WorldWideScience

Sample records for pt symmetric potentials

  1. Solitons in PT-symmetric potential with competing nonlinearity

    International Nuclear Information System (INIS)

    Khare, Avinash; Al-Marzoug, S.M.; Bahlouli, Hocine

    2012-01-01

    We investigate the effect of competing nonlinearities on beam dynamics in PT-symmetric potentials. In particular, we consider the stationary nonlinear Schrödinger equation (NLSE) in one dimension with competing cubic and generalized nonlinearity in the presence of a PT-symmetric potential. Closed form solutions for localized states are obtained. These solitons are shown to be stable over a wide range of potential parameters. The transverse power flow associated with these complex solitons is also examined. -- Highlights: ► Effect of competing nonlinearities on beam dynamics in PT-symmetric potentials. ► Closed form solutions for localized states are. ► The transverse power flow associated with these complex solitons is also examined.

  2. Asymptotic properties of solvable PT-symmetric potentials

    International Nuclear Information System (INIS)

    Levai, G.

    2010-01-01

    Compete text of publication follows. The introduction of PT-symmetric quantum mechanics generated renewed interest in non-hermitian quantum mechanical systems in the past decade. PT symmetry means the invariance of a Hamiltonian under the simultaneous P space and T time reflection, the latter understood as complex conjugation. Considering the Schroedinger equation in one dimension, this corresponds to a potential with even real and odd imaginary components. This implies a delicate balance of emissive and absorptive regions that eventually manifests itself in properties that typically characterize real potentials, i.e. hermitian systems. These include partly or fully real energy spectrum and conserved (pseudo-)norm. A particularly notable feature of these systems is the spontaneous breakdown of PT symmetry, which typically occurs when the magnitude of the imaginary potential component exceeds a certain limit. At this point the real energy eigenvalues begin to merge pairwise and re-emerge as complex conjugate pairs. Another unusual property of PT-symmetric potentials is that they can, or sometimes have to be defined off the real x axis on trajectories that are symmetric with respect to the imaginary x axis. After more than a decade of theoretical investigations a remarkable recent development was the experimental verification of the existence of PT-symmetric systems in nature and the occurrence of spontaneous PT symmetry breaking in them. The experimental setup was a waveguide containing regions where loss and gain of flux occurred in a set out prescribed by PT symmetry. These experimental developments require the study of PT -symmetric potentials with various asymptotics, in which, furthermore, the complex potential component is finite in its range and/or its magnitude. Having in mind that PT symmetry allows for a wider variety of asymptotic properties than hermeticity, we studied three exactly solvable PT-symmetric potentials and compared their scattering and bound

  3. Overcritical PT-symmetric square well potential in the Dirac equation

    OpenAIRE

    Cannata, Francesco; Ventura, Alberto

    2007-01-01

    We study scattering properties of a PT-symmetric square well potential with real depth larger than the threshold of particle-antiparticle pair production as the time component of a vector potential in the (1+1)-dimensional Dirac equation.

  4. On the pseudo-norm in some PT-symmetric potentials

    International Nuclear Information System (INIS)

    Levai, G.

    2005-01-01

    Complete text of publication follows. PT-symmetric quantum mechanical systems possess non-hermitian Hamiltonian, still they have some characteristics similar to hermitian problems. The most notable of these is their discrete energy spectrum, which can be partly or completely real. These systems are invariant under the simultaneous action of the P space and T time inversion operations. Perhaps the simplest PT-symmetric Hamiltonian contains a one-dimensional Schroedinger operator with a complex potential satisfying the V*(-x) = V (x) relation. Another typical feature PT-symmetric systems have in common with hermitian problems is that their basis states form an orthogonal set provided that the inner product is redefined as (ψ φ)PT ≡ (ψ Pφ). However, the norm defined by this inner product, the pseudo-norm turned out to possess indefinite sign, and this raised the question of the probabilistic interpretation of PT-symmetric systems. This problem was later put into a more general context when it was found that PT symmetry is a special case of pseudo-hermiticity, and this explains most of the peculiar features of PT-symmetric systems. There have been several attempts to link PT-symmetric, and in general, pseudo- hermitian systems with equivalent hermitian ones, and the sign of the pseudo-norm was found to play an important role in this respect. It is thus essential to evaluate the pseudo- norm for various potentials, especially considering the fact that there are some inconsistencies in the available results. Numerical studies indicated that the sign of the pseudo-norm typically alternates according to the n principal quantum number as (-1) n , and this was later proven for a class of potentials that are written in a polynomial form of ix. However, some potentials of other type did not fit into this line: this was the case for the Scarf II potential, the most well-known exactly solvable PT-symmetric potential. In contrast with the other examples, this potential is

  5. Various scattering properties of a new PT-symmetric non-Hermitian potential

    Energy Technology Data Exchange (ETDEWEB)

    Ghatak, Ananya, E-mail: gananya04@gmail.com [Department of Physics, Banaras Hindu University, Varanasi-221005 (India); Mandal, Raka Dona Ray, E-mail: rakad.ray@gmail.com [Department of Physics, Rajghat Besant School, Varanasi-221001 (India); Mandal, Bhabani Prasad, E-mail: bhabani.mandal@gmail.com [Department of Physics, Banaras Hindu University, Varanasi-221005 (India)

    2013-09-15

    We complexify a 1-d potential V(x)=V{sub 0}cosh{sup 2}μ(tanh[(x−μd)/d]+tanh(μ)){sup 2} which exhibits bound, reflecting and free states to study various properties of a non-Hermitian system. This potential turns out a PT-symmetric non-Hermitian potential when one of the parameters (μ,d) becomes imaginary. For the case of μ→iμ, we have an entire real bound state spectrum. Explicit scattering states are constructed to show reciprocity at certain discrete values of energy even though the potential is not parity symmetric. Coexistence of deep energy minima of transmissivity with the multiple spectral singularities (MSS) is observed. We further show that this potential becomes invisible from the left (or right) at certain discrete energies. The penetrating states in the other case (d→id) are always reciprocal even though it is PT-invariant and no spectral singularity (SS) is present in this case. The presence of MSS and reflectionlessness is also discussed for the free states in the later case. -- Highlights: •Existence of multiple spectral singularities (MSS) in PT-symmetric non-Hermitian system is shown. •Reciprocity is restored at discrete positive energies even for parity non-invariant complex system. •Co-existence of MSS with deep energy minima of transitivity is obtained. •Possibilities of both unidirectional and bidirectional invisibility are explored for a non-Hermitian system. •Penetrating states are shown to be reciprocal for all energies for PT-symmetric system.

  6. Various scattering properties of a new PT-symmetric non-Hermitian potential

    International Nuclear Information System (INIS)

    Ghatak, Ananya; Mandal, Raka Dona Ray; Mandal, Bhabani Prasad

    2013-01-01

    We complexify a 1-d potential V(x)=V 0 cosh 2 μ(tanh[(x−μd)/d]+tanh(μ)) 2 which exhibits bound, reflecting and free states to study various properties of a non-Hermitian system. This potential turns out a PT-symmetric non-Hermitian potential when one of the parameters (μ,d) becomes imaginary. For the case of μ→iμ, we have an entire real bound state spectrum. Explicit scattering states are constructed to show reciprocity at certain discrete values of energy even though the potential is not parity symmetric. Coexistence of deep energy minima of transmissivity with the multiple spectral singularities (MSS) is observed. We further show that this potential becomes invisible from the left (or right) at certain discrete energies. The penetrating states in the other case (d→id) are always reciprocal even though it is PT-invariant and no spectral singularity (SS) is present in this case. The presence of MSS and reflectionlessness is also discussed for the free states in the later case. -- Highlights: •Existence of multiple spectral singularities (MSS) in PT-symmetric non-Hermitian system is shown. •Reciprocity is restored at discrete positive energies even for parity non-invariant complex system. •Co-existence of MSS with deep energy minima of transitivity is obtained. •Possibilities of both unidirectional and bidirectional invisibility are explored for a non-Hermitian system. •Penetrating states are shown to be reciprocal for all energies for PT-symmetric system

  7. Nonlinear PT-symmetric plaquettes

    International Nuclear Information System (INIS)

    Li Kai; Kevrekidis, P G; Malomed, Boris A; Günther, Uwe

    2012-01-01

    We introduce four basic two-dimensional (2D) plaquette configurations with onsite cubic nonlinearities, which may be used as building blocks for 2D PT-symmetric lattices. For each configuration, we develop a dynamical model and examine its PTsymmetry. The corresponding nonlinear modes are analyzed starting from the Hamiltonian limit, with zero value of the gain–loss coefficient, γ. Once the relevant waveforms have been identified (chiefly, in an analytical form), their stability is examined by means of linearization in the vicinity of stationary points. This reveals diverse and, occasionally, fairly complex bifurcations. The evolution of unstable modes is explored by means of direct simulations. In particular, stable localized modes are found in these systems, although the majority of identified solutions are unstable. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)

  8. An update on the PT-symmetric complexified Scarf II potential, spectral singularities and some remarks on the rationally extended supersymmetric partners

    International Nuclear Information System (INIS)

    Bagchi, B; Quesne, C

    2010-01-01

    The PT-symmetric complexified Scarf II potential V(x) = -V 1 sech 2 x + iV 2 sechxtanh x, V 1 > 0, V 2 ≠ 0, is revisited to study the interplay among its coupling parameters. The existence of an isolated real and positive energy level that has recently been identified as a spectral singularity or zero-width resonance is here demonstrated through the behaviour of the corresponding wavefunctions and some property of the associated pseudo-norms is pointed out. We also construct four different rationally extended supersymmetric partners to V(x), which are PT-symmetric or complex non-PT-symmetric according to the coupling parameters range. A detailed study of one of these partners reveals that SUSY preserves the V(x) spectral singularity existence.

  9. Exact solution of the Klein-Gordon equation for the PT-symmetric generalized Woods-Saxon potential by the Nikiforov-Uvarov method

    International Nuclear Information System (INIS)

    Ikhdair, S.M.; Sever, R.

    2007-01-01

    The exact solution of the one-dimensional Klein-Gordon equation of the PT-symmetric generalized Woods-Saxon potential is obtained. The exact energy eigenvalues and wavefunctions are derived analytically by using the Nikiforov and Uvarov method. In addition, the positive and negative exact bound states of the s-states are also investigated for different types of complex generalized Woods-Saxon potentials. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  10. PT symmetric Aubry–Andre model

    International Nuclear Information System (INIS)

    Yuce, C.

    2014-01-01

    PT symmetric Aubry–Andre model describes an array of N coupled optical waveguides with position-dependent gain and loss. We show that the reality of the spectrum depends sensitively on the degree of quasi-periodicity for small number of lattice sites. We obtain the Hofstadter butterfly spectrum and discuss the existence of the phase transition from extended to localized states. We show that rapidly changing periodical gain/loss materials almost conserve the total intensity. - Highlights: • We show that PT symmetric Aubry–Andre model may have real spectrum. • We show that the reality of the spectrum depends sensitively on the degree of disorder. • We obtain the Hofstadter butterfly spectrum for PT symmetric Aubry–Andre model. • We discuss that phase transition from extended to localized states exists

  11. PT symmetric Aubry–Andre model

    Energy Technology Data Exchange (ETDEWEB)

    Yuce, C., E-mail: cyuce@anadolu.edu.tr

    2014-06-13

    PT symmetric Aubry–Andre model describes an array of N coupled optical waveguides with position-dependent gain and loss. We show that the reality of the spectrum depends sensitively on the degree of quasi-periodicity for small number of lattice sites. We obtain the Hofstadter butterfly spectrum and discuss the existence of the phase transition from extended to localized states. We show that rapidly changing periodical gain/loss materials almost conserve the total intensity. - Highlights: • We show that PT symmetric Aubry–Andre model may have real spectrum. • We show that the reality of the spectrum depends sensitively on the degree of disorder. • We obtain the Hofstadter butterfly spectrum for PT symmetric Aubry–Andre model. • We discuss that phase transition from extended to localized states exists.

  12. Revisiting the Optical PT-Symmetric Dimer

    Directory of Open Access Journals (Sweden)

    José Delfino Huerta Morales

    2016-08-01

    Full Text Available Optics has proved a fertile ground for the experimental simulation of quantum mechanics. Most recently, optical realizations of PT -symmetric quantum mechanics have been shown, both theoretically and experimentally, opening the door to international efforts aiming at the design of practical optical devices exploiting this symmetry. Here, we focus on the optical PT -symmetric dimer, a two-waveguide coupler where the materials show symmetric effective gain and loss, and provide a review of the linear and nonlinear optical realizations from a symmetry-based point of view. We go beyond a simple review of the literature and show that the dimer is just the smallest of a class of planar N-waveguide couplers that are the optical realization of the Lorentz group in 2 + 1 dimensions. Furthermore, we provide a formulation to describe light propagation through waveguide couplers described by non-Hermitian mode coupling matrices based on a non-Hermitian generalization of the Ehrenfest theorem.

  13. Spectra of PT -symmetric Hamiltonians on tobogganic contours

    Indian Academy of Sciences (India)

    The term PT -symmetric quantum mechanics, although defined to be of a much broader use, was coined in tight connection with C. Bender's analysis of one- ... on the other hand, the other members of the family were strange Hamiltonians with imaginary potentials which do not appear physical at all. The aim of the.

  14. WKB analysis of PT-symmetric Sturm–Liouville problems

    International Nuclear Information System (INIS)

    Bender, Carl M; Jones, Hugh F

    2012-01-01

    Most studies of PT-symmetric quantum-mechanical Hamiltonians have considered the Schrödinger eigenvalue problem on an infinite domain. This paper examines the consequences of imposing the boundary conditions on a finite domain. As is the case with regular Hermitian Sturm–Liouville problems, the eigenvalues of the PT-symmetric Sturm–Liouville problem grow like n 2 for large n. However, the novelty is that a PT eigenvalue problem on a finite domain typically exhibits a sequence of critical points at which pairs of eigenvalues cease to be real and become complex conjugates of one another. For the potentials considered here this sequence of critical points is associated with a turning point on the imaginary axis in the complex plane. WKB analysis is used to calculate the asymptotic behaviours of the real eigenvalues and the locations of the critical points. The method turns out to be surprisingly accurate even at low energies. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)

  15. Solitonic dynamics and excitations of the nonlinear Schrödinger equation with third-order dispersion in non-Hermitian PT-symmetric potentials.

    Science.gov (United States)

    Chen, Yong; Yan, Zhenya

    2016-03-22

    Solitons are of the important significant in many fields of nonlinear science such as nonlinear optics, Bose-Einstein condensates, plamas physics, biology, fluid mechanics, and etc. The stable solitons have been captured not only theoretically and experimentally in both linear and nonlinear Schrödinger (NLS) equations in the presence of non-Hermitian potentials since the concept of the parity-time -symmetry was introduced in 1998. In this paper, we present novel bright solitons of the NLS equation with third-order dispersion in some complex -symmetric potentials (e.g., physically relevant -symmetric Scarff-II-like and harmonic-Gaussian potentials). We find stable nonlinear modes even if the respective linear -symmetric phases are broken. Moreover, we also use the adiabatic changes of the control parameters to excite the initial modes related to exact solitons to reach stable nonlinear modes. The elastic interactions of two solitons are exhibited in the third-order NLS equation with -symmetric potentials. Our results predict the dynamical phenomena of soliton equations in the presence of third-order dispersion and -symmetric potentials arising in nonlinear fiber optics and other physically relevant fields.

  16. One- and two-dimensional gap solitons and dynamics in the PT-symmetric lattice potential and spatially-periodic momentum modulation

    Science.gov (United States)

    Chen, Yong; Yan, Zhenya; Li, Xin

    2018-02-01

    The influence of spatially-periodic momentum modulation on beam dynamics in parity-time (PT) symmetric optical lattice is systematically investigated in the one- and two-dimensional nonlinear Schrödinger equations. In the linear regime, we demonstrate that the momentum modulation can alter the first and second PT thresholds of the classical lattice, periodically or regularly change the shapes of the band structure, rotate and split the diffraction patterns of beams leading to multiple refraction and emissions. In the Kerr-nonlinear regime for one-dimension (1D) case, a large family of fundamental solitons within the semi-infinite gap can be found to be stable, even beyond the second PT threshold; it is shown that the momentum modulation can shrink the existing range of fundamental solitons and not change their stability. For two-dimension (2D) case, most solitons with higher intensities are relatively unstable in their existing regions which are narrower than those in 1D case, but we also find stable fundamental solitons corroborated by linear stability analysis and direct beam propagation. More importantly, the momentum modulation can also utterly change the direction of the transverse power flow and control the energy exchange among gain or loss regions.

  17. Remarks on the PT-pseudo-norm in PT-symmetric quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Duc Tai Trinh [Department of Mathematics, Teacher Training College of Dalat, 29 Yersin, Dalat (Viet Nam)]|[Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Trieste 34014 (Italy)

    2005-04-22

    This paper presents an underlying analytical relationship between the PT-pseudo-norm associated with the PT-symmetric Hamiltonian H = p{sup 2} + V(q) and the Stokes multiplier of the differential equation corresponding to this Hamiltonian. We show that the sign alternation of the PT-pseudo-norm, which has been observed as a generic feature of the PT-inner product, is essentially controlled by the derivative of a Stokes multiplier with respect to the eigenparameter.

  18. Stationary states of a PT symmetric two-mode Bose–Einstein condensate

    International Nuclear Information System (INIS)

    Graefe, Eva-Maria

    2012-01-01

    The understanding of nonlinear PT symmetric quantum systems, arising for example in the theory of Bose–Einstein condensates in PT symmetric potentials, is widely based on numerical investigations, and little is known about generic features induced by the interplay of PT symmetry and nonlinearity. To gain deeper insights it is important to have analytically solvable toy models at hand. In the present paper the stationary states of a simple toy model of a PT symmetric system previously introduced in [1, 2] are investigated. The model can be interpreted as a simple description of a Bose–Einstein condensate in a PT symmetric double well trap in a two-mode approximation. The eigenvalues and eigenstates of the system can be explicitly calculated in a straightforward manner; the resulting structures resemble those that have recently been found numerically for a more realistic PT symmetric double delta potential. In addition, a continuation of the system is introduced that allows an interpretation in terms of a simple linear matrix model. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)

  19. Time-invariant PT product and phase locking in PT -symmetric lattice models

    Science.gov (United States)

    Joglekar, Yogesh N.; Onanga, Franck Assogba; Harter, Andrew K.

    2018-01-01

    Over the past decade, non-Hermitian, PT -symmetric Hamiltonians have been investigated as candidates for both a fundamental, unitary, quantum theory and open systems with a nonunitary time evolution. In this paper, we investigate the implications of the former approach in the context of the latter. Motivated by the invariance of the PT (inner) product under time evolution, we discuss the dynamics of wave-function phases in a wide range of PT -symmetric lattice models. In particular, we numerically show that, starting with a random initial state, a universal, gain-site location dependent locking between wave-function phases at adjacent sites occurs in the PT -symmetry-broken region. Our results pave the way towards understanding the physically observable implications of time invariants in the nonunitary dynamics produced by PT -symmetric Hamiltonians.

  20. PT-Symmetric Waveguides and the Lack of Variational Techniques

    Czech Academy of Sciences Publication Activity Database

    Krejčiřík, David

    2012-01-01

    Roč. 73, č. 1 (2012), s. 1-2 ISSN 0378-620X Institutional support: RVO:61389005 Keywords : Robin Laplacian * non-self-adjoint boundary conditions * complex symmetric operator * PT-symmetry * waveguides * discrete and essential spectra Subject RIV: BA - General Mathematics Impact factor: 0.713, year: 2012

  1. Is PT -symmetric quantum theory false as a fundamental theory?

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2016-01-01

    Roč. 56, č. 3 (2016), s. 254-257 ISSN 1210-2709 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : quantum mechanics * PT-symmetric representations of observables * masurement outcomes Subject RIV: BE - Theoretical Physics

  2. Random matrix ensembles for PT-symmetric systems

    International Nuclear Information System (INIS)

    Graefe, Eva-Maria; Mudute-Ndumbe, Steve; Taylor, Matthew

    2015-01-01

    Recently much effort has been made towards the introduction of non-Hermitian random matrix models respecting PT-symmetry. Here we show that there is a one-to-one correspondence between complex PT-symmetric matrices and split-complex and split-quaternionic versions of Hermitian matrices. We introduce two new random matrix ensembles of (a) Gaussian split-complex Hermitian; and (b) Gaussian split-quaternionic Hermitian matrices, of arbitrary sizes. We conjecture that these ensembles represent universality classes for PT-symmetric matrices. For the case of 2 × 2 matrices we derive analytic expressions for the joint probability distributions of the eigenvalues, the one-level densities and the level spacings in the case of real eigenvalues. (fast track communication)

  3. EXCEPTIONAL POINTS IN OPEN AND PT-SYMMETRIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    Hichem Eleuch

    2014-04-01

    Full Text Available Exceptional points (EPs determine the dynamics of open quantum systems and cause also PT symmetry breaking in PT symmetric systems. From a mathematical point of view, this is caused by the fact that the phases of the wavefunctions (eigenfunctions of a non-Hermitian Hamiltonian relative to one another are not rigid when an EP is approached. The system is therefore able to align with the environment to which it is coupled and, consequently, rigorous changes of the system properties may occur. We compare analytically as well as numerically the eigenvalues and eigenfunctions of a 2 × 2 matrix that is characteristic either of open quantum systems at high level density or of PT symmetric optical lattices. In both cases, the results show clearly the influence of the environment on the system in the neighborhood of EPs. Although the systems are very different from one another, the eigenvalues and eigenfunctions indicate the same characteristic features.

  4. Ultrastrong extraordinary transmission and reflection in PT-symmetric Thue-Morse optical waveguide networks.

    Science.gov (United States)

    Wu, Jiaye; Yang, Xiangbo

    2017-10-30

    In this paper, we construct a 1D PT-symmetric Thue-Morse aperiodic optical waveguide network (PTSTMAOWN) and mainly investigate the ultrastrong extraordinary transmission and reflection. We propose an approach to study the photonic modes and solve the problem of calculating photonic modes distributions in aperiodic networks due to the lack of dispersion functions and find that in a PTSTMAOWN there exist more photonic modes and more spontaneous PT-symmetric breaking points, which are quite different from other reported PT-symmetric optical systems. Additionally, we develop a method to sort spontaneous PT-symmetric breaking point zones to seek the strongest extraordinary point and obtain that at this point the strongest extraordinary transmission and reflection arrive at 2.96316 × 10 5 and 1.32761 × 10 5 , respectively, due to the PT-symmetric coupling resonance and the special symmetry pattern of TM networks. These enormous gains are several orders of magnitude larger than the previous results. This optical system may possess potential in designing optical amplifier, optical logic elements in photon computers and ultrasensitive optical switches with ultrahigh monochromatity.

  5. PT-symmetric planar devices for field transformation and imaging

    International Nuclear Information System (INIS)

    Valagiannopoulos, C A; Monticone, F; Alù, A

    2016-01-01

    The powerful tools of transformation optics (TO) allow an effective distortion of a region of space by carefully engineering the material inhomogeneity and anisotropy, and have been successfully applied in recent years to control electromagnetic fields in many different scenarios, e.g., to realize invisibility cloaks and planar lenses. For various field transformations, it is not necessary to use volumetric inhomogeneous materials, and suitably designed ultrathin metasurfaces with tailored spatial or spectral responses may be able to realize similar functionalities within smaller footprints and more robust mechanisms. Here, inspired by the concept of metamaterial TO lenses, we discuss field transformations enabled by parity-time (PT) symmetric metasurfaces, which can emulate negative refraction. We first analyze a simple realization based on homogeneous and local metasurfaces to achieve negative refraction and imaging, and we then extend our results to arbitrary PT-symmetric two-port networks to realize aberration-free planar imaging. (paper)

  6. Admissible perturbations and false instabilities in PT -symmetric quantum systems

    Science.gov (United States)

    Znojil, Miloslav

    2018-03-01

    One of the most characteristic mathematical features of the PT -symmetric quantum mechanics is the explicit Hamiltonian dependence of its physical Hilbert space of states H =H (H ) . Some of the most important physical consequences are discussed, with emphasis on the dynamical regime in which the system is close to phase transition. Consistent perturbation treatment of such a regime is proposed. An illustrative application of the innovated perturbation theory to a non-Hermitian but PT -symmetric user-friendly family of J -parametric "discrete anharmonic" quantum Hamiltonians H =H (λ ⃗) is provided. The models are shown to admit the standard probabilistic interpretation if and only if the parameters remain compatible with the reality of the spectrum, λ ⃗∈D(physical ) . In contradiction to conventional wisdom, the systems are then shown to be stable with respect to admissible perturbations, inside the domain D(physical ), even in the immediate vicinity of the phase-transition boundaries ∂ D(physical ) .

  7. PT-symmetric ladders with a scattering core

    Energy Technology Data Exchange (ETDEWEB)

    D' Ambroise, J. [Department of Mathematics, Amherst College, Amherst, MA 01002-5000 (United States); Lepri, S. [CNR – Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del piano 10, I-50019 Sesto Fiorentino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Malomed, B.A. [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Kevrekidis, P.G. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-9305 (United States)

    2014-08-01

    We consider a PT-symmetric chain (ladder-shaped) system governed by the discrete nonlinear Schrödinger equation where the cubic nonlinearity is carried solely by two central “rungs” of the ladder. Two branches of scattering solutions for incident plane waves are found. We systematically construct these solutions, analyze their stability, and discuss non-reciprocity of the transmission associated with them. To relate the results to finite-size wavepacket dynamics, we also perform direct simulations of the evolution of the wavepackets, which confirm that the transmission is indeed asymmetric in this nonlinear system with the mutually balanced gain and loss. - Highlights: • We model a PT-symmetric ladder system with cubic nonlinearity on two central rungs. • We examine non-reciprocity and stability of incident plane waves. • Simulations of wavepackets confirm our results.

  8. Two-parametric PT-symmetric quartic family

    International Nuclear Information System (INIS)

    Eremenko, Alexandre; Gabrielov, Andrei

    2012-01-01

    We describe a parametrization of the real spectral locus of the two-parametric family of PT-symmetric quartic oscillators. For this family, we find a parameter region where all eigenvalues are real, extending the results of Dorey et al (2007 J. Phys. A: Math Theor. 40 R205–83) and Shin (2005 J. Phys. A: Math. Gen. 38 6147–66; 2002 Commun. Math. Phys. 229 543–64). (paper)

  9. A novel SUSY energy bound-states treatment of the Klein-Gordon equation with PT-symmetric and q-deformed parameter Hulthén potential

    Science.gov (United States)

    Aktas, M.

    2018-01-01

    In this study, we focus on investigating the exact relativistic bound-state spectra for supersymmetric, PT-supersymmetric and non-Hermitian versions of the q-deformed parameter Hulthén potential. The Hamiltonian hierarchy mechanism, namely the factorization method, is adopted within the framework of SUSYQM. This algebraic approach is used in solving the Klein-Gordon equation with the potential cases. The results obtained analytically by executing the straightforward calculations are in consistent forms for certain values of q. Achieving the results may have a particular interest for such applications. That is, they can be involved in determining the quantum structural properties of molecules for ro-vibrational states, and optical spectra characteristics of semiconductor devices with regard to the lattice dynamics. They are also employed to construct the broken or unbroken case of the supersymmetric particle model concerning the interaction between the elementary particles.

  10. Calculating the C operator in PT-symmetric quantum mechanics

    International Nuclear Information System (INIS)

    Bender, C.M.

    2004-01-01

    It has recently been shown that a non-Hermitian Hamiltonian H possessing an unbroken PT-symmetry (i) has a real spectrum that is bounded below, and (ii) defines a unitary theory of quantum mechanics with positive norm. The proof of unitarity requires a linear operator C, which was originally defined as a sum over the eigenfunctions of H. However, using this definition it is cumbersome to calculate C in quantum mechanics and impossible in quantum field theory. An alternative method is devised here for calculating C directly in terms of the operator dynamical variables of the quantum theory. This new method is general and applies to a variety of quantum mechanical systems having several degrees of freedom. More importantly, this method can be used to calculate the C operator in quantum field theory. The C operator is a new time-independent observable in PT-symmetric quantum field theory. (author)

  11. Krein signature for instability of PT-symmetric states

    Science.gov (United States)

    Chernyavsky, Alexander; Pelinovsky, Dmitry E.

    2018-05-01

    Krein quantity is introduced for isolated neutrally stable eigenvalues associated with the stationary states in the PT-symmetric nonlinear Schrödinger equation. Krein quantity is real and nonzero for simple eigenvalues but it vanishes if two simple eigenvalues coalesce into a defective eigenvalue. A necessary condition for bifurcation of unstable eigenvalues from the defective eigenvalue is proved. This condition requires the two simple eigenvalues before the coalescence point to have opposite Krein signatures. The theory is illustrated with several numerical examples motivated by recent publications in physics literature.

  12. From particle in a box to PT -symmetric systems via isospectral deformation

    OpenAIRE

    Cherian, Philip; Abhinav, Kumar; Panigrahi, P. K.

    2011-01-01

    A family of PT -symmetric complex potentials is obtained, which is isospectral to free particle in an infinite complex box in one dimension (1-D). These are generalizations to the cosec2 (x) potential, isospectral to particle in a real infinite box. In the complex plane, the infinite box is extended parallel to the real axis having a real width, which is found to be an integral multiple of a constant quantum factor, arising due to boundary conditions necessary for maintaining the PT -symmetry...

  13. Bright Solitons in a PT-Symmetric Chain of Dimers

    Directory of Open Access Journals (Sweden)

    Omar B. Kirikchi

    2016-01-01

    Full Text Available We study the existence and stability of fundamental bright discrete solitons in a parity-time- (PT- symmetric coupler composed by a chain of dimers that is modelled by linearly coupled discrete nonlinear Schrödinger equations with gain and loss terms. We use a perturbation theory for small coupling between the lattices to perform the analysis, which is then confirmed by numerical calculations. Such analysis is based on the concept of the so-called anticontinuum limit approach. We consider the fundamental onsite and intersite bright solitons. Each solution has symmetric and antisymmetric configurations between the arms. The stability of the solutions is then determined by solving the corresponding eigenvalue problem. We obtain that both symmetric and antisymmetric onsite mode can be stable for small coupling, in contrast to the reported continuum limit where the antisymmetric solutions are always unstable. The instability is either due to the internal modes crossing the origin or the appearance of a quartet of complex eigenvalues. In general, the gain-loss term can be considered parasitic as it reduces the stability region of the onsite solitons. Additionally, we analyse the dynamic behaviour of the onsite and intersite solitons when unstable, where typically it is either in the form of travelling solitons or soliton blow-ups.

  14. Tailoring Spectral Properties of Binary PT-Symmetric Gratings by Duty-Cycle Methods

    DEFF Research Database (Denmark)

    Lupu, Anatole T.; Benisty, Henri; Lavrinenko, Andrei

    2016-01-01

    We explore the frequency selective functionalities of a nonuniform PT-symmetric Bragg grating with modulated complex index profile. We start by assessing the possibility to achieve an efficient apodization of the PT-symmetric Bragg grating spectral response by using direct adaptations of the conv...

  15. Particle in a box in PT-symmetric quantum mechanics and an electromagnetic analog

    Science.gov (United States)

    Dasarathy, Anirudh; Isaacson, Joshua P.; Jones-Smith, Katherine; Tabachnik, Jason; Mathur, Harsh

    2013-06-01

    In PT-symmetric quantum mechanics a fundamental principle of quantum mechanics, that the Hamiltonian must be Hermitian, is replaced by another set of requirements, including notably symmetry under PT, where P denotes parity and T denotes time reversal. Here we study the role of boundary conditions in PT-symmetric quantum mechanics by constructing a simple model that is the PT-symmetric analog of a particle in a box. The model has the usual particle-in-a-box Hamiltonian but boundary conditions that respect PT symmetry rather than Hermiticity. We find that for a broad class of PT-symmetric boundary conditions the model respects the condition of unbroken PT symmetry, namely, that the Hamiltonian and the symmetry operator PT have simultaneous eigenfunctions, implying that the energy eigenvalues are real. We also find that the Hamiltonian is self-adjoint under the PT-symmetric inner product. Thus we obtain a simple soluble model that fulfills all the requirements of PT-symmetric quantum mechanics. In the second part of this paper we formulate a variational principle for PT-symmetric quantum mechanics that is the analog of the textbook Rayleigh-Ritz principle. Finally we consider electromagnetic analogs of the PT-symmetric particle in a box. We show that the isolated particle in a box may be realized as a Fabry-Perot cavity between an absorbing medium and its conjugate gain medium. Coupling the cavity to an external continuum of incoming and outgoing states turns the energy levels of the box into sharp resonances. Remarkably we find that the resonances have a Breit-Wigner line shape in transmission and a Fano line shape in reflection; by contrast, in the corresponding Hermitian case the line shapes always have a Breit-Wigner form in both transmission and reflection.

  16. Optical force rectifiers based on PT-symmetric metasurfaces

    Science.gov (United States)

    Alaee, Rasoul; Gurlek, Burak; Christensen, Johan; Kadic, Muamer

    2018-05-01

    We introduce here the concept of optical force rectifier based on parity-time symmetric metasurfaces. Directly linked to the properties of non-Hermitian systems engineered by balanced loss and gain constituents, we show that light can exert asymmetric pulling or pushing forces on metasurfaces depending on the direction of the impinging light. This generates a complete force rectification in the vicinity of the exceptional point. Our findings have the potential to spark the design of applications in optical manipulation where the forces, strictly speaking, act unidirectionally.

  17. Complex {PT}-symmetric extensions of the nonlinear ultra-short light pulse model

    Science.gov (United States)

    Yan, Zhenya

    2012-11-01

    The short pulse equation u_{xt}=u+\\frac{1}{2}(u^2u_x)_x is PT symmetric, which arises in nonlinear optics for the ultra-short pulse case. We present a family of new complex PT-symmetric extensions of the short pulse equation, i[(iu_x)^{\\sigma }]_t=au+bu^m+ic[u^n(iu_x)^{\\epsilon }]_x \\,\\, (\\sigma ,\\, \\epsilon ,\\,a,\\,b,\\,c,\\,m,\\,n \\in {R}), based on the complex PT-symmetric extension principle. Some properties of these equations with some chosen parameters are studied including the Hamiltonian structures and exact solutions such as solitary wave solutions, doubly periodic wave solutions and compacton solutions. Our results may be useful to understand complex PT-symmetric nonlinear physical models. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’.

  18. Pseudo-Hermitian description of PT-symmetric systems defined on a complex contour

    International Nuclear Information System (INIS)

    Mostafazadeh, Ali

    2005-01-01

    We describe a method that allows for a practical application of the theory of pseudo-Hermitian operators to PT-symmetric systems defined on a complex contour. We apply this method to study the Hamiltonians H = p 2 + x 2 (ix) ν with ν ε (-2, ∞) that are defined along the corresponding anti-Stokes lines. In particular, we reveal the intrinsic non-Hermiticity of H for the cases that ν is an even integer, so that H p 2 ± x 2+ν , and give a proof of the discreteness of the spectrum of H for all ν ε (-2, ∞). Furthermore, we study the consequences of defining a square-well Hamiltonian on a wedge-shaped complex contour. This yields a PT-symmetric system with a finite number of real eigenvalues. We present a comprehensive analysis of this system within the framework of pseudo-Hermitian quantum mechanics. We also outline a direct pseudo-Hermitian treatment of PT-symmetric systems defined on a complex contour which clarifies the underlying mathematical structure of the formulation of PT-symmetric quantum mechanics based on the charge-conjugation operator. Our results provide conclusive evidence that pseudo-Hermitian quantum mechanics provides a complete description of general PT-symmetric systems regardless of whether they are defined along the real line or a complex contour

  19. Perfectly invisible PT -symmetric zero-gap systems, conformal field theoretical kinks, and exotic nonlinear supersymmetry

    Science.gov (United States)

    Guilarte, Juan Mateos; Plyushchay, Mikhail S.

    2017-12-01

    We investigate a special class of the PT -symmetric quantum models being perfectly invisible zero-gap systems with a unique bound state at the very edge of continuous spectrum of scattering states. The family includes the PT -regularized two particle Calogero systems (conformal quantum mechanics models of de Alfaro-Fubini-Furlan) and their rational extensions whose potentials satisfy equations of the KdV hierarchy and exhibit, particularly, a behaviour typical for extreme waves. We show that the two simplest Hamiltonians from the Calogero subfamily determine the fluctuation spectra around the PT -regularized kinks arising as traveling waves in the field-theoretical Liouville and SU(3) conformal Toda systems. Peculiar properties of the quantum systems are reflected in the associated exotic nonlinear supersymmetry in the unbroken or partially broken phases. The conventional N=2 supersymmetry is extended here to the N=4 nonlinear supersymmetry that involves two bosonic generators composed from Lax-Novikov integrals of the subsystems, one of which is the central charge of the superalgebra. Jordan states are shown to play an essential role in the construction.

  20. Parametric amplification and bidirectional invisibility in PT -symmetric time-Floquet systems

    Science.gov (United States)

    Koutserimpas, Theodoros T.; Alù, Andrea; Fleury, Romain

    2018-01-01

    Parity-time (PT )-symmetric wave devices, which exploit balanced interactions between material gain and loss, exhibit extraordinary properties, including lasing and flux-conserving scattering processes. In a seemingly different research field, periodically driven systems, also known as time-Floquet systems, have been widely studied as a relevant platform for reconfigurable active wave control and manipulation. In this article, we explore the connection between PT -symmetry and parametric time-Floquet systems. Instead of relying on material gain, we use parametric amplification by considering a time-periodic modulation of the refractive index at a frequency equal to twice the incident signal frequency. We show that the scattering from a simple parametric slab, whose dynamics follows the Mathieu equation, can be described by a PT -symmetric scattering matrix, whose PT -breaking threshold corresponds to the Mathieu instability threshold. By combining different parametric slabs modulated out of phase, we create PT -symmetric time-Floquet systems that feature exceptional scattering properties, such as coherent perfect absorption (CPA)-laser operation and bidirectional invisibility. These bidirectional properties, rare for regular PT -symmetric systems, are related to a compensation of parametric amplification due to multiple scattering between two parametric systems modulated with a phase difference.

  1. Compactons in PT-symmetric generalized Korteweg–de Vries ...

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Pramana – Journal of Physics; Volume 73; Issue 2. Compactons in P T -symmetric generalized Korteweg–de Vries equations. Carl M Bender Fred Cooper Avinash Khare Bogdan Mihaila Avadh Saxena. Volume 73 Issue 2 August 2009 ...

  2. PT -symmetric gain and loss in a rotating Bose-Einstein condensate

    Science.gov (United States)

    Haag, Daniel; Dast, Dennis; Cartarius, Holger; Wunner, Günter

    2018-03-01

    PT -symmetric quantum mechanics allows finding stationary states in mean-field systems with balanced gain and loss of particles. In this work we apply this method to rotating Bose-Einstein condensates with contact interaction which are known to support ground states with vortices. Due to the particle exchange with the environment transport phenomena through ultracold gases with vortices can be studied. We find that even strongly interacting rotating systems support stable PT -symmetric ground states, sustaining a current parallel and perpendicular to the vortex cores. The vortices move through the nonuniform particle density and leave or enter the condensate through its borders creating the required net current.

  3. Observation of Bloch oscillations in complex PT-symmetric photonic lattices

    Science.gov (United States)

    Wimmer, Martin; Miri, Mohammed-Ali; Christodoulides, Demetrios; Peschel, Ulf

    2015-01-01

    Light propagation in periodic environments is often associated with a number of interesting and potentially useful processes. If a crystalline optical potential is also linearly ramped, light can undergo periodic Bloch oscillations, a direct outcome of localized Wannier-Stark states and their equidistant eigenvalue spectrum. Even though these effects have been extensively explored in conservative settings, this is by no means the case in non-Hermitian photonic lattices encompassing both amplification and attenuation. Quite recently, Bloch oscillations have been predicted in parity-time-symmetric structures involving gain and loss in a balanced fashion. While in a complex bulk medium, one intuitively expects that light will typically follow the path of highest amplification, in a periodic system this behavior can be substantially altered by the underlying band structure. Here, we report the first experimental observation of Bloch oscillations in parity-time-symmetric mesh lattices. We show that these revivals exhibit unusual properties like secondary emissions and resonant restoration of PT symmetry. In addition, we present a versatile method for reconstructing the real and imaginary components of the band structure by directly monitoring the light evolution during a cycle of these oscillations. PMID:26639941

  4. 2 × 2 random matrix ensembles with reduced symmetry: from Hermitian to PT -symmetric matrices

    International Nuclear Information System (INIS)

    Gong Jiangbin; Wang Qinghai

    2012-01-01

    A possibly fruitful extension of conventional random matrix ensembles is proposed by imposing symmetry constraints on conventional Hermitian matrices or parity–time (PT)-symmetric matrices. To illustrate the main idea, we first study 2 × 2 complex Hermitian matrix ensembles with O(2)-invariant constraints, yielding novel level-spacing statistics such as singular distributions, the half-Gaussian distribution, distributions interpolating between the GOE (Gaussian orthogonal ensemble) distribution and half-Gaussian distributions, as well as the gapped-GOE distribution. Such a symmetry-reduction strategy is then used to explore 2 × 2 PT-symmetric matrix ensembles with real eigenvalues. In particular, PT-symmetric random matrix ensembles with U(2) invariance can be constructed, with the conventional complex Hermitian random matrix ensemble being a special case. In two examples of PT-symmetric random matrix ensembles, the level-spacing distributions are found to be the standard GUE (Gaussian unitary ensemble) statistics or the ‘truncated-GUE’ statistics. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)

  5. Astrophysical evidence for the non-Hermitian but PT-symmetric Hamiltonian of conformal gravity

    International Nuclear Information System (INIS)

    Mannheim, P.D.

    2013-01-01

    In this review we discuss the connection between two seemingly disparate topics, macroscopic gravity on astrophysical scales and Hamiltonians that are not Hermitian but PT symmetric on microscopic ones. In particular we show that the quantum-mechanical unitarity problem of the fourth-order derivative conformal gravity theory is resolved by recognizing that the scalar product appropriate to the theory is not the Dirac norm associated with a Hermitian Hamiltonian but is instead the norm associated with a non-Hermitian but PT-symmetric Hamiltonian. Moreover, the fourth-order theory Hamiltonian is not only not Hermitian, it is not even diagonalizable, being of Jordan-block form. With PT symmetry we establish that conformal gravity is consistent at the quantum-mechanical level. In consequence, we can apply the theory to data, to find that the theory is capable of naturally accounting for the systematics of the rotation curves of a large and varied sample of 138 spiral galaxies without any need for dark matter. The success of the fits provides evidence for the relevance of non-diagonalizable but PT-symmetric Hamiltonians to physics. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Confluent Crum-Darboux transformations in Dirac Hamiltonians with PT-symmetric Bragg gratings

    Czech Academy of Sciences Publication Activity Database

    Correa, F.; Jakubský, Vít

    2017-01-01

    Roč. 95, č. 3 (2017), č. článku 033807. ISSN 2469-9926 R&D Projects: GA ČR(CZ) GJ15-07674Y Institutional support: RVO:61389005 Keywords : PT-symmetric * quantum mechanics * bound states Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 2.925, year: 2016

  7. Bound states emerging from below the continuum in a solvable PT-symmetric discrete Schrodinger equation

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2017-01-01

    Roč. 96, č. 1 (2017), č. článku 012127. ISSN 2469-9926 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : non-Hermitian * PT symmetric * bound states Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 2.925, year: 2016

  8. Physical aspects of pseudo-Hermitian and PT-symmetric quantum mechanics

    International Nuclear Information System (INIS)

    Mostafazadeh, Ali; Batal, Ahmet

    2004-01-01

    For a non-Hermitian Hamiltonian H possessing a real spectrum, we introduce a canonical orthonormal basis in which a previously introduced unitary mapping of H to a Hermitian Hamiltonian h takes a simple form. We use this basis to construct the observables O α of the quantum mechanics based on H. In particular, we introduce pseudo-Hermitian position and momentum operators and a pseudo-Hermitian quantization scheme that relates the latter to the ordinary classical position and momentum observables. These allow us to address the problem of determining the conserved probability density and the underlying classical system for pseudo-Hermitian and in particular PT-symmetric quantum systems. As a concrete example we construct the Hermitian Hamiltonian h, the physical observables O α , the localized states and the conserved probability density for the non-Hermitian PT-symmetric square well. We achieve this by employing an appropriate perturbation scheme. For this system, we conduct a comprehensive study of both the kinematical and dynamical effects of the non-Hermiticity of the Hamiltonian on various physical quantities. In particular, we show that these effects are quantum mechanical in nature and diminish in the classical limit. Our results provide an objective assessment of the physical aspects of PT-symmetric quantum mechanics and clarify its relationship with both conventional quantum mechanics and classical mechanics

  9. Symmetrical metallic and magnetic edge states of nanoribbon from semiconductive monolayer PtS2

    Science.gov (United States)

    Liu, Shan; Zhu, Heyu; Liu, Ziran; Zhou, Guanghui

    2018-03-01

    Transition metal dichalcogenides (TMD) MoS2 or graphene could be designed to metallic nanoribbons, which always have only one edge show metallic properties due to symmetric protection. In present work, a nanoribbon with two parallel metallic and magnetic edges was designed from a noble TMD PtS2 by employing first-principles calculations based on density functional theory (DFT). Edge energy, bonding charge density, band structure, density of states (DOS) and simulated scanning tunneling microscopy (STM) of four possible edge states of monolayer semiconductive PtS2 were systematically studied. Detailed calculations show that only Pt-terminated edge state among four edge states was relatively stable, metallic and magnetic. Those metallic and magnetic properties mainly contributed from 5d orbits of Pt atoms located at edges. What's more, two of those central symmetric edges coexist in one zigzag nanoribbon, which providing two atomic metallic wires thus may have promising application for the realization of quantum effects, such as Aharanov-Bohm effect and atomic power transmission lines in single nanoribbon.

  10. SUSY formalism for the symmetric double well potential

    Indian Academy of Sciences (India)

    symmetric double well potential barrier we have obtained a class of exactly solvable potentials subject to moving boundary condition. The eigenstates are also obtained by the same technique. Keywords. SUSY; moving boundary condition; exactly solvable; symmetric double well; NH3 molecule. PACS Nos 02.30.Ik; 03.50.

  11. Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction

    International Nuclear Information System (INIS)

    Bender, Carl M.; Brody, Dorje C.; Jones, Hugh F.

    2004-01-01

    It has recently been shown that a non-Hermitian Hamiltonian H possessing an unbroken PT symmetry (i) has a real spectrum that is bounded below, and (ii) defines a unitary theory of quantum mechanics with positive norm. The proof of unitarity requires a linear operator C, which was originally defined as a sum over the eigenfunctions of H. However, using this definition to calculate C is cumbersome in quantum mechanics and impossible in quantum field theory. An alternative method is devised here for calculating C directly in terms of the operator dynamical variables of the quantum theory. This method is general and applies to a variety of quantum mechanical systems having several degrees of freedom. More importantly, this method is used to calculate the C operator in quantum field theory. The C operator is a time-independent observable in PT-symmetric quantum field theory

  12. General conditions for the PT symmetry of supersymmetric partner potentials

    International Nuclear Information System (INIS)

    Levai, G.

    2004-01-01

    Complete text of publication follows. A common feature of symmetries of quantum systems is that they restrict the form of the Hamiltonian, and consequently they also influence the structure of the energy spectrum. This is also the case with two symmetry concepts that are typically applied in non-relativistic quantum mechanics: supersymmetric quantum mechanics (SUSYQM) and PT symmetry. SUSYQM connects one-dimensional potentials pairwise via the relation V (±) (x) W 2 (x) ± dW/dx + ε, where ε is the factorization energy, V (-) (x) and V (+) (x) are the SUSY partner potentials, while W(x) is the superpotential. In the simplest case, when supersymmetry is unbroken, W(x) is defined in terms of the ground-state wavefunction of V (-) (x) as W(x) = - d/dx lnψ 0 (-) (x), and the factorization energy is chosen as ε E 0 (-) . Under these conditions the SUSY partner potentials possess the same energy levels, except that E 0 (-) is missing from the spectrum of V (+) (x), and the degenerate levels are connected by the SUSY ladder operators A = d/dx + W(x) and A † = - d/dx + W(x). The PT symmetry of a Hamiltonian prescribes its invariance under simultaneous space and time inversion, which boils down to the condition V (x) = V*(-x) in the case of one-dimensional potentials. The unusual feature of this new symmetry concept is that PT-symmetric potentials are complex in general, nevertheless, they possess real energy eigen-values, unless PT symmetry is spontaneously broken, in which case the energy spectrum consists of complex conjugate energy pairs. The interplay of these two symmetry concepts has been analyzed in a number of works, and it has been found that when V (-) (x) has unbroken PT symmetry, then the same applies to V (+) (x), while the spontaneous breakdown of the PT symmetry of V (-) (x) implies the manifest breakdown of the PT symmetry of V (+) (x). The factorization energy ε was found to be real in the former case, and imaginary in the latter one. The examples

  13. A possible method for non-Hermitian and Non-PT-symmetric Hamiltonian systems.

    Directory of Open Access Journals (Sweden)

    Jun-Qing Li

    Full Text Available A possible method to investigate non-Hermitian Hamiltonians is suggested through finding a Hermitian operator η+ and defining the annihilation and creation operators to be η+ -pseudo-Hermitian adjoint to each other. The operator η+ represents the η+ -pseudo-Hermiticity of Hamiltonians. As an example, a non-Hermitian and non-PT-symmetric Hamiltonian with imaginary linear coordinate and linear momentum terms is constructed and analyzed in detail. The operator η+ is found, based on which, a real spectrum and a positive-definite inner product, together with the probability explanation of wave functions, the orthogonality of eigenstates, and the unitarity of time evolution, are obtained for the non-Hermitian and non-PT-symmetric Hamiltonian. Moreover, this Hamiltonian turns out to be coupled when it is extended to the canonical noncommutative space with noncommutative spatial coordinate operators and noncommutative momentum operators as well. Our method is applicable to the coupled Hamiltonian. Then the first and second order noncommutative corrections of energy levels are calculated, and in particular the reality of energy spectra, the positive-definiteness of inner products, and the related properties (the probability explanation of wave functions, the orthogonality of eigenstates, and the unitarity of time evolution are found not to be altered by the noncommutativity.

  14. Path integral representation of the symmetric Rosen-Morse potential

    International Nuclear Information System (INIS)

    Duru, I.H.

    1983-09-01

    An integral formula for the Green's function of symmetric Rosen-Morse potential is obtained by solving path integrals. The correctly normalized wave functions and bound state energy spectrum are derived. (author)

  15. SIMPLE MODELS OF THREE COUPLED PT -SYMMETRIC WAVE GUIDES ALLOWING FOR THIRD-ORDER EXCEPTIONAL POINTS

    Directory of Open Access Journals (Sweden)

    Jan Schnabel

    2017-12-01

    Full Text Available We study theoretical models of three coupled wave guides with a PT-symmetric distribution of gain and loss. A realistic matrix model is developed in terms of a three-mode expansion. By comparing with a previously postulated matrix model it is shown how parameter ranges with good prospects of finding a third-order exceptional point (EP3 in an experimentally feasible arrangement of semiconductors can be determined. In addition it is demonstrated that continuous distributions of exceptional points, which render the discovery of the EP3 difficult, are not only a feature of extended wave guides but appear also in an idealised model of infinitely thin guides shaped by delta functions.

  16. PT symmetry breaking in non-central potentials

    International Nuclear Information System (INIS)

    Levai, G.

    2007-01-01

    Complete text of publication follows. PT-symmetric systems represent a special example for non-hermitian problems in quantum mechanics. The Hamiltonian of these systems is invariant under the simultaneous action of the P space and T time inversion operations. They resemble hermitian problems in that they typically possess real energy spectrum. However, increasing non-hermiticity, e.g. the imaginary potential component the real energy eigenvalues merge pairwise and turn into complex conjugate pairs and at the same time, the energy eigenstates cease to be eigenstates of the PT operator. The mechanism of this spontaneous breakdown of PT symmetry has been investigated in one spatial dimension, and our aim was to extend these studies to higher dimensions. Assuming that the solutions of the Schroedinger equation -Δψ(r) + V (r)ψ(r) = Eψ(r) can be obtained by the separation of the radial and angular variables, we substitute ψ(r,θ,φ) = r -1 φ(r) sin -1/2 ω(θ)τ(ψ) in (4), where r [0,∞), θ [0,π] and ψ [0,2π]. Further, we assume that the angular components of the wave function satisfy ω' = (P(θ) - p)ω, τ' = (K(ψ) - k)τ, where τ(ψ) has to be defined with periodic boundary conditions. Then the complete three-dimensional problem becomes solvable if the non-central potential takes the form V(r,θ,ψ) = V 0 (r)+ K(ψ)/r 2 sin 2 θ + P(θ)/r 2 - k-1/4/r 2 sin 2 θ. Here V 0 (r) is a central potential appearing in -φ'+[V 0 (r) + 1/r 2 (p - 1/4] φ - Eφ = 0. Note that is formally identical with a conventional radial Schroedinger equation complete with a centrifugal term. In order to solve properly, the state dependence of has to be eliminated, i.e. its dependence on k has to be cancelled by combining the last two terms. This effectively means that has to be solved with a potential P(θ) that contains a sin -2 θ type term. Next we investigate under which conditions the non-central potential exhibits PT symmetry. It is seen that space reflection P : r → -r

  17. SUSY formalism for the symmetric double well potential

    Indian Academy of Sciences (India)

    Using first- and second-order supersymmetric Darboüx formalism and starting with symmetric double well potential barrier we have obtained a class of exactly solvable potentials subject to moving boundary condition. The eigenstates are also obtained by the same technique.

  18. Bound states for non-symmetric evolution Schroedinger potentials

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Gulmaro Corona [Area de Analisis Matematico y sus Aplicaciones, Universidad Autonoma Metropolitana-Azcapotalco, Atzcapotzalco, DF (Mexico)). E-mail: ccg@correo.azc.uam.mx

    2001-09-14

    We consider the spectral problem associated with the evolution Schroedinger equation, (D{sup 2}+ k{sup 2}){phi}=u{phi}, where u is a matrix-square-valued function, with entries in the Schwartz class defined on the real line. The solution {phi}, called the wavefunction, consists of a function of one real variable, matrix-square-valued with entries in the Schwartz class. This problem has been dealt for symmetric potentials u. We found for the present case that the bound states are localized similarly to the scalar and symmetric cases, but by the zeroes of an analytic matrix-valued function. If we add an extra condition to the potential u, we can determine these states by an analytic scalar function. We do this by generalizing the scalar and symmetric cases but without using the fact that the Wronskian of a pair of wavefunction is constant. (author)

  19. Vibrational motion in a symmetric, double minimum potential

    DEFF Research Database (Denmark)

    Spanget-Larsen, Jens

    2015-01-01

    Molecular vibrational motion in a symmetric, double minimum potential is treated by means of a quartic model potential, by reference to the tables published by Jaan Laane and the results of harmonic analyses for the stationary points. The inversion vibration of ammonia is treated in detail. - Not...... on the harmonic approximation for polyatomic molecules are appended. - Presented at a NORFA Workshop in Hirtshals, Denmark, August 1997....

  20. Scattering in the PT-symmetric Coulomb potential

    Czech Academy of Sciences Publication Activity Database

    Levai, G.; Siegl, P.; Znojil, Miloslav

    2009-01-01

    Roč. 42, č. 29 (2009), 295201/1-295201/9 ISSN 1751-8113 R&D Projects: GA ČR GA202/07/1307; GA MŠk LC06002 Institutional research plan: CEZ:AV0Z10480505 Keywords : NON-HERMITIAN HAMILTONIANS * QUANTUM-MECHANICS * EQUATIONS Subject RIV: BE - Theoretical Physics Impact factor: 1.577, year: 2009

  1. Eigenvalues of PT-symmetric oscillators with polynomial potentials

    International Nuclear Information System (INIS)

    Shin, Kwang C

    2005-01-01

    We study the eigenvalue problem -u''(z) - [(iz) m + P m-1 (iz)]u(z) λu(z) with the boundary condition that u(z) decays to zero as z tends to infinity along the rays arg z = -π/2 ± 2π/(m+2) in the complex plane, where P m-1 (z) = a 1 z m-1 + a 2 z m-2 + . . . + a m-1 z is a polynomial and integers m ≥ 3. We provide an asymptotic expansion of the eigenvalues λ n as n → +∞, and prove that for each real polynomial P m-1 , the eigenvalues are all real and positive, with only finitely many exceptions

  2. Exact quantum solution for some symmetrical two-well potentials

    International Nuclear Information System (INIS)

    Ley-Koo, E.

    1985-01-01

    We construct the solutions of the Schroedinger equation for the rectangular-well, harmonic-oscillator and symmetric-linear potentials with a delta-function potential superimposed in their central positions. The odd-parity states are not affected by the presence of the delta-function potential. The even-parity states are determined by the condition that their wave functions have in the central position a fixed logarithmic derivative, which is proportional to the intensity the delta-function potential. (author)

  3. Breaking the symmetry of a Brownian motor with symmetric potentials

    International Nuclear Information System (INIS)

    Hagman, H; Zelan, M; Dion, C M

    2011-01-01

    The directed transport of Brownian particles requires a system with an asymmetry and with non-equilibrium noise. Here we investigate numerically alternative ways of fulfilling these requirements for a two-state Brownian motor, realized with Brownian particles alternating between two phase-shifted, symmetric potentials. We show that, besides the previously known spatio-temporal asymmetry based on unequal transfer rates between the potentials, inequalities in the potential depths, the frictions, or the equilibrium temperatures of the two potentials also generate the required asymmetry. We also show that the effects of the thermal noise and the noise of the transfer's randomness depend on the way the asymmetry is induced.

  4. ${ \\mathcal P }{ \\mathcal T }$-symmetric interpretation of unstable effective potentials

    CERN Document Server

    Bender, Carl M.; Mavromatos, Nick E.; Sarkar, Sarben

    2016-01-01

    The conventional interpretation of the one-loop effective potentials of the Higgs field in the Standard Model and the gravitino condensate in dynamically broken supergravity is that these theories are unstable at large field values. A ${ \\mathcal P }{ \\mathcal T }$-symmetric reinterpretation of these models at a quantum-mechanical level eliminates these instabilities and suggests that these instabilities may also be tamed at the quantum-field-theory level.

  5. The robustness of truncated Airy beam in PT Gaussian potentials media

    Science.gov (United States)

    Wang, Xianni; Fu, Xiquan; Huang, Xianwei; Yang, Yijun; Bai, Yanfeng

    2018-03-01

    The robustness of truncated Airy beam in parity-time (PT) symmetric Gaussian potentials media is numerically investigated. A high-peak power beam sheds from the Airy beam due to the media modulation while the Airy wavefront still retain its self-bending and non-diffraction characteristics under the influence of modulation parameters. Increasing the modulation factor results in the smaller value of maximum power of the center beam, and the opposite trend occurs with the increment of the modulation depth. However, the parabolic trajectory of the Airy wavefront does not be influenced. By utilizing the unique features, the Airy beam can be used as a long distance transmission source under the PT symmetric Gaussian potentials medium.

  6. Potential electrode materials for symmetrical Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Ruiz Morales, J. C.

    2008-08-01

    Full Text Available Chromites, titanates and Pt-YSZ-CeO2 cermets have been investigated as potential electrode materials for an alternative concept of Solid Oxide Fuel Cell (SOFC, the symmetrical SOFCs (SFC. In this configuration, the same electrode material is used simultaneously as anode and cathode. Interconnector materials, such as chromites, could be considered as potential SFC electrodes, at least under pure hydrogen-fed at relatively high temperatures, as they do not exhibit significant catalytic activity towards hydrocarbon oxidation. This may be overcome by partially substituting Cr in the perovskite B-sites by other transition metal cations such as Mn. La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM is a good candidate for such SFCs, rendering fuel cell performances in excess of 500 and 300mW/cm2 using pure H2 and CH4 as fuel, at 950 oC. Similarly, typical n-type electronic conductors traditionally regarded as anode materials, such as strontium titanates, may also operate under oxidising conditions as cathodes by substituting some Ti content for Fe to introduce p-type conductivity. Preliminary electrochemical experiments on La4Sr8Ti12-xFexO38-δ-based SFCs show that they perform reasonably well under humidified H2, at high temperatures. A third group of materials is the support material of any typical cermet anode, i.e. YSZ, CeO2 plus a current collector. It has been found that this combination could be optimised to operate as SFC electrodes, rendering performances of 400mW/cm2 under humidified pure H2 at 950oC.

    Cromitas, titanatos y cermets de Pt-YSZ-CeO2 han sido investigados como potenciales materiales de electrodo para un concepto alternativo de Pilas de Combustible de Óxidos Sólidos (SOFC, las pilas SOFC simétricas (SFC. En

  7. Effect of the applied magnetic field and the layer thickness on the magnon properties in bilayers Co/Pt and symmetrical trilayer Pt/Co/Pt

    International Nuclear Information System (INIS)

    Mehdioui, M.; Fahmi, A.; Lassri, H.; Fahoume, M.; Qachaou, A.

    2014-01-01

    We have studied the elementary magnetic excitations and their dynamics in multilayer Co(t Co)/Pt(t Pt) and Pt(t Pt)/Co(t Co)/Pt(t Pt) under an applied magnetic field. The Heisenberg hamiltonian used takes into account the magneto-crystalline and surface anisotropies, the exchange and dipolar interactions. The calculated excitation spectrum ε N (k) presents a structure with two sub-bands corresponding to the magnons of surface and volume respectively. The existence of a gap of creating these magnons is also highlighted. The lifetimes deduced from these gaps are in good agreement with the results of previous studies. The thermal evolution of the magnetization m z indicates that the system undergoes a dimensional crossover 3D–2D when the temperature increases. The calculated and measured magnetizations are compared and they are in good agreement. The exchange integral and critical temperature values deduced from these adjustments are in very good agreement with the results of previous works. - Highlights: • The magnons of surface and volume exist in Co/Pt and Pt/Co/Pt. • Samples undergo dimensional crossover (3D–2D) when T increases. • A good agreement is obtained between M(T) measured and calculated. • Deduced exchange integrals and critical temperature values are correct. • The magnetism of the sample is reduced by increasing t Pt or capping Co by two Pt layers

  8. High precision electrostatic potential calculations for cylindrically symmetric lenses

    International Nuclear Information System (INIS)

    Edwards, David Jr.

    2007-01-01

    A method is developed for a potential calculation within cylindrically symmetric electrostatic lenses using mesh relaxation techniques, and it is capable of considerably higher accuracies than currently available. The method involves (i) creating very high order algorithms (orders of 6, 8, and 10) for determining the potentials at points in the net using surrounding point values, (ii) eliminating the effect of the large errors caused by singular points, and (iii) reducing gradients in the high gradient regions of the geometry, thereby allowing the algorithms used in these regions to achieve greater precisions--(ii) and (iii) achieved by the use of telescopic multiregions. In addition, an algorithm for points one unit from a metal surface is developed, allowing general mesh point algorithms to be used in these situations, thereby taking advantage of the enhanced precision of the latter. A maximum error function dependent on a sixth order gradient of the potential is defined. With this the single point algorithmic errors are able to be viewed over the entire net. Finally, it is demonstrated that by utilizing the above concepts and procedures, the potential of a point in a reasonably high gradient region of a test geometry can realize a precision of less than 10 -10

  9. Morse potential, symmetric Morse potential and bracketed bound-state energies

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2016-01-01

    Roč. 31, č. 14 (2016), s. 1650088 ISSN 0217-7323 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : quantum bound states * special functions * Morse potential * symmetrized Morse potential * upper and lower energy estimates * computer-assisted symbolic manipulations Subject RIV: BE - Theoretical Physics Impact factor: 1.165, year: 2016

  10. Rovibrational states of Wigner molecules in spherically symmetric confining potentials

    Energy Technology Data Exchange (ETDEWEB)

    Cioslowski, Jerzy [Institute of Physics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin, Poland and Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, D-01187 Dresden (Germany)

    2016-08-07

    The strong-localization limit of three-dimensional Wigner molecules, in which repulsively interacting particles are confined by a weak spherically symmetric potential, is investigated. An explicit prescription for computation of rovibrational wavefunctions and energies that are asymptotically exact at this limit is presented. The prescription is valid for systems with arbitrary angularly-independent interparticle and confining potentials, including those involving Coulombic and screened (i.e., Yukawa/Debye) interactions. The necessary derivations are greatly simplified by explicit constructions of the Eckart frame and the parity-adapted primitive wavefunctions. The performance of the new formalism is illustrated with the three- and four-electron harmonium atoms at their strong-correlation limits. In particular, the involvement of vibrational modes with the E symmetry is readily pinpointed as the origin of the “anomalous” weak-confinement behavior of the {sup 1}S{sub +} state of the four-electron species that is absent in its {sup 1}D{sub +} companion of the strong-confinement regime.

  11. PT-symmetric supersymmetry in a solvable short-range model

    Czech Academy of Sciences Publication Activity Database

    Bagchi, B.; Mallik, S.; Bíla, Hynek; Jakubský, Vít; Znojil, Miloslav; Quesne, C.

    2006-01-01

    Roč. 21, č. 10 (2006), s. 2173-2190 ISSN 0217-751X R&D Projects: GA MŠk LC06002 Institutional research plan: CEZ:AV0Z10480505 Keywords : PT-symmetry * supersymmetry * deep square Subject RIV: BE - Theoretical Physics Impact factor: 0.914, year: 2006

  12. On eigenvalues of a PT-symmetric operator in a thin layer

    Czech Academy of Sciences Publication Activity Database

    Borisov, D. I.; Znojil, Miloslav

    2017-01-01

    Roč. 208, č. 2 (2017), s. 173-199 ISSN 1064-5616 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : thin domain * pT-symmetric operator * edge of a gap * asymptotics * periodic operator Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 0.721, year: 2016

  13. Potential surfaces in symmetric heavy-ion reactions

    International Nuclear Information System (INIS)

    Royer, G.; Piller, C.; Mignen, J.; Raffray, Y.

    1989-01-01

    The entrance channel in symmetric heavy-ion reactions is studied in the liquid-drop model approach including the nuclear proximity energy and allowing ellipsoidal deformations of the colliding nuclei. In the whole mass range a sudden transition occurs from oblate to prolate shapes when the proximity forces become important. This strongly affects the effective moment of inertia. The ellipsoidal deformations reduce the fusion barrier width for light systems and lower the potential barrier height for medium and heavy nuclei. The results are in agreement with the empirical effective barrier shift determined by Aguiar et al for the 58 Ni + 58 Ni, 74 Ge + 74 Ge and 80 Se + 80 Se systems. The sub-barrier fusion enhancement in heavy-ion reactions might be explained by the slowness of the process. Below the static fusion barrier, the reaction time is long; allowing some adiabaticity and deformations of the colliding ions. Above the barrier, the reaction is more sudden and the deformation degree of freedom is frozen

  14. Crossing rule for a PT-symmetric two-level time-periodic system

    International Nuclear Information System (INIS)

    Moiseyev, Nimrod

    2011-01-01

    For a two-level system in a time-periodic field we show that in the non-Hermitian PT case the level crossing is of two quasistationary states that have the same dynamical symmetry property. At the field's parameters where the two levels which have the same dynamical symmetry cross, the corresponding quasienergy states coalesce and a self-orthogonal state is obtained. This situation is very different from the Hermitian case where a crossing of two quasienergy levels happens only when the corresponding two quasistationary states have different dynamical symmetry properties and, unlike the situation in the non-Hermitian case, the spectrum remains complete also when the two levels cross.

  15. Determination of the apparent transfer coefficient for CO oxidation on Pt(poly), Pt(111), Pt(665) and Pt(332) using a potential modulation technique.

    Science.gov (United States)

    Wang, Han-Chun; Ernst, Siegfried; Baltruschat, Helmut

    2010-03-07

    The apparent transfer coefficient, which gives the magnitude of the potential dependence of the electrochemical reaction rates, is the key quantity for the elucidation of electrochemical reaction mechanisms. We introduce the application of an ac method to determine the apparent transfer coefficient alpha' for the oxidation of pre-adsorbed CO at polycrystalline and single-crystalline Pt electrodes in sulfuric acid. The method allows to record alpha' quasi continuously as a function of potential (and time) in cyclic voltammetry or at a fixed potential, with the reaction rate varying with time. At all surfaces (Pt(poly), Pt(111), Pt(665), and Pt(332)) we clearly observed a transition of the apparent transfer coefficient from values around 1.5 at low potentials to values around 0.5 at higher potentials. Changes of the apparent transfer coefficients for the CO oxidation with potential were observed previously, but only from around 0.7 to values as low as 0.2. In contrast, our experimental findings completely agree with the simulation by Koper et al., J. Chem. Phys., 1998, 109, 6051-6062. They can be understood in the framework of a Langmuir-Hinshelwood mechanism. The transition occurs when the sum of the rate constants for the forward reaction (first step: potential dependent OH adsorption, second step: potential dependent oxidation of CO(ad) with OH(ad)) exceeds the rate constant for the back-reaction of the first step. We expect that the ac method for the determination of the apparent transfer coefficient, which we used here, will be of great help also in many other cases, especially under steady conditions, where the major limitations of the method are avoided.

  16. Parity-Time Symmetric Photonics

    KAUST Repository

    Zhao, Han

    2018-01-17

    The establishment of non-Hermitian quantum mechanics (such as parity-time (PT) symmetry) stimulates a paradigmatic shift for studying symmetries of complex potentials. Owing to the convenient manipulation of optical gain and loss in analogy to the complex quantum potentials, photonics provides an ideal platform for visualization of many conceptually striking predictions from the non-Hermitian quantum theory. A rapidly developing field has emerged, namely, PT symmetric photonics, demonstrating intriguing optical phenomena including eigenstate coalescence and spontaneous PT symmetry breaking. The advance of quantum physics, as the feedback, provides photonics with brand-new paradigms to explore the entire complex permittivity plane for novel optical functionalities. Here, we review recent exciting breakthroughs in PT symmetric photonics while systematically presenting their underlying principles guided by non-Hermitian symmetries. The potential device applications for optical communication and computing, bio-chemical sensing, and healthcare are also discussed.

  17. SFG study on potential-dependent structure of water at Pt electrode/electrolyte solution interface

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Hidenori; Okada, Tsubasa; Uosaki, Kohei [Physical Chemistry Laboratory, Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan)

    2008-10-01

    Structure of water at Pt/electrolyte solution interface was investigated by sum frequency generation (SFG) spectroscopy. Two broad peaks were observed in OH stretching region at ca. 3200 cm{sup -1} and ca. 3400 cm{sup -1}, which are known to be due to the symmetric OH stretching (U{sub 1}) of tetrahedrally coordinated, i.e., strongly hydrogen bonded 'ice-like' water, and the asymmetric OH stretching (U{sub 3}) of water molecules in a more random arrangement, i.e., weakly hydrogen bonded 'liquid-like' water, respectively. The SFG intensity strongly depended on electrode potential. Several possibilities are suggested for the potential dependence of the SFG intensity. (author)

  18. How to test for diagonalizability: the discretized PT-invariant square-well potential

    International Nuclear Information System (INIS)

    Weigert, S.

    2005-01-01

    Given a non-Hermitian matrix M, the structure of its minimal polynomial encodes whether M is diagonalizable or not. This note explains how to determine the minimal polynomial of a matrix without going through its characteristic polynomial. The approach is applied to a quantum mechanical particle moving in a square well under the influence of a piece-wise constant PT-symmetric potential. Upon discretizing the configuration space, the system is described by a matrix of dimension three which turns out not to be diagonalizable for a critical strength of the interaction. The systems develops a three-fold degenerate eigenvalue, and two of the three eigenfunctions disappear at this exceptional point, giving a difference between the algebraic and geometric multiplicity of the eigenvalue equal to two. (author)

  19. Chaotic motion in axially symmetric potentials with oblate quadrupole deformation

    Energy Technology Data Exchange (ETDEWEB)

    Letelier, Patricio S. [Departamento de Matematica Aplicada, IMECC, Universidade Estadual de Campinas, 13083-859, Campinas, SP (Brazil); Ramos-Caro, Javier, E-mail: javier@ime.unicamp.br [Departamento de Matematica Aplicada, IMECC, Universidade Estadual de Campinas, 13083-859, Campinas, SP (Brazil); Lopez-Suspes, Framsol, E-mail: framsol@gmail.com [Facultad de Telecomunicaciones, Universidad Santo Tomas and Escuela de Fisica, Universidad Industrial de Santander, Bucaramanga (Colombia)

    2011-10-03

    By computing the Poincare's surfaces of section and Lyapunov exponents, we study the effect of introducing an oblate quadrupole in the dynamics associated with two generic spherical potentials of physical interest: the central monopole and the isotropic harmonic oscillator. In the former case we find saddle points in the effective potential, in contrast to the statements presented by Gueron and Letelier in [E. Gueron, P.S. Letelier, Phys. Rev. E 63 (2001) 035201]. The results we show in the second case have application in nuclear or atomic physics. In particular, we find values of oblate deformation leading to a disappearance of shell structure in the single-particle spectrum. -- Highlights: → We find chaotic motion around a monopole with oblate quadrupole deformation. → This corrects the statements introduced in [E. Gueron, P.S. Letelier, Phys. Rev. E 63 (2001) 035201]. → We present an alternative model for the potential due to an oblate deformed nuclei. → This leads to stochastic regions in the phase space of classical orbits. → It suggests that the shell structure of single-particle spectrum tends to disappear.

  20. Quantum-Carnot engine for particle confined to 2D symmetric potential well

    International Nuclear Information System (INIS)

    Belfaqih, Idrus Husin; Sutantyo, Trengginas Eka Putra; Prayitno, T. B.; Sulaksono, Anto

    2015-01-01

    Carnot model of heat engine is the most efficient cycle consisting of isothermal and adiabatic processes which are reversible. Although ideal gas usually used as a working fluid in the Carnot engine, Bender used quantum particle confined in 1D potential well as a working fluid. In this paper, by following Bender we generalize the situation to 2D symmetric potential well. The efficiency is express as the ratio of the initial length of the system to the final length of the compressed system. The result then is shown that for the same ratio, 2D potential well is more efficient than 1D potential well

  1. Quantum-Carnot engine for particle confined to 2D symmetric potential well

    Energy Technology Data Exchange (ETDEWEB)

    Belfaqih, Idrus Husin, E-mail: idrushusin21@gmail.com; Sutantyo, Trengginas Eka Putra, E-mail: trengginas.eka@gmail.com; Prayitno, T. B., E-mail: teguh-budi@unj.ac.id [Department of Physics, Universitas Negeri Jakarta, Jl. Pemuda Rawamangun, Jakarta Timur, 13220 (Indonesia); Sulaksono, Anto, E-mail: anto.sulaksono@sci.ui.ac.id [Department of Physics, Universitas Indonesia, Depok, Jawa Barat, 164242 (Indonesia)

    2015-09-30

    Carnot model of heat engine is the most efficient cycle consisting of isothermal and adiabatic processes which are reversible. Although ideal gas usually used as a working fluid in the Carnot engine, Bender used quantum particle confined in 1D potential well as a working fluid. In this paper, by following Bender we generalize the situation to 2D symmetric potential well. The efficiency is express as the ratio of the initial length of the system to the final length of the compressed system. The result then is shown that for the same ratio, 2D potential well is more efficient than 1D potential well.

  2. Unified Treatment of a Class of Spherically Symmetric Potentials: Quasi-Exact Solution

    International Nuclear Information System (INIS)

    Baradaran, M.; Panahi, H.

    2016-01-01

    We investigate the Schrödinger equation for a class of spherically symmetric potentials in a simple and unified manner using the Lie algebraic approach within the framework of quasi-exact solvability. We illustrate that all models give rise to the same basic differential equation, which is expressible as an element of the universal enveloping algebra of sl(2). Then, we obtain the general exact solutions of the problem by employing the representation theory of sl(2) Lie algebra.

  3. Detection of Single Pt Nanoparticle Collisions by Open-Circuit Potential Changes at Ag Ultramicroelectrode

    International Nuclear Information System (INIS)

    Mun, Seon Kyu; Shin, Changhwan; Kwon, Seong Jung

    2016-01-01

    Single platinum (Pt) nanoparticle (NP) collisions were investigated with open-circuit potential (OCP) using a silver (Ag) ultramicroelectrode (UME). The Ag UME showed higher sensitivity to single Pt NP detection by the OCP method than gold (Au) UME. The detection of ⁓2 nm radius Pt NP collisions was carried out successfully using Ag UME. The magnitude of the potential step and collision frequency for the single Pt NP collision on Ag UME was investigated and compared with those of the previous work done on Au UME.

  4. Two-body relativistic scattering with an O(1,1)-symmetric square-well potential

    International Nuclear Information System (INIS)

    Arshansky, R.; Horwitz, L.P.

    1984-01-01

    Scattering theory in the framework of a relativistic manifestly covariant quantum mechanics is applied to the relativistic analog of the nonrelativistic one-dimensional square-well potential, a two-body O(1,1)-symmetric hyperbolic square well in one space and one time dimension. The unitary S matrix is explicitly obtained. For well sizes large compared to the de Broglie wavelength of the reduced motion system, simple formulas are obtained for the associated sequence of resonances. This sequence has equally spaced levels and constant widths for higher resonances, and linearly increasing widths for lower-lying levels

  5. Highly accurate potential calculations for cylindrically symmetric geometries using multi-region FDM: A review

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, David, E-mail: dej@kingcon.com [IJL Research Center, Newark, VT 05871 (United States)

    2011-07-21

    This paper is a review of multi-region FDM, a numerical technique for accurately determining electrostatic potentials in cylindrically symmetric geometries. Multi-region FDM can be thought of as the union of various individual elements: a single region FDM process: a method for algorithmic development; a method for auto creating a multi-region structure; the process for the relaxation of multi-region structures. Each element will be briefly described along with its integration into the multi-region relaxation process itself.

  6. Quantum information entropies of the eigenstates for a symmetrically trigonometric Rosen–Morse potential

    International Nuclear Information System (INIS)

    Sun Guohua; Dong Shihai

    2013-01-01

    Shannon entropy for the position and momentum eigenstates of the symmetrically trigonometric Rosen–Morse potential for the lower states n = 1–4 is evaluated. The position information entropies S x for n = 1,2 are presented analytically. Some interesting features of the information entropy densities ρ s (x) and ρ s (p) are demonstrated graphically. We find that the ρ s (p) is inversely proportional to the range of potential a and the S x decreases with increasing the potential depth D. In particular, we note that the S x might become negative for some given parameters a and D. The Bialynicki-Birula–Mycielski inequality is also tested for a number of states and is found to generally hold well. (paper)

  7. Universal Critical Power for Nonlinear Schroedinger Equations with a Symmetric Double Well Potential

    International Nuclear Information System (INIS)

    Sacchetti, Andrea

    2009-01-01

    Here we consider stationary states for nonlinear Schroedinger equations in any spatial dimension n with symmetric double well potentials. These states may bifurcate as the strength of the nonlinear term increases and we observe two different pictures depending on the value of the nonlinearity power: a supercritical pitchfork bifurcation, and a subcritical pitchfork bifurcation with two asymmetric branches occurring as the result of saddle-node bifurcations. We show that in the semiclassical limit, or for a large barrier between the two wells, the first kind of bifurcation always occurs when the nonlinearity power is less than a critical value; in contrast, when the nonlinearity power is larger than such a critical value then we always observe the second scenario. The remarkable fact is that such a critical value is a universal constant in the sense that it does not depend on the shape of the double well potential and on the dimension n.

  8. Optomechanically induced absorption in parity-time-symmetric optomechanical systems

    Science.gov (United States)

    Zhang, X. Y.; Guo, Y. Q.; Pei, P.; Yi, X. X.

    2017-06-01

    We explore the optomechanically induced absorption (OMIA) in a parity-time- (PT -) symmetric optomechanical system (OMS). By numerically calculating the Lyapunov exponents, we find out the stability border of the PT -symmetric OMS. The results show that in the PT -symmetric phase the system can be either stable or unstable depending on the coupling constant and the decay rate. In the PT -symmetric broken phase the system can have a stable state only for small gain rates. By calculating the transmission rate of the probe field, we find that there is an inverted optomechanically induced transparency (OMIT) at δ =-ωM and an OMIA at δ =ωM for the PT -symmetric optomechanical system. At each side of δ =-ωM there is an absorption window due to the resonance absorption of the two generated supermodes. Comparing with the case of optomechanics coupled to a passive cavity, we find that the active cavity can enhance the resonance absorption. The absorption rate at δ =ωM increases as the coupling strength between the two cavities increases. Our work provides us with a promising platform for controlling light propagation and light manipulation in terms of PT symmetry, which might have potential applications in quantum information processing and quantum optical devices.

  9. A second eigenvalue bound for the Dirichlet Schrodinger equation wtih a radially symmetric potential

    Directory of Open Access Journals (Sweden)

    Craig Haile

    2000-01-01

    Full Text Available We study the time-independent Schrodinger equation with radially symmetric potential $k|x|^alpha$, $k ge 0$, $k in mathbb{R}, alpha ge 2$ on a bounded domain $Omega$ in $mathbb{R}^n$, $(n ge 2$ with Dirichlet boundary conditions. In particular, we compare the eigenvalue $lambda_2(Omega$ of the operator $-Delta + k |x|^alpha $ on $Omega$ with the eigenvalue $lambda_2(S_1$ of the same operator $-Delta +kr^alpha$ on a ball $S_1$, where $S_1$ has radius such that the first eigenvalues are the same ($lambda_1(Omega = lambda_1(S_1$. The main result is to show $lambda_2(Omega le lambda_2(S_1$. We also give an extension of the main result to the case of a more general elliptic eigenvalue problem on a bounded domain $Omega$ with Dirichlet boundary conditions.

  10. Spin symmetry in the relativistic symmetrical well potential including a proper approximation to the spin-orbit coupling term

    International Nuclear Information System (INIS)

    Wei Gaofeng; Dong Shihai

    2010-01-01

    In the case of exact spin symmetry, we approximately solve the Dirac equation with scalar and vector symmetrical well potentials by using a proper approximation to the spin-orbit coupling term, and obtain the corresponding energy equation and spinor wave functions for the bound states. We find that there exist only positive-energy bound states in the case of spin symmetry. Also, the energy eigenvalue approaches a constant when the potential parameter α goes to zero. The special case for equally scalar and vector symmetrical well potentials is studied briefly.

  11. PT-symmetric quantum toboggans

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2005-01-01

    Roč. 342, 1/2 (2005), s. 36-47 ISSN 0375-9601 R&D Projects: GA AV ČR(CZ) IAA1048302 Keywords : anharmonic-oscillators * real spectra * mechanics Subject RIV: BE - Theoretical Physics Impact factor: 1.550, year: 2005

  12. Path integral discussion for Smorodinsky-Winternitz potentials. Pt. 1

    International Nuclear Information System (INIS)

    Grosche, C.; Pogosyan, G.S.; Sissakian, A.N.

    1994-02-01

    Path integral formulations for the Smorodinsky-Winternitz potentials in two- and three-dimensional Euclidean space are presented. We mention all coordinate systems which separate the Smorodinsky-Winternitz potentials and state the corresponding path integral formulations. Whereas in many coordinate systems an explicit path integralformulation is not possible, we list in all soluble cases the path integral evaluations explicity in terms of the propagators and the spectral expansions into the wave-functions. (orig.)

  13. Separable potential approach in the folding model. Pt. 2

    International Nuclear Information System (INIS)

    Lee, C.L.; Robson, D.

    1982-01-01

    A microscopic folding formalism using a separable potential approach is applied to the elastic scattering of the n-α system. Starting with a separable nucleon-nucleon (NN) potential model, a sum of separable nucleon-nucleus potentials is obtained. A simple structure of the α-particle is assumed and the Tabakin, the Doleschall and the Strobel NN potentials are considered. These phenomenological interactions are of Yukawa or gaussian form with variable parameters for each partial wave. Spin-orbit and tensor forces are included. The resulting potentials developed from our folding calculations give approximately the same ssub(1/2) phase shifts for the n-α elastic scattering. However, in the psub(1/2) and psub(3/2) phase-shift analysis, an effective interaction derived from the NN potential is necessary to reproduce the resonances. One free energy independent parameter is introduced in our approximate G-matrix concept to give a good fit for the phase shifts. Single-nucleon knockout exchange (SNKE) is considered throughout. (orig.)

  14. Switching of the direction of reflectionless light propagation at exceptional points in non-PT-symmetric structures using phase-change materials.

    Science.gov (United States)

    Huang, Yin; Shen, Yuecheng; Min, Changjun; Veronis, Georgios

    2017-10-30

    We introduce a non-parity-time-symmetric three-layer structure, consisting of a gain medium layer sandwiched between two phase-change medium layers for switching of the direction of reflectionless light propagation. We show that for this structure unidirectional reflectionlessness in the forward direction can be switched to unidirectional reflectionlessness in the backward direction at the optical communication wavelength by switching the phase-change material Ge 2 Sb 2 Te 5 (GST) from its amorphous to its crystalline phase. We also show that it is the existence of exceptional points for this structure with GST in both its amorphous and crystalline phases which leads to unidirectional reflectionless propagation in the forward direction for GST in its amorphous phase, and in the backward direction for GST in its crystalline phase. Our results could be potentially important for developing a new generation of compact active free-space optical devices.

  15. Suppression of chaos by weak resonant excitations in a non-linear oscillator with a non-symmetric potential

    International Nuclear Information System (INIS)

    Litak, Grzegorz; Syta, Arkadiusz; Borowiec, Marek

    2007-01-01

    We examine the Melnikov criterion for transition to chaos in case of one degree of freedom non-linear oscillator with non-symmetric potential. This system, when subjected to an external periodic force, shows homoclinic transition from regular vibrations to chaos just before escape from a potential well. We focus especially on the effect of a second resonant excitation with a different phase on the system transition to chaos. We propose a way of its control

  16. PET studies of potential chemotherapeutic agents: Pt. 10

    International Nuclear Information System (INIS)

    Conway, T.; Diksic, M.; McGill Univ., Montreal, PQ

    1991-01-01

    Carbon-11-labeled HECNU [1-(2-chloroethyl)-1-nitroso-3-(2-hydroxyethyl) urea] a potential chemotherapeutic agent, has been prepared by the nitrosation of the corresponding carbon-11-labeled urea, HECU, [1-(2-chloroethyl)-3-(2-hydroxyethyl) urea]. The isomeric byproduct of nitrosation, 1-(2-chloroethyl)-3-nitroso-3-(2-hydroxyethyl) urea can be efficiently removed by preparative scale HPLC on a Partisil column. ( 11 C)-HECU was prepared by reacting ethanolamine with ( 11 C)-2-chloroethyl-isocyanate which was itself prepared by reacting ( 11 C)-phosgene with 2-chloroethylamine hydrochloride suspended in dioxane at 60-65 o C. This synthesis yielded ( 11 C)-HECNU with an average radiochemical purity of 98% in an average radiochemical yield of 18% relative to the radioactivity measured at the end of the 11 C-phosgene introduction. (author)

  17. Design and assembly of ternary Pt/Re/SnO2 NPs by controlling the zeta potential of individual Pt, Re, and SnO2 NPs

    Science.gov (United States)

    Drzymała, Elżbieta; Gruzeł, Grzegorz; Pajor-Świerzy, Anna; Depciuch, Joanna; Socha, Robert; Kowal, Andrzej; Warszyński, Piotr; Parlinska-Wojtan, Magdalena

    2018-05-01

    In this study Pt, Re, and SnO2 nanoparticles (NPs) were combined in a controlled manner into binary and ternary combinations for a possible application for ethanol oxidation. For this purpose, zeta potentials as a function of the pH of the individual NPs solutions were measured. In order to successfully combine the NPs into Pt/SnO2 and Re/SnO2 NPs, the solutions were mixed together at a pH guaranteeing opposite zeta potentials of the metal and oxide NPs. The individually synthesized NPs and their binary/ternary combinations were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning transmission electron microscopy (STEM) combined with energy dispersive X-ray spectroscopy (EDS) analysis. FTIR and XPS spectroscopy showed that the individually synthesized Pt and Re NPs are metallic and the Sn component was oxidized to SnO2. STEM showed that all NPs are well crystallized and the sizes of the Pt, Re, and SnO2 NPs were 2.2, 1.0, and 3.4 nm, respectively. Moreover, EDS analysis confirmed the successful formation of binary Pt/SnO2 and Re/SnO2 NP, as well as ternary Pt/Re/SnO2 NP combinations. This study shows that by controlling the zeta potential of individual metal and oxide NPs, it is possible to assemble them into binary and ternary combinations. [Figure not available: see fulltext.

  18. Implementation of health and safety management system to reduce hazardous potential in PT.XYZ Indonesia

    Science.gov (United States)

    Widodo, L.; Adianto; Sartika, D. I.

    2017-12-01

    PT. XYZ is a large automotive manufacturing company that manufacture, assemble as well as a car exporter. The other products are spare parts, jig and dies. PT. XYZ has long been implementing the Occupational Safety and Health Management System (OSHMS) to reduce the potential hazards that cause work accidents. However, this does not mean that OSHMS that has been implemented does not need to be upgraded and improved. This is due to the potential danger caused by work is quite high. This research was conducted in Sunter 2 Plant where its production activities have a high level of potential hazard. Based on Hazard Identification risk assessment, Risk Assessment, and Risk Control (HIRARC) found 10 potential hazards in Plant Stamping Production, consisting of 4 very high risk potential hazards (E), 5 high risk potential hazards (H), and 1 moderate risk potential hazard (M). While in Plant Casting Production found 22 potential hazards findings consist of 7 very high risk potential hazards (E), 12 high risk potential hazards (H), and 3 medium risk potential hazards (M). Based on the result of Fault Tree Analysis (FTA), the main priority is the high risk potential hazards (H) and very high risk potential hazards (E). The proposed improvement are to make the visual display of the importance of always using the correct Personal Protective Equipment (PPE), establishing good working procedures, conducting OSH training for workers on a regular basis, and continuing to conduct safety campaigns.

  19. On the generalized Hartman effect for symmetric double-barrier point potentials

    International Nuclear Information System (INIS)

    Lee, Molly A; Manzoni, Luiz A; Nyquist, Erik A; Lunardi, José T

    2015-01-01

    We consider the scattering of a non-relativistic particle by a symmetrical arrangement of two identical barriers in one-dimension, with the barriers given by the well-known four-parameter family of point interactions. We calculate the phase time and the stationary Salecker-Wigner-Peres clock time for the particular cases of a double δ and a double δ' barrier and investigate the off-resonance behavior of these time scales in the limit of opaque barriers, addressing the question of emergence of the generalized Hartman effect

  20. Spin and pseudospin symmetric Dirac particles in the field of Tietz—Hua potential including Coulomb tensor interaction

    International Nuclear Information System (INIS)

    Ikhdair, Sameer M.; Hamzavi, Majid

    2013-01-01

    Approximate analytical solutions of the Dirac equation for Tietz—Hua (TH) potential including Coulomb-like tensor (CLT) potential with arbitrary spin—orbit quantum number κ are obtained within the Pekeris approximation scheme to deal with the spin—orbit coupling terms κ(κ ± 1)r −2 . Under the exact spin and pseudospin symmetric limitation, bound state energy eigenvalues and associated unnormalized two-component wave functions of the Dirac particle in the field of both attractive and repulsive TH potential with tensor potential are found using the parametric Nikiforov—Uvarov (NU) method. The cases of the Morse oscillator with tensor potential, the generalized Morse oscillator with tensor potential, and the non-relativistic limits have been investigated. (general)

  1. The use of symmetrized valence and relative motion coordinates for crystal potentials

    DEFF Research Database (Denmark)

    McMurry, H. L.; Hansen, Flemming Yssing

    1980-01-01

    Symmetrized valence coordinates are linear combinations of conventional valence coordinates which display the symmetry of a set of atoms bound by the valence bonds. Relative motion coordinates are relative translations, or relative rotations, of two or more strongly bonded groups of atoms among...... which relatively weak forces act. They are useful for expressing interactions between molecules in molecular crystals and should be chosen, also, to reflect the symmetry of the interacting groups. Since coordinates defined by these procedures possess elements of symmetry in common with the bonding...... interaction constants coupling coordinates of unlike symmetry with regard to the crystal point group are necessarily zero. They may be small, also, for coordinates which belong to different representations of the local symmetry when this is not the same as for the crystal. Procedures are given for defining...

  2. Potential Energy Surface of NO on Pt(997: Adsorbed States and Surface Diffusion

    Directory of Open Access Journals (Sweden)

    N. Tsukahara

    2012-01-01

    Full Text Available The potential energy surface (PES of NO on Pt(997 has been elucidated: the adsorption states and diffusion processes of NO on Pt(997 at low coverage were investigated by using infrared reflection absorption spectroscopy (IRAS and scanning tunneling microscopy (STM. When NO molecules adsorb on a surface at a low temperature (11 K, each molecule transiently migrates on the surface from the first impact point to a possible adsorption site. We found that there are four stable adsorption sites for NO on Pt(997: a bridge site of the upper step, an fcc- (or hcp- hollow site of the terrace, an on-top site of the terrace, and an fcc-hollow site of the lower step. At higher temperatures above 45 K, NO molecules start to migrate thermally to more stable adsorption sites on a terrace, and they are finally trapped at the bridge sites of the step, which are the most stable among the four sites.

  3. Properties of an α Particle in a Bohrium 270 Nucleus under the Generalized Symmetric Woods-Saxon Potential

    Directory of Open Access Journals (Sweden)

    Bekir Can LÜTFÜOĞLU

    2017-04-01

    Full Text Available The energy eigenvalues and the wave functions of an α particle in a Bohrium 270 nucleus have been calculated by solving Schrödinger equation for Generalized Symmetric Woods-Saxon potential. Using the energy spectrum by excluding and including the quasi-bound eigenvalues, entropy, internal energy, Helmholtz energy, and specific heat, as functions of reduced temperature have been calculated. Stability and emission characteristics have been interpreted in terms of the wave and thermodynamic functions. The kinetic energy of a decayed α particle was calculated using the quasi-bound states, which has been found close to the experimental value.

  4. Synaptic characteristics with strong analog potentiation, depression, and short-term to long-term memory transition in a Pt/CeO2/Pt crossbar array structure

    Science.gov (United States)

    Kim, Hyung Jun; Park, Daehoon; Yang, Paul; Beom, Keonwon; Kim, Min Ju; Shin, Chansun; Kang, Chi Jung; Yoon, Tae-Sik

    2018-06-01

    A crossbar array of Pt/CeO2/Pt memristors exhibited the synaptic characteristics such as analog, reversible, and strong resistance change with a ratio of ∼103, corresponding to wide dynamic range of synaptic weight modulation as potentiation and depression with respect to the voltage polarity. In addition, it presented timing-dependent responses such as paired-pulse facilitation and the short-term to long-term memory transition by increasing amplitude, width, and repetition number of voltage pulse and reducing the interval time between pulses. The memory loss with a time was fitted with a stretched exponential relaxation model, revealing the relation of memory stability with the input stimuli strength. The resistance change was further enhanced but its stability got worse as increasing measurement temperature, indicating that the resistance was changed as a result of voltage- and temperature-dependent electrical charging and discharging to alter the energy barrier for charge transport. These detailed synaptic characteristics demonstrated the potential of crossbar array of Pt/CeO2/Pt memristors as artificial synapses in highly connected neuron-synapse network.

  5. Critical Factors Controlling Pd and Pt Potential in Porphyry Cu–Au Deposits: Evidence from the Balkan Peninsula

    Directory of Open Access Journals (Sweden)

    Demetrios G. Eliopoulos

    2014-03-01

    Full Text Available Porphyry Cu–Au–Pd±Pt deposits are significant Au resources, but their Pd and Pt potential is still unknown. Elevated Pd, Pt (hundreds of ppb and Au contents are associated with typical stockwork magnetite-bornite-chalcopyrite assemblages, at the central parts of certain porphyry deposits. Unexpected high grade Cu–(Pd+Pt (up to 6 ppm mineralization with high Pd/Pt ratios at the Elatsite porphyry deposit, which is found in a spatial association with the Chelopech epithermal deposit (Bulgaria and the Skouries porphyry deposit, may have formed during late stages of an evolved hydrothermal system. Estimated Pd, Pt and Au potential for porphyry deposits is consistent with literature model calculations demonstrating the capacity of aqueous vapor and brine to scavenge sufficient quantities of Pt and Pd, and could contribute to the global platinum-group element (PGE production. Critical requirements controlling potential of porphyry deposits may be from the metals contained in magma (metasomatized asthenospheric mantle wedge as indicated by significant Cr, Co, Ni and Re contents. The Cr content may be an indicator for the mantle input.

  6. Broader energy distribution of CO adsorbed at polycrystalline Pt electrode in comparison with that at Pt(111) electrode in H_2SO_4 solution confirmed by potential dependent IR/visible double resonance sum frequency generation spectroscopy

    International Nuclear Information System (INIS)

    Yang, Shuo; Noguchi, Hidenori; Uosaki, Kohei

    2017-01-01

    Highlights: • Electrochemical SFG spectroscopy is an efficient in situ probe of electronic structure at electrochemical interface. • Electrooxidation performances of CO adsorbed on polycrystalline Pt and Pt(111) electrodes were compared. • The enhanced SFG signal of CO on Pt electrodes was observed due to a vibrational-electronic double resonance effect. • The broader energy distribution of 5sa state of CO on polycrystalline Pt than on Pt(111) is proved by SFG results. - Abstract: Electrochemical cyclic voltammetry and potential dependent double resonance sum frequency generation (DR-SFG) spectroscopy were performed on CO adsorbed on polycrystalline Pt and Pt(111) electrodes in H_2SO_4 solution to examine the effect of substrate on the electronic structure of CO. The dependence of SFG intensity on potential and visible energy for atop CO band was observed on both polycrystalline and single crystalline Pt electrodes. Enhancement of the SFG intensity was determined to be a direct result of a surface electronic resonance of the visible/SF light with the electronic transition from Fermi level of Pt to the 5σ_a anti-bonding state of adsorbed CO, in agreement with previous results. Interestingly, when compared to the Pt(111) electrode, the distribution width of the intensity enhancement region on polycrystalline Pt is broader than on Pt(111). This suggests that the energy distribution of the 5σ_a state of CO on polycrystalline Pt surface is broader than that on Pt(111) due to the complex surface structure of the polycrystalline Pt electrode.

  7. Lanthanum chromite materials as potential symmetrical electrodes for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Ruiz-Morales, J. C.

    2007-08-01

    Full Text Available A commonly used interconnector material has been tested as electrode for a new concept of Solid Oxide Fuel Cell, where the same material could be used, simultaneously, as interconnector, anode and cathode. We have found that a typical substituted chromite, such as La0.7Ca0.3CrO3-δ (LCC can be considered a good candidate for such configuration, due to its high electronic conductivity in both reducing and oxidising conditions, and moderate catalytic properties for oxygen reduction and hydrogen oxidation. The symmetrical design renders performances of 100 mWcm-2 at 950ºC, using O2 and H2 as oxidant and fuel respectively. Performances exceeding 300 mWcm-2 can be predicted for a 100μm-thick YSZ electrolyte.

    Un material comúnmente utilizado como interconector ha sido probado como electrodo para un nuevo concepto de Pila de Combustible de Óxidos Sólido, en el cual el mismo material se utiliza, simultáneamente, como interconector, ánodo y cátodo. Hemos encontrado que una cromita típica como La0.7Ca0.3CrO3-δ (LCC puede ser considerada una buena candidata para dicha configuración, debido a sus altas conductividades eléctricas tanto en condiciones reductoras como oxidantes y una aceptable actividad catalítica para la reducción del oxígeno y la oxidación del hidrógeno. El diseño simétrico permite obtener rendimientos del orden de 100mWcm-2 a 950ºC, utilizando O2 e H2 como oxidante y combustible, respectivamente. Rendimientos que superan los 300mWcm-2 pueden predecirse para pilas con electrolitos de YSZ de 100 μm de grosor.

  8. Displacement potential solution of a guided deep beam of composite materials under symmetric three-point bending

    Science.gov (United States)

    Rahman, M. Muzibur; Ahmad, S. Reaz

    2017-12-01

    An analytical investigation of elastic fields for a guided deep beam of orthotropic composite material having three point symmetric bending is carried out using displacement potential boundary modeling approach. Here, the formulation is developed as a single function of space variables defined in terms of displacement components, which has to satisfy the mixed type of boundary conditions. The relevant displacement and stress components are derived into infinite series using Fourier integral along with suitable polynomials coincided with boundary conditions. The results are presented mainly in the form of graphs and verified with finite element solutions using ANSYS. This study shows that the analytical and numerical solutions are in good agreement and thus enhances reliability of the displacement potential approach.

  9. Numerical determination of families of three-dimensional double-symmetric periodic orbits in the restricted three-body problem. Pt. 1

    International Nuclear Information System (INIS)

    Kazantzis, P.G.

    1979-01-01

    New families of three-dimensional double-symmetric periodic orbits are determined numerically in the Sun-Jupiter case of the restricted three-body problem. These families bifurcate from the 'vertical-critical' orbits (αsub(ν) = -1, csub(ν) = 0) of the 'basic' plane families i. g 1 g 2 h, a, m and I. Further the numerical procedure employed in the determination of these families has been described and interesting results have been pointed out. Also, computer plots of the orbits of these families have been shown in conical projections. (orig.)

  10. A bimetallic nanocoral Au decorated with Pt nanoflowers (bio)sensor for H2O2 detection at low potential.

    Science.gov (United States)

    Sanzò, Gabriella; Taurino, Irene; Puppo, Francesca; Antiochia, Riccarda; Gorton, Lo; Favero, Gabriele; Mazzei, Franco; Carrara, Sandro; De Micheli, Giovanni

    2017-10-01

    In this work, we have developed for the first time a method to make novel gold and platinum hybrid bimetallic nanostructures differing in shape and size. Au-Pt nanostructures were prepared by electrodeposition in two simple steps. The first step consists of the electrodeposition of nanocoral Au onto a gold substrate using hydrogen as a dynamic template in an ammonium chloride solution. After that, the Pt nanostructures were deposited onto the nanocoral Au organized in pores. Using Pt (II) and Pt (IV), we realized nanocoral Au decorated with Pt nanospheres and nanocoral Au decorated with Pt nanoflowers, respectively. The bimetallic nanostructures showed better capability to electrochemically oxidize hydrogen peroxide compared with nanocoral Au. Moreover, Au-Pt nanostructures were able to lower the potential of detection and a higher performance was obtained at a low applied potential. Then, glucose oxidase was immobilized onto the bimetallic Au-Pt nanostructure using cross-linking with glutaraldehyde. The biosensor was characterized by chronoamperometry at +0.15V vs. Ag pseudo-reference electrode (PRE) and showed good analytical performances with a linear range from 0.01 to 2.00mM and a sensitivity of 33.66µA/mMcm 2 . The good value of K m app (2.28mM) demonstrates that the hybrid nanostructure is a favorable environment for the enzyme. Moreover, the low working potential can minimize the interference from ascorbic acid and uric acid as well as reducing power consumption to effect sensing. The simple procedure to realize this nanostructure and to immobilize enzymes, as well as the analytical performances of the resulting devices, encourage the use of this technology for the development of biosensors for clinical analysis. Copyright © 2017. Published by Elsevier Inc.

  11. Potential of zero free charge of Pd overlayers on Pt(1 1 1)

    International Nuclear Information System (INIS)

    El-Aziz, A.M.; Hoyer, R.; Kibler, L.A.; Kolb, D.M.

    2006-01-01

    Differential capacitance measurements of Pd overlayers on a Pt(1 1 1) electrode in dilute aqueous NaF solutions have been performed as a function of film thickness in order to determine the potential of zero free charge (pzfc). The pzfc of the first, pseudomorphic Pd monolayer on Pt(1 1 1) is -0.21 V versus SCE. By increasing the amount of deposited Pd, a clear shift of the pzfc to more positive values is observed. After deposition of an equivalent of 10 monolayers, the value approaches that of a massive Pd(1 1 1) electrode (-0.12 V versus SCE). The pzfc's for the various Pd coverages are correlated with surface structure information, derived from STM images (R. Hoyer, L.A. Kibler, D.M. Kolb, Electrochim. Acta 49 (2003) 63). Variations in the pzfc are discussed in the context of an electronic modification by the underlying substrate and are compared with corresponding data for Pd overlayers on Au(1 1 1)

  12. PT Symmetry and QCD: Finite Temperature and Density

    Directory of Open Access Journals (Sweden)

    Michael C. Ogilvie

    2009-04-01

    Full Text Available The relevance of PT symmetry to quantum chromodynamics (QCD, the gauge theory of the strong interactions, is explored in the context of finite temperature and density. Two significant problems in QCD are studied: the sign problem of finite-density QCD, and the problem of confinement. It is proven that the effective action for heavy quarks at finite density is PT-symmetric. For the case of 1+1 dimensions, the PT-symmetric Hamiltonian, although not Hermitian, has real eigenvalues for a range of values of the chemical potential μ, solving the sign problem for this model. The effective action for heavy quarks is part of a potentially large class of generalized sine-Gordon models which are non-Hermitian but are PT-symmetric. Generalized sine-Gordon models also occur naturally in gauge theories in which magnetic monopoles lead to confinement. We explore gauge theories where monopoles cause confinement at arbitrarily high temperatures. Several different classes of monopole gases exist, with each class leading to different string tension scaling laws. For one class of monopole gas models, the PT-symmetric affine Toda field theory emerges naturally as the effective theory. This in turn leads to sine-law scaling for string tensions, a behavior consistent with lattice simulations.

  13. The gravitational potential of axially symmetric bodies from a regularized green kernel

    Science.gov (United States)

    Trova, A.; Huré, J.-M.; Hersant, F.

    2011-12-01

    The determination of the gravitational potential inside celestial bodies (rotating stars, discs, planets, asteroids) is a common challenge in numerical Astrophysics. Under axial symmetry, the potential is classically found from a two-dimensional integral over the body's meridional cross-section. Because it involves an improper integral, high accuracy is generally difficult to reach. We have discovered that, for homogeneous bodies, the singular Green kernel can be converted into a regular kernel by direct analytical integration. This new kernel, easily managed with standard techniques, opens interesting horizons, not only for numerical calculus but also to generate approximations, in particular for geometrically thin discs and rings.

  14. Defect solitons in saturable nonlinearity media with parity-time symmetric optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Sumei [Department of Physics, Guangdong University of Petrochemical Technology, Maoming 525000 (China); Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510631 (China); Hu, Wei, E-mail: huwei@scnu.edu.cn [Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510631 (China)

    2013-11-15

    We reported the existence and stability of defect solitons in saturable nonlinearity media with parity-time (PT) symmetric optical lattices. Families of fundamental and dipole solitons are found in the semi-infinite gap and the first gap. The power of solitons increases with the increasing of the propagation constant and saturation parameter. The existence areas of fundamental and dipole solitons shrink with the growth of saturation parameter. The instability of dipole solitons for positive and no defect induced by the imaginary part of PT symmetric potentials can be suppressed by the saturation nonlinearity, but for negative defect it cannot be suppressed by the saturation nonlinearity.

  15. Photoelectrochemical Performances and Potential Applications of TiO2 Nanotube Arrays Modified with Ag and Pt Nanoparticles

    International Nuclear Information System (INIS)

    Xu, Guangqing; Liu, Haipeng; Wang, Jinwen; Lv, Jun; Zheng, Zhixiang; Wu, Yucheng

    2014-01-01

    TiO 2 nanotube arrays (NTAs) modified with Ag (Ag/TiO 2 ) and Pt (Pt/TiO 2 ) nanoparticles were fabricated by anodic oxidation combined with photoreduction and hydrothermal methods, respectively. Structures, element components and morphologies of TiO 2 , Ag/TiO 2 and Pt/TiO 2 NTAs were measured by X-ray diffraction diffractometer, X-ray photoelectron spectroscopy, scanning electron microscope and transmission electron microscope. The photoeletrochemical performances of TiO 2 , Pt/TiO 2 and Ag/TiO 2 NTAs were characterized by cyclic voltammetry and amperometry in phosphate buffer solution in absence and presence of glucose. Modifications of Ag and Pt nanoparticles play different roles in the photoelectrochemical process and have different potential applications. Ag nanoparticles decrease the photocurrent in buffer solution but increase the photocurrent response to organic compounds, which is fit for electrochemical detection of organic compounds due to the low background photocurrent and high photocurrent response. Ag/TiO 2 NTAs achieve the best detection performance with sensitivity of 0.152 μA/μM and detection limit of 0.53 μM. On the contrary, Pt nanoparticles can enhance the photocurrent of TiO 2 NTAs in buffer solution but decrease the photocurrent response to organic compounds, which are benefit for photocatalytic water splitting but not for photoelectrochemical detection

  16. Control Analysis of Hazards Potential in Crude Distiller Unit III PT. Pertamina (Persero) Refinery Unit III Plaju Tahun 2011

    OpenAIRE

    Matariani, Ade; Hasyim, Hamzah; Faisya, Achmad Fickry

    2012-01-01

    Background: Activities in CDU III are very risk to any hazards potential; because of that hazards potential is much needed in controlling the hazards potential to decrease the accidents and occupational diseases. The aim of this study was to analyze the controlling of hazards potential in CDU III PT. Pertamina (Persero) RU III Plaju in 2011. Method: This study was a qualitative study. The methods of data collection were using in-depth interview and observation. The total of informants in this...

  17. Symmetric textures

    International Nuclear Information System (INIS)

    Ramond, P.

    1993-01-01

    The Wolfenstein parametrization is extended to the quark masses in the deep ultraviolet, and an algorithm to derive symmetric textures which are compatible with existing data is developed. It is found that there are only five such textures

  18. Analytical results for non-Hermitian parity–time-symmetric and ...

    Indian Academy of Sciences (India)

    Abstract. We investigate both the non-Hermitian parity–time-(PT-)symmetric and Hermitian asymmetric volcano potentials, and present the analytical solution in terms of the confluent Heun function. Under certain special conditions, the confluent Heun function can be terminated as a polynomial, thereby leading to certain ...

  19. Antiphosphatidylserine/prothrombin antibodies (aPS/PT) as potential markers of antiphospholipid syndrome.

    Science.gov (United States)

    Vlagea, Alexandru; Gil, Antonio; Cuesta, Maria V; Arribas, Florencia; Diez, Jesús; Lavilla, Paz; Pascual-Salcedo, Dora

    2013-06-01

    The antiphospholipid antibodies present in antiphospholipid syndrome (APS) are directed at a number of phospholipid-binding proteins: β2 glycoprotein I (β2GPI), prothrombin, and so on. Antibodies directed at β2GPI are accepted as a classification criterion for APS, while the presence of antiprothrombin antibodies is not. In the present article, we investigated the possible role of antiphosphatidylserine/prothrombin antibodies (aPS/PT) as marker of APS on a cohort of 295 individuals with APS (95 primary APS and 45 secondary APS) and APS-related diseases. We found aPS/PT to be highly associated with venous thrombosis (immunoglobulin G [IgG] aPS/PT odds ratio [OR], 7.44; 95% confidence interval [CI], 3.97-13.92 and IgM aPS/PT OR, 2.54; 95% CI, 1.35-4.77) and obstetric abnormalities (IgG aPS/PT OR, 2.37; 95% CI, 1.04-5.43), but not with arterial thrombosis. A very high degree of concordance between the concentration of aPS/PT and lupus anticoagulant activity was demonstrated. Therefore, we support the inclusion of aPS/PT determination as second-level assay to confirm APS classification.

  20. Fe-substituted (La,Sr)TiO{sub 3} as potential electrodes for symmetrical fuel cells (SFCs)

    Energy Technology Data Exchange (ETDEWEB)

    Canales-Vazquez, Jesus [Renewable Energy Research Institute, University of Castilla la Mancha, 02006 Albacete (Spain); Instituto de Ciencia de los Materiales de Barcelona, ICMAB-CSIC, 01893 Bellaterra (Spain); Ruiz-Morales, Juan Carlos; Marrero-Lopez, David; Pena-Martinez, Juan; Nunez, Pedro [Dpto. Quimica Inorganica, Universidad de La Laguna, Avda. Francisco Sanchez s/n, 38200 Tenerife, Canary Islands (Spain); Gomez-Romero, Pedro [Instituto de Ciencia de los Materiales de Barcelona, ICMAB-CSIC, 01893 Bellaterra (Spain)

    2007-09-27

    In the work presented herein, the potential use of La{sub 4}Sr{sub 8}Ti{sub 12-x}Fe{sub x}O{sub 38-{delta}} (LSTF) materials as electrodes for a new concept of solid oxide fuel cells, symmetrical fuel cells (SFCs), is considered. Such fuel cells use simultaneously the same material as anode and cathode, which notably simplifies the assembly and further maintenance of the cells. Therefore, we search for materials showing high conductivity in a wide range of oxygen partial pressures in addition to certain degree of catalytic activity for the oxidation of the fuel and reduction of the oxidant, respectively. The preliminary electrochemical experiments performed reveal that the overall conductivity increases notably upon Fe substitution, being the main contribution electronic n-type. The fuel cell tests indicate that LSTF composites with YSZ and CeO{sub 2} perform reasonably well under H{sub 2} conditions, although the performance in methane is rather modest and require further optimisation. (author)

  1. Symmetric eikonal expansion

    International Nuclear Information System (INIS)

    Matsuki, Takayuki

    1976-01-01

    Symmetric eikonal expansion for the scattering amplitude is formulated for nonrelativistic and relativistic potential scatterings and also for the quantum field theory. The first approximations coincide with those of Levy and Sucher. The obtained scattering amplitudes are time reversal invariant for all cases and are crossing symmetric for the quantum field theory in each order of approximation. The improved eikonal phase introduced by Levy and Sucher is also derived from the different approximation scheme from the above. (auth.)

  2. A string of Peregrine rogue waves in the nonlocal nonlinear Schrödinger equation with parity-time symmetric self-induced potential

    Science.gov (United States)

    Gupta, Samit Kumar

    2018-03-01

    Dynamic wave localization phenomena draw fundamental and technological interests in optics and photonics. Based on the recently proposed (Ablowitz and Musslimani, 2013) continuous nonlocal nonlinear Schrödinger system with parity-time symmetric Kerr nonlinearity (PTNLSE), a numerical investigation has been carried out for two first order Peregrine solitons as the initial ansatz. Peregrine soliton, as an exact solution to the PTNLSE, evokes a very potent question: what effects does the interaction of two first order Peregrine solitons have on the overall optical field dynamics. Upon numerical computation, we observe the appearance of Kuznetsov-Ma (KM) soliton trains in the unbroken PT-phase when the initial Peregrine solitons are in phase. In the out of phase condition, it shows repulsive nonlinear waves. Quite interestingly, our study shows that within a specific range of the interval factor in the transverse co-ordinate there exists a string of high intensity well-localized Peregrine rogue waves in the PT unbroken phase. We note that the interval factor as well as the transverse shift parameter play important roles in the nonlinear interaction and evolution dynamics of the optical fields. This could be important in developing fundamental understanding of nonlocal non-Hermitian NLSE systems and dynamic wave localization behaviors.

  3. Seniority number description of potential energy surfaces: Symmetric dissociation of water, N2, C2, and Be2

    International Nuclear Information System (INIS)

    Bytautas, Laimutis; Scuseria, Gustavo E.; Ruedenberg, Klaus

    2015-01-01

    The present study further explores the concept of the seniority number (Ω) by examining different configuration interaction (CI) truncation strategies in generating compact wave functions in a systematic way. While the role of Ω in addressing static (strong) correlation problem has been addressed in numerous previous studies, the usefulness of seniority number in describing weak (dynamic) correlation has not been investigated in a systematic way. Thus, the overall objective in the present work is to investigate the role of Ω in addressing also dynamic electron correlation in addition to the static correlation. Two systematic CI truncation strategies are compared beyond minimal basis sets and full valence active spaces. One approach is based on the seniority number (defined as the total number of singly occupied orbitals in a determinant) and another is based on an excitation-level limitation. In addition, molecular orbitals are energy-optimized using multiconfigurational-self-consistent-field procedure for all these wave functions. The test cases include the symmetric dissociation of water (6-31G), N 2 (6-31G), C 2 (6-31G), and Be 2 (cc-pVTZ). We find that the potential energy profile for H 2 O dissociation can be reasonably well described using only the Ω = 0 sector of the CI wave function. For the Be 2 case, we show that the full CI potential energy curve (cc-pVTZ) is almost exactly reproduced using either Ω-based (including configurations having up to Ω = 2 in the virtual-orbital-space) or excitation-based (up to single-plus-double-substitutions) selection methods, both out of a full-valence-reference function. Finally, in dissociation cases of N 2 and C 2 , we shall also consider novel hybrid wave functions obtained by a union of a set of CI configurations representing the full valence space and a set of CI configurations where seniority-number restriction is imposed for a complete set (full-valence-space and virtual) of correlated molecular orbitals

  4. PT-symmetry management in oligomer systems

    International Nuclear Information System (INIS)

    Horne, R L; Cuevas, J; Kevrekidis, P G; Whitaker, N; Abdullaev, F Kh; Frantzeskakis, D J

    2013-01-01

    We study the effects of management of the PT-symmetric part of the potential within the setting of Schrödinger dimer and trimer oligomer systems. This is done by rapidly modulating in time the gain/loss profile. This gives rise to a number of interesting properties of the system, which are explored at the level of an averaged equation approach. Remarkably, this rapid modulation provides for a controllable expansion of the region of exact PT-symmetry, depending on the strength and frequency of the imposed modulation. The resulting averaged models are analysed theoretically and their exact stationary solutions are translated into time-periodic solutions through the averaging reduction. These are, in turn, compared with the exact periodic solutions of the full non-autonomous PT-symmetry managed problem and very good agreement is found between the two. (paper)

  5. The Phonotactic Influence on the Perception of a Consonant Cluster /pt/ by Native English and Native Polish Listeners: A Behavioral and Event Related Potential (ERP) Study

    Science.gov (United States)

    Wagner, Monica; Shafer, Valerie L.; Martin, Brett; Steinschneider, Mitchell

    2012-01-01

    The effect of exposure to the contextual features of the /pt/ cluster was investigated in native-English and native-Polish listeners using behavioral and event-related potential (ERP) methodology. Both groups experience the /pt/ cluster in their languages, but only the Polish group experiences the cluster in the context of word onset examined in…

  6. Multireference configuration interaction treatment of potential energy surfaces: symmetric dissociation of H/sub 2/O in a double-zeta basis

    Energy Technology Data Exchange (ETDEWEB)

    Brown, F B; Shavitt, I; Shepard, R

    1984-03-23

    Multiconfiguration self-consistent fields (SCF) and multireference configurational interaction (CI) calculations have been performed for the H/sub 2/O molecule in a double-zeta basis for four symmetric geometries, for comparison with full CI results. Unlike single-reference results, the energy errors are almost independent of geometry, allowing unbiased treatments of potential energy surfaces. 35 references, 1 figure, 2 tables.

  7. PT-symmetric Quantum Chain Models

    Directory of Open Access Journals (Sweden)

    M. Znojil

    2007-01-01

    Full Text Available A review is given of certain tridiagonal N-dimensional non-Hermitian J-parametric real-matrix quantum Hamiltonians H(N. The domains Ɗ(N of reality of their spectra of energies are studied, with particular attention paid to their exceptional-point boundaries ∂Ɗ(N. The strongest admissible couplings are specified in closed form for all N.

  8. Experiments in PT-symmetric quantum mechanics

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2004-01-01

    Roč. 54, č. 1 (2004), s. 151-156 ISSN 0011-4626 R&D Projects: GA AV ČR IAA1048302 Institutional research plan: CEZ:AV0Z1048901 Keywords : quantum mechanics * relativistic kinematics * non-Hermitian observables Subject RIV: BE - Theoretical Physics Impact factor: 0.292, year: 2004

  9. PT-symmetric models in curved manifolds

    Czech Academy of Sciences Publication Activity Database

    Krejčiřík, David; Siegl, Petr

    2010-01-01

    Roč. 43, č. 48 (2010), 485204/1-485204/30 ISSN 1751-8113 R&D Projects: GA MŠk LC06002 Institutional research plan: CEZ:AV0Z10480505 Keywords : NON-HERMITIAN HAMILTONIANS * SCHRODINGER -TYPE OPERATORS * PSEUDO-HERMITICITY Subject RIV: BA - General Mathematics Impact factor: 1.641, year: 2010

  10. PT -symmetric dimer of coupled nonlinear oscillators

    Indian Academy of Sciences (India)

    We provide a systematic analysis of a prototypical nonlinear oscillator ... recently, a number of nonlinear variants have been explored, like split-ring resonator chain .... Note that these solutions are valid for any value of ǫ (and hence δ) including ǫ ..... [16] M Abramowitz and I A Stegun, Handbook of mathematical functions ...

  11. Surface potential driven dissolution phenomena of [0 0 0 1]-oriented ZnO nanorods grown from ZnO and Pt seed layers

    Science.gov (United States)

    Seo, Youngmi; Kim, Jung Hyeun

    2011-06-01

    Highly oriented ZnO nanorods are synthesized hydrothermally on ZnO and Pt seed layers, and they are dissolved in KOH solution. The rods grown on ZnO seed layer show uniform dissolution, but those grown on Pt seed layer are rod-selectively dissolved. The ZnO nanorods from both seed layers show the same crystalline structure through XRD and Raman spectrometer data. However, the surface potential analysis reveals big difference for ZnO and Pt seed cases. The surface potential distribution is very uniform for the ZnO seed case, but it is much fluctuated on the Pt seed case. It suggests that the rod-selective dissolution phenomena on Pt seed case are likely due to the surface energy difference.

  12. Theoretical studies of Pt-Ti nanoparticles for potential use as PEMFC electrocatalysts.

    Science.gov (United States)

    Jennings, Paul C; Pollet, Bruno G; Johnston, Roy L

    2012-03-07

    A theoretical investigation is presented of alloying platinum with titanium to form binary Pt-Ti nanoalloys as an alternative to the expensive pure platinum catalysts commonly used for Proton Exchange Membrane Fuel Cell cathode electrocatalysts. Density Functional Theory calculations are performed to investigate compositional effects on structural properties as well as Oxygen Reduction Reaction kinetics and poisoning effects. High symmetry A(32)-B(6) clusters are studied to investigate structural properties. From these structures binding energies of hydroxyl and carbon monoxide are studied on a range of sites on the surface of the clusters. Promising results are obtained suggesting that the bimetallic Pt-Ti nanoalloys may exhibit enhanced properties compared to pure platinum catalysts.

  13. Exploring the Potential of Different-Sized Supported Subnanometer Pt Clusters as Catalysts for Wet Chemical Applications

    KAUST Repository

    Rondelli, Manuel

    2017-05-10

    The use of physicochemical preparation techniques of metal clusters in the ultrahigh vacuum (UHV) allows for high control of cluster nuclearity and size distribution for fundamental studies in catalysis. Surprisingly, the potential of these systems as catalysts for organic chemistry transformations in solution has not been explored. To this end, single Pt atoms and Pt clusters with two narrow size distributions were prepared in the UHV and applied for the hydrogenation of p-chloronitrobenzene to p-chloroaniline in ethanol. Following the observation of very high catalytic turnovers (approaching the million molecules of p-nitroaniline formed per Pt cluster) and of size-dependent activity, this work addresses fundamental questions with respect to the suitability of these systems as heterogeneous catalysts for the conversion of solution-phase reagents. For this purpose, we employ scanning transmission electron microscopy (STEM) and X-ray photoelectron spectroscopy (XPS) characterization before and after reaction to assess the stability of the clusters on the support and the question of heterogeneity versus homogeneity in the catalytic process.

  14. Synthesis of Pt{sub 75}Sn{sub 25}/SnO{sub 2}/CNT nanoscaled electrode: Low onset potential of ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Tabet-Aoul, Amel [Institut National de la Recherche Scientifique (INRS)-Énergie, Matériaux et Télécommunications (EMT), 1650 Boulevard Lionel Boulet, Varennes, Québec, Canada J3X 1S2 (Canada); Mohamedi, Mohamed, E-mail: mohamedi@emt.inrs.ca [Institut National de la Recherche Scientifique (INRS)-Énergie, Matériaux et Télécommunications (EMT), 1650 Boulevard Lionel Boulet, Varennes, Québec, Canada J3X 1S2 (Canada)

    2013-03-15

    Highlights: ► A pulsed laser synthesis is used for the deposition of Pt, SnO{sub 2} and PtSn alloy thin films onto carbon nanotubes. ► These nanoscaled materials were characterized by FESEM, TEM, XRD and XPS. ► Enhanced electrocatalytic properties toward ethanol oxidation. -- Abstract: With the objective of lowering the potential oxidation of ethanol at PtSn nanocatalyst, we present the synthesis of free-standing catalyst layer comprising a current collector/carbon nanotubes (catalyst support)/SnO{sub 2}/Pt{sub 75}Sn{sub 25} (catalyst) nanostructured layers, each layer constructed upon the one below it. The CNTs are grown by chemical vapor deposition (CVD), whereas SnO{sub 2} and Pt{sub 75}Sn{sub 25} are synthesized by pulsed laser deposition and cross-beam laser deposition, respectively. FESEM revealed that Pt{sub 75}Sn{sub 25} nanoparticles assemble into cauliflower-like arrangement. TEM and HR-TEM showed that the Pt{sub 75}Sn{sub 25} layer thickness is of ca. 25 nm with a particle mean diameter of 4.3 nm. It was found that addition of SnO{sub 2} to Pt{sub 75}Sn{sub 25} promotes significantly the oxidation of ethanol at Pt{sub 75}Sn{sub 25} nanoparticles relative to a carbon nanotubes support. Indeed, the electrooxidation of ethanol at CNTs/SnO{sub 2}/Pt{sub 75}Sn{sub 25} electrode starts at about 100 mV negative with respect to that at CNT/Pt{sub 75}Sn{sub 25}. This decreased overpotential required to oxidize ethanol is very significant and has profound implications to developing high performing anodes for direct ethanol fuel cells technology.

  15. Topologically protected bound states in photonic parity-time-symmetric crystals.

    Science.gov (United States)

    Weimann, S; Kremer, M; Plotnik, Y; Lumer, Y; Nolte, S; Makris, K G; Segev, M; Rechtsman, M C; Szameit, A

    2017-04-01

    Parity-time (PT)-symmetric crystals are a class of non-Hermitian systems that allow, for example, the existence of modes with real propagation constants, for self-orthogonality of propagating modes, and for uni-directional invisibility at defects. Photonic PT-symmetric systems that also support topological states could be useful for shaping and routing light waves. However, it is currently debated whether topological interface states can exist at all in PT-symmetric systems. Here, we show theoretically and demonstrate experimentally the existence of such states: states that are localized at the interface between two topologically distinct PT-symmetric photonic lattices. We find analytical closed form solutions of topological PT-symmetric interface states, and observe them through fluorescence microscopy in a passive PT-symmetric dimerized photonic lattice. Our results are relevant towards approaches to localize light on the interface between non-Hermitian crystals.

  16. Tuning coercive force by adjusting electric potential in solution processed Co/Pt(111) and the mechanism involved

    Science.gov (United States)

    Chang, Cheng-Hsun-Tony; Kuo, Wei-Hsu; Chang, Yu-Chieh; Tsay, Jyh-Shen; Yau, Shueh-Lin

    2017-03-01

    A combination of a solution process and the control of the electric potential for magnetism represents a new approach to operating spintronic devices with a highly controlled efficiency and lower power consumption with reduced production cost. As a paradigmatic example, we investigated Co/Pt(111) in the Bloch-wall regime. The depression in coercive force was detected by applying a negative electric potential in an electrolytic solution. The reversible control of coercive force by varying the electric potential within few hundred millivolts is demonstrated. By changing the electric potential in ferromagnetic layers with smaller thicknesses, the efficiency for controlling the tunable coercive force becomes higher. Assuming that the pinning domains are independent of the applied electric potential, an electric potential tuning-magnetic anisotropy energy model was derived and provided insights into our knowledge of the relation between the electric potential tuning coercive force and the thickness of the ferromagnetic layer. Based on the fact that the coercive force can be tuned by changing the electric potential using a solution process, we developed a novel concept of electric-potential-tuned magnetic recording, resulting in a stable recording media with a high degree of writing ability.

  17. Antiphosphatidylserine/prothrombin antibodies (aPS/PT) as potential diagnostic markers and risk predictors of venous thrombosis and obstetric complications in antiphospholipid syndrome.

    Science.gov (United States)

    Shi, Hui; Zheng, Hui; Yin, Yu-Feng; Hu, Qiong-Yi; Teng, Jia-Lin; Sun, Yue; Liu, Hong-Lei; Cheng, Xiao-Bing; Ye, Jun-Na; Su, Yu-Tong; Wu, Xin-Yao; Zhou, Jin-Feng; Norman, Gary L; Gong, Hui-Yun; Shi, Xin-Ming; Peng, Yi-Bing; Wang, Xue-Feng; Yang, Cheng-De

    2018-03-28

    The aim of the study was to determine the prevalence and clinical associations of antiphosphatidylserine/prothrombin antibodies (aPS/PT) with thrombosis and pregnancy loss in Chinese patients with antiphospholipid syndrome (APS) and seronegative APS (SNAPS). One hundred and eighty six Chinese patients with APS (67 primary, 119 secondary), 48 with SNAPS, 176 disease controls (79 systemic lupus erythematosus [SLE], 29 Sjogren's syndrome [SS], 30 ankylosing spondylitis [AS], 38 rheumatoid arthritis [RA]) and 90 healthy donors were examined. IgG and IgM aPS/PT, IgG/IgM/IgA anticardiolipin (aCL) and IgG/IgM/IgA anti-β2-glycoprotein I (anti-β2GPI) antibodies were tested by ELISA. One hundred and sixty (86.0%) of APS patients were positive for at least one aPS/PT isotype. One hundred and thirty five (72.6%) were positive for IgG aPS/PT, 124/186 (66.7%) positive for IgM aPS/PT and 99 (53.2%) positive for both. Approximately half of the SNAPS patients were positive for IgG and/or IgM aPS/PT. Highly significant associations between IgG aPS/PT and venous thrombotic events (odds ratio [OR]=6.72) and IgG/IgM aPS/PT and pregnancy loss (OR=9.44) were found. Levels of IgM aPS/PT were significantly different in APS patients with thrombotic manifestations and those with fetal loss (p=0.014). The association between IgG/IgM aPS/PT and lupus anticoagulant (LAC) was highly significant (pAPS was 101.6. Notably, 91.95% (80/87) of LAC-positive specimens were positive for IgG and/or IgM aPS/PT, suggesting aPS/PT is an effective option when LAC testing is not available. Anti-PS/PT antibody assays demonstrated high diagnostic performance for Chinese patients with APS, detected some APS patients negative for criteria markers and may serve as potential risk predictors for venous thrombosis and obstetric complications.

  18. Quantum work relations and response theory in parity-time-symmetric quantum systems

    Science.gov (United States)

    Wei, Bo-Bo

    2018-01-01

    In this work, we show that a universal quantum work relation for a quantum system driven arbitrarily far from equilibrium extends to a parity-time- (PT -) symmetric quantum system with unbroken PT symmetry, which is a consequence of microscopic reversibility. The quantum Jarzynski equality, linear response theory, and Onsager reciprocal relations for the PT -symmetric quantum system are recovered as special cases of the universal quantum work relation in a PT -symmetric quantum system. In the regime of broken PT symmetry, the universal quantum work relation does not hold because the norm is not preserved during the dynamics.

  19. Analytical Study on Propagation Dynamics of Optical Beam in Parity-Time Symmetric Optical Couplers

    International Nuclear Information System (INIS)

    Zhou Zheng; Zhang Li-Juan; Zhu Bo

    2015-01-01

    We present exact analytical solutions to parity-time (PT) symmetric optical system describing light transport in PT-symmetric optical couplers. We show that light intensity oscillates periodically between two waveguides for unbroken PT-symmetric phase, whereas light always leaves the system from the waveguide experiencing gain when light is initially input at either waveguide experiencing gain or waveguide experiencing loss for broken PT-symmetric phase. These analytical results agree with the recent experimental observation reported by Rüter et al. [Nat. Phys. 6 (2010) 192]. Besides, we present a scheme for manipulating PT symmetry by applying a periodic modulation. Our results provide an efficient way to control light propagation in periodically modulated PT-symmetric system by tuning the modulation amplitude and frequency. (paper)

  20. Parity-Time Symmetric Photonics

    KAUST Repository

    Zhao, Han; Feng, Liang

    2018-01-01

    The establishment of non-Hermitian quantum mechanics (such as parity-time (PT) symmetry) stimulates a paradigmatic shift for studying symmetries of complex potentials. Owing to the convenient manipulation of optical gain and loss in analogy

  1. Theory of superconductivity with non-Hermitian and parity-time reversal symmetric Cooper pairing symmetry

    Science.gov (United States)

    Ghatak, Ananya; Das, Tanmoy

    2018-01-01

    Recently developed parity (P ) and time-reversal (T ) symmetric non-Hermitian systems govern a rich variety of new and characteristically distinct physical properties, which may or may not have a direct analog in their Hermitian counterparts. We study here a non-Hermitian, PT -symmetric superconducting Hamiltonian that possesses a real quasiparticle spectrum in the PT -unbroken region of the Brillouin zone. Within a single-band mean-field theory, we find that real quasiparticle energies are possible when the superconducting order parameter itself is either Hermitian or anti-Hermitian. Within the corresponding Bardeen-Cooper-Schrieffer (BCS) theory, we find that several properties are characteristically distinct and novel in the non-Hermitian pairing case than its Hermitian counterpart. One of our significant findings is that while a Hermitian superconductor gives a second-order phase transition, the non-Hermitian one produces a robust first-order phase transition. The corresponding thermodynamic properties and the Meissner effect are also modified accordingly. Finally, we discuss how such a PT -symmetric pairing can emerge from an antisymmetric potential, such as the Dzyloshinskii-Moriya interaction, but with an external bath, or complex potential, among others.

  2. Information Retrieval and Criticality in Parity-Time-Symmetric Systems.

    Science.gov (United States)

    Kawabata, Kohei; Ashida, Yuto; Ueda, Masahito

    2017-11-10

    By investigating information flow between a general parity-time (PT-)symmetric non-Hermitian system and an environment, we find that the complete information retrieval from the environment can be achieved in the PT-unbroken phase, whereas no information can be retrieved in the PT-broken phase. The PT-transition point thus marks the reversible-irreversible criticality of information flow, around which many physical quantities such as the recurrence time and the distinguishability between quantum states exhibit power-law behavior. Moreover, by embedding a PT-symmetric system into a larger Hilbert space so that the entire system obeys unitary dynamics, we reveal that behind the information retrieval lies a hidden entangled partner protected by PT symmetry. Possible experimental situations are also discussed.

  3. Mesotherapy for benign symmetric lipomatosis.

    Science.gov (United States)

    Hasegawa, Toshio; Matsukura, Tomoyuki; Ikeda, Shigaku

    2010-04-01

    Benign symmetric lipomatosis, also known as Madelung disease, is a rare disorder characterized by fat distribution around the shoulders, arms, and neck in the context of chronic alcoholism. Complete excision of nonencapsulated lipomas is difficult. However, reports describing conservative therapeutic measures for lipomatosis are rare. The authors present the case of a 42-year-old man with a diagnosis of benign symmetric lipomatosis who had multiple, large, symmetrical masses in his neck. Multiple phosphatidylcholine injections in the neck were administered 4 weeks apart, a total of seven times to achieve lipolysis. The patient's lipomatosis improved in response to the injections, and he achieved good cosmetic results. Intralesional injection, termed mesotherapy, using phosphatidylcholine is a potentially effective therapy for benign symmetric lipomatosis that should be reconsidered as a therapeutic option for this disease.

  4. Exploring the Potential of Different-Sized Supported Subnanometer Pt Clusters as Catalysts for Wet Chemical Applications

    KAUST Repository

    Rondelli, Manuel; Zwaschka, Gregor; Krause, Maximilian; Rö tzer, Marian D.; Hedhili, Mohamed N.; Hogerl, Manuel Peter; D’ Elia, Valerio; Schweinberger, Florian F.; Basset, Jean-Marie; Heiz, Ueli

    2017-01-01

    as catalysts for organic chemistry transformations in solution has not been explored. To this end, single Pt atoms and Pt clusters with two narrow size distributions were prepared in the UHV and applied for the hydrogenation of p-chloronitrobenzene to p

  5. Cations analysis by controlled potential coulometry. Pt. 2. Zirconium and thorium determination

    International Nuclear Information System (INIS)

    Harto Castano, A.; Sanchez Batanero, P.

    1982-01-01

    A controlled-potential coulometry method for determination of zirconium and thorium has been carried out. This method is based on the reduction of potassium ferricyanide in presence of zirconium and thorium ions in acidic media. Stoechiometric coefficients of the solid products have been determined by intensity-controlled coulometry and chemical analysis. Application range and accuracy of the coulometric method has been established and applied to determination of Zr(IV) and Th(IV) in ores [fr

  6. Causal symmetric spaces

    CERN Document Server

    Olafsson, Gestur; Helgason, Sigurdur

    1996-01-01

    This book is intended to introduce researchers and graduate students to the concepts of causal symmetric spaces. To date, results of recent studies considered standard by specialists have not been widely published. This book seeks to bring this information to students and researchers in geometry and analysis on causal symmetric spaces.Includes the newest results in harmonic analysis including Spherical functions on ordered symmetric space and the holmorphic discrete series and Hardy spaces on compactly casual symmetric spacesDeals with the infinitesimal situation, coverings of symmetric spaces, classification of causal symmetric pairs and invariant cone fieldsPresents basic geometric properties of semi-simple symmetric spacesIncludes appendices on Lie algebras and Lie groups, Bounded symmetric domains (Cayley transforms), Antiholomorphic Involutions on Bounded Domains and Para-Hermitian Symmetric Spaces

  7. Synthesis and stereochemical investigation of potential saturated heterocyclic drugs Pt. 1

    International Nuclear Information System (INIS)

    Bernath, G.

    1982-01-01

    Studies of partially and fully saturated heterocyclic compounds with condensed skeleton containing two heteroatoms are presented. The synthesis, stereochemical and conformation analyses aimed at the synthesis of potential drugs. Dihydro- and tetrahydro-1,3-oxazines were prepared from alicyclic 1,3-amino-alcohols by ring closure with aldehydes or imide esters. 1,3-oxazine-4-one derivatives were prepared by reacting alicyclic cis- and trans-2-hydroxy-1-carboxamides with aliphatic or aromatic aldehides. The conformations of the compounds prepared were determined by means of NMR spectroscopy. The main results of the determination of the steric structure of some representatives of the above described families of compounds by means of X-ray diffraction analysis are also presented. (author)

  8. Facade Layout Symmetrization

    KAUST Repository

    Jiang, Haiyong

    2016-04-11

    We present an automatic algorithm for symmetrizing facade layouts. Our method symmetrizes a given facade layout while minimally modifying the original layout. Based on the principles of symmetry in urban design, we formulate the problem of facade layout symmetrization as an optimization problem. Our system further enhances the regularity of the final layout by redistributing and aligning boxes in the layout. We demonstrate that the proposed solution can generate symmetric facade layouts efficiently. © 2015 IEEE.

  9. Symmetrization of Facade Layouts

    KAUST Repository

    Jiang, Haiyong; Yan, Dong-Ming; Dong, Weiming; Wu, Fuzhang; Nan, Liangliang; Zhang, Xiaopeng

    2016-01-01

    We present an automatic approach for symmetrizing urban facade layouts. Our method can generate a symmetric layout through minimally modifying the original input layout. Based on the principles of symmetry in urban design, we formulate facade layout symmetrization as an optimization problem. Our method further enhances the regularity of the final layout by redistributing and aligning elements in the layout. We demonstrate that the proposed solution can effectively generate symmetric facade layouts.

  10. Facade Layout Symmetrization

    KAUST Repository

    Jiang, Haiyong; Dong, Weiming; Yan, Dongming; Zhang, Xiaopeng

    2016-01-01

    We present an automatic algorithm for symmetrizing facade layouts. Our method symmetrizes a given facade layout while minimally modifying the original layout. Based on the principles of symmetry in urban design, we formulate the problem of facade layout symmetrization as an optimization problem. Our system further enhances the regularity of the final layout by redistributing and aligning boxes in the layout. We demonstrate that the proposed solution can generate symmetric facade layouts efficiently. © 2015 IEEE.

  11. Symmetrization of Facade Layouts

    KAUST Repository

    Jiang, Haiyong

    2016-02-26

    We present an automatic approach for symmetrizing urban facade layouts. Our method can generate a symmetric layout through minimally modifying the original input layout. Based on the principles of symmetry in urban design, we formulate facade layout symmetrization as an optimization problem. Our method further enhances the regularity of the final layout by redistributing and aligning elements in the layout. We demonstrate that the proposed solution can effectively generate symmetric facade layouts.

  12. Wide localized solutions of the parity-time-symmetric nonautonomous nonlinear Schrödinger equation

    Science.gov (United States)

    Meza, L. E. Arroyo; Dutra, A. de Souza; Hott, M. B.; Roy, P.

    2015-01-01

    By using canonical transformations we obtain localized (in space) exact solutions of the nonlinear Schrödinger equation (NLSE) with cubic and quintic space and time modulated nonlinearities and in the presence of time-dependent and inhomogeneous external potentials and amplification or absorption (source or drain) coefficients. We obtain a class of wide localized exact solutions of NLSE in the presence of a number of non-Hermitian parity-time (PT )-symmetric external potentials, which are constituted by a mixing of external potentials and source or drain terms. The exact solutions found here can be applied to theoretical studies of ultrashort pulse propagation in optical fibers with focusing and defocusing nonlinearities. We show that, even in the presence of gain or loss terms, stable solutions can be found and that the PT symmetry is an important feature to guarantee the conservation of the average energy of the system.

  13. Pt, Co–Pt and Fe–Pt alloy nanoclusters encapsulated in virus capsids

    International Nuclear Information System (INIS)

    Okuda, M; Eloi, J-C; Jones, S E Ward; Schwarzacher, W; Verwegen, M; Cornelissen, J J L M

    2016-01-01

    Nanostructured Pt-based alloys show great promise, not only for catalysis but also in medical and magnetic applications. To extend the properties of this class of materials, we have developed a means of synthesizing Pt and Pt-based alloy nanoclusters in the capsid of a virus. Pure Pt and Pt-alloy nanoclusters are formed through the chemical reduction of [PtCl 4 ] − by NaBH 4 with/without additional metal ions (Co or Fe). The opening and closing of the ion channels in the virus capsid were controlled by changing the pH and ionic strength of the solution. The size of the nanoclusters is limited to 18 nm by the internal diameter of the capsid. Their magnetic properties suggest potential applications in hyperthermia for the Co–Pt and Fe–Pt magnetic alloy nanoclusters. This study introduces a new way to fabricate size-restricted nanoclusters using virus capsid. (paper)

  14. On Symmetric Polynomials

    OpenAIRE

    Golden, Ryan; Cho, Ilwoo

    2015-01-01

    In this paper, we study structure theorems of algebras of symmetric functions. Based on a certain relation on elementary symmetric polynomials generating such algebras, we consider perturbation in the algebras. In particular, we understand generators of the algebras as perturbations. From such perturbations, define injective maps on generators, which induce algebra-monomorphisms (or embeddings) on the algebras. They provide inductive structure theorems on algebras of symmetric polynomials. As...

  15. Symmetric cryptographic protocols

    CERN Document Server

    Ramkumar, Mahalingam

    2014-01-01

    This book focuses on protocols and constructions that make good use of symmetric pseudo random functions (PRF) like block ciphers and hash functions - the building blocks for symmetric cryptography. Readers will benefit from detailed discussion of several strategies for utilizing symmetric PRFs. Coverage includes various key distribution strategies for unicast, broadcast and multicast security, and strategies for constructing efficient digests of dynamic databases using binary hash trees.   •        Provides detailed coverage of symmetric key protocols •        Describes various applications of symmetric building blocks •        Includes strategies for constructing compact and efficient digests of dynamic databases

  16. A cosmological problem for maximally symmetric supergravity

    International Nuclear Information System (INIS)

    German, G.; Ross, G.G.

    1986-01-01

    Under very general considerations it is shown that inflationary models of the universe based on maximally symmetric supergravity with flat potentials are unable to resolve the cosmological energy density (Polonyi) problem. (orig.)

  17. Vibrational Fingerprints of Low-Lying Pt(n)P(2n) (n = 1-5) Cluster Structures from Global Optimization Based on Density Functional Theory Potential Energy Surfaces.

    Science.gov (United States)

    Jedidi, Abdesslem; Li, Rui; Fornasiero, Paolo; Cavallo, Luigi; Carbonniere, Philippe

    2015-12-03

    Vibrational fingerprints of small Pt(n)P(2n) (n = 1-5) clusters were computed from their low-lying structures located from a global exploration of their DFT potential energy surfaces with the GSAM code. Five DFT methods were assessed from the CCSD(T) wavenumbers of PtP2 species and CCSD relative energies of Pt2P4 structures. The eight first Pt(n)P(2n) isomers found are reported. The vibrational computations reveal (i) the absence of clear signatures made by overtone or combination bands due to very weak mechanical and electrical anharmonicities and (ii) some significant and recurrent vibrational fingerprints in correlation with the different PP bonding situations in the Pt(n)P(2n) structures.

  18. Maximally Symmetric Composite Higgs Models.

    Science.gov (United States)

    Csáki, Csaba; Ma, Teng; Shu, Jing

    2017-09-29

    Maximal symmetry is a novel tool for composite pseudo Goldstone boson Higgs models: it is a remnant of an enhanced global symmetry of the composite fermion sector involving a twisting with the Higgs field. Maximal symmetry has far-reaching consequences: it ensures that the Higgs potential is finite and fully calculable, and also minimizes the tuning. We present a detailed analysis of the maximally symmetric SO(5)/SO(4) model and comment on its observational consequences.

  19. Centrioles in Symmetric Spaces

    OpenAIRE

    Quast, Peter

    2011-01-01

    We describe all centrioles in irreducible simply connected pointed symmetric spaces of compact type in terms of the root system of the ambient space, and we study some geometric properties of centrioles.

  20. A symmetrical rail accelerator

    International Nuclear Information System (INIS)

    Igenbergs, E.

    1991-01-01

    This paper reports on the symmetrical rail accelerator that has four rails, which are arranged symmetrically around the bore. The opposite rails have the same polarity and the adjacent rails the opposite polarity. In this configuration the radial force acting upon the individual rails is significantly smaller than in a conventional 2-rail configuration and a plasma armature is focussed towards the axis of the barrel. Experimental results indicate a higher efficiency compared to a conventional rail accelerator

  1. A summary view of the symmetric cosmological model

    International Nuclear Information System (INIS)

    Aldrovandi, R.

    1975-01-01

    A brief analysis of cosmological models is done, beginning with the standard model and following with the symmetric model of Omnes. Some attempts have been made for the phase transition in thermal radiation at high temperatures, to the annihilation period and to coalescence. One model with equal amounts of matter and antimatter seems to be reasonable [pt

  2. Determination of the electrostatic potential distribution in Pt/Fe:SrTiO₃/Nb:SrTiO₃ thin-film structures by electron holography.

    Science.gov (United States)

    Marchewka, Astrid; Cooper, David; Lenser, Christian; Menzel, Stephan; Du, Hongchu; Dittmann, Regina; Dunin-Borkowski, Rafal E; Waser, Rainer

    2014-11-10

    We determined the electrostatic potential distribution in pristine Pt/Fe:SrTiO3/Nb:SrTiO3 structures by electron holography experiments, revealing the existence of a depletion layer extending into the Nb-doped bottom electrode. Simulations of potential profiles in metal-insulator-metal structures were conducted assuming different types and distributions of dopants. It is found that the presence of acceptor-type dopant concentrations at the Fe:SrTiO3/Nb:SrTiO3 interface with a donor-doped insulating layer provides a good match to the measured profile. Such acceptor-type interface concentrations may be associated with Sr vacancies on the Nb:SrTiO3 side of the bottom interface.

  3. Determination of the electrostatic potential distribution in Pt/Fe:SrTiO3/Nb:SrTiO3 thin-film structures by electron holography

    Science.gov (United States)

    Marchewka, Astrid; Cooper, David; Lenser, Christian; Menzel, Stephan; Du, Hongchu; Dittmann, Regina; Dunin-Borkowski, Rafal E.; Waser, Rainer

    2014-11-01

    We determined the electrostatic potential distribution in pristine Pt/Fe:SrTiO3/Nb:SrTiO3 structures by electron holography experiments, revealing the existence of a depletion layer extending into the Nb-doped bottom electrode. Simulations of potential profiles in metal-insulator-metal structures were conducted assuming different types and distributions of dopants. It is found that the presence of acceptor-type dopant concentrations at the Fe:SrTiO3/Nb:SrTiO3 interface with a donor-doped insulating layer provides a good match to the measured profile. Such acceptor-type interface concentrations may be associated with Sr vacancies on the Nb:SrTiO3 side of the bottom interface.

  4. Multiparty symmetric sum types

    DEFF Research Database (Denmark)

    Nielsen, Lasse; Yoshida, Nobuko; Honda, Kohei

    2010-01-01

    This paper introduces a new theory of multiparty session types based on symmetric sum types, by which we can type non-deterministic orchestration choice behaviours. While the original branching type in session types can represent a choice made by a single participant and accepted by others...... determining how the session proceeds, the symmetric sum type represents a choice made by agreement among all the participants of a session. Such behaviour can be found in many practical systems, including collaborative workflow in healthcare systems for clinical practice guidelines (CPGs). Processes...... with the symmetric sums can be embedded into the original branching types using conductor processes. We show that this type-driven embedding preserves typability, satisfies semantic soundness and completeness, and meets the encodability criteria adapted to the typed setting. The theory leads to an efficient...

  5. Counting with symmetric functions

    CERN Document Server

    Mendes, Anthony

    2015-01-01

    This monograph provides a self-contained introduction to symmetric functions and their use in enumerative combinatorics.  It is the first book to explore many of the methods and results that the authors present. Numerous exercises are included throughout, along with full solutions, to illustrate concepts and also highlight many interesting mathematical ideas. The text begins by introducing fundamental combinatorial objects such as permutations and integer partitions, as well as generating functions.  Symmetric functions are considered in the next chapter, with a unique emphasis on the combinatorics of the transition matrices between bases of symmetric functions.  Chapter 3 uses this introductory material to describe how to find an assortment of generating functions for permutation statistics, and then these techniques are extended to find generating functions for a variety of objects in Chapter 4.  The next two chapters present the Robinson-Schensted-Knuth algorithm and a method for proving Pólya’s enu...

  6. Symmetric Tensor Decomposition

    DEFF Research Database (Denmark)

    Brachat, Jerome; Comon, Pierre; Mourrain, Bernard

    2010-01-01

    We present an algorithm for decomposing a symmetric tensor, of dimension n and order d, as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for binary forms. We recall the correspondence between the decomposition of a homogeneous polynomial in n variables...... of polynomial equations of small degree in non-generic cases. We propose a new algorithm for symmetric tensor decomposition, based on this characterization and on linear algebra computations with Hankel matrices. The impact of this contribution is two-fold. First it permits an efficient computation...... of the decomposition of any tensor of sub-generic rank, as opposed to widely used iterative algorithms with unproved global convergence (e.g. Alternate Least Squares or gradient descents). Second, it gives tools for understanding uniqueness conditions and for detecting the rank....

  7. Distributed Searchable Symmetric Encryption

    NARCIS (Netherlands)

    Bösch, C.T.; Peter, Andreas; Leenders, Bram; Lim, Hoon Wei; Tang, Qiang; Wang, Huaxiong; Hartel, Pieter H.; Jonker, Willem

    Searchable Symmetric Encryption (SSE) allows a client to store encrypted data on a storage provider in such a way, that the client is able to search and retrieve the data selectively without the storage provider learning the contents of the data or the words being searched for. Practical SSE schemes

  8. From PT-symmetric quantum mechanics to conformal field theory

    Indian Academy of Sciences (India)

    Author Affiliations. Patrick Dorey1 Clare Dunning2 Roberto Tateo3. Department of Mathematical Sciences, Durham University, Durham DH1 3LE, UK; IMSAS, University of Kent, Canterbury CT2 7NF, UK; Dip. di Fisica Teorica and INFN, Università di Torino, Via P. Giuria 1, 10125 Torino,Italy ...

  9. A Generalized Family of Discrete PT-symmetric Square Wells

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav; Wu, J. D.

    2013-01-01

    Roč. 52, č. 6 (2013), s. 2152-2162 ISSN 0020-7748 R&D Projects: GA ČR GAP203/11/1433 Institutional support: RVO:61389005 Keywords : quantum mechanics * discrete lattices * non-Hermitian Hamiltonians * Hilbert-space metrics * solvable models Subject RIV: BE - Theoretical Physics Impact factor: 1.188, year: 2013 http://link.springer.com/content/pdf/10.1007%2Fs10773-013-1525-3.pdf

  10. Rectifiable PT -symmetric Quantum Toboggans with Two Branch Points

    Directory of Open Access Journals (Sweden)

    M. Znojil

    2010-01-01

    Full Text Available Certain complex-contour (a.k.a. quantum-toboggan generalizations of Schroedinger’s bound-state problem are reviewed and studied in detail. Our key message is that the practical numerical solution of these atypical eigenvalue problems may perceivably be facilitated via an appropriate complex change of variables which maps their multi-sheeted complex domain of definition to a suitable single-sheeted complex plane.

  11. Fundamental length in quantum theories with PT-symmetric Hamiltonians

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2009-01-01

    Roč. 80, č. 4 (2009), 045022/1-045022/20 ISSN 1550-7998 R&D Projects: GA MŠk LC06002; GA ČR GA202/07/1307 Institutional research plan: CEZ:AV0Z10480505 Keywords : non-Hermitian Hamiltonians * anharmonic-oscillators * noncommutative space Subject RIV: BE - Theoretical Physics Impact factor: 4.922, year: 2009

  12. Particles versus fields in PT-symmetrically deformed integrable ...

    Indian Academy of Sciences (India)

    reversal and parity transformation, can be used to construct new integrable models. Some complex valued multi-particle systems, such as deformations of the Calogero–Moser– Sutherland models, are shown to arise naturally from real valued ...

  13. Baryon symmetric big bang cosmology

    International Nuclear Information System (INIS)

    Stecker, F.W.

    1978-01-01

    It is stated that the framework of baryon symmetric big bang (BSBB) cosmology offers our greatest potential for deducting the evolution of the Universe because its physical laws and processes have the minimum number of arbitrary assumptions about initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the Universe and how galaxies and galaxy clusters are formed. BSBB cosmology also provides the only acceptable explanation at present for the origin of the cosmic γ-ray background radiation. (author)

  14. Symmetric waterbomb origami.

    Science.gov (United States)

    Chen, Yan; Feng, Huijuan; Ma, Jiayao; Peng, Rui; You, Zhong

    2016-06-01

    The traditional waterbomb origami, produced from a pattern consisting of a series of vertices where six creases meet, is one of the most widely used origami patterns. From a rigid origami viewpoint, it generally has multiple degrees of freedom, but when the pattern is folded symmetrically, the mobility reduces to one. This paper presents a thorough kinematic investigation on symmetric folding of the waterbomb pattern. It has been found that the pattern can have two folding paths under certain circumstance. Moreover, the pattern can be used to fold thick panels. Not only do the additional constraints imposed to fold the thick panels lead to single degree of freedom folding, but the folding process is also kinematically equivalent to the origami of zero-thickness sheets. The findings pave the way for the pattern being readily used to fold deployable structures ranging from flat roofs to large solar panels.

  15. Symmetric modular torsatron

    Science.gov (United States)

    Rome, J.A.; Harris, J.H.

    1984-01-01

    A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.

  16. Integrability and symmetric spaces. II- The coset spaces

    International Nuclear Information System (INIS)

    Ferreira, L.A.

    1987-01-01

    It shown that a sufficient condition for a model describing the motion of a particle on a coset space to possess a fundamental Poisson bracket relation, and consequently charges involution, is that it must be a symmetric space. The conditions a hamiltonian, or any function of the canonical variables, has to satisfy in order to commute with these charges are studied. It is shown that, for the case of non compact symmetric space, these conditions lead to an algebraic structure which plays an important role in the construction of conserved quantities. (author) [pt

  17. Symmetric vectors and algebraic classification

    International Nuclear Information System (INIS)

    Leibowitz, E.

    1980-01-01

    The concept of symmetric vector field in Riemannian manifolds, which arises in the study of relativistic cosmological models, is analyzed. Symmetric vectors are tied up with the algebraic properties of the manifold curvature. A procedure for generating a congruence of symmetric fields out of a given pair is outlined. The case of a three-dimensional manifold of constant curvature (''isotropic universe'') is studied in detail, with all its symmetric vector fields being explicitly constructed

  18. Representations of locally symmetric spaces

    International Nuclear Information System (INIS)

    Rahman, M.S.

    1995-09-01

    Locally symmetric spaces in reference to globally and Hermitian symmetric Riemannian spaces are studied. Some relations between locally and globally symmetric spaces are exhibited. A lucid account of results on relevant spaces, motivated by fundamental problems, are formulated as theorems and propositions. (author). 10 refs

  19. Weakly Interacting Symmetric and Anti-Symmetric States in the Bilayer Systems

    Science.gov (United States)

    Marchewka, M.; Sheregii, E. M.; Tralle, I.; Tomaka, G.; Ploch, D.

    We have studied the parallel magneto-transport in DQW-structures of two different potential shapes: quasi-rectangular and quasi-triangular. The quantum beats effect was observed in Shubnikov-de Haas (SdH) oscillations for both types of the DQW structures in perpendicular magnetic filed arrangement. We developed a special scheme for the Landau levels energies calculation by means of which we carried out the necessary simulations of beating effect. In order to obtain the agreement between our experimental data and the results of simulations, we introduced two different quasi-Fermi levels which characterize symmetric and anti-symmetric states in DQWs. The existence of two different quasi Fermi-Levels simply means, that one can treat two sub-systems (charge carriers characterized by symmetric and anti-symmetric wave functions) as weakly interacting and having their own rate of establishing the equilibrium state.

  20. Small diameter symmetric networks from linear groups

    Science.gov (United States)

    Campbell, Lowell; Carlsson, Gunnar E.; Dinneen, Michael J.; Faber, Vance; Fellows, Michael R.; Langston, Michael A.; Moore, James W.; Multihaupt, Andrew P.; Sexton, Harlan B.

    1992-01-01

    In this note is reported a collection of constructions of symmetric networks that provide the largest known values for the number of nodes that can be placed in a network of a given degree and diameter. Some of the constructions are in the range of current potential engineering significance. The constructions are Cayley graphs of linear groups obtained by experimental computation.

  1. The Axially Symmetric One-Monopole

    International Nuclear Information System (INIS)

    Wong, K.-M.; Teh, Rosy

    2009-01-01

    We present new classical generalized one-monopole solution of the SU(2) Yang-Mills-Higgs theory with the Higgs field in the adjoint representation. We show that this solution with θ-winding number m = 1 and φ-winding number n = 1 is an axially symmetric generalization of the 't Hooft-Polyakov one-monopole. We construct this axially symmetric one-monopole solution by generalizing the large distance asymptotic solutions of the 't Hooft-Polyakov one-monopole to the Jacobi elliptic functions and solving the second order equations of motion numerically when the Higgs potential is vanishing. This solution is a non-BPS solution.

  2. Carbon Emission Reduction Potential through Sustainable Forest Management in Forest Concession of PT Salaki Summa Sejahtera, Province of West Sumatera

    Directory of Open Access Journals (Sweden)

    Iwan Hilwan

    2012-12-01

    Full Text Available A management unit (MU of a forest concession holder implementing the sustainable forest management (SFM principles, could be involved in reducing Emmission from Reforestation and Forest Degradation (REDD+ and carbon trading project. The fact the strategic in implementing the REDD+ and carbon trading in MU level is still lack of pilot project and methodology. Therefore, some scenarios must be developed and tested to find out the best potential of carbon credit in MU level. The objectives of the research were: to calculate carbon credit in some SFM scenarios, to analyze of carbon trading project feasibility, and to determine carbon stock recovery period of logged over area (LOA. The result revealed that carbon stock and carbon credit of LOA was affected by timber cutting intensity.  The 6th scenario with lowest annual allowable cutting (AAC obtained greater carbon credit and profit coming from timber harvesting income and carbon trading. In other hand, this scenario has shortest duration of carbon stock recovery period (27 years and shorter than its cutting cycle.  In this case, the MU has to recalculate and to decrease its AAC to have highest benefits from carbon trading in the same cutting cycle period.  It will provide double benefits from carbon trading, those are contribution in achieving the SFM purposes (production, ecology, social and climate change mitigation.Keywords: sustainable forest management, AAC, carbon stocks, recovery period, carbon trading

  3. Holographic Spherically Symmetric Metrics

    Science.gov (United States)

    Petri, Michael

    The holographic principle (HP) conjectures, that the maximum number of degrees of freedom of any realistic physical system is proportional to the system's boundary area. The HP has its roots in the study of black holes. It has recently been applied to cosmological solutions. In this article we apply the HP to spherically symmetric static space-times. We find that any regular spherically symmetric object saturating the HP is subject to tight constraints on the (interior) metric, energy-density, temperature and entropy-density. Whenever gravity can be described by a metric theory, gravity is macroscopically scale invariant and the laws of thermodynamics hold locally and globally, the (interior) metric of a regular holographic object is uniquely determined up to a constant factor and the interior matter-state must follow well defined scaling relations. When the metric theory of gravity is general relativity, the interior matter has an overall string equation of state (EOS) and a unique total energy-density. Thus the holographic metric derived in this article can serve as simple interior 4D realization of Mathur's string fuzzball proposal. Some properties of the holographic metric and its possible experimental verification are discussed. The geodesics of the holographic metric describe an isotropically expanding (or contracting) universe with a nearly homogeneous matter-distribution within the local Hubble volume. Due to the overall string EOS the active gravitational mass-density is zero, resulting in a coasting expansion with Ht = 1, which is compatible with the recent GRB-data.

  4. A pressure study of CePt{sub 3}B

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Daniela; Suellow, Stefan [Institute of Condensed Matter Physics, University of Technology Braunschweig, Braunschweig (Germany); Hartwig, Steffen [Institute of Condensed Matter Physics, University of Technology Braunschweig, Braunschweig (Germany); BENSC, Helmholtz Zentrum Berlin, Berlin (Germany); Hidaka, Hiroyuki; Yamazaki, Seigo; Amitsuka, Hiroshi [Department of Physics, Hokkaido University, Sapporo (Japan); Bauer, Ernst [Institute of Solid State Physics, Vienna University of Technology, Vienna (Austria)

    2013-07-01

    CePt{sub 3}B is isostructural to the non-centro symmetric heavy-fermion superconductor CePt{sub 3}Si. In contrast to the latter system, CePt{sub 3}B exhibits a complex magnetically ordered state at low temperatures, with an antiferromagnetic phase below T{sub N}=7.8 K and a weakly ferromagnetic transition below T{sub C}∼5 K. CePt{sub 3}B can be understand as a low pressure variant of CePt{sub 3}Si. Here we report a study of CePt{sub 3}B by means of high pressure magnetization measurements, this way in particular accessing the pressure evolution of the ferromagnetic transition temperature T{sub C}. From our investigation up to about 40 kbar we observe an almost constant transition temperature T{sub C} with pressure. This behavior we discuss in the context of alloying studies on this material.

  5. Synthesis and Biological Evaluation of Ru(II) and Pt(II) Complexes Bearing Carboxyl Groups as Potential Anticancer Targeted Drugs.

    Science.gov (United States)

    Martínez, Ma Ángeles; Carranza, M Pilar; Massaguer, Anna; Santos, Lucia; Organero, Juan A; Aliende, Cristina; de Llorens, Rafael; Ng-Choi, Iteng; Feliu, Lidia; Planas, Marta; Rodríguez, Ana M; Manzano, Blanca R; Espino, Gustavo; Jalón, Félix A

    2017-11-20

    The synthesis and characterization of Pt(II) (1 and 2) and Ru(II) arene (3 and 4) or polypyridine (5 and 6) complexes is described. With the aim of having a functional group to form bioconjugates, one uncoordinated carboxyl group has been introduced in all complexes. Some of the complexes were selected for their potential in photodynamic therapy (PDT). The molecular structures of complexes 2 and 5, as well as that of the sodium salt of the 4'-(4-carboxyphenyl)-2,2':6',2″-terpyridine ligand (cptpy), were determined by X-ray diffraction. Different techniques were used to evaluate the binding capacity to model DNA molecules, and MTT cytotoxicity assays were performed against four cell lines. Compounds 3, 4, and 5 showed little tendency to bind to DNA and exhibited poor biological activity. Compound 2 behaves as bonded to DNA probably through a covalent interaction, although its cytotoxicity was very low. Compound 1 and possibly 6, both of which contain a cptpy ligand, were able to intercalate with DNA, but toxicity was not observed for 6. However, compound 1 was active in all cell lines tested. Clonogenic assays and apoptosis induction studies were also performed on the PC-3 line for 1. The photodynamic behavior for complexes 1, 5, and 6 indicated that their nuclease activity was enhanced after irradiation at λ = 447 nm. The cell viability was significantly reduced only in the case of 5. The different behavior in the absence or presence of light makes complex 5 a potential prodrug of interest in PDT. Molecular docking studies followed by molecular dynamics simulations for 1 and the counterpart without the carboxyl group confirmed the experimental data that pointed to an intercalation mechanism. The cytotoxicity of 1 and the potential of 5 in PDT make them good candidates for subsequent conjugation, through the carboxyl group, to "selected peptides" which could facilitate the selective vectorization of the complex toward receptors that are overexpressed in

  6. Exchange coupled CoPt/FePtC media for heat assisted magnetic recording

    Science.gov (United States)

    Dutta, Tanmay; Piramanayagam, S. N.; Ru, Tan Hui; Saifullah, M. S. M.; Bhatia, C. S.; Yang, Hyunsoo

    2018-04-01

    L10 FePtC granular media are being studied as potential future magnetic recording media and are set to be used in conjunction with heat assisted magnetic recording (HAMR) to enable recording at write fields within the range of current day recording heads. Media structures based on a FePtC storage layer and a capping layer can alleviate the switching field distribution (SFD) requirements of HAMR and reduce the noise originating from the writing process. However, the current designs suffer from SFD issues due to high temperature writing. To overcome this problem, we study a CoPt/FePtC exchange coupled composite structure, where FePtC serves as the storage layer and CoPt (with higher Curie temperature, Tc) as the capping layer. CoPt remains ferromagnetic at near Tc of FePtC. Consequently, the counter exchange energy from CoPt would reduce the noise resulting from the adjacent grain interactions during the writing process. CoPt/FePtC bilayer samples with different thicknesses of CoPt were investigated. Our studies found that CoPt forms a continuous layer at a thickness of 6 nm and leads to considerable reduction in the saturation field and its distribution.

  7. Synthesis and electrochemical study of Pt-based nanoporous materials

    International Nuclear Information System (INIS)

    Wang Jingpeng; Holt-Hindle, Peter; MacDonald, Duncan; Thomas, Dan F.; Chen Aicheng

    2008-01-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells

  8. Synthesis and electrochemical study of Pt-based nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jingpeng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Holt-Hindle, Peter; MacDonald, Duncan [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Thomas, Dan F. [Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Chen Aicheng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada)], E-mail: aicheng.chen@lakeheadu.ca

    2008-10-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells.0.

  9. Synthesis and electrochemical study of Pt-based nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingpeng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Holt-Hindle, Peter; MacDonald, Duncan; Chen, Aicheng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Thomas, Dan F. [Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada)

    2008-10-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells. (author)

  10. Symmetric extendibility of quantum states

    OpenAIRE

    Nowakowski, Marcin L.

    2015-01-01

    Studies on symmetric extendibility of quantum states become especially important in a context of analysis of one-way quantum measures of entanglement, distilabillity and security of quantum protocols. In this paper we analyse composite systems containing a symmetric extendible part with a particular attention devoted to one-way security of such systems. Further, we introduce a new one-way monotone based on the best symmetric approximation of quantum state. We underpin those results with geome...

  11. A symmetric safety valve

    International Nuclear Information System (INIS)

    Burtraw, Dallas; Palmer, Karen; Kahn, Danny

    2010-01-01

    How to set policy in the presence of uncertainty has been central in debates over climate policy. Concern about costs has motivated the proposal for a cap-and-trade program for carbon dioxide, with a 'safety valve' that would mitigate against spikes in the cost of emission reductions by introducing additional emission allowances into the market when marginal costs rise above the specified allowance price level. We find two significant problems, both stemming from the asymmetry of an instrument that mitigates only against a price increase. One is that most important examples of price volatility in cap-and-trade programs have occurred not when prices spiked, but instead when allowance prices collapsed. Second, a single-sided safety valve may have unintended consequences for investment. We illustrate that a symmetric safety valve provides environmental and welfare improvements relative to the conventional one-sided approach.

  12. Symmetric q-Bessel functions

    Directory of Open Access Journals (Sweden)

    Giuseppe Dattoli

    1996-05-01

    Full Text Available q analog of bessel functions, symmetric under the interchange of q and q^ −1 are introduced. The definition is based on the generating function realized as product of symmetric q-exponential functions with appropriate arguments. Symmetric q-Bessel function are shown to satisfy various identities as well as second-order q-differential equations, which in the limit q → 1 reproduce those obeyed by the usual cylindrical Bessel functions. A brief discussion on the possible algebraic setting for symmetric q-Bessel functions is also provided.

  13. A comparative study of Mg and Pt contacts on semi-insulating GaAs: Electrical and XPS characterization

    Energy Technology Data Exchange (ETDEWEB)

    Dubecký, F., E-mail: elekfdub@savba.sk [Institute of Electrical Engineering, SAS, Dúbravská cesta 9, Bratislava, SK-84104 (Slovakia); Kindl, D.; Hubík, P. [Institute of Physics CAS, v.v.i., Cukrovarnická 10, CZ-16200 Prague (Czech Republic); Mičušík, M. [Polymer Institute, SAS, Dúbravská cesta 9, Bratislava, SK-84541 (Slovakia); Dubecký, M. [Department of Physics, Faculty of Science, University of Ostrava, 30. dubna 22, CZ-70103 Ostrava 1 (Czech Republic); Boháček, P.; Vanko, G. [Institute of Electrical Engineering, SAS, Dúbravská cesta 9, Bratislava, SK-84104 (Slovakia); Gombia, E. [IMEM-CNR, Parco area delle Scienze 37/A, Parma, I-43010 (Italy); Nečas, V. [Faculty of Electrical Engineering and Information Technology, SUT, Ilkovičova 3, Bratislava, SK-81219 (Slovakia); Mudroň, J. [Department of Electronics, Academy of Armed Forces, Demänová 393, Liptovský Mikuláš, SK-03106 (Slovakia)

    2017-02-15

    Highlights: • Explored were diodes with full-area low/high work function metal contacts on semi-insulating GaAs (S). • The Mg-S-Mg diode is promising for radiation detectors for its low high-field current. • The XPS analysis of Mg-S interface shows presence of MgO instead of Mg metal. - Abstract: We present a comparative study of the symmetric metal-SI GaAs-metal (M-S-M) diodes with full-area contacts on both device sides, in order to demonstrate the effect of contact metal work function in a straightforward way. We compare the conventional high work function Pt contact versus the less explored low work function Mg contact. The Pt-S-Pt, Mg-S-Mg and mixed Mg-S-Pt structures are characterized by the current-voltage measurements, and individual Pt-S and Mg-S contacts are investigated by the X-ray photoelectron spectroscopy (XPS). The transport measurements of Mg-S-Pt structure show a significant current decrease at low bias while the Mg-S-Mg structure shows saturation current at high voltages more than an order of magnitude lower with respect to the Pt-S-Pt reference. The phenomena observed in Mg-containing samples are explained by the presence of insulating MgO layer at the M-S interface, instead of the elementary Mg, as confirmed by the XPS analysis. Alternative explanations of the influence of MgO layer on the effective resistance of the structures are presented. The reported findings have potential applications in M-S-M sensors and radiation detectors based on SI GaAs.

  14. RT-Symmetric Laplace Operators on Star Graphs: Real Spectrum and Self-Adjointness

    Directory of Open Access Journals (Sweden)

    Maria Astudillo

    2015-01-01

    Full Text Available How ideas of PT-symmetric quantum mechanics can be applied to quantum graphs is analyzed, in particular to the star graph. The class of rotationally symmetric vertex conditions is analyzed. It is shown that all such conditions can effectively be described by circulant matrices: real in the case of odd number of edges and complex having particular block structure in the even case. Spectral properties of the corresponding operators are discussed.

  15. Tunable elastic parity-time symmetric structure based on the shunted piezoelectric materials

    Science.gov (United States)

    Hou, Zhilin; Assouar, Badreddine

    2018-02-01

    We theoretically and numerically report on the tunable elastic Parity-Time (PT) symmetric structure based on shunted piezoelectric units. We show that the elastic loss and gain can be archived in piezoelectric materials when they are shunted by external circuits containing positive and negative resistances. We present and discuss, as an example, the strongly dependent relationship between the exceptional points of a three-layered system and the impedance of their external shunted circuit. The achieved results evidence that the PT symmetric structures based on this proposed concept can actively be tuned without any change of their geometric configurations.

  16. Pt skin coated hollow Ag-Pt bimetallic nanoparticles with high catalytic activity for oxygen reduction reaction

    Science.gov (United States)

    Fu, Tao; Huang, Jianxing; Lai, Shaobo; Zhang, Size; Fang, Jun; Zhao, Jinbao

    2017-10-01

    The catalytic activity and stability of electrocatalyst is critical for the commercialization of fuel cells, and recent reports reveal the great potential of the hollow structures with Pt skin coat for developing high-powered electrocatalysts due to their highly efficient utilization of the Pt atoms. Here, we provide a novel strategy to prepare the Pt skin coated hollow Ag-Pt structure (Ag-Pt@Pt) of ∼8 nm size at room temperature. As loaded on the graphene, the Ag-Pt@Pt exhibits a remarkable mass activity of 0.864 A/mgPt (at 0.9 V, vs. reversible hydrogen electrode (RHE)) towards oxygen reduction reaction (ORR), which is 5.30 times of the commercial Pt/C catalyst, and the Ag-Pt@Pt also shows a better stability during the ORR catalytic process. The mechanism of this significant enhancement can be attributed to the higher Pt utilization and the unique Pt on Ag-Pt surface structure, which is confirmed by the density functional theory (DFT) calculations and other characterization methods. In conclusion, this original work offers a low-cost and environment-friendly method to prepare a high active electrocatalyst with cheaper price, and this work also discloses the correlation between surface structures and ORR catalytic activity for the hollow structures with Pt skin coat, which can be instructive for designing novel advanced electrocatalysts for fuel cells.

  17. Pt and PtRu catalyst bilayers increase efficiencies for ethanol oxidation in proton exchange membrane electrolysis and fuel cells

    Science.gov (United States)

    Altarawneh, Rakan M.; Pickup, Peter G.

    2017-10-01

    Polarization curves, product distributions, and reaction stoichiometries have been measured for the oxidation of ethanol at anodes consisting of Pt and PtRu bilayers and a homogeneous mixture of the two catalysts. These anode structures all show synergies between the two catalysts that can be attributed to the oxidation of acetaldehyde produced at the PtRu catalyst by the Pt catalyst. The use of a PtRu layer over a Pt layer produces the strongest effect, with higher currents than a Pt on PtRu bilayer, mixed layer, or either catalyst alone, except for Pt at high potentials. Reaction stoichiometries (average number of electrons transferred per ethanol molecule) were closer to the values for Pt alone for both of the bilayer configurations but much lower for PtRu and mixed anodes. Although Pt alone would provide the highest overall fuel cell efficiency at low power densities, the PtRu on Pt bilayer would provide higher power densities without a significant loss of efficiency. The origin of the synergy between the Pt and PtRu catalysts was elucidated by separation of the total current into the individual components for generation of carbon dioxide and the acetaldehyde and acetic acid byproducts.

  18. Dual formulation of covariant nonlinear duality-symmetric action of kappa-symmetric D3-brane

    Science.gov (United States)

    Vanichchapongjaroen, Pichet

    2018-02-01

    We study the construction of covariant nonlinear duality-symmetric actions in dual formulation. Essentially, the construction is the PST-covariantisation and nonlinearisation of Zwanziger action. The covariantisation made use of three auxiliary scalar fields. Apart from these, the construction proceed in a similar way to that of the standard formulation. For example, the theories can be extended to include interactions with external fields, and that the theories possess two local PST symmetries. We then explicitly demonstrate the construction of covariant nonlinear duality-symmetric actions in dual formulation of DBI theory, and D3-brane. For each of these theories, the twisted selfduality condition obtained from duality-symmetric actions are explicitly shown to match with the duality relation between field strength and its dual from the one-potential actions. Their on-shell actions between the duality-symmetric and the one-potential versions are also shown to match. We also explicitly prove kappa-symmetry of the covariant nonlinear duality-symmetric D3-brane action in dual formulation.

  19. Conformally symmetric traversable wormholes

    International Nuclear Information System (INIS)

    Boehmer, Christian G.; Harko, Tiberiu; Lobo, Francisco S. N.

    2007-01-01

    Exact solutions of traversable wormholes are found under the assumption of spherical symmetry and the existence of a nonstatic conformal symmetry, which presents a more systematic approach in searching for exact wormhole solutions. In this work, a wide variety of solutions are deduced by considering choices for the form function, a specific linear equation of state relating the energy density and the pressure anisotropy, and various phantom wormhole geometries are explored. A large class of solutions impose that the spatial distribution of the exotic matter is restricted to the throat neighborhood, with a cutoff of the stress-energy tensor at a finite junction interface, although asymptotically flat exact solutions are also found. Using the 'volume integral quantifier', it is found that the conformally symmetric phantom wormhole geometries may, in principle, be constructed by infinitesimally small amounts of averaged null energy condition violating matter. Considering the tidal acceleration traversability conditions for the phantom wormhole geometry, specific wormhole dimensions and the traversal velocity are also deduced

  20. DNA-Binding Studies of Some Potential Antitumor 2,2'-bipyridine Pt(II)/Pd(II) Complexes of piperidinedithiocarbamate. Their Synthesis, Spectroscopy and Cytotoxicity.

    Science.gov (United States)

    Mansouri-Torshizi, Hassan; Eslami-Moghadam, Mahboube; Divsalar, Adeleh; Saboury, Ali-Akbar

    2011-12-01

    In this study two platinum(II) and palladium(II) complexes of the type [M(bpy)(pip-dtc)]NO3 (where M=Pt(II) or Pd(II), bpy=2,2'-bipyridine, pip-dtc=piperidinedithiocarbamate) were synthesized by reaction between diaquo-2,2'-bipyridine Pt(II)/Pd(II) nitrate and sodium salt of dithiocarbamate. These cationic water soluble complexes were characterized by elemental analysis, molar conductance, IR, electronic and 1H NMR spectroscopic studies. The cyclic dithiocarbamate was found to coordinate as bidentate fasion with Pt(II) or Pd(II) center. Their biological activities were tested against chronic myelogenous leukemia cell line, K562, at micromolar concentration. The obtained cytotoxic concentration (IC50) values were much lower than cisplatin. The interaction of these complexes with highly polymerized calf thymus DNA (ct-DNA) was extensively studied by means of electronic absorption, fluorescence, circular dichroism and other measurements. The experimental results, thermodynamic and binding parameters, suggested that these complexes cooperatively bind to DNA presumably via intercalation. Moreover, the tendency of the Pt(II) complex to interact with DNA was more than that of Pd(II) complex.

  1. Prothrombin time (PT)

    Science.gov (United States)

    PT; Pro-time; Anticoagulant-prothrombin time; Clotting time: protime; INR; International normalized ratio ... PT is measured in seconds. Most of the time, results are given as what is called INR ( ...

  2. Measurement of benzenethiol adsorption to nanostructured Pt, Pd, and PtPd films using Raman spectroelectrochemistry.

    Science.gov (United States)

    Pomfret, Michael B; Pietron, Jeremy J; Owrutsky, Jeffrey C

    2010-05-04

    Raman spectroscopy and electrochemical methods were used to study the behavior of the model adsorbate benzenethiol (BT) on nanostructured Pt, Pd, and PtPd electrodes as a function of applied potential. Benzenethiol adsorbs out of ethanolic solutions as the corresponding thiolate, and voltammetric stripping data reveal that BT is oxidatively removed from all of the nanostructured metals upon repeated oxidative and reductive cycling. Oxidative stripping potentials for BT increase in the order Pt oxidizing potentials via cleavage of the Pt-S bond. In contrast, on nanoscale Pd and PtPd, BT is irreversibly lost due to cleavage of BT C-S bonds at oxidizing potentials, which leaves adsorbed sulfur oxides on Pd and PtPd films and effects the desulfurization of BT. While Pd and PtPd films are less sulfur-resistant than Pt films, palladium oxides, which form at higher potentials than Pt oxides, oxidatively desulfurize BT. In situ spectroelectrochemical Raman spectroscopy provides real-time, chemically specific information that complements the cyclic voltammetric data. The combination of these techniques affords a powerful and convenient method for guiding the development of sulfur-tolerant PEMFC catalysts.

  3. Asymmetric diffraction by atomic gratings with optical PT symmetry in the Raman-Nath regime

    Science.gov (United States)

    Shui, Tao; Yang, Wen-Xing; Liu, Shaopeng; Li, Ling; Zhu, Zhonghu

    2018-03-01

    We propose and analyze an efficient scheme for the lopsided Raman-Nath diffraction of one-dimensional (1 D ) and two-dimensional (2 D ) atomic gratings with periodic parity-time (PT )-symmetric refractive index. The atomic grating is constructed by the cold-atomic vapor with two isotopes of rubidium, which is driven by weak probe field and space-dependent control field. Using experimentally achievable parameters, we identify the conditions under which PT -symmetric refractive index allows us to observe the lopsided Raman-Nath diffraction phenomenon and improve the diffraction efficiencies beyond what is achievable in a conventional atomic grating. The nontrivial atomic grating is a superposition of an amplitude grating and a phase grating. It is found that the lopsided Raman-Nath diffraction at the exceptional point (EP) of PT -symmetric grating originates from constructive and destructive interferences between the amplitude and phase gratings. Furthermore, we show that the PT -phase transition from unbroken to broken PT -symmetric regimes can modify the asymmetric distribution of the diffraction spectrum and that the diffraction efficiencies in the non-negative diffraction orders can be significantly enhanced when the atomic grating is pushed into a broken PT -symmetric phase. In addition, we also analyze the influence of the grating thickness on the diffraction spectrum. Our scheme may provide the possibility to design a gain-beam splitter with tunable splitting ratio and other optical components in integrated optics.

  4. Looking for symmetric Bell inequalities

    OpenAIRE

    Bancal, Jean-Daniel; Gisin, Nicolas; Pironio, Stefano

    2010-01-01

    Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell e...

  5. The Large-g Observability of the Low-Lying Energies in the Strongly Singular Potentials V(x) = x(2) + g(2)/x(6) after their PT-symmetric Regularization

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2014-01-01

    Roč. 53, č. 8 (2014), s. 2549-2557 ISSN 0020-7748 Institutional support: RVO:61389005 Keywords : quantum evolution * Triple-Hilbert-space picture * Strongly singular forces * Regularization by complexification * strong-coupling dynamical regtime * unitarity Subject RIV: BE - Theoretical Physics Impact factor: 1.184, year: 2014

  6. Mapping between Hamiltonians with attractive and repulsive potentials on a lattice

    International Nuclear Information System (INIS)

    Joglekar, Yogesh N.

    2010-01-01

    Through a simple and exact analytical derivation, we show that for a particle on a lattice there is a one-to-one correspondence between the spectrum in the presence of an attractive potential V and its repulsive counterpart -V. For a Hermitian potential, this result implies that the number of localized states is the same in both attractive and repulsive cases although these states occur above (below) the band continuum for the repulsive (attractive) case. For a PT-symmetric potential that is odd under parity, our result implies that, in the PT-unbroken phase, the energy eigenvalues are symmetric around zero and that the corresponding eigenfunctions are closely related to each other.

  7. Pt/Cr and Pt/Ni catalysts for oxygen reduction reaction: to alloy or not to alloy?

    Science.gov (United States)

    Escaño, Mary Clare; Gyenge, Elod; Nakanishi, Hiroshi; Kasai, Hideaki

    2011-04-01

    Bimetallic systems such as Pt-based alloys or non-alloys have exhibited interesting catalytic properties but pose a major challenge of not knowing a priori how the electronic and chemical properties will be modified relative to the parent metals. In this work, we present the origin of the changes in the reactivity of Pt/Cr and Pt/Ni catalysts, which have been of wide interest in fuel cell research. Using spin-polarized density functional theory calculations, we have shown that the modification of Pt surface reactivity in Pt/Ni is purely of geometric origin (strain). We have also found that the Pt-Ni bonding is very weak, which explains the observed instability of Pt-Ni catalysts under electrochemical measurements. On the other hand, Pt/Cr systems are governed by strong ligand effect (metal-metal interaction), which explains the experimentally observed reactivity dependence on the relative composition of the alloying components. The general characteristics of the potential energy curves for O2 dissociative adsorption on the bimetallic systems and the pure Pt clarify why the d-band center still works for Pt/Cr despite the strong Pt-Cr bonding and high spin polarization of Pt d-states. On the basis of the above clarifications, viable Pt-Cr and Pt-Ni structures, which involve nano-sized alloys and non-alloy bulk catalyst, which may strike higher than the currently observed oxidation reduction reaction activity are proposed.

  8. symmetrically deformed integrable systems

    Indian Academy of Sciences (India)

    plex Liouville theory, a rigorous proof for the reality of the spectrum was found by Faddeev and .... to use non-rational potentials? Can one have more .... The freedom in the choice of the functions R(ϵ),I(ϵ) may then be used to satisfy the ...

  9. Mesoporous Pt and Pt/Ru alloy electrocatalysts for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Franceschini, Esteban A. [Grupo de Celdas de Combustible, Departamento de Fisica de la Materia Condensada, Centro Atomico Constituyentes, CNEA. Av. General Paz 1499 (1650), San Martin, Buenos Aires (Argentina); Planes, Gabriel A. [Departamento de Quimica, Facultad de Ciencias Exactas, Fisicoquimicas y Naturales, Universidad Nacional de Rio Cuarto, Agencia Postal No 3, 5800, Rio Cuarto (Argentina); Williams, Federico J. [Departamento de Quimica Inorganica, Analitica y Quimica-Fisica, INQUIMAE CONICET, Facultad Ciencias Exactas y Naturales, Pabellon 2, Ciudad Universitaria, Buenos Aires (Argentina); Soler-Illia, Galo J.A.A. [Gerencia de Quimica, Centro Atomico Constituyentes, CNEA. Av. General Paz 1499 (1650), San Martin, Buenos Aires (Argentina); Corti, Horacio R. [Grupo de Celdas de Combustible, Departamento de Fisica de la Materia Condensada, Centro Atomico Constituyentes, CNEA. Av. General Paz 1499 (1650), San Martin, Buenos Aires (Argentina); Departamento de Quimica Inorganica, Analitica y Quimica-Fisica, INQUIMAE CONICET, Facultad Ciencias Exactas y Naturales, Pabellon 2, Ciudad Universitaria, Buenos Aires (Argentina)

    2011-02-15

    Mesoporous Pt and Pt/Ru catalysts with 2D-hexagonal mesostructure were synthesized using a triblock poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) copolymer (Pluronic F127 {sup registered}) template, on a gold support. Large electrochemical surface areas were observed for the catalysts prepared at high overpotentials. Compared to the Pt catalyst, the Pt/Ru alloy containing 3 at% of Ru exhibited lower onset potential and more than three times the limit mass activity for methanol oxidation. This behavior is assigned to the larger pore size of the mesoporous Pt and Pt/Ru catalysts obtained with this template that seems to improve the methanol accessibility to the active sites compared to those obtained using lyotropic liquid crystals. (author)

  10. Harmonic analysis on symmetric spaces

    CERN Document Server

    Terras, Audrey

    This text explores the geometry and analysis of higher rank analogues of the symmetric spaces introduced in volume one. To illuminate both the parallels and differences of the higher rank theory, the space of positive matrices is treated in a manner mirroring that of the upper-half space in volume one. This concrete example furnishes motivation for the general theory of noncompact symmetric spaces, which is outlined in the final chapter. The book emphasizes motivation and comprehensibility, concrete examples and explicit computations (by pen and paper, and by computer), history, and, above all, applications in mathematics, statistics, physics, and engineering. The second edition includes new sections on Donald St. P. Richards’s central limit theorem for O(n)-invariant random variables on the symmetric space of GL(n, R), on random  matrix theory, and on advances in the theory of automorphic forms on arithmetic groups.

  11. Critical coupling and coherent perfect absorption for ranges of energies due to a complex gain and loss symmetric system

    International Nuclear Information System (INIS)

    Hasan, Mohammad; Ghatak, Ananya; Mandal, Bhabani Prasad

    2014-01-01

    We consider a non-Hermitian medium with a gain and loss symmetric, exponentially damped potential distribution to demonstrate different scattering features analytically. The condition for critical coupling (CC) for unidirectional wave and coherent perfect absorption (CPA) for bidirectional waves are obtained analytically for this system. The energy points at which total absorption occurs are shown to be the spectral singular points for the time reversed system. The possible energies at which CC occurs for left and right incidence are different. We further obtain periodic intervals with increasing periodicity of energy for CC and CPA to occur in this system. -- Highlights: •Energy ranges for CC and CPA are obtained explicitly for complex WS potential. •Analytical conditions for CC and CPA for PT symmetric WS potential are obtained. •Conditions for left and right CC are shown to be different. •Conditions for CC and CPA are shown to be that of SS for the time reversed system. •Our model shows the great flexibility of frequencies for CC and CPA

  12. Looking for symmetric Bell inequalities

    International Nuclear Information System (INIS)

    Bancal, Jean-Daniel; Gisin, Nicolas; Pironio, Stefano

    2010-01-01

    Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell experiments involving two parties and two measurement settings that are not of the Collins-Gisin-Linden-Massar-Popescu type.

  13. Symmetric normalisation for intuitionistic logic

    DEFF Research Database (Denmark)

    Guenot, Nicolas; Straßburger, Lutz

    2014-01-01

    We present two proof systems for implication-only intuitionistic logic in the calculus of structures. The first is a direct adaptation of the standard sequent calculus to the deep inference setting, and we describe a procedure for cut elimination, similar to the one from the sequent calculus......, but using a non-local rewriting. The second system is the symmetric completion of the first, as normally given in deep inference for logics with a DeMorgan duality: all inference rules have duals, as cut is dual to the identity axiom. We prove a generalisation of cut elimination, that we call symmetric...

  14. Diagrams for symmetric product orbifolds

    International Nuclear Information System (INIS)

    Pakman, Ari; Rastelli, Leonardo; Razamat, Shlomo S.

    2009-01-01

    We develop a diagrammatic language for symmetric product orbifolds of two-dimensional conformal field theories. Correlation functions of twist operators are written as sums of diagrams: each diagram corresponds to a branched covering map from a surface where the fields are single-valued to the base sphere where twist operators are inserted. This diagrammatic language facilitates the study of the large N limit and makes more transparent the analogy between symmetric product orbifolds and free non-abelian gauge theories. We give a general algorithm to calculate the leading large N contribution to four-point correlators of twist fields.

  15. Looking for symmetric Bell inequalities

    Energy Technology Data Exchange (ETDEWEB)

    Bancal, Jean-Daniel; Gisin, Nicolas [Group of Applied Physics, University of Geneva, 20 rue de l' Ecole-de Medecine, CH-1211 Geneva 4 (Switzerland); Pironio, Stefano, E-mail: jean-daniel.bancal@unige.c [Laboratoire d' Information Quantique, Universite Libre de Bruxelles (Belgium)

    2010-09-24

    Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell experiments involving two parties and two measurement settings that are not of the Collins-Gisin-Linden-Massar-Popescu type.

  16. Symmetric autocompensating quantum key distribution

    Science.gov (United States)

    Walton, Zachary D.; Sergienko, Alexander V.; Levitin, Lev B.; Saleh, Bahaa E. A.; Teich, Malvin C.

    2004-08-01

    We present quantum key distribution schemes which are autocompensating (require no alignment) and symmetric (Alice and Bob receive photons from a central source) for both polarization and time-bin qubits. The primary benefit of the symmetric configuration is that both Alice and Bob may have passive setups (neither Alice nor Bob is required to make active changes for each run of the protocol). We show that both the polarization and the time-bin schemes may be implemented with existing technology. The new schemes are related to previously described schemes by the concept of advanced waves.

  17. Symmetric relations of finite negativity

    NARCIS (Netherlands)

    Kaltenbaeck, M.; Winkler, H.; Woracek, H.; Forster, KH; Jonas, P; Langer, H

    2006-01-01

    We construct and investigate a space which is related to a symmetric linear relation S of finite negativity on an almost Pontryagin space. This space is the indefinite generalization of the completion of dom S with respect to (S.,.) for a strictly positive S on a Hilbert space.

  18. Tilting-connected symmetric algebras

    OpenAIRE

    Aihara, Takuma

    2010-01-01

    The notion of silting mutation was introduced by Iyama and the author. In this paper we mainly study silting mutation for self-injective algebras and prove that any representation-finite symmetric algebra is tilting-connected. Moreover we give some sufficient conditions for a Bongartz-type Lemma to hold for silting objects.

  19. Symmetric group representations and Z

    OpenAIRE

    Adve, Anshul; Yong, Alexander

    2017-01-01

    We discuss implications of the following statement about the representation theory of symmetric groups: every integer appears infinitely often as an irreducible character evaluation, and every nonnegative integer appears infinitely often as a Littlewood-Richardson coefficient and as a Kronecker coefficient.

  20. Symmetric Key Authentication Services Revisited

    NARCIS (Netherlands)

    Crispo, B.; Popescu, B.C.; Tanenbaum, A.S.

    2004-01-01

    Most of the symmetric key authentication schemes deployed today are based on principles introduced by Needham and Schroeder [15] more than twenty years ago. However, since then, the computing environment has evolved from a LAN-based client-server world to include new paradigms, including wide area

  1. Quantum systems and symmetric spaces

    International Nuclear Information System (INIS)

    Olshanetsky, M.A.; Perelomov, A.M.

    1978-01-01

    Certain class of quantum systems with Hamiltonians related to invariant operators on symmetric spaces has been investigated. A number of physical facts have been derived as a consequence. In the classical limit completely integrable systems related to root systems are obtained

  2. The symmetric longest queue system

    NARCIS (Netherlands)

    van Houtum, Geert-Jan; Adan, Ivo; van der Wal, Jan

    1997-01-01

    We derive the performance of the exponential symmetric longest queue system from two variants: a longest queue system with Threshold Rejection of jobs and one with Threshold Addition of jobs. It is shown that these two systems provide lower and upper bounds for the performance of the longest queue

  3. Symmetric imaging findings in neuroradiology

    International Nuclear Information System (INIS)

    Zlatareva, D.

    2015-01-01

    Full text: Learning objectives: to make a list of diseases and syndromes which manifest as bilateral symmetric findings on computed tomography and magnetic resonance imaging; to discuss the clinical and radiological differential diagnosis for these diseases; to explain which of these conditions necessitates urgent therapy and when additional studies and laboratory can precise diagnosis. There is symmetry in human body and quite often we compare the affected side to the normal one but in neuroradiology we might have bilateral findings which affected pair structures or corresponding anatomic areas. It is very rare when clinical data prompt diagnosis. Usually clinicians suspect such an involvement but Ct and MRI can reveal symmetric changes and are one of the leading diagnostic tool. The most common location of bilateral findings is basal ganglia and thalamus. There are a number of diseases affecting these structures symmetrically: metabolic and systemic diseases, intoxication, neurodegeneration and vascular conditions, toxoplasmosis, tumors and some infections. Malformations of cortical development and especially bilateral perisylvian polymicrogyria requires not only exact report on the most affected parts but in some cases genetic tests or combination with other clinical symptoms. In the case of herpes simplex encephalitis bilateral temporal involvement is common and this finding very often prompt therapy even before laboratory results. Posterior reversible encephalopathy syndrome (PReS) and some forms of hypoxic ischemic encephalopathy can lead to symmetric changes. In these acute conditions MR plays a crucial role not only in diagnosis but also in monitoring of the therapeutic effect. Patients with neurofibromatosis type 1 or type 2 can demonstrate bilateral optic glioma combined with spinal neurofibroma and bilateral acoustic schwanoma respectively. Mirror-image aneurysm affecting both internal carotid or middle cerebral arteries is an example of symmetry in

  4. Covariant, chirally symmetric, confining model of mesons

    International Nuclear Information System (INIS)

    Gross, F.; Milana, J.

    1991-01-01

    We introduce a new model of mesons as quark-antiquark bound states. The model is covariant, confining, and chirally symmetric. Our equations give an analytic solution for a zero-mass pseudoscalar bound state in the case of exact chiral symmetry, and also reduce to the familiar, highly successful nonrelativistic linear potential models in the limit of heavy-quark mass and lightly bound systems. In this fashion we are constructing a unified description of all the mesons from the π through the Υ. Numerical solutions for other cases are also presented

  5. Baryon symmetric big-bang cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Stecker, F.W.

    1978-04-01

    The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation.

  6. Baryon symmetric big-bang cosmology

    International Nuclear Information System (INIS)

    Stecker, F.W.

    1978-04-01

    The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation

  7. First principles study of (Cd, Hg, In, Tl, Sn, Pb, As, Sb, Bi, Se) modified Pt(111), Pt(100) and Pt(211) electrodes as CO oxidation catalysts

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir

    2015-01-01

    . The coverage dependence as a function of potential for ten different adatom species (Cd, Hg, In, Tl, Sn, Pb, As, Sb, Bi, Se) on bare and CO saturated Pt(111), Pt(100) and Pt(211) surfaces has been established by means of Density Functional Theory calculations. Most of the adatoms are very stable under standard......, given by the OH formation potentials from water, is dependent on the oxophilicity of the adatoms, and is found to scale almost inversely with the adatom stability. In electrolyte solutions saturated with CO, the stability reduces to roughly half of that on bare Pt surfaces. Irrespective of the CO...

  8. Homotheties of cylindrically symmetric static spacetimes

    International Nuclear Information System (INIS)

    Qadir, A.; Ziad, M.; Sharif, M.

    1998-08-01

    In this note we consider the homotheties of cylindrically symmetric static spacetimes. We find that we can provide a complete list of all metrics that admit non-trivial homothetic motions and are cylindrically symmetric static. (author)

  9. The Point Zoro Symmetric Single-Step Procedure for Simultaneous Estimation of Polynomial Zeros

    Directory of Open Access Journals (Sweden)

    Mansor Monsi

    2012-01-01

    Full Text Available The point symmetric single step procedure PSS1 has R-order of convergence at least 3. This procedure is modified by adding another single-step, which is the third step in PSS1. This modified procedure is called the point zoro symmetric single-step PZSS1. It is proven that the R-order of convergence of PZSS1 is at least 4 which is higher than the R-order of convergence of PT1, PS1, and PSS1. Hence, computational time is reduced since this procedure is more efficient for bounding simple zeros simultaneously.

  10. Microwave sinthesys and characterization of Pt and Pt-Rh-Sn electrocatalysts for ethanol oxidation

    Directory of Open Access Journals (Sweden)

    Jovanović Vladislava M.

    2011-01-01

    Full Text Available Carbon supported Pt and Pt-Rh-Sn catalysts were synthesized by microwave-polyol method in ethylene glycol solution and investigated for the ethanol electro-oxidation reaction. The catalysts were characterized in terms of structure, morphology and composition by employing XRD, STM and EDX techniques. STM analysis indicated rather uniform particles and particle size of below 2 nm for both catalysts. XRD analysis of the Pt/C catalyst revealed two phases, one with the main characteristic peaks of face centered cubic crystal structure (fcc of platinum and another related to graphite like structure of carbon support Vulcan XC-72R. However, in XRD pattern of the Pt-Rh-Sn/C catalyst diffraction peaks for Pt, Rh or Sn cannot be resolved, indicating an extremely low crystallinity. The small particle sizes and homogeneous size distributions of both catalysts should be attributed to the advantages of microwave assisted modified polyol process in ethylene glycol solution. Pt-Rh- Sn/C catalyst is highly active for the ethanol oxidation with the onset potential shifted for more than 150 mV to negative values and with currents nearly 5 times higher in comparison to Pt/C catalyst. The stability tests of the catalysts, as studied by the chronoamperometric experiments, reveal that the Pt-Rh-Sn/C catalyst is evidently less poisoned then Pt/C catalyst. The increased activity of Pt-Rh-Sn/C in comparison to Pt/C catalyst is most probably promoted by bifunctional mechanism and the electronic effect of alloyed metals.

  11. On symmetric structures of order two

    Directory of Open Access Journals (Sweden)

    Michel Bousquet

    2008-04-01

    Full Text Available Let (ω n 0 < n be the sequence known as Integer Sequence A047749 http://www.research.att.com/ njas/sequences/A047749 In this paper, we show that the integer ω n enumerates various kinds of symmetric structures of order two. We first consider ternary trees having a reflexive symmetry and we relate all symmetric combinatorial objects by means of bijection. We then generalize the symmetric structures and correspondences to an infinite family of symmetric objects.

  12. PT and INR Test

    Science.gov (United States)

    ... Plasma Free Metanephrines Platelet Count Platelet Function Tests Pleural Fluid Analysis PML-RARA Porphyrin Tests Potassium Prealbumin ... and vitamin K (either in a multivitamin or liquid nutrition supplement) may decrease PT. Certain foods, such ...

  13. Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huanqiao; Cao, Lei [Direct Alcohol Fuel Cell Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Graduate School of the Chinese Academy Sciences, Beijing 100039 (China); Sun, Gongquan; Jiang, Luhua [Direct Alcohol Fuel Cell Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Xin, Qin [Direct Alcohol Fuel Cell Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2007-08-01

    Well dispersed PtSn/C, PtRu/C and Pt/C electrocatalysts were synthesized by a modified polyol process and characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and inductively coupled plasma-atomic emission spectrometry techniques. XRD patterns show that Ru induces the contraction of Pt lattice parameter while Sn makes the Pt crystal lattice extended. Ethanol oxidation activities on the catalysts were studied via cyclic voltammetry (CV) and chronoamperometry (CA) methods at room temperature. It is found that the electrode potential plays an important role in the electrochemical behavior of ethanol oxidation on PtRu/C and PtSn/C catalysts. In the lower potential region, PtSn/C possesses higher performance for ethanol oxidation, while in the higher potential region PtRu/C is more active. The different promotion effects of PtSn/C and PtRu/C to ethanol oxidation can be explained by the structural effect and modified bi-functional mechanism in different potential region. Single cell test of a direct ethanol fuel cell (DEFC) was also carried out to elucidate the promotion effect of PtRu/C and PtSn/C catalysts on the ethanol oxidation at 90 C. (author)

  14. Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation

    International Nuclear Information System (INIS)

    Li, Huanqiao; Sun, Gongquan; Cao, Lei; Jiang, Luhua; Xin, Qin

    2007-01-01

    Well dispersed PtSn/C, PtRu/C and Pt/C electrocatalysts were synthesized by a modified polyol process and characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and inductively coupled plasma-atomic emission spectrometry techniques. XRD patterns show that Ru induces the contraction of Pt lattice parameter while Sn makes the Pt crystal lattice extended. Ethanol oxidation activities on the catalysts were studied via cyclic voltammetry (CV) and chronoamperometry (CA) methods at room temperature. It is found that the electrode potential plays an important role in the electrochemical behavior of ethanol oxidation on PtRu/C and PtSn/C catalysts. In the lower potential region, PtSn/C possesses higher performance for ethanol oxidation, while in the higher potential region PtRu/C is more active. The different promotion effects of PtSn/C and PtRu/C to ethanol oxidation can be explained by the structural effect and modified bi-functional mechanism in different potential region. Single cell test of a direct ethanol fuel cell (DEFC) was also carried out to elucidate the promotion effect of PtRu/C and PtSn/C catalysts on the ethanol oxidation at 90 o C

  15. Frequency selectivity in pulse responses of Pt/poly(3-hexylthiophene-2,5-diyl/polyethylene oxide +Li+/Pt hetero-junction.

    Directory of Open Access Journals (Sweden)

    Fei Zeng

    Full Text Available Pt/poly(3-hexylthiophene-2,5-diyl/polyethylene oxide + Li+/Pt hetero junctions were fabricated, and their pulse responses were studied. The direct current characteristics were not symmetric in the sweeping range of ±2 V. Negative differential resistance appeared in the input range of 0 to 2 V because of de-doping (or reduction in the side with the semiconductor layer. The device responded stably to a train of pulses with a fixed frequency. The inverse current after a pulse was related to the back-migrated ions. Importantly, the weight calculated based on the inverse current strength, was depressed during low-frequency stimulations but was potentiated during high-frequency stimulations when pulses were positive. Therefore, frequency selectivity was first observed in a semiconducting polymer/electrolyte hetero junction. Detailed analysis of the pulse response showed that the input frequency could modulate the timing of ion doping, de-doping, and re-doping at the semiconducting polymer/electrolyte interface, which then resulted in the frequency selectivity. Our study suggests that the simple redox process in semiconducting polymers can be modulated and used in signal handling or the simulation of bio-learning.

  16. Symmetric functions and orthogonal polynomials

    CERN Document Server

    Macdonald, I G

    1997-01-01

    One of the most classical areas of algebra, the theory of symmetric functions and orthogonal polynomials has long been known to be connected to combinatorics, representation theory, and other branches of mathematics. Written by perhaps the most famous author on the topic, this volume explains some of the current developments regarding these connections. It is based on lectures presented by the author at Rutgers University. Specifically, he gives recent results on orthogonal polynomials associated with affine Hecke algebras, surveying the proofs of certain famous combinatorial conjectures.

  17. Immanant Conversion on Symmetric Matrices

    Directory of Open Access Journals (Sweden)

    Purificação Coelho M.

    2014-01-01

    Full Text Available Letr Σn(C denote the space of all n χ n symmetric matrices over the complex field C. The main objective of this paper is to prove that the maps Φ : Σn(C -> Σn (C satisfying for any fixed irre- ducible characters X, X' -SC the condition dx(A +aB = dχ·(Φ(Α + αΦ(Β for all matrices A,В ε Σ„(С and all scalars a ε C are automatically linear and bijective. As a corollary of the above result we characterize all such maps Φ acting on ΣИ(С.

  18. Dynamics of the YSZ-Pt Interface

    DEFF Research Database (Denmark)

    Bay, Lasse; Jacobsen, Torben

    1997-01-01

    Yttria stabilized zirconia (YSZ)-Pt point electrodes were examined by linear potential sweep, potential step and impedance measurements at 1000 degrees C in air. Inductive loops and hysteresis phenomena with long relaxation times were found. Atomic force microscopy showed changes of the interface...

  19. Preparation and electrocatalytic properties of Pt-SiO2 nanocatalysts for ethanol electrooxidation.

    Science.gov (United States)

    Liu, B; Chen, J H; Zhong, X X; Cui, K Z; Zhou, H H; Kuang, Y F

    2007-03-01

    Due to their high stability in general acidic solutions, SiO(2) nanoparticles were selected as the second catalyst for ethanol oxidation in sulfuric acid aqueous solution. Pt-SiO(2) nanocatalysts were prepared in this paper. The micrography and elemental composition of Pt-SiO(2) nanoparticles were characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy, respectively. The electrocatalytic properties of Pt-SiO(2) nanocatalysts for ethanol oxidation were investigated by cyclic voltammetry. Under the same Pt loading mass and experimental conditions for ethanol oxidation, Pt-SiO(2) nanocatalysts show higher activity than PtRu/C (E-Tek), Pt/C (E-Tek), and Pt catalysts. Additionally, Pt-SiO(2) nanocatalysts possess good anti-poisoning ability. The results indicate that Pt-SiO(2) nanocatalysts may have good potential applications in direct ethanol fuel cells.

  20. MnO2/CNT supported Pt and PtRu nanocatalysts for direct methanol fuel cells.

    Science.gov (United States)

    Zhou, Chunmei; Wang, Hongjuan; Peng, Feng; Liang, Jiahua; Yu, Hao; Yang, Jian

    2009-07-07

    Pt/MnO2/carbon nanotube (CNT) and PtRu/MnO2/CNT nanocomposites were synthesized by successively loading hydrous MnO2 and Pt (or PtRu alloy) nanoparticles on CNTs and were used as anodic catalysts for direct methanol fuel cells (DMFCs). The existence of MnO2 on the surface of CNTs effectively increases the proton conductivity of the catalyst, which then could remarkably improve the performance of the catalyst in methanol electro-oxidation. As a result, Pt/MnO2/CNTs show higher electrochemical active surface area and better methanol electro-oxidation activity, compared with Pt/CNTs. As PtRu alloy nanoparticles were deposited on the surface of MnO2/CNTs instead of Pt, the PtRu/MnO2/CNT catalyst shows not only excellent electro-oxidation activity to methanol with forward anodic peak current density of 901 A/gPt but also good CO oxidation ability with lower preadsorbed CO oxidation onset potential (0.33 V vs Ag/AgCl) and peak potential (0.49 V vs Ag/AgCl) at room temperature.

  1. Norm estimates of complex symmetric operators applied to quantum systems

    International Nuclear Information System (INIS)

    Prodan, Emil; Garcia, Stephan R; Putinar, Mihai

    2006-01-01

    This paper communicates recent results in the theory of complex symmetric operators and shows, through two non-trivial examples, their potential usefulness in the study of Schroedinger operators. In particular, we propose a formula for computing the norm of a compact complex symmetric operator. This observation is applied to two concrete problems related to quantum mechanical systems. First, we give sharp estimates on the exponential decay of the resolvent and the single-particle density matrix for Schroedinger operators with spectral gaps. Second, we provide new ways of evaluating the resolvent norm for Schroedinger operators appearing in the complex scaling theory of resonances

  2. Cotangent bundles over all the Hermitian symmetric spaces

    International Nuclear Information System (INIS)

    Arai, Masato; Baba, Kurando

    2016-01-01

    We construct the N = 2 supersymmetric nonlinear sigma models on the cotangent bundles over all the compact and non-compact Hermitian symmetric spaces. In order to construct them we use the projective superspace formalism which is an N = 2 off-shell superfield formulation in four-dimensional space-time. This formalism allows us to obtain the explicit expression of N = 2 supersymmetric nonlinear sigma models on the cotangent bundles over any Hermitian symmetric spaces in terms of the N =1 superfields, once the Kähler potentials of the base manifolds are obtained. Starting with N = 1 supersymmetric Kähler nonlinear sigma models on the Hermitian symmetric spaces, we extend them into the N = 2 supersymmetric models by using the projective superspace formalism and derive the general formula for the cotangent bundles over all the compact and non-compact Hermitian symmetric spaces. We apply to the formula for the non-compact Hermitian symmetric space E 7 /E 6 × U(1) 1 . (paper)

  3. Comparison of PZN-PT, PMN-PT single crystals and PZT ceramic for vibration energy harvesting

    International Nuclear Information System (INIS)

    Yang, Zhengbao; Zu, Jean

    2016-01-01

    Highlights: • Systematic analysis of PMN-PT and PZN-PT single crystals for energy harvesters. • Performance analysis and comparison under various conditions. • Discussion of the effect of the SSHI technique on single crystal energy harvesters. • Efficiency analysis in both on-resonance and off-resonance conditions. - Abstract: Vibration energy harvesting has a great potential to achieve self-powered operations for wireless sensors, wearable devices and medical electronics, and thus has attracted much attention in academia and industry. The majority of research into this subject has focused on the piezoelectric effect of synthetic materials, especially the perovskite PZT ceramics. Recently the new-generation piezoelectric materials PMN-PT and PZN-PT single crystals have gained significant interest because of their outstanding piezoelectric properties. They can be used to replace the widely-adopted PZT ceramics for improving energy harvesters’ performance substantially. However, there is little research on comparing PMN-PT and PZN-PT energy harvesters against PZT harvesters. In this paper, we present a systematic comparison between vibration energy harvesters using the PMN-PT, PZN-PT single crystals and those using the PZT ceramics. Key properties of the three materials are summarized and compared. The performance of the PMN-PT and PZN-PT energy harvesters is characterized under different conditions (beam length, resistance, frequency, excitation strength, and backward coupling effect), and is quantitatively compared with the PZT counterpart. Furthermore, the effect of the synchronized switch harvesting on inductor (SSHI) circuit on the three harvesters is discussed. The experimental results indicate that energy harvesters using the PMN-PT and PZN-PT single crystals can significantly outperform those using the PZT ceramics. This study provides a strong base for future research on high-performance energy harvesters using the new PMN-PT and PZN-PT single

  4. Diagonalization of complex symmetric matrices: Generalized Householder reflections, iterative deflation and implicit shifts

    Science.gov (United States)

    Noble, J. H.; Lubasch, M.; Stevens, J.; Jentschura, U. D.

    2017-12-01

    We describe a matrix diagonalization algorithm for complex symmetric (not Hermitian) matrices, A ̲ =A̲T, which is based on a two-step algorithm involving generalized Householder reflections based on the indefinite inner product 〈 u ̲ , v ̲ 〉 ∗ =∑iuivi. This inner product is linear in both arguments and avoids complex conjugation. The complex symmetric input matrix is transformed to tridiagonal form using generalized Householder transformations (first step). An iterative, generalized QL decomposition of the tridiagonal matrix employing an implicit shift converges toward diagonal form (second step). The QL algorithm employs iterative deflation techniques when a machine-precision zero is encountered "prematurely" on the super-/sub-diagonal. The algorithm allows for a reliable and computationally efficient computation of resonance and antiresonance energies which emerge from complex-scaled Hamiltonians, and for the numerical determination of the real energy eigenvalues of pseudo-Hermitian and PT-symmetric Hamilton matrices. Numerical reference values are provided.

  5. Isolation and Identification of Bacteria That Has Potential as Producer of Protease Enzyme in the Tannery Industry, PT. Adi Satria Abadi (ASA), YOGYAKARTA

    OpenAIRE

    Said, M. I; Likadja, J. C

    2012-01-01

    Bacteria are one of the microorganisms that have the potential as a producer of protease enzyme. Tannery industrial waste is one of the media predicted to contain a number of proteolytic bacteria because of the waste generated is composed largely of protein and fat which are good as growing medium for bacteria. This study aimed to isolate and identify bacteria that have the potential as a producer of protease enzyme. Research conducted at the waste water processing installation (WWPI), tanner...

  6. Cyclic voltammograms for H on Pt(111) and Pt(100) from first principles

    DEFF Research Database (Denmark)

    Karlberg, Gustav; Jaramillo, Thomas; Skulason, Egill

    2007-01-01

    Cyclic voltammetry is a fundamental experimental method for characterizing electrochemical surfaces. Despite its wide use, a way to quantitatively and directly relate cyclic voltammetry to ab initio calculations has been lacking. We derive the cyclic voltammogram for H on Pt(111) and Pt(100), bas...... solely on density functional theory calculations and standard molecular tables. By relating the gas phase adsorption energy to the electrochemical electrode potential, we provide a direct link between surface science and electrochemistry....

  7. Primordial two-component maximally symmetric inflation

    Science.gov (United States)

    Enqvist, K.; Nanopoulos, D. V.; Quirós, M.; Kounnas, C.

    1985-12-01

    We propose a two-component inflation model, based on maximally symmetric supergravity, where the scales of reheating and the inflation potential at the origin are decoupled. This is possible because of the second-order phase transition from SU(5) to SU(3)×SU(2)×U(1) that takes place when φ≅φcinflation at the global minimum, and leads to a reheating temperature TR≅(1015-1016) GeV. This makes it possible to generate baryon asymmetry in the conventional way without any conflict with experimental data on proton lifetime. The mass of the gravitinos is m3/2≅1012 GeV, thus avoiding the gravitino problem. Monopoles are diluted by residual inflation in the broken phase below the cosmological bounds if φcUSA.

  8. CO tolerance of PdPt/C and PdPtRu/C anodes for PEMFC

    International Nuclear Information System (INIS)

    Garcia, Amanda C.; Paganin, Valdecir A.; Ticianelli, Edson A.

    2008-01-01

    The performance of H 2 /O 2 proton exchange membrane fuel cells (PEMFCs) fed with CO-contaminated hydrogen was investigated for anodes with PdPt/C and PdPtRu/C electrocatalysts. The physicochemical properties of the catalysts were characterized by energy dispersive X-ray (EDX) analyses, X-ray diffraction (XRD) and 'in situ' X-ray absorption near edge structure (XANES). Experiments were conducted in electrochemical half and single cells by cyclic voltammetry (CV) and I-V polarization measurements, while DEMS was employed to verify the formation of CO 2 at the PEMFC anode outlet. A quite high performance was achieved for the PEMFC fed with H 2 + 100 ppm CO with the PdPt/C and PdPtRu/C anodes containing 0.4 mg metal cm -2 , with the cell presenting potential losses below 200 mV at 1 A cm -2 , with respect to the system fed with pure H 2 . For the PdPt/C catalysts no CO 2 formation was seen at the PEMFC anode outlet, indicating that the CO tolerance is improved due to the existence of more free surface sites for H 2 electrooxidation, probably due to a lower Pd-CO interaction compared to pure Pd or Pt. For PdPtRu/C the CO tolerance may also have a contribution from the bifunctional mechanism, as shown by the presence of CO 2 in the PEMFC anode outlet

  9. Reclaim/recycle of Pt/C catalysts for PEMFC

    International Nuclear Information System (INIS)

    Zhao, Jishi; He, Xiangming; Tian, Jianhua; Wan, Chunrong; Jiang, Changyin

    2007-01-01

    Platinum was reclaimed from Pt/C catalysts of the PEMFC by drying the degraded Pt/C catalysts at 80 o C for 3 h, followed by sintering at 600 o C for 6 h, dissolution by aqua fortis, purification with hydrochloric acid, reduction and filtration, successively. Pt/C catalysts were prepared again from the reclaimed Pt by two proposed processes, e.g., pH value control process and mass control process. The fuel cell with recycled catalysts presented a power density of over 0.18 W cm -2 . The reclaiming of Pt/C catalysts is a potential way for recycling Pt for PEMFC, reducing the cost of PEMFC

  10. Probabilistic cloning of three symmetric states

    International Nuclear Information System (INIS)

    Jimenez, O.; Bergou, J.; Delgado, A.

    2010-01-01

    We study the probabilistic cloning of three symmetric states. These states are defined by a single complex quantity, the inner product among them. We show that three different probabilistic cloning machines are necessary to optimally clone all possible families of three symmetric states. We also show that the optimal cloning probability of generating M copies out of one original can be cast as the quotient between the success probability of unambiguously discriminating one and M copies of symmetric states.

  11. Classification of symmetric toroidal orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Maximilian; Ratz, Michael; Torrado, Jesus [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-09-15

    We provide a complete classification of six-dimensional symmetric toroidal orbifolds which yield N{>=}1 supersymmetry in 4D for the heterotic string. Our strategy is based on a classification of crystallographic space groups in six dimensions. We find in total 520 inequivalent toroidal orbifolds, 162 of them with Abelian point groups such as Z{sub 3}, Z{sub 4}, Z{sub 6}-I etc. and 358 with non-Abelian point groups such as S{sub 3}, D{sub 4}, A{sub 4} etc. We also briefly explore the properties of some orbifolds with Abelian point groups and N=1, i.e. specify the Hodge numbers and comment on the possible mechanisms (local or non-local) of gauge symmetry breaking.

  12. Relativistic fluids in spherically symmetric space

    International Nuclear Information System (INIS)

    Dipankar, R.

    1977-12-01

    Some of McVittie and Wiltshire's (1977) solutions of Walker's (1935) isotropy conditions for relativistic perfect fluid spheres are generalized. Solutions are spherically symmetric and conformally flat

  13. Development of methods and criteria for a standardized evaluation of contaminated sites and abandoned waste disposal sites particularly concerning their ground water contamination potential. Pt. 1. Final Report

    International Nuclear Information System (INIS)

    Kerndorff, H.; Schleyer, R.; Arneth, J.D.; Struppe, T.; Milde, G.

    1994-01-01

    Contaminated sites should be evaluated to such an extend, that nearly all risks for man and environment can be safely estimated. An assessment for such sites is presented which combines a substance-specific and a site-specific evaluation. It is a standardized path-specific concept in which - as an example - the contamination path ''waste - groundwater - drinking-water'' is investigated and evaluated in detail. Path-specific main contaminants are established on a statistic basis and ranked according to normalized evaluation numbers of 1-100. Their toxicity potential is calculated for which a particular and standardized method was developed. Main contaminants having a high toxicity potential are called priority contaminants. For the most important exposure/usage on this contamination path, the drinking-water catchment, hygienic and toxicologic based standards are presented. Together with site-specific conditions and the also path-specific and normalized transfer/persistency potential of the priority contaminants it is possible to come to a site- and usage/exposure-specific evaluation of individual sites. (orig.) [de

  14. Parallel coupling of symmetric and asymmetric exclusion processes

    International Nuclear Information System (INIS)

    Tsekouras, K; Kolomeisky, A B

    2008-01-01

    A system consisting of two parallel coupled channels where particles in one of them follow the rules of totally asymmetric exclusion processes (TASEP) and in another one move as in symmetric simple exclusion processes (SSEP) is investigated theoretically. Particles interact with each other via hard-core exclusion potential, and in the asymmetric channel they can only hop in one direction, while on the symmetric lattice particles jump in both directions with equal probabilities. Inter-channel transitions are also allowed at every site of both lattices. Stationary state properties of the system are solved exactly in the limit of strong couplings between the channels. It is shown that strong symmetric couplings between totally asymmetric and symmetric channels lead to an effective partially asymmetric simple exclusion process (PASEP) and properties of both channels become almost identical. However, strong asymmetric couplings between symmetric and asymmetric channels yield an effective TASEP with nonzero particle flux in the asymmetric channel and zero flux on the symmetric lattice. For intermediate strength of couplings between the lattices a vertical-cluster mean-field method is developed. This approximate approach treats exactly particle dynamics during the vertical transitions between the channels and it neglects the correlations along the channels. Our calculations show that in all cases there are three stationary phases defined by particle dynamics at entrances, at exits or in the bulk of the system, while phase boundaries depend on the strength and symmetry of couplings between the channels. Extensive Monte Carlo computer simulations strongly support our theoretical predictions. Theoretical calculations and computer simulations predict that inter-channel couplings have a strong effect on stationary properties. It is also argued that our results might be relevant for understanding multi-particle dynamics of motor proteins

  15. Electrocatalytic activity of Pt and PtCo deposited on Ebonex by BH reduction

    International Nuclear Information System (INIS)

    Slavcheva, E.; Nikolova, V.; Petkova, T.; Lefterova, E.; Dragieva, I.; Vitanov, T.; Budevski, E.

    2005-01-01

    The method of borohydride reduction (BH) has been applied to synthesize Pt and PtCo nanoparticles supported on Magneli phase titanium oxides, using Pt and Co ethylenediamine complexes as metal precursors. The phase composition of the synthesized catalysts, their morphology and surface structure were studied by physical methods for bulk and surface analysis, such as electron microprobe analysis (EMPA), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and BET technique. The catalytic activity towards oxygen evolution reaction in alkaline aqueous solution was investigated using the common electrochemical techniques. It was found that PtCo/Ebonex facilitates essentially the oxygen evolution which starts at lower overpotentials and proceeds with higher rate compared to both the supported Pt and unsupported PtCo catalysts. The observed effect is prescribed to metal-metal and metal-support interactions. The Ebonex possesses a good electrical conductivity and corrosion resistance at high anodic potentials and despite its low surface area is considered as a potential catalyst carrier for the oxygen evolution reaction

  16. Path integral approach for superintegrable potentials on spaces of non-constant curvature. Pt. 1. Darboux spaces D{sub I} and D{sub II}

    Energy Technology Data Exchange (ETDEWEB)

    Grosche, C. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Pogosyan, G.S. [Joint Inst. of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics]|[Guadalajara Univ., Jalisco (Mexico). Dept. de Matematicas CUCEI; Sissakian, A.N. [Joint Inst. of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics

    2006-07-15

    In this paper the Feynman path integral technique is applied for superintegrable potentials on two-dimensional spaces of non-constant curvature: these spaces are Darboux spaces D{sub I} and D{sub II}, respectively. On D{sub I} there are three and on D{sub II} foru such potentials, respectively. We are able to evaluate the path integral in most of the separating coordinate systems, leading to expressions for the Green functions, the discrete and continuous wave-functions, and the discrete energy-spectra. In some cases, however, the discrete spectrum cannot be stated explicitly, because it is either determined by a transcendental equation involving parabolic cylinder functions (Darboux space I), or by a higher order polynomial equation. The solutions on D{sub I} in particular show that superintegrable systems are not necessarily degenerate. We can also show how the limiting cases of flat space (Constant curvature zero) and the two-dimensional hyperboloid (constant negative curvature) emerge. (Orig.)

  17. Studies with Pt-195M platinum complexes

    International Nuclear Information System (INIS)

    Cole, W.; Wiza, J.; Odenheimer, B.; Wolf, W.; Hoeschele, J.D.; Butler, T.A.; Smyth, R.D.

    1982-01-01

    Cis-diamine-ethylmalonato 195 Pt(II) has been synthesised to investigate its chemotherapeutic potential in cancer and other diseases. It is likely to be less nephrotoxic than the established drug crisplatin. Biodistribution and clearance studies were carried out on Sprague-Dowley rats after intravenous administration of the new drug. (author)

  18. Transposing an active fault database into a seismic hazard fault model for nuclear facilities. Pt. 1. Building a database of potentially active faults (BDFA) for metropolitan France

    Energy Technology Data Exchange (ETDEWEB)

    Jomard, Herve; Cushing, Edward Marc; Baize, Stephane; Chartier, Thomas [IRSN - Institute of Radiological Protection and Nuclear Safety, Fontenay-aux-Roses (France); Palumbo, Luigi; David, Claire [Neodyme, Joue les Tours (France)

    2017-07-01

    The French Institute for Radiation Protection and Nuclear Safety (IRSN), with the support of the Ministry of Environment, compiled a database (BDFA) to define and characterize known potentially active faults of metropolitan France. The general structure of BDFA is presented in this paper. BDFA reports to date 136 faults and represents a first step toward the implementation of seismic source models that would be used for both deterministic and probabilistic seismic hazard calculations. A robustness index was introduced, highlighting that less than 15% of the database is controlled by reasonably complete data sets. An example of transposing BDFA into a fault source model for PSHA (probabilistic seismic hazard analysis) calculation is presented for the Upper Rhine Graben (eastern France) and exploited in the companion paper (Chartier et al., 2017, hereafter Part 2) in order to illustrate ongoing challenges for probabilistic fault-based seismic hazard calculations.

  19. Path integral approach for superintegrable potentials on spaces of non-constant curvature. Pt. 2. Darboux spaces D{sub III} and D{sub IV}

    Energy Technology Data Exchange (ETDEWEB)

    Grosche, C. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Pogosyan, G.S. [Joint Inst. of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics]|[Guadalajara Univ., Jalisco (Mexico). Dept. de Matematicas CUCEI; Sissakian, A.N. [Joint Inst. of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics

    2006-08-15

    This is the second paper on the path integral approach of superintegrable systems on Darboux spaces, spaces of non-constant curvature. We analyze in the spaces D{sub III} and D{sub IV} five respectively four superintegrable potentials, which were first given by Kalnins et al. We are able to evaluate the path integral in most of the separating coordinate systems, leading to expressions for the Green functions, the discrete and continuous wave-functions, and the discrete energy-spectra. In some cases, however, the discrete spectrum cannot be stated explicitly, because it is determined by a higher order polynomial equation. We show that also the free motion in Darboux space of type III can contain bound states, provided the boundary conditions are appropriate. We state the energy spectrum and the wave-functions, respectively. (orig.)

  20. Critical assessment of Pt surface energy - An atomistic study

    Science.gov (United States)

    Kim, Jin-Soo; Seol, Donghyuk; Lee, Byeong-Joo

    2018-04-01

    Despite the fact that surface energy is a fundamental quantity in understanding surface structure of nanoparticle, the results of experimental measurements and theoretical calculations for the surface energy of pure Pt show a wide range of scattering. It is necessary to further ensure the surface energy of Pt to find the equilibrium shape and atomic configuration in Pt bimetallic nanoparticles accurately. In this article, we critically assess and optimize the Pt surface energy using a semi-empirical atomistic approach based on the second nearest-neighbor modified embedded-atom method interatomic potential. That is, the interatomic potential of pure Pt was adjusted in a way that the surface segregation tendency in a wide range of Pt binary alloys is reproduced in accordance with experimental information. The final optimized Pt surface energy (mJ/m2) is 2036 for (100) surface, 2106 for (110) surface, and 1502 for (111) surface. The potential can be utilized to find the equilibrium shape and atomic configuration of Pt bimetallic nanoparticles more accurately.

  1. Comprehensive asynchronous symmetric rendezvous algorithm in ...

    Indian Academy of Sciences (India)

    Meenu Chawla

    2017-11-10

    Nov 10, 2017 ... Simulation results affirm that CASR algorithm performs better in terms of average time-to-rendezvous as compared ... process; neighbour discovery; symmetric rendezvous algorithm. 1. .... dezvous in finite time under the symmetric model. The CH ..... CASR algorithm in Matlab 7.11 and performed several.

  2. Symmetric splitting of very light systems

    International Nuclear Information System (INIS)

    Grotowski, K.; Majka, Z.; Planeta, R.

    1985-01-01

    Fission reactions that produce fragments close to one half the mass of the composite system are traditionally observed in heavy nuclei. In light systems, symmetric splitting is rarely observed and poorly understood. It would be interesting to verify the existence of the symmetric splitting of compound nuclei with A 12 C + 40 Ca, 141 MeV 9 Be + 40 Ca and 153 MeV 6 Li + 40 Ca. The out-of-plane correlation of symmetric products was also measured for the reaction 186 MeV 12 C + 40 Ca. The coincidence measurements of the 12 C + 40 Ca system demonstrated that essentially all of the inclusive yield of symmetric products around 40 0 results from a binary decay. To characterize the dependence of the symmetric splitting process on the excitation energy of the 12 C + 40 C system, inclusive measurements were made at bombarding energies of 74, 132, 162, and 185 MeV

  3. Pt/AlPO{sub 4} nanocomposite thin-film electrodes for ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Yuhong; Kang, Joonhyeon; Nam, Seunghoon; Byun, Sujin [WCU Hybrid Materials Program, Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 151-744 (Korea, Republic of); Park, Byungwoo, E-mail: byungwoo@snu.ac.kr [WCU Hybrid Materials Program, Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2012-07-16

    The enhanced catalytic properties toward ethanol electrooxidation on Pt/AlPO{sub 4} nanocomposite thin-film electrodes were investigated. The Pt/AlPO{sub 4} nanocomposites with various Al/Pt ratios (0.27, 0.57, and 0.96) were fabricated by a co-sputtering method. All of the Pt/AlPO{sub 4} nanocomposites showed a negative shift in the onset potential and a higher current density than those of pure Pt electrode for the electrooxidation of ethanol. Among the various Pt/AlPO{sub 4} nanocomposite thin-film electrodes, the electrode with an atomic ratio of Al to Pt of 0.57 showed the highest electrocatalytic activity for ethanol electrooxidation. The activation enthalpy for the optimum Pt/AlPO{sub 4} nanocomposite was approximately 0.05 eV lower than that of pure Pt. It is believed that the enhancement in catalytic activity is due to the electron-rich Pt resulting from the Fermi-energy difference between Pt and AlPO{sub 4}. - Highlights: Black-Right-Pointing-Pointer The enhanced ethanol electrooxidation on Pt/AlPO{sub 4} nanocomposites is investigated. Black-Right-Pointing-Pointer The Pt/AlPO{sub 4} exhibits higher current density and lower onset potential than pure Pt. Black-Right-Pointing-Pointer The activation enthalpy for optimum Pt/AlPO{sub 4} electrode is {approx}0.05 eV lower than pure Pt. Black-Right-Pointing-Pointer XPS shows electron-rich Pt due to Fermi-energy difference between Pt and AlPO{sub 4}.

  4. Spherically symmetric charged compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Jaypee Institute of Information Technology University, Department of Mathematics, Noida, Uttar Pradesh (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Chowdhury, Sourav Roy [Seth Anandaram Jaipuria College, Department of Physics, Kolkata, West Bengal (India)

    2015-08-15

    In this article we consider the static spherically symmetric metric of embedding class 1. When solving the Einstein-Maxwell field equations we take into account the presence of ordinary baryonic matter together with the electric charge. Specific new charged stellar models are obtained where the solutions are entirely dependent on the electromagnetic field, such that the physical parameters, like density, pressure etc. do vanish for the vanishing charge. We systematically analyze altogether the three sets of Solutions I, II, and III of the stellar models for a suitable functional relation of ν(r). However, it is observed that only the Solution I provides a physically valid and well-behaved situation, whereas the Solutions II and III are not well behaved and hence not included in the study. Thereafter it is exclusively shown that the Solution I can pass through several standard physical tests performed by us. To validate the solution set presented here a comparison has also been made with that of the compact stars, like RX J 1856 - 37, Her X - 1, PSR 1937+21, PSRJ 1614-2230, and PSRJ 0348+0432, and we have shown the feasibility of the models. (orig.)

  5. Exact axially symmetric galactic dynamos

    Science.gov (United States)

    Henriksen, R. N.; Woodfinden, A.; Irwin, J. A.

    2018-05-01

    We give a selection of exact dynamos in axial symmetry on a galactic scale. These include some steady examples, at least one of which is wholly analytic in terms of simple functions and has been discussed elsewhere. Most solutions are found in terms of special functions, such as associated Lagrange or hypergeometric functions. They may be considered exact in the sense that they are known to any desired accuracy in principle. The new aspect developed here is to present scale-invariant solutions with zero resistivity that are self-similar in time. The time dependence is either a power law or an exponential factor, but since the geometry of the solution is self-similar in time we do not need to fix a time to study it. Several examples are discussed. Our results demonstrate (without the need to invoke any other mechanisms) X-shaped magnetic fields and (axially symmetric) magnetic spiral arms (both of which are well observed and documented) and predict reversing rotation measures in galaxy haloes (now observed in the CHANG-ES sample) as well as the fact that planar magnetic spirals are lifted into the galactic halo.

  6. Baryon symmetric big bang cosmology

    Science.gov (United States)

    Stecker, F. W.

    1978-01-01

    Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.

  7. Substring-Searchable Symmetric Encryption

    Directory of Open Access Journals (Sweden)

    Chase Melissa

    2015-06-01

    Full Text Available In this paper, we consider a setting where a client wants to outsource storage of a large amount of private data and then perform substring search queries on the data – given a data string s and a search string p, find all occurrences of p as a substring of s. First, we formalize an encryption paradigm that we call queryable encryption, which generalizes searchable symmetric encryption (SSE and structured encryption. Then, we construct a queryable encryption scheme for substring queries. Our construction uses suffix trees and achieves asymptotic efficiency comparable to that of unencrypted suffix trees. Encryption of a string of length n takes O(λn time and produces a ciphertext of size O(λn, and querying for a substring of length m that occurs k times takes O(λm+k time and three rounds of communication. Our security definition guarantees correctness of query results and privacy of data and queries against a malicious adversary. Following the line of work started by Curtmola et al. (ACM CCS 2006, in order to construct more efficient schemes we allow the query protocol to leak some limited information that is captured precisely in the definition. We prove security of our substring-searchable encryption scheme against malicious adversaries, where the query protocol leaks limited information about memory access patterns through the suffix tree of the encrypted string.

  8. Uniqueness of flat spherically symmetric spacelike hypersurfaces admitted by spherically symmetric static spacetimes

    Science.gov (United States)

    Beig, Robert; Siddiqui, Azad A.

    2007-11-01

    It is known that spherically symmetric static spacetimes admit a foliation by flat hypersurfaces. Such foliations have explicitly been constructed for some spacetimes, using different approaches, but none of them have proved or even discussed the uniqueness of these foliations. The issue of uniqueness becomes more important due to suitability of flat foliations for studying black hole physics. Here, flat spherically symmetric spacelike hypersurfaces are obtained by a direct method. It is found that spherically symmetric static spacetimes admit flat spherically symmetric hypersurfaces, and that these hypersurfaces are unique up to translation under the timelike Killing vector. This result guarantees the uniqueness of flat spherically symmetric foliations for such spacetimes.

  9. Evaluation of the water hazard potential of solid wastes. Pt. 1. Experimental results; Untersuchung von Abfaellen mit biologischen Testverfahren zur Bewertung der Wassergefaehrdung. T. 1. Experimentelle Ergebnisse

    Energy Technology Data Exchange (ETDEWEB)

    Brackemann, H.; Hahn, J.; Vogel, U. [Umweltbundesamt, Berlin (Germany); Hagendorf, U. [Umweltbundesamt, Langen (Germany)

    2000-07-01

    Wastes from three different types of waste treatment facilities (slag from a municipal waste incineration plant, slag granules from a pilot plant combining carbonization and incineration, mechanical and biological treated wastes) were examined to determine their hazard potential to different waters sites. The process temperature is seen to be the main difference between the three treatment processes. The wastes were extracted with water according to the German standard DIN 38414 S 4 and additionally at a constant pH value of 4. The leachates were investigated in a battery of aquatic bioassays and characterised physically and chemically. Every leachate revealed in a toxic effect at least in one test. The toxicity of the leachates prepared at a pH of 4 was significantly higher than the toxicity of the leachates prepared by extraction with water without pH adjustment. The leachates of the slag granules showed the lowest toxicity. On the basis of these experimental results, a scheme to derive Water Hazard Classes of wastes, which is presented in part II of this publication, was developed. (orig.) [German] Zur Bestimmung der wassergefaehrdenden Eigenschaften wurden die Eluate von Abfaellen/Rueckstaenden aus drei verschiedenen Abfallbehandlungsanlagen untersucht (Schlacke aus einer Abfallverbrennungsanlage (Rostfeuerung), Schmelzgranulat aus einer Versuchsanlage mit kombinierter Verschwelung und Hochtemperaturverbrennung sowie biologisch-mechanisch behandelter Abfall). Ein wesentlicher Unterschied dieser drei Verfahren liegt in der Behandlungstemperatur. Die Rueckstaende wurden nach DIN 38414, Teil 4 sowie bei einem konstant eingestellten pH-Wert von 4 eluiert. Die Eluate wurden mit verschiedenen aquatischen Biotests untersucht sowie physikalisch-chemisch charakterisiert. Dabei zeigte sich, dass jedes untersuchte Eluat in mindestens einem Test eine toxische Wirkung aufwies; die Toxizitaet der bei saurem pH-Wert durchgefuehrten Elutionen war deutlich erhoeht. Die Eluate

  10. Carbon-coated NiPt, CoPt nanoalloys: size control and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    El-Gendy, A.A. [Kirchhoff Institute for Physics, University of Heidelberg, D-69120 Heidelberg (Germany); Leibniz Institute for Solid State and Materials Research (IFW) Dresden (Germany); Hampel, S.; Leonhardt, A.; Khavrus, V.; Buechner, B. [Leibniz Institute for Solid State and Materials Research (IFW) Dresden (Germany); Klingeler, R. [Kirchhoff Institute for Physics, University of Heidelberg, D-69120 Heidelberg (Germany)

    2011-07-01

    Controlled synthesis of magnetic nanoparticles with well-defined size and composition is always a challenge in material-based nanoscience. Here, we apply the high pressure chemical vapour deposition technique (HPCVD) to obtain carbon-shielded magnetic alloy nanoparticles under control of the particle size. Carbon encapsulated NiPt, CoPt (NiPt rate at C, CoPt rate at C) nanoalloys were synthesized by means of HPCVD starting from sublimating appropriate metal-organic precursors. Structural characterization by means of high resolution transmission electron microscopy, energy dispersive X-ray analysis and X-ray diffraction indicated the formation of coated bimetallic Ni{sub x}Pt{sub 100-x} and CoxPt{sub 100-x} nanoparticles. Adjusting the sublimation temperature of the different precursors allowed tuning the core sizes with small size distribution. In addition, detailed studies of the magnetic properties are presented. AC magnetic heating studies imply the potential of the coated nanoalloys for hyperthermia therapy.

  11. The symmetric extendibility of quantum states

    International Nuclear Information System (INIS)

    Nowakowski, Marcin L

    2016-01-01

    Studies on the symmetric extendibility of quantum states have become particularly important in the context of the analysis of one-way quantum measures of entanglement, and the distillability and security of quantum protocols. In this paper we analyze composite systems containing a symmetric extendible part, with particular attention devoted to the one-way security of such systems. Further, we introduce a new one-way entanglement monotone based on the best symmetric approximation of a quantum state and the extendible number of a quantum state. We underpin these results with geometric observations about the structures of multi-party settings which posses substantial symmetric extendible components in their subspaces. The impossibility of reducing the maximal symmetric extendibility by means of the one-way local operations and classical communication method is pointed out on multiple copies. Finally, we state a conjecture linking symmetric extendibility with the one-way distillability and security of all quantum states, analyzing the behavior of a private key in the neighborhood of symmetric extendible states. (paper)

  12. Averaging in spherically symmetric cosmology

    International Nuclear Information System (INIS)

    Coley, A. A.; Pelavas, N.

    2007-01-01

    The averaging problem in cosmology is of fundamental importance. When applied to study cosmological evolution, the theory of macroscopic gravity (MG) can be regarded as a long-distance modification of general relativity. In the MG approach to the averaging problem in cosmology, the Einstein field equations on cosmological scales are modified by appropriate gravitational correlation terms. We study the averaging problem within the class of spherically symmetric cosmological models. That is, we shall take the microscopic equations and effect the averaging procedure to determine the precise form of the correlation tensor in this case. In particular, by working in volume-preserving coordinates, we calculate the form of the correlation tensor under some reasonable assumptions on the form for the inhomogeneous gravitational field and matter distribution. We find that the correlation tensor in a Friedmann-Lemaitre-Robertson-Walker (FLRW) background must be of the form of a spatial curvature. Inhomogeneities and spatial averaging, through this spatial curvature correction term, can have a very significant dynamical effect on the dynamics of the Universe and cosmological observations; in particular, we discuss whether spatial averaging might lead to a more conservative explanation of the observed acceleration of the Universe (without the introduction of exotic dark matter fields). We also find that the correlation tensor for a non-FLRW background can be interpreted as the sum of a spatial curvature and an anisotropic fluid. This may lead to interesting effects of averaging on astrophysical scales. We also discuss the results of averaging an inhomogeneous Lemaitre-Tolman-Bondi solution as well as calculations of linear perturbations (that is, the backreaction) in an FLRW background, which support the main conclusions of the analysis

  13. Ternary Pt-Ru-Ni catalytic layers for methanol electrooxidation prepared by electrodeposition and galvanic replacement

    Directory of Open Access Journals (Sweden)

    Athanasios ePapaderakis

    2014-06-01

    Full Text Available Ternary Pt-Ru-Ni deposits on glassy carbon substrates, Pt-Ru(Ni/GC, have been formed by initial electrodeposition of Ni layers onto glassy carbon electrodes, followed by their partial exchange for Pt and Ru, upon their immersion into equimolar solutions containing complex ions of the precious metals. The overall morphology and composition of the deposits has been studied by SEM microscopy and EDS spectroscopy. Continuous but nodular films have been confirmed, with a Pt÷Ru÷Ni % bulk atomic composition ratio of 37÷12÷51 (and for binary Pt-Ni control systems of 47÷53. Fine topographical details as well as film thickness have been directly recorded using AFM microscopy. The composition of the outer layers as well as the interactions of the three metals present have been studied by XPS spectroscopy and a Pt÷Ru÷Ni % surface atomic composition ratio of 61÷12÷27 (and for binary Pt-Ni control systems of 85÷15 has been found, indicating the enrichment of the outer layers in Pt; a shift of the Pt binding energy peaks to higher values was only observed in the presence of Ru and points to an electronic effect of Ru on Pt. The surface electrochemistry of the thus prepared Pt-Ru(Ni/GC and Pt(Ni/GC electrodes in deaerated acid solutions (studied by cyclic voltammetry proves the existence of a shell consisting exclusively of Pt-Ru or Pt. The activity of the Pt-Ru(Ni deposits towards methanol oxidation (studied by slow potential sweep voltammetry is higher from that of the Pt(Ni deposit and of pure Pt; this enhancement is attributed both to the well-known Ru synergistic effect due to the presence of its oxides but also (based on the XPS findings to a modification effect of Pt electronic properties.

  14. Linac design algorithm with symmetric segments

    International Nuclear Information System (INIS)

    Takeda, Harunori; Young, L.M.; Nath, S.; Billen, J.H.; Stovall, J.E.

    1996-01-01

    The cell lengths in linacs of traditional design are typically graded as a function of particle velocity. By making groups of cells and individual cells symmetric in both the CCDTL AND CCL, the cavity design as well as mechanical design and fabrication is simplified without compromising the performance. We have implemented a design algorithm in the PARMILA code in which cells and multi-cavity segments are made symmetric, significantly reducing the number of unique components. Using the symmetric algorithm, a sample linac design was generated and its performance compared with a similar one of conventional design

  15. Solution of Schroedinger Equation for Two-Dimensional Complex Quartic Potentials

    International Nuclear Information System (INIS)

    Singh, Ram Mehar; Chand, Fakir; Mishra, S. C.

    2009-01-01

    We investigate the quasi-exact solutions of the Schroedinger wave equation for two-dimensional non-hermitian complex Hamiltonian systems within the frame work of an extended complex phase space characterized by x = x 1 + ip 3 , y = x 2 + ip 4 , p x = p 1 + ix 3 , p y = p 2 + ix 4 . Explicit expressions of the energy eigenvalues and the eigenfunctions for ground and first excited states for a complex quartic potential are obtained. Eigenvalue spectra of some variants of the complex quartic potential, including PT-symmetric one, are also worked out. (general)

  16. Roughening of Pt nanoparticles induced by surface-oxide formation

    NARCIS (Netherlands)

    Zhu, T.; Hensen, E.J.M.; Santen, van R.A.; Tian, N.; Sun, S.-G.; Kaghazchi, P.; Jacob, T.

    2013-01-01

    Using density functional theory (DFT) and thermodynamic considerations we studied the equilibrium shape of Pt nanoparticles (NPs) under electrochemical conditions. We found that at very high oxygen coverage, obtained at high electrode potentials, the experimentally-observed tetrahexahedral (THH) NPs

  17. Electronic structure, thermodynamic properties and hydrogenation of LaPtIn and CePtIn compounds by ab-initio methods

    International Nuclear Information System (INIS)

    Jezierski, Andrzej; Szytuła, Andrzej

    2016-01-01

    The electronic structures and thermodynamic properties of LaPtIn and CePtIn are studied by means of ab-initio full-relativistic full-potential local orbital basis (FPLO) method within densities functional (DFT) methodologies. We have also examined the influence of hydrogen on the electronic structure and stability of CePtInH and LaPtInH systems. The positions of the hydrogen atoms have been found from the minimum of the total energy. Our calculations have shown that band structure and topology of the Fermi surfaces changed significantly during the hydrogenation. The thermodynamic properties (bulk modulus, Debye temperatures, constant pressure heat capacity) calculated in quasi-harmonic Debye-Grüneisen model are in a good agreement with the experimental data. We have applied different methods of the calculation of the equation of states (EOS) (Murnaghan, Birch-Murnaghan, Poirier–Tarantola, Vinet). The thermodynamic properties are presented for the pressure 0< P<9 GPa and the temperature range 0< T<300 K. - Highlights: • Full relativistic band structure of LaPtIn and CePtIn. • Fermi surface of LaPtIn, LaPtInH, CePtIn, CePtInH. • Effect of hydrogenation on the electronic structure of LaPtIn and CePtIn. • Thermodynamic properties in the quasi-harmonic Debye-Grüneisen model.

  18. Electrochemical Synthesis of Ammonia from Water and Nitrogen using a Pt/GDC/Pt Cell

    International Nuclear Information System (INIS)

    Kim, Jong Nam; Yoo, Chung-Yul; Joo, Jong Hoon; Yu, Ji Haeng; Sharma, Monika; Yoon, Hyung Chul; Jeoung, Hana; Song, Ki Chang

    2014-01-01

    Electrochemical ammonia synthesis from water and nitrogen using a Pt/GDC/Pt cell was experimentally investigated. Electrochemical analysis and ammonia synthesis in the moisture-saturated nitrogen environment were performed under the operating temperature range 400-600 .deg. C and the applied potential range OCV (Open Circuit Voltage)-1.2V. Even though the ammonia synthesis rate was augmented with the increase in the operating temperature (i.e.. increase in the applied current) under the constant potential, the faradaic efficiency was decreased because of the limitation of dissociative chemisorption of nitrogen on the Pt electrode. The maximum synthesis rate of ammonia was 3.67x10 -11 mols -1 cm -2 with 0.1% faradaic efficiency at 600 .deg. C

  19. Electrochemical Synthesis of Ammonia from Water and Nitrogen using a Pt/GDC/Pt Cell

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Nam; Yoo, Chung-Yul; Joo, Jong Hoon; Yu, Ji Haeng; Sharma, Monika; Yoon, Hyung Chul [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Jeoung, Hana; Song, Ki Chang [Konyang University, Nonsan (Korea, Republic of)

    2014-02-15

    Electrochemical ammonia synthesis from water and nitrogen using a Pt/GDC/Pt cell was experimentally investigated. Electrochemical analysis and ammonia synthesis in the moisture-saturated nitrogen environment were performed under the operating temperature range 400-600 .deg. C and the applied potential range OCV (Open Circuit Voltage)-1.2V. Even though the ammonia synthesis rate was augmented with the increase in the operating temperature (i.e.. increase in the applied current) under the constant potential, the faradaic efficiency was decreased because of the limitation of dissociative chemisorption of nitrogen on the Pt electrode. The maximum synthesis rate of ammonia was 3.67x10{sup -11} mols{sup -1}cm{sup -2} with 0.1% faradaic efficiency at 600 .deg. C.

  20. Biofunctionalized ferromagnetic CoPt{sub 3}/polymer nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Martins, M A [Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Neves, M C [Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Esteves, A C C [Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Girginova, P I [Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Guiomar, A J [Department of Biochemistry and CNC, University of Coimbra, 3001-401 Coimbra (Portugal); Amaral, V S [Department of Physics, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Trindade, T [Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal)

    2007-05-30

    Magnetic latexes were prepared by the encapsulation of organically capped CoPt{sub 3} nanoparticles via miniemulsion in situ radical polymerization of tert-butyl acrylate (tBA). This is the first example of a CoPt{sub 3} based polymer nanocomposite showing ferromagnetic behaviour at room temperature. Each nanocomposite particle contains a magnetic core composed of CoPt{sub 3} nanoparticles (d{approx}7 nm, a{sub 0} = 3.848 A) encapsulated by poly(t-butyl acrylate). The CoPt{sub 3}/PtBA latexes contain polyester groups that can be readily hydrolysed, rendering the surface with carboxylic functionalities and hence allowing bioconjugation. Complementary to such surface modification experiments, we report that bovine IgG antibodies can bind to the magnetic latexes, and the potential of the nanocomposites for in vitro specific bioapplications is discussed.

  1. Symmetric nuclear matter with Skyrme interaction

    International Nuclear Information System (INIS)

    Manisa, K.; Bicer, A.; Atav, U.

    2010-01-01

    The equation of state (EOS) and some properties of symmetric nuclear matter, such as the saturation density, saturation energy and incompressibility, are obtained by using Skyrme's density-dependent effective nucleon-nucleon interaction.

  2. Performance limitations of translationally symmetric nonimaging devices

    Science.gov (United States)

    Bortz, John C.; Shatz, Narkis E.; Winston, Roland

    2001-11-01

    The component of the optical direction vector along the symmetry axis is conserved for all rays propagated through a translationally symmetric optical device. This quality, referred to herein as the translational skew invariant, is analogous to the conventional skew invariant, which is conserved in rotationally symmetric optical systems. The invariance of both of these quantities is a consequence of Noether's theorem. We show how performance limits for translationally symmetric nonimaging optical devices can be derived from the distributions of the translational skew invariant for the optical source and for the target to which flux is to be transferred. Examples of computed performance limits are provided. In addition, we show that a numerically optimized non-tracking solar concentrator utilizing symmetry-breaking surface microstructure can overcome the performance limits associated with translational symmetry. The optimized design provides a 47.4% increase in efficiency and concentration relative to an ideal translationally symmetric concentrator.

  3. Symmetrical parahiliar infiltrated, cough and dyspnoea

    International Nuclear Information System (INIS)

    Giraldo Estrada, Horacio; Escalante, Hector

    2004-01-01

    It is the case a patient to who is diagnosed symmetrical parahiliar infiltrated; initially she is diagnosed lymphoma Hodgkin, treaty with radiotherapy and chemotherapy, but the X rays of the thorax demonstrated parahiliars and paramediastinals infiltrated

  4. Introduction to left-right symmetric models

    International Nuclear Information System (INIS)

    Grimus, W.

    1993-01-01

    We motivate left-right symmetric models by the possibility of spontaneous parity breaking. Then we describe the multiplets and the Lagrangian of such models. Finally we discuss lower bounds on the right-handed scale. (author)

  5. Theorem on axially symmetric gravitational vacuum configurations

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulos, A; Le Denmat, G [Paris-6 Univ., 75 (France). Inst. Henri Poincare

    1977-01-24

    A theorem is proved which asserts the non-existence of axially symmetric gravitational vacuum configurations with non-stationary rotation only. The eventual consequences in black-hole physics are suggested.

  6. Left-right symmetric superstring supergravitation

    International Nuclear Information System (INIS)

    Burova, M.V.; Ter-Martirosyan, K.E.

    1988-01-01

    A left-right (L-R) symmetric model of four-dimensional supergravitation with a SO(10) gauge group obtained as the low-energy limit is superstring theory is considered. The spectrum of the gauge fields and their interactions are in agreement with the Weinberg-Salam theory. In addition, the model includes heavy W R ± and Z μ ' bosons. Beside the N g =3 generations of the 16-plets the SO(10) model includes the fragments of such generations which play the role of Higgs particles and also scalar chiral filds, the number of which exceeds by one the number of generations. As a result the neutrinos of each generation obtain a stable small Majorana mass. It is shown that the scalar field potential leads to spontaneous violation of the SU(2) R group and L-R symmetry and at low energies the standard Weinberg-Salam theory appears. However, reasonable values of X bosons masses M x and sun 2 Θ W (Θ W is the Weinberg angle) can be obtained in the model only in the case of high mass scale M R ∼10 10 -10 12 GeV of the right group SU(2) R violation

  7. Ethanol electrooxidation on novel carbon supported Pt/SnOx/C catalysts with varied Pt:Sn ratio

    International Nuclear Information System (INIS)

    Jiang, L.; Colmenares, L.; Jusys, Z.; Sun, G.Q.; Behm, R.J.

    2007-01-01

    Novel carbon supported Pt/SnO x /C catalysts with Pt:Sn atomic ratios of 5:5, 6:4, 7:3 and 8:2 were prepared by a modified polyol method and characterized with respect to their structural properties (X-ray diffraction (XRD) and transmission electron microscopy (TEM)), chemical composition (XPS), their electrochemical properties (base voltammetry, CO ad stripping) and their electrocatalytic activity and selectivity for ethanol oxidation (ethanol oxidation reaction (EOR)). The data show that the Pt/SnO x /C catalysts are composed of Pt and tin oxide nanoparticles with an average Pt particle diameter of about 2 nm. The steady-state activity of the Pt/SnO x /C catalysts towards the EOR decreases with tin content at room temperature, but increases at 80 deg. C. On all Pt/SnO x /C catalysts, acetic acid and acetaldehyde represent dominant products, CO 2 formation contributes 1-3% for both potentiostatic and potentiodynamic reaction conditions. With increasing potential, the acetaldehyde yield decreases and the acetic acid yield increases. The apparent activation energies of the EOR increase with tin content (19-29 kJ mol -1 ), but are lower than on Pt/C (32 kJ mol -1 ). The somewhat better performance of the Pt/SnO x /C catalysts compared to alloyed PtSn x /C catalysts is attributed to the presence of both sufficiently large Pt ensembles for ethanol dehydrogenation and C-C bond splitting and of tin oxide for OH generation. Fuel cell measurements performed for comparison largely confirm the results obtained in model studies

  8. Symmetric Imidazolium-Based Paramagnetic Ionic Liquids

    Science.gov (United States)

    2017-11-29

    Charts N/A Unclassified Unclassified Unclassified SAR 14 Kamran Ghiassi N/A 1 Symmetric Imidazolium-Based Paramagnetic Ionic Liquids Kevin T. Greeson...NUMBER (Include area code) 29 November 2017 Briefing Charts 01 November 2017 - 30 November 2017 Symmetric Imidazolium-Based Paramagnetic Ionic ... Liquids K. Greeson, K. Ghiassi, J. Alston, N. Redeker, J. Marcischak, L. Gilmore, A. Guenthner Air Force Research Laboratory (AFMC) AFRL/RQRP 9 Antares

  9. The Symmetric Rudin-Shapiro Transform

    DEFF Research Database (Denmark)

    Harbo, Anders La-Cour

    2003-01-01

    A method for constructing spread spectrum sequences is presented. The method is based on a linear, orthogonal, and symmetric transform given as the Rudin-Shapiro transform (RST), which is in many respects quite similar to the Haar wavelet packet transform. The RST provides the means for generatin...... large sets of spread spectrum signals. This presentation provides a simple definition of the symmetric RST that leads to a fast N log(N) and numerically stable implementation of the transform....

  10. The Symmetric Rudin-Shapiro Transform

    DEFF Research Database (Denmark)

    Harbo, Anders La-Cour

    2003-01-01

    A method for constructing spread spectrum sequences is presented. The method is based on a linear, orthogonal, symmetric transform, the Rudin-Shapiro transform (RST), which is in many respects quite similar to the Haar wavelet packet transform. The RST provides the means for generating large sets...... of spread spectrum signals. This presentation provides a simple definition of the symmetric RST that leads to a fast N log(N) and numerically stable implementation of the transform....

  11. Pion condensation in symmetric nuclear matter

    International Nuclear Information System (INIS)

    Kabir, K.; Saha, S.; Nath, L.M.

    1987-09-01

    Using a model which is based essentially on the chiral SU(2)xSU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenon is expected to be seen in the pion-nucleus interaction. (author). 20 refs

  12. Pion condensation in symmetric nuclear matter

    Science.gov (United States)

    Kabir, K.; Saha, S.; Nath, L. M.

    1988-01-01

    Using a model which is based essentially on the chiral SU(2)×SU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenom is expected to be seen in the pion-nucleus interaction.

  13. Microwave-polyol synthesis and electrocatalytic performance of Pt/graphene nanocomposites

    International Nuclear Information System (INIS)

    Liao, Chien-Shiun; Liao, Chien-Tsao; Tso, Ching-Yu; Shy, Hsiou-Jeng

    2011-01-01

    Highlights: · One-pot microwave-polyol synthesis of Pt/graphene electrocatalyst. · Simultaneous formation of Pt nanoparticles and reduction of graphene oxide. · Electrocatalytic activities depend on the morphology of the deposited Pt particles. · Dense dispersion of isolated Pt particles with high electrochemical active surface. · Few particle clusters of Pt have large number of active sites for methanol oxidation. - Abstract: Graphene oxide (GO) prepared by the modified Hummers method is used as a support in the formation of a Pt/GO nanocomposite electrocatalyst by microwave-polyol synthesis. The effects of microwave reaction times on particle size, dispersion, and electrocatalytic performance of Pt nanoparticles are studied using wide-angle X-ray diffractometery, Raman spectroscopy, transmission electron microscopy and three-electrode electrochemical measurements. The results indicate that Pt nanoparticles nucleation and growth occur, and the particles are uniformly deposited on the GO nanosheets within a short time. The maximum electrochemical active surface area 85.71 m 2 g -1 for a Pt/GO reaction time of 5 min, is a result of the deposition of a dense dispersion of small Pt particles. The highest methanol oxidation peak current density, I f , of 0.59 A mg -1 occurs for a Pt/GO reaction time of 10 min and is due to the formation of interconnecting Pt particles clusters. This novel Pt/GO nanocomposite electrocatalyst with high electrocatalytic activities has the potential for use as an anode material in fuel cells.

  14. Synthesis and Characterization of Pt-loaded carbon nanostructures derived from polyaniline nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Gong Da; Kim, Pil; Lee, Youn Sik [Div. of Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk NationalUniversity, Jeonju (Korea, Republic of)

    2017-03-15

    Proton exchange membrane fuel cells (PEMFC) are one of the most advanced fuel cells for future energy, owing to their high conversion efficiency, quick start-up, rapid response to variable loading, and relatively low operating temperature, compared with of her conventional energy conversion devices. PANTs were synthesized to have various aspect ratios and inner diameters. As the aniline concentration increased, the PANTs’ inner diameter greatly decreased, but their outer diameters only slightly increased, leading to a decrease in their aspect ratios. Carbonization of PANTs resulted in the formation of corresponding CNSs. Pt nanoparticles were successfully formed on the CNSs under N{sub 2} or N{sub 2}/NH{sub 3} flow. The Pt nanoparticles of the Pt- CNS-N{sub 2} /NH{sub 3} catalysts were smaller in size, less aggregated, and more uniformly dispersed than those of the Pt- CNS-N{sub 2} catalysts. The ECSA values of Pt-CNS-N{sub 2} /NH{sub 3} were larger than those of Pt-CNS-N{sub 2} and Pt/C. The half wave potentials of the Pt-CNS-N{sub 2} catalysts were lower than those of the Pt-CNS-N{sub 2} /NH{sub 3} , and close to those of the Pt/C. The Pt-CNS-N{sub 2} /NH{sub 3} catalysts exhibited better kinetic performance than the Pt-CNS -N{sub 2} catalysts and Pt/C.

  15. The kinetics and mechanism of methanol oxidation on Pt and PtRu catalysts in alkaline and acid media

    Directory of Open Access Journals (Sweden)

    JELENA LOVIC

    2007-07-01

    Full Text Available The kinetic of methanol electrochemical oxidation for a series of platinum and platinum–ruthenium catalysts was investigated. A correlation between the beginning of OHad adsorption and methanol oxidation was demonstarated on Pt single crystals and Pt nanocatalyst. The activity of the nano-structured Pt catalyst was compared with single crystal platinum electrodes assuming the Kinoshita model of nanoparticles. The ruthenium-containing catalysts shifted the onset of methanol oxidation to more negative potentials. The effect was more pronounced in acid than in alkaline media. Based on the established diagnostic criteria, the reaction between COad and OHad species according to the Langmuir–Hinshelwood mechanism was proposed as the rate determining step in alkaline and acid media on Pt and PtRu catalysts.

  16. Evidence of surface migration and formation of catalytically inactive Pt in corrosion studies of Pt+ implanted Ti

    International Nuclear Information System (INIS)

    Appleton, B.R.; Kelly, E.J.; White, C.W.; Thompson, N.G.; Lichter, B.D.

    1980-08-01

    This investigation is part of an ongoing research project directed at applying the techniques of ion implantation doping and ion scattering analysis to identify the mechanisms associated with the anodic dissolution of Ti-Pt alloys. The Ti-Pt alloys produced by ion implantation were electrochemically examined in hydrogen saturated 1 N H 2 SO 4 by both potentiostatic polarization and open-circuit potential methods. In this study, Ti samples implanted to relatively high doses (5.4 x 10 15 to 2.9 x 10 16 atoms/cm 2 ) were examined by ion scattering analysis at various stages in the electrochemical measurements. Quantitative measurements showed that the majority of the implanted Pt accumulated on the surface during anodic dissolution and underwent large scale surface migration. Evidence is also presented for the transition of the Pt on the surface from a catalytically active to inactive state. Possible mechanisms for the observed catalytically inactive Pt are discussed

  17. Characterization of azo dyes on Pt and Pt/polyaniline/dispersed Pt electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Molina, J.; Fernandez, J.; Rio, A.I. del; Bonastre, J. [Departamento de Ingenieria Textil y Papelera, EPS de Alcoy, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy (Spain); Cases, F., E-mail: fjcases@txp.upv.es [Departamento de Ingenieria Textil y Papelera, EPS de Alcoy, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy (Spain)

    2012-06-15

    The electrochemical characterization of two organic dyes (amaranth and procion orange MX-2R) has been performed on Pt electrodes and Pt electrodes coated with polyaniline and dispersed Pt. Electrodes with different Pt loads have been synthesized and characterized obtaining that a load of 300 {mu}g cm{sup -2} was the optimum one. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was employed to observe the distribution and morphology of the Pt nanoparticles. The electroactivity of the electrodes has also been characterized by means of scanning electrochemical microscopy (SECM). The chemical characterization of Pt dispersed Pani coated Pt electrodes (Pt-Pani-Pt) was performed by means of X-ray photoelectron spectroscopy (XPS). The electrochemical characterization of the dyes has been performed by means of cyclic voltammetry. Voltammograms have shown that the presence of the dyes diminishes characteristic Pt oxidation and reduction peaks. However, redox processes due to the dyes, appeared in the voltammograms. The different species responsible of these redox processes were generated in the vicinity of the electrode and were not adsorbed on the electrode surface since after stirring, the different redox processes disappeared. Characterization with different scan rates showed that redox processes of both dyes were controlled by diffusion.

  18. Symmetric and asymmetric nuclear matter in the relativistic approach

    International Nuclear Information System (INIS)

    Huber, H.; Weber, F.; Weigel, M.K.

    1995-01-01

    Symmetric and asymmetric nuclear matter is studied in the framework of the relativistic Brueckner-Hartree-Fock and in the relativistic version of the so-called Λ 00 approximation. The equations are solved self-consistently in the full Dirac space, so avoiding the ambiguities in the choice of the effective scattering amplitude in matter. The calculations were performed for some modern meson-exchange potentials constructed by Brockmann and Machleidt. In some cases we used also the Groningen potentials. First, we examine the outcome for symmetric matter with respect to other calculations, which restrict themselves to positive-energy states only. The main part is devoted to the properties of asymmetric matter. In this case we obtain additionally to the good agreement with the parameters of symmetric matter, also a quite satisfactory agreement with the semiempirical macroscopic coefficients of asymmetric matter. Furthermore, we tested the assumption of a quadratic dependence of the asymmetry energy for a large range of asymmetries. Included is also the dependence of nucleon self-energies on density and neutron excess. For the purpose of comparison we discuss further the similarities and differences with relativistic Hartree and Hartree-Fock calculations and nonrelativistic Skyrme calculations

  19. Biophysical information in asymmetric and symmetric diurnal bidirectional canopy reflectance

    Science.gov (United States)

    Vanderbilt, Vern C.; Caldwell, William F.; Pettigrew, Rita E.; Ustin, Susan L.; Martens, Scott N.; Rousseau, Robert A.; Berger, Kevin M.; Ganapol, B. D.; Kasischke, Eric S.; Clark, Jenny A.

    1991-01-01

    The authors present a theory for partitioning the information content in diurnal bidirectional reflectance measurements in order to detect differences potentially related to biophysical variables. The theory, which divides the canopy reflectance into asymmetric and symmetric functions of solar azimuth angle, attributes asymmetric variation to diurnal changes in the canopy biphysical properties. The symmetric function is attributed to the effects of sunlight interacting with a hypothetical average canopy which would display the average diurnal properties of the actual canopy. The authors analyzed radiometer data collected diurnally in the Thematic Mapper wavelength bands from two walnut canopies that received differing irrigation treatments. The reflectance of the canopies varied with sun and view angles and across seven bands in the visible, near-infrared, and middle infrared wavelength regions. Although one of the canopies was permanently water stressed and the other was stressed in mid-afternoon each day, no water stress signature was unambiguously evident in the reflectance data.

  20. New tests to detect antiphospholipid antibodies: antiprothrombin (aPT) and anti-phosphatidylserine/prothrombin (aPS/PT) antibodies.

    Science.gov (United States)

    Sciascia, Savino; Khamashta, Munther A; Bertolaccini, Maria Laura

    2014-05-01

    Antiprothrombin antibodies have been proposed as potential new biomarkers for thrombosis and/or pregnancy morbidity in the setting of the antiphospholipid syndrome (APS). Antiprothrombin antibodies are commonly detected by ELISA, using prothrombin coated onto irradiated plates (aPT), or prothrombin in complex with phosphatidylserine (aPS/PT), as antigen. Although these antibodies can co-exist in the same patient, aPT and aPS/PT seem to belong to different populations of autoantibodies. Early research explored the role of antibodies to prothrombin as potential antigenic targets for the lupus anticoagulant (LA). To date their clinical significance is being investigated and their potential role in identifying patients at higher risk of developing thrombotic events or pregnancy morbidity is being probed.

  1. Analytic Morse/long-range potential energy surfaces and "adiabatic-hindered-rotor" treatment for a symmetric top-linear molecule dimer: A case study of CH3F-H2

    Science.gov (United States)

    Zhang, Xiao-Long; Ma, Yong-Tao; Zhai, Yu; Li, Hui

    2018-03-01

    A first effective six-dimensional ab initio potential energy surface (PES) for CH3F-H2 which explicitly includes the intramolecular Q3 stretching normal mode of the CH3F monomer is presented. The electronic structure computations have been carried out at the explicitly correlated coupled cluster level of theory [CCSD(T)-F12a] with an augmented correlation-consistent triple zeta basis set. Five-dimensional analytical intermolecular PESs for ν3(CH3F) = 0 and 1 are then obtained by fitting the vibrationally averaged potentials to the Morse/Long-Range (MLR) potential function form. The MLR function form is applied to the nonlinear molecule-linear molecule case for the first time. These fits to 25 015 points have root-mean-square deviations of 0.74 cm-1 and 0.082 cm-1 for interaction energies less than 0.0 cm-1. Using the adiabatic hindered-rotor approximation, three-dimensional PESs for CH3F-paraH2 are generated from the 5D PESs over all possible orientations of the hydrogen monomer. The infrared and microwave spectra for CH3F-paraH2 dimer are predicted for the first time. These analytic PESs can be used for modeling the dynamical behavior in CH3F-(H2)N clusters, including the possible appearance of microscopic superfluidity.

  2. Coulomb excitation of the 4+1 states of 194Pt, 196Pt and 198Pt

    International Nuclear Information System (INIS)

    Fewell, M.P.; Gyapong, G.J.; Spear, R.H.

    1987-09-01

    Probabilities for the Coulomb excitation of the 4 1 + states of 194 Pt, 196 Pt, 198 Pt by the backscattering of 4 He, 12 C and 16 O ions are reported. Model-independent values of the matrix elements 1 + ; M(E4), 4 1 + > and 1 + , M(E2), 4 1 + > are extracted. Agreement with previous measurements of these matrix elements is good. Values of β 2 and β 4 are determined for 194 Pt and compared with calculations of these quantities

  3. PT-symmetric invisible defects and confluent Darboux-Crum transformations

    Czech Academy of Sciences Publication Activity Database

    Correa, F.; Jakubský, Vít; Plyushchay, M. S.

    2015-01-01

    Roč. 92, č. 2 (2015), 023839 ISSN 1050-2947 R&D Projects: GA ČR(CZ) GJ15-07674Y Institutional support: RVO:61389005 Keywords : supersymmetric quantum mechanics * bound states * optics Subject RIV: BE - Theoretical Physics Impact factor: 2.808, year: 2014

  4. Quantum star-graph analogues of PT-symmetric square wells

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2012-01-01

    Roč. 90, č. 12 (2012), s. 1287-1293 ISSN 0008-4204 R&D Projects: GA ČR GAP203/11/1433 Institutional support: RVO:61389005 Keywords : non-Hermitian interactions * exactly solvable models * quantum graphs * equilateral q-pointed star * Robin boundary condition Subject RIV: BE - Theoretical Physics Impact factor: 0.902, year: 2012

  5. Quantum star-graph analogues of PT-symmetric square wells: Part II, spectra

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2015-01-01

    Roč. 93, č. 7 (2015), s. 765-768 ISSN 0008-4204 Institutional support: RVO:61389005 Keywords : mechanics * operators * adjoint * space Subject RIV: BE - Theoretical Physics Impact factor: 0.724, year: 2015

  6. Maximal couplings in PT-symmetric chain models with the real spectrum of energies

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2007-01-01

    Roč. 40, č. 18 (2007), s. 4863-4875 ISSN 1751-8113 R&D Projects: GA MŠk LC06002; GA ČR GA202/07/1307 Institutional research plan: CEZ:AV0Z10480505 Keywords : non-hermitian hamiltonians * quantum -mechanics * expectional points Subject RIV: BE - Theoretical Physics Impact factor: 1.680, year: 2007

  7. A return to observability near exceptional points in a schematic PT-symmetric model

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2007-01-01

    Roč. 647, 2-3 (2007), s. 225-230 ISSN 0370-2693 R&D Projects: GA MŠk LC06002; GA ČR GA202/07/1307 Institutional research plan: CEZ:AV0Z10480505 Keywords : quantum -fieled theory * real * energy spectra Subject RIV: BE - Theoretical Physics Impact factor: 4.189, year: 2007

  8. Decays of degeneracies in PT-symmetric ring-shaped lattices

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2011-01-01

    Roč. 375, č. 39 (2011), s. 3435-3441 ISSN 0375-9601 R&D Projects: GA ČR GAP203/11/1433 Institutional research plan: CEZ:AV0Z10480505 Keywords : NON-HERMITIAN HAMILTONIANS * quantum -mechanics * OBSERVABILITY Subject RIV: BE - Theoretical Physics Impact factor: 1.632, year: 2011

  9. Admissible perturbations and false instabilities in PT-symmetric quantum systems

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2018-01-01

    Roč. 97, č. 3 (2018), č. článku 032114. ISSN 2469-9926 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : quantum theory * states * Hilbert spaces Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 2.925, year: 2016

  10. PT-symmetric model with an interplay between kinematical and dynamical non-localities

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2015-01-01

    Roč. 48, č. 19 (2015), s. 195303 ISSN 1751-8113 Institutional support: RVO:61389005 Keywords : non-Hermitian long-range interactions * closed-form constructions of bound states * physical inner products Subject RIV: BE - Theoretical Physics Impact factor: 1.933, year: 2015

  11. Solvable PT-symmetric model with a tunable interspersion of nonmerging levels

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2005-01-01

    Roč. 46, č. 6 (2005), 062109 ISSN 0022-2488 R&D Projects: GA AV ČR(CZ) IAA1048302 Institutional research plan: CEZ:AV0Z10480505 Keywords : non-Hermitian Hamiltonians * quantum-mechanics * square-well Subject RIV: BE - Theoretical Physics Impact factor: 1.192, year: 2005

  12. Complete set of inner products for a discrete PT-symmetric square-well Hamiltonian

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2009-01-01

    Roč. 50, č. 12 (2009), 122105/1-122105/19 ISSN 0022-2488 R&D Projects: GA MŠk LC06002; GA ČR GA202/07/1307 Institutional research plan: CEZ:AV0Z10480505 Keywords : bound states * Hermitian matrices * Hilbert spaces Subject RIV: BE - Theoretical Physics Impact factor: 1.318, year: 2009

  13. Problem of the coexistence of several non-Hermitian observables in PT -symmetric quantum mechanics

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav; Semorádová, Iveta; Růžička, František; Moulla, H.; Leghrib, I.

    2017-01-01

    Roč. 95, č. 4 (2017), č. článku 042122. ISSN 2469-9926 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : operators * Hilbert space * non-Hermitian Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 2.925, year: 2016

  14. Balance of Nanostructure and Bimetallic Interactions in Pt Model Fuel Cell Catalysts

    DEFF Research Database (Denmark)

    Friebel, Daniel; Viswanathan, Venkatasubramanian; Miller, Daniel J.

    2012-01-01

    We have studied the effect of nanostructuring in Pt monolayer model electrocatalysts on a Rh(111) single-crystal substrate on the adsorption strength of chemisorbed species. In situ high energy resolution fluorescence detection X-ray absorption spectroscopy at the Pt L3 edge reveals characteristic...... changes of the shape and intensity of the “white-line” due to chemisorption of atomic hydrogen (Had) at low potentials and oxygen-containing species (O/OHad) at high potentials. On a uniform, two-dimensional Pt monolayer grown by Pt evaporation in ultrahigh vacuum, we observe a significant destabilization...... of both Had and O/OHad due to strain and ligand effects induced by the underlying Rh(111) substrate. When Pt is deposited via a wet-chemical route, by contrast, three-dimensional Pt islands are formed. In this case, strain and Rh ligand effects are balanced with higher local thickness of the Pt islands...

  15. The Role of Interfacial Potential in Adsorbate Bonding: Electrode Potential-Dependent Infrared Spectra for Saturated CO Adlayers on Pt(110) and Related Electrochemical Surfaces in Varying Solvent Environments

    Science.gov (United States)

    1992-05-01

    as supporting electrolytes were recrystallized from methanol, water and ethanol , and water, respectively, and dried under vacuum at 110°C. Electrode...under these conditions 8,17 (vide infra). All measurements were performed at room temperature , 23±1*C. RESULTS AND DISCUSSION The experimental strategy...of interferometer scans during a suitably slow (2 mV s- ) positive-going potential sweep. For solvents containing traces of water, electrooxidative

  16. ChPT calculations for the analysis of lattice QCD data

    International Nuclear Information System (INIS)

    Greil, Ludwig

    2014-01-01

    We present calculations within the framework of three-flavor chiral perturbation theory (ChPT) for several observables (first moments of parton distributions, baryon octet masses and vector meson masses including phi-omega-mixing). We use lattice QCD data to determine the local couplings appearing in this chosen effective theory and we use these extrapolations to study the convergence of the chiral expansion around the symmetric point where all light quark masses have the same value. We also comment on the various benefits that stem from an expansion around the symmetric point.

  17. Crossing-symmetric solutions to low equations

    International Nuclear Information System (INIS)

    McLeod, R.J.; Ernst, D.J.

    1985-01-01

    Crossing symmetric models of the pion-nucleon interaction in which crossing symmetry is kept to lowest order in msub(π)/msub(N) are investigated. Two iterative techniques are developed to solve the crossing-symmetric Low equation. The techniques are used to solve the original Chew-Low equations and their generalizations to include the coupling to the pion-production channels. Small changes are found in comparison with earlier results which used an iterative technique proposed by Chew and Low and which did not produce crossing-symmetric results. The iterative technique of Chew and Low is shown to fail because of its inability to produce zeroes in the amplitude at complex energies while physical solutions to the model require such zeroes. We also prove that, within the class of solutions such that phase shifts approach zero for infinite energy, the solution to the Low equation is unique. (orig.)

  18. Nitrogen Doped Graphene Supported Pt Nanoflowers as Electrocatalysts for Oxidation of Formaldehyde.

    Science.gov (United States)

    Xie, Aijuan; Zhou, Wenting; Luo, Shiping; Chen, Yu; Zhou, Xiaoqing; Chao, Yao

    2017-02-01

    A facile Pt nanoflowers/nitrogen-doped graphene (PtNFs/NG) electrocatalyst was prepared via depositing Pt nanoflowers (PtNFs) onto the nitrogen-doped graphene (NG) matrix with urea as the nitrogen source and PtNFs/NG modified glassy carbon electrode (GCE) was prepared by electro-chemical method. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscope, X-ray photoelectron spectroscopy (XPS) and Scanning electron microscope (SEM) were used to characterize the resulting composites. Also oxidation of formaldehyde on the resulting PtNFs/NG modified electrode was investigated. The influence of deposition time, electrodeposition potential and formaldehyde concentration on electrooxidation of formaldehyde was detected, the experimental results indicate the high performance of PtNFs/NG catalyst for formaldehyde oxidation is at electrodeposition time of 300 s with the applied potential of −0.3 V. Electrochemical process, electrocatalytic stability and chronoamperometry were also inspected, it was indicated that formalde-hyde oxidation reaction on the PtNFs/NG electrode is diffusion-controlled and PtNFs/NG exhibits a high catalytic activity, stability as well as excellent poisoning-tolerance towards formaldehyde oxidation, which is attributed to the synergistic effect of PtNFs and NG. It turns out that PtNFs/NG can be used in direct liquid-feed fuel cells as a promising alternative catalyst.

  19. All-optical symmetric ternary logic gate

    Science.gov (United States)

    Chattopadhyay, Tanay

    2010-09-01

    Symmetric ternary number (radix=3) has three logical states (1¯, 0, 1). It is very much useful in carry free arithmetical operation. Beside this, the logical operation using this type of number system is also effective in high speed computation and communication in multi-valued logic. In this literature all-optical circuits for three basic symmetrical ternary logical operations (inversion, MIN and MAX) are proposed and described. Numerical simulation verifies the theoretical model. In this present scheme the different ternary logical states are represented by different polarized state of light. Terahertz optical asymmetric demultiplexer (TOAD) based interferometric switch has been used categorically in this manuscript.

  20. Symmetry theorems via the continuous steiner symmetrization

    Directory of Open Access Journals (Sweden)

    L. Ragoub

    2000-06-01

    Full Text Available Using a new approach due to F. Brock called the Steiner symmetrization, we show first that if $u$ is a solution of an overdetermined problem in the divergence form satisfying the Neumann and non-constant Dirichlet boundary conditions, then $Omega$ is an N-ball. In addition, we show that we can relax the condition on the value of the Dirichlet boundary condition in the case of superharmonicity. Finally, we give an application to positive solutions of some semilinear elliptic problems in symmetric domains for the divergence case.

  1. Symmetric splitting of very light systems

    International Nuclear Information System (INIS)

    Grotowski, K.; Majka, Z.; Planeta, R.

    1984-01-01

    Inclusive and coincidence measurements have been performed to study symmetric products from the reactions 74--186 MeV 12 C+ 40 Ca, 141 MeV 9 Be+ 40 Ca, and 153 MeV 6 Li+ 40 Ca. The binary decay of the composite system has been verified. Energy spectra, angular distributions, and fragment correlations are presented. The total kinetic energies for the symmetric products from these very light composite systems are compared to liquid drop model calculations and fission systematics

  2. Electrochemical fabrication of clean dendritic Au supported Pt clusters for electrocatalytic oxidation of formic acid

    International Nuclear Information System (INIS)

    Xia Yue; Liu Jun; Huang Wei; Li Zelin

    2012-01-01

    Highlights: ► A smooth Au surface was rebuilt into clean dendrite via square wave potential pulses. ► It was performed in blank H 2 SO 4 solution without Au(III) species and other additives. ► Dendritic Au provided certain advantage for dispersing Pt due to its unique structure. ► Pt-decorated dendritic Au demonstrated high activity for the HCOOH electrooxidation. - Abstract: We report here the fabrication of clean dendritic gold (DG) directly on a smooth Au electrode via square wave potential pulses (SWPPs) in a blank H 2 SO 4 solution containing no Au(III) species and additives. The effects of potential range, frequency and duration time of SWPPs and H 2 SO 4 concentration on the construction of DG were systematically investigated. A possible mechanism was proposed to explain the growth of DG. The whole process was templateless and surfactantless, and therefore effectively avoided possible contaminations that occurred in other synthetic routes. Further, the prepared DG electrode functioned as a scaffold to support electrodeposited Pt clusters, producing Pt-decorated DG (Pt-DG) electrodes. The electrocatalytic properties of Pt-DG electrodes with various Pt loadings were examined for the oxidation of formic acid. The low Pt loading Pt-DG demonstrated different electrochemical behavior from that on Pt-decorated smooth gold (Pt-SG) and on Pt-decorated gold nanoparticles because there were more defect sites like steps and edges on the DG surface. Ensemble effect, as well as electronic effect, accounts for the improved electrocatalytic activity of low Pt loading Pt-DG.

  3. Durable electrocatalytic-activity of Pt-Au/C cathode in PEMFCs.

    Science.gov (United States)

    Selvaganesh, S Vinod; Selvarani, G; Sridhar, P; Pitchumani, S; Shukla, A K

    2011-07-21

    Longevity remains as one of the central issues in the successful commercialization of polymer electrolyte membrane fuel cells (PEMFCs) and primarily hinges on the durability of the cathode. Incorporation of gold (Au) to platinum (Pt) is known to ameliorate both the electrocatalytic activity and stability of cathode in relation to pristine Pt-cathodes that are currently being used in PEMFCs. In this study, an accelerated stress test (AST) is conducted to simulate prolonged fuel-cell operating conditions by potential cycling the carbon-supported Pt-Au (Pt-Au/C) cathode. The loss in performance of PEMFC with Pt-Au/C cathode is found to be ∼10% after 7000 accelerated potential-cycles as against ∼60% for Pt/C cathode under similar conditions. These data are in conformity with the electrochemical surface-area values. PEMFC with Pt-Au/C cathode can withstand >10,000 potential cycles with very little effect on its performance. X-ray diffraction and transmission electron microscopy studies on the catalyst before and after AST suggest that incorporating Au with Pt helps mitigate aggregation of Pt particles during prolonged fuel-cell operations while X-ray photoelectron spectroscopy reflects that the metallic nature of Pt is retained in the Pt-Au catalyst during AST in comparison to Pt/C that shows a major portion of Pt to be present as oxidic platinum. Field-emission scanning electron microscopy conducted on the membrane electrode assembly before and after AST suggests that incorporating Au with Pt helps mitigating deformations in the catalyst layer. This journal is © the Owner Societies 2011

  4. [Pt(O,O'-acac)(gamma-acac)(DMS)], a new Pt compound exerting fast cytotoxicity in MCF-7 breast cancer cells via the mitochondrial apoptotic pathway.

    Science.gov (United States)

    Muscella, A; Calabriso, N; Fanizzi, F P; De Pascali, S A; Urso, L; Ciccarese, A; Migoni, D; Marsigliante, S

    2008-01-01

    We showed previously that a new Pt complex containing an O,O'-chelated acetylacetonate ligand (acac) and a dimethylsulphide in the Pt coordination sphere, [Pt(O,O'-acac)(gamma-acac)(DMS)], induces apoptosis in HeLa cells. The objective of this study was to investigate the hypothesis that [Pt(O,O'-acac)(gamma-acac)(DMS)] is also cytotoxic in a MCF-7 breast cancer cell line relatively insensitive to cisplatin, and to gain a more detailed analysis of the cell death pathways. Cells were treated with Pt compounds and cytotoxicity tests were performed, together with Western blotting of various proteins involved in apoptosis. The mitochondrial membrane potential was assessed by fluorescence microscopy and spectrofluorometry and the Pt bound to cell fractions was measured by atomic absorption spectrometry. In contrast to cisplatin, the cytotoxicity of [Pt(O,O'-acac)(gamma-acac)(DMS)] correlated with cellular accumulation but not with DNA binding. Also, the Pt content in DNA bases was considerably higher for cisplatin than for [Pt(O,O'-acac)(gamma-acac)(DMS)], thus excluding DNA as a target of [Pt(O,O'-acac)(gamma-acac)(DMS)]. [Pt(O,O'-acac)(gamma-acac)(DMS)] exerted high and fast apoptotic processes in MCF-7 cells since it provoked: (a) mitochondria depolarization; (b) cytochrome c accumulation in the cytosol; (c) translocation of Bax and truncated-Bid from cytosol to mitochondria and decreased expression of Bcl-2; (d) cleavage of caspases -7 and -9, and PARP degradation; (e) chromatin condensation and DNA fragmentation. [Pt(O,O'-acac)(gamma-acac)(DMS)] is highly cytotoxic for MCF-7 cells, cells relatively resistant to many chemotherapeutic agents, as it activates the mitochondrial apoptotic pathway. Hence, [Pt(O,O'-acac)(gamma-acac)(DMS)] has the potential to provide us with new opportunities for therapeutic intervention.

  5. Electric-field-induced modification in Dzyaloshinskii-Moriya interaction of Co monolayer on Pt(111)

    Science.gov (United States)

    Nakamura, Kohji; Akiyama, Toru; Ito, Tomonori; Ono, Teruo; Weinert, Michael

    Magnetism induced by an external electric field (E-field) has received much attention as a potential approach for controlling magnetism at the nano-scale with the promise of ultra-low energy power consumption. Here, the E-field-induced modification of the Dzyaloshinskii-Moriya interaction (DMI) for a prototypical transition-metal thin layer of a Co monolayer on Pt(111) is investigated by first-principles calculations by using the full-potential linearized augmented plane wave method that treats spin-spiral structures in an E-field. With inclusion of the spin-orbit coupling (SOC) by the second variational method for commensurate spin-spiral structures, the DMI constants were estimated from an asymmetric contribution in the total energy with respect to the spin-spiral wavevector. The results predicted that the DMI is modified by the E-field, but the change is found to be small compared to that in the exchange interaction (a symmetric contribution in the total energy) by a factor of ten.

  6. Ethanol Electrooxidation on Pt with Lanthanum Oxide as Cocatalyst in a DAFC

    Directory of Open Access Journals (Sweden)

    T. A. B. Santoro

    2012-01-01

    Full Text Available Electrocatalytic activity toward ethanol electrooxidation of Pt particles in PtLa/C catalysts with different Pt : La ratios has been studied with different electrochemical and spectroscopic techniques, and the results were compared to those of Pt/C catalyst. Significant enhancement in the electrocatalytic activity has been achieved by depositing the Pt particles with lanthanum oxides/hydroxides using an alcohol reduction method. Compared to Pt/C catalyst, PtLa/C materials exhibit a lower onset potential and a higher electron-transfer rate constant for the investigated reaction. These studies illustrate the possibility of utilizing Pt/C with La oxides/hidroxides as electrocatalyst for direct alcohol fuel cells (DAFCs.

  7. Processing and thin film formation of TiO{sub 2}-Pt nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Es-Souni, M.; Kartopu, G.; Habouti, S.; Piorra, A.; Solterbeck, C.H. [Institute for Materials and Surface Technology, Kiel University of Applied Sciences, Grenzstr. 3, 24149 Kiel (Germany); Es-Souni, Mar.; Brandies, H.F. [Faculty of Dentistry, Christian-Albrecht University, Kiel (Germany)

    2008-02-15

    Thin films of TiO{sub 2}-Pt nanocomposites containing 4 at% Pt have been processed via spin-coating. Film characterization involved XRD, Raman as well as XPS and scanning surface potential microscopy (SSPM). After annealing at 500 C the thin films consisted of nanocrystalline anatase and a few nm Pt nanoclusters. Annealing at 600 C resulted in the formation of a high volume fraction of rutile, {proportional_to}70%, and a coarsening of the microstructure, including Pt nanoparticles which attained a mean particle size of up to 11 nm. These results contrasted with those of pure TiO{sub 2} films obtained at 600 C which showed only a limited amount of rutile formation, namely 9%. Raman spectra of Pt-containing samples exhibited a fluorescence emission, as background to the Raman features, which was attributed to photoinduced luminescence from Pt nanoparticles supported by their surface plasmon resonance. Emission intensity being much higher in 600 C film indicated a difference between the two films in terms of the (Pt) particle size and crystallinity, in agreement with the XRD results. XPS investigations revealed different oxidation states of Pt at the surface and in the film interior. The spectra suggested a slight oxidation of Pt at the surface while mainly metallic Pt was revealed in the film interior. The morphology and distribution of the Pt nanoparticles in the films annealed at 600 C were investigated using SSPM. Discrete Pt nanoparticles, mainly distributed in the vicinity of TiO{sub 2} grain boundaries were revealed. Nanocomposite film formation, Pt distribution and morphology are explained in terms of the limited solubility of Pt in the TiO{sub 2} lattice and its higher surface energy in comparison to that of TiO{sub 2}. Both effects are believed to lead to the formation of Pt nanoparticles at the (anatase or rutile) grain boundaries. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Facile fabrication of ultrathin Pt overlayers onto nanoporous metal membranes via repeated Cu UPD and in situ redox replacement reaction.

    Science.gov (United States)

    Liu, Pengpeng; Ge, Xingbo; Wang, Rongyue; Ma, Houyi; Ding, Yi

    2009-01-06

    Ultrathin Pt films from one to several atomic layers are successfully decorated onto nanoporous gold (NPG) membranes by utilizing under potential deposition (UPD) of Cu onto Au or Pt surfaces, followed by in situ redox replacement reaction (RRR) of UPD Cu by Pt. The thickness of Pt layers can be controlled precisely by repeating the Cu-UPD-RRR cycles. TEM observations coupled with electrochemical testing suggest that the morphology of Pt overlayers changes from an ultrathin epitaxial film in the case of one or two atomic layers to well-dispersed nanoislands in the case of four and more atomic layers. Electron diffraction (ED) patterns confirm that the as-prepared NPG-Pt membranes maintain a single-crystalline structure, even though the thickness of Pt films reaches six atomic layers, indicating the decorated Pt films hold the same crystallographic relationship to the NPG substrate during the entire fabrication process. Due to the regular modulation of Pt utilization, the electrocatalytic activity of NPG-Pt exhibits interesting surface structure dependence in methanol, ethanol, and CO electrooxidation reactions. These novel bimetallic nanocatalysts show excellent electrocatalytic activity and much enhanced poison tolerance as compared to the commercial Pt/C catalysts. The success in the fabrication of NPG-Pt-type materials provides a new path to prepare electrocatalysts with ultralow Pt loading and high Pt utilization, which is of great significance in energy-related applications, such as direct alcohol fuel cells (DAFCs).

  9. Sobolev spaces on bounded symmetric domains

    Czech Academy of Sciences Publication Activity Database

    Engliš, Miroslav

    Roč. 60, č. 12 ( 2015 ), s. 1712-1726 ISSN 1747-6933 Institutional support: RVO:67985840 Keywords : bounded symmetric domain * Sobolev space * Bergman space Subject RIV: BA - General Mathematics Impact factor: 0.466, year: 2015 http://www.tandfonline.com/doi/abs/10.1080/17476933. 2015 .1043910

  10. Cuspidal discrete series for semisimple symmetric spaces

    DEFF Research Database (Denmark)

    Andersen, Nils Byrial; Flensted-Jensen, Mogens; Schlichtkrull, Henrik

    2012-01-01

    We propose a notion of cusp forms on semisimple symmetric spaces. We then study the real hyperbolic spaces in detail, and show that there exists both cuspidal and non-cuspidal discrete series. In particular, we show that all the spherical discrete series are non-cuspidal. (C) 2012 Elsevier Inc. All...

  11. Exact solutions of the spherically symmetric multidimensional ...

    African Journals Online (AJOL)

    The complete orthonormalised energy eigenfunctions and the energy eigenvalues of the spherically symmetric isotropic harmonic oscillator in N dimensions, are obtained through the methods of separation of variables. Also, the degeneracy of the energy levels are examined. KEY WORDS: - Schrödinger Equation, Isotropic ...

  12. Super-symmetric informationally complete measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Huangjun, E-mail: hzhu@pitp.ca

    2015-11-15

    Symmetric informationally complete measurements (SICs in short) are highly symmetric structures in the Hilbert space. They possess many nice properties which render them an ideal candidate for fiducial measurements. The symmetry of SICs is intimately connected with the geometry of the quantum state space and also has profound implications for foundational studies. Here we explore those SICs that are most symmetric according to a natural criterion and show that all of them are covariant with respect to the Heisenberg–Weyl groups, which are characterized by the discrete analog of the canonical commutation relation. Moreover, their symmetry groups are subgroups of the Clifford groups. In particular, we prove that the SIC in dimension 2, the Hesse SIC in dimension 3, and the set of Hoggar lines in dimension 8 are the only three SICs up to unitary equivalence whose symmetry groups act transitively on pairs of SIC projectors. Our work not only provides valuable insight about SICs, Heisenberg–Weyl groups, and Clifford groups, but also offers a new approach and perspective for studying many other discrete symmetric structures behind finite state quantum mechanics, such as mutually unbiased bases and discrete Wigner functions.

  13. Harmonic maps of the bounded symmetric domains

    International Nuclear Information System (INIS)

    Xin, Y.L.

    1994-06-01

    A shrinking property of harmonic maps into R IV (2) is proved which is used to classify complete spacelike surfaces of the parallel mean curvature in R 4 2 with a reasonable condition on the Gauss image. Liouville-type theorems of harmonic maps from the higher dimensional bounded symmetric domains are also established. (author). 25 refs

  14. On isotropic cylindrically symmetric stellar models

    International Nuclear Information System (INIS)

    Nolan, Brien C; Nolan, Louise V

    2004-01-01

    We attempt to match the most general cylindrically symmetric vacuum spacetime with a Robertson-Walker interior. The matching conditions show that the interior must be dust filled and that the boundary must be comoving. Further, we show that the vacuum region must be polarized. Imposing the condition that there are no trapped cylinders on an initial time slice, we can apply a result of Thorne's and show that trapped cylinders never evolve. This results in a simplified line element which we prove to be incompatible with the dust interior. This result demonstrates the impossibility of the existence of an isotropic cylindrically symmetric star (or even a star which has a cylindrically symmetric portion). We investigate the problem from a different perspective by looking at the expansion scalars of invariant null geodesic congruences and, applying to the cylindrical case, the result that the product of the signs of the expansion scalars must be continuous across the boundary. The result may also be understood in relation to recent results about the impossibility of the static axially symmetric analogue of the Einstein-Straus model

  15. The Mathematics of Symmetrical Factorial Designs

    Indian Academy of Sciences (India)

    The Mathematics of Symmetrical Factorial Designs. Mausumi Bose (nee Sen) obtained her MSc degree in. Statistics from the Calcutta. University and PhD degree from the Indian Statistical. Institute. She is on the faculty of the Indian. Statistical Institute. Her main field of research interest is design and analysis of experiments.

  16. Symmetric intersections of Rauzy fractals | Sellami | Quaestiones ...

    African Journals Online (AJOL)

    In this article we study symmetric subsets of Rauzy fractals of unimodular irreducible Pisot substitutions. The symmetry considered is re ection through the origin. Given an unimodular irreducible Pisot substitution, we consider the intersection of its Rauzy fractal with the Rauzy fractal of the reverse substitution. This set is ...

  17. Fourier inversion on a reductive symmetric space

    NARCIS (Netherlands)

    Ban, E.P. van den

    1999-01-01

    Let X be a semisimple symmetric space. In previous papers, [8] and [9], we have dened an explicit Fourier transform for X and shown that this transform is injective on the space C 1 c (X) ofcompactly supported smooth functions on X. In the present paper, which is a continuation of these papers, we

  18. A viewpoint on nearly conformally symmetric manifold

    International Nuclear Information System (INIS)

    Rahman, M.S.

    1990-06-01

    Some observations, with definition, on Nearly Conformally Symmetric (NCS) manifold are made. A number of theorems concerning conformal change of metric and parallel tensors on NCS manifolds are presented. It is illustrated that a manifold M = R n-1 x R + 1 , endowed with a special metric, is NCS but not of harmonic curvature. (author). 8 refs

  19. Harmonic analysis on reductive symmetric spaces

    NARCIS (Netherlands)

    Ban, E.P. van den; Schlichtkrull, H.

    2000-01-01

    We give a relatively non-technical survey of some recent advances in the Fourier theory for semisimple symmetric spaces. There are three major results: An inversion formula for the Fourier transform, a Palley-Wiener theorem, which describes the Fourier image of the space of completely supported

  20. Fourier transforms on a semisimple symmetric space

    NARCIS (Netherlands)

    Ban, E.P. van den; Schlichtkrull, H.

    1994-01-01

    Let G=H be a semisimple symmetric space, that is, G is a connected semisimple real Lie group with an involution ?, and H is an open subgroup of the group of xed points for ? in G. The main purpose of this paper is to study an explicit Fourier transform on G=H. In terms of general representation

  1. Fourier transforms on a semisimple symmetric space

    NARCIS (Netherlands)

    Ban, E.P. van den; Carmona, J.; Delorme, P.

    1997-01-01

    Let G=H be a semisimple symmetric space, that is, G is a connected semisimple real Lie group with an involution ?, and H is an open subgroup of the group of xed points for ? in G. The main purpose of this paper is to study an explicit Fourier transform on G=H. In terms of general representation

  2. Evaluation of the behavior of PtPd/MWCNT electrocatalysts as ethylene glycol-tolerant electrodes for oxygen oxidation reaction (ORR); Evaluacion del comportamiento de electrocatalizadores tipo PtPd/MWCNT como electrodos para la reaccion de oxidacion del oxigeno (ORR) tolerantes al etilenglicol

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Acosta, D.; Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Pedro Escobedo, Queretaro (Mexico)]. E-mail: dmorales@cideteq.mx; Alvarez-Contreras, L. [Centro de Investigacion en Materiales Avanzados S. C., Chihuahua, Chihuahua (Mexico); Fraire Luna, S.; Rodriguez Varela, F.J. [Cinvestav, Unidad Saltillo, Ramos Arizpe, Coahuila, (Mexico)

    2009-09-15

    Pt-Pd/MWCNTs (atomic ratio Pt:Pd 43:57) and Pt/MWCNTs electrocatalysts were synthesized and evaluated as cathodes for oxygen reduction reaction (ORR) with the application of direct ethylene glycol fuel cells (DEGFC). A commercial PtC material was also evaluated as a reference. It was found that Pt-Pd/MWCNT has a capability for high tolerance to ethylene glycol (EG) and higher selectivity for ORR compared to a single Pt- cathode. As a result, the change in onset potential of the ORR, Eonset, in Pt-Pd/MWCNTs was considerably less than the change in Pt/MWCNTs or Pt/C. The average particle size (XRD) was 3.5nm and 4nm for Pt/MWCNTs and Pt-Pd/MWCNTs, respectively. A moderate degree of alloying was determined for the material. The application of Pt-Pd electrocatalysts in DEGFCs should be advantageous. [Spanish] Electrocatalizadores Pt-Pd/MWCNTs (relacion atomic Pt:Pd 43:57) y Pt/MWCNTs fueron sintetizados y evaluados como catodos para la reaccion de reduccion del oxigeno (ORR) con aplicacion del celdas de consumo directo de etilenglicol (Direct Ethylene Glycol Fuel Cells, o DEGFC). Como referencia, un material comercial tipo Pt/C fue tambien evaluado. Se encontro que Pt-Pd/MWCNTs tiene una alta capacidad de tolerancia al etilenglicol (EG) y una selectividad mayor hacia la ORR comparado con el catodo basado en Pt-solo. Como resultado, el cambio en potencial de inicio de la ORR, Eonset, en Pt-Pd/MWCNTs fue considerablemente menor que el cambio en Pt/MWCNTs o Pt/C. La talla de particula promedio (de XRD) fue 3.5 nm y 4 nm para Pt/MWCNTs y Pt-Pd/MWCNTs, respectivamente. Un moderado grado de aleacion fue determinado para el material. Una aplicacion ventajosa para electrocatalizadores tipo Pt-Pd debe ser en DEGFCs.

  3. Baryon symmetric big-bang cosmology. [matter-antimatter symmetry

    Science.gov (United States)

    Stecker, F. W.

    1978-01-01

    The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation.

  4. Numerical study of two-dimensional moist symmetric instability

    Directory of Open Access Journals (Sweden)

    M. Fantini

    2008-06-01

    Full Text Available The 2-D version of the non-hydrostatic fully compressible model MOLOCH developed at ISAC-CNR was used in idealized set-up to study the start-up and finite amplitude evolution of symmetric instability. The unstable basic state was designed by numerical integration of the equation which defines saturated equivalent potential vorticity qe*. We present the structure and growth rates of the linear modes both for a supersaturated initial state ("super"-linear mode and for a saturated one ("pseudo"-linear mode and the modifications induced on the base state by their finite amplitude evolution.

  5. Symmetric fusion of heavy ions around the Coulomb barrier energy

    International Nuclear Information System (INIS)

    Royer, G.; Remaud, B.

    1983-01-01

    Using the liquid drop model, we have performed a systematic study of the symmetric fusion with a neck degree of freedom and tunnelling effects, the nuclear potential being calculated with the proximity approach. Barrier heights and positions are in very good agreement with experimental data when they are known (light-medium systems); the recent experimental data of the reactions 58 Ni + 58 Ni and 64 Ni + 64 Ni are particularly investigated. For heavier systems double-humped fusion barriers and isomeric states are predicted which strongly limit the complete fusion probability

  6. Geochemical modelling. Pt.1, Pt.2

    International Nuclear Information System (INIS)

    Skytte Jensen, B.; Jensen, H.; Pearson, F.J.

    1992-01-01

    This work is carried out under cost-sharing contract with the European Atomic Energy Community in the framework of its fourth research programme on radioactive waste management and radioactive waste storage. This final report is subdivided into two parts. In the first part, JENSEN, a computer code for the computation of chemical equilibria in aqueous systems, describes the structure, function and use of a new geochemical computer program intended for PC's. The program, which is written in Turbo Pascal, version 4, is fundamentally similar to most other geochemical programs, but combines in one program several of the merits these programs have. The intention has been to make an advanced program, which also should be user friendly and fast, and to attain this several new algorithms have been developed and implemented. The program has a built-in database mainly based on the CHEMVAL compilation containing data for 395 soluble species and 149 minerals. The program can find equilibria in the presence of all or some of these soluble species, under conditions or fixed or floating pH and / or Redox potential. The program by itself eliminates a bad guess of a candidate for precipitation. In the present version, the program can identify which minerals and how much of them there will be formed when equilibrium is established. In the second part, LITTLE JOE, an expert system to support geochemical modelling, describes the construction of a minor expert system for use in the evaluation of analytical data for the composition of ground waters from limestone formation. Although the example given is rather limited in scope, the application of the expert system for the evaluation of the analytical data clearly demonstrates the mature expert knowledge imbedded in the system which is contrasted with the uncritical acceptance of analytical or theoretical data. With the overall neglect of ion-exchange and the formation of solid solutions in geochemical calculations, geochemistry is

  7. Seed-mediated synthesis of cross-linked Pt-NiO nanochains for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Zhulan; Bin, Duan; Feng, Yue; Zhang, Ke; Wang, Jin; Yan, Bo; Li, Shumin; Xiong, Zhiping; Wang, Caiqin; Shiraishi, Yukihide; Du, Yukou, E-mail: duyk@suda.edu.cn

    2017-07-31

    Highlights: • Cross-linked Pt-NiO nanochains using seed-mediated growth method are synthesized. • The as-prepared catalysts exhibit higher electrocatalytic activity than Pt/C for MOR. • The Pt-NiO(1:1 by molar) catalyst shows the best electrocatalytic property towards MOR. - Abstract: A simple method was reported for employing NiO nanoparticles act as seeds and then different amounts of Pt{sup 2+} were reduced on the NiO nanoparticles, forming a cross-linked Pt-NiO nanocatalysts. These as-prepared catalysts were characterized using different physical-chemical techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The results indicate that the morphology of the cross-linked Pt-NiO nanochain was successfully produced regardless of the molar ratio of Pt{sup 2+} to NiO precursors. The electrochemical characteristics of Pt-NiO nanochain catalysts were evaluated for the oxidation of methanol as a model reaction, which verify that the Pt-NiO catalysts show enhanced activity and high stability in comparison with the commercial Pt/C catalyst. The optimized ratio of Pt to NiO is 1:1, then tuned by simple adjusting the feed ratio of the precursors as well. The synthesized nanocatalysts will be found the great potential applications as electrocatalysts for fuel cells owe to their enhanced catalytic performance and long-term stability.

  8. Seed-mediated synthesis of cross-linked Pt-NiO nanochains for methanol oxidation

    International Nuclear Information System (INIS)

    Gu, Zhulan; Bin, Duan; Feng, Yue; Zhang, Ke; Wang, Jin; Yan, Bo; Li, Shumin; Xiong, Zhiping; Wang, Caiqin; Shiraishi, Yukihide; Du, Yukou

    2017-01-01

    Highlights: • Cross-linked Pt-NiO nanochains using seed-mediated growth method are synthesized. • The as-prepared catalysts exhibit higher electrocatalytic activity than Pt/C for MOR. • The Pt-NiO(1:1 by molar) catalyst shows the best electrocatalytic property towards MOR. - Abstract: A simple method was reported for employing NiO nanoparticles act as seeds and then different amounts of Pt 2+ were reduced on the NiO nanoparticles, forming a cross-linked Pt-NiO nanocatalysts. These as-prepared catalysts were characterized using different physical-chemical techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The results indicate that the morphology of the cross-linked Pt-NiO nanochain was successfully produced regardless of the molar ratio of Pt 2+ to NiO precursors. The electrochemical characteristics of Pt-NiO nanochain catalysts were evaluated for the oxidation of methanol as a model reaction, which verify that the Pt-NiO catalysts show enhanced activity and high stability in comparison with the commercial Pt/C catalyst. The optimized ratio of Pt to NiO is 1:1, then tuned by simple adjusting the feed ratio of the precursors as well. The synthesized nanocatalysts will be found the great potential applications as electrocatalysts for fuel cells owe to their enhanced catalytic performance and long-term stability.

  9. Stabilization of Pt nanoparticles by single stranded DNA and the binary assembly of Au and Pt nanoparticles without hybridization

    International Nuclear Information System (INIS)

    Yang, J.; Lee, Jim Yang; Too, Heng-Phon; Chow, Gan-Moog; Gan, Leong M.

    2006-01-01

    The non-specific interaction between single stranded DNA (ssDNA) and 12 nm Pt nanoparticles is investigated in this work. The data show a strong and non-specific interaction between the two which can be exploited for the stabilization of Pt nanoparticles in aqueous solutions. Based on the experimental findings, a non-hybridization based protocol to assemble 17 nm Au and Pt nanoparticles (12 nm cubic and 3.6 nm spherical) by single-stranded DNA was developed. Transmission electron microscopy (TEM) and UV-visible spectroscopy confirmed that Au and Pt nanoparticles could be assembled by the non-specific interaction in an orderly manner. The experimental results also caution against the potential pitfalls in using DNA melting point analysis to infer metal nanoparticle assembly by DNA hybridization

  10. Evaluation of Pt-Ru-Ni and Pt-Sn-Ni catalysts as anodes in direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ribadeneira, Esteban; Hoyos, Bibian A. [Escuela de Procesos y Energia, Facultad de Minas, Universidad Nacional de Colombia, Medellin (Colombia)

    2008-05-15

    In this study, the electrooxidation of ethanol on carbon supported Pt-Ru-Ni and Pt-Sn-Ni catalysts is electrochemically studied through cyclic voltammetry at 50 C in direct ethanol fuel cells. All electrocatalysts are prepared using the ethylene glycol-reduction process and are chemically characterized by energy-dispersive X-ray analysis (EDX). For fuel cell evaluation, electrodes are prepared by the transfer-decal method. Nickel addition to the anode improves DEFC performance. When Pt{sub 75}Ru{sub 15}Ni{sub 10}/C is used as an anode catalyst, the current density obtained in the fuel cell is greater than that of all other investigated catalysts. Tri-metallic catalytic mixtures have a higher performance relative to bi-metallic catalysts. These results are in agreement with CV results that display greater activity for PtRuNi at higher potentials. (author)

  11. Supersymmetry, reflectionless symmetric potentials and the inverse method

    International Nuclear Information System (INIS)

    Bagchi, B.

    1990-01-01

    The role of inverse scattering method is illustrated to examine the connection between the multi-soliton solutions of Korteweg-de Vries (KdV) equation and discrete eigenvalues of Schrodinger equation. The necessity of normalization of the Schrodinger wave functions, which are constructed purely from a supersymmetric consideration is pointed out

  12. Pt/C Fuel Cell Catalyst Degradation

    DEFF Research Database (Denmark)

    Zana, Alessandro

    This thesis investigates the degradation behavior of Pt/C catalysts under simulated automotive conditions. By using the “tool box” synthesis method the Pt loading has been changed from low to high Pt loadings, therefore permitting to study the role of Pt on the degradation of high surface area (H...

  13. On a broken - symmetric theory of gravity

    International Nuclear Information System (INIS)

    Fleming, H.

    1979-09-01

    A theory of gravity recently proposed by Zee is examined. The propagation of the special scalar field introduced by this theory is studied in cosmological models, and some problems are pointed out, connected with the possibility of a time-dependent vacuum expectation value for this scalar field. (Author) [pt

  14. Electrochemical quartz crystal microbalance analysis of the oxygen reduction reaction on Pt-based electrodes. Part 2: adsorption of oxygen species and ClO4(-) anions on Pt and Pt-Co alloy in HClO4 solutions.

    Science.gov (United States)

    Omura, J; Yano, H; Tryk, D A; Watanabe, M; Uchida, H

    2014-01-14

    To gain deeper insight into the role of adsorbed oxygenated species in the O2 reduction reaction (ORR) kinetics on platinum and platinum-cobalt alloys for fuel cells, we carried out a series of measurements with the electrochemical quartz crystal microbalance (EQCM) and the rotating disk electrode (RDE) in acid solution. The effects of anion adsorption on the activities for the ORR were first assessed in HClO4 and HF electrolyte solutions at various concentrations. In our previous work (Part 1), we reported that the perchlorate anion adsorbs specifically on bulk-Pt, with a Frumkin-Temkin isotherm, that is, a linear relationship between Δm and log[HClO4]. Here, we find that the specific adsorption on the Pt-skin/Pt3Co alloy was significantly stronger than that on bulk-Pt, in line with its modified electronic properties. The kinetically controlled current density j(k) for the O2 reduction at the Pt-skin/Pt3Co-RDE was about 9 times larger than that of the bulk-Pt-RDE in 0.01 M HClO4 saturated with air, but the j(k) values on Pt-skin/Pt3Co decreased with increasing [HClO4] more steeply than in the case of Pt, due to the blocking of the active sites by the specifically adsorbed ClO4(-). We have detected reversible mass changes for one or more adsorbed oxygen-containing species (Ox = O2, O, OH, H2O) on the Pt-skin/Pt3Co-EQCM and Pt-EQCM in O2-saturated and He-purged 0.01 M HClO4 solutions, in which the specific adsorption of ClO4(-) anions was negligible. The coverages of oxygen species θ(Ox) on the Pt-skin/Pt3Co in the potential range from 0.86 to 0.96 V in the O2-saturated solution were found to be larger than those on pure Pt, providing strong evidence that the higher O2 reduction activity on the Pt3Co is correlated with higher θ(Ox), contrary to the conventional view.

  15. Solution of Effective-Mass Dirac Equation with Scalar-Vector and Pseudoscalar Terms for Generalized Hulthén Potential

    Directory of Open Access Journals (Sweden)

    Altuğ Arda

    2017-01-01

    Full Text Available We find the exact bound state solutions and normalization constant for the Dirac equation with scalar-vector-pseudoscalar interaction terms for the generalized Hulthén potential in the case where we have a particular mass function m(x. We also search the solutions for the constant mass where the obtained results correspond to the ones when the Dirac equation has spin and pseudospin symmetry, respectively. After giving the obtained results for the nonrelativistic case, we search then the energy spectra and corresponding upper and lower components of Dirac spinor for the case of PT-symmetric forms of the present potential.

  16. Marginal Stability Diagrams for Infinite-n Ballooning Modes in Quasi-symmetric Stellarators

    International Nuclear Information System (INIS)

    Hudson, S.R.; Hegna, C.C.; Torasso, R.; Ware, A.

    2003-01-01

    By perturbing the pressure and rotational-transform profiles at a selected surface in a given equilibrium, and by inducing a coordinate variation such that the perturbed state is in equilibrium, a family of magnetohydrodynamic equilibria local to the surface and parameterized by the pressure gradient and shear is constructed for arbitrary stellarator geometry. The geometry of the surface is not changed. The perturbed equilibria are analyzed for infinite-n ballooning stability and marginal stability diagrams are constructed that are analogous to the (s; alpha) diagrams constructed for axi-symmetric configurations. The method describes how pressure and rotational-transform gradients influence the local shear, which in turn influences the ballooning stability. Stability diagrams for the quasi-axially-symmetric NCSX (National Compact Stellarator Experiment), a quasi-poloidally-symmetric configuration and the quasi-helically-symmetric HSX (Helically Symmetric Experiment) are presented. Regions of second-stability are observed in both NCSX and the quasi-poloidal configuration, whereas no second stable region is observed for the quasi-helically symmetric device. To explain the different regions of stability, the curvature and local shear of the quasi-poloidal configuration are analyzed. The results are seemingly consistent with the simple explanation: ballooning instability results when the local shear is small in regions of bad curvature. Examples will be given that show that the structure, and stability, of the ballooning mode is determined by the structure of the potential function arising in the Schroedinger form of the ballooning equation

  17. Edge fluctuations in the MST [Madison Symmetric Torus] reversed field pinch

    International Nuclear Information System (INIS)

    Almagri, A.; Assadi, S.; Beckstead, J.; Chartas, G.; Crocker, N.; Den Hartog, D.; Dexter, R.; Hokin, S.; Holly, D.; Nilles, E.; Prager, S.; Rempel, T.; Sarff, J.; Scime, E.; Shen, W.; Spragins, C.; Sprott, J.; Starr, G.; Stoneking, M.; Watts, C.

    1990-10-01

    Edge magnetic and electrostatic fluctuations are measured in the Madison Symmetric Torus (MST) reversed field pinch. At low frequency ( e > p e /p e where φ and p e are the fluctuating potential and pressure, respectively). From measurements of the fluctuating density, temperature, and potential we infer that the electrostatic fluctuation induced transport of particles and energy can be substantial. 13 refs., 11 figs

  18. Spontaneous symmetry breaking in the $S_3$-symmetric scalar sector

    CERN Document Server

    Emmanuel-Costa, D.; Osland, P.; Rebelo, M.N.

    2016-02-23

    We present a detailed study of the vacua of the $S_3$-symmetric three-Higgs-doublet potential, specifying the region of parameters where these minimisation solutions occur. We work with a CP conserving scalar potential and analyse the possible real and complex vacua with emphasis on the cases in which the CP symmetry can be spontaneously broken. Results are presented both in the reducible-representation framework of Derman, and in the irreducible-representation framework. Mappings between these are given. Some of these implementations can in principle accommodate dark matter and for that purpose it is important to identify the residual symmetries of the potential after spontaneous symmetry breakdown. We are also concerned with constraints from vacuum stability.

  19. [μ-Bis(diphenylphosphanylmethane]tricarbonyl(μ-p-toluenesulfonylmethyl isocyanato(triphenylphosphaneironplatinum(Fe—Pt

    Directory of Open Access Journals (Sweden)

    Carsten Strohmann

    2012-03-01

    Full Text Available The title compound, [FePt(C9H9NO2S(C18H15P(C25H22P2(CO3], represents a rare example of an isonitrile-bridged heterobimetallic complex (here Pt and Fe and is an interesting precursor for the preparation of heterodinuclear μ-aminocarbyne complexes, since the basic imine-type N atom of the μ2-C=N–R ligand readily undergoes addition with various electrophiles to afford iminium-like salts. In the crystal, the almost symmetrically bridging μ2-C=N-R ligand (neglecting the different atomic radii of Fe and Pt is strongly bent towards the Fe(CO3 fragment, with a C=N-R angle of only 121.1 (4°.

  20. Are both symmetric and buckled dimers on Si(100) minima? Density functional and multireference perturbation theory calculations

    International Nuclear Information System (INIS)

    Jung, Yousung; Shao, Yihan; Gordon, Mark S.; Doren, Douglas J.; Head-Gordon, Martin

    2003-01-01

    We report a spin-unrestricted density functional theory (DFT) solution at the symmetric dimer structure for cluster models of Si(100). With this solution, it is shown that the symmetric structure is a minimum on the DFT potential energy surface, although higher in energy than the buckled structure. In restricted DFT calculations the symmetric structure is a saddle point connecting the two buckled minima. To further assess the effects of electron correlation on the relative energies of symmetric versus buckled dimers on Si(100), multireference second order perturbation theory (MRMP2) calculations are performed on these DFT optimized minima. The symmetric structure is predicted to be lower in energy than the buckled structure via MRMP2, while the reverse order is found by DFT. The implications for recent experimental interpretations are discussed

  1. Representations of the infinite symmetric group

    CERN Document Server

    Borodin, Alexei

    2016-01-01

    Representation theory of big groups is an important and quickly developing part of modern mathematics, giving rise to a variety of important applications in probability and mathematical physics. This book provides the first concise and self-contained introduction to the theory on the simplest yet very nontrivial example of the infinite symmetric group, focusing on its deep connections to probability, mathematical physics, and algebraic combinatorics. Following a discussion of the classical Thoma's theorem which describes the characters of the infinite symmetric group, the authors describe explicit constructions of an important class of representations, including both the irreducible and generalized ones. Complete with detailed proofs, as well as numerous examples and exercises which help to summarize recent developments in the field, this book will enable graduates to enhance their understanding of the topic, while also aiding lecturers and researchers in related areas.

  2. Symmetric, discrete fractional splines and Gabor systems

    DEFF Research Database (Denmark)

    Søndergaard, Peter Lempel

    2006-01-01

    In this paper we consider fractional splines as windows for Gabor frames. We introduce two new types of symmetric, fractional splines in addition to one found by Unser and Blu. For the finite, discrete case we present two families of splines: One is created by sampling and periodizing the continu......In this paper we consider fractional splines as windows for Gabor frames. We introduce two new types of symmetric, fractional splines in addition to one found by Unser and Blu. For the finite, discrete case we present two families of splines: One is created by sampling and periodizing...... the continuous splines, and one is a truly finite, discrete construction. We discuss the properties of these splines and their usefulness as windows for Gabor frames and Wilson bases....

  3. Symmetric configurations highlighted by collective quantum coherence

    Energy Technology Data Exchange (ETDEWEB)

    Obster, Dennis [Radboud University, Institute for Mathematics, Astrophysics and Particle Physics, Nijmegen (Netherlands); Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Sasakura, Naoki [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan)

    2017-11-15

    Recent developments in quantum gravity have shown the Lorentzian treatment to be a fruitful approach towards the emergence of macroscopic space-times. In this paper, we discuss another related aspect of the Lorentzian treatment: we argue that collective quantum coherence may provide a simple mechanism for highlighting symmetric configurations over generic non-symmetric ones. After presenting the general framework of the mechanism, we show the phenomenon in some concrete simple examples in the randomly connected tensor network, which is tightly related to a certain model of quantum gravity, i.e., the canonical tensor model. We find large peaks at configurations invariant under Lie-group symmetries as well as a preference for charge quantization, even in the Abelian case. In future study, this simple mechanism may provide a way to analyze the emergence of macroscopic space-times with global symmetries as well as various other symmetries existing in nature, which are usually postulated. (orig.)

  4. Overlap-free symmetric D 0 Lwords

    Directory of Open Access Journals (Sweden)

    Anna Frid

    2001-12-01

    Full Text Available A D0L word on an alphabet Σ={0,1,…,q-1} is called symmetric if it is a fixed point w=φ(w of a morphism φ:Σ * → Σ * defined by φ(i= t 1 + i t 2 + i … t m + i for some word t 1 t 2 … t m (equal to φ(0 and every i ∈ Σ; here a means a mod q. We prove a result conjectured by J. Shallit: if all the symbols in φ(0 are distinct (i.e., if t i ≠ t j for i ≠ j, then the symmetric D0L word w is overlap-free, i.e., contains no factor of the form axaxa for any x ∈ Σ * and a ∈ Σ.

  5. Young—Capelli symmetrizers in superalgebras†

    Science.gov (United States)

    Brini, Andrea; Teolis, Antonio G. B.

    1989-01-01

    Let Supern[U [unk] V] be the nth homogeneous subspace of the supersymmetric algebra of U [unk] V, where U and V are Z2-graded vector spaces over a field K of characteristic zero. The actions of the general linear Lie superalgebras pl(U) and pl(V) span two finite-dimensional K-subalgebras B and [unk] of EndK(Supern[U [unk] V]) that are the centralizers of each other. Young—Capelli symmetrizers and Young—Capelli *-symmetrizers give rise to K-linear bases of B and [unk] containing orthogonal systems of idempotents; thus they yield complete decompositions of B and [unk] into minimal left and right ideals, respectively. PMID:16594014

  6. Factored Facade Acquisition using Symmetric Line Arrangements

    KAUST Repository

    Ceylan, Duygu

    2012-05-01

    We introduce a novel framework for image-based 3D reconstruction of urban buildings based on symmetry priors. Starting from image-level edges, we generate a sparse and approximate set of consistent 3D lines. These lines are then used to simultaneously detect symmetric line arrangements while refining the estimated 3D model. Operating both on 2D image data and intermediate 3D feature representations, we perform iterative feature consolidation and effective outlier pruning, thus eliminating reconstruction artifacts arising from ambiguous or wrong stereo matches. We exploit non-local coherence of symmetric elements to generate precise model reconstructions, even in the presence of a significant amount of outlier image-edges arising from reflections, shadows, outlier objects, etc. We evaluate our algorithm on several challenging test scenarios, both synthetic and real. Beyond reconstruction, the extracted symmetry patterns are useful towards interactive and intuitive model manipulations.

  7. Commutative curvature operators over four-dimensional generalized symmetric

    Directory of Open Access Journals (Sweden)

    Ali Haji-Badali

    2014-12-01

    Full Text Available Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.

  8. Exotic high activity surface patterns in PtAu nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2013-05-09

    The structure and chemical ordering of PtAu nanoclusters of 79, 135, and 201 atoms are studied via a combination of a basin hopping atom-exchange technique (to locate the lowest energy homotops at fixed composition), a symmetry orbit technique (to find the high symmetry isomers), and density functional theory local reoptimization (for determining the most stable homotop). The interatomic interactions between Pt and Au are derived from the empirical Gupta potential. The lowest energy structures show a marked tendency toward PtcoreAushell chemical ordering by enrichment of the more cohesive Pt in the core region and of Au in the shell region. We observe a preferential segregation of Pt atoms to (111) facets and Au atoms to (100) facets of the truncated octahedron cluster motif. Exotic surface patterns are obtained particularly for Pt-rich compositions, where Pt atoms are being surrounded by Au atoms. These surface arrangements boost the catalytic activity by creating a large number of active sites. © 2013 American Chemical Society.

  9. Irreducible complexity of iterated symmetric bimodal maps

    Directory of Open Access Journals (Sweden)

    J. P. Lampreia

    2005-01-01

    Full Text Available We introduce a tree structure for the iterates of symmetric bimodal maps and identify a subset which we prove to be isomorphic to the family of unimodal maps. This subset is used as a second factor for a ∗-product that we define in the space of bimodal kneading sequences. Finally, we give some properties for this product and study the ∗-product induced on the associated Markov shifts.

  10. A symmetric Roos bound for linear codes

    NARCIS (Netherlands)

    Duursma, I.M.; Pellikaan, G.R.

    2006-01-01

    The van Lint–Wilson AB-method yields a short proof of the Roos bound for the minimum distance of a cyclic code. We use the AB-method to obtain a different bound for the weights of a linear code. In contrast to the Roos bound, the role of the codes A and B in our bound is symmetric. We use the bound

  11. Symmetric voltage-controlled variable resistance

    Science.gov (United States)

    Vanelli, J. C.

    1978-01-01

    Feedback network makes resistance of field-effect transistor (FET) same for current flowing in either direction. It combines control voltage with source and load voltages to give symmetric current/voltage characteristics. Since circuit produces same magnitude output voltage for current flowing in either direction, it introduces no offset in presense of altering polarity signals. It is therefore ideal for sensor and effector circuits in servocontrol systems.

  12. Resistor Networks based on Symmetrical Polytopes

    Directory of Open Access Journals (Sweden)

    Jeremy Moody

    2015-03-01

    Full Text Available This paper shows how a method developed by Van Steenwijk can be generalized to calculate the resistance between any two vertices of a symmetrical polytope all of whose edges are identical resistors. The method is applied to a number of cases that have not been studied earlier such as the Archimedean polyhedra and their duals in three dimensions, the regular polytopes in four dimensions and the hypercube in any number of dimensions.

  13. Symmetric vs. asymmetric punishment regimes for bribery

    OpenAIRE

    Engel, Christoph; Goerg, Sebastian J.; Yu, Gaoneng

    2012-01-01

    In major legal orders such as UK, the U.S., Germany, and France, bribers and recipients face equally severe criminal sanctions. In contrast, countries like China, Russia, and Japan treat the briber more mildly. Given these differences between symmetric and asymmetric punishment regimes for bribery, one may wonder which punishment strategy is more effective in curbing corruption. For this purpose, we designed and ran a lab experiment in Bonn (Germany) and Shanghai (China) with exactly the same...

  14. Quantum effects in non-maximally symmetric spaces

    International Nuclear Information System (INIS)

    Shen, T.C.

    1985-01-01

    Non-Maximally symmetric spaces provide a more general background to explore the relation between the geometry of the manifold and the quantum fields defined in the manifold than those with maximally symmetric spaces. A static Taub universe is used to study the effect of curvature anisotropy on the spontaneous symmetry breaking of a self-interacting scalar field. The one-loop effective potential on a λphi 4 field with arbitrary coupling xi is computed by zeta function regularization. For massless minimal coupled scalar fields, first order phase transitions can occur. Keeping the shape invariant but decreasing the curvature radius of the universe induces symmetry breaking. If the curvature radius is held constant, increasing deformation can restore the symmetry. Studies on the higher-dimensional Kaluza-Klein theories are also focused on the deformation effect. Using the dimensional regularization, the effective potential of the free scalar fields in M 4 x T/sup N/ and M 4 x (Taub) 3 spaces are obtained. The stability criterions for the static solutions of the self-consistent Einstein equations are derived. Stable solutions of the M 4 x S/sup N/ topology do not exist. With the Taub space as the internal space, the gauge coupling constants of SU(2), and U(1) can be determined geometrically. The weak angle is therefore predicted by geometry in this model

  15. Conservation laws in baroclinic inertial-symmetric instabilities

    Science.gov (United States)

    Grisouard, Nicolas; Fox, Morgan B.; Nijjer, Japinder

    2017-04-01

    Submesoscale oceanic density fronts are structures in geostrophic and hydrostatic balance, but are more prone to instabilities than mesoscale flows. As a consequence, they are believed to play a large role in air-sea exchanges, near-surface turbulence and dissipation of kinetic energy of geostrophically and hydrostatically balanced flows. We will present two-dimensional (x, z) Boussinesq numerical experiments of submesoscale baroclinic fronts on the f-plane. Instabilities of the mixed inertial and symmetric types (the actual name varies across the literature) develop, with the absence of along-front variations prohibiting geostrophic baroclinic instabilities. Two new salient facts emerge. First, contrary to pure inertial and/or pure symmetric instability, the potential energy budget is affected, the mixed instability extracting significant available potential energy from the front and dissipating it locally. Second, in the submesoscale regime, the growth rate of this mixed instability is sufficiently large that significant radiation of near-inertial internal waves occurs. Although energetically small compared to e.g. local dissipation within the front, this process might be a significant source of near-inertial energy in the ocean.

  16. Application Of The Bertlmann-Martin Inequalities To Super Symmetric Partners

    International Nuclear Information System (INIS)

    IGHEZOU, F.Z.; KERRIS, A.T.; MESSAMAH, J.; LOMBARD, R.J.

    2011-01-01

    The purpose of the present study is to discuss some general aspects of the Bertlmann and Martin inequalities (BMI) in the case of the super symmetric partners. The (BMI) have been established by minoring the multipole sum rules according to a method initiated by Bertlmann and Martin. Application to different potentials and generalizations were derived and tested in various papers. We present new concepts of super symmetry in quantum mechanics (SUSYQM) and apply them to two exactly solvable potentials in the one dimensional space. We apply the (BMI) to their super symmetric partners and we examine the degree of saturation of the (BMI)

  17. Symmetric scrolled packings of multilayered carbon nanoribbons

    Science.gov (United States)

    Savin, A. V.; Korznikova, E. A.; Lobzenko, I. P.; Baimova, Yu. A.; Dmitriev, S. V.

    2016-06-01

    Scrolled packings of single-layer and multilayer graphene can be used for the creation of supercapacitors, nanopumps, nanofilters, and other nanodevices. The full atomistic simulation of graphene scrolls is restricted to consideration of relatively small systems in small time intervals. To overcome this difficulty, a two-dimensional chain model making possible an efficient calculation of static and dynamic characteristics of nanoribbon scrolls with allowance for the longitudinal and bending stiffness of nanoribbons is proposed. The model is extended to the case of scrolls of multilayer graphene. Possible equilibrium states of symmetric scrolls of multilayer carbon nanotribbons rolled up so that all nanoribbons in the scroll are equivalent are found. Dependences of the number of coils, the inner and outer radii, lowest vibrational eigenfrequencies of rolled packages on the length L of nanoribbons are obtained. It is shown that the lowest vibrational eigenfrequency of a symmetric scroll decreases with a nanoribbon length proportionally to L -1. It is energetically unfavorable for too short nanoribbons to roll up, and their ground state is a stack of plane nanoribbons. With an increasing number k of layers, the nanoribbon length L necessary for creation of symmetric scrolls increases. For a sufficiently small number of layers k and a sufficiently large nanoribbon length L, the scrolled packing has the lowest energy as compared to that of stack of plane nanoribbons and folded structures. The results can be used for development of nanomaterials and nanodevices on the basis of graphene scrolled packings.

  18. Is the Universe matter-antimatter symmetric

    International Nuclear Information System (INIS)

    Alfven, H.

    1976-09-01

    According to the symmetric cosmology there should be antimatter regions in space which are equally as large as the matter regions. The regions of different kind are separated by Leidenfrost layers, which may be very thin and not observable from a distance. This view has met resistance which in part is based on the old view that the dilute interstellar and intergalactic medium is more or less homogeneous. However, through space research in the magnetosphere and interplanetary space we know that thin layers, dividing space into regions of different magnetisation, exist and based on this it is concluded that space in general has a cellular structure. This result may break down the psychological resistance to the symmetric theory. The possibility that every second star in our galaxy consists of antimatter is discussed, and it is shown that this view is not in conflict with any observations. As most stars are likely to be surrounded by solar systems of a structure like our own, it is concluded that collisions between comets and antistars (or anticomets and stars) would be rather frequent. Such collisions would result in phenomena of the same type as the observed cosmic γ-ray bursts. Another support for the symmetric cosmology is the continuous X-ray background radiation. Also many of the observed large energy releases in cosmos are likely to be due to annihilation

  19. Electrochemical oxidation of methanol on Pt/(RuxSn1-xO2 nanocatalyst

    Directory of Open Access Journals (Sweden)

    Krstajić Mila N.

    2013-01-01

    Full Text Available The Ru-doped SnO2 powder, (RuxSn1-xO2, with the Sn:Ru atomic ratio of 9:1 was synthesized and used as a support for Pt nanoparticles (30 mass% loading. The (RuxSn1-xO2 support and Pt/(RuxSn1-xO2 catalyst were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy and transmission electron microscopy (TEM. (RuxSn1-xO2 was found to be two-phase material consisting of probably solid solution of RuO2 in SnO2 and pure RuO2. The average Pt particle size determined by TEM was 5.3 nm. Cyclic voltammetry of Pt/(RuxSn1-xO2 indicated good conductivity of the sup-port and displayed usual features of Pt. The results of the electrochemical oxidation of COads and methanol on Pt/(RuxSn1-xO2 were compared with those on commercial Pt/C and PtRu/C catalysts. Oxidation of COads on Pt/(RuxSn1-xO2 starts at less positive potentials than on PtRu/C and Pt/C. Potentiodynamic polarization curves and chronoamperometric curves of methanol oxidation indicated higher initial activity of Pt/(RuxSn1-xO2 catalyst compared to PtRu/C, but also a greater loss in the current density over time. Potentiodynamic stability test of the catalysts revealed that deactivation of the Pt/(RuxSn1-xO2 and Pt/C was primarily caused by the poisoning of Pt surface by the methanol oxidation residues, which mostly occurred during the first potential cycle. In the case of PtRu/C the poisoning of the surface was minor and deactivation was caused by the PtRu surface area loss. [Projekat Ministarstva nauke Republike Srbije, br. ON-172054

  20. Effect of Pt coverage in Pt-deposited Pd nanostructure electrodes on electrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ah-Reum; Lee, Young-Woo; Kwak, Da-Hee; Park, Kyung-Won [Soongsil University, Seoul (Korea, Republic of)

    2015-06-15

    We have fabricated Pt-deposited Pd electrodes via a two-gun sputtering deposition system by separately operating Pd and Pt target as a function of sputtering time of Pt target. For Pt-deposited Pd electrodes (Pd/Pt-X), Pd were first deposited on the substrates at 20 W for 5min, followed by depositing Pt on the Pd-only electrodes as a function of sputtering time (X=1, 3, 5, 7, and 10min) at 20W on the Pt target. As the sputtering time of Pt target increased, the portion of Pt on the Pd electrodes increased, representing an increased coverage of Pt on the Pd electrodes. The Pd/Pt-7 electrode having an optimized Pt coverage exhibits an excellent electrocatalytic activity for methanol oxidation reaction.

  1. On the harmonic starlike functions with respect to symmetric ...

    African Journals Online (AJOL)

    In the present paper, we introduce the notions of functions harmonic starlike with respect to symmetric, conjugate and symmetric conjugate points. Such results as coefficient inequalities and structural formulae for these function classes are proved. Keywords: Harmonic functions, harmonic starlike functions, symmetric points, ...

  2. Core/shell AgNi/PtAgNi nanoparticles as methanol-tolerant oxygen reduction electrocatalysts

    International Nuclear Information System (INIS)

    Wu, Dengfeng; Cheng, Daojian

    2015-01-01

    A core/shell AgNi/PtAgNi nanoparticle (NP) was synthesized via a new seed-mediated growth method in organic solvent medium. The as-synthesized AgNi/PtAgNiNP exhibits an AgNi core coated with PtAgNi shell, which was confirmed by transmission electron microscopy (TEM), ultraviolet–visible absorption spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The AgNi/PtAgNiNPs/C catalyst possesses higher oxygen reduction reaction (ORR) activity and better durability compared with the commercial Pt/C catalyst. It is found that the ORR polarization curve of the AgNi/PtAgNiNPs/C catalyst shows an onset potential of 0.91 V vs. RHE, which is superior to the commercial Pt/C (0.88 V vs. RHE). In addition, the AgNi/PtAgNiNPs/C catalyst shows much better durability than the commercial Pt/C catalyst. More interestingly, the AgNi/PtAgNiNPs/C catalyst displays much higher methanol tolerance than the commercial Pt/C catalyst in 0.1 M KOH solution in the presence of 0.5 M methanol. Our results show that core/shell AgNi/PtAgNiNPs possess selective activity for ORR even in the presence of methanol, showing potential application as methanol-tolerant cathode catalysts in direct methanol fuel cells.

  3. Modeling the drain current and its equation parameters for lightly doped symmetrical double-gate MOSFETs

    International Nuclear Information System (INIS)

    Bhartia, Mini; Chatterjee, Arun Kumar

    2015-01-01

    A 2D model for the potential distribution in silicon film is derived for a symmetrical double gate MOSFET in weak inversion. This 2D potential distribution model is used to analytically derive an expression for the subthreshold slope and threshold voltage. A drain current model for lightly doped symmetrical DG MOSFETs is then presented by considering weak and strong inversion regions including short channel effects, series source to drain resistance and channel length modulation parameters. These derived models are compared with the simulation results of the SILVACO (Atlas) tool for different channel lengths and silicon film thicknesses. Lastly, the effect of the fixed oxide charge on the drain current model has been studied through simulation. It is observed that the obtained analytical models of symmetrical double gate MOSFETs are in good agreement with the simulated results for a channel length to silicon film thickness ratio greater than or equal to 2. (paper)

  4. Modeling the drain current and its equation parameters for lightly doped symmetrical double-gate MOSFETs

    Science.gov (United States)

    Bhartia, Mini; Chatterjee, Arun Kumar

    2015-04-01

    A 2D model for the potential distribution in silicon film is derived for a symmetrical double gate MOSFET in weak inversion. This 2D potential distribution model is used to analytically derive an expression for the subthreshold slope and threshold voltage. A drain current model for lightly doped symmetrical DG MOSFETs is then presented by considering weak and strong inversion regions including short channel effects, series source to drain resistance and channel length modulation parameters. These derived models are compared with the simulation results of the SILVACO (Atlas) tool for different channel lengths and silicon film thicknesses. Lastly, the effect of the fixed oxide charge on the drain current model has been studied through simulation. It is observed that the obtained analytical models of symmetrical double gate MOSFETs are in good agreement with the simulated results for a channel length to silicon film thickness ratio greater than or equal to 2.

  5. Spontaneous breakdown of PT symmetry in the complex Coulomb ...

    Indian Academy of Sciences (India)

    P T symmetry is spontaneously broken, however, for complex values of the form L = − 1 2 + i . In this case the potential remains P T -symmetric, while the two independent solutions are transformed to each other by the P T operation and at the same time, the two series of discrete energy eigenvalues turn into each ...

  6. Highly sensitive room temperature ammonia gas sensor based on Ir-doped Pt porous ceramic electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenlong [College of pharmacy and biological engineering, Chengdu University, Chengdu, 610106 (China); Department of chemical and materials engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Liu, Yen-Yu [Department of chemical and materials engineering, Tunghai University, Taichung 407, Taiwan (China); Do, Jing-Shan, E-mail: jsdo@ncut.edu.tw [Department of chemical and materials engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Li, Jing, E-mail: lijing@cdu.edu.cn [College of pharmacy and biological engineering, Chengdu University, Chengdu, 610106 (China)

    2016-12-30

    Highlights: • Water vapors seem to hugely improve the electrochemical activity of the Pt and Pt-Ir porous ceramic electrodes. • The gas sensors based on the Pt and Pt-Ir alloy electrodes possess good sensing performances. • The reaction path of the ammonia on platinum has been discussed. - Abstract: Room temperature NH{sub 3} gas sensors based on Pt and Pt-Ir (Ir doping Pt) porous ceramic electrodes have been fabricated by both electroplating and sputtering methods. The properties of the gaseous ammonia sensors have been examined by polarization and chronoamperometry techniques. The influence of humidity on the features of the resulting sensors in the system has also been discussed, and the working potential was optimized. Water vapors seem to hugely improve the electrochemical activity of the electrode. With increasing the relative humidity, the response of the Pt-Ir(E)/Pt(S)/PCP sensor to NH{sub 3} gas could be enhanced remarkably, and the sensitivity increases from 1.14 to 12.06 μA ppm{sup −1} cm{sup −2} .Then we have also discussed the sensing mechanism of the Pt-Ir sensor and the result has been confirmed by X-ray photoelectron spectroscopy of the electrode surface before and after reaction in the end.

  7. Investigation of the electrochemical behaviour of thermally prepared Pt-IrO2 electrodes

    Directory of Open Access Journals (Sweden)

    Konan Honoré Kondro

    2008-04-01

    Full Text Available Different IrO2 electrodes in which the molar percentage of platinum (Pt varies from 0 %mol Pt to 100 %mol Pt were prepared on titanium (Ti substrate by thermal decomposition techniques. The electrodes were characterized physically (SEM, XPS and electrochemically and then applied to methanol oxidation. The SEM micrographs indicated that the electrodes present different morphologies depending on the amount of platinum in the deposit and the cracks observed on the 0 %mol Pt electrode diminish in size tending to a compact and rough surface for 70 %mol Pt electrode. XPS results indicate good quality of the coating layer deposited on the titanium substrate. The voltammetric investigations in the supporting electrolyte indicate that the electrodes with low amount of platinum (less than 10 %mol Pt behave as pure IrO2. But in the case of electrodes containing more than 40 %mol Pt, the voltammograms are like that of platinum. Electrocatalytic activity towards methanol oxidation was observed with the electrodes containing high amount of platinum. Its oxidation begins at a potential of about 210 mV lower on such electrodes than the pure platinum electrode (100 %mol Pt. But for electrode containing low quantity of Pt, the surface of the coating is essentially composed of IrO2 and methanol oxidation occurs in the domain of water decomposition solely. The increase of the electrocatalytic behaviour of the electrodes containing high amount of Pt towards methanol oxidation is due to the bifunctional behaviour of the electrodes.

  8. Methanol Electro-Oxidation on Pt-Ru Alloy Nanoparticles Supported on Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Yangchuan Xing

    2009-09-01

    Full Text Available Carbon nanotubes (CNTs have been investigated in recent years as a catalyst support for proton exchange membrane fuel cells. Improved catalyst activities were observed and attributed to metal-support interactions. We report a study on the kinetics of methanol electro-oxidation on CNT supported Pt-Ru alloy nanoparticles. Alloy catalysts with different compositions, Pt53Ru47/CNT, Pt69Ru31/CNT and Pt77Ru23/CNT, were prepared and investigated in detail. Experiments were conducted at various temperatures, electrode potentials, and methanol concentrations. It was found that the reaction order of methanol electro-oxidation on the PtRu/CNT catalysts was consistent with what has been reported for PtRu alloys with a value of 0.5 in methanol concentrations. However, the electro-oxidation reaction on the PtRu/CNT catalysts displayed much lower activation energies than that on the Pt-Ru alloy catalysts unsupported or supported on carbon black (PtRu/CB. This study provides an overall kinetic evaluation of the PtRu/CNT catalysts and further demonstrates the beneficial role of CNTs.

  9. Timelike geodesics around a charged spherically symmetric dilaton black hole

    Directory of Open Access Journals (Sweden)

    Blaga C.

    2015-01-01

    Full Text Available In this paper we study the timelike geodesics around a spherically symmetric charged dilaton black hole. The trajectories around the black hole are classified using the effective potential of a free test particle. This qualitative approach enables us to determine the type of orbit described by test particle without solving the equations of motion, if the parameters of the black hole and the particle are known. The connections between these parameters and the type of orbit described by the particle are obtained. To visualize the orbits we solve numerically the equation of motion for different values of parameters envolved in our analysis. The effective potential of a free test particle looks different for a non-extremal and an extremal black hole, therefore we have examined separately these two types of black holes.

  10. Synthesis and Immobilization of Pt Nanoparticles on Amino-Functionalized Halloysite Nanotubes toward Highly Active Catalysts

    Directory of Open Access Journals (Sweden)

    Tingting Yang

    2015-02-01

    Full Text Available A simple and effective method for the preparation of platinum nanoparticles (Pt NPs grown on amino-func‐ tionalized halloysite nanotubes (HNTs was developed. The nanostructures were synthesized through the func‐ tionalization of the HNTs, followed by an in situ approach to generate Pt NPs with diameter of approximately 1.5 nm within the entire HNTs. The synthesis process, composition and morphology of the nanostructures were characterized. The results suggest PtNPs/NH2-HNTs nanostructures with ultrafine PtNPs were successfully synthesized by green chemically-reducing H2PtCl6 without the use of surfactant. The nanostructures exhibit promising catalytic properties for reducing potassium hexacyanoferrate(III to potassium hexacyanoferrate(II. The presented experiment for novel PtNPs/NH2-HNTs nanostructures is quite simple and environmentally benign, permitting it as a potential application in the future field of catalysts.

  11. Carbon-supported ternary PtSnIr catalysts for direct ethanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, J.; Kokoh, K.B.; Coutanceau, C.; Leger, J.-M. [Equipe Electrocatalyse, UMR 6503 CNRS, Universite de Poitiers, 40 avenue du Recteur Pineau 86022 Poitiers Cedex (France); Dos Anjos, D.M. [Equipe Electrocatalyse, UMR 6503 CNRS, Universite de Poitiers, 40 avenue du Recteur Pineau 86022 Poitiers Cedex (France); Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal 780, 13560-970 Sao Carlos, SP (Brazil); Olivi, P.; De Andrade, A.R. [Departamento de Quimica da Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Av. Bandeirantes, 3900, 14040-901 Ribeirao Preto, SP (Brazil); Tremiliosi-Filho, G. [Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal 780, 13560-970 Sao Carlos, SP (Brazil)

    2007-08-01

    Binary PtIr, PtSn and ternary PtSnIr electrocatalysts were prepared by the Pechini-Adams modified method on carbon Vulcan XC-72, and these materials were characterized by TEM and XRD. The XRD results showed that the electrocatalysts consisted of the Pt displaced phase, suggesting the formation of solid solutions between the metals Pt/Ir and Pt/Sn. However, the increase in Sn loading promoted phase separation, with the formation of peaks typical of cubic Pt{sub 3}Sn. The electrochemical investigation of these different electrode materials was carried out as a function of the electrocatalyst composition, in a 0.5 mol dm{sup -3} H{sub 2}SO{sub 4} solution, with either the presence or the absence of ethanol. Cyclic voltammetric measurements and chronoamperometric results obtained at room temperature showed that PtSn/C and PtSnIr/C displayed better electrocatalytic activity for ethanol electrooxidation compared to PtIr/C and Pt/C, mainly at low potentials. The oxidation process was also investigated by in situ infrared reflectance spectroscopy, to identify the adsorbed species. Linearly adsorbed CO and CO{sub 2} were found, indicating that the cleavage of the C-C bond in the ethanol substrate occurred during the oxidation process. At 90 C, the Pt{sub 89}Sn{sub 11}/C and Pt{sub 68}Sn{sub 9}Ir{sub 23}/C electrocatalysts displayed higher current and power performances as anode materials in a direct ethanol fuel cell (DEFC). (author)

  12. Surface and electrochemical characterization of electrodeposited PtRu alloys

    Science.gov (United States)

    Richarz, Frank; Wohlmann, Bernd; Vogel, Ulrich; Hoffschulz, Henning; Wandelt, Klaus

    1995-07-01

    PtRu alloys of different compositions were electrodeposited on Au. Twelve alloys between 0% and 100% Pt were characterized with surface sensitive spectroscopies (XPS, LEIS) after transfer from an electrochemical cell to an ultra high vaccum chamber without contact to air. The composition of the thus prepared alloys showed a linear dependence on the concentrations of the deposition solution, but was Pt-enriched both in the bulk and (even more so) at the surface. During the electrochemical reduction of the metal cations, sulfur from the supporting electrolyte 1N H 2SO 4 was found to be incorporated into the electrodes. Cyclic voltammetry was used for the determination of the electrocatalytic activity of the electrodes for the oxidation of carbon monoxide. The highest activity for this oxidation as measured by the (peak) potential of the CO oxidation cyclovoltammograms was found for a surface concentration of ˜ 50%Pt. The asymmetry of this "activity curve" (oxidation potential versus Pt surface concentration) is tentatively explained in terms of a surface structural phase separation.

  13. One-pot synthesis of FePt/CNTs nanocomposites for efficient cellular imaging and cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weihong; Zheng, Xiuwen, E-mail: xwzheng1976@163.com [Linyi University, School of Chemistry & Chemical Engineering, Shandong Provincial Key Laboratory of Detection Technology for Tumor Makers (China); Li, Shulian [Linyi Tumor Hospital (China); Zhang, Wei; Wen, Xin [Linyi University, School of Chemistry & Chemical Engineering, Shandong Provincial Key Laboratory of Detection Technology for Tumor Makers (China); Yue, Ludan [Shandong Normal University (China); Wang, Jinlong [Shandong University of Technology (China)

    2015-11-15

    Here, we developed a facile route to synthesize carbon nanotube-based FePt nanocomposites (FePt/CNTs) as a potential theranostic platform in the cancer treatment. FePt/CNTs were firstly synthesized via one-pot polyol route, and then functionalized with 6-arm-polyethylene glycol-amine polymer. The average size of FePt nanoparticles (NPs) is 3–4 nm, which is dispersed on the CNT surface (ca.50–150 nm). The as-prepared FePt NPs display high cytotoxicity by highly reactive oxygen species in cancer cells. Folic acid and fluorescein isothiocyanate are assembled onto the surface of FePt/CNTs for effective targeting of folate receptor-positive cancer cells and simultaneously for the visualization of cellular uptake. Therefore, the FePt/CNTs NPs capability of simultaneously performing diagnosis, therapy, and targeting is, therefore, promising for future potential widespread application in biomedicine.

  14. Cylindrically symmetric Fresnel lens for high concentration photovoltaic

    Science.gov (United States)

    Hung, Yu-Ting; Su, Guo-Dung

    2009-08-01

    High concentration photovoltaic (HCPV) utilizes point-focus cost-effective plastic Fresnel lens. And a millimeter-sized Ill-V compound multi-junction solar cell is placed underneath focusing optics which can achieve cell efficiency potential of up to 40.7 %. The advantage of HCPV makes less solar cell area and higher efficiency; however, the acceptance angle of HCPV is about +/-1°, which is very small and the mechanical tracking of the sun is necessary. In order to reduce the power consumption and the angle tracking error of tracking systems, a light collector model with larger acceptance angle is designed with ZEMAX®. In this model, the original radially symmetric Fresnel lens of HCPV is replaced by cylindrically symmetric Fresnel lens and a parabolic reflective surface. Light is collected in two dimensions separately. And a couple of lenses and a light pipe are added before the solar cell chip in order to collect more light when sun light deviates from incident angle of 00. An acceptance angle of +/-10° is achieved with GCR 400.

  15. Thermoacoustic focusing lens by symmetric Airy beams with phase manipulations

    Science.gov (United States)

    Liu, Chen; Xia, Jian-Ping; Sun, Hong-Xiang; Yuan, Shou-Qi

    2017-12-01

    We report the realization of broadband acoustic focusing lenses based on two symmetric thermoacoustic phased arrays of Airy beams, in which the units of thermoacoustic phase control are designed by employing air with different temperatures surrounded by rigid insulated boundaries and thermal insulation films. The phase delays of the transmitted and reflected units could cover a whole 2π interval, which arises from the change of the sound velocity of air induced by the variation of the temperature. Based on the units of phase control, we design the transmitted and reflected acoustic focusing lenses with two symmetric Airy beams, and verify the high self-healing focusing characteristic and the feasibility of the thermal insulation films. Besides, the influences of the bending angle of the Airy beam on the focusing performance are discussed in detail. The proposed acoustic lens has advantages of broad bandwidth (about 4.8 kHz), high focusing performance, self-healing feature, and simple structure, which enable it to provide more schemes for acoustic focusing. It has excellent potential applications in acoustic devices.

  16. Mixed dark matter in left-right symmetric models

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, Asher [Department of Physics, University of Chicago,Chicago, Illinois 60637 (United States); Fox, Patrick J. [Theoretical Physics Department, Fermilab,Batavia, Illinois 60510 (United States); Hooper, Dan [Center for Particle Astrophysics, Fermi National Accelerator Laboratory,Batavia, Illinois 60510 (United States); Department of Astronomy and Astrophysics, University of Chicago,Chicago, Illinois 60637 (United States); Mohlabeng, Gopolang [Center for Particle Astrophysics, Fermi National Accelerator Laboratory,Batavia, Illinois 60510 (United States); Department of Physics and Astronomy, University of Kansas,Lawrence, Kansas 66045 (United States)

    2016-06-08

    Motivated by the recently reported diboson and dijet excesses in Run 1 data at ATLAS and CMS, we explore models of mixed dark matter in left-right symmetric theories. In this study, we calculate the relic abundance and the elastic scattering cross section with nuclei for a number of dark matter candidates that appear within the fermionic multiplets of left-right symmetric models. In contrast to the case of pure multiplets, WIMP-nucleon scattering proceeds at tree-level, and hence the projected reach of future direct detection experiments such as LUX-ZEPLIN and XENON1T will cover large regions of parameter space for TeV-scale thermal dark matter. Decays of the heavy charged W{sup ′} boson to particles in the dark sector can potentially shift the right-handed gauge coupling to larger values when fixed to the rate of the Run 1 excesses, moving towards the theoretically attractive scenario, g{sub R}=g{sub L}. This region of parameter space may be probed by future collider searches for new Higgs bosons or electroweak fermions.

  17. Ab-initio study of the coadsorption of Li and H on Pt(001), Pt(110) and Pt(111) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Saad, Farida [Laboratoire de Physique et Chimie Quantique, Faculte des Sciences, Universite Mouloud Mammeri, 15000 Tizi-Ouzou (Algeria); Zemirli, Mourad, E-mail: zemirlimourad@mail.ummto.dz [Laboratoire de Physique et Chimie Quantique, Faculte des Sciences, Universite Mouloud Mammeri, 15000 Tizi-Ouzou (Algeria); Benakki, Mouloud; Bouarab, Said [Laboratoire de Physique et Chimie Quantique, Faculte des Sciences, Universite Mouloud Mammeri, 15000 Tizi-Ouzou (Algeria)

    2012-02-15

    The coadsorption of Li and H atoms on Pt(001), Pt(110) and Pt(111) surfaces is studied using density functional theory with generalised gradient approximation. In all calculations Li, H and the two topmost layers of the metal were allowed to relax. At coverage of 0.25 mono-layer in a p(2 Multiplication-Sign 2) unit cell, lithium adsorption at the hollow site for the three surfaces is favoured over top and bridge sites. The most favoured adsorption sites for H atom on the Pt(001) and Pt(110) surfaces are the top and bridge sites, while on Pt(111) surface the fcc site appears to be slightly favoured over the hcp site. The coadsorption of Li and atomic hydrogen shows that the interaction between the two adsorbates is stabilising when they are far from each other. The analysis of Li, H and Pt local density of states shows that Li strongly interacts with the Pt surfaces.

  18. Antagonistic Activities of Novel Peptides from Bacillus amyloliquefaciens PT14 against Fusarium solani and Fusarium oxysporum.

    Science.gov (United States)

    Kim, Young Gwon; Kang, Hee Kyoung; Kwon, Kee-Deok; Seo, Chang Ho; Lee, Hyang Burm; Park, Yoonkyung

    2015-12-09

    Bacillus species have recently drawn attention due to their potential use in the biological control of fungal diseases. This paper reports on the antifungal activity of novel peptides isolated from Bacillus amyloliquefaciens PT14. Reverse-phase high-performance liquid chromatography revealed that B. amyloliquefaciens PT14 produces five peptides (PT14-1, -2, -3, -4a, and -4b) that exhibit antifungal activity but are inactive against bacterial strains. In particular, PT14-3 and PT14-4a showed broad-spectrum antifungal activity against Fusarium solani and Fusarium oxysporum. The PT14-4a N-terminal amino acid sequence was identified through Edman degradation, and a BLAST homology analysis showed it not to be identical to any other protein or peptide. PT14-4a displayed strong fungicidal activity with minimal inhibitory concentrations of 3.12 mg/L (F. solani) and 6.25 mg/L (F. oxysporum), inducing severe morphological deformation in the conidia and hyphae. On the other hand, PT14-4a had no detectable hemolytic activity. This suggests PT14-4a has the potential to serve as an antifungal agent in clinical therapeutic and crop-protection applications.

  19. A comprehensive study on the effect of Ru addition to Pt electrodes ...

    Indian Academy of Sciences (India)

    Administrator

    The electro-oxidation of ethanol was studied over nanosized Pt and different compositions of ... The onset potential of ethanol electro-oxidation is lowered on bimetallic PtRu ..... Hogarth M P and Ralph T R 2002 Platinum Metals Review 46.

  20. Influence of chloride ions on the stability of PtNi alloys for PEMFC cathode

    NARCIS (Netherlands)

    Jayasayee, K.; Veen, van J.A.R.; Hensen, E.J.M.; Bruijn, de F.A.

    2011-01-01

    The dependence of the rate of Ni dissolution from PtNi alloys on the chloride concentration was studied electrochemically in 0.5 M HClO4 at room temperature. Electrodeposited PtNi catalysts were subjected to extensive potential cycling between 20 mV and 1.3 V at various Cl- concentrations and the

  1. The Electronic Band Structure of Platinum Oxide (PtO) | Omehe ...

    African Journals Online (AJOL)

    We have performed the electronic band structure of the bulk and monolayer of PtO using the full potential linear muffin-tin orbital and the projector augmented wave method with the density functional theory. We applied the LDA and LDA+U scheme to both methods. It was found out that the LDA calculation of bulk PtO ...

  2. Spherically symmetric self-similar universe

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, C C [Toronto Univ., Ontario (Canada)

    1979-10-01

    A spherically symmetric self-similar dust-filled universe is considered as a simple model of a hierarchical universe. Observable differences between the model in parabolic expansion and the corresponding homogeneous Einstein-de Sitter model are considered in detail. It is found that an observer at the centre of the distribution has a maximum observable redshift and can in principle see arbitrarily large blueshifts. It is found to yield an observed density-distance law different from that suggested by the observations of de Vaucouleurs. The use of these solutions as central objects for Swiss-cheese vacuoles is discussed.

  3. Dijet rates with symmetric Et cuts

    International Nuclear Information System (INIS)

    Banfi, Andrea; Dasgupta, Mrinal

    2004-01-01

    We consider dijet production in the region where symmetric cuts on the transverse energy, E t , are applied to the jets. In this region next-to-leading order calculations are unreliable and an all-order resummation of soft gluon effects is needed, which we carry out. Although, for illustrative purposes, we choose dijets produced in deep inelastic scattering, our general ideas apply additionally to dijets produced in photoproduction or gamma-gamma processes and should be relevant also to the study of prompt di-photon E t spectra in association with a recoiling jet, in hadron-hadron processes. (author)

  4. Symmetric Logic Synthesis with Phase Assignment

    OpenAIRE

    Benschop, N. F.

    2001-01-01

    Decomposition of any Boolean Function BF_n of n binary inputs into an optimal inverter coupled network of Symmetric Boolean functions SF_k (k \\leq n) is described. Each SF component is implemented by Threshold Logic Cells, forming a complete and compact T-Cell Library. Optimal phase assignment of input polarities maximizes local symmetries. The "rank spectrum" is a new BF_n description independent of input ordering, obtained by mapping its minterms onto an othogonal n \\times n grid of (transi...

  5. Elastic energy for reflection-symmetric topologies

    International Nuclear Information System (INIS)

    Majumdar, A; Robbins, J M; Zyskin, M

    2006-01-01

    Nematic liquid crystals in a polyhedral domain, a prototype for bistable displays, may be described by a unit-vector field subject to tangent boundary conditions. Here we consider the case of a rectangular prism. For configurations with reflection-symmetric topologies, we derive a new lower bound for the one-constant elastic energy. For certain topologies, called conformal and anticonformal, the lower bound agrees with a previous result. For the remaining topologies, called nonconformal, the new bound is an improvement. For nonconformal topologies we derive an upper bound, which differs from the lower bound by a factor depending only on the aspect ratios of the prism

  6. Nanotribology of Symmetric and Asymmetric Liquid Lubricants

    Directory of Open Access Journals (Sweden)

    Shinji Yamada

    2010-03-01

    Full Text Available When liquid molecules are confined in a narrow gap between smooth surfaces, their dynamic properties are completely different from those of the bulk. The molecular motions are highly restricted and the system exhibits solid-like responses when sheared slowly. This solidification behavior is very dependent on the molecular geometry (shape of liquids because the solidification is induced by the packing of molecules into ordered structures in confinement. This paper reviews the measurements of confined structures and friction of symmetric and asymmetric liquid lubricants using the surface forces apparatus. The results show subtle and complex friction mechanisms at the molecular scale.

  7. Unary self-verifying symmetric difference automata

    CSIR Research Space (South Africa)

    Marais, Laurette

    2016-07-01

    Full Text Available stream_source_info Marais_2016_ABSTRACT.pdf.txt stream_content_type text/plain stream_size 796 Content-Encoding ISO-8859-1 stream_name Marais_2016_ABSTRACT.pdf.txt Content-Type text/plain; charset=ISO-8859-1 18th... International Workshop on Descriptional Complexity of Formal Systems, 5 - 8 July 2016, Bucharest, Romania Unary self-verifying symmetric difference automata Laurette Marais1,2 and Lynette van Zijl1(B) 1 Department of Computer Science, Stellenbosch...

  8. Characterisation of an AGATA symmetric prototype detector

    International Nuclear Information System (INIS)

    Nelson, L.; Dimmock, M.R.; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Nolan, P.J.; Lazarus, I.; Simpson, J.; Medina, P.; Santos, C.; Parisel, C.

    2007-01-01

    The Advanced GAmma Tracking Array (AGATA) symmetric prototype detector has been tested at University of Liverpool. A 137 Ce source, collimated to a 2 mm diameter, was scanned across the front face of the detector and data were acquired utilising digital electronics. Pulse shapes from a selection of well-defined photon interaction positions have been analysed to investigate the position sensitivity of the detector. Furthermore, the application of the electric field simulation software, Multi Geometry Simulation (MGS) to generate theoretical pulse shapes for AGATA detectors has been presented

  9. How Symmetrical Assumptions Advance Strategic Management Research

    DEFF Research Database (Denmark)

    Foss, Nicolai Juul; Hallberg, Hallberg

    2014-01-01

    We develop the case for symmetrical assumptions in strategic management theory. Assumptional symmetry obtains when assumptions made about certain actors and their interactions in one of the application domains of a theory are also made about this set of actors and their interactions in other...... application domains of the theory. We argue that assumptional symmetry leads to theoretical advancement by promoting the development of theory with greater falsifiability and stronger ontological grounding. Thus, strategic management theory may be advanced by systematically searching for asymmetrical...

  10. Characterisation of an AGATA symmetric prototype detector

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, L. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom)]. E-mail: ln@ns.ph.liv.ac.uk; Dimmock, M.R. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom)]. E-mail: mrd@ns.ph.liv.ac.uk; Boston, A.J. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom)]. E-mail: ajb@ns.ph.liv.ac.uk; Boston, H.C. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Cresswell, J.R. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Nolan, P.J. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Lazarus, I. [CCLRC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Simpson, J. [CCLRC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Medina, P. [Institut de Recherches Subatomiques, Strasbourg BP28 67037 (France); Santos, C. [Institut de Recherches Subatomiques, Strasbourg BP28 67037 (France); Parisel, C. [Institut de Recherches Subatomiques, Strasbourg BP28 67037 (France)

    2007-04-01

    The Advanced GAmma Tracking Array (AGATA) symmetric prototype detector has been tested at University of Liverpool. A {sup 137}Ce source, collimated to a 2 mm diameter, was scanned across the front face of the detector and data were acquired utilising digital electronics. Pulse shapes from a selection of well-defined photon interaction positions have been analysed to investigate the position sensitivity of the detector. Furthermore, the application of the electric field simulation software, Multi Geometry Simulation (MGS) to generate theoretical pulse shapes for AGATA detectors has been presented.

  11. Soft theorems for shift-symmetric cosmologies

    Science.gov (United States)

    Finelli, Bernardo; Goon, Garrett; Pajer, Enrico; Santoni, Luca

    2018-03-01

    We derive soft theorems for single-clock cosmologies that enjoy a shift symmetry. These so-called consistency conditions arise from a combination of a large diffeomorphism and the internal shift symmetry and fix the squeezed limit of all correlators with a soft scalar mode. As an application, we show that our results reproduce the squeezed bispectrum for ultra-slow-roll inflation, a particular shift-symmetric, nonattractor model which is known to violate Maldacena's consistency relation. Similar results have been previously obtained by Mooij and Palma using background-wave methods. Our results shed new light on the infrared structure of single-clock cosmological spacetimes.

  12. Pion condensation in symmetric nuclear matter

    International Nuclear Information System (INIS)

    Shamsunnahar, T.; Saha, S.; Kabir, K.; Nath, L.M.

    1991-01-01

    We have investigated the possibility of pion condensation in symmetric nuclear matter using a model of pion-nucleon interaction based essentially on chiral SU(2) x SU(2) symmetry. We have found that pion condensation is not possible for any finite value of the density. Consequently, no critical opalescence phenomenon is likely to be seen in pion-nucleus scattering nor is it likely to be possible to explain the EMC effect in terms of an increased number of pions in the nucleus. (author)

  13. Geometrodynamics of spherically symmetric Lovelock gravity

    International Nuclear Information System (INIS)

    Kunstatter, Gabor; Taves, Tim; Maeda, Hideki

    2012-01-01

    We derive the Hamiltonian for spherically symmetric Lovelock gravity using the geometrodynamics approach pioneered by Kuchar (1994 Phys. Rev. D 50 3961) in the context of four-dimensional general relativity. When written in terms of the areal radius, the generalized Misner-Sharp mass and their conjugate momenta, the generic Lovelock action and Hamiltonian take on precisely the same simple forms as in general relativity. This result supports the interpretation of Lovelock gravity as the natural higher dimensional extension of general relativity. It also provides an important first step towards the study of the quantum mechanics, Hamiltonian thermodynamics and formation of generic Lovelock black holes. (fast track communication)

  14. Synthesis and Electrocatalytic Performance of Multi-Component Nanoporous PtRuCuW Alloy for Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Xiaoting Chen

    2015-06-01

    Full Text Available We have prepared a multi-component nanoporous PtRuCuW (np-PtRuCuW electrocatalyst via a combined chemical dealloying and mechanical alloying process. The X-ray diffraction (XRD, transmission electron microscopy (TEM and electrochemical measurements have been applied to characterize the microstructure and electrocatalytic activities of the np-PtRuCuW. The np-PtRuCuW catalyst has a unique three-dimensional bi-continuous ligament structure and the length scale is 2.0 ± 0.3 nm. The np-PtRuCuW catalyst shows a relatively high level of activity normalized to mass (467.1 mA mgPt−1 and electrochemically active surface area (1.8 mA cm−2 compared to the state-of-the-art commercial PtC and PtRu catalyst at anode. Although the CO stripping peak of np-PtRuCuW 0.47 V (vs. saturated calomel electrode, SCE is more positive than PtRu, there is a 200 mV negative shift compared to PtC (0.67 V vs. SCE. In addition, the half-wave potential and specific activity towards oxygen reduction of np-PtRuCuW are 0.877 V (vs. reversible hydrogen electrode, RHE and 0.26 mA cm−2, indicating a great enhancement towards oxygen reduction than the commercial PtC.

  15. High-temperature electrochemical characterization of Ru core Pt shell fuel cell catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Bokach, D.; Fuente, J.L.G. de la; Tsypkin, M.; Ochal, P.; Tunold, R.; Sunde, S.; Seland, F. [Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Sem Saelands veg 12, N-7491 Trondheim (Norway); Endsjoe, I.C. [Washington Mills AS, NO-7300 Orkanger (Norway)

    2011-12-15

    The electrooxidation of methanol was studied at elevated temperature and pressure by cyclic voltammetry and constant potential experiments at real fuel cell electrocatalysts. Ruthenium core and platinum shell nanoparticles were synthesized by a sequential polyol route, and characterized electrochemically by CO stripping at room temperature to quickly confirm the structure of the synthesized core-shell structure as compared to pure commercial Pt/C and Pt-Ru/C alloy catalysts. A significant promotional effect of Pt decorated Ru cores in the methanol oxidation was found at elevated temperatures and rather high-electrode potentials. A negative potential shift of the methanol oxidation peak is observed for the Ru rate at Pt/C core-shell catalyst at moderate temperatures, while a significant shift to positive potentials of the methanol oxidation peak occurs for Pt/C catalysts. The onset potential for methanol oxidation is lowered some 200 mV from room temperature and up to 120 C for all electrocatalysts, indicating that it is the thermal activity of water adsorption that dictates the onset potential. Direct methanol fuel cell experiments showed only small performance differences between Ru rate at Pt/C and Pt/C anode electrocatalysts, suggesting the necessity of render possible the formation of surface oxygen species at lower electrode potentials. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Consumption of Pt anode in phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, N.; Urata, K.; Motohira, N.; Ota, K. [Yokohama National University, Yokohama (Japan)

    1997-12-05

    Consumption of Pt anode was investigated in phosphoric acid of various concentration. In 30-70wt% phosphoric acid, Pt dissolved at the rate of 19{mu}gcm{sup -2}h{sup -1}. On the other hand, in 85 wt% phosphoric acid, the amount increased to 0.91 mgcm{sup -2}h{sup -1} which is ca. 180 and 1800 times as much as in 1M sulfuric acid and 1M alkaline solution, respectively. In the diluted phosphoric acid solution, the Pt surface was covered with Pt oxides during the electrolysis, which would prevent the surface from corrosion. However, in the concentrated phosphoric acid, no such oxide surface was observed. Concentrated phosphoric acid might form stable complex with Pt species, therefore the uncovered bare Pt surface is situated in the serious corrosion condition under the high overvoltage and Pt would dissolve into the solution directly instead of forming the Pt oxides. 11 refs., 9 figs., 1 tab.

  17. Ethanol electrooxidation on novel carbon supported Pt/SnO{sub x}/C catalysts with varied Pt:Sn ratio

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, L. [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany); Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian (China); Colmenares, L.; Jusys, Z. [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany); Sun, G.Q. [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian (China)], E-mail: gqsun@dicp.ac.cn; Behm, R.J. [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany)], E-mail: juergen.behm@uni-ulm.de

    2007-12-01

    Novel carbon supported Pt/SnO{sub x}/C catalysts with Pt:Sn atomic ratios of 5:5, 6:4, 7:3 and 8:2 were prepared by a modified polyol method and characterized with respect to their structural properties (X-ray diffraction (XRD) and transmission electron microscopy (TEM)), chemical composition (XPS), their electrochemical properties (base voltammetry, CO{sub ad} stripping) and their electrocatalytic activity and selectivity for ethanol oxidation (ethanol oxidation reaction (EOR)). The data show that the Pt/SnO{sub x}/C catalysts are composed of Pt and tin oxide nanoparticles with an average Pt particle diameter of about 2 nm. The steady-state activity of the Pt/SnO{sub x}/C catalysts towards the EOR decreases with tin content at room temperature, but increases at 80 deg. C. On all Pt/SnO{sub x}/C catalysts, acetic acid and acetaldehyde represent dominant products, CO{sub 2} formation contributes 1-3% for both potentiostatic and potentiodynamic reaction conditions. With increasing potential, the acetaldehyde yield decreases and the acetic acid yield increases. The apparent activation energies of the EOR increase with tin content (19-29 kJ mol{sup -1}), but are lower than on Pt/C (32 kJ mol{sup -1}). The somewhat better performance of the Pt/SnO{sub x}/C catalysts compared to alloyed PtSn{sub x}/C catalysts is attributed to the presence of both sufficiently large Pt ensembles for ethanol dehydrogenation and C-C bond splitting and of tin oxide for OH generation. Fuel cell measurements performed for comparison largely confirm the results obtained in model studies.

  18. Symmetric Double Quantum Dot Energy States in a High Magnetic Field

    International Nuclear Information System (INIS)

    Morgenstern Horing, Norman J; Sawamura, Makoto

    2011-01-01

    The dynamical Green's function and energy spectrum of a 2D symmetric quantum double-dot system on a planar host in a normal magnetic field are analyzed here, representing the two dots by Dirac delta function potentials. The proliferation of energy levels due to Landau quantization is examined in detail.

  19. Perancangan Promosi Digital PT Campina Di Surabaya

    OpenAIRE

    Wijaya, Fernando; Hartanto, Deddi Duto; Sylvia, Merry

    2013-01-01

    Perancangan ini dilakukan untuk mempromosikan PT. Campina Ice Cream Industry beserta produknya. PT. Campina Ice Cream Industry diangkat sebagai topic perancangan karena banyak competitor-kompetitor yang bermunculan. Dengan melihat berbagai kelebihan dan kekurangan PT. Campina Ice Cream Industry, promosi dirancang agar dapat menggambarkan kelebihan PT. Campina Ice Cream Industry. Sehingga diharapkan dapat mengingatkan kembali ice cream Campina dalam benak konsumen. Untuk media promosi digital...

  20. Cu-capped surface alloys of Pt/Cu left brace 100 right brace

    CERN Document Server

    Alshamaileh, E; Wander, A

    2003-01-01

    The room-temperature deposition of 0.5 monolayer (ML) Pt on Cu left brace 100 right brace followed by annealing to 525 K results in a sharp c(2 x 2) low-energy electron diffraction (LEED) pattern. The structure of this surface alloy is investigated by means of symmetrized automated tensor low-energy electron diffraction (SATLEED) analysis and ab initio plane wave density functional calculations. The results are then compared with those for the similar system 0.5 ML Pd/Cu left brace 100 right brace. SATLEED results for the Pt/Cu left brace 100 right brace show that it consists of an ordered c(2 x 2) Cu-Pt second layer alloy capped with a pure Cu first layer. The first and second interlayer spacings are found to be expanded by +5.1 +- 1.7 and +3.5 +- 1.7% respectively (relative to the bulk Cu interlayer spacing of 1.807 A) due to the insertion of the 8% larger Pt atoms into the second layer. The ordered mixed layer is found to be rippled by 0.08 +- 0.06 A with Pt atoms rippled outwards towards the solid-vacuum ...

  1. Electroweak Baryogenesis in R-symmetric Supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Fok, R.; Kribs, Graham D.; Martin, Adam; Tsai, Yuhsin

    2013-03-01

    We demonstrate that electroweak baryogenesis can occur in a supersymmetric model with an exact R-symmetry. The minimal R-symmetric supersymmetric model contains chiral superfields in the adjoint representation, giving Dirac gaugino masses, and an additional set of "R-partner" Higgs superfields, giving R-symmetric \\mu-terms. New superpotential couplings between the adjoints and the Higgs fields can simultaneously increase the strength of the electroweak phase transition and provide additional tree-level contributions to the lightest Higgs mass. Notably, no light stop is present in this framework, and in fact, we require both stops to be above a few TeV to provide sufficient radiative corrections to the lightest Higgs mass to bring it up to 125 GeV. Large CP-violating phases in the gaugino/higgsino sector allow us to match the baryon asymmetry of the Universe with no constraints from electric dipole moments due to R-symmetry. We briefly discuss some of the more interesting phenomenology, particularly of the of the lightest CP-odd scalar.

  2. Spectroelectrochemical Study of Carbon Monoxide and Ethanol Oxidation on Pt/C, PtSn(3:1/C and PtSn(1:1/C Catalysts

    Directory of Open Access Journals (Sweden)

    Rubén Rizo

    2016-09-01

    Full Text Available PtSn-based catalysts are one of the most active materials toward that contribute ethanol oxidation reaction (EOR. In order to gain a better understanding of the Sn influence on the carbon monoxide (principal catalyst poison and ethanol oxidation reactions in acidic media, a systematic spectroelectrochemical study was carried out. With this end, carbon-supported PtSnx (x = 0, 1/3 and 1 materials were synthesized and employed as anodic catalysts for both reactions. In situ Fourier transform infrared spectroscopy (FTIRS and differential electrochemical mass spectrometry (DEMS indicate that Sn diminishes the amount of bridge bonded CO (COB and greatly improves the CO tolerance of Pt-based catalysts. Regarding the effect of Sn loading on the EOR, it enhances the catalytic activity and decreases the onset potential. FTIRS and DEMS analysis indicate that the C-C bond scission occurs at low overpotentials and at the same potential values regardless of the Sn loading, although the amount of C-C bond breaking decreases with the rise of Sn in the catalytic material. Therefore, the elevated catalytic activity toward the EOR at PtSn-based electrodes is mainly associated with the improved CO tolerance and the incomplete oxidation of ethanol to form acetic acid and acetaldehyde species, causing the formation of a higher amount of both C2 products with the rise of Sn loading.

  3. Synthesis and electrocatalytic activity of Au/Pt bimetallic nanodendrites for ethanol oxidation in alkaline medium.

    Science.gov (United States)

    Han, Xinyi; Wang, Dawei; Liu, Dong; Huang, Jianshe; You, Tianyan

    2012-02-01

    Gold/Platinum (Au/Pt) bimetallic nanodendrites were successfully synthesized through seeded growth method using preformed Au nanodendrites as seeds and ascorbic acid as reductant. Cyclic voltammograms (CVs) of a series of Au/Pt nanodendrites modified electrodes in 1M KOH solution containing 1M ethanol showed that the electrocatalyst with a molar ratio (Au:Pt) of 3 exhibited the highest peak current density and the lowest onset potential. The peak current density of ethanol electro-oxidation on the Au(3)Pt(1) nanodendrites modified glassy carbon electrode (Au(3)Pt(1) electrode) is about 16, 12.5, and 4.5 times higher than those on the polycrystalline Pt electrode, polycrystalline Au electrode, and Au nanodendrites modified glassy carbon electrode (Au dendrites electrode), respectively. The oxidation peak potential of ethanol electro-oxidation on the Au(3)Pt(1) electrode is about 299 and 276 mV lower than those on the polycrystalline Au electrode and Au dendrites electrode, respectively. These results demonstrated that the Au/Pt bimetallic nanodendrites may find potential application in alkaline direct ethanol fuel cells (ADEFCs). Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Fabrication and surface transformation of FePt nanoparticle monolayer

    International Nuclear Information System (INIS)

    Wang Ying; Ding Baojun; Li Hua; Zhang Xiaoyan; Cai Bingchu; Zhang Yafei

    2007-01-01

    The monolayer of FePt nanoparticles with the mean size of ∼4 nm was fabricated on a glass substrate by the Langmuir--Blodgett (LB) technology. The monolayer of FePt nanoparticles has a smooth surface and a high density structure as shown by the AFM image. The array structure of FePt nanoparticles on the surface of the film is clearly with a cubic symmetry in appropriate condition. Small-angle X-ray diffraction (SXRD) measurement of multilayer structure for the FePt nanoparticles has indicated that the superlattices consist of well-defined smooth layers. The transfer of nanoparticle layers onto a solid substrate surface was quite efficient for the first few layers, exhibiting a proportional increase of optical absorption in the UV-vis range. This results potentially opens up a new approach to the long-range ordered array of FePt nanoparticles capped by organic molecules on substrate and provide a promising thin film, which may exhibit the excellent ultra-high density magnetic recording properties

  5. DFT Study of Optical Properties of Pt-based Complexes

    Science.gov (United States)

    Oprea, Corneliu I.; Dumbravǎ, Anca; Moscalu, Florin; Nicolaides, Atnanassios; Gîrţu, Mihai A.

    2010-01-01

    We report Density Functional Theory (DFT) calculations providing the geometrical and electronic structures, as well as the vibrational and optical properties of the homologous series of Pt-pyramidalized olefin complexes (CH2)n-(C8H10)Pt(PH3)2, where n = 0, 1, and 2, in their neutral and oxidized states. All complexes were geometry optimized for the singlet ground state in vacuum using DFT methods with B3LYP exchange-correlation functional and the Effective Core Potential LANL2DZ basis set, within the frame of Gaussian03 quantum chemistry package. We find the coordination geometry of Pt to be distorted square planar, with dihedral angles ranging from 0°, for n = 0 and 1, which have C2V symmetry to 3.4°, for n = 2 with C2 symmetry. The Mulliken charge analysis allows a discussion of the oxidation state of the Pt ion. Electronic transitions were calculated at the same level of theory by means of Time Dependant-DFT. For n = 2 the electronic absorption bands are located in the UV region of the spectrum, the transitions being assigned to metal to ligand charge transfers. The relevance of these Pt-based compounds as possible pigments for dye-sensitized solar cells is discussed.

  6. Symmetric Electrode Spanning Narrows the Excitation Patterns of Partial Tripolar Stimuli in Cochlear Implants.

    Science.gov (United States)

    Luo, Xin; Wu, Ching-Chih

    2016-12-01

    In cochlear implants (CIs), standard partial tripolar (pTP) mode reduces current spread by returning a fraction of the current to two adjacent flanking electrodes within the cochlea. Symmetric electrode spanning (i.e., separating both the apical and basal return electrodes from the main electrode by one electrode) has been shown to increase the pitch of pTP stimuli, when the ratio of intracochlear return current was fixed. To explain the pitch increase caused by symmetric spanning in pTP mode, this study measured the electrical potentials of both standard and symmetrically spanned pTP stimuli on a main electrode EL8 in five CI ears using electrical field imaging (EFI). In addition, the spatial profiles of evoked compound action potentials (ECAP) and the psychophysical forward masking (PFM) patterns were also measured for both stimuli. The EFI, ECAP, and PFM patterns of a given stimulus differed in shape details, reflecting the different levels of auditory processing and different ratios of intracochlear return current across the measurement methods. Compared to the standard pTP stimuli, the symmetrically spanned pTP stimuli significantly reduced the areas under the curves of the normalized EFI and PFM patterns, without shifting the pattern peaks and centroids (both around EL8). The more focused excitation patterns with symmetric spanning may have caused the previously reported pitch increase, due to an interaction between pitch and timbre perception. Being able to reduce the spread of excitation, pTP mode symmetric spanning is a promising stimulation strategy that may further increase spectral resolution and frequency selectivity with CIs.

  7. Symmetric extension of bipartite quantum states and its use in quantum key distribution with two-way postprocessing

    International Nuclear Information System (INIS)

    Myhr, Geir Ove

    2010-01-01

    Just like we can divide the set of bipartite quantum states into separable states and entangled states, we can divide it into states with and without a symmetric extension. The states with a symmetric extension - which includes all the separable states - behave classically in many ways, while the states without a symmetric extension - which are all entangled - have the potential to exhibit quantum effects. The set of states with a symmetric extension is closed under local quantum operations assisted by one-way classical communication (1-LOCC) just like the set of separable states is closed under local operations assisted by two-way classical communication (LOCC). Because of this, states with a symmetric extension often play the same role in a one-way communication setting as the separable states play in a two-way communication setting. We show that any state with a symmetric extension can be decomposed into a convex combination of states that have a pure symmetric extension. A necessary condition for a state to have a pure symmetric extension is that the spectra of the local and global density matrices are equal. This condition is also sufficient for two qubits, but not for any larger systems. We present a conjectured necessary and sufficient condition for two-qubit states with a symmetric extension. Proofs are provided for some classes of states: rank-two states, states on the symmetric subspace, Bell-diagonal states and states that are invariant under S x S, where S is a phase gate. We also show how the symmetric extension problem for multi-qubit Bell-diagonal states can be simplified and the simplified problem implemented as a semidefinite program. Quantum key distribution protocols such as the six-state protocol and the BB84 protocol effectively gives Alice and Bob Bell-diagonal states that they measure in the standard basis to obtain a raw key which they may then process further to obtain a secret error-free key. When the raw key has a high error rate, the

  8. Symmetric extension of bipartite quantum states and its use in quantum key distribution with two-way postprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Myhr, Geir Ove

    2010-11-08

    Just like we can divide the set of bipartite quantum states into separable states and entangled states, we can divide it into states with and without a symmetric extension. The states with a symmetric extension - which includes all the separable states - behave classically in many ways, while the states without a symmetric extension - which are all entangled - have the potential to exhibit quantum effects. The set of states with a symmetric extension is closed under local quantum operations assisted by one-way classical communication (1-LOCC) just like the set of separable states is closed under local operations assisted by two-way classical communication (LOCC). Because of this, states with a symmetric extension often play the same role in a one-way communication setting as the separable states play in a two-way communication setting. We show that any state with a symmetric extension can be decomposed into a convex combination of states that have a pure symmetric extension. A necessary condition for a state to have a pure symmetric extension is that the spectra of the local and global density matrices are equal. This condition is also sufficient for two qubits, but not for any larger systems. We present a conjectured necessary and sufficient condition for two-qubit states with a symmetric extension. Proofs are provided for some classes of states: rank-two states, states on the symmetric subspace, Bell-diagonal states and states that are invariant under S x S, where S is a phase gate. We also show how the symmetric extension problem for multi-qubit Bell-diagonal states can be simplified and the simplified problem implemented as a semidefinite program. Quantum key distribution protocols such as the six-state protocol and the BB84 protocol effectively gives Alice and Bob Bell-diagonal states that they measure in the standard basis to obtain a raw key which they may then process further to obtain a secret error-free key. When the raw key has a high error rate, the

  9. Statistical properties of anti-symmetrized molecular dynamics

    International Nuclear Information System (INIS)

    Ohnishi, A.; Randrup, J.

    1993-01-01

    We study the statistical equilibrium properties of the recently developed anti-symmetrized molecular dynamics model for heavy-ion reactions. We consider A non-interacting fermions in one dimension, either bound in a common harmonic potential or moving freely within an interval, and perform a Metropolis sampling of the corresponding parameter space. Generally the average excitation and the specific heat, considered as functions of the imposed temperature, behave in a classical manner when the canonical weight is calculated in the mean-field approximation. However, it is possible to obtain results that are much closer to the quantal behavior by modifying the weight to take approximate account of the energy fluctuations within the individual wave packets. (orig.)

  10. Waterbomb base: a symmetric single-vertex bistable origami mechanism

    International Nuclear Information System (INIS)

    Hanna, Brandon H; Lund, Jason M; Magleby, Spencer P; Howell, Larry L; Lang, Robert J

    2014-01-01

    The origami waterbomb base is a single-vertex bistable origami mechanism that has unique properties which may prove useful in a variety of applications. It also shows promise as a test bed for smart materials and actuation because of its straightforward geometry and multiple phases of motion, ranging from simple to more complex. This study develops a quantitative understanding of the symmetric waterbomb base's kinetic behavior. This is done by completing kinematic and potential energy analyses to understand and predict bistable behavior. A physical prototype is constructed and tested to validate the results of the analyses. Finite element and virtual work analyses based on the prototype are used to explore the locations of the stable equilibrium positions and the force–deflection response. The model results are verified through comparisons to measurements on a physical prototype. The resulting models describe waterbomb base behavior and provide an engineering tool for application development. (paper)

  11. Ultrasound beam characteristics of a symmetric nodal origami based array

    Science.gov (United States)

    Bilgunde, Prathamesh N.; Bond, Leonard J.

    2018-04-01

    Origami-the ancient art of paper folding-is being explored in acoustics for effective focusing of sound. In this short communication, we present a numerical investigation of beam characteristics for an origami based ultrasound array. A spatial re-configuration of array elements is performed based upon the symmetric nodal origami. The effect of fold angle on the ultrasound beam is evaluated using frequency domain and transient finite element analysis. It was found that increase in the fold angle reduces near field length by 58% and also doubles the beam intensity as compared to the linear array. Transient analysis also indicated 80% reduction in the -6dB beam width, which can improve the lateral resolution of phased array. Such a spatially re-configurable array could potentially be used in the future to reduce the cost of electronics in the phased array instrumentation.

  12. Generalized transformations and coordinates for static spherically symmetric general relativity

    Science.gov (United States)

    Hill, James M.; O'Leary, Joseph

    2018-04-01

    We examine a static, spherically symmetric solution of the empty space field equations of general relativity with a non-orthogonal line element which gives rise to an opportunity that does not occur in the standard derivations of the Schwarzschild solution. In these derivations, convenient coordinate transformations and dynamical assumptions inevitably lead to the Schwarzschild solution. By relaxing these conditions, a new solution possibility arises and the resulting formalism embraces the Schwarzschild solution as a special case. The new solution avoids the coordinate singularity associated with the Schwarzschild solution and is achieved by obtaining a more suitable coordinate chart. The solution embodies two arbitrary constants, one of which can be identified as the Newtonian gravitational potential using the weak field limit. The additional arbitrary constant gives rise to a situation that allows for generalizations of the Eddington-Finkelstein transformation and the Kruskal-Szekeres coordinates.

  13. Generalized transformations and coordinates for static spherically symmetric general relativity.

    Science.gov (United States)

    Hill, James M; O'Leary, Joseph

    2018-04-01

    We examine a static, spherically symmetric solution of the empty space field equations of general relativity with a non-orthogonal line element which gives rise to an opportunity that does not occur in the standard derivations of the Schwarzschild solution. In these derivations, convenient coordinate transformations and dynamical assumptions inevitably lead to the Schwarzschild solution. By relaxing these conditions, a new solution possibility arises and the resulting formalism embraces the Schwarzschild solution as a special case. The new solution avoids the coordinate singularity associated with the Schwarzschild solution and is achieved by obtaining a more suitable coordinate chart. The solution embodies two arbitrary constants, one of which can be identified as the Newtonian gravitational potential using the weak field limit. The additional arbitrary constant gives rise to a situation that allows for generalizations of the Eddington-Finkelstein transformation and the Kruskal-Szekeres coordinates.

  14. Influence of surface morphology on methanol oxidation at a glassy carbon-supported Pt catalyst

    Directory of Open Access Journals (Sweden)

    S. STEVANOVIC

    2008-08-01

    Full Text Available Platinum supported on glassy carbon (GC was used as a model system for studying the influence of the surface morphology of a Pt catalyst on methanol oxidation in alkaline and acidic solutions. Platinum was deposited by the potential step method on GC samples from H2SO4 + H2PtCl6 solution under the same conditions with loadings from 10 to 80 mg cm-2. AFM and STM images of the GC/Pt electrodes showed that the Pt was deposited in the form of 3D agglomerates composed of spherical particles. Longer deposition times resulted in increased growth of Pt forms and a decrease in the specific area of the Pt. The real surface area of Pt increased with loading but the changes were almost negligible at higher loadings. Nevertheless, both the specific and mass activity of platinum supported on glassy carbon for methanol oxidation in acidic and in alkaline solutions exhibit a volcanic dependence with respect to the platinum loading. The increase in the activity can be explained by the increasing the particle size with the loading and thus an increase in the contiguous Pt sites available for adsorption and decomposition of methanol. However, the decrease in the activity of the catalyst with further increase of loading and particle size after reaching the maximum is related to the decrease of active sites available for methanol adsorption and their accessibility as a result of more close proximity and pronounced coalescence of the Pt particles.

  15. Te/Pt nanonetwork modified carbon fiber microelectrodes for methanol oxidation

    International Nuclear Information System (INIS)

    Tsai, Hsiang-Yu; Shih, Zih-Yu; Lin, Zong-Hong; Chang, Huan-Tsung

    2013-01-01

    Te/Pt nanonetwork-decorated carbon fiber microelectrodes (CFMEs) have been fabricated and employed as anodic catalysts in a direct methanol fuel cell (DMFC). Te nanowires were prepared from tellurite ions (TeO 3 2− ) through a seed-mediated growth process and were deposited onto CFMEs to form three-dimensional Te nanonetworks. The Te nanonetworks then acted as a framework and reducing agent to reduce PtCl 6 2− ions to form Te/Pt through a galvanic replacement reaction, leading to the formation of Te/PtCFMEs. By controlling the reaction time, the amount of Pt and morphology of Te/Pt nanonetworks were controlled, leading to various degrees of electrocatalytic activity. The Te/PtCFMEs provide a high electrochemical active surface area (129.2 m 2 g −1 ), good catalytic activity (1.2 A mg −1 ), high current density (20.0 mA cm −2 ), long durability, and tolerance toward the poisoning species for methanol oxidation in 0.5 M sulfuric acid containing 1 M methanol. We have further demonstrated an enhanced current density by separately using 3 and 5 Te/PtCFMEs. Our results show that the low-cost, stable, and effective Te/PtCFMEs have great potential in the fabrication of cost-effective fuel cells. (paper)

  16. Pt/glassy carbon model catalysts prepared from PS-b-P2VP micellar templates.

    Science.gov (United States)

    Gu, Yunlong; St-Pierre, Jean; Ploehn, Harry J

    2008-11-04

    Poly(styrene)-block-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymer was used as a micellar template to fabricate arrays of Pt nanoparticles on mica and glassy carbon (GC) supports. Polymer micellar deposition yields Pt nanoparticles with tunable particle size and surface number density on both mica and GC. After deposition of precursor-loaded micelles onto GC, oxygen plasma etching removes the polymer shell, followed by thermal treatment with H2 gas to reduce the Pt. Etching conditions were optimized to maximize removal of the polymer while minimizing damage to the GC. Arrays of Pt nanoparticles with controlled size and surface number density can be prepared on mica (for particle size characterization) and GC to make Pt/GC model catalysts. These model catalysts were characterized by tapping mode atomic force microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry to measure activity for oxidation of carbon monoxide or methanol. Cyclic voltammetry results demonstrate the existence of a correlation between Pt particle size and electrocatalytic properties including onset potential, tolerance of carbonaceous adsorbates, and intrinsic activity (based on active Pt area from CO stripping voltammetry). Results obtained with Pt/GC model catalysts duplicate prior results obtained with Pt/porous carbon catalysts therefore validating the synthesis approach and offering a new, tunable platform to study catalyst structure and other effects such as aging on proton exchange membrane fuel cell (PEMFC) reactions.

  17. Green synthesis and characterization of Au@Pt core-shell bimetallic nanoparticles using gallic acid

    Science.gov (United States)

    Zhang, Guojun; Zheng, Hongmei; Shen, Ming; Wang, Lei; Wang, Xiaosan

    2015-06-01

    In this study, we developed a facile and benign green synthesis approach for the successful fabrication of well-dispersed urchin-like Au@Pt core-shell nanoparticles (NPs) using gallic acid (GA) as both a reducing and protecting agent. The proposed one-step synthesis exploits the differences in the reduction potentials of AuCl4- and PtCl62-, where the AuCl4- ions are preferentially reduced to Au cores and the PtCl62- ions are then deposited continuously onto the Au core surface as a Pt shell. The as-prepared Au@Pt NPs were characterized by transmission electron microscope (TEM); high-resolution transmission electron microscope (HR-TEM); scanning electron microscope (SEM); UV-vis absorption spectra (UV-vis); X-ray diffraction (XRD); Fourier transmission infrared spectra (FT-IR). We systematically investigated the effects of some experimental parameters on the formation of the Au@Pt NPs, i.e., the reaction temperature, the molar ratios of HAuCl4/H2PtCl6, and the amount of GA. When polyvinylpyrrolidone K-30 (PVP) was used as a protecting agent, the Au@Pt core-shell NPs obtained using this green synthesis method were better dispersed and smaller in size. The as-prepared Au@Pt NPs exhibited better catalytic activity in the reaction where NaBH4 reduced p-nitrophenol to p-aminophenol. However, the results showed that the Au@Pt bimetallic NPs had a lower catalytic activity than the pure Au NPs obtained by the same method, which confirmed the formation of Au@Pt core-shell nanostructures because the active sites on the surfaces of the Au NPs were covered with a Pt shell.

  18. Strategic Alliance Between PT Dirgantara Indonesia and Airbus Millitary (a Case Study of PT Dirgantara Indonesia)

    OpenAIRE

    Indriyanto, Reza Relen; Wandebori, Harimukti; Astuti, Novika Candra

    2013-01-01

    PT Dirgantara Indonesia (PT DI) is one of the aircraft manufacturing companies in Indonesia. The tight of competition in aerospace industry needs to improve its performance to gain niche market. Therefore, Ministry State of Own Enterprises has instructed PT Perusahaan Pengelola Aset (PT PPA) and PT DI to restructure and revitalize company with supported by Airbus Military as a strategic alliance partner, in order to increase the performance of production capacity, aircraft sales, and financia...

  19. Electrooxidation of ethanol on Pt and PtRu surfaces investigated by ATR surface-enhanced infrared absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcio F.; Camara, Giuseppe A., E-mail: giuseppe.silva@ufms.br [Departamento de Quimica, Universidade Federal do Mato Grosso do Sul, Campo Grande-MS (Brazil); Batista, Bruno C.; Boscheto, Emerson [Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos-SP, (Brazil); Varela, Hamilton, E-mail: varela@iqsc.usp.br [Ertl Center for Electrochemistry and Catalysis, Gwangju Institute of Science and Technology (GIST), Gwangju (Korea, Republic of)

    2012-05-15

    Herein, it was investigated for the first time the electro-oxidation of ethanol on Pt and PtRu electrodeposits in acidic media by using in situ surface enhanced infrared absorption spectroscopy with attenuated total reflection (ATR-SEIRAS). The experimental setup circumvents the weak absorbance signals related to adsorbed species, usually observed for rough, electrodeposited surfaces, and allows a full description of the CO coverage with the potential for both catalysts. The dynamics of adsorption-oxidation of CO was accessed by ATR-SEIRAS experiments (involving four ethanol concentrations) and correlated with expressions derived from a simple kinetic model. Kinetic analysis suggests that the growing of the CO adsorbed layer is nor influenced by the presence of Ru neither by the concentration of ethanol. The results suggest that the C-C scission is not related to the presence of Ru and probably happens at Pt sites. (author)

  20. Fabrication of CuO–Pt core–shell nanohooks by in situ reconstructing the Pt-shells

    Science.gov (United States)

    Cao, Fan; Zheng, He; Zhao, Ligong; Huang, Rui; Jia, Shuangfeng; Liu, Huihui; Li, Lei; Wang, Zhao; Hu, Yongming; Gu, Haoshuang; Wang, Jianbo

    2018-05-01

    The design of various nanostructures with specific compositions and shapes is highly demanded due to the widespread use of micro/nano electro-mechanical systems. In this work, one-dimensional CuO–Pt core–shell nanowires (NWs) are acquired by depositing Pt nanoparticles onto CuO NWs and then mechanically-shaped into nanohooks. Subsequently, the hook-like shape is maintained by the Pt-shell which is reconstructed via Joule heat and re-solidified after cooling down, during which the elastic strain energy is stored in the CuO-core. The results provide a simple strategy to design nanostructures with various compositions and shapes, implying the potential applications in mechanical energy storage and shape memory nanodevices.

  1. Preparation of PtSnCu/C and PtSn/C electrocatalysts and activation by dealloying processes for ethanol electrooxidation; Preparacao de eletrocatalisadores PtSnCu/C e PtSn/C e ativacao por processos de dealloying para aplicacao na oxidacao eletroquuimica do etanol

    Energy Technology Data Exchange (ETDEWEB)

    Crisafulli, Rudy

    2013-06-01

    the FCC structure of Pt. The results obtained by cyclic voltammetry and chronoamperometry showed that electrocatalysts containing 30 at % or more of platinum, after chemical and electrochemical dealloying had significant improvement in electrocatalytic activity for ethanol electro-oxidation in the potential of interest. The electrocatalysts with higher efficiency for electrochemical oxidation of ethanol were PtSn/C (50:50) BR/ED > PtSnCu/C (50:40:10) AR/ED > PtSnCu/C (50:10:40) BR/CD. PtSn/C (50:50) BR/CD, PtSnCu/C (50:10:40) BR/CD, PtSnCu/C (50:40:10) AR/CD electrocatalysts and Pt/C BASF, PtSn/C (75:25) BASF commercial electrocatalysts were tested in single Direct Ethanol Fuel Cell. The results showed the following performance for ethanol electro-oxidation: PtSn/C (50:50) BR/CD > PtSnCu/C (50:40:10) AR/CD > PtSnCu/C > PtSn/C (75:25) BASF > PtSnCu/C (50:10:40) BR/CD > Pt/C BASF. (author)

  2. Hydrogen adsorption-mediated synthesis of concave Pt nanocubes and their enhanced electrocatalytic activity

    Science.gov (United States)

    Lu, Bang-An; Du, Jia-Huan; Sheng, Tian; Tian, Na; Xiao, Jing; Liu, Li; Xu, Bin-Bin; Zhou, Zhi-You; Sun, Shi-Gang

    2016-06-01

    Concave nanocubes are enclosed by high-index facets and have negative curvature; they are expected to have enhanced reactivity, as compared to nanocubes with flat surfaces. Herein, we propose and demonstrate a new strategy for the synthesis of concave Pt nanocubes with {hk0} high-index facets, by using a hydrogen adsorption-mediated electrochemical square-wave potential method. It was found that Pt atoms prefer to deposit on edge sites rather than terrace sites on Pt surfaces with intensive hydrogen adsorption, resulting in the formation of concave structures. The as-prepared concave Pt nanocubes exhibit enhanced catalytic activity and stability towards oxidation of ethanol and formic acid in acidic solutions, compared to commercial Pt/C catalysts.Concave nanocubes are enclosed by high-index facets and have negative curvature; they are expected to have enhanced reactivity, as compared to nanocubes with flat surfaces. Herein, we propose and demonstrate a new strategy for the synthesis of concave Pt nanocubes with {hk0} high-index facets, by using a hydrogen adsorption-mediated electrochemical square-wave potential method. It was found that Pt atoms prefer to deposit on edge sites rather than terrace sites on Pt surfaces with intensive hydrogen adsorption, resulting in the formation of concave structures. The as-prepared concave Pt nanocubes exhibit enhanced catalytic activity and stability towards oxidation of ethanol and formic acid in acidic solutions, compared to commercial Pt/C catalysts. Electronic supplementary information (ESI) available: Details of DFT calculation, SEM images of concave Pt nanocubes, mass activity and stability characterization of the catalysts. See DOI: 10.1039/c6nr02349e

  3. Probing adsorption phenomena on a single crystal Pt-alloy surface under oxygen reduction reaction conditions

    International Nuclear Information System (INIS)

    Bondarenko, Alexander S.; Stephens, Ifan E.L.; Bech, Lone; Chorkendorff, Ib

    2012-01-01

    Highlights: ► Impedance spectroscopy of Cu/Pt(1 1 1) near-surface alloy and Pt(1 1 1). ► Presence of oxygen changes little the adsorption dynamics. ► Adsorption dynamics similar on alloy and Pt(1 1 1). ► Electrosorption phenomena on alloy shifted in potential, relative to Pt(1 1 1). - Abstract: The adsorption dynamics of *OH and *O species at Pt(1 1 1) and Cu/Pt(1 1 1) near-surface alloy (NSA) surfaces in oxygen-free and O 2 -saturated 0.1 M HClO 4 was investigated. Subsurface Cu modifies the electronic structure at the Pt(1 1 1) surface resulting in weaker bonding to adsorbates like *OH, *H or *O. This provides a basis for the high oxygen reduction activity of the NSA, as predicted by density functional theory calculations. The shift in *OH adsorption of around 0.16 V towards more positive potentials can be clearly monitored in absence of O 2 and under the oxygen reduction reaction (ORR) conditions for the Cu/Pt(1 1 1) NSA. In both cases, for Pt(1 1 1) and NSA, the *OH(*O) adsorption dynamics is very similar in the absence of oxygen and under ORR conditions. Therefore, theoretical assumptions about the coverage of adsorbates in the absence of oxygen can be reasonably extrapolated to the situation when oxygen reduction takes place at the surface. A ∼5-fold improvement in the ORR activity over the Pt(1 1 1) at 0.9 V (RHE) was measured for the Cu/Pt(1 1 1) near-surface alloy.

  4. Geothermal energy. Pt.2

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Geothermal energy has certain features that make it highly recommendable as a source of power production. It is noted by its high load factor; it may be used as a basic or peak source; its versatility and high availability among others. In spite of these advantages, geothermal energy has not attained a significant development up to now. There are several reasons for this to happen, while the main one is that it requires an important initial investment. Assessing if an area is potentially profitable for the obtention of a given type of energy implies performing a complex set of analyses and prospective work, but it is not so significant as that associated with petroleum. The strategy for the exploration of geothermal resources is based on the execution of consecutive stages ranging from a surveillance at a regional scale to a project feasibility study, with growing investments and using more and more complex techniques. Many Latin American countries are located in areas considered as promisory concerning the development of this type of exploitation. Another factor supporting this view is a special demographic feature, showing a very irregular distribution of the population, with extense isolated areas with a minimun number of inhabitants that does not justify the extension of the electric power network. There are plants operating in four countries producing, as a whole, 881 MW. In Argentina the activities are aimed to intensifying the knowledge about the availability of this resource within the local territory and to estimating the feasibility of its usage in areas where exploration is more advanced [es

  5. Methanol adsorption on Pt(111)

    International Nuclear Information System (INIS)

    Melo, A.V.; Chottiner, G.S.; Hoffman, R.W.; O'Grady, W.E.

    1984-12-01

    High resolution electron energy loss spectroscopy has been used to study the decomposition of methanol on a Pt(111) surface. Several intermediate states in the decomposition are identified by quenching the sample when reactions occur. At 100 K a set of peaks at 800, 1040, 1350, and 2890 cm -1 indicates the presence of a multilayer molecularly adsorbed methanol. As the sample is warmed to 130 K peaks develop at 1700 and 2780 cm -1 , suggesting the formation of formaldehyde on the surface. With further heating, peaks grow at 1820 and 2560 cm -1 due to the formation of a formyl species during the decomposition of methanol over Pt(111). Further heating leads to the final conversion of the surface species to adsorbed CO and carbonaceous residues

  6. Geometric inequalities for axially symmetric black holes

    International Nuclear Information System (INIS)

    Dain, Sergio

    2012-01-01

    A geometric inequality in general relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities play an important role in the characterization of the gravitational collapse; they are closely related with the cosmic censorship conjecture. Axially symmetric black holes are the natural candidates to study these inequalities because the quasi-local angular momentum is well defined for them. We review recent results in this subject and we also describe the main ideas behind the proofs. Finally, a list of relevant open problems is presented. (topical review)

  7. A symmetric bipolar nebula around MWC 922.

    Science.gov (United States)

    Tuthill, P G; Lloyd, J P

    2007-04-13

    We report regular and symmetric structure around dust-enshrouded Be star MWC 922 obtained with infrared imaging. Biconical lobes that appear nearly square in aspect, forming this "Red Square" nebula, are crossed by a series of rungs that terminate in bright knots or "vortices," and an equatorial dark band crossing the core delimits twin hyperbolic arcs. The intricate yet cleanly constructed forms that comprise the skeleton of the object argue for minimal perturbation from global turbulent or chaotic effects. We also report the presence of a linear comb structure, which may arise from optically projected shadows of a periodic feature in the inner regions, such as corrugations in the rim of a circumstellar disk. The sequence of nested polar rings draws comparison with the triple-ring system seen around the only naked-eye supernova in recent history: SN1987A.

  8. Minimal Left-Right Symmetric Dark Matter.

    Science.gov (United States)

    Heeck, Julian; Patra, Sudhanwa

    2015-09-18

    We show that left-right symmetric models can easily accommodate stable TeV-scale dark matter particles without the need for an ad hoc stabilizing symmetry. The stability of a newly introduced multiplet either arises accidentally as in the minimal dark matter framework or comes courtesy of the remaining unbroken Z_{2} subgroup of B-L. Only one new parameter is introduced: the mass of the new multiplet. As minimal examples, we study left-right fermion triplets and quintuplets and show that they can form viable two-component dark matter. This approach is, in particular, valid for SU(2)×SU(2)×U(1) models that explain the recent diboson excess at ATLAS in terms of a new charged gauge boson of mass 2 TeV.

  9. Design and Analysis of Symmetric Primitives

    DEFF Research Database (Denmark)

    Lauridsen, Martin Mehl

    . In the second part, we delve into the matter of the various aspects of designing a symmetric cryptographic primitive. We start by considering generalizations of the widely acclaimed Advanced Encryption Standard (AES) block cipher. In particular, our focus is on a component operation in the cipher which permutes...... analyze and implement modes recommended by the National Institute of Standards and Technology (NIST), as well as authenticated encryption modes from the CAESAR competition, when instantiated with the AES. The data processed in our benchmarking has sizes representative to that of typical Internet traffic...... linear cryptanalysis. We apply this model to the standardized block cipher PRESENT. Finally, we present very generic attacks on two authenticated encryption schemes, AVALANCHE and RBS, by pointing out severe design flaws that can be leveraged to fully recover the secret key with very low complexity...

  10. Quasiaxially symmetric stellarators with three field periods

    International Nuclear Information System (INIS)

    Garabedian, P.; Ku, L.

    1999-01-01

    Compact hybrid configurations with two field periods have been studied recently as candidates for a proof of principle experiment at the Princeton Plasma Physics Laboratory. This project has led us to the discovery of a family of quasiaxially symmetric stellarators with three field periods that have significant advantages, although their aspect ratios are a little larger. They have reversed shear and perform better in a local analysis of ballooning modes. Nonlinear equilibrium and stability calculations predict that the average beta limit will be at least as high as 4% if the bootstrap current turns out to be as big as that expected in comparable tokamaks. The concept relies on a combination of helical fields and bootstrap current to achieve adequate rotational transform at low aspect ratio. copyright 1999 American Institute of Physics

  11. Lovelock black holes with maximally symmetric horizons

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Hideki; Willison, Steven; Ray, Sourya, E-mail: hideki@cecs.cl, E-mail: willison@cecs.cl, E-mail: ray@cecs.cl [Centro de Estudios CientIficos (CECs), Casilla 1469, Valdivia (Chile)

    2011-08-21

    We investigate some properties of n( {>=} 4)-dimensional spacetimes having symmetries corresponding to the isometries of an (n - 2)-dimensional maximally symmetric space in Lovelock gravity under the null or dominant energy condition. The well-posedness of the generalized Misner-Sharp quasi-local mass proposed in the past study is shown. Using this quasi-local mass, we clarify the basic properties of the dynamical black holes defined by a future outer trapping horizon under certain assumptions on the Lovelock coupling constants. The C{sup 2} vacuum solutions are classified into four types: (i) Schwarzschild-Tangherlini-type solution; (ii) Nariai-type solution; (iii) special degenerate vacuum solution; and (iv) exceptional vacuum solution. The conditions for the realization of the last two solutions are clarified. The Schwarzschild-Tangherlini-type solution is studied in detail. We prove the first law of black-hole thermodynamics and present the expressions for the heat capacity and the free energy.

  12. Polyhomogeneous expansions from time symmetric initial data

    Science.gov (United States)

    Gasperín, E.; Valiente Kroon, J. A.

    2017-10-01

    We make use of Friedrich’s construction of the cylinder at spatial infinity to relate the logarithmic terms appearing in asymptotic expansions of components of the Weyl tensor to the freely specifiable parts of time symmetric initial data sets for the Einstein field equations. Our analysis is based on the assumption that a particular type of formal expansions near the cylinder at spatial infinity corresponds to the leading terms of actual solutions to the Einstein field equations. In particular, we show that if the Bach tensor of the initial conformal metric does not vanish at the point at infinity then the most singular component of the Weyl tensor decays near null infinity as O(\\tilde{r}-3\\ln \\tilde{r}) so that spacetime will not peel. We also provide necessary conditions on the initial data which should lead to a peeling spacetime. Finally, we show how to construct global spacetimes which are candidates for non-peeling (polyhomogeneous) asymptotics.

  13. From Symmetric Glycerol Derivatives to Dissymmetric Chlorohydrins

    Directory of Open Access Journals (Sweden)

    Gemma Villorbina

    2011-03-01

    Full Text Available The anticipated worldwide increase in biodiesel production will result in an accumulation of glycerol for which there are insufficient conventional uses. The surplus of this by-product has increased rapidly during the last decade, prompting a search for new glycerol applications. We describe here the synthesis of dissymmetric chlorohydrin esters from symmetric 1,3-dichloro-2-propyl esters obtained from glycerol. We studied the influence of two solvents: 1,4-dioxane and 1-butanol and two bases: sodium carbonate and 1-butylimidazole, on the synthesis of dissymmetric chlorohydrin esters. In addition, we studied the influence of other bases (potassium and lithium carbonates in the reaction using 1,4-dioxane as the solvent. The highest yield was obtained using 1,4-dioxane and sodium carbonate.

  14. Bidding behavior in a symmetric Chinese auction

    Directory of Open Access Journals (Sweden)

    Mauricio Benegas

    2015-01-01

    Full Text Available This paper purposes a symmetric all-pay auction where the bidders compete neither for an object nor the object itself but for a lottery on receive. That lottery is determined endogenously through the bids. This auction is known as chance auction or more popularly as Chinese auction. The model considers the possibility that for some bidders the optimal strategy is to bid zero and to rely on luck. It showed that bidders become less aggressive when the lottery satisfies a variational condition. It was also shown that luck factor is decisive to determine if the expected payoff in Chinese auction is bigger or smaller than expected payoff in standard all-pay auction.

  15. Canonical quantization of static spherically symmetric geometries

    International Nuclear Information System (INIS)

    Christodoulakis, T; Dimakis, N; Terzis, P A; Doulis, G; Grammenos, Th; Melas, E; Spanou, A

    2013-01-01

    The conditional symmetries of the reduced Einstein–Hilbert action emerging from a static, spherically symmetric geometry are used as supplementary conditions on the wave function. Based on their integrability conditions, only one of the three existing symmetries can be consistently imposed, while the unique Casimir invariant, being the product of the remaining two symmetries, is calculated as the only possible second condition on the wave function. This quadratic integral of motion is identified with the reparametrization generator, as an implication of the uniqueness of the dynamical evolution, by fixing a suitable parametrization of the r-lapse function. In this parametrization, the determinant of the supermetric plays the role of the mesure. The combined Wheeler – DeWitt and linear conditional symmetry equations are analytically solved. The solutions obtained depend on the product of the two ''scale factors''

  16. Cryptanalysis of Some Lightweight Symmetric Ciphers

    DEFF Research Database (Denmark)

    Abdelraheem, Mohamed Ahmed Awadelkareem Mohamed Ahmed

    In recent years, the need for lightweight encryption systems has been increasing as many applications use RFID and sensor networks which have a very low computational power and thus incapable of performing standard cryptographic operations. In response to this problem, the cryptographic community...... on a variant of PRESENT with identical round keys. We propose a new attack named the Invariant Subspace Attack that was specifically mounted against the lightweight block cipher PRINTcipher. Furthermore, we mount several attacks on a recently proposed stream cipher called A2U2....... of the international standards in lightweight cryptography. This thesis aims at analyzing and evaluating the security of some the recently proposed lightweight symmetric ciphers with a focus on PRESENT-like ciphers, namely, the block cipher PRESENT and the block cipher PRINTcipher. We provide an approach to estimate...

  17. Cosmic ray antimatter and baryon symmetric cosmology

    Science.gov (United States)

    Stecker, F. W.; Protheroe, R. J.; Kazanas, D.

    1982-01-01

    The relative merits and difficulties of the primary and secondary origin hypotheses for the observed cosmic-ray antiprotons, including the new low-energy measurement of Buffington, et al. We conclude that the cosmic-ray antiproton data may be evidence for antimatter galaxies and baryon symmetric cosmology. The present bar P data are consistent with a primary extragalactic component having /p=/equiv 1+/- 3.2/0.7x10 = to the -4 independent of energy. We propose that the primary extragalactic cosmic ray antiprotons are most likely from active galaxies and that expected disintegration of bar alpha/alpha ban alpha/alpha. We further predict a value for ban alpha/alpha =/equiv 10 to the -5, within range of future cosmic ray detectors.

  18. Symmetric Topological Phases and Tensor Network States

    Science.gov (United States)

    Jiang, Shenghan

    Classification and simulation of quantum phases are one of main themes in condensed matter physics. Quantum phases can be distinguished by their symmetrical and topological properties. The interplay between symmetry and topology in condensed matter physics often leads to exotic quantum phases and rich phase diagrams. Famous examples include quantum Hall phases, spin liquids and topological insulators. In this thesis, I present our works toward a more systematically understanding of symmetric topological quantum phases in bosonic systems. In the absence of global symmetries, gapped quantum phases are characterized by topological orders. Topological orders in 2+1D are well studied, while a systematically understanding of topological orders in 3+1D is still lacking. By studying a family of exact solvable models, we find at least some topological orders in 3+1D can be distinguished by braiding phases of loop excitations. In the presence of both global symmetries and topological orders, the interplay between them leads to new phases termed as symmetry enriched topological (SET) phases. We develop a framework to classify a large class of SET phases using tensor networks. For each tensor class, we can write down generic variational wavefunctions. We apply our method to study gapped spin liquids on the kagome lattice, which can be viewed as SET phases of on-site symmetries as well as lattice symmetries. In the absence of topological order, symmetry could protect different topological phases, which are often referred to as symmetry protected topological (SPT) phases. We present systematic constructions of tensor network wavefunctions for bosonic symmetry protected topological (SPT) phases respecting both onsite and spatial symmetries.

  19. The radiation chemistry of symmetric aliphatic polyesters

    International Nuclear Information System (INIS)

    Babanalbandi, A.; Hill, D.J.T.; Pomery, P.J.; Whittaker, A.K.

    1996-01-01

    Full text: Naturally occurring, symmetric polyesters, including polyglycolic acid, polylactic acid and polyhydroxybutyrate, have found biomedical applications in areas as diverse as the controlled release of pharmaceuticals and the manufacture of surgical sutures. As biomedical products, the materials require sterilization by high energy radiation. This has provided the motivation for the present work. D'Alelio et al. have reported that linear, asymmetric polyesters undergo scission on irradiation, but that branched polyesters containing a methyl group in the diol segments undergo crosslinking. However, for the symmetric polyhydroxybutyrate, Carswell-Pomerantz et al. have reported that only scission occurs on radiolysis, with the evolution of CO and CO 2 as a result of the loss of ester linkages. These workers also found that G(CO + CO 2 ) was approximately equal to G(S) for this polyester. By contrast, Collett et al. have reported that G(S) = 1.26 and G(X) = 0.53 for polylactic acid, which indicates that the polymer undergoes nett crosslinking on radiolysis to form a gel. They have also reported that poly(lactic-co-glycolic acid) should form a gel on radiolysis, since G(S) = 1.66 and G(X) = 0.65 for a 1:1 copolymer composition. In the present work the radiolysis of polylactic acid and poly(lactic-co-glycolic acid) have been reinvestigated in order to resolve the differences between the work of Collett et al. and that of Carswell-Pomerantz et al. In these studies, ESR has been used to study the radicals formed, GPC has been used to investigate scission and crosslinking, GC has been used to study the small molecule volatile products and NMR spectroscopy has been used to identify and measure the new chemical structures formed in the polymers

  20. FFLP problem with symmetric trapezoidal fuzzy numbers

    Directory of Open Access Journals (Sweden)

    Reza Daneshrad

    2015-04-01

    Full Text Available The most popular approach for solving fully fuzzy linear programming (FFLP problems is to convert them into the corresponding deterministic linear programs. Khan et al. (2013 [Khan, I. U., Ahmad, T., & Maan, N. (2013. A simplified novel technique for solving fully fuzzy linear programming problems. Journal of Optimization Theory and Applications, 159(2, 536-546.] claimed that there had been no method in the literature to find the fuzzy optimal solution of a FFLP problem without converting it into crisp linear programming problem, and proposed a technique for the same. Others showed that the fuzzy arithmetic operation used by Khan et al. (2013 had some problems in subtraction and division operations, which could lead to misleading results. Recently, Ezzati et al. (2014 [Ezzati, R., Khorram, E., & Enayati, R. (2014. A particular simplex algorithm to solve fuzzy lexicographic multi-objective linear programming problems and their sensitivity analysis on the priority of the fuzzy objective functions. Journal of Intelligent and Fuzzy Systems, 26(5, 2333-2358.] defined a new operation on symmetric trapezoidal fuzzy numbers and proposed a new algorithm to find directly a lexicographic/preemptive fuzzy optimal solution of a fuzzy lexicographic multi-objective linear programming problem by using new fuzzy arithmetic operations, but their model was not fully fuzzy optimization. In this paper, a new method, by using Ezzati et al. (2014’s fuzzy arithmetic operation and a fuzzy version of simplex algorithm, is proposed for solving FFLP problem whose parameters are represented by symmetric trapezoidal fuzzy number without converting the given problem into crisp equivalent problem. By using the proposed method, the fuzzy optimal solution of FFLP problem can be easily obtained. A numerical example is provided to illustrate the proposed method.

  1. Axially symmetric Lorentzian wormholes in general relativity

    International Nuclear Information System (INIS)

    Schein, F.

    1997-11-01

    The field equations of Einstein's theory of general relativity, being local, do not fix the global structure of space-time. They admit topologically non-trivial solutions, including spatially closed universes and the amazing possibility of shortcuts for travel between distant regions in space and time - so-called Lorentzian wormholes. The aim of this thesis is to (mathematically) construct space-times which contain traversal wormholes connecting arbitrary distant regions of an asymptotically flat or asymptotically de Sitter universe. Since the wormhole mouths appear as two separate masses in the exterior space, space-time can at best be axially symmetric. We eliminate the non-staticity caused by the gravitational attraction of the mouths by anchoring them by strings held at infinity or, alternatively, by electric repulsion. The space-times are obtained by surgically grafting together well-known solutions of Einstein's equations along timelike hypersurfaces. This surgery naturally concentrates a non-zero stress-energy tensor on the boundary between the two space-times which can be investigated by using the standard thin shell formalism. It turns out that, when using charged black holes, the provided constructions are possible without violation of any of the energy conditions. In general, observers living in the axially symmetric, asymptotically flat (respectively asymptotically de Sitter) region axe able to send causal signals through the topologically non-trivial region. However, the wormhole space-times contain closed timelike curves. Because of this explicit violation of global hyperbolicity these models do not serve as counterexamples to known topological censorship theorems. (author)

  2. A theranostic prodrug delivery system based on Pt(IV) conjugated nano-graphene oxide with synergistic effect to enhance the therapeutic efficacy of Pt drug.

    Science.gov (United States)

    Li, Jingwen; Lyv, Zhonglin; Li, Yanli; Liu, Huan; Wang, Jinkui; Zhan, Wenjun; Chen, Hong; Chen, Huabing; Li, Xinming

    2015-05-01

    Due to their high NIR-optical absorption and high specific surface area, graphene oxide and graphene oxide-based nanocomposites have great potential in both drug delivery and photothermal therapy. In the work reported herein we successfully integrate a Pt(IV) complex (c,c,t-[Pt(NH3)2Cl2(OH)2]), PEGylated nano-graphene oxide (PEG-NGO), and a cell apoptosis sensor into a single platform to generate a multifunctional nanocomposite (PEG-NGO-Pt) which shows potential for targeted drug delivery and combined photothermal-chemotherapy under near infrared laser irradiation (NIR), and real-time monitoring of its therapeutic efficacy. Non-invasive imaging using a fluorescent probe immobilized on the GO shows an enhanced therapeutic effect of PEG-NGO-Pt in cancer treatment via apoptosis and cell death. Due to the enhanced cytotoxicity of cisplatin and the highly specific tumor targeting of PEG-NGO-Pt at elevated temperatures, this nanocomposite displays a synergistic effect in improving the therapeutic efficacy of the Pt drug with complete destruction of tumors, no tumor recurrence and minimal systemic toxicity in comparison with chemotherapy or photothermal treatment alone, highlighting the advantageous effects of integrating Pt(IV) with GO for anticancer treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Understanding the structural properties and thermal stabilities of Au–Pd–Pt trimetallic clusters

    International Nuclear Information System (INIS)

    Zhao, Zheng; Li, Mingjiang; Cheng, Daojian; Zhu, Jiqin

    2014-01-01

    Highlights: • Structural properties of Au–Pd–Pt clusters are studied by Monte Carlo simulation. • Melting of Au–Pd–Pt clusters is studied by molecular dynamics simulation. • Au atoms are systematically segregated on the surface of the Au–Pd–Pt clusters. • Linear decrease in cluster melting point with the inverse cluster diameter. - Abstract: In this work, surface segregation phenomena of Au–Pd–Pt trimetallic clusters are investigated by using semi-grand Monte Carlo simulations based on the Gupta potential. It is found that Au atoms are systematically segregated on the surface of the Au–Pd–Pt clusters (6–24 at.% higher than the overall Au concentration), due to the competition among the surface energies of Au, Pd, and Pt. The melting properties of Au–Pd–Pt trimetallic clusters with different composition and size are investigated by using molecular dynamics simulations, based on the same Gupta potential. It is found that the Au–Pd–Pt trimetallic cluster with the highest melting point corresponds to the one with the most stable structure. In addition, linear decrease in cluster melting point with the inverse cluster diameter is predicted for both pure and trimetallic clusters, which is well-known as the Pawlow’s law

  4. Static spherically symmetric solutions in mimetic gravity: rotation curves and wormholes

    International Nuclear Information System (INIS)

    Myrzakulov, Ratbay; Sebastiani, Lorenzo; Vagnozzi, Sunny; Zerbini, Sergio

    2016-01-01

    In this work, we analyse static spherically symmetric solutions in the framework of mimetic gravity, an extension of general relativity where the conformal degree of freedom of gravity is isolated in a covariant fashion. Here we extend previous works by considering, in addition, a potential for the mimetic field. An appropriate choice of such a potential allows for the reconstruction of a number of interesting cosmological and astrophysical scenarios. We explicitly show how to reconstruct such a potential for a general static spherically symmetric space-time. A number of applications and scenarios are then explored, among which are traversable wormholes. Finally, we analytically reconstruct potentials, which leads to solutions to the equations of motion featuring polynomial corrections to the Schwarzschild space-time. Accurate choices for such corrections could provide an explanation for the inferred flat rotation curves of spiral galaxies within the mimetic gravity framework, without the need for particle dark matter. (paper)

  5. Effective adsorption/electrocatalytic degradation of perchlorate using Pd/Pt supported on N-doped activated carbon fiber cathode

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Fubing; Zhong, Yu [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Yang, Qi, E-mail: yangqi@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Wang, Dongbo, E-mail: dongbowang@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Chen, Fei; Zhao, Jianwei; Xie, Ting; Jiang, Chen; An, Hongxue; Zeng, Guangming; Li, Xiaoming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China)

    2017-02-05

    Highlights: • Pd/Pt-NACF served as an adsorption/electrocatalysis electrode to reduce perchlorate. • The possible mechanisms involved in the reaction process were explained. • The reusability and stability of Pd/Pt-NACF bifunctional material was evaluated. - Abstract: In this work, Pd/Pt supported on N-doped activated carbon fiber (Pd/Pt-NACF) was employed as the electrode for electrocatalytic degradation of perchlorate through adsorption/electroreduction process. Perchlorate in solution was firstly adsorbed on Pd/Pt-NACF and then reduced to non-toxic chloride by the catalytic function of Pd/Pt at a constant current (20 mA). Compared with Pd/Pt-ACF, the adsorption capacity and electrocatalytic degradation efficiency of Pd/Pt-NACF for perchlorate increased 161% and 28%, respectively. Obviously, positively charged N-functional groups on NACF surface enhanced the adsorption capacity of Pd/Pt-NACF, and the dissociation of hydrogen to atomic H* by the Pd/Pt nanostructures on the cathode might drastically promote the electrocatalytic reduction of perchlorate. The role of atomic H* in the electroreduction process was identified by tertiary butanol inhibition test. Meanwhile, the perchlorate degradation performance was not substantially lower after three successive adsorption/electrocatalytic degradation experiments, demonstrating the electrochemical reusability and stability of the as-prepared electrode. These results showed that Pd/Pt-NACF was effective for electrocatalytic degradation of perchlorate and had great potential in perchlorate removal from water.

  6. Vertically aligned carbon nanotubes/carbon fiber paper composite to support Pt nanoparticles for direct methanol fuel cell application

    Science.gov (United States)

    Zhang, Jing; Yi, Xi-bin; Liu, Shuo; Fan, Hui-Li; Ju, Wei; Wang, Qi-Chun; Ma, Jie

    2017-03-01

    Vertically aligned carbon nanotubes (VACNTs) grown on carbon fiber paper (CFP) by plasma enhanced chemical vapor deposition is introduced as a catalyst support material for direct methanol fuel cells (DMFCs). Well dispersed Pt nanoparticles on VACNTs surface are prepared by impregnation-reduction method. The VACNTs on CFP possess well-maintained alignment, large surface area and good electrical conductivity, which leading to the formation of Pt particles with a smaller size and enhance the Pt utilization rate. The structure and nature of resulting Pt/VACNTs/CFP catalysts for methanol oxidation are investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD) and scanning electron microscope (SEM). With the aid of VACNTs, well-dispersed Pt catalysts enable the reversibly rapid redox kinetic since electron transport efficiently passes through a one-dimensional pathway, which leads to enhance the catalytic activity and Pt utilization rate. Compared with the Pt/XC-72/CFP electrode, the electrochemical measurements results display that the Pt/VACNTs/CFP catalyst shows much higher electrocatalytic activity and better stability for methanol oxidation. In addition, the oxidation current from 200 to 1200 s decayed more slowly for the Pt/VACNTs/CFP than that of the Pt/XC-72/CFP catalysts, indicating less accumulation of adsorbed CO species. All those results imply that the Pt/VACNTs/CFP has a great potential for applications in DMFCs.

  7. Electronic structures of PtCu, PtAg, and PtAu molecules: a Dirac four-component relativistic study

    International Nuclear Information System (INIS)

    Abe, Minori; Mori, Sayaka; Nakajima, Takahito; Hirao, Kimihiko

    2005-01-01

    Relativistic four-component calculations at several correlated levels have been performed for diatomic PtCu, PtAg, and PtAu molecules. The ground state spectroscopic constants of PtCu were calculated using the four-component MP2 method, and show good agreement with experiment. We also performed calculations on the experimentally unknown species, PtAg and PtAu, and the mono-cationic systems, PtCu + , PtAg + , and PtAu + . The low-lying excited states of these diatomic molecules were also investigated using the four-component multi-reference CI method

  8. Study of PtNi/C catalyst for direct ethanol fuel cell; Estudo do catalisador PtNi/C para celula a combustivel de etanol direto

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, L.P.R. de; Silva, E.L. da; Amico, S.C.; Malfatti, C.F., E-mail: eticiaprm@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil)

    2014-07-01

    In this work, PtNi binary catalyst and pure platin catalyst were synthesized by the impregnation-reduction method, using Vulcan XC72R as support, for direct ethanol fuel cells. The composition and structure of the catalysts were analyzed by X-ray diffraction, the electrochemical behavior was evaluated by cyclic voltammetry and morphology of the catalysts was studied by high-resolution transmission electron microscopy. The results showed that the addition of Ni to Pt led to the contraction of the crystal lattice, increased the catalytic activity compared to pure Pt and initiated the electrooxidation of ethanol at lower potential. (author)

  9. Magnetospectroscopy of symmetric and anti-symmetric states in double quantum wells

    Science.gov (United States)

    Marchewka, M.; Sheregii, E. M.; Tralle, I.; Ploch, D.; Tomaka, G.; Furdak, M.; Kolek, A.; Stadler, A.; Mleczko, K.; Zak, D.; Strupinski, W.; Jasik, A.; Jakiela, R.

    2008-02-01

    The experimental results obtained for magnetotransport in the InGaAs/InAlAs double quantum well (DQW) structures of two different shapes of wells are reported. A beating effect occurring in the Shubnikov-de Haas (SdH) oscillations was observed for both types of structures at low temperatures in the parallel transport when the magnetic field was perpendicular to the layers. An approach for the calculation of the Landau level energies for DQW structures was developed and then applied to the analysis and interpretation of the experimental data related to the beating effect. We also argue that in order to account for the observed magnetotransport phenomena (SdH and integer quantum Hall effect), one should introduce two different quasi-Fermi levels characterizing two electron subsystems regarding the symmetry properties of their states, symmetric and anti-symmetric ones, which are not mixed by electron-electron interaction.

  10. The anisotropy field of FePt L10 nanoparticles controlled by very thin Pt layer

    International Nuclear Information System (INIS)

    Okamoto, Satoshi; Kitakami, Osamu; Kikuchi, Nobuaki; Miyazaki, Takamichi; Shimada, Yutaka; Chiang, Te-Hsuan

    2004-01-01

    We have prepared epitaxial FePt L1 0 (001) nanoparticles covered with Pt [d Pt nm]/Ag[(4-d Pt ) nm] overlayers. The particles are oblate spheroids approximately 10 nm in diameter and 2 nm in height. The anisotropy field H k at 0 K, which is evaluated from the temperature dependences of coercivity H c , decreases from 90 to 60 kOe on increasing the Pt thickness from d Pt 0 to 1.5 nm, while the energy barrier at zero field remains unchanged. The significant reduction of H k due to the presence of the adjacent Pt layer can be attributed to an enhanced magnetic moment caused by the ferromagnetic polarization of Pt atoms at the interface. This finding suggests an effective method of controlling the switching field of FePt L1 0 nanoparticles

  11. Reversibility of Pt-Skin and Pt-Skeleton Nanostructures in Acidic Media.

    Science.gov (United States)

    Durst, Julien; Lopez-Haro, Miguel; Dubau, Laetitia; Chatenet, Marian; Soldo-Olivier, Yvonne; Guétaz, Laure; Bayle-Guillemaud, Pascale; Maillard, Frédéric

    2014-02-06

    Following a well-defined series of acid and heat treatments on a benchmark Pt3Co/C sample, three different nanostructures of interest for the electrocatalysis of the oxygen reduction reaction were tailored. These nanostructures could be sorted into the "Pt-skin" structure, made of one pure Pt overlayer, and the "Pt-skeleton" structure, made of 2-3 Pt overlayers surrounding the Pt-Co alloy core. Using a unique combination of high-resolution aberration-corrected STEM-EELS, XRD, EXAFS, and XANES measurements, we provide atomically resolved pictures of these different nanostructures, including measurement of the Pt-shell thickness forming in acidic media and the resulting changes of the bulk and core chemical composition. It is shown that the Pt-skin is reverted toward the Pt-skeleton upon contact with acid electrolyte. This change in structure causes strong variations of the chemical composition.

  12. PT AND PT/NI "NEEDLE" ELETROCATALYSTS ON CARBON NANOTUBES WITH HIGH ACTIVITY FOR THE ORR

    Energy Technology Data Exchange (ETDEWEB)

    Colon-Mercado, H.

    2011-11-10

    Platinum and platinum/nickel alloy electrocatalysts supported on graphitized (gCNT) or nitrogen doped carbon nanotubes (nCNT) are prepared and characterized. Pt deposition onto carbon nanotubes results in Pt 'needle' formations that are 3.5 nm in diameter and {approx}100 nm in length. Subsequent Ni deposition and heat treatment results in PtNi 'needles' with an increased diameter. All Pt and Pt/Ni materials were tested as electrocatalysts for the oxygen reduction reaction (ORR). The Pt and Pt/Ni catalysts showed excellent performance for the ORR, with the heat treated PtNi/gCNT (1.06 mA/cm{sup 2}) and PtNi/nCNT (0.664 mA/cm{sup 2}) showing the highest activity.

  13. Highly active dealloyed Cu@Pt core-shell electrocatalyst towards 2-propanol electrooxidation in acidic solution

    Energy Technology Data Exchange (ETDEWEB)

    Poochai, Chatwarin, E-mail: p_chatwarin@yahoo.com

    2017-02-28

    Highlights: • This is the first report on electrooxidation of 2-propanol in acidic media on dealloyed Cu@Pt/CP core-shell electrocatalyst. • The dealloyed Cu@Pt/CP is prepared using cyclic co-electrodeposition and selective Cu dealloying (CCEd-sCuD). • The structure of dealloyed Cu@Pt/CP is core-shell structure with Cu-rich core and Pt-rich surface. • The dealloyed Cu@Pt/CP shows high activity and great stability towards 2-propanol electrooxidation in acidic media. - Abstract: Dealloyed Cu@Pt core-shell electrocatalyst was fabricated by cyclic co-electrodeposition and selective Cu dealloying (CCEd-sCuD) on carbon paper (CP), namely Cu@Pt/CP. The Cu@Pt/CP exhibited a core-shell structure comprising with a Cu-rich core and a Pt-rich shell. The crystalline phases of Pt/CP and Cu@Pt/CP were a face-centered cubic (fcc). The compressive lattice strain approximately 0.85% was found in the Cu@Pt/CP owing to a lattice mismatch between a core and a shell region. In the core-region, Cu was formed Pt-Cu alloy as major and copper oxide and also metallic copper as minor. The morphology and grain size of the Cu@Pt/CP displayed a porous spherical shape with 100 nm in diameter, while those of Pt/CP seemed to be a cubic shape with smaller diameter of 40 nm. In electrochemical and catalytic activity, the surface of Cu@Pt/CP had a larger electrochemical active surface area (ECSA) than that of Pt/CP due to a porous formation caused by Cu dealloying. It is not surprising that the Cu@Pt/CP showed higher catalytic activity and greater stability towards 0.5 M 2-propanol electrooxidation in 0.5 M H{sub 2}SO{sub 4} in terms of peak current density (j{sub p}), peak potential (E{sub p}), onset potential (E{sub onset}), diffusion coefficient (D), and charge transfer resistance (R{sub ct}) which were caused by electronic structure modification, higher compressive lattice strain, and larger ECSA, compared with Pt/CP.

  14. Characterization and methanol electrooxidation studies of Pt(111)/Os surfaces prepared by spontaneous deposition.

    Science.gov (United States)

    Johnston, Christina M; Strbac, Svetlana; Lewera, Adam; Sibert, Eric; Wieckowski, Andrzej

    2006-09-12

    Catalytic activity of the Pt(111)/Os surface toward methanol electrooxidation was optimized by exploring a wide range of Os coverage. Various methods of surface analyses were used, including electroanalytical, STM, and XPS methods. The Pt(111) surface was decorated with nanosized Os islands by spontaneous deposition, and the Os coverage was controlled by changing the exposure time to the Os-containing electrolyte. The structure of Os deposits on Pt(111) was characterized and quantified by in situ STM and stripping voltammetry. We found that the optimal Os surface coverage of Pt(111) for methanol electrooxidation was 0.7 +/- 0.1 ML, close to 1.0 +/- 0.1 Os packing density. Apparently, the high osmium coverage Pt(111)/Os surface provides more of the necessary oxygen-containing species (e.g., Os-OH) for effective methanol electrooxidation than the Pt(111)/Os surfaces with lower Os coverage (vs e.g., Ru-OH). Supporting evidence for this conjecture comes from the CO electrooxidation data, which show that the onset potential for CO stripping is lowered from 0.53 to 0.45 V when the Os coverage is increased from 0.2 to 0.7 ML. However, the activity of Pt(111)/Os for methanol electrooxidation decreases when the Os coverage is higher than 0.7 +/- 0.1 ML, indicating that Pt sites uncovered by Os are necessary for sustaining significant methanol oxidation rates. Furthermore, osmium is inactive for methanol electrooxidation when the platinum substrate is absent: Os deposits on Au(111), a bulk Os ingot, and thick films of electrodeposited Os on Pt(111), all compare poorly to Pt(111)/Os. We conclude that a bifunctional mechanism applies to the methanol electrooxidation similarly to Pt(111)/Ru, although with fewer available Pt sites. Finally, the potential window for methanol electrooxidation on Pt(111)/Os was observed to shift positively versus Pt(111)/Ru. Because of the difference in the Os and Ru oxophilicity under electrochemical conditions, the Os deposit provides fewer

  15. Low Pt content direct methanol fuel cell anode catalyst: nanophase PtRuNiZr

    Science.gov (United States)

    Narayanan, Sekharipuram R. (Inventor); Whitacre, Jay F. (Inventor)

    2010-01-01

    A method for the preparation of a metallic material having catalytic activity that includes synthesizing a material composition comprising a metal content with a lower Pt content than a binary alloy containing Pt but that displays at least a comparable catalytic activity on a per mole Pt basis as the binary alloy containing Pt; and evaluating a representative sample of the material composition to ensure that the material composition displays a property of at least a comparable catalytic activity on a per mole Pt basis as a representative binary alloy containing Pt. Furthermore, metallic compositions are disclosed that possess substantial resistance to corrosive acids.

  16. Results of the Proficiency Test, PT1 and PT2, 2012

    DEFF Research Database (Denmark)

    Vendramin, Niccolò; Nicolajsen, Nicole; Christophersen, Maj-Britt

    A comparative test of diagnostic procedures was provided by the European Union Reference Laboratory (EURL) for Fish Diseases. The test was divided into proficiency test 1 (PT1) and proficiency test 2 (PT2). The number of National Reference Laboratories (NRLs) participating in PT1 and PT2 was 43. ....... The tests were sent from the EURL in the beginning of September 2012. Both PT1 and PT2 are accredited by DANAK under registration number 515 for proficiency testing according to the quality assurance standard DS/EN ISO/IEC 17043....

  17. Rapid synthesis of dendritic Pt/Pb nanoparticles and their electrocatalytic performance toward ethanol oxidation

    Science.gov (United States)

    Zhang, Ke; Xu, Hui; Yan, Bo; Wang, Jin; Gu, Zhulan; Du, Yukou

    2017-12-01

    This article reports a rapid synthetic method for the preparation of dendritic platinum-lead bimetallic catalysts by using an oil bath for 5 min in the presence of hexadecyltrimethylammonium chloride (CTAC) and ascorbic acid (AA). CTAC acts as a shape-direction agent, and AA acts as a reducing agent during the reaction process. A series of physical techniques are used to characterize the morphology, structure and electronic properties of the dendritic Pt/Pb nanoparticles, indicating the Pt/Pb dendrites are porous, highly alloying, and self-supported nanostructures. Various electrochemical techniques were also investigated the catalytic performance of the Pt/Pb catalysts toward the ethanol electrooxidation reaction. Cyclic voltammetry and chronoamperometry indicated that the synthesized dendritic Pt/Pb nanoparticles possessed much higher electrocatalytic performance than bulk Pt catalyst. This study may inspire the engineering of dendritic bimetallic catalysts, which are expected to have great potential applications in fuel cells.

  18. Seawater splitting for high-efficiency hydrogen evolution by alloyed PtNix electrocatalysts

    Science.gov (United States)

    Zheng, Jingjing

    2017-08-01

    Robust electrocatalyst is a prerequisite to realize high-efficiency hydrogen evolution by water splitting. Expensive platinum (Pt) is a preferred electrode catalyst for state-of-the-art hydrogen evolution reaction (HER). We present here a category of alloyed PtNix electrocatalysts by a facile green chemical reduction method, which are used to catalyze HER during seawater splitting. The catalytic performances are optimized by tuning stoichiometric Pt/Ni ratio, yielding a maximized catalytic behavior for PtNi5 electrode. The minimized onset potential is as low as -0.38 V and the corresponding Tafel slope is 119 mV dec-1. Moreover, the launched alloy electrodes have remarkable stability at -1.2 V over 12 h. The high efficiency as well as good durability demonstrates the PtNix electrocatalysts to be promising in practical applications.

  19. Ferromagnetism regulated by edged cutting and optical identification in monolayer PtSe2 nanoribbons

    Science.gov (United States)

    Meng, Ming; Zhang, QiZhen; Wang, Lifen; Shan, Yun; Du, Yuandong; Qin, Nan; Liu, Lizhe

    2018-06-01

    Regulation of ferromagnetism and electronic structure in PtSe2 nanostructures has attracted much attention because of its potential in spintronics. The magnetic and optical properties of PtSe2 nanoribbons with different edge reconstruction and external deformations are calculated by density function theory. In 1 T phase PtSe2 nanoribbons, the ferromagnetism induced by spin polarization of exposed Pt or Se atoms is decreased with the reducing nanoribbon width. For smaller nanoribbon, the magnetism can be regulated by external strain more easily. However, the magnetism cannot occur in 1 H phase PtSe2 nanoribbon. The absorption spectra are suggested to identify the nanoribbon structural changes in detail. Our results suggest the use of edge reconstruction and strain engineering in spintronics applications.

  20. Entangling capabilities of symmetric two-qubit gates

    Indian Academy of Sciences (India)

    Com- putational investigation of entanglement of such ensembles is therefore impractical for ... the computational complexity. Pairs of spin-1 ... tensor operators which can also provide different symmetric logic gates for quantum pro- ... that five of the eight, two-qubit symmetric quantum gates expressed in terms of our newly.

  1. A New Formulation for Symmetric Implicit Runge-Kutta-Nystrom ...

    African Journals Online (AJOL)

    In this paper we derive symmetric stable Implicit Runge-Kutta –Nystrom Method for the Integration of General Second Order ODEs by using the collocation approach.The block hybrid method obtained by the evaluation of the continuous interpolant at different nodes of the polynomial is symmetric and suitable for stiff intial ...

  2. Crossing symmetric solution of the Chew-Low equation

    International Nuclear Information System (INIS)

    McLeod, R.J.; Ernst, D.J.

    1982-01-01

    An N/D dispersion theory is developed which solves crossing symmetric Low equations. The method is used to generate crossing symmetric solutions to the Chew-Low model. We show why the technique originally proposed by Chew and Low was incapable of producing solutions. (orig.)

  3. Sparse symmetric preconditioners for dense linear systems in electromagnetism

    NARCIS (Netherlands)

    Carpentieri, Bruno; Duff, Iain S.; Giraud, Luc; Monga Made, M. Magolu

    2004-01-01

    We consider symmetric preconditioning strategies for the iterative solution of dense complex symmetric non-Hermitian systems arising in computational electromagnetics. In particular, we report on the numerical behaviour of the classical incomplete Cholesky factorization as well as some of its recent

  4. Stability of transparent spherically symmetric thin shells and wormholes

    International Nuclear Information System (INIS)

    Ishak, Mustapha; Lake, Kayll

    2002-01-01

    The stability of transparent spherically symmetric thin shells (and wormholes) to linearized spherically symmetric perturbations about static equilibrium is examined. This work generalizes and systematizes previous studies and explores the consequences of including the cosmological constant. The approach shows how the existence (or not) of a domain wall dominates the landscape of possible equilibrium configurations

  5. Coupled dilaton and electromagnetic field in cylindrically symmetric ...

    Indian Academy of Sciences (India)

    The dilaton black hole solutions have attracted considerable attention for the ... theory and study the corresponding cylindrically symmetric spacetime, where .... where Йm and Йe are integration constants to be interpreted later as the ..... feature is apparent for the cylindrically symmetric spacetime in the presence of the dila-.

  6. Radon transformation on reductive symmetric spaces: support theorems

    NARCIS (Netherlands)

    Kuit, J.J.|info:eu-repo/dai/nl/313872589

    2011-01-01

    In this thesis we introduce a class of Radon transforms for reductive symmetric spaces, including the horospherical transforms, and study some of their properties. In particular we obtain a generalization of Helgason's support theorem for the horospherical transform on a Riemannian symmetric space.

  7. New approach to solve symmetric fully fuzzy linear systems

    Indian Academy of Sciences (India)

    In this paper, we present a method to solve fully fuzzy linear systems with symmetric coefficient matrix. The symmetric coefficient matrix is decomposed into two systems of equations by using Cholesky method and then a solution can be obtained. Numerical examples are given to illustrate our method.

  8. Synthesis & Characterization of New bis-Symmetrical Adipoyl ...

    African Journals Online (AJOL)

    Full Title: Synthesis and Characterization of New bis-Symmetrical Adipoyl, Terepthaloyl, Chiral Diimido-di-L-alanine Diesters and Chiral Phthaloyl-L-alanine Ester of Tripropoxy p-tert-Butyl Calix[4]arene and Study of Their Hosting Ability for Alanine and Na+. Bis-symmetrical tripropoxy p-tert-butyl calix[4]arene esters were ...

  9. FACES WITH LARGE DIAMETER ON THE SYMMETRICAL TRAVELING SALESMAN POLYTOPE

    NARCIS (Netherlands)

    SIERKSMA, G; TIJSSEN, GA

    This paper deals with the symmetric traveling salesman polytope and contains three main theorems. The first one gives a new characterization of (non)adjacency. Based on this characterization a new upper bound for the diameter of the symmetric traveling salesman polytope (conjectured to be 2 by M.

  10. Theoretical simulations of the structural stabilities, elastic, thermodynamic and electronic properties of Pt3Sc and Pt3Y compounds

    Science.gov (United States)

    Boulechfar, R.; Khenioui, Y.; Drablia, S.; Meradji, H.; Abu-Jafar, M.; Omran, S. Bin; Khenata, R.; Ghemid, S.

    2018-05-01

    Ab-initio calculations based on density functional theory have been performed to study the structural, electronic, thermodynamic and mechanical properties of intermetallic compounds Pt3Sc and Pt3Y using the full-potential linearized augmented plane wave(FP-LAPW) method. The total energy calculations performed for L12, D022 and D024 structures confirm the experimental phase stability. Using the generalized gradient approximation (GGA), the values of enthalpies formation are -1.23 eV/atom and -1.18 eV/atom for Pt3Sc and Pt3Y, respectively. The densities of states (DOS) spectra show the existence of a pseudo-gap at the Fermi level for both compounds which indicate the strong spd hybridization and directing covalent bonding. Furthermore, the density of states at the Fermi level N(EF), the electronic specific heat coefficient (γele) and the number of bonding electrons per atom are predicted in addition to the elastic constants (C11, C12 and C44). The shear modulus (GH), Young's modulus (E), Poisson's ratio (ν), anisotropy factor (A), ratio of B/GH and Cauchy pressure (C12-C44) are also estimated. These parameters show that the Pt3Sc and Pt3Y are ductile compounds. The thermodynamic properties were calculated using the quasi-harmonic Debye model to account for their lattice vibrations. In addition, the influence of the temperature and pressure was analyzed on the heat capacities (Cp and Cv), thermal expansion coefficient (α), Debye temperature (θD) and Grüneisen parameter (γ).

  11. Pt Skin Versus Pt Skeleton Structures of Pt3Sc as Electrocatalysts for Oxygen Reduction

    DEFF Research Database (Denmark)

    Johansson, Tobias Peter; Ulrikkeholm, Elisabeth Therese; Hernandez-Fernandez, Patricia

    2014-01-01

    . The development of new materials for this reaction is essential in order to increase the overall effeciency of the fuel cell. Herein, we study the effect of ultra high vacuum annealing on the structure and activity of polycrystalline Pt3Sc. Upon annealing in ultra high vacuum a Pt overlayer is formed......, relative to Pt(111), consistent with the CO adsorption energies calculated using density functional theory calculations. Exposing the annealed Pt3Sc sample to 200 mbar O2 at room temperature results in similar to 14 % Sc oxide as measured by X-ray photoelectron spectroscopy. Electrochemical testing...

  12. A further insight into the biosorption mechanism of Pt(IV by infrared spectrometry

    Directory of Open Access Journals (Sweden)

    Xu Zhenling

    2009-07-01

    Full Text Available Abstract Background Platinum nanomaterial is one of the significant noble metal catalysts, and the interaction of platinum with microbe is one of the key factors in influencing the size and the distribution of the platinum nanoparticles on the microbial biomass. Some properties of Pt(IV adsorption and reduction by resting cells of Bacillus megatherium D01 biomass have once been investigated, still the mechanism active in the platinum biosorption remains to be seen and requires further elucidating. Result A further insight into the biosorption mechanism of Pt(IV onto resting cells of Bacillus megatherium D02 biomass on a molecular level has been obtained. The image of scanning electron microscopy (SEM of the D02 biomass challenged with Pt(IV displayed a clear distribution of bioreduced platinum particles with sizes of nanometer scale on the biomass. The state of Pt(IV bioreduced to elemental Pt(0 examined via X-ray photoelectron spectroscopy (XPS suggested that the biomass reduces the Pt(IV to Pt(II followed by a slower reduction to Pt(0. The analysis of glucose content in the hydrolysates of D02 biomass for different time intervals using ultraviolet-visible (UV-vis spectrophotometry indicated that certain reducing sugars occur in the hydrolyzed biomass and that the hydrolysis of polysaccharides of the biomass is a rapid process. The infrared (IR spectrometry on D02 biomass and that challenged with Pt(IV, and on glucose and that reacted with Pt(IV demonstrated that the interaction of the biomass with Pt(IV seems to be through oxygenous or nitrogenous chemical functional groups on the cell wall biopolymers; that the potential binding sites for Pt species include hydroxyl of saccharides, carboxylate anion and carboxyl of amino acid residues, peptide bond, etc.; and that the free monosaccharic group bearing hemiacetalic hydroxyl from the hydrolyzed biomass behaving as an electron donor, in situ reduces the Pt(IV to Pt(0. And moreover, the binding of

  13. Symmetric metamaterials based on flower-shaped structure

    International Nuclear Information System (INIS)

    Tuong, P.V.; Park, J.W.; Rhee, J.Y.; Kim, K.W.; Cheong, H.; Jang, W.H.; Lee, Y.P.

    2013-01-01

    We proposed new models of metamaterials (MMs) based on a flower-shaped structure (FSS), whose “meta-atoms” consist of two flower-shaped metallic parts separated by a dielectric layer. Like the non-symmetric MMs based on cut-wire-pairs or electric ring resonators, the symmetrical FSS demonstrates the negative permeability at GHz frequencies. Employing the results, we designed a symmetric negative-refractive-index MM [a symmetric combined structure (SCS)], which is composed of FSSs and cross continuous wires. The MM properties of the FSS and the SCS are presented numerically and experimentally. - Highlights: • A new designed of sub-wavelength metamaterial, flower-shaped structure was proposed. • Flower-shaped meta-atom illustrated effective negative permeability. • Based on the meta-atom, negative refractive index was conventionally gained. • Negative refractive index was demonstrated with symmetric properties for electromagnetic wave. • Dimensional parameters were studied under normal electromagnetic wave

  14. Preparation of ternary Pt/Rh/SnO2 anode catalysts for use in direct ethanol fuel cells and their electrocatalytic activity for ethanol oxidation reaction

    Science.gov (United States)

    Higuchi, Eiji; Takase, Tomonori; Chiku, Masanobu; Inoue, Hiroshi

    2014-10-01

    Pt, Rh and SnO2 nanoparticle-loaded carbon black (Pt/Rh/SnO2/CB) catalysts with different contents of Pt and Rh were prepared by the modified Bönnemann method. The mean size and size distribution of Pt, Rh and SnO2 for Pt-71/Rh-4/SnO2/CB (Pt : Rh : Sn = 71 at.%: 4 at.%: 25 at.%) were 3.8 ± 0.7, 3.2 ± 0.7 and 2.6 ± 0.5 nm, respectively, indicating that Pt, Rh and SnO2 were all nanoparticles. The onset potential of ethanol oxidation current for the Pt-65/Rh-10/SnO2/CB and Pt-56/Rh-19/SnO2/CB electrodes was ca. 0.2 V vs. RHE which was ca. 0.2 V less positive than that for the Pt/CB electrode. The oxidation current at 0.6 V for the Pt/Rh/SnO2/CB electrode (ca. 2% h-1) decayed more slowly than that at the Pt/SnO2/CB electrode (ca. 5% h-1), indicating that the former was superior in durability to the latter. The main product of EOR in potentiostatic electrolysis at 0.6 V for the Pt-71/Rh-4/SnO2/CB electrode was acetic acid.

  15. CO oxidation catalyzed by Pt-embedded graphene: A first-principles investigation

    KAUST Repository

    Liu, Xin; Sui, Yanhui; Duan, Ting; Meng, Changong; Han, Yu

    2014-01-01

    We addressed the potential catalytic role of Pt-embedded graphene in CO oxidation by first-principles-based calculations. We showed that the combination of highly reactive Pt atoms and defects over graphene makes the Pt-embedded graphene a superior mono-dispersed atomic catalyst for CO oxidation. The binding energy of a single Pt atom onto monovacancy defects is up to -7.10 eV, which not only ensures the high stability of the embedded Pt atom, but also vigorously excludes the possibility of diffusion and aggregation of embedded Pt atoms. This strong interfacial interaction also tunes the energy level of Pt-d states for the activation of O2, and promotes the formation and dissociation of the peroxide-like intermediate. The catalytic cycle of CO oxidation is initiated through the Langmuir-Hinshelwood mechanism, with the formation of a peroxide-like intermediate by the coadsorbed CO and O2, by the dissociation of which the CO2 molecule and an adsorbed O atom are formed. Then, another gaseous CO will react with the remnant O atom and make the embedded Pt atom available for the subsequent reaction. The calculated energy barriers for the formation and dissociation of the peroxide-like intermediate are as low as 0.33 and 0.15 eV, respectively, while that for the regeneration of the embedded Pt atom is 0.46 eV, indicating the potential high catalytic performance of Pt-embedded graphene for low temperature CO oxidation.

  16. Architecture-dependent surface chemistry for Pt monolayers on carbon-supported Au.

    Science.gov (United States)

    Cheng, Shuang; Rettew, Robert E; Sauerbrey, Marc; Alamgir, Faisal M

    2011-10-01

    Pt monolayers were grown by surface-limited redox replacement (SLRR) on two types of Au nanostructures. The Au nanostructures were fabricated electrochemically on carbon fiber paper (CFP) by either potentiostatic deposition (PSD) or potential square wave deposition (PSWD). The morphology of the Au/CFP heterostructures, examined using scanning electron microscopy (SEM), was found to depend on the type of Au growth method employed. The properties of the Pt deposit, as studied using X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and cyclic voltammetry (CV), were found to depend strongly on the morphology of the support. Specifically, it was found that smaller Au morphologies led to a higher degree of cationicity in the resulting Pt deposit, with Pt(4+) and Pt(2+) species being identified using XPS and XAS. For fuel-cell catalysts, the resistance of ultrathin catalyst deposits to surface area loss through dissolution, poisoning, and agglomeration is critical. This study shows that an equivalent of two monolayers (ML) is the low-loading limit of Pt on Au. At 1 ML or below, the Pt film decreases in activity and durability very rapidly due to presence of cationic Pt. © 2011 American Chemical Society

  17. Noncovalently functionalized graphitic mesoporous carbon as a stable support of Pt nanoparticles for oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yuyan; Zhang, Sheng; Kou, Rong; Wang, Chongmin; Viswanathan, Vilayanur; Liu, Jun; Wang, Yong; Lin, Yuehe [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Wang, Xiqing; Dai, Sheng [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2010-04-02

    We report a durable electrocatalyst support, highly graphitized mesoporous carbon (GMPC), for oxygen reduction in polymer electrolyte membrane (PEM) fuel cells. GMPC is prepared through graphitizing the self-assembled soft-template mesoporous carbon (MPC) under high temperature. Heat-treatment at 2800 C greatly improves the degree of graphitization while most of the mesoporous structures and the specific surface area of MPC are retained. GMPC is then noncovalently functionalized with poly(diallyldimethylammonium chloride) (PDDA) and loaded with Pt nanoparticles by reducing Pt precursor (H{sub 2}PtCl{sub 6}) in ethylene glycol. Pt nanoparticles of {proportional_to}3.0 nm in diameter are uniformly dispersed on GMPC. Compared to Pt supported on Vulcan XC-72 carbon black (Pt/XC-72), Pt/GMPC exhibits a higher mass activity towards oxygen reduction reaction (ORR) and the mass activity retention (in percentage) is improved by a factor of {proportional_to}2 after 44 h accelerated degradation test under the potential step (1.4-0.85 V) electrochemical stressing condition which focuses on support corrosion. The enhanced activity and durability of Pt/GMPC are attributed to the graphitic structure of GMPC which is more resistant to corrosion. These findings demonstrate that GMPC is a promising oxygen reduction electrocatalyst support for PEM fuel cells. The approach reported in this work provides a facile, eco-friendly promising strategy for synthesizing stable metal nanoparticles on hydrophobic support materials. (author)

  18. PtRu nanoparticles embedded in nitrogen doped carbon with highly stable CO tolerance and durability

    Science.gov (United States)

    Ling, Ying; Yang, Zehui; Yang, Jun; Zhang, Yunfeng; Zhang, Quan; Yu, Xinxin; Cai, Weiwei

    2018-02-01

    As is well known, the lower durability and sluggish methanol oxidation reaction (MOR) of PtRu alloy electrocatalyst blocks the commercialization of direct methanol fuel cells (DMFCs). Here, we design a new PtRu electrocatalyst, with highly stable CO tolerance and durability, in which the PtRu nanoparticles are embedded in nitrogen doped carbon layers derived from carbonization of poly(vinyl pyrrolidone). The newly fabricated electrocatalyst exhibits no loss in electrochemical surface area (ECSA) and MOR activity after potential cycling from 0.6-1.0 V versus reversible hydrogen electrode, while commercial CB/PtRu retains only 50% of its initial ECSA. Meanwhile, due to the same protective layers, the Ru dissolution is decelerated, resulting in stable CO tolerance. Methanol oxidation reaction (MOR) testing indicates that the activity of newly fabricated electrocatalyst is two times higher than that of commercial CB/PtRu, and the fuel cell performance of the embedded PtRu electrocatalyst was comparable to that of commercial CB/PtRu. The embedded PtRu electrocatalyst is applicable in real DMFC operation. This study offers important and useful information for the design and fabrication of durable and CO tolerant electrocatalysts.

  19. Seed-mediated synthesis of cross-linked Pt-NiO nanochains for methanol oxidation

    Science.gov (United States)

    Gu, Zhulan; Bin, Duan; Feng, Yue; Zhang, Ke; Wang, Jin; Yan, Bo; Li, Shumin; Xiong, Zhiping; Wang, Caiqin; Shiraishi, Yukihide; Du, Yukou

    2017-07-01

    A simple method was reported for employing NiO nanoparticles act as seeds and then different amounts of Pt2+ were reduced on the NiO nanoparticles, forming a cross-linked Pt-NiO nanocatalysts. These as-prepared catalysts were characterized using different physical-chemical techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The results indicate that the morphology of the cross-linked Pt-NiO nanochain was successfully produced regardless of the molar ratio of Pt2+ to NiO precursors. The electrochemical characteristics of Pt-NiO nanochain catalysts were evaluated for the oxidation of methanol as a model reaction, which verify that the Pt-NiO catalysts show enhanced activity and high stability in comparison with the commercial Pt/C catalyst. The optimized ratio of Pt to NiO is 1:1, then tuned by simple adjusting the feed ratio of the precursors as well. The synthesized nanocatalysts will be found the great potential applications as electrocatalysts for fuel cells owe to their enhanced catalytic performance and long-term stability.

  20. Symmetric weak ternary quantum homomorphic encryption schemes

    Science.gov (United States)

    Wang, Yuqi; She, Kun; Luo, Qingbin; Yang, Fan; Zhao, Chao

    2016-03-01

    Based on a ternary quantum logic circuit, four symmetric weak ternary quantum homomorphic encryption (QHE) schemes were proposed. First, for a one-qutrit rotation gate, a QHE scheme was constructed. Second, in view of the synthesis of a general 3 × 3 unitary transformation, another one-qutrit QHE scheme was proposed. Third, according to the one-qutrit scheme, the two-qutrit QHE scheme about generalized controlled X (GCX(m,n)) gate was constructed and further generalized to the n-qutrit unitary matrix case. Finally, the security of these schemes was analyzed in two respects. It can be concluded that the attacker can correctly guess the encryption key with a maximum probability pk = 1/33n, thus it can better protect the privacy of users’ data. Moreover, these schemes can be well integrated into the future quantum remote server architecture, and thus the computational security of the users’ private quantum information can be well protected in a distributed computing environment.