WorldWideScience

Sample records for pt working electrode

  1. Electrochemical device based on a Pt nanosphere-paper working electrode for in situ and real-time determination of the flux of H2O2 releasing from SK-BR-3 cancer cells.

    Science.gov (United States)

    Liu, Fang; Ge, Shenguang; Yu, Jinghua; Yan, Mei; Song, Xianrang

    2014-09-14

    A novel paper working electrode with Pt nanospheres grown in it (Pt-PWE) was first used as a sensor platform and then cancer cells were immobilized on the Pt-PWE (high affinity binding with aptamers). This electrode was first designed to achieve the in situ and real-time determination of H2O2 released from cancer cells to obtain an accurate determination.

  2. Characterization of azo dyes on Pt and Pt/polyaniline/dispersed Pt electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Molina, J.; Fernandez, J.; Rio, A.I. del; Bonastre, J. [Departamento de Ingenieria Textil y Papelera, EPS de Alcoy, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy (Spain); Cases, F., E-mail: fjcases@txp.upv.es [Departamento de Ingenieria Textil y Papelera, EPS de Alcoy, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy (Spain)

    2012-06-15

    The electrochemical characterization of two organic dyes (amaranth and procion orange MX-2R) has been performed on Pt electrodes and Pt electrodes coated with polyaniline and dispersed Pt. Electrodes with different Pt loads have been synthesized and characterized obtaining that a load of 300 {mu}g cm{sup -2} was the optimum one. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was employed to observe the distribution and morphology of the Pt nanoparticles. The electroactivity of the electrodes has also been characterized by means of scanning electrochemical microscopy (SECM). The chemical characterization of Pt dispersed Pani coated Pt electrodes (Pt-Pani-Pt) was performed by means of X-ray photoelectron spectroscopy (XPS). The electrochemical characterization of the dyes has been performed by means of cyclic voltammetry. Voltammograms have shown that the presence of the dyes diminishes characteristic Pt oxidation and reduction peaks. However, redox processes due to the dyes, appeared in the voltammograms. The different species responsible of these redox processes were generated in the vicinity of the electrode and were not adsorbed on the electrode surface since after stirring, the different redox processes disappeared. Characterization with different scan rates showed that redox processes of both dyes were controlled by diffusion.

  3. Effect of Pt coverage in Pt-deposited Pd nanostructure electrodes on electrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ah-Reum; Lee, Young-Woo; Kwak, Da-Hee; Park, Kyung-Won [Soongsil University, Seoul (Korea, Republic of)

    2015-06-15

    We have fabricated Pt-deposited Pd electrodes via a two-gun sputtering deposition system by separately operating Pd and Pt target as a function of sputtering time of Pt target. For Pt-deposited Pd electrodes (Pd/Pt-X), Pd were first deposited on the substrates at 20 W for 5min, followed by depositing Pt on the Pd-only electrodes as a function of sputtering time (X=1, 3, 5, 7, and 10min) at 20W on the Pt target. As the sputtering time of Pt target increased, the portion of Pt on the Pd electrodes increased, representing an increased coverage of Pt on the Pd electrodes. The Pd/Pt-7 electrode having an optimized Pt coverage exhibits an excellent electrocatalytic activity for methanol oxidation reaction.

  4. Hydrogen Adsorption on Pt, Rh and Pt-Rh Electrodes

    Institute of Scientific and Technical Information of China (English)

    贾梦秋; A.M.Meretskyi

    2005-01-01

    The hydrogen adsorption on Pt-Rh alloys in sulfuric acid aqueous solutions was studied by the method of cathode pulses. Hydrogen adsorption on the electrode with all ratio of alloy components (ωRh = 0-100%) is well described by the Temkin logarithmic isotherm. The surface coverage by adsorbed hydrogen at the same potential is decreased with increasing content of rhodium in the system. A linear dependence of adsorption peak potential on the alloy compositions in the case of weakly bonded adsorbed hydrogen is established. Hydrogen adsorption heat as a function of surface coverage for Pt-Rh-electrodes was obtained. The shape of the current-potential curve and position of the weakly bonded hydrogen adsorption on the potential scale are all related to alloy compositions, thus can serve as the basis for the determination surface composition of allovs.

  5. Pt-graphene electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hoshi, Hajime, E-mail: hoshi@ed.tus.ac.jp; Tanaka, Shumpei; Miyoshi, Takashi

    2014-12-15

    Highlights: • Graphene films with Pt nanoparticles were prepared from commercial graphene. • Pt consumption can be reduced by using Pt-graphene films. • The film showed improved catalytic activity for the reaction I{sub 3}{sup −}/I{sup −}. • The film can be used as the counter electrode of dye-sensitized solar cells (DSSCs). • The performance of DSSC was superior to that of the Pt electrode. - Abstract: A simple paste method for fabricating graphene films with Pt nanoparticles was developed. First, graphene pastes with Pt nanoparticles were prepared from commercially available graphene. The resulting films of graphene nanoplatelet aggregates with Pt nanoparticles (Pt-GNA) contained Pt nanoparticles distributed over the entire three-dimensional surface of the GNA. Then, the catalytic activity for the I{sub 3}{sup −}/I{sup −} redox reaction was evaluated by cyclic voltammetry. The GNA electrode exhibited higher activity than a graphene nanoplatelet electrode because of its higher effective surface area. Addition of Pt nanoparticles to the electrodes improved the catalytic activity. In particular, a large Faradaic current for the I{sub 3}{sup −}/I{sup −} reaction was observed for the Pt-GNA electrode. As the counter electrodes of dye-sensitized solar cells (DSSCs), their performance was consistent with the cyclic voltammetry results. In particular, the DSSC performance of the Pt-GNA electrode was superior to that of the Pt electrodes commonly used in DSSCs.

  6. ELECTROCHEMICAL OXIDATION OF ETHYLENE AT PANI/Pt AND Ag/PANI/Pt MODIFIED ELECTRODES

    Directory of Open Access Journals (Sweden)

    Lenys Fernández

    Full Text Available The electrochemical behavior of ethylene on PANI/Pt and Ag/PANI/Pt modified electrodes was investigated in different media. Morphology of the deposits of PANI were observed by SEM analysis, complemented by the EDX techniques to obtain the Ag composition that shows that Ag is deposited in the polymeric matrix which covered the whole platinum surface. The electrodic system comprising Ag/PANI/ Pt electrode exhibited a more important electrocatalytic response for ethylene oxidation in neutral solutions than the PAN/Pt and Pt electrodes at 20 ºC.The results suggest that the oxidation of ethylene on Ag/PANI/Pt electrode is limited by adsorption-controlled reaction while the oxidation at PANI/Pt is mass transport-limited.

  7. In situ construction of Ir@Pt/C nanoparticles in the cathode layer of membrane electrode assemblies with ultra-low Pt loading and high Pt exposure

    Science.gov (United States)

    Dang, Dai; Zhang, Lei; Zeng, Xiaoyuan; Tian, Xinlong; Qu, Chong; Nan, Haoxiong; Shu, Ting; Hou, Sanying; Yang, Lijun; Zeng, Jianhuang; Liao, Shijun

    2017-07-01

    A novel membrane electrode assemblies (MEAs) with ultra-low Pt loadings and high Pt exposure in the cathode layer is prepared by spraying Ir/C catalyst ink on the membrane surface to form a substrate layer, followed by in situ pulse electrochemical deposition of a Pt shell layer on the Ir core nanoparticles in the substrate layer. It makes the Pt loadings on cathode lower to 0.044 mg/cm2. In our system, the MEA with our novel cathode exhibits excellent performance in a H2/air single fuel cell, which is comparable to that of the MEA prepared with commercial Pt/C catalyst (Johnson Matthey 40% Pt) with Pt loadings of 0.1 mg/cm2. The electrode with core-shell structured catalysts is characterized by X-ray diffraction, X-ray photoelectron spectroscopy, EDS line-scan, and scanning transmission electron microscopy. Based on the characterization results, it is found that the Pt is highly dispersed on the Ir NPs, and the electronic feature of Pt at shell layer can be tuned by the Ir core particle. Furthermore, the DFT calculation results also reveal the interaction between Pt at shell layer and Ir core. This work may provide a novel pathway to realize low Pt and high Pt utilization in low temperature fuel cells.

  8. Novel AlN/Pt/ZnO Electrode for High Temperature SAW Sensors

    Directory of Open Access Journals (Sweden)

    Xingpeng Liu

    2017-01-01

    Full Text Available In order to develop a film electrode for the surface acoustic wave (SAW devices working in high temperature, harsh environments, novel AlN/Pt/ZnO multilayers were prepared using pulsed laser deposition (PLD systems on langasite (LGS substrates. The AlN film was used as a protective layer and the ZnO buffer layer was introduced to improve the crystal quality of Pt films. The results show that the resistances of Pt and AlN/Pt film electrodes violently increase above 600 °C and 800 °C, respectively, while the resistances of AlN/Pt/ZnO electrodes have more stable electrical resistance from room temperature to 1000 °C. The AlN/Pt/ZnO electrode, where the ZnO film was deposited at 600 °C, has the best temperature stability and can steadily work for 4 h at 1000 °C. The mechanism underlying the stable resistance of the AlN/Pt/ZnO electrode at a high temperature was investigated by analyzing the microstructure of the prepared samples. The proposed AlN/Pt/ZnO film electrode has great potential for applications in high temperature SAW sensors.

  9. Pt nanostructure electrodes pulse electrodeposited in PVP for electrochemical power sources.

    Science.gov (United States)

    Song, You-Jung; Oh, Jae-Kyung; Park, Kyung-Won

    2008-09-03

    In this work, we demonstrated that Pt nanostructure electrodes could be obtained by the pulse electrodeposition method in polyvinylpyrrolidone (PVP). The nanocrystal particles were confirmed by scanning electron microscopy, transmission electron microscopy and x-ray diffraction methods. The average size of Pt nanoparticles deposited in additive PVP with low and high molecular weight is 3.4 and 2.9 nm, respectively, whereas that of Pt electrodeposited without PVP is 360 nm. This means that the size of Pt nanoparticles can be controlled by PVP, resulting in an increased electrochemical surface area. The resulting Pt nanostructure electrodes showed such an improved performance for both direct methanol fuel cells and dye-sensitized solar cells.

  10. Pt nanostructure electrodes pulse electrodeposited in PVP for electrochemical power sources

    Energy Technology Data Exchange (ETDEWEB)

    Song, You-Jung; Oh, Jae-Kyung; Park, Kyung-Won [Department of Chemical and Environmental Engineering, Soongsil University, Seoul 156-743 (Korea, Republic of)], E-mail: kwpark@ssu.ac.kr

    2008-09-03

    In this work, we demonstrated that Pt nanostructure electrodes could be obtained by the pulse electrodeposition method in polyvinylpyrrolidone (PVP). The nanocrystal particles were confirmed by scanning electron microscopy, transmission electron microscopy and x-ray diffraction methods. The average size of Pt nanoparticles deposited in additive PVP with low and high molecular weight is 3.4 and 2.9 nm, respectively, whereas that of Pt electrodeposited without PVP is 360 nm. This means that the size of Pt nanoparticles can be controlled by PVP, resulting in an increased electrochemical surface area. The resulting Pt nanostructure electrodes showed such an improved performance for both direct methanol fuel cells and dye-sensitized solar cells.

  11. Effect of anodic polarization on the free-floating parts at Pt/YSZ catalyst electrode

    Energy Technology Data Exchange (ETDEWEB)

    Toghan, Arafat, E-mail: arafat.toghan@yahoo.com [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, D-91058 Erlangen (Germany); Chemistry Department, Faculty of Science, South Valley University, 83523 Qena (Egypt); Institut für Physikalische Chemie und Elektrochemie, Leibniz-Universität Hannover, Callinstrasse 3-3a, D-30167 Hannover (Germany); Imbihl, R. [Institut für Physikalische Chemie und Elektrochemie, Leibniz-Universität Hannover, Callinstrasse 3-3a, D-30167 Hannover (Germany)

    2015-09-30

    Photoemission electron microscopy (PEEM) was used as spatially resolving method to explore the effect of electrochemical pumping with a positive voltage to porous platinum electrodes interfaced as working electrode to yttrium stabilized zirconia (YSZ). The experiments were conducted under UHV conditions (p ≈ 10{sup −9} mbar). In PEEM a uniform rapid darkening of the Pt surface was observed during anodic polarization followed by the appearance of bright spots on a dark background. The bright spots observed in PEEM images are due to zirconia reduction around electrically isolated Pt islands.

  12. Single Pt nanowire electrode: preparation, electrochemistry, and electrocatalysis.

    Science.gov (United States)

    Li, Yongxin; Wu, Qingqing; Jiao, Shoufeng; Xu, Chaodi; Wang, Lun

    2013-04-16

    A single Pt nanowire electrode (SPNE) was fabricated through HF etching process from Pt disk nanoelectrode and an underpotential deposition (UPD) redox replacement technique. The electrochemical experiments showed that SPNE had steady-state electrochemical responses at redox species solution and the mass transfer rates were affected by the lengths and radii of SPNEs. The prepared SPNEs were utilized to examine the oxygen-reduction reaction in a KOH solution to explore the feasibility of electrocatalytic activity of single Pt nanowire and the results showed that the electrocatalytic activity of SPNE was dependent on the surface position of single Pt nanowire: the tip end position is more active than the sidewall position. Meanwhile, the electrocatalytic activity of SPNE was related to the radius of nanowire. These observations are not only important to understand the structure-function relationship in single nanowire level but have significant implications for the synthesis and selection of novel catalysts with high efficiency used in electrochemistry, energy, bioanalysis, etc.

  13. Specific adsorption of perchlorate anions on Pt{hkl} single crystal electrodes.

    Science.gov (United States)

    Attard, Gary A; Brew, Ashley; Hunter, Katherine; Sharman, Jonathan; Wright, Edward

    2014-07-21

    The voltammetry of Pt{111}, Pt{100}, Pt{110} and Pt{311} single crystal electrodes as a function of perchloric acid concentration (0.05-2.00 M) has been studied in order to test the assertion made in recent reports by Watanabe et al. that perchlorate anions specifically adsorb on polycrystalline platinum. Such an assertion would have significant ramifications for our understanding of electrocatalytic processes at platinum surfaces since perchlorate anions at low pH have classically been assumed not to specifically adsorb. For Pt{111}, it is found that OHad and electrochemical oxide states are both perturbed significantly as perchloric acid concentration is increased. We suggest that this is due to specific adsorption of perchlorate anions competing with OHad for adsorption sites. The hydrogen underpotential deposition (H UPD) region of Pt{111} however remains unchanged although evidence for perchlorate anion decomposition to chloride on Pt{111} is reported. In contrast, for Pt{100} no variation in the onset of electrochemical oxide formation is found nor any shift in the potential of the OHad state which normally results from the action of specifically adsorbing anions. This suggests that perchlorate anions are non-specifically adsorbed on this plane although strong changes in all H UPD states are observed as perchloric acid concentration is increased. This manifests itself as a redistribution of charge from the H UPD state situated at more positive potential to the one at more negative potential. For Pt{110} and Pt{311}, marginal changes in the onset of electrochemical oxide formation are recorded, associated with specific adsorption of perchlorate. Specific adsorption of perchlorate anions on Pt{111} is deleterious to electrocatalytic activity in relation to the oxygen reduction reaction (ORR) as measured using a rotating disc electrode (RDE) in a hanging meniscus configuration. This study supports previous work suggesting that a large component of the ORR

  14. Metallization of cyanide-modified Pt(111) electrodes with copper

    DEFF Research Database (Denmark)

    Escribano, Maria Escudero; Wildi, Christopher; Mwanda, Jonathan A.

    2016-01-01

    The reduction of Cu2+ ions irreversibly attached to the surface of a cyanide-modified Pt(111) electrode via non-covalent or weakly covalent interactions with the N atom of adsorbed cyanide was studied using cyclic voltammetry (CV) and in situ scanning tunneling microscopy (STM). Both CV and STM...... provide evidence that the reduction of irreversibly adsorbed Cu2+ to Cu in Cu2+-free sulfuric acid solutions does not result in the stripping of the cyanide adlayer. This strongly suggests that the reduction process results in the metallization of the cyanide adlayer on Pt(111), yielding a platinum-cyanide...

  15. In situ scanning FTIR microscopy and IR imaging of Pt electrode surface towards CO adsorption

    Institute of Scientific and Technical Information of China (English)

    孙世刚; 洪双进; 陈声培; 卢国强; 戴鸿平; 肖晓银

    1999-01-01

    In situ scanning FTIR microscopy was built up for the first time in the present work, which consists of an FTIR apparatus, an IR microscope, an X-Y mapping stage, and the specially designed electrochemical IR cell and computer software. It has been demonstrated that this new space-resolvd in situ IR technique can be used to study vibration properties of micro-area, and to perform IR imaging of electrode surface. The chemical image obtained using this technique fur CO adsorption on Pt electrode illustrated, at a space-resolution of 10-2 cm, the inhomogeneity and the distribution of reactivity of micro-area of electrode surface.

  16. Pt/Mesoporous Carbon Counter Electrode with a Low Pt Loading for High-Efficient Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Guiqiang Wang

    2010-01-01

    Full Text Available Pt/Mesoporous carbon counter electrodes with a low Pt loading for dye-sensitized solar cells were fabricated by coating Pt/mesoporous carbon on fluorine-doped tin oxide glass. Pt/mesoporous carbon samples were prepared by reducing H2PtCl6 with NaBH4 in mesoporous carbon and characterized by N2 adsorption analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy. The Pt particles deposited on mesoporous carbon support were found to be in uniform shape and narrow range of particle size. Low-Pt-loading Pt/mesoporous carbon counter electrode showed a high electrocatalytic activity for triiodide reduction. Electrochemical impedance spectroscopy measurement displayed a low charge-transfer resistance of 1.2 Ωcm2 for 1-Pt/mesoporous carbon counter electrode. Dye-sensitized solar cells based on the 1-Pt/mesoporous carbon counter electrode achieved an overall conversion efficiency of 6.62% under one sun illumination, which is higher than that of the cell with the conventional Pt counter electrode.

  17. Correlation between Formic Acid Oxidation and Oxide Species on Pt(Bi/GC and Pt/GC Electrode through the Effect of Forward Potential Scan Limit

    Directory of Open Access Journals (Sweden)

    Jelena D. Lović

    2017-01-01

    Full Text Available Following earlier works from our laboratory, further experiments on electrochemical behavior in formic acid oxidation at electrodeposited Pt(Bi/GC and Pt/GC electrode were performed in order to examine the effect of successive increase of the forward potential scan limit. Correlation between formic acid oxidation and oxide species on Pt(Bi/GC electrode with increases of forward potential scan limit is based on the dependency of the backward peak potential from backward peak current. The obtained dependency reveals Bi influence for the scan limits up to 0.8 V. Since the Pt(Bi/GC electrode is composed of Bi core occluded by Pt and Bi-oxide surface layer, the observed behavior is explained through the influence of surface metal oxide on easier formation of OHad species. Nevertheless, the influence of electronic modification of Pt surface atoms by underlying Bi is present and leads to the stronger adsorption of OH on Pt. At higher forward potential scan limits (from 0.8 V, Pt has a dominant role in HCOOH oxidation.

  18. Electrooxidation of Linear Alkyl Benzene Sulfonate (LAS) on Pt Electrodes

    OpenAIRE

    1999-01-01

    The electrochemical behaviour of linear alklybenzene sulfonate (LAS) on Pt electrodes was investigated in 0.05M Na2SO4 and in 0.1M NaCl at pH=8 by the potentiokinetic method and by electrolysis. The anodic and cathodic semilogarithmic current-potential curves were obtained between -1.6V - +1.6V. The experimental discharge potentials were determined by means of current-potential-curves obtained by electrolysis between 0-3V. The percentages of surface active material remaining in the so...

  19. Pressure gap and electrode artefacts in the electrochemically induced oxygen spillover on Pt/YSZ electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Toghan, Arafat; Roesken, Liz; Imbihl, Ronald [Institut fuer Physikalische Chemie und Elektrochemie, Leibniz-Universitaet Hannover, Callinstr. 3 - 3a, D-30167 Hannover (Germany); Haevecker, Michael; Knop-Gericke, Axel [Fritz-Haber-Institut, Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin (Germany)

    2011-07-01

    Mechanistically, the electrochemical promotion of catalytic reactions (EPOC) on Pt/YSZ (yttrium stabilized zirconia) catalysts has been shown to be due to the spillover of oxygen from the solid electrolyte onto the Pt surface. This spillover has been studied on Pt/YSZ catalysts with photoemission electron microscope (PEEM) and with a differentially pumped x-ray photoelectron spectrometer (XPS) allowing to conduct in situ studies up to 1 mbar. PEEM revealed that upon electrochemical pumping not only the expected darkening of the Pt electrodes can be observed which is due to spillover oxygen but that also bright spots develop. These bright spots were attributed to metallic zirconium formed as electrically disconnected parts of the Pt electrode assume a negative potential thus causing a local reduction of zirconia. With XPS the main goal was to study whether a second special spillover species develops upon electrochemical pumping at high pressure which is different from chemisorbed oxygen. This special spillover species has been postulated by Vayenas et al. and was supposedly responsible for the non-Faradaic nature of EPOC. Up to now even at p=0.2 mbar only chemisorbed oxygen was detected.

  20. Anode activation polarization on Pt(h k l) electrodes in dilute sulphuric acid electrolyte

    Science.gov (United States)

    Mann, R. F.; Amphlett, J. C.; Peppley, B. A.; Thurgood, C. P.

    Proton exchange membrane (PEM) fuel cells have been under development for many years and appear to be the potential solution for many electricity supply applications. Modelling and computer simulation of PEM fuel cells have been equally active areas of work as a means of developing better understanding of cell and stack operation, facilitating design improvements and supporting system simulation studies. The prediction of activation polarization in our previous PEM modelling work, as in most PEM models, concentrated on the cathode losses. Anode losses are commonly much smaller and tend to be ignored compared to cathode losses. Further development of the anode activation polarization term is being undertaken in order to broaden the application and usefulness of PEM models in general. Previously published work on the kinetics of the hydrogen oxidation reaction using Pt(h k l) electrodes in dilute H 2SO 4 has been examined and further developed for eventual application to the modelling of PEM fuel cells. New correlations for the exchange current density are developed for Pt(1 0 0), Pt(1 1 0) and Pt(1 1 1) electrodes. Predictive equations for the anode activation polarization are also proposed. In addition, terminology has been modified to make the correlation approach and, eventually, the modelling method more easily understood and used by those without an extensive background in electrochemistry.

  1. Electrocatalytic activity of porous nanostructured Fe/Pt-Fe electrode for methanol electrooxidation in alkaline media

    Institute of Scientific and Technical Information of China (English)

    Javad Hosseini; Mehdi Abdolmaleki; Hamid Reza Pouretedal; Mohammad Hossein Keshavarz

    2015-01-01

    An electrochemical approach to fabricate a nanostructured Fe/Pt-Fe catalyst through electrodepo-sition followed by galvanic replacement is presented. An Fe/Pt-Fe nanostructured electrode was prepared by deposition of Fe-Zn onto a Fe electrode surface, followed by replacement of the Zn by Pt at open-circuit potential in a Pt-containing alkaline solution. Scanning electron microscopy and energy-dispersive X-ray techniques reveal that the Fe/Pt-Fe electrode is porous and contains Pt. The electrocatalytic activity of the Fe/Pt-Fe electrode for oxidation of methanol was examined by cyclic voltammetry and chronoamperometry. The electrooxidation current on the Fe/Pt-Fe catalyst is much higher than that on flat Pt and smooth Fe catalysts. The onset potential and peak potential on the Fe/Pt-Fe catalyst are more negative than those on flat Pt and smooth Fe electrodes for methanol electrooxidation. All results show that this nanostructured Fe/Pt-Fe electrode is very attractive for integrated fuel cell applications in alkaline media.

  2. Evaluation of Tafel-Volmer kinetic parameters for the hydrogen oxidation reaction on Pt(1 1 0) electrodes

    Science.gov (United States)

    Mann, R. F.; Thurgood, C. P.

    2011-05-01

    Modelling of PEM fuel cells has long been an active research area to improve understanding of cell and stack operation, facilitate design improvements and support simulation studies. The prediction of activation polarization in most PEM models has concentrated on the cathode losses since anode losses are commonly much smaller and tend to be ignored. Further development of the anode activation polarization term is being undertaken to broaden the application and usefulness of PEM models in general. Published work on the kinetics of the hydrogen oxidation reaction (HOR) using Pt(h k l) electrodes in dilute H2SO4 has been recently reassessed and published. Correlations for diffusion-free exchange current densities were developed and empirical predictive equations for the anode activation polarization were proposed for the experimental conditions of the previously published work: Pt(1 0 0), Pt(1 1 0) and Pt(1 1 1) electrodes, pH2 of 1 atm, and temperatures of 1, 30 and 60 °C. It was concluded that the HOR on Pt(1 1 0) electrodes followed a Tafel-Volmer reaction sequence. The aim of the present paper is to generalize these Tafel-Volmer correlations, apply them to published data for Pt(1 1 0) electrodes and further develop the modelling of anode activation polarization over the range of operating conditions found in PEMFC operation.

  3. Combining voltammetry and ion chromatography: application to the selective reduction of nitrate on Pt and PtSn electrodes.

    Science.gov (United States)

    Yang, Jian; Kwon, Youngkook; Duca, Matteo; Koper, Marc T M

    2013-08-20

    To overcome the shortcomings of electroanalytical methods in analyzing the ionic reaction products that are either electrochemically inert or lack distinct electrochemical/spectroscopic fingerprints, we suggest combining voltammetry with ion chromatography by applying online sample collection to the electrochemical cell and offline ion chromatographic analysis. This combination allows a quantitative analysis including the potential dependence of the product distribution in a straightforward way. As a proof-of-concept example, we discuss the formation of ionic reaction products from nitrate reduction on Pt and Sn-modified Pt electrode in acid. On the Pt electrode, ammonia was the only identifiable product. After Sn modification of the Pt electrode, a change in selectivity was observed to hydroxylamine as the dominant product. Moreover, the rate determining step of nitrate reduction (reduction to nitrite) was enhanced by Sn modification of the Pt electrode, and a significant concentration of nitrite was evidenced on a Pt electrode with a high coverage of Sn species. The suggested combination of voltammetry and online ion chromatography hence proves very useful in the quantitative elucidation of electrocatalytic reactions with different ionic products.

  4. Electrochemical oxidation of methanol on Pt nanoparticles composited MnO 2 nanowire arrayed electrode

    Science.gov (United States)

    Zhao, Guang-Yu; Li, Hu-Lin

    2008-03-01

    By use of the membrane-template synthesis route, MnO 2 nanowire arrayed electrodes are successfully synthesized by means of the anodic deposition technique. The Pt nanoparticles composited MnO 2 nanowire arrayed electrodes (PME) are obtained through depositing Pt on MnO 2 nanowire arrayed electrode by cathode deposition technique. For comparison of electrochemical performance, Pt nanowire arrayed electrodes which have the same amount of Pt with PME are also prepared. The electro-oxidation of methanol on PME and Pt nanowire arrayed electrodes is investigated at room temperature by cyclic voltammetry, which show that about 110 mV decreased overpotential and 2.1-fold enhanced votammetric current are achieved on PME. The chronoamperometry result demonstrates that the resistance to carbon monoxide for PME is improved.

  5. Transverse waveguide mode suppression for Pt-electrode SAW resonators on quartz and LGS.

    Science.gov (United States)

    Meulendyk, Bennett J; Pereira da Cunha, Mauricio

    2011-12-01

    SAW resonators on ST-X quartz and langasite (LGS) [0°, 144°, 24°] are currently being used for hydrogen fluoride (HF) vapor sensing and high-temperature sensing, respectively. For these applications, the use of Pt-based electrodes allows the resonators to withstand the targeted harsh environments. This work reveals that for Pt-electrode resonators with conventional short-circuit gratings on the aforementioned quartz and LGS orientations, acoustic energy leaks from the grating region to the bus bars, thus degrading the resonator response. To resolve this problem, this paper proposes and implements open-circuit gratings for resonators fabricated with these substrate/metal combinations. The open-circuit gratings guide the acoustic energy within the grating region, resulting in greater quality factors and reduced losses in the resonator response. In addition, scalar potential theory is utilized in this work to identify transverse waveguide modes in the responses of open-circuit grating resonators on quartz and LGS. A transverse waveguide mode dispersion relation was derived to extend the scalar potential theory to account for asymmetry in the slowness curve around the propagation direction. This is the case for several commonly used LGS orientations, in particular LGS [0°, 144°, 24°]. Finally, this work addresses spurious transverse mode mitigation by scaling both the transducer's grating aperture and electrode overlap width. Open circuit grating resonators with appropriately scaled transducer designs were fabricated and tested, resulting in a 71% increase in quality factor and a spurious mode rejection of over 26 dBc for Pt-electrode devices on ST-X quartz. This progress directly translates into better frequency resolution and increased dynamic range for HF vapor sensors and high-temperature SAW devices.

  6. Ultra low Pt-loading electrode prepared by displacement of electrodeposited Cu particles on a porous carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liao, M.J. [The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Wei, Z.D.; Li, L. [The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); School of Material Science and Engineering, Chongqing University, Chongqing 400044 (China); Chen, S.G.; Ji, M.B.; Wang, Y.Q. [School of Material Science and Engineering, Chongqing University, Chongqing 400044 (China)

    2010-08-15

    Ultra low Pt-loading and high Pt utilization electrodes were prepared by displacement of electrodeposited Cu on a porous carbon electrode. Copper particles were electrodeposited on a porous carbon electrode (PCE) by four-step deposition (FSD) at first. The size and dispersion of deposited Cu particles were markedly improved with application of the FSD. The Cu deposits were then displaced by platinum as dipping a Cu/PCE in a platinum salt solution. Sequentially, Pt particles supported on the PCE were obtained. The Pt/PCE electrode prepared via the FSD of Cu overcomes the problem of the hydrogen evolution reaction accompanied with direct platinum electrochemical deposition, and has a high Pt dispersion. The single cell consisting of the electrodes Pt/PCE via the FSD of Cu outputs a power of 0.45 W cm{sup -2} with ultra low Pt loadings of 0.196 mg cm{sup -2} MEA (0.098 mg cm{sup -2} per each side of the MEA) at no backpressure of reactant gases. (author)

  7. Shape resonances and EXAFS scattering in the $Pt L_{2,3}$ XANES from a Pt electrode

    CERN Document Server

    O'Grady, W E

    1999-01-01

    Atomic hydrogen and oxygen adsorption on a platinum electrode in H /sub 2/SO/sub 4/ and HClO/sub 4/ electrolytes were studied by Pt L /sub 23/ XANES. The Pt electrode was formed of highly dispersed 1.5-3.0 nm particles supported on $9 carbon. A difference procedure utilizing the L/sub 2/ and L/sub 3/ spectra at various applied voltages was used to isolate the electronic and geometric effects in the XANES spectra. At 0.54 V (relative to RHE) the Pt electrode in $9 HClO/sub 4/ is assumed to be "clean". By taking the difference between the spectra at 0.0 and 0.54 V, the Pt-H antibonding state (electronic effect) is isolated and found to have a Fano-resonance line shape. In addition, a $9 significant Pt-H EXAFS scattering (geometric effect) was found for photon energies 0 to 20 eV above the edge. The difference between the spectra at 1.14 and 0.54 V allows isolation of the Pt-O antibonding state and the Pt-O EXAFS $9 scattering. (7 refs).

  8. Preparation of Pt/polypyrrole-para toluene sulfonate hydrogen peroxide sensitive electrode for the utilizing as a biosensor.

    Science.gov (United States)

    Çete, Servet; Bal, Özgür

    2013-12-01

    A film electrode with electropolymerization of pyrrole (Py) and para-toluene sulfonate (pTS) as a anionic dopant is prepared and its sensitivity to hydrogen peroxide is investigated. The polypyrrole is deposited on a 0.5 cm(2) Pt plate an electrochemically prepared pTS ion-doped polypyrrole film by scanning the electrode potential between - 0.8 and + 0.8 V at a scan rate of 20 mV/s. The electrode's sensitivity to hydrogen peroxide is investigated at room temperature using 0.1 M phosphate buffer at pH 7.5. The working potential is found as a 0.3 V. The concentrations of pyrrole and pTS are 50mM M and 25 mM. Polypyrrole was coated on the electrode surface within 10 cycles. İmmobilization of glucose oxidase carried out on Pt/polypyrrole-para toluene sulfonate (Pt/PPy-pTS) film by cross-linking with glutaraldehyde. The morphology of electrodes was characterized by SEM and AFM. Moreover, contact angle measurements were made with 1 μL water of polymer film and enzyme electrode. It has shown that enzyme electrode is very sensitive against to glucose.

  9. Investigation of electro-oxidation activity of Pt-CNTs/GC electrodes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The morphology and structure of Pt-CNTs/GC electrodes were characterized via Transmission Electron Microscopy (TEM) and selected area electron diffraction.The electro-oxidation behavior of CO and methanol on Pt-CNTs/GC electrodes were studied with cyclic voltommograms or chronoamperometry.Three oxidation peaks were observed for CO absorbed on PtCNTs/GC electrodes.Methanol was found to be dissociated spontaneously on the electrode to produce a strong absorbed intermediate CO.Among the three oxidation peaks,peak Ⅰ was presumed to be due to the bridged CO absorption while peaks Ⅱ and Ⅲ were attributed to the split in the linear CO which is absorbed on the PtCNTs/GC nanocluster with different particle size and Pt film.The oxidation current of methanol on the Pt-CNTs/GC electrode did not always increase with the increase in the amount of Pt loading,The result indicates that there is an optimal Pt loading for methanol oxidation.It is necesSary to select the catalyst with proper Pt loading when the anode of a direct-methanol fuel cell is prepared.

  10. Electrocatalytic oxidation behavior of L-cysteine at Pt microparticles modified nanofibrous polyaniline film electrode

    Institute of Scientific and Technical Information of China (English)

    MA Song-jiang; LUO Sheng-lian; ZHOU Hai-hui; KUANG Ya-fei; NING Xiao-hui

    2008-01-01

    Platinum(Pt)/nanofibrous polyaniline(PANI) electrode was prepared by pulse galvanostatic method and characterized by scanning electron microscopy. The electrochemical behavior of L-cysteine at the Pt/nanofibrous PANI electrode was investigated by cyclic voltammetry. The results indicate that the pH value of the solution and the Pt loading of the electrode have great effect on the electrocatalytic property of the Pt/nanofibrous PANI electrode; the suitable Pt loading of the electrode is 600 μg/cm2 and the suitable pH value of the solution is 4.5 for investigating L-cysteine oxidation. The L-cysteine sensor based on the Pt/nanofibrous PANI electrode has a good selectivity, reproducibility and stability. The Pt/nanofibrous PANI electrode is highly sensitive to L-cysteine, and the linear calibration curve for the oxidation of L-cysteine can be observed in the range of 0.2-5.0 mmol/L.

  11. Millimeter thick ionic polymer membrane-based IPMCs with bimetallic Pd-Pt electrodes

    Science.gov (United States)

    Palmre, Viljar; Kim, Sung Jun; Kim, Kwang

    2011-04-01

    Ionic polymer metal composites (IPMC) are a low-voltage driven Electroactive Polymers (EAP) that can be used as actuators or sensors. This paper presents a comparative study of millimeter thick ionic polymer membrane-based IPMCs with high-performance Pd-Pt electrodes and conventional Pt electrodes. IPMCs assembled with different electrodes are characterized in terms of electromechanical, -chemical and mechanolelectrical properties. The SEM and energy dispersive X-ray (EDS) analysis are used to investigate the distribution of deposited electrode metals in the cross-section of Pd-Pt IPMCs. The study shows that IPMCs assembled with millimeter thick ionic polymer membranes and bimetallic Pd-Pt electrodes are superior in mechanoelectrical sensing and, also, show considerably higher blocking forces compared to the conventional type of IPMCs. Blocking forces more than 30 grams are measured under 4V DC. However, the actuation response is slower than conventional IPMCs having approximately 0.2-0.3 mm thickness.

  12. Pt modified TiO{sub 2} nanotubes electrode: Preparation and electrocatalytic application for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Li; Jia, Jianbo; Wang, Yizhe; Zhang, Bailin; Dong, Shaojun [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun 130022 (China)

    2010-11-15

    Pt nanoparticles decorated TiO{sub 2} nanotubes (Pt/TiO{sub 2}NTs) modified electrode has been successfully synthesized by depositing Pt in TiO{sub 2}NTs, which were prepared by anodization of the Ti foil. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and electrochemical methods were adopted to characterize their structures and properties. The Pt/TiO{sub 2}NTs electrode shows excellent electrocatalytic activity toward methanol oxidation reaction (MOR) in alkaline electrolyte without UV irradiation. (author)

  13. Economical Pt-free catalysts for counter electrodes of dye-sensitized solar cells.

    Science.gov (United States)

    Wu, Mingxing; Lin, Xiao; Wang, Yudi; Wang, Liang; Guo, Wei; Qi, Daidi; Peng, Xiaojun; Hagfeldt, Anders; Grätzel, Michael; Ma, Tingli

    2012-02-22

    Three classes (carbides, nitrides and oxides) of nanoscaled early-transition-metal catalysts have been proposed to replace the expensive Pt catalyst as counter electrodes (CEs) in dye-sensitized solar cells (DSCs). Of these catalysts, Cr(3)C(2), CrN, VC(N), VN, TiC, TiC(N), TiN, and V(2)O(3) all showed excellent catalytic activity for the reduction of I(3)(-) to I(-) in the electrolyte. Further, VC embedded in mesoporous carbon (VC-MC) was prepared through in situ synthesis. The I(3)(-)/I(-) DSC based on the VC-MC CE reached a high power conversion efficiency (PCE) of 7.63%, comparable to the photovoltaic performance of the DSC using a Pt CE (7.50%). In addition, the carbide catalysts demonstrated catalytic activity higher than that of Pt for the regeneration of a new organic redox couple of T(2)/T(-). The T(2)/T(-) DSCs using TiC and VC-MC CEs showed PCEs of 4.96 and 5.15%, much higher than that of the DSC using a Pt CE (3.66%). This work expands the list of potential CE catalysts, which can help reduce the cost of DSCs and thereby encourage their fundamental research and commercial application.

  14. PEDOT–PSSA as an alternative support for Pt electrodes in PEFCs

    Indian Academy of Sciences (India)

    K K Tintula; S Pitchumani; P Sridhar; A K Shukla

    2010-04-01

    Poly (3,4-ethylenedioxythiophene) (PEDOT) and poly (styrene sulphonic acid) (PSSA) supported platinum (Pt) electrodes for application in polymer electrolyte fuel cells (PEFCs) are reported. PEDOT–PSSA support helps Pt particles to be uniformly distributed on to the electrodes, and facilitates mixed electronic and ionic (H+-ion) conduction within the catalyst, ameliorating Pt utilization. The inherent proton conductivity of PEDOT–PSSA composite also helps reducing Nafion content in PEFC electrodes. During prolonged operation of PEFCs, Pt electrodes supported onto PEDOT–PSSA composite exhibit lower corrosion in relation to Pt electrodes supported onto commercially available Vulcan XC-72R carbon. Physical properties of PEDOT–PSSA composite have been characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. PEFCs with PEDOT–PSSA-supported Pt catalyst electrodes offer a peak power-density of 810 mW cm-2 at a load current-density of 1800 mA cm-2 with Nafion content as low as 5 wt.% in the catalyst layer. Accordingly, the present study provides a novel alternative support for platinized PEFC electrodes.

  15. CO adsorption on electrode of Pt nanoparticles investigated by cyclic voltammetry and in situ FTIR spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Pt nanoparticles were prepared by the chemical reduction method. The average diameter of Pt nanoparticles was determined to be 2.5 nm by TEM. The electrochemical properties of Pt nanoparticles were studied by cyclic voltammetry. In comparison with massive Pt, the oxidation current peak of CO adsorbed on Pt nanoparticles is broader. Twin adsorbates of CO on Pt nanoparticles were determined by in situ FTIRS for the first time. It has revealed that the linear and twin-bonded CO can be converted into bridge-bonded CO with the variation of electrode potential. A series of special properties of Pt nanoparticles, such as enhanced IR absorption of CO adsorbates, were also observed.

  16. Improved hydrogen evolution on glassy carbon electrode modified with novel Pt/cetyltrimethylammonium bromide nanoscale aggregates

    Institute of Scientific and Technical Information of China (English)

    Jahan-Bakhsh Raoof; Sayed Reza Hosseini; Seyedeh Zeinab Mousavi-Sani

    2015-01-01

    A novel, cost‐effective, and simple electrocatalyst based on a Pt‐modified glassy carbon electrode (GCE), using cetyltrimethylammonium bromide (CTAB) as a cationic surfactant, is reported. Am‐phiphilic CTAB molecules were adsorbed on GCE by immersion in a CTAB solution. The positively charged hydrophilic layer, which consisted of small aggregates of average size less than 100 nm, was used for accumulation and complexation of [PtCl6]2− anions by immersing the electrode in K2PtCl6 solution. The modified electrode was characterized using scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, impedance spectroscopy, and electrochemical methods. The electrocatalytic activity of the Pt particles in the hydrogen evolution reaction (HER) was investigat‐ed. The results show that the CTAB surfactant enhances the electrocatalytic activity of the Pt parti‐cles in the HER in acidic solution.

  17. Development of a DNA Sensor Based on Nanoporous Pt-Rich Electrodes

    Science.gov (United States)

    Van Hao, Pham; Thanh, Pham Duc; Xuan, Chu Thi; Hai, Nguyen Hoang; Tuan, Mai Anh

    2017-02-01

    Nanoporous Pt-rich electrodes with 72 at.% Pt composition were fabricated by sputtering a Pt-Ag alloy, followed by an electrochemical dealloying process to selectively etch away Ag atoms. The surface properties of nanoporous membranes were investigated by energy-dispersive x-ray spectroscopy (EDS), scanning electron microscopy (SEM), atomic force microscopy (AFM), a documentation system, and a gel image system (Gel Doc Imager). A single strand of probe deoxyribonucleic acid (DNA) was immobilized onto the electrode surface by physical adsorption. The DNA probe and target hybridization were measured using a lock-in amplifier and an electrochemical impedance spectroscope (EIS). The nanoporous Pt-rich electrode-based DNA sensor offers a fast response time of 3.7 s, with a limit of detection (LOD) of 4.35 × 10-10 M of DNA target.

  18. Study on hydrogen evolution performance of the carbon supported PtRu alloy film electrodes

    Institute of Scientific and Technical Information of China (English)

    YANG; Bin; LI; Yang; ZAN; Lin-han

    2005-01-01

    The carbon supported PtRu alloy film electrodes having Pt about 0.10 mg/cm2 or even less were prepared by ion beam sputtering method (IBSM). It was valued on the hydrogen analyse performance, the temperature influence factor and the stability by electroanalysis hydrogen analyse method. It was found that the carbon supported PtRu alloy film electrodes had higher hydrogen evolution performance and stability, such as the hydrogen evolution exchange current density (j0) was increase as the temperature (T) rised, and it overrun 150 mA/cm2 as the trough voltage in about 0.68V, and it only had about 2.8% decline in 500 h electrolytic process. The results demonstrated that the carbon supported PtRu alloy film electrodes kept highly catalytic activity and stability, and it were successfully used in pilot plant for producing H2 on electrolysis of H2S.

  19. Enhanced catalytic properties of Pt-based electrode by doped Cu and Ce

    Science.gov (United States)

    Yue, Dehuai; Yang, Bin

    2017-08-01

    Novel PtCuCeO x composite membrane electrode materials were fabricated on the surface of graphite fibrous cloth by ion beam sputtering (IBS). The cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were used to analyze the influence of doped Cu and Ce on the membrane electrocatalysis performance in a tri-electrode system. The phase composition, surface structure, interfacial structure and catalytic performance of PtCuCeO x membrane were studied by x-ray diffraction (XRD) and high resolution transmission electron microscope (HR-TEM&STEM). The results indicate that surface particles of membrane electrode are made up of PtCu alloy grains and a few CeO x grains, and the interface structure of oxide metal is formed between them. The crystal plane spacing between PtCu alloy grain is reduced by about 1.11% after the corrosion, which helps increase the electron density on Pt atom. As a result, the catalysis capability of PtCu alloy is enhanced. When the content of Ce is less than or equal to 0.28 wt.%, CeO x exists in the form of amorphous. It is exciting to demonstrate that the existence of CeO x enhances the dispersion of PtCuCeO x catalyst particles. The experimental results reveal that the synthesized material possesses the best electrochemical activity surface area (ESA) and exchange current density (i 0). Compared to pure Pt catalyst, this PtCuCeO x catalyst contains much less Pt content (only 42% of Pt catalyst). However, the electrochemical performance is enhanced by 71.8% compared with pure Pt.

  20. First principles study of (Cd, Hg, In, Tl, Sn, Pb, As, Sb, Bi, Se) modified Pt(111), Pt(100) and Pt(211) electrodes as CO oxidation catalysts

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir

    2015-01-01

    CO oxidation is a prototype reaction for studying oxidation of small organic molecules. Certain adatom modified Pt electrodes have a large promotional effect on CO oxidation. However, the effect is often coverage dependent, and has a limited effect due to short lifetimes of the adatoms. The cover...

  1. Electrocatalytic performance of Pt/Ru/Sn/W fullerene electrode for methanol oxidation in direct methanol fuel cell

    Institute of Scientific and Technical Information of China (English)

    Mohammad Karimi; Forouzan Aboufazeli; Hamid Reza Lotfi Zadeh Zhad; Omid Sadeghi; Ezzatollah Najafi

    2013-01-01

    In this work,fullerene was modified by platinum,ruthenium,tin and tungsten nanoparticles.The material was characterized by XRD,ICP-OES and TEM micrograph.The average nanoparticle size on fullerene was 5 ~ 8 nm.The application of this material was investigated as a catalyst for methanol oxidation in direct methanol fuel cell.A glassy carbon electrode was modified by Pt/Ru/Sn/W fullerene and electrocatalytic activity of the electrode toward methanol oxidation in basic medium has been demonstrated and investigated using cyclic voltammetry.The catalyst showed good reactivity for methanol oxidation.

  2. Transition voltages of vacuum-spaced and molecular junctions with Ag and Pt electrodes

    KAUST Repository

    Wu, Kunlin

    2014-07-07

    The transition voltage of vacuum-spaced and molecular junctions constructed with Ag and Pt electrodes is investigated by non-equilibrium Green\\'s function formalism combined with density functional theory. Our calculations show that, similarly to the case of Au-vacuum-Au previously studied, the transition voltages of Ag and Pt metal-vacuum-metal junctions with atomic protrusions on the electrode surface are determined by the local density of states of the p-type atomic orbitals of the protrusion. Since the energy position of the Pt 6p atomic orbitals is higher than that of the 5p/6p of Ag and Au, the transition voltage of Pt-vacuum-Pt junctions is larger than that of both Ag-vacuum-Ag and Au-vacuum-Au junctions. When one moves to analyzing asymmetric molecular junctions constructed with biphenyl thiol as central molecule, then the transition voltage is found to depend on the specific bonding site for the sulfur atom in the thiol group. In particular agreement with experiments, where the largest transition voltage is found for Ag and the smallest for Pt, is obtained when one assumes S binding at the hollow-bridge site on the Ag/Au(111) surface and at the adatom site on the Pt(111) one. This demonstrates the critical role played by the linker-electrode binding geometry in determining the transition voltage of devices made of conjugated thiol molecules. © 2014 AIP Publishing LLC.

  3. Transition voltages of vacuum-spaced and molecular junctions with Ag and Pt electrodes

    Science.gov (United States)

    Wu, Kunlin; Bai, Meilin; Sanvito, Stefano; Hou, Shimin

    2014-07-01

    The transition voltage of vacuum-spaced and molecular junctions constructed with Ag and Pt electrodes is investigated by non-equilibrium Green's function formalism combined with density functional theory. Our calculations show that, similarly to the case of Au-vacuum-Au previously studied, the transition voltages of Ag and Pt metal-vacuum-metal junctions with atomic protrusions on the electrode surface are determined by the local density of states of the p-type atomic orbitals of the protrusion. Since the energy position of the Pt 6p atomic orbitals is higher than that of the 5p/6p of Ag and Au, the transition voltage of Pt-vacuum-Pt junctions is larger than that of both Ag-vacuum-Ag and Au-vacuum-Au junctions. When one moves to analyzing asymmetric molecular junctions constructed with biphenyl thiol as central molecule, then the transition voltage is found to depend on the specific bonding site for the sulfur atom in the thiol group. In particular agreement with experiments, where the largest transition voltage is found for Ag and the smallest for Pt, is obtained when one assumes S binding at the hollow-bridge site on the Ag/Au(111) surface and at the adatom site on the Pt(111) one. This demonstrates the critical role played by the linker-electrode binding geometry in determining the transition voltage of devices made of conjugated thiol molecules.

  4. Comparison of formic acid oxidation at supported Pt catalyst and at low-index Pt single crystal electrodes in sulfuric acid solution

    Directory of Open Access Journals (Sweden)

    AMALIJA V. TRIPKOVIC

    2003-11-01

    Full Text Available The oxidation of formic acid was studied at supported Pt catalyst (47.5 wt%. Pt and a low-index single crystal electrodes in sulfuric acid. The supported Pt catalyst was characterized by the TEM and HRTEM techniques. The mean Pt particle diameter, calculated from electrochemical measurements, fits well with Pt particle size distribution determined by HRTEM. For the mean particle diameter the surface averaged distribution of low-index single crystal facets was established. Comparison of the activities obtained at Pt supported catalyst and low-index Pt single crystal electrodes revealed that Pt(111 plane is the most active in the potential region relevant for fuel cell applications.

  5. Electrocatalytic properties of Pt-Bi electrodes towards the electrooxidation of formic acid

    Directory of Open Access Journals (Sweden)

    Lović Jelena D.

    2013-01-01

    Full Text Available Formic acid oxidation was studied on two Pt-Bi catalysts, Pt2Bi and polycrystalline Pt modified by irreversible adsorbed Bi (Pt/Biirr in order to establish the difference between the effects of Biirr and Bi in alloyed state. The results were compared to pure Pt. It was found that both bimetallic catalysts were more active than Pt with the onset potentials shifted to more negative values and the currents at 0.0 V vs. SCE (under steady state conditions improved up to two order of magnitude. The origin of Pt2Bi high activity and stability is increased selectivity toward formic acid dehydrogenation caused by the ensemble and electronic effect and suppression of Bi leaching from the surface during formic acid oxidation. However, although Pt/Biirr also shows remarkable initial activity compared to pure Pt, dissolution of Bi is not suppressed and the poisoning of the electrode surface induced by dehydration path is observed. Comparison of the initial quasi-steady state and potentiodynamic results obtained for these two Pt-Bi catalysts revealed that the electronic effect, existing only in the alloy, contributes earlier start of the reaction, while the maximum current density is determined by the ensemble effect. [Projekat Ministarstva nauke Republike Srbije, br. H-172060

  6. Correlação entre a estrutura atômica superficial e o processo de adsorção-dessorção reversível de hidrogênio em eletrodos monocristalinos Pt(111, Pt(100 e Pt(110 The correlation between the atomic surface structure and the reversible adsorption-desorption of hydrogen on single crystal Pt (111, Pt (100 and Pt (110 electrodes

    Directory of Open Access Journals (Sweden)

    Valderi Pacheco dos Santos

    2001-12-01

    Full Text Available Platinum is widely used as electrode in electrocatalytic processes, however the use of polycrystalline electrodes introduces a series of variables in the electrochemical system due to the aleatory contribution of all the crystallographic orientations with different surface packing of atoms. Single crystal platinum electrodes of low Miller index present surface structure of high regularity and serve as model to establish a correlation among the macroscopic and microscopic properties of the electrochemical interface. Therefore, the main aim of this work is the study of the voltammetric profiles of the reversible adsorption-desorption of hydrogen on Pt(100, Pt(110 and Pt(111, in order to correlate the electrochemical properties of each different orientation with the surface atomic structure.

  7. Electrochemical Detection of Hydroxylamine via Au-Pt Alloy Nanoparticle-modified Single-walled Carbon Nanotube Electrodes.

    Science.gov (United States)

    Geng, Yanfang; Ko, Euna; Tran, Van-Khue; Chung, Woo Sung; Park, Chan Ho; Kim, Min Ki; Jin, Ga Hyun; Seong, Gi Hun

    2017-01-01

    In the present study, we developed an electrochemical sensor for highly sensitive detection of hydroxylamine using Au-Pt alloy nanoparticles. Au-Pt alloy nanoparticles were electrochemically deposited on a working electrode made of single-walled carbon nanotubes. The framework composition in the Au-Pt alloy nanoparticle was easily controlled by adjusting the Au(3+):Pt(4+) composition ratio in the precursor solution. Morphological and chemical characterizations of the resulting Au-Pt alloy nanoparticles were performed using field emission scanning electron microscopy, X-ray diffraction, and energy dispersion X-ray spectroscopy. When the Au(3+):Pt(4+) ratio in the precursor solution was 1:5, the ratio of Au:Pt atom in alloy nanoparticle was about 6:4. Au60Pt40 alloy nanoparticles were found to have the optimum synthetic ratio for hydroxylamine detection. The electrocatalytic performance of Au-Pt alloy nanoparticles in the presence of hydroxylamine was also characterized using cyclic voltammetry, differential pulse voltammetry, and chronoamperometry. In the chronoamperometric detection of hydroxylamine, the sensor exhibited a detection limit of 0.80 μM (S/N = 3) and a high sensitivity of 184 μA mM(-1) cm(-2). Moreover, the amperometric response of the sensor in 1 mM hydroxylamine was stable for a long time (450 s). Long-term stability tests showed that the current responses to hydroxylamine were 96, 91 and 85% of the initial signal value after storage for 5, 10, and 20 days, respectively.

  8. pH dependence of the electroreduction of nitrate on Rh and Pt polycrystalline electrodes.

    Science.gov (United States)

    Yang, Jian; Sebastian, Paula; Duca, Matteo; Hoogenboom, Thijs; Koper, Marc T M

    2014-02-28

    From a study of the electrocatalytic reduction of nitrate on Pt and Rh electrodes over a wide pH range, HNO3 is suggested as the only reducible species in nitrate reduction on Pt, whereas both HNO3 and the nitrate anion are reducible on Rh. Rh is the more active catalyst of the two because it can activate nitrate even if no protons are available in solution. This is an important insight into the development of more effective nitrate reduction catalysts.

  9. The Effects of Organic Adsorbates on the Underpotential Deposition of Silver on Pt(111) Electrodes

    Science.gov (United States)

    1993-01-01

    CV) The Effects of Organic Adsorbates on the Underpotential Deposition W.0 of Silver on Pt(111) Electrodes _• D. L. Taylor and H. D. Abruxla* D TIC...to determine the effects of competing organic adsorbates on the underpotential deposition of silver on Pt(111). The adsorbates studied are known to...hcis )n appive tor pubic release and sal Its distribution is unlimited. fu .. 93-12456 INTRODUCTION The process of underpotential deposition (UPD) of

  10. On the differences in the reaction mechanism for CO and CO/H{sub 2} electrooxidation on PtRu and PtSn alloy electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Gasteiger, H.A. [Univ. Ulm (Germany). Abteilung Oberflaechenchemie und Katalyse; Markovic, N.M.; Ross, P.N. Jr. [Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Electrooxidation kinetics of mixtures of carbon monoxide and hydrogen were studied on well-characterized surfaces of Pt and alloys of PtRu and PtSn in 0.5 M H{sub 2}SO{sub 4} at room temperature and 60 C. The alloy electrode surfaces were prepared in UHV by sputter/anneal cycles and their surface compositions were determined via low energy ion scattering. Subsequently, the electrodes were transferred contamination-free from UHV into a rotating disk electrode (RDE) configuration in a conventional electrochemical cell and their activity was measured both by CO stripping voltammetry and under the continuous flow of CO and CO/H{sub 2} gas mixtures in RDE-experiments. The overpotential for the continuous oxidation of pure CO on PtSn electrodes with a Sn surface composition of x{sub Sn,s} {approximately} 0.2 is significantly smaller than on PtRu alloys (x{sub Ru,s} {approximately} 0.5) and on pure Pt. The reaction order with respect to solution phase CO is negative on PtRu alloys due to the competition between OH{sub ads} nucleation and CO adsorption on Ru surface atoms. Owing to the lack of CO adsorption on OH{sub ads}-providing Sn surface atoms, the reaction order with respect to CO is positive on PtSn electrodes. Therefore, the activity enhancement of PtSn electrodes versus PtRu and Pt electrodes is most pronounced in pure CO and decreases with the CO concentration in CO/N{sub 2} and CO/H{sub 2} mixtures.

  11. Pt crystalline ultrathin films as counter electrodes for bifacial dye-sensitized solar cells

    Science.gov (United States)

    Cheng, Cheng-En; Lin, Zheng-Kun; Lin, Yu-Chang; Lei, Bi-Chen; Chang, Chen-Shiung; Shih-Sen Chien, Forest

    2017-01-01

    This study is to develop the Pt crystalline ultrathin films as high-transparent, efficient, and low-Pt-loaded counter electrodes (CEs) for bifacial dye-sensitized solar cells (DSCs). The 1-nm-thick Pt ultrathin films are sputtered on fluorine-doped tin oxide substrates and thermal annealed at 400 °C. After annealing, as-prepared amorphous-nanocrystal-mixed Pt films become high-crystalline films with better optical transmittance and electrocatalytic ability to I3 - reduction for bifacial DSCs. The rear-to-front ratios of short-circuit current density and power conversion efficiency of DSCs with crystalline ultrathin Pt CEs are as high as 81 and 83%, respectively.

  12. A Novel Cholesterol Oxidase Biosensor Based on Pt-nanoparticle /Carbon Nanotube Modified Electrode

    Institute of Scientific and Technical Information of China (English)

    Qiao Cui SHI; Tu Zhi PENG

    2005-01-01

    A Pt-nanoparticle/carbon nanotube modified graphite electrode immobilized with cholesterol oxidase/sol-gel layer was developed for monitoring cholesterol. Using this electrode,cholesterol concentration (4.0×10-6 to 1.0×10 mol/L) could be determined accurately in the presence of ascorbic or uric acid, and the response time was rapid (< 20 s). This biosensor has high sensitivity and selectivity.

  13. Pt、Rh及Pt-Rh合金电极上氢的吸附%Hydrogen Adsorption on Pt, Rh and Pt-Rh Electrodes

    Institute of Scientific and Technical Information of China (English)

    贾梦秋; A.M.Meretskyi

    2005-01-01

    The hydrogen adsorption on Pt-Rh alloys in sulfuric acid aqueous solutions was studied by the method of cathode pulses. Hydrogen adsorption on the electrode with all ratio of alloy components (wRh = 0-100%) is well described by the Temkin logarithmic isotherm. The surface coverage by adsorbed hydrogen at the same potential is decreased with increasing content of rhodium in the system. A linear dependence of adsorption peak potential on the alloy compositions in the case of weakly bonded adsorbed hydrogen is established. Hydrogen adsorption heat as a function of surface coverage for Pt-Rh-electrodes was obtained. The shape of the current-potential curve and position of the weakly bonded hydrogen adsorption on the potential scale are all related to alloy compositions, thus can serve as the basis for the determination surface composition of alloys.

  14. Characterization and single cell testing of Pt/C electrodes prepared by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Martin, A.J.; Chaparro, A.M.; Gallardo, B.; Folgado, M.A. [CIEMAT, Department of Energy, Avda. Complutense 22, 28040 Madrid (Spain); Daza, L. [CIEMAT, Department of Energy, Avda. Complutense 22, 28040 Madrid (Spain); Instituto de Catalisis y Petroleoquimica (CSIC), C/. Marie Curie 2, Campus Cantoblanco, 28049 Madrid (Spain)

    2009-07-01

    Electrodes for proton exchange membrane fuel cells (PEMFC) have been prepared by the electrodeposition method. For this task, the electrodeposition of platinum is carried out on a carbon black substrate impregnated with an ionomer, proton conducting, medium. Before electrodeposition, the substrate is submitted to an activation process to increase the hydrophilic character of the surface to a few microns depth. Electrodeposition of platinum takes place inside the generated surface hydrophilic layer, resulting in a continuous phase covering totally or partially carbon substrate grains. Cross sectional images show a decay profile of platinum towards the interior of the substrate, reflecting a deposition process limited by diffusion of PtCl{sub 6}{sup 2-} through the porous substrate. Electrodes with different platinum loads have been prepared, and membrane electrode assemblies (MEA) have been mounted with the electrodeposited electrodes as cathode and other standard components (commercial anode and Nafion{sup R} 117 membrane). The electrochemically active surface area determined from hydrogen underpotential deposition charge, is lower on the electrodeposited electrodes than on standard electrodes. However, single cell testing shows higher mass specific activity on electrodeposited cathodes with low and intermediate Pt load (below 0.05 mg Pt cm{sup -2}). (author)

  15. Characterization and single cell testing of Pt/C electrodes prepared by electrodeposition

    Science.gov (United States)

    Martín, A. J.; Chaparro, A. M.; Gallardo, B.; Folgado, M. A.; Daza, L.

    Electrodes for proton exchange membrane fuel cells (PEMFC) have been prepared by the electrodeposition method. For this task, the electrodeposition of platinum is carried out on a carbon black substrate impregnated with an ionomer, proton conducting, medium. Before electrodeposition, the substrate is submitted to an activation process to increase the hydrophilic character of the surface to a few microns depth. Electrodeposition of platinum takes place inside the generated surface hydrophilic layer, resulting in a continuous phase covering totally or partially carbon substrate grains. Cross sectional images show a decay profile of platinum towards the interior of the substrate, reflecting a deposition process limited by diffusion of PtCl 6 2- through the porous substrate. Electrodes with different platinum loads have been prepared, and membrane electrode assemblies (MEA) have been mounted with the electrodeposited electrodes as cathode and other standard components (commercial anode and Nafion R 117 membrane). The electrochemically active surface area determined from hydrogen underpotential deposition charge, is lower on the electrodeposited electrodes than on standard electrodes. However, single cell testing shows higher mass specific activity on electrodeposited cathodes with low and intermediate Pt load (below 0.05 mg Pt cm -2).

  16. Kinetic study of CO oxidation on step decorated Pt(1 1 1) vicinal single crystal electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen Qingsong [Institute of Electrochemistry, University of Alicante, Apartado 99, E-03080 Alicante (Spain); State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Feliu, Juan M., E-mail: juan.feliu@ua.es [Institute of Electrochemistry, University of Alicante, Apartado 99, E-03080 Alicante (Spain); Berna, Antonio; Climent, Victor [Institute of Electrochemistry, University of Alicante, Apartado 99, E-03080 Alicante (Spain); Sun Shigang, E-mail: sgsun@xmu.edu.cn [State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

    2011-07-01

    Highlights: > Chronoamperometry has been used to study CO oxidation on Pt stepped surfaces. > Adatoms step decoration allows determination of the role of steps on CO oxidation. > Rate constant decreases after step decoration with adatoms. > Tafel slopes are around 60-90 mV/dec, suggesting a Langmuir-Hinshelwood mechanism. - Abstract: In this work, surface modification at atomic level was applied to study the reactivity of step sites on platinum single crystal surfaces. Stepped platinum single crystal electrodes with (1 1 1) terraces separated by monoatomic step sites with different symmetry were decorated with irreversibly adsorbed adatoms, without blocking the terrace sites, and characterized in 0.1 M HClO{sub 4} solution. The kinetics of CO oxidation on the different platinum single crystal planes as well as on the step decorated surfaces has been studied using chronoamperometry. The apparent rate constants, which were determined by fitting the experimental data to a mean-field model, decrease after the steps of platinum single crystal electrodes have been blocked by the adatoms. This behavior indicates that steps are active sites for CO oxidation. Tafel slopes measured from the potential dependence of the apparent rate constants of CO oxidation were similar in all cases. This result demonstrates that the electrochemical oxidation of the CO adlayer on all the surfaces follows the same Langmuir-Hinshelwood model, irrespectively of step modification.

  17. Performance of plasma sputtered fuel cell electrodes with ultra-low Pt loadings

    Energy Technology Data Exchange (ETDEWEB)

    Cavarroc, M.; Ennadjaoui, A. [MID Dreux Innovation, CAdD, 4 Rue Albert Caquot-28500 Vernouillet (France); Mougenot, M.; Brault, P.; Escalier, R.; Tessier, Y. [Groupe de Recherches sur l' Energetique des Milieux Ionises, CNRS Universite d' Orleans, BP6744, 14 rue d' Issoudun, 45067 Orleans (France); Durand, J.; Roualdes, S. [Institut Europeen des Membranes, ENSCM, UM2, CNRS, Universite Montpellier 2, CC047, Place Eugene Bataillon, 34095 Montpellier cedex 5 (France); Sauvage, T. [Conditions Extremes et Materiaux, Haute Temperature et Irradiation, UPR3079 CNRS, Site Cyclotron, 3A rue de la Ferollerie, 45071 Orleans Cedex 2 (France); Coutanceau, C. [Laboratoire de Catalyse en Chimie Organique, UMR6503 Universite de Poitiers, CNRS, 86022, Poitiers (France)

    2009-04-15

    Ultra-low Pt content PEMFC electrodes have been manufactured using magnetron co-sputtering of carbon and platinum on a commercial E-Tek {sup registered} uncatalyzed gas diffusion layer in plasma fuel cell deposition devices. Pt loadings of 0.16 and 0.01 mg cm{sup -2} have been realized. The Pt catalyst is dispersed as small clusters with size less than 2 nm over a depth of 500 nm. PEMFC test with symmetric electrodes loaded with 10 {mu}g cm{sup -2} led to maximum reproducible power densities as high as 0.4 and 0.17 W cm{sup -2} with Nafion {sup registered} 212 and Nafion {sup registered} 115 membranes, respectively. (author)

  18. Co oxidation on spontaneous Pt-Ru deposits on composite polymeric electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Bavio, M.A.; Kessler, T. [Departamento de Ingenieria Quimica, Facultad de Ingenieria, Universidad Nacional del Centro de la Provincia de Buenos Aires, Av. del Valle 5737, B7400JWI, Olavarria (Argentina); Castro Luna, A.M. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas, INIFTA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Diagonal 113 y 64, 1900, La Plata (Argentina)

    2010-06-15

    Composite polyaniline electrodes containing carbon nanotubes incorporated in the film and spontaneous Pt-Ru deposits as catalytic material for CO oxidation are reported. PANI films were electrosynthesized from a monomer acid solution with the addition of carbon nanotubes. Then, Pt-Ru deposits were obtained by immersing the polymeric film in H{sub 2}PtCl{sub 6} and/or RuCl{sub 3} in HCl. Three series of deposits were prepared by either immersion in a solution containing both metallic ions during a fixed time or successive immersion in different solutions containing only one of the metallic ions during half of the established time and varying the sequence as follows: (i) first in H{sub 2}PtCl{sub 6} and then in RuCl{sub 3} or (ii) first in RuCl{sub 3} and then in H{sub 2}PtCl{sub 6}. Adsorbed CO oxidation was studied by cyclic voltammetry in H{sub 2}SO{sub 4} solution. The electrodes were characterized through SEM and EDX. The different ways to obtain spontaneous Pt-Ru deposits are analyzed and their influence on CO oxidation is discussed. (author)

  19. Fuel cell electrodes: Electrochemical characterization and electrodeposition of Pt nanoparticles

    CSIR Research Space (South Africa)

    Modibedi, M

    2008-05-01

    Full Text Available Cell (MCFC) Electrolyte: carbonate-salt-impregnated ceramic matrix ? Solid Oxide Fuel Cell (SOFC) Electrolyte: hard, non-porous ceramic compound ? Phosphoric Acid Fuel Cell (PAFC) Electrolyte: liquid phosphoric acid ? Polymer Electrolyte Membrane... Fuel Cell (PEMFC) Electrolyte: solid polymer membrane (typically Nafion) Types of fuel cells (FC) ? CSIR 2007 www.csir.co.za PEMFC http://fuelcellsworks.com/ ? CSIR 2007 www.csir.co.za Electrodes...

  20. Characterization of self-assembled electrodes based on Au-Pt nanoparticles for PEMFC application

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, E. [Politecnica Univ. de Chiapas, Tuxtla Gutierrez, Chiapas (Mexico). Energia y Sustentabilidad; Sebastian, P.J. [Politecnica Univ. de Chiapas, Chiapas (Mexico). Energia y Sustentabilidad; Centro de Investigacion en Energia, UNAM, Morelos (Mexico); Gamboa, S.A. [Centro de Investigacion en Energia, UNAM, Morelos (Mexico); Pal, U. [Inst. de Fisica, Universidad Autonoma de Puebla Univ., Puebla (Mexico). Inst. de Fisica; Gonzalez, I. [Autonoma Metropolitana Univ. (Mexico). Dept. de Quimica

    2008-07-01

    This paper reported on a study in which membrane electrode assemblies (MEAs) were fabricated by depositing Au, Pt and AuPt nanoparticles on Nafion 115 membrane for use in a proton exchange membrane fuel cell (PEMFC). A Rotating Disc Electrode (RDE) was used to measure the nanoparticle catalyst activity. After deposition of the nanoparticles on the membrane, the surface was studied by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The membrane proton conduction process was studied by Electrochemical Impedance Spectroscopy (EIS) with the 4 probe technique. The MEAs fabricated with Nafion/Metal membranes were evaluated in a PEMFC under standard conditions. Colloidal solutions were used to prepare self-assembled electrodes with nanoparticles deposited on Nafion membrane. The particles deposited on Nafion showed good stability and had homogeneous distribution along the membrane surface. The impedance results revealed an increase in the membrane proton resistance of the self-assembled electrodes compared to unmodified Nafion. The Au-Pt nanoparticles were obtained by chemical reduction. The nanoparticle size in the three systems was about 2 nm. The self-assembled electrodes performed well in standard conditions. The optimum colloidal concentration and immersion time must be determined in order to obtain good catalytic activity and high membrane conductance. The self-assembled Nafion/AuPt had the best open circuit potential (887 mV). The Au and Pt self-assemblies showed a similar performance in terms of maximum power and maximum current density. The performance of the Nafion/Au self-assembly was influenced more by ohmic losses, particularly in the membrane. The maximum power generation was obtained at 0.35 V. The mass transport losses increased after this value, thereby affecting the efficiency of the PEMFC. 2 figs.

  1. Advanced cathode materials for polymer electrolyte fuel cells based on pt/ metal oxides: from model electrodes to catalyst systems.

    Science.gov (United States)

    Fabbri, Emiliana; Pătru, Alexandra; Rabis, Annett; Kötz, Rüdiger; Schmidt, Thomas J

    2014-01-01

    The development of stable catalyst systems for application at the cathode side of polymer electrolyte fuel cells (PEFCs) requires the substitution of the state-of-the-art carbon supports with materials showing high corrosion resistance in a strongly oxidizing environment. Metal oxides in their highest oxidation state can represent viable support materials for the next generation PEFC cathodes. In the present work a multilevel approach has been adopted to investigate the kinetics and the activity of Pt nanoparticles supported on SnO2-based metal oxides. Particularly, model electrodes made of SnO2 thin films supporting Pt nanoparticles, and porous catalyst systems made of Pt nanoparticles supported on Sb-doped SnO2 high surface area powders have been investigated. The present results indicate that SnO2-based supports do not modify the oxygen reduction reaction mechanism on the Pt nanoparticle surface, but rather lead to catalysts with enhanced specific activity compared to Pt/carbon systems. Different reasons for the enhancement in the specific activity are considered and discussed.

  2. Working electrode holder and electrochemical cell

    DEFF Research Database (Denmark)

    2016-01-01

    The present disclosure relates to a holder for a test object, more specifically to a holder for measuring electrochemical properties of the test object. One embodiment relates to a working electrode holder for measuring electrochemical properties of a front surface of a test object in a liquid...... in the bottom surface and configured for passage of said liquid, such that liquid is able to pass onto the electrically contacted front surface. The holder may be used in an electrochemical cell....

  3. Modified pulse electrodeposition of Pt nanocatalyst as high-performance electrode for PEMFC

    Science.gov (United States)

    Fouda-Onana, F.; Guillet, N.; AlMayouf, A. M.

    2014-12-01

    Low platinum loading electrode was successfully deposited by a modified pulse galvanic signal in H2PtCl6 electrolyte using carbon black as support directly on a GDL (Gas Diffusion Layer). SEM images of the deposition were composed by rough Pt particles of 50 nm leading to specific electrochemical surface area of 53 m2 g-1. In spite of large particle size and a low cathode loading of 0.12 mg cm-2, the proton exchange membrane fuel cell (PEMFC) fed with humidified H2 and O2 at 80 °C, 1.5 absolute bar reached 0.2 mA cmPt-2 and 0.1 A mg-1 at 0.9 VIR-free which were twice higher than a reference membrane electrodes assembly (MEA) with a cathode loaded at 0.4 mgPt.cm-2. Such an active cathode electrode may be ascribed to a higher utilization rate of the platinum caused by an efficient catalyst deposition by electrochemical route.

  4. CATALYTIC AND ELECTROCATALYTIC ACTIVITY OF Pt-Ru/C ELECTRODE FOR HYDROGEN OXIDATION IN ALKALINE

    Directory of Open Access Journals (Sweden)

    D. LABOU

    2008-07-01

    Full Text Available The kinetics of the oxidation of H2 on PtRu/C gas-diffusion electrode was studied by interfacing the electrode with aqueous electrolytes at different pH values. The conducting electrolytes were KOH and HClO4 aqueous solutions with different concentrations. It is shown that the nature of the aqueous electrolyte plays the role of an active catalyst support for the PtRu/C electrode which drastically affects its catalytic properties. During the aforementioned interaction, termed electrochemical metal support interaction (EMSI, the electrochemical potential of the electrons at the catalyst Fermi level is equalised with the electrochemical potential of the solvated electron in the aqueous electrolyte. The electrochemical experiments carried out at various pH values showed that the electrochemical promotion catalysis (EPOC is more intense when the catalyst-electrode is interfaced with electrolytes with high pH values where the OH– ionic conduction prevails. It was concluded that similar to the solid state electrochemical systems EPOC proceeds through the formation of a polar adsorbed promoting layer of , electrochemically supplied by the OH- species, at the three phase boundaries of the gas exposed gas diffusion catalyst-electrode surface.

  5. Efficiency enhancement for dye-sensitized solar cells with a porous NiO/Pt counter electrode

    Science.gov (United States)

    Maiaugree, Wasan; Kongprakaiwoot, Natcharee; Tangtrakarn, Apishok; Saekow, Samarn; Pimanpang, Samuk; Amornkitbamrung, Vittaya

    2014-01-01

    Bi-layer counter electrodes made of platinum films (Pt) coated on porous nickel oxide nanosheets (PNO) were investigated for a dye sensitized solar cell (DSSC). The PNO and Pt films were deposited using a chemical bath deposition and a DC sputtering technique, respectively. Connected networks of sputtered Pt on PNO nanosheets significantly enhanced electrocatalytic activities due to the increase in the electroactive areas. The solar conversion efficiency of the FTO/PNO/Pt DSSC was 8.17% in comparison to 7.23% for the FTO/Pt DSSC.

  6. A comparative study of CO adsorption on tetrahexahedral Pt nanocrystals and interrelated Pt single crystal electrodes by using cyclic voltammetry and in situ FTIR spectroscopy.

    Science.gov (United States)

    Liu, Hai-Xia; Tian, Na; Ye, Jin-Yu; Lu, Bang-An; Ren, Jie; Huangfu, Zhi-Chao; Zhou, Zhi-You; Sun, Shi-Gang

    2014-01-01

    This study focuses on CO adsorption at tetrahexahedral Pt nanocrystals (THH Pt NCs) by using cyclic voltammetry and in situ FTIR spectroscopy. Since the electrochemically prepared THH Pt NCs in this study are enclosed by {730} facets which could be considered by a subfacet configuration of 2{210} + {310}, we have also studied CO adsorption on the interrelated Pt(310) and Pt(210) single crystal electrodes as a comparison. Cyclic voltammetry results demonstrated that CO adsorbs dominantly on the (100) sites of THH Pt NCs at low CO coverage (θ(CO)≤ 0.135), while on both (100) and (110) sites at higher CO coverage. On ordered Pt(310) and Pt(210), i.e. they were flame annealed and then cooled in H(2) + Ar, CO adsorption also illustrates relative priority on (100) sites at low CO coverage; while at high CO coverage or on oxygen-disordered Pt(310) and Pt(210) when they were cooled in air after flame annealing, the adsorption of CO presents a weak preference on (100) sites of Pt(310) and even no preference at all on (100) sites of Pt(210). In situ FTIR spectroscopic studies illustrated that CO adsorption on THH Pt NCs yields anomalous infrared effects (AIREs), which are depicted by the Fano-like IR feature on a dense distribution (60 μm(-2)) and the enhancement of abnormal IR absorption on a sparse distribution (22 μm(-2)) of THH Pt NCs on glassy carbon substrate. Systematic investigation of CO coverage dependence of IR features revealed that, on THH Pt NCs, the IR band center (ν(COL)) of linearly bonded CO (COL) is rapidly shifted to higher wavenumbers along with the increase of CO coverage to 0.184, yielding a fast linear increase rate with a high slope (dν(COL)/dθ(IR)(CO) = 219 cm(-1)); when θ > 0.184, the increase of ν(COL) with θCO slows down and deviates drastically from linearity. In contrast, the ν(COL) on the ordered Pt(310) electrode maintains a linear increase with θ(IR)(CO) for the whole range of θ(IR)(CO) variation, and gives a much smaller

  7. Thermodynamic studies of phosphate adsorption on Pt(1 1 1) electrode surfaces in perchloric acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Mostany, Jorge [Instituto de Electroquimica, Universidad de Alicante, Apdo. 99, E-03080 Alicante (Spain); Departamento de Quimica, Universidad Simon Bolivar, Apdo. 89000, Caracas 1080A (Venezuela, Bolivarian Republic of)], E-mail: jmosta@usb.ve; Martinez, Pedro; Climent, Victor; Herrero, Enrique; Feliu, Juan M. [Instituto de Electroquimica, Universidad de Alicante, Apdo. 99, E-03080 Alicante (Spain)

    2009-10-01

    The thermodynamics of the so-called perfectly polarizable electrode was employed to analyze the total charge densities for a nearly defect-free Pt(1 1 1) electrode in a series of NaH{sub 2}PO{sub 4} solutions with an excess of inert electrolyte (0.1 M HClO{sub 4}) at constant ionic strength and pH. Thermodynamic analysis using both electrode potential and charge density as independent electrical variables is described. The Gibbs excess, Gibbs energy of adsorption and charge numbers both at constant electrode potential and constant chemical potential for anion adsorption at the Pt(1 1 1) surface have been determined. The calculated electrosorption valencies and charge numbers at constant chemical potential are close to two electrons per adsorbed anion, suggesting that in the absence of co-adsorbed species, HPO{sub 4}{sup 2-} is the predominant adsorbed species. The maximum Gibbs excess of adsorbed hydrogenphosphate attains a value of {approx}3.2 x 10{sup 14} ions cm{sup -2} which corresponds to a coverage of {approx}0.22 ML.

  8. Interdigitated array of Pt electrodes for electrical stimulation and engineering of aligned muscle tissue.

    Science.gov (United States)

    Ahadian, Samad; Ramón-Azcón, Javier; Ostrovidov, Serge; Camci-Unal, Gulden; Hosseini, Vahid; Kaji, Hirokazu; Ino, Kosuke; Shiku, Hitoshi; Khademhosseini, Ali; Matsue, Tomokazu

    2012-09-21

    Engineered skeletal muscle tissues could be useful for applications in tissue engineering, drug screening, and bio-robotics. It is well-known that skeletal muscle cells are able to differentiate under electrical stimulation (ES), with an increase in myosin production, along with the formation of myofibers and contractile proteins. In this study, we describe the use of an interdigitated array of electrodes as a novel platform to electrically stimulate engineered muscle tissues. The resulting muscle myofibers were analyzed and quantified in terms of their myotube characteristics and gene expression. The engineered muscle tissues stimulated through the interdigitated array of electrodes demonstrated superior performance and maturation compared to the corresponding tissues stimulated through a conventional setup (i.e., through Pt wires in close proximity to the muscle tissue). In particular, the ES of muscle tissue (voltage 6 V, frequency 1 Hz and duration 10 ms for 1 day) through the interdigitated array of electrodes resulted in a higher degree of C2C12 myotube alignment (∼80%) as compared to ES using Pt wires (∼65%). In addition, higher amounts of C2C12 myotube coverage area, myotube length, muscle transcription factors and protein biomarkers were found for myotubes stimulated through the interdigitated array of electrodes compared to those stimulated using the Pt wires. Due to the wide array of potential applications of ES for two- and three-dimensional (2D and 3D) engineered tissues, the suggested platform could be employed for a variety of cell and tissue structures to more efficiently investigate their response to electrical fields.

  9. Characterization of self-assembled electrodes based on Au-Pt nanoparticles for PEMFC application

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, E. [Univ. Politecnica de Chiapas (Mexico). Energia y Sustentabilidad; Sebastian, P.J.; Gamboa, S.A.; Joseph, S. [Univ. Nacional Autonoma de Mexico, Morelos (Mexico). Centrode Investigacion en Energia; Pal, U. [Univ. Autonoma de Puebla, Pue (Mexico). Inst. de Fisica; Gonzalez, I. [Univ. Autonoma Metropolitana, Mexico City (Mexico). Dept. de Quimica

    2010-07-01

    This paper described the synthesis and characterization of gold (Au), platinum (Pt) and Au-Pt nanoparticles impregnated on a Nafion membrane in a proton exchange membrane fuel cell (PEMFC). The aim of the study was to fabricate the membrane electrode assembly (MEA) by depositing the nanoparticles on the membrane using an immersion technique. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to study the deposition process. Electrochemical impedance spectroscopy (EIS) was used to study the membrane proton conduction process. An elemental mapping analysis was performed in order to study the location of the Au and Pt in the self-assemblies. Results of the study showed that the particles deposited on the Nafion had good stability and a homogenous distribution along the membrane surface. The particles showed a direct relation in size and location with the hydrophilic and hydrophobic distribution phases of the membrane. The main membrane resistance was located between the membrane and the electrolyte. The self-assembled electrodes demonstrated a good performance at standard conditions. 33 refs., 4 tabs., 11 figs.

  10. Improving electromechanical output of IPMC by high surface area Pd-Pt electrodes and tailored ionomer membrane thickness

    Directory of Open Access Journals (Sweden)

    Viljar Palmre

    2014-04-01

    Full Text Available In this study, we attempt to improve the electromechanical performance of ionic polymer–metal composites (IPMCs by developing high surface area Pd-Pt electrodes and tailoring the ionomer membrane thickness. With proper electroless plating techniques, a high dispersion of palladium particles is achieved deep in the ionomer membrane, thereby increasing notably the interfacial surface area of electrodes. The membrane thickness is increased using 0.5 and 1 mm thick ionomer films. For comparison, IPMCs with the same ionomer membranes, but conventional Pt electrodes, are also prepared and studied. The electromechanical, mechanoelectrical, electrochemical and mechanical properties of different IPMCs are characterized and discussed. Scanning electron microscopy-energy dispersive X-ray (SEM-EDS is used to investigate the distribution of deposited electrode metals in the cross section of Pd-Pt IPMCs. Our experiments demonstrate that IPMCs assembled with millimeter thick ionomer membranes and newly developed Pd-Pt electrodes are superior in mechanoelectrical transduction, and show significantly higher blocking force compared to conventional type of IPMCs. The blocking forces of more than 0.3 N were measured at 4V DC input, exceeding the force output of typical Nafion® 117-based Pt IPMCs more than two orders of magnitude. The newly designed Pd-Pt IPMCs can be useful in more demanding applications, e.g., in biomimetic underwater robotics, where high stress and drag forces are encountered.

  11. Electrochemical characterization of SnO{sub 2} electrodes doped with Ru and Pt

    Energy Technology Data Exchange (ETDEWEB)

    Berenguer, R. [Departamento de Quimica Fisica e Instituto Universitario de Materiales, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Quijada, C. [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, 1, E-03801 Alcoy (Alicante) (Spain); Morallon, E. [Departamento de Quimica Fisica e Instituto Universitario de Materiales, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)], E-mail: morallon@ua.es

    2009-09-01

    Antimony-platinum doped tin dioxide electrodes supported on titanium have been prepared by thermal decomposition. The effect of the progressive replacement of Sb with Ru (x = 0.00; 3.25; 6.50; 13.00 at.%) on their electrochemical response in acid medium has been analysed by cyclic voltammetry. The morphology of the coatings was observed by scanning electron microscopy. Ti/SnO{sub 2}-Sb-Pt electrodes without Ru presented a cracked-mud structure, typical of oxide electrodes prepared by thermal decomposition. The introduction of Ru in the oxide layer modified the coating morphology. The roughness increased and passed through a maximum with the increase of Ru content. A relation between the surface morphology, the roughness factor, voltammetric charge and the electrochemical activity has been established. The mechanism and electrocatalytic activity towards the oxygen evolution reaction has been studied from Tafel measurements. The progressive introduction of Ru in the electrodes increased their electrocatalytic activity for the oxygen evolution reaction with a change on the mechanism from non-active to active electrodes. The electrocatalytic activity mainly depends on electronic factors.

  12. Electrocatalytic oxidation of salicylic acid by a cobalt hydrotalcite-like compound modified Pt electrode.

    Science.gov (United States)

    Gualandi, Isacco; Scavetta, Erika; Zappoli, Sergio; Tonelli, Domenica

    2011-03-15

    In this paper a study of the electrocatalytic oxidation of salicylic acid (SA) at a Pt electrode coated with a Co/Al hydrotalcite-like compound (Co/Al HTLC coated-Pt) film is presented. The voltammetric behaviour of the modified electrode in 0.1M NaOH shows two different redox couples: Co(II)/Co(III) and Co(III)/Co(IV). The electrocatalysis occurs at the same potential of the latter couple, showing that Co(IV) centers act as the oxidant. The CV investigation demonstrates that the process is controlled both by mass and charge transfer and that the Co(IV) centers involved in the oxidation are two for each SA molecule. The estimated value of the catalytic constant is 4×10(4) M(-1) s(-1). The determination of salicylic acid was performed both by DPV and chronoamperometry. The linearity ranges and the LOD values resulted 1×10(-5) to 5×10(-4), 5×10(-7) to 1×10(-4), 6×10(-6) and 2×10(-7) M, respectively. The Co/Al HTLC electrode has been used for SA determination in BAYER Aspirina® and the obtained results are consistent with an independent HPLC analysis.

  13. Sputtered Pt electrode structures with smoothly tapered edges by bi-layer resist lift-off

    Energy Technology Data Exchange (ETDEWEB)

    Preiss, Elisabeth M., E-mail: elisabeth.preiss@de.bosch.com [Robert Bosch GmbH, Corporate Sector Research and Advance Engineering, Robert-Bosch-Campus 1, 71272 Renningen (Germany); Saarland University, Lab for Micromechanics, Microfluidics, and Microactuators, 66123 Saarbruecken (Germany); Krauss, Andreas [Robert Bosch GmbH, Corporate Sector Research and Advance Engineering, Robert-Bosch-Campus 1, 71272 Renningen (Germany); Seidel, Helmut [Saarland University, Lab for Micromechanics, Microfluidics, and Microactuators, 66123 Saarbruecken (Germany)

    2015-12-31

    A lift-off process using a bi-layer resist consisting of an image reversal resist on top and a lift-off resist at the bottom was used to structure Ti–Pt thin films. DC magnetron sputtered metal films patterned by this process show ultra smooth edges, ideal for applications such as interdigitated electrodes in resistive gas sensors including thin-film based sensitive coatings with thicknesses below 100 nm. Profiles of processed structures were analyzed by scanning electron microscopy and surface profilometer. The thickness profile and structure width were controlled by using different resist thicknesses and undercut lengths. Results were compared with iterative simulations by a geometric shadowing model, predicting undersputtering length and profile structure of the experimentally manufactured samples in good agreement. Target-to-substrate distance variation was found to have only a minor influence on the sputtering result. - Highlights: • Ti–Pt electrode structures were prepared using sputtering bi-layer-resist lift-off. • Prepared lift-off electrodes can be used for good overgrowth of thin films. • Ultra-smoothly tapered edges were controlled by the process parameters. • Simulations using a geometric shadowing model confirm our experimental results.

  14. Fabrication and application of flexible graphene silk composite film electrodes decorated with spiky Pt nanospheres.

    Science.gov (United States)

    Liang, Bo; Fang, Lu; Hu, Yichuan; Yang, Guang; Zhu, Qin; Ye, Xuesong

    2014-04-21

    A free-standing graphene silk composite (G/S) film was fabricated via vacuum filtration of a mixed suspension of graphene oxide and silk fibres, followed by chemical reduction. Spiky structured Pt nanospheres were grown on the film substrate by cyclic voltammetry electrodeposition. The electrical and mechanical performance of a single graphene coated silk fibre was investigated. The conductivity of a single graphene coated silk fibre is 57.9 S m(-1). During 1000 bending measurements, the conductivity was stable and showed negligible variation. The G/S film has a sheet resistivity of 90 Ω □(-1) with a porous and hierarchical structure. The spiky Pt nanosphere decorated G/S film was directly used as a H₂O₂ electrode with a sensitivity of 0.56 mA mM(-1) cm(-2), a linear range of 0-2.5 mM and an ultralow detection limit of 0.2 μM (S/N = 3). A glucose biosensor electrode was further fabricated by enzyme immobilization. The results show a sensitivity of 150.8 μA mM(-1) cm(-2) and a low detection limit of 1 μM (S/N = 3) for glucose detection. The strategy of coating graphene sheets on a silk fibre surface provides a new approach for developing electrically conductive biomaterials, tissue engineering scaffolds, bendable electrodes, and wearable biomedical devices.

  15. STRATEGI KONVERSI ENERGI DI PT. LION METAL WORKS Tbk.

    Directory of Open Access Journals (Sweden)

    Daud Sudradjad

    2011-08-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} PT Lion Metal Works is a company producing office equipment, racking system, building material, security and fireproof safe, and cold forming. The production activity has high dependence on the usage of diesel, which influences the quality of the product and the cost of total business. The price fluctuation is one of the reasons for the company to convert the usage of diesel to some energy alternatives. Gas is the best alternative to replace diesel due to some advantages such as price, installation cost, distribution issue, calorie level, and environmental issue. There are some resistances from internal organization emerge in the implementation of the conversion. The alternatives strategy has been explored to reduce the resistances considering the goal of the organization, the actors (department in the company, and the type of resistance using analytical hierarchy process method. The priority strategy is establishing a new division for handling the conversion program and installing the gas facility gradually.

  16. Immobilization of superoxide dismutase on Pt-Pd/MWCNTs hybrid modified electrode surface for superoxide anion detection.

    Science.gov (United States)

    Zhu, Xiang; Niu, Xiangheng; Zhao, Hongli; Tang, Jie; Lan, Minbo

    2015-05-15

    Monitoring of reactive oxygen species like superoxide anion (O2(∙-)) turns to be of increasing significance considering their potential damages to organism. In the present work, we fabricated a novel O2(∙-) electrochemical sensor through immobilizing superoxide dismutase (SOD) onto a Pt-Pd/MWCNTs hybrid modified electrode surface. The Pt-Pd/MWCNTs hybrid was synthesized via a facile one-step alcohol-reduction process, and well characterized by transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction. The immobilization of SOD was accomplished using a simple drop-casting method, and the performance of the assembled enzyme-based sensor for O2(∙-) detection was systematically investigated by several electrochemcial techniques. Thanks to the specific biocatalysis of SOD towards O2(∙-) and the Pt-Pd/MWCNTs - promoted fast electron transfer at the fabricated interface, the developed biosensor exhibits a fast, selective and linear amperometric response upon O2(∙-) in the concentration scope of 40-1550 μM (R(2)=0.9941), with a sensitivity of 0.601 mA cm(-2) mM(-1) and a detection limit of 0.71 μM (S/N=3). In addition, the favorable biocompatibility of this electrode interface endows the prepared biosensor with excellent long-term stability (a sensitivity loss of only 3% over a period of 30 days). It is promising that the proposed sensor will be utilized as an effective tool to quantitatively monitor the dynamic changes of O2(∙-) in biological systems.

  17. Nano-assemblies consisting of Pd/Pt nanodendrites and poly (diallyldimethylammonium chloride)-coated reduced graphene oxide on glassy carbon electrode for hydrogen peroxide sensors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanyan; Zhang, Cong; Zhang, Di; Ma, Min; Wang, Weizhen; Chen, Qiang, E-mail: qiangchen@nankai.edu.cn

    2016-01-01

    Non-enzymatic hydrogen peroxide (H{sub 2}O{sub 2}) sensors were fabricated on the basis of glassy carbon (GC) electrode modified with palladium (Pd) core-platinum (Pt) nanodendrites (Pt-NDs) and poly (diallyldimethylammonium chloride) (PDDA)-coated reduced graphene oxide (rGO). A facile wet-chemical method was developed for preparing Pd core-Pt nanodendrites. In this approach, the growth of Pt NDs was directed by Pd nanocrystal which could be regarded as seed. The PDDA-coated rGO could form uniform film on the surface of GC electrode, which provided a support for Pd core- Pt NDs adsorption by self-assembly. The morphologies of the nanocomposites were characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction (spectrum). Electrocatalytic ability of the nanocomposites was evaluated by cyclic voltammetry and chronoamperometric methods. The sensor fabricated by Pd core-Pt NDs/PDDA-rGO/GCE exhibited high sensitivity (672.753 μA mM{sup −1} cm{sup −2}), low detection limit (0.027 μM), wider linear range (0.005–0.5 mM) and rapid response time (within 5 s). Besides, it also exhibited superior reproducibility, excellent anti-interference performance and long-term stability. The present work could afford a viable method and efficient platform for fabricating all kinds of amperometric sensors and biosensors. - Highlights: • A facial wet-chemical method was developed for preparing Pd core-Pt nanodendrites. • The morphologies of graphene and Pd core-Pt nanodendrites were characterized. • A novel H{sub 2}O{sub 2} sensor was fabricated by nano-assembly. • The performance of H{sub 2}O{sub 2} sensor was evaluated by cyclic voltammetry and chronoamperometric methods.

  18. Electrochemical characterization of IrO{sub 2}-Pt and RuO{sub 2}-Pt mixtures as bifunctional electrodes for unitized regenerative fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Escalante-Garcia, I.L.; Duron-Torres, S.M. [Univ. Autonoma de Zacatecas, Zacatecas (Mexico). Unidad Academica de Ciencias Quimicas; Cruz, J.C.; Arriaga-Hurtado, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Pedro Escobedo (Mexico)

    2010-07-15

    A unitized regenerative fuel cell (URFC) is a single electrochemical cell that has the potential to meet the required features of an idealized energy cycle whereby hydrogen can be produced from renewable energy sources. A URFC is a system which can operate as a polymer electrolyte water electrolyzer (PEMWE) or as a polymer electrolyte fuel cell (PEMFC). In the PEMWE mode, water is converted into hydrogen and oxygen by using electricity from solar or wind energy. In the PEMFC mode, the stored hydrogen and oxygen are supplied to generate electricity and water. Combining PEMWEs and PEMFCs remains a great challenge because several practical and structural features must be considered. The limiting reaction steps at the oxygen electrode for PEMFC or PEMWE are the oxygen reduction reaction (ORR) and the water oxidation reaction (OER), respectively. The high-efficiency therefore depends on the type of electrocatalysts and the capability of the oxygen electrode to operate under PEMFC or PEMWE conditions. As such, much research has gone into the development of a new oxygen electrode design for URFCs. Several bifunctional electrodes for OER and ORR were designed in this study using platinum (Pt) and iridium oxide (IrO{sub 2}) electrocatalysts or Pt and ruthenium oxide (RuO{sub 2}) supported electrocatalysts on Ebonex{sup R}. According to electrochemical characterization by CV, LV and EIS in aqueous 0.5 M H{sub 2}SO{sub 4}, IrO{sub 2}-Pt and RuO{sub 2}-Pt supported on Ebonex have high electrocatalytic properties for ORR and OER, indicating potential use in URFCs. IrO{sub 2} based electrodes were more stable than RuO{sub 2} based electrodes. 31 refs., 2 tabs., 6 figs.

  19. On the mechanism of the direct pathway for formic acid oxidation at a Pt(111) electrode.

    Science.gov (United States)

    Xu, Jie; Yuan, Daofu; Yang, Fan; Mei, Dong; Zhang, Zunbiao; Chen, Yan-Xia

    2013-03-28

    In order determine whether formate is a reaction intermediate of the direct pathway for formic acid oxidation at a Pt electrode, formic acid (HCOOH) oxidation at a Pt(111) electrode has been studied by normal and fast scan voltammetry in 0.1 M HClO4 solutions with different HCOOH concentrations. The relationship between the HCOOH oxidation current density (j(ox)) and formate coverage (θ(formate)) is quantitatively analyzed. The kinetic simulation reveals that the previously proposed formate pathway, with decomposition of the bridge-bonded formate (HCOO(B)) as a rate determining step (rds), cannot be the main pathway responsible for the majority of the current for HCOOH oxidation. Instead, a kinetic model based on a mechanism with formic acid adsorption [structure: see text], along with simultaneous C-H bond activation as the rds for the direct pathway, explains the measured data well. It was found for the relatively slow rate of formic acid oxidation, that adsorption-desorption of the formate is faster, which competes for the surface sites for formic acid oxidation.

  20. In situ FTIR spectra at the Pt electrode/{gamma}-butyrolactone solution interface

    Energy Technology Data Exchange (ETDEWEB)

    Ikezawa, Yasunari, E-mail: ikezawa@rikkyo.ac.jp [Department of Chemistry, Faculty of Science, Rikkyo University, Nishi-Ikebukuro, Toshima-Ku, Tokyo 171 (Japan); Atobe, Keigo [Department of Chemistry, Faculty of Science, Rikkyo University, Nishi-Ikebukuro, Toshima-Ku, Tokyo 171 (Japan)

    2011-08-01

    The behavior of a Pt electrode/solution of lithium perchlorate and lithium hexafluorophosphate in a {gamma}-butyrolactone (GBL) interface has been investigated by using in situ FTIR spectroscopy and single reflection ATR-FTIR spectroscopy. The bands due to free GBL and GBL solvated to lithium ions in the solution were confirmed by the single reflection ATR-FTIR spectra. The dependence of potential on the concentration of GBL and solvated GBL in the vicinity of a Pt electrode was investigated. In the FTIR spectra, the reversible changes in the concentration of free GBL and solvated GBL in the diffuse double layer were observed with change in potentials. As the potential decreased, the free GBL concentration increased, while the concentration of the GBL solvated to lithium ions decreased. The reverse phenomenon was observed as the potential increased. Thus, it can be concluded that the equilibrium shifts from Li{sup +}(GBL){sub 4} to Li{sup +}(GBL){sub 3} and GBL as the potential decreases. It became clear for low potentials that the product material contained lithium ions in irreversible reactions.

  1. Synthesis and characterization of DSSC by using Pt nano-counter electrode: photosensor applications

    Science.gov (United States)

    Yahia, I. S.; AlFaify, S.; Al-ghamdi, Attieh A.; Hafez, Hoda S.; EL-Bashir, S.; Al-Bassam, A.; El-Naggar, A. M.; Yakuphanoglu, F.

    2016-06-01

    Pt electrode prepared by chemical method has been employed as counter electrode in dye-sensitized solar cell. TiO2 nanomaterial was deposited on fluorine-doped tin oxide substrate to be used as photoanode. Structure of the TiO2 and Pt films was investigated by atomic force microscope. The effect of illumination intensity on the photovoltaic parameters such as open circuit voltage, short circuit current density, output power, fill factor and efficiency of these cells was investigated in the range 2.5-130 mW/cm-2. The cell efficiency is stable above 70 mW/cm2. The fill factor is almost constant all over the studied range of illumination intensity. Impedance spectroscopy of the studied device as the summary measurements of the capacitance-voltage, conductance-voltage and series resistance-voltage characteristics were investigated in a wide range of frequencies (5 kHz-1 MHz). At low frequencies, the capacitance has positive values with peak around the origin due to the interfaces. At 200 and 300 kHz, the capacitance is inverted to negative with further increasing of the positive biasing voltage. Above 400 kHz, C-V profile shows complete negative behavior. Also, the impedance-voltage and phase-voltage characteristics were investigated. This cell shows a new promising device for photosensor applications due to high sensitivity in low and high illuminations.

  2. Nanostructure Pt Electrode Obtained via Self-assembly of Nanoparticles on Conductive Oxide-coated Glass Substrate

    Institute of Scientific and Technical Information of China (English)

    WANG, Wei-Bo(王维波); LUO, Zhen(罗臻); XIAO, Xu-Rui(肖绪瑞); LIN, Yuan(林原)

    2004-01-01

    Self-assembly of platinum nanoparticles were applied to fabrication of counter electrode for dye-sensitized solar cells on conductive oxide-coated glass substrate. The present Pt electrode exhibits high exchange current density of 220 mA/cm2, which is comparable to those prepared by electrodeposition, magnetron sputtering or thermal decomposition of platinum chloride. After analysis by transmission electron microscopy (TEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), it was found that the catalyst was structurally characterized as nanosized platinum metal clusters and was continuously arranged on electrode surface. The present nanostructure electrode had high electrocatalytic activity for the reduction of iodine in organic solution.

  3. Domestic wastewater treatment using Pt,Ni-RE (rare earth electrodes

    Directory of Open Access Journals (Sweden)

    Eurico Moutinho

    2016-11-01

    Full Text Available Electrochemical technologies can be used for the treatment of domestic wastewaters, by eliminating their organic pollutants. They have advantages over conventional methods, such as environmental compatibility, versatility, energy efficiency, safety and cost. The organic compounds degradation process is based on the production of OH radicals, formed during water electrolysis, which oxidize the organic molecules to CO2. At the same time, hydrogen (H2 is produced through reduction of the water in the effluent, which can be later used in a fuel cell. Present study seeks to find effective electrocatalysts to produce H2 by electrolysis, using domestic wastewaters as the hydrogen source, with or without the addition of supporting electrolyte. Herein KOH is used as the supporting electrolyte, as the extra hydroxide can be used to degrade the organic matter. Nine different electrode materials are evaluated as cathodes for the hydrogen evolution reaction (HER in a domestic wastewater. The tested materials include platinum (Pt and platinum-rare earth (Pt-RE binary alloys, and nickel (Ni and Ni-RE alloys, with the REs being cerium (Ce, samarium (Sm, dysprosium (Dy, and holmium (Ho. Linear scan voltammetry measurements are conducted at temperatures ranging from 25 to 85 ºC. Several kinetic parameters are calculated, such as the Tafel slopes, charge transfer coefficients and exchange current densities. The data obtained at the different electrode materials is compared and it is clear that Pt-RE alloys show superior activity for the HER. It is also noticeable that the wastewater effluent containing the supporting electrolyte leads to significantly better HER performances.

  4. Anamperometric superoxide anion radicalbiosensor based on SOD/PtPd-PDARGO modified electrode.

    Science.gov (United States)

    Tang, Jie; Zhu, Xiang; Niu, Xiangheng; Liu, Tingting; Zhao, Hongli; Lan, Minbo

    2015-05-01

    In the present work, a high-performance enzyme-based electrochemical sensor for the detection of superoxide anion radical (O2(●-)) is reported. Firstly, we employed a facile approach to synthesize PtPd nanoparticles (PtPd NPs) on chemically reduced graphene oxide (RGO) coated with polydopamine (PDA). The prepared PtPd-PDARGO composite was well characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectra, X-ray diffraction, X-ray photoelectron spectroscopy and electrochemical methods. Then the assembled composite was used as a desired electrochemcial interface for superoxide dismutase (SOD) immobilization. Owing to the PDA layer as well as the synergistic effect of PtPd NPs, the fabricated SOD/PtPd-PDARGO sensor exhibited an outstanding sensitivity of 909.7 μA mM(-1) cm(-2) upon O2(●-) in a linear range from 0.016 mM to 0.24 mM (R(2)=0.992), with a low detection limit of 2 μM (S/N=3) and excellent selectivity, good reproducibility as well as favorable long-term stability.

  5. Electrochemical degradation of phenol and 2-chloro phenol using Pt/Ti and boron-doped diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Janghee; Lee, Byoungseob; Choi, Seyong; Won, Misook [Busan Center, Busan (Korea, Republic of); Shim, Yoonbo [Pusan National Univ., Busan (Korea, Republic of)

    2012-07-15

    To test the efficiency of the BDD electrode for complete mineralization of organic wastewater, phenol and 2-chloro phenol (2-CP) were treated electrochemically with both an active Pt/Ti electrode and a nonactive boron doped diamond (BDD) electrode, respectively, in neutral aqueous medium. Aqueous solutions of both phenol and 2-chloro phenol were treated electrochemically using an in-house fabricated flow through electrochemical cell (FTEC). The experimental variables included current input, treatment time, and the flow rate of the solutions. Depending on the magnitude of the applied current and reaction time, the compounds were either completely degraded or partially oxidized to other intermediates. Removal efficiencies reached as high as 93.2% and 94.8% both at the Pt/Ti electrode and BDD electrode, respectively, at an applied current of 200 mA for a 3.0 hr reaction and a flow rate of 4 mL/min. The BDD electrode was much more efficient for the complete mineralization of phenol and 2-chloro phenol than the Pt/Ti electrode.

  6. Pt-Free Counter Electrodes with Carbon Black and 3D Network Epoxy Polymer Composites

    Science.gov (United States)

    Kang, Gyeongho; Choi, Jongmin; Park, Taiho

    2016-03-01

    Carbon black (CB) and a 3D network epoxy polymer composite, representing dual functions for conductive corrosion protective layer (CCPL) and catalytic layer (CL) by the control of CB weight ratio against polymer is developed. Our strategy provides a proper approach which applies high catalytic ability and chemical stability of CB in corrosive triiodide/iodide (I3-/I-) redox electrolyte system. The CB and a 3D network epoxy polymer composite coated on the stainless steel (SS) electrode to alternate counter electrodes in dye sensitized solar cells (DSSCs). A two-step spray pyrolysis process is used to apply a solution containing epoxy monomers and a polyfunctional amine hardener with 6 wt% CB to a SS substrate, which forms a CCPL. Subsequently, an 86 wt% CB is applied to form a CL. The excellent catalytic properties and corrosion protective properties of the CB and 3D network epoxy polymer composites produce efficient counter electrodes that can replace fluorine-doped tin oxide (FTO) with CCPL/SS and Pt/FTO with CL/CCPL/SS in DSSCs. This approach provides a promising approach to the development of efficient, stable, and cheap solar cells, paving the way for large-scale commercialization.

  7. A branching NiCuPt alloy counter electrode for high-efficiency dye-sensitized solar cell

    Science.gov (United States)

    Yang, Peizhi; Tang, Qunwei

    2016-01-01

    A rising objective for high-efficiency dye-sensitized solar cells (DSSCs) is to create extraordinary and cost-effective counter electrode (CE) electrocatalysts. We present here a branching NiCuPt alloy CE synthesized by electrodepositing Ni on ZnO microrod templates and subsequently growing branched Cu as well as suffering from a galvanic displacement for Pt uptake. The resultant NiCuPt alloy CE displays a promising electrocatalytic activity toward redox electrolyte having I-/I3- couples. An impressive power conversion efficiency of 9.66% is yielded for the liquid-junction DSSC platform.

  8. Low-cost counter electrodes from CoPt alloys for efficient dye-sensitized solar cells.

    Science.gov (United States)

    He, Benlin; Meng, Xin; Tang, Qunwei

    2014-04-09

    Dye-sensitized solar cell (DSSC) is a promising solution to global energy and environmental problems because of its merits on clean, low cost, high efficiency, good durability, and easy fabrication. However, the commercial application of DSSCs has been hindered by the high expenses of counter electrodes (CEs) and limited power conversion efficiency. With an aim of significantly enhancing the power conversion efficiency, here we pioneerly synthesize CoPt alloys using an electrochemically codeposition technique which are employed as CEs for DSSCs. Owing to the rapid charge transfer, electrical conduction, and electrocatalysis, power conversion efficiencies of CoPt-based DSSCs have been markedly elevated in comparison with the DSSC using Pt CE. The DSSC employing CoPt0.02 alloy CE gives an impressive power conversion efficiency of 10.23%. The high conversion efficiency, low cost in combination with simple preparation, and scalability demonstrates the potential use of CoPt alloys in robust DSSCs.

  9. Fabrication of Pt/(Ta2O5+Pt) coated titanium electrodes using combination of partial thermal decomposition and electrolytic reduction of Pt and Ta complex; Tofu-bubun netsubunkai to denkai kangenho wo kumiawaseta hakkin/(sanka tantaru+hakkin) tanji chitan kitai denkyoku no sakusei

    Energy Technology Data Exchange (ETDEWEB)

    Kamegaya, Y. [Ishifuku Metal Industry Co. Ltd., Saitama (Japan); Saito, J.; Kobayashi, H.; Mitamura, T. [Saitama Univ., Saitama (Japan). Faculty of Engineering; Okuyama, M. [Oyama National College of Technology, Tochigi (Japan)

    1996-02-05

    Recently, the authors proposed a new method, a combination of painting/partial thermal decomposition and electrolytic reduction, for the fabrication of Pt coated electrode. When Pt support carbon substrate electrode and Pt support Ti substrate electrode were fabricated using this method, any of these electrode has higher surface area than that of electrode fabricated by conventional painting/partial thermal decomposition method. In this report, in order to make possible to long life for Ti substrate coated electrode, the fabrication of coated electrode structure made of up catalyst layer/interlayer/electrode substrate was carried out using the electrode fabrication method proposed by authors. As a result, the amount of Ta support for including (Ta2O5+Pt) interlayer having sufficient electric conductivity and corrosion resistance into the coated electrode structure was necessary at least 0.4mg.cm{sup -2} if the amount of Pt was 0.4mg.cm{sup -2}. Further, the fabricated Pt/(Ta2O5+Pt)/Ti electrode had higher surface area and electrode life was 2 times longer than that of Pt/Ti electrode and had better stability. 9 refs., 7 figs.

  10. Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated graphene-carbon nanotube hybrid paper electrode.

    Science.gov (United States)

    Sun, Yimin; He, Kui; Zhang, Zefen; Zhou, Aijun; Duan, Hongwei

    2015-06-15

    In this work, we develop a new type of flexible and lightweight electrode based on highly dense Pt nanoparticles decorated free-standing graphene-carbon nanotube (CNT) hybrid paper (Pt/graphene-CNT paper), and explore its practical application as flexible electrochemical biosensor for the real-time tracking hydrogen peroxide (H2O2) secretion by live cells. For the fabrication of flexible nanohybrid electrode, the incorporation of CNT in graphene paper not only improves the electrical conductivity and the mechanical strength of graphene paper, but also increases its surface roughness and provides more nucleation sites for metal nanoparticles. Ultrafine Pt nanoparticles are further decorated on graphene-CNT paper by well controlled sputter deposition method, which offers several advantages such as defined particle size and dispersion, high loading density and strong adhesion between the nanoparticles and the substrate. Consequently, the resultant flexible Pt/graphene-CNT paper electrode demonstrates a variety of desirable electrochemical properties including large electrochemical active surface area, excellent electrocatalytic activity, high stability and exceptional flexibility. When used for nonenzymatic detection of H2O2, Pt/graphene-CNT paper exhibits outstanding sensing performance such as high sensitivity, selectivity, stability and reproducibility. The sensitivity is 1.41 µA µM(-1) cm(-2) with a linear range up to 25 µM and a low detection limit of 10 nM (S/N=3), which enables the resultant biosensor for the real-time tracking H2O2 secretion by live cells macrophages.

  11. Pt nanoparticle modified single walled carbon nanotube network electrodes for electrocatalysis: control of the specific surface area over three orders of magnitude

    NARCIS (Netherlands)

    Miller, T.S.; Sansuk, S.; Lai, S.C.S.; Macpherson, J.V.; Unwin, P.R.

    2015-01-01

    The electrodeposition of Pt nanoparticles (NPs) on two-dimensional single walled carbon nanotube (SWNT) network electrodes is investigated as a means of tailoring electrode surfaces with a well-defined amount of electrocatalytic material. Both Pt NP deposition and electrocatalytic studies are undert

  12. Electrochemical Decolorization of Reactive Violet 5 Textile Dye using Pt/Ir Electrodes

    Directory of Open Access Journals (Sweden)

    Bahadır K. Körbahti

    2016-08-01

    Full Text Available Electrochemical decolorization of textile dyeing wastewater containing Reactive Violet 5 (RV5 were investigated at Pt/Ir electrodes in the presence of 75%NaCl+25%Na2CO3 (w/w supporting electrolyte mixture in a batch electrochemical reactor. Experimental parameters were operated in the range of 300-1500 mg/L textile dye concentration, 4-20 g/L 75%NaCl+25%Na2CO3 electrolyte concentration, 5-15 mA/cm2 current density, and 20-60°C reaction temperature in 15 min electrolysis time. Reactive Violet 5 decolorization increased with increasing current density and electrolyte concentration, and decreasing the textile dye concentration. Although a slight increase obtained in color removal efficiency, the temperature was not show much significant effect on decolorization. Depending on electrochemical reaction conditions, Reactive Violet 5 textile dye decolorization were obtained between 42.8-100%.

  13. A long-term analysis of Pt counter electrodes for Dye-sensitized Solar Cells exploiting a microfluidic housing system

    Energy Technology Data Exchange (ETDEWEB)

    Sacco, Adriano, E-mail: adriano.sacco@iit.it [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Pugliese, Diego; Lamberti, Andrea [Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Castellino, Micaela; Chiodoni, Angelica [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Virga, Alessandro [Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Bianco, Stefano [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2015-07-01

    The study of the degradation process occurring in Dye-sensitized Solar Cells (DSCs) is still a hot topic, in view of the final industrialization and application of this class of devices. Currently the long-term analysis of DSCs is carried out on the entire devices, while the monitoring of cell components cannot be performed in situ directly on the materials, but only through indirect methods. In this paper we report on the analysis of two different kinds of Pt counter electrodes through direct measurements performed under real operating conditions, thanks to the use of a home-made microfluidic housing system, which allows the opening and the investigation of the cell components. The counter electrode samples were studied through X-Ray Photoelectron Spectroscopy, Field Emission Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, UV–visible Spectroscopy and Electrochemical Impedance Spectroscopy for a period longer than 1 year. The results showed that the performances of both classes of Pt counter electrodes remained stable for all the investigation period, despite some slight variation of the morphology. DSCs fabricated employing aged counter electrodes exhibited the same photovoltaic performance behavior of reference cells using fresh-produced counter electrodes, thus demonstrating that both class of materials do not undergo degradation during normal operating conditions. - Highlights: • The analysis of Pt counter electrodes for Dye-sensitized Solar Cells was carried out. • Two families of counter electrodes were studied for a period longer than 1 year. • The analyzed samples were investigated in real operating condition. • A small detachment of the Pt clusters in the thermal samples was observed. • The charge transfer properties remained unchanged for all the investigation period.

  14. Detection of dopamine in non-treated urine samples using glassy carbon electrodes modified with PAMAM dendrimer-Pt composites

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.G. [Laboratory of Bioelectrochemistry, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S. C., Parque Tecnologico, Queretaro, Sanfandila, Pedro Escobedo 76703, Queretaro (Mexico); Department of Chemistry, Universidad de Guanajuato, Cerro de la Venada S/N Col. Pueblito de Rocha, 36040 Guanajuato, Gto (Mexico); Armendariz, G.M.E.; Godinez, Luis A.; Torres, J. [Laboratory of Bioelectrochemistry, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S. C., Parque Tecnologico, Queretaro, Sanfandila, Pedro Escobedo 76703, Queretaro (Mexico); Sepulveda-Guzman, S. [Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Universidad, San Nicolas de los Garza, Nuevo Leon, 66451 Nuevo Leon (Mexico); Bustos, E., E-mail: ebustos@cideteq.mx [Laboratory of Bioelectrochemistry, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S. C., Parque Tecnologico, Queretaro, Sanfandila, Pedro Escobedo 76703, Queretaro (Mexico)

    2011-09-01

    Composites of hydroxyl-terminated PAMAM dendrimers, generation 4.0 (64 peripheral OH groups) containing Pt nanoparticles were synthesized at different reaction times using a microwave reactor. The synthetic procedure resulted in dendrimer encapsulated nanoparticles of Pt (DENs-Pt) of 1.53 {+-} 0.17 nm diameter that was calculated from transmission electron microscopy, and the Pt nanoparticles had single crystal plane in (1 1 1) orientation determinate by selective area diffraction. Each composite was electrochemically immobilized on a pre-functionalized glassy carbon (GC) electrode that was incorporated as a flow injection amperometric (FIA) detector, for the selective detection and quantification of dopamine (DA) in untreated urine samples. Comparison of the analytical performance of the novel electrochemical detector revealed that the DENs-Pt modified GC electrode with the composite synthesized for 30 min in the microwave reactor, showed the best response for the detection of DA in samples of non-treated urine, being the detection and quantification limits smaller (19 and 9 ppb, respectively) than those corresponding to the naked a GC electrode (846 and 423 ppb, respectively) using the FIA detector. In addition, it was found that this electroanalytical approach suffers minimal matrix effects that arise in the analysis of DA in untreated samples of urine.

  15. Electrochemical oxidation of ammonia-containing wastewater using Ti/RuO2-Pt electrode

    Directory of Open Access Journals (Sweden)

    Wei-wu HU

    2009-12-01

    Full Text Available The electrochemical oxidation degradation processes for artificial and actual wastewater containing ammonia were carried out with a Ti/RuO2-Pt anode and a Ti plate cathode. We studied the effects of different current densities, space sizes between the two electrodes, and amounts of added NaCl on ammonia-containing wastewater treatment. It was shown that, after a 30-min treatment under the optimal conditions, which were a current density of 20 mA/cm2, a space size between the two electrodes of 1 cm, and an added amount of 0.5 g/L of NaCl, the COD concentration in municipal wastewater was 40 mg/L, a removal rate of 90%; and the NH3-N concentration was 7 mg/L, a removal rate of 88.3%. The effluent of municipal wastewater qualified for Class A of the Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB18918-2002.

  16. THE INFLUENCE OF WORK ENVIRONMENT AND WORK STRESS ON EMPLOYEE PERFORMANCE AT PT “S” JAKARTA

    Directory of Open Access Journals (Sweden)

    Agung Wahyu Handaru

    2017-09-01

    Full Text Available The purpose of this research are: 1 To know and analyze the description for the work environment, work stress, and performance of permanent employees of PT "S", 2 To know and analyze whether there is influence between the work environment on the performance of permanent employees PT "S", 3 To know and to analyze whether there is influence between work stress on performance of permanent employee of PT "S", 4 To know and analyze whether there is influence between work environment and work stress to performance of regular employees of PT "S". This research using descriptive and explanatory analysis. This research is taken 45 regular employees at PT "S", Jakarta. The technique of data collection used survey method by distributing questionnaires, which then processed with program SPSS 22.0. The result shows a significant influence of work environment and work stress on performance.

  17. Synthesis of Pt-Ni-Fe/CNT/CP nanocomposite as an electrocatalytic electrode for PEM fuel cell cathode

    Science.gov (United States)

    Litkohi, Hajar Rajaei; Bahari, Ali; Ojani, Reza

    2017-08-01

    In order to use carbon nanotube (CNT)-supported catalyst as fuel cell electrodes, Pt-Ni-Fe/CNT/carbon paper (CP) electrode was prepared using an ethylene glycol reduction method. CNTs were directly synthesized on Ni-impregnated carbon paper, plain carbon cloth, and Teflonized carbon cloth using chemical vapor deposition. FESEM and TEM images and thermogravimetric analysis indicated that in situ CNT on carbon paper (ICNT/CP) possesses more appropriate structural quality and stronger adhesion to the substrate than other substrates. The contact angle analysis demonstrated that the degree of ICNT/CP surface hydrophobicity encountered a 24% increase in comparison to CP and promoted to superhydrophobicity from hydrophobicity. The polarization curves and electrochemical impedance spectroscopy results of the loaded Pt-Ni-Fe on in situ and ex situ CNT/CP illustrated that the power density increased and charge transfer resistance reduced compared to commercial Pt/C loaded on CP. The results can be attributed to the outstanding properties of CNTs and high catalytic activity of triple catalysts causing alloying of Pt with Ni and Fe, which makes them a proper candidate to be used as cathode electrodes in proton exchange membrane fuel cells.

  18. Effects of Nanowire Length and Surface Roughness on the Electrochemical Sensor Properties of Nafion-Free, Vertically Aligned Pt Nanowire Array Electrodes

    Directory of Open Access Journals (Sweden)

    Zhiyang Li

    2015-09-01

    Full Text Available In this paper, vertically aligned Pt nanowire arrays (PtNWA with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H2O2 detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM−1·cm−2 among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors.

  19. Dielectric and magnetic characterizations of capacitor structures with an ionic liquid/MgO barrier and a ferromagnetic Pt electrode

    Directory of Open Access Journals (Sweden)

    D. Hayakawa

    2016-11-01

    Full Text Available The dielectric and magnetic properties of electric double layer (EDL capacitor structures with a perpendicularly magnetized Pt/Co/Pt electrode and an insulating cap layer (MgO are investigated. An electric field is applied through a mixed ionic liquid/MgO barrier to the surface of the top Pt layer, at which the magnetic moment is induced by the ferromagnetic proximity effect. The basic dielectric properties of the EDL capacitor are studied by varying the thickness of the MgO cap layer. The results indicate that the capacitance, i.e., the accumulated charge density at the Pt surface, is reduced with increasing the MgO thickness. From the MgO thickness dependence of the capacitance value, the effective dielectric constant of the ionic liquid is evaluated. Almost no electric field effect on the magnetic moment, the coercivity, or the Curie temperature is confirmed in the top Pt layer with the thickness of 1.3 nm, regardless of the presence or absence of the MgO cap layer, whereas the a clear change in the magnetic moment is observed when the top Pt layer is replaced by a Pd layer of 1.7 nm.

  20. Adsorption and hydrogenation of simple alkenes at Pt-group metal electrodes studied by DEMS: influence of the crystal orientation

    Science.gov (United States)

    Müller, Ulrich; Schmiemann, Udo; Dülberg, Andreas; Baltruschat, Helmut

    1995-07-01

    The adsorption of ethene and cyclohexene on mono-and polycrystalline Pt and on polycrystalline Pd electrodes was studied using differential electrochemical mass spectrometry (DEMS). Both molecules are partially hydrated to an oxygen containing species upon adsorption on Pt. In the case of ethene, this species dissociated to methane and adsorbed CO at negative potentials. Another part of the adsorbed ethene can be cathodically desorbed as ethane and butane. The ratio of the various species formed strongly depends on crystal orientation and adsorption potential. Contrary to heterogenous gas phase hydrogenation (and also contrary to some earlier reports on electrochemical hydrogenation), the rate of the Faradaic hydrogenation reaction is also strongly dependent on the crystallographic orientation, being faster on Pt(110) or roughened surfaces. During hydrogenation, H/D exchange occurs to an appreciable degree, suggesting the participation of adsorbed intermediates.

  1. Quantum conductance of 4,4-bipyridine molecular junctions: Role of electrode work function and local d band

    DEFF Research Database (Denmark)

    Rauba, J.M.C.; Strange, Mikkel; Thygesen, Kristian Sommer

    2008-01-01

    We present density-functional theory calculations for the geometry and conductance of 4,4-bipyridine (BPD) nanojunctions with Au and Pt electrodes. The fact that transport takes place via bipyridine's lowest unoccupied molecular orbital (LUMO) suggests that the Au-BPD junction should have larger...... conductance than the Pt-BPD junction due to the smaller work function of Au as compared to Pt. On the other hand, coupling to the local d band is stronger in the case of Pt and this broadens the LUMO resonance. We find that these effects largely outbalance each other leading to conductances of 0.01G(0) and 0.......02G(0) for the Au and Pt contacts, respectively (G(0)=2e(2)/h is the conductance quantum). The effect of coupling to the electrodes is investigated by means of the group orbital which makes precise the concept of the local band. The construction allows us to explain and rationalize the first...

  2. Miniature Fuel Cell With Monolithically Fabricated Si Electrodes - Au-Pd-Pt Multilayer Catalyst -

    Science.gov (United States)

    Shirai, Ryo; Vasiljevic, N.; Hayase, Masanori

    2016-11-01

    A novel catalyst layer structure is proposed for our miniature fuel cells. In our fuel cells, conventionally porous Pt was used as a catalyst layer. In order to reduce the Pt amount, instead of porous Pt, porous Pd was formed on a Si chip and Pt was deposited atomically on the Pd by UPD-SLRR(Under Potential Deposition - Surface Limited Redox Replacement). The Pd- Pt catalyst showed satisfying performance, besides high CO tolerance was observed. Though the Pd-Pt catalyst is quite promising, Pd is also a rare metal and reduction of Pd amount is necessary. In this study, a novel Au-Pd-Pt catalyst formation strategy is proposed by UPD-SLRR, and the layered structure is preliminary fabricated.

  3. Economical low-light photovoltaics by using the Pt-free dye-sensitized solar cell with graphene dot/PEDOT:PSS counter electrodes

    KAUST Repository

    Lee, Chuan Pei

    2015-10-23

    Graphene dots (GDs) are used for enhancing the performance of the poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS)-based counter electrodes in Pt-free dye-sensitized solar cells (DSSCs). As compared to PEDOT:PSS CEs, GD-PEDOT:PSS films possess a rough surface morphology, high conductivity and electrocatalytic activity, and low charge-transfer resistance toward I/I redox reaction, pushing cell efficiency to 7.36%, which is 43% higher than that of the cell with PEDOT:PSS CEs (5.14%). Without much impact on efficiency, the DSSCs with GD-PEDOT:PSS CEs work well under low-light conditions (light intensity <13.5mWcm and angle of incidence >60°), such as indoor and low-level outdoor lighting and of the sun while the other traditional cells would fail to work. The concurrent advantage in low cost in Pt-free materials, simple fabrication processes, comparable efficiency with Pt CEs, and high performance under low-light conditions makes the DSSC with GD-PEDOT:PSS CEs suitable to harvest light for a diverse range of indoor and low-level outdoor lighting locations.

  4. Bifunctional electrodes with ir and Ru oxide mixtures and pt for unified regenerative cells; Electrodos bifuncionales basados en mezclas de oxidos de Ir y Ru con Pt para celdas regenerativas unificadas

    Energy Technology Data Exchange (ETDEWEB)

    Duron-Torres, S.M.; Escalante-Garcia, I.L. [Universidad Autonoma de Zacatecas, Zacatecas (Mexico); Cruz, J. C.; Arriaga-Hurtado; L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Pedro Escobedo, Queretaro (Mexico)]. E-mail: duronsm@prodigy.net.mx

    2009-09-15

    Unified regenerative fuel cells (URFC) represent an attractive option to obtain hydrogen and generate energy using a compact device. Nevertheless, the fusion of a fuel cell (PEMFC) and a water electrolyzer continue to be a challenge because of the wide range of conditions to which this type of device is subject. Because of its kinetic characteristics, oxygen reduction reaction (ORR) in PEMFC and oxygen evolution reaction (OER) in PEMWE are the limiting stages of the URFC depending on the mode of operation. The primary focus of research related to URFC is the obtainment of bifunctional electrocatalysts that satisfactorily perform in both oxygen reactions and support the different working conditions found in a fuel cell and an electrolyzer. The present work contributes to the research on bifunctional electrocatalysts and shows some preliminary results from the electrochemical study of different Pt gcc, IrO{sub 2} and RuO{sub 2} mixtures supported in Ebonex® as oxygen electrodes. The electrochemical characterization with cyclic voltamperometry (CV), linear voltamperometry (LV) and electrochemical impedance spectroscopy (EIS) in H{sub 2}SO{sub 4} 0.5 M, in the absence and present of oxygen shows that Ebonex®-supported bifunctional electrodes IrO{sub 2}-Pt and RuO{sub 2}-Pt present reasonable electrocatalytic properties for oxygen evolution and reduction reactions and present the possibility of their use in an URFC. The Ir- based oxide electrodes show greater stability than ruthenium-oxide electrodes. [Spanish] Las celdas de combustible regenerativas unificadas (URFC) representan una atractiva opcion para la obtencion de hidrogeno y generacion de energia en un dispositivo compacto. Sin embargo, la fusion de una celda de combustible (PEMFC) y un electrolizador de agua (PEMWE) sigue siendo un reto por la amplia gama de condiciones a que se sujeta un dispositivo de este tipo. Por sus caracteristicas cineticas, la reaccion de reduccion de oxigeno (ORR) en la PEMFC y la

  5. Nanopatterned conductive polymer films as a Pt, TCO-free counter electrode for low-cost dye-sensitized solar cells.

    Science.gov (United States)

    Kwon, Jeong; Ganapathy, Veerappan; Kim, Young Hun; Song, Kyung-Deok; Park, Hong-Gyu; Jun, Yongseok; Yoo, Pil J; Park, Jong Hyeok

    2013-09-07

    A low-cost nanopatterned highly conductive poly(3,4-ethylenedioxythiophene) (PEDOT) thin film was fabricated on a flexible plastic substrate via a chemical polymerization method combined with a nanoimprinting technique and used as a platinum (Pt), TCO-free counter electrode for dye-sensitized solar cells (DSSCs). The catalytic properties of the nanopatterned PEDOT as the counter electrode in DSSCs were studied using cyclic voltammetry, J-V measurements, impedance spectroscopy, and finite-difference time-domain (FDTD) simulations. The nanopatterned PEDOT counter electrodes exhibit better functionality as a counter electrode for tri-iodide reduction when compared to non-patterned PEDOT-based counter electrodes. The Pt and TCO-free DSSCs with a nanopatterned PEDOT-based counter electrode exhibited a power conversion efficiency of 7.1% under one sunlight illumination (100 mW cm(-2)), which is comparable to that of conventional DSSCs with standard platinum Pt/FTO paired counter electrodes. The ability to modulate catalytic functionality with changes in nanoscale morphology represents a promising route for developing new counter electrodes of Pt and TCO-free DSSCs.

  6. The CdS/CdSe/ZnS Photoanode Cosensitized Solar Cells Basedon Pt, CuS, Cu2S, and PbS Counter Electrodes

    Directory of Open Access Journals (Sweden)

    Tung Ha Thanh

    2014-01-01

    Full Text Available Highly ordered mesoporous TiO2 modified by CdS, CdSe, and ZnS quantum dots (QDs was fabricated by successive ionic layer adsorption and reaction (SILAR method. The quantity of material deposition seems to be affected not only by the employed deposition method but also and mainly by the nature of the underlying layer. The CdS, CdSe, and ZnS QDs modification expands the photoresponse range of mesoporous TiO2 from ultraviolet region to visible range, as confirmed by UV-Vis spectrum. Optimized anode electrodes led to solar cells producing high current densities. Pt, CuS, PbS, and Cu2S have been used as electrocatalysts on counter electrodes. The maximum solar conversion efficiency reached in this work was 1.52% and was obtained by using Pt electrocatalyst. CuS, PbS, and Cu2S gave high currents and this was in line with the low charge transfer resistances recorded in their case.

  7. High Work Output Ni-Ti-Pt High Temperature Shape Memory Alloys and Associated Processing Methods

    Science.gov (United States)

    Noebe, Ronald D. (Inventor); Draper, Susan L. (Inventor); Nathal, Michael V. (Inventor); Garg, Anita (Inventor)

    2009-01-01

    According to the invention, compositions of Ni-Ti-Pt high temperature, high force, shape memory alloys are disclosed that have transition temperatures above 100 C.; have narrow hysteresis; and produce a high specific work output.

  8. Detection of Zearalenone Using a Metal-Oxide-Semiconductor Field-Effect-Transistor-Based Biosensor Employing a Pt Reference Electrode

    Science.gov (United States)

    Lim, Byounghyun; Cho, Byunghyun; Shin, Jang-Kyoo; Choi, Ho-Jin; Seo, Sang-Ho; Choi, Sung-Wook; Chun, Hyang Sook

    2009-06-01

    We have fabricated a metal-oxide-semiconductor field-effect-transistor (MOSFET)-based biosensor for the detection of zearalenone using a standard complementary metal-oxide-semiconductor (CMOS) process. Au was used as the gate metal to immobilize a self-assembled monolayer (SAM) made of mercaptohexadecanoic acid (MHDA). The SAM was used to immobilize anti-zearalenone antibody. The carboxyl group of the SAM was bound to the anti-zearalenone antibody. Anti-zearalenone antibody and zearalenone were bound by an antigen-antibody reaction. The measurements were performed in phosphate buffered saline (PBS; pH 7.4) solution. A Pt electrode was employed as a reference electrode. The gate voltage of the sensor was applied using the Pt reference electrode. The binding of the SAM, anti-zearalenone antibody, and zearalenone caused a variation in the drain current of the MOSFET-based biosensor. To verify the interaction among the SAM, anti-zearalenone antibody, and zearalenone, surface plasmon resonance (SPR) measurements were performed.

  9. Preparation and Electrocatalytic Activities of Pt-TiO2 Nanotubes Electrode%Pt-TiO2纳米管电极的制备及电催化性能

    Institute of Scientific and Technical Information of China (English)

    雷斌; 薛建军; 秦亮

    2007-01-01

    The Pt-TiO2 nanotubes electrode consisting of Pt nanoparticles dispersed over a nanotubular TiO2 was prepared using the method of electrochemical anodic oxidation followed by cathodic reduction. SEM results show that the nanotubular TiO2 layer consists of average individual tubes of 100 nm diameter, 470 nm length and 20 nm wall thickness. This nanotubular TiO2 support provides a high surface area and the Pt-TiO2 nanotubes electrode owns plenty of active points and well electrocatalytic property based on the exposed platinum particles with very small diameters. It obviously enhances the electrocatalytic activity for methanol oxidation compared to those of pure Pt and Pt-TiO2 electrode (immobilized on a compact TiO2 support with the same Pt loading), and the oxidation current densities on Pt-TiO2 nanotubes electrode are over 20 times than that on pure platinum electrode.%采用电化学阳极氧化-阴极还原法制备Pt-TiO2纳米管电极.扫描电镜(SEM)结果显示TiO2纳米管平均管径100nm,管长470nm,管壁厚20nm,且其比表面积大,同时纳米Pt微粒分散在TiO2纳米管上,且粒径细小,Pt微粒充分裸露,使得Pt-TiO2纳米管电极活性点多,电催化性能高.对甲醇的电催化性能测试表明:同纯Pt电极和Pt-TiO2电极(Pt微粒固定在TiO2致密膜上)相比,Pt-TiO2纳米管电极对甲醇具有更高的电催化活性,其氧化峰电流密度是在纯Pt片电极上的20倍以上.

  10. Organic dipole layers for ultralow work function electrodes.

    Science.gov (United States)

    Ford, William E; Gao, Deqing; Knorr, Nikolaus; Wirtz, Rene; Scholz, Frank; Karipidou, Zoi; Ogasawara, Kodo; Rosselli, Silvia; Rodin, Vadim; Nelles, Gabriele; von Wrochem, Florian

    2014-09-23

    The alignment of the electrode Fermi level with the valence or conduction bands of organic semiconductors is a key parameter controlling the efficiency of organic light-emitting diodes, solar cells, and printed circuits. Here, we introduce a class of organic molecules that form highly robust dipole layers, capable of shifting the work function of noble metals (Au and Ag) down to 3.1 eV, that is, ∼1 eV lower than previously reported self-assembled monolayers. The physics behind the considerable interface dipole is elucidated by means of photoemission spectroscopy and density functional theory calculations, and a polymer diode exclusively based on the surface modification of a single electrode in a symmetric, two-terminal Au/poly(3-hexylthiophene)/Au junction is presented. The diode exhibits the remarkable rectification ratio of ∼2·10(3), showing high reproducibility, durability (>3 years), and excellent electrical stability. With this evidence, noble metal electrodes with work function values comparable to that of standard cathode materials used in optoelectronic applications are demonstrated.

  11. Carbon monoxide oxidation on Pt single crystal electrodes: understanding the catalysis for low temperature fuel cells.

    Science.gov (United States)

    García, Gonzalo; Koper, Marc T M

    2011-08-01

    Herein the general concepts of fuel cells are discussed, with special attention to low temperature fuel cells working in alkaline media. Alkaline low temperature fuel cells could well be one of the energy sources in the next future. This technology has the potential to provide power to portable devices, transportation and stationary sectors. With the aim to solve the principal catalytic problems at the anode of low temperature fuel cells, a fundamental study of the mechanism and kinetics of carbon monoxide as well as water dissociation on stepped platinum surfaces in alkaline medium is discussed and compared with those in acidic media. Furthermore, cations involved as promoters for catalytic surface reactions are also considered. Therefore, the aim of the present work is not only to provide the new fundamental advances in the electrocatalysis field, but also to understand the reactions occurring at fuel cell catalysts, which may help to improve the fabrication of novel electrodes in order to enhance the performance and to decrease the cost of low temperature fuel cells.

  12. A highly order-structured membrane electrode assembly with vertically aligned carbon nanotubes for ultra-low Pt loading PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Zhi Qun; Lim, San Hua; Poh, Chee Kok; Lin, Jianyi [Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Tang, Zhe; Chua, Daniel [Department of Materials Science and Engineering, National University of Singapore, Singapore 117542 (Singapore); Xia, Zetao [Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602 (Singapore); Luo, Zhiqiang; Shen, Zexiang [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore (Singapore); Shen, Pei Kang [State Key Laboratory of Optoelectronic Materials and Technologies, and Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, School of Physics and Engineering, Sun Yat-sen University, Guangzhou, 510275 (China); Feng, Yuan Ping [Department of Physics, National University of Singapore, Singapore 117542 (Singapore)

    2011-11-15

    A simple method was developed to prepare ultra-low Pt loading membrane electrode assembly (MEA) using vertically aligned carbon nanotubes (VACNTs) as highly ordered catalyst support for PEM fuel cells application. In the method, VACNTs were directly grown on the cheap household aluminum foil by plasma enhanced chemical vapor deposition (PECVD), using Fe/Co bimetallic catalyst. By depositing a Pt thin layer on VACNTs/Al and subsequent hot pressing, Pt/VACNTs can be 100% transferred from Al foil onto polymer electrolyte membrane for the fabrication of MEA. The whole transfer process does not need any chemical removal and destroy membrane. The PEM fuel cell with the MEA fabricated using this method showed an excellent performance with ultra-low Pt loading down to 35 {mu}g cm{sup -2} which was comparable to that of the commercial Pt catalyst on carbon powder with 400 {mu}g cm{sup -2}. To the best of our knowledge, for the first time, we identified that it is possible to substantially reduce the Pt loading one order by application of order-structured electrode based on VACNTs as Pt catalysts support, compared with the traditional random electrode at a comparable performance through experimental and mathematical methods. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. 染料敏化太阳能电池Pt/NiP/ITO对电极的制备和性能%Preparation and Performance of Pt/NiP/ITO Counter Electrode for DSSC

    Institute of Scientific and Technical Information of China (English)

    马换梅; 田建华; 廖文明; 单忠强

    2012-01-01

    NiP alloy film was firstly prepared on the surface of the ITO conductive glass substrate by an electroless plating method,and then,the nanoparticles of platinum were electrodeposited on the NiP–plated layer to obtain Pt/NiP/ITO counter electrode used in DSSC.The parameters of Pt electro-deposition on NiP alloy layer were optimized.The influences of NiP alloy structure and Pt loading on the surface morphology and catalytic activity of Pt/NiP/ITO electrode were investigated.The surface morphology of Pt/NiP/ITO electrode was analyzed by atomic force microscopy.The electrochemical performance of Pt/NiP/ITO electrode was characterized by cyclic voltammetry and electrochemical impedance spectroscopy.The photovoltaic performance was evaluated from photocurrent-voltage curves in a single DSSC.The result shows that the NiP alloy deposited on ITO substrate enhances the conductivity and light reflection performance of the counter electrode,and also improves the distribution of Pt particles on the surface of electrode,resulting in that Jscand η of the DSSC are increased by 4% and 11%,respectively.%在ITO导电玻璃表面化学镀NiP合金薄膜,然后电化学沉积Pt纳米粒子,形成染料敏化太阳能电池Pt/NiP/ITO对电极。优化了化学镀NiP合金的工艺条件;研究了NiP的结构和铂载量对Pt/NiP/ITO电极形貌和催化活性的影响。采用原子力显微镜分析Pt/NiP/ITO电极的表面形貌;采用循环伏安法、电化学交流阻抗法表征其电化学性能;采用单体DSSC的光电流–电压曲线表征其光伏性能。测试结果表明,在ITO基体上化学镀NiP合金,提高了电极的导电性和光反射能力,改善了电极表面Pt粒子的分布,使电池的短路电流密度和光电转化效率分别提高了4%和11%。

  14. 1D-2D carbon heterostructure with low Pt loading as a superior cathode electrode for dye-sensitized solar cell

    Science.gov (United States)

    Nechiyil, Divya; Ramaprabhu, S.

    2017-02-01

    Cost-effective counter electrode (CE) with high electrocatalytic performance is very much essential for the wide application of dye-sensitized solar cells (DSSC). The 1D-2D carbon heterostructure (Pt/GR@CNT) with low platinum (Pt) loading has been synthesized by a facile in situ microwave-assisted polyol-reduction method. The excellent electrocatalytic activity as well as photovoltaic performance was achieved due to the combination of 2D graphene nanoribbons (GR) and 1D multi-walled carbon nanotubes (CNT) with high catalytically active Pt nanoparticles. Microwave-assisted longitudinal unzipping of few outer layers of CNTs along with co-reduction of Pt nanoparticles is an effective method to create electrochemically active defective edge sites, which have a crucial role in enhancing electrochemical performance. Synergistic effect of ultra-fine Pt nanoparticles, partially unzipped graphene nanoribbons and inner core tubes of CNTs modulates the power conversion efficiency of solar cell to 5.57% ± 0.03 as compared with 4.73% ± 0.13 of CNTs. Pt/GR@CNT CE even with low Pt loading of 14 μg cm-2 showcases equivalent performance with that of pure Pt counter electrode.

  15. Crystal structure and electrochemical behaviors of Pt/mischmetal film electrodes

    Institute of Scientific and Technical Information of China (English)

    张文魁; 杨晓光; 马淳安; 王云刚; 余厉阳

    2003-01-01

    The Ml(La-rich mischmetal) films with a thin Pt layer on the substrate of chemically coarsen ITO glassor silicon slices were prepared by magnetic sputtering technique. The crystal structure and surface morphology ofthe films were investigated by X-ray diffraction(XRD) analysis and atomic force microscopy(AFM), respectively.The electrochemical hydridation/dehydridation behaviors of the films in KOH solution were studied by using cyclicvoltammagraph and electrochemical impedance spectrum(EIS) as well. The AFM results show that the Pt cover lay-er on the M1 films is of island structure with a grain of 150 - 200 nm in size. The presence of a thin Pt layer can pro-vide sufficient high electrocatalytic activity for the electrochemical charge-transfer reaction. The electrochemical re-duction and oxidation reaction occur on the Pt layer, and the diffusion of H into the Ml film is the rate-controlledstep. The Pt coatings also act as protective layers, preventing oxidation and/or poisoning of the underlying Ml filmsin air.

  16. A novel enzymatic glucose sensor based on Pt nanoparticles-decorated hollow carbon spheres-modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Luhana, Charles; Bo Xiangjie; Ju Jian; Guo Liping, E-mail: guolp078@nenu.edu.cn [Northeast Normal University, Faculty of Chemistry (China)

    2012-10-15

    A new glucose biosensor was developed based on hollow carbon spheres decorated with platinum nanoparticles (Pt/HCSs)-modified glassy carbon electrode immobilized with glucose oxidase (GOx) with the help of Nafion. The Pt nanoparticles were well dispersed on the HCSs with an average size of 2.29 nm. The detection of glucose was achieved via electrochemical detection of the enzymatically liberated H{sub 2}O{sub 2} at +0.5 V versus Ag/AgCl at physiologic pH of 7.4. The Pt/HCSs-modified electrode exhibited excellent electrocatalytic activities toward both the oxidation and reduction of H{sub 2}O{sub 2}. The glucose biosensor showed good electrocatalytic performance in terms of high sensitivity (4.1 {mu}A mM{sup -1}), low detection limit (1.8 {mu}M), fast response time <3 s, and wide linear range (0.04-8.62 mM). The apparent Michaelis-Menten constant (K{sub m}) and the maximum current density (i{sub max}) values for the biosensor were 10.94 mM and 887 {mu}A cm{sup -2} respectively. Furthermore, this biosensor showed an acceptable reproducibility and high stability. The interfering signals from ascorbic acid and uric acid at concentration levels normally found in human blood were not much compared with the response to glucose. Blood serum samples were also tested with this biosensor and a good recovery was achieved for the two spiked serum samples.

  17. Effects of different additives on bimetallic Au-Pt nanoparticles electrodeposited onto indium tin oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ballarin, Barbara, E-mail: ballarin@ms.fci.unibo.i [Dipartimento di Chimica Fisica ed Inorganica, Universita di Bologna, V.le Risorgimento, 4, 40136-Bologna (Italy)] [INSTM, UdR Bologna (Italy); Gazzano, Massimo [ISOF-CNR, V. Selmi, 40126-Bologna (Italy); Tonelli, Domenica [Dipartimento di Chimica Fisica ed Inorganica, Universita di Bologna, V.le Risorgimento, 4, 40136-Bologna (Italy)] [INSTM, UdR Bologna (Italy)

    2010-09-01

    Bimetallic Au-Pt nanoparticles (Au-Pt{sub NPs}) have been synthesized using an electrochemical reduction approach. The effects of the addition of different additives in the electrodeposition bath namely KI, 1-nonanesulfonic acid sodium salt and Triton X-100 have been investigated. The structural characterization of the bimetallic nanoparticles has been carried out using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), UV-vis spectroscopy, X-ray diffraction (XRD) and cyclic voltammetry (CV). The Au-Pt{sub NPs} prepared in the presence of KI and Triton X-100 characterized by a relatively narrow size distribution as well as a higher particle density and surface coverage whereas no changes in the morphology were observed. These results suggest a dependence of the size and distribution of the bimetallic nanoparticles from the type and concentration of the additives employed.

  18. Electrocatalytic Activity of Pt/C Electrodes for Ethanol Oxidation in Vapor Phase

    Institute of Scientific and Technical Information of China (English)

    LIANG Hong; YE Dai-qi; LIN Wei-ming

    2005-01-01

    High performance platinized-carbon electrodes have been developed for the electrocatalytic oxidation of ethanol to acetaldehyde in electrogenerative processes. A load current density of the electrode can be achieved as high as 600 mA per square centimeter for oxygen reducing in 3 mol/L sulfuric acid with a good stability. With these electrodes and sulfuric acid as an electrolyte in fuel cells, ethanol vapor carried by nitrogen gas can be oxidized selectively to acetaldehyde. Selectivity of acetaldehyde depends on the potential of the cell and the feed rate of ethanol vapor and it can be more than 80% under optimized conditions. The initial product of ethanol oxidized on a platinized-carbon electrode is acetaldehyde and the ethanol oxidation mechanism is discussed.

  19. Electrochemical preparation of Au-PtNPs/SWNT modified electrode and its application%Au-PtNPs/SWNT复合材料修饰电极的电化学制备及其应用

    Institute of Scientific and Technical Information of China (English)

    李春兰; 朱效华; 朱旭; 徐茂田

    2013-01-01

    The Au-PtNPs/SWNT modified electrode was prepared by an electrochemical method at room temperature. The surface morphology of the modified electrode was measured by AFM and the results indicate that there are dispersions and high loadings of Au-Pt nanoparticles on SWNT. Under the optimal modification conditions(Electrodeposition of SWNT for 30 s,soaking in H2PtO6 for 10 minutes,multi-step deposition of gold nanoparticles for 45 cycles(glucose) or 30 cycles( methanol) ) ,glucose and methanol can be electrocatalytically oxidized on the surface of Au-PtNPs/SWNT modified electrode in alkaline environment Thus,the Au-Pt-NPs/SWNT/GCE is expected to be applied as a nonenzymatic glucose sensor or in the filed of methanol fuel cells.%在室温条件下,利用恒电位吸附法和多电位阶跃法制备了金-铂纳米粒子(Au-PtNPs)/单壁碳纳米管(SWNT)复合材料修饰电极,并利用电化学方法和原子力显微镜(AFM)对其进行了表征.结果表明:Au-Pt-NPs可很好的结合在SWNT表面,在该电极的最佳修饰条件下(SWNT分散液中电沉积30 s,H2PtO6中浸泡10min,循环阶跃沉积金纳米粒子45次(葡萄糖)或30次(甲醇))可以较好的电催化氧化碱性环境中的葡萄糖及甲醇,有望在葡萄糖无酶传感器及甲醇燃料电池中得到应用.

  20. 基于Pt电极的TiO2紫外探测器研究%Research on TiO2 Ultraviolet Photodetectors with Pt Electrodes

    Institute of Scientific and Technical Information of China (English)

    解天骄; 郭文滨; 阮圣平; 张海峰; 沈亮; 李福民; 刘彩霞

    2012-01-01

    To solve the problems of insensitive response and low degree photoresponse in wide bandgap semiconductor UV(ultraviolet) photodetectors,Pt electrodes with high work function was introduced to TiO2 ultraviolet detectors. TiO2 ultraviolet detectors with Pt electrodes have been fabricated and studied. Nano TiO2 thin films were prepared by sol-gel method,and Pt film was deposited by radio frequency magnetron sputtering directly on the semiconductor films. At 5 V bias,the dark current of the detectors was 4. 5 nA,and the photocurrent was 5. 7 μA under irradiation of 260 nm UV light. High photoresponse of 447 A/W was found under irradiation of 260 nm UV light,which is much higher than those of photodetectors with other electrodes (about 200 A/W). At last,the peripheral circuit was designed and the final UV photodetector was fabricated. Experiments show that the detector successfully solve the problems of traditional wide-bandgap semiconductor ultraviolet detector.%针对宽禁带半导体紫外探测器响应不够灵敏和响应度偏低等问题,将具有高功函数的Pt电极引入TiO2紫外探测器,采用溶胶凝胶法制备了纳米TiO2薄膜.以金属Pt为电极,采用磁控溅射的方法,将Pt电极溅射在TiO2纳米薄膜上,制作了MSM (Metal-Semiconductor-Metal)型紫外探测器件.在5V偏压下,探测器的暗电流为4.5 nA,260 nm波长光照下的光电流为5.7 μA.在260 nm的紫外光照射下,探测器的响应度达到最大值,约为447 A/W,与其他紫外探测器(200 A/W左右)的响应度均值相比有了很大的提升.最后,设计外围电路,制作出功能完整的紫外强度测试仪.实验表明,该探测器成功地解决了传统宽禁带半导体紫外探测器灵敏度及响应度偏低等问题.

  1. Zirconia-based mixed potential sensor with Pt electrode prepared by spin-coating of polymeric precursor

    Science.gov (United States)

    Chrzan, A.; Woźniak, Ł.; Szymczewska, D.; Jasiński, P.

    2016-11-01

    Many types of yttria-stabilized zirconia (YSZ) based gas sensors have been explored extensively in recent years. Great attention have been directed to mixed-potential-type gas sensors. It is due to growing concerns with environmental issues. Not without a significance is the fact of very attractive performance of this type of sensor allowing to detect low concentration of pollutant gases. In this paper two types of YSZ based mixed-potential planar sensors were investigated, with platinum electrode painted using commercial paste and with spin coated platinum layer. Both types had second electrode in the form of porous gold. Measurements were performed at 400 °C in synthetic air and different concentrations of SO2. Gas flow was set to 100 cm3min-1 and the concentration of 50 ppm SO2 was tested. During this measurements the sensor was sintered in-situ at increasing temperatures. Sensor with 100 nm spin-coated platinum layer sintered at 700 °C was shown to exhibit two times smaller response than sensor with 5 μm porous electrode, while consisting of over 20 times smaller amount of Pt. The influence of sintering temperature on electrical conductivity of platinum films was also examined. Moreover, the platinum microstructure was investigated using SEM microscopy.

  2. Glucose biosensor based on functionalized ZnO nanowire/graphite films dispersed on a Pt electrode

    Science.gov (United States)

    Gallay, P.; Tosi, E.; Madrid, R.; Tirado, M.; Comedi, D.

    2016-10-01

    We present a glucose biosensor based on ZnO nanowire self-sustained films grown on compacted graphite flakes by the vapor transport method. Nanowire/graphite films were fragmented in water, filtered to form a colloidal suspension, subsequently functionalized with glucose oxidase and finally transferred to a metal electrode (Pt). The obtained devices were evaluated using scanning electron microscopy, energy-dispersive x-ray spectroscopy, cyclic voltammetry and chronoamperometry. The electrochemical responses of the devices were determined in buffer solutions with successive glucose aggregates using a tripolar electrode system. The nanostructured biosensors showed excellent analytical performance, with linear response to glucose concentrations, high sensitivity of up to ≈17 μA cm-2 mM-1 in the 0.03-1.52 mM glucose concentration range, relatively low Michaelis-Menten constant, excellent reproducibility and a fast response. The detection limits are more than an order of magnitude lower than those achievable in commercial biosensors for glucose control, which is promising for the development of glucose monitoring methods that do not require blood extraction from potentially diabetic patients. The strong detection enhancements provided by the functionalized nanostructures are much larger than the electrode surface-area increase and are discussed in terms of the physical and chemical mechanisms involved in the detection and transduction processes.

  3. Graphene nanoribbon/FePt bimetallic nanoparticles/uric acid as a novel magnetic sensing layer of screen printed electrode for sensitive determination of ampyra.

    Science.gov (United States)

    Hashemi, Pegah; Bagheri, Hasan; Afkhami, Abbas; Amidi, Salimeh; Madrakian, Tayyebeh

    2018-01-01

    A novel electrochemical sensor for sensitive determination of ampyra (Am) based on graphene nanoribbons modified by iron-platinum bimetallic nanoparticles and uric acid (SPCE/FePtGNR/UA) dropped on the screen-printed carbon electrode (SPCE) surface and magnetically captured onto an SPCE working electrode surface is reported in the present work. The modified nanocomposite and sensing layer was characterized by different techniques, including cyclic voltammetry (CV), linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray powdered diffraction (XRD). Am determination by conventional electrochemical methods is not possible, because of its high redox overpotential. Therefore, the differential pulse voltammetry (DPV) signals of UA were used as a redox probe for indirect electrochemical determination of Am. The limit of detection (LOD) and linear concentration range were obtained as 0.028 and 0.08-9.0µmolL(-1) (3Sb/m = 3), respectively. The feasibility of the proposed method was examined by the detection of Am in biological and pharmaceutical samples with satisfactory results. The constructed electrochemical sensor was applied for fast, simple and sensitive detection of Am in real environments. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Low-cost Cr doped Pt3Ni alloy supported on carbon nanofibers composites counter electrode for efficient dye-sensitized solar cells

    Science.gov (United States)

    Xiao, Junying; Cui, Midou; Wang, Mingkun; Sui, Huidong; Yang, Kun; Li, Ling; Zhang, Wenming; Li, Xiaowei; Fu, Guangsheng; Hagfeldt, Anders; Zhang, Yucang

    2016-10-01

    Pt3Ni alloy supported by carbon nanofibers (CNs) composites (Pt3Ni/CNs) synthesized by a simple solvothermal process was introduced into dye-sensitized solar cells (DSCs) as counter electrode (CE) for the first time, and the DSCs based on Pt3Ni/CNs CE obtained a power conversion efficiency (PCE) of 8.34%. To enhance the catalytic activity of Pt3Ni/CNs composites, transition metal chrome (Cr) was doped in Pt3Ni/CNs to synthesize the composites of Cr-Pt3Ni/CNs using the same method. Due to the high electrocatalytic activity and rapid charge transfer ability, the PCE of the DSCs employing Cr-Pt3Ni/CNs as CE increased to 8.76%, which was much higher than that of Pt CE (7.04%) measured in the same condition. The impressive results along with low cost and simple synthesis process demonstrated transition metal doping was a promising method to produce substitutes for Pt to reduce the cost and increase the PCE of DSCs.

  5. 不饱和有机酸在Pt-Rh合金电极上的吸附动力学%ADSORPTION KINETICS OF SOME UNSATURATED ALIPHATIC ACIDS ON Pt-Rh ALLOY ELECTRODES

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    On Pt-Rh alloy electrodes, the effect of some operational parameters on the adsorption process of several unsaturated aliphatic acids was respectively examined by fast cathodically potentiodynamic polarization. As the experimental results shown, the adsorption rates of acrylic acid , crotonic acid, and maleic acid, obey Rogynski-Zilidowicz equation always in the middle coverage .Comparatively, the maximal values are determined on the pure Pt-electrode, and as the electrode binary composition is varied successively from the pure Pt to Rh , the adsorption rates for these acids are generally decreased, even by 20~30 times. Among the three unsaturated aliphatic acids, acrylic acid is most advantageously adsorbed on the electrode surfaces. The adsorption activity order is acrylic acid >crotonic acid>maleic acid.%采用快速动电位扫描方法,系统地研究了吸附时间、溶液浓度、温度、吸附电位等因素对在不同组成的Pt-Rh电极上不饱和有机酸吸附过程的影响. 研究结果表明,在中等表面覆盖率下,所研究的不饱和有机酸在Pt-Rh合金电极上吸附速率都遵循Rogynski-Zilidowicz方程,Pt电极上吸附速率最大,从Pt电极向Rh电极过渡中,吸附速率下降20~30倍. 温度升高吸附速率加快. 丙烯酸在Pt-Rh电极表面的吸附速率比其他不饱和有机酸高,并按丙烯酸>丁烯酸>顺丁烯二酸顺序递减.

  6. Conductimetric Biosensor for the Detection of Uric Acid by Immobilization Uricase on Nata de Coco Membrane—Pt Electrode

    Science.gov (United States)

    Mulyasuryani, Ani; Srihardiastutie, Arie

    2011-01-01

    A conductimetric enzyme biosensor for uric acid detection has been developed. The uricase, as enzyme, is isolated from Candida utilis and immobilized on a nata de coco membrane-Pt electrode. The biosensor demonstrates a linear response to urate over the concentration range 1–6 ppm and has good selectivity properties. The response is affected by the membrane thickness and pH change in the range 7.5–9.5. The response time is three minutes in aqueous solutions and in human serum samples. Application of the biosensor to the determination of uric acid in human serum gave results that compared favourably with those obtained by medical laboratory. The operational stability of the biosensor was not less than three days and the relative error is smaller than 10%. PMID:21792276

  7. Benchmarking Pt-based electrocatalysts for low temperature fuel cell reactions with the rotating disk electrode

    DEFF Research Database (Denmark)

    Pedersen, Christoffer Mølleskov; Escribano, Maria Escudero; Velazquez-Palenzuela, Amado Andres

    2015-01-01

    We present up-to-date benchmarking methods for testing electrocatalysts for polymer exchange membrane fuel cells (PEMFC), using the rotating disk electrode (RDE) method. We focus on the oxygen reduction reaction (ORR) and the hydrogen oxidation reaction (HOR) in the presence of CO. We have chosen...

  8. Work function determination of promising electrode materials for thermionic converters

    Science.gov (United States)

    Jacobson, D.

    1977-01-01

    Work performed on this contract was primarily for the evaluation of selected electrode materials for thermionic energy converters. The original objective was to characterize selected nickel based superalloys up to temperatures of 1400 K. It was found that an early selection, Inconel 800 produced a high vapor pressure which interfered with the vacuum emission measurements. The program then shifted to two other areas. The first area was to obtain emission from the superalloys in a cesiated atmosphere. The cesium plasma helps to suppress the vaporization interference. The second area involved characterization of the Lanthanum-Boron series as thermionic emitters. These final two areas resulted in three journal publications which are attached to this report.

  9. Low-Temperature Thermally Reduced Molybdenum Disulfide as a Pt-Free Counter Electrode for Dye-Sensitized Solar Cells

    Science.gov (United States)

    Lin, Che-Hsien; Tsai, Chuen-Horng; Tseng, Fan-Gang; Yu, Yang-Yen; Wu, Hsuan-Chung; Hsieh, Chien-Kuo

    2015-11-01

    A two-dimensional nanostructure of molybdenum disulfide (MoS2) thin film exposed layered nanosheet was prepared by a low-temperature thermally reduced (TR) method on a fluorine-doped tin oxide (FTO) glass substrate as a platinum (Pt)-free and highly electrocatalytic counter electrode (CE) for dye-sensitized solar cells (DSSCs). Thermogravimetric analysis (TGA) results show that the MoS2 sulfidization temperature was approximately 300 °C. X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD) indicate that the stoichiometry and crystallization of MoS2 were more complete at higher temperatures; however, these temperatures reduce the number of edge-plane active sites in the short-range-order nanostructure. Accordingly, the DSSCs with 300 °C annealed TR-MoS2 CE exhibited an excellent photovoltaic conversion efficiency (PCE) of 6.351 %, up to 91.7 % of which is obtained using the conventional TD-Pt CE (PCE = 6.929 %). The temperature of thermal reaction and the molar ratio of reaction precursors were found to significantly influence the resulting stoichiometry and crystallization of MoS2 nanosheets, thus affecting DSSCs' performance.

  10. Electrocatalytic oxidation behavior of NADH at Pt/Fe{sub 3}O{sub 4}/reduced-graphene oxide nanohybrids modified glassy carbon electrode and its determination

    Energy Technology Data Exchange (ETDEWEB)

    Roushani, Mahmoud, E-mail: mahmoudroushani@yahoo.com [Department of Chemistry, Faculty of Sciences, Ilam University, Ilam, 69315516 (Iran, Islamic Republic of); Hoseini, S. Jafar [Department of Chemistry, Faculty of Sciences, Yasouj University, Yasouj, 7591874831 (Iran, Islamic Republic of); Azadpour, Mitra [Department of Chemistry, Faculty of Sciences, Ilam University, Ilam, 69315516 (Iran, Islamic Republic of); Heidari, Vahid; Bahrami, Mehrangiz; Maddahfar, Mahnaz [Department of Chemistry, Faculty of Sciences, Yasouj University, Yasouj, 7591874831 (Iran, Islamic Republic of)

    2016-10-01

    We have developed Pt/Fe{sub 3}O{sub 4}/reduced-graphene oxide nanohybrids modified glassy carbon (Pt/Fe{sub 3}O{sub 4}/RGO/GC) electrode as a novel system for the preparation of electrochemical sensing platform. Characterization of as-made composite was determined using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM) and energy-dispersive analysis of X-ray (EDAX) where the Pt, Fe, Si, O and C elements were observed. The Pt/Fe{sub 3}O{sub 4}/RGO/GC electrode was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Due to the synergistic effect between Pt, Fe{sub 3}O{sub 4} and RGO, the nanohybrid exhibited excellent performance toward dihydronicotinamide adenine dinucleotide (NADH) oxidation in 0.1 M phosphate buffer solution, pH 7.0, with a low detection limit of 5 nM. - Highlights: • Preparation of a novel electrochemical sensing platform system • Excellent performance of Pt/Fe{sub 3}O{sub 4}/reduced-graphene oxide nanohybrids • Dihydronicotinamide adenine dinucleotide oxidation with a low detection limit of 5 nM.

  11. Simultaneous Detection of Dopamine and Uric Acid under Coexistence of Ascorbic Acid with DNA/Pt Nanocluster Modified Electrode

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yu; LIN Xiang-Qin

    2008-01-01

    A novel biosensor by electrochemically codeposited Pt nanoclusters and DNA film was constructed and applied to detection of dopamine(DA)and uric acid(UA)in the presence of high concentration ascorbic acid(AA).Scanning electron microscopy and X-ray photoelectron spectroscopy were used for characterization.This electrode was successfully used to resolve the overlapping voltammetric response of DA,UA and AA into three well-defined peaks with a large anodic peak difference(△Epa)of about 184 mV for DA and 324 mV for UA.The catalytic peak current obtained from differential pulse voltammetry was linearly dependent on the DA concentration from 1.1×10-7 to 3.8×10-5 mol·L-1 with a detection limit of 3.6 X 10-8 mol·L-1(S/N=3)and on the UA concentration from 3.0X 10-7 to 5.7X 10-5 mol·L-1 with a detection limit of 1.0×10-7 mol·L-1 with coexistence of 1.0X 10-3 mol·L-1 AA.The modified electrode shows good sensitivity and selectivity.

  12. Fabrication of sensitive enzymatic biosensor based on multi-layered reduced graphene oxide added PtAu nanoparticles-modified hybrid electrode

    Science.gov (United States)

    Hossain, Md Faruk; Park, Jae Y.

    2017-01-01

    A highly sensitive amperometric glucose sensor was developed by immobilization of glucose oxidase (GOx) onto multi-layer reduced graphene oxide (MRGO) sheets decorated with platinum and gold flower-like nanoparticles (PtAuNPs) modified Au substrate electrode. The fabricated MRGO/PtAuNPs modified hybrid electrode demonstrated high electrocatalytic activities toward oxidation of H2O2, to which it had a wide linear response that ranged from 0.5 to 8 mM (R2 = 0.997), and high sensitivity of 506.25 μA/mMcm2. Furthermore, glucose oxidase-chitosan composite and cationic polydiallyldimethylammonium chloride (PDDA) were assembled by a casting method on the surface of MRGO/PtAuNPs modified electrode. This as-fabricated hybrid biosensor electrode exhibited high electrocatalytic activity for the detection of glucose in PBS. It demonstrated good analytical properties in terms of a low detection limit of 1 μM (signal-to-noise ratio of 3), short response time (3 s), high sensitivity (17.85 μA/mMcm2), and a wide linear range (0.01–8 mM) for glucose sensing. These results reveal that the newly developed sensing electrode offers great promise for new type enzymatic biosensor applications. PMID:28333943

  13. Properties of RF-Sputtered PZT Thin Films with Ti/Pt Electrodes

    Directory of Open Access Journals (Sweden)

    Cui Yan

    2014-01-01

    Full Text Available Effect of annealing temperature and thin film thickness on properties of Pb(Zr0.53Ti0.47O3 (PZT thin film deposited via radiofrequency magnetron sputtering technique onto Pt/Ti/SiO2/Si substrate was investigated. Average grain sizes of the PZT thin film were measured by atomic force microscope; their preferred orientation was studied through X-ray diffraction analysis. Average residual stress in the thin film was estimated according to the optimized Stoney formula, and impedance spectroscopy characterization was performed via an intelligent LCR measuring instrument. Average grain sizes of PZT thin films were 60 nm~90 nm and their average roughness was less than 2 nm. According to X-ray diffraction analysis, 600°C is the optimal annealing temperature to obtain the PZT thin film with better crystallization. Average residual stress showed that thermal mismatch was the decisive factor of residual stress in Pt/Ti/SiO2/Si substrate; the residual stress in PZT thin film decreased as their thickness increased and increased with annealing temperature. The dielectric constant and loss angle tangent were extremely increased with the thickness of PZT thin films. The capacitance of the device can be adjusted according to the thickness of PZT thin films.

  14. Electrochemical treatment of olive oil mill wastewater using a Ti/Ta/Pt/Ir electrode

    Energy Technology Data Exchange (ETDEWEB)

    Giannes, A.; Diamadopoulos, E. [Lab. of Environmental Engineering and Management, Technical Univ. of Crete, Chania (Greece); Ninolakis, M. [Ferecarpos SA, Agia Paraskevi, Athens (Greece)

    2003-07-01

    Olive oil mill wastewater, an ecotoxic liquid associated with the production of olive oil, was treated by an electrochemical method using Ti/Ta/Pt/Ir as anode and Stainless Steel 316L as cathode. A number of experiments were run in a batch, laboratory-scale pilot-plant. The experimental plant consisted of the electrolytic cell, the recirculation reactor with cooling system and the wastewater feed system. The efficiency of the electrolytic cell was studied in relation to sodium chloride concentration, voltage and time of electrochemical treatment. Optimal conditions were at a sodium chloride concentration 3% (w/v) and 16V. At these conditions COD removal reached 70.8% after 8 h of electrolysis. Color, odor and turbidity were completely removed after short periods of treatment. However, bio-essays with Daphnia Magna and Artemia Salina indicated that the ecotoxicity of the treated wastewater remained unchanged, possibly due to the formation of chlorinated by-products. (orig.)

  15. Ultrasonic-electrodeposition of PtPd alloy nanoparticles on ionic liquid-functionalized graphene paper: towards a flexible and versatile nanohybrid electrode

    Science.gov (United States)

    Sun, Yimin; Zheng, Huaming; Wang, Chenxu; Yang, Mengmeng; Zhou, Aijun; Duan, Hongwei

    2016-01-01

    Here we fabricate a new type of flexible and versatile nanohybrid paper electrode by ultrasonic-electrodeposition of PtPd alloy nanoparticles on freestanding ionic liquid (IL)-functionalized graphene paper, and explore its multifunctional applications in electrochemical catalysis and sensing systems. The graphene-based paper materials demonstrate intrinsic flexibility, exceptional mechanical strength and high electrical conductivity, and therefore can serve as an ideal freestanding flexible electrode for electrochemical devices. Furthermore, the functionalization of graphene with IL (i.e., 1-butyl-3-methylimidazolium tetrafluoroborate) not only increases the electroactive surface area of a graphene-based nanohybrid paper electrode, but also improves the adhesion and dispersion of metal nanoparticles on the paper surface. These unique attributes, combined with the merits of an ultrasonic-electrodeposition method, lead to the formation of PtPd alloy nanoparticles on IL-graphene paper with high loading, uniform distribution, controlled morphology and favourable size. Consequently, the resultant nanohybrid paper electrode exhibits remarkable catalytic activity as well as excellent cycle stability and improved anti-poisoning ability towards electrooxidation of fuel molecules such as methanol and ethanol. Furthermore, for nonenzymatic electrochemical sensing of some specific biomarkers such as glucose and reactive oxygen species, the nanohybrid paper electrode shows high selectivity, sensitivity and biocompatibility in these bio-catalytic processes, and can be used for real-time tracking hydrogen peroxide secretion by living human cells. All these features demonstrate its promising application as a versatile nanohybrid electrode material in flexible and lightweight electrochemical energy conversion and biosensing systems such as bendable on-chip power sources, wearable/implantable detectors and in vivo micro-biosensors.Here we fabricate a new type of flexible and

  16. Modeling of PEM fuel cell Pt/C catalyst degradation

    Science.gov (United States)

    Bi, Wu; Fuller, Thomas F.

    Pt/C catalyst degradation remains as one of the primary limitations for practical applications of proton exchange membrane (PEM) fuel cells. Pt catalyst degradation mechanisms with the typically observed Pt nanoparticle growth behaviors have not been completely understood and predicted. In this work, a physics-based Pt/C catalyst degradation model is proposed with a simplified bi-modal particle size distribution. The following catalyst degradation processes were considered: (1) dissolution of Pt and subsequent electrochemical deposition on Pt nanoparticles in cathode; (2) diffusion of Pt ions in the membrane electrode assembly (MEA); and (3) Pt ion chemical reduction in membrane by hydrogen permeating through the membrane from the negative electrode. Catalyst coarsening with Pt nanoparticle growth was clearly demonstrated by Pt mass exchange between small and large particles through Pt dissolution and Pt ion deposition. However, the model is not adequate to predict well the catalyst degradation rates including Pt nanoparticle growth, catalyst surface area loss and cathode Pt mass loss. Additional catalyst degradation processes such as new Pt cluster formation on carbon support and neighboring Pt clusters coarsening was proposed for further simulative investigation.

  17. Comparative investigation of unipolar resistance switching effect of Pt/Mg{sub 0.6}Zn{sub 0.4}O/Pt devices with different electrode patterns for nonvolatile memory application

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xinman [South China Normal University, Institute of Optoelectronic Materials and Technology, Guangzhou (China); Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Guangzhou (China); Wu, Guangheng; Hu, Wei; Zhou, Hong; Bao, Dinghua [Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Guangzhou (China)

    2012-08-15

    Electrically induced unipolar resistance switching effects of Mg{sub 0.6}Zn{sub 0.4}O thin films with two top Pt electrodes (MZO-T) and top and bottom Pt electrodes (MZO-B) were demonstrated and compared for nonvolatile memory applications. The obtained resistance ratios of high-resistance states (HRS) to low-resistance states (LRS) for MZO-B and MZO-T devices were above seven and four orders of magnitude, respectively, and exhibited a slight degradation with voltage. For both the devices, the conduction mechanisms were dominated by ohmic conduction in LRS and trap-controlled space charge limited current in HRS. Furthermore, a filamentary model was applied to explain the switching behaviors for both the devices considering the asymmetric interface defects and film thickness. The results also suggest that resistance switching behaviors can be regulated by interface defect engineering. (orig.)

  18. Sensors for Highly Toxic Gases: Methylamine and Hydrogen Chloride Detection at Low Concentrations in an Ionic Liquid on Pt Screen Printed Electrodes

    Science.gov (United States)

    Murugappan, Krishnan; Silvester, Debbie S.

    2015-01-01

    Commercially available Pt screen printed electrodes (SPEs) have been employed as possible electrode materials for methylamine (MA) and hydrogen chloride (HCl) gas detection. The room temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][NTf2]) was used as a solvent and the electrochemical behaviour of both gases was first examined using cyclic voltammetry. The reaction mechanism appears to be the same on Pt SPEs as on Pt microelectrodes. Furthermore, the analytical utility was studied to understand the behaviour of these highly toxic gases at low concentrations on SPEs, with calibration graphs obtained from 10 to 80 ppm. Three different electrochemical techniques were employed: linear sweep voltammetry (LSV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV), with no significant differences in the limits of detection (LODs) between the techniques (LODs were between 1.4 to 3.6 ppm for all three techniques for both gases). The LODs achieved on Pt SPEs were lower than the current Occupational Safety and Health Administration Permissible Exposure Limit (OSHA PEL) limits of the two gases (5 ppm for HCl and 10 ppm for MA), suggesting that Pt SPEs can successfully be combined with RTILs to be used as cheap alternatives for amperometric gas sensing in applications where these toxic gases may be released. PMID:26506358

  19. Sensors for Highly Toxic Gases: Methylamine and Hydrogen Chloride Detection at Low Concentrations in an Ionic Liquid on Pt Screen Printed Electrodes

    Directory of Open Access Journals (Sweden)

    Krishnan Murugappan

    2015-10-01

    Full Text Available Commercially available Pt screen printed electrodes (SPEs have been employed as possible electrode materials for methylamine (MA and hydrogen chloride (HCl gas detection. The room temperature ionic liquid (RTIL 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonylimide ([C2mim][NTf2] was used as a solvent and the electrochemical behaviour of both gases was first examined using cyclic voltammetry. The reaction mechanism appears to be the same on Pt SPEs as on Pt microelectrodes. Furthermore, the analytical utility was studied to understand the behaviour of these highly toxic gases at low concentrations on SPEs, with calibration graphs obtained from 10 to 80 ppm. Three different electrochemical techniques were employed: linear sweep voltammetry (LSV, differential pulse voltammetry (DPV and square wave voltammetry (SWV, with no significant differences in the limits of detection (LODs between the techniques (LODs were between 1.4 to 3.6 ppm for all three techniques for both gases. The LODs achieved on Pt SPEs were lower than the current Occupational Safety and Health Administration Permissible Exposure Limit (OSHA PEL limits of the two gases (5 ppm for HCl and 10 ppm for MA, suggesting that Pt SPEs can successfully be combined with RTILs to be used as cheap alternatives for amperometric gas sensing in applications where these toxic gases may be released.

  20. Atmospheric-Pressure Plasma Jet Processed Pt-Decorated Reduced Graphene Oxides for Counter-Electrodes of Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Ting-Hao Wan

    2016-10-01

    Full Text Available Ultrafast atmospheric-pressure plasma jet (APPJ processed Pt-decorated reduced graphene oxides (rGOs were used as counter-electrodes in dye-sensitized solar cells (DSSCs. Pastes containing rGO, ethyl cellulose, terpineol, and chloroplatinic acid were screen-printed and sintered by nitrogen dc-pulse APPJs. Pt nanodots were uniformly distributed on the rGO flakes. When using Pt-decorated rGOs as the counter electrodes of DSSCs, the efficiency of the DSSC first increased and then decreased as the APPJ processing time increased. Nitrogen APPJs can effectively remove organic binders and can reduce chloroplatinic acid to Pt, thereby improving the efficiency of DSSCs. However, over-calcination by APPJ can damage the graphenes and degrade the DSSCs. The addition of Pt mainly improves the fill factor, which thereby increases the efficiency of DSSCs. The optimized APPJ processing time was merely 9 s owing to the vigorous interaction among the rGOs, chloroplatinic acid and nitrogen APPJs.

  1. Study of pressing effects and variation in Pt charge in the anode on the performance of membrane electrode assemblies; Estudio de los efectos de prensado y variacion de la carga de Pt en el anodo en el rendimiento de ensambles membrana-electrodo

    Energy Technology Data Exchange (ETDEWEB)

    Albarran S, Irma Lorena; Flores Hernandez, J. Roberto; Cano Castillo, Ulises [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico). E-mail: ilas@iie.org.mx; Loyola, Felix (UNAM, Facultad de Quimica, Mexico D.F. (Mexico)

    2009-09-15

    Fabricating membrane electrode assemblies (MEA) involves different variables that determine their performance, such as: amount of the catalyst, concentration of the different solvents used in the fabrication of the catalyst dye, use of a thermomechanical process to increase the degree of adhesion between the catalyst layers and the membrane, etc. This work studied the effect of the Pt charge in the anode on performance, as well as the effect of the thermomechanical process on the fabrication of MEAs. It is evident that the optimal Pt charge should be that which provides good performance during an acceptable useful lifetime at a competitive cost. This work presents the results obtained by varying the Pt charge in the anode between 1.0 and 0.4 mgPt/cm{sup ²} while maintaining a constant charge of 1 mgPt/cm{sup ²} in the cathode. It also shows the comparison between the polarization curves and the active areas obtained in the MEAs with and without pressing during their fabrication. [Spanish] En la fabricacion de los Ensambles Membrana-Electrodo (MEA's) intervienen diferentes variables que determinan su desempeno, como lo son: cantidad de catalizador, concentracion de los diferentes solventes que se emplean en la fabricacion de la tinta catalitica, el uso de un proceso termomecanico para incrementar el grado de adherencia entre las capas cataliticas y la membrana, etc. De las variables anteriormente mencionadas, en este trabajo se estudio el efecto de la carga anodica de Pt en el desempeno, asi como del proceso termomecanico en la fabricacion de MEA's. Es evidente que la carga optima de Pt debe ser aquella que proporcione un buen rendimiento por un periodo de vida util aceptable a un costo competitivo. En este trabajo se presentan los resultados obtenidos al variar la carga de Pt en el anodo entre 1.0 a 0.4 mgPt/cm{sup ²} manteniendo una carga constante de 1 mgPt/cm{sup ²} en el catodo. Tambien se muestra la comparacion de las curvas de polarizacion y las

  2. HUBUNGAN ANTARA PSYCHOLOGICAL CAPITAL DENGAN WORK ENGAGEMENT PADA KARYAWAN PT. BANK MEGA REGIONAL AREA SEMARANG

    Directory of Open Access Journals (Sweden)

    Dwi Ari Setyo Nugroho

    2015-07-01

    Full Text Available This study aimed to assess the relationship between psychological capital with work engagement employees of PT. Bank Mega Regional Area Semarang. Psychological capital is an individual’s positive psychological state of development and is characterized by self- efficacy, optimism, hope and resiliency. Then, work engagement is defined as a positive, fulfilling, work-related state of mind that is characterized by vigor, dedication, and absorption. This study used proportional sampling technique. The subjects were all employees of PT. Bank Mega Regional Area Semarang which have staff levels (N=73. The research instrument was psychological capital scales with 28 items (α = 0.953 and work engagement scales with 29 items (α = 0.938. The results by simple regression analysis obtained rxy = 0.716, with p value = 0.000 (p <0.05. The results indicated that there was a positive correlation between psychological capital and work engagement. The higher psychological capital was higher work engagement. Coefficient of determination by 51,3, it meaning that psychological capital effectively contributed for 51,3 % of work engagement. The remaining 48,7 % determined by other factors that are not revealed in this study, for example: job resources and job demands. Keywords: Psychological capital, work engagement, employee

  3. The removal of Microcystis ichthyoblabe cells and its hepatotoxin microcystin-LR during electrooxidation process using Pt/Ti electrodes.

    Science.gov (United States)

    Jeon, Bong-Seok; Han, Jisun; Kim, Seog-Ku; Oh, Hye-Cheol; Park, Ho-Dong

    2015-01-01

    Electrooxidation is widely used to remove harmful organic and inorganic substances as well as pathogenic microorganisms. This study investigates the removal of Microcystis ichthyoblabe cells and their hepatotoxin microcystin-LR by the electrooxidation process using Pt/Ti electrodes. Additionally, the morphology changes and cell sizes were determined by scanning electron microscopy and a particle size analyzer, respectively. The algal cells were severely damaged by the electrooxidation process. During the initial treatment, intracellular microcystin-LR was released from the cells, increasing the extracellular microcystin-LR concentration. The electrooxidation charge required to remove cells and MC-LR was 3 × 10(4) C and 6 × 10(4) C, respectively. The removal efficiencies of M. ichthyoblabe cells and microcystin-LR were insensitive to initial cell density, initial microcystin-LR concentration and solution conductivity, but were heavily reduced at large algal suspension volume. Therefore, to achieve simultaneous removal of Microcystis cells and their MC, it is necessary to control the volume of algal suspension.

  4. Electrochemical properties of lithium air batteries with Pt100-xRux (0 ≤ x ≤ 100) electrocatalysts for air electrodes

    Science.gov (United States)

    Yui, Yuhki; Sakamoto, Shuhei; Nohara, Masaya; Hayashi, Masahiko; Nakamura, Jiro; Komatsu, Takeshi

    2017-02-01

    Electrochemical properties of lithium air secondary battery cells with Pt100-xRux (0 ≤ x ≤ 100) electrocatalysts, prepared by the formic acid reduction method and loaded into air electrodes were examined in 1 mol/l LiTFSA/TEGDME electrolyte solution. Among the cells, the one with the Pt10Ru90 (x = 90)/carbon sample showed the largest discharge capacity of 1014 mAh/g and the lowest average charge voltage of 3.74 V. In addition, the x = 90 sample showed comparatively good cycle stability with discharge capacity of over 800 mAh/g at the 8th cycle. As a result, x = 90 was confirmed to be the optimized composition as the electrocatalyst for the air electrode.

  5. Anomalous effect due to oxygen vacancy accumulation below the electrode in bipolar resistance switching Pt/Nb:SrTiO3 cells

    Directory of Open Access Journals (Sweden)

    Shinbuhm Lee

    2014-06-01

    Full Text Available In conventional semiconductor theory, greater doping decreases the electronic resistance of a semiconductor. For the bipolar resistance switching (BRS phenomena in oxides, the same doping principle has been used commonly to explain the relationship between the density variation of oxygen vacancies (Vo¨ and the electronic resistance. We find that the Vo¨ density can change at a depth of ∼10 nm below the Pt electrodes in Pt/Nb:SrTiO3 cells, depending on the resistance state. Using electron energy loss spectroscopy and secondary ion mass spectrometry, we found that greater Vo¨ density underneath the electrode resulted in higher resistance, contrary to the conventional doping principle of semiconductors. To explain this seemingly anomalous experimental behavior, we provide quantitative explanations on the anomalous BRS behavior by simulating the mobile Vo¨ [J. S. Lee et al., Appl. Phys. Lett. 102, 253503 (2013] near the Schottky barrier interface.

  6. Electrooxidation Mechanism of Methanol at Pt-Ru Catalyst Modified GC Electrode in Electrolytes with Different pH Using Electrochemical and SERS Techniques

    Institute of Scientific and Technical Information of China (English)

    DING Yue Min; LIU Yao-Long; RAO Gui-Shi; WANG Guo-Fu; ZHONG Qi-Ling; REN Bin; TIAN Zhong-Qun

    2007-01-01

    The electrochemical and in-situ surface-enhanced Raman spectroscopy (SERS) techniques were used to investigate the electrooxidation behavior of methanol in acidic, neutral and alkaline media at a Pt-Ru nanoparticle modified glassy carbon (Pt-Ru/GC) electrode. The results showed that methanol could be dissociated spontaneously at the Pt-Ru/GC electrode to produce a strongly adsorbed intermediate, CO. It was found that CO could be oxidized more easily in the alkaline medium than in the acidic and neutral media. The peak potential of methanol oxidation was shifted from 0.663 and 0.708 V in the acidic and neutral media to -0.030 V in the alkaline medium, which is due to that the adsorption strength of CO on the Pt surface in the alkaline medium is weaker than that in the acidic and neutral media. The final product of the methanol oxidation is CO2. However, in the alkaline medium, CO2 produced would form CO32- and HCO3- resulting in the decrease in the alkaline concentration and then in the decrease in the performance of DMFC. Therefore, the performance of the alkaline DMFC is not Stable.

  7. Insight into the Role of Surface Wettability in Electrocatalytic Hydrogen Evolution Reactions Using Light-Sensitive Nanotubular TiO2 Supported Pt Electrodes.

    Science.gov (United States)

    Meng, Chenhui; Wang, Bing; Gao, Ziyue; Liu, Zhaoyue; Zhang, Qianqian; Zhai, Jin

    2017-02-06

    Surface wettability is of importance for electrochemical reactions. Herein, its role in electrochemical hydrogen evolution reactions is investigated using light-sensitive nanotubular TiO2 supported Pt as hydrogen evolution electrodes (HEEs). The HEEs are fabricated by photocatalytic deposition of Pt particles on TiO2 nanotubes followed by hydrophobization with vaporized octadecyltrimethoxysilane (OTS) molecules. The surface wettability of HEEs is subsequently regulated in situ from hydrophobicity to hydrophilicity by photocatalytic decomposition of OTS molecules using ultraviolet light. It is found that hydrophilic HEEs demonstrate a larger electrochemical active area of Pt and a lower adhesion force to a gas bubble when compared with hydrophobic ones. The former allows more protons to react on the electrode surface at small overpotential so that a larger current is produced. The latter leads to a quick release of hydrogen gas bubbles from the electrode surface at large overpotential, which ensures the contact between catalysts and electrolyte. These two characteristics make hydrophilic HEEs generate a much high current density for HERs. Our results imply that the optimization of surface wettability is of significance for improving the electrocatalytic activity of HEEs.

  8. Insight into the Role of Surface Wettability in Electrocatalytic Hydrogen Evolution Reactions Using Light-Sensitive Nanotubular TiO2 Supported Pt Electrodes

    Science.gov (United States)

    Meng, Chenhui; Wang, Bing; Gao, Ziyue; Liu, Zhaoyue; Zhang, Qianqian; Zhai, Jin

    2017-01-01

    Surface wettability is of importance for electrochemical reactions. Herein, its role in electrochemical hydrogen evolution reactions is investigated using light-sensitive nanotubular TiO2 supported Pt as hydrogen evolution electrodes (HEEs). The HEEs are fabricated by photocatalytic deposition of Pt particles on TiO2 nanotubes followed by hydrophobization with vaporized octadecyltrimethoxysilane (OTS) molecules. The surface wettability of HEEs is subsequently regulated in situ from hydrophobicity to hydrophilicity by photocatalytic decomposition of OTS molecules using ultraviolet light. It is found that hydrophilic HEEs demonstrate a larger electrochemical active area of Pt and a lower adhesion force to a gas bubble when compared with hydrophobic ones. The former allows more protons to react on the electrode surface at small overpotential so that a larger current is produced. The latter leads to a quick release of hydrogen gas bubbles from the electrode surface at large overpotential, which ensures the contact between catalysts and electrolyte. These two characteristics make hydrophilic HEEs generate a much high current density for HERs. Our results imply that the optimization of surface wettability is of significance for improving the electrocatalytic activity of HEEs. PMID:28165487

  9. Improvement Performance of Dye-sensitized Solar Cells with Pt/Ti Counter Electrode Prepared by Electrodeposition-displacement%电沉积-置换法制备Pt/Ti对电极及其对染料敏化太阳能电池性能的提升

    Institute of Scientific and Technical Information of China (English)

    王耀琼; 冉秀芝; 高焕方; 李莉; 魏子栋

    2014-01-01

    A Pt/Ti counter electrode of dye-sensitized solar cell( DSSC) was prepared by displacing electro-deposited Cu on a Ti sheet in H2 PtCl6 solution. Morphological characterization of the Pt/Ti electrode shows that the dispersion and size of Pt particles on Ti substrate is significantly improved in contrast to that of the Pt/FTO electrode prepared by pyrolysing Pt salt on a fluorine-doped oxide( FTO) glass substrate. The photo-current density-voltage( J-V) curves show that the overall energy conversion efficiency of DSSC with the Pt/Ti counter electrode increases by 20. 8% relative to that with the Pt/FTO counter electrode. The results also re-veal that the improved performance of the DSSC with the Pt/Ti counter electrode is assigned to the higher elec-trochemical surface area of the Pt/Ti counter electrode than the Pt/FTO, the lower electric resistance and the better reflecting ability of the Ti substrate than the FTO substrate.%采用电沉积-置换法在Ti片上制备了染料敏化太阳能电池( DSSC)的对电极Pt/Ti.形貌表征结果显示,与传统热解法制备的Pt/FTO对电极相比, Pt/Ti对电极Ti基底上Pt催化颗粒的粒径和分散性得到显著改善.光电流-光电压特性曲线测试结果表明,以Pt/Ti为对电极的DSSC与以Pt/FTO为对电极的DSSC相比,光电转化效率提高了20.8%.由于Pt颗粒分散性和粒径的改善所引起的Pt催化性能的提高、Pt/Ti对电极更低的电阻以及Ti基底更好的反光性能是提升DSSC性能的原因.

  10. Three-Dimensional Array of TiN@Pt3Cu Nanowires as an Efficient Porous Electrode for the Lithium-Oxygen Battery.

    Science.gov (United States)

    Luo, Wen-Bin; Pham, Thien Viet; Guo, Hai-Peng; Liu, Hua-Kun; Dou, Shi-Xue

    2017-02-28

    The nonaqueous lithium-oxygen battery is a promising candidate as a next-generation energy storage system because of its potentially high energy density (up to 2-3 kW kg(-1)), exceeding that of any other existing energy storage system for storing sustainable and clean energy to reduce greenhouse gas emissions and the consumption of nonrenewable fossil fuels. To achieve high round-trip efficiency and satisfactory cycling stability, the air electrode structure and the electrocatalysts play important roles. Here, a 3D array composed of one-dimensional TiN@Pt3Cu nanowires was synthesized and employed as a whole porous air electrode in a lithium-oxygen battery. The TiN nanowire was primarily used as an air electrode frame and catalyst support to provide a high electronic conductivity network because of the high-orientation one-dimensional crystalline structure. Meanwhile, deposited icosahedral Pt3Cu nanocrystals exhibit highly efficient catalytic activity owing to the abundant {111} active lattice facets and multiple twin boundaries. This porous air electrode comprises a one-dimensional TiN@Pt3Cu nanowire array that demonstrates excellent energy conversion efficiency and rate performance in full discharge and charge modes. The discharge capacity is up to 4600 mAh g(-1) along with an 84% conversion efficiency at a current density of 0.2 mA cm(-2), and when the current density increased to 0.8 mA cm(-2), the discharge capacity is still greater than 3500 mAh g(-1) together with a nearly 70% efficiency. This designed array is a promising bifunctional porous air electrode for lithium-oxygen batteries, forming a continuous conductive and high catalytic activity network to facilitate rapid gas and electrolyte diffusion and catalytic reaction throughout the whole energy conversion process.

  11. Pedoman Tata Kelola Teknologi Informasi Menggunakan It Governance Design Frame Work (Cobit Pada PT. X

    Directory of Open Access Journals (Sweden)

    I Ketut Adi Purnawan

    2015-12-01

    Full Text Available Implementation of  Information Technology (IT in an organization require significant costs with high risk  of  failure [3]. Managing data is  a matter that must be done continuously by the organization and accompanied by monitoring and measurement of achievement that has been done as to meet the aspect of integrity, availablility. In this study using COBIT as a frame work in preparing the guidelines for information technology governance at PT.  X  on  DS11,  which  focuses  on  management of  data  about  the  level  of  concern  for management (management awareness and  maturity level (maturity level.  The study and analysis indicates that the level of concern for management (management awareness PT. X already on a fairly level and maturity level for the current maturity level (as is at level 3 (defined process and to the expected level of maturity located at level 5 (optimized. From the overall study results showed that PT. X has recognized that the data is an important organizational asset.

  12. Low-cost solution processed nano millet like structure CoS2 film superior to pt as counter electrode for quantum dot sensitized solar cells

    Science.gov (United States)

    Rao, S. Srinivasa; Punnosse, Dinah; Kim, Soo-Kyoung; Kim, Hee-Je

    2015-05-01

    Cobalt Sulfide (CoS2) counter electrodes (CE) with uniform size distribution were obtained on fluorine-doped tin oxide (FTO) substrate as counter electrodes for polysulfide redox electrolyte in CdS/CdSe/ ZnS quantum dot-sensitized solar cells (QDSSCs) by chemical bath deposition (CBD) technique. In this study, we optimized the cobalt source, deposition temperature and time in the preparation of CoS2 thin film to achieve greater conversion efficiency with strong adhesion on FTO. Relative to the platinum (Pt) electrodes, the CoS2 electrode shows a higher catalytic activity, faster electron transport and lower chargetransfer resistance, which can play a role in rendering higher power conversion efficiency. As a result, QDSSCs with the optimized CoS2 CE achieved a higher short-circuit current density of 13.08 mA cm-2, open-circuit voltage of 0.47 V, fill factor of 0.34 and overall photovoltaic conversion efficiency of 2.17% obtained under one sun illumination (100 mW cm-2). Therefore, CoS2 CE can be used as a promising CE in QDSSCs with efficiency exceeding that of high-cost Pt-based cells (1.64%). [Figure not available: see fulltext.

  13. Pt skin coated hollow Ag-Pt bimetallic nanoparticles with high catalytic activity for oxygen reduction reaction

    Science.gov (United States)

    Fu, Tao; Huang, Jianxing; Lai, Shaobo; Zhang, Size; Fang, Jun; Zhao, Jinbao

    2017-10-01

    The catalytic activity and stability of electrocatalyst is critical for the commercialization of fuel cells, and recent reports reveal the great potential of the hollow structures with Pt skin coat for developing high-powered electrocatalysts due to their highly efficient utilization of the Pt atoms. Here, we provide a novel strategy to prepare the Pt skin coated hollow Ag-Pt structure (Ag-Pt@Pt) of ∼8 nm size at room temperature. As loaded on the graphene, the Ag-Pt@Pt exhibits a remarkable mass activity of 0.864 A/mgPt (at 0.9 V, vs. reversible hydrogen electrode (RHE)) towards oxygen reduction reaction (ORR), which is 5.30 times of the commercial Pt/C catalyst, and the Ag-Pt@Pt also shows a better stability during the ORR catalytic process. The mechanism of this significant enhancement can be attributed to the higher Pt utilization and the unique Pt on Ag-Pt surface structure, which is confirmed by the density functional theory (DFT) calculations and other characterization methods. In conclusion, this original work offers a low-cost and environment-friendly method to prepare a high active electrocatalyst with cheaper price, and this work also discloses the correlation between surface structures and ORR catalytic activity for the hollow structures with Pt skin coat, which can be instructive for designing novel advanced electrocatalysts for fuel cells.

  14. Fabrication of electrodes with ultralow platinum loading by RF plasma processing of self-assembled arrays of Au@Pt nanoparticles

    Science.gov (United States)

    Banerjee, Ipshita; Kumaran, V.; Santhanam, Venugopal

    2016-07-01

    Conductive, carbon-free, electrocatalytically active, nanostructured electrodes with ultra-low platinum loading were fabricated using self-assembly of octadecanethiol-coated Au@Pt nanoparticles followed by RF plasma treatment. Bilayer arrays of Au@Pt nanoparticles with platinum loadings of 0.50, 1.04, 1.44, and 1.75 μg cm-2 (corresponding to 0.5, 1, 1.5 and 2 atomic layer coverage of platinum on nominally 5 nm gold core) were subjected to RF argon plasma treatment for various durations and their electrical conductivity, morphological evolution, and electrocatalytic activity characterized. Samples with monolayer and above platinum coverages exhibit maximum electrochemically active surface areas values of ˜100 m2/gpt and specific activities that are ˜4× to 6× of a reference platinum nanoparticle bilayer array. The underlying gold core influences the structural evolution of the samples upon RF plasma treatment and leads to the formation of highly active Pt(110) facets on the surface at an optimal plasma treatment duration, which also corresponds to the onset of a sharp decline in lateral sheet resistance. The sample having a two atom thick platinum coating has the highest total mass activity of 48 ± 3 m2/g(pt+au), corresponding to 44% Pt atom utilization, while also exhibiting enhanced CO tolerance as well as high methanol oxidation reaction and oxygen reduction reaction activity.

  15. Work function mediated by deposition of ultrathin polar FeO on Pt(111)

    Science.gov (United States)

    Lu, Shuangzan; Qin, Zhihui; Guo, Qinmin; Cao, Gengyu

    2017-01-01

    Significant work function changes from bare Pt(111) surface to 1 monolayer and 2 monolayers of ultrathin iron oxide (FeO) films on it are investigated by means of scanning tunneling microscopy/spectroscopy (STM/STS). With FeO layer-by-layer growth, a continuous reduction of the work function along with the surface vacuum level (VL) shifting is observed. We found that the compression of the electron spill-out at the metal-oxide interface and the substantial reconstruction of 2 ML FeO film, respectively, make major contributions to the first and the second reductions of the work function. The rectifying effect in FeO films is also observed, which is attributed to the downward shift of band alignment imposed by the total change in surface dipole. Our work shows that the polar oxide films play an important role to adjust surface electronic structures for enhancing device functionality.

  16. Bridge-bonded formate: active intermediate or spectator species in formic acid oxidation on a Pt film electrode?

    Science.gov (United States)

    Chen, Y-X; Heinen, M; Jusys, Z; Behm, R J

    2006-12-01

    We present and discuss the results of an in situ IR study on the mechanism and kinetics of formic acid oxidation on a Pt film/Si electrode, performed in an attenuated total reflection (ATR) flow cell configuration under controlled mass transport conditions, which specifically aimed at elucidating the role of the adsorbed bridge-bonded formates in this reaction. Potentiodynamic measurements show a complex interplay between formation and desorption/oxidation of COad and formate species and the total Faradaic current. The notably faster increase of the Faradaic current compared to the coverage of bridge-bonded formate in transient measurements at constant potential, but with different formic acid concentrations, reveals that adsorbed formate decomposition is not rate-limiting in the dominant reaction pathway. If being reactive intermediate at all, the contribution of formate adsorption/decomposition to the reaction current decreases with increasing formic acid concentration, accounting for at most 15% for 0.2 M DCOOH at 0.7 VRHE. The rapid build-up/removal of the formate adlayer and its similarity with acetate or (bi-)sulfate adsorption/desorption indicate that the formate adlayer coverage is dominated by a fast dynamic adsorption-desorption equilibrium with the electrolyte, and that formate desorption is much faster than its decomposition. The results corroborate the proposal of a triple pathway reaction mechanism including an indirect pathway, a formate pathway, and a dominant direct pathway, as presented previously (Chen, Y. X.; et al. Angew. Chem. Int. Ed. 2006, 45, 981), in which adsorbed formates act as a site-blocking spectator in the dominant pathway rather than as an active intermediate.

  17. In-situ thermoelectrochemistry working with heated electrodes

    CERN Document Server

    Gründler, Peter

    2015-01-01

    This book represents the first rigorous treatment of thermoelectrochemistry, providing an overview that will stimulate electrochemists to develop and apply modern thermoelectrochemical methods. While classical static approaches are also covered, the emphasis lies on methods that make it possible to independently vary temperature such as in-situ heating of electrodes by means of electric current, microwaves or lasers. For the first time, "hot-wire electrochemistry" is examined in detail. The theoretical background presented addresses all aspects of temperature impacts in the context of electroc

  18. Enhanced Catalytic Activity of Pt Supported on Nitrogen-Doped Reduced Graphene Oxide Electrodes for Fuel Cells.

    Science.gov (United States)

    Sun, Qizhong; Park, Soo-Jin; Kim, Seok

    2015-11-01

    We report an efficient method for the synthesis of nitrogen-doped reduced graphene oxide supported Pt nanocatalysts (Pt/N-RGO). Nitrogen-doped reduced graphene oxide (N-RGO) was prepared by pyrolysis of graphene oxide with cyanamide as a nitrogen source. Then, the Pt nanoparticles were deposited over N-RGO by one-step chemical polyol reduction process. The morphology and structure of as-prepared catalysts were characterized by transmission electron microscopy (TEM), and X-ray diffraction (XRD). Subsequently, electrocatalytic activities of the catalysts were evaluated by cyclic voltammetry (CV). As a result, the Pt/N-RGO catalysts exhibit the superior electrochemical activity toward methanol oxidation in compared with that of Pt loaded on undoped reduced graphene oxide (Pt/RGO) and Pt/carbon blacks (Pt/C). This was mainly attributed to the better distribution of Pt nanoparticles as well as the synergistic electrochemical effects of the nitrogen doped supports. These results demonstrate that N-RGO could be a promising candidate as a high performance catalyst support for a fuel cell application.

  19. Construction of an amperometric glycated hemoglobin biosensor based on Au-Pt bimetallic nanoparticles and poly (indole-5-carboxylic acid) modified Au electrode.

    Science.gov (United States)

    Jain, Utkarsh; Gupta, Shaivya; Chauhan, Nidhi

    2017-07-14

    The glucose level measurement in the diabetic patient plays a vital role in identification of the treatments going on and it also provides the control over the diabetics. A new electrochemical sensing device was constructed for determination of glycated hemoglobin (HbA1c) in whole blood samples. Fructosyl amine oxidase (FAO) was bioconjugated onto hybrid nanocomposite i.e., gold nanoparticles-platinum nanoparticles (AuNPs-PtNPs) and poly indole-5-carboxylic acid (PIN5COOH), deposited electrochemically on gold electrode. Bimetallic nanoparticles not only show their individual properties but also provides the synergistic effect between the two noble metal nanoparticles. AuNPs-PtNPs shown as an amplified sensing interface at lower voltage which makes the sensor more sensitive and specific. The FAO/AuNPs-PtNPs onto PIN5COOH/Au electrode shows a promising future in diagnosis of HbA1c and diabetes management. The novel sensor formed has good accuracy, selectivity, sensitivity, precision and reliability. In addition to these, it showed good storage stability and retained 50% of its initial activity within 12 weeks at 4°C. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Printing graphene-carbon nanotube-ionic liquid gel on graphene paper: Towards flexible electrodes with efficient loading of PtAu alloy nanoparticles for electrochemical sensing of blood glucose.

    Science.gov (United States)

    He, Wenshan; Sun, Yimin; Xi, Jiangbo; Abdurhman, Abduraouf Alamer Mohamed; Ren, Jinghua; Duan, Hongwei

    2016-01-15

    The increasing demands for portable, wearable, and implantable sensing devices have stimulated growing interest in innovative electrode materials. In this work, we have demonstrated that printing a conductive ink formulated by blending three-dimensional (3D) porous graphene-carbon nanotube (CNT) assembly with ionic liquid (IL) on two-dimensional (2D) graphene paper (GP), leads to a freestanding GP supported graphene-CNT-IL nanocomposite (graphene-CNT-IL/GP). The incorporation of highly conductive CNTs into graphene assembly effectively increases its surface area and improves its electrical and mechanical properties. The graphene-CNT-IL/GP, as freestanding and flexible substrates, allows for efficient loading of PtAu alloy nanoparticles by means of ultrasonic-electrochemical deposition. Owing to the synergistic effect of PtAu alloy nanoparticles, 3D porous graphene-CNT scaffold, IL binder and 2D flexible GP substrate, the resultant lightweight nanohybrid paper electrode exhibits excellent sensing performances in nonenzymatic electrochemical detection of glucose in terms of sensitivity, selectivity, reproducibility and mechanical properties.

  1. Resistive Switching Characteristics in TiO2/LaAlO3 Heterostructures Sandwiched in Pt Electrodes

    Directory of Open Access Journals (Sweden)

    Yuyuan Cao

    2015-01-01

    Full Text Available TiO2/LaAlO3 (TiO2/LAO heterostructures have been deposited on Pt/TiO2/SiO2/Si substrates by pulsed laser deposition. Resistive switching characteristics of Pt/TiO2/LAO/Pt have been studied and discussed in comparison with those of Pt/TiO2/Pt. It is observed that the switching uniformity and the ON/OFF resistance ratio can be greatly improved by introducing the LAO layer. The observed resistive switching characteristics are discussed as a function of LAO thickness and explained by the preferential formation and rupture of conductive filaments, composed of oxygen vacancies, in the LAO layer.

  2. Highly (110)- and (111)-oriented BiFeO3 films on BaPbO3 electrode with Ru or Pt /Ru barrier layers

    Science.gov (United States)

    Lee, Chia-Ching; Wu, Jenn-Ming; Hsiung, Chang-Po

    2007-04-01

    Highly (110)- and (111)-oriented BiFeO3 (BFO) films were fabricated with BaPbO3 (BPO )/Ru and BPO /Pt/Ru as electrode/barrier on Si substrates by rf-magnetron sputtering. The BPO /Ru and BPO /Pt/Ru stacks both induce oriented BFO films and act as diffusion barriers. The (110)- and (111)-oriented BFO films possess excellent ferroelectric properties with only minor leakage. The values of remnant polarization are almost the same, about 42μC/cm2, for (110)- and (111)-oriented BFO films. However, polarization measured under varying pulse widths demonstrates that the switching polarization in (111)-oriented BFO films is higher than in (110)-oriented films. Additionally, (111)-oriented BFO films exhibit better retention properties than (110)-oriented films.

  3. In situ STM imaging of bis-3-sodiumsulfopropyl-disulfide molecules adsorbed on copper film electrodeposited on Pt(111) single crystal electrode.

    Science.gov (United States)

    Tu, HsinLing; Yen, PoYu; Chen, Sihzih; Yau, ShuehLin; Dow, Wei-Ping; Lee, Yuh-Lang

    2011-06-07

    The adsorption of bis-3-sodiumsulfopropyldi-sulfide (SPS) on metal electrodes in chloride-containing media has been intensively studied to unveil its accelerating effect on Cu electrodeposition. Molecular resolution scanning tunneling microscopy (STM) imaging technique was used in this study to explore the adsorption and decomposition of SPS molecules concurring with the electrodeposition of copper on an ordered Pt(111) electrode in 0.1 M HClO(4) + 1 mM Cu(ClO(4))(2) + 1 mM KCl. Depending on the potential of Pt(111), SPS molecules could react, adsorb, and decompose at chloride-capped Cu films. A submonolayer of Cu adatoms classified as the underpotential deposition (UPD) layer at 0.4 V (vs Ag/AgCl) was completely displaced by SPS molecules, possibly occurring via RSSR (SPS) + Cl-Cu-Pt → RS(-)-Pt(+) + RS(-) (MPS) + Cu(2+) + Cl(-), where MPS is 3-mercaptopropanesulfonate. By contrast, at 0.2 V, where a full monolayer of Cu was presumed to be deposited, SPS molecules were adsorbed in local (4 × 4) structures at the lower ends of step ledges. Bulk Cu deposition driven by a small overpotential (η deposit at the very beginning (deposit, the chloride adlayer was still adsorbed to afford SPS admolecules arranged in a unique 1D striped phase. SPS molecules could decompose into MPS upon further Cu deposition, as a (2 × 2)-MPS structure was observed with prolonged in situ STM imaging. It was possible to visualize either SPS admolecules in the upper plane or chloride adlayer sitting underneath upon switching the imaging conditions. Overall, this study established a MPS molecular film adsorbed to the chloride adlayer sitting atop the Cu deposit.

  4. PENGARUH WORK-LIFE BALANCE TERHADAP KEPUASAN KERJA KARYAWAN (STUDI PADA PT. BIO FARMA PERSERO

    Directory of Open Access Journals (Sweden)

    I Made Devan Ganapathi

    2016-04-01

    Full Text Available Abstrak - Sumber daya manusia merupakan sumber daya yang berperan penting dalam rangka mencapai tujuan perusahaan. Pengelolaan sumber daya manusia yang baik akan berdampak positif bagi perusahaan yang bersangkutan. Penelitian ini dilakukan untuk mengetahui pengaruh Work-Life Balance terhadap kepuasan kerja karyawan pada PT. Bio Farma (Persero. Work-Life Balance sebagai variabel bebas terdiri dari tiga keseimbangan yaitu keseimbangan waktu, keseimbangan keterlibatan dan keseimbangan kepuasan. Adapun kepuasan kerja sebagai variabel terikat dibagi menjadi empat faktor yaitu faktor psikologis, faktor sosial, faktor fisik dan faktor finansial. Jenis penelitian ini menggunakan metode deskriptif dan kausal. Data yang digunakan dalam penelitian ini adalah data primer yang diperoleh dari wawancara dan kuesioner yang disebarkan kepada 92 responden serta data sekunder berupa dokumen dari perusahaan. Teknik pengumpulan sampel yang digunakan adalah simple random sampling. Metode analisis data yang digunakan adalah regresi linier berganda. Untuk menganalisis data tersebut dibantu menggunakan program SPSS. Hasil dari penelitian ini menunjukkan bahwa Work-Life Balance berpengaruh secara simultan terhadap kepuasan kerja karyawan sebesar 42,2% dan sisanya 57,8% dipengaruhi oleh variabel lain yang tidak diteliti pada penelitian ini. Secara parsial, keseimbangan kepuasan berpengaruh secara signifikan terhadap kepuasan kerja karyawan. Sedangkan keseimbangan waktu dan keseimbangan keterlibatan tidak berpengaruh secara signifikan terhadap kepuasan kerja karyawan. Kata Kunci : work-life balance, kepuasan kerja karyawan, keseimbangan kepuasan. Abstract - Human resource is a resource that plays an important role in order to achieve the company's goals. Good management of the human resource will have a positive impact for the company concerned. This study was conducted to determine the effect of Work-Life Balance on job satisfaction of employees at PT. Bio Farma (Persero

  5. Electrochemically deposited Pd-Pt and Pd-Au codeposits on graphite electrodes for electrocatalytic H2O2 reduction.

    Science.gov (United States)

    Nagaiah, Tharamani Chikka; Schäfer, Dominik; Schuhmann, Wolfgang; Dimcheva, Nina

    2013-08-20

    Improved electrocatalytic activity and selectivity for the reduction of H2O2 were obtained by electrodepositing Pd-Pt and Pd-Au on spectrographic graphite from solutions containing salts of the two metals at varying ratio. The electrocatalytic activity of the resulting binary codeposits for H2O2 reduction was evaluated by means of the redox-competition mode of scanning electrochemical microscopy (SECM) and voltammetric methods. In a potential range from 0 to -600 mV (vs. Ag/AgCl/3 M KCl) at pH 7.0 in 0.1 M phosphate citrate buffer, the electrocatalytic activity of both Pd-Pt and Pd-Au codeposits was substantially improved as compared with the identically deposited single metals suggesting an electrocatalytic synergy of the codeposits. Pd-Pt and Pd-Au codeposits were characterized by X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM). Codepositing with Au caused a change of hedgehog-like shaped Pd nanoparticles into cauliflower-like nanoparticles with the particle size decreasing with increasing Au concentration. Codepositing Pd with Pt caused the formation of oblong structures with the size initially increasing with increasing Pt content. However, the particle size decreases with further increase in Pt concentration. The improved electrocatalytic capability for H2O2 reduction of the Pd-Pt electrodeposits on graphite was further demonstrated by immobilizing glucose oxidase as a basis for the development of an interference-free amperometric glucose biosensor.

  6. NiSe2 as an efficient electrocatalyst for a Pt-free counter electrode of dye-sensitized solar cells.

    Science.gov (United States)

    Gong, Feng; Xu, Xin; Li, Zhuoqun; Zhou, Gang; Wang, Zhong-Sheng

    2013-02-18

    Nickel diselenide (NiSe(2)) has been synthesized and applied as a counter electrode (CE) of dye-sensitized solar cells (DSSCs) for the first time, which displays remarkable catalytic activity in the reduction of I(3)(-). The DSSC with a NiSe(2) CE produces a higher power conversion efficiency (8.69%) than that (8.04%) of the cell with a Pt CE under the same conditions. A new method for comparing the catalytic activity has also been proposed.

  7. A comprehensive study on the effect of Ru addition to Pt electrodes for direct ethanol fuel cell

    Indian Academy of Sciences (India)

    J Datta; S Singh; S Das; N R Bandyopadhyay

    2009-12-01

    The electro-oxidation of ethanol was studied over nanosized Pt and different compositions of PtRu catalysts synthesized by the borohydride reduction method. Physicochemical characterizations of the catalyst material were made by X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with EDX analysis and transmission electron microscopy (TEM). XRD patterns showed that Ru induces a contraction of the Pt lattice. EDX provided the composition of binary catalysts while TEM images indicated uniform distribution of discrete nanoparticle of the catalysts with narrow range. The electro-catalytic activities of the materials towards ethanol oxidation were investigated through electrochemical techniques, viz. cyclic voltammetry (CV), potentiodynamic polarization, chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) at room temperature. The onset potential of ethanol electro-oxidation is lowered on bimetallic PtRu catalysts compared to that on Pt alone. Of the investigated catalyst compositions the one with the highest electrocatalytic activity was found to be Pt82Ru18. This enhancement towards ethanol oxidation is explained on the basis of a structural effect and modified bi-functional mechanism.

  8. Electro-oxidation of carbon monoxide and methanol on bare and Pt-modified Ru(1010) electrodes.

    Science.gov (United States)

    Pinheiro, A L N; Zei, M S; Ertl, G

    2005-03-21

    The activity towards CO and methanol electrooxidation of bare and platinum-modified Ru(1010) surfaces has been investigated. The structure/morphology and composition of the modified surfaces were characterized using electron diffraction techniques (LEED, RHEED) and Auger spectroscopy. The bare Ru(1010) surface exhibits a higher catalytic activity towards CO electrooxidation than the Ru(0001) surface due to the lower oxidation potential of the former surface. The early stages of surface oxidation lead to disordering of the surface and further enhancing of the electrocatalytic activity. Electrodeposition of Pt on Ru(1010) leads to epitaxial growth via a Volmer-Weber growth mode. The Pt clusters grow preferentially with the (311) plane parallel to the substrate surface with (011) rows in the layers in contact with the substrate compressed by about 3% with respect to bulk Pt, in order to match with the (1210) rows of the Ru(1010) surface. This compression leads to enhanced catalytic activity towards CO oxidation for thin Pt deposits whereas for large deposited Pt particles the dominating factor for the catalytic enhancement is the higher concentration of surface defects. On the other hand, in the case of methanol oxidation, the dominant factor in determining the catalytic activity is the concentration of adjacent Pt-Ru sites, although surface defects play an important role in the methanol dehydrogenation steps.

  9. Structure of Pt/C and PtRu/C catalytic layers prepared by plasma sputtering and electric performance in direct methanol fuel cells (DMFC)

    Energy Technology Data Exchange (ETDEWEB)

    Caillard, A.; Brault, P.; Mathias, J. [Groupe de Recherche sur l' Energetique des Milieux Ionises, UMR6606 Universite d' Orleans, CNRS, Polytech' Orleans BP6744, F-45067 Orleans Cedex 2 (France); Coutanceau, C.; Leger, J.-M. [Laboratoire de Catalyse en Chimie Organique, UMR6503 Universite de Poitiers, CNRS, F-86022 Poitiers (France)

    2006-11-08

    Plasma sputtering process was used to deposit Pt and PtRu on conductive carbon diffusion layer. Low metal loading catalysts for methanol electrooxidation were prepared and characterized by TEM and XRD. The main result is that codeposition of Pt and Ru leads to alloy phase, whereas multi-layers deposition leads to no-alloyed structure. The electrochemical performance of sputtered Pt/C electrodes was compared with that of standard electrodes, and was found lower. However, the specific activity was much higher, indicating that the catalyst utilization efficiency was higher than that obtained with a standard electrode. Then, different bimetallic PtRu/C electrodes were prepared by plasma sputtering, leading to different catalyst structures (Pt and Ru multilayer deposition or simultaneous deposition of Pt and Ru) and composition (from 100:0 to 50:50 Pt/Ru atomic ratios). At last, the different PtRu electrodes were compared in term of DMFC electrical performance. The best efficiency of the DMFC was reached when both metals Pt and Ru are simultaneously deposited (alloyed) with a ruthenium atomic ratio of 30% or 40 % Ru depending of the working potentials of the cell. (author)

  10. Origins of nanoscale damage to glass-sealed platinum electrodes with submicrometer and nanometer size.

    Science.gov (United States)

    Nioradze, Nikoloz; Chen, Ran; Kim, Jiyeon; Shen, Mei; Santhosh, Padmanabhan; Amemiya, Shigeru

    2013-07-02

    Glass-sealed Pt electrodes with submicrometer and nanometer size have been successfully developed and applied for nanoscale electrochemical measurements such as scanning electrochemical microscopy (SECM). These small electrodes, however, are difficult to work with because they often lose a current response or give a low SECM feedback in current-distance curves. Here we report that these problems can be due to the nanometer-scale damage that is readily and unknowingly made to the small tips in air by electrostatic discharge or in electrolyte solution by electrochemical etching. The damaged Pt electrodes are recessed and contaminated with removed electrode materials to lower their current responses. The recession and contamination of damaged Pt electrodes are demonstrated by scanning electron microscopy and X-ray energy dispersive spectroscopy. The recessed geometry is noticeable also by SECM but is not obvious from a cyclic voltammogram. Characterization of a damaged Pt electrode with recessed geometry only by cyclic voltammetry may underestimate electrode size from a lower limiting current owing to an invalid assumption of inlaid disk geometry. Significantly, electrostatic damage can be avoided by grounding a Pt electrode and nearby objects, most importantly, an operator as a source of electrostatic charge. Electrochemical damage can be avoided by maintaining potentiostatic control of a Pt electrode without internally disconnecting the electrode from a potentiostat between voltammetric measurements. Damage-free Pt electrodes with submicrometer and nanometer sizes are pivotal for reliable and quantitative nanoelectrochemical measurements.

  11. Effect of temperature on compact layer of Pt electrode in PEMFCs by first-principles molecular dynamics calculations

    Science.gov (United States)

    He, Yang; Chen, Changfeng; Yu, Haobo; Lu, Guiwu

    2017-01-01

    Formation of the double-layer electric field and capacitance of the water-metal interface is of significant interest in physicochemical processes. In this study, we perform first- principles molecular dynamics simulations on the water/Pt(111) interface to investigate the temperature dependence of the compact layer electric field and capacitance based on the calculated charge densities. On the Pt (111) surface, water molecules form ice-like structures that exhibit more disorder along the height direction with increasing temperature. The Osbnd H bonds of more water molecules point toward the Pt surface to form Ptsbnd H covalent bonds with increasing temperature, which weaken the corresponding Osbnd H bonds. In addition, our calculated capacitance at 300 K is 15.2 mF/cm2, which is in good agreement with the experimental results. As the temperature increases from 10 to 450 K, the field strength and capacitance of the compact layer on Pt (111) first increase and then decrease slightly, which is significant for understanding the water/Pt interface from atomic level.

  12. Layer-by-Layer Self-Assembled Graphene Multilayers as Pt-Free Alternative Counter Electrodes in Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Rani, Adila; Chung, Kyungwha; Kwon, Jeong; Kim, Sung June; Jang, Yoon Hee; Jang, Yu Jin; Quan, Li Na; Yoon, Minji; Park, Jong Hyeok; Kim, Dong Ha

    2016-05-11

    Low cost, charged, and large scale graphene multilayers fabricated from nitrogen-doped reduced graphene oxide N-rGO(+), nitrogen and sulfur codoped reduced graphene oxide NS-rGO(+), and undoped reduced graphene oxide rGO(-) were applied as alternative counter electrodes in dye-sensitized solar cells (DSSCs). The neat rGO-based counter electrodes were developed via two types of layer-by-layer (LBL) self-assembly (SA) methods: spin coating and spray coating methods. In the spin coating method, two sets of multilayer films were fabricated on poly(diallyldimethylammonium chloride) (PDDA)-coated fluorine-doped tin oxide (FTO) substrates using GO(-) combined with N-GO(+) followed by annealing and denoted as [rGO(-)/N-rGO(+)]n or with NS-GO(+) and denoted as [rGO(-)/NS-rGO(+)]n for counter electrodes in DSSCs. The DSSCs employing new types of counter electrodes exhibited ∼7.0% and ∼6.2% power conversion efficiency (PCE) based on ten bilayers of [rGO(-)/N-rGO(+)]10 and [rGO(-)/NS-rGO(+)]10, respectively. The DSSCs equipped with a blend of one bilayer of [rGO(-):N-rGO(+)] and [rGO(-):NS-rGO(+)] on PDDA-coated FTO substrates were prepared from a spray coating and showed ∼6.4% and ∼5.6% PCE, respectively. Thus, it was demonstrated that a combination of undoped, nitrogen-doped, and nitrogen and sulfur codoped reduced graphene oxides can be considered as potentially powerful Pt-free electrocatalysts and alternative electrodes in conventional photovoltaic devices.

  13. Flower-like nickel cobalt sulfide microspheres modified with nickel sulfide as Pt-free counter electrode for dye-sensitized solar cells

    Science.gov (United States)

    Huo, Jinghao; Wu, Jihuai; Zheng, Min; Tu, Yongguang; Lan, Zhang

    2016-02-01

    The nickel cobalt sulfide/nickel sulfide (NiCo2S4/NiS) microspheres which exhibit flower-like morphologies are synthesized by a two-step hydrothermal method. Then the NiCo2S4/NiS microspheres are deposited on a fluorine doped SnO2 substrate by spin-casting the isopropyl alcohol solution of as-prepared microspheres. The cyclic voltammetry, electrochemical impedance spectroscopy and Tafel tests are employed to measure the electrochemical performance of NiCo2S4/NiS counter electrode. The NiCo2S4 and NiS all are used to improve the conductivity and electrocatalytic ability of the films, and the NiS can also increase the specific surface area of microspheres. The dye-sensitized solar cells (DSSCs) with the NiCo2S4/NiS counter electrode exhibite a power conversion efficiency of 8.8%, which is higher than that of DSSC with Pt counter electrode (8.1%) under the light intensity of 100 mW cm-2 (AM 1.5 G).

  14. High work function transparent middle electrode for organic tandem solar cells

    NARCIS (Netherlands)

    Moet, D. J. D.; de Bruyn, P.; Blom, P. W. M.

    2010-01-01

    The use of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) in combination with ZnO as middle electrode in solution-processed organic tandem solar cells requires a pH modification of the PEDOT:PSS dispersion. We demonstrate that this neutralization leads to a reduced work function

  15. The dependence of polymer conductivity on the work function of metallic electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Dunaevskii, M.S. [A. F. Ioffe Physico-Technical Institute, 194021 St. Petersburg (Russian Federation); Nikolaeva, M.N. [Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi Pr. 31, 199004 St. Petersburg (Russian Federation); Rentzsch, R. [Institut fuer Experimentalphysik, Freie Universitaet Berlin, 14195 Berlin (Germany); Ionov, A.N.

    2009-12-15

    It is shown that the occurrence of metallic conductivity in polymers is due to their electrification. In particular, the current density depends on the electron work function of metallic electrodes which are in contact with the polymer. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  16. High work function transparent middle electrode for organic tandem solar cells

    NARCIS (Netherlands)

    Moet, D. J. D.; de Bruyn, P.; Blom, P. W. M.

    2010-01-01

    The use of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) in combination with ZnO as middle electrode in solution-processed organic tandem solar cells requires a pH modification of the PEDOT:PSS dispersion. We demonstrate that this neutralization leads to a reduced work function

  17. Electrodeposition of copper on a Pt(111) electrode in sulfuric acid containing poly(ethylene glycol) and chloride ions as probed by in situ STM.

    Science.gov (United States)

    Fu, YunLin; Pao, Te; Chen, Sih-Zih; Yau, ShuehLin; Dow, Wei-Ping; Lee, Yuh-Lang

    2012-07-03

    This study employed real-time in situ STM imaging to examine the adsorption of PEG molecules on Pt(111) modified by a monolayer of copper adatoms and the subsequent bulk Cu deposition in 1 M H(2)SO(4) + 1 mM CuSO(4)+ 1 mM KCl + 88 μM PEG. At the end of Cu underpotential deposition (~0.35 V vs Ag/AgCl), a highly ordered Pt(111)-(√3 × √7)-Cu + HSO(4)(-) structure was observed in 1 M H(2)SO(4) + 1 mM CuSO(4). This adlattice restructured upon the introduction of poly(ethylene glycol) (PEG, molecular weight 200) and chloride anions. At the onset potential for bulk Cu deposition (~0 V), a Pt(111)-(√3 × √3)R30°-Cu + Cl(-) structure was imaged with a tunneling current of 0.5 nA and a bias voltage of 100 mV. Lowering the tunneling current to 0.2 nA yielded a (4 × 4) structure, presumably because of adsorbed PEG200 molecules. The subsequent nucleation and deposition processes of Cu in solution containing PEG and Cl(-) were examined, revealing the nucleation of 2- to 3-nm-wide CuCl clusters on an atomically smooth Pt(111) surface at overpotentials of less than 50 mV. With larger overpotential (η > 150 mV), Cu deposition seemed to bypass the production of CuCl species, leading to layered Cu deposition, starting preferentially at step defects, followed by lateral growth to cover the entire Pt electrode surface. These processes were observed with both PEG200 and 4000, although the former tended to produce more CuCl nanoclusters. Raising [H(2)SO(4)] to 1 M substantiates the suppressing effect of PEG on Cu deposition. This STM study provided atomic- or molecular-level insight into the effect of PEG additives on the deposition of Cu.

  18. Adsorption and oxidation of formaldehyde on a polycrystalline Pt film electrode: An in situ IR spectroscopy search for adsorbed reaction intermediates.

    Science.gov (United States)

    Jusys, Zenonas; Behm, R Jürgen

    2014-01-01

    As part of a mechanistic study of the electrooxidation of C1 molecules we have systematically investigated the dissociative adsorption/oxidation of formaldehyde on a polycrystalline Pt film electrode under experimental conditions optimizing the chance for detecting weakly adsorbed reaction intermediates. Employing in situ IR spectroscopy in an attenuated total reflection configuration (ATR-FTIRS) with p-polarized IR radiation to further improve the signal-to-noise ratio, and using low reaction temperatures (3 °C) and deuterium substitution to slow down the reaction kinetics and to stabilize weakly adsorbed reaction intermediates, we could detect an IR absorption band at 1660 cm(-1) characteristic for adsorbed formyl intermediates. This assignment is supported by an isotope shift in wave number. Effects of temperature, potential and deuterium substitution on the formation and disappearance of different adsorbed species (COad, adsorbed formate, adsorbed formyl), are monitored and quantified. Consequences on the mechanism for dissociative adsorption and oxidation of formaldehyde are discussed.

  19. Reduced working electrode based on fullerene C60 nanotubes-DNA: Characterization and application

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xuzhi [Key Laboratory of Eco-Chemical Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106, Nanjing Road, Qingdao 266071, Shandong (China); Qu Yongtao [Key Laboratory of Rubber-plastics of Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Piao Guangzhe, E-mail: piao@qust.edu.cn [Key Laboratory of Rubber-plastics of Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Zhao Jian [Key Laboratory of Rubber-plastics of Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Jiao Kui, E-mail: Kjiao@qust.edu.cn [Key Laboratory of Eco-Chemical Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China)

    2010-11-25

    Fullerene C{sub 60} nanotubes (FNTs) were functionalized with sequence-specific single-stranded DNA to form a kind of complexes (FNT-DNA), which could be brought efficiently into aqueous solution. The dispersed FNT-DNA could form a layer of stable film on the surface of glassy carbon electrode (GCE). In the Britton-Robinson buffer solution of pH {>=}7.0, the FNT-DNA modified on the GCE presented an irreversible two-step six-electron transfer reduction reaction. The reduced modified electrode had a rather wide electrochemical window and could be used as a functionalized working electrode, which showed a good enrichment capability towards the positively charged molecules. The selective detection of dopamine in the presence of a high amount of ascorbic acid could be realized at the reduced FNT-DNA-modified GCE in neutral buffer solution.

  20. Modulation of Electrochemical Oscillations by Specific Adsorption of Cl- during the Electrooxidation of Methanol on Pt Electrode

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Potential oscillation during the electrocatalytic oxidation of methanol can be modulated by the specific adsorption of Cl- on the platinum electrode, which suppresses the electrocatalytic oxidation of methanol, and makes the cross cycle in the cyclic voltammogram become smaller and finally disappear with the increase of Cl- concentration. The method is also applicable to the electrocatalytic oxidation of other small organic molecules.

  1. 甲醇在不同结构氧化钨-Pt/C催化剂上的电催化氧化行为%Compared Study of Catalytic Activity for Methanol Oxidation on Different Pt-WO3/C Electrodes

    Institute of Scientific and Technical Information of China (English)

    闫鹏; 徐英明; 赵辉; 霍丽华; 高山

    2011-01-01

    Tungsten oxide-based nano-materials with two different crystal structures were prepared by hydrothermal method and characterized by X-ray diffraction ( XRD) and electron probe micro analyzer (EPMA) , respectively. The electrocatalytic activity for methanol oxidation on Pt-WO3/C electrode was studied by cyclic voltammetry. The results indicate that the electrocatalytic activity of Pt-WO3/C is much higher than that of Pt/C catalyst. For various amount of WO3, the catalyst with 20% mass fraction of WO3 has the best electrocatalytic activity. The electrocatalytic activity of the pyrochlore type tungsten oxide doped Pt/C electrode is higher than that of the tungsten bronze doped electrode, which is likely due to the strong attractions of OH^ on the surface of pyrochlore type tungsten oxide. The current density of the pyrochlore type tungsten oxide doped Pt/C electrode for electro-oxidation of methanol is 87. 2 x 10 "3 A/cm2 in 0. 5 mol/L CH30H + 1 mol/L H2SO4 solution.%采用水热法合成2种氧化钨( WO3)纳米材料,并利用XRD和电子探针显微分析仪(EPMA)进行了表征.利用循环伏安法研究了Pt-WO3/C电极对甲醇氧化的电催化活性.结果表明,Pt-WO#C催化剂对甲醇氧化的电催化活性优于Pt/C催化剂,且氧化钨质量分数为20%的Pt-氧化钨/C催化效果最好.与青铜相氧化钨掺杂的Pt/C电极比较,掺杂焦绿石型氧化钨的Pt/C电极催化性能有很大提高,这是由于焦绿石型氧化钨表面具有较多OH..质量分数20%的Pt-焦绿石型氧化钨/C在0.5mol/LCH3OH+1 mol/L H2SO4溶液中对甲醇氧化的峰电流密度达到87.2×10-3 A/cm2.

  2. Characterization of hierarchical α-MoO3 plates toward resistive heating synthesis: electrochemical activity of α-MoO3/Pt modified electrode toward methanol oxidation at neutral pH

    Science.gov (United States)

    Filippo, Emanuela; Baldassarre, Francesca; Tepore, Marco; Guascito, Maria Rachele; Chirizzi, Daniela; Tepore, Antonio

    2017-05-01

    The growth of MoO3 hierarchical plates was obtained by direct resistive heating of molybdenum foils at ambient pressure in the absence of any catalysts and templates. Plates synthesized after 60 min resistive heating typically grow in an single-crystalline orthorhombic structure that develop preferentially in the [001] direction, and are characterized by high resolution transmission electron microscopy, selected area diffraction pattern and Raman-scattering measurements. They are about 100-200 nm in thickness and a few tens of micrometers in length. As heating time proceeds to 80 min, plates of α-MoO3 form a branched structure. A more attentive look shows that primary plates formed at until 60 min could serve as substrates for the subsequent growth of secondary belts. Moreover, a full electrochemical characterization of α-MoO3 plates on platinum electrodes was done by cyclic voltammetric experiments, at pH 7 in phosphate buffer, to probe the activity of the proposed composite material as anode to methanol electro-oxidation. Reported results indicate that Pt MoO3 modified electrodes are appropriate to develop new an amperometric non-enzymatic sensor for methanol as well as to make anodes suitable to be used in direct methanol fuel cells working at neutral pH.

  3. High-performance membrane electrode assembly with multi-functional Pt/SnO2eSiO2/C catalyst for proton exchange membrane fuel cell operated under low-humidity conditions

    CSIR Research Space (South Africa)

    Hou, S

    2016-06-01

    Full Text Available A novel self-humidifying membrane electrode assembly (MEA) with homemade multifunctional Pt/SnO(sub2)-SiO(sub2)/C as the anode was developed to improve the performance of a proton exchange membrane fuel cell under low humidity. The MEAs' performance...

  4. Investigation of a Solution-Processable, Nonspecific Surface Modifier for Low Cost, High Work Function Electrodes.

    Science.gov (United States)

    Hinckley, Allison C; Wang, Congcong; Pfattner, Raphael; Kong, Desheng; Zhou, Yan; Ecker, Ben; Gao, Yongli; Bao, Zhenan

    2016-08-03

    We demonstrate the ability of the highly fluorinated, chemically inert copolymer poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) to significantly increase the work function of a variety of common electrode materials. The work function change is hypothesized to occur via physisorption of the polymer layer and formation of a surface dipole at the polymer/conductor interface. When incorporated into organic solar cells, an interlayer of PVDF-HFP at an Ag anode increases the open circuit voltage by 0.4 eV and improves device power conversion efficiency by approximately an order of magnitude relative to Ag alone. Solution-processable in air, PVDF-HFP thin films provide one possible route toward achieving low cost, nonreactive, high work function electrodes.

  5. Tuning the work functions of graphene quantum dot-modified electrodes for polymer solar cell applications.

    Science.gov (United States)

    Zhang, L; Ding, Z C; Tong, T; Liu, J

    2017-03-09

    The graphene quantum dot (GQD) is a new kind of anode/cathode interlayer material for polymer solar cells (PSCs). The key requirement for a cathode interlayer (CIL) is a low work function. In this article, aiming at application as a CIL for PSCs, we report a general approach to tune the work function of GQD-modified electrodes using alkali metal cations, e.g. Li(+), Na(+), K(+), Rb(+) and Cs(+). For ITO electrodes modified with these GQDs containing alkali metal cations, the work function can be finely tuned within the range of 4.0-4.5 eV. Owing to their low work function, GQDs containing K(+), Rb(+) and Cs(+) can be used as CILs for PSCs. Their device performance is fairly comparable to that of the state-of-the-art CIL material ZnO. This work provides a rational approach to tune the properties of GQD and to design solution-processable electrode interlayer materials for organic electronic devices.

  6. Electrocatalytic Properties of Pt-TiO2 Nanotubes Electrode Prepared by Pulse Electrodeposition Method%脉冲电沉积法制备Pt-TiO2纳米管电极及其电催化性能

    Institute of Scientific and Technical Information of China (English)

    孟祥龙; 李洪义; 王金淑

    2012-01-01

    Platinum (Pt) nanoflower structure was electrodeposited on the surface of the aligned TiO2 nano-tube, which was fabricated by anodic oxidation on titanium samples. The obtained electrode was characterized by XRD and SEM. The experiment results show that Pt is dispersed on the TiO2 nanotubes in the shape of nanoflowers, particle size is 25. 6 nm based on the calculations of XRD. Compared with pure Pt and clean TiO2 nanotube arrays, the hybrid electrodes' electrocatalytic activity for methanol oxidation has been greatly improved. The oxidation current densities on Pt-TiO2 nanotubes electrode are 40 times higher than that of pure platinum electrode. The hybrid electrode shows promising applications in many fields, such as direct methanol fuel cell, treatment of polluted water and so on.%采用阳极氧化法在高纯钛片上原位组装TiO2纳米管阵列,然后用脉冲电沉积方法将Pt沉积到TiO2纳米管阵列上,制备出Pt-TiO2纳米管电极.利用XRD和SEM对所获电极的微观结构和形貌进行表征,结果表明,Pt纳米颗粒以花簇状分散在TiO2纳米管上,晶粒大小约为25.6 nm.对甲醇的电催化性能的研究结果表明,脉冲电沉积制得的Pt-TiO2纳米管电极比TiO2纳米管电极和纯Pt片电极具有更高的电催化活性,是Pt电极的40多倍.

  7. Comparative analysis of the electroactive area of Pt/C PEMFC electrodes in liquid and solid polymer contact by underpotential hydrogen adsorption/desorption

    Energy Technology Data Exchange (ETDEWEB)

    Chaparro, A.M.; Martin, A.J.; Folgado, M.A.; Gallardo, B. [Dep. de Energia, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Daza, L. [Dep. de Energia, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Instituto de Catalisis y Petroleoquimica (CSIC), Marie Curie 2, Campus Cantoblanco, 28049 Madrid (Spain)

    2009-06-15

    Because of the different experimental conditions found in literature for the measurement of the electroactive area of Pt/C electrodes of proton exchange membrane fuel cells (PEMFC) by means of underpotential hydrogen adsorption (H{sub UPD}) voltammetry, specially concerning sweep rate and temperature, it was found necessary to perform an analysis of these parameters. With this aim, the electroactive area of PEMFC electrodes has been measured by means of H{sub UPD} voltammetry at different sweep rates and temperatures, in liquid electrolyte and solid polymer contact. Both configurations show that H{sub UPD} adsorption and desorption charges are strongly dependent on sweep rate voltage and temperature. The most common behaviour observed is a maximum in H{sub UPD} desorption charge, typically in the 100-10 mV s{sup -1} sweep rate range, whereas H{sub UPD} adsorption charge shows continuous increase with decreasing sweep rate. The decrease of desorption charge at low sweep rates is attributed to adsorbing species related with carbon support reactivity. These processes are also responsible for the increase in desorption H{sub UPD} charge at low sweep rate. At high sweep rate, both adsorption and desorption H{sub UPD} charges decrease due to limiting diffusion of protons through the microporous electrode. As a consequence, it is found that the closest approximation to the real electroactive area (i.e. the area accessible to protons) corresponds to the maximum in the H{sub UPD} desorption charge in the range of 10-100 mV s{sup -1} sweep rate. The influence of measuring temperature is also tested in the range 25 C-80 C. A dependence of the adsorption and desorption hydrogen charges is found, due to thermodynamic and kinetics factors. We observe that the processes competing with hydrogen adsorption, i.e. generation and adsorption of carbon species are enhanced with temperature, so a low measuring temperature is found as most appropriate. (author)

  8. Role of perfluorosulfonic ionomer as protective agent against strong adsorption of (bi)sulfate anions. Relevance in the determination of the area of Pt/C electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Rodriguez, S.; Rojas, S.; Pena, M.A.; Fierro, J.L.G. [Grupo de Quimica y Energia Sostenibles, Instituto de Catalisis y Petroleoquimica, CSIC C/Marie Curie 2, 28049 Madrid (Spain); Vellosillo, M.; Ocon, P. [Departamento de Quimica-Fisica, Facultad de Ciencias, Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain)

    2010-10-15

    This work aims to shed light on the wide dispersion of the values of the area of Pt/C electrodes reported when evaluated by means of the thin-film electrode approach. The effect of the Perfluorosulfonic Ionomer (PFSI) content of the electrodes and the nature of the electrolyte are discussed. The results disclose that the area of the Pt electrodes evaluated by electrochemical techniques is related to the actual PFSI content on the electrode and to the nature of the electrolyte. Using HClO{sub 4} as electrolyte, electrode area values are independent of the PFSI content. On the contrary, if experiments are recorded in H{sub 2}SO{sub 4}, the electrode area value increases with the increasing PFSI content, irrespectively of the Pt loading. Such effect is ascribed to the interaction of the sulfonic groups from the PFSI with the surface of the Pt nanoparticles, avoiding the strong adsorption of the bisulfate anions. (author)

  9. WORKING POSTURE ANALYSIS AND DESIGN USING RULA (RAPID UPPER LIMB ASSESSMENT METHOD IN PRODUCTION PROCESS AT PT. INDANA PAINT

    Directory of Open Access Journals (Sweden)

    Yongky Kusnandar Djiono

    2013-12-01

    Full Text Available Working posture can affect the comfort and productivity of labor in doing manual work. In this study, RULA method is used to determine the risk level of musculoskeletal disorders (MSDs injury in the production process at PT. Indana Paint (consists of mixing and packaging steps for water-based paint, solvent-based paint, and base paint production, and then given proposed improvements to reduce the risk level. Method used in this research is direct observation and video recording of every work element to determine some awkward postures that will be assessed using RULA method. Thirty awkward postures are found, there are 7 working posture (23.3% have low risk level, 11 working posture (36.7% have medium risk level, and 12 working posture (40% have high risk level. Proposed improvements given is to brief the workers on appropriate lifting technique and working methods, adding mechanical aids for handling drums, and working position height adjustment.

  10. Determination of work function of graphene under a metal electrode and its role in contact resistance.

    Science.gov (United States)

    Song, Seung Min; Park, Jong Kyung; Sul, One Jae; Cho, Byung Jin

    2012-08-08

    Although the work function of graphene under a given metal electrode is critical information for the realization of high-performance graphene-based electronic devices, relatively little relevant research has been carried out to date. In this work, the work function values of graphene under various metals are accurately measured for the first time through a detailed analysis of the capacitance-voltage (C-V) characteristics of a metal-graphene-oxide-semiconductor (MGOS) capacitor structure. In contrast to the high work function of exposed graphene of 4.89-5.16 eV, the work function of graphene under a metal electrode varies depending on the metal species. With a Cr/Au or Ni contact, the work function of graphene is pinned to that of the contacted metal, whereas with a Pd or Au contact the work function assumes a value of ∼4.62 eV regardless of the work function of the contact metal. A study of the gate voltage dependence on the contact resistance shows that the latter case provides lower contact resistance.

  11. Work function measurement of multilayer electrodes using Kelvin probe force microscopy

    Science.gov (United States)

    Peres, L.; Bou, A.; Cornille, C.; Barakel, D.; Torchio, P.

    2017-04-01

    The workfunction of dielectric|metal|dielectric transparent and conductive electrodes, promising candidates for replacing ITO in thin film solar cells, is measured by Kelvin probe force microscopy (KPFM). Measurement on commercial ITO gives a workfunction of 4.74 eV, which is in agreement with the values reported in the literature. Measurements are then performed on optically optimised multilayer electrodes fabricated on glass by e-beam evaporation, using three different dielectrics. For TiO2(37 nm)|Ag(13 nm)|TiO2(42 nm), SnO x (45 nm)|Ag(10 nm)|SnO x (45 nm), and ZnS(47 nm)|Ag(12 nm)|ZnS(42 nm), workfunctions of 4.83 eV, 4.75 eV, and 4.48 eV are measured respectively. These values suggest that these transparent and conductive electrodes are well adapted to extract photo-generated charge carriers in photovoltaic devices in which ITO is normally used. Furthermore, the KPFM technique proves to be an efficient and relatively fast way to determine the work function values of such electrodes.

  12. Dynamic electrochemical impedance spectroscopy of Pt/C-based membrane-electrode assemblies subjected to cycling protocols

    Science.gov (United States)

    Darab, Mahdi; Dahlstrøm, Per Kristian; Thomassen, Magnus Skinlo; Seland, Frode; Sunde, Svein

    2013-11-01

    A PEM fuel cell membrane-electrode assembly (MEA) was characterized by dynamic electrochemical impedance spectroscopy (dEIS) before and after cycling in a single cell configuration. The cell was subjected to 100 cycles between 0.6 V and 1.5 V vs. RHE in N2/5% H2 and 80 °C and 100% RH. Initially, the impedance-plane plots contained first- and fourth-quadrant behavior, which is resulting from a reaction mechanism at the cathode involving adsorbed intermediates. After the cycling, the impedance spectra changed to display first-quadrant behavior only. This is suggested to be due to particle growth and possibly the formation of edges between agglomerated particles. The results show that dEIS is a sensitive technique to detect even very moderate changes in electrocatalyst structure.

  13. Temperature effects on chemically modified Pt electrode sensing paracetamol%化学修饰铂电极传感扑热息痛中的温度效应

    Institute of Scientific and Technical Information of China (English)

    于丽波; 杨国程; 杨颖姝; 赵振波; 周德凤

    2012-01-01

    通过电化学方法制备了3类化学修饰电极:电化学氧化法将4-氨基苯甲酸(4-Amino-benzoic acid,4-ABA)共价修饰到铂电极上,形成单分子层膜修饰电极(4-ABA/Pt);恒电位沉积法将铂纳米粒子(Nanoparticles,NPs)修饰到铂电极上,形成NPs修饰电极(PtNPs/Pt);先恒电位,然后循环伏安将3-噻吩丙二酸(3-Thiophenemalonic acid,3-TMA)聚合到铂电极上,形成聚合物薄膜修饰电极(poly(3-TMA)/Pt)。线性伏安法测试3种修饰电极在不同温度下传感扑热息痛(Paracetamol,PCT),得出PCT在较宽浓度范围内都与其氧化峰电流呈良好的线性关系,但在不同温度条件下灵敏度是不同的。通过分析温度对PCT活度、离子导体和电子导体电阻的影响,对这一结果给出合理的解释。%Three kinds of chemically modified electrode(CME) are prepared with electrochemical method.With electrochemical oxidation,4-aminobenzoic acid(4-ABA) is covalently modified on Pt electrode to form the 4-ABA/Pt.With the potentiostatic method,the Pt nanoparticles(NPs) are electrodeposited on Pt electrode to form the PtNPs/Pt.With the potentiostatic process followed by cyclic voltammetry method,3-thiophenemalonic acid(3-TMA) is electropolymerized on Pt electrode to form the poly(3-TMA)/Pt.CMEs are applied to sense paracetamol(PCT) at different temperatures.The results show that the PCT concentration has a linear relationship with the oxidation peak current in a wide concentration range but the sensitivity is different at different temperature.The temperature effect on the PCT activity and resistance of ionic conductor and electronic conductor can be used to explain the result.

  14. Change of the work function of platinum electrodes induced by halide adsorption.

    Science.gov (United States)

    Gossenberger, Florian; Roman, Tanglaw; Forster-Tonigold, Katrin; Groß, Axel

    2014-01-01

    The properties of a halogen-covered platinum(111) surface have been studied by using density functional theory (DFT), because halides are often present at electrochemical electrode/electrolyte interfaces. We focused in particular on the halogen-induced work function change as a function of the coverage of fluorine, chlorine, bromine and iodine. For electronegative adsorbates, an adsorption-induced increase of the work function is usually expected, yet we find a decrease of the work function for Cl, Br and I, which is most prominent at a coverage of approximately 0.25 ML. This coverage-dependent behavior can be explained by assuming a combination of charge transfer and polarization effects on the adsorbate layer. The results are contrasted to the adsorption of fluorine on calcium, a system in which a decrease in the work function is also observed despite a large charge transfer to the halogen adatom.

  15. Changes in Work Function and Electrical Resistance of Pt Thin Films in the Presence of Hydrogen Gas

    Science.gov (United States)

    Tsukada, Keiji; Inoue, Hirotsugu; Katayama, Fumiya; Sakai, Kenji; Kiwa, Toshihiko

    2012-01-01

    The changes in the electrical properties, such as work function and resistance, of Pt thin films in the presence of hydrogen gas were studied. They were simultaneously measured with a flow-through cell at different concentrations of hydrogen gas in atmosphere containing gaseous nitrogen and that containing air. The resistance was measured by a four-terminal sensing method and the relative work function changes were measured using a field effect transistor. In both atmospheres, the resistance decreased as the concentration of hydrogen gas increased. This result was repeatable only in air because of the differences in the dynamic mechanism of increased density of electrical carriers inside the Pt film as a result of diffused H atoms. In the nitrogen atmosphere, the diffused H atoms were not easily released because of the surface barrier. On the other hand, oxygen gas reacted with H atoms at the surface and this reaction accelerated atom release into air. The work function showed repeatable responses in both atmospheres, but the response characteristics were different. The equilibrium reaction between the adsorption and desorption of hydrogen occurred at the surface in the nitrogen atmosphere, whereas the equilibrium reaction of hydrogen and oxygen to form water molecules occurred in air. The changes in work function and resistance in the presence of hydrogen were due to changes in dissociated hydrogen intensity in the bulk, as well as to the surface reactions.

  16. Bare and Polymer-Coated Indium Tin Oxide as Working Electrodes for Manganese Cathodic Stripping Voltammetry.

    Science.gov (United States)

    Rusinek, Cory A; Bange, Adam; Warren, Mercedes; Kang, Wenjing; Nahan, Keaton; Papautsky, Ian; Heineman, William R

    2016-04-19

    Though an essential metal in the body, manganese (Mn) has a number of health implications when found in excess that are magnified by chronic exposure. These health complications include neurotoxicity, memory loss, infertility in males, and development of a neurologic psychiatric disorder, manganism. Thus, trace detection in environmental samples is increasingly important. Few electrode materials are able to reach the negative reductive potential of Mn required for anodic stripping voltammetry (ASV), so cathodic stripping voltammetry (CSV) has been shown to be a viable alternative. We demonstrate Mn CSV using an indium tin oxide (ITO) working electrode both bare and coated with a sulfonated charge selective polymer film, polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene-sulfonate (SSEBS). ITO itself proved to be an excellent electrode material for Mn CSV, achieving a calculated detection limit of 5 nM (0.3 ppb) with a deposition time of 3 min. Coating the ITO with the SSEBS polymer was found to increase the sensitivity and lower the detection limit to 1 nM (0.06 ppb). This polymer modified electrode offers excellent selectivity for Mn as no interferences were observed from other metal ions tested (Zn(2+), Cd(2+), Pb(2+), In(3+), Sb(3+), Al(3+), Ba(2+), Co(2+), Cu(2+), Ni(3+), Bi(3+), and Sn(2+)) except Fe(2+), which was found to interfere with the analytical signal for Mn(2+) at a ratio 20:1 (Fe(2+)/Mn(2+)). The applicability of this procedure to the analysis of tap, river, and pond water samples was demonstrated. This simple, sensitive analytical method using ITO and SSEBS-ITO could be applied to a number of electroactive transition metals detectable by CSV.

  17. Thermodynamic analysis of (bi)sulphate adsorption on a Pt(1 1 1) electrode as a function of pH

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Araez, Nuria; Climent, Victor; Rodriguez, Paramaconi; Feliu, Juan M. [Instituto de Electroquimica, Universidad de Alicante, Apt. 99, E-03080 Alicante (Spain)

    2008-10-01

    A complete thermodynamic study of (bi)sulphate adsorption on Pt(1 1 1) electrodes from solutions at four different pHs (pH 0.43, 2.1, 3.1 and 4.1) is reported. The effect of pH on the sum of the Gibbs excesses of sulphate and bisulphate species, standard Gibbs energies of adsorption and formal partial charge numbers is analyzed. The results provide relevant information on the nature of species involved in the different voltammetric features. The experiments at pH 0.43 were performed in a higher base electrolyte concentration (0.5 M), that allows the study of (bi)sulphate adsorption in a broader range of concentrations. Under these conditions, two adsorption steps are clearly defined, associated to two different voltammetric features, between 0.30 and 0.60 V and between 0.65 and 0.90 V (standard hydrogen scale, SHE). Once the pH is increased, a marked decrease in absolute value of the (bi)sulphate adsorption Gibbs energy is observed, concomitant with an increasing amount of OH co-adsorption. (author)

  18. Adsorption and oxidation of formaldehyde on a polycrystalline Pt film electrode: An in situ IR spectroscopy search for adsorbed reaction intermediates

    Directory of Open Access Journals (Sweden)

    Zenonas Jusys

    2014-05-01

    Full Text Available As part of a mechanistic study of the electrooxidation of C1 molecules we have systematically investigated the dissociative adsorption/oxidation of formaldehyde on a polycrystalline Pt film electrode under experimental conditions optimizing the chance for detecting weakly adsorbed reaction intermediates. Employing in situ IR spectroscopy in an attenuated total reflection configuration (ATR-FTIRS with p-polarized IR radiation to further improve the signal-to-noise ratio, and using low reaction temperatures (3 °C and deuterium substitution to slow down the reaction kinetics and to stabilize weakly adsorbed reaction intermediates, we could detect an IR absorption band at 1660 cm−1 characteristic for adsorbed formyl intermediates. This assignment is supported by an isotope shift in wave number. Effects of temperature, potential and deuterium substitution on the formation and disappearance of different adsorbed species (COad, adsorbed formate, adsorbed formyl, are monitored and quantified. Consequences on the mechanism for dissociative adsorption and oxidation of formaldehyde are discussed.

  19. Pt metal-CeO2 interaction: direct observation of redox coupling between Pt0/Pt2+/Pt4+ and Ce4+/Ce3+ states in Ce(0.98)Pt(0.02)O2-delta catalyst by a combined electrochemical and x-ray photoelectron spectroscopy study.

    Science.gov (United States)

    Sharma, Sudhanshu; Hegde, M S

    2009-03-21

    Pt ions-CeO(2) interaction in Ce(1-x)Pt(x)O(2-delta) (x=0.02) has been studied for the first time by electrochemical method combined with x-ray diffraction and x-ray photoelectron spectroscopy. Working electrodes made of CeO(2) and Ce(0.98)Pt(0.02)O(2-delta) mixed with 30% carbon are treated electrochemically between 0.0-1.2 V in potentiostatic (chronoamperometry) and potentiodynamic (cyclic voltametry) mode with reference to saturated calomel electrode. Reversible oxidation of Pt(0) to Pt(2+) and Pt(4+) state due to the applied positive potential is coupled to simultaneous reversible reduction of Ce(4+) to Ce(3+) state. CeO(2) reduces to CeO(2-y) (y=0.35) after applying 1.2 V, which is not reversible; Ce(0.98)Pt(0.02)O(2-delta) reaches a steady state with Pt(2+):Pt(4+) in the ratio of 0.60:0.40 and Ce(4+):Ce(3+) in the ratio of 0.55:0.45 giving a composition Ce(0.98)Pt(0.02)O(1.74) at 1.2 V, which is reversible. Composition of Pt ion substituted compound is reversible between Ce(0.98)Pt(0.02)O(1.95) to Ce(0.98)Pt(0.02)O(1.74) within the potential range of 0.0-1.2 V. Thus, Ce(0.98)Pt(0.02)O(2-delta) forms a stable electrode for oxidation of H(2)O to O(2) unlike CeO(2). A linear relation between oxidation of Pt(2+) to Pt(4+) with simultaneous reduction in Ce(4+) to Ce(3+) is observed demonstrating Pt-CeO(2) metal support interaction is due to reversible Pt(0)/Pt(2+)/Pt(4+) interaction with Ce(4+)/Ce(3+) redox couple.

  20. Boron-Doped Graphite for High Work Function Carbon Electrode in Printable Hole-Conductor-Free Mesoscopic Perovskite Solar Cells.

    Science.gov (United States)

    Duan, Miao; Tian, Chengbo; Hu, Yue; Mei, Anyi; Rong, Yaoguang; Xiong, Yuli; Xu, Mi; Sheng, Yusong; Jiang, Pei; Hou, Xiaomeng; Zhu, Xiaotong; Qin, Fei; Han, Hongwei

    2017-09-20

    Work function of carbon electrodes is critical in obtaining high open-circuit voltage as well as high device performance for carbon-based perovskite solar cells. Herein, we propose a novel strategy to upshift work function of carbon electrode by incorporating boron atom into graphite lattice and employ it in printable hole-conductor-free mesoscopic perovskite solar cells. The high-work-function boron-doped carbon electrode facilitates hole extraction from perovskite as verified by photoluminescence. Meanwhile, the carbon electrode is endowed with an improved conductivity because of a higher graphitization carbon of boron-doped graphite. These advantages of the boron-doped carbon electrode result in a low charge transfer resistance at carbon/perovskite interface and an extended carrier recombination lifetime. Together with the merit of both high work function and conductivity, the power conversion efficiency of hole-conductor-free mesoscopic perovskite solar cells is increased from 12.4% for the pristine graphite electrode-based cells to 13.6% for the boron-doped graphite electrode-based cells with an enhanced open-circuit voltage and fill factor.

  1. Audit TI Kinerja Manajemen PT. X Dengan Frame Work Cobit 4.1

    Directory of Open Access Journals (Sweden)

    I Putu Ade Ambara Putra

    2015-11-01

    Full Text Available The development of information technology is now widely used by companies of airport to improve service to customers. The use of such technology to facilitates of information, communication, and banking transactions. The use of information technology in the operations of PT. X have many risks. The Risks that exist on the PT. X requires the existence of information technology governance to minimize it. The objective is to obtain information regarding the level of IT maturity and gaps. The framework used is COBIT 4.1. The  Results found the maturity level on the current state is level 3 and the expected conditions to be reached is level 5. The analysis carried out on the gap and then made a recommendation strategies to existing gaps, so that the level of maturity that expected to be achieved. To minimize the gap maturity level, need the suggestions for improvement that taken from the high control objectives COBIT 3rd edition. The importance level give the process is a standard model, among others Critical Sucess Factor (CSF, indicators such as the Key Goal Indicators (KGI and Key Performance Indicator (KPI.

  2. Studies of surface processes of electrocatalytic reduction of CO2 on Pt(210), Pt(310) and Pt(510)

    Institute of Scientific and Technical Information of China (English)

    FAN; ChunJie; FAN; YouJun; ZHEN; ChunHua; ZHENG; QingWei; SUN; ShiGang

    2007-01-01

    Surface processes of CO2 reduction on Pt(210), Pt(310), and Pt(510) electrodes were studied by cyclic voltammetry. Different surface structures of these platinum single crystal electrodes were obtained by various treatment conditions. The experimental results illustrated that the electrocatalytic activity of Pt single crystal electrodes towards CO2 reduction is decreased in an order of Pt(210)>Pt(310)>Pt(510), i.e., with the decrease of (110) step density on well-defined surfaces. When the surfaces were reconstructed due to oxygen adsorption, the catalytic activity of all the three electrodes has been enhanced to a certain extent. Although the activity order remains unchanged, the electrocatalytic activity has been enhanced more significantly as the density of (110) step sites is more intensive on the Pt single crystal surface. It has revealed that the more open the surface structure is, the more active the Pt single crystal electrode will be, and the easier for the electrode to be transformed into a surface structure that exhibits higher activity under external inductions. However, the relatively ordered surfaces of Pt single crystal electrode are comparatively stable under the same external inductions. The present study has gained knowledge on the interaction between CO2 and Pt single crystal electrode surfaces at a microscopic level, and thrown new insight into understanding the surface processes of electrocatalytic reduction of CO2.

  3. Diode-type Gas Sensors Fabricated with a Titania Film on a Ti Plate and Pd-Pt Electrodes -Effects of Polymer Coating on the Hydrogen-sensing Properties-

    Science.gov (United States)

    Hyodo, T.; Nakaoka, M.; Kaneyasu, K.; Kato, H.; Yanagi, H.; Shimizu, Y.

    2011-10-01

    H2 responses of a diode-type gas sensor fabricated with a TiO2 film prepared by anodization of a Ti plate and Pd-Pt electrodes (Pd-Pt/TiO2) and the effects of polymer coating on the Pd-Pt/TiO2 sensor were investigated in this study. The H2 response of the Pd-Pt/TiO2 sensor in dry N2 was larger than that in dry air at 250°C, but the addition of moisture into the atmosphere reduced O2 concentration dependence of H2 response. The responses decreased drastically at lower temperature (50°C), but the responses in N2 were larger than those in air under both dry and wet conditions. The coating of polymer on the Pd-Pt/TiO2 sensor increased the H2 responses in wet air and N2 and reduced O2 concentration dependence of H2 responses.

  4. A high sensitive biosensor based on FePt/CNTs nanocomposite/N-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified carbon paste electrode for simultaneous determination of glutathione and piroxicam.

    Science.gov (United States)

    Karimi-Maleh, Hassan; Tahernejad-Javazmi, Fahimeh; Ensafi, Ali A; Moradi, Reza; Mallakpour, Shadpour; Beitollahi, Hadi

    2014-10-15

    This study describes the development, electrochemical characterization and utilization of novel modified N-(4-hydroxyphenyl)-3,5-dinitrobenzamide-FePt/CNTs carbon paste electrode for the electrocatalytic determination of glutathione (GSH) in the presence of piroxicam (PXM) for the first time. The synthesized nanocomposite was characterized with different methods such as TEM and XRD. The modified electrode exhibited a potent and persistent electron mediating behavior followed by well-separated oxidation peaks of GSH and PXM. The peak currents were linearly dependent on GSH and PXM concentrations in the range of 0.004-340 and 0.5-550 µmol L(-1), with detection limits of 1.0 nmol L(-1) and 0.1 µmolL(-1), respectively. The modified electrode was successfully used for the determination of the analytes in real samples with satisfactory results.

  5. Screening of electrocatalysts for direct ammonia fuel cell: Ammonia oxidation on PtMe (Me: Ir, Rh, Pd, Ru) and preferentially oriented Pt(1 0 0) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Vidal-Iglesias, F.J.; Solla-Gullon, J.; Montiel, V.; Feliu, J.M.; Aldaz, A. [Instituto de Electroquimica, Universidad de Alicante, Apartado 99, 03080 Alicante (Spain)

    2007-09-27

    Ammonia has attracted attention as a possible fuel for direct fuel cells since it is easy to handle and to transport as liquid or as concentrated aqueous solution. However, on noble metal electrodes ammonia oxidation is a sluggish reaction and the electrocatalyst needs to be improved for developing efficient ammonia fuel cells. In this work, ammonia electrooxidation reaction on 3-4-nm bimetallic PtMe (Ir, Rh, Pd, Ru) and on preferentially oriented Pt(1 0 0) nanoparticles is reported. PtMe nanoparticles have been prepared by using water-in-oil microemulsions to obtain a narrow size distribution whereas preferentially oriented Pt nanoparticles have been prepared through colloidal routes. Among all the bimetallic samples tested, only Pt{sub 75}Ir{sub 25} and Pt{sub 75}Rh{sub 25} nanoparticles show, at the low potential range, an enhancement of the oxidation density current with respect to the behaviour found for pure platinum nanoparticles prepared by the same method. In addition, two Pt(1 0 0) preferentially oriented nanoparticles of different particle size (4 and 9 nm) have been also studied. These oriented nanoparticles show higher current densities than polycrystalline Pt nanoparticles due to the sensitivity of ammonia oxidation toward the presence of surface sites with square symmetry. The reactivity of the different 4-nm nanoparticles parallels well with that expected from bulk PtMe alloys and Pt single crystal electrodes. (author)

  6. Nanoscale study of the ferroelectric properties of SrBi{sub 2}Nb{sub 2}O{sub 9} thin films grown by pulsed laser deposition on epitaxial Pt electrodes using atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, Brice; Duclere, Jean-Rene; Guilloux-Viry, Maryline

    2003-07-15

    SrBi{sub 2}Nb{sub 2}O{sub 9} (SBN) thin films deposited by laser ablation on epitaxial (1 0 0)Pt and (1 1 0)Pt have been studied using an atomic force microscope (AFM) in the so-called 'piezoresponse' mode. Previous X-ray studies have shown that in the first case two different orientations coexist in the film: a predominant (0 0 1) orientation with a (1 1 5) orientation. AFM topographical images reveal the presence of two different kinds of grains of different shape corresponding to each orientation and AFM piezoresponse images are in agreement with the crystallographic orientation of the grains: only the expected (1 1 5) oriented grains show a piezoelectric contrast. Moreover, hysteresis loops are obtained over (1 1 5) grains and not over (0 0 1) regions. Although (1 1 5) grains can be in a monodomain state, they also show intragranular ferroelectric domains with nanometric sizes, which orientation can be reversed by applying a dc field between the AFM tip and the grounded conductive bottom electrode of the sample. In the second case, the use of a (1 1 0)Pt electrode instead of a (1 0 0)Pt electrode leads to preferentially (1 1 6) SBN oriented films, inducing far better ferroelectrics properties. In spite of a weak remnant polarization, the surface shows an homogeneous polarization when a 1 {mu}mx1 {mu}m area is probed after the reversal of the polarization by the AFM tip.

  7. High performance electrocatalyst consisting of CoS nanoparticles on an organized mesoporous SnO2 film: its use as a counter electrode for Pt-free, dye-sensitized solar cells

    Science.gov (United States)

    Park, Jung Tae; Lee, Chang Soo; Kim, Jong Hak

    2014-12-01

    High energy conversion efficiencies of 6.6% and 7.5% are demonstrated in solid and liquid states, Pt-free, dye-sensitized solar cells (DSSCs), respectively, based on CoS nanoparticles on an organized mesoporous SnO2 (om-SnO2) counter electrode. These results correspond to improvements of 14% and 9%, respectively, compared to a conventional Pt counter electrode and are among the highest values reported for Pt-free DSSCs. The om-SnO2 layer plays a pivotal role as a platform to deposit a large amount of highly electrocatalytically active CoS nanoparticles via a facile solvothermal reaction. The om-SnO2 platform with a high porosity, larger pores, and good interconnectivity is derived from a poly(vinyl chloride)-g-poly(oxyethylene methacrylate) (PVC-g-POEM) graft copolymer template, which provides not only improved interaction sites for the formation of CoS nanoparticles but also enhanced electron transport. The structural, morphological, chemical, and electrochemical properties of CoS on the om-SnO2 platform are investigated using field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) measurements. The performance enhancement results from the excellent electron transport at the fluorine-doped tin oxide (FTO)/counter electrode/electrolyte interface, reduced resistance at the FTO/CoS interface, and better catalytic reduction at the counter electrode/electrolyte interface.High energy conversion efficiencies of 6.6% and 7.5% are demonstrated in solid and liquid states, Pt-free, dye-sensitized solar cells (DSSCs), respectively, based on CoS nanoparticles on an organized mesoporous SnO2 (om-SnO2) counter electrode. These results correspond to improvements of 14% and 9%, respectively, compared to a conventional Pt counter electrode and are among the

  8. High performance electrocatalyst consisting of CoS nanoparticles on an organized mesoporous SnO2 film: its use as a counter electrode for Pt-free, dye-sensitized solar cells.

    Science.gov (United States)

    Park, Jung Tae; Lee, Chang Soo; Kim, Jong Hak

    2015-01-14

    High energy conversion efficiencies of 6.6% and 7.5% are demonstrated in solid and liquid states, Pt-free, dye-sensitized solar cells (DSSCs), respectively, based on CoS nanoparticles on an organized mesoporous SnO2 (om-SnO2) counter electrode. These results correspond to improvements of 14% and 9%, respectively, compared to a conventional Pt counter electrode and are among the highest values reported for Pt-free DSSCs. The om-SnO2 layer plays a pivotal role as a platform to deposit a large amount of highly electrocatalytically active CoS nanoparticles via a facile solvothermal reaction. The om-SnO2 platform with a high porosity, larger pores, and good interconnectivity is derived from a poly(vinyl chloride)-g-poly(oxyethylene methacrylate) (PVC-g-POEM) graft copolymer template, which provides not only improved interaction sites for the formation of CoS nanoparticles but also enhanced electron transport. The structural, morphological, chemical, and electrochemical properties of CoS on the om-SnO2 platform are investigated using field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) measurements. The performance enhancement results from the excellent electron transport at the fluorine-doped tin oxide (FTO)/counter electrode/electrolyte interface, reduced resistance at the FTO/CoS interface, and better catalytic reduction at the counter electrode/electrolyte interface.

  9. New insights into the effects of alloying Pt with Ni on oxygen reduction reaction mechanisms in acid medium: a first-principles study.

    Science.gov (United States)

    Ou, Li-Hui

    2015-11-01

    The effects of alloying Pt with transition metal Ni on oxygen reduction reaction (ORR) mechanisms was investigated based on a systematic density functional theory (DFT) calculation explored in the present work. New insights into the ORR mechanisms were reported at the atomic level on Pt-segregated Pt3Ni(111). Only one molecular chemisorption state with the end-on OOH configuration was identified through geometry optimization and minimum energy path (MEP) analysis; top-bridge-top configuration as observed on pure Pt(111) was not identified on Pt-segregated Pt3Ni(111), indicating that alloying Pt with Ni influences the intermediates of ORR, and leads to only the dissociation mechanism of chemisorption state OOH species being involved in acid medium on Pt-segregated Pt3Ni(111). By contrast, the dissociation mechanisms of chemisorbed O2 molecule with top-bridge-top configuration and OOH species both were involved on pure Pt(111). The rds of the entire four-electron ORR was changed after Pt alloying with Ni. The rds of the entire ORR is the proton and electron transfer to O2 to form OOH on Pt-segregated Pt3Ni(111), whereas it is the reaction of O atom protonation to form OH species on pure Pt(111), indicating that sublayer Ni strongly influences the rds of ORR. The comparison of the ORR mechanisms explained that Pt3Ni alloy enhanced the ORR electrocatalytic activity more than pure Pt. The effect of electrode potential on ORR pathway on the pure Pt and Pt3Ni alloy was considered to obtain further insights into the electrochemical reduction of O2. Results showed that the proton and electron transfer becomes difficult at high potential. The ORR can easily proceed when the electrode potential lowers. For pure Pt- and Pt-based alloys, this phenomenon may imply the origin of the overpotential.

  10. Preparation of Pd/Pt Bimetallic Electrodes and Its Activity Toward Oxygen Reduction Reaction%Pd/Pt二元合金电极的制备及氧还原性能

    Institute of Scientific and Technical Information of China (English)

    方兰兰; 廖玲文; 刘少雄; 蔡俊; 李明芳; 陈艳霞

    2011-01-01

    利用Pt置换取代经欠电位沉积的亚单层Cu的方法,制备了不同组成的Pd/Pt二元合金电极(用Pd/Pt表示,x表示n置换取代欠电位沉积Cu过程的次数),并对其表面元素组成和氧还原性能进行了表征.在控制欠电位沉积Cu的下限电位恒定(0.34 V)的条件下,表面Pd/Pt的元素组成比通过重复Pt置换取代欠电位沉积Cu的次数(1~5次)来调控.光电子能谱(XPS)以及红外光谱实验结果表明,Pd/Pt电极表面的Pd/Pt元素组成比随着Pt沉积次数的增加而增加,对Pd/Pt电极,在电极表层约2~3 nm厚度内的Pt/Pd原子比为1:4,最表层的Pt/Pd原子比为4:1.循环伏安结果显示,随着Pt沉积次数的增加(1~5次),Pd/Pt电极表面越来越不易氧化.氧还原测试结果显示,随着Pt沉积次数(1~4次)的增加,Pd/Pt二元金属电极的氧还原活性依次增加,经过第3次沉积后其氧还原活性已优于纯Pt,而经4次以上沉积后其氧还原活性基本不变.在其它反应条件相同时,Pd/Pt电极上氧还原的半波电位与纯Pt相比右移约25 mV.可初步认为Pd/Pt二元金属体系氧还原性能的改善主要源自表层Pd原子让邻近的Pt原子上含氧物种的吸附能降低.%Pd/Pt bimetallic electrodes were prepared using under-potential deposition(UPD) of Cu following with galvanic displacement of Cu by Pt. The atomic ratios of Pt/Pd in the surface region can be tuned by holding the Cu UPD potential and changing the cycled times of UPD Cu and Pt-Cu displacement processes.Measurements using X-ray photon-electron spectroscopy(XPS) and electrochemical infrared spectroscopy( EC-IRS) with CO as probe molecules demonstrate that the atomic ratios of Pt/Pd increase monotonically with the cycle times of Cu-upd and Pt-Cu displacement. For Pd/Pt4 electrode, the average atomic ratios of Pt/Pd within 2—3 nm from the surface and at the surface are ca. 1: 4 and 4: 1, respectively. With the increase of Pt molar ratio at the surface, Pd/Pt

  11. Multistep electrochemical deposition of hierarchical platinum alloy counter electrodes for dye-sensitized solar cells

    Science.gov (United States)

    Zhang, Junjun; Ma, Mingming; Tang, Qunwei; Yu, Liangmin

    2016-01-01

    The preferred platinum counter electrode (CE) has been a burden for commercialization of dye-sensitized solar cell (DSSC) due to high expense and chemical corrosion by liquid electrolyte. In the current study, we have successfully realized the multistep deposition of platinum alloy CEs including PtNi, PtFe, and PtCo for liquid-junction DSSC applications. The preliminary results demonstrate that the enhanced electrochemical activities are attributable to high charge-transfer ability and matching work functions of the PtM (M = Ni, Fe, Co) alloy CEs to redox potential of I-/I3- electrolyte. The resultant DSSCs yield impressive power conversion efficiencies of 8.65%, 7.48%, and 7.08% with PtNi, PtFe, and PtCo CEs, respectively. On behalf of the competitive reactions between transition metals with liquid electrolyte, the PtM alloy CEs display enhanced long-term stability.

  12. Pt-Ni and Pt-Co Catalyst Synthesis Route for Fuel Cell Applications

    Science.gov (United States)

    Firdosy, Samad A.; Ravi, Vilupanur A.; Valdez, Thomas I.; Kisor, Adam; Narayan, Sri R.

    2013-01-01

    Oxygen reduction reactions (ORRs) at the cathode are the rate-limiting step in fuel cell performance. The ORR is 100 times slower than the corresponding hydrogen oxidation at the anode. Speeding up the reaction at the cathode will improve fuel cell efficiency. The cathode material is generally Pt powder painted onto a substrate (e.g., graphite paper). Recent efforts in the fuel cell area have focused on replacing Pt with Pt-X alloys (where X = Co, Ni, Zr, etc.) in order to (a) reduce cost, and (b) increase ORR rates. One of these strategies is to increase ORR rates by reducing the powder size, which would result in an increase in the surface area, thereby facilitating faster reaction rates. In this work, a process has been developed that creates Pt-Ni or Pt-Co alloys that are finely divided (on the nano scale) and provide equivalent performance at lower Pt loadings. Lower Pt loadings will translate to lower cost. Precursor salts of the metals are dissolved in water and mixed. Next, the salt mixtures are dried on a hot plate. Finally, the dried salt mixture is heattreated in a furnace under flowing reducing gas. The catalyst powder is then used to fabricate a membrane electrode assembly (MEA) for electrochemical performance testing. The Pt- Co catalyst-based MEA showed comparable performance to an MEA fabri cated using a standard Pt black fuel cell catalyst. The main objective of this program has been to increase the overall efficiencies of fuel cell systems to support power for manned lunar bases. This work may also have an impact on terrestrial programs, possibly to support the effort to develop a carbon-free energy source. This catalyst can be used to fabricate high-efficiency fuel cell units that can be used in space as regenerative fuel cell systems, and terrestrially as primary fuel cells. Terrestrially, this technology will become increasingly important when transition to a hydrogen economy occurs.

  13. The electrocatalytic properties of carbon supported PtRu/C nanoalloys in oxidation of small organic molecules: Comparison with Pt/C catalyst

    Directory of Open Access Journals (Sweden)

    Lović Jelena D.

    2012-01-01

    Full Text Available The electrocatalytic activity of carbon supported PtRu/C catalysts, with different composition, toward the electrooxidation of methanol, CO and formic acid were examined in acid and alkaline solution at ambient temperature using thin-film rotating disk electrode (RDE method and compared with activity of Pt/C. The catalysts were characterized by XRD, AFM and STM techniques. XRD pattern revealed that PtRu-1/C catalyst is consisted of two structures e.g. Pt-Ru-fcc and Ru-hcp (the solid solution of Ru in Pt and the small amount of Ru or solid solution of Pt in Ru, as opposed to PtRu-2/C catalyst which is consisted of one structure mostly, Pt-Ru-fcc. According to STM images, PtRu as well as Pt, particles size were between 2 and 6 nm, which is in a good agreement with the mean particles size determined by XRD. To establish the activity and stability of the catalysts potentiodynamic and quasi steady-state measurements were performed. It was found that the activity of Pt and PtRu for CO and methanol oxidation is a strong function of pH of solution. The kinetics are much higher in alkaline than in acid solution and the difference between Pt/C and PtRu/C is much less pronounced in alkaline media. Results presented in this work indicate that activity of PtRu catalysts depends on catalyst composition, e.g. on Pt/Ru atomic ratio, as well as on alloying degree of catalysts. Comparison of CO, methanol and formic acid oxidation on PtRu-2/C, PtRu-1/C and Pt/C catalysts revealed that PtRu-2/C is the most active one. It was shown that the PtRu-2/C catalyst, due to fact that it is consisted of only one phase, with high alloying degree, through the bifunctional mechanism improved by electronic effect, achieve the activity two times higher related to PtRu-1/C in the oxidation of all organic molecules investigated, and about three times higher compared to Pt/C in the oxidation of methanol and CO, and five times higher in formic acid oxidation.

  14. Chlorinated fluorine doped tin oxide electrodes with high work function for highly efficient planar perovskite solar cells

    Science.gov (United States)

    Deng, Li; Xie, Jiale; Wang, Baohua; Chen, Tao; Li, Chang Ming

    2017-06-01

    Perovskite solar cells (PSCs) demonstrate excellent high efficiencies over 20% and potential for a highly scalable manufacturing process. The work function of a transparent electrode (e.g., fluorine doped tin oxide, FTO) plays a critical role in the extraction and collection of electrons in PSCs. In this work, a chlorinated FTO (Cl-FTO) electrode with a high work function is used to fabricate a planar PSC at a low temperature of 100 °C with an optimal efficiency of 13.39% for a great improvement of 49% than plain FTO based cells. The change in the work function of FTO and Cl-FTO can reach up to 0.6 eV. The enhancement scientific insight is further explored, indicating that the increased work function of Cl-FTO provides well-matched energy levels between FTO and the CH3NH3PbI3 active material, facilitating the electron extraction and collection.

  15. A negative working potential supercapacitor electrode consisting of a continuous nanoporous Fe-Ni network

    Science.gov (United States)

    Xie, Yunsong; Chen, Yunpeng; Zhou, Yang; Unruh, Karl M.; Xiao, John Q.

    2016-06-01

    A new class of electrochemical electrodes operating in a negative voltage window has been developed by sintering chemically prepared Fe-Ni nanoparticles into a porous nanoscale mixture of an Fe-rich BCC Fe(Ni) phase and a Ni-rich FCC Fe-Ni phase. The selective conversion of the Fe-rich phase to hydroxides provides the electrochemically active component of the electrodes while the Ni-rich phase provides high conductivity and structural stability. The compositionally optimized electrodes exhibit a specific capacitance in excess of 350 F g-1 (all normalizations are to the total electrode mass rather than the much smaller electrochemically active mass) and retain more than 85% of their maximum specific capacitance after 2000 charging/discharging cycles. In addition to their inexpensive constituents, these electrodes are self-supporting and their thickness and mass loading density of about 65 μm and 20 mg cm-2 are compatible with the established manufacturing processes. This desirable combination of physical and electrochemical properties suggests that these electrodes may be useful as the negative electrode in high performance asymmetric supercapacitors.A new class of electrochemical electrodes operating in a negative voltage window has been developed by sintering chemically prepared Fe-Ni nanoparticles into a porous nanoscale mixture of an Fe-rich BCC Fe(Ni) phase and a Ni-rich FCC Fe-Ni phase. The selective conversion of the Fe-rich phase to hydroxides provides the electrochemically active component of the electrodes while the Ni-rich phase provides high conductivity and structural stability. The compositionally optimized electrodes exhibit a specific capacitance in excess of 350 F g-1 (all normalizations are to the total electrode mass rather than the much smaller electrochemically active mass) and retain more than 85% of their maximum specific capacitance after 2000 charging/discharging cycles. In addition to their inexpensive constituents, these electrodes are

  16. Magnetic circular dichroism in near-threshold photoemission from an ultrathin Co/Pt(111) film at variable work function

    Energy Technology Data Exchange (ETDEWEB)

    Hild, Kerstin; Schoenhense, Gerd; Elmers, Hans-Joachim [Institute of Physics, Johannes Gutenberg University, Mainz (Germany); Nakagawa, Takeshi; Yokoyama, Toshihiko [Institute for Molecular Science, Graduate University for Advanced Studies, Okazaki (Japan); Tarafder, Kartick; Oppeneer, Peter [Department of Physics and Materials Science, Uppsala University (Sweden)

    2011-07-01

    In order to disentangle the magnetic dichroism effect of the two excitation steps in a two-photon photoemission process (2PPE) we compare measurements at different work function for the same Co/Pt(111) sample. The work function {phi} is adjusted by Cs adsorption and the photon energy h{nu} by a tunable Ti:Sa femtosecond laser. For one-photon photoemission (1PPE) at h{nu} = 3 eV we measure an asymmetry of 6.2%. A 2PPE process at the same photon energy yields a value of 8.3%. This suggests the first step to be the major asymmetry creating process. A considerably larger asymmetry (17 %) is observed for 2PPE at h{nu} = 1.5 eV. The results are explained by interband transitions deviating from the direction of observation {gamma}-L. These MCD experiments suggest a paradigm shift from the classical model of photoemission that exclusively considers k parallel conserving emission processes.

  17. Fabrication, characterization of two nano-composite CuO-ZnO working electrodes for dye-sensitized solar cell.

    Science.gov (United States)

    Habibi, Mohammad Hossein; Karimi, Bahareh; Zendehdel, Mahmoud; Habibi, Mehdi

    2013-12-01

    Two kind of CuO-ZnO nanocomposite working electrodes were synthesized by sol-gel technology and applied in dye-sensitized solar cells (DSSCs). Their characteristics were studied by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and UV-Vis diffuse reflectance spectrum (DRS). CuO-ZnO nanocomposite thin films were prepared doctor blade technique on the fluorine-doped tin oxide (FTO) and used as working electrodes in dye sensitized solar cells (DSSC). Their photovoltaic behavior were compared with standard using D35 dye and an electrolyte containing [Co(bpy)3](PF6)2, [Co(pby)3](PF6)3, LiClO4, and 4-tert-butylpyridine (TBP). The ranges of short-circuit current (JSC) from 0.18 to 0.21 (mA/cm(2)), open-circuit voltage (VOC) from 0.24 to 0.55V, and fill factor from 0.34 to 0.39 were obtained for the DSSCs made using the working electrodes. The efficiency of the working electrodes after the addition of TBL was more than doubled. The light scattering and carrier transport properties of these composites promote the performance of dye-sensitized solar cells (DSSCs).

  18. Electrodeposited Pt and Pt-Sn nanoparticles on Ti as anodes for direct methanol fuel cells

    Institute of Scientific and Technical Information of China (English)

    Hanaa B HASSAN

    2009-01-01

    Electro-oxidation of methanol was studied on titanium supported nanocrystallite Pt and Ptx-Sny catalysts prepared by electrodeposition techniques. Their electro-catalytic activities were studied in 0.5mol/L H2SO4 and compared to those of a smooth Pt, Pt/Pt and Pt-Sn/Pt electrodes. Platinum was deposited on Ti by galvanostatic and potentiostatic techniques. X-ray diffractometer (XRD) and energy dispersive X-ray (EDX) techniques were applied in order to investigate the chemical composition and the phase structure of the modified electrodes. Scanning electron microscopy (SEM) was used to characterize the surface morphology and to correlate the results obtained from the two electrochemical deposition methods. Results show that modified Pt/Ti electrodes prepared by the two methods have comparable performance and enhanced catalytic activity towards methanol electro-oxidation compared to Pt/Pt and smooth Pt electrodes. Steady state Tafel plots experiments show a higher rate of methanol oxidation on a Pt/Ti catalyst than that on a smooth Pt. Introduction of a small amount of Sn deposited with Pt improves the catalytic activity and the stability of prepared electrode with time as indicated from the cyclic votlammetry and the chronoamperometric experiments. The effect of variations in the composition for binary catalysts of the type Ptx-Sny/Ti towards the methanol oxidation reaction is reported. Consequently, the Ptx-Sny/Ti (x∶y (8∶1), molar ratio) catalyst is a very promising one for methanol oxidation.

  19. Effect of conductive substrate (working electrode) on the morphology of electrodeposited Cu2O

    Science.gov (United States)

    ELmezayyen, Ayman S.; Guan, Shian; Reicha, Fikry M.; El-Sherbiny, Ibrahim M.; Zheng, jianming; Xu, Chunye

    2015-05-01

    Cu2O thin films were electrodeposited from a Cu(II) acetate solution containing 0.02 M Copper(II) acetate (Cu(OAc)2) and 0.1 M sodium acetate (NaOAc) at pH 5.6, using three different working conductive electrodes with approximately the same square resistance -indium doped tin oxide glass (ITO/Glass), fluorine-doped tin oxide glass (FTO/Glass), and indium doped tin oxide polyethylene terephthalate (ITO/PET)—under identical conditions using a common growth condition. The Cu2O thin films were characterized by means of scanning electron microscopy, x-ray diffraction (XRD), current density versus growth time for Cu2O films, and electrochemical impedance spectroscopy. The results showed that the choice of substrate materials has a crucial role in controlling Cu2O growth. The charge transfer resistance (Rct) of FTO/Glass-Cu2O exhibits the lowest value; this means that FTO/Glass-Cu2O possess the highest electron transfer efficiency. All Cu2O films showed n-type semiconductor characteristic with charge carrier densities varying between 1.4 × 1018-1.2 × 1019 cm-3.

  20. Oxygen reduction activity of Pt and Pt-alloys in acid electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Paulus, Ursula A. [Paul Scherrer Inst., CH-5232 Villigen PSI (Switzerland); Schmidt, Thomas J.; Stamenkovic, Vojislav R.; Markovic, Nenad M.; Ross, Philip N. [Material Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)

    2001-07-01

    The oxygen reduction reaction (ORR) has been studied on polycrystalline (pc) Pt, Pt{sub 3}Ni and Pt{sub 3}Co bulk alloy electrodes and on carbon supported Pt, PtNi and PtCo alloy catalysts. Base voltammetry measurements as well as complementary Auger Electron Spectroscopy (AES) and Low Energy Ion Scattering (LEIS) on bulk electrodes and High Resolution Transmission Electron Microscopy (HRTEM)-analysis on the supported catalysts allow an estimation of the surface composition. By using the rotating ring-disk electrode (RRDE) technique both the kinetic analysis of the ORR and in parallel the detection and quantification of the amount of peroxide produced during the ORR are possible. The activity for the ORR increases in the order Pt < Pt{sub 3}Ni < Pt{sub 3}Co for equally prepared bulk alloys and Pt < Pt{sub 3}Ni {approx} Pt{sub 3}CO < PtCo for the carbon supported catalysts, respectively. It was proposed that the mechanism for the ORR is the same on pure Pt and the PtNi and PtCo alloys. (author)

  1. Immobilization of flavin adenine dinucleotide (FAD) onto carbon cloth and its application as working electrode in an electroenzymatic bioreactor.

    Science.gov (United States)

    Jayabalan, R; Sathishkumar, M; Jeong, E S; Mun, S P; Yun, S E

    2012-11-01

    A high porosity carbon cloth with immobilized FAD was employed as working electrode in electrochemical NADH-regeneration procedure. Carbon cloth was oxidized with hot acids to create surface carboxyl group and then coupled by adenine amino group of FAD with carbodiimide in the presence of N-hydroxysulfosuccinimide. The bioelectrocatalytic NADH-regeneration was coupled to the conversion of achiral substrate pyruvate into chiral product l-lactate by l-lactate dehydrogenase (l-LDH) within the same reactor. The conversion was completed at 96h in bioreactor with FAD-modified carbon cloth, resulting in about 6mM of l-lactate from 10mM of pyruvate. While with bare carbon cloth, the yield at 120h was around 5mM. Immobilized FAD on the surface of carbon cloth electrode facilitated it to carry electrons from electrode to electron transfer enzymes; thereby NADH-regeneration was accelerated to drive the enzymatic reaction efficiently.

  2. Electrodeposition of uranium and thorium onto small platinum electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Reichenberger, Michael A., E-mail: mar89@ksu.edu [S.M.A.R.T. Laboratory, Mechanical and Nuclear Engineering Dept., Kansas State University, Manhattan, KS 66506 (United States); Ito, Takashi [Department of Chemistry, Kansas State University, 213 CBC Building, Manhattan, KS 66506-0401 (United States); Ugorowski, Philip B.; Montag, Benjamin W.; Stevenson, Sarah R.; Nichols, Daniel M.; McGregor, Douglas S. [S.M.A.R.T. Laboratory, Mechanical and Nuclear Engineering Dept., Kansas State University, Manhattan, KS 66506 (United States)

    2016-03-11

    Preparation of thin U- and Th-coated 0.3 mm diameter Pt working electrodes by the cyclic potential sweep method is described. Uranyl- and thorium hydroxide layers were electrodeposited from ethanol solutions containing 0.02 M natural uranyl and 0.02 M natural thorium nitrate, each with 3.6 M ammonium nitrate. The cell for electrodeposition was specially developed in order to accommodate the small working electrodes for this research by including a working electrode probe, 3-D translation stage, and microscope. The source material deposition was analyzed using digital microscopy and scanning electron microscopy, and confirmed using x-ray fluorescence measurements. The appropriate potential range for electrodeposition was determined to be −0.62 V to −0.64 V for a 0.3 mm diameter Pt working electrode placed 1 cm from the counter electrode. Smooth, uniform deposition was observed near the central region of the working electrode, while surface cracking and crystalline formations were found near the edge of the working electrode. The final procedure for sample substrate preparation, electrolytic solution preparation and electrodeposition are described.

  3. Electrodeposition of uranium and thorium onto small platinum electrodes

    Science.gov (United States)

    Reichenberger, Michael A.; Ito, Takashi; Ugorowski, Philip B.; Montag, Benjamin W.; Stevenson, Sarah R.; Nichols, Daniel M.; McGregor, Douglas S.

    2016-03-01

    Preparation of thin U- and Th-coated 0.3 mm diameter Pt working electrodes by the cyclic potential sweep method is described. Uranyl- and thorium hydroxide layers were electrodeposited from ethanol solutions containing 0.02 M natural uranyl and 0.02 M natural thorium nitrate, each with 3.6 M ammonium nitrate. The cell for electrodeposition was specially developed in order to accommodate the small working electrodes for this research by including a working electrode probe, 3-D translation stage, and microscope. The source material deposition was analyzed using digital microscopy and scanning electron microscopy, and confirmed using x-ray fluorescence measurements. The appropriate potential range for electrodeposition was determined to be -0.62 V to -0.64 V for a 0.3 mm diameter Pt working electrode placed 1 cm from the counter electrode. Smooth, uniform deposition was observed near the central region of the working electrode, while surface cracking and crystalline formations were found near the edge of the working electrode. The final procedure for sample substrate preparation, electrolytic solution preparation and electrodeposition are described.

  4. Fabrication and Optimization of a Nanoporous Platinum Electrode and a Non-enzymatic Glucose Micro-sensor on Silicon

    Directory of Open Access Journals (Sweden)

    Younghun Kim

    2008-10-01

    Full Text Available In this paper, optimal conditions for fabrication of nanoporous platinum (Pt were investigated in order to use it as a sensitive sensing electrode for silicon CMOS integrable non-enzymatic glucose micro-sensor applications. Applied charges, voltages, and temperatures were varied during the electroplating of Pt into the formed nonionic surfactant C16EO8 nano-scaled molds in order to fabricate nanoporous Pt electrodes with large surface roughness factor (RF, uniformity, and reproducibility. The fabricated nanoporous Pt electrodes were characterized using atomic force microscopy (AFM and electrochemical cyclic voltammograms. Optimal electroplating conditions were determined to be an applied charge of 35 mC/mm2, a voltage of -0.12 V, and a temperature of 25 °C, respectively. The optimized nanoporous Pt electrode had an electrochemical RF of 375 and excellent reproducibility. The optimized nanoporous Pt electrode was applied to fabricate non-enzymatic glucose micro-sensor with three electrode systems. The fabricated sensor had a size of 3 mm x 3 mm, air gap of 10 µm, working electrode (WE area of 4.4 mm2, and sensitivity of 37.5 µA•L/mmol•cm2. In addition, it showed large detection range from 0.05 to 30 mmolL-1 and stable recovery responsive to the step changes in glucose concentration.

  5. ANALISA ELECTRODE CONSUMABLE TYPE OK AUTROD 12.10 PENGELASAN SUBMERGED ARC WELDING PADA BLOK-BLOK KAPAL DCV 18500 DWT DI PT. JASA MARINA INDAH UNIT II SEMARANG

    Directory of Open Access Journals (Sweden)

    Sukanto Jatmiko

    2012-07-01

    Full Text Available In this globalization era technological advances growed very fast. In shipping industry of development process shipbuilding of principal feedstock to used steel plate, with construction tacking on using welder method.In this research purpose of lifted is know number of requirement (consumable electrode for welder SAW at block-block ship DCV 18500 DWT in PT. Jasa Marina Indah Semarang.At this experiment specimen applied is low carbon steel of type ST 42 with thickness of 12, 13, 14, 17, 19 dan 24 mm. Research is done by the way of making specimen at every plate thickness. Then is done path measurement of length, used electrode length, and weight flux applied at the welder.From result of gauging and data calculation welder at block DB 5(p/c/s, SS5A(p/s, SS 5B(p/s, UD 5C, and TB 102 (p/c/s will be known number of electrodes applied in welder SAW and number of flux used.

  6. Improved Stress Reliability of Analog TiHfO Metal-Insulator-Metal Capacitors Using High-Work-Function Electrode

    Science.gov (United States)

    Cheng, Chun-Hu; Chiang, Kuo-Cheng; Pan, Han-Chang; Hsiao, Chien-Nan; Chou, Chang-Pin; McAlister, Sean P.; Chin, Albert

    2007-11-01

    We have studied the reliability of high-κ (κ ˜ 49) TixHf1-xO (x ˜ 0.67) metal-insulator-metal (MIM) capacitors after constant voltage stress induction. The use of a high-work-function Ni top electrode improves not only the leakage current, and temperature- and voltage-coefficients of capacitance, but also the long-term capacitance variation after stress induction.

  7. Effect of interfacial structures on spin dependent tunneling in epitaxial L1{sub 0}-FePt/MgO/FePt perpendicular magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Yang, G.; Li, D. L.; Wang, S. G., E-mail: Sgwang@iphy.ac.cn; Ma, Q. L.; Liang, S. H.; Wei, H. X.; Han, X. F. [State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Hesjedal, T.; Ward, R. C. C. [Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Kohn, A.; Elkayam, A.; Tal, N. [Department of Materials Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Zhang, X.-G. [Department of Physics and Quantum Theory Project, University of Florida, Gainesville, Florida 32611 (United States); Center for Nanophase Materials Sciences and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6493 (United States)

    2015-02-28

    Epitaxial FePt(001)/MgO/FePt magnetic tunnel junctions with L1{sub 0}-FePt electrodes showing perpendicular magnetic anisotropy were fabricated by molecular beam epitaxial growth. Tunnel magnetoresistance ratios of 21% and 53% were obtained at 300 K and 10 K, respectively. Our previous work, based on transmission electron microscopy, confirmed a semi-coherent interfacial structure with atomic steps (Kohn et al., APL 102, 062403 (2013)). Here, we show by x-ray photoemission spectroscopy and first-principles calculation that the bottom FePt/MgO interface is either Pt-terminated for regular growth or when an Fe layer is inserted at the interface, it is chemically bonded to O. Both these structures have a dominant role in spin dependent tunneling across the MgO barrier resulting in a decrease of the tunneling magnetoresistance ratio compared with previous predictions.

  8. An Analysis of Laser-Welded Nicr-Ir and Nicr-Pt Micro Joints on Spark Plug Electrodes in Biogas-Fuelled Engines

    Directory of Open Access Journals (Sweden)

    Grabas B.

    2016-06-01

    Full Text Available The paper deals with the laser beam welding of tips to central and side spark plug electrodes made of a nickel-chromium alloy. The tips attached to the central electrodes were made from a solid iridium wire 0.8 mm in diameter and 2 mm in length, while the tips connected to the side electrodes were made from a platinum wire 1.5 mm in diameter and 0.25 mm in thickness. In both cases, accurate positioning of the tips was required before they were resistance welded to the electrodes. Then, a fillet weld was produced with an Nd:YAG laser using single, partly overlapping conductive pulses. The laser welding was performed at different laser power levels and pulse durations. Metallographic sections of the joints were prepared to observe changes in the microstructure and determine their correlation with the changes in the process parameters. The results were used to select appropriate welding parameters for the materials joined. The microscopic analysis indicated welding imperfections such as micro cracks at the interface between the elements joined. The tips welded to the spark plug electrodes can help extend the service life of spark plugs in highly corrosive environments.

  9. New tetradecyltrimethylammonium-selective electrodes: surface composition and topography as correlated with electrode's life span.

    Science.gov (United States)

    Marafie, Hayat M; Al-Shammari, Tahani F; Shoukry, Adel F

    2012-03-15

    Two conventional plastic membrane electrodes that are selective for the tetradecyltrimethylammonium cation (TTA) have been prepared. The ion exchangers of these sensors were the ion associate, TTA-PT, and the ion aggregate, TTA-PSS, where PT and PSS are phosphotungstate and polystyrene sulfonate, respectively. The following performance characteristics of the TTA-PT- and TTA-PSS-containing electrodes were found: conditioning time of 30 and 20 min; potential response of 58.2 and 61.1 mV/TTA concentration decade; rectilinear concentration ranges of 2.0 × 10(-5)-5.0 × 10(-2) and 1.5 × 10(-5)-7.9 × 10(-2) mol L(-1); average working pH ranges of 4.0-10.5 and 3.8-10.7; life spans of 20 and 28 weeks, and isothermal temperature coefficients of 4.44 × 10(-4) and 6.10 × 10(-4)V/°C, respectively. Both electrodes exhibited high selectivity for TTA with an increasing number of inorganic and quaternary ammonium surfactant cations. These electrodes have been successfully applied to assay an antiseptic formulation containing TTA. Surface analyses using electron microscopy and X-ray photoelectron spectroscopy were used to determine the cause of the limited life span of plastic membrane electrodes.

  10. Mathematical modelling of a single-line flow-injection analysis systems with single-layer enzyme electrode detection. Pt. 3; Experimental verification of the model

    Energy Technology Data Exchange (ETDEWEB)

    Kolev, S.D. (Sofia Univ. (Bulgaria). Khimicheski Fakultet); Nagy, Geza; Pungor, Ernoe (Budapesti Mueszaki Egyetem, Budapest (Hungary). Altalanos es Analitikai Kemia Tanszek)

    1991-11-20

    Glucose and urea electrodes, prepared by two different enzyme immobilization techniques and used as detectors in a single-line flow-injection manifold, were experimentally investigated for elucidating the influence of their most important parameters, i.e., the initial substrate concentration in the sample, the enzyme concentration in the reaction layer and its thickness and the buffer concentration, on the output signal. The results obtained were compared with the theoretical predictions based on simulations of the model for single-line flow-injection systems with single-layer enzyme electrode detection. The good qualitative agreement which was observed is a convincing experimental verification of this model and the guidelines for the production of flow-through biocatalytic electrodes with optimum design based upon it. (author). 12 refs.; 6 figs.

  11. Binary platinum alloy electrodes for hydrogen and oxygen evolutions by seawater splitting

    Science.gov (United States)

    Zheng, Jingjing

    2017-08-01

    Hydrogen and oxygen evolutions by seawater splitting are persistent objectives for green energy production. We present here the experimental realization of Ti foil supported PtM (M = Fe, Co, Ni, Pd) alloy electrodes by a cycle voltammetry method for seawater splitting. The preliminary results demonstrate that the resultant Ti supported PtM alloy electrodes are robust in realizing high-efficiency hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), arising from enhanced current density, reduced potential, and good durability. By tuning M species, the Ti supported PtPd alloy electrode displays a maximal efficiency, yielding an onset potential of -52 mV and 690 mV (vs RHE) in HER and OER, respectively. The current densities of Ti supported PtPd electrode are as high as 270 mA cm-2 at 1.32 V (vs RHE) and 590 mA cm-2 at 3.99 V (vs RHE). Moreover, the long-term stability has also been increased by alloying Pt with M. Although the work presented here is far from optimized, the concept of alloying transition metals with Pt can guide us to design highly efficient alloy electrodes for hydrogen and oxygen evolutions from seawater splitting.

  12. Electrochemical Oxidation of Cyanide Using Platinized Ti Electrodes

    Directory of Open Access Journals (Sweden)

    Aušra VALIŪNIENĖ

    2013-12-01

    Full Text Available The cyanide-containing effluents are dangerous ecological hazards and must be treated before discharging into the environment. Anodic oxidation is one of the best ways to degrade cyanides. Pt anodes as the most efficient material for the cyanide electrochemical degradation are widely used. However, these electrodes are too expensive for industrial purposes. In this work Ti electrodes covered with nano-sized Pt particle layer were prepared and used for the anodic oxidation of cyanide ions. Surface images of Ti electrodes and Ti electrodes covered with different thickness layer of Pt were compared and characterized by the atomic force microscopy (AFM. The products formed in the solution during the CN- ions electrooxidation were examined by the Raman spectroscopy. An electrochemical Fast Fourier transformation (FFT impedance spectroscopy was used to estimate the parameters that reflect real surface roughness of Pt-modified Ti electrodes.DOI: http://dx.doi.org/10.5755/j01.ms.19.4.2514

  13. New method for characterizing electron mediators in microbial systems using a thin-layer twin-working electrode cell.

    Science.gov (United States)

    Hassan, Md Mahamudul; Cheng, Ka Yu; Ho, Goen; Cord-Ruwisch, Ralf

    2017-01-15

    Microbial biofilms are significant ecosystems where the existence of redox gradients drive electron transfer often via soluble electron mediators. This study describes the use of two interfacing working electrodes (WEs) to simulate redox gradients within close proximity (250µm) for the detection and quantification of electron mediators. By using a common counter and reference electrode, the potentials of the two WEs were independently controlled to maintain a suitable "voltage window", which enabled simultaneous oxidation and reduction of electron mediators as evidenced by the concurrent anodic and cathodic currents, respectively. To validate the method, the electrochemical properties of different mediators (hexacyanoferrate, HCF, riboflavin, RF) were characterized by stepwise shifting the "voltage window" (ranging between 25 and 200mV) within a range of potentials after steady equilibrium current of both WEs was established. The resulting differences in electrical currents between the two WEs were recorded across a defined potential spectrum (between -1V and +0.5V vs. Ag/AgCl). Results indicated that the technique enabled identification (by the distinct peak locations at the potential scale) and quantification (by the peak of current) of the mediators for individual species as well as in an aqueous mixture. It enabled a precise determination of mid-potentials of the externally added mediators (HCF, RF) and mediators produced by pyocyanin-producing Pseudomonas aeruginosa (WACC 91) culture. The twin working electrode described is particularly suitable for studying mediator-dependent microbial electron transfer processes or simulating redox gradients as they exist in microbial biofilms.

  14. The effects of electron and hole transport layer with the electrode work function on perovskite solar cells

    Science.gov (United States)

    Deng, Quanrong; Li, Yiqi; Chen, Lian; Wang, Shenggao; Wang, Geming; Sheng, Yonglong; Shao, Guosheng

    2016-09-01

    The effects of electron and hole transport layer with the electrode work function on perovskite solar cells with the interface defects were simulated by using analysis of microelectronic and photonic structures-one-dimensional (AMPS-1D) software. The simulation results suggest that TiO2 electron transport layer provides best device performance with conversion efficiency of 25.9% compared with ZnO and CdS. The threshold value of back electrode work function for Spiro-OMeTAD, NiO, CuI and Cu2O hole transport layer are calculated to be 4.9, 4.8, 4.7 and 4.9 eV, respectively, to reach the highest conversion efficiency. The mechanisms of device physics with various electron and hole transport materials are discussed in details. The device performance deteriorates gradually as the increased density of interface defects located at ETM/absorber or absorber/HTM. This research results can provide helpful guidance for materials and metal electrode choice for perovskite solar cells.

  15. Barium Staminate as Semiconductor Working Electrodes for Dye-Sensitized Solar Cells

    OpenAIRE

    Fu-an Guo; Guoqiang Li; Weifeng Zhang

    2010-01-01

    Dye-sensitized solar cells (DSSCs) are fabricated with perovskite-type BaSnO3 as the photoelectrode materials. Different preparation methods including coprecipitation, hydrothermal, and solid state reaction are employed to synthesize BaSnO3 particles to optimize the photoelectric activities of electrode materials. The photoelectric properties of BaSnO3 particles and the performances of DSSCs are investigated by surface photovoltage spectroscopy and current-voltage measurements. The light-to-e...

  16. Identical locations transmission electron microscopy study of Pt/C electrocatalyst degradation during oxygen reduction reaction

    DEFF Research Database (Denmark)

    Pérez Alonso, Francisco; Elkjær, Christian Fink; Shim, Signe Sarah

    2011-01-01

    The degradation mechanisms of Pt nanoparticles supported on Carbon have been characterized during oxygen reduction reaction (ORR) conditions using IL-TEM. A TEM grid is used as the sole working electrode allowing a direct correlation between the electrochemical response and the TEM analysis. We...

  17. Spontaneous deposition of Ru on Pt (100: morphological and electrochemical studies. Preliminary results of ethanol oxidation at Pt(100/Ru

    Directory of Open Access Journals (Sweden)

    Colle Vinicius D.

    2003-01-01

    Full Text Available In the present work ruthenium was deposited in submonolayer amounts on Pt(100 by spontaneous deposition at several deposition times. The Pt (100/Ru surfaces were analyzed using ex-situ STM to image the deposits characteristic of ruthenium on Pt (100. It was observed the formation of ruthenium islands with diameters between 1.0 and 4.5 nm with bi-atomic thickness in the center of the islands. A homogeneous distribution of the ruthenium islands on the platinum terraces was found, with no preferential deposition on steps or surface defect sites. The ruthenium coverage degree had been calculated by the decrease of charge of the hydrogen adsorption-desorption peaks in the cyclic voltammograms of the Pt(100/Ru electrodes. The Pt(100/Ru electrodes with a ruthenium coverage degree of ca. 0.3 showed a high activity for the ethanol electrooxidation. The electrochemical experimental results support strongly the bifunctional mechanism for the enhanced ethanol oxidation.

  18. Model electrochemical interfaces in ultra-high vacuum: solvent-induced surface potential profiles on Pt(111) from work-function measurements and infrared Stark effects

    Science.gov (United States)

    Kizhakevariam, Naushad; Villegas, Ignacio; Weaver, Michael J.

    1995-08-01

    The influence of various solvents upon the interfacial-potential profile on Pt(111) has been investigated by means of work-function changes and infrared frequency Stark shifts attending sequential-molecular dosing in ultra-high vacuum (UHV) at a suitably low temperature (ca. 100 K) with the primary objective of assessing the role of surface solvation in related electrochemical systems. The solvents examined — dichloromethane, benzene, acetone, acetonitrile, methanol, and ammonia — span a range of polarity and other solvating properties. These species were dosed onto both clean and CO-saturated Pt(111), the Stark shifts being evaluated for the CO stretching mode of terminally co-ordinated carbon monoxide. Marked decreases (≥ 1 eV) in the work function, Φ, and hence in the surface potential, φ, are observed on the addition of most solvents onto clean Pt(111). Milder yet still substantial Φ decreases are also observed for solvent dosage upon CO-saturated Pt(111). These latter Φ changes correlate approximately with the observed vCO frequency downshifts, suggesting that the latter property is also sensitive to the solvent-induced electrostatic interfacial field. The functional form of both the Φ decreases and the corresponding vCO frequency downshifts induced by solvent dosage provide insight into the dosage-dependent potential profile and its relationship to both the monolayer and multilayer solvent structure. The present findings are also briefly compared with corresponding vtCO - Φ data obtained for potassium atom dosing, where the surface potential is altered instead by varying the surface electronic charge in the presence of a given solvent. The underlying factors responsible for the surprisingly large solvent-induced surface potential shifts are discussed in detail, and the likely importance of the surface electronic charge distribution as well as solvent dipole orientation and adsorbate-metal charge sharing is pointed out.

  19. A serial dual-electrode detector based on electrogenerated bromine for capillary electrophoresis.

    Science.gov (United States)

    Du, Fuying; Cao, Shunan; Fung, Ying-Sing

    2014-12-01

    A new serial dual-electrode detector for CE has been designed and fabricated for postcolumn reaction detection based on electrogenerated bromine. A coaxial postcolumn reactor was employed to introduce bromide reagent and facilitate the fabrication of upstream generation electrode by simply sputtering Pt film onto the outer surface of the separation capillary. Bromide introduced could be efficiently converted to bromine at this Pt film electrode and subsequently detected by the downstream Pt microdisk detection electrode. Analytes that react with bromine could be determined by the decrease of bromine reduction current at the downstream electrode resulting from the reaction between analytes and bromine. The effects of serial dual-electrode detector working conditions including electrode potentials, bromide flow rate, and bromide concentration on analytical performance were investigated using glutathione (GSH) and glutathione disulfide (GSSG) as test analytes. Under the optimal conditions, detection limits down to 0.16 μM for GSH and 0.14 μM for GSSG (S/N = 3) as well as linear working ranges of two orders of magnitude for GSH and GSSG were achieved. Furthermore, the separation efficiency obtained by our dual-electrode detector design was greatly improved compared with previous reported design. The developed method has been successfully applied to determine the GSH and GSSG impurity in commercial GSH supplement.

  20. Characterization of Hierarchical α-MoOsub>3sub> Plates Toward Resistive Heating Synthesis: Electrochemical Activity of α-MoOsub>3sub>/Pt Modified Electrode Toward Methanol Oxidation in Neutral pH.

    Science.gov (United States)

    Filippo, Emanuela; Baldassarre, Francesca; Tepore, Marco; Guascito, Maria Rachele; Chirizzi, Daniela; Tepore, Antonio

    2017-03-20

    The growth of MoOsub>3sub> hierarchical plates was obtained by direct resistive heating of molybdenum foil at ambient pressure in absence of any catalysts and templates. Plates synthesized after 60 min resistive heating typically growth in an single-crystalline orthorhombic structure that develop preferentially in [001] direction, as characterized by HRTEM, SAD and Raman-scattering measurements. They are about 100-200nm in thickness and a few tens micrometers in length. As heating time proceeds to 80 min, plates of α-MoOsub>3sub> form a branched structure. A more attentive look shows that a primary plates formed at until 60 min could serve as substrates for the subsequent growth of secondary belts. Moreover, a full electrochemical characterization of α-MoOsub>3sub> plates on platinum electrodes was done by Cyclic Voltammetric experiments, at pH 7 in phosphate buffer, to probe the activity of the proposed composite material as anode to methanol electrooxidation. Reported results indicate that Pt MoOsub>3sub> modified electrodes are appropriate to develop new amperometric non-enzymatic sensor for methanol measurements and as anode in Direct Methanol Fuel Cells (DMFCs) making at neutral pH.

  1. Using nanostructured conductive carbon tape modified with bismuth as the disposable working electrode for stripping analysis in paper-based analytical devices.

    Science.gov (United States)

    Feng, Qiu-Mei; Zhang, Qing; Shi, Chuan-Guo; Xu, Jing-Juan; Bao, Ning; Gu, Hai-Ying

    2013-10-15

    Low cost disposable working electrodes are specifically desired for practical applications of electrochemical detection considering maturity of electrochemical stations and data collection protocols. In this paper double-sided conductive adhesive carbon tape with nanostructure was applied to fabricate disposable working electrodes. Being supported by indium tin oxide glass, the prepared carbon tape electrodes were coated with bismuth film for stripping analysis of heavy metal ions. By integrating the bismuth modified electrodes with paper-based analytical devices, we were able to differentiate Zn, Cd and Pb ions with the sample volume of around 15 μL. After the optimization of parameters, including modification of bismuth film and the area of the electrodes, etc., Pb ions could be measured in the linear range from 10 to 500 μg/L with the detection limit of 2 μg/L. Our experimental results revealed that the disposable modified electrodes could be used to quantify migrated lead from toys with the results agreed well with that using atomic absorption spectrometry. Although bismuth modification and stripping analysis could be influenced by the low conductivity of the carbon tape, the low cost disposable carbon tape electrodes take the advantages of large-scaled produced double-sided carbon tape, including its reproducible nanostructure and scaled-up fabrication process. In addition, the preparation of disposable electrodes avoids time-consuming pretreatment and experienced operation. This study implied that the carbon tape might be an alternative candidate for practical applications of electrochemical detection.

  2. High-throughput in vitro assay to evaluate the cytotoxicity of liberated platinum compounds for stimulating neural electrodes.

    Science.gov (United States)

    Kovach, Kyle M; Kumsa, Doe W; Srivastava, Vishnupriya; Hudak, Eric M; Untereker, Darrel F; Kelley, Shawn C; von Recum, Horst A; Capadona, Jeffrey R

    2016-11-01

    It is currently unclear how the platinum (Pt) species released from platinum-containing stimulating electrodes may affect the health of the surrounding tissue. This study develops an effective system to assess the cytotoxicity of any electrode-liberated Pt over a short duration, to screen systems before future in vivo testing. A platinum electrode was stimulated for two hours under physiologically relevant conditions to induce the liberation of Pt species. The total concentration of liberated Pt species was quantified and the concentration found was used to develop a range of Pt species for our model system comprised of microglia and neuron-like cells. Under our stimulation conditions (k=2.3, charge density of 57.7μC/cm(2)), Pt was liberated to a concentration of 1ppm. Interestingly, after 24h of Pt exposure, the dose-dependent cytotoxicity plots revealed that cell death became statistically significant at 10ppm for microglia and 20ppm for neuronal cells. However, in neuron-like cell cultures, concentrations above 1ppm resulted in significant neurite loss after 24h. To our knowledge, there does not exist a simple, in vitro assay system for assessing the cytotoxicity of Pt liberated from stimulating neural electrodes. This work describes a simple model assay that is designed to be applicable to almost any electrode and stimulation system where the electrode is directly juxtaposed to the neural target. Based on the application, the duration of stimulation and Pt exposure may be varied. Published by Elsevier B.V.

  3. Evaluation of the behavior of PtPd/MWCNT electrocatalysts as ethylene glycol-tolerant electrodes for oxygen oxidation reaction (ORR); Evaluacion del comportamiento de electrocatalizadores tipo PtPd/MWCNT como electrodos para la reaccion de oxidacion del oxigeno (ORR) tolerantes al etilenglicol

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Acosta, D.; Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Pedro Escobedo, Queretaro (Mexico)]. E-mail: dmorales@cideteq.mx; Alvarez-Contreras, L. [Centro de Investigacion en Materiales Avanzados S. C., Chihuahua, Chihuahua (Mexico); Fraire Luna, S.; Rodriguez Varela, F.J. [Cinvestav, Unidad Saltillo, Ramos Arizpe, Coahuila, (Mexico)

    2009-09-15

    Pt-Pd/MWCNTs (atomic ratio Pt:Pd 43:57) and Pt/MWCNTs electrocatalysts were synthesized and evaluated as cathodes for oxygen reduction reaction (ORR) with the application of direct ethylene glycol fuel cells (DEGFC). A commercial PtC material was also evaluated as a reference. It was found that Pt-Pd/MWCNT has a capability for high tolerance to ethylene glycol (EG) and higher selectivity for ORR compared to a single Pt- cathode. As a result, the change in onset potential of the ORR, Eonset, in Pt-Pd/MWCNTs was considerably less than the change in Pt/MWCNTs or Pt/C. The average particle size (XRD) was 3.5nm and 4nm for Pt/MWCNTs and Pt-Pd/MWCNTs, respectively. A moderate degree of alloying was determined for the material. The application of Pt-Pd electrocatalysts in DEGFCs should be advantageous. [Spanish] Electrocatalizadores Pt-Pd/MWCNTs (relacion atomic Pt:Pd 43:57) y Pt/MWCNTs fueron sintetizados y evaluados como catodos para la reaccion de reduccion del oxigeno (ORR) con aplicacion del celdas de consumo directo de etilenglicol (Direct Ethylene Glycol Fuel Cells, o DEGFC). Como referencia, un material comercial tipo Pt/C fue tambien evaluado. Se encontro que Pt-Pd/MWCNTs tiene una alta capacidad de tolerancia al etilenglicol (EG) y una selectividad mayor hacia la ORR comparado con el catodo basado en Pt-solo. Como resultado, el cambio en potencial de inicio de la ORR, Eonset, en Pt-Pd/MWCNTs fue considerablemente menor que el cambio en Pt/MWCNTs o Pt/C. La talla de particula promedio (de XRD) fue 3.5 nm y 4 nm para Pt/MWCNTs y Pt-Pd/MWCNTs, respectivamente. Un moderado grado de aleacion fue determinado para el material. Una aplicacion ventajosa para electrocatalizadores tipo Pt-Pd debe ser en DEGFCs.

  4. Barium Staminate as Semiconductor Working Electrodes for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Fu-an Guo

    2010-01-01

    Full Text Available Dye-sensitized solar cells (DSSCs are fabricated with perovskite-type BaSnO3 as the photoelectrode materials. Different preparation methods including coprecipitation, hydrothermal, and solid state reaction are employed to synthesize BaSnO3 particles to optimize the photoelectric activities of electrode materials. The photoelectric properties of BaSnO3 particles and the performances of DSSCs are investigated by surface photovoltage spectroscopy and current-voltage measurements. The light-to-electricity conversion of 1.1% is preliminarily reached on the DSSC made of the coprecipitation-derived BaSnO3 particles. Large current density of hole injection into the HOMO level of N719 dye from the valence band of BaSnO3 and reduced photogenerated charge recombination in BaSnO3 could be responsible for the observed solar cell performance of the DSSC fabricated from the coprecipitation-derived BaSnO3 particles.

  5. Predicting Reaction Mechanisms and Potentials in Acid and Base from Self-Consistent Quantum Theory: H(ads) and OH(ads) Deposition on the Pt(111) Electrode.

    Science.gov (United States)

    Zhao, Meng; Anderson, Alfred B

    2016-02-18

    It has been shown recently that when reactants and products are well modeled within a comprehensive self-consistent theory for the electrochemical interface, accurate predictions are possible for reversible potentials, Urev, in acid electrolyte for reactions such as reduction of H(+)(aq) to form under potential deposited H(ads) and oxidation of an OH bond of H2O(ads) to deposit OH(ads). Predictions are based on calculated Gibbs energies for the reactant and product being equal at the reversible potential, which is the potential at the crossing point for reaction and product Gibbs energies, plotted as functions of electrode potential. In this Letter, it is demonstrated that the same capability holds for these reactions in basic electrolyte. This demonstration opens up the opportunity for predictions of reversible potentials and mechanisms for other electrocatalytic reactions in base.

  6. Preparation of a Counter Electrode with P-Type NiO and Its Applications in Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Chuen-Shii Chou

    2010-01-01

    Full Text Available This study investigates the applicability of a counter electrode with a P-type semiconductor oxide (such as NiO on a dye-sensitized solar cell (DSSC. The counter electrode is fabricated by depositing an NiO film on top of a Pt film, which has been deposited on a Fluorine-doped tin oxide (FTO glass using an ion-sputtering coater (or E-beam evaporator, using a simple spin coating method. This study also examines the effect of the average thickness of TiO2 film deposited on a working electrode upon the power conversion efficiency of a DSSC. This study shows that the power conversion efficiency of a DSSC with a Pt(E/NiO counter electrode (4.28% substantially exceeds that of a conventional DSSC with a Pt(E counter electrode (3.16% on which a Pt film was deposited using an E-beam evaporator. This result is attributed to the fact that the NiO film coated on the Pt(E counter electrode improves the electrocatalytic activity of the counter electrode.

  7. The development of chloride ion selective polypyrrole thin film on a layer-by-layer carbon nanotube working electrode

    Science.gov (United States)

    Liu, Yang; Lynch, Jerome

    2011-04-01

    A chloride ion selective thin film sensor is proposed for measuring chloride ion concentration, which is an environmental parameter correlated to corrosion. In this work, electrochemical polymerization of Polypyrrole (PPy) doped with chloride ions was achieved on the top of a carbon nanotube (CNT) thin film as a working electrode in an electrochemical cell. The underlying CNT layer conjugated with doped PPy thin film can form a multifunctional "selfsensing" material platform for chloride ion detection in a concrete environment. The paper presents the first type of work using CNT and PPy as hybrid materials for chloride ion sensing. Electrochemical polymerization of PPy results in oxidation that yields an average of one positive charge distributed over four pyrrole units. This positive charge is compensated by negatively-charged chloride ions in the supporting electrolyte. In effect, the chloride ion-doped PPy has become molecularly imprinted with chloride ions thereby providing it with some degree of perm-selectivity for chloride ions. The detection limit of the fabricated chloride ion-doped PPy thin film can reach 10-8 M and selectivity coefficients are comparable to those in the literature. The reported work aims to lay a strong foundation for detecting chloride ion concentrations in the concrete environment.

  8. Performance enhancement of Pt/TiO2/Si UV-photodetector by optimizing light trapping capability and interdigitated electrodes geometry

    Science.gov (United States)

    Bencherif, H.; Djeffal, F.; Ferhati, H.

    2016-09-01

    This paper presents a hybrid approach based on an analytical and metaheuristic investigation to study the impact of the interdigitated electrodes engineering on both speed and optical performance of an Interdigitated Metal-Semiconductor-Metal Ultraviolet Photodetector (IMSM-UV-PD). In this context, analytical models regarding the speed and optical performance have been developed and validated by experimental results, where a good agreement has been recorded. Moreover, the developed analytical models have been used as objective functions to determine the optimized design parameters, including the interdigit configuration effect, via a Multi-Objective Genetic Algorithm (MOGA). The ultimate goal of the proposed hybrid approach is to identify the optimal design parameters associated with the maximum of electrical and optical device performance. The optimized IMSM-PD not only reveals superior performance in terms of photocurrent and response time, but also illustrates higher optical reliability against the optical losses due to the active area shadowing effects. The advantages offered by the proposed design methodology suggest the possibility to overcome the most challenging problem with the communication speed and power requirements of the UV optical interconnect: high derived current and commutation speed in the UV receiver.

  9. Immobilization of lysine oxidase on a gold-platinum nanoparticles modified Au electrode for detection of lysine.

    Science.gov (United States)

    Chauhan, N; Narang, J; Sunny; Pundir, C S

    2013-04-10

    A commercial lysine oxidase (LyOx) from Trichoderma viride was immobilized covalently onto gold nanoparticles (AuNPs) and platinum nanoparticles (PtNPs) electrodeposited onto Au electrode using 3-aminopropyltriethoxy silane (3-APTES) and glutaraldehyde cross linking chemistry. A lysine biosensor was fabricated using LyOx/3-APTES/AuNPs-PtNPs/Au electrode as a working electrode, Ag/AgCl (3M KCl) as standard electrode and Pt wire as auxiliary electrode connected through a potentiostat. The enzyme electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The cumulative effect of AuNPs and PtNPs showed excellent electrocatalytic activity at low applied potential for detection of H2O2, a product of LyOx reaction. The sensor showed its optimum response within 4s, when polarized at 0.2V vs. Ag/AgCl in 0.1M phosphate buffer, pH 7.5 at 30°C. The linear range and detection limit of the sensor were 1.0-600μM and 1.0μM (S/N=3), respectively. Biosensor measured lysine level in sera, milk and amino acid tablet, which correlated well with those by standard HPLC method. The enzyme electrode lost 50% of its initial activity after 200 uses over a period of 4 months.

  10. Comparison of the electron work function, hole concentration and exciton diffusion length for P3HT and PT prepared by thermal or acid cleavage

    DEFF Research Database (Denmark)

    Tousek, J.; Touskova, J.; Ludvík, J.

    2016-01-01

    The electron work function, hole concentration and diffusion length were compared for poly(3-hexylthiophene) polymer (P3HT) that is commonly used for construction of solar cells, and two types of native polythiophene (PT) samples which are prospective candidates for this purpose. The polythiophene...... samples were prepared from 2 different precursors by thermal or chemical treatment at room temperature. Cyclic voltammetry and work function measurements were used for estimating the concentration of holes. The measured data were evaluated assuming the validity of band theory based on the tight...... of conjugated polymer materials in solar cells, was measured by a modified surface photovoltage method. The approach allowed us to identify the differences in the material properties related to the processing method. Morphology of the samples determined by AFM was another tool showing these differences...

  11. Application of in-situ attenuated total reflection-Fourier transform infrared spectroscopy for the understanding of complex reaction mechanism and kinetics: formic acid oxidation on a Pt film electrode at elevated temperatures.

    Science.gov (United States)

    Chen, Yan Xia; Ye, Shen; Heinen, Martin; Jusys, Zenonas; Osawa, Masatoshi; Behm, R Jürgen

    2006-05-18

    The potential of in-situ Fourier transform infrared (FTIR) spectroscopy measurements in an attenuated total reflection configuration (ATR-FTIRS) for the evaluation of reaction pathways, elementary reaction steps, and their kinetics is demonstrated for formic acid electrooxidation on a Pt film electrode. Quantitative kinetic information on two elementary steps, formic acid dehydration and CO(ad) oxidation, and on the contributions of the related pathways in the dual path reaction mechanism are derived from IR spectroscopic signals in simultaneous electrochemical and ATR-FTIRS measurements over a wide temperature range (25-80 degrees C). Linearly and multiply bonded CO(ad) and bridge-bonded formate are the only formic acid related stable reaction intermediates detected. With increasing temperature, the steady-state IR signal of CO(ad) increases, while that of formate decreases. Reaction rates for CO(ad) formation via formic acid dehydration and for CO(ad) oxidation as well as the activation energies of these processes were determined at different temperatures, potentials, and surface conditions (with and without preadsorbed CO from formic acid dehydration) from the temporal evolution of the IR intensities of CO(ad) during adsorption/reaction transients, using an IR intensity-CO(ad) coverage calibration. At potentials up to 0.75 V and temperatures from 25 to 80 degrees C, the "indirect" CO pathway contributes less than 5% (at potentials oxidation compared with the effective activation energy of the total reaction, derived from the Faradaic currents, support this conclusion.

  12. Dye-sensitized solar cell characteristics of nanocomposite zinc ferrite working electrode: effect of composite precursors and titania as a blocking layer on photovoltaic performance.

    Science.gov (United States)

    Habibi, Mohammad Hossein; Habibi, Amir Hossein; Zendehdel, Mahmoud; Habibi, Mehdi

    2013-06-01

    This research investigates the performance of a zinc ferrite (ZF) as working electrodes in a dye-sensitized solar cell (DSSC). This ZF working electrode was prepared by sol-gel and thermal decomposition of four different precursors including: zinc acetate dihydrate (Zn(CH3COO)2·2H2O), ferric nitrate nonahydrate (Fe(NO3)3·9H2O), iron(III) acetate; Fe(C2H3O2)3, and zinc nitrate hexahydrate, Zn(NO3)2·6H2O. The effects of annealing temperature and precursors on the structural, morphological, and optical properties were investigated. The field emission scanning electron microscope images (FESEM) and scanning electron microscopy (SEM) show that ZFe films are polycrystalline in nature and homogeneous with densely packed grains. Nanoporous zinc ferrite coatings were prepared by doctor blade technique on the fluorine-doped tin oxide (FTO) and used as working electrodes in DSSC. In all DSSCs, platinized FTO and [Co(bpy)3](2+/3+) in 3-methoxy proponitrile were used as counter electrode and redox mediator system respectively. Comparing the fill factors of four different zinc ferrite nanocomposites, the highest fill factor was for ZnFe2O4-TBL sample. Cell fabricated with ZnFeA working electrode shows relatively higher Jsc.

  13. Dye-sensitized solar cell characteristics of nanocomposite zinc ferrite working electrode: Effect of composite precursors and titania as a blocking layer on photovoltaic performance

    Science.gov (United States)

    Habibi, Mohammad Hossein; Habibi, Amir Hossein; Zendehdel, Mahmoud; Habibi, Mehdi

    2013-06-01

    This research investigates the performance of a zinc ferrite (ZF) as working electrodes in a dye-sensitized solar cell (DSSC). This ZF working electrode was prepared by sol-gel and thermal decomposition of four different precursors including: zinc acetate dihydrate (Zn(CH3COO)2ṡ2H2O), ferric nitrate nonahydrate (Fe(NO3)3ṡ9H2O), iron(III) acetate; Fe(C2H3O2)3, and zinc nitrate hexahydrate, Zn(NO3)2ṡ6H2O. The effects of annealing temperature and precursors on the structural, morphological, and optical properties were investigated. The field emission scanning electron microscope images (FESEM) and scanning electron microscopy (SEM) show that ZFe films are polycrystalline in nature and homogeneous with densely packed grains. Nanoporous zinc ferrite coatings were prepared by doctor blade technique on the fluorine-doped tin oxide (FTO) and used as working electrodes in DSSC. In all DSSCs, platinized FTO and [Co(bpy)3]2+/3+ in 3-methoxy proponitrile were used as counter electrode and redox mediator system respectively. Comparing the fill factors of four different zinc ferrite nanocomposites, the highest fill factor was for ZnFe2O4-TBL sample. Cell fabricated with ZnFeA working electrode shows relatively higher Jsc.

  14. Work function determination of promising electrode materials for thermionic energy converters

    Science.gov (United States)

    Jacobson, D.; Storms, E.; Skaggs, B.; Kouts, T.; Jaskie, J.; Manda, M.

    1976-01-01

    The work function determinations of candidate materials for low temperature (1400 K) thermionics through vacuum emission tests are discussed. Two systems, a vacuum emission test vehicle and a thermionic emission microscope are used for emission measurements. Some nickel and cobalt based super alloys were preliminarily examined. High temperature physical properties and corrosion behavior of some super alloy candidates are presented. The corrosion behavior of sodium is of particular interest since topping cycles might use sodium heat transfer loops. A Marchuk tube was designed for plasma discharge studies with the carbide and possibly some super alloy samples. A series of metal carbides and other alloys were fabricated and tested in a special high temperature mass spectrometer. This information coupled with work function determinations was evaluated in an attempt to learn how electron bonding occurs in transition alloys.

  15. Investigation of top electrode for PZT thick films based MEMS sensors

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Pedersen, Thomas; Kristiansen, Paw T.;

    2010-01-01

    In this work processing of screen printed piezoelectric PZT thick films on silicon substrates is investigated for use in future MEMS devices. E-beam evaporated Al and Pt are patterned on PZT as a top electrode using a lift-off process with a line width down to 3 mu m. Three test structures are used...

  16. Templated synthesis, characterization, and sensing application of macroscopic platinum nanowire network electrodes

    DEFF Research Database (Denmark)

    Wang, D. H.; Kou, R.; Gil, M. P.;

    2005-01-01

    properties of the electrodes, such as electrochemical active area and methanol oxidation, have also been studied. Compared with conventional polycrystalline Pt electrodes, these novel nanowire network electrodes possess high electrochemical active areas and demonstrate higher current densities and a lower...... onset potential for methanol electro-oxidation. Enzymatic Pt nanowire-network-based sensors show higher sensitivity for glucose detection than that using conventional polycrystalline Pt electrode. Such macroscopic nanowire network electrodes provide ideal platforms for sensing and other device...

  17. Work-Function Engineering of Graphene Electrodes by Self-Assembled Monolayers for High-Performance Organic Field-Effect Transistors.

    Science.gov (United States)

    Park, Jaesung; Lee, Wi Hyoung; Huh, Sung; Sim, Sung Hyun; Kim, Seung Bin; Cho, Kilwon; Hong, Byung Hee; Kim, Kwang S

    2011-04-21

    We have devised a method to optimize the performance of organic field-effect transistors (OFETs) by controlling the work functions of graphene electrodes by functionalizing the surface of SiO2 substrates with self-assembled monolayers (SAMs). The electron-donating NH2-terminated SAMs induce strong n-doping in graphene, whereas the CH3-terminated SAMs neutralize the p-doping induced by SiO2 substrates, resulting in considerable changes in the work functions of graphene electrodes. This approach was successfully utilized to optimize electrical properties of graphene field-effect transistors and organic electronic devices using graphene electrodes. Considering the patternability and robustness of SAMs, this method would find numerous applications in graphene-based organic electronics and optoelectronic devices such as organic light-emitting diodes and organic photovoltaic devices.

  18. Enhancing the efficiency of dye-sensitized solar cells by adding diatom frustules into TiO{sub 2} working electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Der-Ray, E-mail: derray@mail.ndhu.edu.tw; Jiang, Yan-Jang; Liou, Run-Lin; Chen, Chih-Han; Chen, Yi-An; Tsai, Chih-Hung, E-mail: cht@mail.ndhu.edu.tw

    2015-08-30

    Graphical abstract: - Highlights: • High-speed centrifugal processing and sedimentation-rate separation techniques were used to obtain diatom frustules. • Diatom frustules were added into TiO{sub 2} paste to prepare a TiO{sub 2}-diatom paste mixture. • TiO{sub 2}-diatom paste mixture was used to fabricate working electrodes for DSSCs. • TiO{sub 2}-diatom electrodes improved the light-trapping effect and DSSC efficiency. • DSSCs with using the TiO{sub 2}-diatom electrode exhibited a 38% increase in efficiency. - Abstract: In this study, diatom frustules were added into TiO{sub 2} paste to prepare a TiO{sub 2}-diatom paste mixture. Spin-coating and high-temperature sintering techniques were then used to fabricate working electrodes for dye-sensitized solar cells (DSSCs). Mixing the diatom frustules with the TiO{sub 2} paste improved the light-trapping effect and scattering properties of the incident light in the TiO{sub 2}-diatom working electrodes, thereby enhancing the power conversion efficiency of the DSSCs. In this study, a high-speed centrifugal processing technology and sedimentation-rate separation techniques were first used to obtain the diatom frustules, which were then mixed with the TiO{sub 2} paste at a weight ratio of 1:50; a spin-coating technique was then used to fabricate the working electrodes. Finally, a high-temperature sintering process (500 °C) was performed. In this study, optical microscopy, scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and a surface profiler and spectrometer were used to analyze the characteristics of the working electrodes. The TiO{sub 2} or TiO{sub 2}-diatom working electrodes were prepared under various spin-coating conditions for fabricating and analyzing the characteristics of the DSSCs. The results indicated that under identical conditions, the power conversion efficiency of the DSSCs was 3.81% when coated three times with a conventional TiO{sub 2

  19. A bimetallic nanocomposite electrode for direct and rapid biosensing of p53 DNA plasmid

    Indian Academy of Sciences (India)

    Ezat Hamidi-Asl; Jahan-Bakhsh Raoof; Nahid Naghizadeh; Simin Sharifi; Mohammad Saeid Hejazi

    2015-09-01

    A new label-free electrochemical DNA biosensor is presented based on carbon paste electrode (CPE) modified with gold (Au) and platinum (Pt) nanoparticles to prepare the bimetallic nanocomposite electrode. The proposed sensor was made by immobilization of 15-mer single stranded oligonucleotide probe related to p53 gene for detection of DNA plasmid samples. The hybridization detection relied on the alternation in the guanine oxidation signal following hybridization of the probe with complementary genomic DNA.The technique of differential pulse voltammetry (DPV) was used for monitoring guanine oxidation. To optimize the performance of the modified CPE, different electrodes were prepared in various percentages of Au and Pt nanoparticles. The modified electrode containing 15% Au/Pt bimetallic nanoparticles (15% Au/Pt-MCPE) was selected as the best working electrode. The selectivity of the sensor was investigated using plasmid samples containing non-complementary oligonucleotides. The detection limit of the biosensor was studied and calculated to be 53.10 pg L−1.

  20. The study on carbon nanotubes-supported Pt catalysts for PEMFC

    Institute of Scientific and Technical Information of China (English)

    朱捷; 朱红; 康晓红; 葛奉娟; 杨玉国

    2004-01-01

    Carbon nanotube-supported-platinum (Pt/CNTs) and carbon-supported-platinum (Pt/C) catalysts were prepared by in situ chemical reduction method and analyzed by TEM and XRD. Then the experiments were carried out to test the performance of PEMFCs with the Pt electrodes. The results showed that in both catalyst, Pt was of small particle size (about 4 nm) and Pt/CNTs exhibited higher catalytic activity than Pt/C.

  1. Nanostructured Zinc Oxide Materials for Use as Dye Sensitized Solar Cell Working Electrodes and Photocatalysts

    Science.gov (United States)

    Chang, Roger

    Since their invention in 1991, dye-sensitized solar cells (DSCs) have been the subject of intense research interest owing to their low cost, ease of manufacture and potential for low-light applications. In this thesis, the focus is on replacing TiO2 with ZnO, a semiconductor that exhibits much higher electron mobility. The shape of the ZnO nanomaterial is investigated in order to determine if shape and connectivity play a role in how best to exploit the high electron mobility of ZnO. When ZnO nanoparticles are replaced with 1-D nanowires in a DSC, it has been shown that electron transport is improved as measured by faster electron transport times and high electron diffusion coefficients. However, despite these electron transport advantages, ZnO nanowire-based DSCs still suffer from lower efficiencies than ZnO nanoparticle-based DSCs because of their much smaller surface area for dye loading. In the thesis work, zinc oxide nanorods are introduced as a compromise material that can maintain a large surface area, while taking advantage of 1-D fast electron transport. It is shown that by changing the shape of the semiconductor nanomaterial to elongated nanorods, electron transport time, electron lifetime, electron diffusivity and other measures of DSC performance are enhanced. Additionally, electrodeposition into hard templates was used to fabricate ZnO nanowires with magnetic Ni caps. The electrodeposited Ni-ZnO nanowires are shown to be useful in catalyzing the photodegradation of methylene blue (MB) , a model organic dye, and the result is compared to ZnO nanoparticles. The elongated shape of the nanowires is expected to prevent the aggregation that reduces the catalytic efficacy of ZnO nanoparticles, whereas the Ni segment is expected to enhance photocatalysis by increasing the production of radical hydroxide species that degrade the dye. Our experiments show that Ni-ZnO nanowires are more effective photocatalysts than ZnO nanoparticles as measured by the decrease

  2. Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells.

    Science.gov (United States)

    Du, Shangfeng; Lin, Kaijie; Malladi, Sairam K; Lu, Yaxiang; Sun, Shuhui; Xu, Qiang; Steinberger-Wilckens, Robert; Dong, Hanshan

    2014-09-22

    In this work, we demonstrate an innovative approach, combing a novel active screen plasma (ASP) technique with green chemical synthesis, for a direct fabrication of uniform Pt nanowire arrays on large-area supports. The ASP treatment enables in-situ N-doping and surface modification to the support surface, significantly promoting the uniform growth of tiny Pt nuclei which directs the growth of ultrathin single-crystal Pt nanowire (2.5-3 nm in diameter) arrays, forming a three-dimensional (3D) nano-architecture. Pt nanowire arrays in-situ grown on the large-area gas diffusion layer (GDL) (5 cm(2)) can be directly used as the catalyst electrode in fuel cells. The unique design brings in an extremely thin electrocatalyst layer, facilitating the charge transfer and mass transfer properties, leading to over two times higher power density than the conventional Pt nanoparticle catalyst electrode in real fuel cell environment. Due to the similar challenges faced with other nanostructures and the high availability of ASP for other material surfaces, this work will provide valuable insights and guidance towards the development of other new nano-architectures for various practical applications.

  3. Enhanced Electrochemical Catalytic Efficiencies of Electrochemically Deposited Platinum Nanocubes as a Counter Electrode for Dye-Sensitized Solar Cells

    Science.gov (United States)

    Wei, Yu-Hsuan; Tsai, Ming-Chi; Ma, Chen-Chi M.; Wu, Hsuan-Chung; Tseng, Fan-Gang; Tsai, Chuen-Horng; Hsieh, Chien-Kuo

    2015-12-01

    Platinum nanocubes (PtNCs) were deposited onto a fluorine-doped tin oxide glass by electrochemical deposition (ECD) method and utilized as a counter electrode (CE) for dye-sensitized solar cells (DSSCs). In this study, we controlled the growth of the crystalline plane to synthesize the single-crystal PtNCs at room temperature. The morphologies and crystalline nanostructure of the ECD PtNCs were examined by field emission scanning electron microscopy and high-resolution transmission electron microscopy. The surface roughness of the ECD PtNCs was examined by atomic force microscopy. The electrochemical properties of the ECD PtNCs were analyzed by cyclic voltammetry, Tafel polarization, and electrochemical impedance spectra. The Pt loading was examined by inductively coupled plasma mass spectrometry. The DSSCs were assembled via an N719 dye-sensitized titanium dioxide working electrode, an iodine-based electrolyte, and a CE. The photoelectric conversion efficiency (PCE) of the DSSCs with the ECD PtNC CE was examined under the illumination of AM 1.5 (100 mWcm-2). The PtNCs in this study presented a single-crystal nanostructure that can raise the electron mobility to let up the charge-transfer impedance and promote the charge-transfer rate. In this work, the electrocatalytic mass activity (MA) of the Pt film and PtNCs was 1.508 and 4.088 mAmg-1, respectively, and the MA of PtNCs was 2.71 times than that of the Pt film. The DSSCs with the pulse-ECD PtNC CE showed a PCE of 6.48 %, which is higher than the cell using the conventional Pt film CE (a PCE of 6.18 %). In contrast to the conventional Pt film CE which is fabricated by electron beam evaporation method, our pulse-ECD PtNCs maximized the Pt catalytic properties as a CE in DSSCs. The results demonstrated that the PtNCs played a good catalyst for iodide/triiodide redox couple reactions in the DSSCs and provided a potential strategy for electrochemical catalytic applications.

  4. Synthesis, characterization and application of electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    He, Lin [Iowa State Univ., Ames, IA (United States)

    1995-07-07

    It has been known that significant advances in electrochemistry really depend on improvements in the sensitivity, selectivity, convenience, and/or economy of working electrodes, especially through the development of new working electrode materials. The advancement of solid state chemistry and materials science makes it possible to provide the materials which may be required as satisfactory electrode materials. The combination of solid state techniques with electrochemistry expands the applications of solid state materials and leads to the improvement of electrocatalysis. The study of Ru-Ti4O7 and Pt-Ti4O7 microelectrode arrays as introduced in paper 1 and paper 4, respectively, focuses on their synthesis and characterization. The synthesis is described by high temperature techniques for Ru or Pt microelectrode arrays within a conductive Ti4O7ceramic matrix. The characterization is based on the data obtained by x-ray diffractometry, scanning electron microscopy, voltammetry and amperometry. These microelectrode arrays show significant enhancement in current densities in comparison to solid Ru and Pt electrodes. Electrocatalysis at pyrochlore oxide Bi2Ru2O7.3 and Bi2Ir2O7 electrodes are described in paper 2 and paper 3, respectively. Details are reported for the synthesis and characterization of composite Bi2Ru2O7.3 electrodes. Voltammetric data are examined for evidence that oxidation can occur with transfer of oxygen to the oxidation products in the potential region corresponding to anodic discharge of H2O with simultaneous evolution of O2. Paper 3 includes electrocatalytic activities of composite Bi2Ir2O7 disk electrodes for the oxidation of I- and the reduction of IO3-.

  5. Multianalyte Biosensors for the Simultaneous Determination of Glucose and Galactose Based on Thin Film Electrodes

    Institute of Scientific and Technical Information of China (English)

    Neng Qin JIA; Zong Rang ZHANG; Jiang Zhong ZHU; Guo Xiong ZHANG

    2004-01-01

    A multianalyte biosensor for the simultaneous determination of glucose and galactose was developed by immobilizing glucose oxidase (GOD) and galactose oxidase (GAO) on Nafion-modified thin film platinum disk electrodes. The dual Pt working electrodes with disk shape and the surrounding ring shaped counter electrode were fabricated by thin film technology, which were integrated onto the same microchip. The response of the designed biosensor for glucose and galactose were linear up to 6.0 mmol/L and 3.5 mmol/L with sensitivities of 0.3 (A/mmol/L and 0.12 μA/mmol/L, respectively. No cross-talking effect was observed.

  6. Electrochemical characterisation of Pt/C suspensions for the reduction of oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, R.; Chaparro, A.M.; Daza, L. [Dep. Combustibles Fosiles, CIEMAT, Av. Complutense, 22, 28040 Madrid (Spain)

    2005-10-10

    Electrodes based on carbon-supported platinum electrocatalysts (Pt/C) have been studied in aqueous electrolyte electrochemical cells. The electrodes are prepared from suspensions of commercial Pt/C catalyst, deposited onto a carbon-covered Pt disk. Three deposition methods have been used, impregnation, spray and electrospray. The utilisation of Pt, i.e. the amount of Pt that really participates in the electrochemical reaction, was determined for each preparation method from measurements of the mass of Pt deposited on the electrode, and of the electroactive area of Pt. Higher utilisation rates are found on electrodes prepared by the impregnation method. The activity towards oxygen reduction in aqueous electrolyte was studied with the rotating electrode at different temperatures. (author)

  7. Polydopamine as a promising candidate for the design of high performance and corrosion-tolerant polymer electrolyte fuel cell electrodes

    Science.gov (United States)

    Long, Hongtao; Del Frari, Doriane; Martin, Arnaud; Didierjean, Joffrey; Ball, Vincent; Michel, Marc; Ahrach, Hicham Ibn El

    2016-03-01

    Carbon materials such as carbon black or nanotubes suffer from degradation when subjected to harsh conditions occurring in a Polymer Electrolyte Membrane Fuel Cells (PEMFCs) electrode. Hence, nowadays it is more and more important to search for alternative support materials. The present work shows the results for the incorporation of alternative materials into PEMFCs electrode architectures. Commercially available Multi-Walled NanoTubes (MWNTs) are used as a support for Pt nanoparticles in combination with Polydopamine (PDA). The role of MWNTs is to confer a high electronic conductivity and help to form a porous network. On the other side the role of polydopamine is both to promote the proton conductivity similarly to ionomers such as Nafion and to protect the MWNTs against corrosion. The fuel cell polarization test shows a maximum power density of 780 mW cm-2 and a Pt utilization of 6051 mW mg(Pt)-1. The Pt utilization reached in this work is almost three times higher than for Pt/MWNTs electrodes containing the same Pt loading. Beside this, it is also shown for the first time that PDA serves as protective layer against carbon corrosion.

  8. Psychosocial aspects of work and health in the North Sea oil and gas industry. Pt. 5: offshore work/leave schedules: data analyses and review

    Energy Technology Data Exchange (ETDEWEB)

    Parkes, K.R.; Clark, M.J.

    1997-09-01

    The work described in this report draws on a variety of sources to examine the psychosocial implications of three-week offshore tours as compared with the more usual two-week tour duration. Little of the information currently available about the psychosocial environment offshore, and the mental and physical health of offshore employees, relates to personnel working three-week tours. The present study, intended as a preliminary exploration of responses to three-week offshore schedules, brings together the several different kinds of information. The report includes: A brief review of relevant literature; a comparison of different work/leave patterns in terms of the attitudes and preferences of offshore personnel (N=1462); Analysis of questionnaire data evaluating the reactions of offshore personnel (N=113) to plans to change from two-week to three-week tours; A pilot study of mood and sleep patterns among personnel working either a two-week or a three-week tour at the time of data collection; material from interviews with wives of offshore personnel, focusing on family issues associated with offshore employment, including work/leave cycles. (UK)

  9. Electrochemical behaviour of PES ionomer and Pt-free catalyst for PEMFCs

    Directory of Open Access Journals (Sweden)

    STEFANIA GIORDANO

    2013-06-01

    Full Text Available Proton Exchange Membrane Fuel Cells (PEMFCs represent promising technologies to the world economy, with many applications and low environmental impact. A most important aspect concerning their widespread implementation is the cost of polymeric membranes, typically perfluorinated membranes and platinum-based catalytic electrode materials, all of which are necessary to promote electrode reactions, thus increasing fuel cell energy efficiency. In this work, we present some data about non-fluorinated polyetheresulphone (PES membranes and Pt-free catalysts, as possible substitutes of the above materials. Their electrochemical behaviour in oxygen reduction reaction in acidic media are investigated and compared with available reference materials.

  10. Improving Reproducibility of Lab-on-a-Chip Sensor with Bismuth Working Electrode for Determining Zn in Serum by Anodic Stripping Voltammetry

    Science.gov (United States)

    Pei, Xing; Kang, Wenjing; Yue, Wei; Bange, Adam; Heineman, William R.; Papautsky, Ian

    2014-01-01

    This work reports on the continuing development of a lab-on-a-chip electrochemical sensor for determination of zinc in blood serum using square wave anodic stripping voltammetry. The microscale sensor consists of a three electrode system, including an environmentally friendly bismuth working electrode, an integrated silver/silver chloride reference electrode, and a gold auxiliary electrode. The sensor demonstrates a linear response in 0.1 M acetate buffer at pH 6 for zinc concentrations in the 1–30 μM range. By optimizing bismuth film deposition and better control of the fabrication process, repeatability of the sensor was improved, reducing variability from 42% to <2%. Through optimization of electrolyte and stripping voltammetry parameters, limit of detection was greatly improved to 60 nM. The optimized sensor was also able to measure zinc in the extracted blood serum. Ultimately, with integrated sample preparation, the sensor will permit rapid (min) measurements of zinc from a sub-mL sample (a few drops of blood) for clinical applications. PMID:24729629

  11. Effect of CeO2-ZrO2 on Pt/C electrocatalysts for alcohols oxidation

    Institute of Scientific and Technical Information of China (English)

    WANG Qingchun; LIU Zhenpeng; AN Shengli; WANG Ruifen; WANG Yanling; XU Tuo

    2016-01-01

    The electrocatalytic activity and stability of Pt/C catalyst modified by using CeO2-ZrO2 mixed oxides for the alcohols elec-trochemical oxidation as probes were investigated. The catalyst samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical properties were measured by a three electrode system on electrochemical work-station (IVIUM). The results showed that the presence of CeO2-ZrO2 might be associated with the presence of Pt, which indicated that possibly there was synergistic effect between CeO2-ZrO2 and Pt nanoparticles. The electrocatalytic activity and stability of Pt-MOx/C (M=Ce, Zr) for methanol and ethanol oxidation was better than that of Pt-CeO2/C, which was attributed to that CeO2-ZrO2 compo-sited oxides enhanced oxygen mobility and promoted oxygen storage capacity (OSC). Furthermore, the best performance was found when the molar ratio of CeO2 to ZrO2 was 2:1 for the oxidation of methanol and ethanol. The forward peak current density of Pt-MOx/C (M=Ce, Zr, Ce:Zr=2:1) towards the methanol electrooxidation was about 3.8 times that of Pt-CeO2/C. Pt-MOx/C (M=Ce, Zr) appeared to be a promising and less expensive methanol oxidation anode catalyst.

  12. Dynamics of the YSZ-Pt Interface

    DEFF Research Database (Denmark)

    Bay, Lasse; Jacobsen, Torben

    1997-01-01

    Yttria stabilized zirconia (YSZ)-Pt point electrodes were examined by linear potential sweep, potential step and impedance measurements at 1000 degrees C in air. Inductive loops and hysteresis phenomena with long relaxation times were found. Atomic force microscopy showed changes of the interface...... between Pt and YSZ induced by the current passage. These changes involve transport of solid and are slow enough to explain the large time constants. The low frequency capacitance and inductive loop forming an entire circle indicate the presence of gas reservoirs at the YSZ-Pt interface....

  13. Designed nanostructured pt film for electrocatalytic activities by underpotential deposition combined chemical replacement techniques.

    Science.gov (United States)

    Huang, Minghua; Jin, Yongdong; Jiang, Heqing; Sun, Xuping; Chen, Hongjun; Liu, Baifeng; Wang, Erkang; Dong, Shaojun

    2005-08-18

    Multiple-deposited Pt overlayer modified Pt nanoparticle (MD-Pt overlayer/PtNPs) films were deliberately constructed on glassy carbon electrodes through alternately multiple underpotential deposition (UPD) of Ag followed redox replacement reaction by Pt (II) cations. The linear and regular growth of the films characterized by cyclic voltammetry was observed. Atomic force spectroscopy (AFM) provides the surface morphology of the nanostructured Pt films. Rotating disk electrode (RDE) voltammetry and rotating ring-disk electrode (RRDE) voltammetry demonstrate that the MD-Pt overlayer/PtNPs films can catalyze an almost four-electron reduction of O(2) to H(2)O in air-saturated 0.1 M H(2)SO(4). Thus-prepared Pt films behave as novel nanostructured electrocatalysts for dioxygen reduction and hydrogen evolution reaction (HER) with enhanced electrocatalytic activities, in terms of both reduction peak potential and peak current, when compared to that of the bulk polycrystalline Pt electrode. Additionally, it is noted that after multiple replacement cycles, the electrocatalytic activities improved remarkably, although the increased amount of Pt is very low in comparison to that of pre-modified PtNPs due to the intrinsic feature of the UPD-redox replacement technique. In other words, the electrocatalytic activities could be improved markedly without using very much Pt by the technique of tailoring the catalytic surface. These features may provide an interesting way to produce Pt catalysts with a reliable catalytic performance as well as a reduction in cost.

  14. Ethanol Oxidation Reaction on Tandem Pt/Rh/SnOx Catalyst

    Directory of Open Access Journals (Sweden)

    Phuong Tu Mai

    2017-08-01

    Full Text Available To elucidate the atomic arrangement of a Pt-Rh-Sn ternary catalyst with a high catalytic activity for ethanol oxidation reaction (EOR and high CO2 selectivity, we prepared a tandem Pt/Rh/SnOx, in which a Rh adlayer was deposited on a Pt substrate (Rh coverage: 0.28, followed by depositing several layers of SnOx only on the Rh surface (Sn coverage: 0.07. For reference, Sn was randomly deposited on the Rh-modified Pt (Pt/Rh electrode whose Rh and Sn coverages were 0.22 and 0.36 (random Pt/Rh/SnOx. X-ray photoelectron spectroscopy demonstrated that Pt and Rh were metallic, and Sn was largely oxidized. Both Pt/Rh/SnOx electrodes were less positive in onset potential of EOR current density and higher in EOR current density than Pt and Rh/Pt electrodes. In situ infrared reflection-absorption spectroscopy demonstrated that the tandem Pt/Rh/SnOx electrode did not produce acetic acid, but produced CO2 in contrast to the random Pt/Rh/SnOx, suggesting that a tandem arrangement of Pt, Rh and SnOx, in which the Pt and SnOx sites were separated by the Rh sites, was effective for selective CO2 production. In the electrostatic electrolysis at 0.5 V vs. RHE, the tandem Pt/Rh/SnOx electrode exhibited higher EOR current density than the Pt and Pt/Rh electrodes after 1.5 h.

  15. Novel nanostructure zinc zirconate, zinc oxide or zirconium oxide pastes coated on fluorine doped tin oxide thin film as photoelectrochemical working electrodes for dye-sensitized solar cell.

    Science.gov (United States)

    Hossein Habibi, Mohammad; Askari, Elham; Habibi, Mehdi; Zendehdel, Mahmoud

    2013-03-01

    Zinc zirconate (ZnZrO(3)) (ZZ), zinc oxide (ZnO) (ZO) and zirconium oxide (ZrO(2)) (ZRO) nano-particles were synthesized by simple sol-gel method. ZZ, ZO and ZRO nano-particles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV-Vis diffuse reflectance spectrum (DRS). Nanoporous ZZ, ZO and ZRO thin films were prepared doctor blade technique on the fluorine-doped tin oxide (FTO) and used as working electrodes in dye sensitized solar cells (DSSC). Their photovoltaic behavior were compared with standard using D35 dye and an electrolyte containing [Co(bpy)(3)](PF(6))(2), [Co(pby)(3)](PF(6))(3), LiClO(4), and 4-tert-butylpyridine (TBP). The properties of DSSC have been studied by measuring their short-circuit photocurrent density (Jsc), open-circuit voltage (VOC) and fill factor (ff). The application of ZnZrO(3) as working electrode produces a significant improvement in the fill factor (ff) of the dye-sensitized solar cells (ff=56%) compared to ZnO working electrode (ff=40%) under the same condition.

  16. Novel nanostructure zinc zirconate, zinc oxide or zirconium oxide pastes coated on fluorine doped tin oxide thin film as photoelectrochemical working electrodes for dye-sensitized solar cell

    Science.gov (United States)

    Hossein Habibi, Mohammad; Askari, Elham; Habibi, Mehdi; Zendehdel, Mahmoud

    2013-03-01

    Zinc zirconate (ZnZrO3) (ZZ), zinc oxide (ZnO) (ZO) and zirconium oxide (ZrO2) (ZRO) nano-particles were synthesized by simple sol-gel method. ZZ, ZO and ZRO nano-particles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV-Vis diffuse reflectance spectrum (DRS). Nanoporous ZZ, ZO and ZRO thin films were prepared doctor blade technique on the fluorine-doped tin oxide (FTO) and used as working electrodes in dye sensitized solar cells (DSSC). Their photovoltaic behavior were compared with standard using D35 dye and an electrolyte containing [Co(bpy)3](PF6)2, [Co(pby)3](PF6)3, LiClO4, and 4-tert-butylpyridine (TBP). The properties of DSSC have been studied by measuring their short-circuit photocurrent density (Jsc), open-circuit voltage (VOC) and fill factor (ff). The application of ZnZrO3 as working electrode produces a significant improvement in the fill factor (ff) of the dye-sensitized solar cells (ff = 56%) compared to ZnO working electrode (ff = 40%) under the same condition.

  17. Evaluation of in-channel amperometric detection using a dual-channel microchip electrophoresis device and a two-electrode potentiostat for reverse polarity separations.

    Science.gov (United States)

    Meneses, Diogenes; Gunasekara, Dulan B; Pichetsurnthorn, Pann; da Silva, José A F; de Abreu, Fabiane C; Lunte, Susan M

    2015-02-01

    In-channel amperometric detection combined with dual-channel microchip electrophoresis is evaluated using a two-electrode isolated potentiostat for reverse polarity separations. The device consists of two separate channels with the working and reference electrodes placed at identical positions relative to the end of the channel, enabling noise subtraction. In previous reports of this configuration, normal polarity and a three-electrode detection system were used. In the two-electrode detection system described here, the electrode in the reference channel acts as both the counter and reference. The effect of electrode placement in the channels on noise and detector response was investigated using nitrite, tyrosine, and hydrogen peroxide as model compounds. The effects of electrode material and size and type of reference electrode on noise and the potential shift of hydrodynamic voltammograms for the model compounds were determined. In addition, the performance of two- and three-electrode configurations using Pt and Ag/AgCl reference electrodes was compared. Although the signal was attenuated with the Pt reference, the noise was also significantly reduced. It was found that lower LOD were obtained for all three compounds with the dual-channel configuration compared to single-channel, in-channel detection. The dual-channel method was then used for the detection of nitrite in a dermal microdialysis sample obtained from a sheep following nitroglycerin administration.

  18. Platinum Migration at the Pt/YSZ Interface

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Jacobsen, Torben

    2006-01-01

    by potential sweep, step and impedance techniques. As expected, inductive behaviour and activation during step polarization is confirmed, but furthermore, a very accentuated noise pattern is seen during cathodic step polarization. Investigation of the YSZ and Pt surfaces afterwards reveals the growth......Electrode activation, inductive hysteresis and non-linearity are well known phenomena on Pt-YSZ electrodes, and recently also regular fluctuation patterns have been reported. The oxygen electrode on YSZ surfaces is studied at Pt micro-electrodes prepared by electrochemical etching of platinum wire...... of dendrite like Pt structures from the TPB. The formation of these may explain the observed noise and contribute to the explanation of the activation mechanism taking place at the platinum-YSZ interface....

  19. Electrochemical pulsed deposition of platinum nanoparticles on indium tin oxide/polyethylene terephthalate as a flexible counter electrode for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yu-Hsuan; Chen, Chih-Sheng [Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan (China); Ma, Chen-Chi M. [Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Tsai, Chuen-Horng [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Hsieh, Chien-Kuo, E-mail: jack_hsieh@mail.mcut.edu.tw [Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan (China)

    2014-11-03

    In this study, a pulsed-mode electrochemical deposition (Pulse-ECD) technique was employed to deposit platinum nanoparticles (PtNPs) on the indium tin oxide/polyethylene terephthalate (ITO/PET) substrate as a flexible counter electrode for dye-sensitized solar cells (DSSCs). The characteristic properties of the Pulse-ECD PtNPs were prepared and compared to the traditional (electron beam) Pt film. The surface morphologies of the PtNPs were examined by field emission scanning electron microscopy (FE-SEM) and the atomic force microscope (AFM). The FE-SEM results showed that our PtNPs were deposited uniformly on the ITO/PET flexible substrates via the Pulse-ECD technique. The AFM results indicated that the surface roughness of the pulsed PtNPs influenced the power conversion efficiency (PCE) of DSSCs, due to the high specific surface area of PtNPs which enhanced the catalytic activities for the reduction (I{sub 3}{sup −} to I{sup −}) of redox electrolyte. In combination with a N719 dye-sensitized TiO{sub 2} working electrode and an iodine-based electrolyte, the DSSCs with the PtNPs flexible counter electrode showed a PCE of 4.3% under the illumination of AM 1.5 (100 mW cm{sup −2}). The results demonstrated that the Pulse-ECD PtNPs are good candidate for flexible DSSCs. - Highlights: • We used indium tin oxide/polyethylene terephthalate as a flexible substrate. • We utilized pulse electrochemical deposition to deposit platinum nanoparticles. • We synthesized a flexible counter electrode for dye-sensitized solar cell (DSSC). • The power conversion efficiency of DSSC was measured to be 4.3%.

  20. Influence of the working electrode area on the cavitation-corrosion behaviour of a duplex stainless steel in aqueous LiBr solution

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Garcia, D.M.; Blasco-Tamarit, E.; Igual-Munoz, A.; Garcia-Anton, J. [Valencia Univ. Politecnica, Dept. de Ingenieria Quimica y Nuclear. ETSI Industriales, Valencia (Spain)

    2009-07-01

    Cavitation erosion can occur in almost all hydrodynamic systems and turbo machines, e.g. pumps, valves, marine propeller and hydraulic turbines. It causes serious material damage. Corrosion problems associated with cavitation can appear on different points in LiBr absorption machines. Many efforts have been made to solve this problem, such as optimizing the design of the flow-handling component and selecting better materials and coatings to resist the cavitation erosion-corrosion. A better understanding of cavitation erosion-corrosion mechanisms is very important for the selection materials and coatings. The objective of the present work was to study the influence of the exposed area of the working electrode on the corrosion behaviour of a duplex stainless steel (EN 1.4462) in a 992 g/l LiBr solution under static conditions (without cavitation) and dynamic conditions (with cavitation) at 25 C. Potentiodynamic cyclic curves were obtained under static and dynamic conditions exposing different areas of the working electrode: 1.6 mm diameter (0.02 cm{sup 2} area ), 4 mm diameter (0.12 cm{sup 2} area), 6 mm diameter (0.28 cm{sup 2} area) and 8 mm diameter (0.5 cm{sup 2} area). The dynamic conditions were generated using an ultrasonic cavitation facility in a three-electrode electrochemical cell. The Potentiodynamic Cyclic curves obtained with and without cavitation have been compared and different tendencies were observed. Cavitation increased the cathodic current density when the exposed area to the solution is large (6 mm and 8 mm diameters). This behaviour was not observed during the tests with smaller electrode areas (1.6 mm and 4 mm diameters). In all cases, cavitation increased the anodic current densities independently of the exposed area to the solution. Besides, cavitation favoured the pitting corrosion, since lower pitting potentials were obtained under cavitation conditions than under static conditions. (authors)

  1. Novel one pot stoichiometric synthesis of nickel sulfide nanomaterials as counter electrodes for QDSSCs

    Energy Technology Data Exchange (ETDEWEB)

    Mani, A. Daya; Deepa, Melepurath [Department of Chemistry, IIT Hyderabad, Yeddumailaram 502 205 (India); Xanthopoulos, N. [Ecole Polytechnique Federale de Lausanne (EPFL), CH-Lausanne (Switzerland); Subrahmanyam, Ch, E-mail: csubbu@iith.ac.in [Department of Chemistry, IIT Hyderabad, Yeddumailaram 502 205 (India)

    2014-11-14

    Solution combustion synthesis has been used for the first time to synthesize metal sulfide nanomaterials. Selective stoichiometric synthesis of nickel sulfide nanomaterials was achieved in a single step by using combustion synthesis under ambient conditions and the samples were tested as counter electrodes in a typical quantum dot sensitized solar cell (QDSSC). By varying the oxidant/fuel ratio, different stoichiometric nickel sulfide nanomaterials were obtained. Interestingly, a maximum of fourfold increase in efficiency (1.1%) was achieved with nickel sulfide counter electrode when compared to the Pt counter electrode (0.25%). This can be attributed to the less charge transfer resistance offered by nickel sulfide samples compared to Pt, which was confirmed by electrochemical impedance spectroscopy. Among different stoichiometric compositions of nickel sulfide, Ni{sub 3}S{sub 2} was found to exhibit the least charge transfer resistance and superior solar cell efficiency. The present study describes a novel selective stoichiometric synthetic approach and facile fabrication procedure for low cost counter electrode materials in QDSSCs. - Highlights: • Novel and facile phase selective synthesis of nickel sulfide nanomaterials. • A different sensitization approach of TiO{sub 2} with CdS. • A simple paint approach for working and counter electrode fabrication. • Fourfold increase of efficiency with Ni{sub 3}S{sub 2} compared to the conventional Pt.

  2. Effect of screen printing type on transparent TiO2 layer as the working electrode of dye sensitized solar cell (DSSC) for solar windows applications

    Science.gov (United States)

    Nurosyid, F.; Furqoni, L.; Supriyanto, A.; Suryana, R.

    2016-11-01

    The working electrode based on semiconductor TiO2 DSSC has been fabricated by screen printing method. This study aim is to determine the effect of the screen type on TiO2 layer as the working electrode of DSSC. Screen used for deposition of TiO2 has the types of; T- 49, T-55 and T-61. TiO2 layer was sintered at temperature of 500°C. DSSC structure was composed of semiconductor TiO2 adsorbed dye, an electrolyte solution and a platinum counter electrode. TiO2 layer thickness was characterized by Scanning Electron Microscopy (SEM), while the absorbance was characterized using UV-Vis spectrophotometer and the electrical properties of DSSC were characterized by Keithley I-V measurement. TiO2 layer fabricated by screen T-49 had the biggest thickness that was 3.2 ± 0.3 μm and the highest UV-Vis absorbance wave at the peak wavelength of 315 nm with the absorbance value was 1.7. The I-V characterization showed that the sample fabricated by screen T-49 obtained the greatest efficiency that was 1.0 × 10-1%

  3. Pt/Ceria-based Catalysts for Small Alcohol Electrooxidation

    Science.gov (United States)

    Menendez-Mora, Christian L.

    High emissions of fossil-based energy sources have led to scientists around the world to develop new alternatives for the future. In this sense, fuel cells are a remarkable and promising energy option with less environmental impact. The most used fuels for this technology are hydrogen and small chain alcohols, which can be oxidized to transform their chemical energy into electrical power. To do this, fuel cells need catalysts that will act as an active surface where the oxidation can take place. The problem with platinum catalysts is its possible CO poisoning with intermediates that are produced before the complete oxidation of alcohol to CO2. Different approaches have been taken to try to resolve this issue. In this case, cerium oxide (ceria) was selected as a co-catalyst to mitigate the effect of CO poisoning of platinum. Ceria is a compound that has the ability to work as an "oxygen tank" and can donate oxygen to carbon monoxide that is strongly adsorbed at platinum surface to produce CO2 (carbon dioxide), regenerating the Pt surface for further alcohol oxidation. Therefore, enhancing the current density as well as the power output of a fuel cell. First, an occlusion deposition technique was used to prepare platinum/ceria composite electrodes and tested them towards small chain alcohol oxidation such as methanol oxidation reaction in acidic and alkaline media. The preliminary results demonstrated that the Pt/ceria electrodes were more efficient towards methanol electrooxidation when compared to Pt electrodes. This enhancement was attributed to the presence of ceria. A second preparation method was selected for the synthesis of ceria/Pt catalysts. In this case, a hydrothermal method was used and the catalysis were studied for the effect of MeOH, EtOH and n-BuOH oxidation. The observed effect was that electrodes made of Pt/Pt:CeO2-x showed better catalytic effect than Pt/ceria and platinum electrodes. Moreover, a comparison between ceria nanorods versus

  4. Thermal memory effects at the Pt vertical bar YSZ interface

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Bay, Lasse

    2002-01-01

    A current induced activation mechanism in the oxygen reaction on the Pt \\ YSZ interface at 1000 degreesC is demonstrated by impedance measurements. It is shown that Pt point electrodes conditioned at high temperature retain their initial reactivity when cooled to 600 degreesC. At this temperature...

  5. Electrodeposition and electrocatalytic activity of Pt and Pt-alloy nanoparticles and thin films on highly oriented pyrolytic graphite (HOPG)

    Science.gov (United States)

    Lu, Guojin

    Pt and Pt-based alloy catalysts were synthesized by electrodeposition on HOPG. The nucleation and growth, morphology, composition and crystal structure, and electrocatalytic activity (towards relevant reactions in the frame of PEMFCs and DMFCs) of these model electrodes were systematically investigated. The presence of chlorides inhibits the Pt reduction processes. There is a transition from progressive to instantaneous nucleation with increasing overpotential for the deposition from 1 mM H2PtCl6 electrolytes. The possibility of instantaneous nucleation at large overpotential by using electrolytes with large chloride concentration is advantageous for the growth of small, well dispersed nanoparticles. The electrochemical data were confirmed by AFM and SEM imaging studies. Relatively narrow size distributed nanoparticles can be obtained from the current system. While MOR activity decreases with decreasing particle size, the HER and HOR activity of deposited Pt particles increases with decreasing deposition period. The ORR activity first increases then decreases with increasing deposition time. Interactions between Pt and Ru, or Ni or Co are observed and they form solid solution as verified by XRD. Underpotential deposition occurs for Pt-Ni or Pt-Co co-electrodeposition. Pt-Ru deposition can be described as progressive nucleation at low overpotential and instantaneous nucleation at high overpotentials. Through direct morphological observations, the Pt-Ni or Pt-Co nucleation can be approximately described as progressive. Pt-Ru deposits are superior to Pt towards MOR. The optimum Ru content is about 50 at.%. Pt-Ni and Pt-Co deposits are more active than Pt for ORR. The optimum content is about 30 at.% Ni or 50 at.% Co. Dealloying of Pt-Ru and Pt-Ni or Pt-Co electrodeposit is observed after electrochemical characterization. The extent of dealloying increases with the content of the alloying element.

  6. Three-dimensional shapes and spatial distributions of Pt and PtCr catalyst nanoparticles on carbon black

    DEFF Research Database (Denmark)

    Gontard, Lionel Cervera; Dunin-Borkowski, Rafal E.; Ozkaya, D.

    2008-01-01

    High-angle annular dark-field scanning transmission electron microscopy tomography is applied to the study of Pt and PtCr nanoparticles supported on carbon black, which are used as heterogeneous catalysts in the electrodes of proton exchange membrane fuel cells. By using electron tomography, the ...

  7. Effect of Thermomechanical Processing on the Microstructure, Properties, and Work Behavior of a Ti50.5 Ni29.5 Pt20 High-Temperature Shape Memory Alloy

    Science.gov (United States)

    Noebe, Ronald; Draper, Susan; Gaydosh, Darrell; Garga, Anita; Lerch, Brad; Penney, Nicholas; Begelow, Glen; Padula, Santo, II; Brown, Jeff

    2006-01-01

    TiNiPt shape memory alloys are particularly promising for use as solid state actuators in environments up to 300 C, due to a reasonable balance of properties, including acceptable work output. However, one of the challenges to commercializing a viable high-temperature shape memory alloy (HTSMA) is to establish the appropriate primary and secondary processing techniques for fabrication of the material in a required product form such as rod and wire. Consequently, a Ti(50.5)Ni(29.5)Pt20 alloy was processed using several techniques including single-pass high-temperature extrusion, multiple-pass high-temperature extrusion, and cold drawing to produce bar stock, thin rod, and fine wire, respectively. The effects of heat treatment on the hardness, grain size, room temperature tensile properties, and transformation temperatures of hot- and cold-worked material were examined. Basic tensile properties as a function of temperature and the strain-temperature response of the alloy under constant load, for the determination of work output, were also investigated for various forms of the Ti(50.5)Ni(29.5)Pt20 alloy, including fine wire.

  8. Improved Internal Reference Oxygen Sensors with Composite Ceramic Electrodes

    DEFF Research Database (Denmark)

    Hu, Qiang; Jacobsen, Torben; Hansen, Karin Vels

    2012-01-01

    Potentiometric oxygen sensors with an internal reference electrode, which uses the equilibrium pO2 of the binary mixture of Ni/NiO as the reference, are demonstrated. The cells employ Pt or composite ceramics as the sensing electrode. The cells are fabricated by a flexible and potentially low cost...... and performance are highly reproducible. The composite ceramics, based on strontium doped manganite and yttria doped zirconia, are proven superior over Pt to serve as the electrode material....

  9. Investigation and improvement of a novel double-working-electrode electrochemical system for organic matter treatment from high-salinity wastewater.

    Science.gov (United States)

    Yu, Han; Zhao, Min; Zhang, Linus; Dong, Heng; Yu, Hongbing; Chen, Ze

    2017-02-03

    The novel double-working-electrode electrochemical system with air diffusion cathode (ADC) and Ti/SnO2-Sb anode (TSSA) has shown higher efficiency and lower energy consumption for the degradation of organic pollutant from high-salinity wastewater, compared to the traditional single anode system. To further investigate and improve this system, in this work, firstly the effect of vital factors of the double-working-electrode electrochemical system including initial methyl orange (MO) concentration, NaCl concentration and initial pH value of organic solution were investigated, using MO as the targeted organic pollutant, carbon black ADC (CBAC) as cathode and stainless steel mesh electrode (SSME) as control. Besides, for the further improvement of removal performance, a novel home-made activated carbon-ADC (ACAC) was studied as cathode with the same investigation process. The results showed that, in the experiments studying the effect of both initial MO and NaCl concentrations, the removal performance was in the order of TSSA-ACAC > TSSA-CBAC > TSSA-SSME in all conditions of initial MO and NaCl concentrations. However, with the pH value reduced from 6.0 to 3.0, the performances of three systems turned to be much closer to each other. Besides, ACAC played a synergistic role in MO removal by greatly improving the MO removal performance and enhancing its adaptability to the reactor parametric variation. ACAC created a weak acidic environment for accelerating the indirect electro-oxidation of MO on TSSA. The MO degradation pathways in the three systems were the same but the TSSA-ACAC system gave a higher degradation kinetics order.

  10. Increasing the Collision Rate of Particle Impact Electroanalysis with Magnetically Guided Pt-Decorated Iron Oxide Nanoparticles.

    Science.gov (United States)

    Robinson, Donald A; Yoo, Jason J; Castañeda, Alma D; Gu, Brett; Dasari, Radhika; Crooks, Richard M; Stevenson, Keith J

    2015-07-28

    An integrated microfluidic/magnetophoretic methodology was developed for improving signal response time and detection limits for the chronoamperometric observation of discrete nanoparticle/electrode interactions by electrocatalytic amplification. The strategy relied on Pt-decorated iron oxide nanoparticles which exhibit both superparamagnetism and electrocatalytic activity for the oxidation of hydrazine. A wet chemical synthetic approach succeeded in the controlled growth of Pt on the surface of FeO/Fe3O4 core/shell nanocubes, resulting in highly uniform Pt-decorated iron oxide hybrid nanoparticles with good dispersibility in water. The unique mechanism of hybrid nanoparticle formation was investigated by electron microscopy and spectroscopic analysis of isolated nanoparticle intermediates and final products. Discrete hybrid nanoparticle collision events were detected in the presence of hydrazine, an electrochemical indicator probe, using a gold microband electrode integrated into a microfluidic channel. In contrast with related systems, the experimental nanoparticle/electrode collision rate correlates more closely with simple theoretical approximations, primarily due to the accuracy of the nanoparticle tracking analysis method used to quantify nanoparticle concentrations and diffusion coefficients. Further modification of the microfluidic device was made by applying a tightly focused magnetic field to the detection volume to attract the magnetic nanoprobes to the microband working electrode, thereby resulting in a 6-fold increase to the relative frequency of chronoamperometric signals corresponding to discrete nanoparticle impact events.

  11. Superior long-term activity for a Pt-Re alloy compared to Pt in methanol oxidation reactions

    Science.gov (United States)

    Duke, Audrey S.; Xie, Kangmin; Monnier, John R.; Chen, Donna A.

    2017-03-01

    Pt-Re bimetallic catalysts have shown enhanced activity compared to pure Pt for reactions involving oxidation, but the origins of this improved activity are not fully understood. Methanol oxidation on a Pt-Re alloy surface and pure Pt foil was studied in a microreactor coupled to an ultrahigh vacuum chamber. For reaction at 60 °C, the Pt-Re alloy surface exhibits superior long-term activity over a 24 h reaction period compared to pure Pt. The initial activity of Pt is 10-15% higher than on Pt-Re; however, the Pt surface gradually loses activity after 10 h online, whereas the activity of Pt-Re does not diminish. Post-reaction XPS shows that more carbon accumulates on the Pt than on Pt-Re, and the improved long-term activity is attributed to a greater ability of Pt-Re to oxidize the carbonaceous intermediates that eventually poison active sites. Both Pt and Pt-Re surfaces have almost no activity for methanol oxidation until a minimum coverage of oxygen is achieved from O2 dissociation. A comparison with methanol oxidation studies on Pt and Pt-Re in a pressure regime that is 150 times lower than in this work demonstrates that more carbon and less oxygen accumulate on the surfaces during reaction at the lower pressures.

  12. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction

    DEFF Research Database (Denmark)

    Escribano, Maria Escudero; Malacrida, Paolo; Hansen, Martin Hangaard

    2016-01-01

    The high platinum loadings required to compensate for the slow kinetics of the oxygen reduction reaction (ORR) impede the widespread uptake of low-temperature fuel cells in automotive vehicles. We have studied the ORR on eight platinum (Pt)–lanthanide and Pt-alkaline earth electrodes, Pt5M, where...

  13. Relationship between Work Function of Hole Collection Electrode and Temperature Dependence of Open-Circuit Voltage in Multilayered Organic Solar Cells

    Science.gov (United States)

    Itoh, Eiji; Shirotori, Toshiki

    2012-02-01

    We have investigated the photovoltaic properties of multilayered organic photovoltaic devices consisting of indium tin oxide (ITO)/(NiO)/donor/C60/bathocuproine (BCP)/Al structures. Open circuit voltage (VOC) increases with the decrease in temperature between 40 and 350 K. The VOC was, however, pinned at approximately 0.6 V for the device without NiO, probably owing to the insufficient work-function difference between ITO and Al electrodes. The hole injection was also markedly suppressed at the ITO/donor interface in the device with large IP donor materials without the buffer layer and abnormal S-shaped current density-voltage (J-V) characteristics were observed. On the other hand, the value of VOC increases with the increase in ionization potential (IP) of donor materials in the device with NiO buffer layers owing to the enhanced work-function difference of about 1 eV, and the S-shaped curves disappeared at the high temperatures above 200 K. The VOC is further improved to nearly 1.2 V by the UV-ozone treatment of the NiO surface. We have therefore concluded that the increment of work function of the anode caused by the insertion of an oxide buffer layer and the surface treatment of the electrode by UV-ozone treatment are essentially important for the improvement of VOC and charge transport/injection properties in the multilayered organic solar cell applications.

  14. Reduction of Pt Usage in Fuel Cell Electrocatalysts Using Carbon Nanotubes and Non-Pt Metals

    Institute of Scientific and Technical Information of China (English)

    J. Nakamura; Y. Nagashima; T. Yamazaki; T. Matsumoto; E. Yoo

    2005-01-01

    @@ 1Introduction The high-priced and limited Pt constitutes a high barrier to commercialization of fuel cells. Pt is essential for the electrode catalyst of polymer electrolyte fuel cells (PEFCs). A reduction in Pt usage is one of the key requirements for the commercialization of fuel cells for use in everyday life, because of its high price and limited availability, and the difficulty of finding suitable substitutes. Non-Pt fuel cell catalysts will decrease the demand for Pt by PEFCs, enabling more Pt to be available for use in other essential products, and make fuel cells more popular[1]. The cheaper Mo2C is known to possess similar catalytic activities and electronic structures to Pt[2]. Carbon black (CB) is widely used as the support for Pt nanoparticles. However, we found that when carbon nanotubes (CNTs) rather than CB are used as the support, the performance is improved, especially below 600 mA/cm2[3,4]. Here, we show that a combination of Mo2C catalyst and carbon nanotubes in the anode provides performance as high as half that of the current PEFCs with Pt catalysts below 600mA/cm2.

  15. Fluctuations at Electrode-YSZ Interfaces

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Hansen, Karin Vels; Skou, Eivind

    of the damping by the large interface. Fig.\\,1 shows a slow potential sweep on a Pt point electrode on a YSZ surface. For the part of the anodic and the cathodic branches where the electrode approaches equilibrium, quadratic expressions are used as smooth approximations for the current -- overvoltage relation...... in D/A converters, duty cycles of thermo regulators, etc. But even so, the dramatic spikes seen at the Ni anode emphasizes the care that must be taken in order to obtain reproducible results from point electrode studies. However, it is noted that Pt cathodes and Ni anodes show reverse patterns...... property of the interface. \

  16. Dual-nanomaterial based electrode for voltammetric stripping of trace Fe(II) in coastal waters.

    Science.gov (United States)

    Lin, Mingyue; Pan, Dawei; Zhu, Yun; Hu, Xueping; Han, Haitao; Wang, ChenChen

    2016-07-01

    In this work, a dual-nanomaterial based electrode was established for selective and sensitive detection of trace Fe(II) in the presence of complexing agent (2,2'-bipyridyl). Titanium carbide nanoparticles (TiCNPs) were used as the growth-template for the formation of three-dimensional platinum nanoflowers (PtNFs) due to their unique cubic structures. Nafion was employed as the conducting matrix to help TiCNPs better attached onto the surface of the electrode and slow down the crystal rate of PtNFs during electrodeposition, which resulted in flower structure and more active surface of PtNFs. Taking advantage of synergistic effects of TiCNPs and Nafion as well as the catalytic amplifying effect of PtNFs, the excellent anodic signal responses for the voltammetric stripping determination of Fe(II) were obtained. The linear range of Fe(II) on this dual-nanomaterial based electrode was from 1nmolL(-1) to 6μmolL(-1) with the lowest detectable concentration of 0.1nmolL(-1) and a detection limit of 0.03nmolL(-1). Additionally, the effect of several experimental parameters, such as concentration and pH value of buffer solution, concentration of modifier and ligand, deposition potential and time of electrochemical determination, and scan rate were studied for analytical applications. The fabricated sensor had been successfully applied for the sensitive determination of trace Fe(II) in coastal waters.

  17. Radiolytic Preparation of Electrocatalysts with Pt-Co and Pt-Sn Nanoparticles for a Proton Exchange Membrane Fuel Cell

    Directory of Open Access Journals (Sweden)

    Sang Kyum Kim

    2014-01-01

    Full Text Available Nanosized Pt-Sn/VC and Pt-Co/VC electrocatalysts were prepared by a one-step radiation-induced reduction (30 kGy process using distilled water as the solvent and Vulcan XC72 as the supporting material. While the Pt-Co/VC electrodes were compared with Pt/VC (40 wt%, HiSpec 4000, in terms of their electrocatalytic activity towards the oxidation of H2, the Pt-Co/VC electrodes were evaluated in terms of their activity towards the hydrogen oxidation reaction (HOR and compared with Pt/VC (40 wt%, HiSpec 4000, Pt-Co/VC, and Pt-Sn/VC in a single cell. Additionally, the prepared electrocatalyst samples (Pt-Co/VC and Pt-Sn/VC were characterized by transmission electron microscopy (TEM, scanning electron microscope (SEM, thermogravimetric analysis (TGA, X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, electrochemical surface area (ECSA, and fuel cell polarization performance.

  18. Materials analyses and electrochemical impedance of implantable metal electrodes.

    Science.gov (United States)

    Howlader, Matiar M R; Ul Alam, Arif; Sharma, Rahul P; Deen, M Jamal

    2015-04-21

    Implantable electrodes with high flexibility, high mechanical fixation and low electrochemical impedance are desirable for neuromuscular activation because they provide safe, effective and stable stimulation. In this paper, we report on detailed materials and electrical analyses of three metal implantable electrodes - gold (Au), platinum (Pt) and titanium (Ti) - using X-ray photoelectron spectroscopy (XPS), scanning acoustic microscopy, drop shape analysis and electrochemical impedance spectroscopy. We investigated the cause of changes in electrochemical impedance of long-term immersed Au, Pt and Ti electrodes on liquid crystal polymers (LCPs) in phosphate buffered saline (PBS). We analyzed the surface wettability, surface and interface defects and the elemental depth profile of the electrode-adhesion layers on the LCP. The impedance of the electrodes decreased at lower frequencies, but increased at higher frequencies compared with that of the short-term immersion. The increase of impedances was influenced by the oxidation of the electrode/adhesion-layers that affected the double layer capacitance behavior of the electrode/PBS. The oxidation of the adhesion layer for all the electrodes was confirmed by XPS. Alkali ions (sodium) were adsorbed on the Au and Pt surfaces, but diffused into the Ti electrode and LCPs. The Pt electrode showed a higher sensitivity to surface and interface defects than that of Ti and Au electrodes. These findings may be useful when designing electrodes for long-term implantable devices.

  19. Preparation of Pt Nanoparticle Modified Porous Silicon Electrode and Its Electrocatalytic Performance%Pt纳米粒子修饰的多孔硅电极的制备及其电催化性能

    Institute of Scientific and Technical Information of China (English)

    田娟; 郑丹; 张熙贵; 张宝宏; 夏保佳; 杨辉

    2007-01-01

    通过循环伏安法电沉积使直径约为7 nm的Pt纳米粒子均匀地分散于多孔硅表面,拟用作微型质子交换膜燃料电池的催化电极.与刷涂法相比较,电沉积Pt纳米粒子的多孔硅电极(Pt/Si)呈现出高的Pt利用率和增强的电催化活性.当Pt载量为0.38 mg·cm-2时,其电化学活性比表面积高达148 cm2·mg-1,是刷涂相近质量的纳米Pt/C催化剂的多孔硅电极Pt-C/Si的2倍多;该修饰电极对甲醇氧化也呈现了增强的催化性能和好的稳定性,在0.5 V(vs SCE)极化1 h后电流密度为4.52 mA·cm-2,而刷涂了相近Pt量的Pt-C/Si电极的电流密度只有0.36 mA·cm-2.

  20. Nanostructured electrocatalyst for fuel cells : silica templated synthesis of Pt/C composites.

    Energy Technology Data Exchange (ETDEWEB)

    Stechel, Ellen Beth; Switzer, Elise E.; Fujimoto, Cy H.; Atanassov, Plamen Borissov; Cornelius, Christopher James; Hibbs, Michael R.

    2007-09-01

    Platinum-based electrocatalysts are currently required for state-of-the-art fuel cells and represent a significant portion of the overall fuel cell cost. If fuel cell technology is to become competitive with other energy conversion technologies, improve the utilization of precious metal catalysts is essential. A primary focus of this work is on creating enhanced nanostructured materials which improve precious-metal utilization. The goal is to engineer superior electrocatalytic materials through the synthesis, development and investigation of novel templated open frame structures synthesized in an aerosol-based approach. Bulk templating methods for both Pt/C and Pt-Ru composites are evaluated in this study and are found to be limited due to the fact that the nanostructure is not maintained throughout the entire sample. Therefore, an accurate examination of structural effects was previously impossible. An aerosol-based templating method of synthesizing nanostructured Pt-Ru electrocatalysts has been developed wherein the effects of structure can be related to electrocatalytic performance. The aerosol-based templating method developed in this work is extremely versatile as it can be conveniently modified to synthesize alternative materials for other systems. The synthesis method was able to be extended to nanostructured Pt-Sn for ethanol oxidation in alkaline media. Nanostructured Pt-Sn electrocatalysts were evaluated in a unique approach tailored to electrocatalytic studies in alkaline media. At low temperatures, nanostructured Pt-Sn electrocatalysts were found to have significantly higher ethanol oxidation activity than a comparable nanostructured Pt catalyst. At higher temperatures, the oxygen-containing species contribution likely provided by Sn is insignificant due to a more oxidized Pt surface. The importance of the surface coverage of oxygen-containing species in the reaction mechanism is established in these studies. The investigations in this work present

  1. Bifunctional electrocatalysis in pt-ru nanoparticle systems.

    Science.gov (United States)

    Roth, C; Benker, N; Theissmann, R; Nichols, R J; Schiffrin, D J

    2008-03-04

    Pt-Ru alloys are prominent electrocatalysts in fuel cell anodes as they feature a very high activity for the oxidation of reformate and methanol. The improved CO tolerance of these alloys has been discussed in relation to the so-called ligand and bifunctional mechanisms. Although these effects have been known for many years, they are still not completely understood. A new approach that bridges the gap between single crystals and practical catalysts is presented in this paper. Nanoparticulate model systems attached to an oxidized glassy carbon electrode were prepared by combining both ligand-stabilized and spontaneously deposited Pt and Ru nanoparticles. These electrodes showed very different voltammetric responses for CO and methanol oxidation. The cyclic voltammograms were deconvoluted into contributions attributed to Pt, Ru, and Pt-Ru contact regions to quantify the contribution of the latter to the bifunctional mechanism. Scanning transmission electron microscopy confirmed the proximity of Pt and Ru nanoparticles in the different samples.

  2. Nafion/DNA/纳米铂复合膜修饰电极的制备及其应用于多巴胺的高灵敏高选择性测定%Preparation of a Nafion/DNA/Pt Nanoparticles Composite Film Modified Electrode and Its Application for Highly Selective and Sensitive Determination of Dopamine

    Institute of Scientific and Technical Information of China (English)

    李娟; 贾丽萍; 姚飞; 霍瑞伟; 侯关伟; 贾文丽; 王怀生

    2013-01-01

    A new nanocomposite film modified electrode was preparaed by electrodepositing DNA at the platinum nanoparticles(PtNPs)surface and then coating Nafion on the composite film. This modified electrode(Nafion/DNA/PtNPs) was applied to detect dopamine( DA) by using differential pulse voltammetry( DPV) . The result indicates that the Nafion/DNA/PtNPs nanocomposite film has electrocatalytic effect on the oxidation of DA and results in an obvious en-hancement of the current response. In 0. 1 mol/L pH 7. 0 phosphate buffer solution(PBS),the DPV peak heights are linear with DA concentration in the range of 0. 01-0. 1 μmol/L and 0. 1-6. 0 μmol/L with the detection limit of 3. 3 nmol/L(S/N=3). In addition,the interferences of uric acid(UA)and ascorbic acid(AA)can be effectively diminished. Moreover,the Nafion/DNA/PtNPs/GCE was applied to the DA detection in dopamine hydrochloride injection with satisfied results.%纳米铂粒子( PtNPs)具有良好的生物相容性及高的催化性能,利用恒电位法将DNA生物分子电沉积在PtNPs修饰电极表面,得到一纳米结构的导电薄膜,极大地增大了电极的比表面积,结合Nafion的高选择性,制备了一种新型的Nafion/DNA/PtNPs复合膜修饰电极,研究了多巴胺( DA)在该修饰电极上的电化学行为,利用示差脉冲伏安法( DPV)对DA进行了定量分析.结果证明,该复合膜修饰电极大大提高了DA的电化学响应,在0.1 mol/L pH 7.0磷酸盐缓冲溶液( PBS)中,DA的示差脉冲伏安峰电流与其浓度在0.01~0.1μmol/L和0.1~6.0μmol/L两个范围内呈良好的线性关系,检出限可达3.3 nmol/L.此外,该修饰电极可以经受较高浓度抗坏血酸( AA)和尿酸( UA)的干扰,用于盐酸多巴胺注射液中DA含量的测定,结果满意.

  3. Influence of bi modification of pt anode catalyst in direct formic acid fuel cells.

    Science.gov (United States)

    Kang, Sungjin; Lee, Jaeyoung; Lee, Jae Kwang; Chung, Seung-Young; Tak, Yongsug

    2006-04-13

    The influence of Bi modification of Pt anode catalyst on the performance of direct formic acid fuel cells was investigated. Compared with the unmodified Pt anode, the Bi modified Pt (PtBi(m)) electrode prepared by under-potential deposition (UPD) caused faster electrocatalytic oxidation of formic acid at the same value of the overpotential, and thus, PtBi(m) resulted in an increase in the power performance of direct formic acid fuel cells. Electrochemical impedance spectra helped to explain the difference of performance between the unmodified Pt and Bi modified Pt electrodes. Solution conductivity and dehydration phenomena occurring in highly concentrated formic acid solutions can also explain the higher power performance of PtBi(m).

  4. Silicon Nanowires with MoSx and Pt as Electrocatalysts for Hydrogen Evolution Reaction

    Directory of Open Access Journals (Sweden)

    S. H. Hsieh

    2016-01-01

    Full Text Available A convenient method was used for synthesizing Pt-nanoparticle/MoSx/silicon nanowires nanocomposites. Obtained Pt-MoSx/silicon nanowires electrocatalysts were characterized by transmission electron microscopy (TEM. The hydrogen evolution reaction efficiency of the Pt-MoSx/silicon nanowire nanocomposite catalysts was assessed by examining polarization and electrolysis measurements under solar light irradiations. The electrochemical characterizations demonstrate that Pt-MoSx/silicon nanowire electrodes exhibited an excellent catalytic activity for hydrogen evolution reaction in an acidic electrolyte. The hydrogen production capability of Pt-MoSx/silicon nanowires is also comparable to MoSx/silicon nanowires and Pt/silicon nanowires. Electrochemical impedance spectroscopy experiments suggest that the enhanced performance of Pt-MoSx/silicon nanowires can be attributed to the fast electron transfer between Pt-MoSx/silicon nanowire electrodes and electrolyte interfaces.

  5. Reference Electrodes in Metal Corrosion

    Directory of Open Access Journals (Sweden)

    S. Szabó

    2010-01-01

    Full Text Available With especial regard to hydrogen electrode, the theoretical fundamentals of electrode potential, the most important reference electrodes and the electrode potential measurement have been discussed. In the case of the hydrogen electrode, it have been emphasised that there is no equilibrium between the hydrogen molecule (H2 and the hydrogen (H+, hydronium (H3O+ ion in the absence of a suitable catalyst. Taking into account the practical aspects as well, the theorectical basis of working of hydrogen, copper-copper sulphate, mercury-mercurous halide, silver-silver halide, metal-metal oxide, metal-metal sulphate and “Thalamid” electrodes, has been discussed.

  6. Electrochemical Sensor for Oxidation of NO Based on Au-Pt Nanoparticles Self-assembly Film

    Institute of Scientific and Technical Information of China (English)

    XIE,Jia; YU,Zhihui; XIA,Dingguo

    2009-01-01

    Au-Pt bimetallic nanoparticles film used as an efficient electrochemical sensor was prepared by self-assembled Au-Pt bimetallic nanoparticles on a glassy carbon (GC) substrate using thioglycolic acid as a linker. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) showed that the Au-Pt nanoparticles self-assembly film was dense and uniform. Electrochemical experiments revealed that Au-Pt bimetallic nanoparticles film/GC electrode showed high electrocatalytic activity to the oxidation of nitric oxide.

  7. Ternary Pt-Ru-Ni catalytic layers for methanol electrooxidation prepared by electrodeposition and galvanic replacement

    OpenAIRE

    Athanasios ePapaderakis; Nikolaos ePliatsikas; Chara eProchaska; Kalliopi M. Papazisi; Balomenou, Stella P.; Dimitrios eTsiplakides; Panagiotis ePatsalas; Sotiris eSotiropoulos

    2014-01-01

    Ternary Pt-Ru-Ni deposits on glassy carbon substrates, Pt-Ru(Ni)/GC, have been formed by initial electrodeposition of Ni layers onto glassy carbon electrodes, followed by their partial exchange for Pt and Ru, upon their immersion into equimolar solutions containing complex ions of the precious metals. The overall morphology and composition of the deposits has been studied by SEM microscopy and EDS spectroscopy. Continuous but nodular films have been confirmed, with a Pt ÷ Ru ÷ Ni % bulk atomi...

  8. A Nafion®-based co-planar electrode amperometric sensor for methanol determination in the gas phase

    Indian Academy of Sciences (India)

    K Wallgren; S Sotiropoulos

    2009-09-01

    A co-planar electrode device, fabricated with all electrodes (working, counter and reference) on the same face of a Nafion® polymer electrolyte membrane, is proposed for the amperometric detection of gaseous methanol using Pt as the working electrode. Clear voltammetry is obtained for methanol oxidation from its vapours in equilibrium with methanol aqueous solutions, both in the absence and presence of oxygen in the gas stream. Using an appropriate pulse sequence to keep the indicator electrode active, methanol vapours in the 1-13 Torr partial pressure range (in equilibrium with methanol aqueous solutions in the 1-10% w/w concentration range) could be determined, in a constant potential, amperometric mode. The methanol detector could be operated both in a nitrogen stream and (in what is essential for practical applications) in an air atmosphere too, with estimated detection limits of 1.2 and 1.4 Torr respectively.

  9. Platinum porphyrins as ionophores in polymeric membrane electrodes

    DEFF Research Database (Denmark)

    Lvova, Larisa; Verrelli, Giorgio; Nardis, Sara

    2011-01-01

    porphyrin dimers occurs in the membrane plasticized both with high or low dielectric constant plasticizer, due to a low oxophilicity of central Pt. The computational study of various anion–Pt(IV)TPPCl2 complex formation by means of semi-empirical and density functional theory (DFT) methods revealed a good......A comparative study of Pt(II)- and Pt(IV)-porphyrins as novel ionophores for anion-selective polymeric membrane electrodes is performed. Polymeric membranes of different compositions, prepared by varying plasticizers, cationic and anionic additives and Pt porphyrins, have been examined...... within the electrode membranes, while those based on Pt(IV)TPPCl2 operate via a mixed mode carrier mechanism, evidencing also a partial reduction of the starting ionophore to Pt(II)TPP. Spectrophotometric measurements of thin polymeric films indicate that no spontaneous formation of hydroxide ion bridged...

  10. Ethanol oxidation reaction activity of highly dispersed Pt/SnO{sub 2} double nanoparticles on carbon black

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Eiji; Miyata, Kazumasa; Takase, Tomonori; Inoue, Hiroshi [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan)

    2011-02-15

    Highly dispersed Pt and SnO{sub 2} double nanoparticles containing different Pt/Sn ratios (denoted as Pt/SnO{sub 2}/CB) were prepared on carbon black (CB) by the modified Boennemann method. The average size of Pt and SnO{sub 2} nanoparticles was 3.1 {+-} 0.5 nm and 2.5 {+-} 0.3 nm, respectively, in Pt/SnO{sub 2}(3:1)/CB, 3.0 {+-} 0.5 nm and 2.6 {+-} 0.3 nm, respectively, in Pt/SnO{sub 2}(1:1)/CB, and 2.8 {+-} 0.5 nm and 2.5 {+-} 0.3 nm, respectively, in Pt/SnO{sub 2}(1:3)/CB. The Pt/SnO{sub 2}(3:1)/CB electrode showed the highest specific activity and lowest overpotential for ethanol oxidation reaction (EOR), and was superior to a Pt/CB electrode. Current density for EOR at 0.40 and 0.60 V vs. reversible hydrogen electrode for the Pt/SnO{sub 2}(3:1)/CB electrode decayed more slowly than that for the Pt/CB electrode because of a synergistic effect between Pt and SnO{sub 2} nanoparticles. The predominant reaction product was acetic acid, and its current efficiency was about 70%, while that for CO{sub 2} production was about 30%. (author)

  11. Platinum single crystal electrodes for the electrocatalysis of methane oxidation

    Directory of Open Access Journals (Sweden)

    Mayara Munaretto

    2011-03-01

    Full Text Available The main objective of this paper is to characterize the voltammetric profiles of platinum single crystals of low Miller indexes Pt(100 and Pt(110 and study their catalytic activities on the oxidation of methane. In this way, it was developed a metallic surface modified by presence of other metal oxide, which presents catalytic activity for this reaction. It is well known that the electrooxidation of methane (CH4 leads mainly to the formation of CO2 and H2O, however, the oxidation can also lead to the formation of CO, a reaction intermediate that has strong interaction with metal surfaces, such as platinum. This molecule tends to accumulate on the platinum surface and to passive it, due to the self-poisoning, decreasing its catalytic activity. Therefore, the main aim of this work was the development of a platinum electrode modified by deposition of titanium oxide, which presented electrocatalytic properties for the oxidation of methane.

  12. Work function tuning of plasma-enhanced atomic layer deposited WC{sub x}N{sub y} electrodes for metal/oxide/semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Zonensain, Oren; Fadida, Sivan; Eizenberg, Moshe [Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Fisher, Ilanit; Gao, Juwen; Chattopadhyay, Kaushik; Harm, Greg; Mountsier, Tom; Danek, Michal [Lam Research Corporation, 4000 N. First Street, San Jose, California 95134 (United States)

    2015-02-23

    One of the main challenges facing the integration of metals as gate electrodes in advanced MOS devices is control over the Fermi level position at the metal/dielectric interface. In this study, we demonstrate the ability to tune the effective work function (EWF) of W-based electrodes by process modifications of the atomic layer deposited (ALD) films. Tungsten carbo-nitrides (WC{sub x}N{sub y}) films were deposited via plasma-enhanced and/or thermal ALD processes using organometallic precursors. The process modifications enabled us to control the stoichiometry of the WC{sub x}N{sub y} films. Deposition in hydrogen plasma (without nitrogen based reactant) resulted in a stoichiometry of WC{sub 0.4} with primarily W-C chemical bonding, as determined by x-ray photoelectron spectroscopy. These films yielded a relatively low EWF of 4.2 ± 0.1 eV. The introduction of nitrogen based reactant to the plasma or the thermal ALD deposition resulted in a stoichiometry of WC{sub 0.1}N{sub 0.6–0.8} with predominantly W-N chemical bonding. These films produced a high EWF of 4.7 ± 0.1 eV.

  13. Prothrombin time (PT)

    Science.gov (United States)

    PT; Pro-time; Anticoagulant-prothrombin time; Clotting time: protime; INR; International normalized ratio ... PT is measured in seconds. Most of the time, results are given as what is called INR ( ...

  14. Electrochemical study of the Pt and Pt-Ni upon multiwalled carbon nanotubes

    Science.gov (United States)

    Mohammed, Norani Muti; Mumtaz, Asad; Ansari, Muhammad Shahid; Ahmad, Riaz

    2016-11-01

    Direct methanol fuel cells have attracted great interest in the recent development of portable devices. New routes are being developed for synthesizing the catalysts used in the methanol oxidation. In this work, the electrochemical behavior of the Pt and Pt-Ni upon multiwalled carbon nanotubes, synthesized via a new modified route, has been studied. The results showed that Pt-Ni 10% has the comparable current density to the Pt 20%-loading which is nearly 3 times greater than 10% Pt loading. The transfer of the polarization curve of Pt-Ni 10% towards lower polarization region following the catalyst with 20% Pt loading indicates the higher activity of the nano-electro-catalysts in the alkaline media. Also the long term efficiency and activity of the Pt-Ni with 10% loading is nearly reaching the 20% Pt-loading which is almost 10 folds greater than the 10% Pt loading. The study revealed that Ni in Pt-based nanoalloy impart not only an enhanced activity but also better durability of catalyst in direct methanol fuel cell applications.

  15. High-performance PMN-PT thick films.

    Science.gov (United States)

    Kosec, Marija; Ursic, Hana; Holc, Janez; Hrovat, Marko; Kuscer, Danjela; Malic, Barbara

    2010-10-01

    This article describes some of our work on ₀.₆₅Pb(Mg₁/₃Nb(₂/₃)O₃-₀.₃₅PbTiO₃ (0.65PMN-0.35PT) thick films printed on alumina substrates. These thick films, with the nominal composition ₀.₆₅Pb(Mg₁/₃Nb(₂/₃)O₃-₀.₃₅PbTiO₃, were produced by screen-printing and firing a paste prepared from an organic vehicle and pre-reacted fine particles of avery chemically homogeneous powder. To improve the adhesion of the 0.65PMN-0.35PT to the platinized alumina substrate,a Pb(Zr₀.₅₃Ti₀.₄₇)O₃ layer was deposited between the electrode and the substrate. The samples were then sintered at 950 °C for 2 h with various amounts of packing powder on the alumina (Al₂O₃) substrates. The sintering procedure was optimized to obtain dense 0.65PMN-0.35PT films. The films were then characterized using scanning electron microscopy as well as measurements of the dielectric and piezoelectric constants.The electrostrictive behavior of the 0.65PMN-0.35PT thick films was investigated using an atomic force microscope(AFM). Finally, substrate-free, large-displacement bending type actuators were prepared and characterized, and the normalized displacement (i.e., the displacement per unit length) of the actuators was determined to be 55 μm/cm at 3.6 kV/cm.

  16. Magnetohydrodynamic electrode

    Science.gov (United States)

    Boquist, Carl W.; Marchant, David D.

    1978-01-01

    A ceramic-metal composite suitable for use in a high-temperature environment consists of a refractory ceramic matrix containing 10 to 50 volume percent of a continuous high-temperature metal reinforcement. In a specific application of the composite, as an electrode in a magnetohydrodynamic generator, the one surface of the electrode which contacts the MHD fluid may have a layer of varying thickness of nonreinforced refractory ceramic for electrode temperature control. The side walls of the electrode may be coated with a refractory ceramic insulator. Also described is an electrode-insulator system for a MHD channel.

  17. Incorporation of indium tin oxide nanoparticles in PEMFC electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wolz, Andre [Renewable Energies Group, Institute for Materials Science, Technische Universitaet Darmstadt (Germany); CRP Henri Tudor, Department of Advanced Materials and Structures, Esch-sur-Alzette (Luxembourg); Zils, Susanne; Ruch, David; Michel, Marc [CRP Henri Tudor, Department of Advanced Materials and Structures, Esch-sur-Alzette (Luxembourg); Kotov, Nicholas [University of Michigan, Department of Chemical Engineering, Ann Arbor, MI (United States); Roth, Christina [Renewable Energies Group, Institute for Materials Science, Technische Universitaet Darmstadt (Germany); Institute for Applied Materials (IAM)-Energy Storage Systems (ESS), Eggenstein-Leopoldshafen (Germany)

    2012-05-15

    Carbon materials suffer from corrosion at the cathode of polymer electrolyte membrane fuel cells (PEMFCs). In the presence of water, carbon support materials are oxidized to carbon dioxide even at low potentials. Hence, nowadays it is very fashionable to look for alternative support materials, like oxides or conductive polymers. To gain the maximum performance for a new material one should also consider an appropriate electrode structure. This study shows the results for the incorporation of nanosized alternative support materials into advanced electrode architectures. Commercially available indium tin oxide (ITO) nanoparticles (<50 nm) are used as support for Pt nanoparticles in combination with Nafion-coated multi-walled carbon nanotubes (MWCNTs) on the cathode side of a PEMFC. The MWCNTs promote a high electronic conductivity and help to form a porous network, which could accommodate the Pt/ITO nanoparticles. The microscopic investigations show a homogeneous electrode structure composed of Pt/ITO and MWCNT/Nafion multilayer. Single cell measurements show a maximum power density of 73 mW cm{sup -2} and a Pt utilization of 1468 mW mg{sub Pt}{sup -1} for the cathode. The performance data and the Pt utilization are comparable to a standard Pt/carbon black electrode possessing the same Pt loading in the electrode. Beside this, it is shown for the first time that ITO serves as support material under real fuel cell conditions. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Effects of electrode material and configuration on the characteristics of planar resistive switching devices

    KAUST Repository

    Peng, H.Y.

    2013-11-13

    We report that electrode engineering, particularly tailoring the metal work function, measurement configuration and geometric shape, has significant effects on the bipolar resistive switching (RS) in lateral memory devices based on self-doped SrTiO3 (STO) single crystals. Metals with different work functions (Ti and Pt) and their combinations are used to control the junction transport (either ohmic or Schottky-like). We find that the electric bias is effective in manipulating the concentration of oxygen vacancies at the metal/STO interface, influencing the RS characteristics. Furthermore, we show that the geometric shapes of electrodes (e.g., rectangular, circular, or triangular) affect the electric field distribution at the metal/oxide interface, thus plays an important role in RS. These systematic results suggest that electrode engineering should be deemed as a powerful approach toward controlling and improving the characteristics of RS memories. 2013 Author(s).

  19. Binding energy and work function of organic electrode materials phenanthraquinone, pyromellitic dianhydride and their derivatives adsorbed on graphene.

    Science.gov (United States)

    Yu, Yang-Xin

    2014-09-24

    Electroactive organic compounds are a novel group of green cathode materials for rechargeable metal-ion batteries. However, the organic battery life is short because the organic compounds can be dissolved by nonaqueous electrolytes. Here a comparative investigation of phenanthraquinone (PQ), pyromellitic dianhydride (PMDA) and their derivatives, i.e., benzo[1,2-b:4,3-b']difuran-4,5-dione (BDFD), benzo[1,2-b:4,3-b']dithiophene-4,5-quinone (BDTQ), 3,8-phenanthroline-5,6-dione (PAD), pyromellitic dithioanhydride (PMDT), pyromellitic diimide (PMDI) and 1,4,5,8-anthracenetetrone (ATO), adsorbed on graphene is performed using a density functional theory (DFT) with a van der Waals (vdW) dispersion-correction. The computed results show a strong physisorption with the binding energies between 1.10 and 1.56 eV. A sequence of the calculated binding energies from weak to strong is found to be BDFD work functions for the nanocomposites are found to be strongly affected by the work function of each organic compound. To understand the DFT results, a novel simple expression is proposed to predict the work function of the nanocomposites from the interfacial dipole and the work functions of the isolated graphene nanosheet and organic molecules. The predicted work functions for the nanocomposites from the new equation agree quite well with the values calculated from the vdW dispersion-corrected DFT.

  20. Polyethylenimine aqueous solution: a low-cost and environmentally friendly formulation to produce low-work-function electrodes for efficient easy-to-fabricate organic solar cells.

    Science.gov (United States)

    Min, Xue; Jiang, Fangyuan; Qin, Fei; Li, Zaifang; Tong, Jinhui; Xiong, Sixing; Meng, Wei; Zhou, Yinhua

    2014-12-24

    Polyethylenimine (PEI) has been widely used to produce low-work-function electrodes. Generally, PEI modification is prepared by spin coating from 2-methoxyethanol solution. In this work, we explore the method for PEI modification on indium tin oxide (ITO) by dipping the ITO sample into PEI aqueous solution for organic solar cells. The PEI prepared in this method could reduce the work function of ITO as effectively as PEI prepared by spin coating from 2-methoxyethanol solution. H2O as the processing solvent is more environmentally friendly and much cheaper compared to the 2-methoxyethanol solvent. The dipping method is also compatible with large-area samples. With low-work-function ITO treated by the dipping method, solar cells with a simple structure of glass/ITO/PEI(dipping)/P3HT:ICBA/PEDOT:PSS(vacuum-free processing) display a high open-circuit voltage of 0.86 ± 0.01, a high fill factor of 66 ± 2%, and power conversion efficiency of 4.4 ± 0.3% under 100 mW/cm(2) illumination.

  1. Interfacial reaction and electrical properties of HfO2 film gate dielectric prepared by pulsed laser deposition in nitrogen: role of rapid thermal annealing and gate electrode.

    Science.gov (United States)

    Wang, Yi; Wang, Hao; Ye, Cong; Zhang, Jun; Wang, Hanbin; Jiang, Yong

    2011-10-01

    The high-k dielectric HfO(2) thin films were deposited by pulsed laser deposition in nitrogen atmosphere. Rapid thermal annealing effect on film surface roughness, structure and electrical properties of HfO(2) film was investigated. The mechanism of interfacial reaction and the annealing atmosphere effect on the interfacial layer thickness were discussed. The sample annealed in nitrogen shows an amorphous dominated structure and the lowest leakage current density. Capacitors with high-k HfO(2) film as gate dielectric were fabricated, using Pt, Au, and Ti as the top gate electrode whereas Pt constitutes the bottom side electrode. At the gate injection case, the Pt- and Au-gated metal oxide semiconductor devices present a lower leakage current than that of the Ti-gated device, as well as similar leakage current conduction mechanism and interfacial properties at the metal/HfO(2) interface, because of their close work function and chemical properties.

  2. DyeTiO2 interfacial structure of dye-sensitised solar cell working electrodes buried under a solution of I(-)/I3(-) redox electrolyte.

    Science.gov (United States)

    McCree-Grey, Jonathan; Cole, Jacqueline M; Holt, Stephen A; Evans, Peter J; Gong, Yun

    2017-08-17

    Dye-sensitised solar cells (DSCs) have niche prospects for electricity-generating windows that could equip buildings for energy-sustainable future cities. However, this 'smart window' technology is being held back by a lack of understanding in how the dye interacts with its device environment at the molecular level. A better appreciation of the dyeTiO2 interfacial structure of the DSC working electrodes would be particularly valuable since associated structure-function relationships could be established; these rules would provide a 'toolkit' for the molecular engineering of more suitable DSC dyes via rational design. Previous materials characterisation efforts have been limited to determining this interfacial structure within an environment exposed to air or situated in a solvent medium. This study is the first to reveal the structure of this buried interface within the functional device environment, and represents the first application of in situ neutron reflectometry to DSC research. By incorporating the electrolyte into the structural model of this buried interface, we reveal how lithium cations from the electrolyte constituents influence the dyeTiO2 binding configuration of an organic sensitiser, MK-44, via Li(+) complexation to the cyanoacrylate group. This dye is the molecular congener of the high-performance MK-2 DSC dye, whose hexa-alkyl chains appear to stabilise it from Li(+) complexation. Our in situ neutron reflectometry findings are built up from auxiliary structural models derived from ex situ X-ray reflectometry and corroborated via density functional theory and UV/vis absorption spectroscopy. Significant differences between the in situ and ex situ dyeTiO2 interfacial structures are found, highlighting the need to characterise the molecular structure of DSC working electrodes while in a fully assembled device.

  3. Carbon-Pt nanoparticles modified TiO2 nanotubes for simultaneous detection of dopamine and uric acid.

    Science.gov (United States)

    Mahshid, Sara; Luo, Shenglian; Yang, Lixia; Mahshid, Sahar Sadat; Askari, Masoud; Dolati, Abolghasem; Cai, Qingyun

    2011-08-01

    The present work describes sensing application of modified TiO2 nanotubes having carbon-Pt nanoparticles for simultaneous detection of dopamine and uric acid. The TiO2 nanotubes electrode was prepared using anodizing method, followed by electrodeposition of Pt nanoparticles onto the tubes. Carbon was deposited by decomposition of polyethylene glycol in a tube furnace to improve the conductivity. The C-Pt-TiO2 nanotubes modified electrode was characterized by cyclic voltammetry and differential pulse voltammetry methods. The modified electrode displayed high sensitivity towards the oxidation of dopamine and uric acid in a phosphate buffer solution (pH 7.00). The electro-oxidation currents of dopamine and uric acid were linearly related to the concentration over a wide range of 3.5 x 10(-8) M to 1 x 10(-5) M and 1 x 10(-7) M to 3 x 10(-5) M respectively. The limit of detection was determined as 2 x 10(-10) M for dopamine at signal-to-noise ratio of 3. The interference of uric acid was also investigated. Electro-oxidation currents of dopamine in the presence of fix amount of uric acid represented a linear behaviour towards successive addition of dopamine in range of 1 x 10(-7) M to 1 x 10(-5) M. Furthermore, in a solution containing dopamine, uric acid and ascorbic acid the overlapped oxidation peaks of dopamine and ascorbic acid could be easily separated by using C-Pt-TiO2 nanotubes modified electrode.

  4. Preparation and Electrochemical Properties of Porous Platinum Electrode

    Institute of Scientific and Technical Information of China (English)

    HE Xin; CHEN Boxun; CHEN Qiao

    2012-01-01

    Porous platinum electrodes were prepared by adding YSZ,as an active material,in platinum paste.Relationship between microstructure and electrochemical performance of O2(g),Pt/YSZ electrode have been characterized by SEM and cyclic voltammetry.Results showed that the microstructure of platinum electrode is a significant impact on the cyclic voltammetry.With the increase of platinum electrode's porosity,the area of three-phase boundary of O2(g)/Pt/YSZ was increased.The electrochemical reactivity was also enhanced.These were presented as the increase of current density and cathode voltage in cyclic voltammetry.

  5. An Eletrochemical Quatrz Crystal Microbalance Study on Electrochemical Behavior of As(Ⅲ)at Au/Au and Pt/Au Electrodes%电镀铂/金的金电极上As(Ⅲ)电化学行为的电化学石英晶体微天平研究

    Institute of Scientific and Technical Information of China (English)

    黄素清; 黄钊; 谷铁安; 谢青季; 姚守拙

    2011-01-01

    Electrochemical behavior of As(Ⅲ)at Au/Au and Pt/Au electrodes was investigated with an electrochemical quartz crystal microbalance (EQCM) in Britton-Robinson ( B-R, pH = 1. 8 - 11. 2)buffer solutions and in 0. 1 or 0. 5 mol/L aqueous H2SO4. Through real-time process monitoring of the EQCM parameters (frequency etc. ) and enhancement of the electrode-response signals by pre-electrodeposition of As (0) , the electrodeposition of As (0) , the electrod-esurface-adsorption characteristics of As(Ⅲ) and As(Ⅴ) , and the pH-dependence of the electrochemistry of As species were investigated. The following main conclusions are reached: (1) electrodeposition of As(0) can occur on both electrodes, but electrodeposition of As(0) on Pt/Au is more significant, and the electrooxidation of As(0) electrodeposited on Pt/Au at sufficient quantity can exhibit two current peaks for oxidation of outer-layer As(0) followed by inner-layer As(0); (2) As(Ⅲ) can strongly adsorb on Pt/Au but its oxidation product as As(Ⅴ) can desorb from the electrode surface , and the adsorption of both As(Ⅲ) and As(Ⅴ) is very weak on Au/Au; (3) the electrooxidation current of As(Ⅲ) on Pt/Au tends to be the maximum in pH = 1. 8 B-R buffer solution and in 0.1 mol/L aqueous H2SO4. Based on the pre-adsorption of As(Ⅲ) on Pt/Au and its catalyzed electrooxidation stripping, we proposed a new linear sweep voltammetric electroanalysis method for the determination of As (Ⅲ) , by which the detection sensitivity for As(Ⅲ) can be 40-fold enhanced over the pre-adsorption-free case%采用电化学石英晶体微天平(EQCM)技术研究了Britton-Robinson(B-R,pH=1.8~11.2)缓冲溶液和H2SO4介质中电镀铂淦的金电极上As(Ⅲ)的循环伏安行为.通过实时监测EQCM频率等参数的变化过程并利用预电沉积As(O)放大电极响应信号,考察了两电极上As.(O)的电沉积、AsⅢ皿和AsⅤ助组分的吸附特性以及As组分电化学行为的pH依赖性.主要结论如

  6. Electrolysis of ammonia for hydrogen production catalyzed by Pt and Pt-Ir deposited on nickel foam

    Institute of Scientific and Technical Information of China (English)

    Min; Jiang; Dandan; Zhu; Xuebo; Zhao

    2014-01-01

    Electrolysis of ammonia in alkaline electrolyte solution was applied for the production of hydrogen. Both Pt-loaded Ni foam and Pt-Ir loaded Ni foam electrodes were prepared by electrodeposition and served as anode and cathode in ammonia electrolytic cell, respectively. The electrochemical behaviors of ammonia in KOH solution were individually investigated via cyclic voltammetry on three electrodes, i.e. bare Ni foam electrode, Pt-loaded Ni foam electrode and Pt-Ir loaded Ni foam electrode. The morphology and composition of the prepared Ni foam electrode were analyzed by scanning electron microscopy(SEM) and X-ray diffraction(XRD). Effects of the concentration of electrolyte solution and temperature of electrolytic cell on the electrolysis reaction were examined in order to enhance the efficiency of ammonia electrolysis. The competition of ammonia electrolysis and water electrolysis in the same alkaline solution was firstly proposed to explain the changes of cell voltage with the electrolysis proceeding. At varying current densities, different cell voltages could be obtained from galvanostatic curves.The low cell voltage of 0.58 V, which is less than the practical electrolysis voltage of water(1.6 V), can be obtained at a current density of2.5 mA/cm2. Based on some experimental parameters, such as the applied current, the resulting cell voltage and output of hydrogen gas, the power consumption per gram of H2produced can be estimated.

  7. Bioethanol in Biofuels Checked by an Amperometric Organic Phase Enzyme Electrode (OPEE Working in “Substrate Antagonism” Format

    Directory of Open Access Journals (Sweden)

    Mauro Tomassetti

    2016-08-01

    Full Text Available The bioethanol content of two samples of biofuels was determined directly, after simple dilution in decane, by means of an amperometric catalase enzyme biosensor working in the organic phase, based on substrate antagonisms format. The results were good from the point of view of accuracy, and satisfactory for what concerns the recovery test by the standard addition method. Limit of detection (LOD was on the order of 2.5 × 10−5 M.

  8. Pt nanoparticles embedded on reduced graphite oxide with excellent electrocatalytic properties

    Science.gov (United States)

    Saravanan, Gengan; Mohan, Subramanian

    2016-11-01

    Economically viable electrochemical approach has been developed for the synthesis of Pt nanoparticles through electrodeposition technique on the surface of Reduced Graphite Oxide (RGO). Pt nanoparticles embedded Reduced Graphite Oxide on Glassy Carbon Electrode are employed (Pt-rGO/GCE) for electrooxidation of formic acid. Scanning Electron Microscopy (SEM) image and Transmission Electron Microscopy (TEM) image shows that reduced graphite oxide act as an excellent support to anchor the Pt nanoparticles. Cyclic voltammetry results confirmed that Pt-rGO/GCE enhanced current density as many folds than that of bare platinum electrode for electrooxidation of formic acid. X-ray diffraction (XRD) patterns for Pt-graphene composites illustrate that peaks at 69.15 and 23° for Pt (220) and graphene carbon (002) respectively. 13C NMR spectrum of the electrochemically reduced graphite oxide resonance contains only one peak at 133 ppm which retains graphitic sp2 carbon and does not contain any oxygenated carbon and the carbonyl carbons.

  9. Graphitized carbon nanofiber-Pt nanoparticle hybrids as sensitive tool for preparation of screen printing biosensors. Detection of lactate in wines and ciders.

    Science.gov (United States)

    Loaiza, Oscar A; Lamas-Ardisana, Pedro J; Añorga, Larraitz; Jubete, Elena; Ruiz, Virginia; Borghei, Maryam; Cabañero, Germán; Grande, Hans J

    2015-02-01

    This work describes the fabrication of a new lactate biosensor. The strategy is based on the use of a novel hybrid nanomaterial for amperometric biosensors i.e. platinum nanoparticles (PtNps) supported on graphitized carbon nanofibers (PtNps/GCNF) prepared by chemical reduction of the Pt precursor at GCNF surfaces. The biosensors were constructed by covalent immobilization of lactate oxidase (LOx) onto screen printed carbon electrodes (SPCEs) modified with PtNps (PtNps/GCNF-SPCEs) using polyethyleneimine (PEI) and glutaraldehyde (GA). Experimental variables concerning both the biosensor design and the detection process were investigated for an optimal analytical performance. Lactate biosensors show good reproducibility (RSD 4.9%, n=10) and sensitivity (41,302±546) μA/Mcm(2), with a good limit of detection (6.9μM). Covalent immobilization of the enzyme allows the reuse of the biosensor for several measurements, converting them in a cheap alternative to the solid electrodes. The long-term stability of the biosensors was also evaluated. 90% of the signal was kept after 3months of storage at room temperature (RT), while 95% was retained after 18months at -20°C. These results demonstrate that the method provides sensitive electrochemical lactate biosensors where the stability of the enzymatic activity can be preserved for a long period of time in adequate storage conditions.

  10. Ternary Pt-Ru-Ni catalytic layers for methanol electrooxidation prepared by electrodeposition and galvanic replacement

    Directory of Open Access Journals (Sweden)

    Athanasios ePapaderakis

    2014-06-01

    Full Text Available Ternary Pt-Ru-Ni deposits on glassy carbon substrates, Pt-Ru(Ni/GC, have been formed by initial electrodeposition of Ni layers onto glassy carbon electrodes, followed by their partial exchange for Pt and Ru, upon their immersion into equimolar solutions containing complex ions of the precious metals. The overall morphology and composition of the deposits has been studied by SEM microscopy and EDS spectroscopy. Continuous but nodular films have been confirmed, with a Pt÷Ru÷Ni % bulk atomic composition ratio of 37÷12÷51 (and for binary Pt-Ni control systems of 47÷53. Fine topographical details as well as film thickness have been directly recorded using AFM microscopy. The composition of the outer layers as well as the interactions of the three metals present have been studied by XPS spectroscopy and a Pt÷Ru÷Ni % surface atomic composition ratio of 61÷12÷27 (and for binary Pt-Ni control systems of 85÷15 has been found, indicating the enrichment of the outer layers in Pt; a shift of the Pt binding energy peaks to higher values was only observed in the presence of Ru and points to an electronic effect of Ru on Pt. The surface electrochemistry of the thus prepared Pt-Ru(Ni/GC and Pt(Ni/GC electrodes in deaerated acid solutions (studied by cyclic voltammetry proves the existence of a shell consisting exclusively of Pt-Ru or Pt. The activity of the Pt-Ru(Ni deposits towards methanol oxidation (studied by slow potential sweep voltammetry is higher from that of the Pt(Ni deposit and of pure Pt; this enhancement is attributed both to the well-known Ru synergistic effect due to the presence of its oxides but also (based on the XPS findings to a modification effect of Pt electronic properties.

  11. Pt skin on AuCu intermetallic substrate: a strategy to maximize Pt utilization for fuel cells.

    Science.gov (United States)

    Wang, Gongwei; Huang, Bing; Xiao, Li; Ren, Zhandong; Chen, Hao; Wang, Deli; Abruña, Héctor D; Lu, Juntao; Zhuang, Lin

    2014-07-09

    The dependence on Pt catalysts has been a major issue of proton-exchange membrane (PEM) fuel cells. Strategies to maximize the Pt utilization in catalysts include two main approaches: to put Pt atoms only at the catalyst surface and to further enhance the surface-specific catalytic activity (SA) of Pt. Thus far there has been no practical design that combines these two features into one single catalyst. Here we report a combined computational and experimental study on the design and implementation of Pt-skin catalysts with significantly improved SA toward the oxygen reduction reaction (ORR). Through screening, using density functional theory (DFT) calculations, a Pt-skin structure on AuCu(111) substrate, consisting of 1.5 monolayers of Pt, is found to have an appropriately weakened oxygen affinity, in comparison to that on Pt(111), which would be ideal for ORR catalysis. Such a structure is then realized by substituting the Cu atoms in three surface layers of AuCu intermetallic nanoparticles (AuCu iNPs) with Pt. The resulting Pt-skinned catalyst (denoted as Pt(S)AuCu iNPs) has been characterized in depth using synchrotron XRD, XPS, HRTEM, and HAADF-STEM/EDX, such that the Pt-skin structure is unambiguously identified. The thickness of the Pt skin was determined to be less than two atomic layers. Finally the catalytic activity of Pt(S)AuCu iNPs toward the ORR was measured via rotating disk electrode (RDE) voltammetry through which it was established that the SA was more than 2 times that of a commercial Pt/C catalyst. Taking into account the ultralow Pt loading in Pt(S)AuCu iNPs, the mass-specific catalytic activity (MA) was determined to be 0.56 A/mg(Pt)@0.9 V, a value that is well beyond the DOE 2017 target for ORR catalysts (0.44 A/mg(Pt)@0.9 V). These findings provide a strategic design and a realizable approach to high-performance and Pt-efficient catalysts for fuel cells.

  12. CoS-Graphene Composite Counter Electrode for High Performance Dye-Sensitized Solar Cell.

    Science.gov (United States)

    Wang, Fen; Wu, Congcong; Tan, Yuan; Jin, Tetsuro; Chi, Bo; Pu, Jian; Jian, Li

    2015-02-01

    CoS-graphene composite counter electrode for dye-sensitized solar cell (DSSC) was prepared by coating hydrothermal synthesized CoS with graphene onto the FTO conductive glass. SEM shows that CoS particles are uniformly dispersed in the graphene. The result confirms that the prepared composite counter electrode is of highly electrocatalytic activity towards iodine reduction, which is even better than Pt electrode. And cyclic voltammetry measurement also shows that the composite counter electrode has good stability after 100 scan cycles. DSSC with CoS-graphene as composite counter electrode achieves a maximum power conversion efficiency of 6.31%, which is better than Pt electrode.

  13. Counter electrode electrocatalysts from one-dimensional coaxial alloy nanowires for efficient dye-sensitized solar cells

    Science.gov (United States)

    Duan, Jialong; Tang, Qunwei; Zhang, Huihui; Meng, Yuanyuan; Yu, Liangmin; Yang, Peizhi

    2016-01-01

    Pursuit of cost-effective counter electrode (CE) electrocatalysts with no sacrifice of photovoltaic performances has been a persistent objective for advanced dye-sensitized solar cell (DSSC) platforms. Here we demonstrate the experimental realization of CE electrocatalysts from Cu@M@Pt (M = Fe, Co, Ni) coaxial alloy nanowires for efficient DSSCs. The reasonable electrocatalytic activity is attributed to work function matching of alloy CEs to potential of I- /I3- and redistribute the electronic structure on the Pt surface. In comparison with 8.48% for the Pt nanotube CE based DSSC, the solar cells yield power conversion efficiencies up to 8.21%, 7.85%, and 7.30% using Cu@Fe@Pt, Cu@Co@Pt, and Cu@Ni@Pt NWs, respectively. This work represents an important step forward, as it demonstrates how to make the CE catalyst active and to accelerate the electron transport from CE to electrolyte for high-efficiency but cost-effective DSSC platforms.

  14. Development of an amperometric sulfite biosensor based on SO(x)/PBNPs/PPY modified ITO electrode.

    Science.gov (United States)

    Rawal, Rachna; Pundir, C S

    2012-11-01

    A sulfite oxidase (SO(x)) (EC 1.8.3.1) purified from Syzygium cumini leaves was immobilized onto prussian blue nanoparticles/polypyrrole composite (PBNPs/PPY) electrodeposited onto the surface of indium tin oxide (ITO) electrode. An amperometric sulfite biosensor was fabricated using SO(x)/PBNPs/PPY/ITO electrode as working electrode, Ag/AgCl as standard and Pt wire as auxiliary electrode connected through a potentiostat. The working electrode was characterized by Fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) before and after immobilization of SO(x). The biosensor showed optimum response within 2s, when operated at 20 mV s⁻¹ in 0.1M Tris-HCl buffer, pH 8.5 and at 35 °C. Linear range and minimum detection limit were 0.5-1000 μM and 0.12 μM (S/N=3) respectively. There was good correlation (r=0.99) between red wine samples sulfite value by standard DTNB method and the present method. The sensor was evaluated with 97% recovery of added sulfite in red wine samples and 2.2% and 4.3% within and between batch coefficients of variation respectively. The sensor was employed for determination of sulfite level in red and white wine samples. The enzyme electrode was used 200 times over a period of 3 months when stored at 4 °C.

  15. Multifunctional Pt(II) Reagents: Covalent Modifications of Pt Complexes Enable Diverse Structural Variation and In-Cell Detection.

    Science.gov (United States)

    White, Jonathan D; Haley, Michael M; DeRose, Victoria J

    2016-01-19

    To enhance the functionality of Pt-based reagents, several strategies have been developed that utilize Pt compounds modified with small, reactive handles. This Account encapsulates work done by us and other groups regarding the use of Pt(II) compounds with reactive handles for subsequent elaboration with fluorophores or other functional moieties. Described strategies include the incorporation of substituents for well-known condensation or nucleophilic displacement-type reactions and their use, for example, to tether spectroscopic handles to Pt reagents for in vivo investigation. Other chief uses of displacement-type reactions have included tethering various small molecules exhibiting pharmacological activity directly to Pt, thus adding synergistic effects. Click chemistry-based ligation techniques have also been applied, primarily with azide- and alkyne-appended Pt complexes. Orthogonally reactive click chemistry reactions have proven invaluable when more traditional nucleophilic displacement reactions induce side-reactivity with the Pt center or when systematic functionalization of a larger number of Pt complexes is desired. Additionally, a diverse assortment of Pt-fluorophore conjugates have been tethered via click chemistry conjugation. In addition to providing a convenient synthetic path for diversifying Pt compounds, the use of click-capable Pt complexes has proved a powerful strategy for postbinding covalent modification and detection with fluorescent probes. This strategy bypasses undesirable influences of the fluorophore camouflaged as reactivity due to Pt that may be present when detecting preattached Pt-fluorophore conjugates. Using postbinding strategies, Pt reagent distributions in HeLa and lung carcinoma (NCI-H460) cell cultures were observed with two different azide-modified Pt compounds, a monofunctional Pt(II)-acridine type and a difunctional Pt(II)-neutral complex. In addition, cellular distribution was observed with an alkyne-appended difunctional

  16. High aspect ratio, nanostructured, platinum based electrodes for proton exchange membrane fuel cells: Design, development and ionic conduction of the proposed structures

    Science.gov (United States)

    Paschos, Odysseas

    High aspect ratio nanostructures can provide substantial benefits when used as fuel cell electrodes since they can alleviate problems associated with conventional carbon supports. In this work the potential of incorporating high aspect ratio nanostructures as electrodes for fuel cells was studied. Moreover, a model was created that demonstrated the potential for the nanostructures to yield high performance. The creation of Pt nanorods using anodic aluminum oxide templates was investigated and experiments showed complete utilization of the electrodes surface area. However, the Pt nanorod structure was found to not be effective in terms of Pt mass utilization, since only the outer surface of the rod is utilized for catalytic activity. An alternate method was developed to coat (with Pt) high aspect ratio structures made from a cost-effective support material. Thus far, methods used to conformally coat Pt either cannot be used directly on several materials or tend not to be cost-effective. A non-vacuum method based on an Aerosol Assisted Deposition (AAD) technique was developed and optimized. Initial experiments showed feasibility of the technique to coat a large variety of substrates. Dimensions of the particles were controlled by the deposition parameters and ranged from 4 nm up to several hundreds of nm in diameter. Experiments where Pt nanoparticles were deposited on gas diffusion layer substrates, showed higher electrochemical performance compared to commercial catalyst. The need for electrolyte coating on the high aspect ratio structures was also investigated. Initial experiments were performed by splitting an MEA in half and using an intermediate Pt film. These experiments showed that ionic conduction on Pt surface is possible. Moreover these studies indicated that ionic conduction on Pt could result from hydrophilic groups that can exist on its surface. Since these groups can either be physisorbed due to presence of water or chemisorbed on the oxidized Pt

  17. Preparation of ternary Pt/Rh/SnO2 anode catalysts for use in direct ethanol fuel cells and their electrocatalytic activity for ethanol oxidation reaction

    Science.gov (United States)

    Higuchi, Eiji; Takase, Tomonori; Chiku, Masanobu; Inoue, Hiroshi

    2014-10-01

    Pt, Rh and SnO2 nanoparticle-loaded carbon black (Pt/Rh/SnO2/CB) catalysts with different contents of Pt and Rh were prepared by the modified Bönnemann method. The mean size and size distribution of Pt, Rh and SnO2 for Pt-71/Rh-4/SnO2/CB (Pt : Rh : Sn = 71 at.%: 4 at.%: 25 at.%) were 3.8 ± 0.7, 3.2 ± 0.7 and 2.6 ± 0.5 nm, respectively, indicating that Pt, Rh and SnO2 were all nanoparticles. The onset potential of ethanol oxidation current for the Pt-65/Rh-10/SnO2/CB and Pt-56/Rh-19/SnO2/CB electrodes was ca. 0.2 V vs. RHE which was ca. 0.2 V less positive than that for the Pt/CB electrode. The oxidation current at 0.6 V for the Pt/Rh/SnO2/CB electrode (ca. 2% h-1) decayed more slowly than that at the Pt/SnO2/CB electrode (ca. 5% h-1), indicating that the former was superior in durability to the latter. The main product of EOR in potentiostatic electrolysis at 0.6 V for the Pt-71/Rh-4/SnO2/CB electrode was acetic acid.

  18. Ferroelectric/electrode interfaces: Polarization switching and reliability of PZT capacitors in nonvolatile memories

    Science.gov (United States)

    Chen, Ye (Mike)

    The objective of this work was to investigate how the interface between electrode and PZT influences the PZT capacitor reliability. In order to conduct a well controlled experiment only the top-electrode PZT film interface was modified to study its effect on switching characteristics (i.e. hysteresis loop), voltage switching endurance and polarization retention of state of the art MOCVD grown film (nominally identical). The polycrystalline PZT film (50 -- 90 nm thick) are dominantly tetragonal with small fractions of the rhombohedral phase. XPS analyses of the as-deposited PZT film found the existence of a Pb-rich carbonate surface layer on all PZT film provided by industrial collaborators. Using materials characterizations such as in-situ XPS and ARXPS in tandem with electrical measurements it was determined that the Pb-rich surface layer appears to be an engineered sacrificial layer, which is beneficial in maximizing the switchable polarization and in improving the endurance and opposite-state retention behavior of PZT based FRAM capacitors with Pt electrode. This is because the excess Pb on the PZT surface and the Pb in the surface PZT reacts readily with the Pt during the Pt top electrode deposition creating a Pb-deficient non-ferroelectric interface layer between the top electrode and the PZT film. ARXPS analyses showed that this defective layer was approximately one nanometer thick and this is consistent with the hysteresis loop measurements that indicated a similar interface layer thickness. Inferior switching endurance and polarization retention was found in PZT film with an engineered initial thicker defective interface layer (via a HNO3-clean of the PZT surface prior to the top electrode deposition). This could be due to the fact that this defective interface layer may have thickened during the voltage cycling and/or retention bake. The thickening could be caused by greater carrier trapping and/or interface reaction between the Pb and the Pt. This

  19. Pt nanoparticles embedded on reduced graphite oxide with excellent electrocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, Gengan, E-mail: saravanan3che@gmail.com [Central University of Tamil Nadu, Department of Chemistry, Thiruvarur, 610101 (India); Mohan, Subramanian, E-mail: sanjnamohan@yahoo.com [EMFT Division, CSIR-Central Electrochemical Research Institute, Tamilnadu, Karaikudi 630 006 (India)

    2016-11-15

    Graphical abstract: RGO/Nano Pt: This study explore the electrocatalytic oxidation performance of reduced graphite oxide (RGO) anchored with nano Pt. This graphene composite reveal superior electrooxidation performance that is associated with the flexible RGO matrix and the uniform distribution of Pt particles, which enhances surface area, fast electron transfer, uniform particle size distribution; consequently, the RGO matrix provides more stability to Pt particles during electrooxidation process. Display Omitted - Highlights: • Greener electrochemical method applied to prepare well-dispersed Pt-rGO. • Pt-rGO large surface area excellent charge transfer better catalytic activity. • Low-cost highly efficient carbon-based electrodes for direct formic acid fuel cell. • rGO an excellent support to anchor Pt nanoparticles on its surface. • Pt-rGO distinctly enhanced current density towards formic acid electrooxidation. - Abstract: Economically viable electrochemical approach has been developed for the synthesis of Pt nanoparticles through electrodeposition technique on the surface of Reduced Graphite Oxide (RGO). Pt nanoparticles embedded Reduced Graphite Oxide on Glassy Carbon Electrode are employed (Pt-rGO/GCE) for electrooxidation of formic acid. Scanning Electron Microscopy (SEM) image and Transmission Electron Microscopy (TEM) image shows that reduced graphite oxide act as an excellent support to anchor the Pt nanoparticles. Cyclic voltammetry results confirmed that Pt-rGO/GCE enhanced current density as many folds than that of bare platinum electrode for electrooxidation of formic acid. X-ray diffraction (XRD) patterns for Pt-graphene composites illustrate that peaks at 69.15 and 23° for Pt (220) and graphene carbon (002) respectively. {sup 13}C NMR spectrum of the electrochemically reduced graphite oxide resonance contains only one peak at 133 ppm which retains graphitic sp{sup 2} carbon and does not contain any oxygenated carbon and the carbonyl

  20. Vanadium oxide (VO) based low cost counter electrode in dye sensitized solar cell (DSSC) applications

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, P.; Pandian, Muthu Senthil; Ramasamy, P., E-mail: ramasamyp@ssn.edu.in [SSN Research Centre, SSN College of Engineering, Kalavakkam-603 110, Chennai, Tamilnadu (India)

    2015-06-24

    Vanadium oxide nanostars were synthesized by chemical method. The prepared Vanadium oxide nanostars are introduced into dye sensitized solar cell (DSSC) as counter electrode (CE) catalyst to replace the expensive platinum (Pt). The products were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and Brunauer–Emmett–Teller (BET) method. The photovoltaic performance of the VO as counter electrode based DSSC was evaluated under simulated standard global AM 1.5G sunlight (100 mW/cm{sup 2}). The solar to electrical energy conversion efficiency (η) of the DSSC was found to be 0.38%.This work expands the Counter electrode catalyst, which can help to reduce the cost of DSSC and thereby encourage their fundamental research and commercial application.

  1. Influences of Interface States on Resistive Switching Properties of TiOx with Different Electrodes

    Institute of Scientific and Technical Information of China (English)

    JIA Ze; WANG Lin-Kai; REN Tian-Ling

    2010-01-01

    @@ Different TiOx thin films prepared by graded or sufficient oxidization of Ti are applied with Pt or Ag electrode in metal-insulator-metal(MIM)structures for studying the properties and mechanisms of resistive switching.The differences on the mobile oxygen vacancies in TiOx films and different work functions of the electrode films result in different insulator-metal interface states,which are displayed as ohmic-like or non-ohmic contact.Based on the interface states,the electrical models for MIM devices are analyzed and extracted.The electrode-limited effect and the bulk-limited effect can be unified to explain the mechanisms for resistive switching behavior as the dominant effect respectively in various conditions.All the current-voltage curves of the four kinds of specimens measured in the experiments can be explained and proved in accordance with the theory.

  2. Invisibility and PT symmetry

    OpenAIRE

    MOSTAFAZADEH, Ali

    2013-01-01

    PHYSICAL REVIEW A 87, 012103 (2013) Invisibility and PT symmetry Ali Mostafazadeh* Department of Mathematics, Koc¸ University, Sarıyer 34450, Istanbul, Turkey (Received 9 July 2012; published 3 January 2013) For a general complex scattering potential defined on a real line, we show that the equations governing invisibility of the potential are invariant under the combined action of parity and time-reversal (PT ) transformation. We determine the PT -symmetric as well as no...

  3. Ethylene glycol oxidation on Pt and Pt-Ru nanoparticle decorated polythiophene/multiwalled carbon nanotube composites for fuel cell applications.

    Science.gov (United States)

    Selvaraj, Vaithilingam; Alagar, Muthukaruppan

    2008-01-30

    A novel supporting material containing polythiophene (PTh) and multiwalled carbon nanotubes (MWCNTs) (PTh-CNTs) is prepared by in situ polymerization of thiophene on carbon nanotubes using FeCl(3) as oxidizing agent under sonication. The prepared polythiophene/CNT composites are further decorated with Pt and Pt-Ru nanoparticles by chemical reduction of the corresponding metal salts using HCHO as reducing agent at pH = 11 (Pt/PTh-CNT and Pt-Ru/PTh-CNT). The fabricated composite films decorated with nanoparticles were investigated towards the electrochemical oxidation of ethylene glycol (EG). The presence of carbon nanotubes in conjugation with a conducting polymer produces a good catalytic effect, which might be due to the higher electrochemically accessible surface areas, electronic conductivity and easier charge-transfer at polymer/electrolyte interfaces, which allows higher dispersion of Pt and Pt-Ru nanoparticles. Such nanoparticle modified PTh-CNT electrodes exhibit better catalytic behavior towards ethylene glycol oxidation. Results show that Pt/PTh-CNT and Pt-Ru/PTh-CNT modified electrodes show enhanced electrocatalytic activity and stability towards the electro-oxidation of ethylene glycol than the Pt/PTh electrodes, which shows that the composite film is more promising for applications in fuel cells.

  4. Ethylene glycol oxidation on Pt and Pt-Ru nanoparticle decorated polythiophene/multiwalled carbon nanotube composites for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraj, Vaithilingam; Alagar, Muthukaruppan [Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai 600025 (India)

    2008-01-30

    A novel supporting material containing polythiophene (PTh) and multiwalled carbon nanotubes (MWCNTs) (PTh-CNTs) is prepared by in situ polymerization of thiophene on carbon nanotubes using FeCl{sub 3} as oxidizing agent under sonication. The prepared polythiophene/CNT composites are further decorated with Pt and Pt-Ru nanoparticles by chemical reduction of the corresponding metal salts using HCHO as reducing agent at pH = 11 (Pt/PTh-CNT and Pt-Ru/PTh-CNT). The fabricated composite films decorated with nanoparticles were investigated towards the electrochemical oxidation of ethylene glycol (EG). The presence of carbon nanotubes in conjugation with a conducting polymer produces a good catalytic effect, which might be due to the higher electrochemically accessible surface areas, electronic conductivity and easier charge-transfer at polymer/electrolyte interfaces, which allows higher dispersion of Pt and Pt-Ru nanoparticles. Such nanoparticle modified PTh-CNT electrodes exhibit better catalytic behavior towards ethylene glycol oxidation. Results show that Pt/PTh-CNT and Pt-Ru/PTh-CNT modified electrodes show enhanced electrocatalytic activity and stability towards the electro-oxidation of ethylene glycol than the Pt/PTh electrodes, which shows that the composite film is more promising for applications in fuel cells.

  5. A density-functional theory study of electrochemical adsorption of sulfuric acid anions on Pt(111).

    Science.gov (United States)

    Santana, Juan A; Cabrera, Carlos R; Ishikawa, Yasuyuki

    2010-08-28

    A density-functional theory study of the electrochemical adsorption of sulfuric acid anions was conducted at the Pt(111)/electrolyte interface over a wide range of electrode potential, including the anomalous region of the hydrogen voltammogram of this electrode. We focus on the precise nature of the binding species and their bonding to the surface, identifying the adsorbed species as a function of electrode potential. In particular, the origin of anomalous or so-called "butterfly" feature in this voltammogram between +0.30 and +0.50 V vs. the reference hydrogen electrode and the nature of the adsorbed species on the Pt(111) surface in this potential range were explicated.

  6. Electrochemical characters and structure changes of electrochemically treated Pt nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Huiping; Qiu, Xinping; Chen, Liquan [Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084 (China); Lab of Advanced Power Sources, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Song, Huanqiao; Zhu, Wentao [Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084 (China)

    2010-01-15

    In this paper, the surface and electrochemical characters of the Pt/CNT electrode before and after voltammetric cyclings were studied using high resolution transmission electron microscopy imaging (HRTEM), X-ray photon electron spectroscopy (XPS) and cyclic voltammetry measurements of CO and methanol oxidation. It was found that Pt nanoparticles were not stable and formed the linked and agglomerated structures. The changes of the crystallites led to the peak multiplicity, the negative shift of CO oxidation peaks, and the increase of the current density of methanol oxidation. We considered the specific activities were due to the increases of oxygen species and defect sites on Pt. (author)

  7. Amperometric choline biosensor based on multiwalled carbon nanotubes/zirconium oxide nanoparticles electrodeposited on glassy carbon electrode.

    Science.gov (United States)

    Pundir, S; Chauhan, N; Narang, J; Pundir, C S

    2012-08-01

    A bienzymatic choline biosensor was constructed by coimmobilizing acetylcholinesterase (AChE) and choline oxidase (ChO) onto nanocomposite of carboxylated multiwalled carbon nanotubes (c-MWCNTs) and zirconium oxide nanoparticles (ZrO(2)NPs) electrodeposited on the surface of a glassy carbon electrode (GCE) and using it (AChE-ChO/c-MWCNT/ZrO(2)NPs/GCE) as working electrode, Ag/AgCl as reference electrode, and Pt wire as auxiliary electrode connected through a potentiostat. The enzyme electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and cyclic voltammetry (CV) studies, optimized, and evaluated. The biosensor exhibited optimum response within 4 s at +0.2V, pH 7.4, and 25 °C. The detection limit and working range of the biosensor were 0.01 μM and 0.05 to 200 μM, respectively. The half-life of the enzyme electrode was 60 days at 4 °C. The serum choline level, as measured by the biosensor, was 9.0 to 12.8 μmol/L (with a mean of 10.81 μmol/L) in apparently healthy persons and 5.0 to 8.4 μmol/L (with a mean of 6.53 μmol/L) in persons suffering from Alzheimer's disease. The enzyme electrode was unaffected by a number of serum substances.

  8. Preparation of the Pt-HxWO3 Electrode and Electro-Catalysis for Hydrogen Oxidation%铂-氢钨青铜电极的制备及对氢氧化的电催化

    Institute of Scientific and Technical Information of China (English)

    赵文文; 杨勇; 张华

    2012-01-01

    采用电化学还原法在表面改性的碳布上,通过改变催化剂沉积顺序及氢钨青铜沉积时间制备铂-氢钨青铜复合催化剂,所得电极作为质子交换膜燃料电池(PEMFC)阳极.利用X射线衍射(XRD)、热重分析(TG)、扫描电子显微镜(SEM)、循环伏安(CV)及单电池极化性能测试研究了催化剂的组成、沉积量、分散性及其对氢氧化的电催化活性.实验结果表明,氢钨青铜沉积时间及催化剂沉积顺序对电极催化性能有显著影响,当氢钨青铜沉积时间为10 min,先沉积氢钨青铜、后沉积铂所得Pt/HxWO3电极对氢氧化具有最佳的催化活性.适量的氢钨青铜才能与铂形成较好的协同催化效应.%Anodes of proton exchange membrane fuel cell with platinum-hydrogen tungsten bronze (HxWO3) as composite catalysts were prepared by electrochemical reduction on the modified surface of carbon cloth. The catalysts were characterized by XRD, TG, SEM, CV and the single-cell polarization tests. The results showed that the order of electrochemical reduction and the deposition time of hydrogen tungsten bronze had major impacts on catalytic properties. When the deposition time of hydrogen tungsten bronze was 10min, the composite catalyst of Pt/HxWO3 exhibited the highest catalytic activity for hydrogen oxidation. A suitable amount of hydrogen tungsten bronze may exhibite better synergistic catalytic effect.

  9. Effect of the state of distribution of supported Pt nanoparticles on effective Pt utilization in polymer electrolyte fuel cells.

    Science.gov (United States)

    Uchida, Makoto; Park, Young-Chul; Kakinuma, Katsuyoshi; Yano, Hiroshi; Tryk, Donald A; Kamino, Takeo; Uchida, Hiroyuki; Watanabe, Masahiro

    2013-07-21

    In polymer electrolyte fuel cells, it is essential to minimize Pt loading, particularly at the cathode, without serious loss of performance. From this point of view, we will report an advanced concept for the design of high performance catalysts and membrane-electrode assemblies (MEAs): first, the evaluation of Pt particle distributions on both the interior and exterior walls of various types of carbon black (CB) particles used as supports with respect to the "effective surface (ES)"; second, control of both size and location of Pt particles by means of a new preparation method (nanocapsule method); and finally, a new evaluation method for the properties of MEAs based on the Pt utilization (UPt), mass activity (MA), and effectiveness of Pt (EfPt), based on the ES concept. The amounts of Pt catalyst particles located in the CB nanopores were directly evaluated using the transmission electron microscopy, scanning electron microscopy and corresponding three-dimensional images. By use of the nanocapsule method and optimization of the ionomer, increased MA and EfPt values for the MEA were achieved. The improvement in the cathode performance can be attributed to the sharp particle-size distribution for Pt and the highly uniform dispersion on the exterior surface of graphitized carbon black (GCB) supports.

  10. Development of A Novel Methode for COD (Chemical Oxygen Demand Measurement based onPhotoelectrochemical Cell: Characterization of TiO2/ITO Film Working Electrode

    Directory of Open Access Journals (Sweden)

    Y.K. Krisnandi

    2009-04-01

    Full Text Available Nanosize TiO2 film,immobilized on an ITO (Indium Tin Oxide glass, was successfully fabricated. The film was prepared by a dip coatingtechnique in a hydrothermal sol-gel system and subjected to a heat treatment at 100°C up to 450°C. Characterization ofthe film by XRD, AFM, BET methods revealed the occurrence of anatase form and 9.64 nm in crystallite size; havingthree dimensional profile and roughness with height of typically 9.8 nm; and surface area of 58.21 m2/g. The film thenwas employed as a working electrode in a photo electrochemical system (PES. This PES generated a photocurrent thatproportional to the organic chemical concentration in the water sample. Integration of the photocurrent versus timegives a charge (Q that represent the event of complete mineralization of organic chemical in the TiO2 surface and canbe correlated to the Chemical Oxygen Demand (COD of measured water. This system has a potential to be developedfor a novel COD sensor.

  11. Electrochemical detection of copper ions leached from CuO nanoparticles in saline buffers and biological media using a gold wire working electrode

    Science.gov (United States)

    Baldisserri, Carlo; Costa, Anna Luisa

    2016-04-01

    We performed explorative cyclic voltammetry in phosphate-buffered saline buffers, Dulbecco's modified Eagle's medium (DMEM), and fetal bovine serum-added DMEM using Au wire as working electrode, both in the absence and in the presence of known nominal concentrations of Cu2+ ions or 15 nm CuO nanoparticles. Addition of either Cu2+ ions or aqueous suspension of CuO nanoparticles caused a single anodic peak to appear in the double-layer region of all three pristine media. The height of the anodic peak was found to increase in a monotonic fashion vs. Cu2+ concentration in Cu2+-added media, and versus time since CuO addition in CuO-added media. Stepwise addition of glycine to Cu2+-added phosphate-buffered saline buffer caused an increasing cathodic shift of the anodic peak accompanied by decreasing peak currents. Results indicate that preparing Cu2+-free suspensions of CuO nanoparticles in such media is difficult, owing to the presence of leached copper ions. The implications on results of experiments in which CuO nanoparticle-added biological media are used as cell culture substrates are discussed. Literature data on the interactions between Cu2+ ions, dissolved carbon dioxide in aqueous CuO suspensions, and amino acids present in such media are compared to our results.

  12. PRELIMINARY IN-SITU X-RAY ABSORPTION FINE STRUCTURE EXAMINATION OF PT/C AND PTCO/C CATHODE CATALYSTS IN AN OPERATIONAL POLYMER ELECTROLYTE FUEL CELL

    Energy Technology Data Exchange (ETDEWEB)

    Phelan, B.T.; Myers, D.J.; Smith, M.C.

    2009-01-01

    State-of-the-art polymer electrolyte fuel cells require a conditioning period to reach optimized cell performance. There is insuffi cient understanding about the behavior of catalysts during this period, especially with regard to the changing environment of the cathode electrocatalyst, which is typically Pt nanoparticles supported on high surface area Vulcan XC-72 carbon (Pt/C). The purpose of this research was to record preliminary observations of the changing environment during the conditioning phase using X-Ray Absorption Fine Structure (XAFS) spectroscopy. XAFS was recorded for a Pt/C cathode at the Pt L3-edge and a PtCo/C cathode at both the Pt L3-edge and Co K-edge. Using precision machined graphite cell-blocks, both transmission and fl uorescence data were recorded at Sector 12-BM-B of Argonne National Laboratory’s Advanced Photon Source. The fl uorescence and transmission edge steps allow for a working description of the changing electrocatalyst environment, especially water concentration, at the anode and cathode as functions of operating parameters. These features are discussed in the context of how future analysis may correlate with potential, current and changing apparent thickness of the membrane electrode assembly through loss of catalyst materials (anode, cathode, carbon support). Such direct knowledge of the effect of the conditioning protocol on the electrocatalyst may lead to better catalyst design. In turn, this may lead to minimizing, or even eliminating, the conditioning period.

  13. Oxygen reduction activity of Pt and Pt Co-alloy catalysts: A comparison between kinetic measurements and polymer electrolyte fuel cell experiments

    Energy Technology Data Exchange (ETDEWEB)

    Paulus, U.A.; Draschil, C.; Schmidt, T.J. [PSI and Lawrence Berkeley National Lab (United States); Stamenkovic, V. [Lawrence Berkeley National Lab (United States); Markovic, N.M. [Lawrence Berkeley National Lab (United States); Ross, P.N. [Lawrence Berkeley National Lab (United States); Scherer, G.G.

    2002-03-01

    The oxygen reduction reaction (orr) has been studied on various carbon supported Pt Co alloys in comparison to carbon supported platinum in perchloric acid. The applied thin film rotating ring-disk electrode (rrde) technique allows both the investigation of the orr and their kinetic analysis and in parallel the detection and quantification of the amount of peroxide produced during the orr. Polymer Electrolyte Fuel cell (PEFC) experiments using commercially available gas diffusion electrodes (gdes) with Pt/C and Pt Co/C respectively as active layers were carried out to investigate the above characterized catalysts under real PEFC conditions. (author)

  14. Work.

    Science.gov (United States)

    Haines, Annette M.

    2003-01-01

    Draws upon Maria Montessori's writings to examine work as a universal human tendency throughout life. Discusses the work of adaptation of the infant, work of "psycho-muscular organism" for the preschooler, work of the imagination for the elementary child, community work of the adolescent, and work of the adult. Asserts that…

  15. Transparent platinum counter electrode for efficient semi-transparent dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Iefanova, Anastasiia; Nepal, Jeevan; Poudel, Prashant; Davoux, Daren; Gautam, Umesh [Electrical Engineering and Computer Science Department, South Dakota State University, Brookings, SD 57006 (United States); Mallam, Venkataiah [Chemistry and Biochemistry Department, South Dakota State University, Brookings, SD 57006 (United States); Qiao, Qiquan [Electrical Engineering and Computer Science Department, South Dakota State University, Brookings, SD 57006 (United States); Logue, Brian [Chemistry and Biochemistry Department, South Dakota State University, Brookings, SD 57006 (United States); Baroughi, Mahdi Farrokh, E-mail: m.farrokhbaroughi@sdstate.edu [Electrical Engineering and Computer Science Department, South Dakota State University, Brookings, SD 57006 (United States)

    2014-07-01

    A method for fabrication of highly transparent platinum counter electrodes (CEs) has been developed based on spray coating of Pt nanoparticles (NPs) on hot substrates. This method leads to 86% reduction in Pt consumption reducing the Pt cost per peak watt of counter electrode from $0.79/Wp down to $0.11/Wp compared to the conventional Pt counter electrodes made by sputter deposition. The simplicity and low cost of this method provide a basis for an up-scalable fabrication process. The Pt NP layer is over 88% transparent, leading to overall transparency of 80% when incorporated with indium tin oxide/glass substrates for functional counter electrodes. This counter electrode exhibits a large surface area and high catalytic activity, comparable to that of the conventional opaque CEs. Semi-transparent dye-sensitized solar cells fabricated based on this counter electrode showed 6.17% power conversion efficiency. - Highlights: • Counter electrode (CE) prepared by spraying nanoparticle (NP) Pt on hot substrate. • Low cost and scalable fabrication process of CE. • The spray deposited CE uses 10 times less Pt compared to the sputtering method. • The CE is 80% transparent and exhibits a large surface and high catalytic activity. • A semitransparent dye-sensitized solar cell with Pt NP CE was 6.17% efficient.

  16. Flexible and conductive cotton fabric counter electrode coated with graphene nanosheets for high efficiency dye sensitized solar cell

    Science.gov (United States)

    Sahito, Iftikhar Ali; Sun, Kyung Chul; Arbab, Alvira Ayoub; Qadir, Muhammad Bilal; Choi, Yun Seon; Jeong, Sung Hoon

    2016-07-01

    Textile fabric based electrodes due to their lightweight, flexibility and cost effectiveness, coupled with the ease of fabrication are recently given a huge attention as wearable energy sources. The current dye sensitized solar cells (DSSCs) are based on Platinized-Fluorinated Tin oxide (Pt-FTO) glass electrode, which is not only expensive, but also rigid and heavyweight. In this work, a highly conductive-graphene coated cotton fabric (HC-GCF) is fabricated with a surface resistance of only 7 Ω sq-1. HC-GCF is used as an efficient counter electrode (CE) in DSSC and the results are examined using photovoltaic and electrochemical analysis. HC-GCF counter electrode shows a negligible change of resistance to bending at various bending positions and is also found extremely resistant to electrolyte solution and washing with water. Cyclic voltammogram, Nyquist and the Tafel plots suggest an excellent electro catalytic activity (ECA) for the reduction of tri-iodide (I3-) ions. Symmetrical cells prepared using HC-GCF, indicate a very low charge transfer resistance (RCT) of only 1.2 Ω, which is nearly same to that of the Pt with 1.04 Ω. Furthermore, a high photovoltaic conversion efficiency (PCE) of 6.93% is achieved using HC-GCF counter electrode using polymer electrolyte.

  17. Electrode porosity and effective electrocatalyst activity in electrode-membrane-assemblies (MEAs) of PEMFCs

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, A.; Wendt, H. [Institut fuer Chemische Technologie, Darmstadt (Germany)

    1996-12-31

    New production technologies of membrane-electrode-assemblies for PEWCs which ensure almost complete catalyst utilization by {open_quotes}wetting{close_quotes} the internal catalyst surface with the ionomeric electrolyte, allow for a reduction of Pt-loadings from prior 4 mg cm{sup -2} to now less than 0.5 mg cm{sup -2}. Such electrodes are not thicker than from 5 to 10 {mu}m. Little has been published hitherto about the detailed micromorphology of such electrodes and the role of electrode porosity on electrode performance. It is well known, that the porosity of thicker fuel cell electrodes, e.g. of PAFC or AFC electrodes is decisive for their performance. Therefore the issue of this investigation is to measure and to modify the porosity of electrodes prepared by typical MEA production procedures and to investigate the influence of this porosity on the effective catalyst activity for cathodic reduction of oxygen from air in membrane cells. It may be anticipated that any mass transfer hindrance of gaseous reactants into porous electrodes would manifest itself rather in the conversion of dilute gases than in the conversion of pure gases (e.g. neat oxygen). Therefore in this investigation the performance of membrane cell cathodes with non pressurized air had been compared to that with neat oxygen at cathodes which had a relatively low Pt-loading of 0.15 mg cm{sup -2}.

  18. Thermo-Electrochemical Cells Based on Carbon Nanotube Electrodes by Electrophoretic Deposition

    Institute of Scientific and Technical Information of China (English)

    Weijin Qian; Mingxuan Cao; Fei Xie; Changkun Dong

    2016-01-01

    Drawbacks of low efficiency and high cost of the electrode materials have restricted the wide applications of the thermo-electrochemical cells (TECs). Due to high specific areas and electrical conductivities, the low cost multi-walled carbon nanotubes (MWNTs) are promising alternative electrode materials. In this work, the MWNT films of up to 16 cm2 were synthesized on stainless steel substrates by the electrophoretic deposition (EPD) to make the thermo-electrochemical electrodes. MWNT electrodes based on TECs were characterized by cyclic voltammetry and the long-term stability tests with the potassium ferri/ferrocyanide electrolyte. The TECs reached the current density of 45.2 A m-2 and the maximum power density of 0.82 W m-2. The relative power conversion efficiency of the MWNT electrode is 50%higher than that for the Pt electrode. Meanwhile, the TECs was operated continuously for 300 h without performance degradation. With the priorities of low cost and simple fabrication, EPD-based MWNT TECs may become commercially viable.

  19. Room-temperature stability of Pt nanogaps formed by self-breaking

    NARCIS (Netherlands)

    Prins, F.; Hayashi, T.; De Vos van Steenwijk, B.J.A.; Gao, B.; Osorio, E.A.; Muraki, K.; Van der Zant, H.S.J.

    2009-01-01

    We present a method to make Pt nanometer-spaced electrodes that are free of metallic particles and stable at ambient conditions. The nanogaps are fabricated using feedback-controlled electromigration to form few-atom contacts. When performing this procedure at elevated temperatures (>420 K), the Pt

  20. Electrochemical reduction of O2 and NO on Ni, Pt and Au

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent

    2008-01-01

    The electrochemical reduction of oxygen and nitric oxide was studied using cyclic voltammetry on point electrodes of Ni, Pt and Au in the temperature range 400-600 degrees C. All the materials were more active towards the reduction of oxygen than towards the reduction of nitric oxide, except Pt...

  1. Fuel cell electrocatalsis : oxygen reduction on Pt-based nanoparticle catalysts

    NARCIS (Netherlands)

    Vliet, Dennis Franciscus van der

    2010-01-01

    The thesis contains a discussion on the subject of the Oxygen Reduction Reaction (ORR) on Pt-alloy nanoparticle catalysts in the Rotating Disk Electrode (RDE) method. An insight in some of the difficulties of this method is given with proper solutions and compensations for these problems. Pt3Co, Au-

  2. Preparation of PtSn/C, PtRu/C, PtRh/C, PtRuRh/C and PtSnRh/C electrocatalysts using an alcohol-reduction process for methanol and ethanol oxidation; Preparacao e caracterizacao de eletrocatalisadores PtRu, PtSn, PtRh, PtRuRh e PtSnRh para oxidacao direta de alcoois em celulas a combustivel tipo PEM utilizando a metodologia da reducao por alcool

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Ricardo Rodrigues

    2009-07-01

    In this work, Pt/C, PtRh (90:10), PtRh/C (50:50), PtSn/C (50:50), PtRu (50:50)/C, PtRuRh/C (50:40:10) and PtSnRh/C (50:40:10) were prepared by an alcohol-reduction process with metal loading of 20 wt.% using H{sub 2}PtCl{sub 6}.6H{sub 2}O (Aldrich), SnCl{sub 2}.2H{sub 2}O (Aldrich),and RhCl{sub 2}.XH{sub 2}O (Aldrich) as metals sources and Vulcan XC72 as support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry (CV). The electro-oxidation of ethanol was studied by CV, chronoamperomety at room temperature in acid medium and tests at 100 deg C on a single cell of a direct methanol or ethanol fuel cell. The EDX analysis showed that the metal atomic ratios of the obtained electrocatalysts were similar to the nominal atomic ratios used in the preparation. The diffractograms of electrocatalysts prepared showed four peaks at approximately 2{theta} =40 deg, 47 deg, 67 deg and 82 deg, which are associated with the (111), (200), (220) and (311) planes, respectively, of a face cubic-centered (fcc) structure characteristic of platinum and platinum alloys. The average crystallite sizes using the Scherrer equation and the calculated values were in the range of 2-3 nm. For Pt Sn/C and PtSnRh/C two additional peaks were observed at 2 = 34 deg and 52 deg that were identified as a SnO{sub 2} phase. Pt Sn/C (50:50) and PtSnRh/C (50:40:10) electro catalyst showed the best performance for ethanol oxidation at room temperature. For methanol oxidation at room temperature Pt Ru/C, Pt Sn/C and PtRuRh/C electrocatalysts showed the best performance. Tests at 100 deg C on a single cell of a direct ethanol fuel cell PtSnRh/C showed the best performance, for methanol oxidation PtRuRh/C showed the best performance. (author)

  3. Electrochemical properties of boron-doped ordered mesoporous carbon as electrocatalyst and Pt catalyst support.

    Science.gov (United States)

    Nsabimana, Anaclet; Bo, Xiangjie; Zhang, Yufan; Li, Mian; Han, Ce; Guo, Liping

    2014-08-15

    The electrochemical properties of boron-doped ordered mesoporous carbon (BOMC) as an electrode material and Pt catalyst support were investigated. The BOMC was synthesized and its structure was examined by transmission electron microscopy (TEM), scanning electron microscopy, nitrogen adsorption-desorption, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). More defective sites were introduced into OMC by the doping of boron. Six electroactive compounds were employed to investigate their electrochemical responses on BOMC and OMC modified glassy carbon electrodes. The BOMC, with more defective sites, exhibited high activity toward the electroactive compounds. The property of BOMC of supporting platinum nanoparticle catalyst was examined. Pt nanoparticles were loaded onto BOMC and OMC, and this was confirmed by TEM, XPS and thermogravimetric analysis. Pt nanoparticles with an average diameter of 2.62 nm were deposited on BOMC. The doping of boron into OMC facilitates the dispersion of Pt nanoparticles. Pt nanoparticles supported on BOMC (Pt-BOMC) and Pt nanoparticles supported on OMC (Pt-OMC) were electrochemically characterized. The electrocatalytic activity of Pt-BOMC toward methanol oxidation reaction was compared with that of Pt-OMC and commercial Pt-C catalyst. The results show that the electrocatalytic activity of BOMC is significantly higher than that of other used catalysts. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Electrodes for the hydrogen through water electrolysis using BMI.BF{sub 4} as electrolyte; Eletrodos para a producao de hidrogenio via eletrolise da agua utilizando BMI.BF{sub 4} como eletrolito

    Energy Technology Data Exchange (ETDEWEB)

    Botton, Janine Padilha; Martini, Emilse M.A.; Souza, Michele Oberson de; Souza, Roberto Fernando de [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. de Quimica. Lab. de Eletroquimica e Catalise]. E-mail: janine@iq.ufrgs.br; Loget, Gabriel [Universite de Rennes 1, Rennes (France). Lab. de Eletroquimica Molecular e Macromolecular. UMR CNRS 6510

    2008-07-01

    The hydrogen production by water electrolysis was tested with different electrocatalysts (nickel, iron alloys containing nickel, chromium and manganese, and molybdenum) in the ionic liquid electrolyte, 1-butyl-3-methylimidazolium tetrafluoroborate (BMI.BF{sub 4}), 10 vol.% in water. The hydrogen evolution reaction (HER) worked at room temperature with a platinum quasi-reference electrode (PtQRE) applying a -1.7 V potential. The experimental conditions used were determined in previous work and such parameters of operation were confirmed with the electrocatalysts employed in this work. A Hoffman cell apparatus was used to perform the water electrolysis. The current density values, j, obtained were between 3.0 mA cm{sup -2} and 77.5 mA cm{sup -2}. The system efficiency was very high for all electrocatalysts tested, between 97.0% and 99.2%. The molybdenum (Mo) electrode was better than others showing the highest current density value in HER. This behavior has been explained by the lower value of activation energy for the electrolysis reaction when Mo is employed comparing with Pt electrode. The energy activation of the HER using platinum (Pt) as electrocatalyst in an aqueous solution of BMI.BF{sub 4} 10 vol.% was 23.40 kJ mol{sup -1}, whereas with electrode of Mo in the same conditions , was 9.22 kJ mol{sup -1}. In an alkaline aqueous electrolyte (usual medium for such reaction), Mo is less efficient than Pt explaining the lack of published citation using pure Mo as cathode for the HER. The excellent results obtained with a Mo electrode employing ionic liquid as electrolyte show that the hydrogen production can be carried out with cheap electrode material at room temperature, which makes this method economically attractive. (author)

  5. High pressure organic colloid method for the preparation of high performance carbon nanotube-supported Pt and PtRu catalysts for fuel cell applications

    Institute of Scientific and Technical Information of China (English)

    WANG; KateNing; Viola; BIRSS

    2010-01-01

    Highly dispersed,high performance Pt and PtRu catalysts,supported on multiwalled carbon nanotubes(CNTs),were prepared by a high pressure organic colloid method.The particle sizes of the active components were as small as 1.2 nm for Pt and 1.1 nm for PtRu,and the active Pt surface areas were 295 and 395 m2/g,respectively.The catalysts showed very high activities toward the anodic oxidation of methanol,evaluated by cyclic voltammetry,being up to 4 times higher than that of commercial Johnson Matthey Hispec 2000 Pt/XC-72R and 5 times better than Hispec 5000 PtRu/XC-72R catalysts.In a full air/hydrogen fuel cell,a membrane-electrode assembly prepared using our Pt/CNT and PtRu/CNT catalysts showed 50% and 100% higher performances than those prepared with commercial Johnson Matthey Pt/XC-72R and PtRu/XC-72R catalysts for the same Pt loading and operating conditions.

  6. Electrochemical quartz crystal microbalance study on Au-supported Pt adlayers for electrocatalytic oxidation of methanol in alkaline solution

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Underpotential deposition(UPD) of Cu on an Au electrode followed by redox replacement reaction(RRR) of CuUPD with a Pt source(H2PtCl6 or K2PtCl4) yielded Au-supported Pt adlayers(for short,Pt(CuUPD-Pt4+)n/Au for H2PtCl6,or Pt(CuUPD-Pt2+)n/Au for K2PtCl4,where n denotes the number of UPD-redox replacement cycles).The electrochemical quartz crystal microbalance(EQCM) technique was used for the first time to quantitatively study the fabricated electrodes and estimate their mass-normalized specific electrocatalytic activity(SECA) for methanol oxidation in alkaline solution.In comparison with Pt(CuUPD-Pt2+)n/Au,Pt(CuUPD-Pt4+)n/Au exhibited a higher electrocatalytic activity,and the maximum SECA was obtained to be as high as 35.7 mA ?g?1 at Pt(CuUPD-Pt4+)3/Au.The layer-by-layer architecture of Pt atoms on Au is briefly discussed based on the EQCM-revealed redox replacement efficiency,and the calculated distribution percentages of bare Au sites agree with the experimental results deduced from the charge under the AuOx-reduction peaks.The EQCM is highly recommended as an efficient technique to quantitatively examine various electrode-supported catalyst adlayers,and the highly efficient catalyst adlayers of noble metals are promising in electrocatalysis relevant to biological,energy and environmental sciences and technologies.

  7. Design and Development of Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cell

    Science.gov (United States)

    Kasat, Harshal Anil

    This work aimed to characterize and optimize the variables that influence the Gas Diffusion Layer (GDL) preparation using design of experiment (DOE) approach. In the process of GDL preparation, the quantity of carbon support and Teflon were found to have significant influence on the Proton Exchange Membrane Fuel Cell (PEMFC). Characterization methods like surface roughness, wetting characteristics, microstructure surface morphology, pore size distribution, thermal conductivity of GDLs were examined using laser interferometer, Goniometer, SEM, porosimetry and thermal conductivity analyzer respectively. The GDLs were evaluated in single cell PEMFC under various operating conditions of temperature and relative humidity (RH) using air as oxidant. Electrodes were prepared with different PUREBLACKRTM and poly-tetrafluoroethylene (PTFE) content in the diffusion layer and maintaining catalytic layer with a Pt-loading (0.4 mg cm-2). In the study, a 73.16 wt.% level of PB and 34 wt.% level of PTFE was the optimal compositions for GDL at 70°C for 70% RH under air atmosphere. For most electrochemical processes the oxygen reduction is very vita reaction. Pt loading in the electrocatalyst contributes towards the total cost of electrochemical devices. Reducing the Pt loading in electrocatalysts with high efficiency is important for the development of fuel cell technologies. To this end, this thesis work reports the approach to lower down the Pt loading in electrocatalyst based on N-doped carbon nanotubes derived from Zeolitic Imidazolate Frameworks (ZIF-67) for oxygen reduction. This electrocatalyst perform with higher electrocatalytic activity and stability for oxygen reduction in fuel cell testing. The electrochemical properties are mainly due to the synergistic effect from N-doped carbon nanotubes derived from ZIF and Pt loading. The strategy with low Pt loading forecasts in emerging highly active and less expensive electrocatalysts in electrochemical energy devices. This

  8. On the activation energy of the formic acid oxidation reaction on platinum electrodes

    OpenAIRE

    Perales-Rondón, Juan V.; Herrero, Enrique; Feliu, Juan M

    2015-01-01

    A temperature dependent study on the formic acid oxidation reaction has been carried out in order to determine the activation energy of this reaction on different platinum single crystal electrodes, namely Pt(1 0 0), Pt(1 1 1), Pt(5 5 4) and Pt(5 4 4) surfaces. The chronoamperometric transients obtained with pulsed voltammetry have been analyzed to determine the current densities through the active intermediate and the CO formation rate. From the temperature dependency of those parameters, th...

  9. Faraday efficiency and mechanism of electrochemical surface reactions: CO2 reduction and H2 formation on Pt(111).

    Science.gov (United States)

    Hussain, Javed; Jónsson, Hannes; Skúlason, Egill

    2016-12-22

    An atomic scale model of the electrical double layer is used to calculate the mechanism and rate of electrochemical reduction of CO2 as well as H2 formation at a Pt(111) electrode. The water layer contains solvated protons and the electrode has excess electrons at the surface. Density functional theory within the generalized gradient approximation is used to describe the electronic structure while the mechanism and activation energy of the various elementary reactions is obtained by calculating minimum energy paths using the nudged elastic band method. The applied electrical potential is deduced from the calculated work function. The optimal reaction mechanism for CO2 reduction to either methane or methanol is found and the estimated rate compared with that of the competing reaction, H2 formation. When the free energy of only the intermediates and reactants is taken into account, not the activation energy, Pt(111) would seem to be a good electrocatalyst for CO2 reduction, significantly better than Cu(111). This, however, contradicts experimental findings. Detailed calculations reported here show that the activation energy for CO2 reduction is high for both Heyrovsky and Tafel mechanisms on Pt(111) in the relevant range of applied potential. The rate-limiting step of the Heyrovsky mechanism, *COOH + H(+) + e(-) → *CO + H2O, is estimated to have an activation energy of 0.95 eV at -0.9 V vs. standard hydrogen electrode. Under the same conditions, the activation energy for H2 formation is estimated to be only 0.5 eV. This explains why attempts to reduce CO2 using platinum electrodes have produced only H2. A comparison is made with analogous results for Cu(111) [J. Hussain et al., Procedia Comput. Sci., 2015, 51, 1865] where a reaction mechanism with low activation energy for CO2 electroreduction to methane was identified. The difference between the two electrocatalysts is discussed.

  10. Improved open-circuit voltage in Cu(In,Ga)Se{sub 2} solar cells with high work function transparent electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Jäger, Timo, E-mail: timo.jaeger@empa.ch; Romanyuk, Yaroslav E.; Bissig, Benjamin; Pianezzi, Fabian; Nishiwaki, Shiro; Reinhard, Patrick; Steinhauser, Jérôme; Tiwari, Ayodhya N. [Empa—Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Thin Films and Photovoltaics, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Schwenk, Johannes [Empa—Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Nanoscale Materials Science, Überlandstrasse 129, 8600 Dübendorf (Switzerland)

    2015-06-14

    Hydrogenated indium oxide (IOH) is implemented as transparent front contact in Cu(In,Ga)Se{sub 2} (CIGS) solar cells, leading to an open circuit voltage V{sub OC} enhanced by ∼20 mV as compared to reference devices with ZnO:Al (AZO) electrodes. This effect is reproducible in a wide range of contact sheet resistances corresponding to various IOH thicknesses. We present the detailed electrical characterization of glass/Mo/CIGS/CdS/intrinsic ZnO (i-ZnO)/transparent conductive oxide (TCO) with different IOH/AZO ratios in the front TCO contact in order to identify possible reasons for the enhanced V{sub OC}. Temperature and illumination intensity-dependent current-voltage measurements indicate that the dominant recombination path does not change when AZO is replaced by IOH, and it is mainly limited to recombination in the space charge region and at the junction interface of the solar cell. The main finding is that the introduction of even a 5 nm-thin IOH layer at the i-ZnO/TCO interface already results in a step-like increase in V{sub OC}. Two possible explanations are proposed and verified by one-dimensional simulations using the SCAPS software. First, a higher work function of IOH as compared to AZO is simulated to yield an V{sub OC} increase by 21 mV. Second, a lower defect density in the i-ZnO layer as a result of the reduced sputter damage during milder sputter-deposition of IOH can also add to a maximum enhanced V{sub OC} of 25 mV. Our results demonstrate that the proper choice of the front TCO contact can reduce the parasitic recombination and boost the efficiency of CIGS cells with improved corrosion stability.

  11. PENERAPAN KEBIJAKAN PENJADWALAN ULANG PADA RUANG LINGKUP SINGLE MACHINE UNTUK MEMINIMASI TOTAL TARDINESS (Studi Kasus di PT. Indonesia Steel Tube Works

    Directory of Open Access Journals (Sweden)

    Denny Nurkertamanda

    2012-02-01

    Full Text Available Customer satisfaction is the most important thing to be considered to keep the customer trust of a productor even of a company. Giving the satisfaction to the customer can be achieved by several ways and on timedelivery product is one of them. It is true that some problems can often occur during that achievement andmay hinder the on time delivery fulfillment. One of the major elements that hold the key role of on timedelivery fulfillment is production scheduling. The implementation of appropriate production schedulingpolicy will determine the accomplishment of on time delivery fulfillment in some ways. This statement isalso works for Indonesia Steel Tube Works Ltd., as a company that always cares about the customersatisfaction on quality and on time delivery. If we observe the production scheduling records of IndonesiaSteel Tube Works Ltd. we can find some lateness problems that in some case happened in an extensiveinterval of tardiness. The company only runs the production scheduling based on the group of pipediameter. This policy seems cannot well handle the rush orders that often emerge on every schedulingperiod and effect in tardiness problems. The company needs to consider the rescheduling policy with theaim of reducing the tardiness that often emerges because of the rush order disruption.

  12. Electrochemical oxidation of methanol on Pt3Co bulk alloy

    Directory of Open Access Journals (Sweden)

    S. LJ. GOJKOVIC

    2003-11-01

    Full Text Available The electrochemical oxidation of methanol was investigated on a Pt3Co bulk alloy in acid solutions. Kinetic parameters such as transfer coefficient, reaction orders with respect to methanol and H+ ions and energy of activation were determined. It was found that the rate of methanol oxidation is significantly diminished by rotation of the electrode. This effect was attributed to the diffusion of formaldehyde and formic acid from the electrode surface. Stirring of the electrolyte also influenced the kinetic parameters of the reaction. It was speculated that the predominant reaction pathway and rate determining step are different in the quiescent and in the stirred electrolyte. Cobalt did not show a promoting effect on the rate of methanol oxidation on the Pt3Co bulk alloy with respect to a pure Pt surface.

  13. Improvement of light harvesting and device performance of dye-sensitized solar cells using rod-like nanocrystal TiO{sub 2} overlay coating on TiO{sub 2} nanoparticle working electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xueyang; Fang, Jian [Institute for Frontier Materials, Deakin University, VIC 3220 (Australia); Gao, Mei [CSIRO Materials Science and Engineering, Melbourne, VIC 3169 (Australia); Wang, Hongxia [Institute for Frontier Materials, Deakin University, VIC 3220 (Australia); Yang, Weidong [CSIRO Materials Science and Engineering, Melbourne, VIC 3169 (Australia); Lin, Tong, E-mail: tong.lin@deakin.edu.au [Institute for Frontier Materials, Deakin University, VIC 3220 (Australia)

    2015-02-01

    Novel TiO{sub 2} single crystalline nanorods were synthesized by electrospinning and hydrothermal treatment. The role of the TiO{sub 2} nanorods on TiO{sub 2} nanoparticle electrode in improvement of light harvesting and photovoltaic properties of dye-sensitized solar cells (DSSCs) was examined. Although the TiO{sub 2} nanorods had lower dye loading than TiO{sub 2} nanoparticle, they showed higher light utilization behaviour. Electron transfer in TiO{sub 2} nanorods received less resistance than that in TiO{sub 2} nanoparticle aggregation. By just applying a thin layer of TiO{sub 2} nanorods on TiO{sub 2} nanoparticle working electrode, the DSSC device light harvesting ability and energy conversion efficiency were improved significantly. The thickness of the nanorod layer in the working electrode played an important role in determining the photovoltaic property of DSSCs. An energy conversion efficiency as high as 6.6% was found on a DSSC device with the working electrode consisting of a 12 μm think TiO{sub 2} nanoparticle layer covered with 3 μm thick TiO{sub 2} nanorods. The results obtained from this study may benefit further design of highly efficient DSSCs. - Highlights: • Single crystalline TiO{sub 2} nanorods were prepared for DSSC application. • TiO{sub 2} nanorods show effective light scattering performance. • TiO{sub 2} nanorods have higher electron transfer efficiency than TiO{sub 2} nanoparticles. • TiO{sub 2} nanorods on TiO{sub 2} nanoparticle electrode improve DSSC efficiency.

  14. CO-tolerant electrodes developed with PhosphoMolybdic Acid for Polymer Electrolyte Fuel Cell (PEFCs) application

    Energy Technology Data Exchange (ETDEWEB)

    Gatto, I.; Sacca, A.; Carbone, A.; Pedicini, R.; Urbani, F.; Passalacqua, E. [CNR-ITAE, Advanced Technologies for Energies Institute ' ' N. Giordano' ' Via Salita S. Lucia sopra Contesse, 981265 Messina (Italy)

    2007-09-27

    Several approaches were used to improve the CO-tolerant electrodes for polymer electrolyte fuel cells (PEFCs) when using processed H{sub 2} as a fuel. The employment of transition metals oxides (WO{sub x}, MoO{sub x}) promotes CO oxidation and, for this reason, heteropolyacids (like PWA, PMoA, SiWA, etc.) containing these oxides were selected in this work, for the development of CO-tolerant electrodes. Different electrodes were prepared by using a spray technique for both diffusive and catalytic layers. The catalytic layer was obtained using a 30 wt.% Pt/Vulcan as an electro-catalyst mixed with a Nafion solution for the standard electrode (SE). CO-tolerant electrodes were prepared by adding different weight percentages (6-15%) of phosphomolybdic acid (PMoA) to SE and for all the prepared electrodes, the Pt loading was maintained as a constant at 0.5 mg cm{sup -2}. Membrane electrode assemblies (MEAs) were obtained with an SE as a cathode and the electrodes containing different amounts of PMoA as anodes. A commercial N115 membrane was used as an electrolyte. MEAs were tested at 80 C in H{sub 2}/air and in H{sub 2}-CO (100 ppm)/air, in order to evaluate the performance loss in these operative conditions. By feeding the fuel cell (FC) with H{sub 2}-CO/air, an improvement in the cell performance proportional to the increase of the percentage of PMoA was observed. The best value was reached by using a percentage of inorganic compounds in the range of 12-15 wt.%. A power density of about 240 mW cm{sup -2} at 0.6 V was obtained independently on the used fuel. A short time-test (160 h) was carried out at 80 C in H{sub 2}-CO/air with an average power density of 220 mW cm{sup -2}, confirming the stability of the system. The right compromise between the Pt catalyst and the heteropolyacid ratio could be a helpful tool in limiting Pt poisoning. (author)

  15. Pt, PtCo and PtNi electrocatalysts prepared by mechanical alloying for the oxygen reduction reaction in 0.5 M H{sub 2}SO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Contreras, M.A. [Instituto Nacional de Investigaciones Nucleares, Depto. de Quimica, Apdo. Postal 18-1027 Col. Escandon, C.P.11801 Mexico D.F. (Mexico); Instituto Politecnico Nacional, Depto. de Ing. Metalurgica, 07300 Mexico D.F. (Mexico); Fernandez-Valverde, S.M. [Instituto Nacional de Investigaciones Nucleares, Depto. de Quimica, Apdo. Postal 18-1027 Col. Escandon, C.P.11801 Mexico D.F. (Mexico); Vargas-Garcia, J.R. [Instituto Politecnico Nacional, Depto. de Ing. Metalurgica, 07300 Mexico D.F. (Mexico); Cortes-Jacome, M.A.; Toledo-Antonio, J.A.; Angeles-Chavez, C. [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Mexico, D.F.,0 7730 (Mexico)

    2008-11-15

    Electrocatalysts of Pt, PtCo and PtNi powders for the oxygen reduction reaction (ORR) were processed by Mechanical Alloying. Physical characterization was made by X-ray diffraction, scanning electron microscopy and scanning transmission electron microscopy. It was found that milled powders formed agglomerates in the range of 0.2-20 {mu}m formed by nanometric size crystallites. The synthesized powders were alloys of PtFe, PtCoFe and PtNiFe due to iron incorporation during the milling process. The binding energies of Pt in the alloys were determined by XPS. Polarization curves were obtained by Rotating Disk Electrode technique in 0.5 M H{sub 2}SO{sub 4} to determine the electrocatalytic activity of the mechanically alloyed powders. Tafel curves were plotted and kinetic parameters for the ORR were calculated. The PtFe alloy showed the highest electrocatalytic activity for the ORR. However, the lowest overpotential was found for the PtCoFe alloy and it also showed a higher current exchange density. A linear relationship was found between the Pt-binding energy in the alloys and the overpotential at the same current density independent of the Pt alloy composition. (author)

  16. Copper dusting effects on perpendicular magnetic anisotropy in Pt/Co/Pt tri-layers

    Directory of Open Access Journals (Sweden)

    Vineeth Mohanan Parakkat

    2016-05-01

    Full Text Available The effect of Cu dusting on perpendicular magnetic anisotropy of sputter grown Pt/Co/Pt stack in which the Cu layer is in proximity with that of Co is investigated in this work. We used magneto optic Kerr effect microscopy measurements to study the variation in the reversal mechanisms in films with Co thicknesses below 0.8nm by systematically varying their perpendicular magnetic anisotropy using controlled Cu dusting. Cu dusting was done separately above and below the cobalt layer in order to understand the role of bottom and top Pt layers in magnetization reversal mechanisms of sputtered Pt/Co/Pt stack. The introduction of even 0.3nm thick Cu layer below the cobalt layer drastically affected the perpendicular magnetic anisotropy as evident from the nucleation behavior. On the contrary, even a 4nm thick top Cu layer had little effect on the reversal mechanism. These observations along with magnetization data was used to estimate the role of top and bottom Pt in the origin of perpendicular magnetic anisotropy as well as magnetization switching mechanism in Pt/Co/Pt thin films. Also, with an increase in the bottom Cu dusting from 0.2 to 0.4nm there was an increase in the number of nucleation sites resulting in the transformation of domain wall patterns from a smooth interface type to a finger like one and finally to maze type.

  17. Copper dusting effects on perpendicular magnetic anisotropy in Pt/Co/Pt tri-layers

    Science.gov (United States)

    Parakkat, Vineeth Mohanan; Ganesh, K. R.; Anil Kumar, P. S.

    2016-05-01

    The effect of Cu dusting on perpendicular magnetic anisotropy of sputter grown Pt/Co/Pt stack in which the Cu layer is in proximity with that of Co is investigated in this work. We used magneto optic Kerr effect microscopy measurements to study the variation in the reversal mechanisms in films with Co thicknesses below 0.8nm by systematically varying their perpendicular magnetic anisotropy using controlled Cu dusting. Cu dusting was done separately above and below the cobalt layer in order to understand the role of bottom and top Pt layers in magnetization reversal mechanisms of sputtered Pt/Co/Pt stack. The introduction of even 0.3nm thick Cu layer below the cobalt layer drastically affected the perpendicular magnetic anisotropy as evident from the nucleation behavior. On the contrary, even a 4nm thick top Cu layer had little effect on the reversal mechanism. These observations along with magnetization data was used to estimate the role of top and bottom Pt in the origin of perpendicular magnetic anisotropy as well as magnetization switching mechanism in Pt/Co/Pt thin films. Also, with an increase in the bottom Cu dusting from 0.2 to 0.4nm there was an increase in the number of nucleation sites resulting in the transformation of domain wall patterns from a smooth interface type to a finger like one and finally to maze type.

  18. In situ XAFS characterization of bimetallic nanoparticle catalysts PtCo/C structure changes in the working conditions%原位XAFS表征双金属纳米催化剂PtCo/C在工作状态下的结构变化

    Institute of Scientific and Technical Information of China (English)

    尚明丰; 赵天天; 鲍洪亮; 段佩权; 林瑞; 黄宇营; 王建强

    2016-01-01

    用两步还原法制备的PtCo/C (10 wt% Pt)纳米催化剂具有与商业催化剂Pt/C (20 wt% Pt)接近的催化反应活性,使贵金属Pt的用量减少了50%。利用上海光源BL14W1线站的质子交换膜燃料电池(Proton exchange membrane fuel cell, PEMFC)原位X射线吸收精细结构谱(X-ray absorption fine structure, XAFS)实验装置,在以该PtCo/C作为燃料电池的阴极催化剂,以Pd/C作为阳极催化剂的条件下,原位表征PtCo/C在工作状态下的结构变化,PtCo/C 的非原位 XAFS 数据没有观察到 Pt−Co 合金成分,发现存在显著的 Co−O 键和 Co−O−Co键贡献,且与Pt/C相比,Pt的氧化程度更高且具有更短的Pt−Pt金属键长,说明PtCo/C中的Co主要以氧化物种形式存在,且Co的存在影响着活性成分Pt的结构。原位XAFS数据表明随着电压的逐渐降低,PtCo/C中Pt和Co的氧化程度降低,揭示了在催化反应过程中Pt的d电子向过渡金属Co的转移过程。%AbstractBackground:The proton exchange membrane fuel cell (PEMFC) is considered as one of the most promising clean energy sources in the future, because of its high energy density and simple construction. However, the large scale commercial application of fuel cell is limited by the factors such as cost, durability and reliability. Purpose: For the purpose of reducing the cost and improving the performance of the PEMFC, transition metal elements alloy Pt nanoparticles (PtFe/C, PtCo/C, PtNi/C) catalysts have been studied in recent years.Methods:In situ X-ray absorption fine structure (XAFS) experimental testing device for PEMFC on beamline (BL14W1) of XAFS spectroscopy at the Shanghai Synchrotron Radiation Facility (SSRF) is conducted to explore the nanostructure changes of PtCo/C during the fuel cell operation. Results:In situ XAFS spectra indicts that Pt, and Co are gradually being reduced as the voltage of fuel cell decreases.Ex-situ XAFS spectra show Pt and Co did not form Pt

  19. Fabrication of platinum coated nanoporous gold film electrode: A nanostructured ultra low-platinum loading electrocatalyst for hydrogen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kiani, Abolfazl; Hatami, Somayeh [Department of Chemistry, Faculty of Science, University of Isfahan, Isfahan (Iran)

    2010-06-15

    The electrolytic hydrogen evolution reaction (HER) on platinum coated nanoporous gold film (PtNPGF) electrode is demonstrated. The deposition of platinum occurred as a spontaneous redox process in which a copper layer, obtained by underpotential deposition, was oxidized by platinum ions, which were reduced and simultaneously deposited. The present method could provide a very low Pt-loading electrode and the results demonstrated that ultra thin Pt coating effected efficiently and behaved as the nanostructured Pt for electrocatalytic hydrogen evolution reaction. The loading of Pt was calculated as 4.2 x 10{sup -3} {mu}g cm{sup -2} for PtNPGF electrode. The current density at -0.4 V and -0.8 V vs. Ag/AgCl was as high as 0.66 A {mu}g{sup -1} Pt and 3 A {mu}g{sup -1} Pt, respectively and the j{sub 0} was evaluated as 0.03 mA cm{sup -2} or 8 mA {mu}g{sup -1} Pt. The results indicated that increasing electrode area had no catalytic effect, but the nanostructure nature of as-fabricated electrode and submonolayer deposition of copper resulted in electrocatalytic activity for PtNPGF electrode. (author)

  20. Characterization of a New Phase and Its Effect on the Work Characteristics of a Near-Stoichiometric Ni30Pt20Ti50 High-Temperature Shape Memory Alloy (HTSMA)

    Science.gov (United States)

    Garg, A.; Gaydosh, D.; Noebe, R.D.; Padula II, Santo; Bigelow, G.S.; Kaufman, M.; Kovarik, L.; Mills, M.J.; Diercks, D.; McMurray, S.

    2008-01-01

    A new phase observed in a nominal Ni30Pt20Ti50 (at.%) high temperature shape memory alloy has been characterized using transmission electron microscopy and 3-D atom probe tomography. This phase forms homogeneously in the B2 austenite matrix by a nucleation and growth mechanism and results in a concomitant increase in the martensitic transformation temperature of the base alloy. Although the structure of this phase typically contains a high density of faults making characterization difficult, it appears to be trigonal (-3m point group) with a(sub o) approx. 1.28 nm and c(sub o) approx. 1.4 nm. Precipitation of this phase increases the microhardness of the alloy substantially over that of the solution treated and quenched single-phase material. The effect of precipitation strengthening on the work characteristics of the alloy has been explored through load-biased strain-temperature testing in the solution-treated condition and after aging at 500 C for times ranging from 1 to 256 hours. Work output was found to increase in the aged alloy as a result of an increase in transformation strain, but was not very sensitive to aging time. The amount of permanent deformation that occurred during thermal cycling under load was small but increased with increasing aging time and stress. Nevertheless, the dimensional stability of the alloy at short aging times (1-4 hours) was still very good making it a potentially useful material for high-temperature actuator applications.

  1. Single Electrode Heat Effects

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Broers, G. H. J.

    1977-01-01

    SP, of theelectrode reaction. eta is the overvoltage at the electrode. This equation is appliedto a high temperature carbonate fuel cell. It is shown that the Peltier entropyterm by far exceeds the heat production due to the irreversible losses, and thatthe main part of heat evolved at the cathode is reabsorbed......The heat evolution at a single irreversibly working electrode is treated onthe basis of the Brønsted heat principle. The resulting equation is analogous to the expression for the total heat evolution in a galvanic cellwith the exception that –DeltaS is substituted by the Peltier entropy, Delta...

  2. Three-dimensional ordered macroporous platinum-based electrode for methanol oxidation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, three-dimensional ordered macroporous platinum catalysts with high real surface area were synthesized using the inverted colloidal crystals template technique and have been employed for the electrooxidation of methanol. The morphology and electrocatalytic behavior of the porous Pt electrodes were investigated with atomic force microscopy and electrochemical techniques. For the same amount of Pt deposited, the real surface areas of the electrodes are 9.16 and 8.00 cm2 for the porous electrodes with pore size of 320 and 500 nm respectively, which are more than 5 times larger than the directly deposited Pt electrode (1.4 cm2). The pore size effect on the methanol electrooxidation was investigated by testing low concentration solution of methanol and porous materials with different pore sizes. The synthesized macroporous Pt electrode shows high stability toward the electrooxidation of methanol and is promising for the direct methanol fuel cell.

  3. PT-symmetric strings

    Energy Technology Data Exchange (ETDEWEB)

    Amore, Paolo, E-mail: paolo.amore@gmail.com [Facultad de Ciencias, CUICBAS, Universidad de Colima, Bernal Díaz del Castillo 340, Colima, Colima (Mexico); Fernández, Francisco M., E-mail: fernande@quimica.unlp.edu.ar [INIFTA (UNLP, CCT La Plata-CONICET), División Química Teórica, Diag. 113 y 64 (S/N), Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina); Garcia, Javier [INIFTA (UNLP, CCT La Plata-CONICET), División Química Teórica, Diag. 113 y 64 (S/N), Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina); Gutierrez, German [Facultad de Ciencias, CUICBAS, Universidad de Colima, Bernal Díaz del Castillo 340, Colima, Colima (Mexico)

    2014-04-15

    We study both analytically and numerically the spectrum of inhomogeneous strings with PT-symmetric density. We discuss an exactly solvable model of PT-symmetric string which is isospectral to the uniform string; for more general strings, we calculate exactly the sum rules Z(p)≡∑{sub n=1}{sup ∞}1/E{sub n}{sup p}, with p=1,2,… and find explicit expressions which can be used to obtain bounds on the lowest eigenvalue. A detailed numerical calculation is carried out for two non-solvable models depending on a parameter, obtaining precise estimates of the critical values where pair of real eigenvalues become complex. -- Highlights: •PT-symmetric Hamiltonians exhibit real eigenvalues when PT symmetry is unbroken. •We study PT-symmetric strings with complex density. •They exhibit regions of unbroken PT symmetry. •We calculate the critical parameters at the boundaries of those regions. •There are exact real sum rules for some particular complex densities.

  4. Chemical Vapour Deposition of Graphene with Re-useable Pt and Cu substrates for Flexible Electronics

    Science.gov (United States)

    Karamat, Shumaila; Sonusen, Selda; Celik, Umit; Uysalli, Yigit; Oral, Ahmet

    2015-03-01

    Graphene has gained the attention of scientific world due to its outstanding physical properties. The future demand of flexible electronics such as solar cells, light emitting diodes, photo-detectors and touch screen technology requires more exploration of graphene properties on flexible substrates. The most interesting application of graphene is in organic light emitting diodes (OLED) where efforts are in progress to replace brittle indium tin oxide (ITO) electrode with a flexible graphene electrode because ITO raw materials are becoming increasingly expensive, and its brittle nature makes it unsuitable for flexible devices. In this work, we grow graphene on Pt and Cu substrates using chemical vapour deposition (CVD) and transferred it to a polymer material (PVA) using lamination technique. We used hydrogen bubbling method for separating graphene from Pt and Cu catalyst to reuse the substrates many times. After successful transfer of graphene on polymer samples, we checked the resistivity values of the graphene sheet which varies with growth conditions. Furthermore, Raman, atomic force microscopy (AFM), I-V and Force-displacement measurements will be presented for these samples.

  5. Platinum nanoparticles decorated dendrite-like gold nanostructure on glassy carbon electrodes for enhancing electrocatalysis performance to glucose oxidation

    Science.gov (United States)

    Jia, Hongmei; Chang, Gang; Lei, Ming; He, Hanping; Liu, Xiong; Shu, Honghui; Xia, Tiantian; Su, Jie; He, Yunbin

    2016-10-01

    Platinum nanoparticles decorated dendrite-like gold nanostructure, bimetal composite materials on glassy carbon electrode (Pt/DGNs/GC) for enhancing electrocatalysis to glucose oxidation was designed and successfully fabricated by a facile two-step deposition method without any templates, surfactants, or stabilizers. Dendrite-like gold nanostructure was firstly deposited on the GC electrode via the potentiostatic method, and then platinum nanoparticles were decorated on the surface of gold substrate through chemical reduction deposition. X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) were applied to characterize the evolution of morphology and structure of the as-prepared Pt/DGNs/GC. Based on electrochemical measurements such as cyclic voltammetry, linear voltammetry and chronoamperometry, Pt/DGNs/GC exhibited significantly enhanced electrocatalytic performance to glucose oxidation compared those of pure dendrite-like Au nanoparticles in our previous report. Controlling chemical reduction deposition time, the amount of platinum nanoparticles on Au surface could be regulated, which further tuned electrocatalytic properties toward glucose oxidation. The dendrite-like gold surface partially covered by platinum nanoparticles dramatically enhanced the electrocatalytic performance for the oxidation of glucose because of excellent synergetic effects between gold and platinum species and the increased electrochemical active area from Pt nanoparticles loading. The non-enzymatic glucose biosensor based on Pt/DGNs/GC showed a rapid respond time (within 2 s), wide linear range (from 0.1 mM to 14 mM), low detection limit (0.01 mM), supernal sensitivity (275.44 μA cm-2 mM-1, R = 0.993), satisfactory reproducibility and good stability for glucose sensing. It was demonstrated that Pt/DGNs/GC could work as promising candidate for factual non-enzymatic glucose detection.

  6. Anodic Behavior of Semiconducting Diamond Thin-film Electrodes in the Electrolyte for Electrochemical Fluorination; Handotai daiamondo denkyoku no denkai fussokayokuchu ni okeru youkyoku kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Hirotake.; Kawasaki, Shinji. [Shinshu University, Nagano (Japan). Faculty of Textile Science and Technology; Momota, Kunitake. [Morita Chemical Industries, Osaka (Japan). Department of Research and Development; Okino, Fujio.; Touhara, Hidekazu. [Shinshu University, Nagano (Japan). Faculty of Technology]|[Core Research for Evolutional Science and Technology, Tokyo (Japan). Jaoan Science and Technology Corporation; Gamonishitani, Mika.; Sakaguchi, Isao.; Ando, Toshihiro. [National Institute for Research in Inorganic Materials, Ibaraki (Japan)]|[Core Research for Evolutional Science and Technology, Tokyo (Japan). Japan Science and Technology Corporation

    1998-12-31

    Electrochemical behavior of semiconducting diamond thin-film electrodes has been studied by measuring cyclic voltammograms for the anodic oxidation of 1,4-difluorobenzene in the electrolyte, neat Et{sub 4}NF{center_dot}4HF. A comparative study using a Pt-electrode establishes that the electrochemical fluorination of 1,4-difluorobenzene using the diamond electrode yields 3, 3, 6, 6-tetrafluoro-1, 4-cyclohexadiene. Furthermore no peaks corresponding to the redox reaction of Pt-electrode, i.e., the formation and reduction of PtO{sub 2}, are observed in the CVs obtained using the diamond electrode, suggesting that the diamond electrode is more stable than the Pt-electrode. The results suggests that electrochemical fluorination and the electrolytic production of elemental fluorine are possible at the dimensionally stable diamond electrode. (author)

  7. The synthesis of Pt/Ag bimetallic nanoparticles using a successive solution plasma process.

    Science.gov (United States)

    Kim, Sung Min; Lee, Sang Yul; Lee, Min Hyung; Kim, Jung Wan

    2014-12-01

    A successive solution plasma process was developed for the synthesis of Pt/Ag bimetallic nanoparticles. Ag nanoparticles were made first by applying a high voltage of bipolar pulsed DC to anode and cathode electrodes composed of Ag rods. The solution containing Ag nanoparticles was discharged successively using Pt electrodes. The joule heating and electrolysis between electrodes generated vapors, and solution plasma was sustained due to progressive ionization and excitation in the vapor phase. The maximum current and voltage breakdown was observed at approximately 8.9 A and 900 V with an interval of 25 μs, which indicated that an intense solution plasma was sustained continuously. The Pt-on-Ag heterogeneous nanostructures formed, and finally, the Ag nanoparticles were completely covered by Pt nanoparticles after a discharge duration of 1,200 s.

  8. Microvoltammetric Electrodes.

    Science.gov (United States)

    1985-09-25

    Microvoltammetric Electrodes, J. 0. Howell, R. M. Wightman, Anal. Chem., 56, 524-529 (1984). 2. Flow Rate Independent Amperometric Cell , W. L. Caudill...Electroanal. Chem., 182, 113-122 (1985). C. List of all publications 1. Flow Rate Independent Amperometric Cell , W. L. Caudill, J. 0. Howell, R. M

  9. Oxygen Reduction Reaction Activity and Durability of Pt Catalysts Supported on Titanium Carbide

    Directory of Open Access Journals (Sweden)

    Morio Chiwata

    2015-06-01

    Full Text Available We have prepared Pt nanoparticles supported on titanium carbide (TiC (Pt/TiC as an alternative cathode catalyst with high durability at high potentials for polymer electrolyte fuel cells. The Pt/TiC catalysts with and without heat treatment were characterized by X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, and transmission electron microscopy (TEM. Hemispherical Pt nanocrystals were found to be dispersed uniformly on the TiC support after heat treatment at 600 °C in 1% H2/N2 (Pt/TiC-600 °C. The electrochemical properties (cyclic voltammetry, electrochemically active area (ECA, and oxygen reduction reaction (ORR activity of Pt/TiC-600 °C and a commercial Pt/carbon black (c-Pt/CB were evaluated by the rotating disk electrode (RDE technique in 0.1 M HClO4 solution at 25 °C. It was found that the kinetically controlled mass activity for the ORR on Pt/TiC-600 °C at 0.85 V (507 A g−1 was comparable to that of c-Pt/CB (527 A g−1. Moreover, the durability of Pt/TiC-600 °C examined by a standard potential step protocol (E = 0.9 V↔1.3 V vs. RHE, holding 30 s at each E was much higher than that for c-Pt/CB.

  10. Light addressable gold electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, Waqas

    2011-07-01

    -Aminophenol, a product of an enzymatic reaction of Alkaline Phosphatase with p-Aminophenyl Phosphate. Subsequently this reaction was observed at CdS/Au electrode, by enzyme-substrate reaction within the electrolyte solution, and also by immobilizing the enzyme on top of QDs via LbL assembly of polyelectrolytes. With another kind of CdS-FePt dimer QDs, detection of hydrogen peroxide (H{sub 2}O{sub 2}) was demonstrated. Only at CdS/Au electrode there was no impact made by H{sub 2}O{sub 2} but with the presence of Pt within QDs H{sub 2}O{sub 2} was detected via reduction even at a bias potential of -100 mV. (orig.)

  11. 光电催化氧化甲醇电极%Electrode for Photo-electro-catalytic Oxidation of Methanol

    Institute of Scientific and Technical Information of China (English)

    赵倩; 贾振斌; 曹江林; 蒋殿录; 魏雨

    2001-01-01

    The photo-electro-catalytic oxidation of methanol in acid solution on Pt-Ru modified and unmodified titanium dioxide film electrodes has been studied. The photo-catalysis current of the OTE/TiO2 electrode and photo-electro-catalysis current of the OTE/TiO2/Pt-Ru electrode both were three order of magnitude larger than that created by the common electrical oxidation. In addition, the effect of Pt-Ru on the current is described. The electrode sensitized by RuL2(NCS)2 showed a broader photoresponse spectral region.

  12. Nanoparticulate CoPt Thin Films

    Science.gov (United States)

    Barekatain, Yasaman; Hadjipanayis, George; Magnetics bLab Team

    Equiatomic FePt and CoPt alloys are very attractive for application in high density recording media because of the high magnetocrystalline anisotropy K of their fct(L10) structure with values exceeding 2MJ/m3.The aim of this study is to fabricate a nanoparticulate CoPt film consisting of CoPt nanoparticles embedded in a matrix. To obtain this we have used co-sputtering of CoPt with different materials M = BN,C, Cu and SiO2. Our first experiments were done on CoPt films with thickness of 200 nm. The as-sputtered films had the fcc structure and a coercivity of 150 Oe. Annealing at 700 oC for 30 min led to an increase in coercivity to 4 kOe. Optimization studies are under way to find the optimum sputtering conditions to obtain a fully ordered tetragonal structure with the highest value of coercivity which can then be used in the nanoparticulate composites. Work supported by DOE BES- FG02-04ERU4612 DOE DE-FG02-04ERU4612.

  13. The renewable bismuth bulk annular band working electrode: fabrication and application in the adsorptive stripping voltammetric determination of nickel(II) and cobalt(II).

    Science.gov (United States)

    Baś, Bogusław; Węgiel, Krystian; Jedlińska, Katarzyna

    2015-06-30

    The paper presents the first report on fabrication and application of a user friendly and mercury free electrochemical sensor, with the renewable bismuth bulk annular band working electrode (RBiABE), in stripping voltammetry (SV). The sensor body is partly filled with the internal electrolyte solution, in which the RBiABE is cleaned and activated before each measurement. Time of the RBiABE contact with the sample solution is precisely controlled. The usefulness of this sensor was tested by Ni(II) and Co(II) traces determination by means of differential pulse adsorptive stripping voltammetry (DP AdSV), after complexation with dimethylglyoxime (DMG) in ammonia buffer (pH 8.2). The experimental variables (composition of the supporting electrolyte, pre-concentration potential and time, potential of the RBiABE activation, and DP parameters), as well as possible interferences, were investigated. The linear calibration graphs for Ni(II) and Co(II), determined individually and together, in the range from 1×10(-8) to 70×10(-8)molL(-1) and from 1×10(-9) to 70×10(-9)molL(-1) respectively, were obtained. The calculated limit of detection (LOD), for 30s of the accumulation time, was 3×10(-9)molL(-1) for Ni(II) in case of a single element's analysis, whereas the LOD was 5×10(-9)molL(-1) for Ni(II) and 3×10(-10)molL(-1) for Co(II), when both metal ions were measured together. The repeatability of the Ni(II) and Co(II) adsorptive stripping voltammetric signals obtained at the RBiABE were equal to 5.4% and 2.5%, respectively (n=5). Finally, the proposed method was validated by determining Ni(II) and Co(II) in the certified reference waters (SPS-SW1 and SPS-SW2) with satisfactory results.

  14. Pulse electrodeposition of Pt and Pt–Ru methanol-oxidation nanocatalysts onto carbon nanotubes in citric acid aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Huei-Yu [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Hsieh, Chien-Kuo [Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC (China); Tsai, Ming-Chi; Wei, Yu-Hsuan; Yeh, Tsung-Kuang [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Tsai, Chuen-Horng, E-mail: tsai@aec.gov.tw [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China)

    2015-06-01

    In this study, platinum nanoparticle/carbon nanotube (Pt NP/CNT) and platinum–ruthenium nanoparticle (Pt–Ru NP/CNT) hybrid nanocatalysts were prepared by the pulse-electrodeposition method in different aqueous solutions containing citric acid (CA) or sulfuric acid (SA). The electrocatalytic properties of the Pt NP/CNT and Pt–Ru NP/CNT electrodes prepared using different aqueous solutions were investigated for methanol oxidation. The results show that the electrochemical mass activities of these hybrid nanocatalysts prepared in the CA aqueous solution were increased by factors of 1.46 and 2.77 for Pt NPs and Pt–Ru NPs, respectively, compared with those prepared in SA aqueous solutions using the same procedure. These increased mass activities are attributed to the CA playing dual roles as both a stabilizing agent and a particle size reducing agent in the aqueous solutions. The approach developed in this work enables further reductions in the particle sizes of noble-metal nanocatalysts. - Highlights: • Pulse-electrodeposition of Pt or Pt–Ru nanoparticles on carbon nanotubes • Carbon nanotubes used as a catalyst-supporting material • Citric acid used as reducing agent in the aqueous electrodeposition solutions • Electrochemical activity for methanol oxidation improved by a factor of 1.46 to 2.77.

  15. PT quantum mechanics.

    Science.gov (United States)

    Bender, Carl M; DeKieviet, Maarten; Klevansky, S P

    2013-04-28

    PT-symmetric quantum mechanics (PTQM) has become a hot area of research and investigation. Since its beginnings in 1998, there have been over 1000 published papers and more than 15 international conferences entirely devoted to this research topic. Originally, PTQM was studied at a highly mathematical level and the techniques of complex variables, asymptotics, differential equations and perturbation theory were used to understand the subtleties associated with the analytic continuation of eigenvalue problems. However, as experiments on PT-symmetric physical systems have been performed, a simple and beautiful physical picture has emerged, and a PT-symmetric system can be understood as one that has a balanced loss and gain. Furthermore, the PT phase transition can now be understood intuitively without resorting to sophisticated mathematics. Research on PTQM is following two different paths: at a fundamental level, physicists are attempting to understand the underlying mathematical structure of these theories with the long-range objective of applying the techniques of PTQM to understanding some of the outstanding problems in physics today, such as the nature of the Higgs particle, the properties of dark matter, the matter-antimatter asymmetry in the universe, neutrino oscillations and the cosmological constant; at an applied level, new kinds of PT-synthetic materials are being developed, and the PT phase transition is being observed in many physical contexts, such as lasers, optical wave guides, microwave cavities, superconducting wires and electronic circuits. The purpose of this Theme Issue is to acquaint the reader with the latest developments in PTQM. The articles in this volume are written in the style of mini-reviews and address diverse areas of the emerging and exciting new area of PT-symmetric quantum mechanics.

  16. Electroreduction of oxygen on Pt nanoparticle/carbon nanotube nanocomposites in acid and alkaline solutions

    Energy Technology Data Exchange (ETDEWEB)

    Alexeyeva, N. [Institute of Chemistry, University of Tartu, Jakobi 2, 51014 Tartu (Estonia); Tammeveski, K., E-mail: kaido@chem.ut.e [Institute of Chemistry, University of Tartu, Jakobi 2, 51014 Tartu (Estonia); Lopez-Cudero, A.; Solla-Gullon, J.; Feliu, J.M. [Instituto de Electroquimica, Universidad de Alicante, Apartado 99, 03080 Alicante (Spain)

    2010-01-01

    The kinetics of O{sub 2} reduction on novel electrocatalyst materials deposited on carbon substrates were studied in 0.5 M H{sub 2}SO{sub 4} and in 0.1 M NaOH solutions using the rotating disk electrode (RDE) technique. Pt nanoparticles (PtNP) supported on single-walled (PtNP/SWCNT) and multi-walled carbon nanotubes (PtNP/MWCNT) were prepared using two different synthetic routes. Before use, the CNTs were cleaned to minimize the presence of metal impurities coming from the catalyst used in the synthesis of this material, which can interfere in the electrochemical response of the supported Pt nanoparticles. The composite catalyst samples were characterised by transmission electron microscopy (TEM) showing a good dispersion of the particles at the surface of the carbon support and an average Pt particle size of 2.4 +- 0.7 nm in the case of Pt/CNTs prepared in the presence of citrate and of 3.8 +- 1.1 nm for Pt/CNTs prepared in microemulsion. The values of specific activity (SA) and other kinetic parameters were determined from the Tafel plots taking into account the real electroactive area of each electrode. The electrodes exhibited a relatively high electrocatalytic activity for the four-electron oxygen reduction reaction to water.

  17. Encapsulated electrodes for microchip devices: microarrays and platinized electrodes for signal enhancement.

    Science.gov (United States)

    Selimovic, Asmira; Martin, R Scott

    2013-07-01

    In this paper, we present two new methodologies of improving the performance of microchip-based electrochemical detection in microfluidic devices. The first part describes the fabrication and characterization of epoxy-embedded gold microelectrode arrays that are evenly spaced and easily modified. Electrodepositions using a gold plating solution can be performed on the electrodes to result in a 3D pillar array that, when used with microchip-based flow injection analysis, leads to an eightfold increase in signal (when compared to a single electrode), with the LOD for catechol being 4 nM. For detecting analytically challenging molecules such as nitric oxide (NO), platinization of electrodes is commonly used to increase the sensitivity. It is shown here that microchip devices containing either the pillar arrays or more traditional glassy carbon electrodes can be modified with platinum black (Pt-black) for NO detection. In the case of using glassy carbon electrodes for NO detection, integration of the resulting platinized electrode with microchip-based flow analysis resulted in a ten times signal increase relative to use of a bare glassy carbon electrode. In addition, it is demonstrated that these electrodes can be coated with Nafion to impart selectivity toward NO over interfering species such as nitrite. The LOD for NO when using the Pt-black /Nafion-coated glassy carbon electrode was 9 nM. These electrodes can also be embedded in a polystyrene substrate, with the applicability of these sensitive and selective electrodes being demonstrated by monitoring the adenosine triphosphate-mediated release of NO from endothelial cells immobilized in a microfluidic network without any adhesion factor.

  18. Design criteria for stable Pt/C fuel cell catalysts.

    Science.gov (United States)

    Meier, Josef C; Galeano, Carolina; Katsounaros, Ioannis; Witte, Jonathon; Bongard, Hans J; Topalov, Angel A; Baldizzone, Claudio; Mezzavilla, Stefano; Schüth, Ferdi; Mayrhofer, Karl J J

    2014-01-01

    Platinum and Pt alloy nanoparticles supported on carbon are the state of the art electrocatalysts in proton exchange membrane fuel cells. To develop a better understanding on how material design can influence the degradation processes on the nanoscale, three specific Pt/C catalysts with different structural characteristics were investigated in depth: a conventional Pt/Vulcan catalyst with a particle size of 3-4 nm and two Pt@HGS catalysts with different particle size, 1-2 nm and 3-4 nm. Specifically, Pt@HGS corresponds to platinum nanoparticles incorporated and confined within the pore structure of the nanostructured carbon support, i.e., hollow graphitic spheres (HGS). All three materials are characterized by the same platinum loading, so that the differences in their performance can be correlated to the structural characteristics of each material. The comparison of the activity and stability behavior of the three catalysts, as obtained from thin film rotating disk electrode measurements and identical location electron microscopy, is also extended to commercial materials and used as a basis for a discussion of general fuel cell catalyst design principles. Namely, the effects of particle size, inter-particle distance, certain support characteristics and thermal treatment on the catalyst performance and in particular the catalyst stability are evaluated. Based on our results, a set of design criteria for more stable and active Pt/C and Pt-alloy/C materials is suggested.

  19. Design criteria for stable Pt/C fuel cell catalysts

    Directory of Open Access Journals (Sweden)

    Josef C. Meier

    2014-01-01

    Full Text Available Platinum and Pt alloy nanoparticles supported on carbon are the state of the art electrocatalysts in proton exchange membrane fuel cells. To develop a better understanding on how material design can influence the degradation processes on the nanoscale, three specific Pt/C catalysts with different structural characteristics were investigated in depth: a conventional Pt/Vulcan catalyst with a particle size of 3–4 nm and two Pt@HGS catalysts with different particle size, 1–2 nm and 3–4 nm. Specifically, Pt@HGS corresponds to platinum nanoparticles incorporated and confined within the pore structure of the nanostructured carbon support, i.e., hollow graphitic spheres (HGS. All three materials are characterized by the same platinum loading, so that the differences in their performance can be correlated to the structural characteristics of each material. The comparison of the activity and stability behavior of the three catalysts, as obtained from thin film rotating disk electrode measurements and identical location electron microscopy, is also extended to commercial materials and used as a basis for a discussion of general fuel cell catalyst design principles. Namely, the effects of particle size, inter-particle distance, certain support characteristics and thermal treatment on the catalyst performance and in particular the catalyst stability are evaluated. Based on our results, a set of design criteria for more stable and active Pt/C and Pt-alloy/C materials is suggested.

  20. Synthesis and Electrocatalytic Performance of Multi-Component Nanoporous PtRuCuW Alloy for Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Xiaoting Chen

    2015-06-01

    Full Text Available We have prepared a multi-component nanoporous PtRuCuW (np-PtRuCuW electrocatalyst via a combined chemical dealloying and mechanical alloying process. The X-ray diffraction (XRD, transmission electron microscopy (TEM and electrochemical measurements have been applied to characterize the microstructure and electrocatalytic activities of the np-PtRuCuW. The np-PtRuCuW catalyst has a unique three-dimensional bi-continuous ligament structure and the length scale is 2.0 ± 0.3 nm. The np-PtRuCuW catalyst shows a relatively high level of activity normalized to mass (467.1 mA mgPt−1 and electrochemically active surface area (1.8 mA cm−2 compared to the state-of-the-art commercial PtC and PtRu catalyst at anode. Although the CO stripping peak of np-PtRuCuW 0.47 V (vs. saturated calomel electrode, SCE is more positive than PtRu, there is a 200 mV negative shift compared to PtC (0.67 V vs. SCE. In addition, the half-wave potential and specific activity towards oxygen reduction of np-PtRuCuW are 0.877 V (vs. reversible hydrogen electrode, RHE and 0.26 mA cm−2, indicating a great enhancement towards oxygen reduction than the commercial PtC.

  1. High temperature polymer electrolyte membrane fuel cell performance of Pt xCo y/C cathodes

    Science.gov (United States)

    Rao, Ch. Venkateswara; Parrondo, Javier; Ghatty, Sundara L.; Rambabu, B.

    Carbon-supported Pt-Co alloy nanoparticles of varying Pt:Co atomic ratios of 1:1, 2:1, 3:1 and 4:1 are prepared, characterized and tested in high temperature PEM fuel cell intend to reduce the Pt loading. These electrocatalysts are prepared by borohydride reduction method in the presence of citric acid as stabilizing agent. Face-centered cubic structure of Pt is evident from XRD. The positive shift of Pt diffraction peaks with increasing cobalt content in the Pt xCo y/C catalysts indicated the solubility of Co in Pt lattice. The average crystallite size is found to be 6 nm in all the prepared catalysts. The electrochemical active surface area (EAS) of the catalysts from CO-stripping voltammetry is calculated to be 65.2, 51.4, 47.7, 41.5 and 38.3 m 2 g -1 Pt for Pt/C, Pt-Co(4:1)/C, Pt-Co(3:1)/C, Pt-Co(2:1)/C and Pt-Co(1:1)/C, respectively. These catalysts are used as cathode in the fabrication of polybenzimidazole-based membrane electrode assembly (MEA) and the polarization curves are recorded at 160 and 180 °C. The results indicate the good performance of Pt-Co alloys than that of Pt under the PEM fuel cell conditions. Among the investigated electrocatalysts, Pt-Co(1:1)/C and Pt-Co(2:1)/C exhibited good fuel cell performance. Durability tests also indicated the good stability of Pt-Co(1:1)/C and Pt-Co(2:1)/C compared to Pt/C.

  2. BaPbO3 perovskite electrode for lead zirconate titanate ferroelectric thin films

    Science.gov (United States)

    Luo, Yih-Rong; Wu, Jenn-Ming

    2001-11-01

    BaPbO3 (BPO) films were prepared by rf-magnetron sputtering at temperatures as low as 350 °C. These films possessed low electrical resistivity of 1.4×10-3 Ω cm, which is appropriate for electrodes. The BPO electrode has an advantage over a Pt electrode in that it lowers the crystallization temperature of Pb(Zr0.53Ti0.47)O3 (PZT) films from 600 to 550 °C. The coercive fields of the PZT films deposited on a BPO/Pt electrode are significantly lower than those deposited on the Pt electrode, but the remanent polarization remained essentially unchanged. The BPO electrode also improved the fatigue resistance and decreased the leakage current of the PZT films deposited.

  3. Tailoring Curie temperature and magnetic anisotropy in ultrathin Pt/Co/Pt films

    Directory of Open Access Journals (Sweden)

    Vineeth Mohanan Parakkat

    2016-05-01

    Full Text Available The dependence of perpendicular magnetization and Curie temperature (Tc of Pt/Co/Pt thin films on the thicknesses of Pt seed (Pts and presence of Ta buffer layer has been investigated in this work. Pt and Co thicknesses were varied between 2 to 8 nm and 0.35 to 1.31 nm (across the spin reorientation transition thickness respectively and the Tc was measured using SQUID magnetometer. We have observed a systematic dependence of Tc on the thickness of Pts. For 8nm thickness of Pts the Co layer of 0.35nm showed ferromagnetism with perpendicular anisotropy at room temperature. As the thickness of the Pts was decreased to 2nm, the Tc went down below 250K. XRD data indicated polycrystalline growth of Pts on SiO2. On the contrary Ta buffer layer promoted the growth of Pt(111. As a consequence Ta(5nm/Pt(3nm/Co(0.35nm/Pt(2nm had much higher Tc (above 300K with perpendicular anisotropy when compared to the same stack without the Ta layer. Thus we could tune the ferromagnetic Tc and anisotropy by varying the Pts thickness and also by introducing Ta buffer layer. We attribute these observations to the micro-structural evolution of Pts layer which hosts the Co layer.

  4. Platinum nanoparticles decorated dendrite-like gold nanostructure on glassy carbon electrodes for enhancing electrocatalysis performance to glucose oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Hongmei [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); Chang, Gang, E-mail: changgang@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); Lei, Ming [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); He, Hanping [College of Chemistry and Chemical Engineer, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062 (China); Liu, Xiong; Shu, Honghui; Xia, Tiantian; Su, Jie [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); He, Yunbin, E-mail: ybhe@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China)

    2016-10-30

    Highlights: • Pt/DGNs/GC composites were obtained via a clean and facile method without any templates, surfactants, or stabilizers. • Controlling chemical reduction deposition time, the amount of platinum nanoparticles on Au surface could be regulated, which further tuned electrocatalytic properties toward glucose oxidation. • The obtained Pt/DGNs/GC composites with high electrochemical active surface area (ECSA) show superior electrocatalytic activity to glucose. • The sensor based on Pt/DGNs/GC exhibited excellent sensitivity, selectivity and stability for nonenzymatic glucose detection. - Abstract: Platinum nanoparticles decorated dendrite-like gold nanostructure, bimetal composite materials on glassy carbon electrode (Pt/DGNs/GC) for enhancing electrocatalysis to glucose oxidation was designed and successfully fabricated by a facile two-step deposition method without any templates, surfactants, or stabilizers. Dendrite-like gold nanostructure was firstly deposited on the GC electrode via the potentiostatic method, and then platinum nanoparticles were decorated on the surface of gold substrate through chemical reduction deposition. X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) were applied to characterize the evolution of morphology and structure of the as-prepared Pt/DGNs/GC. Based on electrochemical measurements such as cyclic voltammetry, linear voltammetry and chronoamperometry, Pt/DGNs/GC exhibited significantly enhanced electrocatalytic performance to glucose oxidation compared those of pure dendrite-like Au nanoparticles in our previous report. Controlling chemical reduction deposition time, the amount of platinum nanoparticles on Au surface could be regulated, which further tuned electrocatalytic properties toward glucose oxidation. The dendrite-like gold surface partially covered by platinum nanoparticles dramatically enhanced the electrocatalytic performance for the

  5. A novel method to evaluate spin diffusion length of Pt

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan-qing; Sun, Niu-yi; Che, Wen-ru [Shanghai Key Laboratory of Special Artificial Microstructure and Pohl Institute of Solid State Physics and School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Shan, Rong, E-mail: shan.rong@hotmail.com [Shanghai Key Laboratory of Special Artificial Microstructure and Pohl Institute of Solid State Physics and School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Zhu, Zhen-gang, E-mail: zgzhu@ucas.ac.cn [School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-05-01

    Spin diffusion length of Pt is evaluated via proximity effect of spin orbit coupling (SOC) and anomalous Hall effect (AHE) in Pt/Co{sub 2}FeAl bilayers. By varying the thicknesses of Pt and Co{sub 2}FeAl layer, the thickness dependences of AHE parameters can be obtained, which are theoretically predicted to be proportional to the square of the SOC strength. According to the physical image of the SOC proximity effect, the spin diffusion length of Pt can easily be identified from these thickness dependences. This work provides a novel method to evaluate spin diffusion length in a material with a small value.

  6. Spin Waves Excitations of Co/Pt Multilayers

    Directory of Open Access Journals (Sweden)

    W. Zhou

    2012-01-01

    Full Text Available The present work investigated interlayer couplings of [Co(20 Å/Pt(30 Å]5, [Co(4 Å/Pt(7 Å]30, and [Co(4 Å/Pt(9 Å]30 multilayers with strong perpendicular magnetic anisotropy (PMA. Brillouin light scattering measurements were utilized to obtain spin waves of these samples with in-plane external magnetic fields. Interlayer couplings were found to be very sensitive to Pt thickness change from 7 Å to 9 Å, which implies that Pt atoms were more difficult to be polarized to provide interlayer coupling between Co layers than in the perpendicular external magnetic field situation. When Pt layer is 30 Å, the observed single spin wave can confirm the disappearance of interlayer coupling even when Co layer thickness is 20 Å.

  7. Synthesis of Pt and Pt-Fe nanoparticles supported on MWCNTs used as electrocatalysts in the methanol oxidation reaction

    Institute of Scientific and Technical Information of China (English)

    J.R.Rodriguez; R.M.F´elix; E.A.Reynoso; Y.Gochi-Ponce; Y.Verde Gómez; S.Fuentes Moyado; G.Alonso-N ´uñez

    2014-01-01

    This work reports a feasible synthesis of highly-dispersed Pt and Pt-Fe nanoparticles supported on multiwall carbon nanotubes (MWCNTs) without Fe and multiwall carbon nanotubes with iron (MWCNTs-Fe) which applied as electrocatalysts for methanol electrooxidation. A Pt coordination complex salt was synthesized in an aqueous solution and it was used as precursor to prepare Pt/MWCNTs, Pt/MWCNTs-Fe, and Pt-Fe/MWCNTs using FeCl2·4H2O as iron source which were named S1, S2 and S3, respectively. The coordination complex of platinum (TOA)2PtCl6 was obtained by the chemical reaction between (NH4)2PtCl6 with tetraoctylammonium bromide (TOAB) and it was characterized by FT-IR and TGA. The materials were characterized by Raman spectroscopy, SEM, EDS, XRD, TEM and TGA. The electrocatalytic activity of Pt-based supported on MWCNTs in the methanol oxidation was investigated by cyclic voltammetry (CV) and chronoamperometry (CA). Pt-Fe/MWCNTs electrocatalysts showed the highest electrocatalytic activity and stability among the tested electrocatalysts due to that the addition of”Fe”promotes the OH species adsorption on the electrocatalyst surface at low potentials, thus, enhancing the activity toward the methanol oxidation reaction (MOR).

  8. The role of the cationic Pt sites in the adsorption properties of water and ethanol on the Pt4/Pt(111) and Pt4/CeO2(111) substrates: A density functional theory investigation

    Science.gov (United States)

    Seminovski, Yohanna; Tereshchuk, Polina; Kiejna, Adam; Da Silva, Juarez L. F.

    2016-09-01

    Finite site platinum particles, Ptn, supported on reduced or unreduced cerium oxide surfaces, i.e., CeO2-x(111) ( 0 CeO2-x has been improved in the last years; however, the identification of the active sites on the Ptn/CeO2-x(111) substrates is still far from complete. In this work, we applied density functional theory based calculations with the addition of the on-site Coulomb interactions (DFT+U) for the investigation of the active sites and the role of the Pt oxidation state on the adsorption properties of water and ethanol (probe molecules) on four selected substrates, namely, Pt(111), Pt4/Pt(111), CeO2(111), and Pt4/CeO2(111). Our results show that water and ethanol preferentially bind in the cationic sites of the base of the tetrahedron Pt4 cluster instead of the anionic lower-coordinated Pt atoms located on the cluster-top or in the surface Ce (cationic) and O (anionic) sites. The presence of the Pt4 cluster contributes to increase the adsorption energy of both molecules on Pt(111) and CeO2(111) surfaces; however, its magnitude increases less for the case of Pt4/CeO2(111). Thus, the cationic Pt sites play a crucial role in the adsorption properties of water and ethanol. Both water and ethanol bind to on-top sites via the O atom and adopt parallel and perpendicular configurations on the Pt(111) and CeO2(111) substrates, respectively, while their orientation is changed once the Pt4 cluster is involved, favoring H binding with the surface sites.

  9. Hollow platinum alloy tailored counter electrodes for photovoltaic applications

    Science.gov (United States)

    Li, Pinjiang; Zhang, Yange; Fa, Wenjun; Yang, Xiaogang; Wang, Liang

    2017-08-01

    Without sacrifice of photovoltaic performances, low-platinum alloy counter electrodes (CEs) are promising in bringing down the fabrication cost of dye-sensitized solar cells (DSSCs). We present here the realization of ZnO nanostructure assisted hollow platinum-nickel (PtNi) alloy microstructure CEs with a simple hydrothermal methods and maximization of electrocatalytic behaviors by tuning Zn precursors. The maximal power conversion efficiency is up to 8.74% for the liquid-junction dye-sensitized solar cells with alloyed PtNi0.41 electrode, yielding a 37.6% cell efficiency enhancement in comparison with pristine solar cell from planar Pt electrode. Moreover, the dissolution-resistant and charge-transfer abilities toward I-/I3- redox electrolyte have also been markedly enhanced due to competitive dissolution reactions and alloying effects.

  10. Analysis of SOFCs Using Reference Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Finklea, H.; Chen, X.; Gerdes, K.; Pakalapati, S.; Celik, I.

    2013-01-01

    Reference electrodes are frequently applied to isolate the performance of one electrode in a solid oxide fuel cell. However, reference electrode simulations raise doubt to veracity of data collected using reference electrodes. The simulations predict that the reported performance for the one electrode will frequently contain performance of both electrodes. Nonetheless, recent reports persistently treat data so collected as ideally isolated. This work confirms the predictions of the reference electrode simulations on two SOFC designs, and to provides a method of validating the data measured in the 3-electrode configuration. Validation is based on the assumption that a change in gas composition to one electrode does not affect the impedance of the other electrode at open circuit voltage. This assumption is supported by a full physics simulation of the SOFC. Three configurations of reference electrode and cell design are experimentally examined using various gas flows and two temperatures. Impedance data are subjected to deconvolution analysis and equivalent circuit fitting and approximate polarization resistances of the cathode and anode are determined. The results demonstrate that the utility of reference electrodes is limited and often wholly inappropriate. Reported impedances and single electrode polarization values must be scrutinized on this basis.

  11. Operando X-ray investigation of solid oxide fuel cell model electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, Sergey Aleksandrovic

    2017-04-15

    A detailed study of three solid oxide fuel cells (SOFCs) related model systems is presented in this work with the aim of the better understanding of the structural changes in cell components associated with their operation. The first model system is an La{sub 0.6}Sr{sub 0.4}CoO{sub 3-d} (LSC) on yttria-stabilized zirconia (YSZ). Changes in the YSZ(100) single crystal surface structure buried under the squared LSC microelectrode were studied at a synchrotron under operational conditions. High flux photon beam at the synchrotron allowed access to the LSC/YSZ interface. Structural information from the substrate surface at an atomic scale was acquired. Element-specific anomalous XRD data allowed to distinguish between Y and Zr scattering contributions. For the first time, it was shown that the Y cation concentration at the electrode/electrolyte interface strongly depends on the sample environment and the applied potential. The second model system is a Pt/YSZ. Buried YSZ(111) surface and dense Pt film morphology changes under operational conditions were addressed. High-energy X-rays were necessary to collect surface-sensitive information from the interface due to highly absorbing Pt film. The main conclusion is - under conditions applied, the YSZ single crystal surface remains stable at an atomic level. A nagging topic of the Pt ''phase oxide'' formation at the Pt/YSZ interface during anodic polarization was also raised. Although XRD data did not show a clear evidence of PtO{sub x} presence at the interface, energy-dispersive X-ray analysis of the film cross-cut profile after the synchrotron experiment revealed distinct oxygen signal from delaminated parts of the film. Last but not least, the structure of a ZrO{sub 2} ultrathin film grown on a Pt{sub 3}Zr(0001) single crystal was studied in ultra-high vacuum for the first time be means of SXRD. This model system is aiming to improve understanding of the electrolyte materials based on ZrO{sub 2} (e

  12. PT symmetry and supersymmetry

    CERN Document Server

    Znojil, M

    2002-01-01

    A re-formulated, non-Hermitian version of the Witten's supersymmetric quantum mechanics is presented. Its use of pseudo-Hermitian (so called PT symmetric) Hamiltonians is reviewed and illustrated via several forms of an innovated supersymmetric partnership between strongly singular ("spiked") harmonic oscillators.

  13. Interpenetrating polyaniline-gold electrodes for SERS and electrochemical measurements

    Science.gov (United States)

    West, R. M.; Semancik, S.

    2016-11-01

    Facile fabrication of nanostructured electrode arrays is critical for development of bimodal SERS and electrochemical biosensors. In this paper, the variation of applied potential at a polyaniline-coated Pt electrode is used to selectivity deposit Au on the polyaniline amine sites or on the underlying Pt electrode. By alternating the applied potential, the Au is grown simultaneously from the top and the bottom of the polyaniline film, leading to an interpenetrated, nanostructured polymer-metal composite extending from the Pt electrode to the electrolyte solution. The resulting films have unique pH-dependent electrochemical properties, e.g. they retain electrochemical activity in both acidic and neutral solutions, and they also include SERS-active nanostructures. By varying the concentration of chloroaurate used during deposition, Au nanoparticles, nanodendrites, or nanosheets can be selectively grown. For the films deposited under optimal conditions, using 5 mmol/L chloroaurate, the SERS enhancement factor for Rhodamine 6G was found to be as high as 1.1 × 106 with spot-to-spot and electrode-to-electrode relative standard deviations as low as 8% and 12%, respectively. The advantages of the reported PANI-Au composite electrodes lie in their facile fabrication, enabling the targeted deposition of tunable nanostructures on sensing arrays, and their ability to produce orthogonal optical and electrochemical analytical results.

  14. HIGHLY SENSITIVE CATALASE ELECTRODE BASED ON POLYPYRROLE FILMS WITH MICROCONTAINERS

    Institute of Scientific and Technical Information of China (English)

    Yu-ying Gao; Gao-quan Shi

    2006-01-01

    Highly sensitive catalase electrodes for sensing hydrogen peroxide have been fabricated based on polypyrrole films with microcontainers. The microcontainers have a cup-like morphology and are arranged in a density of 4000 units cm-2.Catalase was immobilized into the polypyrrole films with microcontainers (Ppy-mc), which were coated on a Pt substrate electrode. The catalase/Ppy-mc/Pt electrode showed linear response to hydrogen peroxide in the range of 0-18 mmol/L at a potential of -0.3 V (versus SCE). Its sensitivity was measured to be approximately 3.64 μA (mmol/L)-1 cm-2, which is about two times that of the electrode fabricated from a flat Ppy film (catalase/Ppy-flat/Pt electrode). The electrode is highly selective for hydrogen peroxide and its sensitivity is interfered by potential interferents such as ascorbic acid, urea and fructose. Furthermore, such catalase electrodes showed long-term storage stability of 15 days under dry conditions at 4℃.

  15. A first-principle calculation of sulfur oxidation on metallic Ni(111) and Pt(111), and bimetallic Ni@Pt(111) and Pt@Ni(111) surfaces.

    Science.gov (United States)

    Yeh, Chen-Hao; Ho, Jia-Jen

    2012-09-17

    Sulfur, a pollutant known to poison fuel-cell electrodes, generally comes from S-containing species such as hydrogen sulfide (H(2)S). The S-containing species become adsorbed on a metal electrode and leave atomic S strongly bound to the metal surface. This surface sulfur is completely removed typically by oxidation with O(2) into gaseous SO(2). According to our DFT calculations, the oxidation of sulfur at 0.25 ML surface sulfur coverage on pure Pt(111) and Ni(111) metal surfaces is exothermic. The barriers to the formation of SO(2) are 0.41 and 1.07 eV, respectively. Various metals combined to form bimetallic surfaces are reported to tune the catalytic capabilities toward some reactions. Our results show that it is more difficult to remove surface sulfur from a Ni@Pt(111) surface with reaction barrier 1.86 eV for SO(2) formation than from a Pt@Ni(111) surface (0.13 eV). This result is in good agreement with the statement that bimetallic surfaces could demonstrate more or less activity than to pure metal surfaces by comparing electronic and structural effects. Furthermore, by calculating the reaction free energies we found that the sulfur oxidation reaction on the Pt@Ni(111) surface exhibits the best spontaneity of SO(2) desorption at either room temperature or high temperatures.

  16. Task 1: Modeling Study of CO Effects on Polymer Electrolyte Fuel Cell Anodes Task 2: Study of Ac Impedance as Membrane/Electrode Manufacturing Diagnostic Tool

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Springer

    1998-01-30

    Carbon monoxide poisoning of polymer electrolyte fuel cell anodes is a key problem to be overcome when operating a polymer electrolyte fuel cell (PEFC) on reformed fuels. CO adsorbs preferentially on the precious metal surface leading to substantial performance losses. Some recent work has explored this problem, primarily using various Pt alloys in attempts to lower the degree of surface deactivation. In their studies of hydrogen oxidation on Pt and Pt alloy (Pt/Sn, Pt/Ru) rotating disk electrodes exposed to H{sub 2}/CO mixtures, Gasteiger et al. showed that a small hydrogen oxidation current is observed well before the onset of major CO oxidative stripping (ca. 0.4 V) on Pt/Ru. However, these workers concluded that such current observed at low anode overpotentials was too low to be of practical value. Nonetheless, MST-11 researchers and others have found experimentally that it is possible to run a PEFC, e.g., with a Pt/Ru anode, in the presence of CO levels in the range 10--100 ppm with little voltage loss. Such experimental results suggest that, in fact, PEFC operation at significant current densities under low anode overpotentials is possible in the presence of such levels of CO, even before resorting to air bleeding into the anode feed stream. The latter approach has been shown to be effective in elimination of Pt anode catalyst poisoning effects at CO levels of 20--50 ppm for cells operating at 80 C with low Pt catalyst loading. The effect of oxygen bleeding is basically to lower P{sub CO} down to extremely low levels in the anode plenum thanks to the catalytic (chemical) oxidation of CO by dioxygen at the anode catalyst. In this modeling work the authors do not include specific description of oxygen bleeding effects and concentrate on the behavior of the anode with feed streams of H{sub 2} or reformate containing low levels of CO. The anode loss is treated in this work as a hydrogen and carbon monoxide electrode kinetics problem, but includes the effects of

  17. Triboelectric Nanogenerator Powered Electrochemical Degradation of Organic Pollutant Using Pt-Free Carbon Materials.

    Science.gov (United States)

    Gao, Shuyan; Chen, Ye; Su, Jingzhen; Wang, Miao; Wei, Xianjun; Jiang, Tao; Wang, Zhong Lin

    2017-04-25

    Carbon electrode materials are fabricated from bean curd to replace costly Pt-based electrodes to degrade methyl red (MR) as self-driven by a multilayer linkage triboelectric nanogenerator (ML-TENG). With the sponge as the buffer layer and precharge injection, the peak open-circuit voltage, Voc, short-circuit current, Isc, and maximum power density of the ML-TENG can reach and remain stable at 1300 V, 1.2 mA, and 7.4 W m(-2) (load resistance = 500 KΩ), respectively. Using the electric power generated by such an updated TENG, highly toxic and carcinogenic MR can be indirectly degraded to CO2 through an oxidation process induced by active chlorine produced at the as-obtained carbon-based electrode interface. Such an electrochemical degradation mechanism is proposed based on the cyclic voltammogram, gas chromatograph-mass spectrometer, and mass spectrometer. With compelling features of the TENG and carbon materials, such as sustainable energy, high and stable output performance, cost savings, and high degradation efficiency, this work pioneers the marriage of the TENG with carbon-based materials to self-power electrochemical degradation of organic pollutants for environmental protection.

  18. Modeling the local potential at Pt nanoparticles in polymer electrolyte membranes.

    Science.gov (United States)

    Eslamibidgoli, Mohammad Javad; Melchy, Pierre-Éric Alix; Eikerling, Michael H

    2015-04-21

    We present a physical-analytical model for the potential distribution at Pt nanodeposits in a polymer electrolyte membrane (PEM). Experimental studies have shown that solid deposits of Pt in PEM play a dual role in radical-initiated membrane degradation. Surface reactions at Pt particles could facilitate the formation as well as the scavenging of ionomer-attacking radical species. The net radical balance depends on local equilibrium conditions at Pt nanodeposits in the PEM, specifically, their equivalent local electrode potential. Our approach utilizes a continuum description of crossover fluxes of reactant gases, coupled with the kinetics of electrochemical surface reactions at Pt nanodeposits to calculate the potential distribution. The local potential is a function of the PEM structure and composition, which is determined by PEM thickness, concentrations of H2 and O2, as well as the size and density distribution of Pt particles. Model results compare well with experimental data for the potential distribution in PEMs.

  19. Kinetic study of methanol oxidation on Pt2Ru3/C catalyst in the alkaline media

    Directory of Open Access Journals (Sweden)

    A. V. TRIPKOVIC

    2007-11-01

    Full Text Available The interaction of acridine orange (AO with double-stranded (ds The electrochemical oxidation of methanol in NaOH solution was examined on a thin film Pt2Ru3/C electrode. The XRD pattern revealed that the Pt2Ru3 alloy consisted of a solid solution of Ru in Pt and a small amount of Ru or a solid solution of Pt in Ru. It was shown that in alkaline solution, the difference in activity between Pt/C and Pt2Ru3/C is significantly smaller than in acid solution. It is proposed that the reaction follows a quasi bifunctional mechanism. The kinetic parameters indicated that the chemical reaction between adsorbed COad and OHad species could be the rate limiting step.

  20. Platinum-polyaniline-modified carbon fiber electrode for the electrooxidation of methanol

    Institute of Scientific and Technical Information of China (English)

    WU Kezhong; MENG Xu; WANG Xindong; LI Jingling

    2005-01-01

    Platinum was electrodeposited onto a polyaniline-modified carbon fiber electrode by the cyclic voltammetric method in sulfuric acid, which may enable an increase in the level of platinum u tilization currently achieved in electrocatalyric systems. This electrode preparation consists of a two-step procedure: first electropolymerization of aniline onto carbon fiber and then electrodeposition of platinum. The catalytic activity of the platinum-polyaniline-modified carbon fiber electrode (Pt/PAni/C) was compared with that of a bare carbon fiber electrode (Pt/C) by the oxidation of methanol. The maximum oxidation current of methanol on Pt/PAni/C is 50.7 mA.cm-2, which is 6.7 times higher than 7.6 mA.cm-2 on the Pt/C.Scanning electron microscopy was used to investigate the dispersion of the platinum particles of about 0.4 μm.

  1. Insights on the SO{sub 2} poisoning of Pt{sub 3}Co/VC and Pt/VC fuel cell catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Baturina, Olga A., E-mail: olga.baturina@nrl.navy.mi [Naval Research Laboratory, Code 6113, Washington, DC 20375 (United States); Gould, Benjamin D. [Naval Research Laboratory, Code 6113, Washington, DC 20375 (United States); Garsany, Yannick [Naval Research Laboratory, Code 6113, Washington, DC 20375 (United States)] [EXCET, Inc., Springfield, VA 22151 (United States); Swider-Lyons, Karen E. [Naval Research Laboratory, Code 6113, Washington, DC 20375 (United States)

    2010-09-01

    SO{sub 2} poisoning of carbon-supported Pt{sub 3}Co (Pt{sub 3}Co/VC) catalyst is performed at the cathode of proton exchange membrane fuel cells (PEMFCs) in order to link previously reported results at the electrode/solution interface to the FC environment. First, the surface area of Pt{sub 3}Co/VC catalyst is rigorously characterized by hydrogen adsorption, CO stripping voltammetry and underpotential deposition (upd) of copper adatoms. Then the performance of PEMFC cathodes employing 30 wt.% Pt{sub 3}Co/VC and 50 wt.% Pt/VC catalysts is compared after exposure to 1 ppm SO{sub 2} in air for 3 h at constant cell voltage of 0.6 V. In agreement with results reported for the electrode/solution interface, the Pt{sub 3}Co/VC is more susceptive to SO{sub 2} poisoning than Pt/VC at a given platinum loading. Both catalysts can be recovered from adsorbed sulfur species by running successive polarization curves in air or cyclic voltammetry (CV) in inert atmosphere. However, the activity of Pt{sub 3}Co/VC having {approx}3 times higher sulfur coverage is recovered more easily than Pt/VC. To understand the difference between the two catalysts in terms of activity recovery, platinum-sulfur interaction is probed by thermal programmed desorption at the catalyst/inert gas interface and CV at the electrode/solution interface and in the FC environment.

  2. Rate of Adsorption of Methanol at a Polycrystalline Pt Electrode

    Science.gov (United States)

    2013-08-01

    8 3.4 Measurement of Fractional Surface Coverage by Hydrogen Underpotential Deposition ...anodic scan of adlayer. fractional surface coverage based on the hydrogen underpotential deposition (UPD). ....7 Figure 3. Representative anodic... underpotential deposition (UPD). a b 8 3.3 Anodic Charge by Linear Anodic Scan Under the same conditions as in section 3.2, the accumulation of

  3. Chemical oscillation in electrochemical oxidation of methanol on Pt surface

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on dual path reaction mechanism, a nonlinear dynamics model reflecting the potential oscilla- tion in electrooxidation of methanol on Pt surface was established. The model involves three variables, the electrode potential (e), the surface coverage of carbon monoxide (x), and adsorbed water (y). The chemical reactions and electrode potential were coupled together through the rate constant ki = exp(ai(e ? ei)). The analysis to the established model discloses the following: there are different kinetics be- haviors in different ranges of current densities. The chemical oscillation in methanol electrooxidation is assigned to two aspects, one from poison mediate CO of methanol electrooxidation, which is the in- duced factor of the chemical oscillation, and the other from the oxygen-containing species, such as H2Oa. The formation and disappearance of H2Oa deeply depend on the electrode potential, and directly cause the chemical oscillation. The established model makes clear that the potential oscillation in methanol electrooxidation is the result of the feedback of electrode potential e on the reactions in- volving poison mediates CO and oxygen-containing species H2Oa. The numerical analysis of the estab- lished model successfully explains why the potential oscillation in methanol galvanostatic oxidation on a Pt electrode only happens in a certain range of current densities but not at any current density.

  4. Chemical oscillation in electrochemical oxidation of methanol on Pt surface

    Institute of Scientific and Technical Information of China (English)

    LI LanLan; WEI ZiDong; QI XueQiang; SUN CaiXin; YIN GuangZhi

    2008-01-01

    Based on dual path reaction mechanism, a nonlinear dynamics model reflecting the potential oscilla-tion in electrooxidation of methanol on Pt surface was established. The model involves three variables, the electrode potential (e), the surface coverage of carbon monoxide (x), and adsorbed water (y). The chemical reactions and electrode potential were coupled together through the rate constant k1= exp(a e-e1)). The analysis to the established model discloses the following: there are different kinetics be-haviors in different ranges of current densities. The chemical oscillation in methanol electrooxidation is assigned to two aspects, one from poison mediate CO of methanol electrooxidallon, which is the in-duced factor of the chemical oscillation, and the other from the oxygen-containing species, such as H2Oa. The formation and disappearance of H2Oa deeply depend on the electrode potential, and directly cause the chemical oscillation. The established model makes clear that the potential oscillation in methanol electrooxidation is the result of the feedback of electrode potential e on the reactions in-volving poison mediates CO and oxygen-containing species H2Oa. The numerical analysis of the estab-lished model successfully explains why the potential oscillation in methanol galvanostatic oxidation on a Pt electrode only happens in a certain range of current densities but not at any current density.

  5. Oxygen reduction on carbon supported Pt-W electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Meza, D.; Morales, U.; Salgado, L. [Departamento de Quimica, Area de Electroquimica, Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, 09340 Distrito Federal (Mexico); Roquero, P. [Unidad de Investigacion en Catalisis, Facultad de Quimica, UNAM, Ciudad Universitaria, 04510 Distrito Federal (Mexico)

    2010-11-15

    The catalytic activity of Pt-W electrocatalysts towards oxygen reduction reaction (ORR) was studied. Pt-W/C materials were prepared by thermolysis of tungsten and platinum carbonyl complexes in 1-2 dichloro-benzene during 48 h. The precursors were mixed to obtain relations of Pt:W: 50:50 and 80:20%w, respectively. The Pt carbonyl complex was previously synthesized by bubbling CO in a chloroplatinic acid solution. The synthesized materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), cyclic voltammetry (CV) and a rotating disk electrode (RDE). The results show that both materials (Pt{sub 50}W{sub 50}/C and Pt{sub 80}W{sub 20}/C) have a crystalline phase associated with metallic platinum and an amorphous phase related with tungsten and carbon. The particle size of the electrocatalysts depends on the relationship between platinum and tungsten. Finally, both materials exhibit catalytic activity for oxygen reduction. (author)

  6. Electrochemistry at Very Small Electrodes.

    Science.gov (United States)

    1985-09-01

    Contract N00014-79-C-0862. This contract has a peculiar history. It originated in 1979. under the title "Studies in Cathodic Stripping Voltammetry and...The second category involved studies of cathodic stripping voltammetry of various materials, primarily at silver electrodes. Work carried out... Cathodic Stripping Voltammetry at a Rotating Disc Electrode", K. Shimizu and R.A. Osteryoung, February, 1981. * 4. "Electrochemical Behavior of Sulfide

  7. Graphene-doped electrospun nanofiber membrane electrodes and proton exchange membrane fuel cell performance

    Science.gov (United States)

    Wei, Meng; Jiang, Min; Liu, Xiaobo; Wang, Min; Mu, Shichun

    2016-09-01

    A rational electrode structure can allow proton exchange membrane (PEM) fuel cells own high performance with a low noble metal loading and an optimal transport pathway for reaction species. In this study, we develop a graphene doped polyacrylonitile (PAN)/polyvinylident fluoride (PVDF) (GPP) electrospun nanofiber electrode with improved electrical conductivity and high porosity, which could enhance the triple reaction boundary and promote gas and water transport throughout the porous electrode. Thus the increased electrochemical active surface area (ECSA) of Pt catalysts and fuel cell performance can be expected. As results, the ECSA of hot-pressed electrospun electrodes with 2 wt% graphene oxide (GO) is up to 84.3 m2/g, which is greatly larger than that of the conventional electrode (59.5 m2/g). Significantly, the GPP nanofiber electrospun electrode with Pt loading of 0.2 mg/cm2 exhibits higher fuel cell voltage output and stability than the conventional electrode.

  8. Platinum-based nanocomposite electrodes for low-temperature solid oxide fuel cells with extended lifetime

    Science.gov (United States)

    Lee, Yoon Ho; Cho, Gu Young; Chang, Ikwhang; Ji, Sanghoon; Kim, Young Beom; Cha, Suk Won

    2016-03-01

    Due to its high catalytic activity and convenient fabrication procedure that uses physical vapor deposition (PVD), nanofabricated platinum (Pt) is widely used for low temperature operating solid oxide fuel cells (LT-SOFC). However, the poor thermal stability of nanofabricated Pt accelerates cell performance degradation. To solve this problem, we apply a thermal barrier coating and use the dispersion hardening process for the nanofabrication of Pt by sputter device. Through morphological and electrochemical data, GDC modified nano-porous Pt electrodes shows improved performance and thermal stability at the operating temperature of 500 °C. While the peak power density of pure Pt sample is 6.16 mW cm-2 with a performance degradation of 43% in an hour, the peak power density of the GDC modified Pt electrodes are in range of 7.42-7.91 mW cm-2 with a 7-16% of performance degradation.

  9. Reliable metal deposition into TiO(2) nanotubes for leakage-free interdigitated electrode structures and use as a memristive electrode.

    Science.gov (United States)

    Liu, Ning; Lee, Kiyoung; Schmuki, Patrik

    2013-11-18

    Nearly 100 % filling of TiO2 nanotubes with metals, including Ag, Cu, Au, and Pt, was achieved by defect-sealing treatment at the bottom of the nanotubes, followed by metal deposition using nuclei formation/coalescence. The resulting short-circuit-free interdigitated electrode configurations can, for example, be used to fabricate memristive electrodes.

  10. Electrochemical and impedance characterization of Microbial Fuel Cells based on 2D and 3D anodic electrodes working with seawater microorganisms under continuous operation.

    Science.gov (United States)

    Hidalgo, D; Sacco, A; Hernández, S; Tommasi, T

    2015-11-01

    A mixed microbial population naturally presents in seawater was used as active anodic biofilm of two Microbial Fuel Cells (MFCs), employing either a 2D commercial carbon felt or 3D carbon-coated Berl saddles as anode electrodes, with the aim to compare their electrochemical behavior under continuous operation. After an initial increase of the maximum power density, the felt-based cell reduced its performance at 5 months (from 7 to 4 μW cm(-2)), while the saddle-based MFC exceeds 9 μW cm(-2) (after 2 months) and maintained such performance for all the tests. Electrochemical impedance spectroscopy was used to identify the MFCs controlling losses and indicates that the mass-transport limitations at the biofilm-electrolyte interface have the main contribution (>95%) to their internal resistance. The activation resistance was one order of magnitude lower with the Berl saddles than with carbon felt, suggesting an enhanced charge-transfer in the high surface-area 3D electrode, due to an increase in bacteria population growth.

  11. Soft Landing of Bare PtRu Nanoparticles for Electrochemical Reduction of Oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Grant E.; Colby, Robert J.; Engelhard, Mark H.; Moon, DaeWon; Laskin, Julia

    2015-08-07

    Magnetron sputtering of two independent Pt and Ru targets coupled with inert gas aggregation in a modified commercial source has been combined with soft landing of mass-selected ions to prepare bare 4.5 nm diameter PtRu alloy nanoparticles on glassy carbon electrodes with controlled size and morphology for electrochemical reduction of oxygen in solution. Employing atomic force microscopy (AFM) it is shown that the nanoparticles bind randomly to the glassy carbon electrode at a relatively low coverage of 7 x 104 ions µm-2 and that their average height is centered at 4 nm. Scanning transmission electron microscopy images obtained in the high-angle annular dark field mode (STEM-HAADF) further confirm that the soft-landed PtRu alloy nanoparticles are uniform in size and have a Ru core decorated with small regions of Pt on the surface. Wide-area scans of the electrodes using X-ray photoelectron spectroscopy (XPS) reveal the presence of both Pt and Ru in relative atomic concentrations of ~9% and ~33%, respectively. Deconvolution of the high energy resolution XPS spectra in the Pt4f and Ru3d regions indicates the presence of both oxidized Pt and Ru. The substantially higher loading of Ru compared to Pt and enrichment of Pt at the surface of the alloy nanoparticles is confirmed by wide-area analysis of the electrodes using time-of-flight medium energy ion scattering (TOF-MEIS) employing both 80 keV He+ and O+ ions. The activity of electrodes containing 7 x 104 ions µm-2 of bare 4.5 nm PtRu nanoparticles toward the electrochemical reduction of oxygen was evaluated employing cyclic voltammetry (CV) in 0.1 M HClO4 and 0.5 M H2SO4 solutions. In both electrolytes a pronounced reduction peak was observed during O2 purging of the solution that was not evident during purging with Ar. Repeated electrochemical cycling of the electrodes revealed little evolution in the shape or position of the voltammograms indicating high stability of the alloy nanoparticles supported on glassy

  12. Indium- and Platinum-Free Counter Electrode for Green Mesoscopic Photovoltaics through Graphene Electrode and Graphene Composite Catalysts: Interfacial Compatibility.

    Science.gov (United States)

    Yin, Jie; Zhou, Huawei; Liu, Zhicheng; Nie, Zhonghao; Li, Yinhao; Qi, Xuan; Chen, Baoli; Zhang, Yingtian; Zhang, Xianxi

    2016-03-01

    The scarcity and noble indium and platinum (Pt) are important elements in photoelectric nanomaterials. Therefore, development of low cost alternative materials to meet different practical applications is an urgent need. Two-dimensional (2D) layered graphene (GE) with unique physical, mechanical, and electrical properties has recently drawn a great deal of attention in various optoelectronic fields. Herein, the large scale (21 cm × 15 cm) high-quality single layer graphene (SLG) and multilayer graphene on a flexible plastic substrate PET were controllably prepared through layer-by-layer (LBL) transfer using the thermal release adhesive transfer method (TRA-TM). Transmission and antibending performance based on PET/GE were superior to traditional PET/ITO. The square resistance of a nine-layer graphene electrode reached approximately 58 Ω. Combined with our newly developed and highly effective Fe3O4@RGO (reduced graphene oxide) catalyst, the power conversion efficiency of the dye-sensitized solar cell (DSC) using flexible PET/GE conductive substrate was comparable to that of the DSC using the PET/ITO substrate. The desirable performance of PET/GE/Fe3O4@RGO counter electrodes (low-cost indium- and platinum-free counter electrodes) is attributed to the interfacial compatibility between 2D graphene composite catalyst (Fe3O4@RGO) and 2D PET/GE conductive substrate. In addition, DSCs that use only PET/GE (without Fe3O4@RGO catalyst) as counter electrodes can also achieve a photocurrent density of 6.30 mA cm(-2). This work is beneficial for fundamental research and practical applications of graphene and graphene composite in photovoltaics, photocatalytic water splitting, supercapacitors.

  13. Efficient C-C bond splitting on Pt monolayer and sub-monolayer catalysts during ethanol electro-oxidation: Pt layer strain and morphology effects.

    Science.gov (United States)

    Loukrakpam, Rameshwori; Yuan, Qiuyi; Petkov, Valeri; Gan, Lin; Rudi, Stefan; Yang, Ruizhi; Huang, Yunhui; Brankovic, Stanko R; Strasser, Peter

    2014-09-21

    Efficient catalytic C-C bond splitting coupled with complete 12-electron oxidation of the ethanol molecule to CO2 is reported on nanoscale electrocatalysts comprised of a Pt monolayer (ML) and sub-monolayer (sML) deposited on Au nanoparticles (Au@Pt ML/sML). The Au@Pt electrocatalysts were synthesized using surface limited redox replacement (SLRR) of an underpotentially deposited (UPD) Cu monolayer in an electrochemical cell reactor. Au@Pt ML showed improved catalytic activity for ethanol oxidation reaction (EOR) and, unlike their Pt bulk and Pt sML counterparts, was able to generate CO2 at very low electrode potentials owing to efficient C-C bond splitting. To explain this, we explore the hypothesis that competing strain effects due to the Pt layer coverage/morphology (compressive) and the Pt-Au lattice mismatch (tensile) control surface chemisorption and overall activity. Control experiments on well-defined model Pt monolayer systems are carried out involving a wide array of methods such as high-energy X-ray diffraction, pair-distribution function (PDF) analysis, in situ electrochemical FTIR spectroscopy, and in situ scanning tunneling microscopy. The vibrational fingerprints of adsorbed CO provide compelling evidence on the relation between surface bond strength, layer strain and morphology, and catalytic activity.

  14. Potential-assisted assembly of functionalised platinum nanoparticles on electrode surfaces

    NARCIS (Netherlands)

    Peruffo, M.; Contreras-Carballada, P.; Bertoncello, P.; Williams, R.M.; De Cola, L.; Unwin, P.R.

    2009-01-01

    A method for assembling Pt nanoparticles (5 nm diameter) on indium tin oxide (ITO) and highly oriented pyrolytic graphite (HOPG) electrodes, via the potential-assisted deposition of pre-formed perthiolated-β-cyclodextrin-capped Pt nanoparticles is described. Cyclic voltammetry allowed control over t

  15. Design of Interleaved Interdigitated Electrode Multilayer Piezoelectric Transformer utilizing Longitudinal and Thickness Mode Vibrations

    DEFF Research Database (Denmark)

    Rødgaard, Martin Schøler; Andersen, Thomas; Andersen, Michael A. E.

    2012-01-01

    . In this paper an interleaved interdigitated electrode (IDE) multilayer PT utilizing longitude and thickness mode vibration for high step-up and high output voltage is developed, for driving capacitive loads of up to 2.5kV. The PT possesses native soft switching capabilities, enabling the utilization of inductor...

  16. Pt/Pd electrocatalyst electrons for fuel cells

    Science.gov (United States)

    Stonehart, P.

    1981-11-03

    This invention relates to improved electrochemical cells and to novel electrodes for use therein. In particular, the present invention comprises a fuel cell used primarily for the consumption of impure hydrogen fuels containing carbon monoxide or carbonaceous fuels where the electrode in contact with the fuel is not substantially poisoned by carbon monoxide. The anode of the fuel cell comprises a Pd/Pt alloy supported on a graphitized or partially graphitized carbon material. Fuel cells which comprise as essential elements a fuel electrode, an oxidizing electrode, and an electrolyte between said electrodes are devices for the direct production of electricity through the electrochemical combustion of a fuel and oxidant. These devices are recognized for their high efficiency as energy conversion units, since unlike conventional combustion engines, they are not subject to the limitations of the Carnot heat cycle. It is the primary object of the present invention to provide an electrode having high electrochemical activity for an electrochemical cell. It is another object of the present invention to provide an electrode having an electro-catalyst which is highly resistant to the corrosive environment of an electrochemical cell.

  17. Methanol Electro-Oxidation on Pt-Ru Alloy Nanoparticles Supported on Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Yangchuan Xing

    2009-09-01

    Full Text Available Carbon nanotubes (CNTs have been investigated in recent years as a catalyst support for proton exchange membrane fuel cells. Improved catalyst activities were observed and attributed to metal-support interactions. We report a study on the kinetics of methanol electro-oxidation on CNT supported Pt-Ru alloy nanoparticles. Alloy catalysts with different compositions, Pt53Ru47/CNT, Pt69Ru31/CNT and Pt77Ru23/CNT, were prepared and investigated in detail. Experiments were conducted at various temperatures, electrode potentials, and methanol concentrations. It was found that the reaction order of methanol electro-oxidation on the PtRu/CNT catalysts was consistent with what has been reported for PtRu alloys with a value of 0.5 in methanol concentrations. However, the electro-oxidation reaction on the PtRu/CNT catalysts displayed much lower activation energies than that on the Pt-Ru alloy catalysts unsupported or supported on carbon black (PtRu/CB. This study provides an overall kinetic evaluation of the PtRu/CNT catalysts and further demonstrates the beneficial role of CNTs.

  18. Cathodic H2 gas production through Pd alloy membrane electrodes

    Science.gov (United States)

    Shirogami, T.; Murata, K.

    A rechargeable H2-NiOOH cell with hydrogen-permeable membrane electrode was tested, and its cathodic hydrogen gas production through the membrane electrode investigated. When a Pd-Pt, catalyzed electrolyte-facing surface was cathodically polarized in a concentrated KOH solution, it was found that hydrogen gas was evolved in the chamber through dissolved hydrogen atoms' penetrating of the membrane to exit at the other, palladized surface as free gas.

  19. Postannealing Effect at Various Gas Ambients on Ohmic Contacts of Pt/ZnO Nanobilayers toward Ultraviolet Photodetectors

    OpenAIRE

    Chung-Hua Chao; Mao-Yi Chen; Chii-Ruey Lin; Yueh-Chung Yu; Yeong-Der Yao; Da-Hua Wei

    2013-01-01

    This paper describes a fabrication and characterization of ultraviolet (UV) photodetectors based on Ohmic contacts using Pt electrode onto the epitaxial ZnO (0002) thin film. Plasma enhanced chemical vapor deposition (PECVD) system was employed to deposit ZnO (0002) thin films onto silicon substrates, and radio-frequency (RF) magnetron sputtering was used to deposit Pt top electrode onto the ZnO thin films. The as-deposited Pt/ZnO nanobilayer samples were then annealed at 450∘C in two differe...

  20. A Piezoelectric Plethysmograph Sensor Based on a Pt Wire Implanted Lead Lanthanum Zirconate Titanate Bulk Ceramic

    Directory of Open Access Journals (Sweden)

    Ernesto Suaste-Gómez

    2010-07-01

    Full Text Available This work reports on the development of a Lead Lanthanum Zirconate Titanate (PLZT bulk ferroelectric poled ceramic structure as a Piezoelectric Plethysmograph (PZPG sensor. The ceramic was implanted during its fabrication with a platinum (Pt wire which works as an internal electrode. The ceramic was then submitted to an experimental setup in order to validate and determine the Pt-wire mechanical effects. This PZPG sensor was also mounted on a finger splint in order to measure the blood flow that results from the pulsations of blood occurring with each heartbeat. Fingertip pulses were recorded jointly with an ECG signal from a 25 year old male to compare the time shift; the PZPG sensor guarantees the electrical isolation of the patient. The proposed PZPG has several advantages: it can be adjusted for fingertip measurements, but it can easily be extended by means of spare bands, therefore making possible PZPG measurements from different body locations, e.g., forehead, forearm, knee, neck, etc.

  1. Electrochemical study of oxygen reduction reaction in Pt/C catalysts synthesized by photo-deposition; Estudio electroquimico de la reaccion de reduccion de oxigeno en catalizadores de Pt/C sintetizados por fotodeposito

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Galindo, J. A.; Ruiz-Camacho, B.; Valenzuela-Zapata, M. A.; Gonzalez-Huerta, R. G. [IPN, ESIQIE, Mexico, D.F. (Mexico)]. E-mail: rosgonzalez_h@yahoo.com.mx

    2009-09-15

    Fuel batteries are considered one of the principal generators of energy for the immediate future, though their use is limited by their cost and useful lifetime. One of the main components of a fuel battery are electrodes made of a noble metal, such as Pt, dispersed in a support. The interaction between these two components has received a good deal of attention in recent years. It is considered to be responsible for structural growth effects and a decreased dispersion of metal particles on a support, causing the battery to have low overall performance and a reduced useful lifetime. The properties of the support are accentuated in cathode catalysts, where oxygen reduction reactions occur as a result of its operating conditions. Syntheses are currently being investigated to improve the metal-support interaction and thereby increase the lifetime of the fuel battery. This work presents the electrochemical study of nanometric-sized carbon-supported platinum (Pt/C) catalysts synthesized with chemical photo-deposition to determine its catalytic effect and stability for oxygen reduction reaction in an acid medium. C{sub 10}H{sub 14}O{sub 4}Pt (Pt(acac)2) was used as the platinum precursor. The electrochemical study was conducted with cyclic voltamperometry and rotary disc electrode (RDE) techniques, observing that the synthesized catalysts present a behavior similar to that of Pt (E-Tek). The kinetic study showed an open-circuit potential of de 0.96 V with a Tafel slope of 73 mV dec-1, and with a current of 0.1 mA cm-2 the potential is 0.91 V. The authors wish to thank the ICYTDF (project PICS08-37) and the IPN (project SIP-20090433). [Spanish] Las pilas de combustible se perfilan como uno de los principales generadores de energia en un futuro inmediato, pero su utilizacion esta limitada por su costo y tiempo de vida util. Uno de los componentes principales de la pila de combustible son los electrodos integrados por un metal noble, como el Pt, disperso en un soporte. La

  2. High Performance P-Channel Schottky Barrier MOSFETs with Self-Aligned PtSi Source/Drain on Thin Film SOI Substrate

    Institute of Scientific and Technical Information of China (English)

    ZHU Shi-Yang; LI Ming-Fu

    2005-01-01

    @@ P-channel metal-oxide-semiconductor field-effect transistors (MOSFETs) with PtSi Schottky barrier source/drain, high-k gate dielectric and metal gate electrode were fabricated on a thin p-type silicon-on-insulator (SOI) substrateusing a simplified low temperature process. The device works on a fully-depleted accumulation-mode and hasan excellent electrical performance. It reaches Ion/Ioff ratio of about 107, subthreshold swing of 65mV/decade and saturation drain current of Ids= 8.8μA/μm at |Vg - Vth| = |Vd| = 1 V for devices with the channel length 4.0μm and the equivalent oxide thickness 2.0nm. Compared to the corresponding bulk-Si counterparts, SOI p-SBMOSFETs have smaller off-state current due to reduction of the PtSi/Si contact area.

  3. Application of Polyaniline Incorporated Carbon Particles Coated Platinum Electrode in Coulometric Titration to Determination of Polyisoprene Alcohol

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ge; LIU Meng; LIU Kuai-zhi; QU Jiang-ying; CHENG Gang; DU Zu-ling

    2003-01-01

    The feasibility of using electrodes modified with polyaniline incorporated carbon particles films for improving the precision of coulometric titration is demonstrated. The problem of large deviation produced during determining polyisoprene by coulometric titration with direct titration technique(double Pt electrodes indicating electrode) has been solved. In the titration process, polyisoprene alcohol, an electro-inactive species, is adsorbed on the surface of the bare Pt electrode, which inhibits the electrode reaction of Br- and Br2. Therefore, when the titration reaches the end-point, the detected current will slowly change with time, which can make the repeatability of end-point poor. The atomic force microscopic images show the morphology of the electrode surface of adsorbing polyisoprene alcohol. The application of the chemically modified electrode instead of the bare Pt electrode to indicating the end-point has been investigated. The results show that the Pt electrode coated with polyaniline incorporated carbon particles films is an excellent indicator electrode. This electrode has advantages that the indicating signals are sharp and repeatable at end-point. The precision and the accuracy of the determination of polyisoprene alcohol are satisfactory.

  4. High efficient electrooxidation of formic acid at a novel Pt-indole composite catalyst prepared by electrochemical self-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Weiqiang [Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Wang, Chuanyi [Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011 (China); Xu, Jingkun [Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); Du, Yukou; Yang, Ping [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China)

    2011-02-01

    Self-assembly of Pt and indole into a novel composite catalyst on a glassy carbon electrode (GC) has been developed by a one-step electrodeposition in the presence of 3.0 mM H{sub 2}PtCl{sub 6} and 0.1 mM indole. Compared to Pt/GC and Pt/C, the novel Pt-indole composite catalyst exhibits higher catalytic activity and stronger poisoning tolerance for electrooxidation of formic acid. The adsorption strength of CO on the prepared Pt-indole composite catalyst is greatly weakened as demonstrated by CO stripping voltammograms. Because of its advantageous catalytic activity and poisoning tolerance, the novel Pt-indole composite catalyst is anticipated to find interesting applications in many important fields such as energy and catalysis. (author)

  5. Simulation of nanostructured electrodes for polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Rao, Sanjeev M.; Xing, Yangchuan

    Aligned carbon nanotubes (CNTs) with Pt uniformly deposited on them are being considered in fabricating the catalyst layer of polymer electrolyte membrane (PEM) fuel cell electrodes. When coated with a proton conducting polymer (e.g., Nafion) on the Pt/CNTs, each Pt/CNT acts as a nanoelectrode and a collection of such nanoelectrodes constitutes the proposed nanostructured electrodes. Computer modeling was performed for the cathode side, in which both multicomponent and Knudsen diffusion were taken into account. The effect of the nanoelectrode lengths was also studied with catalyst layer thicknesses of 2, 4, 6, and 10 μm. It was observed that shorter lengths produce better electrode performance due to lower diffusion barriers and better catalyst utilization. The effect of spacing between the nanoelectrodes was studied. Simulation results showed the need to have sufficiently large gas pores, i.e., large spacing, for good oxygen transport. However, this is at the cost of obtaining large electrode currents due to reduction of the number of nanoelectrodes per unit geometrical area of the nanostructured electrode. An optimization of the nanostructured electrodes was obtained when the spacing was at about 400 nm that produced the best limiting current density.

  6. Thin film fuel cell electrodes.

    Science.gov (United States)

    Asher, W. J.; Batzold, J. S.

    1972-01-01

    Earlier work shows that fuel cell electrodes prepared by sputtering thin films of platinum on porous vycor substrates avoid diffusion limitations even at high current densities. The presented study shows that the specific activity of sputtered platinum is not unusually high. Performance limitations are found to be controlled by physical processes, even at low loadings. Catalyst activity is strongly influenced by platinum sputtering parameters, which seemingly change the surface area of the catalyst layer. The use of porous nickel as a substrate shows that pore size of the substrate is an important parameter. It is noted that electrode performance increases with increasing loading for catalyst layers up to two microns thick, thus showing the physical properties of the sputtered layer to be different from platinum foil. Electrode performance is also sensitive to changing differential pressure across the electrode. The application of sputtered catalyst layers to fuel cell matrices for the purpose of obtaining thin total cells appears feasible.

  7. EQCM with air-gap excitation electrode. Calibration tests with copper and oxygen coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bucur, R.V.; Mecea, V.M.; Carlsson, J.-O

    2003-10-15

    A holder for a quartz resonator with an adjustable air-gap excitation electrode (range: 0-300 {mu}m) is described, able to be used in an EQCM that is provided either with a metallic-film or a glued metallic-foil working electrode. An AT-cut plano-convex quartz crystal of 1.8 MHz and Pt-foil of 3 {mu}m thickness were used. Both the frequency shift and the quality factor of the quartz resonator were recorded during the calibration tests. Calibration data by electro-deposition of copper (in 0.1 M CuSO{sub 4}-solution) and oxygen (in both acid and basic solutions) on Pt-foil and Au-film electrodes, and at various air-gap widths, are presented. The frequency shifts for the Cu-calibration fit the Sauerbrey model at any air-gap width of the excitation electrode, while those for O-calibration fit only at relatively large values of the air-gap, >75 {mu}m. At small air-gap widths (<25 {mu}m), the O-calibration data deviate from the Sauerbrey model and yield an enhanced mass-sensitivity, up to 15 times higher. The different effects the air-gap width has on the response of the quartz resonator, as to the respective mass-variation of copper and oxygen layers deposited onto its surface, are ascribed to the difference in their features. Oxygen appears as a weakly bound, mono-atomic layer, while copper forms a rigid, strongly bound bulk layer.

  8. Underpotential Deposition of Silver on Pt(111). Part 1. Concentration Dependence

    Science.gov (United States)

    1990-01-01

    AD-A236 692 Underpotential Deposition of Silver on Pt(111): Part I. Concentration Dependence r T ~.J.F. Rodriguez, D.L. Taylor and H.D. Abruhla* EL...dependence of the underpotential deposition of silver on well-defined Pt(111) electrodes. Electrochemical as well as ultra high vacuum surface...silver are deposited at underpotentials but the stability of the second layer is a strong function of the silver ion concentration in solution. When

  9. iElectrodes: A Comprehensive Open-Source Toolbox for Depth and Subdural Grid Electrode Localization

    Science.gov (United States)

    Blenkmann, Alejandro O.; Phillips, Holly N.; Princich, Juan P.; Rowe, James B.; Bekinschtein, Tristan A.; Muravchik, Carlos H.; Kochen, Silvia

    2017-01-01

    The localization of intracranial electrodes is a fundamental step in the analysis of invasive electroencephalography (EEG) recordings in research and clinical practice. The conclusions reached from the analysis of these recordings rely on the accuracy of electrode localization in relationship to brain anatomy. However, currently available techniques for localizing electrodes from magnetic resonance (MR) and/or computerized tomography (CT) images are time consuming and/or limited to particular electrode types or shapes. Here we present iElectrodes, an open-source toolbox that provides robust and accurate semi-automatic localization of both subdural grids and depth electrodes. Using pre- and post-implantation images, the method takes 2–3 min to localize the coordinates in each electrode array and automatically number the electrodes. The proposed pre-processing pipeline allows one to work in a normalized space and to automatically obtain anatomical labels of the localized electrodes without neuroimaging experts. We validated the method with data from 22 patients implanted with a total of 1,242 electrodes. We show that localization distances were within 0.56 mm of those achieved by experienced manual evaluators. iElectrodes provided additional advantages in terms of robustness (even with severe perioperative cerebral distortions), speed (less than half the operator time compared to expert manual localization), simplicity, utility across multiple electrode types (surface and depth electrodes) and all brain regions. PMID:28303098

  10. Improved electrocatalytic ethanol oxidation activity in acidic and alkaline electrolytes using size-controlled Pt-Sn nanoparticles.

    Science.gov (United States)

    St John, Samuel; Boolchand, Punit; Angelopoulos, Anastasios P

    2013-12-31

    The promotion of the electrocatalytic ethanol oxidation reaction (EOR) on extended single-crystal Pt surfaces and dispersed Pt nanoparticles by Sn under acidic conditions is well known. However, the correlation of Sn coverage on Pt nanoparticle electrocatalysts to their size has proven difficult. The reason is that previous investigations have typically relied on commercially difficult to reproduce electrochemical treatments of prepared macroscopic electrodes to adsorb Sn onto exposed Pt surfaces. We demonstrate here how independent control over both Sn coverage and particle size can yield a significant enhancement in EOR activity in an acidic electrolyte relative to previously reported electrocatalysts. Our novel approach uses electroless nanoparticle synthesis where surface-adsorbed Sn is intrinsic to Pt particle formation. Sn serves as both a reducing agent and stabilizing ligand, producing particles with a narrow particle size distribution in a size range where the mass-specific electrocatalytic activity can be maximized (ca. 1-4 nm) as a result of the formation of a fully developed Sn shell. The extent of fractional Sn surface coverage on carbon-supported Pt nanoparticles can be systematically varied through wet-chemical treatment subsequent to nanoparticle formation but prior to incorporation into macroscopic electrodes. EOR activity for Pt nanoparticles is found to be optimum at a fractional Sn surface coverage of ca. 0.6. Furthermore, the EOR activity is shown to increase with Pt particle size and correlate with the active area of available Pt (110) surface sites for the corresponding Sn-free nanoparticles. The maximum area- and mass-specific EOR activities for the most active catalyst investigated were 17.9 μA/cm(2)Pt and 12.5 A/gPt, respectively, after 1 h of use at 0.42 V versus RHE in an acidic electrolyte. Such activity is a substantial improvement over that of commercially available Pt, Pt-Sn, and Pt-Ru alloy catalysts under either acidic or alkaline

  11. Effects of electrode surface structure on the mechanoelectrical transduction of IPMC sensors

    Science.gov (United States)

    Palmre, Viljar; Pugal, David; Kim, Kwang

    2014-03-01

    This study investigates the effects of electrode surface structure on the mechanoelectrical transduction of IPMC sensors. A physics-based mechanoelectrical transduction model was developed that takes into account the electrode surface profile (shape) by describing the polymer-electrode interface as a Koch fractal structure. Based on the model, the electrode surface effects were experimentally investigated in case of IPMCs with Pd-Pt electrodes. IPMCs with different electrode surface structures were fabricated through electroless plating process by appropriately controlling the synthesis parameters and conditions. The changes in the electrode surface morphology and the corresponding effects on the IPMC mechanoelectrical transduction were examined. Our experimental results indicate that increasing the dispersion of Pd particles near the membrane surface, and thus the polymer-electrode interfacial area, leads to a higher peak mechanoelectrically induced voltage of IPMC. However, the overall effect of the electrode surface structure is relatively low compared to the electromechanical transduction, which is in good agreement with theoretical prediction.

  12. Repair welding of cast iron coated electrodes

    Science.gov (United States)

    Żuk, M.; Górka, J.; Dojka, R.; Czupryński, A.

    2017-08-01

    Welding cast iron is a complex production procedure. Repair welding was used to repair damaged or poorly made castings. This is due to a tendency to cracking of the material during welding as well as after it. Welding cast iron can be carried out on hot or on cold. Hot welding requires high heat material and the use of welding material in the form of cast iron. In the case of cold welding, it is possible to use different materials. Mostly used filler metals are nickel and copper based. The work shows the course of research concerning repairmen of ductile iron with arc welding method. For the reparation process four types of ESAB company coated electrodes dedicated for cast iron were used with diameter 3.2 and 4 mm: ES 18-8-6B (4mm), EB 150 (4mm), OK NiCl, EŻM. In the cast iron examined during the testing grooves were made using plasma methods, in order to simulate the removed casting flaws. Then the welding process with coated electrodes was executed. The process utilized low welding current row of 100A, so there would only be a small amount of heat delivered to the heat affected zone (HAZ). Short stitches were made, after welding it was hammered, in order to remove stresses. After the repair welding the part of studies commenced which purpose was finding surface defects using visual testing (VT) and penetration testing (PT). In the second part, a series of macro and microscopic studies were executed witch the purpose of disclosuring the structure. Then the hardness tests for welds cross sections were performed. An important aspect of welding cast iron is the colour of the padding weld after welding, more precisely the difference between the base material and padding weld, the use of different materials extra gives the extra ability to select the best variant. The research of four types of coated electrode was executed, based on the demands the best option in terms of aesthetic, strength and hardness.

  13. Pt, PtCo and PtNi electrocatalysts prepared with mechanical alloying for oxygen reduction reaction in alkaline medium; Electrocatalizadores de Pt, PtCo y PtNi preparados por aleado mecanico para la reaccion de reduccion de oxigeno en medio alcalino

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Contreras, M.A.; Fernandez-Valverde, S.M. [Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de Mexico (Mexico)]. E-mail: miguel.garcia@inin.gob.mx; Vargas-Garcia, J.R. [ESIQIE-IPN, Mexico D.F. (Mexico

    2009-09-15

    Pt, PtCo and PtNi electrocatalysts were prepared using mechanical alloying and their electrocatalytic activity was investigated for oxygen reduction reaction (ORR) in KOH 0.5 M using cyclic voltametry and rotary disc electrode (RDE) techniques. The electrocatalysts were characterized using x-ray diffraction, sweep electron microscopy, dispersive x-ray transmission and chemical analysis. The physical characterization indicated that all the electrocatalysts are alloys formed by agglomerated particles composed of nanocrystals. The chemical analysis showed the presence of iron in the alloys. For the electrocatalytic evaluation, polarization curves and Koutecky-Levich and Tafel graphs were obtained to determine the kinetic parameters of the electrocatalysts in the study. With the same experimental conditions, the PtCo presented better electrocatalytic performance with a higher exchange current density. [Spanish] Se prepararon electrocatalizadores de Pt, PtCo y PtNi por aleado mecanico y se investigo su actividad electrocatalitica para la reaccion de reduccion de oxigeno (RRO) en KOH 0.5 M utilizando las tecnicas de Voltametria ciclica y Electrodo de Disco Rotatorio. Los electrocatalizadores se caracterizaron por difraccion de rayos X, Microscopia electronica de Barrido, de Transmision y analisis quimico por dispersion de rayos X. La caracterizacion fisica indico que todos los electrocatalizadores son aleaciones formadas de particulas aglomeradas, compuestas de nanocristales. El analisis quimico mostro la presencia de hierro en las aleaciones. Para la evaluacion electrocatalitica se obtuvieron curvas de polarizacion, graficas de Koutecky-Levich y de Tafel para determinar los parametros cineticos de los electrocatalizadores en estudio. En las mismas condiciones experimentales, el PtCo presento el mejor desempeno electrocatalitico con la densidad de corriente de intercambio mas alta.

  14. New methods of controlled monolayer-to-multilayer deposition of Pt for designing electrocatalysts at an atomic level

    Directory of Open Access Journals (Sweden)

    J. X. WANG

    2001-12-01

    Full Text Available Two new methods for monolayer-to-multileyer Pt deposition are presented. One involves Pt deposition by the replacement of an UPD metal monolayer on an electrode surface and the other the spontaneous deposition of Pt on Ru. The first method, exemplified by the replacement of a Cu monolayer on a Au(111 surface, occurs as a spontaneous irreversible redox reaction in which the Cu monolayer is oxidized by Pt cations, which are reduced and simultaneously deposited. The second method is illustrated by the deposition of Pt on a Ru(0001 surface and on carbon-supported Ru nanoparticles. This deposition takes place upon immersion of a UHV-prepared Ru(0001 crystal or Ru nanoparticles, reduced in H2, in a solution containing PtCl62- ions. The oxidation of Ru to RuOH by a local cell mechanism appears to be coupled with Pt deposition. This method facilitates the design of active Pt-Ru catalysts with ultimately low Pt loadings. Only a quarter of a monolayer of Pt on Ru nanoparticles yields an electrocatalyst with higher activity and CO tolerance for H2/CO oxidation than commercial Pt-Ru alloy electrocatalysts with considerably higher Pt loadings.

  15. Electrode Kinetics in High Temperature Fuel Cells

    DEFF Research Database (Denmark)

    Bay, Lasse

    1998-01-01

    The O_2 reduction on Pt electrode with an yttria stabilized zirconia (YSZ) electrolyte is examined with potential step, voltammetry and impedance measurements. Inductive hysteresis are observed in all cases, indicating an activation-deactivation process for the electrode reaction. The same is found...... when the electrolyte is Gd doped ceria. The activation is generated by current passage. The time constant for the hysteresis is large considering the high operating temperatures, 800- 1000^oC. For the activation process potential steps give two time constants 10^2s and 10^3s for an anodic current, 10...... treated by modelling. The phenomenological model proposed can explain the principal behaviour of the inductive hysteresis. The activation process has first order dependence of the current density and the deactivation first order with respect to the activation.AFM pictures of the electrode...

  16. Thermochemistry of Pt-Fullerene Complexes: Semiempirical Study

    Science.gov (United States)

    Voityuk, Alexander A.

    2009-07-01

    Modified Neglect of Differential Overlap (MNDO) and MNDO/d based semiempirical methods are widely employed to explore structure and thermochemistry of molecular systems. In this work, the AM1/d method has been parametrized for systems containing platinum. The proposed scheme delivers excellent performance for binding energies of Pt complexes with ethylene and large π conjugated hydrocarbons. The estimated bond energies accurately reproduce the results of MP4(SDQ) calculations and show significant improvement over DFT (B3LYP and M05) data. We apply the AM1/d scheme to explore the structure and thermochemistry of several Pt compounds with C60 and C70. The calculated binding energies of bare Pt atoms and [Pt(PH3)2] units to the fullerenes are 75 and 45 kcal/mol, respectively. We find that coordination of a single metal center to C60 activates the fullerene cage making subsequent coordination of Pt more favorable. The bond energy [C60-PtC60] is calculated to be 65 kcal/mol. The estimated reaction enthalpies are useful for exploring the stability of PtxC60 polymer systems and their interaction with phosphines. AM1/d predicts a very low barrier to rotation of the coordinated fullerenes in [Pt(C60)2]. The AM1/d scheme is computationally very efficient and can be employed to obtain fast quantitative estimates for binding energies and structural parameters of Pt complexes with large π conjugated systems like fullerenes and carbon nanotubes.

  17. Investigation of Top/Bottom electrode and Diffusion Barrier Layer for PZT Thick Film MEMS Sensors

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Pedersen, Thomas; Thomsen, Erik Vilain

    2008-01-01

    Top and bottom electrodes for screen printed piezoelectric lead zirconate titanate, Pb(ZrxTi1 - x)O3 (PZT) thick film are investigated with respect to future MEMS devices. Down to 100 nm thick E-beam evaporated Al and Pt films are patterned as top electrodes on the PZT using a lift-off process...

  18. ELECTRODE MEASUREMENT OF REDOX POTENTIAL IN ANAEROBIC FERRIC/FERROUS CHLORIDE SYSTEMS

    Science.gov (United States)

    The behaviour of two inert redox electrodes (Pt and wax-impregnated graphite) was investigated in anaerobic ferrous and ferric chloride solutions in order to establish if these electrodes respond to the Fe3+/Fe2+ couple in a Nernstian manner. A new method fo...

  19. Electrooxidation of ethanol on platinum nanoparticles supported by ZrO2 nanotube matrix as a new highly active electrode

    Science.gov (United States)

    Ordikhani-Seyedlar, R.; Hosseini, M. G.; Daneshvari-Esfahlan, V.

    2017-08-01

    Platinum nanoparticles/ZrO2 nanotubes/Zr electrode (Pt-NPs/ZrO2-NTs/Zr) was fabricated by electroplating of platinum nanoparticles (Pt-NPs) on the ZrO2 nanotube arrays. ZrO2-NTs were prepared by anodizing in an electrolyte containing dimethylformamide (DMF), glycerol and ammonium fluoride (NH4F). The morphology and structure of ZrO2-NTs and Pt-NPs/ZrO2-NTs/Zr electrodes were characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The results indicated that ZrO2-NTs involve individual tubes with the diameter of 50-90 nm. In addition, Pt-NPs were homogeneously deposited on the surface of ZrO2-NTs with the size range of 10-20 nm. Cyclic voltammetry (CV) and chronoamperometry (CA) methods were used to study the electro-catalytic properties of Pt-NPs/ZrO2-NTs/Zr and flat Pt electrodes for ethanol oxidation. Experiments revealed the Pt-NPs/ZrO2-NTs/Zr electrode to have higher electro catalytic activity and better stability for ethanol oxidation when compared to flat Pt electrode.

  20. Aspects of Metal-YSZ Electrode Kinetics Studied using Model Electrodes

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Ebbesen, Sune; Mogensen, Mogens Bjerg

    2009-01-01

    The electrode kinetics of oxidation and reduction of H2/H2O and CO/CO2 at the metal/yttria stabilized zirconia (YSZ) interface were studied using model metal wire electrodes contacting polished YSZ pellets. The intent was to probe the reaction mechanisms by comparing the same reactions using...... different metals (Ag, Au, Cu, Ni, Pd, and Pt) under identical conditions relevant to fuel cell and electrolysis cell operation (e.g. including 50% H2/H2O and 50% CO/CO2). Impedance spectra were measured at open-circuit voltage and under polarization, and polarization sweeps were performed. The gas...

  1. Electrochemical evaluation of adsorption and oxidation of the carbon monoxide towards ordered intermetallic phases Pt-M (M=Mn, Pb, Sb e Sn); Avaliacao eletroquimica da adsorcao e oxidacao do monoxido de carbono sobre fases intermetalicas ordenadas Pt-M (M=Mn, Pb, Sb e Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Nicolai, A.L.; Miguel-Junior, E.; Silva, R.I.V. da; Angelo, A.C.D. [UNESP, Bauru, SP (Brazil). Depto. de Quimica. Lab. de Eletrocatalise

    2004-07-01

    This paper presents the experimental results obtained from the electrochemical evaluation of Pt ordered intermetallic phases (PtMn, PtPb, PtSb, PtSn) as electrode materials towards the CO oxidation reaction. The intermetallics showed a higher performance than pure Pt in the same experimental conditions. PtSn has presented the highest performance among the evaluated materials. There was not observed a clear relationship between the electrocatalytic activity of the materials and their ability in producing oxygen species at lower anodic potentials, suggesting that surface electronic density and structural characteristics of the electrode surfaces must be the properties to be investigated in order to explain the obtained results. (author)

  2. Anodic Stripping Determination of Pt (IV) Based on the Anodic Oxidation of Cu from the Intermetallic Phase of Cu[3]Pt

    OpenAIRE

    Ustinova, Elvira Maratovna; Kolpakova, Nina Alexandrovna

    2014-01-01

    It is shown that platinum can be determined by anodic stripping voltammetry at the peak of selective electrooxidation of copper from intermetallic phase with platinum of Cu[3]Pt composition. The composition of intermetallic copper-platinum phase formed on the electrode during pre-electrolysis was calculated on the amount of potential displacement (delta Е) of copper electrooxidation.

  3. Chemically Synthesised Pt Particles on Surface Oxidized Carbon Nanotubes as an Effective Catalyst for Direct Methanol Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    Mohammad; yari; Sajjad; Sadaghat; Sharehjini

    2007-01-01

    1 Results The synthesis, physical characterization and electrochemical analysis of Pt particles prepared using the surface oxidized carbon nanotubes prepared by chemically anchoring Pt onto the surface of the CNTs with 2.0 mol/L HNO3 by refluxing for 10 h to introduce surface functional groups.The particles of Pt are synthesized by reduction with sodium borohydride of H2PtCl6. The electro-oxidation of liquid methanol of this catalyst as a thin layer on glassy carbon electrode is investigated at room te...

  4. Best Practices and Testing Protocols for Benchmarking ORR Activities of Fuel Cell Electrocatalysts Using Rotating Disk Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Kocha, Shyam S; Shinozaki, Kazuma; Zack, Jason W; Myers, Deborah J.; Kariuki, Nancy N.; Nowicki, Tammi L.; Stamenkovic, Vojislav; Kang, Yijin; Li, Dongguo; Papageorgopoulos, Dimitrios

    2017-07-01

    Abstract Thin-film-rotating disk electrodes (TF-RDEs) are the half-cell electrochemical system of choice for rapid screening of oxygen reduction reaction (ORR) activity of novel Pt supported on carbon black supports (Pt/C) electrocatalysts. It has been shown that the magnitude of the measured ORR activity and reproducibility are highly dependent on the system cleanliness, evaluation protocols, and operating conditions as well as ink formulation, composition, film drying, and the resultant film thickness and uniformity. Accurate benchmarks of baseline Pt/C catalysts evaluated using standardized protocols and best practices are necessary to expedite ultra-low-platinum group metal (PGM) catalyst development that is crucial for the imminent commercialization of fuel cell vehicles. We report results of evaluation in three independent laboratories of Pt/C electrocatalysts provided by commercial fuel cell catalyst manufacturers (Johnson Matthey, Umicore, Tanaka Kikinzoku Kogyo—TKK). The studies were conducted using identical evaluation protocols/ink formulation/film fabrication albeit employing unique electrochemical cell designs specific to each laboratory. The ORR activities reported in this work provide a baseline and criteria for selection and scale-up of novel high activity ORR electrocatalysts for implementation in proton exchange membrane fuel cells (PEMFCs).

  5. Carbon paper supported Pt/Au catalysts prepared via Cu underpotential deposition-redox replacement and investigation of their electrocatalytic activity for methanol oxidation and oxygen reduction reactions

    Energy Technology Data Exchange (ETDEWEB)

    Khosravi, Mohsen; Amini, Mohammad K. [Chemistry Department, University of Isfahan, Isfahan 81744-73441 (Iran)

    2010-10-15

    Through a simple and rapid method, carbon papers (CPs) were coated with Au and the resulting Au/CP substrates were used for the preparation of Pt/Au/CP by Cu underpotential deposition (Cu UPD) and redox replacement technique. A series of Pt{sub n}/Au/CP catalysts (where n = number of UPD-redox replacement cycles) were synthesized and their electrochemical properties for methanol oxidation reaction (MOR), and oxygen reduction reaction (ORR) were investigated by electrochemical measurements. The Pt{sub n}/Au/CP electrodes show higher electrocatalytic activity and enhanced poison tolerance for the MOR as compared to a commercial Pt/C on CP (Pt/C/CP). The highest mass specific activity and Pt utilization efficiency for MOR was observed on Pt{sub 1}/Au/CP with a thickness close to a monatomic Pt layer. Chronoamperometric tests in methanol solution revealed that Pt{sub n}/Au/CPs have much higher CO tolerance compared to Pt/C/CP. Among the Pt{sub n}/Au/CPs, CO tolerance decreases with increasing the amount of deposited Pt, indicating that the exposed Au atoms in close proximity to Pt plays a positive role against CO poisoning. Compared with the Pt/C/CP, all the Pt{sub n}/Au/CP electrodes show more positive onset potentials and lower overpotentials for ORR. For instance, the onset potential of ORR is 150 mV more positive and the overpotential is {proportional_to}140 mV lower on Pt{sub 4}/Au/CP with respect to Pt/C/CP. (author)

  6. Transparent nickel selenide used as counter electrode in high efficient dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Jinbiao; Wu, Jihuai, E-mail: jhwu@hqu.edu.cn; Tu, Yongguang; Huo, Jinghao; Zheng, Min; Lin, Jianming

    2015-08-15

    Highlights: • A transparent Ni{sub 0.85}Se is prepared by a facile solvothermal reaction. • Ni{sub 0.85}Se electrode has better electrocatalytic activity than Pt electrode. • DSSC with Ni{sub 0.85}Se electrode obtains efficiency of 8.88%, higher than DSSC with Pt. • DSSC with Ni{sub 0.85}Se/mirror electrode achieves an efficiency of 10.19%. - Abstract: A transparent nickel selenide (Ni{sub 0.85}Se) is prepared by a facile solvothermal reaction and used as an efficient Pt-free counter electrode (CE) for dye-sensitized solar cells (DSSCs). Field emission scanning electron microscopy observes that the as-prepared Ni{sub 0.85}Se possesses porous structure. Cyclic voltammogram measurement indicates that Ni{sub 0.85}Se electrode has larger current density than Pt electrode. Electrochemical impedance spectroscopy shows that the Ni{sub 0.85}Se electrode has lower charge-transfer resistance than Pt electrode. Under simulated solar light irradiation with intensity of 100 mW cm{sup −2} (AM 1.5), the DSSC based on the Ni{sub 0.85}Se CE achieves a power conversion efficiency (PCE) of 8.88%, which is higher than the solar cell based on Pt CE (8.13%). Based on the transparency of Ni{sub 0.85}Se, the DSSC with Ni{sub 0.85}Se/mirror achieves a PCE of 10.19%.

  7. Surface structure and relaxation during the oxidation of carbon monoxide on Pt Pd bimetallic surfaces

    Science.gov (United States)

    Lucas, C. A.; Markovic, N. M.; Ball, M.; Stamenkovic, V.; Climent, V.; Ross, P. N.

    2001-05-01

    The atomic structure and surface relaxation of Pd monolayer on Pt(1 1 1) has been studied by surface X-ray scattering, in an aqueous environment under electrostatic potential control, during the adsorption and oxidation of carbon monoxide. The results show that the Pd-Pt layer spacing contracts at the onset of CO oxidation before the Pd adlayer forms an oxide structure that is incommensurate with the Pt lattice. Both the oxide formation and the lattice contraction are fully reversible over many cycles of the applied electrode potential.

  8. Re-examination of the Pt Particle Size Effect on the Oxygen Reduction Reaction for Ultrathin Uniform Pt/C Catalyst Layers without Influence from Nafion

    Energy Technology Data Exchange (ETDEWEB)

    Shinozaki, Kazuma; Morimoto, Yu; Pivovar, Bryan S.; Kocha, Shyam S.

    2016-09-01

    The platinum 'particle size effect' on the oxygen reduction reaction (ORR) has been re-evaluated using commercial Pt/C catalysts (2-10 nm Pt particle) and polycrystalline Pt (poly-Pt) in 0.1 M HClO4 with a rotating disk electrode method. Nafion-free catalyst layers were employed to obtain specific activities (SA) that were not perturbed (suppressed) by sulfonate anion adsorption/blocking. By using ultrathin uniform catalyst layers, O2 diffusion limitation was minimized as confirmed from the high SAs of our supported catalysts that were comparable to unsupported sputtered Pt having controlled sizes. The specific activity (SA) steeply increased for the particle sizes in the range -2-10 nm (0.8-1.8 mA/cm2Pt at 0.9 V vs. RHE) and plateaued over -10 nm to 2.7 mA/cm2Pt for bulk poly-Pt. On the basis of the activity trend for the range of particle sizes studied, it appears that the effect of carbon support on activity is negligible. The experimental results and the concomitant profile of SA vs. particle size was found to be in an agreement to a truncated octahedral particle model that assumes active terrace sites.

  9. Efficient C–C bond splitting on Pt monolayer and sub-monolayer catalysts during ethanol electro-oxidation: Pt layer strain and morphology effects

    Energy Technology Data Exchange (ETDEWEB)

    Loukrakpam, Rameshwori; Yuan, Qiuyi; Petkov, Valeri; Gan, Lin; Rudi, Stefan; Yang, Ruizhi; Huang, Yunhui; Brankovic, Stanko R.; Strasser, Peter (TU Berlin); (Soochow); (CMU); (Huazhong); (Houston)

    2014-07-23

    Efficient catalytic C–C bond splitting coupled with complete 12-electron oxidation of the ethanol molecule to CO2 is reported on nanoscale electrocatalysts comprised of a Pt monolayer (ML) and sub-monolayer (sML) deposited on Au nanoparticles (Au@Pt ML/sML). The Au@Pt electrocatalysts were synthesized using surface limited redox replacement (SLRR) of an underpotentially deposited (UPD) Cu monolayer in an electrochemical cell reactor. Au@Pt ML showed improved catalytic activity for ethanol oxidation reaction (EOR) and, unlike their Pt bulk and Pt sML counterparts, was able to generate CO2 at very low electrode potentials owing to efficient C–C bond splitting. To explain this, we explore the hypothesis that competing strain effects due to the Pt layer coverage/morphology (compressive) and the Pt–Au lattice mismatch (tensile) control surface chemisorption and overall activity. Control experiments on well-defined model Pt monolayer systems are carried out involving a wide array of methods such as high-energy X-ray diffraction, pair-distribution function (PDF) analysis, in situ electrochemical FTIR spectroscopy, and in situ scanning tunneling microscopy. The vibrational fingerprints of adsorbed CO provide compelling evidence on the relation between surface bond strength, layer strain and morphology, and catalytic activity.

  10. Evaluation of Platinum-Black Stimulus Electrode Array for Electrical Stimulation of Retinal Cells in Retinal Prosthesis System

    Science.gov (United States)

    Watanabe, Taiichiro; Kobayashi, Risato; Komiya, Ken; Fukushima, Takafumi; Tomita, Hiroshi; Sugano, Eriko; Kurino, Hiroyuki; Tanaka, Tetsu; Tamai, Makoto; Koyanagi, Mitsumasa

    2007-04-01

    A retinal prosthesis system with a three-dimensionally (3D) stacked LSI chip has been proposed. We fabricated a new implantable stimulus electrode array deposited with Platinum-black (Pt-b) on a polyimide-based flexible printed circuit (FPC) for the electrical stimulation of the retinal cells. Impedance measurement of the Pt-b electrode-electrolyte interface in a saline solution was performed and the Pt-b electrode realized a very low impedance. The power consumption at the electrode array when retinal cells were stimulated by a stimulus current was evaluated. The power consumption of the Pt-b stimulus electrode array was 91% lower than that of a previously fabricated Al stimulus electrode array due to a