, Colin R; Wiltshire, Richard J K; Crabb, Eleanor M; Smart, Lesley E; Thompsett, David; Russell, Andrea E

    2008-01-01

    The cathode electrocatalysts for proton exchange membrane (PEM) fuel cells are commonly platinum and platinum based alloy nanoparticles dispersed on a carbon support. Control over the particle size and composition has, historically, been attained empirically, making systematic studies of the effects of various structural parameters difficult. The controlled surface modification methodology used in this work has enabled the controlled modification of carbon supported Pt nanoparticles by Cr so as to yield nanoalloy particles with defined compositions. Subsequent heat treatment in 5% H2 in N2 resulted in the formation of a distinct Pt3Cr alloy phase which was either restricted to the surface of the particles or present throughout the bulk of the particle structure. Measurement of the oxygen reduction activity of the catalysts was accomplished using the rotating thin film electrode method and the activities obtained were related to the structure of the nanoalloy catalyst particles, largely determined using Cr K edge and Pt L3 edge XAS.

  9. A novel high-performance counter electrode for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Wang Guiqiang; Lin Ruifeng; Lin Yuan; Li Xueping; Zhou Xiaowen; Xiao Xurui

    2005-01-01

    A novel Pt counter electrode for dye-sensitized solar cells (DSC) was prepared by thermal decomposition of H 2 PtCl 6 on NiP-plated glass substrate. The charge-transfer kinetic properties of the platinized NiP-plated glass electrode (Pt/NiP electrode) for triiodide reduction were studied by electrochemical impedance spectroscopy. Pt/NiP electrode has the advantage over the platinized FTO conducting glass electrode (Pt/FTO electrode) in increasing the light reflectance and reducing the sheet resistance leading to improve the light harvest efficiency and the fill factor of the dye-sensitized solar cells effectively. The photon-to-current efficiency and the overall conversion efficiency of DSC using Pt/NiP counter electrode is increased by 20% and 33%, respectively, compared to that of using Pt/FTO counter electrode. Examination of the anodic dissolution and the long-term test on the variation of charge-transfer resistance indicates the good stability of the Pt/NiP electrode in the electrolyte containing iodide/triiodide

  10. Effect of TiB2 Pretreatment on Pt/TiB2 Catalyst Performance

    International Nuclear Information System (INIS)

    Huang, Zhen; Lin, Rui; Fan, Renjie; Fan, Qinbai; Ma, Jianxin

    2014-01-01

    Highlights: • We pretreated Titanium diboride by different acids and alkali. • We synthesis the Pt/as-pretreated TiB 2 catalysts by a colloid route. • We investigated the effects of TiB 2 Pretreatment on Pt/TiB 2 Catalyst Performance. • The BET surface area and defects on the surface have a close relationship with the deposition of Pt nanoparticles. - Abstract: Carbon support corrosion of traditional Pt/C catalyst is one of the major contributors causing poor durability of proton exchange membrane fuel cells (PEMFC). Titanium diboride (TiB 2 ) has high electrical conductivity and considerable chemical stability, which making it as a good candidate for catalyst support in PEMFC. In this work, TiB 2 was pretreated by different acid and alkali. The as-obtained samples were characterized by Ex-situ microscopy (ESM) and X-ray diffraction (XRD). The pore size distribution (PSD) was analyzed by using DFT method. The PSD shows distinct volume in mesopore regions (less than 50 nm). The TiB2 pretreated by H 2 O 2 shows the biggest BET surface area of 57 m 2 g −1 and its PSD focus on mesoporous (1.5-8 nm) region, which resulted to high dispersion and better loading of Pt particles. The Hydrogen oxidization reaction (HOR) and oxygen reduction reaction (ORR) activity was characterized by Rotating Disk Electrode (RDE). The Pt/TiB 2 prepared by H 2 O 2 -pretreated TiB 2 using the colloidal method showed better half-cell electrochemical performance. Facile synthetic for the development of Pt/TiB 2 catalysts was developed

  11. A bimetallic nanocoral Au decorated with Pt nanoflowers (bio)sensor for H2O2 detection at low potential.

    Science.gov (United States)

    Sanzò, Gabriella; Taurino, Irene; Puppo, Francesca; Antiochia, Riccarda; Gorton, Lo; Favero, Gabriele; Mazzei, Franco; Carrara, Sandro; De Micheli, Giovanni

    2017-10-01

    In this work, we have developed for the first time a method to make novel gold and platinum hybrid bimetallic nanostructures differing in shape and size. Au-Pt nanostructures were prepared by electrodeposition in two simple steps. The first step consists of the electrodeposition of nanocoral Au onto a gold substrate using hydrogen as a dynamic template in an ammonium chloride solution. After that, the Pt nanostructures were deposited onto the nanocoral Au organized in pores. Using Pt (II) and Pt (IV), we realized nanocoral Au decorated with Pt nanospheres and nanocoral Au decorated with Pt nanoflowers, respectively. The bimetallic nanostructures showed better capability to electrochemically oxidize hydrogen peroxide compared with nanocoral Au. Moreover, Au-Pt nanostructures were able to lower the potential of detection and a higher performance was obtained at a low applied potential. Then, glucose oxidase was immobilized onto the bimetallic Au-Pt nanostructure using cross-linking with glutaraldehyde. The biosensor was characterized by chronoamperometry at +0.15V vs. Ag pseudo-reference electrode (PRE) and showed good analytical performances with a linear range from 0.01 to 2.00mM and a sensitivity of 33.66µA/mMcm 2 . The good value of K m app (2.28mM) demonstrates that the hybrid nanostructure is a favorable environment for the enzyme. Moreover, the low working potential can minimize the interference from ascorbic acid and uric acid as well as reducing power consumption to effect sensing. The simple procedure to realize this nanostructure and to immobilize enzymes, as well as the analytical performances of the resulting devices, encourage the use of this technology for the development of biosensors for clinical analysis. Copyright © 2017. Published by Elsevier Inc.

  12. Phospholipid monolayer coated microfabricated electrodes to model the interaction of molecules with biomembranes

    Energy Technology Data Exchange (ETDEWEB)

    Coldrick, Zachary [Centre for Self-Organising Molecular Systems (SOMS), School of Chemistry, University of Leeds, Leeds, LS2 9JT (United Kingdom)], E-mail: eenzc@leeds.ac.uk; Steenson, Paul [School of Electronic Engineering, University of Leeds, Leeds, LS2 9JT (United Kingdom); Millner, Paul [Institute of Membrane and Systems Biology, University of Leeds, Leeds, LS2 9JT (United Kingdom); Davies, Matthew [Health and Safety Laboratories, Buxton, SK17 9JN (United Kingdom); Nelson, Andrew [Centre for Self-Organising Molecular Systems (SOMS), School of Chemistry, University of Leeds, Leeds, LS2 9JT (United Kingdom)

    2009-09-01

    The hanging mercury (Hg) drop electrode (HMDE) has a classical application as a tool to study adsorption and desorption processes of surface organic films due to its: (a) atomically smooth surface and, (b) hydrophobicity at its potential of zero charge. In this study we report on a replacement of the HMDE for studying supported organic layers in the form of platinum (Pt) working electrodes fabricated using lithography techniques on which a thin film of Hg is electrodeposited. These wafer-based Pt/Hg electrodes are characterised and compared to the HMDE using rapid cyclic voltammetry (RCV) and show similar capacitance-potential profiles while being far more mechanically stable and consuming considerably less Hg over their lifetime of several months. The electrodes have been used to support self-assembled phospholipid monolayers which are dynamic surface coatings with unique dielectric properties. The issue of surface contamination has been solved by regenerating the electrode surface prior to phospholipid coating by application of extreme cathodic potentials more negative than -2.6 V (vs. Ag/AgCl). The phospholipid coated electrodes presented in this paper mimic one half of a phospholipid bilayer and exhibit interactions with the biomembrane active drug molecules chlorpromazine, and quinidine. The magnitudes of these interactions have been assessed by recording changes in the capacitance-potential profiles in real time using RCV at 40 V s{sup -1} over potential ranges >1 V. A method for electrode coating with phospholipids with the electrodes fitted in a flow cell device has been developed. This has enabled sequential rapid cleaning/coating/interaction cycles for the purposes of drug screening and/or on-line monitoring for molecules of interest.

  13. Phospholipid monolayer coated microfabricated electrodes to model the interaction of molecules with biomembranes

    International Nuclear Information System (INIS)

    Coldrick, Zachary; Steenson, Paul; Millner, Paul; Davies, Matthew; Nelson, Andrew

    2009-01-01

    The hanging mercury (Hg) drop electrode (HMDE) has a classical application as a tool to study adsorption and desorption processes of surface organic films due to its: (a) atomically smooth surface and, (b) hydrophobicity at its potential of zero charge. In this study we report on a replacement of the HMDE for studying supported organic layers in the form of platinum (Pt) working electrodes fabricated using lithography techniques on which a thin film of Hg is electrodeposited. These wafer-based Pt/Hg electrodes are characterised and compared to the HMDE using rapid cyclic voltammetry (RCV) and show similar capacitance-potential profiles while being far more mechanically stable and consuming considerably less Hg over their lifetime of several months. The electrodes have been used to support self-assembled phospholipid monolayers which are dynamic surface coatings with unique dielectric properties. The issue of surface contamination has been solved by regenerating the electrode surface prior to phospholipid coating by application of extreme cathodic potentials more negative than -2.6 V (vs. Ag/AgCl). The phospholipid coated electrodes presented in this paper mimic one half of a phospholipid bilayer and exhibit interactions with the biomembrane active drug molecules chlorpromazine, and quinidine. The magnitudes of these interactions have been assessed by recording changes in the capacitance-potential profiles in real time using RCV at 40 V s -1 over potential ranges >1 V. A method for electrode coating with phospholipids with the electrodes fitted in a flow cell device has been developed. This has enabled sequential rapid cleaning/coating/interaction cycles for the purposes of drug screening and/or on-line monitoring for molecules of interest.

  14. TiN-conductive carbon black composite as counter electrode for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Li, G.R.; Wang, F.; Song, J.; Xiong, F.Y.; Gao, X.P.

    2012-01-01

    Highlights: ► The TiN nanoparticles are highly dispersed on conductive carbon black matrix (CCB). ► The well dispersion of TiN nanoparticles can improve electrochemical performance. ► The TiN/CCB shows a high photovoltaic performance with high conversion efficiency. - Abstract: TiN-conductive carbon black (CCB)/Ti electrodes are prepared by the nitridation of TiO 2 –CCB mixtures filmed on metallic Ti substrate in ammonia atmosphere. It is demonstrated from X-ray diffraction (XRD) and scanning electron microscopy (SEM) that TiN nanoparticles are highly dispersed on the CCB matrix in the composites. TiN–CCB/Ti electrodes show outstanding electrochemical performances as compared to individual TiN/Ti and CCB/Ti electrodes. In particular, the dye-sensitized solar cell (DSSC) using TiN–CCB (1:1, mass ratio)/Ti electrode presents an energy conversion efficiency of 7.92%, which is higher than that (6.59%) of the device using Pt/FTO (fluorine doped tin oxide) electrode measured under the same test conditions. Based on the analysis of cyclic voltammetry (CV) and electrochemical impedance spectra (EIS), the enhancements for the electrochemical and photochemical performance of TiN–CCB/Ti electrodes are attributed to the fact that the dispersed TiN nanoparticles in the CCB matrix provide an improved electrocatalytic activity and a facilitated diffusion for triiodine ions. This work shows a facile approach to develop metal nitrides–carbon composites as counter electrodes for DSSCs. High energy conversion efficiency and low lost will make the composites have significant potential for replacing the conventional Pt/FTO electrodes in DSSCs.

  15. Effects of electrode material and configuration on the characteristics of planar resistive switching devices

    KAUST Repository

    Peng, H.Y.

    2013-11-13

    We report that electrode engineering, particularly tailoring the metal work function, measurement configuration and geometric shape, has significant effects on the bipolar resistive switching (RS) in lateral memory devices based on self-doped SrTiO3 (STO) single crystals. Metals with different work functions (Ti and Pt) and their combinations are used to control the junction transport (either ohmic or Schottky-like). We find that the electric bias is effective in manipulating the concentration of oxygen vacancies at the metal/STO interface, influencing the RS characteristics. Furthermore, we show that the geometric shapes of electrodes (e.g., rectangular, circular, or triangular) affect the electric field distribution at the metal/oxide interface, thus plays an important role in RS. These systematic results suggest that electrode engineering should be deemed as a powerful approach toward controlling and improving the characteristics of RS memories. 2013 Author(s).

  16. Investigation of nanoporous platinum thin films fabricated by reactive sputtering: Application as micro-SOFC electrode

    Science.gov (United States)

    Jung, WooChul; Kim, Jae Jin; Tuller, Harry L.

    2015-02-01

    Highly porous Pt thin films, with nano-scale porosity, were fabricated by reactive sputtering. The strategy involved deposition of thin film PtOx at room temperature, followed by the subsequent decomposition of the oxide by rapid heat treatment. The resulting films exhibited percolating Pt networks infiltrated with interconnected nanosized pores, critical for superior solid oxide fuel cell cathode performance. This approach is particularly attractive for micro-fabricated solid oxide fuel cells, since it enables fabrication of the entire cell stack (anode/electrolyte/cathode) within the sputtering chamber, without breaking vacuum. In this work, the morphological, crystallographic and chemical properties of the porous electrode were systematically varied by control of deposition conditions. Oxygen reduction reaction kinetics were investigated by means of electrochemical impedance spectroscopy, demonstrating the critical role of nano-pores in achieving satisfactory micro-SOFC cathode performance.

  17. Electrodeposited Pt for cost-efficient and flexible dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Kim, Seok-Soon; Nah, Yoon-Chae; Noh, Yong-Young; Jo, Jang; Kim, Dong-Yu

    2006-01-01

    Pt electrodes were prepared by direct and pulse current electrodeposition for use as counter electrodes in dye-sensitized solar cells. Scanning electron microscope and transmission electron microscope images confirmed the formation of uniform Pt nanoclusters of ∼40 nm composed of 3 nm nanoparticles, when the pulse current electrodeposition method was used, as opposed to the dendritic growth of Pt by the results from direct current electrodeposition. By applying pulse electrodeposited Pt which has a 1.86 times higher surface area compared to direct current electrodeposited Pt, short-circuit current and conversion efficiency were increased from 10.34 to 14.11 mA/cm 2 and from 3.68 to 5.03%, respectively. In addition, a flexible solar cell with a pulse current electrodeposited Pt counter electrode with a conversion efficiency of 0.86% was demonstrated

  18. Local work-function changes of Pt(111) studied by STM and IRAS: coadsorption of Cl - with H 3O +, NO, and CO molecules

    Science.gov (United States)

    Fukushima, Takashi; Song, Moon-Bong; Ito, Masatoki

    2000-10-01

    The coadsorption of chloride anion (Cl -) with hydronium cation (H 3O +), nitrogen monoxide (NO), and carbon monoxide (CO) on Pt(111) was studied in an ultra-high-vacuum system using scanning tunneling microscopy (STM), infrared reflection absorption spectroscopy (IRAS), and low-energy electron diffraction (LEED). HCl molecules adsorbed on Pt(111) at 100 K form a (3×3) structure ( θCl -=0.44). Water adsorption on the 3×3 structure produces c(4×2)-(Cl -+H 3O +) coadsorption structures. The hydronium cation adsorbs through oxygen lone pair, and hydrogen bonding (OH…Cl) extends on the surface with these structures. Stretching absorption bands of NO (or CO) adsorbed on the 3×3-Cl - and c(4×2)-(Cl -+H 3O +) adlayers on Pt(111) show remarkably higher and lower frequency shifts, respectively. The frequency shifts can be explained by the local charge density states of platinum atoms derived from electron withdrawal or supply from the coadsorbates (Cl - or H 3O +) to platinum atoms.

  19. Prothrombin time (PT)

    Science.gov (United States)

    PT; Pro-time; Anticoagulant-prothrombin time; Clotting time: protime; INR; International normalized ratio ... PT is measured in seconds. Most of the time, results are given as what is called INR ( ...

  20. Effect of TiO_2 Loading on Pt-Ru Catalysts During Alcohol Electrooxidation

    International Nuclear Information System (INIS)

    Hasa, Bjorn; Kalamaras, Evangelos; Papaioannou, Evangelos I.; Vakros, John; Sygellou, Labrini; Katsaounis, Alexandros

    2015-01-01

    Highlights: • TiO_2 can be used to modify Pt-Ru based electrodes for alcohol oxidation. • TiO_2 modified electrodes with lower amount of metals had higher active surface area than pure Pt-Ru electrodes. • TiO_2 modified electrodes showed comparable performance with pure Pt-Ru electrode both in a single cell and in a PEM fuel cell under alcohol fuelling. - Abstract: In this study, Pt-Ru based electrodes modified by TiO_2 were prepared by means of thermal decomposition of chloride and isopropoxide precursors on Ti substrates, characterised by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), electrochemical techniques and CO stripping and used as anodes for alcohol oxidation. The minimization of the metal loading without electrocatalytic activity losses was also explored. TiO_2 was chosen due to its chemical stability, low cost and excellent properties as substrate for metal dispersion. It was found that TiO_2 loading up to 50% results in a 3-fold increase of the Electrochemically Active Surface (EAS). This conclusion has been confirmed by CO stripping experiments. All samples have been evaluated during the electrochemical oxidation of methanol, ethanol and glycerol. In all cases, the Pt_2_5-Ru_2_5-(TiO_2)_5_0 electrode had better electrocatalytic activity than the pure Pt_5_0-Ru_5_0 anode. The best modified electrode, (Pt_2_5-Ru_2_5-(TiO_2)_5_0), was also evaluated as anode in a PEM fuel cell under methanol fuelling conditions. The observed higher performance of the TiO_2 modified electrodes was attributed to the enhanced Pt-Ru dispersion as well as the formation of smaller Pt and Ru particles.

  1. Pt/Cr and Pt/Ni catalysts for oxygen reduction reaction: to alloy or not to alloy?

    Science.gov (United States)

    Escaño, Mary Clare; Gyenge, Elod; Nakanishi, Hiroshi; Kasai, Hideaki

    2011-04-01

    Bimetallic systems such as Pt-based alloys or non-alloys have exhibited interesting catalytic properties but pose a major challenge of not knowing a priori how the electronic and chemical properties will be modified relative to the parent metals. In this work, we present the origin of the changes in the reactivity of Pt/Cr and Pt/Ni catalysts, which have been of wide interest in fuel cell research. Using spin-polarized density functional theory calculations, we have shown that the modification of Pt surface reactivity in Pt/Ni is purely of geometric origin (strain). We have also found that the Pt-Ni bonding is very weak, which explains the observed instability of Pt-Ni catalysts under electrochemical measurements. On the other hand, Pt/Cr systems are governed by strong ligand effect (metal-metal interaction), which explains the experimentally observed reactivity dependence on the relative composition of the alloying components. The general characteristics of the potential energy curves for O2 dissociative adsorption on the bimetallic systems and the pure Pt clarify why the d-band center still works for Pt/Cr despite the strong Pt-Cr bonding and high spin polarization of Pt d-states. On the basis of the above clarifications, viable Pt-Cr and Pt-Ni structures, which involve nano-sized alloys and non-alloy bulk catalyst, which may strike higher than the currently observed oxidation reduction reaction activity are proposed.

  2. The Role of Interfacial Potential in Adsorbate Bonding: Electrode Potential-Dependent Infrared Spectra for Saturated CO Adlayers on Pt(110) and Related Electrochemical Surfaces in Varying Solvent Environments

    Science.gov (United States)

    1992-05-01

    as supporting electrolytes were recrystallized from methanol, water and ethanol , and water, respectively, and dried under vacuum at 110°C. Electrode...under these conditions 8,17 (vide infra). All measurements were performed at room temperature , 23±1*C. RESULTS AND DISCUSSION The experimental strategy...of interferometer scans during a suitably slow (2 mV s- ) positive-going potential sweep. For solvents containing traces of water, electrooxidative

  3. Ir-Ni oxide as a promising material for nerve and brain stimulating electrodes

    Directory of Open Access Journals (Sweden)

    Joan Stilling

    2014-09-01

    Full Text Available Tremendous potential for successful medical device development lies in both electrical stimulation therapies and neuronal prosthetic devices, which can be utilized in an extensive number of neurological disorders. These technologies rely on the successful electrical stimulation of biological tissue (i.e. neurons through the use of electrodes. However, this technology faces the principal problem of poor stimulus selectivity due to the currently available electrode’s large size relative to its targeted population of neurons. Irreversible damage to both the stimulated tissue and electrode are limiting factors in miniaturization of this technology, as charge density increases with decreasing electrode size. In an attempt to find an equilibrium between these two opposing constraints (electrode size and charge density, the objective of this work was to develop a novel iridium-nickel oxide (Ir0.2-Ni0.8-oxide coating that could intrinsically offer high charge storage capacity. Thermal decomposition was used to fabricate titanium oxide, iridium oxide, nickel oxide, and bimetallic iridium-nickel oxide coatings on titanium electrode substrates. The Ir0.2-Ni0.8-oxide coating yielded the highest intrinsic (material property and extrinsic (material property + surface area charge storage capacity (CSC among the investigated materials, exceeding the performance of the current state-of-the-art neural stimulating electrode, Ir-oxide. This indicates that the Ir0.2-Ni0.8-oxide material is a promising alternative to currently used Ir-oxide, Pt, Au and carbon-based stimulating electrodes.

  4. Electrochemical degradation of chlorobenzene on boron-doped diamond and platinum electrodes

    International Nuclear Information System (INIS)

    Liu Lei; Zhao Guohua; Wu Meifen; Lei Yanzhu; Geng Rong

    2009-01-01

    In this paper the electrochemical degradation of chlorobenzene (CB) was investigated on boron-doped diamond (BDD) and platinum (Pt) anodes, and the degradation kinetics on these two electrodes was compared. Compared with the total mineralization with a total organic carbon (TOC) removal of 85.2% in 6 h on Pt electrode, the TOC removal reached 94.3% on BDD electrode under the same operate condition. Accordingly, the mineralization current efficiency (MCE) during the mineralization on BDD electrode was higher than that on the Pt electrode. Besides TOC, the conversion of CB, the productions and decay of intermediates were also monitored. Kinetic study indicated that the decay of CB on BDD and Pt electrodes were both pseudo-first-order reactions, and the reaction rate constant (k s ) on BDD electrode was higher than that on Pt electrode. The different reaction mechanisms on the two electrodes were investigated by the variation of intermediates concentrations. Two different reaction pathways for the degradation of CB on BDD electrode and Pt electrode involving all these intermediates were proposed.

  5. Pengukuran Kepuasan Kerja Karyawan APLP & A PT Semen Padang (PT X

    Directory of Open Access Journals (Sweden)

    Shelly Nolandari

    2016-04-01

    Full Text Available Thoughts on employee satisfaction arise because the company believes its employees have a high level of satisfaction will result in a better level of productivity, work more accurate, the fewer the number of absences and higher loyalty than employees with low satisfaction levels.Company's with good productivity will grow and increase revenue. PT Semen Padang has several subsidiaries and affiliates like PT X. PT X will measure employee satisfaction with the company's expectations are always making changes that sustainable about employee satisfaction because companies believe that employee satisfaction level of its high yield levels better productivity, work more accurate, the number of absences are fewer and loyalty higher than employees with low satisfaction levels. Companies with good productivity will experience growth as indicated by the increase in revenue, in line with the increase in the welfare of the employees. PT Semen Padang has several subsidiaries and affiliates PT X. PT Xwill measure employee satisfaction with the Company's expectations.

  6. Nitrogen Doped Graphene Supported Pt Nanoflowers as Electrocatalysts for Oxidation of Formaldehyde.

    Science.gov (United States)

    Xie, Aijuan; Zhou, Wenting; Luo, Shiping; Chen, Yu; Zhou, Xiaoqing; Chao, Yao

    2017-02-01

    A facile Pt nanoflowers/nitrogen-doped graphene (PtNFs/NG) electrocatalyst was prepared via depositing Pt nanoflowers (PtNFs) onto the nitrogen-doped graphene (NG) matrix with urea as the nitrogen source and PtNFs/NG modified glassy carbon electrode (GCE) was prepared by electro-chemical method. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscope, X-ray photoelectron spectroscopy (XPS) and Scanning electron microscope (SEM) were used to characterize the resulting composites. Also oxidation of formaldehyde on the resulting PtNFs/NG modified electrode was investigated. The influence of deposition time, electrodeposition potential and formaldehyde concentration on electrooxidation of formaldehyde was detected, the experimental results indicate the high performance of PtNFs/NG catalyst for formaldehyde oxidation is at electrodeposition time of 300 s with the applied potential of −0.3 V. Electrochemical process, electrocatalytic stability and chronoamperometry were also inspected, it was indicated that formalde-hyde oxidation reaction on the PtNFs/NG electrode is diffusion-controlled and PtNFs/NG exhibits a high catalytic activity, stability as well as excellent poisoning-tolerance towards formaldehyde oxidation, which is attributed to the synergistic effect of PtNFs and NG. It turns out that PtNFs/NG can be used in direct liquid-feed fuel cells as a promising alternative catalyst.

  7. Ternary Pt-Ru-Ni catalytic layers for methanol electrooxidation prepared by electrodeposition and galvanic replacement

    Directory of Open Access Journals (Sweden)

    Athanasios ePapaderakis

    2014-06-01

    Full Text Available Ternary Pt-Ru-Ni deposits on glassy carbon substrates, Pt-Ru(Ni/GC, have been formed by initial electrodeposition of Ni layers onto glassy carbon electrodes, followed by their partial exchange for Pt and Ru, upon their immersion into equimolar solutions containing complex ions of the precious metals. The overall morphology and composition of the deposits has been studied by SEM microscopy and EDS spectroscopy. Continuous but nodular films have been confirmed, with a Pt÷Ru÷Ni % bulk atomic composition ratio of 37÷12÷51 (and for binary Pt-Ni control systems of 47÷53. Fine topographical details as well as film thickness have been directly recorded using AFM microscopy. The composition of the outer layers as well as the interactions of the three metals present have been studied by XPS spectroscopy and a Pt÷Ru÷Ni % surface atomic composition ratio of 61÷12÷27 (and for binary Pt-Ni control systems of 85÷15 has been found, indicating the enrichment of the outer layers in Pt; a shift of the Pt binding energy peaks to higher values was only observed in the presence of Ru and points to an electronic effect of Ru on Pt. The surface electrochemistry of the thus prepared Pt-Ru(Ni/GC and Pt(Ni/GC electrodes in deaerated acid solutions (studied by cyclic voltammetry proves the existence of a shell consisting exclusively of Pt-Ru or Pt. The activity of the Pt-Ru(Ni deposits towards methanol oxidation (studied by slow potential sweep voltammetry is higher from that of the Pt(Ni deposit and of pure Pt; this enhancement is attributed both to the well-known Ru synergistic effect due to the presence of its oxides but also (based on the XPS findings to a modification effect of Pt electronic properties.

  8. Electrochemical fabrication of clean dendritic Au supported Pt clusters for electrocatalytic oxidation of formic acid

    International Nuclear Information System (INIS)

    Xia Yue; Liu Jun; Huang Wei; Li Zelin

    2012-01-01

    Highlights: ► A smooth Au surface was rebuilt into clean dendrite via square wave potential pulses. ► It was performed in blank H 2 SO 4 solution without Au(III) species and other additives. ► Dendritic Au provided certain advantage for dispersing Pt due to its unique structure. ► Pt-decorated dendritic Au demonstrated high activity for the HCOOH electrooxidation. - Abstract: We report here the fabrication of clean dendritic gold (DG) directly on a smooth Au electrode via square wave potential pulses (SWPPs) in a blank H 2 SO 4 solution containing no Au(III) species and additives. The effects of potential range, frequency and duration time of SWPPs and H 2 SO 4 concentration on the construction of DG were systematically investigated. A possible mechanism was proposed to explain the growth of DG. The whole process was templateless and surfactantless, and therefore effectively avoided possible contaminations that occurred in other synthetic routes. Further, the prepared DG electrode functioned as a scaffold to support electrodeposited Pt clusters, producing Pt-decorated DG (Pt-DG) electrodes. The electrocatalytic properties of Pt-DG electrodes with various Pt loadings were examined for the oxidation of formic acid. The low Pt loading Pt-DG demonstrated different electrochemical behavior from that on Pt-decorated smooth gold (Pt-SG) and on Pt-decorated gold nanoparticles because there were more defect sites like steps and edges on the DG surface. Ensemble effect, as well as electronic effect, accounts for the improved electrocatalytic activity of low Pt loading Pt-DG.

  9. New Transparent Laser-Drilled Fluorine-doped Tin Oxide covered Quartz Electrodes for Photo-Electrochemical Water Splitting

    International Nuclear Information System (INIS)

    Hernández, Simelys; Tortello, Mauro; Sacco, Adriano; Quaglio, Marzia; Meyer, Toby; Bianco, Stefano; Saracco, Guido; Pirri, C. Fabrizio; Tresso, Elena

    2014-01-01

    Graphical abstract: - Highlights: • A new transparent, conductive and porous electrode was developed. • It has a high effective surface area available for catalyst molecules attachment. • It is an ideal support for testing new anodic and cathodic photoactive materials. • The proof-of-concept was achieved in an appositely designed water photo-electrolyzer. • The EIS technique was used as a very powerful tool to characterize the new designed electrode. - Abstract: A new-designed transparent, conductive and porous electrode was developed for application in a compact laboratory-scale proton exchange membrane (PEM) photo-electrolyzer. The electrode is made of a thin transparent quartz sheet covered with fluorine-doped tin oxide (FTO), in which an array of holes is laser-drilled to allow water and gas permeation. The electrical, morphological, optical and electrochemical characterization of the drilled electrodes is presented in comparison with a non-drilled one. The drilled electrode exhibits, in the visible region, a good transmittance (average value of 62%), a noticeable reflectance due to the light scattering effect of the hole-drilled internal region, and a higher effective surface area than the non-drilled electrode. The proof-of-concept of the applicability of the drilled electrode was achieved by using it as a support for a traditional photocatalyst (i.e. commercial TiO 2 nanoparticles). The latter, coupled with a polymeric electrolyte membrane (i.e.Nafion 117) and a Pt counter electrode, forms a transparent membrane electrode assembly (MEA), with a good conductivity, wettability and porosity. Electrochemical impedance spectroscopy (EIS) was used as a very powerful tool to gain information on the real active surface of the new drilled electrode and the main electrochemical parameters driving the charge transfer reactions on it. This new electrode architecture is demonstrated to be an ideal support for testing new anodic and cathodic photoactive

  10. Preparation of ternary Pt/Rh/SnO2 anode catalysts for use in direct ethanol fuel cells and their electrocatalytic activity for ethanol oxidation reaction

    Science.gov (United States)

    Higuchi, Eiji; Takase, Tomonori; Chiku, Masanobu; Inoue, Hiroshi

    2014-10-01

    Pt, Rh and SnO2 nanoparticle-loaded carbon black (Pt/Rh/SnO2/CB) catalysts with different contents of Pt and Rh were prepared by the modified Bönnemann method. The mean size and size distribution of Pt, Rh and SnO2 for Pt-71/Rh-4/SnO2/CB (Pt : Rh : Sn = 71 at.%: 4 at.%: 25 at.%) were 3.8 ± 0.7, 3.2 ± 0.7 and 2.6 ± 0.5 nm, respectively, indicating that Pt, Rh and SnO2 were all nanoparticles. The onset potential of ethanol oxidation current for the Pt-65/Rh-10/SnO2/CB and Pt-56/Rh-19/SnO2/CB electrodes was ca. 0.2 V vs. RHE which was ca. 0.2 V less positive than that for the Pt/CB electrode. The oxidation current at 0.6 V for the Pt/Rh/SnO2/CB electrode (ca. 2% h-1) decayed more slowly than that at the Pt/SnO2/CB electrode (ca. 5% h-1), indicating that the former was superior in durability to the latter. The main product of EOR in potentiostatic electrolysis at 0.6 V for the Pt-71/Rh-4/SnO2/CB electrode was acetic acid.

  11. Sonochemical synthesis and characterization of Pt/CNT, Pt/TiO2, and Pt/CNT/TiO2 electrocatalysts for methanol electro-oxidation

    International Nuclear Information System (INIS)

    Bedolla-Valdez, Z.I.; Verde-Gómez, Y.; Valenzuela-Muñiz, A.M.; Gochi-Ponce, Y.; Oropeza-Guzmán, M.T.; Berhault, Gilles; Alonso-Núñez, G.

    2015-01-01

    Highlights: • Pt/CNT/TiO 2 electrocatalyst was successfully prepared by the sonochemical method. • The electrocatalyst Pt/CNT/TiO 2 was synthesized without heat treatments, additives or surfactants. • The TiO 2 -Pt interaction improves the CO-tolerance of Pt/CNT/TiO 2 , as well as the electrocatalyst stability. • Low amount of multi-walled carbon nanotubes increases the current density of Pt/CNT/TiO 2 significantly compared to Pt/TiO 2 . - Abstract: Pt electrocatalyst supported on composite formed of multi-walled carbon nanotubes and titanium oxide (CNT/TiO 2 ) was successfully synthesized by a sonochemical method without heat treatments, surfactants or additives. This electrocatalyst could be used for direct methanol fuel cells (DMFC) applications. For comparison, Pt/CNT and Pt/TiO 2 electrocatalysts were prepared as reference samples. Structural properties and morphology of the synthesized materials were examined by X-ray diffraction, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and their specific surface areas were determined by the Brunauer-Emmett-Teller method. The Pt and acid-treated CNT contents were analyzed by inductively coupled plasma atomic emission spectroscopy and thermogravimetric analysis, respectively. The electrochemical properties of the synthesized electrocatalysts were evaluated by cyclic voltammetry (CV) and chronoamperometry in a three-electrode cell at room temperature. The evaluation performed using electrochemical techniques suggests that TiO 2 promotes the CO-tolerance due to TiO 2 -Pt interaction. The CV tests demonstrated that 6 wt.% of acid-treated CNT increases significantly the current density when Pt selectively interacts with TiO 2 .

  12. Charge transport in a CoPt3 nanocrystal microwire

    International Nuclear Information System (INIS)

    Beecher, P.; De Marzi, G.; Quinn, A.J.; Redmond, G.; Shevchenko, E.V.; Weller, H.

    2004-01-01

    The electrical characteristics of single CoPt 3 nanocrystal microwires formed by magnetic field-directed growth from colloidal solutions are presented. The wires comprise disordered assemblies of discrete nanocrystals, separated from each other by protective organic ligand shells. Electrical data indicate that the activated charge transport properties of the wires are determined by the nanocrystal charging energy, governed by the size and capacitance of the individual nanocrystals. Focused ion beam-assisted deposition of Pt metal at the wire-electrode junctions is employed to optimize the wire-electrode contacts, whilst maintaining the nanocrystal-dominated transport characteristics of these one-dimensional nanocrystal structures

  13. Vanadium oxide (VO) based low cost counter electrode in dye sensitized solar cell (DSSC) applications

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, P.; Pandian, Muthu Senthil; Ramasamy, P., E-mail: ramasamyp@ssn.edu.in [SSN Research Centre, SSN College of Engineering, Kalavakkam-603 110, Chennai, Tamilnadu (India)

    2015-06-24

    Vanadium oxide nanostars were synthesized by chemical method. The prepared Vanadium oxide nanostars are introduced into dye sensitized solar cell (DSSC) as counter electrode (CE) catalyst to replace the expensive platinum (Pt). The products were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and Brunauer–Emmett–Teller (BET) method. The photovoltaic performance of the VO as counter electrode based DSSC was evaluated under simulated standard global AM 1.5G sunlight (100 mW/cm{sup 2}). The solar to electrical energy conversion efficiency (η) of the DSSC was found to be 0.38%.This work expands the Counter electrode catalyst, which can help to reduce the cost of DSSC and thereby encourage their fundamental research and commercial application.

  14. Mechanistic studies of formic acid oxidation at polycarbazole supported Pt nanoparticles

    International Nuclear Information System (INIS)

    Moghaddam, Reza B.; Pickup, Peter G.

    2013-01-01

    Highlights: •A polycarbazole support decreases the accumulation of adsorbed intermediates on Pt during formic acid oxidation. •Polycarbazole causes a bilayer of Cu to form on Pt nanoparticles during Cu underpotential deposition. •XPS suggests that both of these effects are due to electron donation from the metal (Pt or Cu) into the polymer π-system. -- Abstract: Mechanistic aspects of the promotion of formic acid oxidation at Pt nanoparticles supported on a thin layer of polycarbazole (PCZ) have been investigated by voltammetry and X-ray photoelectron spectroscopy (XPS). The Pt nanoparticles were drop coated onto a glassy carbon (GC) electrode coated with a ca. 9 nm layer of electrochemically deposited polycarbazole. After 500 s of formic acid oxidation at 0 V vs. SCE, the current at a GC/PCZ/Pt electrode was 25 times higher than at a GC/Pt electrode. Voltammetry in formic acid free H 2 SO 4 following potentiostatic oxidation of formic acid revealed that there was less accumulation of adsorbed intermediates for the polycarbazole supported Pt nanoparticles than for those deposited directly onto the glassy carbon with, 50% more Pt sites remaining available for the GC/PCZ/Pt electrode relative to the GC/Pt electrode. Independent CO stripping experiments revealed only slight differences, while Cu underpotential deposition surprisingly resulted in the deposition of a ca. two-fold excess of Cu on the polycarbazole supported particles. This observation was supported by XPS which also revealed a second Cu signal at a higher binding energy, suggesting electron donation into the conjugated π system of the polymer. Such an interaction of Pt with the polycarbazole may be responsible for its higher activity for formic acid oxidation

  15. Multifunctional Pt(II) Reagents: Covalent Modifications of Pt Complexes Enable Diverse Structural Variation and In-Cell Detection.

    Science.gov (United States)

    White, Jonathan D; Haley, Michael M; DeRose, Victoria J

    2016-01-19

    To enhance the functionality of Pt-based reagents, several strategies have been developed that utilize Pt compounds modified with small, reactive handles. This Account encapsulates work done by us and other groups regarding the use of Pt(II) compounds with reactive handles for subsequent elaboration with fluorophores or other functional moieties. Described strategies include the incorporation of substituents for well-known condensation or nucleophilic displacement-type reactions and their use, for example, to tether spectroscopic handles to Pt reagents for in vivo investigation. Other chief uses of displacement-type reactions have included tethering various small molecules exhibiting pharmacological activity directly to Pt, thus adding synergistic effects. Click chemistry-based ligation techniques have also been applied, primarily with azide- and alkyne-appended Pt complexes. Orthogonally reactive click chemistry reactions have proven invaluable when more traditional nucleophilic displacement reactions induce side-reactivity with the Pt center or when systematic functionalization of a larger number of Pt complexes is desired. Additionally, a diverse assortment of Pt-fluorophore conjugates have been tethered via click chemistry conjugation. In addition to providing a convenient synthetic path for diversifying Pt compounds, the use of click-capable Pt complexes has proved a powerful strategy for postbinding covalent modification and detection with fluorescent probes. This strategy bypasses undesirable influences of the fluorophore camouflaged as reactivity due to Pt that may be present when detecting preattached Pt-fluorophore conjugates. Using postbinding strategies, Pt reagent distributions in HeLa and lung carcinoma (NCI-H460) cell cultures were observed with two different azide-modified Pt compounds, a monofunctional Pt(II)-acridine type and a difunctional Pt(II)-neutral complex. In addition, cellular distribution was observed with an alkyne-appended difunctional

  16. Pt nanoparticles embedded on reduced graphite oxide with excellent electrocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, Gengan, E-mail: saravanan3che@gmail.com [Central University of Tamil Nadu, Department of Chemistry, Thiruvarur, 610101 (India); Mohan, Subramanian, E-mail: sanjnamohan@yahoo.com [EMFT Division, CSIR-Central Electrochemical Research Institute, Tamilnadu, Karaikudi 630 006 (India)

    2016-11-15

    Graphical abstract: RGO/Nano Pt: This study explore the electrocatalytic oxidation performance of reduced graphite oxide (RGO) anchored with nano Pt. This graphene composite reveal superior electrooxidation performance that is associated with the flexible RGO matrix and the uniform distribution of Pt particles, which enhances surface area, fast electron transfer, uniform particle size distribution; consequently, the RGO matrix provides more stability to Pt particles during electrooxidation process. Display Omitted - Highlights: • Greener electrochemical method applied to prepare well-dispersed Pt-rGO. • Pt-rGO large surface area excellent charge transfer better catalytic activity. • Low-cost highly efficient carbon-based electrodes for direct formic acid fuel cell. • rGO an excellent support to anchor Pt nanoparticles on its surface. • Pt-rGO distinctly enhanced current density towards formic acid electrooxidation. - Abstract: Economically viable electrochemical approach has been developed for the synthesis of Pt nanoparticles through electrodeposition technique on the surface of Reduced Graphite Oxide (RGO). Pt nanoparticles embedded Reduced Graphite Oxide on Glassy Carbon Electrode are employed (Pt-rGO/GCE) for electrooxidation of formic acid. Scanning Electron Microscopy (SEM) image and Transmission Electron Microscopy (TEM) image shows that reduced graphite oxide act as an excellent support to anchor the Pt nanoparticles. Cyclic voltammetry results confirmed that Pt-rGO/GCE enhanced current density as many folds than that of bare platinum electrode for electrooxidation of formic acid. X-ray diffraction (XRD) patterns for Pt-graphene composites illustrate that peaks at 69.15 and 23° for Pt (220) and graphene carbon (002) respectively. {sup 13}C NMR spectrum of the electrochemically reduced graphite oxide resonance contains only one peak at 133 ppm which retains graphitic sp{sup 2} carbon and does not contain any oxygenated carbon and the carbonyl

  17. Pt-Ni/WC Alloy Nanorods Arrays as ORR Catalyst for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Begum, Mahbuba; Yurukcu, Mesut; Yurtsever, Fatma; Ergul, Busra; Kariuki, Nancy; Myers, Deborah J.; Karabacak, Tansel

    2017-08-24

    Polymer electrolyte membrane fuel cells (PEMFCs) among the other types of fuel cell technology are attractive power sources, especially for electric vehicle applications. While significant progress and plausible prospects of PEMFCs have been achieved, there are still some challenges related to the performance, durability, and cost that need to be overcome to make them economically viable for widespread commercialization. Our strategy is to develop thin films of high-active and stable catalyst coated on vertically aligned nanorod arrays of conductive and stable support. In this work, we fabricated tungsten carbide (WC) nanorods as support and coated them with a platinum-nickel (Pt-Ni) alloy shell denoted as Pt-Ni/WC catalysts. The Pt- Ni/WC nanorods were deposited on glassy carbon disks as well as on silicon substrates for evaluation of their electrocatalytic oxygen reduction reaction (ORR) activity and physical properties. Cyclic voltammetry experiments using rotating disk electrode were performed in perchloric acid (0.1 M HClO4) electrolyte at room temperature to characterize the ORR activity and stability of Pt-Ni/WC nanorods catalysts. Scanning electron microscopy and X-ray diffraction techniques were utilized to study the morphology and crystallographic properties, respectively.

  18. Phosphate-mediated electrochemical adsorption of cisplatin on gold electrodes

    International Nuclear Information System (INIS)

    Kolodziej, Adam; Figueiredo, Marta C.; Koper, Marc T.M.; Fernandez-Trillo, Francisco; Rodriguez, Paramaconi

    2017-01-01

    Highlights: •The potential-dependent adsorption and deposition of cisplatin on polycrystalline gold electrode is mediated by the adsorption of phosphate anions on gold electrode. •Quantitative analysis suggests that the stoichiometry of the phosphate species and the cisplatin adsorbed was 1:1. •Upon reduction of the phosphate-mediated cisplatin adsorption, the platinum deposits are formed by 3D nanoclusters -- Abstract: This manuscript reports the potential-dependent adsorption and deposition of cisplatin on polycrystalline gold electrode. It was found that this process is mediated by the adsorption of phosphate anions on the gold electrode and that the maximum coverage of Pt adsorbed is given by the maximum coverage of phosphate adsorbed at a given potential. The interaction of cisplatin with the phosphate groups was confirmed by in situ FTIR spectroscopy under external reflexion configuration. Quantitative analysis suggests that the stoichiometry of the phosphate species and the cisplatin adsorbed was 1:1. Moreover, the relationship between the charge of the Pt deposited and the charge of the electrochemical surface area of the Pt deposited on the gold electrodes indicates that 3D nanoclusters of a few atoms of Pt were formed over the gold electrode upon the electrochemical reduction of the adsorbed cisplatin. The Pt nanoclusters formed under these conditions were later evaluated for the oxidation of a monolayer of carbon monoxide. The Pt nanoclusters showed a high overpotential for the oxidation of the carbon monoxide monolayer and the high oxidation overpotential was attributed to the absence of adsorption sites for OH species on the Pt clusters: only at potentials where the OH species are adsorbed at the edge between the Pt nanocluster and the gold support, the oxidation of the carbon monoxide on the Pt nanoparticles takes place.

  19. Bioethanol in Biofuels Checked by an Amperometric Organic Phase Enzyme Electrode (OPEE Working in “Substrate Antagonism” Format

    Directory of Open Access Journals (Sweden)

    Mauro Tomassetti

    2016-08-01

    Full Text Available The bioethanol content of two samples of biofuels was determined directly, after simple dilution in decane, by means of an amperometric catalase enzyme biosensor working in the organic phase, based on substrate antagonisms format. The results were good from the point of view of accuracy, and satisfactory for what concerns the recovery test by the standard addition method. Limit of detection (LOD was on the order of 2.5 × 10−5 M.

  20. Voltammetry at micro-mesh electrodes

    Directory of Open Access Journals (Sweden)

    Wadhawan Jay D.

    2003-01-01

    Full Text Available The voltammetry at three micro-mesh electrodes is explored. It is found that at sufficiently short experimental durations, the micro-mesh working electrode first behaves as an ensemble of microband electrodes, then follows the behaviour anticipated for an array of diffusion-independent micro-ring electrodes of the same perimeter as individual grid-squares within the mesh. During prolonged electrolysis, the micro-mesh electrode follows that behaviour anticipated theoretically for a cubically-packed partially-blocked electrode. Application of the micro-mesh electrode for the electrochemical determination of carbon dioxide in DMSO electrolyte solutions is further illustrated.

  1. The kinetics of porous insertion electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Atlung, S; West, K [British Columbia Univ., Vancouver (Canada)

    1989-05-01

    The principles of porous electrodes are discussed as well as the discharge of the insertion compound, the working potential, transport in the electrolyte, the time dependence of the electrolyte concentration, and modeling of the porous electrode. The simulation of a TiS2 porous electrode and the composite insertion electrode are considered as well. The influence of electrode thickness and porosity in a typical porous TiS2 electrode is revealed. It is shown that the use of insertion compounds as battery electrodes is limited by the requirement that the inserted ion must be distributed in the interior of the insertion compound particle. 15 refs.

  2. Liquid electrode

    Science.gov (United States)

    Ekechukwu, A.A.

    1994-07-05

    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  3. Ethylene glycol oxidation on Pt and Pt-Ru nanoparticle decorated polythiophene/multiwalled carbon nanotube composites for fuel cell applications

    International Nuclear Information System (INIS)

    Selvaraj, Vaithilingam; Alagar, Muthukaruppan

    2008-01-01

    A novel supporting material containing polythiophene (PTh) and multiwalled carbon nanotubes (MWCNTs) (PTh-CNTs) is prepared by in situ polymerization of thiophene on carbon nanotubes using FeCl 3 as oxidizing agent under sonication. The prepared polythiophene/CNT composites are further decorated with Pt and Pt-Ru nanoparticles by chemical reduction of the corresponding metal salts using HCHO as reducing agent at pH = 11 (Pt/PTh-CNT and Pt-Ru/PTh-CNT). The fabricated composite films decorated with nanoparticles were investigated towards the electrochemical oxidation of ethylene glycol (EG). The presence of carbon nanotubes in conjugation with a conducting polymer produces a good catalytic effect, which might be due to the higher electrochemically accessible surface areas, electronic conductivity and easier charge-transfer at polymer/electrolyte interfaces, which allows higher dispersion of Pt and Pt-Ru nanoparticles. Such nanoparticle modified PTh-CNT electrodes exhibit better catalytic behavior towards ethylene glycol oxidation. Results show that Pt/PTh-CNT and Pt-Ru/PTh-CNT modified electrodes show enhanced electrocatalytic activity and stability towards the electro-oxidation of ethylene glycol than the Pt/PTh electrodes, which shows that the composite film is more promising for applications in fuel cells

  4. Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huanqiao; Cao, Lei [Direct Alcohol Fuel Cell Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Graduate School of the Chinese Academy Sciences, Beijing 100039 (China); Sun, Gongquan; Jiang, Luhua [Direct Alcohol Fuel Cell Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Xin, Qin [Direct Alcohol Fuel Cell Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2007-08-01

    Well dispersed PtSn/C, PtRu/C and Pt/C electrocatalysts were synthesized by a modified polyol process and characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and inductively coupled plasma-atomic emission spectrometry techniques. XRD patterns show that Ru induces the contraction of Pt lattice parameter while Sn makes the Pt crystal lattice extended. Ethanol oxidation activities on the catalysts were studied via cyclic voltammetry (CV) and chronoamperometry (CA) methods at room temperature. It is found that the electrode potential plays an important role in the electrochemical behavior of ethanol oxidation on PtRu/C and PtSn/C catalysts. In the lower potential region, PtSn/C possesses higher performance for ethanol oxidation, while in the higher potential region PtRu/C is more active. The different promotion effects of PtSn/C and PtRu/C to ethanol oxidation can be explained by the structural effect and modified bi-functional mechanism in different potential region. Single cell test of a direct ethanol fuel cell (DEFC) was also carried out to elucidate the promotion effect of PtRu/C and PtSn/C catalysts on the ethanol oxidation at 90 C. (author)

  5. Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation

    International Nuclear Information System (INIS)

    Li, Huanqiao; Sun, Gongquan; Cao, Lei; Jiang, Luhua; Xin, Qin

    2007-01-01

    Well dispersed PtSn/C, PtRu/C and Pt/C electrocatalysts were synthesized by a modified polyol process and characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and inductively coupled plasma-atomic emission spectrometry techniques. XRD patterns show that Ru induces the contraction of Pt lattice parameter while Sn makes the Pt crystal lattice extended. Ethanol oxidation activities on the catalysts were studied via cyclic voltammetry (CV) and chronoamperometry (CA) methods at room temperature. It is found that the electrode potential plays an important role in the electrochemical behavior of ethanol oxidation on PtRu/C and PtSn/C catalysts. In the lower potential region, PtSn/C possesses higher performance for ethanol oxidation, while in the higher potential region PtRu/C is more active. The different promotion effects of PtSn/C and PtRu/C to ethanol oxidation can be explained by the structural effect and modified bi-functional mechanism in different potential region. Single cell test of a direct ethanol fuel cell (DEFC) was also carried out to elucidate the promotion effect of PtRu/C and PtSn/C catalysts on the ethanol oxidation at 90 o C

  6. Transparent platinum counter electrode for efficient semi-transparent dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Iefanova, Anastasiia; Nepal, Jeevan; Poudel, Prashant; Davoux, Daren; Gautam, Umesh [Electrical Engineering and Computer Science Department, South Dakota State University, Brookings, SD 57006 (United States); Mallam, Venkataiah [Chemistry and Biochemistry Department, South Dakota State University, Brookings, SD 57006 (United States); Qiao, Qiquan [Electrical Engineering and Computer Science Department, South Dakota State University, Brookings, SD 57006 (United States); Logue, Brian [Chemistry and Biochemistry Department, South Dakota State University, Brookings, SD 57006 (United States); Baroughi, Mahdi Farrokh, E-mail: m.farrokhbaroughi@sdstate.edu [Electrical Engineering and Computer Science Department, South Dakota State University, Brookings, SD 57006 (United States)

    2014-07-01

    A method for fabrication of highly transparent platinum counter electrodes (CEs) has been developed based on spray coating of Pt nanoparticles (NPs) on hot substrates. This method leads to 86% reduction in Pt consumption reducing the Pt cost per peak watt of counter electrode from $0.79/Wp down to $0.11/Wp compared to the conventional Pt counter electrodes made by sputter deposition. The simplicity and low cost of this method provide a basis for an up-scalable fabrication process. The Pt NP layer is over 88% transparent, leading to overall transparency of 80% when incorporated with indium tin oxide/glass substrates for functional counter electrodes. This counter electrode exhibits a large surface area and high catalytic activity, comparable to that of the conventional opaque CEs. Semi-transparent dye-sensitized solar cells fabricated based on this counter electrode showed 6.17% power conversion efficiency. - Highlights: • Counter electrode (CE) prepared by spraying nanoparticle (NP) Pt on hot substrate. • Low cost and scalable fabrication process of CE. • The spray deposited CE uses 10 times less Pt compared to the sputtering method. • The CE is 80% transparent and exhibits a large surface and high catalytic activity. • A semitransparent dye-sensitized solar cell with Pt NP CE was 6.17% efficient.

  7. Seawater splitting for high-efficiency hydrogen evolution by alloyed PtNix electrocatalysts

    Science.gov (United States)

    Zheng, Jingjing

    2017-08-01

    Robust electrocatalyst is a prerequisite to realize high-efficiency hydrogen evolution by water splitting. Expensive platinum (Pt) is a preferred electrode catalyst for state-of-the-art hydrogen evolution reaction (HER). We present here a category of alloyed PtNix electrocatalysts by a facile green chemical reduction method, which are used to catalyze HER during seawater splitting. The catalytic performances are optimized by tuning stoichiometric Pt/Ni ratio, yielding a maximized catalytic behavior for PtNi5 electrode. The minimized onset potential is as low as -0.38 V and the corresponding Tafel slope is 119 mV dec-1. Moreover, the launched alloy electrodes have remarkable stability at -1.2 V over 12 h. The high efficiency as well as good durability demonstrates the PtNix electrocatalysts to be promising in practical applications.

  8. Pt coating on flame-generated carbon particles

    International Nuclear Information System (INIS)

    Choi, In Dae; Lee, Dong Geun

    2008-01-01

    Carbon black, activated carbon and carbon nanotube have been used as supporting materials for precious metal catalysts used in fuel cell electrodes. One-step flame synthesis method is used to coat 2-5nm Pt dots on flame-generated carbon particles. By adjusting flame temperature, gas flow rates and resident time of particles in flame, we can obtain Pt/C nano catalyst-support composite particles. Additional injection of hydrogen gas facilitates pyrolysis of Pt precursor in flame. The size of as-incepted Pt dots increases along the flame due to longer resident time and sintering in high temperature flame. Surface coverage and dispersion of the Pt dots is varied at different sampling heights and confirmed by Transmission Electron Microscopy (TEM), Energy Dispersive Spectra (EDS) and X-Ray Diffraction (XRD). Crystallinity and surface bonding groups of carbon are investigated through X-ray Photoelectron Spectroscoy (XPS) and Raman spectroscopy

  9. A bimetallic nanocomposite electrode for direct and rapid ...

    Indian Academy of Sciences (India)

    A new label-free electrochemical DNA biosensor is presented based on carbon paste electrode (CPE) modified with gold (Au) and platinum (Pt) nanoparticles to prepare the bimetallic nanocomposite electrode. The proposed sensor was made by immobilization of 15-mer single stranded oligonucleotide probe related to ...

  10. The investigation of movement dynamics of an AC electric arc attachment along the working surface of a hollow cylindrical electrode under the action of gas-dynamic and electromagnetic forces

    International Nuclear Information System (INIS)

    Surov, A V; Popov, S D; Serba, E O; Nakonechny, G V; Spodobin, V A; Ovchinnikov, R V; Kumkova, I I; Shabalin, S A

    2012-01-01

    Stationary electric arc alternating current plasma torches are used today for realization of plasma chemical technologies requiring relatively high energy input. Waste treatment is one these directions. The paper reports on experiment results directed towards the increase in the lifetime characteristics of electrode units of the powerful high-voltage electric-arc AC plasma torches. The solution to the problem of obtainment the uniform wear of a copper hollow cylindrical electrode achieved by the controlled movement of the arc attachment along the working surface was offered. Organization of gas supply in the near electrode area and application of alternating magnetic field ensured movement of arc attachment along the surface with average speed from 2 to 14 m/s. Arc current was about 47 A and 84 A, gas flow rate in near electrode area was about 5 and 4.5 g/s. Due to researches on the experimental prototype of a hollow cylindrical electrode, the erosion of its material reached only 3 μg/C, that enables production of the electrode assembly with life time above 1000 hours at currents in the arc up to 100–200 A.

  11. Electrochemical atomic layer deposition of Pt nanostructures on carbon paper and Ni foam; poster

    CSIR Research Space (South Africa)

    Louw, EK

    2012-07-01

    Full Text Available characteristic of polycrystalline Pt electrodes. ECALD produced good quality deposits that uniformly covered the carbon paper support. The advantages of preparing nanoparticles with this method include ease, flexibility and cost effectiveness. This could provide...

  12. electrode array

    African Journals Online (AJOL)

    PROF EKWUEME

    A geoelectric investigation employing vertical electrical soundings (VES) using the Ajayi - Makinde Two-Electrode array and the ... arrangements used in electrical D.C. resistivity survey. These include ..... Refraction Tomography to Study the.

  13. Co-catalytic effect of nickel in Pt-Ru/C and Pt-Sn/C electrocatalysts for ethanol electrooxidation

    OpenAIRE

    Ribadeneira, R. E.; Hoyos, B. A.

    2010-01-01

    In the present study, we examined the effect of adding nickel to Pt-Ru and Pt-Sn catalysts for ethanol electrooxidation. The alcohol-reduction process with ethylene glycol was used to prepare ten electrocatalysts. These were microchemically and physically characterized by EDX and XRD analysis. The electrocatalysts were evaluated at mini-electrodes with cyclic voltammetry at 25 and 50 °C in sulfuric acid and ethanol solutions, and as anodes in fuel cell tests. Nickel addition to Pt-Ru mixtures...

  14. Efficient decomposition of formaldehyde at room temperature over Pt/honeycomb ceramics with ultra-low Pt content.

    Science.gov (United States)

    Nie, Longhui; Zheng, Yingqiu; Yu, Jiaguo

    2014-09-14

    Pt/honeycomb ceramic (Pt/HC) catalysts with ultra-low Pt content (0.005-0.055 wt%) were for the first time prepared by an impregnation of honeycomb ceramics with Pt precursor and NaBH4-reduction combined method. The microstructures, morphologies and textural properties of the resulting samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The obtained Pt/HC catalysts were used for catalytic oxidative decomposition of formaldehyde (HCHO) at room temperature. It was found that the as-prepared Pt/HC catalysts can efficiently decompose HCHO in air into CO2 and H2O at room temperature. The catalytic activity of the Pt/HC catalysts increases with increasing the Pt loading in the range of 0.005-0.013 wt%, and the further increase of the Pt loading does not obviously improve catalytic activity. From the viewpoint of cost and catalytic performance, 0.013 wt% Pt loading is the optimal Pt loading amount, and the Pt/HC catalyst with 0.013 wt% Pt loading also exhibited good catalytic stability. Considering practical applications, this work will provide new insights into the low-cost and large-scale fabrication of advanced catalytic materials for indoor air purification.

  15. The kinetics and mechanism of methanol oxidation on Pt and PtRu catalysts in alkaline and acid media

    Directory of Open Access Journals (Sweden)

    JELENA LOVIC

    2007-07-01

    Full Text Available The kinetic of methanol electrochemical oxidation for a series of platinum and platinum–ruthenium catalysts was investigated. A correlation between the beginning of OHad adsorption and methanol oxidation was demonstarated on Pt single crystals and Pt nanocatalyst. The activity of the nano-structured Pt catalyst was compared with single crystal platinum electrodes assuming the Kinoshita model of nanoparticles. The ruthenium-containing catalysts shifted the onset of methanol oxidation to more negative potentials. The effect was more pronounced in acid than in alkaline media. Based on the established diagnostic criteria, the reaction between COad and OHad species according to the Langmuir–Hinshelwood mechanism was proposed as the rate determining step in alkaline and acid media on Pt and PtRu catalysts.

  16. Fluctuations at electrode-YSZ interfaces

    DEFF Research Database (Denmark)

    Jacobsen, T.; Hansen, K.V.; Skou, E.

    in D/A converters, duty cycles of thermo regulators, etc. But even so, the dramatic spikes seen at the Ni anode emphasizes the care that must be taken in order to obtain reproducible results from point electrode studies. However, it is noted that Pt cathodes and Ni anodes show reverse patterns...

  17. Direct methanol fuel cell with extended reaction zone anode: PtRu and PtRuMo supported on graphite felt

    Science.gov (United States)

    Bauer, Alex; Gyenge, Előd L.; Oloman, Colin W.

    Pressed graphite felt (thickness ∼350 μm) with electrodeposited PtRu (43 g m -2, 1.4:1 atomic ratio) or PtRuMo (52 g m -2, 1:1:0.3 atomic ratio) nanoparticle catalysts was investigated as an anode for direct methanol fuel cells. At temperatures above 333 K the fuel cell performance of the PtRuMo catalyst was superior compared to PtRu. The power density was 2200 W m -2 with PtRuMo at 5500 A m -2 and 353 K while under the same conditions PtRu yielded 1925 W m -2. However, the degradation rate of the Mo containing catalyst formulation was higher. Compared to conventional gas diffusion electrodes with comparable PtRu catalyst composition and load, the graphite felt anodes gave higher power densities mainly due to the extended reaction zone for methanol oxidation.

  18. Platinum and palladium alloys suitable as fuel cell electrodes

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic efficiency by low level substitution of the noble metal to provide new...... and innovative catalyst compositions in fuel cell electrodes. The novel electrode catalysts of the invention comprise a noble metal selected from Pt and Pd alloyed with an alkaline earth metal....

  19. Platinum and palladium alloys suitable as fuel cell electrodes

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic5 efficiency by low level substitution of the noble metal to provide new...... and innovative catalyst compositions in fuel cell electrodes. The novel electrode catalysts of the invention comprise a noble metal selected from Pt and Pd alloyed with a lanthanide metal....

  20. Adsorption at electrodes

    International Nuclear Information System (INIS)

    Hubbard, A.T.; Ping Gao

    1991-01-01

    Surface electrochemical studies are described and summarized in which atomic, ionic or molecular layers were allowed to form from aqueous solutions at well-defined Pt(111) surfaces. The resulting adsorbed layers were chemisorbed in most cases and stable in vacuum, permitting identification and quantitation by Auger spectroscopy, EELS, LEED and electrochemistry. Adsorbed atomic, ionic, or molecular layers formed at metal-solution interfaces frequently display long-range order. Molecular properties of the adsorbed layers correlate with their electrochemical properties. The molecular orientation of organic adsorbates was deduced from packing density measurements, supplemented with vibrational spectra. Interfacial variables such as electrode potential have a strong influence on interfacial structure along with the nature and mode of surface attachment of adsorbates. The angular distribution of Auger electron emission from metal single crystals and atomic adsorbed layers has proved to be useful for direct imaging of surface crystal and interfacial structure. (author). 14 refs, 11 figs

  1. Templated synthesis, characterization, and sensing application of macroscopic platinum nanowire network electrodes

    DEFF Research Database (Denmark)

    Wang, D. H.; Kou, R.; Gil, M. P.

    2005-01-01

    properties of the electrodes, such as electrochemical active area and methanol oxidation, have also been studied. Compared with conventional polycrystalline Pt electrodes, these novel nanowire network electrodes possess high electrochemical active areas and demonstrate higher current densities and a lower...... onset potential for methanol electro-oxidation. Enzymatic Pt nanowire-network-based sensors show higher sensitivity for glucose detection than that using conventional polycrystalline Pt electrode. Such macroscopic nanowire network electrodes provide ideal platforms for sensing and other device......Abstract: Novel platinum nanowire network electrodes have been fabricated through electrodeposition using mesoporous silica thin films as templates. These electrodes were characterized by X-ray diffraction, transmission electron microscope, and scanning electron microscope. The electrochemical...

  2. Fuel cell electrocatalsis : oxygen reduction on Pt-based nanoparticle catalysts

    NARCIS (Netherlands)

    Vliet, Dennis Franciscus van der

    2010-01-01

    The thesis contains a discussion on the subject of the Oxygen Reduction Reaction (ORR) on Pt-alloy nanoparticle catalysts in the Rotating Disk Electrode (RDE) method. An insight in some of the difficulties of this method is given with proper solutions and compensations for these problems. Pt3Co,

  3. Electrodes for the hydrogen through water electrolysis using BMI.BF{sub 4} as electrolyte; Eletrodos para a producao de hidrogenio via eletrolise da agua utilizando BMI.BF{sub 4} como eletrolito

    Energy Technology Data Exchange (ETDEWEB)

    Botton, Janine Padilha; Martini, Emilse M.A.; Souza, Michele Oberson de; Souza, Roberto Fernando de [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. de Quimica. Lab. de Eletroquimica e Catalise]. E-mail: janine@iq.ufrgs.br; Loget, Gabriel [Universite de Rennes 1, Rennes (France). Lab. de Eletroquimica Molecular e Macromolecular. UMR CNRS 6510

    2008-07-01

    The hydrogen production by water electrolysis was tested with different electrocatalysts (nickel, iron alloys containing nickel, chromium and manganese, and molybdenum) in the ionic liquid electrolyte, 1-butyl-3-methylimidazolium tetrafluoroborate (BMI.BF{sub 4}), 10 vol.% in water. The hydrogen evolution reaction (HER) worked at room temperature with a platinum quasi-reference electrode (PtQRE) applying a -1.7 V potential. The experimental conditions used were determined in previous work and such parameters of operation were confirmed with the electrocatalysts employed in this work. A Hoffman cell apparatus was used to perform the water electrolysis. The current density values, j, obtained were between 3.0 mA cm{sup -2} and 77.5 mA cm{sup -2}. The system efficiency was very high for all electrocatalysts tested, between 97.0% and 99.2%. The molybdenum (Mo) electrode was better than others showing the highest current density value in HER. This behavior has been explained by the lower value of activation energy for the electrolysis reaction when Mo is employed comparing with Pt electrode. The energy activation of the HER using platinum (Pt) as electrocatalyst in an aqueous solution of BMI.BF{sub 4} 10 vol.% was 23.40 kJ mol{sup -1}, whereas with electrode of Mo in the same conditions , was 9.22 kJ mol{sup -1}. In an alkaline aqueous electrolyte (usual medium for such reaction), Mo is less efficient than Pt explaining the lack of published citation using pure Mo as cathode for the HER. The excellent results obtained with a Mo electrode employing ionic liquid as electrolyte show that the hydrogen production can be carried out with cheap electrode material at room temperature, which makes this method economically attractive. (author)

  4. Preparation of PtSn/C, PtRu/C, PtRh/C, PtRuRh/C and PtSnRh/C electrocatalysts using an alcohol-reduction process for methanol and ethanol oxidation

    International Nuclear Information System (INIS)

    Dias, Ricardo Rodrigues

    2009-01-01

    In this work, Pt/C, PtRh (90:10), PtRh/C (50:50), PtSn/C (50:50), PtRu (50:50)/C, PtRuRh/C (50:40:10) and PtSnRh/C (50:40:10) were prepared by an alcohol-reduction process with metal loading of 20 wt.% using H 2 PtCl 6 .6H 2 O (Aldrich), SnCl 2 .2H 2 O (Aldrich),and RhCl 2 .XH 2 O (Aldrich) as metals sources and Vulcan XC72 as support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry (CV). The electro-oxidation of ethanol was studied by CV, chronoamperomety at room temperature in acid medium and tests at 100 deg C on a single cell of a direct methanol or ethanol fuel cell. The EDX analysis showed that the metal atomic ratios of the obtained electrocatalysts were similar to the nominal atomic ratios used in the preparation. The diffractograms of electrocatalysts prepared showed four peaks at approximately 2θ = 40 0 , 47 0 , 67 0 and 82 0 , which are associated with the (111), (200), (220) and (311) planes, respectively, of a face cubic-centered (fcc) structure characteristic of platinum and platinum alloys. The average crystallite sizes using the Scherrer equation and the calculated values were in the range of 2–3 nm. For PtSn/C and PtSnRh/C two additional peaks were observed at 2θ = 34 0 and 52 0 that were identified as a SnO 2 phase. PtSn/C (50:50) and PtSnRh/C (50:40:10) electrocatalyst showed the best performance for ethanol oxidation at room temperature. For methanol oxidation at room temperature PtRu/C, PtSn/C and PtRuRh/C electrocatalysts showed the best performance. Tests at 100 deg C on a single cell of a direct ethanol fuel cell PtSnRh/C showed the best performance, for methanol oxidation PtRuRh/C showed the best performance. (author)

  5. Electrochemical Synthesis of Ammonia from Water and Nitrogen using a Pt/GDC/Pt Cell

    International Nuclear Information System (INIS)

    Kim, Jong Nam; Yoo, Chung-Yul; Joo, Jong Hoon; Yu, Ji Haeng; Sharma, Monika; Yoon, Hyung Chul; Jeoung, Hana; Song, Ki Chang

    2014-01-01

    Electrochemical ammonia synthesis from water and nitrogen using a Pt/GDC/Pt cell was experimentally investigated. Electrochemical analysis and ammonia synthesis in the moisture-saturated nitrogen environment were performed under the operating temperature range 400-600 .deg. C and the applied potential range OCV (Open Circuit Voltage)-1.2V. Even though the ammonia synthesis rate was augmented with the increase in the operating temperature (i.e.. increase in the applied current) under the constant potential, the faradaic efficiency was decreased because of the limitation of dissociative chemisorption of nitrogen on the Pt electrode. The maximum synthesis rate of ammonia was 3.67x10 -11 mols -1 cm -2 with 0.1% faradaic efficiency at 600 .deg. C

  6. Electrochemical Synthesis of Ammonia from Water and Nitrogen using a Pt/GDC/Pt Cell

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Nam; Yoo, Chung-Yul; Joo, Jong Hoon; Yu, Ji Haeng; Sharma, Monika; Yoon, Hyung Chul [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Jeoung, Hana; Song, Ki Chang [Konyang University, Nonsan (Korea, Republic of)

    2014-02-15

    Electrochemical ammonia synthesis from water and nitrogen using a Pt/GDC/Pt cell was experimentally investigated. Electrochemical analysis and ammonia synthesis in the moisture-saturated nitrogen environment were performed under the operating temperature range 400-600 .deg. C and the applied potential range OCV (Open Circuit Voltage)-1.2V. Even though the ammonia synthesis rate was augmented with the increase in the operating temperature (i.e.. increase in the applied current) under the constant potential, the faradaic efficiency was decreased because of the limitation of dissociative chemisorption of nitrogen on the Pt electrode. The maximum synthesis rate of ammonia was 3.67x10{sup -11} mols{sup -1}cm{sup -2} with 0.1% faradaic efficiency at 600 .deg. C.

  7. Effect of the applied magnetic field and the layer thickness on the magnon properties in bilayers Co/Pt and symmetrical trilayer Pt/Co/Pt

    International Nuclear Information System (INIS)

    Mehdioui, M.; Fahmi, A.; Lassri, H.; Fahoume, M.; Qachaou, A.

    2014-01-01

    We have studied the elementary magnetic excitations and their dynamics in multilayer Co(t Co)/Pt(t Pt) and Pt(t Pt)/Co(t Co)/Pt(t Pt) under an applied magnetic field. The Heisenberg hamiltonian used takes into account the magneto-crystalline and surface anisotropies, the exchange and dipolar interactions. The calculated excitation spectrum ε N (k) presents a structure with two sub-bands corresponding to the magnons of surface and volume respectively. The existence of a gap of creating these magnons is also highlighted. The lifetimes deduced from these gaps are in good agreement with the results of previous studies. The thermal evolution of the magnetization m z indicates that the system undergoes a dimensional crossover 3D–2D when the temperature increases. The calculated and measured magnetizations are compared and they are in good agreement. The exchange integral and critical temperature values deduced from these adjustments are in very good agreement with the results of previous works. - Highlights: • The magnons of surface and volume exist in Co/Pt and Pt/Co/Pt. • Samples undergo dimensional crossover (3D–2D) when T increases. • A good agreement is obtained between M(T) measured and calculated. • Deduced exchange integrals and critical temperature values are correct. • The magnetism of the sample is reduced by increasing t Pt or capping Co by two Pt layers

  8. Solid-state phase equilibria in the Fe-Pt-Pr ternary system at 1173 K

    International Nuclear Information System (INIS)

    Ren Jing; Gu Zhengfei; Cheng Gang; Zhou Huaiying

    2005-01-01

    The solid-state phase equilibria in the Fe-Pt-Pr ternary system at 1173 K (Pr ≤ 70%) were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS) techniques. The 1173 K isothermal section consists of 13 single-phase regions, 22 two-phase regions and 10 three-phase regions. At 1173 K, we have observed that the maximum solid solubility of Pt in α-Fe is below 1.5 at.% and the solid solution region of Pt in γ-Fe is from 2 to 35 at.%; the maximum solid solubility of Fe in Pt is 18 at.%. The maximum solubility of Fe in PrPt 5 , PrPt 3 , PrPt 2 , Pr 3 Pt 4 , PrPt, Pr 3 Pt 2 and Pr 7 Pt 3 is below 1 at.%. The maximum solubility of Pr in α-(Fe, Pt), γ-(Fe, Pt), FePt, FePt 3 and (Pt, Fe) (the solid solution of Fe in Pt) is 6, 2, 4, 4.5 and 1.5 at.%, respectively. In this work, it is found that the phase Pr 3 Pt 4 does not exist in the ternary system. The binary compounds Fe 7 Pr and Fe 2 Pr and any new ternary compounds were not observed

  9. Preparation of PtSn/C, PtRu/C, PtRh/C, PtRuRh/C and PtSnRh/C electrocatalysts using an alcohol-reduction process for methanol and ethanol oxidation; Preparacao e caracterizacao de eletrocatalisadores PtRu, PtSn, PtRh, PtRuRh e PtSnRh para oxidacao direta de alcoois em celulas a combustivel tipo PEM utilizando a metodologia da reducao por alcool

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Ricardo Rodrigues

    2009-07-01

    In this work, Pt/C, PtRh (90:10), PtRh/C (50:50), PtSn/C (50:50), PtRu (50:50)/C, PtRuRh/C (50:40:10) and PtSnRh/C (50:40:10) were prepared by an alcohol-reduction process with metal loading of 20 wt.% using H{sub 2}PtCl{sub 6}.6H{sub 2}O (Aldrich), SnCl{sub 2}.2H{sub 2}O (Aldrich),and RhCl{sub 2}.XH{sub 2}O (Aldrich) as metals sources and Vulcan XC72 as support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry (CV). The electro-oxidation of ethanol was studied by CV, chronoamperomety at room temperature in acid medium and tests at 100 deg C on a single cell of a direct methanol or ethanol fuel cell. The EDX analysis showed that the metal atomic ratios of the obtained electrocatalysts were similar to the nominal atomic ratios used in the preparation. The diffractograms of electrocatalysts prepared showed four peaks at approximately 2{theta} =40 deg, 47 deg, 67 deg and 82 deg, which are associated with the (111), (200), (220) and (311) planes, respectively, of a face cubic-centered (fcc) structure characteristic of platinum and platinum alloys. The average crystallite sizes using the Scherrer equation and the calculated values were in the range of 2-3 nm. For Pt Sn/C and PtSnRh/C two additional peaks were observed at 2 = 34 deg and 52 deg that were identified as a SnO{sub 2} phase. Pt Sn/C (50:50) and PtSnRh/C (50:40:10) electro catalyst showed the best performance for ethanol oxidation at room temperature. For methanol oxidation at room temperature Pt Ru/C, Pt Sn/C and PtRuRh/C electrocatalysts showed the best performance. Tests at 100 deg C on a single cell of a direct ethanol fuel cell PtSnRh/C showed the best performance, for methanol oxidation PtRuRh/C showed the best performance. (author)

  10. Preparation of PtSn/C, PtRu/C, PtRh/C, PtRuRh/C and PtSnRh/C electrocatalysts using an alcohol-reduction process for methanol and ethanol oxidation; Preparacao e caracterizacao de eletrocatalisadores PtRu, PtSn, PtRh, PtRuRh e PtSnRh para oxidacao direta de alcoois em celulas a combustivel tipo PEM utilizando a metodologia da reducao por alcool

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Ricardo Rodrigues

    2009-07-01

    In this work, Pt/C, PtRh (90:10), PtRh/C (50:50), PtSn/C (50:50), PtRu (50:50)/C, PtRuRh/C (50:40:10) and PtSnRh/C (50:40:10) were prepared by an alcohol-reduction process with metal loading of 20 wt.% using H{sub 2}PtCl{sub 6}.6H{sub 2}O (Aldrich), SnCl{sub 2}.2H{sub 2}O (Aldrich),and RhCl{sub 2}.XH{sub 2}O (Aldrich) as metals sources and Vulcan XC72 as support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry (CV). The electro-oxidation of ethanol was studied by CV, chronoamperomety at room temperature in acid medium and tests at 100 deg C on a single cell of a direct methanol or ethanol fuel cell. The EDX analysis showed that the metal atomic ratios of the obtained electrocatalysts were similar to the nominal atomic ratios used in the preparation. The diffractograms of electrocatalysts prepared showed four peaks at approximately 2θ = 40{sup 0}, 47{sup 0}, 67{sup 0} and 82{sup 0}, which are associated with the (111), (200), (220) and (311) planes, respectively, of a face cubic-centered (fcc) structure characteristic of platinum and platinum alloys. The average crystallite sizes using the Scherrer equation and the calculated values were in the range of 2–3 nm. For PtSn/C and PtSnRh/C two additional peaks were observed at 2θ = 34{sup 0} and 52{sup 0} that were identified as a SnO{sub 2} phase. PtSn/C (50:50) and PtSnRh/C (50:40:10) electrocatalyst showed the best performance for ethanol oxidation at room temperature. For methanol oxidation at room temperature PtRu/C, PtSn/C and PtRuRh/C electrocatalysts showed the best performance. Tests at 100 deg C on a single cell of a direct ethanol fuel cell PtSnRh/C showed the best performance, for methanol oxidation PtRuRh/C showed the best performance. (author)

  11. Cermet electrode

    Science.gov (United States)

    Maskalick, Nicholas J.

    1988-08-30

    Disclosed is a cermet electrode consisting of metal particles of nickel, cobalt, iron, or alloys or mixtures thereof immobilized by zirconia stabilized in cubic form which contains discrete deposits of about 0.1 to about 5% by weight of praseodymium, dysprosium, terbium, or a mixture thereof. The solid oxide electrode can be made by covering a substrate with particles of nickel, cobalt, iron, or mixtures thereof, growing a stabilized zirconia solid oxide skeleton around the particles thereby immobilizing them, contacting the skeleton with a compound of praseodymium, dysprosium, terbium, or a mixture thereof, and heating the skeleton to a temperature of at least 500.degree. C. The electrode can also be made by preparing a slurry of nickel, cobalt, iron, or mixture and a compound of praseodymium, dysprosium, terbium, or a mixture thereof, depositing the slurry on a substrate, heating the slurry to dryness, and growing a stabilized zirconia skeleton around the metal particles.

  12. Electrochemical detection of copper ions leached from CuO nanoparticles in saline buffers and biological media using a gold wire working electrode

    Energy Technology Data Exchange (ETDEWEB)

    Baldisserri, Carlo, E-mail: carlo.baldisserri@istec.cnr.it; Costa, Anna Luisa [ISTEC-CNR (Italy)

    2016-04-15

    We performed explorative cyclic voltammetry in phosphate-buffered saline buffers, Dulbecco’s modified Eagle’s medium (DMEM), and fetal bovine serum-added DMEM using Au wire as working electrode, both in the absence and in the presence of known nominal concentrations of Cu{sup 2+} ions or 15 nm CuO nanoparticles. Addition of either Cu{sup 2+} ions or aqueous suspension of CuO nanoparticles caused a single anodic peak to appear in the double-layer region of all three pristine media. The height of the anodic peak was found to increase in a monotonic fashion vs. Cu{sup 2+} concentration in Cu{sup 2+}-added media, and versus time since CuO addition in CuO-added media. Stepwise addition of glycine to Cu{sup 2+}-added phosphate-buffered saline buffer caused an increasing cathodic shift of the anodic peak accompanied by decreasing peak currents. Results indicate that preparing Cu{sup 2+}-free suspensions of CuO nanoparticles in such media is difficult, owing to the presence of leached copper ions. The implications on results of experiments in which CuO nanoparticle-added biological media are used as cell culture substrates are discussed. Literature data on the interactions between Cu{sup 2+} ions, dissolved carbon dioxide in aqueous CuO suspensions, and amino acids present in such media are compared to our results.

  13. In situ electrochemical high-energy X-ray diffraction using a capillary working electrode cell geometry

    Energy Technology Data Exchange (ETDEWEB)

    Young, Matthias J.; Bedford, Nicholas M.; Jiang, Naisheng; Lin, Deqing; Dai, Liming

    2017-05-26

    The ability to generate new electrochemically active materials for energy generation and storage with improved properties will likely be derived from an understanding of atomic-scale structure/function relationships during electrochemical events. Here, the design and implementation of a new capillary electrochemical cell designed specifically forin situhigh-energy X-ray diffraction measurements is described. By increasing the amount of electrochemically active material in the X-ray path while implementing low-Zcell materials with anisotropic scattering profiles, an order of magnitude enhancement in diffracted X-ray signal over traditional cell geometries for multiple electrochemically active materials is demonstrated. This signal improvement is crucial for high-energy X-ray diffraction measurements and subsequent Fourier transformation into atomic pair distribution functions for atomic-scale structural analysis. As an example, clear structural changes in LiCoO2under reductive and oxidative conditions using the capillary cell are demonstrated, which agree with prior studies. Accurate modeling of the LiCoO2diffraction data using reverse Monte Carlo simulations further verifies accurate background subtraction and strong signal from the electrochemically active material, enabled by the capillary working electrode geometry.

  14. Electrochemical detection of copper ions leached from CuO nanoparticles in saline buffers and biological media using a gold wire working electrode

    Science.gov (United States)

    Baldisserri, Carlo; Costa, Anna Luisa

    2016-04-01

    We performed explorative cyclic voltammetry in phosphate-buffered saline buffers, Dulbecco's modified Eagle's medium (DMEM), and fetal bovine serum-added DMEM using Au wire as working electrode, both in the absence and in the presence of known nominal concentrations of Cu2+ ions or 15 nm CuO nanoparticles. Addition of either Cu2+ ions or aqueous suspension of CuO nanoparticles caused a single anodic peak to appear in the double-layer region of all three pristine media. The height of the anodic peak was found to increase in a monotonic fashion vs. Cu2+ concentration in Cu2+-added media, and versus time since CuO addition in CuO-added media. Stepwise addition of glycine to Cu2+-added phosphate-buffered saline buffer caused an increasing cathodic shift of the anodic peak accompanied by decreasing peak currents. Results indicate that preparing Cu2+-free suspensions of CuO nanoparticles in such media is difficult, owing to the presence of leached copper ions. The implications on results of experiments in which CuO nanoparticle-added biological media are used as cell culture substrates are discussed. Literature data on the interactions between Cu2+ ions, dissolved carbon dioxide in aqueous CuO suspensions, and amino acids present in such media are compared to our results.

  15. Interface architecture determined electrocatalytic activity of Pt on vertically oriented TiO(2) nanotubes.

    Science.gov (United States)

    Rettew, Robert E; Allam, Nageh K; Alamgir, Faisal M

    2011-02-01

    The surface atomic structure and chemical state of Pt is consequential in a variety of surface-intensive devices. Herein we present the direct interrelationship between the growth scheme of Pt films, the resulting atomic and electronic structure of Pt species, and the consequent activity for methanol electro-oxidation in Pt/TiO(2) nanotube hybrid electrodes. X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) measurements were performed to relate the observed electrocatalytic activity to the oxidation state and the atomic structure of the deposited Pt species. The atomic structure as well as the oxidation state of the deposited Pt was found to depend on the pretreatment of the TiO(2) nanotube surfaces with electrodeposited Cu. Pt growth through Cu replacement increases Pt dispersion, and a separation of surface Pt atoms beyond a threshold distance from the TiO(2) substrate renders them metallic, rather than cationic. The increased dispersion and the metallic character of Pt results in strongly enhanced electrocatalytic activity toward methanol oxidation. This study points to a general phenomenon whereby the growth scheme and the substrate-to-surface-Pt distance dictates the chemical state of the surface Pt atoms, and thereby, the performance of Pt-based surface-intensive devices.

  16. Microwave-polyol synthesis and electrocatalytic performance of Pt/graphene nanocomposites

    International Nuclear Information System (INIS)

    Liao, Chien-Shiun; Liao, Chien-Tsao; Tso, Ching-Yu; Shy, Hsiou-Jeng

    2011-01-01

    Highlights: · One-pot microwave-polyol synthesis of Pt/graphene electrocatalyst. · Simultaneous formation of Pt nanoparticles and reduction of graphene oxide. · Electrocatalytic activities depend on the morphology of the deposited Pt particles. · Dense dispersion of isolated Pt particles with high electrochemical active surface. · Few particle clusters of Pt have large number of active sites for methanol oxidation. - Abstract: Graphene oxide (GO) prepared by the modified Hummers method is used as a support in the formation of a Pt/GO nanocomposite electrocatalyst by microwave-polyol synthesis. The effects of microwave reaction times on particle size, dispersion, and electrocatalytic performance of Pt nanoparticles are studied using wide-angle X-ray diffractometery, Raman spectroscopy, transmission electron microscopy and three-electrode electrochemical measurements. The results indicate that Pt nanoparticles nucleation and growth occur, and the particles are uniformly deposited on the GO nanosheets within a short time. The maximum electrochemical active surface area 85.71 m 2 g -1 for a Pt/GO reaction time of 5 min, is a result of the deposition of a dense dispersion of small Pt particles. The highest methanol oxidation peak current density, I f , of 0.59 A mg -1 occurs for a Pt/GO reaction time of 10 min and is due to the formation of interconnecting Pt particles clusters. This novel Pt/GO nanocomposite electrocatalyst with high electrocatalytic activities has the potential for use as an anode material in fuel cells.

  17. Electrochemical oxidation of methanol on Pt3Co bulk alloy

    Directory of Open Access Journals (Sweden)

    S. LJ. GOJKOVIC

    2003-11-01

    Full Text Available The electrochemical oxidation of methanol was investigated on a Pt3Co bulk alloy in acid solutions. Kinetic parameters such as transfer coefficient, reaction orders with respect to methanol and H+ ions and energy of activation were determined. It was found that the rate of methanol oxidation is significantly diminished by rotation of the electrode. This effect was attributed to the diffusion of formaldehyde and formic acid from the electrode surface. Stirring of the electrolyte also influenced the kinetic parameters of the reaction. It was speculated that the predominant reaction pathway and rate determining step are different in the quiescent and in the stirred electrolyte. Cobalt did not show a promoting effect on the rate of methanol oxidation on the Pt3Co bulk alloy with respect to a pure Pt surface.

  18. Single Electrode Heat Effects

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Broers, G. H. J.

    1977-01-01

    The heat evolution at a single irreversibly working electrode is treated onthe basis of the Brønsted heat principle. The resulting equation is analogous to the expression for the total heat evolution in a galvanic cellwith the exception that –DeltaS is substituted by the Peltier entropy, Delta......SP, of theelectrode reaction. eta is the overvoltage at the electrode. This equation is appliedto a high temperature carbonate fuel cell. It is shown that the Peltier entropyterm by far exceeds the heat production due to the irreversible losses, and thatthe main part of heat evolved at the cathode is reabsorbed...

  19. Robust high temperature oxygen sensor electrodes

    DEFF Research Database (Denmark)

    Lund, Anders

    Platinum is the most widely used material in high temperature oxygen sensor electrodes. However, platinum is expensive and the platinum electrode may, under certain conditions, suffer from poisoning, which is detrimental for an oxygen sensor. The objective of this thesis is to evaluate electrode...... materials as candidates for robust oxygen sensor electrodes. The present work focuses on characterising the electrochemical properties of a few electrode materials to understand which oxygen electrode processes are limiting for the response time of the sensor electrode. Three types of porous platinum......-Dansensor. The electrochemical properties of the electrodes were characterised by electrochemical impedance spectroscopy (EIS), and the structures were characterised by x-ray diffraction and electron microscopy. At an oxygen partial pressures of 0.2 bar, the response time of the sensor electrode was determined by oxygen...

  20. Magnetohydrodynamic electrode

    International Nuclear Information System (INIS)

    1980-01-01

    The object of the invention is the provision of a material capable of withstanding a high-temperature, corrosive and erosive environment for use as a ceramic-metal composite electrode current collector in the channel of a magnetohydrodynamic generator. (U.K.)

  1. Performance of Nafion-TiO2 hybrid membranes and PtSn/C electrocatalysts in PEM type fuel cells fed with ethanol and H2/CO at high temperature

    International Nuclear Information System (INIS)

    Isidoro, Roberta Alvarenga

    2010-01-01

    In this work, Nafion-TiO 2 hybrid electrolytes and PtSn/C electrocatalysts were synthesized for the application in direct ethanol fuel cell operating at high temperature (130 degree C). For this purpose, TiO 2 particles were incorporated in commercial Nafion membranes by an 'in situ' sol gel route. The resulting materials were characterized by gravimetric analysis, water uptake, DSC, XRD and EDX. Electrocatalysts based on carbon dispersed platinum-tin (PtSn/C), with different composition, were produced by alcohol-reduction method and were employed as anodic electrode. The electrocatalysts were characterized by XRD, EDX, XPS and transmission electronic spectroscopy. The electrochemical characterization was conducted by cyclic voltametry, carbon monoxide linear anodic voltammetry (CO stripping), and chronoamperometry. Membrane-electrodes assembly (MEAs) were formed with PtSn/C anodes, Pt/C cathodes and Nafion-TiO 2 hybrids. The performance of these MEA was evaluated in single-cell fed with H2/CO mixture or ethanol solution at the anode and oxygen at the cathode in the temperature range of 80-130 degree C. The analysis showed that the hybrid membranes improved the DEFC performance due to crossover suppression and that PtSn/C 70:30 electrocatalysts, prepared by an alcohol reduction process, showed better performance in ethanol oxidation. (author)

  2. Light addressable gold electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, Waqas

    2011-07-01

    -Aminophenol, a product of an enzymatic reaction of Alkaline Phosphatase with p-Aminophenyl Phosphate. Subsequently this reaction was observed at CdS/Au electrode, by enzyme-substrate reaction within the electrolyte solution, and also by immobilizing the enzyme on top of QDs via LbL assembly of polyelectrolytes. With another kind of CdS-FePt dimer QDs, detection of hydrogen peroxide (H{sub 2}O{sub 2}) was demonstrated. Only at CdS/Au electrode there was no impact made by H{sub 2}O{sub 2} but with the presence of Pt within QDs H{sub 2}O{sub 2} was detected via reduction even at a bias potential of -100 mV. (orig.)

  3. Electrochemical stability of subnanometer Pt clusters

    DEFF Research Database (Denmark)

    Quinson, Jonathan; Röefzaad, Melanie; Deiana, Davide

    2018-01-01

    In the present work, the degradation of size-selected Pt nanoclusters is studied under electrochemical conditions. This model catalyst mimics carbon supported Pt nanoclusters and nanoparticles typically employed in proton exchange membrane fuel cells (PEMFCs). Insight into the early stage...... of degradation is given by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and confirmed by transmission electron microscopy (TEM). In contrast to common assumptions, it is demonstrated that even extremely small Pt clusters exhibit a remarkable stability under electrochemical...... - is observed. In light of the findings reported, developing highly-dispersed subnanometer Pt clusters as catalyst for PEMFCs is a realistic approach provided the operation conditions are suitably adjusted. Furthermore, mitigation strategies to improve the stability of few-atoms catalyst under electrochemical...

  4. Role of electrode metallization in the performance of bulk semi-insulating InP radiation detectors

    International Nuclear Information System (INIS)

    Zatko, B.; Dubecky, F.; Prochazkova, O.; Necas, V.

    2007-01-01

    This work deals with the study of three different electrode metallizations with the aim to form a Schottky barrier contact. Electrode geometry corresponds to the requirements of digital radiography systems. As substrates bulk Liquid Encapsulated Czochralski (LEC) SI InP wafers doped with Fe and Fe+Zn are used. Results of this study show that no one of the used metallization performs as a blocking contact. However, detectors with Ti/Pt/Au metallization attained a relatively good energy resolution of 7.0 keV in full-width at half-maximum (FWHM) and the charge collection efficiency (CCE) higher than 83% for 122 keV γ-photons at 255 K. The development of SI InP radiation detectors and in particular their electrode technology is discussed in the light of observed results

  5. PT and INR Test

    Science.gov (United States)

    ... Plasma Free Metanephrines Platelet Count Platelet Function Tests Pleural Fluid Analysis PML-RARA Porphyrin Tests Potassium Prealbumin ... and vitamin K (either in a multivitamin or liquid nutrition supplement) may decrease PT. Certain foods, such ...

  6. First meeting of the International Working Group on Advanced Technologies for Water Cooled Reactors, Vienna, 18-21 May 1987. (Pt. 1)

    International Nuclear Information System (INIS)

    1987-12-01

    The first meeting of the IAEA International Working Group on Advanced Technologies for Water Cooled Reactors was held in Vienna, Austria from 18-21 May 1987. Part I of the Summary Report contains the minutes of the meeting

  7. Improvement of light harvesting and device performance of dye-sensitized solar cells using rod-like nanocrystal TiO{sub 2} overlay coating on TiO{sub 2} nanoparticle working electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xueyang; Fang, Jian [Institute for Frontier Materials, Deakin University, VIC 3220 (Australia); Gao, Mei [CSIRO Materials Science and Engineering, Melbourne, VIC 3169 (Australia); Wang, Hongxia [Institute for Frontier Materials, Deakin University, VIC 3220 (Australia); Yang, Weidong [CSIRO Materials Science and Engineering, Melbourne, VIC 3169 (Australia); Lin, Tong, E-mail: tong.lin@deakin.edu.au [Institute for Frontier Materials, Deakin University, VIC 3220 (Australia)

    2015-02-01

    Novel TiO{sub 2} single crystalline nanorods were synthesized by electrospinning and hydrothermal treatment. The role of the TiO{sub 2} nanorods on TiO{sub 2} nanoparticle electrode in improvement of light harvesting and photovoltaic properties of dye-sensitized solar cells (DSSCs) was examined. Although the TiO{sub 2} nanorods had lower dye loading than TiO{sub 2} nanoparticle, they showed higher light utilization behaviour. Electron transfer in TiO{sub 2} nanorods received less resistance than that in TiO{sub 2} nanoparticle aggregation. By just applying a thin layer of TiO{sub 2} nanorods on TiO{sub 2} nanoparticle working electrode, the DSSC device light harvesting ability and energy conversion efficiency were improved significantly. The thickness of the nanorod layer in the working electrode played an important role in determining the photovoltaic property of DSSCs. An energy conversion efficiency as high as 6.6% was found on a DSSC device with the working electrode consisting of a 12 μm think TiO{sub 2} nanoparticle layer covered with 3 μm thick TiO{sub 2} nanorods. The results obtained from this study may benefit further design of highly efficient DSSCs. - Highlights: • Single crystalline TiO{sub 2} nanorods were prepared for DSSC application. • TiO{sub 2} nanorods show effective light scattering performance. • TiO{sub 2} nanorods have higher electron transfer efficiency than TiO{sub 2} nanoparticles. • TiO{sub 2} nanorods on TiO{sub 2} nanoparticle electrode improve DSSC efficiency.

  8. Improvement of light harvesting and device performance of dye-sensitized solar cells using rod-like nanocrystal TiO2 overlay coating on TiO2 nanoparticle working electrode

    International Nuclear Information System (INIS)

    Liu, Xueyang; Fang, Jian; Gao, Mei; Wang, Hongxia; Yang, Weidong; Lin, Tong

    2015-01-01

    Novel TiO 2 single crystalline nanorods were synthesized by electrospinning and hydrothermal treatment. The role of the TiO 2 nanorods on TiO 2 nanoparticle electrode in improvement of light harvesting and photovoltaic properties of dye-sensitized solar cells (DSSCs) was examined. Although the TiO 2 nanorods had lower dye loading than TiO 2 nanoparticle, they showed higher light utilization behaviour. Electron transfer in TiO 2 nanorods received less resistance than that in TiO 2 nanoparticle aggregation. By just applying a thin layer of TiO 2 nanorods on TiO 2 nanoparticle working electrode, the DSSC device light harvesting ability and energy conversion efficiency were improved significantly. The thickness of the nanorod layer in the working electrode played an important role in determining the photovoltaic property of DSSCs. An energy conversion efficiency as high as 6.6% was found on a DSSC device with the working electrode consisting of a 12 μm think TiO 2 nanoparticle layer covered with 3 μm thick TiO 2 nanorods. The results obtained from this study may benefit further design of highly efficient DSSCs. - Highlights: • Single crystalline TiO 2 nanorods were prepared for DSSC application. • TiO 2 nanorods show effective light scattering performance. • TiO 2 nanorods have higher electron transfer efficiency than TiO 2 nanoparticles. • TiO 2 nanorods on TiO 2 nanoparticle electrode improve DSSC efficiency

  9. Electrode Processes in Porous Electrodes.

    Science.gov (United States)

    1985-11-26

    F104470 2.0 MASS SPECTROMETRY One part of activity for this year is an investigation of the behavior of silver electrodes through the distribution of...al. (2)). These, in some cases, involve tedious and time comsuming procedures and discrepencies of as much as 15% have been observed in the results. As

  10. Glucose sensing based on Pt-MWCNT and MWCNT

    Science.gov (United States)

    Aryasomayajula, Lavanya; Xie, Jining; Wang, Shouyan; Varadan, Vijay K.

    2007-04-01

    It is known that multi walled carbon nanotubes (MWCNTs) is an excellent materials for biosensing applications and with the introduction of Pt nanoparticles (Pt-MWCNTs) of about 3nm in diameter in MWCNTs greatly increases the current sensitivity and also the signal to noise ratio. We fabricated the CNT- based glucose sensor by immobilization the bio enzyme, glucose oxidase (GoX), on the Pt-MWCNT and electrode were prepared. The sensor has been tested effectively for both the abnormal blood glucose levels- greater than 6.9 mM and less than 3.5 mM which are the prediabetic and diabetic glucose levels, respectively. The current signal obtained from the Pt-MWCNT was much higher compared to the MWCNT based sensors.

  11. Improved open-circuit voltage in Cu(In,Ga)Se{sub 2} solar cells with high work function transparent electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Jäger, Timo, E-mail: timo.jaeger@empa.ch; Romanyuk, Yaroslav E.; Bissig, Benjamin; Pianezzi, Fabian; Nishiwaki, Shiro; Reinhard, Patrick; Steinhauser, Jérôme; Tiwari, Ayodhya N. [Empa—Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Thin Films and Photovoltaics, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Schwenk, Johannes [Empa—Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Nanoscale Materials Science, Überlandstrasse 129, 8600 Dübendorf (Switzerland)

    2015-06-14

    Hydrogenated indium oxide (IOH) is implemented as transparent front contact in Cu(In,Ga)Se{sub 2} (CIGS) solar cells, leading to an open circuit voltage V{sub OC} enhanced by ∼20 mV as compared to reference devices with ZnO:Al (AZO) electrodes. This effect is reproducible in a wide range of contact sheet resistances corresponding to various IOH thicknesses. We present the detailed electrical characterization of glass/Mo/CIGS/CdS/intrinsic ZnO (i-ZnO)/transparent conductive oxide (TCO) with different IOH/AZO ratios in the front TCO contact in order to identify possible reasons for the enhanced V{sub OC}. Temperature and illumination intensity-dependent current-voltage measurements indicate that the dominant recombination path does not change when AZO is replaced by IOH, and it is mainly limited to recombination in the space charge region and at the junction interface of the solar cell. The main finding is that the introduction of even a 5 nm-thin IOH layer at the i-ZnO/TCO interface already results in a step-like increase in V{sub OC}. Two possible explanations are proposed and verified by one-dimensional simulations using the SCAPS software. First, a higher work function of IOH as compared to AZO is simulated to yield an V{sub OC} increase by 21 mV. Second, a lower defect density in the i-ZnO layer as a result of the reduced sputter damage during milder sputter-deposition of IOH can also add to a maximum enhanced V{sub OC} of 25 mV. Our results demonstrate that the proper choice of the front TCO contact can reduce the parasitic recombination and boost the efficiency of CIGS cells with improved corrosion stability.

  12. Analysis of forecasting and inventory control of raw material supplies in PT INDAC INT’L

    Science.gov (United States)

    Lesmana, E.; Subartini, B.; Riaman; Jabar, D. A.

    2018-03-01

    This study discusses the data forecasting sales of carbon electrodes at PT. INDAC INT L uses winters and double moving average methods, while for predicting the amount of inventory and cost required in ordering raw material of carbon electrode next period using Economic Order Quantity (EOQ) model. The result of error analysis shows that winters method for next period gives result of MAE, MSE, and MAPE, the winters method is a better forecasting method for forecasting sales of carbon electrode products. So that PT. INDAC INT L is advised to provide products that will be sold following the sales amount by the winters method.

  13. The photovoltaic performance of Ag2S quantum dots-sensitized solar cells using plasmonic Au nanoparticles/TiO2 working electrodes

    Science.gov (United States)

    Badawi, Ali; Mostafa, Nasser Y.; Al-Hosiny, Najm M.; Merazga, Amar; Albaradi, Ateyyah M.; Abdel-Wahab, F.; Atta, A. A.

    2018-06-01

    The photovoltaic performance of silver sulfide (Ag2S) quantum dots-sensitized solar cells (QDSSCs) using different concentrations (0, 0.05, 0.1, 0.3 and 0.5 wt.%) of plasmonic Au nanoparticles (NPs)/titania (TiO2) electrodes has been investigated. Ag2S quantum dots (QDs) were adsorbed onto the Au NPs/titania electrodes using the successive ionic layer adsorption and reaction (SILAR) deposition technique. The morphological properties of the Au NPs and the prepared titania electrodes were characterized using transmission electron microscope (TEM) and scanning electron microscope (SEM), respectively. The energy-dispersive X-ray (EDX) spectra of the bare titania and Ag2S QDs-sensitized titania electrodes were recorded. The optical properties of the prepared Ag2S QDs-sensitized titania electrodes were measured using a UV-visible spectrophotometer. The estimated energy band gap of Ag2S QDs-sensitized titania electrodes is 1.96 eV. The photovoltaic performance of the assembled Ag2S QDSSCs was measured under 100 mW/cm2 solar illumination. The optimal photovoltaic parameters were obtained as follows: open circuit voltage Voc = 0.50 V, current density Jsc = 3.18 mA/cm2, fill factor (FF) = 0.35 and energy conversion efficiency η = 0.55% for 0.3 wt.% of Au NPs/titania electrode. These results are attributed to the enhancement in the absorption and decrease in the electron-hole pairs recombination rate. The open circuit voltage decay (OCVD) measurements of the assembled Ag2S QDSSCs were measured. The calculated electron lifetime (τ) in Ag2S QDSSCs with Au NPs/titania electrodes is at least one order of magnitude more than that with bare titania electrode. The cut-on-cut-off cycles of the solar illumination measurements show the rapid sensitivity and good reproducibility of the assembled Ag2S QDSSCs.

  14. Investigation of top electrode for PZT thick films based MEMS sensors

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Pedersen, Thomas; Kristiansen, Paw T.

    2010-01-01

    In this work processing of screen printed piezoelectric PZT thick films on silicon substrates is investigated for use in future MEMS devices. E-beam evaporated Al and Pt are patterned on PZT as a top electrode using a lift-off process with a line width down to 3 mu m. Three test structures are used...... to investigate the optimal thickness of the top electrode, the degradation of the piezoelectric properties of the PZT film in absence of a diffusion barrier layer and finally how to fabricate electrical interconnects down the edge of the PZT thick film. The roughness of the PZT is found to have a strong...... influence on the conductance of the top electrode influencing the optimal top electrode thickness. A 100 nm thick top electrode on the PZT thick film with a surface roughness of 273 nm has a 4.5 times higher resistance compared to a similar wire on a planar SiO2 surface which has a surface roughness of less...

  15. Evaluation of Pt-Ru-Ni and Pt-Sn-Ni catalysts as anodes in direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ribadeneira, Esteban; Hoyos, Bibian A. [Escuela de Procesos y Energia, Facultad de Minas, Universidad Nacional de Colombia, Medellin (Colombia)

    2008-05-15

    In this study, the electrooxidation of ethanol on carbon supported Pt-Ru-Ni and Pt-Sn-Ni catalysts is electrochemically studied through cyclic voltammetry at 50 C in direct ethanol fuel cells. All electrocatalysts are prepared using the ethylene glycol-reduction process and are chemically characterized by energy-dispersive X-ray analysis (EDX). For fuel cell evaluation, electrodes are prepared by the transfer-decal method. Nickel addition to the anode improves DEFC performance. When Pt{sub 75}Ru{sub 15}Ni{sub 10}/C is used as an anode catalyst, the current density obtained in the fuel cell is greater than that of all other investigated catalysts. Tri-metallic catalytic mixtures have a higher performance relative to bi-metallic catalysts. These results are in agreement with CV results that display greater activity for PtRuNi at higher potentials. (author)

  16. Pulse electrodeposition of Pt and Pt–Ru methanol-oxidation nanocatalysts onto carbon nanotubes in citric acid aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Huei-Yu [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Hsieh, Chien-Kuo [Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC (China); Tsai, Ming-Chi; Wei, Yu-Hsuan; Yeh, Tsung-Kuang [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Tsai, Chuen-Horng, E-mail: tsai@aec.gov.tw [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China)

    2015-06-01

    In this study, platinum nanoparticle/carbon nanotube (Pt NP/CNT) and platinum–ruthenium nanoparticle (Pt–Ru NP/CNT) hybrid nanocatalysts were prepared by the pulse-electrodeposition method in different aqueous solutions containing citric acid (CA) or sulfuric acid (SA). The electrocatalytic properties of the Pt NP/CNT and Pt–Ru NP/CNT electrodes prepared using different aqueous solutions were investigated for methanol oxidation. The results show that the electrochemical mass activities of these hybrid nanocatalysts prepared in the CA aqueous solution were increased by factors of 1.46 and 2.77 for Pt NPs and Pt–Ru NPs, respectively, compared with those prepared in SA aqueous solutions using the same procedure. These increased mass activities are attributed to the CA playing dual roles as both a stabilizing agent and a particle size reducing agent in the aqueous solutions. The approach developed in this work enables further reductions in the particle sizes of noble-metal nanocatalysts. - Highlights: • Pulse-electrodeposition of Pt or Pt–Ru nanoparticles on carbon nanotubes • Carbon nanotubes used as a catalyst-supporting material • Citric acid used as reducing agent in the aqueous electrodeposition solutions • Electrochemical activity for methanol oxidation improved by a factor of 1.46 to 2.77.

  17. Experimental and theoretical exploration of mechanical stability of Pt/NbO2 interfaces for thermoelectric applications

    International Nuclear Information System (INIS)

    Music, Denis; Schmidt, Paul; Saksena, Aparna

    2017-01-01

    Mechanical stability criteria for metallic contacts, namely a minimised thermal stress and an enhanced interfacial strength, have been appraised for sputtered, x-ray amorphous NbO 2 thermoelectric thin films in contact with a polycrystalline Pt electrode utilising experimental and theoretical methods. Thermal stress built at these Pt/NbO 2 interfaces with approximately 50 MPa is minute even at 800 °C, the maximum operation temperature. There are no coordination changes of Pt and its metallic character is only marginally altered upon the interface formation. In addition, Nb–O bonds at the interface sustain their covalent-ionic dioxide bonding nature. Hence, even though there are no considerable modifications in the electronic structure of the individual components at these interfaces, Pt/NbO 2 interfacial bonds of metallic and partly covalent character are strong with a work of separation reaching 2 J m −2 . Based on the synergic experimental and theoretical results, it is therefore expected that these interfaces are mechanically stable during operation of these thermoelectric devices. This strategy is of general importance for designing mechanically stable electrical contacts. (paper)

  18. Synthesis and Electrocatalytic Performance of Multi-Component Nanoporous PtRuCuW Alloy for Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Xiaoting Chen

    2015-06-01

    Full Text Available We have prepared a multi-component nanoporous PtRuCuW (np-PtRuCuW electrocatalyst via a combined chemical dealloying and mechanical alloying process. The X-ray diffraction (XRD, transmission electron microscopy (TEM and electrochemical measurements have been applied to characterize the microstructure and electrocatalytic activities of the np-PtRuCuW. The np-PtRuCuW catalyst has a unique three-dimensional bi-continuous ligament structure and the length scale is 2.0 ± 0.3 nm. The np-PtRuCuW catalyst shows a relatively high level of activity normalized to mass (467.1 mA mgPt−1 and electrochemically active surface area (1.8 mA cm−2 compared to the state-of-the-art commercial PtC and PtRu catalyst at anode. Although the CO stripping peak of np-PtRuCuW 0.47 V (vs. saturated calomel electrode, SCE is more positive than PtRu, there is a 200 mV negative shift compared to PtC (0.67 V vs. SCE. In addition, the half-wave potential and specific activity towards oxygen reduction of np-PtRuCuW are 0.877 V (vs. reversible hydrogen electrode, RHE and 0.26 mA cm−2, indicating a great enhancement towards oxygen reduction than the commercial PtC.

  19. Design criteria for stable Pt/C fuel cell catalysts

    Directory of Open Access Journals (Sweden)

    Josef C. Meier

    2014-01-01

    Full Text Available Platinum and Pt alloy nanoparticles supported on carbon are the state of the art electrocatalysts in proton exchange membrane fuel cells. To develop a better understanding on how material design can influence the degradation processes on the nanoscale, three specific Pt/C catalysts with different structural characteristics were investigated in depth: a conventional Pt/Vulcan catalyst with a particle size of 3–4 nm and two Pt@HGS catalysts with different particle size, 1–2 nm and 3–4 nm. Specifically, Pt@HGS corresponds to platinum nanoparticles incorporated and confined within the pore structure of the nanostructured carbon support, i.e., hollow graphitic spheres (HGS. All three materials are characterized by the same platinum loading, so that the differences in their performance can be correlated to the structural characteristics of each material. The comparison of the activity and stability behavior of the three catalysts, as obtained from thin film rotating disk electrode measurements and identical location electron microscopy, is also extended to commercial materials and used as a basis for a discussion of general fuel cell catalyst design principles. Namely, the effects of particle size, inter-particle distance, certain support characteristics and thermal treatment on the catalyst performance and in particular the catalyst stability are evaluated. Based on our results, a set of design criteria for more stable and active Pt/C and Pt-alloy/C materials is suggested.

  20. Vertically aligned single-walled carbon nanotubes as low-cost and high electrocatalytic counter electrode for dye-sensitized solar cells.

    Science.gov (United States)

    Dong, Pei; Pint, Cary L; Hainey, Mel; Mirri, Francesca; Zhan, Yongjie; Zhang, Jing; Pasquali, Matteo; Hauge, Robert H; Verduzco, Rafael; Jiang, Mian; Lin, Hong; Lou, Jun

    2011-08-01

    A novel dye-sensitized solar cell (DSSC) structure using vertically aligned single-walled carbon nanotubes (VASWCNTs) as the counter electrode has been developed. In this design, the VASWCNTs serve as a stable high surface area and highly active electrocatalytic counter-electrode that could be a promising alternative to the conventional Pt analogue. Utilizing a scalable dry transfer approach to form a VASWCNTs conductive electrode, the DSSCs with various lengths of VASWCNTs were studied. VASWCNTs-DSSC with 34 μm original length was found to be the optimal choice in the present study. The highest conversion efficiencies of VASWCNTs-DSSC achieved 5.5%, which rivals that of the reference Pt DSSC. From the electrochemical impedance spectroscopy analysis, it shows that the new DSSC offers lower interface resistance between the electrolyte and the counter electrode. This reproducible work emphasizes the promise of VASWCNTs as efficient and stable counter electrode materials in DSSC device design, especially taking into account the low-cost merit of this promising material.

  1. Electrochemical deposition of gold-platinum alloy nanoparticles on an indium tin oxide electrode and their electrocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Song Yan; Ma Yuting; Wang Yuan [Department of Chemistry, Soochow University, Suzhou, Jiangsu 215123 (China); Di Junwei, E-mail: djw@suda.edu.c [Department of Chemistry, Soochow University, Suzhou, Jiangsu 215123 (China); Tu Yifeng [Department of Chemistry, Soochow University, Suzhou, Jiangsu 215123 (China)

    2010-07-01

    Gold-platinum (Au-Pt) hybrid nanoparticles (Au-PtNPs) were successfully deposited on an indium tin oxide (ITO) surface using a direct electrochemical method. The resulting nanoparticles were characterized by scanning electron microscopy (SEM), UV-vis spectroscopy, X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and electrochemical methods. It was found that the size of the Au-PtNPs depends on the number of electrodeposition cycles. Au-PtNPs obtained by 20 electrodeposition cycles had a cauliflower-shaped structure with an average diameter of about 60 nm. These Au-PtNPs exhibited alloy properties. Electrochemical measurements showed that the charge transfer resistivity was significantly decreased for the Au-PtNPs/ITO electrode. Additionally, the Au-PtNPs displayed an electrocatalytic activity for nitrite oxidation and oxygen reduction. The Au-PtNPs/ITO electrodes reported herein could possibly be used as electrocatalysts and sensors.

  2. Simple fabrication of active electrodes using direct laser transference

    International Nuclear Information System (INIS)

    Cavallo, P.; Coneo Rodriguez, R.; Broglia, M.; Acevedo, D.F.; Barbero, C.A.

    2014-01-01

    Highlights: •Electroactive materials can be transferred using a single pulse of laser light. •The transfer is made in air using a 6 ns pulse of Nd-YAG laser (532 or 1064 nm). •Conducting polymers films can be transferred maintaining the electroactivity. •Conducting polymer multilayers can be deposited using successive pulses. •Metallic (Au, Pt) transferred micro/nanoparticles are electrocatalytic. -- Abstract: Direct laser transference (DLT) method is applied to obtain electrodes modified with thin films of conducting polymers (CPs) or catalytic metals. A short (6–10 ns) pulse of laser light (second harmonic of Nd-YAG Laser, λ = 532 nm) is shined on the backside of a thin (<200 nm) film of the material to be transferred, which is deposited on a transparent substrate. The illuminated region heats up and the material (conducting polymer or metal) is thermally transferred to a solid target placed at short distance in air. In that ways, CPs are transferred onto polypropylene, glass, indium doped tin oxide (ITO), glassy carbon and gold films. In the same manner, electrocatalytic metals (platinum or gold) are transferred onto conductive substrates (glassy carbon or ITO films on glass). The films have been characterized by scanning electron microscopy, cyclic voltammetry, atomic force microscopy, UV-visible and Fourier Transform Infrared spectroscopies. The chemical, electrical and redox properties of the polymeric materials transferred remain unaltered after the transfer. Moreover, CP multilayers can be built applying DLT several times onto the same substrate. Besides polyaniline, it is shown that it is also possible to transfer functionalized polyanilines. The electrode modified with transferred Pt shows electrocatalytic activity toward methanol oxidation while ferricyanide shows a quasireversible behavior on electrodes modified with transferred Au. The method is simple and fast, works in air without complex environmental conditions and can produce active

  3. Platinum nanoparticles decorated dendrite-like gold nanostructure on glassy carbon electrodes for enhancing electrocatalysis performance to glucose oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Hongmei [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); Chang, Gang, E-mail: changgang@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); Lei, Ming [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); He, Hanping [College of Chemistry and Chemical Engineer, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062 (China); Liu, Xiong; Shu, Honghui; Xia, Tiantian; Su, Jie [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); He, Yunbin, E-mail: ybhe@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China)

    2016-10-30

    Highlights: • Pt/DGNs/GC composites were obtained via a clean and facile method without any templates, surfactants, or stabilizers. • Controlling chemical reduction deposition time, the amount of platinum nanoparticles on Au surface could be regulated, which further tuned electrocatalytic properties toward glucose oxidation. • The obtained Pt/DGNs/GC composites with high electrochemical active surface area (ECSA) show superior electrocatalytic activity to glucose. • The sensor based on Pt/DGNs/GC exhibited excellent sensitivity, selectivity and stability for nonenzymatic glucose detection. - Abstract: Platinum nanoparticles decorated dendrite-like gold nanostructure, bimetal composite materials on glassy carbon electrode (Pt/DGNs/GC) for enhancing electrocatalysis to glucose oxidation was designed and successfully fabricated by a facile two-step deposition method without any templates, surfactants, or stabilizers. Dendrite-like gold nanostructure was firstly deposited on the GC electrode via the potentiostatic method, and then platinum nanoparticles were decorated on the surface of gold substrate through chemical reduction deposition. X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) were applied to characterize the evolution of morphology and structure of the as-prepared Pt/DGNs/GC. Based on electrochemical measurements such as cyclic voltammetry, linear voltammetry and chronoamperometry, Pt/DGNs/GC exhibited significantly enhanced electrocatalytic performance to glucose oxidation compared those of pure dendrite-like Au nanoparticles in our previous report. Controlling chemical reduction deposition time, the amount of platinum nanoparticles on Au surface could be regulated, which further tuned electrocatalytic properties toward glucose oxidation. The dendrite-like gold surface partially covered by platinum nanoparticles dramatically enhanced the electrocatalytic performance for the

  4. Electrocatalysis of the hydrogen oxidation in the presence of CO on RhO{sub 2}/C-supported Pt nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, K.S.; Lopes, P.P. [Instituto de Quimica de Sao Carlos, USP, C.P. 780, Sao Carlos, SP 13560-970 (Brazil); Ticianelli, E.A., E-mail: edsont@iqsc.usp.b [Instituto de Quimica de Sao Carlos, USP, C.P. 780, Sao Carlos, SP 13560-970 (Brazil)

    2010-12-15

    This work presents a study on the kinetics of the hydrogen oxidation reaction (HOR) in the absence and in the presence of CO in ultra thin porous layer and in PEM fuel cell electrodes formed with Pt supported on RhO{sub 2}/C substrates. Together with the electrochemical measurements, the structural and electronic properties of these catalysts were characterized, enabling to correlate their structural and electronic properties with the HOR kinetics. The results show that the presence of Rh oxides leads to an emptying of the Pt 5d band and a consequent reduction of the back-donation of electrons from Pt to CO, weakening the Pt-CO bond and diminishing the CO degree of coverage on Pt, leaving more sites available to HOR. These changes in the electronic spectra do not lead to any perceptible change in the kinetics or the reaction of pure hydrogen. Also, the formation of CO{sub 2} monitored by the MS experiments in the fuel cell anode outlet indicates that the bifunctional mechanism is also operative, but the major CO tolerance is achieved by the electronic effect induced by the RhO{sub 2} support.

  5. Cross-beam pulsed laser fabrication of Free-Standing Nanostructured Carbon Nanotubes-Pt-Ceria Anode with unprecedented electroactivity and durability for ethanol oxidation

    Science.gov (United States)

    Wang, Youling; Tabet-Aoul, Amel; Gougis, Maxime; Mohamedi, Mohamed

    2015-01-01

    Owing to its inherent properties such as great capacity to store and release oxygen, lattice oxygen that has a key role in removing the CO poisoning effect, non-toxicity, abundance, low cost and low temperature processing, CeO2 is emerging as a unique class of electrode material for low temperature polymer electrolyte fuel cells such as direct ethanol fuel cells (DEFCs). However, the maximal exploitation of its functional properties is strictly reliant on the availability of optimized synthesis routes that allow tailor-designing, architecturing and manipulation of CeO2 in a precise manner when it is combined with other functional materials. Here we use the cross-beam pulsed laser deposition (CBPLD) technique to synthesize free-standing (binderless) Pt-CeO2 nanostructured thin films onto carbon nanotubes as anodes for ethanol oxidation reaction. Further significance of this work is that it establishes the importance in the design of the catalyst layer architecture. Indeed, we demonstrate here that when CeO2 material is beneath or when it is mixed with Pt, the interactions between Pt with CeO2 are not similar leading inevitably to different electrocatalytic performances. Given proper tailoring synthesis conditions, CBPLD-developed Pt-CeO2 thin films are remarkably stable and provide electrochemical performance much greater than the layer onto layer CeO2/Pt architecture.

  6. Determination of the apparent transfer coefficient for CO oxidation on Pt(poly), Pt(111), Pt(665) and Pt(332) using a potential modulation technique.

    Science.gov (United States)

    Wang, Han-Chun; Ernst, Siegfried; Baltruschat, Helmut

    2010-03-07

    The apparent transfer coefficient, which gives the magnitude of the potential dependence of the electrochemical reaction rates, is the key quantity for the elucidation of electrochemical reaction mechanisms. We introduce the application of an ac method to determine the apparent transfer coefficient alpha' for the oxidation of pre-adsorbed CO at polycrystalline and single-crystalline Pt electrodes in sulfuric acid. The method allows to record alpha' quasi continuously as a function of potential (and time) in cyclic voltammetry or at a fixed potential, with the reaction rate varying with time. At all surfaces (Pt(poly), Pt(111), Pt(665), and Pt(332)) we clearly observed a transition of the apparent transfer coefficient from values around 1.5 at low potentials to values around 0.5 at higher potentials. Changes of the apparent transfer coefficients for the CO oxidation with potential were observed previously, but only from around 0.7 to values as low as 0.2. In contrast, our experimental findings completely agree with the simulation by Koper et al., J. Chem. Phys., 1998, 109, 6051-6062. They can be understood in the framework of a Langmuir-Hinshelwood mechanism. The transition occurs when the sum of the rate constants for the forward reaction (first step: potential dependent OH adsorption, second step: potential dependent oxidation of CO(ad) with OH(ad)) exceeds the rate constant for the back-reaction of the first step. We expect that the ac method for the determination of the apparent transfer coefficient, which we used here, will be of great help also in many other cases, especially under steady conditions, where the major limitations of the method are avoided.

  7. Pt based anode catalysts for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Weijiang; Zhou, Zhenhua; Song, Shuqin; Li, Wenzhen; Sun, Gongquan; Xin, Qin [Direct Alcohol Fuel Cell Laboratory, Dalian Institute of Chemical Physics, CAS, P.O. Box 110, Dalian 116023 (China); Tsiakaras, Panagiotis [Department of Mechanical and Industrial Engineering, University of Thessalia, Pedion Areos, GR 38334 Volos (Greece) 7

    2003-11-10

    In the present work several Pt-based anode catalysts supported on carbon XC-72R were prepared with a novel method and characterized by means of XRD, TEM and XPS analysis. It was found that all these catalysts are consisted of uniform nanosized particles with sharp distribution and Pt lattice parameter decreases with the addition of Ru or Pd and increases with the addition of Sn or W. Cyclic voltammetry (CV) measurements and single direct ethanol fuel cell (DEFC) tests jointly showed that the presence of Sn, Ru and W enhances the activity of Pt towards ethanol electro-oxidation in the following order: Pt{sub 1}Sn{sub 1}/C>Pt{sub 1}Ru{sub 1}/C>Pt{sub 1}W{sub 1}/C>Pt{sub 1}Pd{sub 1}/C>Pt/C. Moreover, Pt{sub 1}Ru{sub 1}/C further modified by W and Mo showed improved ethanol electro-oxidation activity, but its DEFC performance was found to be inferior to that measured for Pt{sub 1}Sn{sub 1}/C. Under this respect, several PtSn/C catalysts with different Pt/Sn atomic ratio were also identically prepared and characterized and their direct ethanol fuel cell performances were evaluated. It was found that the single direct ethanol fuel cell having Pt{sub 1}Sn{sub 1}/C or Pt{sub 3}Sn{sub 2}/C or Pt{sub 2}Sn{sub 1}/C as anode catalyst showed better performances than those with Pt{sub 3}Sn{sub 1}/C or Pt{sub 4}Sn{sub 1}/C. It was also found that the latter two cells exhibited higher performances than the single cell using Pt{sub 1}Ru{sub 1}/C, which is exclusively used in PEMFC as anode catalyst for both methanol electro-oxidation and CO-tolerance. This distinct difference in DEFC performance between the catalysts examined here would be attributed to the so-called bifunctional mechanism and to the electronic interaction between Pt and additives. It is thought that an amount of -OH{sub ads}, an amount of surface Pt active sites and the conductivity effect of PtSn/C catalysts would determine the activity of PtSn/C with different Pt/Sn ratios. At lower temperature values or at low

  8. Effects of Cr underlayer and Pt buffer layer on the interfacial structure and magnetic characteristics of sputtered FePt films

    International Nuclear Information System (INIS)

    Sun, A.-C.; Hsu, J.-H.; Huang, H.L.; Kuo, P.C.

    2006-01-01

    This work develops a new method for growing L1 0 FePt(0 0 1) thin film on a Pt/Cr bilayer using an amorphous glass substrate. Semi-coherent epitaxial growth was initiated from the Cr(0 0 2) underlayer, continued through the Pt(0 0 1) buffer layer, and extended into the L1 0 FePt(0 0 1) magnetic layer. The squareness of the L1 0 FePt film in the presence of both a Cr underlayer and a Pt buffer layer was close to unity as the magnetic field was applied perpendicular to the film plane. The single L1 0 FePt(1 1 1) orientation was observed in the absence of a Cr underlayer. When a Cr underlayer is inserted, the preferred orientation switched from L1 0 FePt(1 1 1) to L1 0 FePt(0 0 1) and the magnetic film exhibited perpendicular magnetic anisotropy. However, in the absence of an Pt intermediate layer, the Cr atoms diffused directly into the FePt magnetic layer and prevented the formation of the L1 0 FePt(0 0 1) preferred orientation. When a Pt buffer layer was introduced between the FePt and Cr underlayer, the L1 0 FePt(0 0 1) peak appeared. The thickness of the Pt buffer layer also substantially affected the magnetic properties and atomic arrangement at the FePt/Pt and Pt/Cr interfaces

  9. Characterisation of nano-interdigitated electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Skjolding, L H D; Ribayrol, A; Montelius, L [Division of Solid State Physics, Lund University, Box 118, SE-221 00 Lund (Sweden); Spegel, C [Department of Analytical Chemistry Lund University, Box 124, SE-221 00 Lund (Sweden); Emneus, J [MIC - Department of Micro and Nanotechnology, DTU - Building 345 East, DK-2800 Kgs. Lyngby (Denmark)], E-mail: lars_henrik.daehli_skjolding@ftf.lth.se

    2008-03-15

    Interdigitated electrodes made up of two individually addressable interdigitated comb-like electrode structures have frequently been suggested as ultra sensitive electrochemical biosensors. Since the signal enhancement effects due to cycling of the reduced and oxidized species are strongly dependent on the inter electrode distances, since the nature of the enhancement is due to overlying diffusion layers, interdigitated electrodes with an electrode separation of less then one micrometer are desired for maximum signal amplification. Fabrication of submicron structures can only be made by advanced lithography techniques. By use of electron beam lithography we have fabricated arrays of interdigitated electrodes with an electrode separation distance of 200 nm and an electrode finger width of likewise 200 nm. The entire electrode structure is 100 micrometre times 100 micrometre, and the active electrode area is dictated by the opening in the passivation layer, that is defined by UV lithography. Here we report measurements of redox cycling of ferrocyanide by coupled cyclic voltammograms, where the potential at one of the working electrodes are varied and either an oxidising or reducing potential is applied to the complimentary interdigitated electrode. The measurements show fast conversion and high collection efficiency round 87% as expected for nano-interdigitated electrodes.

  10. Surface and electrochemical characterization of electrodeposited PtRu alloys

    Science.gov (United States)

    Richarz, Frank; Wohlmann, Bernd; Vogel, Ulrich; Hoffschulz, Henning; Wandelt, Klaus

    1995-07-01

    PtRu alloys of different compositions were electrodeposited on Au. Twelve alloys between 0% and 100% Pt were characterized with surface sensitive spectroscopies (XPS, LEIS) after transfer from an electrochemical cell to an ultra high vaccum chamber without contact to air. The composition of the thus prepared alloys showed a linear dependence on the concentrations of the deposition solution, but was Pt-enriched both in the bulk and (even more so) at the surface. During the electrochemical reduction of the metal cations, sulfur from the supporting electrolyte 1N H 2SO 4 was found to be incorporated into the electrodes. Cyclic voltammetry was used for the determination of the electrocatalytic activity of the electrodes for the oxidation of carbon monoxide. The highest activity for this oxidation as measured by the (peak) potential of the CO oxidation cyclovoltammograms was found for a surface concentration of ˜ 50%Pt. The asymmetry of this "activity curve" (oxidation potential versus Pt surface concentration) is tentatively explained in terms of a surface structural phase separation.

  11. Interpenetrating polyaniline-gold electrodes for SERS and electrochemical measurements

    Science.gov (United States)

    West, R. M.; Semancik, S.

    2016-11-01

    Facile fabrication of nanostructured electrode arrays is critical for development of bimodal SERS and electrochemical biosensors. In this paper, the variation of applied potential at a polyaniline-coated Pt electrode is used to selectivity deposit Au on the polyaniline amine sites or on the underlying Pt electrode. By alternating the applied potential, the Au is grown simultaneously from the top and the bottom of the polyaniline film, leading to an interpenetrated, nanostructured polymer-metal composite extending from the Pt electrode to the electrolyte solution. The resulting films have unique pH-dependent electrochemical properties, e.g. they retain electrochemical activity in both acidic and neutral solutions, and they also include SERS-active nanostructures. By varying the concentration of chloroaurate used during deposition, Au nanoparticles, nanodendrites, or nanosheets can be selectively grown. For the films deposited under optimal conditions, using 5 mmol/L chloroaurate, the SERS enhancement factor for Rhodamine 6G was found to be as high as 1.1 × 106 with spot-to-spot and electrode-to-electrode relative standard deviations as low as 8% and 12%, respectively. The advantages of the reported PANI-Au composite electrodes lie in their facile fabrication, enabling the targeted deposition of tunable nanostructures on sensing arrays, and their ability to produce orthogonal optical and electrochemical analytical results.

  12. Characterization of a New Phase and Its Effect on the Work Characteristics of a Near-Stoichiometric Ni30Pt20Ti50 High-Temperature Shape Memory Alloy (HTSMA)

    Science.gov (United States)

    Garg, A.; Gaydosh, D.; Noebe, R.D.; Padula II, Santo; Bigelow, G.S.; Kaufman, M.; Kovarik, L.; Mills, M.J.; Diercks, D.; McMurray, S.

    2008-01-01

    A new phase observed in a nominal Ni30Pt20Ti50 (at.%) high temperature shape memory alloy has been characterized using transmission electron microscopy and 3-D atom probe tomography. This phase forms homogeneously in the B2 austenite matrix by a nucleation and growth mechanism and results in a concomitant increase in the martensitic transformation temperature of the base alloy. Although the structure of this phase typically contains a high density of faults making characterization difficult, it appears to be trigonal (-3m point group) with a(sub o) approx. 1.28 nm and c(sub o) approx. 1.4 nm. Precipitation of this phase increases the microhardness of the alloy substantially over that of the solution treated and quenched single-phase material. The effect of precipitation strengthening on the work characteristics of the alloy has been explored through load-biased strain-temperature testing in the solution-treated condition and after aging at 500 C for times ranging from 1 to 256 hours. Work output was found to increase in the aged alloy as a result of an increase in transformation strain, but was not very sensitive to aging time. The amount of permanent deformation that occurred during thermal cycling under load was small but increased with increasing aging time and stress. Nevertheless, the dimensional stability of the alloy at short aging times (1-4 hours) was still very good making it a potentially useful material for high-temperature actuator applications.

  13. Electrode interface controlled electrical properties in epitaxial Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} films grown on Si substrates with SrTiO{sub 3} buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Boni, Andra Georgia, E-mail: andra.boni@infim.ro [National Institute of Materials Physics, Atomistilor 105bis, Magurele, Ilfov 77125 (Romania); University of Bucharest, Faculty of Physics, Magurele 077125 (Romania); Chirila, Cristina; Pasuk, Iuliana; Negrea, Raluca; Trupina, Lucian [National Institute of Materials Physics, Atomistilor 105bis, Magurele, Ilfov 77125 (Romania); Le Rhun, Gwenael [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France); Vilquin, Bertrand [Université de Lyon, Ecole Centrale de Lyon, INL, CNRS UMR5270, 36 avenue Guy de Collongue, F-69134 Ecully cedex (France); Pintilie, Ioana; Pintilie, Lucian [National Institute of Materials Physics, Atomistilor 105bis, Magurele, Ilfov 77125 (Romania)

    2015-10-30

    Electrical properties of ferroelectric capacitors based on PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} thin films grown by pulsed laser deposition on silicon substrate with SrTiO{sub 3} buffer layer grown by molecular beam epitaxy were studied. A SrRuO{sub 3} layer was deposited as bottom electrode also by pulse laser deposition and Pt, Ir, Ru, SrRuO{sub 3} were used as top contacts. Electrical characterization comprised hysteresis and capacitance–voltage measurements in the temperature range from 150 K to 400 K. It was found that the macroscopic electrical properties are affected by the electrode interface, by the choice of the top electrode. However, even for metals with very different work functions (e.g. Pt and SrRuO{sub 3}) the properties of the top and bottom electrode interfaces remain fairly symmetric suggesting a strong influence from the bound polarization charges located near the interface. - Highlights: • Ferroelectric capacitors based on PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} were deposited on Si substrate. • The structural characterization proved the epitaxial growth of the layers. • Macroscopic electrical properties are affected by the choice of the top electrode. • The difference on imprint field, dielectric constant are analyzed depending on the electrode-ferroelectric interface.

  14. Sintering of Pt nanoparticles via volatile PtO_2: Simulation and comparison with experiments

    International Nuclear Information System (INIS)

    Plessow, Philipp N.; Abild-Pedersen, Frank

    2016-01-01

    It is a longstanding question whether sintering of platinum under oxidizing conditions is mediated by surface migration of Pt species or through the gas phase, by PtO_2(g). Clearly, a rational approach to avoid sintering requires understanding the underlying mechanism. A basic theory for the simulation of ripening through the vapor phase has been derived by Wynblatt and Gjostein. Recent modeling efforts, however, have focused entirely on surface-mediated ripening. In this work, we explicitly model ripening through PtO_2(g) and study how oxygen pressure, temperature, and shape of the particle size distribution affect sintering. On the basis of the available data on α-quartz, adsorption of monomeric Pt species on the support is extremely weak and has therefore not been explicitly simulated, while this may be important for more strongly interacting supports. Our simulations clearly show that ripening through the gas phase is predicted to be relevant. Assuming clean Pt particles, sintering is generally overestimated. This can be remedied by explicitly including oxygen coverage effects that lower both surface free energies and the sticking coefficient of PtO_2(g). Additionally, mass-transport limitations in the gas phase may play a role. Using a parameterization that accounts for these effects, we can quantitatively reproduce a number of experiments from the literature, including pressure and temperature dependence. Lastly, this substantiates the hypothesis of ripening via PtO_2(g) as an alternative to surface-mediated ripening.

  15. A pre-anodized inlaying ultrathin carbon paste electrode for simultaneous determination of uric acid and folic acid

    International Nuclear Information System (INIS)

    Huo, Jing’e; Shangguan, Enbo; Li, Quanmin

    2013-01-01

    Graphical abstract: In 0.10 mol/L PBS (pH 6.00), oxidation reaction occurred at the PAIUCPE owing to uric acid (UA) loss electrons, while oxygen dissolved in the feed was reduced at the platinum electrode. Furthermore, the effect of electrode reaction at the platinum electrode on that of working electrode is detailedly discussed. Highlights: ► The simultaneous determination of UA and FA is achieved at the PAIUCPE. ► The effect of reaction at the Pt electrode on that of working electrode is discussed. ► The effect of pH on peak currents is detailedly explained for the first time. -- Abstract: A pre-anodized inlaying ultrathin carbon paste electrode (PAIUCPE) was prepared by electrochemical pretreatment. The scanning electron microscope (SEM) was applied to characterize the surface morphology of PAIUCPE and the performance of the electrode was characterized by cyclic voltammetry (CV). The results indicated that PAIUCPE displayed excellent electrocatalysis for the oxidation of uric acid (UA) and folic acid (FA). The separated extent between the two oxidation peaks of UA and FA was 324 mV, which was enough for the simultaneous detection. In 0.10 mol/L PBS (pH 6.00), the linear scan voltammetry (LSV) response of UA and FA increased linearly with the concentration in the range of 4.0 × 10 −6 –3.5 × 10 −4 mol/L and 3.0 × 10 −6 –2.0 × 10 −4 mol/L with the detection limits of 1.1 × 10 −7 mol/L and 1.5 × 10 −7 mol/L, respectively. It was successfully used to determine UA and FA in human urine simultaneously

  16. Operando X-ray investigation of solid oxide fuel cell model electrodes

    International Nuclear Information System (INIS)

    Volkov, Sergey Aleksandrovic

    2017-04-01

    A detailed study of three solid oxide fuel cells (SOFCs) related model systems is presented in this work with the aim of the better understanding of the structural changes in cell components associated with their operation. The first model system is an La_0_._6Sr_0_._4CoO_3_-_d (LSC) on yttria-stabilized zirconia (YSZ). Changes in the YSZ(100) single crystal surface structure buried under the squared LSC microelectrode were studied at a synchrotron under operational conditions. High flux photon beam at the synchrotron allowed access to the LSC/YSZ interface. Structural information from the substrate surface at an atomic scale was acquired. Element-specific anomalous XRD data allowed to distinguish between Y and Zr scattering contributions. For the first time, it was shown that the Y cation concentration at the electrode/electrolyte interface strongly depends on the sample environment and the applied potential. The second model system is a Pt/YSZ. Buried YSZ(111) surface and dense Pt film morphology changes under operational conditions were addressed. High-energy X-rays were necessary to collect surface-sensitive information from the interface due to highly absorbing Pt film. The main conclusion is - under conditions applied, the YSZ single crystal surface remains stable at an atomic level. A nagging topic of the Pt ''phase oxide'' formation at the Pt/YSZ interface during anodic polarization was also raised. Although XRD data did not show a clear evidence of PtO_x presence at the interface, energy-dispersive X-ray analysis of the film cross-cut profile after the synchrotron experiment revealed distinct oxygen signal from delaminated parts of the film. Last but not least, the structure of a ZrO_2 ultrathin film grown on a Pt_3Zr(0001) single crystal was studied in ultra-high vacuum for the first time be means of SXRD. This model system is aiming to improve understanding of the electrolyte materials based on ZrO_2 (e.g. YSZ) at an atomic level. The results obtained

  17. Operando X-ray investigation of solid oxide fuel cell model electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, Sergey Aleksandrovic

    2017-04-15

    A detailed study of three solid oxide fuel cells (SOFCs) related model systems is presented in this work with the aim of the better understanding of the structural changes in cell components associated with their operation. The first model system is an La{sub 0.6}Sr{sub 0.4}CoO{sub 3-d} (LSC) on yttria-stabilized zirconia (YSZ). Changes in the YSZ(100) single crystal surface structure buried under the squared LSC microelectrode were studied at a synchrotron under operational conditions. High flux photon beam at the synchrotron allowed access to the LSC/YSZ interface. Structural information from the substrate surface at an atomic scale was acquired. Element-specific anomalous XRD data allowed to distinguish between Y and Zr scattering contributions. For the first time, it was shown that the Y cation concentration at the electrode/electrolyte interface strongly depends on the sample environment and the applied potential. The second model system is a Pt/YSZ. Buried YSZ(111) surface and dense Pt film morphology changes under operational conditions were addressed. High-energy X-rays were necessary to collect surface-sensitive information from the interface due to highly absorbing Pt film. The main conclusion is - under conditions applied, the YSZ single crystal surface remains stable at an atomic level. A nagging topic of the Pt ''phase oxide'' formation at the Pt/YSZ interface during anodic polarization was also raised. Although XRD data did not show a clear evidence of PtO{sub x} presence at the interface, energy-dispersive X-ray analysis of the film cross-cut profile after the synchrotron experiment revealed distinct oxygen signal from delaminated parts of the film. Last but not least, the structure of a ZrO{sub 2} ultrathin film grown on a Pt{sub 3}Zr(0001) single crystal was studied in ultra-high vacuum for the first time be means of SXRD. This model system is aiming to improve understanding of the electrolyte materials based on ZrO{sub 2} (e

  18. Highly Efficient Laser Scribed Graphene Electrodes for On-Chip Electrochemical Sensing Applications

    KAUST Repository

    Nayak, Pranati; Kurra, Narendra; Xia, Chuan; Alshareef, Husam N.

    2016-01-01

    for inner and outer-sphere redox mediators by selective anchoring of Pt nanoparticles over LSG. The LSG electrodes exhibit significantly improved electrocatalytic activity toward oxidation of ascorbic acid (AA), dopamine (DA), and uric acid (UA

  19. Comparison of the electron work function, hole concentration and exciton diffusion length for P3HT and PT prepared by thermal or acid cleavage

    DEFF Research Database (Denmark)

    Tousek, J.; Touskova, J.; Ludvík, J.

    2016-01-01

    samples were prepared from 2 different precursors by thermal or chemical treatment at room temperature. Cyclic voltammetry and work function measurements were used for estimating the concentration of holes. The measured data were evaluated assuming the validity of band theory based on the tight......-binding model. Published data on the valence bandwidth were used for calculating the value of the overlap integral which is related to the hole effective mass. Energy band diagrams were constructed for all 3 materials. Finally, the exciton diffusion length, which is a critical parameter for the application....... It is stated that a native polythiophene prepared by treatment with acids is a prospective material for solar cells and shows a similar quality as that produced by a thermal process. © 2015 Elsevier Ltd. All rights reserved....

  20. SiO2 stabilized Pt/C cathode catalyst for proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Zhu Tong; Du Chunyu; Liu Chuntao; Yin Geping; Shi Pengfei

    2011-01-01

    This paper describes the preparation of SiO 2 stabilized Pt/C catalyst (SiO 2 /Pt/C) by the hydrolysis of alkoxysilane, and examines the possibility that the SiO 2 /Pt/C is used as a durable cathode catalyst for proton exchange membrane fuel cells (PEMFCs). TEM and XRD results revealed that the hydrolysis of alkoxysilane did not significantly change the morphology and crystalline structure of Pt particles. The SiO 2 /Pt/C catalyst exhibited higher durability than the Pt/C one, due to the facts that the silica layers covered were beneficial for reducing the Pt aggregation and dissolution as well as increasing the corrosion resistance of supports, although the benefit of silica covering was lower than the case of Pt/CNT catalyst. Also, it was observed that the activity of the SiO 2 /Pt/C catalyst for the oxygen reduction reaction was somewhat reduced compared to the Pt/C one after the silica covering. This reduction was partially due to the low oxygen kinetics as revealed by the rotating-disk-electrode measurement. Silica covering by hydrolysis of only 3-aminopropyl trimethoxysilane is able to achieve a good balance between the durability and activity, leading to SiO 2 /Pt/C as a promising cathode catalyst for PEMFCs.

  1. Ultrahigh PEMFC performance of a thin-film, dual-electrode assembly with tailored electrode morphology.

    Science.gov (United States)

    Jung, Chi-Young; Kim, Tae-Hyun; Yi, Sung-Chul

    2014-02-01

    A dual-electrode membrane electrode assembly (MEA) for proton exchange membrane fuel cells with enhanced polarization under zero relative humidity (RH) is fabricated by introducing a phase-separated morphology in an agglomerated catalyst layer of Pt/C (platinum on carbon black) and Nafion. In the catalyst layer, a sufficient level of phase separation is achieved by dispersing the Pt catalyst and the Nafion dispersion in a mixed-solvent system (propane-1,2,3-triol/1-methyl-2-pyrrolidinone).The high polymer chain mobility results in improved water uptake and regular pore-size distribution with small pore diameters. The electrochemical performance of the dual-film electrode assembly with different levels of phase separation is compared to conventional electrode assemblies. As a result, good performance at 0 % RH is obtained because self-humidification is dramatically improved by attaching this dense and phase-separated catalytic overlayer onto the conventional catalyst layer. A MEA prepared using the thin-film, dual-layered electrode exhibits 39-fold increased RH stability and 28-fold improved start-up recovery time during the on-off operation relative to the conventional device. We demonstrate the successful operation of the dual-layered electrode comprised of discriminatively phase-separated agglomerates with an ultrahigh zero RH fuel-cell performance reaching over 95 % performance of a fully humidified MEA. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Amplified amperometric aptasensor for selective detection of protein using catalase-functional DNA-PtNPs dendrimer as a synergetic signal amplification label.

    Science.gov (United States)

    Zhang, Juan; Yuan, Yali; biXie, Shun; Chai, Yaqin; Yuan, Ruo

    2014-10-15

    In this work, we present a new strategy to construct an electrochemical aptasensor for sensitive detection of platelet-derived growth factor BB (PDGF-BB) based on the synergetic amplification of a three-dimensional (3D) nanoscale catalase (CAT) enzyme-functional DNA-platinum nanoparticles (PtNPs) dendrimer through autonomous layer-by-layer assembly. Firstly, polyamidoaminedendrimer (PAMAM) with a hyper-branched and three-dimensional structure was served as nanocarriers to coimmobilize a large number of PDGF-BB binding aptamer (PBA II) and ssDNA 1 (S1) to form PBA II-PAMAM-S1 bioconjugate. In the presence of PDGF-BB, the bioconjugate was self-assembled on the electrode by sandwich assay. Following that, the carried S1 propagated a chain reaction of hybridization events between CAT-PtNPs-S1 and CAT-PtNPs-ssDNA 2 (S2) to form a 3D nanoscale CAT-functional PtNPs-DNA dendrimer, which successfully immobilized substantial CAT enzyme and PtNPs with superior catalysis activity. In this process, the formed negatively charged double-helix DNA could cause the intercalation of hexaammineruthenium(III) chloride (RuHex) into the groove via electrostatic interactions. Thus, numerous RuHex redox probes and CAT were decorated inside/outside of the dendrimer. In the presence of H2O2 in electrolytic cell, the synergistic reaction of CAT and PtNPs towards electrocatalysis could further amplify electrochemical signal. Under optimal condition, the CAT-PtNPs-DNA dendrimer-based sensing system presented a linear dependence between the reduction peak currents and logarithm of PDGF-BB concentrations in the range of 0.00005-35 nM with a relatively low detection limit of 0.02 pM. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Enhanced activity and interfacial durability study of ultra low Pt based electrocatalysts prepared by ion beam assisted deposition (IBAD) method

    International Nuclear Information System (INIS)

    Ramaswamy, N.; Arruda, T.M.; Wen, W.; Hakim, N.; Saha, M.; Gulla, A.; Mukerjee, S.

    2009-01-01

    Ultra low loading noble metal (0.04-0.12 mg Pt /cm 2 ) based electrodes were obtained by direct metallization of non-catalyzed gas diffusion layers via dual ion beam assisted deposition (IBAD) method. Fuel cell performance results reported earlier indicate significant improvements in terms of mass specific power density of 0.297 g Pt /kW with 250 A thick IBAD deposit (0.04 mg Pt /cm 2 for a total MEA loading of 0.08 mg Pt /cm 2 ) at 0.65 V in contrast to the state of the art power density of 1.18 g Pt /kW using 1 mg Pt(MEA) /cm 2 at 0.65 V. In this article we report the peroxide radical initiated attack of the membrane electrode assembly utilizing IBAD electrodes in comparison to commercially available E-TEK (now BASF Fuel Cell GmbH) electrodes and find the pathway of membrane degradation as well. A novel segmented fuel cell is used for this purpose to relate membrane degradation to peroxide generation at the electrode/electrolyte interface by means of systematic pre and post analyses of the membrane are presented. Also, we present the results of in situ X-ray absorption spectroscopy (XAS) experiments to elucidate the structure/property relationships of these electrodes that lead to superior performance in terms of gravimetric power density obtained during fuel cell operation.

  4. Kinetic study of methanol oxidation on Pt2Ru3/C catalyst in the alkaline media

    Directory of Open Access Journals (Sweden)

    A. V. TRIPKOVIC

    2007-11-01

    Full Text Available The interaction of acridine orange (AO with double-stranded (ds The electrochemical oxidation of methanol in NaOH solution was examined on a thin film Pt2Ru3/C electrode. The XRD pattern revealed that the Pt2Ru3 alloy consisted of a solid solution of Ru in Pt and a small amount of Ru or a solid solution of Pt in Ru. It was shown that in alkaline solution, the difference in activity between Pt/C and Pt2Ru3/C is significantly smaller than in acid solution. It is proposed that the reaction follows a quasi bifunctional mechanism. The kinetic parameters indicated that the chemical reaction between adsorbed COad and OHad species could be the rate limiting step.

  5. Schiff Base modified on CPE electrode and PCB gold electrode for selective determination of silver ion

    Science.gov (United States)

    Leepheng, Piyawan; Suramitr, Songwut; Phromyothin, Darinee

    2017-09-01

    The schiff base was synthesized by 2,5-thiophenedicarboxaldehyde and 1,2,4-thiadiazole-3,5-diamine with condensation method. There was modified on carbon paste electrode (CPE) and Printed circuit board (PCB) gold electrode for determination silver ion. The schiff base modified electrodes was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. The electrochemical study was reported by cyclic voltammetry method and impedance spectroscopy using modified electrode as working electrode, platinum wire and Ag/AgCl as counter electrode and reference electrode, respectively. The modified electrodes have suitable detection for Ag+. The determination of silver ions using the modified electrodes depended linearly on Ag+ concentration in the range 1×10-10 M to 1×10-7 M, with cyclic voltammetry sensitivity were 2.51×108 μAM-1 and 1.88×108 μAM-1 for PCB gold electrode and CPE electrode, respectively, limits of detection were 5.33×10-9 M and 1.99×10-8 M for PCB gold electrode and CPE electrode, respectively. The modified electrodes have high accuracy, inexpensive and can applied to detection Ag+ in real samples.

  6. Metallization of cyanide-modified Pt(111) electrodes with copper

    DEFF Research Database (Denmark)

    Escribano, Maria Escudero; Wildi, Christopher; Mwanda, Jonathan A.

    2016-01-01

    -cyanide-copper sandwich configuration. STM also shows that the Cu deposit consists of isolated bidimensional nanoislands, which slowly grow through an Ostwald ripening mechanism if the potential is kept negative of the reduction peak. Metallization is not possible in perchloric acid solutions, which implies...

  7. Pt, Au and Ag Electrodes on BiCuVOx

    National Research Council Canada - National Science Library

    Boukamp, Bernard

    1998-01-01

    ...) parallel to a resistance with characteristics of a charge transfer resistance. Both elements show strong dependence on pO2 and polarization level. Results are explained with theoretical and observational arguments.

  8. Platinum/polyaniline transparent counter electrodes for quasi-solid dye-sensitized solar cells with electrospun PVDF-HFP/TiO2 membrane electrolyte

    International Nuclear Information System (INIS)

    Peng, Shengjie; Li, Linlin; Tan, Huiteng; Srinivasan, Madhavi; Mhaisalkar, Subodh G.; Ramakrishna, Seeram; Yan, Qingyu

    2013-01-01

    Composite films of platinum and polyaniline (Pt/PANI) with different Pt loadings are prepared by chemical reduction and then a spin-coating process on fluorine-doped tin oxide (FTO) substrates. The obtained Pt/PANI transparent counter electrodes are applied in quasi-solid dye-sensitized solar cells (QDSCs) from front and rear light illuminations, using electrospun poly(vinylidenefluoride-co-hexafluoropropylene)/TiO 2 (PVDF-HFP/TiO 2 ) as the electrolyte. The analytical results show that the 1.8-nm sized Pt nanoparticles are distributed uniformly in the Pt/PANI film when the Pt loading is 1.5 μg cm −2 . Electrocatalytic activity of the Pt/PANI electrode with 1.5 μg cm −2 Pt loading for the I 3 − /I − redox reaction is higher than the conventional sputtered Pt electrode. Furthermore, the mean optical transmittance of the Pt/PANI electrodes is above 60% in the wavelength of 400–800 nm. The optimal QDSC composed of Pt/PANI with 1.5 μg cm −2 Pt loading exhibits power conversion efficiencies of 6.34% and 3.85%, when measured using an AM1.5G solar simulator at 100 mW cm −2 under front and rear light illuminations. The efficiencies are both higher than those of the QDSCs employing the conventional sputtered Pt counter electrode with 8.3 μg cm −2 Pt loading. Moreover, the QDSC exhibits superior long-term stability. These promising results make the potential application of Pt/PANI films as cost-effective, transparent counter electrodes

  9. Nitrogen-Doped Graphene/Platinum Counter Electrodes for Dye-Sensitized Solar Cells

    KAUST Repository

    Lin, Chinan; Lee, Chuanpei; Ho, Shute; Wei, Tzuchiao; Chi, Yuwen; Huang, Kunping; He, Jr-Hau

    2014-01-01

    Nitrogen-doped graphene (NGR) was utilized in dye-sensitized solar cells for energy harvesting. NGR on a Pt-sputtered fluorine-doped tin oxide substrate (NGR/Pt/FTO) as counter electrodes (CEs) achieves the high efficiency of 9.38% via the nitrogen

  10. Electrochemical formation of a Pt/Zn alloy and its use as a catalyst for oxygen reduction reaction in fuel cells.

    Science.gov (United States)

    Sode, Aya; Li, Winton; Yang, Yanguo; Wong, Phillip C; Gyenge, Elod; Mitchell, Keith A R; Bizzotto, Dan

    2006-05-04

    The characterization of an electrochemically created Pt/Zn alloy by Auger electron spectroscopy is presented indicating the formation of the alloy, the oxidation of the alloy, and the room temperature diffusion of the Zn into the Pt regions. The Pt/Zn alloy is stable up to 1.2 V/RHE and can only be removed with the oxidation of the base Pt metal either electrochemically or in aqua regia. The Pt/Zn alloy was tested for its effectiveness toward oxygen reduction. Kinetics of the oxygen reduction reaction (ORR) were measured using a rotating disk electrode (RDE), and a 30 mV anodic shift in the potential of ORR was found when comparing the Pt/Zn alloy to Pt. The Tafel slope was slightly smaller than that measured for the pure Pt electrode. A simple procedure for electrochemically modifying a Pt-containing gas diffusion electrode (GDE) with Zn was developed. The Zn-treated GDE was pressed with an untreated GDE anode, and the created membrane electrode assembly was tested. Fuel cell testing under two operating conditions (similar anode and cathode inlet pressures, and a larger cathode inlet pressure) indicated that the 30 mV shift observed on the RDE was also evident in the fuel cell tests. The high stability of the Pt/Zn alloy in acidic environments has a potential benefit for fuel cell applications.

  11. Ti-Pt Alloys form mechanical milling

    CSIR Research Space (South Africa)

    Nxumalo, S

    2009-12-01

    Full Text Available C maximum in these alloys. A few researchers have studied the martensitic transformation in TiPt alloys using arc melted cast samples. In this work high temperature shape memory alloys are targeted using powder metallurgy as a processing route....

  12. Synthesis, characterization and catalytic activity toward methanol oxidation of electrocatalyst Pt4+-NH2-MCM-41

    International Nuclear Information System (INIS)

    Zheng Huajun; Chen Zuo; Wang Limin; Ma Chun’an

    2012-01-01

    Highlights: ► It was first confirmed that the Pt 4+ exhibited a good electro-catalytic property for methanol oxidation. ► The Pt 4+ perfectly distributed on a mesoporous molecular sieve matrix synthesis by a facile method. ► The good performance of catalyst resistance to poisoning because of a homogeneous distribution of Pt 4+ and large specific surface area. - Abstract: Mesoporous material with functional group (Pt 4+ -NH 2 -MCM-41) was prepared by grafting aminopropyl group and adsorbing platinum ions on the surface of the commercial molecular sieve (MCM-41). The characterization carried out by X-ray photoelectron spectroscopy, X-ray diffraction, and N 2 adsorption–desorption measurement pointed out that Pt was adsorbed on the NH 2 -MCM-41 surface as the oxidation state (Pt 4+ ) and the surface area of Pt 4+ -NH 2 -MCM-41 was up to 564 m 2 /g. Transmission electron microscopy and elemental mapping indicated a homogeneous distribution of Pt 4+ throughout all surface of the mesoporous materials. Electro-catalytic properties of methanol oxidation on the Pt 4+ -NH 2 -MCM-41 electrode were investigated with electrochemical methods. The results showed that the Pt 4+ -NH 2 -MCM-41 electrode exhibited catalytic activity in the methanol electro-oxidation with the apparent activation energy being 49.29 kJ/mol, and the control step of methanol electro-oxidation was the mass transfer process. It is first proved that platinum ions had good electro-catalytic property for methanol oxidation and provided a new idea for developing electrode materials in future.

  13. Effects of microstructure and composition of anode Pt based electrocatalysts on performance of direct alcohol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, L.; Li, H.; Yan, S.; Sun, G. [Dalian Inst. of Chemical Physics, Dalian (China). Direct Alcohol Fuel Cell Lab; Xin, Q. [Dalian Inst. of Chemical Physics, Dalian (China). Direct Alcohol Fuel Cell Lab; Dalian Inst. of Chemical Physics, Dalian (China). State Key Laboratory of Catalysis

    2008-07-01

    This paper reported on a study in which platinum (Pt)-based electrocatalysts were synthesized and characterized by XRD, TEM and EDS. The focus of the study was on the relationship between the microstructure and components of PtRu and PtSn catalysts and the performance of direct alcohol fuel cells (DAFCs). All of the Pt-based electrocatalysts were prepared by a modified polyol method. XRD patterns of the 2 catalysts showed that both catalysts have an fcc pattern of Pt. This was also confirmed by the shift of diffraction peaks of Pt in both catalysts. Electrochemical measurements were carried out using an EG and G model 273A potentiostat/galvanostat and a three-electrode test cell at room temperature. Membrane electrode assemblies (MEAs) were fabricated with a pair of stainless steel plates with parallel flow-fields. The MEAs were activated by 1 M methanol/ethanol at 75 degrees C for 3 hours before all the data were collected. The study showed that PtRu is active to methanol electrooxidation while PtSn is active to ethanol electrooxidation. Based on the above experimental analysis, it was determined that the dilatation of Pt lattice parameter is favourable for ethanol adsorption, while the suitable contract of Pt lattice parameter is favorable for methanol electrooxidation. Since Pt is more electronegative than Sn, the partial electrons of Sn atom could be transferred to Pt atom leading to filling of Pt d band. Although Ru is as electronegative as Pt, the electric effect of Pt and Ru may not be as pronounced. 4 refs., 4 figs.

  14. Pt, Co–Pt and Fe–Pt alloy nanoclusters encapsulated in virus capsids

    International Nuclear Information System (INIS)

    Okuda, M; Eloi, J-C; Jones, S E Ward; Schwarzacher, W; Verwegen, M; Cornelissen, J J L M

    2016-01-01

    Nanostructured Pt-based alloys show great promise, not only for catalysis but also in medical and magnetic applications. To extend the properties of this class of materials, we have developed a means of synthesizing Pt and Pt-based alloy nanoclusters in the capsid of a virus. Pure Pt and Pt-alloy nanoclusters are formed through the chemical reduction of [PtCl 4 ] − by NaBH 4 with/without additional metal ions (Co or Fe). The opening and closing of the ion channels in the virus capsid were controlled by changing the pH and ionic strength of the solution. The size of the nanoclusters is limited to 18 nm by the internal diameter of the capsid. Their magnetic properties suggest potential applications in hyperthermia for the Co–Pt and Fe–Pt magnetic alloy nanoclusters. This study introduces a new way to fabricate size-restricted nanoclusters using virus capsid. (paper)

  15. Obtaining and characterizing the binary compound Zr3Pt

    International Nuclear Information System (INIS)

    Tanoni, Diego; Arico, Sergio F; Alonso, Paula R

    2006-01-01

    The equilibrium phases in the Zr - Pt binary system are not fully defined. Experiences carried out from 0% to 50% at. Pt in the equilibrium diagram of Zr-Pt phases in 2001 revealed the presence of the intermetallic compounds Zr 2 Pt, Zr 5 Pt 3 , ZrPt (already previously identified by other authors) and a compound of 25% composition at Pt with an unidentified crystalline structure. This experimental work aims to fill out the information on this compound by characterizing its crystallography. An alloy was produced in the binary system Zr-Pt with a composition close to the stoichiometry by casting in an arc furnace, and was studied by optic and electronic metallography. The identification and crystallographic characterization of the phase is based on measurements of composition in electronic microwave and on analysis of spectrums obtained by X-ray diffraction. The results are presented, showing the presence in the cast structure of the solid solution zircon phases (hexagonal) and of the inter-metallic compound Zr 5 Pt 3 . These two phases were identified in the X-ray diffraction diagrams as well as the presence of other reflections that are associated with the inter-metallic Zr 3 Pt. The measurements of composition consistently reveal the presence of a phase of 25%at Pt composition. The structure's morphology shown in metallographies reveals the occurrence of a eutectic type transformation during cooling. We conclude that the formation of the phase sought in a composition 25 % at Pt should occur at temperatures below the eutectic transformation, and could be a peritectoid formation as was previously proposed. Therefore, the sample needs to be homogenized with thermal treatments that favor the formation and stabilization of the compound (CW)

  16. Electrocatalysis of the oxidations of some organic compounds on noble-metal electrodes by foreign-metal ad-atoms

    International Nuclear Information System (INIS)

    Tsang, R.W.

    1981-10-01

    Electrochemical oxidation of formic acid was studied on Pt electrodes in acid, and that of dextrose was studied on Pt and Au in alkali. Poisoning was observed on Pt but not on Au. Several heavy-metal ad-atoms (Pb, Bi, Tl) enhance greatly the anodic currents on Pt, while transition metals (Cu, Zn) inhibit the oxidation on Pt. The enhancement effect of the metal ad-atoms is correlated with electron structure. All metal ad-atoms showed an inhibitory effect on Au. Amperometry showed that Pt electrodes are completely deactivated within 10 s during dextrose oxidation without ad-atoms, while Au retains much of its activity even after 10 min. Ad-atoms maintains the Pt activity over much more than 10 s. 50 figures, 38 tables

  17. Investigation of Au-Pt/C electro-catalysts for oxygen reduction reaction

    International Nuclear Information System (INIS)

    Lin Rui; Zhang Haiyan; Zhao Tiantian; Cao Chunhui; Yang Daijun; Ma Jianxin

    2012-01-01

    Highlights: ► Au-Pt core shell catalyst. ► Seed-mediated growth method. ► Au-Pt (2:4)/C best activity toward ORR. ► Four-electron pathway in acid solution. ► Single cell performance. - Abstract: Carbon-supported Au-Pt core shell nano-structured catalysts were synthesized by the seed-mediated growth method. The nano-structured catalysts were characterized by UV–vis spectroscopy, X-ray photoelectron spectra (XPS) and transmission electron microscopy (TEM) techniques. The oxygen reduction reaction (ORR) activity of the Au-Pt/C was tested by means of linear sweep voltammetry (LSV) by employing rotating disk electrode (RDE). It revealed that Au-Pt (2:4)/C (atomic ratio) catalyst exhibited the best catalytic activity toward ORR. Au-Pt (2:4)/C proceeded by an approximately four-electron pathway in acid solution, through which molecular oxygen was directly reduced to water. The stability of Au-Pt (2:4)/C is tested by cyclic voltammetry for 500 cycles. The performance of the membrane electrode assembly (MEA) prepared by Au-Pt (2:4)/C as the cathode catalyst in a single proton exchange membrane fuel cell (PEMFC) generated a maximum power density of 479 mW cm −2 at 0.431 V using H 2 and O 2 at 80 °C.

  18. Electrochemical gene sensor for Mycoplasma pneumoniae DNA using dual signal amplification via a Pt-Pd nanowire and horse radish peroxidase

    International Nuclear Information System (INIS)

    Liu, Linlin; Xiang, Guiming; Jiang, Dongneng; Du, Chunlan; Liu, Chang; Huang, Weiwei; Pu, Xiaoyun

    2016-01-01

    A dually amplified DNA biosensor was constructed for the determination of the DNA of Mycoplasma pneumoniae (M. pneu). A gold electrode was modified with 3,4,9,10-perylenetetracarboxylic acid dianhydride (PTCDA; a π-stacking perylene semiconductor dye with outstanding electronic and optical properties), a layer of gold nanoparticles (nano-Au), and capture DNA. Pt-Pd nanowires served as carriers for the co immobilization of complementary probe (CP2) and the mediator thionine (Thi). Horseradish peroxidase (HRP) acted as a blocking reagent and signal enhancer. Following base pairing, the modified Pt-Pd nanowires were captured on the surface of the gold electrode. After addition of H 2 O 2 , the Pt-Pd nanowires and HRP both catalyzed the reduction of H 2 O 2 and promoted the electron transfer via the mediator Thi, resulting in an amplified electrochemical signal. The electrical signal, best measured at a working voltage of −200 mV (vs a SCE), is logarithmically related to the concentration of the M. pneu DNA in the 0.1 pM to 20 nM concentration range, and the detection limit (at an S/N ratio of 3) is 0.03 pM. The assay is robust, sensitive and specific. Conceivably, it is a cost-effective alternative to the established PCR method for the detection of M. pneu in clinical samples. (author)

  19. Work session on the SAR. Pt. 1

    International Nuclear Information System (INIS)

    Burkart, K.

    1980-01-01

    In the first part of the present paper, containment isolation, pressurizer systems, valves of coolant systems and volume control systems are described. In the second part residual heat removal systems and the water-steam cycle are dealt with. Then initiation criteria and safety actions as well as malfunctions in the feedwater supply are discussed and finally leakages from the pressurized boundary of the reactor cooling system due to ruptures in connection lines and valve malfunction are considered. (RW)

  20. Durable electrocatalytic-activity of Pt-Au/C cathode in PEMFCs.

    Science.gov (United States)

    Selvaganesh, S Vinod; Selvarani, G; Sridhar, P; Pitchumani, S; Shukla, A K

    2011-07-21

    Longevity remains as one of the central issues in the successful commercialization of polymer electrolyte membrane fuel cells (PEMFCs) and primarily hinges on the durability of the cathode. Incorporation of gold (Au) to platinum (Pt) is known to ameliorate both the electrocatalytic activity and stability of cathode in relation to pristine Pt-cathodes that are currently being used in PEMFCs. In this study, an accelerated stress test (AST) is conducted to simulate prolonged fuel-cell operating conditions by potential cycling the carbon-supported Pt-Au (Pt-Au/C) cathode. The loss in performance of PEMFC with Pt-Au/C cathode is found to be ∼10% after 7000 accelerated potential-cycles as against ∼60% for Pt/C cathode under similar conditions. These data are in conformity with the electrochemical surface-area values. PEMFC with Pt-Au/C cathode can withstand >10,000 potential cycles with very little effect on its performance. X-ray diffraction and transmission electron microscopy studies on the catalyst before and after AST suggest that incorporating Au with Pt helps mitigate aggregation of Pt particles during prolonged fuel-cell operations while X-ray photoelectron spectroscopy reflects that the metallic nature of Pt is retained in the Pt-Au catalyst during AST in comparison to Pt/C that shows a major portion of Pt to be present as oxidic platinum. Field-emission scanning electron microscopy conducted on the membrane electrode assembly before and after AST suggests that incorporating Au with Pt helps mitigating deformations in the catalyst layer. This journal is © the Owner Societies 2011

  1. Activity of carbon supported Pt3Ru2 nanocatalyst in CO oxidation

    Directory of Open Access Journals (Sweden)

    KSENIJA DJ. POPOVIĆ

    2009-08-01

    Full Text Available The electrocatalytic activity of Pt3Ru2/C nanocatalyst toward the electro-oxidation of bulk CO was examined in acid and alkaline solution at ambient temperature using the thin-film, rotating disk electrode (RDE method. The catalyst was characterized by XRD analysis. The XRD pattern revealed that the Pt3Ru2/C catalyst consisted of two structures, i.e., Pt–Ru-fcc and Ru-hcp (a solid solution of Ru in Pt and a small amount of Ru or a solid solution of Pt in Ru. Electrocatalytic activities were measured by applying potentiodynamic and steady state techniques. The oxidation of CO on the Pt3Ru2/C catalyst was influenced by pH and anions from the supporting electrolytes. The Pt3Ru2/C was more active in alkaline than in acid solution, as well as in perchloric than in sulfuric acid. Comparison of CO oxidation on Pt3Ru2/C and Pt/C revealed that the Pt3Ru2/C was more active than Pt/C in acid solution, while both catalysts had a similar activity in alkaline solution.

  2. Methanol Electro-Oxidation on Pt-Ru Alloy Nanoparticles Supported on Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Yangchuan Xing

    2009-09-01

    Full Text Available Carbon nanotubes (CNTs have been investigated in recent years as a catalyst support for proton exchange membrane fuel cells. Improved catalyst activities were observed and attributed to metal-support interactions. We report a study on the kinetics of methanol electro-oxidation on CNT supported Pt-Ru alloy nanoparticles. Alloy catalysts with different compositions, Pt53Ru47/CNT, Pt69Ru31/CNT and Pt77Ru23/CNT, were prepared and investigated in detail. Experiments were conducted at various temperatures, electrode potentials, and methanol concentrations. It was found that the reaction order of methanol electro-oxidation on the PtRu/CNT catalysts was consistent with what has been reported for PtRu alloys with a value of 0.5 in methanol concentrations. However, the electro-oxidation reaction on the PtRu/CNT catalysts displayed much lower activation energies than that on the Pt-Ru alloy catalysts unsupported or supported on carbon black (PtRu/CB. This study provides an overall kinetic evaluation of the PtRu/CNT catalysts and further demonstrates the beneficial role of CNTs.

  3. Preparation of PtSnCu/C and PtSn/C electrocatalysts and activation by dealloying processes for ethanol electrooxidation

    International Nuclear Information System (INIS)

    Crisafulli, Rudy

    2013-01-01

    PtSnCu/C (with different Pt:Sn:Cu atomic ratios) and PtSn/C (50:50) electrocatalysts were prepared by borohydride (BR) and alcohol-reduction (AR) processes using H 2 PtCl 6 .6H 2 O, SnCl 2 .2H 2 O and CuCl 2 .2H 2 O as metal sources, NaBH 4 and ethylene glycol as reducing agents, 2-propanol and ethylene glycol/water as solvents and carbon black as support. In a further step, these electrocatalysts were activated by chemical (CD) and electrochemical (ED) dealloying processes through acid treatment and thin porous coating technique, respectively. These materials were characterized by energy dispersive X-ray, Xray diffraction, transmission electron microscopy, line scan energy dispersive Xray and cyclic voltammetry. Electrochemical studies for ethanol electro-oxidation were performed by cyclic voltammetry, chronoamperometry and in single Direct Ethanol Fuel Cell using Membrane Electrode Assembly (MEA). The anodic effluents were analysed by gas chromatography. The X-ray diffractograms of the as-synthesized electrocatalysts showed the typical face-centered cubic structure (FCC) of platinum and its alloys. After dealloying, the X-ray diffractograms showed that the Pt FCC structure was preserved. The crystallite sizes of the assynthesized electrocatalysts were in the range of PtSnCu/C (50:40:10) AR/ED > PtSnCu/C (50:10:40) BR/CD. PtSn/C (50:50) BR/CD, PtSnCu/C (50:10:40) BR/CD, PtSnCu/C (50:40:10) AR/CD electrocatalysts and Pt/C BASF, PtSn/C (75:25) BASF commercial electrocatalysts were tested in single Direct Ethanol Fuel Cell. The results showed the following performance for ethanol electro-oxidation: PtSn/C (50:50) BR/CD > PtSnCu/C (50:40:10) AR/CD > PtSnCu/C > PtSn/C (75:25) BASF > PtSnCu/C (50:10:40) BR/CD > Pt/C BASF. (author)

  4. Use of Pd-Pt loaded graphene aerogel on nickel foam in direct ethanol fuel cell

    Science.gov (United States)

    Tsang, Chi Him A.; Leung, D. Y. C.

    2018-01-01

    A size customized binder-free bimetallic Pd-Pt loaded graphene aerogel deposited on nickel foam plate (Pd-Pt/GA/NFP) was prepared and used as an electrode for an alkaline direct ethanol fuel cell (DEFC) under room temperature. The effect of fuel concentration and metal composition on the output power density of the DEFC was systematically investigated. Under the optimum fuel concentration, the cell could achieve a value of 3.6 mW cm-2 at room temperature for the graphene electrode with Pd/Pt ratio approaching 1:1. Such results demonstrated the possibility of producing a size customized metal loaded GA/NFP electrode for fuel cell with high performance.

  5. Durability test with fuel starvation using a Pt/CNF catalyst in PEMFC.

    Science.gov (United States)

    Jung, Juhae; Park, Byungil; Kim, Junbom

    2012-01-05

    In this study, a catalyst was synthesized on carbon nanofibers [CNFs] with a herringbone-type morphology. The Pt/CNF catalyst exhibited low hydrophilicity, low surface area, high dispersion, and high graphitic behavior on physical analysis. Electrodes (5 cm2) were prepared by a spray method, and the durability of the Pt/CNF was evaluated by fuel starvation. The performance was compared with a commercial catalyst before and after accelerated tests. The fuel starvation caused carbon corrosion with a reverse voltage drop. The polarization curve, EIS, and cyclic voltammetry were analyzed in order to characterize the electrochemical properties of the Pt/CNF. The performance of a membrane electrode assembly fabricated from the Pt/CNF was maintained, and the electrochemical surface area and cell resistance showed the same trend. Therefore, CNFs are expected to be a good support in polymer electrolyte membrane fuel cells.

  6. Pt Catalyst Supported within TiO2 Mesoporous Films for Oxygen Reduction Reaction

    International Nuclear Information System (INIS)

    Huang, Dekang; Zhang, Bingyan; Bai, Jie; Zhang, Yibo; Wittstock, Gunther; Wang, Mingkui; Shen, Yan

    2014-01-01

    In this study, dispersed Pt nanoparticles into mesoporous TiO 2 thin films are fabricated by a facile electrochemical deposition method as electro-catalysts for oxygen reduction reaction. The mesoporous TiO 2 thin films coated on the fluorine-doped tin oxide glass by screen printing allow a facile transport of reactants and products. The structural properties of the resulted Pt/TiO 2 electrode are evaluated by field emission scanning electron microscopy, energy dispersive X-ray spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy. Cyclic voltammetry measurements are performed to study the electrochemical properties of the Pt/TiO 2 electrode. Further study demonstrates the stability of the Pt catalyst supported within TiO 2 mesoporous films for the oxygen reduction reaction

  7. Electrochemical study of oxygen reduction reaction in Pt/C catalysts synthesized by photo-deposition; Estudio electroquimico de la reaccion de reduccion de oxigeno en catalizadores de Pt/C sintetizados por fotodeposito

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Galindo, J. A.; Ruiz-Camacho, B.; Valenzuela-Zapata, M. A.; Gonzalez-Huerta, R. G. [IPN, ESIQIE, Mexico, D.F. (Mexico)]. E-mail: rosgonzalez_h@yahoo.com.mx

    2009-09-15

    Fuel batteries are considered one of the principal generators of energy for the immediate future, though their use is limited by their cost and useful lifetime. One of the main components of a fuel battery are electrodes made of a noble metal, such as Pt, dispersed in a support. The interaction between these two components has received a good deal of attention in recent years. It is considered to be responsible for structural growth effects and a decreased dispersion of metal particles on a support, causing the battery to have low overall performance and a reduced useful lifetime. The properties of the support are accentuated in cathode catalysts, where oxygen reduction reactions occur as a result of its operating conditions. Syntheses are currently being investigated to improve the metal-support interaction and thereby increase the lifetime of the fuel battery. This work presents the electrochemical study of nanometric-sized carbon-supported platinum (Pt/C) catalysts synthesized with chemical photo-deposition to determine its catalytic effect and stability for oxygen reduction reaction in an acid medium. C{sub 10}H{sub 14}O{sub 4}Pt (Pt(acac)2) was used as the platinum precursor. The electrochemical study was conducted with cyclic voltamperometry and rotary disc electrode (RDE) techniques, observing that the synthesized catalysts present a behavior similar to that of Pt (E-Tek). The kinetic study showed an open-circuit potential of de 0.96 V with a Tafel slope of 73 mV dec-1, and with a current of 0.1 mA cm-2 the potential is 0.91 V. The authors wish to thank the ICYTDF (project PICS08-37) and the IPN (project SIP-20090433). [Spanish] Las pilas de combustible se perfilan como uno de los principales generadores de energia en un futuro inmediato, pero su utilizacion esta limitada por su costo y tiempo de vida util. Uno de los componentes principales de la pila de combustible son los electrodos integrados por un metal noble, como el Pt, disperso en un soporte. La

  8. Repair welding of cast iron coated electrodes

    Science.gov (United States)

    Żuk, M.; Górka, J.; Dojka, R.; Czupryński, A.

    2017-08-01

    Welding cast iron is a complex production procedure. Repair welding was used to repair damaged or poorly made castings. This is due to a tendency to cracking of the material during welding as well as after it. Welding cast iron can be carried out on hot or on cold. Hot welding requires high heat material and the use of welding material in the form of cast iron. In the case of cold welding, it is possible to use different materials. Mostly used filler metals are nickel and copper based. The work shows the course of research concerning repairmen of ductile iron with arc welding method. For the reparation process four types of ESAB company coated electrodes dedicated for cast iron were used with diameter 3.2 and 4 mm: ES 18-8-6B (4mm), EB 150 (4mm), OK NiCl, EŻM. In the cast iron examined during the testing grooves were made using plasma methods, in order to simulate the removed casting flaws. Then the welding process with coated electrodes was executed. The process utilized low welding current row of 100A, so there would only be a small amount of heat delivered to the heat affected zone (HAZ). Short stitches were made, after welding it was hammered, in order to remove stresses. After the repair welding the part of studies commenced which purpose was finding surface defects using visual testing (VT) and penetration testing (PT). In the second part, a series of macro and microscopic studies were executed witch the purpose of disclosuring the structure. Then the hardness tests for welds cross sections were performed. An important aspect of welding cast iron is the colour of the padding weld after welding, more precisely the difference between the base material and padding weld, the use of different materials extra gives the extra ability to select the best variant. The research of four types of coated electrode was executed, based on the demands the best option in terms of aesthetic, strength and hardness.

  9. Calibration of antimony-based electrode for ph monitoring into underground components of nuclear repositories

    International Nuclear Information System (INIS)

    Betelu, S.; Ignatiadis, I.

    2012-01-01

    unchanged with regard to pH variations, considering the RSD based on reproducibility. Whatever the ligand, no complex has competed with both the antimony hydrolysis and the oxygen depletion. The Sb electrode potential (E Sb ) varied linearly as a function of pH. Electrodes exhibit almost ideal Nernstian response. There was sufficient oxidation at the metal surface to ensure the equilibration conditions. Moreover, E Sb was somewhat affected by hysteresis. The potential of the platinum electrode (E Pt ) under atmospheric oxygen saturation is fixed by the O 2 /H 2 O redox couple. Under these conditions, EPt is governed by the PtO/Pt couple via PtO + 2H + + 2e - ↔ Pt + H 2 O with E PtO/Pt (mV/NHE) = 60.5 pH + 902. At the same pH and under aerobic conditions, a difference of about 700 mV (pH 0) is observed between EPt and E Sb . This difference is reduced to about 330 mV under anoxic conditions where O 2 /H 2 O is the predominant redox couple with a very low quantity of oxygen. Moreover, the slope of the E Sb -pH line remains the same regardless of the medium, which is very important, while the intercept giving the potential at pH = 0 differs by about 50 mV. This shows the dependence, although weak, of the Sb-based electrodes on the O 2 /H 2 O redox couple in the solution. This work provides information concerning the simultaneous but different behavior of two different electrodes under identical conditions and the same reference electrode. Knowledge of their electrochemical curves will allow us to draw potential-pH diagrams when observing and monitoring pH in the underground components of radioactive waste repositories where reference electrodes will not be used. Mono-crystalline Sb electrode appears to be appropriate for accurate measurements of pH in these conditions. Work is in progress to demonstrate the robustness of the Sb-electrode into COx over a long period

  10. Flexible transparent electrode

    Science.gov (United States)

    Demiryont, Hulya; Shannon, Kenneth C., III; Moorehead, David; Bratcher, Matthew

    2011-06-01

    This paper presents the properties of the EclipseTECTM transparent conductor. EclipseTECTM is a room temperature deposited nanostructured thin film coating system comprised of metal-oxide semiconductor elements. The system possesses metal-like conductivity and glass-like transparency in the visible region. These highly conductive TEC films exhibit high shielding efficiency (35dB at 1 to 100GHz). EclipseTECTM can be deposited on rigid or flexible substrates. For example, EclipseTECTM deposited on polyethylene terephthalate (PET) is extremely flexible that can be rolled around a 9mm diameter cylinder with little or no reduction in electrical conductivity and that can assume pre-extension states after an applied stress is relieved. The TEC is colorless and has been tailored to have high visible transmittance which matches the eye sensitivity curve and allows the viewing of true background colors through the coating. EclipseTECTM is flexible, durable and can be tailored at the interface for applications such as electron- or hole-injecting OLED electrodes as well as electrodes in flexible displays. Tunable work function and optical design flexibility also make EclipseTECTM well-suited as a candidate for grid electrode replacement in next-generation photovoltaic cells.

  11. Caracterization of the crystalline phases by X-Ray diffraction in electrode coatings

    International Nuclear Information System (INIS)

    Neves, M.C.G.P.; Souza Caillaux, Z. de

    1981-01-01

    Some electrodes and their respective coatings were studied in order to verify their compatibility with their utilization in the welding of base metals appropriate for the equipment of sugar and alcohol plants. The carried out studies include the characterization, by X-ray diffraction, of crystaline phases, existent in electrodes coatings. (Author) [pt

  12. Analysis by SIMS and AES of H:TiO2 electrodes

    International Nuclear Information System (INIS)

    Pena, J.L.; Farias, M.H.; Sanchez Sinencio, F.

    1981-01-01

    TiO 2 electrodes produced by heating in H 2 atmosphere have been analysed. SIMS (Secondary Ion Mass Spectroscopy) and AES (Auger Electron Spectroscopy) techniques were used in order to identify the atomic composition in the electrodes surface. (A.R.H.) [pt

  13. Investigation of Electrochemically Deposited and Chemically Reduced Platinum Nanostructured Thin Films as Counter Electrodes in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Chih-Hung Tsai

    2018-02-01

    Full Text Available In this paper, we demonstrated that platinum (Pt counter electrodes (CEs fabricated using electrochemical deposition and chemical reduction can replace conventional high-temperature thermally decomposed Pt electrodes. In this study, Pt electrodes were fabricated using thermal decomposition, electrochemical deposition, and chemical reduction, and the influence of the different Pt counter electrodes on the efficiency of the dye-sensitized solar cells (DSSCs was analyzed. The properties of the various Pt CEs were analyzed using scanning electron microscopy (SEM, surface area analysis, X-ray diffraction (XRD, electrochemical impedance spectroscopy (EIS, and cyclic voltammetry (CV. DSSCs with various Pt CEs were characterized using current density-voltage (J-V, incident photo-current conversion efficiency (IPCE, and EIS measurements. The results show that the power conversion efficiencies of these three types of DSSC devices were between 7.43% and 7.72%. The DSSCs based on the Pt electrode fabricated through electrochemical deposition exhibited the optimal power conversion efficiency. Because the processes of electrochemical deposition and chemical reduction do not require high-temperature sintering, these two methods are suitable for the fabrication of Pt on flexible plastic substrates.

  14. Soft landing of bare PtRu nanoparticles for electrochemical reduction of oxygen.

    Science.gov (United States)

    Johnson, Grant E; Colby, Robert; Engelhard, Mark; Moon, Daewon; Laskin, Julia

    2015-08-07

    Magnetron sputtering of two independent Pt and Ru targets coupled with inert gas aggregation in a modified commercial source has been combined with soft landing of mass-selected ions to prepare bare 4.5 nm diameter PtRu nanoparticles on glassy carbon electrodes with controlled size and morphology for electrochemical reduction of oxygen in solution. Employing atomic force microscopy (AFM) it is shown that the nanoparticles bind randomly to the glassy carbon electrode at a relatively low coverage of 7 × 10(4) ions μm(-2) and that their average height is centered at 4.5 nm. Scanning transmission electron microscopy images obtained in the high-angle annular dark field mode (HAADF-STEM) further confirm that the soft-landed PtRu nanoparticles are uniform in size. Wide-area scans of the electrodes using X-ray photoelectron spectroscopy (XPS) reveal the presence of both Pt and Ru in atomic concentrations of ∼9% and ∼33%, respectively. Deconvolution of the high energy resolution XPS spectra in the Pt 4f and Ru 3d regions indicates the presence of both oxidized Pt and Ru. The substantially higher loading of Ru compared to Pt and enrichment of Pt at the surface of the nanoparticles is confirmed by wide-area analysis of the electrodes using time-of-flight medium energy ion scattering (TOF-MEIS) employing both 80 keV He(+) and O(+) ions. The activity of electrodes containing 7 × 10(4) ions μm(-2) of bare 4.5 nm PtRu nanoparticles toward the electrochemical reduction of oxygen was evaluated employing cyclic voltammetry (CV) in 0.1 M HClO4 and 0.5 M H2SO4 solutions. In both electrolytes a pronounced reduction peak was observed during O2 purging of the solution that was not evident during purging with Ar. Repeated electrochemical cycling of the electrodes revealed little evolution in the shape or position of the voltammograms indicating high stability of the nanoparticles supported on glassy carbon. The reproducibility of the nanoparticle synthesis and deposition was

  15. Platinum and Palladium Alloys Suitable as Fuel Cell Electrodes

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic efficiency by low level substitution of the noble metal to provide new...... and innovative catalyst compositions in fuel cell electrodes. The novel electrode catalysts of the invention comprise a noble metal selected from Pt, Pd and mixtures thereof alloyed with a further element selected from Sc, Y and La as well as any mixtures thereof, wherein said alloy is supported on a conductive...

  16. Effect of electrodes in the radiation induced conductivity for polymers

    International Nuclear Information System (INIS)

    Gregorio Filho, R.; Gross, B.

    1988-01-01

    Samples of PET with 23 μm thickness were exposed to continuous X-rays and the radiation-induced conductivity (RIC) as a function of time were measured, using electrodes of evaporated aluminum and gold. The results showed that the use of higher atomic number metal electrodes increase the received dose rate by sample, without almost modifying the time evolution of the RIC or its dependence with the applied electric field intensity. It is also showed that this increase is caused by the electrode placed in the face of the sample where the radiation strikes, as well as by the one placed in the oposite face. (author) [pt

  17. Transparent nickel selenide used as counter electrode in high efficient dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Jinbiao; Wu, Jihuai, E-mail: jhwu@hqu.edu.cn; Tu, Yongguang; Huo, Jinghao; Zheng, Min; Lin, Jianming

    2015-08-15

    Highlights: • A transparent Ni{sub 0.85}Se is prepared by a facile solvothermal reaction. • Ni{sub 0.85}Se electrode has better electrocatalytic activity than Pt electrode. • DSSC with Ni{sub 0.85}Se electrode obtains efficiency of 8.88%, higher than DSSC with Pt. • DSSC with Ni{sub 0.85}Se/mirror electrode achieves an efficiency of 10.19%. - Abstract: A transparent nickel selenide (Ni{sub 0.85}Se) is prepared by a facile solvothermal reaction and used as an efficient Pt-free counter electrode (CE) for dye-sensitized solar cells (DSSCs). Field emission scanning electron microscopy observes that the as-prepared Ni{sub 0.85}Se possesses porous structure. Cyclic voltammogram measurement indicates that Ni{sub 0.85}Se electrode has larger current density than Pt electrode. Electrochemical impedance spectroscopy shows that the Ni{sub 0.85}Se electrode has lower charge-transfer resistance than Pt electrode. Under simulated solar light irradiation with intensity of 100 mW cm{sup −2} (AM 1.5), the DSSC based on the Ni{sub 0.85}Se CE achieves a power conversion efficiency (PCE) of 8.88%, which is higher than the solar cell based on Pt CE (8.13%). Based on the transparency of Ni{sub 0.85}Se, the DSSC with Ni{sub 0.85}Se/mirror achieves a PCE of 10.19%.

  18. Carbon Nanotubes as Counter Electrodes for Gratzel Solar Cells

    Science.gov (United States)

    Shodive, Hasan; Aliev, Ali; Zhang, Mei; Lee, Sergey; Baughman, Ray; Zakhidov, Anvar

    2006-03-01

    The role of interfaces is very critical for solar cell devices which use nanostructured materials. Dye Sensitized Solar Cells (DSSC) are devices which parts are interfacial in character and physico --chemical processes occur at the interface of two distinct media. DSSC are of great interest due to combination of their high efficiency and relatively low cost. An effective counterelectrode with high electrochemical activity is an important component of DSSC to enhance its practical utility. Presently used Pt coated ITO counterelectrode can not be applied in flexible DSSC architectures, while there is a growing need for flexible anodes which are transparent and have desired interface characteristics. In this work in order to search for such materials for counter electrode in dye sensitized solar cells, newly developed strong and transparent and modified carbon nanotube sheets [1] are used in interfacial counter electrode. To increase the electrochemical activity of the anode the CNT sheets are coated with highly conductive SWCNT and compared with pure multiwall CNT sheets. We show that the transparent sheets of SWCNT/MWCNT perform as a flexible anode and as electrochemical catalyst and also can be used in tandems of dye sensitized solar cells as transparent charge recombination or interconnect layers. [1] M. Zhang, S.Fang, A.Zakhidov, S.B.Lee, A.Aliev et.al., Science, 309,(2005) 1215

  19. Graphene–poly(5-aminoindole) composite film as Pt catalyst support for methanol electrooxidation in alkaline medium

    International Nuclear Information System (INIS)

    Yue, Ruirui; Zhang, Qiang; Wang, Caiqin; Du, Yukou; Yang, Ping; Xu, Jingkun

    2013-01-01

    Highlights: • Electropolymerization of 5-aminoindole (AIn) in the presence of graphene (GE). • Significant catalytic effect of GE on the polymerization of AIn. • PAIn/GE/GC used as Pt catalyst support. • The enhanced catalytic activity of Pt/PAIn/GE/GC for methanol electrooxidation. -- Abstract: 5-Aminoindole (AIn) was electropolymerized on graphene (GE) modified glass carbon (GC) electrode in 0.5 M H 2 SO 4 aqueous solution containing 0.01 M AIn. Because of the catalytic effect of GE, the polymerization efficiency of AIn and the electrochemical activity of as-formed poly(5-aminoindole) (PAIn) were significantly improved on GE/GC electrode as compared to that on the bare GC electrode. The prepared PAIn/GE/GC electrode was used as substrate for Pt particle electrodeposition. SEM, EDX and Raman spectral were used to characterize the prepared electrodes. Electrocatalytic experiments demonstrate that the Pt/PAIn/GE/GC electrode possesses high catalytic activity toward methanol electrooxidation in alkaline medium, due to the good dispersion of Pt particles on PAIn/GE/GC and the electronic interactions between the metal particles and the polymer matrixes. Thus, PAIn can be a promising alternative for polymeric catalyst support in direct alcohol fuel cells

  20. Surface Intermediates on Metal Electrodes at High Temperature

    DEFF Research Database (Denmark)

    Zachau-Christiansen, Birgit; Jacobsen, Torben; Bay, Lasse

    1997-01-01

    The mechanisms widely suggested for the O2-reduc-tion or H2-oxidation SOFC reactions involve inter-mediate O/H species adsorbed on the electrode surface. The presence of these intermediates is investigated by linear sweep voltammetry. In airat moderate temperatures (500øC) Pt in contact with YSZ...

  1. Surface intermediates on metal electrodes at high temperatures

    DEFF Research Database (Denmark)

    Zachau-Christiansen, Birgit; Jacobsen, Torben; Bay, Lasse

    1998-01-01

    The mechanisms widely conceived for the O(2)-reduction or H(2)-oxidation reactions in SOFC's involve intermediate O/H species adsorbed on the electrode surface. The presence of these intermediates is investigated by linear sweep voltammetry. In air at moderate temperatures (500 degrees C) Pt...

  2. Pt, PtCo and PtNi electrocatalysts prepared with mechanical alloying for oxygen reduction reaction in alkaline medium; Electrocatalizadores de Pt, PtCo y PtNi preparados por aleado mecanico para la reaccion de reduccion de oxigeno en medio alcalino

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Contreras, M.A.; Fernandez-Valverde, S.M. [Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de Mexico (Mexico)]. E-mail: miguel.garcia@inin.gob.mx; Vargas-Garcia, J.R. [ESIQIE-IPN, Mexico D.F. (Mexico

    2009-09-15

    Pt, PtCo and PtNi electrocatalysts were prepared using mechanical alloying and their electrocatalytic activity was investigated for oxygen reduction reaction (ORR) in KOH 0.5 M using cyclic voltametry and rotary disc electrode (RDE) techniques. The electrocatalysts were characterized using x-ray diffraction, sweep electron microscopy, dispersive x-ray transmission and chemical analysis. The physical characterization indicated that all the electrocatalysts are alloys formed by agglomerated particles composed of nanocrystals. The chemical analysis showed the presence of iron in the alloys. For the electrocatalytic evaluation, polarization curves and Koutecky-Levich and Tafel graphs were obtained to determine the kinetic parameters of the electrocatalysts in the study. With the same experimental conditions, the PtCo presented better electrocatalytic performance with a higher exchange current density. [Spanish] Se prepararon electrocatalizadores de Pt, PtCo y PtNi por aleado mecanico y se investigo su actividad electrocatalitica para la reaccion de reduccion de oxigeno (RRO) en KOH 0.5 M utilizando las tecnicas de Voltametria ciclica y Electrodo de Disco Rotatorio. Los electrocatalizadores se caracterizaron por difraccion de rayos X, Microscopia electronica de Barrido, de Transmision y analisis quimico por dispersion de rayos X. La caracterizacion fisica indico que todos los electrocatalizadores son aleaciones formadas de particulas aglomeradas, compuestas de nanocristales. El analisis quimico mostro la presencia de hierro en las aleaciones. Para la evaluacion electrocatalitica se obtuvieron curvas de polarizacion, graficas de Koutecky-Levich y de Tafel para determinar los parametros cineticos de los electrocatalizadores en estudio. En las mismas condiciones experimentales, el PtCo presento el mejor desempeno electrocatalitico con la densidad de corriente de intercambio mas alta.

  3. Fabrication and Characterisation of Membrane-Based Gold Electrodes

    DEFF Research Database (Denmark)

    Bakmand, Tanya; Kwasny, Dorota; Dimaki, Maria

    2015-01-01

    This work presents a versatile, membrane based electrochemical sensor with thin film electrodes fabricated through Ebeam evaporation directly on porous materials (membranes). Here, the fabrication of the electrodes is described along with possible methods for integration in fluidic systems...

  4. Electrochemical evaluation of adsorption and oxidation of the carbon monoxide towards ordered intermetallic phases Pt-M (M=Mn, Pb, Sb e Sn); Avaliacao eletroquimica da adsorcao e oxidacao do monoxido de carbono sobre fases intermetalicas ordenadas Pt-M (M=Mn, Pb, Sb e Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Nicolai, A L; Miguel-Junior, E; Silva, R I.V. da; Angelo, A C.D. [UNESP, Bauru, SP (Brazil). Depto. de Quimica. Lab. de Eletrocatalise

    2004-07-01

    This paper presents the experimental results obtained from the electrochemical evaluation of Pt ordered intermetallic phases (PtMn, PtPb, PtSb, PtSn) as electrode materials towards the CO oxidation reaction. The intermetallics showed a higher performance than pure Pt in the same experimental conditions. PtSn has presented the highest performance among the evaluated materials. There was not observed a clear relationship between the electrocatalytic activity of the materials and their ability in producing oxygen species at lower anodic potentials, suggesting that surface electronic density and structural characteristics of the electrode surfaces must be the properties to be investigated in order to explain the obtained results. (author)

  5. Carbon-supported ternary PtSnIr catalysts for direct ethanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, J.; Kokoh, K.B.; Coutanceau, C.; Leger, J.-M. [Equipe Electrocatalyse, UMR 6503 CNRS, Universite de Poitiers, 40 avenue du Recteur Pineau 86022 Poitiers Cedex (France); Dos Anjos, D.M. [Equipe Electrocatalyse, UMR 6503 CNRS, Universite de Poitiers, 40 avenue du Recteur Pineau 86022 Poitiers Cedex (France); Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal 780, 13560-970 Sao Carlos, SP (Brazil); Olivi, P.; De Andrade, A.R. [Departamento de Quimica da Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Av. Bandeirantes, 3900, 14040-901 Ribeirao Preto, SP (Brazil); Tremiliosi-Filho, G. [Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal 780, 13560-970 Sao Carlos, SP (Brazil)

    2007-08-01

    Binary PtIr, PtSn and ternary PtSnIr electrocatalysts were prepared by the Pechini-Adams modified method on carbon Vulcan XC-72, and these materials were characterized by TEM and XRD. The XRD results showed that the electrocatalysts consisted of the Pt displaced phase, suggesting the formation of solid solutions between the metals Pt/Ir and Pt/Sn. However, the increase in Sn loading promoted phase separation, with the formation of peaks typical of cubic Pt{sub 3}Sn. The electrochemical investigation of these different electrode materials was carried out as a function of the electrocatalyst composition, in a 0.5 mol dm{sup -3} H{sub 2}SO{sub 4} solution, with either the presence or the absence of ethanol. Cyclic voltammetric measurements and chronoamperometric results obtained at room temperature showed that PtSn/C and PtSnIr/C displayed better electrocatalytic activity for ethanol electrooxidation compared to PtIr/C and Pt/C, mainly at low potentials. The oxidation process was also investigated by in situ infrared reflectance spectroscopy, to identify the adsorbed species. Linearly adsorbed CO and CO{sub 2} were found, indicating that the cleavage of the C-C bond in the ethanol substrate occurred during the oxidation process. At 90 C, the Pt{sub 89}Sn{sub 11}/C and Pt{sub 68}Sn{sub 9}Ir{sub 23}/C electrocatalysts displayed higher current and power performances as anode materials in a direct ethanol fuel cell (DEFC). (author)

  6. Conducting polymers based counter electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Veerender, P., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Saxena, Vibha, E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Gusain, Abhay, E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Jha, P., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Koiry, S. P., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Chauhan, A. K., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Aswal, D. K., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Gupta, S. K., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai - 400085 (India)

    2014-04-24

    Conducting polymer films were synthesized and employed as an alternative to expensive platinum counter electrodes for dye-sensitized solar cells. poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) thin films were spin-coated and polypyrrole films were electrochemically deposited via cyclic voltammetry method on ITO substrates. The morphology of the films were imaged by SEM and AFM. These films show good catalytic activity towards triiodide reduction as compared to Pt/FTO electrodes. Finally the photovoltaic performance of DSSC fabricated using N3 dye were compared with PT/FTO, PEDOT/ITO, and e-PPy counter electrodes.

  7. Influence of Surface Adsorption on Work Function Measurements on Gold-Platinum Interface Using Scanning Kelvin Probe Microscopy

    International Nuclear Information System (INIS)

    Mugo, Simon; Yuan Jun

    2012-01-01

    Surface potential difference (SPD) on freshly coated gold and platinum electrodes have been found to be much smaller than bulk work functions consideration and to be dependent on time. We show these discrepancies arise due to formation of surface dipoles caused by adsorbed contaminants in ambient environments. The process is reversible by gentle annealing consistent with contaminant hypothesis. Examination of potential changes on individual electrodes suggest that the Pt surface is more sensitive to ambient conditions than the Au surface in accordance with their relative chemical activities. The result has great implication for interpretation of Kelvin probe measurements obtained on practical devices exposed to ambient environments.

  8. N, P-codoped Mesoporous Carbon Supported PtCox Nanoparticles and Their Superior Electrochemical toward Methanol Oxidation

    Science.gov (United States)

    Cui, Hangjun; Li, Yueming; Liu, Shimin

    2018-03-01

    In this report, a novel strategy by using the N, P co-doped mesoporous carbon structure as catalyst support to enhance the electrochemical catalytic activity of Pt-based catalysts is proposed. The as-synthesized PtCox@N, P-doped mesoporous carbon nanocomposties have been studied as an anode catalyst toward methanol oxidation, exhibiting greatly improved electrochemical activity and stability compared with Pt@mesoporous carbon. The synergistic effects of N, P dual-doping and porous carbon structure help to achieve better electron transport at the electrode surface, which eventually leads to greatly enhanced catalytic activity compared to the pristine Pt/mesoporous carbon.…

  9. Development of a membrane electrode assembly process for proton exchange membrane fuel cell (PEMFC)

    International Nuclear Information System (INIS)

    Baldo, Wilians Roberto

    2003-01-01

    In this work, a Membrane Electrode Assembly (MEA) producing process was developed, involving simple steps, aiming cost reduction and good reproducibility for Proton Exchange Membrane Fuel Cell (PEMFC) commercial applications. The electrodes were produced by spraying ink into both sides of the polymeric membrane, building the catalytic layers, followed by hot pressing of Gas Diffusion Layers (GDL), forming the MEA. This new producing method was called 'Spray and hot pressing hybrid method'. Concerning that all the parameters of spray and hot pressing methods are interdependent, a statistical procedure were used in order to study the mutual variables influences and to optimize the method. This study was earned out in two distinct steps: the first one, where seven variables were considered for the analysis and the second one, where only the variables that interfered in the process performance in the first step were considered for analysis. The results showed that the developed process was adequate, including only simple steps, reaching MEA's performance of 651 m A cm -2 at a potential of 600 mV for catalysts loading of 0,4 mg cm -2 Pt at the anode and 0,6 mg cm -2 Pt at the cathode. This result is compared to available commercial MEA's, with the same fuel cell operations conditions. (author)

  10. Ethanol tolerant Pt-alloy cathodes for DEFC applications

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Valera, F.J. [CINVESTAV Unidad Saltillo, Coahuila (Mexico). Grupo de Recursos Minerales y Energeticos; Savadogo, O. [Ecole Polytechnique de Montreal, Montreal, PQ (Canada). Laboratoire de nouveaux materiaux pour l' energie et l' electrochimie

    2008-07-01

    Direct ethanol fuel cells (DEFCs) based on Ru/C cathodes have interesting current density versus cell voltage behaviour. In particular, the selectivity towards the oxygen reduction reaction (ORR) in acid medium in the presence of ethanol was improved when this cathode material was used. This study quantified the degree of tolerance to ethanol and the electrocatalytic activity for the ORR. It compared the specific activity towards the ORR for Pt1Co1/C and Pt3Cr1/C. The study showed that these cathodes have a high tolerance to this alcohol and demonstrated the good performance of this type of Pt-alloy in a DEFC as oxygen reduction cathodes. The performance of the Pt1Co1/C alloy was shown to be better than the Pt3Cr1/C, even when the former had a lower Pt content. The enhanced catalytic behaviour of the PtCo/C alloy can be attributed to the higher degree of allying or a smaller mean particle size and a larger surface area. Polarization measurements with relatively high ethanol concentrations confirmed the good catalytic behaviour of the PtCo/C alloy as cathode in a DEFC operating at 90 degrees C. Current work is focusing on the variation of Co content in the alloy structure and the analysis of this change in terms of ORR activity, tolerance to ethanol and electrochemical behaviour in a DEFC. 10 refs., 5 figs.

  11. Nano-Pt/C electrocatalysts: synthesis and activity for alcohol oxidation

    International Nuclear Information System (INIS)

    Huong Nguyen, Thi Giang; Anh Pham, Thi Van; Phuong, Thi Xuan; Binh Lam, Thi Xuan; Tran, Van Man; Thoa Nguyen, Thi Phuong

    2013-01-01

    Nano-sized platinum electrocatalysts on a carbon support (Pt/C) have been synthesized by the polyol reduction method under microwave irradiation using ethylene glycol (EG) as the reductant and carbon vulcan XC-72R as the support material. The physical characteristics of the Pt/C materials were analyzed using transmission electron microscopy and Brunauer–Emmet–Teller nitrogen adsorption theory. The glycerol and EG electro-oxidation in alkaline media on the Pt/C catalysts was investigated with cyclic voltammetry and chronoamperometry. The particle size of Pt on carbon was about 3.0 nm. The catalytic activity for the alcohol electro-oxidation of Pt/C materials synthesized in various pH values (7.9–9.5) was found to be significantly higher than that of commercial Pt/C (Aldrich Sigma, 10 wt% Pt/activated carbon). The Pt/C catalyst synthesized in pH 9.5 showed the best electrochemical behavior. At all the synthesized Pt/C electrodes, compared with glycerol, the oxidation rate of EG was about ten times higher. (paper)

  12. Influence of surface morphology on methanol oxidation at a glassy carbon-supported Pt catalyst

    Directory of Open Access Journals (Sweden)

    S. STEVANOVIC

    2008-08-01

    Full Text Available Platinum supported on glassy carbon (GC was used as a model system for studying the influence of the surface morphology of a Pt catalyst on methanol oxidation in alkaline and acidic solutions. Platinum was deposited by the potential step method on GC samples from H2SO4 + H2PtCl6 solution under the same conditions with loadings from 10 to 80 mg cm-2. AFM and STM images of the GC/Pt electrodes showed that the Pt was deposited in the form of 3D agglomerates composed of spherical particles. Longer deposition times resulted in increased growth of Pt forms and a decrease in the specific area of the Pt. The real surface area of Pt increased with loading but the changes were almost negligible at higher loadings. Nevertheless, both the specific and mass activity of platinum supported on glassy carbon for methanol oxidation in acidic and in alkaline solutions exhibit a volcanic dependence with respect to the platinum loading. The increase in the activity can be explained by the increasing the particle size with the loading and thus an increase in the contiguous Pt sites available for adsorption and decomposition of methanol. However, the decrease in the activity of the catalyst with further increase of loading and particle size after reaching the maximum is related to the decrease of active sites available for methanol adsorption and their accessibility as a result of more close proximity and pronounced coalescence of the Pt particles.

  13. High-temperature electrochemical characterization of Ru core Pt shell fuel cell catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Bokach, D.; Fuente, J.L.G. de la; Tsypkin, M.; Ochal, P.; Tunold, R.; Sunde, S.; Seland, F. [Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Sem Saelands veg 12, N-7491 Trondheim (Norway); Endsjoe, I.C. [Washington Mills AS, NO-7300 Orkanger (Norway)

    2011-12-15

    The electrooxidation of methanol was studied at elevated temperature and pressure by cyclic voltammetry and constant potential experiments at real fuel cell electrocatalysts. Ruthenium core and platinum shell nanoparticles were synthesized by a sequential polyol route, and characterized electrochemically by CO stripping at room temperature to quickly confirm the structure of the synthesized core-shell structure as compared to pure commercial Pt/C and Pt-Ru/C alloy catalysts. A significant promotional effect of Pt decorated Ru cores in the methanol oxidation was found at elevated temperatures and rather high-electrode potentials. A negative potential shift of the methanol oxidation peak is observed for the Ru rate at Pt/C core-shell catalyst at moderate temperatures, while a significant shift to positive potentials of the methanol oxidation peak occurs for Pt/C catalysts. The onset potential for methanol oxidation is lowered some 200 mV from room temperature and up to 120 C for all electrocatalysts, indicating that it is the thermal activity of water adsorption that dictates the onset potential. Direct methanol fuel cell experiments showed only small performance differences between Ru rate at Pt/C and Pt/C anode electrocatalysts, suggesting the necessity of render possible the formation of surface oxygen species at lower electrode potentials. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Effect of top electrode material on radiation-induced degradation of ferroelectric thin film structures

    Energy Technology Data Exchange (ETDEWEB)

    Brewer, Steven J.; Bassiri-Gharb, Nazanin [G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Deng, Carmen Z.; Callaway, Connor P. [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Paul, McKinley K. [G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Woodward Academy, College Park, Georgia 30337 (United States); Fisher, Kenzie J. [G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Riverwood International Charter School, Atlanta, Georgia 30328 (United States); Guerrier, Jonathon E.; Jones, Jacob L. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Rudy, Ryan Q.; Polcawich, Ronald G. [Army Research Laboratory, Adelphi, Maryland 20783 (United States); Glaser, Evan R.; Cress, Cory D. [Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-07-14

    The effects of gamma irradiation on the dielectric and piezoelectric responses of Pb[Zr{sub 0.52}Ti{sub 0.48}]O{sub 3} (PZT) thin film stacks were investigated for structures with conductive oxide (IrO{sub 2}) and metallic (Pt) top electrodes. The samples showed, generally, degradation of various key dielectric, ferroelectric, and electromechanical responses when exposed to 2.5 Mrad (Si) {sup 60}Co gamma radiation. However, the low-field, relative dielectric permittivity, ε{sub r}, remained largely unaffected by irradiation in samples with both types of electrodes. Samples with Pt top electrodes showed substantial degradation of the remanent polarization and overall piezoelectric response, as well as pinching of the polarization hysteresis curves and creation of multiple peaks in the permittivity-electric field curves post irradiation. The samples with oxide electrodes, however, were largely impervious to the same radiation dose, with less than 5% change in any of the functional characteristics. The results suggest a radiation-induced change in the defect population or defect energy in PZT with metallic top electrodes, which substantially affects motion of internal interfaces such as domain walls. Additionally, the differences observed for stacks with different electrode materials implicate the ferroelectric–electrode interface as either the predominant source of radiation-induced effects (Pt electrodes) or the site of healing for radiation-induced defects (IrO{sub 2} electrodes).

  15. Oxygen Transfer on Substituted ZrO2, Bi2O3, and CeO2 Electrolytes with Platinum Electrodes II. A-C Impedance Study

    NARCIS (Netherlands)

    Verkerk, M.J.; Burggraaf, A.J.

    1983-01-01

    An equivalent electrical circuit that describes the electrode processes on different electrolytes, using porous Pt electrodes,is given. Diffusional processes are important and have to be presented by Warburg components in the circuit. Theoverall electrode process is rate limited by diffusion of

  16. Development of Graphene Nano-Platelet Based Counter Electrodes for Solar Cells

    Directory of Open Access Journals (Sweden)

    Iftikhar Ahmad

    2015-09-01

    Full Text Available Graphene has been envisaged as a highly promising material for various field emission devices, supercapacitors, photocatalysts, sensors, electroanalytical systems, fuel cells and photovoltaics. The main goal of our work is to develop new Pt and transparent conductive oxide (TCO free graphene based counter electrodes (CEs for dye sensitized solar cells (DSSCs. We have prepared new composites which are based on graphene nano-platelets (GNPs and conductive polymers such as poly (3,4-ethylenedioxythiophene poly(styrenesulfonate (PEDOT:PSS. Films of these composites were deposited on non-conductive pristine glass substrates and used as CEs for DSSCs which were fabricated by the “open cell” approach. The electrical conductivity studies have clearly demonstrated that the addition of GNPs into PEDOT:PSS films resulted in a significant increase of the electrical conductivity of the composites. The highest solar energy conversion efficiency was achieved for CEs comprising of GNPs with the highest conductivity (190 S/cm and n-Methyl-2-pyrrolidone (NMP treated PEDOT:PSS in a composite film. The performance of this cell (4.29% efficiency compares very favorably to a DSSC with a standard commercially available Pt and TCO based CE (4.72% efficiency in the same type of open DSSC and is a promising replacement material for the conventional Pt and TCO based CE in DSSCs.

  17. Palladium-Based Catalysts as Electrodes for Direct Methanol Fuel Cells: A Last Ten Years Review

    Directory of Open Access Journals (Sweden)

    Juan Carlos Calderón Gómez

    2016-08-01

    Full Text Available Platinum-based materials are accepted as the suitable electrocatalysts for anodes and cathodes in direct methanol fuel cells (DMFCs. Nonetheless, the increased demand and scarce world reserves of Pt, as well as some technical problems associated with its use, have motivated a wide research focused to design Pd-based catalysts, considering the similar properties between this metal and Pt. In this review, we present the most recent advancements about Pd-based catalysts, considering Pd, Pd alloys with different transition metals and non-carbon supported nanoparticles, as possible electrodes in DMFCs. In the case of the anode, different reported works have highlighted the capacity of these new materials for overcoming the CO poisoning and promote the oxidation of other intermediates generated during the methanol oxidation. Regarding the cathode, the studies have showed more positive onset potentials, as fundamental parameter for determining the mechanism of the oxygen reduction reaction (ORR and thus, making them able for achieving high efficiencies, with less production of hydrogen peroxide as collateral product. This revision suggests that it is possible to replace the conventional Pt catalysts by Pd-based materials, although several efforts must be made in order to improve their performance in DMFCs.

  18. Re-examination of the Pt Particle Size Effect on the Oxygen Reduction Reaction for Ultrathin Uniform Pt/C Catalyst Layers without Influence from Nafion

    International Nuclear Information System (INIS)

    Shinozaki, Kazuma; Morimoto, Yu; Pivovar, Bryan S.; Kocha, Shyam S.

    2016-01-01

    Highlights: • Pt particle size effect on ORR was re-evaluated for Pt/C catalysts. • Nafion-free activity of Pt/C catalysts was evaluated using thin-film RDE methods. • Ultrathin-uniform catalyst layers were employed to obtain accurate activity values. • Specific activity increased steeply from 2 to 10 nm and less steeply at over 10 nm. • Re-evaluated effect agrees with a particle model assuming terrace active sites. - Abstract: The platinum ‘particle size effect’ on the oxygen reduction reaction (ORR) has been re-evaluated using commercial Pt/C catalysts (2–10 nm Pt particle) and polycrystalline Pt (poly-Pt) in 0.1 M HClO 4 with a rotating disk electrode method. Nafion-free catalyst layers were employed to obtain specific activities (SA) that were not perturbed (suppressed) by sulfonate anion adsorption/blocking. By using ultrathin uniform catalyst layers, O 2 diffusion limitation was minimized as confirmed from the high SAs of our supported catalysts that were comparable to unsupported sputtered Pt having controlled sizes. The specific activity (SA) steeply increased for the particle sizes in the range ∼2–10 nm (0.8–1.8 mA/cm 2 Pt at 0.9 V vs. RHE) and plateaued over ∼10 nm to 2.7 mA/cm 2 Pt for bulk poly-Pt. On the basis of the activity trend for the range of particle sizes studied, it appears that the effect of carbon support on activity is negligible. The experimental results and the concomitant profile of SA vs. particle size was found to be in an agreement to a truncated octahedral particle model that assumes active terrace sites.

  19. Synthesis of carbon nanotubes bridging metal electrodes

    International Nuclear Information System (INIS)

    Kotlar, M.; Vojs, M.; Marton, M.; Vesel, M.; Redhammer, R.

    2012-01-01

    In our work we demonstrate growth of carbon nanotubes that can conductively bridge the metal electrodes. The role of different catalysts was examined. Interdigitated metal electrodes are made from copper and we are using bimetal Al/Ni as catalyst for growth of carbon nanotubes. We are using this catalyst composition for growth of the single-walled carbon nanotube network. (authors)

  20. A survey of reference electrodes for high temperature waters

    International Nuclear Information System (INIS)

    Molander, A.; Eriksson, Sture; Pein, K.

    2000-11-01

    In nuclear power plants, corrosion potential measurements are used to follow the conditions for different corrosion types in reactor systems, particularly IGSCC in BWRs. The goal of this work has been to give a survey of reference electrodes for high temperature water, both those that are used for nuclear environments and those that are judged to possible future development. The reference electrodes that are used today in nuclear power plants for corrosion potential measurements are of three types. Silver chloride electrodes, membrane electrodes and platinum electrodes (hydrogen electrodes). The principals for their function is described as well as the conversion of measured potentials to the SHE scale (Standard Hydrogen Electrode). Silver chloride electrodes consist of an inner reference system of silver chloride in equilibrium with a chloride solution. The silver chloride electrode is the most common reference electrode and can be used in several different systems. Platinum electrodes are usually more robust and are particularly suitable to use in BWR environment to follow the hydrogen dosage, but have limitations at low and no hydrogen dosage. Ceramic membrane electrodes can be with different types of internal reference system. They were originally developed for pH measurements in high temperature water. If pH is constant, the membrane electrode can be used as reference electrode. A survey of ceramic reference electrodes for high temperature water is given. A ceramic membrane of the type used works as an oxygen conductor, so the potential and pH in surrounding medium is in equilibrium with the internal reference system. A survey of the lately development of electrodes is presented in order to explain why the different types of electrodes are developed as well as to give a background to the possibilities and limitations with the different electrodes. Possibilities of future development of electrodes are also given. For measurements at low or no hydrogen dosage

  1. Engineering Ru@Pt Core-Shell Catalysts for Enhanced Electrochemical Oxygen Reduction Mass Activity and Stability.

    Science.gov (United States)

    Jackson, Ariel; Strickler, Alaina; Higgins, Drew; Jaramillo, Thomas Francisco

    2018-01-12

    Improving the performance of oxygen reduction reaction (ORR) electrocatalysts is essential for the commercial efficacy of many renewable energy technologies, including low temperature polymer electrolyte fuel cells (PEFCs). Herein, we report highly active and stable carbon-supported Ru@Pt core-shell nanoparticles (Ru@Pt/C) prepared by a wet chemical synthesis technique. Through rotating disc electrode testing, the Ru@Pt/C achieves an ORR Pt mass-based activity of 0.50 A mg Pt -1 at 0.9 V versus the reversible hydrogen electrode (RHE), which exceeds the activity of the state-of-the-art commercial Pt/C catalyst as well as the Department of Energy 2020 PEFC electrocatalyst activity targets for transportation applications. The impact of various synthetic parameters, including Pt to Ru ratios and catalyst pretreatments (i.e., annealing) are thoroughly explored. Pt-based mass activity of all prepared Ru@Pt/C catalysts was found to exceed 0.4 mg Pt -1 across the range of compositions investigated, with the maximum activity catalyst having a Ru:Pt ratio of 1:1. This optimized composition of Ru@Pt/C catalyst demonstrated remarkable stability after 30,000 accelerated durability cycles (0.6 to 1.0 V vs. RHE at 125 mV s -1 ), maintaining 85% of its initial mass activity. Scanning transmission electron microscopy energy dispersive spectroscopy (STEM-EDS) analysis at various stages of electrochemical testing demonstrated that the Pt shell can provide sufficient protection against the dissolution of the otherwise unstable Ru core.

  2. HVDC Ground Electrodes and Tectonic Setting

    Science.gov (United States)

    Freire, P. F.; Pereira, S. Y.

    2017-12-01

    Ground electrodes in HVDC transmission are huge grounding systems for the DC part of the converter substation, about 1 km wide, sized to inject in the ground DC currents up to 3.5 kA. This work presents an analysis of how the tectonic setting at converter substation location is determinant for the search of the best electrode location (Site Selection) and on its design and performance. It will briefly present the author experience on HVDC electrode design, summarized as follows: Itaipu - Foz do Iguaçu electrodes (transmitter side) located in the middle of Paraná Sedimentary Basin, and Ibiúna electrodes (receiving side) on the border of the basin, 6 km from the geological strike, where the crystalline basement outcrops in São Paulo state; Madeira River - North electrodes (transmitting side) located on the Northwest border of South Amazon Craton, where the crystalline basement is below a shallow sediments layer, and South electrodes (receiving side) located within Paraná Sedimentary Basin; Chile - electrodes located on the Andean forearc, where the Nazca Plate plunges under the South American Plate; Kenya - Ethiopia - electrodes located in the African Rift; Belo Monte - North electrodes (transmitter side) located within the Amazonian Sedimentary Basin, about 35 km of its South border, and South electrodes (receiving side) within Paraná Sedimentary Basin (bipole 1) and on crystalline metamorphic terrain "Brasília Belt" (bipole 2). This diversity of geological conditions results on ground electrodes of different topologies and dimensions, with quite different electrical and thermal performances. A brief study of the geology of the converter stations regions, the so-called Desktop Study, allows for the preview of several important parameters for the site selection and design of the electrodes, such as localization, type, size and estimate of the interference area, which are important predictors of the investment to be made and indications of the design to be

  3. High performance cermet electrodes

    Science.gov (United States)

    Isenberg, Arnold O.; Zymboly, Gregory E.

    1986-01-01

    Disclosed is a method of increasing the operating cell voltage of a solid oxide electrochemical cell having metal electrode particles in contact with an oxygen-transporting ceramic electrolyte. The metal electrode is heated with the cell, and oxygen is passed through the oxygen-transporting ceramic electrolyte to the surface of the metal electrode particles so that the metal electrode particles are oxidized to form a metal oxide layer between the metal electrode particles and the electrolyte. The metal oxide layer is then reduced to form porous metal between the metal electrode particles and the ceramic electrolyte.

  4. Spectroelectrochemical Study of Carbon Monoxide and Ethanol Oxidation on Pt/C, PtSn(3:1/C and PtSn(1:1/C Catalysts

    Directory of Open Access Journals (Sweden)

    Rubén Rizo

    2016-09-01

    Full Text Available PtSn-based catalysts are one of the most active materials toward that contribute ethanol oxidation reaction (EOR. In order to gain a better understanding of the Sn influence on the carbon monoxide (principal catalyst poison and ethanol oxidation reactions in acidic media, a systematic spectroelectrochemical study was carried out. With this end, carbon-supported PtSnx (x = 0, 1/3 and 1 materials were synthesized and employed as anodic catalysts for both reactions. In situ Fourier transform infrared spectroscopy (FTIRS and differential electrochemical mass spectrometry (DEMS indicate that Sn diminishes the amount of bridge bonded CO (COB and greatly improves the CO tolerance of Pt-based catalysts. Regarding the effect of Sn loading on the EOR, it enhances the catalytic activity and decreases the onset potential. FTIRS and DEMS analysis indicate that the C-C bond scission occurs at low overpotentials and at the same potential values regardless of the Sn loading, although the amount of C-C bond breaking decreases with the rise of Sn in the catalytic material. Therefore, the elevated catalytic activity toward the EOR at PtSn-based electrodes is mainly associated with the improved CO tolerance and the incomplete oxidation of ethanol to form acetic acid and acetaldehyde species, causing the formation of a higher amount of both C2 products with the rise of Sn loading.

  5. Vertically aligned carbon nanotubes/carbon fiber paper composite to support Pt nanoparticles for direct methanol fuel cell application

    Science.gov (United States)

    Zhang, Jing; Yi, Xi-bin; Liu, Shuo; Fan, Hui-Li; Ju, Wei; Wang, Qi-Chun; Ma, Jie

    2017-03-01

    Vertically aligned carbon nanotubes (VACNTs) grown on carbon fiber paper (CFP) by plasma enhanced chemical vapor deposition is introduced as a catalyst support material for direct methanol fuel cells (DMFCs). Well dispersed Pt nanoparticles on VACNTs surface are prepared by impregnation-reduction method. The VACNTs on CFP possess well-maintained alignment, large surface area and good electrical conductivity, which leading to the formation of Pt particles with a smaller size and enhance the Pt utilization rate. The structure and nature of resulting Pt/VACNTs/CFP catalysts for methanol oxidation are investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD) and scanning electron microscope (SEM). With the aid of VACNTs, well-dispersed Pt catalysts enable the reversibly rapid redox kinetic since electron transport efficiently passes through a one-dimensional pathway, which leads to enhance the catalytic activity and Pt utilization rate. Compared with the Pt/XC-72/CFP electrode, the electrochemical measurements results display that the Pt/VACNTs/CFP catalyst shows much higher electrocatalytic activity and better stability for methanol oxidation. In addition, the oxidation current from 200 to 1200 s decayed more slowly for the Pt/VACNTs/CFP than that of the Pt/XC-72/CFP catalysts, indicating less accumulation of adsorbed CO species. All those results imply that the Pt/VACNTs/CFP has a great potential for applications in DMFCs.

  6. Coulomb excitation of the 4+1 states of 194Pt, 196Pt and 198Pt

    International Nuclear Information System (INIS)

    Fewell, M.P.; Gyapong, G.J.; Spear, R.H.

    1987-09-01

    Probabilities for the Coulomb excitation of the 4 1 + states of 194 Pt, 196 Pt, 198 Pt by the backscattering of 4 He, 12 C and 16 O ions are reported. Model-independent values of the matrix elements 1 + ; M(E4), 4 1 + > and 1 + , M(E2), 4 1 + > are extracted. Agreement with previous measurements of these matrix elements is good. Values of β 2 and β 4 are determined for 194 Pt and compared with calculations of these quantities

  7. Ligand substitution and selective surface coordination studies of iodine and 2,5-dihydroxythiophenol at platinum electrodes

    International Nuclear Information System (INIS)

    Berry, G.M.; Soriaga, M.P.

    1989-01-01

    The relative surface coordination strengths of 2,5-dihydroxythiophenol (DHT) and iodine at a smooth polycrystalline platinum electrode have been investigated by thin-layer electrochemical techniques. The competitive chemisorption was studied by exposing the Pt electrode to solutions of varying mole fractions of I and DHT. Studies of ligand substitution were carried out by the introduction of an iodine-coated Pt electrode into DHT solutions, and the introduction of a DHT-coated into I solutions. Surface coverage measurements indicated that DHT is preferentially adsorbed and will displace chemisorbed iodine at the Pt electrode. Chemisorbed DHT is not appreciably displaced by iodine. These results and their contribution to the trend in the selective surface coordination chemistry of platinum electrodes will be discussed

  8. Doped graphene electrodes for organic solar cells

    International Nuclear Information System (INIS)

    Park, Hyesung; Kim, Ki Kang; Bulovic, Vladimir; Kong, Jing; Rowehl, Jill A

    2010-01-01

    In this work graphene sheets grown by chemical vapor deposition (CVD) with controlled numbers of layers were used as transparent electrodes in organic photovoltaic (OPV) devices. It was found that for devices with pristine graphene electrodes, the power conversion efficiency (PCE) is comparable to their counterparts with indium tin oxide (ITO) electrodes. Nevertheless, the chances for failure in OPVs with pristine graphene electrodes are higher than for those with ITO electrodes, due to the surface wetting challenge between the hole-transporting layer and the graphene electrodes. Various alternative routes were investigated and it was found that AuCl 3 doping on graphene can alter the graphene surface wetting properties such that a uniform coating of the hole-transporting layer can be achieved and device success rate can be increased. Furthermore, the doping both improves the conductivity and shifts the work function of the graphene electrode, resulting in improved overall PCE performance of the OPV devices. This work brings us one step further toward the future use of graphene transparent electrodes as a replacement for ITO.

  9. A freeze-dried graphene counter electrode enhances the performance of dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Kai-Hsiang; Wang, Hong-Wen, E-mail: hongwen@cycu.edu.tw

    2014-01-01

    A flexible graphene/polyimide (PI) counter electrode without a fluorine-doped tin oxide (FTO) layer has been fabricated for dye-sensitized solar cell (DSSCs) applications. The flexible counter electrode consists of polyimide double-sided tape as a substrate beneath a graphene film acting as the conductive and catalytic layer. Chemically reduced graphene oxide (rGO) on the PI electrode (rGO-PI) shows comparable catalytic activity to that of the reference sputtered platinum/FTO counter electrodes (Sputter-Pt/FTO). A DSSC with a freeze-dried rGO-PI (FD-rGO-PI) counter electrode shows an overall conversion efficiency (η) of 5.45%, while that of the conventional Sputter-Pt/FTO electrode is 5.52%. The DSSC with a thermally dried rGO-PI (Gel-rGO-PI) counter electrode (not freeze-dried) exhibits a smooth morphology and much poorer performance (η = 1.61%). Field emission scanning electron microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry measurements demonstrate that the FD-rGO-PI electrode possesses a porous structure, numerous edges, minimum charge-transfer resistance and a higher electrocatalytic activity toward the I{sub 3}{sup −}/I{sup −} redox couple than that of the Gel-rGO-PI electrode. The high electrocatalytic activity, facile preparation procedure, absence of FTO, and material flexibility render the FD-rGO-PI electrode an ideal alternative to conventional DSSC counter electrodes. - Highlights: • Highly rough and conductive graphene-based counter electrode is synthesized. • The characteristics of graphene surface by freeze drying are different. • The graphene counter electrode exhibits comparable performance to that of sputtered Pt one.

  10. Transformation of medical grade silicone rubber under Nd:YAG and excimer laser irradiation: First step towards a new miniaturized nerve electrode fabrication process

    International Nuclear Information System (INIS)

    Dupas-Bruzek, C.; Robbe, O.; Addad, A.; Turrell, S.; Derozier, D.

    2009-01-01

    Medical grade silicone rubber, poly-dimethylsiloxane (PDMS) is a widely used biomaterial. Like for many polymers, its surface can be modified in order to change one or several of its properties which further allow this surface to be functionalized. Laser-induced surface modification of PDMS under ambient conditions is an easy and powerful method for the surface modification of PDMS without altering its bulk properties. In particular, we profit from both UV laser inducing surface modification and of UV laser micromachining to develop a first part of a new process aiming at increasing the number of contacts and tracks within the same electrode surface to improve the nerve selectivity of implantable self sizing spiral cuff electrodes. The second and last part of the process is to further immerse the engraved electrode in an autocatalytic Pt bath leading in a selective Pt metallization of the laser irradiated tracks and contacts and thus to a functionalized PDMS surface. In the present work, we describe the different physical and chemical transformations of a medical grade PDMS as a function of the UV laser and of the irradiation conditions used. We show that the ablation depths, chemical composition, structure and morphology vary with (i) the laser wavelength (using an excimer laser at 248 nm and a frequency-quadrupled Nd:YAG laser at 266 nm), (ii) the conditions of irradiation and (iii) the pulse duration. These different modified properties are expected to have a strong influence on the nucleation and growth rates of platinum which govern the adhesion and the thickness of the Pt layer on the electrodes and thus the DC resistance of tracks.

  11. Pt-Fe catalyst nanoparticles supported on single-wall carbon nanotubes: Direct synthesis and electrochemical performance for methanol oxidation

    Science.gov (United States)

    Ma, Xiaohui; Luo, Liqiang; Zhu, Limei; Yu, Liming; Sheng, Leimei; An, Kang; Ando, Yoshinori; Zhao, Xinluo

    2013-11-01

    Single-wall carbon nanotubes (SWCNTs) supported Pt-Fe nanoparticles have been prepared by one-step hydrogen arc discharge evaporation of carbon electrode containing both Pt and Fe metal elements. The formation of SWCNTs and Pt-Fe nanoparticles occur simultaneously during the evaporation process. High-temperature hydrogen treatment and hydrochloric acid soaking have been carried out to purify and activate those materials in order to obtain a new type of Pt-Fe/SWCNTs catalyst for methanol oxidation. The Pt-Fe/SWCNTs catalyst performs much higher electrocatalytic activity for methanol oxidation, better stability and better durability than a commercial Pt/C catalyst according to the electrochemical measurements, indicating that it has a great potential for applications in direct methanol fuel cells.

  12. L1{sub 0}-FePt films fabricated by wet-chemical route

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Xiaoliang; Xiao, Wen; Bao, Nina; Li, Weimin; Chichvarina, Olga, E-mail: A0077107@nus.edu.sg; Ding, Jun, E-mail: msedingj@nus.edu.sg

    2015-08-31

    In this work, we have developed a method to fabricate FePt films by a combination of chemical deposition and post-annealing. Pt-doped Fe films were deposited on Pt(100 nm)/Ti(50 nm)/SiO{sub 2}/Si substrate using thermal deposition and the as-deposited films were subsequently annealed from 300 °C to 800 °C under 5% H{sub 2}/95% N{sub 2}. FePt films were achieved through diffusion and rearrangement of Fe and Pt atoms in post-annealing process. From X-ray diffraction results, the face-centered cubic (fcc) FePt phase appeared at 300 °C and the transformation from fcc to L1{sub 0} phase started at 400 °C. The L1{sub 0}-FePt film possessed an out-of-plane anisotropy and a coercivity of 729 kA/m after annealing at 600 °C. A further increase in annealing temperature led to lower value of coercivity, probably because of grain growth. In addition, the thickness of Pt-doped Fe films could be controlled from 150 nm to 700 nm by adjusting the amount of surfactant used. Our superconducting quantum interference device analysis showed that Pt dopant could significantly improve the chemical stability of Fe films in air. - Highlights: • We fabricated FePt film by a combination of chemical deposition and post-annealing. • L1{sub 0} FePt film was formed by Fe/Pt diffusion in annealing of Pt-doped Fe film. • L1{sub 0}-phase FePt with high coercivity and small out-of-plane anisotropy • Relatively small amount of Pt dopant can enhance chemical stability greatly. • We studied structure and magnetic property of as-deposited and annealed FePt film.

  13. Co-deposition of Pt and ceria anode catalyst in supercritical carbon dioxide for direct methanol fuel cell applications

    International Nuclear Information System (INIS)

    You, Eunyoung; Guzmán-Blas, Rolando; Nicolau, Eduardo; Aulice Scibioh, M.; Karanikas, Christos F.; Watkins, James J.; Cabrera, Carlos R.

    2012-01-01

    Pt and mixed Pt-ceria catalysts were deposited onto gas diffusion layers using supercritical fluid deposition (SFD) to fabricate thin layer electrodes for direct methanol fuel cells. Dimethyl (1,5-cyclooctadiene) platinum (II) (CODPtMe 2 ) and tetrakis (2,2,6,6-tetramethyl 3,5-heptanedionato) cerium (IV) (Ce(tmhd) 4 ) were used as precursors. Hydrogen-assisted Pt deposition was performed in compressed carbon dioxide at 60 °C and 17.2 MPa to yield high purity Pt on carbon-black based gas diffusion layers. During the preparation of the mixed Pt-ceria catalyst, hydrogen reduction of CODPtMe 2 to yield Pt catalyzed the deposition of ceria from Ce(tmhd) 4 enabling co-deposition at 150 °C. The catalyst layers were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope-energy dispersive spectral (SEM-EDS) analyses. Their electrochemical performance toward methanol oxidation was examined in half cell mode using a three electrode assembly as well as in fuel cell mode. The thin layer electrodes formed via SFD exhibited higher performance in fuel cell operations compared to those prepared by the conventional brush-paint method. Furthermore, the Pt-ceria catalyst with an optimized composition exhibited greater methanol oxidation activity than pure platinum.

  14. Analisis Modal Kerja untuk Peningkatkan Produktivitas pada PT. Unilever Indonesia, Tbk. Periode 2006-2010

    Directory of Open Access Journals (Sweden)

    Engelwati Gani

    2012-11-01

    Full Text Available The study was conducted at PT. Unilever Indonesia, Tbk, which aims to determine the level of working capital management and corporate productivity. Quantitative analysis methods used and data analysis techniques used are the working capital analysis, financial ratio analysis and the analysis of the productivity ratio. Research results obtained from the results that a decrease in working capital at PT. Unilever Indonesia, Tbk. from the year 2006-2010 which decreases the amount of current assets while current liabilities increased. PT levels of liquidity. Unilever Indonesia, Tbk. is also quite low and has decreased every year. Expected PT. Unilever Indonesia, Tbk. able to increase the amount of current assets to cash and cash equivalents productivity is not compromised. Productivity ratio of PT. Unilever Indonesia, Tbk in 2010 has increased due to production cost savings and increased sales obtained. This suggests a tight working capital management is carried out by PT. Unilever Indonesia, Tbk. can increase company productivity.

  15. Surface effects of electrode-dependent switching behavior of resistive random-access memory

    KAUST Repository

    Ke, Jr Jian

    2016-09-26

    The surface effects of ZnO-based resistive random-access memory (ReRAM) were investigated using various electrodes. Pt electrodes were found to have better performance in terms of the device\\'s switching functionality. A thermodynamic model of the oxygen chemisorption process was proposed to explain this electrode-dependent switching behavior. The temperature-dependent switching voltage demonstrates that the ReRAM devices fabricated with Pt electrodes have a lower activation energy for the chemisorption process, resulting in a better resistive switching performance. These findings provide an in-depth understanding of electrode-dependent switching behaviors and can serve as design guidelines for future ReRAM devices.

  16. Improvement of interface property for membrane electrode assembly in fuel cell

    International Nuclear Information System (INIS)

    Fujii, K.; Sato, Y.; Kakigi, T.; Matsuura, A.; Mitani, N.; Muto, F.; Li Jingye; Miura, T.; Oshima, A.; Washio, M.

    2006-01-01

    Membrane electrode assembly (MEA) in polymer electrolyte fuel cells (PEFC) is consisted of proton exchange membrane (PEM), binder and Pt/C electrodes. In our previous work, partial-fluorinated sulfonic acid membranes were synthesized for PEMs using pre-EB grafting method. In the fuel cell (FC) operation, the dispersion of per-fluorinated sulfonic acid such as Nafion (DuPont de Nemours LTD.) was used for binder material. So, it is found that the trouble on conditions at three phase interface would occur at high temperature FC operation due to the differences of thermal properties. Thus, the control of interface property is important. In this study, in order to improve the interface properties, proton exchange membrane was synthesized from poly (tetrafluoroethylene-co-perfluoroalkylvinylether) (PFA), and then the obtained sulfonated PFA (s-PFA) was applied for binder material. PFA membranes were grafted in liquid styrene after EB irradiation under nitrogen atmosphere, and then sulfonated by chlorosulfonic acid solutions. The s-PFA membranes were milled to the powder in the mortar, and the average diameter was about 13 μm. S-PFA / Nafion blend dispersion was prepared by s-PFA mixed with Nafion dispersion with various ratios. MEAs were fabricated by using obtained binders, s-PFA membranes and Pt / C electrodes, followed by hot pressing at 110 degree C and at 8 MPa during 3 min. The properties of MEAs were measured by electrochemical analyses. In consequence, ion conductivities in MEA using obtained binders were about 1.3 times higher than those using Nafion dispersion. And, both power densities at 500 mA/cm 2 and maximum power densities were 1.1 times higher than those of Nafion dispersion. These are due to the improvement of the proton transfer at interface. (authors)

  17. A Simple Hydrogen Electrode

    Science.gov (United States)

    Eggen, Per-Odd

    2009-01-01

    This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…

  18. The Composite Insertion Electrode

    DEFF Research Database (Denmark)

    Atlung, Sven; Zachau-Christiansen, Birgit; West, Keld

    1984-01-01

    The specific energy obtainable by discharge of porous insertion electrodes is limited by electrolyte depletion in thepores. This can be overcome using a solid ion conductor as electrolyte. The term "composite" is used to distinguishthese electrodes from porous electrodes with liquid electrolyte...

  19. Single-wall carbon nanotube chemical attachment at platinum electrodes

    International Nuclear Information System (INIS)

    Rosario-Castro, Belinda I.; Contes-de-Jesus, Enid J.; Lebron-Colon, Marisabel; Meador, Michael A.; Scibioh, M. Aulice; Cabrera, Carlos R.

    2010-01-01

    Self-assembled monolayer (SAM) techniques were used to adsorb 4-aminothiophenol (4-ATP) on platinum electrodes in order to obtain an amino-terminated SAM as the base for the chemical attachment of single-wall carbon nanotubes (SWCNTs). A physico-chemical, morphological and electrochemical characterizations of SWCNTs attached onto the modified Pt electrodes was done by using reflection-absorption infrared spectroscopy (RAIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and cyclic voltammetry (CV) techniques. The SWNTs/4-ATP/Pt surface had regions of small, medium, and large thickness of carbon nanotubes with heights of 100-200 nm, 700 nm to 1.5 μm, and 1.0-3.0 μm, respectively. Cyclic voltammetries (CVs) in sulfuric acid demonstrated that attachment of SWNTs on 4-ATP/Pt is markedly stable, even after 30 potential cycles. CV in ruthenium hexamine was similar to bare Pt electrodes, suggesting that SWNTs assembly is similar to a closely packed microelectrode array.

  20. Lithium alloy negative electrodes

    Science.gov (United States)

    Huggins, Robert A.

    The 1996 announcement by Fuji Photo Film of the development of lithium batteries containing convertible metal oxides has caused a great deal of renewed interest in lithium alloys as alternative materials for use in the negative electrode of rechargeable lithium cells. The earlier work on lithium alloys, both at elevated and ambient temperatures is briefly reviewed. Basic principles relating thermodynamics, phase diagrams and electrochemical properties under near-equilibrium conditions are discussed, with the Li-Sn system as an example. Second-phase nucleation, and its hindrance under dynamic conditions plays an important role in determining deviations from equilibrium behavior. Two general types of composite microstructure electrodes, those with a mixed-conducting matrix, and those with a solid electrolyte matrix, are discussed. The Li-Sn-Si system at elevated temperatures, and the Li-Sn-Cd at ambient temperatures are shown to be examples of mixed-conducting matrix microstructures. The convertible oxides are an example of the solid electrolyte matrix type. Although the reversible capacity can be very large in this case, the first cycle irreversible capacity required to convert the oxides to alloys may be a significant handicap.

  1. Accurate Assessment of the Oxygen Reduction Electrocatalytic Activity of Mn/Polypyrrole Nanocomposites Based on Rotating Disk Electrode Measurements, Complemented with Multitechnique Structural Characterizations

    Science.gov (United States)

    Sánchez, Carolina Ramírez; Taurino, Antonietta; Bozzini, Benedetto

    2016-01-01

    This paper reports on the quantitative assessment of the oxygen reduction reaction (ORR) electrocatalytic activity of electrodeposited Mn/polypyrrole (PPy) nanocomposites for alkaline aqueous solutions, based on the Rotating Disk Electrode (RDE) method and accompanied by structural characterizations relevant to the establishment of structure-function relationships. The characterization of Mn/PPy films is addressed to the following: (i) morphology, as assessed by Field-Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscope (AFM); (ii) local electrical conductivity, as measured by Scanning Probe Microscopy (SPM); and (iii) molecular structure, accessed by Raman Spectroscopy; these data provide the background against which the electrocatalytic activity can be rationalised. For comparison, the properties of Mn/PPy are gauged against those of graphite, PPy, and polycrystalline-Pt (poly-Pt). Due to the literature lack of accepted protocols for precise catalytic activity measurement at poly-Pt electrode in alkaline solution using the RDE methodology, we have also worked on the obtainment of an intralaboratory benchmark by evidencing some of the time-consuming parameters which drastically affect the reliability and repeatability of the measurement. PMID:28042491

  2. Accurate Assessment of the Oxygen Reduction Electrocatalytic Activity of Mn/Polypyrrole Nanocomposites Based on Rotating Disk Electrode Measurements, Complemented with Multitechnique Structural Characterizations

    Directory of Open Access Journals (Sweden)

    Patrizia Bocchetta

    2016-01-01

    Full Text Available This paper reports on the quantitative assessment of the oxygen reduction reaction (ORR electrocatalytic activity of electrodeposited Mn/polypyrrole (PPy nanocomposites for alkaline aqueous solutions, based on the Rotating Disk Electrode (RDE method and accompanied by structural characterizations relevant to the establishment of structure-function relationships. The characterization of Mn/PPy films is addressed to the following: (i morphology, as assessed by Field-Emission Scanning Electron Microscopy (FE-SEM and Atomic Force Microscope (AFM; (ii local electrical conductivity, as measured by Scanning Probe Microscopy (SPM; and (iii molecular structure, accessed by Raman Spectroscopy; these data provide the background against which the electrocatalytic activity can be rationalised. For comparison, the properties of Mn/PPy are gauged against those of graphite, PPy, and polycrystalline-Pt (poly-Pt. Due to the literature lack of accepted protocols for precise catalytic activity measurement at poly-Pt electrode in alkaline solution using the RDE methodology, we have also worked on the obtainment of an intralaboratory benchmark by evidencing some of the time-consuming parameters which drastically affect the reliability and repeatability of the measurement.

  3. Unusual attempt to direct the growth of bimetallic Ag@Pt nanorods on electrochemically reduced graphene oxide nanosheets by electroless exchange of Cu by Pt for an efficient alcohol oxidation

    Science.gov (United States)

    Jeena, S. E.; Gnanaprakasam, P.; Selvaraju, T.

    2017-01-01

    A simple and an efficient tool for the direct growth of bimetallic Ag@Pt nanorods (NRDs) on electrochemically reduced graphene oxide (ERGO) nanosheets was developed at glassy carbon electrode (GCE). Initially, Cu shell was grown on Ag core as Ag@Cu NRD by the seed-mediated growth method. Accordingly, Cu shell has been successfully replaced by Pt using the electroless galvanic replacement method with ease by effective functionalization of L-tryptophan on ERGO surface (L-ERGO), which eventually plays an important role in the direct growth of one-dimensional bimetallic NRDs. As a result, the synthesized Ag@Pt NRD-supported L-ERGO nanosheets (Ag@Pt NRDs/L-ERGO/GCE) were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDAX) and Raman spectroscopy. Anodic stripping voltammetry was used to explore its electrochemical properties. Finally, the developed bimetallic Ag@Pt NRDs/L-ERGO/GCEs were studied as a better electrocatalyst compared to the commercial catalysts such as Pt40/C or Pt20/C-loaded electrode for the oxidation of ethanol or methanol with a high tolerance level and an enhanced current density. In addition, the long-term stability was studied using chronoamperometry for 1000 s at the bimetallic NRD electrode for alcohol oxidation which impedes the fouling properties. The unfavourable and favourable electrooxidation of ethanol at Ag@Cu NRDs/L-ERGO/GCE (a) and Ag@Pt NRDs/L-ERGO/GCE (b) is discussed. The synergistic effect of Ag core and catalytic properties of Pt shell at Ag@Pt NRDs/L-ERGO/GCE tend to strongly minimize the CO poisoning effect and enhanced ethanol electrooxidation.

  4. Unusual attempt to direct the growth of bimetallic Ag@Pt nanorods on electrochemically reduced graphene oxide nanosheets by electroless exchange of Cu by Pt for an efficient alcohol oxidation

    International Nuclear Information System (INIS)

    Jeena, S. E.; Gnanaprakasam, P.; Selvaraju, T.

    2017-01-01

    A simple and an efficient tool for the direct growth of bimetallic Ag@Pt nanorods (NRDs) on electrochemically reduced graphene oxide (ERGO) nanosheets was developed at glassy carbon electrode (GCE). Initially, Cu shell was grown on Ag core as Ag@Cu NRD by the seed-mediated growth method. Accordingly, Cu shell has been successfully replaced by Pt using the electroless galvanic replacement method with ease by effective functionalization of L-tryptophan on ERGO surface (L-ERGO), which eventually plays an important role in the direct growth of one-dimensional bimetallic NRDs. As a result, the synthesized Ag@Pt NRD-supported L-ERGO nanosheets (Ag@Pt NRDs/L-ERGO/GCE) were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDAX) and Raman spectroscopy. Anodic stripping voltammetry was used to explore its electrochemical properties. Finally, the developed bimetallic Ag@Pt NRDs/L-ERGO/GCEs were studied as a better electrocatalyst compared to the commercial catalysts such as Pt_4_0/C or Pt_2_0/C-loaded electrode for the oxidation of ethanol or methanol with a high tolerance level and an enhanced current density. In addition, the long-term stability was studied using chronoamperometry for 1000 s at the bimetallic NRD electrode for alcohol oxidation which impedes the fouling properties. The unfavourable and favourable electrooxidation of ethanol at Ag@Cu NRDs/L-ERGO/GCE (a) and Ag@Pt NRDs/L-ERGO/GCE (b) is discussed. The synergistic effect of Ag core and catalytic properties of Pt shell at Ag@Pt NRDs/L-ERGO/GCE tend to strongly minimize the CO poisoning effect and enhanced ethanol electrooxidation.

  5. Unusual attempt to direct the growth of bimetallic Ag@Pt nanorods on electrochemically reduced graphene oxide nanosheets by electroless exchange of Cu by Pt for an efficient alcohol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Jeena, S. E.; Gnanaprakasam, P. [Karunya University, Department of Chemistry (India); Selvaraju, T., E-mail: veluselvaraju@gmail.com [Bharathiar University, Department of Chemistry (India)

    2017-01-15

    A simple and an efficient tool for the direct growth of bimetallic Ag@Pt nanorods (NRDs) on electrochemically reduced graphene oxide (ERGO) nanosheets was developed at glassy carbon electrode (GCE). Initially, Cu shell was grown on Ag core as Ag@Cu NRD by the seed-mediated growth method. Accordingly, Cu shell has been successfully replaced by Pt using the electroless galvanic replacement method with ease by effective functionalization of L-tryptophan on ERGO surface (L-ERGO), which eventually plays an important role in the direct growth of one-dimensional bimetallic NRDs. As a result, the synthesized Ag@Pt NRD-supported L-ERGO nanosheets (Ag@Pt NRDs/L-ERGO/GCE) were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDAX) and Raman spectroscopy. Anodic stripping voltammetry was used to explore its electrochemical properties. Finally, the developed bimetallic Ag@Pt NRDs/L-ERGO/GCEs were studied as a better electrocatalyst compared to the commercial catalysts such as Pt{sub 40}/C or Pt{sub 20}/C-loaded electrode for the oxidation of ethanol or methanol with a high tolerance level and an enhanced current density. In addition, the long-term stability was studied using chronoamperometry for 1000 s at the bimetallic NRD electrode for alcohol oxidation which impedes the fouling properties. The unfavourable and favourable electrooxidation of ethanol at Ag@Cu NRDs/L-ERGO/GCE (a) and Ag@Pt NRDs/L-ERGO/GCE (b) is discussed. The synergistic effect of Ag core and catalytic properties of Pt shell at Ag@Pt NRDs/L-ERGO/GCE tend to strongly minimize the CO poisoning effect and enhanced ethanol electrooxidation.

  6. Experimental and Theoretical Studies of Nanostructured Electrodes for Use in Dye-Sensitized Solar Cells

    Science.gov (United States)

    Gong, Jiawei

    Among various photovoltaic technologies available in the emerging market, dye-sensitized solar cells (DSSCs) are deemed as an effective, competitive solution to the increasing demand for high-efficiency PV devices. To move towards full commercialization, challenges remain in further improvement of device stability as well as reduction of material and manufacturing costs. This study aims at rational synthesis and photovoltaic characterization of two nanostructured electrode materials (i.e. SnO2 nanofibers and activated graphene nanoplatelets) for use as photoanode and counter electrode in dye-sensitized solar cells. The main objective is to explore the favorable charge transport features of SnO2 nanofiber network and simultaneously replace the high-priced conventional electrocatalytic nanomaterials (e.g. Pt nanoparticles) used in existing counter electrode of DSSCs. To achieve this objective, a multiphysics model of electrode kinetics was developed to optimize various design parameters and cell configurations. The porous hollow SnO2 nanofibers were successfully synthesized via a facile route consisting of electrospinning precursor polymer nanofibers, followed by controlled carbonization. The novel SnO2/TiO2 composite photoanode materials carry advantages of SnO2 nanofiber network (e.g. nanostructural continuity, high electron mobility) and TiO2 nanoparticles (e.g. high specific area), and therefore show excellent photovoltaic properties including improved short-circuit current and fill factors. In addition, hydrothermally activated graphene nanoplatelets (aGNP) were used as a catalytic counter electrode material to substitute for conventionally used platinum nanoparticles. Improved catalytic performance of aGNP electrode was achieved through increased surface area and better control of morphology. Dye-sensitized solar cells using these aGNP electrodes had power conversion efficiencies comparable to those using platinum nanoparticles with I-/I3- redox mediators

  7. Direct methanol fuel cell with extended reaction zone anode: PtRu and PtRuMo supported on graphite felt

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Alex; Gyenge, Elod L.; Oloman, Colin W. [Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC (Canada)

    2007-05-15

    Pressed graphite felt (thickness {proportional_to}350 {mu}m) with electrodeposited PtRu (43 g m{sup -2}, 1.4:1 atomic ratio) or PtRuMo (52 g m{sup -2}, 1:1:0.3 atomic ratio) nanoparticle catalysts was investigated as an anode for direct methanol fuel cells. At temperatures above 333 K the fuel cell performance of the PtRuMo catalyst was superior compared to PtRu. The power density was 2200 W m{sup -2} with PtRuMo at 5500 A m{sup -2} and 353 K while under the same conditions PtRu yielded 1925 W m{sup -2}. However, the degradation rate of the Mo containing catalyst formulation was higher. Compared to conventional gas diffusion electrodes with comparable PtRu catalyst composition and load, the graphite felt anodes gave higher power densities mainly due to the extended reaction zone for methanol oxidation. (author)

  8. Long Life Nickel Electrodes for Nickel-Hydrogen Cells: Fiber Substrates Nickel Electrodes

    Science.gov (United States)

    Rogers, Howard H.

    2000-01-01

    Samples of nickel fiber mat electrodes were investigated over a wide range of fiber diameters, electrode thickness, porosity and active material loading levels. Thickness' were 0.040, 0.060 and 0.080 inches for the plaque: fiber diameters were primarily 2, 4, and 8 micron and porosity was 85, 90, and 95%. Capacities of 3.5 in. diameter electrodes were determined in the flooded condition with both 26 and 31% potassium hydroxide solution. These capacity tests indicated that the highest capacities per unit weight were obtained at the 90% porosity level with a 4 micron diameter fiber plaque. It appeared that the thinner electrodes had somewhat better performance, consistent with sintered electrode history. Limited testing with two-positive-electrode boiler plate cells was also carried out. Considerable difficulty with constructing the cells was encountered with short circuits the major problem. Nevertheless, four cells were tested. The cell with 95% porosity electrodes failed during conditioning cycling due to high voltage during charge. Discharge showed that this cell had lost nearly all of its capacity. The other three cells after 20 conditioning cycles showed capacities consistent with the flooded capacities of the electrodes. Positive electrodes made from fiber substrates may well show a weight advantage of standard sintered electrodes, but need considerably more work to prove this statement. A major problem to be investigated is the lower strength of the substrate compared to standard sintered electrodes. Problems with welding of leads were significant and implications that the electrodes would expand more than sintered electrodes need to be investigated. Loading levels were lower than had been expected based on sintered electrode experiences and the lower loading led to lower capacity values. However, lower loading causes less expansion and contraction during cycling so that stress on the substrate is reduced.

  9. PtRu nanoparticles embedded in nitrogen doped carbon with highly stable CO tolerance and durability

    Science.gov (United States)

    Ling, Ying; Yang, Zehui; Yang, Jun; Zhang, Yunfeng; Zhang, Quan; Yu, Xinxin; Cai, Weiwei

    2018-02-01

    As is well known, the lower durability and sluggish methanol oxidation reaction (MOR) of PtRu alloy electrocatalyst blocks the commercialization of direct methanol fuel cells (DMFCs). Here, we design a new PtRu electrocatalyst, with highly stable CO tolerance and durability, in which the PtRu nanoparticles are embedded in nitrogen doped carbon layers derived from carbonization of poly(vinyl pyrrolidone). The newly fabricated electrocatalyst exhibits no loss in electrochemical surface area (ECSA) and MOR activity after potential cycling from 0.6-1.0 V versus reversible hydrogen electrode, while commercial CB/PtRu retains only 50% of its initial ECSA. Meanwhile, due to the same protective layers, the Ru dissolution is decelerated, resulting in stable CO tolerance. Methanol oxidation reaction (MOR) testing indicates that the activity of newly fabricated electrocatalyst is two times higher than that of commercial CB/PtRu, and the fuel cell performance of the embedded PtRu electrocatalyst was comparable to that of commercial CB/PtRu. The embedded PtRu electrocatalyst is applicable in real DMFC operation. This study offers important and useful information for the design and fabrication of durable and CO tolerant electrocatalysts.

  10. Characterization of a surface modified carbon cryogel and a carbon supported Pt catalyst

    Directory of Open Access Journals (Sweden)

    BILJANA M. BABIĆ

    2007-08-01

    Full Text Available A carbon cryogel, synthesized by carbonization of a resorcinol/formaldehyde cryogel and oxidized in nitric acid, was used as catalyst support for Pt nano-particles. The Pt/C catalyst was prepared by a modified polyol synthesis method in an ethylene glycol (EG solution. Characterization by nitrogen adsorption showed that the carbon cryogel support and the Pt/C catalyst were mesoporous materials with high specific surface areas (SBET > 400 m2 g-1 and large mesoporous volumes. X-Ray diffraction of the catalyst demonstrated the successful reduction of the Pt precursor to metallic form. TEM Images of the Pt/C catalyst and Pt particle size distribution showed that the mean Pt particle size was about 3.3 nm. Cyclic voltammetry (CV experiments at various scan rates (from 2 to 200 mV s-1 were performed in 0.5 mol dm-3 HClO4 solution. The large capacitance of the oxidized carbon cryogel electrode, which arises from a combination of the double-layer capacitance and pseudocapacitance, associated with the participation of surface redox-type reactions was demonstrated. For the oxidized carbon cryogel, the total specific capacitance determined by 1/C vs. ν0.5 extrapolation method was found to be 386 F g-1. The hydrogen oxidation reaction at the investigated Pt/C catalyst proceeded as an electrochemically reversible, two-electron direct discharge reaction.

  11. Electrocatalytic reduction of H2O2 by Pt nanoparticles covalently bonded to thiolated carbon nanostructures

    International Nuclear Information System (INIS)

    You, Jung-Min; Kim, Daekun; Jeon, Seungwon

    2012-01-01

    Highlights: ► Novel thiolated carbon nanostructures – platinum nanoparticles [t-GO-C(O)-pt and t-MWCNT-C(O)-S-pt] have been synthesized, and [t-GO-C(O)-pt and t-MWCNT-C(O)-S-pt] denotes as t-GO-pt and t-MWCNT-Pt in manuscript, respectively. ► The modified electrode denoted as PDDA/t-GO-pt/GCE was used for the electrochemical determination of H 2 O 2 for the first time. ► The results show that PDDA/t-GO-pt nanoparticles have the promising potential as the basic unit of the electrochemical biosensors for the detection of H 2 O 2 . ► The proposed H 2 O 2 biosensors exhibited wide linear ranges and low detection limits, giving fast responses within 10 s. - Abstract: Glassy carbon electrodes were coated with thiolated carbon nanostructures – multi-walled carbon nanotubes and graphene oxide. The subsequent covalent addition of platinum nanoparticles and coating with poly(diallydimethylammonium chloride) resulted in biosensors that detected hydrogen peroxide through its electrocatalytic reduction. The sensors were easily and quickly prepared and showed improved sensitivity to the electrocatalytic reduction of H 2 O 2 . The Pt nanoparticles covalently bonded to the thiolated carbon nanostructures were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive X-ray spectroscopy. Cyclic voltammetry and amperometry were used to characterize the biosensors’ performances. The sensors exhibited wide linear ranges and low detection limits, giving fast responses within 10 s, thus demonstrating their potential for use in H 2 O 2 analysis