WorldWideScience

Sample records for pt surface alloys

  1. Surface Segregation in Supported Pd-Pt Nanoclusters and Alloys

    NARCIS (Netherlands)

    van den Oetelaar, L.C.A.; Nooij, O.W.; Oerlemans, S.; Denier van der Gon, A.W.; Brongersma, H.H.; Lefferts, Leonardus; Roosenbrand, A.G.; van Veen, J.A.R.

    1998-01-01

    Surface segregation processes in Pd-Pt alloys and bimetallic Pd-Pt nanoclusters on alumina and carbon supports (technical catalysts) have been investigated by determining the metal surface composition of these systems by low-energy ion scattering (LEIS). Both Pd-rich (Pd80Pt20) and Pt-rich

  2. Surface composition of Pt-Pd alloys treated in hydrogen

    Science.gov (United States)

    Szabo, A.; Paál, Z.; Szász, A.; Kojnok, J.; Fabian, D. J.

    1989-11-01

    Pd enrichment is observed in Pd-Pt alloy sheets when heated in He and in H 2. The surface composition was monitored by soft X-ray emission spectroscopy (SXES) and by work function measurements. A regular solution model is used to calculate the expected composition of the surface atomic layers, with and without adsorbed hydrogen, and the calculated and measured values for Pd-enrichment are compared. The possible effect of subsurface adsorbed hydrogen is discussed.

  3. Surface enrichment of Pt in Ga2O3 films grown on liquid Pt/Ga alloys

    Science.gov (United States)

    Grabau, Mathias; Krick Calderón, Sandra; Rietzler, Florian; Niedermaier, Inga; Taccardi, Nicola; Wasserscheid, Peter; Maier, Florian; Steinrück, Hans-Peter; Papp, Christian

    2016-09-01

    The formation of surface Ga2O3 films on liquid samples of Ga, and Pt-Ga alloys with 0.7 and 1.8 at.% Pt was examined using near-ambient pressure (NAP) X-ray photoelectron spectroscopy (XPS). Thickness, composition and growth of the oxide films were deduced as a function of temperature and Pt content of the alloys, in ultra-high vacuum and at oxygen pressures of 3 × 10- 7, 3 × 10- 3 and 1 mbar. We examined oxide layers up to a thickness of 37 Å. Different growth modes were found for oxidation at low and high pressures. The formed Ga2O3 oxide films showed an increased Pt content, while the pristine GaPt alloy showed a surface depletion of Pt at the examined temperatures. Upon growth of Ga2O3 on Pt/Ga alloys a linear increase of Pt content was observed, due to the incorporation of 3.6 at.% Pt in the Ga2O3. The Pt content in Ga2O3, at the examined temperatures and bulk Pt concentrations is found to be independent of pressure, temperature and the nominal Pt content of the metallic alloy.

  4. Probing adsorption phenomena on a single crystal Pt-alloy surface under oxygen reduction reaction conditions

    DEFF Research Database (Denmark)

    Bondarenko, Alexander S.; Stephens, Ifan E.L.; Bech, Lone;

    2012-01-01

    The adsorption dynamics of *OH and *O species at Pt(111) and Cu/Pt(111) near-surface alloy (NSA) surfaces in oxygen-free and O2-saturated 0.1M HClO4 was investigated. Subsurface Cu modifies the electronic structure at the Pt(111) surface resulting in weaker bonding to adsorbates like *OH, *H or *...

  5. Antisite-defect-induced surface segregation in ordered NiPt alloy

    DEFF Research Database (Denmark)

    Pourovskii, L.V.; Ruban, Andrei; Abrikosov, I.A.;

    2003-01-01

    By means of first principles simulations we demonstrate that tiny deviations from stoichiometry in the bulk composition of the NiPt-L1(0) ordered alloy have a great impact on the atomic configuration of the (111) surface. We predict that at T=600 K the (111) surface of the Ni51Pt49 and Ni50Pt50...... alloys corresponds to the (111) truncation of the bulk L1(0) ordered structure. However, the (111) surface of the nickel deficient Ni49Pt51 alloy is strongly enriched by Pt and should exhibit the pattern of the 2x2 structure. Such a drastic change in the segregation behavior is due to the presence...... of different antisite defects in the Ni- and Pt-rich alloys and is a manifestation of the so-called off-stoichiometric effect....

  6. Kinetic limitations in surface alloy formation: PtCu/Ru(0001)

    Science.gov (United States)

    Engstfeld, A. K.; Jung, C. K.; Behm, R. J.

    2016-01-01

    We have systematically investigated the structure and structure formation of two-dimensional PtCu monolayer surface alloys on Ru(0001) as model systems for bimetallic PtCu catalysts and surfaces by scanning tunneling microscopy (STM). The surface alloys were prepared by deposition of Pt and Cu on Ru(0001) and thermal intermixing; different procedures were developed and tested to produce bimetallic surfaces with homogeneous structure, including also a homogeneous distribution of the different surface species, while at the same time intermixing with the Ru(0001) substrate should be inhibited. STM imaging revealed that for Pt concentrations below 65% surface alloys with homogeneous distribution could be formed, while at higher concentrations in the mixed phase, up to 82%, pure Pt or Pt-rich surface areas were formed as well. At Pt contents of 0.20 0.65 line structures were observed, but of different nature. The distribution of surface atoms in the mixed phase was evaluated from STM images with chemical contrast, the related short-range order parameters were determined. The resulting structures and their energetics, the influence of different deposition and annealing procedures and the suitability of these surfaces as model systems for studies of the surface chemistry of bimetallic PtCu surfaces are discussed.

  7. Adsorption of aromatics on the (111) surface of PtM and PtM3 (M = Fe, Ni) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hensley, Alyssa; Schneider, Sebastian; Wang, Yong; McEwen, Jean-Sabin

    2015-09-18

    The adsorption of benzene and phenol was studied on PtM and PtM3 (111) surfaces, with M being either Ni or Fe. Under vacuum, the most favorable near surface structures showed an enrichment in Pt over the M species. An analysis of the electronic structure of the metal species in the clean surfaces with different near surface structures was done with the d-band model and showed that the Pt's d-states are significantly shifted away from the Fermi level due to the Pt-M interactions while the M species' d-states were less affected, with Ni's d-band shifting closer to the Fermi level and Fe's d-band shifting away from the Fermi level. The adsorption of aromatics, benzene and phenol, on several near surface structures for the PtM and PtM3 (111) surfaces showed that higher surface M concentrations resulted in a stronger adsorption due to the larger amount of charge transferred between the adsorbate and surface. However, compared to the adsorption of benzene and phenol on monometallic surfaces, the adsorption of these species on the PtM and PtM3 (111) surfaces was significantly weakened. Overall, our results show that the observed behavior of these Pt/Fe and Pt/Ni alloys is similar to that seen for the previously studied Pd/Fe surfaces. Furthermore, balancing the weakly adsorbing Pt surface species with the more strongly interacting Fe or Ni species can lead to the tailored adsorption of aromatics with applications in both hydrodeoxygenation and hydrogenation reactions by increasing the desorption rate of wanted aromatic products.

  8. Dissociative adsorption of methane on surface oxide structures of Pd-Pt alloys

    CERN Document Server

    Dianat, Arezoo; Ciacchi, Lucio Colombi; Pompe, Wolfgang; Cuniberti, Gianaurelio; Bobeth, Manfred; 10.1021/jp905689t

    2010-01-01

    The dissociative adsorption of methane on variously oxidized Pd, Pt and Pd-Pt surfaces is investigated using density-functional theory, as a step towards understanding the combustion of methane on these materials. For Pd-Pt alloys, models of surface oxide structures are built on the basis of known oxides on Pd and Pt. The methane adsorption energy presents large variations depending on the oxide structure and composition. Adsorption is endothermic on the bare Pd(111) metal surface as well as on stable thin layer oxide structures such as the ($\\sqrt{5}\\times\\sqrt{5}$) surface oxide on Pd(100) and the PtO$_2$-like oxide on Pt(111). Instead, large adsorption energies are obtained for the (100) surface of bulk PdO, for metastable mixed Pd$_{1-x}$Pt$_x$O$_{4/3}$ oxide layers on Pt(100), and for Pd-Pt(111) surfaces covered with one oxygen monolayer. In the latter case, we find a net thermodynamic preference for a direct conversion of methane to methanol, which remains adsorbed on the oxidized metal substrates via w...

  9. SISGR: Theoretically relating the surface composition of Pt alloys to their performance as the electrocatalysts of low-temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guofeng

    2010-12-31

    The main goal of this project is to gain fundamental knowledge about the relation between surface composition and catalytic performance of Pt alloy catalysts for oxygen reduction reaction (ORR). Specific objectives are: to develop and improve a first-principles based multiscale computation approach to simulating surface segregation phenomena in Pt alloy surfaces; to evaluate the surface electronic structure and catalytic activity of Pt alloy catalysts and; to relate the surface composition to the catalytic performance of Pt alloy catalysts.

  10. Alloy formation and chemisorption at Zn/Pt(111) bimetallic surfaces using alkali ISS, XPD, and TPD.

    Science.gov (United States)

    Ho, Chih-Sung; Martono, Eddie; Banerjee, Santanu; Roszell, John; Vohs, John; Koel, Bruce E

    2013-11-21

    Alloy formation and chemisorption at bimetallic surfaces formed by vapor-depositing Zn on a Pt(111) single crystal were investigated primarily by using X-ray photoelectron diffraction (XPD), X-ray photoelectron spectroscopy (XPS), low-energy alkali ion scattering spectroscopy (ALISS), low electron energy diffraction (LEED), and temperature programmed desorption (TPD). A wide range of conditions were investigated to explore whether deposition and annealing of Zn films could produce well-defined, ordered alloy surfaces, similar to those encountered for Sn/Pt(111) surface alloys. These attempts were unsuccessful, although weak, diffuse (2 × 2) spots were observed under special conditions. The particular PtZn bimetallic alloy created by annealing one monolayer of Zn on Pt(111) at 600 K, which has a Zn composition in the surface layer of about 5 at. %, was investigated in detail by using XPD and ALISS. Only a diffuse (1 × 1) pattern was observed from this surface by LEED, suggesting that no long-range, ordered alloy structure was formed. Zn atoms were substitutionally incorporated into the Pt(111) crystal to form a near-surface alloy in which Zn atoms were found to reside primarily in the topmost and second layers. The alloyed Zn atoms in the topmost layer are coplanar with the Pt atoms in the surface layer, without any "buckling" of Zn, that is, displacement in the vertical direction. This result is expected because of the similar size of Pt and Zn, based on previous studies of bimetallic Pt alloys. Zn atoms desorb upon heating rather than diffusing deep into the bulk of the Pt crystal. Temperature programmed desorption (TPD) measurements show that both CO and NO have lower desorption energies on the PtZn alloy surface compared to that on the clean Pt(111) surface.

  11. Surface enrichment of Pt in stable Pt-Ir nano-alloy particles on MgAl 2 O 4 spinel in oxidizing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei-Zhen; Nie, Lei; Cheng, Yingwen; Kovarik, Libor; Liu, Jun; Wang, Yong

    2017-04-01

    With the capability of MgAl2O4 spinel {111} nano-facets in stabilizing small Rh, Ir and Pt particles, bimetallic Ir-Pt catalysts on the same support were investigated, aiming at further lowering the catalyst cost by substituting expensive Pt with cheaper Ir in the bulk. Small Pt-Ir nano-alloy particles (< 2nm) were successfully stabilized on the spinel {111} nano-facets as expected. Interestingly, methanol oxidative dehydrogenation (ODH) rate on the surface Pt atoms increases with oxidizing aging but decreases upon reducing treatment, where Ir is almost inactive under the same reaction conditions. Up to three times enhancement in Pt exposure was achieved when the sample was oxidized at 800 °C in air for 1 week and subsequently reduced by H2 for 2 h, demonstrating successful surface enrichment of Pt on Pt-Ir nano-alloy particles. A dynamic stabilization mechanism involving wetting\

  12. A DFT Structural Investigation of New Bimetallic PtSnx Surface Alloys Formed on the Pt(110) Surface and Their Interaction with Carbon Monoxide

    DEFF Research Database (Denmark)

    Zheng, Jian; Busch, Michael; Artiglia, Luca

    2016-01-01

    Two surface alloys with p(3 x 1) and p(6 x 1) periodicity have been identified after the deposition of metallic Sn on the (1 x 2)-Pt(110) surface. These two structures have been characterized by low energy electron diffraction (LEED), scanning tunneling microscopy (STM), and photoemission spectro...

  13. Oxidation of CO and surface properties of well characterized Pt{sub 3}Sn bimetallic alloy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stamenkovic, V.; Arenz, M.; Blizanac, B. B.; Ross, P. N.; Markovic, N. M. [University of California-Berkeley, Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2004-04-01

    The Pt{sub 3}Sn alloy is known to be one of the most active systems for carbon monoxide oxidation. This paper continues the effort begun earlier to explore the link between macroscopic level properties of the Pt{sub 3}Sn(hkl) surfaces in an electrochemical environment and in-situ atomic level characterization. Specifically, the work reported here entails a further examination of the Pt{sub 3}Sn(110) interface in an electrochemical environment as part of a detailed study of structural effects on electrocatalysis. Alloy surfaces have been characterized in ultra-high vacuum (UHV) by Auger electron microscopy, low energy ion scattering spectroscopy (LEISS) and low energy electron diffraction (LEED). Surface electrochemistry of carbon monoxide was studied in-situ by Fourier transform infrared (FTIR) spectroscopy. Result showed that in contrast to the Pt{sub 3}Sn(111) surface, changes in band morphology and vibrational properties are clearly absent on the Pt{sub 3}Sn(110) surface. In the case of the Pt{sub 3}Sn(hkl)-CO interaction, not only electronic effects, but also other factors, such as surface structure and intermolecular repulsion between adsorbed CO species were found to be responsible for high catalytic activity. 40 refs., 6 figs.

  14. Cu-capped surface alloys of Pt/Cu left brace 100 right brace

    CERN Document Server

    Alshamaileh, E; Wander, A

    2003-01-01

    The room-temperature deposition of 0.5 monolayer (ML) Pt on Cu left brace 100 right brace followed by annealing to 525 K results in a sharp c(2 x 2) low-energy electron diffraction (LEED) pattern. The structure of this surface alloy is investigated by means of symmetrized automated tensor low-energy electron diffraction (SATLEED) analysis and ab initio plane wave density functional calculations. The results are then compared with those for the similar system 0.5 ML Pd/Cu left brace 100 right brace. SATLEED results for the Pt/Cu left brace 100 right brace show that it consists of an ordered c(2 x 2) Cu-Pt second layer alloy capped with a pure Cu first layer. The first and second interlayer spacings are found to be expanded by +5.1 +- 1.7 and +3.5 +- 1.7% respectively (relative to the bulk Cu interlayer spacing of 1.807 A) due to the insertion of the 8% larger Pt atoms into the second layer. The ordered mixed layer is found to be rippled by 0.08 +- 0.06 A with Pt atoms rippled outwards towards the solid-vacuum ...

  15. Growth of Pt thin films on Cu(111) and formation of Pt/Cu surface alloys: growth mechanism and diffusion barrier

    CERN Document Server

    Boo, J H; Lee, S B; Kwak, H T; Schröder, U; Linke, R; Wandelt, K

    1999-01-01

    Ultra-thin-platinum films evaporated on Cu(111) at 100 K and at room temperature were investigated by using in situ Auger electron spectroscopy (AES) and low energy electron diffraction (LEED). A growth mechanism of the layer-by layer type was evidenced up to at least 5-ML of Pt. Over the first Pt monolayer, the Pt-Pt bond distances were strained about 7 % beyond the equilibrium bond distances found for bulk platinum. Surface alloys were formed by diffusing the Pt adatoms into the Cu(111) substrate at temperatures above 500 K with a diffusion barrier of 0.85 eV. For higher annealing temperatures, the Pt concentration got smaller. From an Auger depth profile, the diffusion barrier for surface alloy formation was estimated using Fick's second law.

  16. Growth of epitaxial Pt1-xPbx alloys by surface limited redox replacement and study of their adsorption properties.

    Science.gov (United States)

    Mercer, M P; Plana, D; Fermίn, D J; Morgan, D; Vasiljevic, N

    2015-10-06

    The surface limited redox replacement (SLRR) method has been used to design two-dimensional Pt-Pb nanoalloys with controlled thickness, composition, and structure. The electrochemical behavior of these alloys has been systematically studied as a function of alloy composition. A single-cell, two-step SLRR protocol based on the galvanic replacement of underpotentially deposited monolayers of Pb with Pt was used to grow epitaxial Pt1-xPbx (x galvanic replacement step, the Pb atomic content can be controlled in the films. Electrochemical analysis of the alloys showed that the adsorption of both H and CO exhibits similar, and systematic, decreases with small increases in the Pb content. These measurements, commonly used in electrocatalysis for the determination of active surface areas of Pt, suggested area values much lower than those expected based on the net Pt composition in the alloy as measured by XPS. These results show that Pb has a strong screening effect on the adsorption of both H and CO. Moreover, changes in alloy composition result in a negative shift in the potential of the peaks of CO oxidation that scales with the increase of Pb content. The results suggest electronic and bifunctional effects of incorporated Pb on the electrochemical behavior of Pt. The study illustrates the potential of the SLRR methodology, which could be employed in the design of 2-dimensional bimetallic Pt nanoalloys for fundamental studies of electrocatalytic behavior in fuel cell reactions dependent on the nature of alloying metal and its composition.

  17. Interactions between interfacial water and CO adsorbed on Pt and Pt-Ru alloy surfaces under electrochemical conditions: Density-functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Santana, Juan A. [Department of Chemistry, University of Puerto Rico, San Juan, PR 00931-3346 (Puerto Rico); Ishikawa, Yasuyuki, E-mail: yishikawa@uprrp.ed [Department of Chemistry, University of Puerto Rico, San Juan, PR 00931-3346 (Puerto Rico)

    2010-12-30

    The structural and electronic properties of interfacial water and adsorbed CO on platinum and platinum/ruthenium alloy have been studied via density-functional theory calculations to gain insight into the water-adsorbate interaction under electrochemical conditions. The computational simulations reveal a new interpretation for the interaction of adsorbed CO and water at the electrochemical interfaces. The new interaction model rationalizes the observed quantitative relationship between infrared intensities for adsorbed bridging CO and water molecules that impart a high-frequency O-H stretch, ca. 3630-3660 cm{sup -1} on pure Pt and 3600-3620 cm{sup -1} on PtRu alloy. The theoretical modeling indicates that the observed feature common to both pure Pt and PtRu alloy surfaces is due to interfacial water molecules firmly hydrogen-bonded to bridging CO.

  18. First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Hansen, Heine Anton; Rossmeisl, Jan;

    2015-01-01

    active binary thin films are near-surface alloys of Pt with subsurface Pd and certain PdAu and PtAu thin films with surface and/or subsurface Au. The most active ternary thin films are with pure metal Pt or Pd skins with some degree of Au in the surface and/or subsurface layer and the near-surface alloys...... of Au with mixed Pt/Pd skins. The activity of the binary and ternary catalysts is explained through weakening of the OH binding energy caused by solute elements. However, given the low alloy formation energies it may be difficult to tune and retain the composition under operating conditions....... This is particularly challenging for alloys containing Au due to a high propensity of Au to segregate to the surface. We also show that once Au is on the surface it will diffuse to defect sites, explaining why small amounts of Au retard dissolution of Pt nanoparticles. For the PtPd thin films there is no pronounced...

  19. Interaction of CO with PtxAg1-x/Pt(111) surface alloys: More than dilution by Ag atoms

    Science.gov (United States)

    Schüttler, K. M.; Mancera, L. A.; Diemant, T.; Groß, A.; Behm, R. J.

    2016-08-01

    We have investigated CO adsorption on structurally well-defined PtxAg1-x/Pt(111) surface alloys, combining temperature-programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRRAS) as well as density functional theory (DFT) based calculations. This is part of a systematic approach including previous studies of CO adsorption on closely related Pt(111)- and Pd(111)-based surface alloys. Following changes in the adsorption properties with increasing Ag content and correlating them with structural changes allow us to assign desorption features to specific adsorption sites/ensembles identified in previous scanning tunneling microscopy (STM) measurements, and thus to identify and separate contributions from different effects such as geometric ensemble effects and electronic ligand/strain effects. DFT calculations give further insight into the nature of the metal-CO bond on these bimetallic sites. Most prominently, the growth of a new CO desorption feature at higher temperature (~ 550 K) in the TPD spectra of Ag-rich surface alloys, which is unique for the group of Pt(111)- and Pd(111)-based surface alloys, is attributed to CO adsorption on Pt atoms surrounded by a Ag-rich neighborhood. Adsorption on these sites manifests in an IR band down-shifted to significantly lower wave number. Systematic comparison of the present results with previous findings for CO adsorption on the related Pt(111)- and Pd(111)-based surface alloys gains a detailed insight into general trends in the adsorption behavior of bimetallic surfaces.

  20. First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Hansen, Heine Anton; Rossmeisl, Jan

    2015-01-01

    Further advances in fuel cell technologies are hampered by kinetic limitations associated with the sluggish cathodic oxygen reduction reaction. We have investigated a range of different formulations of binary and ternary Pt, Pd and Au thin films as electrocatalysts for oxygen reduction. The most...... active binary thin films are near-surface alloys of Pt with subsurface Pd and certain PdAu and PtAu thin films with surface and/or subsurface Au. The most active ternary thin films are with pure metal Pt or Pd skins with some degree of Au in the surface and/or subsurface layer and the near-surface alloys....... This is particularly challenging for alloys containing Au due to a high propensity of Au to segregate to the surface. We also show that once Au is on the surface it will diffuse to defect sites, explaining why small amounts of Au retard dissolution of Pt nanoparticles. For the PtPd thin films there is no pronounced...

  1. Adsorption of formaldehyde and formyl intermediates on Pt, PtRu-, and PtRuMo-alloy surfaces: A density functional study

    Science.gov (United States)

    Cahyanto, Wahyu Tri; Shukri, Ganes; Agusta, Mohammad Kemal; Kasai, Hideaki

    2013-02-01

    Stable binding configuration for formaldehyde (H2CO) and formyl (HCO) adsorption on Pt, PtRu, and PtRuMo are studied within the frame of density functional theory (DFT). We address this study to investigate the role of Ru and Mo on the binding characteristic of formaldehyde and formyl adsorption with respect to interaction strength and charge analysis. Several binding conformation on all possible surface adsorption sites are considered in determining the most stable adsorption geometry on three surfaces. Our results show that the presence of Ru in PtRu and Mo in PtRuMo stabilize the formaldehyde and formyl, which are indicated by stronger bond strength. Further electronic structure analysis shows that the addition of Ru in PtRu and Mo in PtRuMo modifies the electronic structure of Pt's surface significantly. The presence of both impurities shifted the derived anti-bonding state - which is originally located below the fermi level in pure Pt surface - to be above the fermi level in PtRu and PtRuMo systems. This fact explains the stronger adsorption found on PtRu & PtRuMo as compared to pure Pt surface.

  2. On the stability of the CO adsorption-induced and self-organized CuPt surface alloy

    DEFF Research Database (Denmark)

    Andersson, Klas Jerker; Chorkendorff, Ib

    2010-01-01

    ) from room temperature to 673 K. No indications of substantial changes in surface structure were observed under the latter conditions compared to CO alone whereas the O-2 oxidation resulted in CO removal and the build-up of an ultrathin CuOx-film. However, the oxidized CO/CuPt surface alloy could...

  3. Evidence of a Surface-Mediated Magnetically Induced Miscibility Gap in Co-Pt Alloy Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Rooney, P.W.; Shapiro, A.L.; Tran, M.Q.; Hellman, F. [Department of Physics, University of California at San Diego, La Jolla, California 92093 (United States)

    1995-08-28

    (100) and (111) oriented single-crystal CoPt{sub 3} films were deposited over a range of growth temperatures from {minus}50 to 800 {degree}C. The Curie temperature is increased by 200 {degree}C over the value expected for the homogeneous alloy in the as-deposited films (of both orientations) grown near 400 {degree}C. We interpret this as evidence for a previously unobserved, surface-mediated, magnetically driven miscibility gap in vapor-deposited CoPt{sub 3} films. Large perpendicular magnetic anisotropy is also observed in the as-deposited films (of both orientations) grown near 400 {degree}C.

  4. Laser weldability of Pt and Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Noolu, N.J. [Center for Advanced Materials Joining, University of Waterloo, Waterloo (Canada)]. E-mail: nnoolu@mecheng1.uwaterloo.ca; Kerr, H.W. [Center for Advanced Materials Joining, University of Waterloo, Waterloo (Canada); Zhou, Y. [Center for Advanced Materials Joining, University of Waterloo, Waterloo (Canada); Xie, J. [Cardiac Rhythm Management Division, Street Jude Medical Inc., Sylmar, CA (United States)

    2005-04-25

    Crack susceptibility of laser spot welds between Pt and Ti alloys was studied by characterizing the surface and the cross-sections of the welds produced at different pulse energies. Increase in laser pulse energy increased the dilution by the Ti alloy, giving rise to the evolution of microstructures with varying Ti contents across the entire fusion zone. Hardness results showed that regions with 66-75% Ti, i.e. consisting of primary Ti{sub 3}Pt and/or Ti{sub 3}Pt + TiPt eutectic, have a hardness higher than 700 Vickers hardness numbers (VHN), while regions with 42-66% Ti, i.e. consisting of primary TiPt, possessed hardness between 400 and 700 VHN. The extent of cracking increased with the increase in pulse energy and the cracked regions consisted of Ti contents between 50 and 75%. Brittle cracking in microstructures consisting of Ti{sub 3}Pt and TiPt phases suggested that one or both of the constituent phases are susceptible to cracking. However, crack arrest in microstructures predominantly consisting of TiPt showed that Ti{sub 3}Pt is the most susceptible phase to cracking in Pt-Ti alloy welds.

  5. On the role of reactant transport and (surface) alloy formation for the CO tolerance of carbon supported PtRu polymer electrolyte fuel cell catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, J.; Colmenares, L.; Jusys, Z.; Behm, R.J. [Abt. Oberflaechenchemie und Katalyse, Universitaet Ulm (Germany); Moertel, R.; Boennemann, H. [Max-Planck-Institut fuer Kohlenforschung, Muelheim a.d. Ruhr (Germany); Koehl, G.; Modrow, H.; Hormes, J. [Physikalisches Institut, Universitaet Bonn (Germany)

    2006-07-15

    The role of atomic scale intermixing for the electrocatalytic activity of bimetallic PtRu anode catalysts in reformate operated polymer electrolyte fuel cells (PEFC) was investigated, exploiting the specific properties of colloid based catalyst synthesis for the selective preparation of alloyed and non-alloyed bimetallic catalysts. Three different carbon supported PtRu catalysts with different degrees of Pt and Ru intermixing, consisting of (i) carbon supported PtRu alloy particles (PtRu/C), (ii) Pt and Ru particles co-deposited on the same carbon support (Pt+Ru/C), and (iii) a mixture of carbon supported Pt and carbon supported Ru (Pt/C+Ru/C) as well as the respective monometallic Pt/C and Ru/C catalysts were prepared and characterized by electron microscopy (TEM), X-ray absorption spectroscopy, and CO stripping. Their performance as PEFC anode catalysts was evaluated by oxidation of a H{sub 2}/2%CO gas mixture (simulated reformate) under fuel cell relevant conditions (elevated temperature, continuous reaction and controlled reactant transport) in a rotating disk electrode (RDE) set-up. The CO tolerance and H{sub 2} oxidation activity of the three catalysts is comparable and distinctly different from that of the monometallic catalysts. The results indicate significant transport of the reactants, CO{sub ad} and/or OH{sub ad}, between Pt and Ru surface areas and particles for all three catalysts, with only subtle differences from the alloy catalyst to the physical mixture. The high activity and CO tolerance of the bimetallic catalysts, through the formation of bimetallic surfaces, is explained, e.g., by contact formation in nanoparticle agglomerates or by material transport and subsequent surface decoration/surface alloy formation during catalyst preparation, conditioning, and operation. The instability and mobility of the catalysts under these conditions closely resembles concepts in gas phase catalysis. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  6. CoPt alloy grown on the WSe 2(0 0 0 1) van der Waals surface

    Science.gov (United States)

    Makarov, D.; Liscio, F.; Brombacher, C.; Simon, J. P.; Schatz, G.; Maret, M.; Albrecht, M.

    The structural and magnetic properties of 3-nm-thick CoPt alloys grown on WSe 2(0 0 0 1) at various temperature are investigated. Deposition at room temperature leads to the formation of a chemically disordered fcc CoPt alloy with [1 1 1] orientation. Growth at elevated temperatures induces L1 0 chemical order starting at 470 K accompanied with an increase in grain size and a change in grain morphology. As a consequence of the [1 1 1] growth direction, the CoPt grains can adopt one of the three possible variants of the L1 0 phase with tetragonal c-axis tilted from the normal to the film plane direction at 54°. The average long-range order parameter is found to be 0.35(±0.05) and does not change with the increase in the deposition temperature from 570 to 730 K. This behavior might be related to Se segregation towards the growing facets and surface disorder effects promoted by a high surface-to-volume ratio. Magnetic studies reveal a superparamagnetic behavior for the films grown at 570 and 730 K in agreement with the film morphology and degree of chemical order. The measurements at 10 K reveal the orientation of the easy axis of the magnetization lying basically in the film plane.

  7. CoPt alloy grown on the WSe{sub 2}(0 0 0 1) van der Waals surface

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, D. [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany)], E-mail: denys.makarov@uni-konstanz.de; Liscio, F. [SIMAP, INP Grenoble-CNRS-UJF, 1130 rue de la Piscine, BP 75, 38402 Saint Martin d' Heres (France); Brombacher, C. [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Institute of Physics, Chemnitz University of Technology, D-09107 Chemnitz (Germany); Simon, J.P. [SIMAP, INP Grenoble-CNRS-UJF, 1130 rue de la Piscine, BP 75, 38402 Saint Martin d' Heres (France); Schatz, G. [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Maret, M. [SIMAP, INP Grenoble-CNRS-UJF, 1130 rue de la Piscine, BP 75, 38402 Saint Martin d' Heres (France); Albrecht, M. [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Institute of Physics, Chemnitz University of Technology, D-09107 Chemnitz (Germany)

    2008-06-15

    The structural and magnetic properties of 3-nm-thick CoPt alloys grown on WSe{sub 2}(0 0 0 1) at various temperature are investigated. Deposition at room temperature leads to the formation of a chemically disordered fcc CoPt alloy with [1 1 1] orientation. Growth at elevated temperatures induces L1{sub 0} chemical order starting at 470 K accompanied with an increase in grain size and a change in grain morphology. As a consequence of the [1 1 1] growth direction, the CoPt grains can adopt one of the three possible variants of the L1{sub 0} phase with tetragonal c-axis tilted from the normal to the film plane direction at 54 deg. The average long-range order parameter is found to be 0.35({+-}0.05) and does not change with the increase in the deposition temperature from 570 to 730 K. This behavior might be related to Se segregation towards the growing facets and surface disorder effects promoted by a high surface-to-volume ratio. Magnetic studies reveal a superparamagnetic behavior for the films grown at 570 and 730 K in agreement with the film morphology and degree of chemical order. The measurements at 10 K reveal the orientation of the easy axis of the magnetization lying basically in the film plane.

  8. In Vivo Neural Recording and Electrochemical Performance of Microelectrode Arrays Modified by Rough-Surfaced AuPt Alloy Nanoparticles with Nanoporosity

    Directory of Open Access Journals (Sweden)

    Zongya Zhao

    2016-11-01

    Full Text Available In order to reduce the impedance and improve in vivo neural recording performance of our developed Michigan type silicon electrodes, rough-surfaced AuPt alloy nanoparticles with nanoporosity were deposited on gold microelectrode sites through electro-co-deposition of Au-Pt-Cu alloy nanoparticles, followed by chemical dealloying Cu. The AuPt alloy nanoparticles modified gold microelectrode sites were characterized by scanning electron microscopy (SEM, electrochemical impedance spectroscopy (EIS, cyclic voltammetry (CV and in vivo neural recording experiment. The SEM images showed that the prepared AuPt alloy nanoparticles exhibited cauliflower-like shapes and possessed very rough surfaces with many different sizes of pores. Average impedance of rough-surfaced AuPt alloy nanoparticles modified sites was 0.23 MΩ at 1 kHz, which was only 4.7% of that of bare gold microelectrode sites (4.9 MΩ, and corresponding in vitro background noise in the range of 1 Hz to 7500 Hz decreased to 7.5 μ V rms from 34.1 μ V rms at bare gold microelectrode sites. Spontaneous spike signal recording was used to evaluate in vivo neural recording performance of modified microelectrode sites, and results showed that rough-surfaced AuPt alloy nanoparticles modified microelectrode sites exhibited higher average spike signal-to-noise ratio (SNR of 4.8 in lateral globus pallidus (GPe due to lower background noise compared to control microelectrodes. Electro-co-deposition of Au-Pt-Cu alloy nanoparticles combined with chemical dealloying Cu was a convenient way for increasing the effective surface area of microelectrode sites, which could reduce electrode impedance and improve the quality of in vivo spike signal recording.

  9. Synthesis and composition evolution of bimetallic Pd Pt alloy nanoparticles

    Science.gov (United States)

    Ren, Guoqiang; Shi, Honglan; Xing, Yangchuan

    2007-09-01

    This paper reports a study on the synthesis of Pd-Pt alloy nanoparticles and composition evolution of the alloys. The synthesis involves Pd and Pt acetylacetonate as the metal precursors and trioctylphosphine (TOP) as the solvent. Thermal decomposition of the Pd-TOP complex resulted in Pd nanoparticles, while substitution of Pt in the Pt-TOP complex by Pd allowed formation of the Pd-Pt alloys. It was observed that the Pd-Pt nanoparticles formed at the very beginning in the synthesis process are Pd rich with various nanoparticle sizes ranging from 1.5 to 25 nm in diameter. These nanoparticles averaged out through a digestive ripening process and reached a final size of 3.5 nm in about 10 min. The alloy compositions evolved throughout the synthesis process and only reached the preset Pd to Pt ratio of the precursors in 120 min. It was found that Pt acetylacetonate alone in TOP cannot produce Pt nanoparticles, which was attributed to the formation of a Pt-TOP complex and a strong coordination of Pt to the phosphine. This observation led us to propose an atomic exchange process between the Pt-TOP complex and the Pd atoms at the nanoparticle surface. As a result, the alloy formation process is limited by a substitution and diffusion rate of the Pt atoms at the surface of the alloy nanoparticles.

  10. Oxygen reduction activity of Pt and Pt-alloys in acid electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Paulus, Ursula A. [Paul Scherrer Inst., CH-5232 Villigen PSI (Switzerland); Schmidt, Thomas J.; Stamenkovic, Vojislav R.; Markovic, Nenad M.; Ross, Philip N. [Material Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)

    2001-07-01

    The oxygen reduction reaction (ORR) has been studied on polycrystalline (pc) Pt, Pt{sub 3}Ni and Pt{sub 3}Co bulk alloy electrodes and on carbon supported Pt, PtNi and PtCo alloy catalysts. Base voltammetry measurements as well as complementary Auger Electron Spectroscopy (AES) and Low Energy Ion Scattering (LEIS) on bulk electrodes and High Resolution Transmission Electron Microscopy (HRTEM)-analysis on the supported catalysts allow an estimation of the surface composition. By using the rotating ring-disk electrode (RRDE) technique both the kinetic analysis of the ORR and in parallel the detection and quantification of the amount of peroxide produced during the ORR are possible. The activity for the ORR increases in the order Pt < Pt{sub 3}Ni < Pt{sub 3}Co for equally prepared bulk alloys and Pt < Pt{sub 3}Ni {approx} Pt{sub 3}CO < PtCo for the carbon supported catalysts, respectively. It was proposed that the mechanism for the ORR is the same on pure Pt and the PtNi and PtCo alloys. (author)

  11. CoPt and FePt magnetic alloys grown on van der Waals WSe{sub 2}(0001) surfaces and on arrays of SiO{sub 2} spherical particles

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, Denys

    2008-06-06

    Modern magnetic recording is based on usage of hard magnetic alloys as a recording media. In order to increase the areal storage density (number of stored bits per square inch), materials with a high value of magnetic anisotropy are required to stabilize the direction of the magnetization and thus satisfy the criteria of thermal stability. The magnetic alloy currently used for hard disk drive production is a granular CoCrPt:SiO2 alloy with a grain size of approximately 7 nm and an anisotropy constant of about 0.4 MJ/m{sup 3}. However, the predicted limit of the highest achievable areal density of this type of granular media is 500-600 Gbit/in{sup 2}. To satisfy the demand of higher densities, new magnetic alloys have to be introduced. The most promising candidates for future ultra-high density magnetic recording applications are chemically L10 ordered FePt and CoPt alloys with anisotropy constants of about 10 MJ/m{sup 3} and 3 MJ/m{sup 3}, respectively. In order to obtain a high value of uniaxial magnetic anisotropy, the substrate temperature during molecular beam epitaxy or sputtering deposition has to be higher than 500 C. For practical use in industrial applications the ordering temperature of the FePt and CoPt alloys has to be reduced. One of the promising approaches to reduce the ordering temperature is related to the enhancement of the adatom mobility by growing the alloy on the chemically saturated surface. In this regard an attempt to reduce the ordering temperature of the CoPt alloy with equiatomic composition was performed in the scope of present work by growing the CoPt alloy on van der Waals WSe{sub 2}(0001) substrates. Moreover, an increase in data density can be gained using the concept of patterned media, where an information unit (bit) is stored in a single nanostructure. The most attractive way to produce patterned magnetic media for ultra-high density magnetic recording applications is based on self-assembly of the magnetic nanostructures. In this

  12. Adsorption and decomposition of cyclohexanone (C6H10O) on Pt(111) and the (2 × 2) and (√3 × √3)r30°-Sn/Pt(111) surface alloys.

    Science.gov (United States)

    Kim, Jooho; Welch, Lindsey A; Olivas, Amelia; Podkolzin, Simon G; Koel, Bruce E

    2010-11-02

    Adsorption and decomposition of cyclohexanone (C(6)H(10)O) on Pt(111) and on two ordered Pt-Sn surface alloys, (2 × 2)-Sn/Pt(111) and (√3 × √3)R30°-Sn/Pt(111), formed by vapor deposition of Sn on the Pt(111) single crystal surface were studied with TPD, HREELS, AES, LEED, and DFT calculations with vibrational analyses. Saturation coverage of C(6)H(10)O was found to be 0.25 ML, independent of the Sn surface concentration. The Pt(111) surface was reactive toward cyclohexanone, with the adsorption in the monolayer being about 70% irreversible. C(6)H(10)O decomposed to yield CO, H(2)O, H(2), and CH(4). Some C-O bond breaking occurred, yielding H(2)O and leaving some carbon on the surface after TPD. HREELS data showed that cyclohexanone decomposition in the monolayer began by 200 K. Intermediates from cyclohexanone decomposition were also relatively unstable on Pt(111), since coadsorbed CO and H were formed below 250 K. Surface Sn allowed for some cyclohexanone to adsorb reversibly. C(6)H(10)O dissociated on the (2 × 2) surface to form CO and H(2)O at low coverages, and methane and H(2) in smaller amounts than on Pt(111). Adsorption of cyclohexanone on (√3 × √3)R30°-Sn/Pt(111) at 90 K was mostly reversible. DFT calculations suggest that C(6)H(10)O adsorbs on Pt(111) in two configurations: by bonding weakly through oxygen to an atop Pt site and more strongly through simultaneously oxygen and carbon of the carbonyl to a bridged Pt-Pt site. In contrast, on alloy surfaces, C(6)H(10)O bonds preferentially to Sn. The presence of Sn, furthermore, is predicted to make the formation of the strongly bound C(6)H(10)O species bonding through O and C, which is a likely decomposition precursor, thermodynamically unfavorable. Alloying with Sn, thus, is shown to moderate adsorptive and reactive activity of Pt(111).

  13. Investigation of oxygen reduction and methanol oxidation reaction activity of PtAu nano-alloy on surface modified porous hybrid nanocarbon supports

    Science.gov (United States)

    Parambath Vinayan, Bhaghavathi; Nagar, Rupali; Ramaprabhu, Sundara

    2016-09-01

    We investigate the electrocatalytic activity of PtAu alloy nanoparticles supported on various chemically modified carbon morphologies towards oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR). The surface-modification of graphene nanosheets (f-G), multi-walled carbon nanotubes (f-MWNTs) and (graphene nanosheets-carbon nanotubes) hybrid support (f-G-MWNTs) were carried out by soft functionalization method using a cationic polyelectrolyte poly-(diallyldimethyl ammonium chloride). The Pt and PtAu alloy nanoparticles were dispersed over chemically modified carbon supports by sodium-borohydride assisted modified polyol reduction method. The electrochemical performance of all electrocatalysts were studied by half- and full-cell proton exchange membrane fuel cell (PEMFC) measurements and PtAu/f-G-MWNTs catalyst comparatively yielded the best catalytic performance. PEMFC full cell measurements of PtAu/f-G-MWNTs cathode electrocatalyst yield a maximum power density of 319 mW cm-2 at 60 °C without any back pressure,which is 2.1 times higher than that of cathode electrocatalyst Pt on graphene support. The high ORR and MOR activity of PtAu/f-G-MWNTs electrocatalyst is due to the alloying effect and inherent beneficial properties of porous hybrid nanocarbon support.

  14. First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Hansen, Heine Anton; Rossmeisl, Jan

    2015-01-01

    of Au with mixed Pt/Pd skins. The activity of the binary and ternary catalysts is explained through weakening of the OH binding energy caused by solute elements. However, given the low alloy formation energies it may be difficult to tune and retain the composition under operating conditions...

  15. Pt promotion and spill-over processes during deposition and desorption of upd-H(ad) and OH(ad) on Pt(x)Ru(1-x)/Ru(0001) surface alloys.

    Science.gov (United States)

    Hoster, Harry E; Janik, Michael J; Neurock, Matthew; Behm, R Jürgen

    2010-09-21

    The electrochemical adsorption of underpotential deposited hydrogen (upd-H(ad)) and OH(ad) on structurally well-defined Pt(x)Ru(1-x)/Ru(0001) surface alloys was investigated by cyclic voltammetry and density functional theory (DFT) calculations. The adsorption energies of both upd-H(ad) and OH(ad) decrease with increasing Pt content in the adsorption ensemble, shifting the onset of upd-H(ad) and OH(ad) formation to increasingly cathodic and anodic potentials, respectively. For bare Ru(0001) and for Ru(3) sites in the surface alloy, the stability regions of these two species overlap or almost overlap, respectively. Similar to previous findings for upd-H(ad) adsorption/desorption on partly Pt monolayer island covered Ru(0001) surfaces (J. Phys. Chem. B 2004, 108, 14780), we find a sharp peak at approximately 100 mV vs. RHE in each scan direction, which is attributed to a Pt catalyzed OH(ad) upd-H(ad) replacement on Ru(3) sites, via adsorption on Pt rich sites and spill-over to Ru(3) sites. The decrease of the integrated charge in these peaks with the third power of the Ru surface concentration, which for a random distribution of surface atoms reflects the availability of Ru(3) sites, supports the above assignment.

  16. Superior long-term activity for a Pt-Re alloy compared to Pt in methanol oxidation reactions

    Science.gov (United States)

    Duke, Audrey S.; Xie, Kangmin; Monnier, John R.; Chen, Donna A.

    2017-03-01

    Pt-Re bimetallic catalysts have shown enhanced activity compared to pure Pt for reactions involving oxidation, but the origins of this improved activity are not fully understood. Methanol oxidation on a Pt-Re alloy surface and pure Pt foil was studied in a microreactor coupled to an ultrahigh vacuum chamber. For reaction at 60 °C, the Pt-Re alloy surface exhibits superior long-term activity over a 24 h reaction period compared to pure Pt. The initial activity of Pt is 10-15% higher than on Pt-Re; however, the Pt surface gradually loses activity after 10 h online, whereas the activity of Pt-Re does not diminish. Post-reaction XPS shows that more carbon accumulates on the Pt than on Pt-Re, and the improved long-term activity is attributed to a greater ability of Pt-Re to oxidize the carbonaceous intermediates that eventually poison active sites. Both Pt and Pt-Re surfaces have almost no activity for methanol oxidation until a minimum coverage of oxygen is achieved from O2 dissociation. A comparison with methanol oxidation studies on Pt and Pt-Re in a pressure regime that is 150 times lower than in this work demonstrates that more carbon and less oxygen accumulate on the surfaces during reaction at the lower pressures.

  17. General aspects of surface alloy formation

    Energy Technology Data Exchange (ETDEWEB)

    Bergbreiter, Andreas; Engstfeld, Albert K.; Roetter, Ralf T.; Hoster, Harry E.; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany); Berko, Andras

    2010-07-01

    Surface confined alloys are excellent model systems for studies of structure-property relationships of bimetallic surfaces. They are formed by deposition of a guest metal B onto a substrate A, followed by annealing to a temperature, where place exchange between adatoms and atoms from the underlying surface layer becomes possible and diffusion into the bulk is sufficiently slow. We exemplarily confirmed by scanning tunneling microscopy and Auger electron spectroscopy for PtRu/Ru(0001), PdRu/Ru(0001), AuPt/Pt(111), AgPt/Pt(111), and AgPd/Pd(111), surface alloys are obtained for systems where metal B has a negative surface segregation energy within metal A. By exchanging A and B, however, AB surface alloys are most likely overgrown by metal B, which we demonstrate for RuPt/Pt(111) in comparison to PtRu/Ru(0001).

  18. Mesoporous Pt and Pt/Ru alloy electrocatalysts for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Franceschini, Esteban A. [Grupo de Celdas de Combustible, Departamento de Fisica de la Materia Condensada, Centro Atomico Constituyentes, CNEA. Av. General Paz 1499 (1650), San Martin, Buenos Aires (Argentina); Planes, Gabriel A. [Departamento de Quimica, Facultad de Ciencias Exactas, Fisicoquimicas y Naturales, Universidad Nacional de Rio Cuarto, Agencia Postal No 3, 5800, Rio Cuarto (Argentina); Williams, Federico J. [Departamento de Quimica Inorganica, Analitica y Quimica-Fisica, INQUIMAE CONICET, Facultad Ciencias Exactas y Naturales, Pabellon 2, Ciudad Universitaria, Buenos Aires (Argentina); Soler-Illia, Galo J.A.A. [Gerencia de Quimica, Centro Atomico Constituyentes, CNEA. Av. General Paz 1499 (1650), San Martin, Buenos Aires (Argentina); Corti, Horacio R. [Grupo de Celdas de Combustible, Departamento de Fisica de la Materia Condensada, Centro Atomico Constituyentes, CNEA. Av. General Paz 1499 (1650), San Martin, Buenos Aires (Argentina); Departamento de Quimica Inorganica, Analitica y Quimica-Fisica, INQUIMAE CONICET, Facultad Ciencias Exactas y Naturales, Pabellon 2, Ciudad Universitaria, Buenos Aires (Argentina)

    2011-02-15

    Mesoporous Pt and Pt/Ru catalysts with 2D-hexagonal mesostructure were synthesized using a triblock poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) copolymer (Pluronic F127 {sup registered}) template, on a gold support. Large electrochemical surface areas were observed for the catalysts prepared at high overpotentials. Compared to the Pt catalyst, the Pt/Ru alloy containing 3 at% of Ru exhibited lower onset potential and more than three times the limit mass activity for methanol oxidation. This behavior is assigned to the larger pore size of the mesoporous Pt and Pt/Ru catalysts obtained with this template that seems to improve the methanol accessibility to the active sites compared to those obtained using lyotropic liquid crystals. (author)

  19. Ion-scattering study and Monte Carlo simulations of surface segregation in Pd-Pt nanoclusters obtained by laser vaporization of bulk alloys

    Science.gov (United States)

    Rousset, J. L.; Renouprez, A. J.; Cadrot, A. M.

    1998-07-01

    Bimetallic Pd-Pt clusters deposited on amorphous carbon have been produced by laser vaporization of various bulk alloys. Energy dispersive x-ray analysis and transmission electron microscopy show that they have a perfectly well-defined stoichiometry and a narrow range of size. They constitute ideal systems to investigate segregation processes in finite solids. It is shown that low-energy ion scattering allows the determination of surface concentration, which has been found to be different from the overall one. Monte Carlo simulations coupled with a recently developed energetical model, based on a tight-binding scheme that includes bond strength modifications at surfaces, account well for the experimental finding and give information on the surface distribution of the segregating Pd atoms.

  20. Electrodeposited CoPt and FePt alloys nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Cagnon, L. [Laboratoire de Cristallographie, CNRS, BP 166, 38042 Grenoble cedex 9 (France)]. E-mail: laurent.cagnon@grenoble.cnrs.fr; Dahmane, Y. [Laboratoire Louis Neel, CNRS, BP 166, 38042 Grenoble cedex 9 (France); Laboratoire de Materiaux, Electrochimie et Corrosion, BP 17, 15000 Tizi-Ouzou (Algeria); Voiron, J. [Laboratoire Louis Neel, CNRS, BP 166, 38042 Grenoble cedex 9 (France); Pairis, S. [Laboratoire de Cristallographie, CNRS, BP 166, 38042 Grenoble cedex 9 (France); Bacia, M. [Laboratoire de Cristallographie, CNRS, BP 166, 38042 Grenoble cedex 9 (France); Ortega, L. [Laboratoire de Cristallographie, CNRS, BP 166, 38042 Grenoble cedex 9 (France); Benbrahim, N. [Laboratoire de Materiaux, Electrochimie et Corrosion, BP 17, 15000 Tizi-Ouzou (Algeria); Kadri, A. [Laboratoire de Materiaux, Electrochimie et Corrosion, BP 17, 15000 Tizi-Ouzou (Algeria)

    2007-03-15

    We have investigated CoPt and FePt alloys with the face centered tetragonal phase L10, which present very large magnetocrystalline anisotropy. Equiatomic CoPt nanowires exhibiting large coercive fields up to 1.1 T have been successfully prepared by electrodeposition into nanopores of commercial and home-made alumina membranes from a very simple electrolyte. The as-deposited material has the FCC structure with soft magnetic properties. An annealing treatment at 700 deg. C is crucial to transform this phase into the L1{sub 0} phase, which presents hard magnetic properties. Nanowires of annealed samples consist of small grains around 20 nm, with their c axes randomly distributed. The coercivity does not depend on the morphology and porosity of the two types of membranes but only on the deposited material elaborated with the appropriate thermal annealing process. Our preliminary results with FePt alloy indicate a more complicated system since the as-deposited material shows no magnetization. Magnetism appears only after annealing at 700-750 deg. C. Coercivity up to 0.85 T has been obtained at room temperature but with inhomogeneous phase composition. To achieve a single hard phase L1{sub 0}, it is essential to get for the as-deposited sample the equiatomic composition and then to employ the suitable annealing parameters (temperature and time) to change the whole FCC phase into the FCT ordered L1{sub 0} phase.

  1. Electrochemical oxidation of methanol on Pt3Co bulk alloy

    Directory of Open Access Journals (Sweden)

    S. LJ. GOJKOVIC

    2003-11-01

    Full Text Available The electrochemical oxidation of methanol was investigated on a Pt3Co bulk alloy in acid solutions. Kinetic parameters such as transfer coefficient, reaction orders with respect to methanol and H+ ions and energy of activation were determined. It was found that the rate of methanol oxidation is significantly diminished by rotation of the electrode. This effect was attributed to the diffusion of formaldehyde and formic acid from the electrode surface. Stirring of the electrolyte also influenced the kinetic parameters of the reaction. It was speculated that the predominant reaction pathway and rate determining step are different in the quiescent and in the stirred electrolyte. Cobalt did not show a promoting effect on the rate of methanol oxidation on the Pt3Co bulk alloy with respect to a pure Pt surface.

  2. Phase transformations during sintering of mechanically alloyed TiPt

    CSIR Research Space (South Africa)

    Nxumalo, S

    2010-10-01

    Full Text Available A TiPt alloy was produced by mechanically alloying the desired quantities of titanium and platinum. The resultant TiPt alloy powder was cold pressed to produce green bodies. Several sintering conditions were used to sinter this alloy...

  3. [Quantitative surface analysis of Pt-Co, Cu-Au and Cu-Ag alloy films by XPS and AES].

    Science.gov (United States)

    Li, Lian-Zhong; Zhuo, Shang-Jun; Shen, Ru-Xiang; Qian, Rong; Gao, Jie

    2013-11-01

    In order to improve the quantitative analysis accuracy of AES, We associated XPS with AES and studied the method to reduce the error of AES quantitative analysis, selected Pt-Co, Cu-Au and Cu-Ag binary alloy thin-films as the samples, used XPS to correct AES quantitative analysis results by changing the auger sensitivity factors to make their quantitative analysis results more similar. Then we verified the accuracy of the quantitative analysis of AES when using the revised sensitivity factors by other samples with different composition ratio, and the results showed that the corrected relative sensitivity factors can reduce the error in quantitative analysis of AES to less than 10%. Peak defining is difficult in the form of the integral spectrum of AES analysis since choosing the starting point and ending point when determining the characteristic auger peak intensity area with great uncertainty, and to make analysis easier, we also processed data in the form of the differential spectrum, made quantitative analysis on the basis of peak to peak height instead of peak area, corrected the relative sensitivity factors, and verified the accuracy of quantitative analysis by the other samples with different composition ratio. The result showed that the analytical error in quantitative analysis of AES reduced to less than 9%. It showed that the accuracy of AES quantitative analysis can be highly improved by the way of associating XPS with AES to correct the auger sensitivity factors since the matrix effects are taken into account. Good consistency was presented, proving the feasibility of this method.

  4. Enhanced electrocatalytic performance of Pt monolayer on nanoporous PdCu alloy for oxygen reduction

    Science.gov (United States)

    Hou, Linxi; Qiu, Huajun

    2012-10-01

    By selectively dealloying Al from PdxCu20-xAl80 ternary alloys in 1.0 M NaOH solution, nanoporous PdCu (np-PdCu) alloys with different Pd:Cu ratios are obtained. By a mild electrochemical dealloying treatment, the np-PdCu alloys are facilely converted into np-PdCu near-surface alloys with a nearly pure-Pd surface and PdCu alloy core. The np-PdCu near-surface alloys are then used as substrates to fabricate core-shell catalysts with a Pt monolayer as shell and np-PdCu as core by a Cu-underpotential deposition-Pt displacement strategy. Electrochemical measurements demonstrate that the Pt monolayer on np-Pd1Cu1 (Pt/np-Pd1Cu1) exhibits the highest Pt surface-specific activity towards oxygen reduction, which is ˜5.8-fold that of state-of-the-art Pt/C catalyst. The Pt/np-Pd1Cu1 also shows much enhanced stability with ˜78% active surface retained after 10,000 cycles (0.6-1.2 V vs. RHE). Under the same condition, the active surface of Pt/C drops to ˜28%.

  5. Self-consistent linear-muffin-tin-orbitals coherent-potential technique for bulk and surface calculations: Cu-Ni, Ag-Pd, and Au-Pt random alloys

    DEFF Research Database (Denmark)

    Abrikosov, I. A.; Skriver, Hans Lomholt

    1993-01-01

    energies and work functions for three fcc-based alloys (Cu-Ni, Ag-Pd, and Au-Pt) over the complete concentration range. The calculated mixing enthalpies for the Ag-Pd and Au-Pt systems agrees with experimental values, and the calculated concentration dependence of the lattice parameters agrees...... with experiment for all three systems. We find that the calculated surface energies and work functions in the unsegregated case exhibit a small positive deviation from a linear concentration dependence. Finally, we performed a segregation analysis based on the calculated surface energies by means of a simple...

  6. First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Hansen, Heine Anton; Rossmeisl, Jan;

    2015-01-01

    Further advances in fuel cell technologies are hampered by kinetic limitations associated with the sluggish cathodic oxygen reduction reaction. We have investigated a range of different formulations of binary and ternary Pt, Pd and Au thin films as electrocatalysts for oxygen reduction. The most...

  7. Synthesis of PtNi Alloy Nanoparticles on Graphene-Based Polymer Nanohybrids for Electrocatalytic Oxidation of Methanol

    Directory of Open Access Journals (Sweden)

    Tung-Yuan Yung

    2016-12-01

    Full Text Available We have successfully produced bimetallic PtNi alloy nanoparticles on poly(diallyldimethylammonium chloride (PDDA-modified graphene nanosheets (PtNi/PDDA-G by the “one-pot” hydrothermal method. The size of PtNi alloy nanoparticles is approximately 2–5 nm. The PDDA-modified graphene nanosheets (PDDA-G provides an anchored site for metal precursors; hence, the PtNi nanoparticles could be easily bond on the PDDA-G substrate. PtNi alloy nanoparticles (2–5 nm display a homogenous alloy phase embedded on the PDDA-G substrate, evaluated by Raman, X-ray diffractometer (XRD, thermal gravity analysis (TGA, electron surface chemical analysis (ESCA, and electron energy loss spectroscopy (EELS. The Pt/Ni ratio of PtNi alloy nanoparticles is ~1.7, examined by the energy dispersive spectroscopy (EDS spectra of transmitting electron microscopy (EDS/TEM spectra and mapping technique. The methanol electro-oxidation of PtNi/PDDA-G was evaluated by cyclic voltammetry (CV in 0.5 M of H2SO4 and 0.5 M of CH3OH. Compared to Pt on carbon nanoparticles (Pt/C and Pt on Graphene (Pt/G, the PtNi/PDDA-G exhibits the optimal electrochemical surface area (ECSA, methanol oxidation reaction (MOR activity, and durability by chrono amperometry (CA test, which can be a candidate for MOR in the electro-catalysis of direct methanol fuel cells (DMFC.

  8. Surface segregations in platinum-based alloy nanoparticles

    Science.gov (United States)

    Yamakawa, Shunsuke; Asahi, Ryoji; Koyama, Toshiyuki

    2014-04-01

    A phase-field model that describes the radial distributions of the ordered-disordered phase and surface segregation in a single-alloy nanoparticle is introduced to clarify the overall behavior of surface segregation of various Pt-based alloy nanoparticles. One of the obstacles to apply a platinum-transition metal alloy as a cathode electro-catalyst of a polymer electrolyte fuel cell is the need to ensure the retention of the designed surface composition in an alloy nanoparticle against the alloy combinations, a particle size, and heat treatment. From the results of calculations for CrPt, FePt, CoPt, NiPt, CuPt, PdPt, IrPt, and AuPt binary nanoparticles with diameters below 10 nm at 973.15 K, the compositional variation within a single particle was found to depend on the balance between the atomic interaction within particles and the surface free energy. In addition, the obtained specific steady-state composition of the surface varied significantly with alloy combination and particle diameter. Based on the general tendencies of a binary system to exhibit segregation, attempts to control the amount of platinum segregation on the surface using a ternary-alloy system were examined.

  9. The formation mechanism of bimetallic PtRu alloy nanoparticles in solvothermal synthesis.

    Science.gov (United States)

    Mi, Jian-Li; Nørby, Peter; Bremholm, Martin; Becker, Jacob; Iversen, Bo B

    2015-10-21

    An understanding of the nucleation and growth mechanism of bimetallic nanoparticles in solvothermal synthesis is important for further development of nanoparticles with tailored nanostructures and properties. Here the formation of PtRu alloy nanoparticles in a solvothermal synthesis using metal acetylacetonate salts as precursors and ethanol as both the solvent and reducing agent has been studied by in situ synchrotron radiation powder X-ray diffraction (SR-PXRD). Unlike the classical mechanism for the synthesis of monodisperse sols, the nucleation and growth processes of bimetallic PtRu nanoparticles occur simultaneously under solvothermal conditions. In the literature co-reduction of Pt and Ru is often assumed to be required to form PtRu bimetallic nanocrystals, but it is shown that monometallic Pt nanocrystals nucleate first and rapidly grow to an average size of 5 nm. Subsequently, the PtRu bimetallic alloy is formed in the second nucleation stage through a surface nucleation mechanism related to the reduction of Ru. The calculated average crystallite size of the resulting PtRu nanocrystals is smaller than that of the primary Pt nanocrystals due to the large disorder in the PtRu alloyed structure.

  10. Nanoscaled alloy formation from self-assembled elemental Co nanoparticles on top of Pt films

    Directory of Open Access Journals (Sweden)

    Luyang Han

    2011-08-01

    Full Text Available The thermally activated formation of nanoscale CoPt alloys was investigated, after deposition of self-assembled Co nanoparticles on textured Pt(111 and epitaxial Pt(100 films on MgO(100 and SrTiO3(100 substrates, respectively. For this purpose, metallic Co nanoparticles (diameter 7 nm were prepared with a spacing of 100 nm by deposition of precursor-loaded reverse micelles, subsequent plasma etching and reduction on flat Pt surfaces. The samples were then annealed at successively higher temperatures under a H2 atmosphere, and the resulting variations of their structure, morphology and magnetic properties were characterized. We observed pronounced differences in the diffusion and alloying of Co nanoparticles on Pt films with different orientations and microstructures. On textured Pt(111 films exhibiting grain sizes (20–30 nm smaller than the particle spacing (100 nm, the formation of local nanoalloys at the surface is strongly suppressed and Co incorporation into the film via grain boundaries is favoured. In contrast, due to the absence of grain boundaries on high quality epitaxial Pt(100 films with micron-sized grains, local alloying at the film surface was established. Signatures of alloy formation were evident from magnetic investigations. Upon annealing to temperatures up to 380 °C, we found an increase both of the coercive field and of the Co orbital magnetic moment, indicating the formation of a CoPt phase with strongly increased magnetic anisotropy compared to pure Co. At higher temperatures, however, the Co atoms diffuse into a nearby surface region where Pt-rich compounds are formed, as shown by element-specific microscopy.

  11. Theoretical Study of CO Adsorption on Ni(111), Pt(111) and Pt/Ni(111) Surfaces

    Science.gov (United States)

    Cabeza, G. F.; Castellani, N. J.; Légaré, P.

    CO adsorption on a pseudomorphic Pt overlayer supported by Ni(111) has been studied with the use of extended Huckel calculations. Experimental information on the pure Pt(111) and Ni(111) single crystals was employed to select a consistent parameter set for our bimetallic system. This gives a good description of the chemisorption bond changes between the various systems considered in our study. The CO chemisorption energy on Pt/Ni(111) was found to be lowered in comparison with Pt(111) and Ni(111), in good agreement with experimental data on Pt-rich Pt-Ni surface alloys. This observation could be justified by the electronic changes of the Pt states (valence band broadening and decreasing density at the Fermi level). Indeed, they induce, in comparison with the pure substrates, a repulsion between Pt and CO although the 2π* population of the chemisorbed molecule increases. This points to the necessity of going beyond arguments based on an analysis of the 5σ donation and 2π* backdonation for a complete description of the chemisorption bond.

  12. Calculated orientation dependence of surface segregations in Pt50Ni50

    DEFF Research Database (Denmark)

    Abrikosov, I. A.; Ruban, Andrei; Skriver, Hans Lomholt

    1994-01-01

    We present local-density calculations of surface segregation profiles in a random Pt50Ni50 alloy. We find that the concentration profiles of the three low-index surfaces oscillate and that the two most closely packed surfaces, i.e., (111) and (100), are enriched by Pt while Ni is found to segrega...

  13. On the differences in the reaction mechanism for CO and CO/H{sub 2} electrooxidation on PtRu and PtSn alloy electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Gasteiger, H.A. [Univ. Ulm (Germany). Abteilung Oberflaechenchemie und Katalyse; Markovic, N.M.; Ross, P.N. Jr. [Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Electrooxidation kinetics of mixtures of carbon monoxide and hydrogen were studied on well-characterized surfaces of Pt and alloys of PtRu and PtSn in 0.5 M H{sub 2}SO{sub 4} at room temperature and 60 C. The alloy electrode surfaces were prepared in UHV by sputter/anneal cycles and their surface compositions were determined via low energy ion scattering. Subsequently, the electrodes were transferred contamination-free from UHV into a rotating disk electrode (RDE) configuration in a conventional electrochemical cell and their activity was measured both by CO stripping voltammetry and under the continuous flow of CO and CO/H{sub 2} gas mixtures in RDE-experiments. The overpotential for the continuous oxidation of pure CO on PtSn electrodes with a Sn surface composition of x{sub Sn,s} {approximately} 0.2 is significantly smaller than on PtRu alloys (x{sub Ru,s} {approximately} 0.5) and on pure Pt. The reaction order with respect to solution phase CO is negative on PtRu alloys due to the competition between OH{sub ads} nucleation and CO adsorption on Ru surface atoms. Owing to the lack of CO adsorption on OH{sub ads}-providing Sn surface atoms, the reaction order with respect to CO is positive on PtSn electrodes. Therefore, the activity enhancement of PtSn electrodes versus PtRu and Pt electrodes is most pronounced in pure CO and decreases with the CO concentration in CO/N{sub 2} and CO/H{sub 2} mixtures.

  14. Nanocrystalline Fe-Pt alloys. Phase transformations, structure and magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Lyubina, J.V.

    2006-12-21

    This work has been devoted to the study of phase transformations involving chemical ordering and magnetic properties evolution in bulk Fe-Pt alloys composed of nanometersized grains. Nanocrystalline Fe{sub 100-x}Pt{sub x} (x=40-60) alloys have been prepared by mechanical ball milling of elemental Fe and Pt powders at liquid nitrogen temperature. The as-milled Fe-Pt alloys consist of {proportional_to} 100 {mu}m sized particles constituted by randomly oriented grains having an average size in the range of 10-40 nm. Depending on the milling time, three major microstructure types have been obtained: samples with a multilayer-type structure of Fe and Pt with a thickness of 20-300 nm and a very thin (several nanometers) A1 layer at their interfaces (2 h milled), an intermediate structure, consisting of finer lamellae of Fe and Pt (below approximately 100 nm) with the A1 layer thickness reaching several tens of nanometers (4 h milled) and alloys containing a homogeneous A1 phase (7 h milled). Subsequent heat treatment at elevated temperatures is required for the formation of the L1{sub 0} FePt phase. The ordering develops via so-called combined solid state reactions. It is accompanied by grain growth and thermally assisted removal of defects introduced by milling and proceeds rapidly at moderate temperatures by nucleation and growth of the ordered phases with a high degree of the long-range order. In a two-particle interaction model elaborated in the present work, the existence of hysteresis in recoil loops has been shown to arise from insufficient coupling between the low- and the high-anisotropy particles. The model reveals the main features of magnetisation reversal processes observed experimentally in exchange-coupled systems. Neutron diffraction has been used for the investigation of the magnetic structure of ordered and partially ordered nanocrystalline Fe-Pt alloys. (orig.)

  15. Electrochemical quartz crystal microbalance study of the electrodeposition of Co, Pt and Pt-Co alloy

    Energy Technology Data Exchange (ETDEWEB)

    Martin, A.J.; Chaparro, A.M. [CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Daza, L. [CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Instituto de Catalisis y Petroleoquimica (CSIC), C/Marie Curie 2, Campus Cantoblanco, 28049 Madrid (Spain)

    2007-06-10

    The electrochemical deposition of Co, Pt and Pt-Co alloy are studied with the electrochemical quartz crystal microbalance (EQCM) on a gold substrate. Co is deposited from acidic sulphate bath containing boric acid. Different processes are identified in this bath. Electrodeposition of Co on Au substrate is observed at potentials above redox potential, underpotential deposition, most probably due to formation of a Co-Au alloy. At more cathodic potentials, below -0.5 V, metallic Co is formed. The film is completely dissolved at positive potentials during the anodic scan, probably mediated by Co(OH){sub 2}. The electrodeposition of platinum from acidic PtCl{sub 6}{sup 2-} bath occurs below the thermodynamic potential (0.74 V) with almost 100% efficiency. At potentials negative from 0.0 V the efficiency decreases due to parallel water reduction. The codeposition of Co and Pt is also studied in acidic bath. Here, the decrease of pH due to water reduction on Pt deposits gives rise to precipitation of Co(OH){sub 2}, together with the deposition of metallic Pt and Co. The films contain as major component the Pt{sub 3}Co alloy. (author)

  16. Electrochemical quartz crystal microbalance study of the electrodeposition of Co, Pt and Pt-Co alloy

    Science.gov (United States)

    Martín, A. J.; Chaparro, A. M.; Daza, L.

    The electrochemical deposition of Co, Pt and Pt-Co alloy are studied with the electrochemical quartz crystal microbalance (EQCM) on a gold substrate. Co is deposited from acidic sulphate bath containing boric acid. Different processes are identified in this bath. Electrodeposition of Co on Au substrate is observed at potentials above redox potential, underpotential deposition, most probably due to formation of a Co-Au alloy. At more cathodic potentials, below -0.5 V, metallic Co is formed. The film is completely dissolved at positive potentials during the anodic scan, probably mediated by Co(OH) 2. The electrodeposition of platinum from acidic PtCl 6 2- bath occurs below the thermodynamic potential (0.74 V) with almost 100% efficiency. At potentials negative from 0.0 V the efficiency decreases due to parallel water reduction. The codeposition of Co and Pt is also studied in acidic bath. Here, the decrease of pH due to water reduction on Pt deposits gives rise to precipitation of Co(OH) 2, together with the deposition of metallic Pt and Co. The films contain as major component the Pt 3Co alloy.

  17. Quantitative Prediction of Surface Segregation in Bimetallic Pt-MAlloy Nanoparticles (M=Ni, Re, Mo)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guofeng; Van Hove, Michel A.; Ross, Phil N.; Baskes,Michael I.

    2005-06-20

    This review addresses the issue of surface segregation inbimetallic alloy nanoparticles, which are relevant to heterogeneouscatalysis, in particular for electro-catalysts of fuel cells. We describeand discuss a theoretical approach to predicting surface segregation insuch nanoparticles by using the Modified Embedded Atom Method and MonteCarlo simulations. In this manner it is possible to systematicallyexplore the behavior of such nanoparticles as a function of componentmetals, composition, and particle size, among other variables. We choseto compare Pt75Ni25, Pt75Re25, and Pt80Mo20 alloys as example systems forthis discussion, due to the importance of Pt in catalytic processes andits high-cost. It is assumed that the equilibrium nanoparticles of thesealloys have a cubo-octahedral shape, the face-centered cubic lattice, andsizes ranging from 2.5 nm to 5.0 nm. By investigating the segregation ofPt atoms to the surfaces of the nanoparticles, we draw the followingconclusions from our simulations at T= 600 K. (1) Pt75Ni25 nanoparticlesform a surface-sandwich structure in which the Pt atoms are stronglyenriched in the outermost and third layers while the Ni atoms areenriched in the second layer. In particular, a nearly pure Pt outermostsurface layer can be achieved in those nanoparticles. (2) EquilibriumPt75Re25 nanoparticles adopt a core-shell structure: a nearly pure Ptshell surrounding a more uniform Pt-Re core. (3) In Pt80Mo20nanoparticles, the facets are fully occupied by Pt atoms, the Mo atomsonly appear at the edges and vertices, and the Pt and Mo atoms arrangethemselves in an alternating sequence along the edges and vertices. Oursimulations quantitatively agree with previous experimental andtheoretical results for the extended surfaces of Pt-Ni, Pt-Re, and Pt-Moalloys. We further discuss the reasons for the different types of surfacesegregation found in the different alloys, and some of theirimplications.

  18. Tuning the Activity of Pt(111) for Oxygen Electroreduction by Subsurface Alloying

    DEFF Research Database (Denmark)

    Stephens, Ifan; Bondarenko, A.S.; Perez-Alonso, F.J.

    2011-01-01

    To enable the development of low temperature fuel cells, significant improvements are required to the efficiency of the Pt electrocatalysts at the cathode, where oxygen reduction takes place. Herein, we study the effect of subsurface solute metals on the reactivity of Pt, using a Cu/Pt(111) near......-surface alloy. Our investigations incorporate electrochemical measurements, ultrahigh vacuum experiments, and density functional theory. Changes to the OH binding energy, ΔEOH, were monitored in situ and adjusted continuously through the subsurface Cu coverage. The incorporation of submonolayer quantities of Cu...

  19. Engineering the Activity and Stability of Pt-Alloy Cathode Fuel-Cell Electrocatalysts by Tuning the Pt-Pt Distance

    DEFF Research Database (Denmark)

    Escribano, Maria Escudero; Malacrida, Paolo; Vej-Hansen, Ulrik Grønbjerg

    2014-01-01

    with a thickness of few Pt layers is formed. Accordingly, the effect of alloying Pt is to impose strain onto the Pt overlayer [3,4]. It is likely that this strain would be relaxed by defects [6]. Moreover, the activity of the Pt5Ln catalysts vs. the Pt-Pt distance shows a volcano relationship (Fig. A) [5]. Pt5Ln......One of the main obstacles to the commercialisation of low-temperature fuel cells is the slow kinetics of the oxygen reduction reaction (ORR). In order to decrease the ORR overpotential and reduce the Pt loading we need to develop more active and stable electrocatalysts. A fruitful strategy...... for enhancing the cathode activity is to alloy Pt with transition metals [1-2]. However, alloys of Pt and late transition metals are typically unstable under fuel-cell conditions. Herein, we present experimental and theoretical studies showing the trends in activity and stability of novel cathode catalysts...

  20. Ti-Pt Alloys form mechanical milling

    CSIR Research Space (South Africa)

    Nxumalo, S

    2009-12-01

    Full Text Available orthorhombic structure at a temperature of approximately 1000oC. The martensite phase results in shape memory effect being observed in this alloy at this temperature. Other alloys such as TiNi and TiPd have also been investigated for the martensitic...

  1. Nanopatterned CoPt alloys with perpendicular magnetic anisotropy

    Science.gov (United States)

    Makarov, D.; Bermúdez-Ureña, E.; Schmidt, O. G.; Liscio, F.; Maret, M.; Brombacher, C.; Schulze, S.; Hietschold, M.; Albrecht, M.

    2008-10-01

    CoPt alloy films with perpendicular magnetic anisotropy were grown on SiO2 nanoparticle arrays with particle sizes as small as 10 nm. In order to induce perpendicular magnetic anisotropy in the CoPt film, a MgO seed layer was sputter deposited. Despite the fact that neighboring CoPt film caps are interconnected, individual caps appear as single domain and for most of them their magnetization orientation can be reversed individually. This behavior might be caused by domain wall nucleation and pinning preferentially at the rim of each cap. Thus, arrays of magnetic caps with defined pinning sites can be considered as a percolated perpendicular medium.

  2. Fabrication of Supported AuPt Alloy Nanocrystals with Enhanced Electrocatalytic Activity for Formic Acid Oxidation through Conversion Chemistry of Layer-Deposited Pt(2+) on Au Nanocrystals.

    Science.gov (United States)

    Kim, Seong Hyeon; Jeong, Hwakyeung; Kim, Jongwon; Lee, In Su

    2015-10-07

    The exploitation of nanoconfined conversion of Au- and Pt-containing binary nanocrystals for developing a controllable synthesis of surfactant-free AuPt nanocrystals with enhanced formic acid oxidation (FAO) activity is reported, which can be stably and evenly immobilized on various support materials to diversify and optimize their electrocatalytic performance. In this study, an atomic layer of Pt(2+) species is discovered to be spontaneously deposited in situ on the Au nanocrystal generated from a reverse-microemulsion solution. The resulting Au/Pt(2+) nanocrystal thermally transforms into a reduced AuPt alloy nanocrystal during the subsequent solid-state conversion process within the SiO2 nanosphere. The alloy nanocrystals can be isolated from SiO2 in a surfactant-free form and then dispersedly loaded on the carbon sphere surface, allowing for the production of a supported electrocatalyst that exhibits much higher FAO activity than commercial Pt/C catalysts. Furthermore, by involving Fe3O4 nanocrystals in the conversion process, the AuPt alloy nanocrystals can be grown on the oxide surface, improving the durability of supported metal catalysts, and then uniformly loaded on a reduced graphene oxide (RGO) layer with high electroconductivity. This produces electrocatalytic AuPt/Fe3O4/RGO nanocomposites whose catalyst-oxide-graphene triple-junction structure provides improved electrocatalytic properties in terms of both activity and durability in catalyzing FAO. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Surface Structures of Cubo-octahedral Pt-Mo Catalyst Nanoparticles from Monte Carlo Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guofeng; Van Hove, M.A.; Ross, P.N.; Baskes, M.I.

    2005-03-31

    The surface structures of cubo-octahedral Pt-Mo nanoparticles have been investigated using the Monte Carlo method and modified embedded atom method potentials that we developed for Pt-Mo alloys. The cubo-octahedral Pt-Mo nanoparticles are constructed with disordered fcc configurations, with sizes from 2.5 to 5.0 nm, and with Pt concentrations from 60 to 90 at. percent. The equilibrium Pt-Mo nanoparticle configurations were generated through Monte Carlo simulations allowing both atomic displacements and element exchanges at 600 K. We predict that the Pt atoms weakly segregate to the surfaces of such nanoparticles. The Pt concentrations in the surface are calculated to be 5 to 14 at. percent higher than the Pt concentrations of the nanoparticles. Moreover, the Pt atoms preferentially segregate to the facet sites of the surface, while the Pt and Mo atoms tend to alternate along the edges and vertices of these nanoparticles. We found that decreasing the size or increasing the Pt concentration leads to higher Pt concentrations but fewer Pt-Mo pairs in the Pt-Mo nanoparticle surfaces.

  4. SURFACE MELTING OF ALUMINIUM ALLOYS

    OpenAIRE

    Veit, S.; Albert, D; Mergen, R.

    1987-01-01

    The wear properties of aluminium base alloys are relatively poor. Laser surface melting and alloying has proved successful in many alloy systems as a means of significantly improving the surface properties. The present work describes experiments designed to establish the scope of laser treatment of aluminium alloys. Aluminium does not absorb CO2 laser light as well as other metals which necessitated first a general study of absorption caotings. Aluminium alloys offer fewer opportunities than ...

  5. PtxGd alloy formation on Pt(111): Preparation and structural characterization

    DEFF Research Database (Denmark)

    Ulrikkeholm, Elisabeth Therese; Pedersen, Anders Filsøe; Vej-Hansen, Ulrik Grønbjerg

    2016-01-01

    thick alloy layer. Subsequently the surfaces were characterized using X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED), ion scattering spectroscopy (ISS) and temperature programmed desorption (TPD) of CO. A Pt terminated alloy was observed upon annealing the sample to 600...... (ring operator)C in temperature. The crystal structure of the alloy was investigated using ex-situ X-ray diffraction experiments, which revealed an in-plane compression and a complicated stacking sequence. The crystallites in the crystal are very small, and a high degree of twinning by merohedry...

  6. PtxGd alloy formation on Pt(111): Preparation and structural characterization

    Science.gov (United States)

    Ulrikkeholm, Elisabeth T.; Pedersen, Anders F.; Vej-Hansen, Ulrik G.; Escudero-Escribano, Maria; Stephens, Ifan E. L.; Friebel, Daniel; Mehta, Apurva; Schiøtz, Jakob; Feidenhansl', Robert K.; Nilsson, Anders; Chorkendorff, Ib

    2016-10-01

    PtxGd single crystals have been prepared in ultra high vacuum (UHV). This alloy shows promising catalytic properties for the oxygen reduction reaction. The samples were prepared by using vacuum deposition of a thick layer of Gd on a sputter cleaned Pt(111) single crystal, resulting in a ∼63 nm thick alloy layer. Subsequently the surfaces were characterized using X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED), ion scattering spectroscopy (ISS) and temperature programmed desorption (TPD) of CO. A Pt terminated alloy was observed upon annealing the sample to 600 ∘C. The LEED and synchrotron XRD experiments have shown that a slightly compressed (2 × 2) alloy appear. The alloy film followed the orientation of the Pt(111) substrate half the time, otherwise it was rotated by 30∘. The TPD spectra show a well-defined peak shifted down 200 ∘C in temperature. The crystal structure of the alloy was investigated using ex-situ X-ray diffraction experiments, which revealed an in-plane compression and a complicated stacking sequence. The crystallites in the crystal are very small, and a high degree of twinning by merohedry was observed.

  7. Facile Synthesis of Nanoporous Pt-Y alloy with Enhanced Electrocatalytic Activity and Durability

    Science.gov (United States)

    Cui, Rongjing; Mei, Ling; Han, Guangjie; Chen, Jiyun; Zhang, Genhua; Quan, Ying; Gu, Ning; Zhang, Lei; Fang, Yong; Qian, Bin; Jiang, Xuefan; Han, Zhida

    2017-02-01

    Recently, Pt-Y alloy has displayed an excellent electrocatalytic activity for oxygen reduction reaction (ORR), and is regarded as a promising cathode catalyst for fuel cells. However, the bulk production of nanoscaled Pt-Y alloy with outstanding catalytic performance remains a great challenge. Here, we address the challenge through a simple dealloying method to synthesize nanoporous Pt-Y alloy (NP-PtY) with a typical ligament size of ~5 nm. By combining the intrinsic superior electrocatalytic activity of Pt-Y alloy with the special nanoporous structure, the NP-PtY bimetallic catalyst presents higher activity for ORR and ethanol oxidation reaction, and better electrocatalytic stability than the commercial Pt/C catalyst and nanoporous Pt alloy. The as-made NP-PtY holds great application potential as a promising electrocatalyst in proton exchange membrane fuel cells due to the advantages of facile preparation and excellent catalytic performance.

  8. Engineering the Activity and Stability of Pt-Alloy Cathode Fuel-Cell Electrocatalysts by Tuning the Pt-Pt Distance

    DEFF Research Database (Denmark)

    Escribano, Maria Escudero; Malacrida, Paolo; Vej-Hansen, Ulrik Grønbjerg

    2014-01-01

    based on alloys of Pt and lanthanides. Sputter-cleaned, polycrystalline Pt5Gd shows a five-fold increase in ORR activity [3], relative to Pt at 0.9 V in 0.1 M HClO4. The rest of the Pt5Ln (Ln = lanthanide) tested present at least a 3-fold enhancement in activity [4,5]. In all cases, a Pt overlayer...

  9. Gamma Radiolytic Formation of Alloyed Ag-Pt Nanocolloids

    Directory of Open Access Journals (Sweden)

    M. K. Temgire

    2011-01-01

    Full Text Available Colloidal dispersions of Ag-Pt composite nanoparticles were prepared by gamma radiolysis technique in the presence of nonionic surfactant Brij'97. Simultaneous as well as sequential reduction methods were employed in order to study the structural formation of Ag-Pt bimetallic clusters. Similar shape and trend was observed in optical spectra for both methods. Radiolysis yielded nearly spherical Ag-Pt bimetallic clusters by use of AgNO3 instead of AgClO4. The disappearance of the silver resonance and the simultaneous growth of the 260 nm resonance are independent of cluster structure and degree of alloying. To understand formation of Ag-Pt aggregate, the optical studies were also done as a function of amount of dose absorbed, concentration of surfactant, that is, Brij'97. The shape of the absorption spectrum did not change with increase in gamma radiation dose. TEM analysis exhibited fine dispersions of Ag-Pt clusters surrounded by a mantle when capped with Brij'97. The particle size obtained was in the range of 5–9 nm. On the basis of optical, XRD, and TEM analysis, alloy formation is discussed.

  10. Characterization and reactivity of Pd Pt bimetallic supported catalysts obtained by laser vaporization of bulk alloy

    Science.gov (United States)

    Rousset, J. L.; Cadete Santos Aires, F. J.; Bornette, F.; Cattenot, M.; Pellarin, M.; Stievano, L.; Renouprez, A. J.

    2000-09-01

    Bimetallic Pd-Pt clusters produced by laser vaporization of bulk alloy have been deposited on high surface alumina. Energy dispersive X-ray (EDX) analysis and transmission electron microscopy (TEM) show that they have a perfectly well-defined stoichiometry and a narrow range of size. Therefore, they constitute ideal systems to investigate alloying effects towards reactivity. Pd-Pt alloys are already known for their applications in the hydrogenation of unsaturated hydrocarbons, especially aromatics, because this system is highly resistant to sulfur and nitrogen poisoning. In this context, the catalytic properties of this system have been investigated in the hydrogenation of tetralin in the presence of hydrogen sulfide. Preliminary results show that this model catalyst is more sulfur-resistant than each of the pure supported metals prepared by chemical methods.

  11. Pt Monolayer Shell on Nitrided Alloy Core—A Path to Highly Stable Oxygen Reduction Catalyst

    Directory of Open Access Journals (Sweden)

    Jue Hu

    2015-07-01

    Full Text Available The inadequate activity and stability of Pt as a cathode catalyst under the severe operation conditions are the critical problems facing the application of the proton exchange membrane fuel cell (PEMFC. Here we report on a novel route to synthesize highly active and stable oxygen reduction catalysts by depositing Pt monolayer on a nitrided alloy core. The prepared PtMLPdNiN/C catalyst retains 89% of the initial electrochemical surface area after 50,000 cycles between potentials 0.6 and 1.0 V. By correlating electron energy-loss spectroscopy and X-ray absorption spectroscopy analyses with electrochemical measurements, we found that the significant improvement of stability of the PtMLPdNiN/C catalyst is caused by nitrogen doping while reducing the total precious metal loading.

  12. Pd-Pt random alloy nanocubes with tunable compositions and their enhanced electrocatalytic activities.

    Science.gov (United States)

    Yuan, Qiang; Zhou, Zhiyou; Zhuang, Jing; Wang, Xun

    2010-03-07

    Monodisperse, highly-selective sub-10 nm Pd-Pt random alloy nanocubes have been successfully synthesized in aqueous solution, and the electrocatalytic activity of these Pd-Pt alloys towards formic acid oxidation was investigated and compared with the activity of Pd sub-10 nm nanocubes, and the commercial Pd and Pt black.

  13. Site preference of NH3-adsorption on Co, Pt and CoPt surfaces: the role of charge transfer, magnetism and strain.

    Science.gov (United States)

    Bhattacharjee, S; Gupta, K; Jung, N; Yoo, S J; Waghmare, U V; Lee, S C

    2015-04-14

    Oxidation of Co at the surface poses a major problem in the cyclable use of CoPt, a cost-effective catalyst for proton exchange membrane fuel cells. This can be alleviated by attaching a ligand selectively to Co-sites to stop its oxidation without compromising the catalytic activity. Here, we present a comparative analysis of adsorption of NH3 on the (0001) surface of Co in the HCP structure and (111) surfaces of Pt and CoPt alloy in the FCC structure, using first-principles density functional theoretical calculations. While NH3 binds more strongly with the Pt surface than with the Co surface, we find that its binding with the Co atom is stronger than that with the Pt atom on the surface of the CoPt alloy. Our analysis of the charge density and electronic structure shows how this originates from (a) the electron transfer from the minority spin d-band of Co to Pt, and (b) shift in the energy of d-bands and the magnetic moments of Co atoms on the surface of the CoPt alloy relative to those on the (0001) surface of Co. Hybridization of the d-states of Co in CoPt with pz states of N in NH3 used to stop Co oxidation also results in improving the charge transfer from Co to Pt that is relevant to the catalytic activity of CoPt. We finally present the analysis of how the interaction of NH3 with the CoPt surface can be tuned with strain.

  14. Alternative alloys for platinum jewelry? New structures in Pt-Hf and Pt-Mo

    Science.gov (United States)

    Gilmartin, Erin; Corbitt, Jacqueline; Hart, Gus

    2008-10-01

    The only known intermetallic structure with an 8:1 stoichiometry is that of Pt8Ti. It is intriguing that an ordered compound would occur at such low concentrations of the minority atom. But this structure occurs in about a dozen binary intermetallic systems. The formation of an ordered structure can significantly enhance the performance of the material, particularly the hardness. Pt- and Pd-rich ordered structures have been experimentally studied in the systems Pt/Pd-X where X is Ti, V, Cr, Zr, Nb, M, Hf, Ta, and W. We took a broader look at 80 Pt/Pd rich alloys to find new candidates for the 8:1 structure and have found about 20. In order to verify our predictions, we used the cluster expansion to find the stable structures. We first applied the cluster expansion to Pt-Hf and Pt-Mo because these two candidates are the most likely to form the 8:1 structure. These new candidates can have applications in the jewelry and catalysis industries.

  15. Synthesis of carbon-supported PtRh random alloy nanoparticles using electron beam irradiation reduction method

    Science.gov (United States)

    Matsuura, Yoshiyuki; Seino, Satoshi; Okazaki, Tomohisa; Akita, Tomoki; Nakagawa, Takashi; Yamamoto, Takao A.

    2016-05-01

    Bimetallic nanoparticle catalysts of PtRh supported on carbon were synthesized using an electron beam irradiation reduction method. The PtRh nanoparticle catalysts were composed of particles 2-3 nm in size, which were well dispersed on the surface of the carbon support nanoparticles. Analyses of X-ray diffraction and scanning transmission electron microscopy-energy-dispersive X-ray spectroscopy revealed that the PtRh nanoparticles have a randomly alloyed structure. The lattice constant of the PtRh nanoparticles showed good correlation with Vegard's law. These results are explained by the radiochemical formation process of the PtRh nanoparticles. Catalytic activities of PtRh/C nanoparticles for ethanol oxidation reaction were found to be higher than those obtained with Pt/C.

  16. Surface termination of CePt5/Pt (111 ): The key to chemical inertness

    Science.gov (United States)

    Praetorius, C.; Zinner, M.; Held, G.; Fauth, K.

    2015-11-01

    The surface termination of CePt5/Pt (111 ) is determined experimentally by LEED-IV. In accordance with recent theoretical predictions, a dense Pt terminated surface is being found. Whereas the CePt5 volume lattice comprises Pt kagome layers, additional Pt atoms occupy the associated hole positions at the surface. This finding provides a natural explanation for the remarkable inertness of the CePt5 intermetallic. Implications of the structural relaxations determined by LEED-IV analysis are discussed with regard to observations by scanning tunneling microscopy and electron spectroscopies.

  17. Electrodeposition and electrocatalytic activity of Pt and Pt-alloy nanoparticles and thin films on highly oriented pyrolytic graphite (HOPG)

    Science.gov (United States)

    Lu, Guojin

    Pt and Pt-based alloy catalysts were synthesized by electrodeposition on HOPG. The nucleation and growth, morphology, composition and crystal structure, and electrocatalytic activity (towards relevant reactions in the frame of PEMFCs and DMFCs) of these model electrodes were systematically investigated. The presence of chlorides inhibits the Pt reduction processes. There is a transition from progressive to instantaneous nucleation with increasing overpotential for the deposition from 1 mM H2PtCl6 electrolytes. The possibility of instantaneous nucleation at large overpotential by using electrolytes with large chloride concentration is advantageous for the growth of small, well dispersed nanoparticles. The electrochemical data were confirmed by AFM and SEM imaging studies. Relatively narrow size distributed nanoparticles can be obtained from the current system. While MOR activity decreases with decreasing particle size, the HER and HOR activity of deposited Pt particles increases with decreasing deposition period. The ORR activity first increases then decreases with increasing deposition time. Interactions between Pt and Ru, or Ni or Co are observed and they form solid solution as verified by XRD. Underpotential deposition occurs for Pt-Ni or Pt-Co co-electrodeposition. Pt-Ru deposition can be described as progressive nucleation at low overpotential and instantaneous nucleation at high overpotentials. Through direct morphological observations, the Pt-Ni or Pt-Co nucleation can be approximately described as progressive. Pt-Ru deposits are superior to Pt towards MOR. The optimum Ru content is about 50 at.%. Pt-Ni and Pt-Co deposits are more active than Pt for ORR. The optimum content is about 30 at.% Ni or 50 at.% Co. Dealloying of Pt-Ru and Pt-Ni or Pt-Co electrodeposit is observed after electrochemical characterization. The extent of dealloying increases with the content of the alloying element.

  18. Fabrication of Highly Stable and Efficient PtCu Alloy Nanoparticles on Highly Porous Carbon for Direct Methanol Fuel Cells.

    Science.gov (United States)

    Khan, Inayat Ali; Qian, Yuhong; Badshah, Amin; Zhao, Dan; Nadeem, Muhammad Arif

    2016-08-17

    Boosting the durability of Pt nanoparticles by controlling the composition and morphology is extremely important for fuel cells commercialization. We deposit the Pt-Cu alloy nanoparticles over high surface area carbon in different metallic molar ratios and optimize the conditions to achieve desired material. The novel bimetallic electro-catalyst {Pt-Cu/PC-950 (15:15%)} offers exceptional electrocatalytic activity when tested for both oxygen reduction reaction and methanol oxidation reactions. A high mass activity of 0.043 mA/μgPt (based on Pt mass) is recorded for ORR. An outstanding longevity of this electro-catalyst is noticed when compared to 20 wt % Pt loaded either on PC-950 or commercial carbon. The high surface area carbon support offers enhanced activity and prevents the nanoparticles from agglomeration, migration, and dissolution as evident by TEM analysis.

  19. Ab-initio study of the coadsorption of Li and H on Pt(001), Pt(110) and Pt(111) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Saad, Farida [Laboratoire de Physique et Chimie Quantique, Faculte des Sciences, Universite Mouloud Mammeri, 15000 Tizi-Ouzou (Algeria); Zemirli, Mourad, E-mail: zemirlimourad@mail.ummto.dz [Laboratoire de Physique et Chimie Quantique, Faculte des Sciences, Universite Mouloud Mammeri, 15000 Tizi-Ouzou (Algeria); Benakki, Mouloud; Bouarab, Said [Laboratoire de Physique et Chimie Quantique, Faculte des Sciences, Universite Mouloud Mammeri, 15000 Tizi-Ouzou (Algeria)

    2012-02-15

    The coadsorption of Li and H atoms on Pt(001), Pt(110) and Pt(111) surfaces is studied using density functional theory with generalised gradient approximation. In all calculations Li, H and the two topmost layers of the metal were allowed to relax. At coverage of 0.25 mono-layer in a p(2 Multiplication-Sign 2) unit cell, lithium adsorption at the hollow site for the three surfaces is favoured over top and bridge sites. The most favoured adsorption sites for H atom on the Pt(001) and Pt(110) surfaces are the top and bridge sites, while on Pt(111) surface the fcc site appears to be slightly favoured over the hcp site. The coadsorption of Li and atomic hydrogen shows that the interaction between the two adsorbates is stabilising when they are far from each other. The analysis of Li, H and Pt local density of states shows that Li strongly interacts with the Pt surfaces.

  20. Oxide Scales Formed on NiTi and NiPtTi Shape Memory Alloys

    Science.gov (United States)

    Smialek, James L.; Garg, Anita; Rogers, Richard B.; Noebe, Ronald D.

    2011-01-01

    Ni-49Ti and Ni-30Pt-50Ti (at.%) shape memory alloys were oxidized isothermally in air over the temperature range of 500 to 900 C. The microstructure, composition, and phase content of the scales were studied by SEM, EDS, XRD, and metallography. Extensive plan view SEM/EDS identified various features of intact or spalled scale surfaces. The outer surface of the scale was a relatively pure TiO2 rutile structure, typified by a distinct highly striated and faceted crystal morphology. Crystal size increased significantly with temperature. Spalled regions exhibited some porosity and less distinct features. More detailed information was obtained by correlation of SEM/EDS studies of 700 C/100 hr cross-sections with XRD analyses of serial or taper-polishing of plan surfaces. Overall, multiple layers exhibited graded mixtures of NiO, TiO2, NiTiO3, Ni(Ti) or Pt(Ni,Ti) metal dispersoids, Ni3Ti or Pt3Ti depletion zones, and substrate, in that order. The NiTi alloy contained a 3 at.% Fe impurity that appeared in embedded localized Fe-Ti-rich oxides, while the NiPtTi alloy contained a 2 v/o dispersion of TiC that appeared in lower layers. The oxidation kinetics of both alloys (in a previous report) indicated parabolic growth and an activation energy (250 kJ/mole) near those reported in other Ti and NiTi studies. This is generally consistent with TiO2 existing as the primary scale constituent, as described here.

  1. Synthesis and Electrocatalytic Performance of Multi-Component Nanoporous PtRuCuW Alloy for Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Xiaoting Chen

    2015-06-01

    Full Text Available We have prepared a multi-component nanoporous PtRuCuW (np-PtRuCuW electrocatalyst via a combined chemical dealloying and mechanical alloying process. The X-ray diffraction (XRD, transmission electron microscopy (TEM and electrochemical measurements have been applied to characterize the microstructure and electrocatalytic activities of the np-PtRuCuW. The np-PtRuCuW catalyst has a unique three-dimensional bi-continuous ligament structure and the length scale is 2.0 ± 0.3 nm. The np-PtRuCuW catalyst shows a relatively high level of activity normalized to mass (467.1 mA mgPt−1 and electrochemically active surface area (1.8 mA cm−2 compared to the state-of-the-art commercial PtC and PtRu catalyst at anode. Although the CO stripping peak of np-PtRuCuW 0.47 V (vs. saturated calomel electrode, SCE is more positive than PtRu, there is a 200 mV negative shift compared to PtC (0.67 V vs. SCE. In addition, the half-wave potential and specific activity towards oxygen reduction of np-PtRuCuW are 0.877 V (vs. reversible hydrogen electrode, RHE and 0.26 mA cm−2, indicating a great enhancement towards oxygen reduction than the commercial PtC.

  2. Studies of surface processes of electrocatalytic reduction of CO2 on Pt(210), Pt(310) and Pt(510)

    Institute of Scientific and Technical Information of China (English)

    FAN; ChunJie; FAN; YouJun; ZHEN; ChunHua; ZHENG; QingWei; SUN; ShiGang

    2007-01-01

    Surface processes of CO2 reduction on Pt(210), Pt(310), and Pt(510) electrodes were studied by cyclic voltammetry. Different surface structures of these platinum single crystal electrodes were obtained by various treatment conditions. The experimental results illustrated that the electrocatalytic activity of Pt single crystal electrodes towards CO2 reduction is decreased in an order of Pt(210)>Pt(310)>Pt(510), i.e., with the decrease of (110) step density on well-defined surfaces. When the surfaces were reconstructed due to oxygen adsorption, the catalytic activity of all the three electrodes has been enhanced to a certain extent. Although the activity order remains unchanged, the electrocatalytic activity has been enhanced more significantly as the density of (110) step sites is more intensive on the Pt single crystal surface. It has revealed that the more open the surface structure is, the more active the Pt single crystal electrode will be, and the easier for the electrode to be transformed into a surface structure that exhibits higher activity under external inductions. However, the relatively ordered surfaces of Pt single crystal electrode are comparatively stable under the same external inductions. The present study has gained knowledge on the interaction between CO2 and Pt single crystal electrode surfaces at a microscopic level, and thrown new insight into understanding the surface processes of electrocatalytic reduction of CO2.

  3. Oxygen reduction reaction on a highly-alloyed Pt-Ni supported carbon electrocatalyst in acid solution

    CSIR Research Space (South Africa)

    Zheng, H

    2010-08-31

    Full Text Available Alloyed electrocatalysts such as PtNi/C[1-2], PtCo/C[3], PtCr/C[4], PtFe/C [5-6], and non-alloyed Pt-TiO2/C were reportedly investigated for methanol tolerance during Oxygen reduction reaction (ORR). The high methanol tolerance...

  4. Analysis of laser alloyed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, D.C.; Augustyniak, W.M.; Buene, L.; Draper, C.W.; Poate, J.M.

    1981-04-01

    Surface alloys of precious metals have many advantages over bulk alloys, the most obvious of which is cost reduction due to the reduced consumption of precious metal. There are several techniques for producing surface alloys. In this paper the laser irradiation technique is presented. The following lasers: CW CO/sub 2/, Q-switched Nd-YAG, frequency double Q-switched Nd-YAG, and pulsed ruby were used to irradiate and melt thin solid films of precious metals on metal substrates. This causes the surfaces to melt to a depth of approximately 10,000A. Alloying then takes place in the liquid phase where most metals are miscible. The high quench rates obtainable by this method of melting can result in the forming of metastable alloys. This melting and regrowth process is well understood and has been discussed in the literature over the last few years. This paper deals with two binary alloy systems, Au-Ni and Pd-Ti. Surface alloys of Au-Ni with a wide range of concentrations have been produced by laser irradiation of thin Au films on Ni. These films have been analyzed using Rutherford backscattering (RBS) and channeling. Many thin film metals other than Au have also been successfully alloyed using these methods. An example of a potential application is the laser surface alloying of Pd to Ti for corrosion passivation.

  5. Structural stability of alloyed and core-shell Cu-Pt bimetallic nanoparticles

    Science.gov (United States)

    Peng, Hongcheng; Qi, Weihong; Ji, Wenhai; Li, Siqi; He, Jieting

    2017-03-01

    Combining the bond-energy model and Debye theory, we generalized the Gibbs free energy model for Cu-Pt nanoparticles (NPs) by introducing a shape factor considering the shape effect. We studied the structural stability of the Cu-Pt NPs and plotted the corresponding composition-, shape- and size-dependent phase diagrams. It is shown that the Cu-Pt NPs can form alloyed structure in a large size range. But when the particle size continues to decrease, the NPs will form the core-shell structure due to surface segregation. Meanwhile, the composition segregation could make the atoms of less-content element to gather in the surface. The predictions from the present calculated phase diagrams are consistent with a series of experimental results in literatures. To further prove the efficiency of the phase diagrams, we synthesized the alloyed Cu-Pt NPs of 4-15 nm by a co-reduction method, which is in agreement with the predictions from the phase diagrams.

  6. A partial phase diagram of Pt-rich Pt-Mn alloys

    CERN Document Server

    Sembiring, T; Ohshima, K I; Ota, K; Shishido, T

    2002-01-01

    We have performed the X-ray and electron diffraction studies to reconstruct a partial phase diagram of Pt-rich Pt-Mn alloys in the composition range of 10 to 35 at.% Mn. Electrical resistivity measurement was also used for determining the order-disorder transition temperature in Pt-14.2 at.% Mn alloy. The phase boundary between Cu sub 3 Au type and ABC sub 6 type ordered structures is established, in which the latter has been found recently by the present [J.Phys. Soc. Jpn. 71 (2002) 681]. In the ABC sub 6 type ordered phase, superlattice reflections both at 1/2 1/2 1/2 and its equivalent position (L-point) and at 100, 110 and their equivalent positions (X-point) appear in the composition range from 12.5 to 14.4 at.% Mn below 682degC. In the Cu sub 3 Au type ordered phase, diffuse maxima at L-point appear in the composition range from 15.9 to 19.7 at.% Mn in addition to the superlattice reflections at X-point. The Cu sub 3 Au type ordered structure is found to be stable in the composition range from 19.7 to 3...

  7. Facile synthesis of Pd-Pt alloy nanocages and their enhanced performance for preferential oxidation of CO in excess hydrogen.

    Science.gov (United States)

    Zhang, Hui; Jin, Mingshang; Liu, Hongyang; Wang, Jinguo; Kim, Moon J; Yang, Deren; Xie, Zhaoxiong; Liu, Jingyue; Xia, Younan

    2011-10-25

    This article describes a new method for the facile synthesis of Pd-Pt alloy nanocages with hollow interiors and porous walls by using Pd nanocubes as sacrificial templates. Differing from our previous work (Zhang, H.; Jin, M. S.; Wang, J. G.; Li, W. Y.; Camargo, P. H. C.; Kim, M. J.; Yang, D. R.; Xie, Z. X.; Xia, Y. Synthesis of Pd-Pt Bimetallic Nanocrystals with a Concave Structure through a Bromide-Induced Galvanic Replacement Reaction. J. Am. Chem. Soc.2011, 133, 6078-6079), we complemented the galvanic replacement (between Pd nanocubes and PtCl(4)(2-)) with a coreduction process (for PdCl(4)(2-) from the galvanic reaction and PtCl(4)(2-) from the feeding) to generate Pd-Pt alloy nanocages in one step. We found that the rate of galvanic replacement (as determined by the concentrations of Br(-) and PtCl(4)(2-) and temperature) and the rates of coreduction (as determined by the type of reductant and temperature) played important roles in controlling the morphology of resultant Pd-Pt alloy nanocages. The Pd-Pt nanocages exhibited both enhanced activity and selectivity for the preferential oxidation (PROX) of CO in excess hydrogen than those of Pd nanocubes and the commercial Pt/C thanks to the alloy composition and hollow structure. In addition, as the sizes of the Pd-Pt nanocages decreased, they exhibited higher CO conversion rates and lower maximum conversion temperatures due to the increase in specific surface area.

  8. Microwave-assisted synthesis and characterization of bimetallic PtRu alloy nanoparticles supported on carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Rahsepar, Mansour, E-mail: rahsepar@shirazu.ac.ir [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Zand Boulevard, Shiraz, 7134851154 (Iran, Islamic Republic of); Kim, Hasuck, E-mail: hasuckim@snu.ac.kr [Department of Chemistry, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151-747 (Korea, Republic of); Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 711-873 (Korea, Republic of)

    2015-11-15

    Multiwalled carbon nanotube (MWCNT) supported PtRu nanoparticles were synthesized by using a microwave-assisted improved impregnation technique. X-ray diffraction, transmission electron microscopy and X-ray photo electron spectroscopy were used to characterize the prepared PtRu/MWCNT nanoparticles. The PtRu nanoparticles with a satisfactory dispersion were formed on the external surface of MWCNTs. The CO stripping experiment was performed to evaluate the poisoning resistance of the prepared PtRu/MWCNT nanoparticles. Results of electrochemical measurements indicate that the prepared PtRu/MWCNTs shows an enhanced performance toward CO poisoning. The results of characterization revealed that microwave-assisted improved impregnation technique have a high yield of alloy phase formation and could be effectively used as a simple, quick and efficient technique for preparation of bimetallic PtRu/MWCNT nanoparticles. - Highlights: • Highly dispersed PtRu/MWCNTs were formed without use of any stabilizing agent. • Microwave irradiation enhances the uniform dispersion of the PtRu nanoparticles. • Microwave-assisted improved impregnation have a high yield of alloy phase formation. • The prepared PtRu/MWCNTs shows an enhanced performance toward CO poisoning.

  9. Alloys of Pt and Rare Earths for the Oxygen Electroreduction Reaction

    DEFF Research Database (Denmark)

    Malacrida, Paolo

    of potential cycling, Y oxidizes due to the dealloying process which is observed in-situ. The adsorbed species can be also probed and correlated to the electrochemical potential. Near the open circuit potential (OCP) conditions the oxygenated species consist, to a good extent, of non-hydrated OH, similar......This thesis presents the development and characterization of a new class of Pt alloys for catalyzing the Oxygen Reduction Reaction (ORR), in perspective of a future substitution of traditional Pt-based catalysts at the cathode of Polymer Electrolyte Membrane Fuel Cells (PEMFCs). Focused......-of-the-art polycrystalline Pt. They maintain at least 90% of this activity after accelerated stability tests (10 000 cycles between 0.6 and 1.0 V vs. the Reversible Hydrogen Electrode (RHE) in 0.1 M HClO4 electrolyte). A combination of AR-XPS and ISS measurements allowed to elucidate the active surface phase and structure...

  10. First-principles study of phase equilibria in Cu-Pt-Rh disordered alloys.

    Science.gov (United States)

    Yuge, Koretaka

    2009-10-14

    Phase stability of Cu-Pt-Rh ternary disordered alloys is examined by a combination of cluster expansion techniques and Monte Carlo statistical simulation based on first-principles calculation. The sign of pseudo-binary ECIs indicates that neighboring Cu and Pt strongly prefer unlike-atom pairs, Pt and Rh weakly prefer unlike-atom pairs, and Cu and Rh atoms prefer like-atom pairs, indicating that the ternary alloy retains the ordering tendency of the constituent binary alloys. The formation energy of a random alloy at T = 1200 K exhibits a negative sign for a wide range of Pt-rich compositions, while at Pt-poor compositions of x≤0.25, the formation energy has a positive value. Calculated affinities for the random alloy show the variety of energetically favored bonds for the alloy: Cu-Pt bonds in both first-and second-nearest neighbor (1-NN and 2-NN) are energetically preferred for all the composition range, the Pt-Rh bond in 1-NN is preferred at Pt-rich compositions, the Pt-Rh in 2-NN and Rh-Cu in 1-NN bonds are unfavored for all compositions, and the Rh-Cu bond in 2-NN is unfavored for Pt-poor compositions. We elucidate that the ordering tendency of 1-NN and 2-NN Cu-Pt, 2-NN Pt-Rh and 1-NN Cu-Rh atoms in constituent binary alloys is retained for the whole composition range of Cu-Pt-Rh ternary alloys, while that of 1-NN Pt-Rh and 2-NN Cu-Rh atoms significantly depends on composition.

  11. Probing the nanoscale structure of the catalytically active overlayer on Pt alloys with rare earths

    DEFF Research Database (Denmark)

    Pedersen, Anders Filsøe; Ulrikkeholm, Elisabeth Therese; Escribano, Maria Escudero

    2016-01-01

    PtxY and PtxGd exhibit exceptionally high activity for oxygen reduction, both in the polycrystalline form and the nanoparticulate form. In order to understand the origin of the enhanced activity of these alloys, we have investigated thin films of these alloys on bulk Pt(111) crystals, i.e. Y/Pt(1...

  12. Structure dependence of Pt surface activated ammonia oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Santen, R A van; Offermans, W K [Schuit Institute of Catalysis, Laboratory of Inorganic Chemistry and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Ricart, J M; Novell-Leruth, G [Department of Chemical Physics and Inorganic Chemistry, University Rovira I Virgili, C/ Marcel.lI Domingo s/n, 43007 Tarragona (Spain); Perez-RamIrez, J [Institute of Chemical Research of Catalonia (ICIQ) and Catalan, Institution for Research and Advanced Studies (ICREA), Avinguda Paisos Catalans 16, 43007, Tarragona (Spain)], E-mail: r.a.v.santen@tue.nl

    2008-06-01

    Computational advances that enable the prediction of the structures and the energies of surface reaction intermediates are providing essential information to the formulation of theories of surface chemical reactivity. In this contribution this is illustrated for the activation of ammonia by coadsorbed oxygen and hydroxyl on the Pt(111), Pt(100), and Pt(211) surfaces.

  13. What Is the Optimum Strain for Pt Alloys for Oxygen Electroreduction?

    DEFF Research Database (Denmark)

    Escribano, Maria Escudero; Malacrida, Paolo; Velazquez-Palenzuela, Amado Andres

    2015-01-01

    In order to make low-temperature fuel cells commercially viable, it is crucial to develop oxygen reduction catalysts based on more active, stable and abundant materials. A fruitful strategy for enhancing the oxygen reduction reaction (ORR) activity is to alloy Pt with transition metals [1]. However......, commercial alloys of Pt and late transition metals such as Ni, Co or Fe are typically unstable under fuel-cell conditions [2]. The very negative enthalpy of formation of alloys of Pt and lanthanides could provide them with greater long term stability than Pt and late transition metals. Herein, we show...

  14. Au-Pt alloy nanoparticles obtained by nanosecond laser irradiation of gold and platinum bulk targets in an ethylene glycol solution

    Science.gov (United States)

    Moniri, Samira; Reza Hantehzadeh, Mohammad; Ghoranneviss, Mahmood; Asadi Asadabad, Mohsen

    2017-07-01

    Au-Pt alloy nanoparticles (NPs) of different compositions ( Au0Pt100 , Au30Pt70 , Au50Pt50 , Au70Pt30 , and Au100Pt0 were obtained using the nanosecond laser ablation of gold and platinum bulk targets in ethylene glycol, followed by mixing highly monodisperse Au and Pt nanocolloids, for the first time. UV-vis absorption spectra of NPs showed that by increasing the Au content in the Au-Pt NPs, the surface plasmon resonance (SPR) peak red-shifted, from 260 to 573nm in a nonlinear way. In addition, the mean crystalline size, crystal structure, d-spacing, and lattice parameters of NPs were estimated from the XRD spectra. Microscopy studies revealed the most NPs have a spherical or near-spherical shape, and the average sizes of Au0Pt100 , Au30Pt70 , Au50Pt50 , Au70Pt30 , and Au100Pt0 NPs were calculated to be 12.50, 14.15, 18.53, 19.29, and 26.38nm, respectively. Also, the chemical identity of the molecules adhering to the NPs surface was considered by Raman and FT-IR spectroscopy techniques. Among different synthesis methods, the demonstrated technique allows easy synthesis of alloy NPs in aqueous media at room temperature with no formation of by-products.

  15. Tuning the surface electronic structure of a Pt3Ti(111) electro catalyst

    Science.gov (United States)

    Paßens, M.; Caciuc, V.; Atodiresei, N.; Moors, M.; Blügel, S.; Waser, R.; Karthäuser, S.

    2016-07-01

    Increasing the efficiency and stability of bimetallic electro catalysts is particularly important for future clean energy technologies. However, the relationship between the surface termination of these alloys and their catalytic activity is poorly understood. Therefore, we report on fundamental UHV-SPM, LEED, and DFT calculations of the Pt3Ti(111) single crystal surface. Using voltage dependent imaging the surface termination of Pt3Ti(111) was studied with atomic resolution. Combining these images with simulated STM maps based on ab initio DFT calculations allowed us to identify the three upper layers of the Pt3Ti(111) single crystal and their influence upon the surface electronic structure. Our results show that small changes in the composition of the second and third atomic layer are of significant influence upon the surface electronic structure of the Pt3Ti electro catalyst. Furthermore, we provide relevant insights into the dependence of the surface termination on the preparation conditions.Increasing the efficiency and stability of bimetallic electro catalysts is particularly important for future clean energy technologies. However, the relationship between the surface termination of these alloys and their catalytic activity is poorly understood. Therefore, we report on fundamental UHV-SPM, LEED, and DFT calculations of the Pt3Ti(111) single crystal surface. Using voltage dependent imaging the surface termination of Pt3Ti(111) was studied with atomic resolution. Combining these images with simulated STM maps based on ab initio DFT calculations allowed us to identify the three upper layers of the Pt3Ti(111) single crystal and their influence upon the surface electronic structure. Our results show that small changes in the composition of the second and third atomic layer are of significant influence upon the surface electronic structure of the Pt3Ti electro catalyst. Furthermore, we provide relevant insights into the dependence of the surface termination on the

  16. Nanoporous bimetallic Pt-Au alloy nanocomposites with superior catalytic activity towards electro-oxidation of methanol and formic acid.

    Science.gov (United States)

    Zhang, Zhonghua; Wang, Yan; Wang, Xiaoguang

    2011-04-01

    We present a facile route to fabricate novel nanoporous bimetallic Pt-Au alloy nanocomposites by dealloying a rapidly solidified Al(75)Pt(15)Au(10) precursor under free corrosion conditions. The microstructure of the precursor and the as-dealloyed sample was characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, and energy dispersive X-ray (EDX) analysis. The Al(75)Pt(15)Au(10) precursor is composed of a single-phase Al(2)(Au,Pt) intermetallic compound, and can be fully dealloyed in a 20 wt.% NaOH or 5 wt.% HCl aqueous solution. The dealloying leads to the formation of the nanoporous Pt(60)Au(40) nanocomposites (np-Pt(60)Au(40) NCs) with an fcc structure. The morphology, size and crystal orientation of grains in the precursor can be conserved in the resultant nanoporous alloy. The np-Pt(60)Au(40) NCs consist of two zones with distinct ligament/channel sizes and compositions. The formation mechanism of these np-Pt(60)Au(40) NCs can be rationalized based upon surface diffusion of more noble elements and spinodal decomposition during dealloying. Electrochemical measurements demonstrate that the np-Pt(60)Au(40) NCs show superior catalytic activity towards the electro-oxidation of methanol and formic acid in the acid media compared to the commercial JM-Pt/C catalyst. This material can find potential applications in catalysis related areas, such as direct methanol or formic acid fuel cells. Our findings demonstrate that dealloying is an effective and simple strategy to realize the alloying of immiscible systems under mild conditions, and to fabricate novel nanostructures with superior performance.

  17. Characterization of Ternary NiTiPt High-Temperature Shape Memory Alloys

    Science.gov (United States)

    Rios, Orlando; Noebe, Ronald; Biles, Tiffany; Garg, Anita; Palczer, Anna; Scheiman, Daniel; Seifert, Hans Jurgen; Kaufman, Michael

    2005-01-01

    Pt additions substituted for Ni in NiTi alloys are known to increase the transformation temperature of the alloy but only at fairly high Pt levels. However, until now only ternary compositions with a very specific stoichiometry, Ni50-xPtxTi50, have been investigated and then only to very limited extent. In order to learn about this potential high-temperature shape memory alloy system, a series of over twenty alloys along and on either side of a line of constant stoichiometry between NiTi and TiPt were arc melted, homogenized, and characterized in terms of their microstructure, transformation temperatures, and hardness. The resulting microstructures were examined by scanning electron microscopy and the phase compositions quantified by energy dispersive spectroscopy."Stoichiometric" compositions along a line of constant stoichiometry between NiTi to TiPt were essentially single phase but by any deviations from a stoichiometry of (Ni,Pt)50Ti50 resulted in the presence of at least two different intermetallic phases, depending on the overall composition of the alloy. Essentially all alloys, whether single or two-phase, still under went a martensitic transformation. It was found that the transformation temperatures were depressed with initial Pt additions but at levels greater than 10 at.% the transformation temperature increased linearly with Pt content. Also, the transformation temperatures were relatively insensitive to alloy stoichiometry within the range of alloys examined. Finally, the dependence of hardness on Pt content for a series of Ni50-xPtxTi50 alloys showed solution softening at low Pt levels, while hardening was observed in ternary alloys containing more than about 10 at.% Pt. On either side of these "stoichiometric" compositions, hardness was also found to increase significantly.

  18. Phase diagrams for surface alloys

    DEFF Research Database (Denmark)

    Christensen, Asbjørn; Ruban, Andrei; Stoltze, Per

    1997-01-01

    is based on density-functional calculations using the coherent-potential approximation and on effective-medium theory. We give self-consistent density-functional results for the segregation energy and surface mixing energy for all combinations of the transition and noble metals. Finally we discuss...... in detail the cases Ag/Cu(100), Pt/Cu(111), Ag/Pt(111), Co/Cu(111), Fe/Cu(111), and Pd/Cu(110) in connection with available experimental results....

  19. Experimental Elucidation of the Oxygen Reduction Volcano in Base on a Pt Alloy Single Crystal

    DEFF Research Database (Denmark)

    Jensen, Kim Degn; Tymoczko, Jakub; Bandarenka, Aliaksandr S.

    2016-01-01

    to Pt(111). However, all surfaces show a ~4 fold improvement in activity in 0.1 M KOH, relative to the same surface in 0.1 M HClO4. At the peak of the volcano the surface exhibits an exceptionally high specific activity of 90 mA/cm2 at 0.9 V with respect to the reversible hydrogen electrode. Thus, our......It is of fundamental importance to understand the factors controlling trends in activity for electrocatalytic reactions as a function of pH. In the case of the oxygen reduction reaction, numerous reports suggest significant divergences between noble metals surface catalytic performances in acid...... and base.[1,2] In our earlier studies, we mapped out the experimental Sabatier volcano for the oxygen reduction reaction in 0.1 M HClO4 using the Cu/Pt(111) near-surface alloy system, see Figure 1 for near-surface alloy schematic.[3,4] In this study, as those of [3,4], we found that by changing...

  20. Experimental Elucidation of the Oxygen Reduction Volcano in Base on a Pt Alloy Single Crystal

    DEFF Research Database (Denmark)

    Jensen, Kim Degn; Tymoczko, Jakub; Bandarenka, Aliaksandr S.;

    2016-01-01

    and base.[1,2] In our earlier studies, we mapped out the experimental Sabatier volcano for the oxygen reduction reaction in 0.1 M HClO4 using the Cu/Pt(111) near-surface alloy system, see Figure 1 for near-surface alloy schematic.[3,4] In this study, as those of [3,4], we found that by changing...... the subsurface coverage of Cu we could tune the surface binding of the key reaction intermediate, OH; we thus monitored the OH binding energy shift through the observable shifts in the base voltammograms in both acidic and alkaline media. Further, we elucidate the experimental oxygen reduction volcano in 0.1 M...... to Pt(111). However, all surfaces show a ~4 fold improvement in activity in 0.1 M KOH, relative to the same surface in 0.1 M HClO4. At the peak of the volcano the surface exhibits an exceptionally high specific activity of 90 mA/cm2 at 0.9 V with respect to the reversible hydrogen electrode. Thus, our...

  1. Mechanical properties of Pt-Ir and Ni-Ir binary alloys for glass-molding dies coating.

    Science.gov (United States)

    Tseng, Shih-Feng; Lee, Chao-Te; Huang, Kuo-Cheng; Chiang, Donyau; Huang, Chien-Yao; Chou, Chang-Pin

    2011-10-01

    In this study, the different compositions of Pt-Ir and Ni-Ir alloys were deposited by utilizing ion source assisted magnetron sputtering system (ISAMSS). The surface roughness and crystallite size of the Pt-Ir and Ni-Ir coatings were analyzed by atomic force microscopy (AFM) and X-ray diffraction (XRD), respectively. In addition, coatings were soaked at 700 degrees and maintained 10 min under N2 atmosphere using a glass-molding machine. The annealed coatings for oxidation test were examined by energy dispersive X-ray spectrometry (EDS) and for microhardness and reduced modulus test were evaluated by nanoindentation instrucment. The cross-sectional structures between the Pt-Ir and Ni-Ir coating layer and substrates were also examined by field emission scanning electron microscope (FESEM). The results show that surface roughness Ra from 1.25 nm to 3.426 nm was observed with increasing the Ni elements. However, the Ra is less than 2 nm measured in Ir-based coatings doped with Pt concentrations under this study. With increasing Pt and Ni doping, the microhardness of both coatings decreased significantly and the values of reduced modulus of Pt-Ir alloys are larger than that of Ni-Ir alloys. After oxidation process, the oxygen concentration of Pt-Ir coatings is less than that of Ni-Ir coatings and the Pt-Ir coatings exhibit superior properties including oxidation resistance, low surface roughness and high reduced modulus over Ni-Ir coatings, especially for the high Pt concentration coatings such as Pt-Ir 2 (55.25 at.% Pt) and Pt-Ir 3 (79.42 at.% Pt) coatings. The surface roughnesses of all specimens annealed at 700 degrees C were slightly larger than as-deposited coatings. Moreover, due to the serious oxidation occurred in Ni-Ir 3 (73.45 at.% Ni) coatings, the value of reduced modulus of this specimen coating is the lowest and the corrsponding Ra value is the largest compared with the rest of Ir-based coatings in the oxidation testing.

  2. H2-splitting on Pt/Ru alloys supported on sputtered HOPG

    DEFF Research Database (Denmark)

    Fiordaliso, Elisabetta Maria; Dahl, Søren; Chorkendorff, Ib

    2011-01-01

    that alloying Pt with Ru improves significantly the resistance toward CO poisoning with respect to pure Pt, and the resistance increases with an increasing amount of Ru in the bulk alloys. The faster hydrogen exchange rate with respect to the pure metals and the higher CO tolerance of the alloys are attributed......, and it is attributed to geometrical ensemble effects. © 2011 American Chemical Society....

  3. Magnetic susceptibility and hardness of Au-xPt-yNb alloys for biomedical applications.

    Science.gov (United States)

    Uyama, Emi; Inui, Shihoko; Hamada, Kenichi; Honda, Eiichi; Asaoka, Kenzo

    2013-09-01

    Metal devices in the human body induce serious metal artifacts in magnetic resonance imaging (MRI). Metals artifacts are mainly caused by a volume magnetic susceptibility (χv) mismatch between a metal device and human tissue. In this research, Au-xPt-yNb alloys were developed for fabricating MRI artifact-free biomedical metal devices. The magnetic properties, hardness and phase constitutions of these alloys were investigated. The Au-xPt-8Nb alloys showed satisfactory χv values. Heat treatments did not clearly change the χv values for Au-xPt-8Nb alloys. The Vickers hardness (HV) of these two alloys was much higher than that of high-Pt alloys; moreover, aging at 700°C increased the HV values of these two alloys. A dual phase structure consisting of face-centered cubic α1 and α2 phases was observed and aging at 700°C promoted phase separation. The Au-5Pt-8Nb and Au-10Pt-8Nb alloys showed satisfactory χv values and high hardness and are thus suggested as candidates for MRI artifact-free alloys for biomedical applications.

  4. Investigation of nano Pt and Pt-based alloys electrocatalysts for direct methanol fuel cells and their properties

    Directory of Open Access Journals (Sweden)

    Chunguang Suo

    2014-03-01

    Full Text Available The electrocatalysts used in micro direct methanol fuel cell (μDMFC, such as Pt/C and Pt alloy/C, prepared by liquid-phase NaBH4 reduction method have been investigated. XC-72 (Cobalt corp. Company, U.S.A is chosen as the activated carrier for the electrocatalysts to keep the catalysts powder in the range of several nanometers. The XRD, SEM, EDX analyses indicated that the catalysts had small particle size in several nanometers, in excellent dispersed phase and the molar ratio of the precious metals was found to be optimal. The performances of the DMFCs using cathodic catalyst with Pt percentage of 30wt% and different anodic catalysts (Pt-Ru, Pt-Ru-Mo were tested. The polarization curves and power density curves of the cells were measured to determine the optimal alloy composition and condition for the electrocatalysts. The results showed that the micro direct methanol fuel cell with 30wt% Pt/C as the cathodic catalyst and n(Pt:n(Ru:n(Mo = 3:2:2 PtRuMo/C as the anodic catalyst at room temperature using 2.0mol/L methanol solution has the best performances.

  5. Solvothermal synthesis of Pt-Pd alloys with selective shapes and their enhanced electrocatalytic activities

    Science.gov (United States)

    Zhang, Zhi-Cheng; Hui, Jun-Feng; Guo, Zhen-Guo; Yu, Qi-Yu; Xu, Biao; Zhang, Xin; Liu, Zhi-Chang; Xu, Chun-Ming; Gao, Jin-Sen; Wang, Xun

    2012-03-01

    Pt-Pd bimetallic alloy nanostructures with highly selective morphologies such as cube, bar, flower, concave cube, and dendrite have been achieved through a facile one-pot solvothermal synthesis. The effects of shape-controllers (sodium dodecyl sulfate (SDS), ethylenediamine-tetraacetic acid disodium salt (EDTA-2Na), NaI) and solvents (water/DMF) on the morphologies were systematically investigated. The electrocatalytic activities of these Pt-Pd alloy nanostructures toward formic acid oxidation were tested. The results indicated that these alloy nanocrystals exhibited enhanced and shape-dependent electrocatalytic activity toward formic acid oxidation compared to commercial Pt black and Pt/C catalysts.Pt-Pd bimetallic alloy nanostructures with highly selective morphologies such as cube, bar, flower, concave cube, and dendrite have been achieved through a facile one-pot solvothermal synthesis. The effects of shape-controllers (sodium dodecyl sulfate (SDS), ethylenediamine-tetraacetic acid disodium salt (EDTA-2Na), NaI) and solvents (water/DMF) on the morphologies were systematically investigated. The electrocatalytic activities of these Pt-Pd alloy nanostructures toward formic acid oxidation were tested. The results indicated that these alloy nanocrystals exhibited enhanced and shape-dependent electrocatalytic activity toward formic acid oxidation compared to commercial Pt black and Pt/C catalysts. Electronic supplementary information (ESI) available: See DOI: 10.1039/c2nr12135b

  6. Enhanced activity and stability of Pt–La and Pt–Ce alloys for oxygen electroreduction: the elucidation of the active surface phase

    DEFF Research Database (Denmark)

    Malacrida, Paolo; Escribano, Maria Escudero; Verdaguer Casadevall, Arnau

    2014-01-01

    in the presence of oxygen and readily oxidize. The surface oxides are completely dissolved in the electrolyte. In Pt5La and Pt5Ce the so formed Pt overlayer provides kinetic stability against the further oxidation and dissolution. At the same time, it ensures a very high stability during ORR potential cycling......Three different Pt-lanthanide metal alloys (Pt5La, Pt5Ce and Pt3La) have been studied as oxygen reduction reaction (ORR) electrocatalysts. Sputter-cleaned polycrystalline Pt5La and Pt5Ce exhibit more than a 3-fold activity enhancement compared to polycrystalline Pt at 0.9 V, while Pt3La heavily...

  7. Direct evidence for active site-dependent formic acid electro-oxidation by topmost-surface atomic redistribution in a ternary PtPdCu electrocatalyst.

    Science.gov (United States)

    Cui, Chun-Hua; Li, Hui-Hui; Cong, Huai-Ping; Yu, Shu-Hong; Tao, Franklin Feng

    2012-12-25

    The active site-dependent electrochemical formic acid oxidation was evidenced by the increased coverage of Pt in the topmost mixed PtPd alloy layer of ternary PtPdCu upon potential cycling, which demonstrated two catalytic pathways only in one catalyst owing to surface atomic redistribution in an acidic electrolyte environment.

  8. Synthesis of cubic PtPd alloy nanoparticles as anode electrocatalysts for methanol and formic acid oxidation reactions.

    Science.gov (United States)

    Lee, Jin-Yeon; Kwak, Da-Hee; Lee, Young-Woo; Lee, Seul; Park, Kyung-Won

    2015-04-14

    The electrocatalytic properties for electro-oxidation reactions of shape-controlled Pt-based catalysts have been improved by alloying with 2nd elements. In this study, we demonstrate cubic PtPd alloy nanoparticles synthesized using a thermal decomposition method. The cubic PtPd nanoparticles exhibit a homogeneous distribution of alloy nanostructures in the presence of Pt and Pd metallic phases. The improved electrocatalytic activity for the electro-oxidation reactions of methanol and formic acid as chemical fuels might be attributed to the cubic alloy nanostructures. Furthermore, the cubic PtPd alloy nanoparticles as electrocatalysts exhibit excellent stability for electro-oxidation reactions.

  9. Structure and reactivity of Pd-Pt clusters produced by laser vaporization of bulk alloys

    Science.gov (United States)

    Rousset, J. L.; Cadrot, A. M.; Lianos, L.; Renouprez, A. J.

    Pd-Pt nanoclusters are obtained by the focusing of an Nd:YAG laser onto rods of alloys. The aggregates, which are produced by plasma cooling via short helium bursts synchronized with the laser pulses, are collected on amorphous carbon or silicon substrates, in a UHV chamber. Transmission electron microscopy (TEM) experiments show that the diameters of the clusters range between 1.5 and 4.5 nm, and analytical microscopy indicates that they have the same composition as the vaporized rods. Low-energy ion scattering (LEIS) also shows that the surface of the obtained clusters is Pd enriched: the Pd concentration in the first atomic layer is found to be equal to 38% for a Pd17Pt83 rod composition and 87% for the Pd65 Pt35 alloy. The catalytic activity of these clusters in the hydrogenation of 1,3-butadiene to butenes and butane is measured in static mode, with mass spectrometry detection. The reactivity of the bimetallic clusters is explained by the atomic local order and low-coordination sites considered as ``hot sites''.

  10. Methanol Electro-Oxidation on Pt-Ru Alloy Nanoparticles Supported on Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Yangchuan Xing

    2009-09-01

    Full Text Available Carbon nanotubes (CNTs have been investigated in recent years as a catalyst support for proton exchange membrane fuel cells. Improved catalyst activities were observed and attributed to metal-support interactions. We report a study on the kinetics of methanol electro-oxidation on CNT supported Pt-Ru alloy nanoparticles. Alloy catalysts with different compositions, Pt53Ru47/CNT, Pt69Ru31/CNT and Pt77Ru23/CNT, were prepared and investigated in detail. Experiments were conducted at various temperatures, electrode potentials, and methanol concentrations. It was found that the reaction order of methanol electro-oxidation on the PtRu/CNT catalysts was consistent with what has been reported for PtRu alloys with a value of 0.5 in methanol concentrations. However, the electro-oxidation reaction on the PtRu/CNT catalysts displayed much lower activation energies than that on the Pt-Ru alloy catalysts unsupported or supported on carbon black (PtRu/CB. This study provides an overall kinetic evaluation of the PtRu/CNT catalysts and further demonstrates the beneficial role of CNTs.

  11. Nanocrystal and surface alloy properties of bimetallic Gold-Platinum nanoparticles

    OpenAIRE

    Mott Derrick; Luo Jin; Smith Andrew; Njoki Peter; Wang Lingyan; Zhong Chuan-Jian

    2006-01-01

    AbstractWe report on the correlation between the nanocrystal and surface alloy properties with the bimetallic composition of gold-platinum(AuPt) nanoparticles. The fundamental understanding of whether the AuPt nanocrystal core is alloyed or phase-segregated and how the surface binding properties are correlated with the nanoscale bimetallic properties is important not only for the exploitation of catalytic activity of the nanoscale bimetallic catalysts, but also to the general exploration of t...

  12. Model predictions and experimental characterization of Co-Pt alloy clusters

    Science.gov (United States)

    Moskovkin, P.; Pisov, S.; Hou, M.; Raufast, C.; Tournus, F.; Favre, L.; Dupuis, V.

    2007-07-01

    Model and real cobalt-platinum alloy clusters are compared in terms of structure, composition and segregation. Canonical and semi grand canonical Metropolis Monte Carlo simulations are performed to model these clusters, using embedded atom (EAM) and modified embedded atom (MEAM) potentials. All of them correctly predict the bulk L12 Co3Pt and CoPt3 structures as well as the L10 CoPt phase. However, the lattice parameters, phase stability and the L10-fcc order-disorder transition temperature are at variance. Segregation predictions with EAM and MEAM potentials are contradictory. Experimentally, mixed clusters with various compositions were deposited by Low Energy Cluster Beam on amorphous carbon at room temperature. Their size distribution, crystalline structure and composition were examined by Transmission Electron Microscopy (TEM). Clusters with the same size distributions were modelled. Both experiment and modelling show their crystallographic parameters to continuously correspond to the fcc CoPt chemically disordered phase. Diffraction measurements indicate surface segregation of the specie in excess, in agreement with EAM predictions for the Co-rich phase. The consequences on magnetic properties are discussed.

  13. Evaluation of the CoCrTaPt alloy for longitudinal magnetic recording

    Science.gov (United States)

    Cheng, Yuanda; Sedighi, Mojtaba; Lam, Irene; Gardner, Richard A.; Yang, ZhiJun; Scheinfein, Michael R.

    1994-05-01

    A quaternary alloy of CoCrTaPt with a composition of 80-10-4-6 (in at. %) was evaluated for its magnetic and recording properties. Samples of C/CoCrTaPt/Cr recording media were prepared by dc magnetron sputtering on circumferentially textured Al/NiP substrates. The effects on static magnetic properties and recording performance were studied for different substrate preheating times, Cr underlayer thicknesses, and Co-alloy layer thicknesses. It was found that both the coercivity Hc and remanent magnetization Mr increased with substrate preheating time. Hc also increased with Cr underlayer thickness, as expected. The Mrδ value depended linearly on the Co-alloy layer thickness. In addition, we found that the coercivity increased dramatically as the magnetic layer thickness decreased from ˜800 to ˜200 Å. For a sample with a 235-Å CoCrTaPt magnetic layer and ˜1000-Å Cr underlayer, the coercivity was found to be ≳2700 Oe. Parametric evaluation showed that CoCrTaPt samples have performance similar to samples of CoCrTa and, because of the Pt addition, the CoCrTaPt alloy offers significantly higher attainable coercivities than the CoCrTa alloy. Therefore, the CoCrTaPt alloy proves to be a good candidate for use in high density recording media which require coercivity of higher than 2000 Oe.

  14. Surface reconstruction of Pt(001) quantitatively revisited

    Science.gov (United States)

    Hammer, R.; Meinel, K.; Krahn, O.; Widdra, W.

    2016-11-01

    The complex hexagonal reconstructions of the (001) surfaces of platinum and gold have been under debate for decades. Here, the structural details of the Pt(001) reconstruction have been quantitatively reinvestigated by combining the high resolving power of scanning tunneling microscopy (STM) and spot profile analysis low energy electron diffraction (SPA-LEED). In addition, LEED simulations based on a Moiré approach have been applied. Annealing temperatures around 850 °C yield a superstructure that approaches a commensurable c (26.6 ×118 ) substrate registry. It evolves from a Moiré-like buckling of a compressed hexagonal top layer (hex) where atomic rows of the hex run parallel to atomic rows of the square substrate. Annealing at 920 °C stimulates a continuous rotation of the hex where all angles between ±0.7° are simultaneously realized. At temperatures around 1080 °C, the nonrotated hex coexists with a hex that is rotated by about 0.75°. Annealing at temperatures around 1120 °C yield a locking of the hex in fixed rotation angles of 0.77°, 0.88°, and 0.94°. At temperatures around 1170 °C, the Pt(001)-hex-R 0.94° prevails as the energetically most favored form of the rotated hex.

  15. High Work Output Ni-Ti-Pt High Temperature Shape Memory Alloys and Associated Processing Methods

    Science.gov (United States)

    Noebe, Ronald D. (Inventor); Draper, Susan L. (Inventor); Nathal, Michael V. (Inventor); Garg, Anita (Inventor)

    2009-01-01

    According to the invention, compositions of Ni-Ti-Pt high temperature, high force, shape memory alloys are disclosed that have transition temperatures above 100 C.; have narrow hysteresis; and produce a high specific work output.

  16. Bifunctional Pt-Si Alloys for Small Organic Molecule Electro-oxidation

    DEFF Research Database (Denmark)

    Permyakova, Anastasia Aleksandrovna; Suntivich, Jin; Han, Binghong

    Designing highly active catalysts for electro-oxidation of small organic molecules can help to reduce the anodic overpotential for more efficient utilization of hydrocarbon fuels. The challenge in developing more active electrocatalysts for electro-oxidation reactions is to satisfy the stringent...... bifunctional requirement, which demands both adsorption and water oxidation sites. In this contribution, we explore the possibility of using Pt-Si alloys to fulfill this bifunctional requirement. Silicon, a highly oxophillic element, is alloyed into Pt as a site for water oxidation, while Pt serves as a CO...... adsorption site. We will discuss the enhanced activity of Pt-Si alloys for small organic molecule oxidation, which can be attributed to the improved CO electro-oxidation kinetics on Pt-Si....

  17. Pt, PtCo and PtNi electrocatalysts prepared by mechanical alloying for the oxygen reduction reaction in 0.5 M H{sub 2}SO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Contreras, M.A. [Instituto Nacional de Investigaciones Nucleares, Depto. de Quimica, Apdo. Postal 18-1027 Col. Escandon, C.P.11801 Mexico D.F. (Mexico); Instituto Politecnico Nacional, Depto. de Ing. Metalurgica, 07300 Mexico D.F. (Mexico); Fernandez-Valverde, S.M. [Instituto Nacional de Investigaciones Nucleares, Depto. de Quimica, Apdo. Postal 18-1027 Col. Escandon, C.P.11801 Mexico D.F. (Mexico); Vargas-Garcia, J.R. [Instituto Politecnico Nacional, Depto. de Ing. Metalurgica, 07300 Mexico D.F. (Mexico); Cortes-Jacome, M.A.; Toledo-Antonio, J.A.; Angeles-Chavez, C. [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Mexico, D.F.,0 7730 (Mexico)

    2008-11-15

    Electrocatalysts of Pt, PtCo and PtNi powders for the oxygen reduction reaction (ORR) were processed by Mechanical Alloying. Physical characterization was made by X-ray diffraction, scanning electron microscopy and scanning transmission electron microscopy. It was found that milled powders formed agglomerates in the range of 0.2-20 {mu}m formed by nanometric size crystallites. The synthesized powders were alloys of PtFe, PtCoFe and PtNiFe due to iron incorporation during the milling process. The binding energies of Pt in the alloys were determined by XPS. Polarization curves were obtained by Rotating Disk Electrode technique in 0.5 M H{sub 2}SO{sub 4} to determine the electrocatalytic activity of the mechanically alloyed powders. Tafel curves were plotted and kinetic parameters for the ORR were calculated. The PtFe alloy showed the highest electrocatalytic activity for the ORR. However, the lowest overpotential was found for the PtCoFe alloy and it also showed a higher current exchange density. A linear relationship was found between the Pt-binding energy in the alloys and the overpotential at the same current density independent of the Pt alloy composition. (author)

  18. Structural and Magnetic Properties of Ultrathin Fe Films on Pt(001) Surface

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-Juan; HE Ke; JIA Jin-Feng; XUE Qi-Kun

    2005-01-01

    @@ Magnetic anisotropy evolution of ultrathin Fe films grown on Pt(001) single-crystal surface is investigated by UHVin situ surface magneto-optical Kerr effect (SMOKE) measurement. After annealing at ~ 600 K, the magnetic anisotropy of Fe film switches from in-plane to perpendicular at low coverage, leading to a spin reorientationtransition (SRT). Meanwhile, in the range of 3-4 monolayer (ML) thickness, the coercivity of the Fe polar hysteresis loop decreases dramatically. Further scanning tunnelling microscopy (STM) and low energy electron diffraction (LEED) investigation correlates the magnetic properties with the film structures. We attribute this SRT to the formation of Fe-Pt ordered alloy.

  19. From Co/Pt multilayered nanowires to Co-Pt alloy nanowires: structural and magnetic evolutions with annealing temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Liu Lifeng; Xie Sishen; Zhou Weiya, E-mail: liulif@mpi-halle.mpg.d [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2009-10-21

    Co/Pt multilayered (ML) nanowires were prepared by template-assisted pulsed electrodeposition. Structural and magnetic evolutions of the deposited ML nanowires upon annealing in a hydrogen atmosphere were studied by transmission electron microscopy, x-ray diffractometry and magnetometry. It was found that the deposited nanowires undergo a morphological change from multilayers to continuous and dense alloy wires with increasing annealing temperature. The fraction and the grain size of the f.c.t. Co-Pt ordered phase were also found to increase with annealing temperature, giving rise to a markedly enhanced magnetic performance of the annealed nanowires. Our study provides an alternative approach, apart from direct template-based electrodeposition, to the fabrication of Co-Pt alloy nanowires with tunable structures and magnetic properties.

  20. Observation of inverse spin Hall effect in ferromagnetic FePt alloys using spin Seebeck effect

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Takeshi, E-mail: go-sai@imr.tohoku.ac.jp; Takanashi, Koki [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Uchida, Ken-ichi [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); PRESTO, Japan Science and Technology Agency, Saitama 332-0012 (Japan); Kikkawa, Takashi [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Qiu, Zhiyong [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Spin Quantum Rectification Project, ERATO, Japan Science and Technology Agency, Sendai 980-8577 (Japan); Saitoh, Eiji [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Spin Quantum Rectification Project, ERATO, Japan Science and Technology Agency, Sendai 980-8577 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, Tokai 319-1195 (Japan)

    2015-08-31

    We experimentally observed the inverse spin Hall effect (ISHE) of ferromagnetic FePt alloys. Spin Seebeck effect due to the temperature gradient generated the spin current (J{sub s}) in the FePt|Y{sub 3}Fe{sub 5}O{sub 12} (YIG) structure, and J{sub s} was injected from YIG to FePt and converted to the charge current through ISHE of FePt. The significant difference in magnetization switching fields for FePt and YIG led to the clear separation of the voltage of ISHE from that of anomalous Nernst effect in FePt. We also investigated the effect of ordering of FePt crystal structure on the magnitude of ISHE voltage in FePt.

  1. Observation of inverse spin Hall effect in ferromagnetic FePt alloys using spin Seebeck effect

    Science.gov (United States)

    Seki, Takeshi; Uchida, Ken-ichi; Kikkawa, Takashi; Qiu, Zhiyong; Saitoh, Eiji; Takanashi, Koki

    2015-08-01

    We experimentally observed the inverse spin Hall effect (ISHE) of ferromagnetic FePt alloys. Spin Seebeck effect due to the temperature gradient generated the spin current (Js) in the FePt|Y3Fe5O12 (YIG) structure, and Js was injected from YIG to FePt and converted to the charge current through ISHE of FePt. The significant difference in magnetization switching fields for FePt and YIG led to the clear separation of the voltage of ISHE from that of anomalous Nernst effect in FePt. We also investigated the effect of ordering of FePt crystal structure on the magnitude of ISHE voltage in FePt.

  2. Investigation of ordering phenomenon in Me–Pt (Me=Fe,Ni liquid alloys

    Directory of Open Access Journals (Sweden)

    Yisau Adelaja Odusote

    2008-01-01

    Full Text Available The phase diagrams of Fe–Pt and Ni–Pt liquid alloy systems show the existence of FePt and NiPt intermetallic compounds, respectively, in their solid intermediate states, and the associative tendency between unlike atoms in these liquid alloys has been analysed using the self-association model. The concentration dependences of mixing properties such as the free energy of mixing, GM; the concentration fluctuations, Scc(0, in the long-wavelength limits; the chemical short-range order (CSRO parameter, α1; as well as the chemical diffusion, enthalpy and entropy of the mixing of Fe–Pt and Ni–Pt liquid alloys have been investigated to determine the nature of ordering in the liquid alloys. The results show that heterocoordination occurs in the alloys at all concentrations. The effect of CSRO on Scc(0, chemical diffusion, D, and the order parameter, α1, has been considered. The ordering phenomenon in the liquid alloys is also related to the effect of the atomic size mismatch volume on Scc(0.

  3. An introduction to surface alloying of metals

    CERN Document Server

    Hosmani, Santosh S; Goyal, Rajendra Kumar

    2014-01-01

    An Introduction to Surface Alloying of Metals aims to serve as a primer to the basic aspects of surface alloying of metals. The book serves to elucidate fundamentals of surface modification and their engineering applications. The book starts with basics of surface alloying and goes on to cover key surface alloying methods, such as carburizing, nitriding, chromizing, duplex treatment, and the characterization of surface layers. The book will prove useful to students at both the undergraduate and graduate levels, as also to researchers and practitioners looking for a quick introduction to surface alloying.

  4. Structure and thermomechanical behavior of NiTiPt shape memory alloy wires.

    Science.gov (United States)

    Lin, Brian; Gall, Ken; Maier, Hans J; Waldron, Robbie

    2009-01-01

    The objective of this work is to understand the structure-property relationships in polycrystalline NiTiPt (Ti 42.7 at.% Ni 7.5 at %Pt) with a composition showing pseudoelasticity at ambient temperatures. Structural characterization of the alloy includes grain size determination and texture analysis while the thermomechanical properties are explored using tensile testing. Variation in heat treatment is used as a vehicle to modify microstructure. The results are compared to experiments on Ni-rich NiTi alloy wires (Ti-51.0 at.% Ni), which are in commercial use in various biomedical applications. With regards to microstructure, both alloys exhibit a fiber texture along the wire drawing axis; however, the NiTiPt alloy grain size is smaller than that of the Ni-rich NiTi wires, while the latter materials contain second-phase precipitates. Given the nanometer-scale grain size in NiTiPt and the dispersed, nanometer-scale precipitate size in NiTi, the overall strength and ductility of the alloys are essentially identical when given appropriate heat treatments. Property differences include a much smaller stress hysteresis and smaller temperature dependence of the transformation stress for NiTiPt alloys compared to NiTi alloys. Potential benefits and implications for use in vascular stent applications are discussed.

  5. The electro-oxidation of H{sub 2} and H{sub 2}/CO mixtures on carbon-supported Pt{sub x}Mo{sub y} alloy catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Grgur, B.N.; Markovic, N.M.; Ross, P.N. [Lawrence Berkeley National Lab., CA (United States)]|[Univ. of California, Berkeley, CA (United States). Materials Sciences Div.

    1999-05-01

    Electro-oxidation kinetics of H{sub 2} and H{sub 2}/CO mixture were studied on bimetallic Pt-Mo catalysts supported on a high-surface-area carbon black. The Pt:Mo atomic ratios in the catalysts were 3:1 and 4:1. Characterization of these catalysts by X-ray diffraction indicated the existence of a face-centered cubic metallic phase with an average particle size of ca. 4 nm. Because the lattice constants for the Pt-Mo solid solutions are so close to those of pure Pt, the composition of the nanocrystalline phase could not be determined. The kinetic results with the supported catalysts were compared quantitatively with results from bulk alloy electrodes having well-characterized surface compositions varying from 15 to 33 atom % Mo. The kinetic properties of the supported catalysts were comparable to those of bulk alloys having somewhat higher Mo concentrations than the atomic ratios in the catalysts. This suggests that either the surface segregation phenomena in the alloy nanocrystals are different from those in the bulk or that the alloying by Pt is incomplete, and the alloy nanocrystals are rich in Mo relative to the atomic ratios in the catalysts. The authors prefer the latter interpretation. These Pt-Mo alloy catalysts are predicted to have significantly better CO tolerance in polymer electrolyte membrane fuel cells than Pt-Ru alloy catalysts, consistent with previous predictions based on studies of bulk alloy electrodes.

  6. Confined-space alloying of nanoparticles for the synthesis of efficient PtNi fuel-cell catalysts.

    Science.gov (United States)

    Baldizzone, Claudio; Mezzavilla, Stefano; Carvalho, Hudson W P; Meier, Josef Christian; Schuppert, Anna K; Heggen, Marc; Galeano, Carolina; Grunwaldt, Jan-Dierk; Schüth, Ferdi; Mayrhofer, Karl J J

    2014-12-15

    The efficiency of polymer electrolyte membrane fuel cells is strongly depending on the electrocatalyst performance, that is, its activity and stability. We have designed a catalyst material that combines both, the high activity for the decisive cathodic oxygen reduction reaction associated with nanoscale Pt alloys, and the excellent durability of an advanced nanostructured support. Owing to the high specific activity and large active surface area, the catalyst shows extraordinary mass activity values of 1.0 A mgPt(-1). Moreover, the material retains its initial active surface area and intrinsic activity during an extended accelerated aging test within the typical operation range. This excellent performance is achieved by confined-space alloying of the nanoparticles in a controlled manner in the pores of the support.

  7. Platinum overlayers on Co(0001) and Ni(111): numerical simulation of surface alloying

    Science.gov (United States)

    Légaré, P.; Cabeza, G. F.; Castellani, N. J.

    1999-11-01

    The surface alloying of one and two monolayers (ML) of platinum deposited on Ni(111) and Co(0001) were studied by means of the ECT-BFS method. The 1 ML deposit appears to be very stable on both substrates. Platinum can diffuse at high temperature only, the large activation barrier being represented by the first substrate layer. On the contrary, the stability of the 2 ML deposit is poor so that alloying is easily obtained. In both cases, the platinum diffusion produces metastable states. The lowest-energy states exhibit a propensity for platinum dilution in a limited region below the surface. The initial platinum thickness determines not only the features of the alloyed region, but also the surface concentration. The surface alloys have features qualitatively similar to those reported for the (111) surface of bulk Pt-Ni and Pt-Co alloys: a platinum-rich surface and oscillating concentration profiles.

  8. Nanoscale compositional changes and modification of the surface reactivity of Pt{sub 3}Co/C nanoparticles during proton-exchange membrane fuel cell operation

    Energy Technology Data Exchange (ETDEWEB)

    Dubau, L. [Laboratoire d' Electrochimie et de Physico-chimie des Materiaux et des Interfaces, UMR 5631 CNRS/Grenoble Universite, 1130 rue de la piscine, BP75, 38402 Saint Martin d' Heres Cedex (France); Maillard, F., E-mail: frederic.maillard@lepmi.grenoble-inp.f [Laboratoire d' Electrochimie et de Physico-chimie des Materiaux et des Interfaces, UMR 5631 CNRS/Grenoble Universite, 1130 rue de la piscine, BP75, 38402 Saint Martin d' Heres Cedex (France); Chatenet, M. [Laboratoire d' Electrochimie et de Physico-chimie des Materiaux et des Interfaces, UMR 5631 CNRS/Grenoble Universite, 1130 rue de la piscine, BP75, 38402 Saint Martin d' Heres Cedex (France); Andre, J.; Rossinot, E. [Axane, 2 rue de Clemenciere, BP 15, 38360 Sassenage (France)

    2010-12-30

    This study bridges the structure/composition of Pt-Co/C nanoparticles with their surface reactivity and their electrocatalytic activity. We show that Pt{sub 3}Co/C nanoparticles are not stable during PEMFC operation (H{sub 2}/air; j = 0.6 A cm{sup -2}, T = 70 {sup o}C) but suffer compositional changes at the nanoscale. In the first hours of operation, the dissolution of Co atoms at their surface yields to the formation of a Pt-enriched shell covering a Pt-Co alloy core ('Pt-skeleton') and increases the affinity of the surface to oxygenated and hydrogenated species. This structure does not ensure stability in PEMFC conditions but is rather a first step towards the formation of 'Pt-shell/Pt-Co alloy core' structures with depleted Co content. In these operating conditions, the Pt-Co/C specific activity for the ORR varies linearly with the fraction of Co alloyed to Pt present in the core and is severely depreciated (ca. -50%) after 1124 h of operation. This is attributed to: (i) the decrease of both the strain and the ligand effect of Co atoms contained in the core (ii) the changes in the surface structure of the electrocatalyst (formation of a multilayer-thick Pt shell) and (iii) the relaxation of the Pt surface atoms.

  9. The role of surface Pt on the coadsorption of hydrogen and CO on Pt monolayer film modified Ru(0001) surfaces

    Science.gov (United States)

    Diemant, T.; Hartmann, H.; Bansmann, J.; Behm, R. J.

    2016-10-01

    We have investigated the impact and role of the Pt surface modification on the coadsorption of hydrogen and CO on structurally well defined bimetallic Pt monolayer island/film modified Ru(0001) surfaces with Pt contents up to a complete Pt layer, employing temperature programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRRAS). Kinetic limitations in the surface diffusion are shown to play an important role for adsorption at 90 K, and lead to profound effects of the dosing sequence on the adsorption and desorption characteristics. Furthermore, they are responsible for spill-over effects during the TPD measurements, where COad becomes mobile and can spill-over from weakly bonding Pt monolayer areas to strongly bonding Pt-free Ru(0001) areas, which displaces Dad from these surface areas. The present findings are discussed in comparison with previous results on related metallic and bimetallic adsorption and coadsorption systems.

  10. Alloying effect via comparative studies of ethanol dehydrogenation on Cu(1 1 1), Cu3Pd(1 1 1), and Cu3Pt(1 1 1)

    Science.gov (United States)

    Wu, Ruitao; Wang, Lichang

    2017-06-01

    Ethanol dehydrogenations on Cu(1 1 1), Cu3Pd(1 1 1), and Cu3Pt(1 1 1) were studied using density functional theory with a PBE functional. The α-C-H and β-C-H scissions are endothermic on all surfaces while the O-H scission is exothermic on Cu(1 1 1) and Cu3Pt(1 1 1) but endothermic on Cu3Pd(1 1 1). The ethanol dehydrogenation occurs on Cu(1 1 1) through both α-C-H and O-H scissions but on Cu3Pd(1 1 1) and Cu3Pt(1 1 1) through only α-C-H scission. Furthermore, alloying Pt or Pd with Cu shows an increase in reaction rate at 493 K by more than 3 orders of magnitude, thus illustrating the promise of alloying Pt or Pd in Cu catalysts for ethanol dehydrogenation.

  11. Study on hydrogen evolution performance of the carbon supported PtRu alloy film electrodes

    Institute of Scientific and Technical Information of China (English)

    YANG; Bin; LI; Yang; ZAN; Lin-han

    2005-01-01

    The carbon supported PtRu alloy film electrodes having Pt about 0.10 mg/cm2 or even less were prepared by ion beam sputtering method (IBSM). It was valued on the hydrogen analyse performance, the temperature influence factor and the stability by electroanalysis hydrogen analyse method. It was found that the carbon supported PtRu alloy film electrodes had higher hydrogen evolution performance and stability, such as the hydrogen evolution exchange current density (j0) was increase as the temperature (T) rised, and it overrun 150 mA/cm2 as the trough voltage in about 0.68V, and it only had about 2.8% decline in 500 h electrolytic process. The results demonstrated that the carbon supported PtRu alloy film electrodes kept highly catalytic activity and stability, and it were successfully used in pilot plant for producing H2 on electrolysis of H2S.

  12. Influence of hydrogen electrosorption on surface oxidation of Pd and Pd-noble metal alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lukaszewski, M.; Kedra, T.; Czerwinski, A. [Warsaw University, Department of Chemistry, Laboratory of Electrochemical Power Sources, Pasteura 1, 02-093 Warsaw (Poland)

    2009-05-15

    Electrochemical oxidation of freshly deposited Pd and its alloys with other noble metals (Au, Pt, Rh) was compared with the behavior of samples subjected to prior hydrogen absorption/desorption procedure. It was found that surface oxidation of hydrogen-treated Pd and Pd-Pt-Au deposits starts at lower potentials than on non-hydrided electrodes and is accompanied by a negative shift of surface oxide reduction peak. Pd and its alloys with Au, Pt and Rh after hydrogen treatment are also more resistant to electrochemical dissolution than freshly deposited samples. (author)

  13. Adsorption-Driven Surface Segregation of the Less Reactive Alloy Component

    DEFF Research Database (Denmark)

    Andersson, Klas Jerker; Calle Vallejo, Federico; Rossmeisl, Jan;

    2009-01-01

    Counterintuitive to expectations and all prior observations of adsorbate-induced surface segregation of the more reactive alloy component (the one forming the stronger bond with the adsorbate), we show that CO adsorption at elevated pressures and temperatures pulls the less reactive Cu to the sur......Counterintuitive to expectations and all prior observations of adsorbate-induced surface segregation of the more reactive alloy component (the one forming the stronger bond with the adsorbate), we show that CO adsorption at elevated pressures and temperatures pulls the less reactive Cu...... to the surface of a CuPt near-surface alloy. The Cu surface segregation is driven by the formation of a stable self-organized CO/CuPt surface alloy structure and is rationalized in terms of the radically stronger Pt−CO bond when Cu is present in the first surface layer of Pt. The results, which are expected...... to apply to a range of coinage (Cu, Ag)/Pt-group bimetallic surface alloys, open up new possibilities in selective and dynamical engineering of alloy surfaces for catalysis....

  14. Improving the Ethanol Oxidation Activity of Pt-Mn Alloys through the Use of Additives during Deposition

    Directory of Open Access Journals (Sweden)

    Mohammadreza Zamanzad Ghavidel

    2015-06-01

    Full Text Available In this work, sodium citrate (SC was used as an additive to control the particle size and dispersion of Pt-Mn alloy nanoparticles deposited on a carbon support. SC was chosen, since it was the only additive tested that did not prevent Mn from co-depositing with Pt. The influence of solution pH during deposition and post-deposition heat treatment on the physical and electrochemical properties of the Pt-Mn alloy was examined. It was determined that careful control over pH is required, since above a pH of four, metal deposition was suppressed. Below pH 4, the presence of sodium citrate reduced the particle size and improved the particle dispersion. This also resulted in larger electrochemically-active surface areas and greater activity towards the ethanol oxidation reaction (EOR. Heat treatment of catalysts prepared using the SC additive led to a significant enhancement in EOR activity, eclipsing the highest activity of our best Pt-Mn/C prepared in the absence of SC. XRD studies verified the formation of the Pt-Mn intermetallic phase upon heat treatment. Furthermore, transmission electron microscopy studies revealed that catalysts prepared using the SC additive were more resistant to particle size growth during heat treatment.

  15. Surface Chemistry of Aromatic Reactants on Pt- and Mo-Modified Pt Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Allison M.; Mark, Lesli; Rasmussen, Mathew J.; Hensley, Jesse E.; Medlin, J. Will

    2016-11-01

    Supported catalysts containing an oxophilic metal such as Mo and a noble metal such as Pt have shown promising activity and selectivity for deoxygenation of biomass-derived compounds. Here, we report that PtMo catalysts also promote hydrogenolysis of the model compound benzyl alcohol, while decarbonylation is most prevalent over unmodified Pt. A combination of single crystal surface science studies, density functional theory (DFT) calculations, and vapor phase upgrading experiments using supported catalysts was carried out to better understand the mechanism by which Mo promotes deoxygenation. Molybdenum was deposited in submonolayer quantities on a Pt(111) surface and reduced at high temperature. Temperature-programmed desorption (TPD) experiments using benzyl alcohol as a reactant showed greatly enhanced yields of the deoxygenation product toluene at moderate Mo coverages. To understand how the interaction of the aromatic group with the surface influenced this reactivity, we investigated the adsorption of toluene as a probe molecule. We found that the addition of Mo to Pt(111) resulted in a significant decrease in toluene decomposition. DFT calculations indicated that this decrease was consistent with decreased aromatic adsorption strengths that accompany incorporation of Mo into the Pt subsurface. The weaker aromatic-surface interaction on Pt/Mo surfaces led to a tilted adsorption geometry for benzyl alcohol, which presumably promotes hydrogenolysis to produce toluene instead of decarbonylation to produce benzene and CO. Alumina-supported Pt and PtMo catalysts were also tested for benzyl alcohol deoxygenation. PtMo catalysts had a higher rate of toluene production and lower rates of benzene and benzaldehyde production. Additionally, when benzaldehyde was used as the reactant to measure decarbonylation activity the mass-normalized rate of benzene production was 2.5 times higher on Pt than PtMo. Overall, the results of TPD, DFT, and supported catalyst experiments

  16. Nanocrystal and surface alloy properties of bimetallic Gold-Platinum nanoparticles

    Directory of Open Access Journals (Sweden)

    Mott Derrick

    2006-01-01

    Full Text Available AbstractWe report on the correlation between the nanocrystal and surface alloy properties with the bimetallic composition of gold-platinum(AuPt nanoparticles. The fundamental understanding of whether the AuPt nanocrystal core is alloyed or phase-segregated and how the surface binding properties are correlated with the nanoscale bimetallic properties is important not only for the exploitation of catalytic activity of the nanoscale bimetallic catalysts, but also to the general exploration of the surface or interfacial reactivities of bimetallic or multimetallic nanoparticles. The AuPt nanoparticles are shown to exhibit not only single-phase alloy character in the nanocrystal, but also bimetallic alloy property on the surface. The nanocrystal and surface alloy properties are directly correlated with the bimetallic composition. The FTIR probing of CO adsorption on the bimetallic nanoparticles supported on silica reveals that the surface binding sites are dependent on the bimetallic composition. The analysis of this dependence further led to the conclusion that the relative Au-atop and Pt-atop sites for the linear CO adsorption on the nanoparticle surface are not only correlated with the bimetallic composition, but also with the electronic effect as a result of the d-band shift of Pt in the bimetallic nanocrystals, which is the first demonstration of the nanoscale core-surface property correlation for the bimetallic nanoparticles over a wide range of bimetallic composition.

  17. Nanocrystal and surface alloy properties of bimetallic Gold-Platinum nanoparticles

    Science.gov (United States)

    Mott, Derrick; Luo, Jin; Smith, Andrew; Njoki, Peter N; Wang, Lingyan

    2007-01-01

    We report on the correlation between the nanocrystal and surface alloy properties with the bimetallic composition of gold-platinum(AuPt) nanoparticles. The fundamental understanding of whether the AuPt nanocrystal core is alloyed or phase-segregated and how the surface binding properties are correlated with the nanoscale bimetallic properties is important not only for the exploitation of catalytic activity of the nanoscale bimetallic catalysts, but also to the general exploration of the surface or interfacial reactivities of bimetallic or multimetallic nanoparticles. The AuPt nanoparticles are shown to exhibit not only single-phase alloy character in the nanocrystal, but also bimetallic alloy property on the surface. The nanocrystal and surface alloy properties are directly correlated with the bimetallic composition. The FTIR probing of CO adsorption on the bimetallic nanoparticles supported on silica reveals that the surface binding sites are dependent on the bimetallic composition. The analysis of this dependence further led to the conclusion that the relative Au-atop and Pt-atop sites for the linear CO adsorption on the nanoparticle surface are not only correlated with the bimetallic composition, but also with the electronic effect as a result of the d-band shift of Pt in the bimetallic nanocrystals, which is the first demonstration of the nanoscale core-surface property correlation for the bimetallic nanoparticles over a wide range of bimetallic composition.

  18. Impact toughness of laser surface alloyed Aluminium

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2012-03-01

    Full Text Available Laser surface alloying of aluminium AA1200 was performed with a 4kW Nd:YAG laser and the impact resistance of the alloys was investigated. The alloying powders were a mixture of Ni, Ti and SiC in different proportions. Surfaces reinforced...

  19. Self-Decoration of PtNi Alloy Nanoparticles on Multiwalled Carbon Nanotubes for Highly Efficient Methanol Electro-Oxidation

    Institute of Scientific and Technical Information of China (English)

    Yu-Yan Zhou; Chang-Hai Liu; Jie Liu; Xin-Lei Cai; Ying Lu; Hui Zhang; Xu-Hui Sun; Sui-Dong Wang

    2016-01-01

    A simple one-pot method was developed to prepare PtNi alloy nanoparticles, which can be self-decorated on multiwalled carbon nanotubes in [BMIm][BF4] ionic liquid. The nanohybrids are targeting stable nanocatalysts for fuel cell applications. The sizes of the supported PtNi nanoparticles are uniform and as small as 1–2 nm. Pt-to-Ni ratio was controllable by simply selecting a PtNi alloy target. The alloy nanoparticles with Pt-to-Ni ratio of 1:1 show high catalytic activity and stability for methanol electro-oxidation. The performance is much higher compared with those of both Pt-only nanoparticles and commercial Pt/C catalyst. The electronic structure characterization on the PtNi nanoparticles demon-strates that the electrons are transferred from Ni to Pt, which can suppress the CO poisoning effect.

  20. Double Glow Plasma Surface Alloyed Burn-resistant Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping-ze; XU Zhong; HE Zhi-yong; ZHANG Gao-hui

    2004-01-01

    Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, we have developed a new kind of burn-resistant titanium alloy-double glow plasma surface alloying burn-resistant titanium alloy. Alloying element Cr, Mo, Cu are induced into the Ti-6Al-4V and Ti-6.5Al-0.3Mo-l.5Zr-0.25Si substrates according to double glow discharge phenomenon, Ti-Cr ,Ti-Mo, Ti-Cu binary burn-resistant alloy layers are formed on the surface of Ti-6Al-4V and Ti-6.5Al-0.3Mo-l.5Zr-0.25Si alloys. The depth of the surface burn-resistant alloy layer can reach to above 200 microns and alloying element concentration can reach 90%.Burn-resistant property experiments reveal that if Cr concentration reach to 14%, Cu concentration reach to 12%, Mo concentration reach to 10% in the alloying layers, ignition and burn of titanium alloy can be effectively avoided.

  1. Double Glow Plasma Surface Alloyed Burn-resistant Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANGPing-ze; XUZhong; HEZhi-yong; ZHANGGao-hui

    2004-01-01

    Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, we have developed a new kind of burn-resistant titanium alloy-double glow plasma surface alloying burn-resistant titanium alloy. Alloying element Cr, Mo, Cu are induced into the Ti-6A1-4V and Ti-6.5Al-0.3Mo-1.5Zr-0.25Si substrates according to double glow discharge phenomenon, Ti-Cr ,Ti-Mo, Ti-Cu binary burn-resistant alloy layers are formed on the surface of Ti-6A1-4V and Ti-6.5Al-0.3Mo-1.5Zr-0.25Si alloys. The depth of the surface burn-resistant alloy layer can reach to above 200 microns and alloying element concentration can reach 90%. Burn-resistant property experiments reveal that if Cr concentration reach to 14%, Cu concentration reach to 12%, Mo concentration reach to 10% in the alloying layers, ignition and burn of titanium alloy can be effectively avoided.

  2. Surface Tension Calculation of Undercooled Alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the Butler equation and extrapolated thermodynamic data of undercooled alloys from those of liquid stable alloys, a method for surface tension calculation of undercooled alloys is proposed. The surface tensions of liquid stable and undercooled Ni-Cu (xNi=0.42) and Ni-Fe (xNi=0.3 and 0.7) alloys are calculated using STCBE (Surface Tension Calculation based on Butler Equation) program. The agreement between calculated values and experimental data is good enough, and the temperature dependence of the surface tension can be reasonable down to 150-200 K under the liquid temperature of the alloys.

  3. Controllable Deposition of Alloy Clusters or Nanoparticles Catalysts on Carbon Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, K.; Ando, Y.; Su, D.; Adzic, R.

    2011-08-15

    We describe a simple method for controllably depositing Pt-Ru alloy nanoparticles on carbon surfaces that is mediated by Pb or Cu adlayers undergoing underpotential deposition and stripping during Pt and Ru codeposition at diffusion-limiting currents. The amount of surface Pt atoms deposited largely reflects the number of potential cycles causing the deposition and stripping of the metal adlayer at underpotentials, the metal species used as a mediator, and the scan rate of the potential cycles. We employed electrochemical methanol oxidation to gain information on the catalyst's activities. The catalysts with large amounts of surface Pt atoms have relatively high methanol-oxidation activity. Catalysts prepared using this method enhance methanol-oxidation activity per electrode surface area, while maintaining catalytic activity per surface Pt atom; thus, the amount of Pt is reduced in comparison with conventional methanol-oxidation catalysts. The method is suitable for efficient synthesizing various bimetallic catalysts.

  4. Alternative alloys for catalysts and platinum jewelry? New structures in Pt-Hf and Pt-Mo

    Science.gov (United States)

    Gilmartin, Erin; Corbitt, Jacqueline; Hart, Gus

    2009-03-01

    The only known intermetallic structure with an 8:1 stoichiometry is that of Pt8Ti. It is intriguing that an ordered phase would occur at such low concentrations of the minority atom, but this structure occurs in about a dozen binary intermetallic systems. The formation of an ordered phase in an alloy can significantly enhance the performance of the material, particularly the hardness. We have taken a broad look at possible systems where this phase forms. Using first-principles, we calculated the stability of this structure relative to experimentally known phases for more than 80 Pt/Pd binary systems. We find the Pt8Ti structure is a possible ground state in more than 20 cases. Our experimental collaborators have verified our prediction in Pt-Mo and observed order-hardening in Pt-Hf. We discuss the discovery of new ground states that are likely to be verified experimentally and their impact on materials for Pt- and Pd-based catalysts and jewelry.

  5. Electro-oxidation of ethanol on ternary non-alloyed Pt-Sn-Pr/C catalysts

    Science.gov (United States)

    Corradini, Patricia G.; Antolini, Ermete; Perez, Joelma

    2015-02-01

    Ternary Pt-Sn-Pr/C (70:10:20), (70:15:15) and (45:45:10) electro-catalysts were prepared by a modified formic acid method, and their activity for the ethanol oxidation reaction (EOR) was compared with that of Pt-Pr/C catalysts prepared by the same methods and that of commercial Pt-Sn/C (75:25) and Pt/C catalysts. Among all the catalysts, the Pt-Sn-Pr/C (45:45:10) catalyst presented both the highest mass activity and the highest specific activity. The steady state electrochemical stability of ternary Pt-Sn-Pr catalysts increased with the surface Sn/Pt atomic ratio. Following repetitive potential cycling (RPC), the activity for ethanol oxidation of Pt-Sn-Pr/C catalysts with high surface Sn/Pt atomic ratio was considerably higher than that of the corresponding as-prepared catalysts, and increased with increasing the Sn/Pt ratio. The increase of the EOR mass activity following RPC was ascribed to the increase of either the specific activity (for the Pt-Sn-Pr/C (70:15:15) catalyst) or the electrochemically active surface area (for the Pt-Sn-Pr/C (45:45:10) catalyst). Dissolution of Sn and Pr oxides from Pt-Sn-Pr/C catalyst surface was observed following RPC.

  6. Magnetic hyperfine interaction studies of isolated Ni impurities in Pd and Pd-Pt alloys

    Science.gov (United States)

    Müller, W.; Bertschat, H. H.; Haas, H.; Spellmeyer, B.; Zeitz, W.-D.

    1989-10-01

    The magnetic hyperfine fields at isolated Ni impurities in Pd and Pd-Pt alloys were studied with the perturbed-angular-distribution (PAD) method by measuring the temperature, magnetic field, and concentration dependence of the nuclear-spin Larmor precession of isomeric states in 63Ni. The recoil-implanted Ni nuclei, as products of heavy-ion nuclear reactions, are present in extreme dilution (Pd-Pt alloys a considerable positive shift remains even at 30 at. % Pt content. The variation of the shift with Pt concentration and temperature reflects the variation of the Pd-Pt alloy susceptibility. The different contributions to the hyperfine field could be differentiated by comparing the Knight shift for Ni in Pd with its susceptibility contribution obtained from extrapolated susceptibility measurements in dilute Pd-Ni alloys. The negative core-polarization field of the impurity spin moment is compensated for by a transferred hyperfine field correlated with the host polarization in the neighborhood of the impurity. The remaining positive hyperfine field is due to a weak orbital moment of 0.3μB at the impurity site. The values obtained for the different contributions are compared with results of the Korringa-Kohn-Rostoker-coherent-potential-approximation calculations for concentrated Pd-Ni alloys extrapolated to the dilute limit.

  7. Role of different Pd/Pt ensembles in determining CO chemisorption on Au-based bimetallic alloys: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Hyung Chul, E-mail: hchahm@kist.re.kr [Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712 (United States); Fuel Cell Research Center, Korea Institute of Science and Technology, Seoul (Korea, Republic of); Manogaran, Dhivya [Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712 (United States); Hwang, Gyeong S., E-mail: gshwang@che.utexas.edu [Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712 (United States); Han, Jonghee; Kim, Hyoung-Juhn; Nam, Suk Woo; Lim, Tae Hoon [Fuel Cell Research Center, Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2015-03-30

    Graphical abstract: - Highlights: • Pd ensembles greatly reduce CO adsorption energy as compared to Pt ensembles. • The steeper potential energy surface of CO adsorption in Pd(1 1 1) than in Pt(1 1 1). • Switch of binding site preference in ensembles is key to determining CO adsorption. • Opposite electronic (ligand) effect in Pd and Pt ensemble. - Abstract: Using spin-polarized density functional calculations, we investigate the role of different Pd/Pt ensembles in determining CO chemisorption on Au-based bimetallic alloys through a study of the energetics, charge transfer, geometric and electronic structures of CO on various Pd/Pt ensembles (monomer/dimer/trimer/tetramer). We find that the effect of Pd ensembles on the reduction of CO chemisorption energy is much larger than the Pt ensemble case. In particular, small-sized Pd ensembles like monomer show a substantial reduction of CO chemisorption energy compared to the pure Pd (1 1 1) surface, while there are no significant size and shape effects of Pt ensembles on CO chemisorption energy. This is related to two factors: (1) the steeper potential energy surface (PES) of CO in Pd (1 1 1) than in Pt (1 1 1), indicating that the effect of switch of binding site preference on CO chemisorption energy is much larger in Pd ensembles than in Pt ensembles, and (2) down-shift of d-band in Pd ensembles/up-shift of d-band in Pt ensembles as compared to the corresponding pure Pd (1 1 1)/Pt (1 1 1) surfaces, suggesting more reduced activity of Pd ensembles toward CO adsorption than the Pt ensemble case. We also present the different bonding mechanism of CO on Pd/Pt ensembles by the analysis of orbital resolved density of state.

  8. Stability and ordering properties of fcc alloys based on Rh, Ir, Pd, and Pt

    Science.gov (United States)

    Turchi, P. E. A.; Drchal, V.; Kudrnovský, J.

    2006-08-01

    Stability properties and ordering trends for the six face-centered cubic binary combinations of the four transition metals Rh, Ir, Pd, and Pt are examined in the context of electronic structure calculations. The method is based on a Green’s function description of the electronic structure of random alloys. Configurational order is treated within the generalized perturbation method. On one hand, the three alloys Pd-Rh, Pd-Ir, and Pt-Ir that have been studied experimentally are confirmed to behave like phase-separating systems. On the other hand, the other three mixtures Pd-Pt, Rh-Ir, and Pt-Rh, for which phase-separating trends have been inferred from experiments, are found to display chemical order with ordering of the (1 0 0) and (11/20) family types and a mixture of both, respectively. The origin of these results is discussed in terms of electronic structure properties.

  9. SURFACE PROPERTIES AND CATALYTIC PERFORMANCE OF Pt ...

    African Journals Online (AJOL)

    salt (AO) layers, have been examined for their low cost, high catalytic activity and high thermal ... of each peak after subtraction of the S-shaped background and fitting to a curve mixed of ..... In addition, for the 0.3 % Pt/LaSrCoO4 and 0.5.

  10. CoPt alloy films on SiO{sub 2} nanoparticle arrays

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, Denys; Schatz, Guenter [University of Konstanz (Germany). Department of Physics; Bermudez, Esteban; Schmidt, Oliver G. [IFW, Dresden (Germany); Brombacher, Christoph; Albrecht, Manfred [Chemnitz University of Technology (Germany). Institute of Physics; Liscio, Fabiola; Maret, Mireille [ENSEEG, Saint Martin d' Heres (France)

    2008-07-01

    Combining self-assembled SiO{sub 2} nanoparticle arrays with magnetic film deposited onto the particles, enables an elegant possibility to create magnetic nanostructure arrays with defined magnetic properties. In this regard, materials such as CoPt alloy are of particular interest due to their large magnetic anisotropy required for thermal stability in the high density magnetic recording applications. In order to induce high perpendicular magnetic anisotropy in CoPt alloys, the L1{sub 0} phase with (001) texturing is required. For this purpose, a 10 nm thick MgO(001) seed layer was introduced. Results on planar amorphous SiO{sub 2} substrates reveal an uniaxial out-of-plane magnetic anisotropy and saturation magnetization for the CoPt alloy grown at 450 C of about 5x10{sup 5} J/m{sup 3} and 800 kA/m. These properties were transfered to CoPt alloy deposited onto arrays of SiO{sub 2} particles with diameters down to 50 nm. The formed CoPt nanocaps are in a magnetic single domain state with a large out-of-plane coercivity, which increases with decreasing particle size. In this presentation, the structural and magnetic properties are discussed and compared to the planar film.

  11. AuPt Alloy Nanostructures with Tunable Composition and Enzyme-like Activities for Colorimetric Detection of Bisulfide

    Science.gov (United States)

    He, Weiwei; Han, Xiangna; Jia, Huimin; Cai, Junhui; Zhou, Yunlong; Zheng, Zhi

    2017-01-01

    Tuning the enzyme-like activity and studying the interaction between biologically relevant species and nano-enzymes may facilitate the applications of nanostructures in mimicking natural enzymes. In this work, AuPt alloy nanoparticles (NPs) with varying compositions were prepared through a facile method by co-reduction of Au3+ and Pt2+ in aqueous solutions. The composition could be tuned easily by adjusting the molar ratios of added Pt2+ to Au3+. It was found that both peroxidase-like and oxidase-like activity of AuPt alloy NPs were highly dependent on the alloy compositions, which thus suggesting an effective way to tailor their catalytic properties. By investigating the inhibitory effects of HS- on the enzyme-like activity of AuPt alloy NPs and natural enzyme, we have developed a method for colorimetric detection of HS- and evaluation of the inhibiting effects of inhibitors on natural and artificial enzymes. In addition, the responsive ability of this method was influenced largely by the composition: AuPt alloy NPs show much lower limit of detection for HS- than Pt NPs while Pt NPs show wider linear range than AuPt alloy NPs. This study suggests the facile way not only for synthesis of alloy nanostructures, but also for tuning their catalytic activities and for use in bioanalysis.

  12. Pd-Pt Alloy with Coral-Like Nanostructures Showing High Performance for Oxygen Electrocatalytic Reduction.

    Science.gov (United States)

    Liu, Xing-Quan; Chen, Xue-Song; Wu, Jian; Yao, Lei

    2016-03-01

    Three-dimensional (3D) Pd-Pt alloy with coral-like nanostructures were synthesized via bubble dynamic templated electrodeposition method at room temperature. The morphology of the as-prepared nanostructures was characterized using scanning electron microscopy (SEM), EDS, high-resolution transmission electron microscopy (HRTEM), respectively. Cyclic voltammetry method was adopted to evaluate the electrocatalytic activities of the synthesized electrodes toward oxygen reduction in KCl solution. The electrochemical results indicated that the Pd-Pt alloy with coral-like nanostructures hold the high performance for oxygen reduction.

  13. DSC study of martensite transformation in TiPt alloys

    CSIR Research Space (South Africa)

    Chikosha, S

    2012-09-01

    Full Text Available .J. Witcomb, L.A. Cornish, Metall. & Mat. Trans. A , 2001, 32A:1881-86 K. Otsuka & X Ren, Prog. Mat. Scie., 2005, 50:511-75 Page 6 Experimental Procedure ? CSIR 2012 www.csir.co.za Ti-50at%Pt BE powder Hot Press SPS Cold...-Press & Sinter SEM/EDS & DSC Page 7 Spark Plasma Sintering 1200?C, 60 MPa ? Incomplete homogenisation of the bulk ? Pt-rich TiPt phase is formed, coexisting with other phases ? DSC shows two overlapping peaks instead of one, possible two-stage Ti...

  14. Phase characterisation in spark plasma sintered TiPt alloy

    CSIR Research Space (South Africa)

    Chikosha, S

    2011-12-01

    Full Text Available The conclusions drawn from this presentation are that Spark Plasma Sintering (SPS) of equiatomic BE TiPt powder produces fully sintered specimens, with incomplete homogenisation. There is a need for improved furnace atmosphere control so...

  15. Double stripe reconstruction of the Pt(111) surface

    Indian Academy of Sciences (India)

    Raghani Pushpa; Shobhana Narasimhan

    2003-01-01

    We have studied the reconstruction of the Pt(111) surface theoretically, using a 2D generalization of the Frenkel–Kontorova model. The parameters in the model are obtained by performing ab initio density functional theory calculations. The Pt(111) surface does not reconstruct under normal conditions but experiments have shown that there are two ways to induce the reconstruction: by increasing the temperature, or by depositing adatoms on the surface. The basic motif of this reconstruction is a `double stripe’ with an increased surface density and alternating hcp and fcc domains, arranged to form a honeycomb pattern with a very large repeat distance of 100–300 Å. In this paper, we have studied the `double stripe’ reconstruction of the Pt(111) surface. In agreement with experiment, we find that it is favourable for the surface to reconstruct in the presence of adatoms, but not otherwise.

  16. Synthesis of Pt-Fe alloy on MWCNTs as oxygen reduction electrocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Morales, D.; Arriaga, L.G. [Centro de Investigacion y Desarrollo Technologico en Electroquimica, Queretaro (Mexico); Alvarez-Contreras, L. [Centro de Investigacion en Materiales Avanzados, Chihuahua (Mexico); Baglio, V.; Arico, A.S. [CNR-ITAE, Messina (Italy); Ornelas, R. [Tozzi Renewable Energy SpA, Mezzano (Italy)

    2008-07-01

    Methanol crossover reduces the efficiency of direct methanol fuel cells (DMFC) as oxygen reduction and methanol oxidation reduction compete on the platinum (Pt) cathode. In this study, highly dispersed Pt and Pt-Fe alloys were placed on multi-walled carbon nanotubes (MWCNTs). The MWCNTs were functionalized by dispersion into concentrated HNO3 and then treated in an ultrasonic bath. An (NH4)2PtCl6 solution was then added, and a sodium (NaBH4) solution was used as a reducing agent. The stirred solution was then filtered, washed and dried at 60 degrees C. Polarization curves for the oxygen reduction reaction (ORR) in an oxygen-saturated sulfuric acid solution at 30 degrees C were presented. The study demonstrated that the enhanced electrocatalytic activity of the Pt-Fe/MWCNTs for the oxygen reduction reaction (ORR) was attributed to the high methanol tolerance of the catalyst. 19 refs., 1 fig.

  17. Structure, chemical ordering and thermal stability of Pt-Ni alloy nanoclusters.

    Science.gov (United States)

    Cheng, Daojian; Yuan, Shuai; Ferrando, Riccardo

    2013-09-01

    Equilibrium structures, chemical ordering and thermal properties of Pt-Ni nanoalloys are investigated by using basin hopping-based global optimization, Monte Carlo (MC) and molecular dynamics (MD) methods, based on the second-moment approximation of the tight-binding potentials (TB-SMA). The TB-SMA potential parameters for Pt-Ni nanoalloys are fitted to reproduce the results of density functional theory calculations for small clusters. The chemical ordering in cuboctahedral (CO) Pt-Ni nanoalloys with 561 and 923 atoms is obtained from the so called semi-grand-canonical ensemble MC simulation at 100 K. Two ordered phases of L12 (PtNi3) and L10 (PtNi) are found for the CO561 and CO923 Pt-Ni nanoalloys, which is in good agreement with the experimental phase diagram of the Pt-Ni bulk alloy. In addition, the order-disorder transition and thermal properties of these nanoalloys are studied by using MC and MD methods, respectively. It is shown that the typical perfect L10 PtNi structure is relatively stable, showing high order-disorder transition temperature and melting point among these CO561 and CO923 Pt-Ni nanoalloys.

  18. Properties of laser alloyed surface layers on magnesium base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Galun, R.; Weisheit, A.; Mordike, B.L. (Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. fuer Werkstoffkunde und Werkstofftechnik)

    1998-01-01

    The investigations have shown that laser surface alloying is a promising process to improve the wear and corrosion properties of magnesium base alloys without affecting the initial bulk properties like the low density. With an alloying element combination of aluminium and nickel the wear rate in the scratch test was reduced by 90% compared to untreated pure magnesium. Additionally the corrosion resistance was improved by laser alloying with this element combination. Because of distortion or crack formation in the case of large area treatments, the laser alloying should be limited to the treatment of smaller areas. In the near future this process could be an interesting alternative to surface coating or to a partially reinforcement with ceramic fibres or particles. (orig.)

  19. Tunable thermodynamic stability of Au-CuPt core-shell trimetallic nanoparticles by controlling the alloy composition: insights from atomistic simulations.

    Science.gov (United States)

    Huang, Rao; Shao, Gui-Fang; Wen, Yu-Hua; Sun, Shi-Gang

    2014-11-07

    A microscopic understanding of the thermal stability of metallic core-shell nanoparticles is of importance for their synthesis and ultimately application in catalysis. In this article, molecular dynamics simulations have been employed to investigate the thermodynamic evolution of Au-CuPt core-shell trimetallic nanoparticles with various Cu/Pt ratios during heating processes. Our results show that the thermodynamic stability of these nanoparticles is remarkably enhanced upon rising Pt compositions in the CuPt shell. The melting of all the nanoparticles initiates at surface and gradually spreads into the core. Due to the lattice mismatch among Au, Cu and Pt, stacking faults have been observed in the shell and their numbers are associated with the Cu/Pt ratios. With the increasing temperature, they have reduced continuously for the Cu-dominated shell while more stacking faults have been produced for the Pt-dominated shell because of the significantly different thermal expansion coefficients of the three metals. Beyond the overall melting, all nanoparticles transform into a trimetallic mixing alloy coated by an Au-dominated surface. This work provides a fundamental perspective on the thermodynamic behaviors of trimetallic, even multimetallic, nanoparticles at the atomistic level, indicating that controlling the alloy composition is an effective strategy to realize tunable thermal stability of metallic nanocatalysts.

  20. Structural disordering of de-alloyed Pt bimetallic nanocatalysts

    DEFF Research Database (Denmark)

    Spanos, Ioannis; Dideriksen, Knud; Kirkensgaard, Jacob Judas Kain;

    2015-01-01

    nanoparticles almost completely de-alloy during acid leaching, i.e. under reaction conditions in a fuel cell. To scrutinize the resulting particle structure after de-alloying we used pair distribution function (PDF) analysis and X-ray diffraction (XRD) gaining insight into the structural disorder and its...... dependence on the initial metal composition. Our results suggest that not only the ORR activity, but also the corrosion resistance of the synthesized NPs, are dependent on the structural disorder resulting from the de-alloying process....

  1. Preparation of Ultrafine Fe-Pt Alloy and Au Nanoparticle Colloids by KrF Excimer Laser Solution Photolysis.

    Science.gov (United States)

    Watanabe, Masato; Takamura, Hitoshi; Sugai, Hiroshi

    2009-03-10

    We prepared ultrafine Fe-Pt alloy nanoparticle colloids by UV laser solution photolysis (KrF excimer laser of 248 nm wavelength) using precursors of methanol solutions into which iron and platinum complexes were dissolved together with PVP dispersant to prevent aggregations. From TEM observations, the Fe-Pt nanoparticles were found to be composed of disordered FCC A1 phase with average diameters of 0.5-3 nm regardless of the preparation conditions. Higher iron compositions of nanoparticles require irradiations of higher laser pulse energies typically more than 350 mJ, which is considered to be due to the difficulty in dissociation of Fe(III) acetylacetonate compared with Pt(II) acetylacetonate. Au colloid preparation by the same method was also attempted, resulting in Au nanoparticle colloids with over 10 times larger diameters than the Fe-Pt nanoparticles and UV-visible absorption peaks around 530 nm that originate from the surface plasmon resonance. Differences between the Fe-Pt and Au nanoparticles prepared by the KrF excimer laser solution photolysis are also discussed.

  2. Preparation of Ultrafine Fe–Pt Alloy and Au Nanoparticle Colloids by KrF Excimer Laser Solution Photolysis

    Directory of Open Access Journals (Sweden)

    Sugai Hiroshi

    2009-01-01

    Full Text Available Abstract We prepared ultrafine Fe–Pt alloy nanoparticle colloids by UV laser solution photolysis (KrF excimer laser of 248 nm wavelength using precursors of methanol solutions into which iron and platinum complexes were dissolved together with PVP dispersant to prevent aggregations. From TEM observations, the Fe–Pt nanoparticles were found to be composed of disordered FCC A1 phase with average diameters of 0.5–3 nm regardless of the preparation conditions. Higher iron compositions of nanoparticles require irradiations of higher laser pulse energies typically more than 350 mJ, which is considered to be due to the difficulty in dissociation of Fe(III acetylacetonate compared with Pt(II acetylacetonate. Au colloid preparation by the same method was also attempted, resulting in Au nanoparticle colloids with over 10 times larger diameters than the Fe–Pt nanoparticles and UV–visible absorption peaks around 530 nm that originate from the surface plasmon resonance. Differences between the Fe–Pt and Au nanoparticles prepared by the KrF excimer laser solution photolysis are also discussed.

  3. Concepts in surface alloying of metals

    Directory of Open Access Journals (Sweden)

    Santosh S. Hosmani

    2013-03-01

    Full Text Available Surface alloying is widely used method in industries to improve the surface properties of metals/alloys. Significance of the various surface engineering techniques to improve the properties of engineering components in various applications, for example, automobile industries, has grown substantially over the many years. The current paper is focused on the fundamental scientific aspects of the surface alloying of metals. Widely used surface alloying elements involved are interstitial elements such as nitrogen, carbon, and substitutional element, chromium. This topic is interdisciplinary in nature and various science and engineering streams can work together for the further development in this topic. This paper has attempted to cover the essential concepts of surface alloying along with some of the interesting results in this research area.

  4. Catalytically favorable surface patterns in Pt-Au nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2013-01-01

    Motivated by recent experimental demonstrations of novel PtAu nanoparticles with highly enhanced catalytic properties, we present a systematic theoretical study that explores principal catalytic indicators as a function of the particle size and composition. We find that Pt electronic states in the vicinity of the Fermi level combined with a modified electron distribution in the nanoparticle due to Pt-to-Au charge transfer are the origin of the outstanding catalytic properties. From our model we deduce the catalytically favorable surface patterns that induce ensemble and ligand effects. © The Royal Society of Chemistry 2013.

  5. Phase transformation and magnetic properties of Fe-Pt based bulk alloys

    NARCIS (Netherlands)

    de Boer, F.R.; Xiao, Q.F.; Zhang, Z.D.; Buschow, K.H.J.; Bruck, E.H.

    2004-01-01

    The ordering transformation and magnetic properties of Fe59.75Pt39.5Nb0.75 bulk alloys have been investigated in detail by using different homogenization temperatures and different low-temperature annealing times to obtain samples with different microstructure and different atomically ordered states

  6. On the causes of compositional order in the Ni sub c Pt sub (1-c) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gyorffy, B.L. (Bristol Univ. (United Kingdom). H.H. Wills Physics Lab.); Pinski, F.J. (Cincinnati Univ., OH (United States). Dept. of Physics); Ginatempo, B. (Messina Univ. (Italy). Ist. di Fisica Teorica); Johnson, D.D. (Sandia National Labs., Albuquerque, NM (United States)); Staunton, J.B. (Warwick Univ., Coventry (United Kingdom). Dept. of Physics); Shelton, W.A.; Stocks, G.M.; Nicholson, D.M.

    1991-01-01

    We review, briefly, the arguments which gave rise to the current controversy concerning the origin of compositional order in Ni{sub c}Pt{sub 1-c} alloys. We note that strain fluctuations play an important role in determining the state of compositional order in this system and outline a theoretical framework that takes account of them. 29 refs., 4 figs.

  7. What Is the Optimum Strain for Pt Alloys for Oxygen Electroreduction?

    DEFF Research Database (Denmark)

    Escribano, Maria Escudero; Malacrida, Paolo; Velazquez-Palenzuela, Amado Andres

    2015-01-01

    In order to make low-temperature fuel cells commercially viable, it is crucial to develop oxygen reduction catalysts based on more active, stable and abundant materials. A fruitful strategy for enhancing the oxygen reduction reaction (ORR) activity is to alloy Pt with transition metals [1]. Howev...

  8. Structure and superconducting transition in splat-cooled U–T alloys (T = Mo, Pd, Pt)

    Energy Technology Data Exchange (ETDEWEB)

    Kim-Ngan, N.-T.H., E-mail: tarnawsk@up.krakow.pl [Institute of Physics, Pedagogical University, Podchorazych 2, 30-084 Krakow (Poland); Paukov, M. [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116 Prague (Czech Republic); Sowa, S.; Krupska, M. [Institute of Physics, Pedagogical University, Podchorazych 2, 30-084 Krakow (Poland); Tkach, I.; Havela, L. [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116 Prague (Czech Republic)

    2015-10-05

    Highlights: • Splat-cooled U–6 at.% Mo, U–5 at.% Pd, U–5 at.% Pt alloys become superconducting below 1 K. • U–5 at.% Pd and U–5 at.% Pt reveal only one resistivity jump at T{sub c}. • Two distinguishable resistivity drops were observed for U–6 at.% Mo. • A broad maximum was observed at T{sub c} in the specific heat. • Those splats consist of two phases having orthorhombic α- and cubic γ-U structure. - Abstract: U–T (T = Mo, Pd, Pt) alloys were prepared by splat cooling technique and characterized by X-ray diffraction. The resistivity and specific heat measurements were performed down to 0.3 K to study their superconductivity. The superconducting transition in the alloy with 6 at.% Mo (U–6%Mo) revealed by a smooth decrease below 1.5 K and a sharp drop at 0.6 K in the resistivity, while a single sharp drop was revealed at T{sub c} ≈ 0.8 K for those with 5 at.% Pd and Pt doping (U–5%Pd and U–5%Pt). With applying magnetic fields, the resistivity drops move to lower temperatures. The superconductivity transitions were revealed by only one broad peak at T{sub c} in the C(T) curves.

  9. FePtCu alloy thin films: Morphology, L1{sub 0} chemical ordering, and perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Brombacher, C.; Schletter, H.; Daniel, M.; Matthes, P.; Joehrmann, N.; Makarov, D.; Hietschold, M.; Albrecht, M. [Institute of Physics, Chemnitz University of Technology, D-09107 Chemnitz (Germany); Maret, M. [Laboratory of Science and Engineering of Materials and Processes (SIMaP), INP-Grenoble/CNRS/UJF, F-38402 Saint-Martin d' Heres (France)

    2012-10-01

    Rapid thermal annealing was applied to transform sputter-deposited Fe{sub 51}Pt{sub 49}/Cu bilayers into L1{sub 0} chemically ordered ternary (Fe{sub 51}Pt{sub 49}){sub 100-x}Cu{sub x} alloys with (001) texture on amorphous SiO{sub 2}/Si substrates. It was found that for thin film samples, which were processed at 600 Degree-Sign C for 30 s, the addition of Cu strongly favors the L1{sub 0} ordering and (001) texture formation. Furthermore, it could be revealed by transmission electron microscopy and electron backscatter diffraction that the observed reduction of the ordering temperature with Cu content is accompanied by an increased amount of nucleation sites forming L1{sub 0} ordered grains. The change of the structural properties with Cu content and annealing temperature is closely related to the magnetic properties. While an annealing temperature of 800 Degree-Sign C induces strong perpendicular magnetic anisotropy (PMA) in binary Fe{sub 51}Pt{sub 49} films, the addition of Cu systematically reduces the PMA. However, due to the enhancement of both the A1-L1{sub 0} phase transformation and the development of the (001) texture with increasing Cu content, lowering of the annealing temperature leads to a shift of the maximum perpendicular magnetic anisotropy towards alloys with higher Cu content. Thus, for an annealing temperature of 600 Degree-Sign C, the highest perpendicular magnetic anisotropy energy is found for the (Fe{sub 51}Pt{sub 49}){sub 91}Cu{sub 9} alloy. The smooth surface morphology, adjustable PMA, and high degree of intergranular exchange coupling make these films suitable for post-processing required for specific applications such as for sensorics or magnetic data storage.

  10. Study of Pt-alloys as organic molecules-tolerant cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Varelal, F.J.R. [Cinestav Unidad Saltillo, Coahuila (Mexico). Nanosciences and Nanotechnology Program; Fuente de la, D.K.L. [Univ. Antonoma de Coahuila (Mexico). Facultad de Ciencias Quimicas; Morales-Acosta, D; Arriaga, L.G. [CIDETEQ, Quereturo (Mexico)

    2010-07-01

    This paper investigated the high electrocatalytic activity of platinum-cobalt (Pt-Co) multiwalled carbon nanotube (MWCNT) cathodes for the oxygen reduction reaction (ORR) in direct oxidation fuel cell applications. The system's tolerance to ethylene glycol, ethanol, and 2-propanol was also evaluated. Rotating ring disc electrode (RRDE) and electric impedance spectroscopy (EIS) analyses were used to determine Pt-Co/MWCNT performance. Results of the analyses suggested that the ORR on the alloy proceeded principally by a 4-electron transfer mechanism. The shape of a Nyquist plot of the ORR on the alloy in a solution containing 0.5 EtOH at different polarization potentials indicated that the ORR on the alloy may not change under conditions of organic-molecule containing electrolytes. 4 refs., 1 fig.

  11. The interaction of NH 3 with ordered Pt surfaces

    Science.gov (United States)

    Baetzold, R. C.; Apai, G.; Shustorovich, E.

    1984-11-01

    The interaction of ammonia with ordered Pt surface was studies by means of surface core-level photoemission and tight-binding-type calculations. Clean Pt surfaces have distinguishable surface and bulk components of the 4f 7/2 core level. The 4f 7/2 surface component is shifted to lower binding energy (-0.32 eV) than the bulk on the clean (111) surface, but in the presence of ammonia the surface peak is shifted to positive binding energy (0.7 eV). This result is unexpected, since it indicates a depletion of d-electron density on Pt atoms attached to NH 3, in contrast to common assumptions of NH 3 as a net donor. Thin-film calculations show this depletion in the form of rehybridization of sp with d electrons on the Pt atom. The mixing of p z orbitals with the d band leads to a dipole moment perpendicular to the surface, which in addition to the static dipole of ammonia is also a major factor in the decrease in work function upon chemisorption.

  12. Exotic high activity surface patterns in PtAu nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2013-05-09

    The structure and chemical ordering of PtAu nanoclusters of 79, 135, and 201 atoms are studied via a combination of a basin hopping atom-exchange technique (to locate the lowest energy homotops at fixed composition), a symmetry orbit technique (to find the high symmetry isomers), and density functional theory local reoptimization (for determining the most stable homotop). The interatomic interactions between Pt and Au are derived from the empirical Gupta potential. The lowest energy structures show a marked tendency toward PtcoreAushell chemical ordering by enrichment of the more cohesive Pt in the core region and of Au in the shell region. We observe a preferential segregation of Pt atoms to (111) facets and Au atoms to (100) facets of the truncated octahedron cluster motif. Exotic surface patterns are obtained particularly for Pt-rich compositions, where Pt atoms are being surrounded by Au atoms. These surface arrangements boost the catalytic activity by creating a large number of active sites. © 2013 American Chemical Society.

  13. Surface Features of Nanocrystalline Alloys

    Directory of Open Access Journals (Sweden)

    Marcel Miglierini

    2015-12-01

    Full Text Available Nanocrystalline alloys are prepared by controlled annealing of metallic glass precursors. The latter are obtained by rapid quenching of a melt on a rotating wheel. This process leads to structural deviation of the produced ribbons’ surfaces. Structural features of as-quenched and thermally annealed 57Fe81Mo8Cu1B10 ribbons were studied employing Conversion Electron Mössbauer Spectrometry (CEMS and Conversion X-ray Mössbauer Spectrometry (CXMS. Enrichment of the alloy’s composition in 57Fe helped in identification of surface crystallites that were formed even during the production process. Magnetite and bcc-Fe were found at the wheel side of the as-quenched ribbons whereas only bcc-Fe nanocrystals were uncovered at the opposite air side. Accelerated formation of bcc-Fe was observed in this side of the ribbons after annealing. The relative content of magnetite at the wheel side was almost stable in near surface areas (CEMS and in more deep subsurface regions (CXMS. It vanished completely after annealing at 550 °C. No magnetite was observed at the air side of the ribbons regardless the annealing temperature and/or depth of the scanned regions.

  14. Issues Concerning the Oxidation of Ni(Pt)Ti Shape Memory Alloys

    Science.gov (United States)

    Smialek, James

    2011-01-01

    The oxidation behavior of the Ni-30Pt-50Ti high temperature shape memory alloy is compared to that of conventional NiTi nitinol SMAs. The oxidation rates were 1/4 those of NiTi under identical conditions. Ni-Ti-X SMAs are dominated by TiO2 scales, but, in some cases, the activation energy diverges for unexplained reasons. Typically, islands of metallic Ni or Pt(Ni) particles are embedded in lower scale layers due to rapid selective growth of TiO2 and low oxygen potential within the scale. The blocking effect of Pt-rich particles and lower diffusivity of Pt-rich depletion zones are proposed to account for the reduction in oxidation rates.

  15. Influence of cobalt content on the structure and hard magnetic properties of nanocomposite (Fe,Co)-Pt-B alloys

    Science.gov (United States)

    Grabias, A.; Kopcewicz, M.; Latuch, J.; Oleszak, D.; Pękała, M.; Kowalczyk, M.

    2017-07-01

    The influence of Co content on the structural and hard magnetic properties of two sets of nanocrystalline Fe52-xCoxPt28B20 (x = 0-26) and Fe60-yCoyPt25B15 (y = 0-40) alloys was studied. The alloys were prepared as ribbons by the rapid quenching technique. The nanocomposite structure in the alloys was obtained by annealing at 840-880 K for 30 min. Structural characterization of the samples was performed using the Mössbauer spectroscopy and X-ray diffraction. Magnetic properties of the samples were studied by the measurements of the hysteresis loops and of the magnetization at increasing temperatures. An amorphous phase prevailed in the as-quenched Fe52-xCoxPt28B20 alloys while a disordered solid solution of fcc-(Fe,Co)Pt was a dominating phase in the Fe60-yCoyPt25B15 ribbons. Differential scanning calorimetry measurements revealed one or two exothermic peaks at temperatures up to 993 K, depending on the composition of the alloys. Thermal treatment of the samples led to the formation of the magnetically hard ordered L10 tetragonal (Fe,Co)Pt nanocrystallites and magnetically softer phases of (Fe,Co)B (for Fe52-xCoxPt28B20) or (Fe,Co)2B (for Fe60-yCoyPt25B15). Detailed Mössbauer spectroscopy studies revealed that cobalt substituted for iron in both the L10 phase and in iron borides. The nanocomposite Fe60-yCoyPt25B15 alloys exhibited significantly larger magnetic remanence and maximum energy products but a smaller coercivity than those observed for the Fe52-xCoxPt28B20 alloys. Co addition caused a reduction of the magnetization and the energy product in both series of the alloys. The largest magnetic remanence of 0.87 T and the highest energy product (BH)max = 80 kJ/m3 were obtained for the Co-free Fe52Pt28B20 alloy while the largest coercivity (HC > 950 kA/m) was observed for the Fe50Co10Pt25B15 and Fe30Co30Pt25B15 alloys. Differences in the hard magnetic properties of the nanocomposite alloys were related to different phase compositions influencing the strength of

  16. In Situ Neutron Diffraction Study of NiTi-21Pt High-Temperature Shape Memory Alloys

    Science.gov (United States)

    Benafan, O.; Gaydosh, D. J.; Noebe, R. D.; Qiu, S.; Vaidyanathan, R.

    2016-12-01

    In situ neutron diffraction was used to investigate the microstructural features of stoichiometric and Ti-rich NiTiPt high-temperature shape memory alloys with target compositions of Ni29Ti50Pt21 and Ni28.5Ti50.5Pt21 (in atomic percent), respectively. The alloys' isothermal and thermomechanical properties (i.e., moduli, thermal expansion, transformation strains, and dimensional stability) were correlated to the lattice strains, volume-averaged elastic moduli, and textures as determined by neutron diffraction. In addition, the unique aspects of this technique when applied to martensitic transformations in shape memory alloys are highlighted throughout the paper.

  17. Wet-chemical synthesis and properties of CoPt and CoPt3 alloy nanoparticles.

    Science.gov (United States)

    Frommen, Christoph; Rösner, Harald; Fenske, Dieter

    2002-10-01

    Surface-protected, air-stable nanoparticles of CoPt and CoPt3 were prepared by thermal decomposition/reduction of organometallic precursors with a long-chain aliphatic diol, also known as the polyol process. Particles 3 nm in diameter showed ferromagnetic behavior up to 350 K (Hc = 65 Oe at T = 300 K; Hc = 410 Oe at T = 5K) and underwent a disordering-ordering phase transformation after annealing that resulted in an increase in coercivity (Hc = 170 Oe at T = 300 K; Hc = 2000 Oe at T = 5 K).

  18. Self-assembly growth of alloyed NiPt nanocrystals with holothuria-like shape for oxygen evolution reaction with enhanced catalytic activity

    Directory of Open Access Journals (Sweden)

    Tao Ding

    2016-01-01

    Full Text Available Self-assembly growth of alloyed NiPt nanocrystals with holothuria-like wire shape has been achieved via a facile and moderate hydrothermal process at 120 °C for 1 h from the reaction of nickel nitrate and chloroplatinic acid in alkaline solution in the presence of ethanediamine and hydrazine hydrate. The holothuria-like alloyed NiPt wires are Ni-rich in composition (Ni23.6Pt and uniform in diameter with many tiny tips outstretched from the wires surface. The holothuria-like wires are assembled from granular subunits with the assistance of capping molecular of ethanediamine and the wires display an improved oxygen evolution reaction catalytic activity.

  19. Green and Facile Synthesis of Pd-Pt Alloy Nanoparticles by Laser Irradiation of Aqueous Solution.

    Science.gov (United States)

    Nakamura, Takahiro; Sato, Shunichi

    2015-01-01

    Solid-solution palladium-platinum (Pd-Pt) alloy nanoparticles (NPs) with fully tunable compositions were directly fabricated through high-intensity laser irradiation of an aqueous solution of palladium and platinum ions without using any reducing agents or thermal processes. Transmission electron microscopy (TEM) observations showed that nanometer-sized particles were fabricated by laser irradiation of mixed aqueous solutions of palladium and platinum ions with different feeding ratios. The crystalline nature of the NPs was precisely characterized by X-ray diffraction (XRD). Despite the fact that, for the bulk systems, a pair of XRD peak was detected between the palladium and platinum peaks because of the large miscibility gap in the Pd-Pt binary phase diagram, only a single XRD peak was seen for the Pd-Pt NPs fabricated in the present study. Moreover, the peak position shifted from that of pure palladium towards platinum with increasing fraction of platinum ions in solution. Consequently, the interplanar spacings of the alloy NPs agreed well with the estimated values obtained from Vegard's law. These observations strongly indicate the formation of solid-solution Pd-Pt alloy NPs with fully tunable compositions. This technique is not only a "green" (environmentally-friendly) and facile process, but is also widely applicable to other binary and ternary systems.

  20. Controlled synthesis of Pd-Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction.

    Science.gov (United States)

    Hong, Jong Wook; Kang, Shin Wook; Choi, Bu-Seo; Kim, Dongheun; Lee, Sang Bok; Han, Sang Woo

    2012-03-27

    Pd-Pt alloy nanocrystals (NCs) with hollow structures such as nanocages with porous walls and dendritic hollow structures and Pd@Pt core-shell dendritic NCs could be selectively synthesized by a galvanic replacement method with uniform Pd octahedral and cubic NCs as sacrificial templates. Fine control over the degree of galvanic replacement of Pd with Pt allowed the production of Pd-Pt NCs with distinctly different morphologies. The synthesized hollow NCs exhibited considerably enhanced oxygen reduction activities compared to those of Pd@Pt core-shell NCs and a commercial Pt/C catalyst, and their electrocatalytic activities were highly dependent on their morphologies. The Pd-Pt nanocages prepared from octahedral Pd NC templates exhibited the largest improvement in catalytic performance. We expect that the present work will provide a promising strategy for the development of efficient oxygen reduction electrocatalysts and can also be extended to the preparation of other hybrid or hetero-nanostructures with desirable morphologies and functions. © 2012 American Chemical Society

  1. Effects of Ag addition on FePt L10 ordering transition: A direct observation of ordering transition and Ag segregation in FePtAg alloy films

    Science.gov (United States)

    Wang, Lei; Gao, Tenghua; Yu, Youxing

    2015-12-01

    FePt and (FePt)91.2Ag8.8 alloy films were deposited by magnetron sputtering. The average coercivity of (FePt)91.2Ag8.8 films reaches 8.51 × 105 A/m, which is 0.63 × 105 A/m higher than that of the corresponding FePt films. Ag addition effectively promotes the FePt L10 ordering transition at a relatively low annealing temperature of 400 °C. The promotion mechanism was investigated by using in situ high-resolution transmission electron microscopy (HRTEM) and ex situ X-ray absorption fine structure (XAFS). The concurrence of ordering transition and Ag segregation in FePtAg alloy films was first observed by using in situ heating HRTEM. The time-resolved evolution reveals more details on the role of Ag addition in FePt low-temperature ordering. Ex situ XAFS results further confirm that Ag replaces Fe sites in the as-deposited films and segregates from FePt-Ag solid solution phase through annealing at elevated temperatures. The segregation of Ag atoms leaves vacancies in the grain. The vacancy formation is believed to accelerate the diffusion of Fe and Pt atoms, which is critical for the L10 ordering transition.

  2. High-performance core-shell PdPt@Pt/C catalysts via decorating PdPt alloy cores with Pt

    Science.gov (United States)

    Wu, Yan-Ni; Liao, Shi-Jun; Liang, Zhen-Xing; Yang, Li-Jun; Wang, Rong-Fang

    A core-shell structured low-Pt catalyst, PdPt@Pt/C, with high performance towards both methanol anodic oxidation and oxygen cathodic reduction, as well as in a single hydrogen/air fuel cell, is prepared by a novel two-step colloidal approach. For the anodic oxidation of methanol, the catalyst shows three times higher activity than commercial Tanaka 50 wt% Pt/C catalyst; furthermore, the ratio of forward current I f to backward current I b is high up to 1.04, whereas for general platinum catalysts the ratio is only ca. 0.70, indicating that this PdPt@Pt/C catalyst has high activity towards methanol anodic oxidation and good tolerance to the intermediates of methanol oxidation. The catalyst is characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The core-shell structure of the catalyst is revealed by XRD and TEM, and is also supported by underpotential deposition of hydrogen (UPDH). The high performance of the PdPt@Pt/C catalyst may make it a promising and competitive low-Pt catalyst for hydrogen fueled polymer electrolyte membrane fuel cell (PEMFC) or direct methanol fuel cell (DMFC) applications.

  3. Nonepitaxially grown nanopatterned Co-Pt alloys with out-of-plane magnetic anisotropy

    Science.gov (United States)

    Makarov, D.; Klimenta, F.; Fischer, S.; Liscio, F.; Schulze, S.; Hietschold, M.; Maret, M.; Albrecht, M.

    2009-12-01

    A study on the structural and magnetic properties of 5-nm-thick Co-Pt alloy films grown on thermally oxidized SiO2/Si(100) substrates as well as on self-assemblies of spherical SiO2 particles with sizes down to 10 nm is presented. An out-of-plane easy axis of magnetization was stabilized at deposition temperatures as low as 250 °C in a broad composition range between 40 and 70 at. % of Pt. Owing to the low deposition temperatures, no chemical long-range order is found. Thus, the strong out-of-plane magnetic anisotropy is expected to be caused by anisotropic short-range order effects. The magnetic behavior of CoPt alloys with an equiatomic composition grown on arrays of SiO2 particles was found to be similar to those on planar substrates. Structural investigations using high-resolution transmission electron microscopy revealed that a continuous CoPt layer has been formed, covering the particle tops and connecting them. The magnetic CoPt caps exhibit an out-of-plane easy axis for all particle sizes; however, no pronounced difference in coercive field with particle size was observed, which is associated with the specific morphology of the film structure.

  4. Controlling the alloy composition of PtNi nanocrystals using solid-state dewetting of bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Okkyun; Oh, Se An; Lee, Ji Yeon; Ha, Sung Soo; Kim, Jae Myung; Choi, Jung Won; Kim, Jin-Woo [Department of Physics and Photon Science & School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005 (Korea, Republic of); Kang, Hyon Chol [Department of Materials and Science Engineering, Chosun University, Gwangju 61542 (Korea, Republic of); Noh, Do Young, E-mail: dynoh@gist.ac.kr [Department of Physics and Photon Science & School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005 (Korea, Republic of)

    2016-05-15

    We demonstrate that solid-state dewetting of bilayer films is an effective way for obtaining bimetallic alloy nanocrystals of controlled composition. When a Pt–Ni bilayer film were annealed near 700 °C, Pt and Ni atoms inter-diffused to form a PtNi bimetallic alloy film. Upon annealing at higher temperatures, the bilayer films transformed into <111> oriented PtNi alloy nanocrystals in small-rhombicuboctahedron shape through solid-state dewetting process. The Pt content of the nanocrystals and the alloy films, estimated by applying the Vegard's law to the relaxed lattice constant, was closely related to the thickness of each layer in the as-grown bilayer films which can be readily controlled during bilayer deposition. - Highlights: • Composition control of PtNi nanoparticles using solid state dewetting is proposed. • PtNi alloy composition was controlled by thickness ratio of Pt–Ni bilayer films. • PtNi alloy nanocrystals were obtained in small-rhombicuboctahedron shape.

  5. Supergene neoformation of Pt-Ir-Fe-Ni alloys: multistage grains explain nugget formation in Ni-laterites

    Science.gov (United States)

    Aiglsperger, Thomas; Proenza, Joaquín A.; Font-Bardia, Mercè; Baurier-Aymat, Sandra; Galí, Salvador; Lewis, John F.; Longo, Francisco

    2016-11-01

    Ni-laterites from the Dominican Republic host rare but extremely platinum-group element (PGE)-rich chromitites (up to 17.5 ppm) without economic significance. These chromitites occur either included in saprolite (beneath the Mg discontinuity) or as `floating chromitites' within limonite (above the Mg discontinuity). Both chromitite types have similar iridium-group PGE (IPGE)-enriched chondrite normalized patterns; however, chromitites included in limonite show a pronounced positive Pt anomaly. Investigation of heavy mineral concentrates, obtained via hydroseparation techniques, led to the discovery of multistage PGE grains: (i) Os-Ru-Fe-(Ir) grains of porous appearance are overgrown by (ii) Ni-Fe-Ir and Ir-Fe-Ni-(Pt) phases which are overgrown by (iii) Pt-Ir-Fe-Ni mineral phases. Whereas Ir-dominated overgrowths prevail in chromitites from the saprolite, Pt-dominated overgrowths are observed within floating chromitites. The following formation model for multistage PGE grains is discussed: (i) hypogene platinum-group minerals (PGM) (e.g. laurite) are transformed to secondary PGM by desulphurization during serpentinization; (ii) at the stages of serpentinization and/or at the early stages of lateritization, Ir is mobilized and recrystallizes on porous surfaces of secondary PGM (serving as a natural catalyst) and (iii) at the late stages of lateritization, biogenic mediated neoformation (and accumulation) of Pt-Ir-Fe-Ni nanoparticles occurs. The evidence presented in this work demonstrates that in situ growth of Pt-Ir-Fe-Ni alloy nuggets of isometric symmetry is possible within Ni-laterites from the Dominican Republic.

  6. Formation of amorphous Ti-50at.%Pt by solid state reactions during mechanical alloying

    CSIR Research Space (South Africa)

    Mahlatji, ML

    2013-10-01

    Full Text Available , and the formation of a nanocrystalline parent austenite phase, which has been shown to have a weakening effect on the martensite transformation (Waitz and Karnthaler, 2004; Guimaraes, 2007). It is generally accepted that this is due to the increasing difficulty... nanocrystalline B2-austenite parent phase. Experimental methods Mechanical alloying Elemental powders of commercially pure Ti and Pt were mixed in a 1:1 atomic ratio. The Ti particles were spherical and the Pt particles were spongy and irregular (Figure 3). MA...

  7. Laser surface alloying of aluminium-transition metal alloys

    Directory of Open Access Journals (Sweden)

    Almeida, A.

    1998-04-01

    Full Text Available Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM alloys. Cr and Mo are particularly interesting alloying elements to produce stable highstrength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO2 laser. This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloys, over the last years.

    En el presente trabajo se estudia la aleación superficial mediante láser de aluminio con metales de transición. El cromo y el molibdeno son particularmente interesantes porque producen aleaciones de alta resistencia y por el bajo coeficiente de difusión y solución sólida en aluminio. Para producir estas aleaciones se ha seguido un procedimiento desarrollado en dos partes. En primer lugar, el material se alea usando una baja velocidad de procesado y en segundo lugar la estructura se modifica mediante un refinamiento posterior. Este procedimiento se ha empleado en la producción de aleaciones Al-Cr, Al-Mo y Al-Nb mediante aleación con láser de CO2 de polvos de Cr, Mo o Nb en aluminio y la aleación 7175. Este trabajo es una revisión del desarrollado en el Instituto Superior Técnico de Lisboa en los últimos años.

  8. Investigating half-metallicity in PtXSb alloys (X=V, Mn, Cr, Co) at ambient and high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Habbak, Enas L., E-mail: enas_habbak@yahoo.com [Department of Physics, Faculty of Science, Damietta University (Egypt); Shabara, Reham M., E-mail: rehamph@hotmail.com [Department of Physics, Faculty of Science, Damietta University (Egypt); Aly, Samy H., E-mail: samy.ha.aly@gmail.com [Department of Physics, Faculty of Science, Damietta University (Egypt); Yehia, Sherif, E-mail: sherif542002@yahoo.com [Department of Physics, Faculty of Science, Helwan University, Cairo (Egypt)

    2016-08-01

    The structural, electronic, magnetic and elastic properties of half-Heusler alloys PtMnSb, PtVSb, PtCrSb and PtCoSb are investigated using first-principles calculation based on Density Functional Theory DFT. The Full Potential local Orbital (FPLO) method, within the General Gradient Approximation (GGA) and Local Spin Density Approximation (LSDA), have been used. The calculated structural, electronic and magnetic properties are in good agreement with available experimental and theoretical data. Using GGA approximation, only PtVSb shows a half-metallic behavior with a spin-down band gap and total magnetic moment of 0.802 eV and 2 µ{sub B} respectively. Both of PtVSb and PtMnSb alloys are half-metallic with spin-down band gaps of 0.925 eV and 0.832 eV and magnetic moments of 2 µ{sub B} and 4 µ{sub B} respectively using LSDA approximation. The bulk modulus and its first pressure-derivative of these alloys are calculated using the modified Birch–Murnaghan equation of state (EOS). The effect of pressure on the lattice constant, energy gap and bulk modulus is investigated. Under pressure, PtMnSb and PtCrSb turn into half-metallic alloys at nearly 6 GPa and 27 GPa respectively using GGA approximation.

  9. Investigating half-metallicity in PtXSb alloys (X=V, Mn, Cr, Co) at ambient and high pressure

    Science.gov (United States)

    Habbak, Enas L.; Shabara, Reham M.; Aly, Samy H.; Yehia, Sherif

    2016-08-01

    The structural, electronic, magnetic and elastic properties of half-Heusler alloys PtMnSb, PtVSb, PtCrSb and PtCoSb are investigated using first-principles calculation based on Density Functional Theory DFT. The Full Potential local Orbital (FPLO) method, within the General Gradient Approximation (GGA) and Local Spin Density Approximation (LSDA), have been used. The calculated structural, electronic and magnetic properties are in good agreement with available experimental and theoretical data. Using GGA approximation, only PtVSb shows a half-metallic behavior with a spin-down band gap and total magnetic moment of 0.802 eV and 2 μB respectively. Both of PtVSb and PtMnSb alloys are half-metallic with spin-down band gaps of 0.925 eV and 0.832 eV and magnetic moments of 2 μB and 4 μB respectively using LSDA approximation. The bulk modulus and its first pressure-derivative of these alloys are calculated using the modified Birch-Murnaghan equation of state (EOS). The effect of pressure on the lattice constant, energy gap and bulk modulus is investigated. Under pressure, PtMnSb and PtCrSb turn into half-metallic alloys at nearly 6 GPa and 27 GPa respectively using GGA approximation.

  10. Structure and Stability of Pt-Y Alloy Particles for Oxygen Reduction Studied by Electron Microscopy

    DEFF Research Database (Denmark)

    Deiana, Davide; Wagner, Jakob Birkedal; Hansen, Thomas Willum

    2015-01-01

    Platinum-yttrium alloy nanoparticles show both a high activity and stability for the oxygen reduction reaction. The catalysts were prepared by magnetron sputter aggregation and mass filtration providing a model catalyst system with a narrow size distribution. The structure and stability...... of nanostructured Pt-Y alloy catalysts were studied using transmission electron microscopy techniques. Using elemental X-ray mapping and high-resolution electron microscopy, the specific compositional structure and distribution of the individual nanoparticles was unraveled and the stability assessed. Studying...... the catalyst after reaction and after aging tests shows the development of a core-shell type structure after being exposed to reaction conditions....

  11. Structure and Stability of Pt-Y Alloy Particles for Oxygen Reduction Studied by Electron Microscopy

    DEFF Research Database (Denmark)

    Deiana, Davide; Wagner, Jakob Birkedal; Hansen, Thomas Willum

    2015-01-01

    Platinum-yttrium alloy nanoparticles show both a high activity and stability for the oxygen reduction reaction. The catalysts were prepared by magnetron sputter aggregation and mass filtration providing a model catalyst system with a narrow size distribution. The structure and stability...... of nanostructured Pt-Y alloy catalysts were studied using transmission electron microscopy techniques. Using elemental X-ray mapping and high-resolution electron microscopy, the specific compositional structure and distribution of the individual nanoparticles was unraveled and the stability assessed. Studying...... the catalyst after reaction and after aging tests shows the development of a core-shell type structure after being exposed to reaction conditions....

  12. Low-cost counter electrodes from CoPt alloys for efficient dye-sensitized solar cells.

    Science.gov (United States)

    He, Benlin; Meng, Xin; Tang, Qunwei

    2014-04-09

    Dye-sensitized solar cell (DSSC) is a promising solution to global energy and environmental problems because of its merits on clean, low cost, high efficiency, good durability, and easy fabrication. However, the commercial application of DSSCs has been hindered by the high expenses of counter electrodes (CEs) and limited power conversion efficiency. With an aim of significantly enhancing the power conversion efficiency, here we pioneerly synthesize CoPt alloys using an electrochemically codeposition technique which are employed as CEs for DSSCs. Owing to the rapid charge transfer, electrical conduction, and electrocatalysis, power conversion efficiencies of CoPt-based DSSCs have been markedly elevated in comparison with the DSSC using Pt CE. The DSSC employing CoPt0.02 alloy CE gives an impressive power conversion efficiency of 10.23%. The high conversion efficiency, low cost in combination with simple preparation, and scalability demonstrates the potential use of CoPt alloys in robust DSSCs.

  13. Electrooxidation of ethanol on Pt and PtRu surfaces investigated by ATR surface-enhanced infrared absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcio F.; Camara, Giuseppe A., E-mail: giuseppe.silva@ufms.br [Departamento de Quimica, Universidade Federal do Mato Grosso do Sul, Campo Grande-MS (Brazil); Batista, Bruno C.; Boscheto, Emerson [Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos-SP, (Brazil); Varela, Hamilton, E-mail: varela@iqsc.usp.br [Ertl Center for Electrochemistry and Catalysis, Gwangju Institute of Science and Technology (GIST), Gwangju (Korea, Republic of)

    2012-05-15

    Herein, it was investigated for the first time the electro-oxidation of ethanol on Pt and PtRu electrodeposits in acidic media by using in situ surface enhanced infrared absorption spectroscopy with attenuated total reflection (ATR-SEIRAS). The experimental setup circumvents the weak absorbance signals related to adsorbed species, usually observed for rough, electrodeposited surfaces, and allows a full description of the CO coverage with the potential for both catalysts. The dynamics of adsorption-oxidation of CO was accessed by ATR-SEIRAS experiments (involving four ethanol concentrations) and correlated with expressions derived from a simple kinetic model. Kinetic analysis suggests that the growing of the CO adsorbed layer is nor influenced by the presence of Ru neither by the concentration of ethanol. The results suggest that the C-C scission is not related to the presence of Ru and probably happens at Pt sites. (author)

  14. One-step synthesis of PtPdAu ternary alloy nanoparticles on graphene with superior methanol electrooxidation activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuzhen; Gu Yonge; Lin Shaoxiong; Wei Jinping; Wang Zaihua [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Wang Chunming, E-mail: wangcm@lzu.edu.cn [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Du Yongling; Ye Weichun [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)

    2011-10-01

    Highlights: > PtPdAu nanoparticles were synthesized on graphene sheets via chemical reduction method. > The prepared PtPdAu nanoparticles were ternary alloy with fcc structure. > The catalyst exhibited superior catalytic activity and stability for MOR in alkaline. - Abstract: Well-dispersed PtPdAu ternary alloy nanoparticles were synthesized on graphene sheets via a simple one-step chemical reduction method in ethylene glycol (EG) and water system, in which EG served as both reductive and dispersing agent. The electrocatalytic activity of PtPdAu/G was tested by methanol oxidation reaction (MOR). The catalyst was further characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), which indicated that the as-synthesized PtPdAu nanoparticles with alloy structures were successfully dispersed on the graphene sheets. Electrocatalytic properties of the catalyst for MOR in alkaline have been investigated by cyclic voltammetry (CV), chronoamperometry and Tafel curves. The electrocatalytic activity and stability of PtPdAu/G were superior to PtPd/G, PtAu/G and Pt/G. In addition, the anodic peak current on PtPdAu/G catalyst was proportional to the concentration of methanol in the range of 0.05-1.00 M. This study implies that the prepared catalyst have great potential applications in fuel cells.

  15. Formation and Characterization of Pd, Pt and Pd-Pt Alloy Films on Polyimide by Catalyst-Enhanced Chemical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jinlan; CHENG Yinhua; Yousuf Hamadan; YU Kaichao

    2007-01-01

    Platinum, palladium and their alloy films on polyimide were formed by catalyst-enhanced chemical vapor deposition (CVD) in the carrier gas (N2, O2) at 220-300 ℃ under reduced pressure and normal pressure. The deposition of palladium complexes [ Pd((η3-allyl)(hfac) and Pd(hfac)2 ] gives pure palladium film,while the deposition of platinum needs the enhancement of palladium complex by mixing precursor platinum complex Pt(COD)Me2 and palladium complex in the same chamber. The co-deposition of Pd and Pt metals was used for the deposition of alloy films. During the CVD of palladium-platinum alloy, the Pd/Pt atomic ratios vary under different co-deposition conditions. These metal films were characterized by XPS and SEM, and show a good adhesive property.

  16. Electrochemical Detection of Hydroxylamine via Au-Pt Alloy Nanoparticle-modified Single-walled Carbon Nanotube Electrodes.

    Science.gov (United States)

    Geng, Yanfang; Ko, Euna; Tran, Van-Khue; Chung, Woo Sung; Park, Chan Ho; Kim, Min Ki; Jin, Ga Hyun; Seong, Gi Hun

    2017-01-01

    In the present study, we developed an electrochemical sensor for highly sensitive detection of hydroxylamine using Au-Pt alloy nanoparticles. Au-Pt alloy nanoparticles were electrochemically deposited on a working electrode made of single-walled carbon nanotubes. The framework composition in the Au-Pt alloy nanoparticle was easily controlled by adjusting the Au(3+):Pt(4+) composition ratio in the precursor solution. Morphological and chemical characterizations of the resulting Au-Pt alloy nanoparticles were performed using field emission scanning electron microscopy, X-ray diffraction, and energy dispersion X-ray spectroscopy. When the Au(3+):Pt(4+) ratio in the precursor solution was 1:5, the ratio of Au:Pt atom in alloy nanoparticle was about 6:4. Au60Pt40 alloy nanoparticles were found to have the optimum synthetic ratio for hydroxylamine detection. The electrocatalytic performance of Au-Pt alloy nanoparticles in the presence of hydroxylamine was also characterized using cyclic voltammetry, differential pulse voltammetry, and chronoamperometry. In the chronoamperometric detection of hydroxylamine, the sensor exhibited a detection limit of 0.80 μM (S/N = 3) and a high sensitivity of 184 μA mM(-1) cm(-2). Moreover, the amperometric response of the sensor in 1 mM hydroxylamine was stable for a long time (450 s). Long-term stability tests showed that the current responses to hydroxylamine were 96, 91 and 85% of the initial signal value after storage for 5, 10, and 20 days, respectively.

  17. High-Yield Solvothermal Formation of Magnetic CoPt Alloy Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zongtao [ORNL; Blom, Douglas Allen [ORNL; Gai, Zheng [ORNL; Thompson, James R [ORNL; Shen, Jian [ORNL; Dai, Sheng [ORNL

    2003-01-01

    One-dimensional (1D) magnetic nanomaterials have attracted much attention recently because of their applications in magnetic recording and spintronics. Nevertheless, it remains a challenge to prepare free-standing magnetic nanowires in high yield. This Communication reports the successful high-yield synthesis of an interesting 1D ferromagnetic CoPt alloy by direct decomposition of platinum acetylacetonate and cobalt carbonyl compound in ethylenediamine solvent through a solvothermal reaction. The CoPt alloy nanowires obtained have a tunable diameter of 10-50 nm and a length along the longitudinal axis of up to several microns, depending on crystallization temperature and reaction time. A unique formation mechanism involving coarsening and ripening under solvothermal conditions was discovered. This research opens new opportunities in synthesizing nanomaterials through low-temperature solvothermal processes.

  18. Shear bond strength of a hot pressed Au-Pd-Pt alloy-porcelain dental composite.

    Science.gov (United States)

    Henriques, B; Soares, D; Silva, F S

    2011-11-01

    The purpose of this study was to evaluate the effect of hot pressing on the shear bond strength of a Au-Pt-Pd alloy-porcelain composite. Several metal-porcelain composites specimens were produced by two different routes: conventional porcelain fused to metal (PFM) and hot pressing. In the latter case, porcelain was hot pressed onto a polished surface (PPPS) as well as a roughened one (PPRS). Bond strength of all metal-porcelain composites were assessed by the means of a shear test performed in a universal test machine (crosshead speed: 0.5 mm/min) until fracture. Interfaces of fractured specimens as well as undestroyed interface specimens were examined with optical microscope, stereomicroscope, Scanning Electron Microscope (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS). The data were analyzed using one-way ANOVA followed by Tuckey's test (p0.05). This study shows that it is possible to significantly improve metal-porcelain bond strength by applying an overpressure during porcelain firing. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Surface energy of metal alloy nanoparticles

    Science.gov (United States)

    Takrori, Fahed M.; Ayyad, Ahmed

    2017-04-01

    The measurement of surface energy of alloy nanoparticles experimentally is still a challenge therefore theoretical work is necessary to estimate its value. In continuation of our previous work on the calculation of the surface energy of pure metallic nanoparticles we have extended our work to calculate the surface energy of different alloy systems, namely, Co-Ni, Au-Cu, Cu-Al, Cu-Mg and Mo-Cs binary alloys. It is shown that the surface energy of metallic binary alloy decreases with decreasing particle size approaching relatively small values at small sizes. When both metals in the alloy obey the Hume-Rothery rules, the difference in the surface energy is small at the macroscopic as well as in the nano-scale. However when the alloy deviated from these rules the difference in surface energy is large in the macroscopic and in the nano scales. Interestingly when solid solution formation is not possible at the macroscopic scale according to the Hume-Rothery rules, it is shown it may form at the nano-scale. To our knowledge these findings here are presented for the first time and is challenging from fundamental as well as technological point of views.

  20. Ab initio study of structural, electronic, and thermal properties of Pt1-xPdx alloys

    Science.gov (United States)

    Ahmed, Shabbir; Zafar, Muhammad; Shakil, M.; Choudhary, M. A.; Hashmi, Muhammad Raza-Ur-Rehman

    2017-01-01

    We report a systematic theoretical study of Pt1-xPdx alloys using ab initio density functional theory (DFT) by pseudo potential method. We have used super cell approach to investigate structural, electronic and thermal properties of Platinum (Pt), Palladium (Pd) and their alloys Pt1-xPdx(x = 0.00, 0.25, 0.50, 0.75, 1.00). The calculated lattice constants and bulk moduli are in good agreement with available literature data. The results of electronic properties revealed that the alloys are metallic in nature. The thermal properties were investigated through density functional perturbation theory (DFPT) and quasi-harmonic approximation. The contribution to the free energy from the lattice vibration was calculated using the phonon densities of states (DOS) derived by means of the linear-response theory. The DFPT with quasi-harmonic approximation methods was applied to determine the phonon DOS and thermal quantities i.e., the Debye temperatures, vibration energy, entropy and constant-volume specific heat.

  1. In-situ studies of the TGO growth stresses and the martensitic transformation in the B2 phase in commercial Pt-modified NiAl and NiCoCrAlY bond coat alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hovis, D.; Hu, L.; Reddy, A.; Heuer, A.H. [Dept. of Materials Science and Engineering, Case Western Reserve Univ., Cleveland, OH (United States); Paulikas, A.P.; Veal, B.W. [Materials Science Div., Argonne National Lab., Argonne, IL (United States)

    2007-12-15

    Oxide growth stresses were measured in situ at 1100 C on commercial Pt-modified NiAl and NiCoCrAlY bond coat alloys using synchrotron X-rays. Measurements were taken on samples that had no preoxidation, as well as on samples that had experienced 24 one-hour thermal exposures at 1150 C, a condition known to induce rumpling in the Pt-modified NiAl alloy, but not in the NiCoCrAlY alloy. The NiCoCrAlY alloy showed continuous stress relaxation under all conditions, whereas the Pt-modified NiAl alloys would typically stabilize at a fixed (often non-zero) stress suggesting a higher creep strength in the 'Thermally Grown Oxide' on the latter alloy, though the precise behavior was dependent on initial surface preparation. The formation of martensite in the Pt-modified NiAl alloys was also observed upon cooling and occurred at temperatures below 200 C for all of the samples observed. Based on existing models, this M{sub s} temperature is too low to account for the rumpling observed in these alloys. (orig.)

  2. In-situ studies of the TGO growth stresses and the martensitic transformation in the B2 phase in commercial Pt-modified NiAl and NiCoCrAlY bond coat alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Hovis, D.; Hu, L.; Reddy, A.; Heuer, A. H.; Paulikas, A. P.; Veal, B. W. (Materials Science Division); (Case Western Reserve Univ.)

    2007-12-01

    Oxide growth stresses were measured in situ at 1100 C on commercial Pt-modified NiAl and NiCoCrAlY bond coat alloys using synchrotron X-rays. Measurements were taken on samples that had no preoxidation, as well as on samples that had experienced 24 one-hour thermal exposures at 1150 C, a condition known to induce rumpling in the Pt-modified NiAl alloy, but not in the NiCoCrAlY alloy. The NiCoCrAlY alloy showed continuous stress relaxation under all conditions, whereas the Pt-modified NiAl alloys would typically stabilize at a fixed (often non-zero) stress suggesting a higher creep strength in the 'Thermally Grown Oxide' on the latter alloy, though the precise behavior was dependent on initial surface preparation. The formation of martensite in the Pt-modified NiAl alloys was also observed upon cooling and occurred at temperatures below 200 C for all of the samples observed. Based on existing models, this M{sub s} temperature is too low to account for the rumpling observed in these alloys.

  3. Oxygen reduction activity of Pt and Pt Co-alloy catalysts: A comparison between kinetic measurements and polymer electrolyte fuel cell experiments

    Energy Technology Data Exchange (ETDEWEB)

    Paulus, U.A.; Draschil, C.; Schmidt, T.J. [PSI and Lawrence Berkeley National Lab (United States); Stamenkovic, V. [Lawrence Berkeley National Lab (United States); Markovic, N.M. [Lawrence Berkeley National Lab (United States); Ross, P.N. [Lawrence Berkeley National Lab (United States); Scherer, G.G.

    2002-03-01

    The oxygen reduction reaction (orr) has been studied on various carbon supported Pt Co alloys in comparison to carbon supported platinum in perchloric acid. The applied thin film rotating ring-disk electrode (rrde) technique allows both the investigation of the orr and their kinetic analysis and in parallel the detection and quantification of the amount of peroxide produced during the orr. Polymer Electrolyte Fuel cell (PEFC) experiments using commercially available gas diffusion electrodes (gdes) with Pt/C and Pt Co/C respectively as active layers were carried out to investigate the above characterized catalysts under real PEFC conditions. (author)

  4. Potential High-Temperature Shape-Memory Alloys Identified in the Ti(Ni,Pt) System

    Science.gov (United States)

    Noebe, Ronald D.; Biles, Tiffany A.; Garg, Anita; Nathal, Michael V.

    2004-01-01

    "Shape memory" is a unique property of certain alloys that, when deformed (within certain strain limits) at low temperatures, will remember and recover to their original predeformed shape upon heating. It occurs when an alloy is deformed in the low-temperature martensitic phase and is then heated above its transformation temperature back to an austenitic state. As the material passes through this solid-state phase transformation on heating, it also recovers its original shape. This behavior is widely exploited, near room temperature, in commercially available NiTi alloys for connectors, couplings, valves, actuators, stents, and other medical and dental devices. In addition, there are limitless applications in the aerospace, automotive, chemical processing, and many other industries for materials that exhibit this type of shape-memory behavior at higher temperatures. But for high temperatures, there are currently no commercial shape-memory alloys. Although there are significant challenges to the development of high-temperature shape-memory alloys, at the NASA Glenn Research Center we have identified a series of alloy compositions in the Ti-Ni-Pt system that show great promise as potential high-temperature shape-memory materials.

  5. A branching NiCuPt alloy counter electrode for high-efficiency dye-sensitized solar cell

    Science.gov (United States)

    Yang, Peizhi; Tang, Qunwei

    2016-01-01

    A rising objective for high-efficiency dye-sensitized solar cells (DSSCs) is to create extraordinary and cost-effective counter electrode (CE) electrocatalysts. We present here a branching NiCuPt alloy CE synthesized by electrodepositing Ni on ZnO microrod templates and subsequently growing branched Cu as well as suffering from a galvanic displacement for Pt uptake. The resultant NiCuPt alloy CE displays a promising electrocatalytic activity toward redox electrolyte having I-/I3- couples. An impressive power conversion efficiency of 9.66% is yielded for the liquid-junction DSSC platform.

  6. One pot aqueous synthesis of nanoporous Au85Pt15 material with surface bound Pt islands: an efficient methanol tolerant ORR catalyst

    Science.gov (United States)

    Anandha Ganesh, P.; Jeyakumar, D.

    2014-10-01

    For the first time, we are reporting the synthesis of Au100-xPtx nanoporous materials in the size range of 7-10 nm through the galvanic replacement of Ag by Pt from Au100-xAg2x spherical nano-alloys (x = 20, 15, 10 and 5) in an aqueous medium. The galvanic replacement reaction follows the `Volmer-Weber' growth mode, resulting in the formation of surface bound platinum islands on a nanoporous gold surface. The high angle annular dark field image and low angle X-ray diffraction studies confirm the presence of nanoporous Au100-xPtx NPs. The electrochemical studies using the Au85Pt15/C catalyst show excellent methanol tolerance behaviour and better performance towards oxygen reduction reaction (ORR) in terms of high mass activity, mass-specific activity and figure of merit (FOM) when compared to HiSPEC Pt/C commercial catalyst. Preliminary studies on a full cell using nanoporous Au85Pt15/C (loading 1.0 mg cm-2) as the cathode material and Pt-Ru/C (loading: 0.5 mg cm-2) as the anode material performed better (38 mW cm-2) than the HiSPEC Pt/C cathode material (16 mW cm-2).For the first time, we are reporting the synthesis of Au100-xPtx nanoporous materials in the size range of 7-10 nm through the galvanic replacement of Ag by Pt from Au100-xAg2x spherical nano-alloys (x = 20, 15, 10 and 5) in an aqueous medium. The galvanic replacement reaction follows the `Volmer-Weber' growth mode, resulting in the formation of surface bound platinum islands on a nanoporous gold surface. The high angle annular dark field image and low angle X-ray diffraction studies confirm the presence of nanoporous Au100-xPtx NPs. The electrochemical studies using the Au85Pt15/C catalyst show excellent methanol tolerance behaviour and better performance towards oxygen reduction reaction (ORR) in terms of high mass activity, mass-specific activity and figure of merit (FOM) when compared to HiSPEC Pt/C commercial catalyst. Preliminary studies on a full cell using nanoporous Au85Pt15/C (loading 1.0 mg

  7. New insights into the effects of alloying Pt with Ni on oxygen reduction reaction mechanisms in acid medium: a first-principles study.

    Science.gov (United States)

    Ou, Li-Hui

    2015-11-01

    The effects of alloying Pt with transition metal Ni on oxygen reduction reaction (ORR) mechanisms was investigated based on a systematic density functional theory (DFT) calculation explored in the present work. New insights into the ORR mechanisms were reported at the atomic level on Pt-segregated Pt3Ni(111). Only one molecular chemisorption state with the end-on OOH configuration was identified through geometry optimization and minimum energy path (MEP) analysis; top-bridge-top configuration as observed on pure Pt(111) was not identified on Pt-segregated Pt3Ni(111), indicating that alloying Pt with Ni influences the intermediates of ORR, and leads to only the dissociation mechanism of chemisorption state OOH species being involved in acid medium on Pt-segregated Pt3Ni(111). By contrast, the dissociation mechanisms of chemisorbed O2 molecule with top-bridge-top configuration and OOH species both were involved on pure Pt(111). The rds of the entire four-electron ORR was changed after Pt alloying with Ni. The rds of the entire ORR is the proton and electron transfer to O2 to form OOH on Pt-segregated Pt3Ni(111), whereas it is the reaction of O atom protonation to form OH species on pure Pt(111), indicating that sublayer Ni strongly influences the rds of ORR. The comparison of the ORR mechanisms explained that Pt3Ni alloy enhanced the ORR electrocatalytic activity more than pure Pt. The effect of electrode potential on ORR pathway on the pure Pt and Pt3Ni alloy was considered to obtain further insights into the electrochemical reduction of O2. Results showed that the proton and electron transfer becomes difficult at high potential. The ORR can easily proceed when the electrode potential lowers. For pure Pt- and Pt-based alloys, this phenomenon may imply the origin of the overpotential.

  8. Preparation of AuPt alloy foam films and their superior electrocatalytic activity for the oxidation of formic acid.

    Science.gov (United States)

    Liu, Jun; Cao, Ling; Huang, Wei; Li, Zelin

    2011-09-01

    AuPt alloy films with three-dimensional (3D) hierarchical pores consisting of interconnected dendrite walls were successfully fabricated by a strategy of cathodic codeposition utilizing the hydrogen bubble dynamic template. The foam films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Due to the special porous structure, the electronic property, and the assembly effect, the AuPt alloy foam films show superior electrocatalytic activity toward the electrooxidation of formic acid in acidic solution, and the prepared 3D porous AuPt alloy films also show high activity and long stability for the electrocatalytic oxidation of methanol, where synergistic effect plays an important role in addition to the electronic effect and assembly effect. These findings provide more insights into the AuPt bimetallic nanomaterials for electrocatalytic applications.

  9. Adsorption and coupling of 4-aminophenol on Pt(111) surfaces

    Science.gov (United States)

    Otero-Irurueta, G.; Martínez, J. I.; Bueno, R. A.; Palomares, F. J.; Salavagione, H. J.; Singh, M. K.; Méndez, J.; Ellis, G. J.; López, M. F.; Martín-Gago, J. A.

    2016-04-01

    We have deposited 4-aminophenol on Pt(111) surfaces in ultra-high vacuum and studied the strength of its adsorption through a combination of STM, LEED, XPS and ab initio calculations. Although an ordered (2√3 × 2√3)R30° phase appears, we have observed that molecule-substrate interaction dominates the adsorption geometry and properties of the system. At RT the high catalytic activity of Pt induces aminophenol to lose the H atom from the hydroxyl group, and a proportion of the molecules lose the complete hydroxyl group. After annealing above 420 K, all deposited aminophenol molecules have lost the OH moiety and some hydrogen atoms from the amino groups. At this temperature, short single-molecule oligomer chains can be observed. These chains are the product of a new reaction that proceeds via the coupling of radical species that is favored by surface diffusion.

  10. Reversible Vertical Manipulations of Single Pt Adatom on Pt(111)Surface with a Triple-Apex Tip

    Institute of Scientific and Technical Information of China (English)

    XIE Yi-Qun; LIU Qing-Wei; ZHANG Peng; LI Yu-Fen; GAN Fu-Xi; ZHUANG Jun

    2008-01-01

    @@ With a triple-apex tip,we investigate theoretically the vertical manipulation of single Pt adatom on the Pt(111)surface.The adatom adsorbed on the fcc site of the flat Pt(111)surface can be transferred vertically to the tip by adjusting the tip height properly.Moreover,based on the strong vertical trapping ability and the relatively weak lateral trapping ability of the tip,we propose a simple method to realize a reversible vertical manipulation of the Pt adatom from the highly coordinated sites,the kink and the step sites,of the stepped Pt(111)surface.All the vertical manjpulations are completed using only the atomic force between the tip and the adatom,without the electric field.

  11. Surface core-level shifts for Pt single-crystal surfaces

    Science.gov (United States)

    Baetzold, R. C.; Apai, G.; Shustorovich, E.; Jaeger, R.

    1982-10-01

    The (111) and (110) surfaces of Pt, clean, oxidized, and covered by CO, have been investigated for surface 4f core-level binding-energy shifts. For the (111) face the surface Pt4f72 core level was shifted by 0.40+/-0.05 eV to lower binding energy relative to the bulk peak. On the (110)-(1×2) reconstructed surface similarly shifted peaks at 0.21+/-0.05 and 0.55+/-0.05 eV were observed. Chemisorbed carbon monoxide shifts the Pt(111) surface-related core level by 1.3 eV to higher binding energy. Formation of subsurface oxygen did not produce changes in the Pt(111)4f72 core-level binding energies. The results obtained are explained and their possible implications are discussed.

  12. Theoretical investigation of water formation on Rh and Pt Surfaces

    Science.gov (United States)

    Wilke, Steffen; Natoli, Vincent; Cohen, Morrel H.

    2000-06-01

    Catalytic water formation from adsorbed H and O adatoms is a fundamental reaction step in a variety of technologically important reactions involving organic molecules. In particular, the water-formation rate determines the selectivity of the catalytic partial oxidation of methane to syngas. In this report we present a theoretical investigation of the potential-energy diagram for water formation from adsorbed O and H species on Rh(111) and Pt(111) surfaces. The study is based on accurate first-principles calculations applying density-functional theory. Our results are compared to the potential-energy diagram for this reaction inferred from experimental data by Hickman and Schmidt [AIChE. J. 39, 1164 (1993)]. The calculations essentially reproduce the scheme of Hickman and Schmidt for water formation on Rh(111) with the important difference that the OH molecule is significantly more stable than assumed by Hickman and Schmidt. On Pt(111) surfaces, however, the calculations predict a barrier to OH formation very similar to that found on Rh(111). In particular, the calculated barrier to OH formation of about 20 kcal/mol seems to contradict the small 2.5 kcal/mol barrier assumed in the Hickman-Schmidt scheme and the observed large rate of water formation on Pt. A possible explanation for the apparent discrepancy between the large calculated barrier for OH formation on Pt and the experimentally observed rapid formation of water even at low temperatures is that the active sites for water formation on Pt are at "defect" sites and not on the ideally flat terraces. A similar conclusion has been reached by Verheij and co-workers [Surf. Sci. 371, 100 (1997); Chem. Phys. Lett. 174, 449 (1990); Surf. Sci. 272, 276 (1991)], who did detailed experimental work on water formation on Pt surfaces. Analyzing our results, we develop an explicit picture of the interaction processes governing the formation of OH groups. This picture rationalizes the calculated weak dependence of OH

  13. Ab initio study of effect of Co substitution on the magnetic properties of Ni and Pt-based Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Tufan, E-mail: tufanroyburdwan@gmail.com [Theory and Simulations Lab, HRDS, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094 (India); Chakrabarti, Aparna [Theory and Simulations Lab, HRDS, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094 (India)

    2017-04-25

    Using density functional theory based calculations, we have carried out in-depth studies of effect of Co substitution on the magnetic properties of Ni and Pt-based shape memory alloys. We show the systematic variation of the total magnetic moment, as a function of Co doping. A detailed analysis of evolution of Heisenberg exchange coupling parameters as a function of Co doping has been presented here. The strength of RKKY type of exchange interaction is found to decay with the increase of Co doping. We calculate and show the trend, how the Curie temperature of the systems vary with the Co doping. - Highlights: • We discuss the effects of Co doping on magnetic properties of Ni/Pt based Heusler alloys. • Indirect RKKY interaction is maximum for shape memory alloy like systems. • We predict Pt{sub 2}MnSn as a probable ferromagnetic shape memory alloy.

  14. NEW DEVELOPMENT IN DOUBLE GLOW SURFACE ALLOYING TECHNOLOGY

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Several kinds of special alloys are produced on the surfaces of iron and steels by using double glow surface alloying technology. Surface Ni-Cr-Mo-Nb alloy,surface precipitation hardening high speed steel and surface precipitation hardening stainless steel are introduced.

  15. Pt, PtCo and PtNi electrocatalysts prepared with mechanical alloying for oxygen reduction reaction in alkaline medium; Electrocatalizadores de Pt, PtCo y PtNi preparados por aleado mecanico para la reaccion de reduccion de oxigeno en medio alcalino

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Contreras, M.A.; Fernandez-Valverde, S.M. [Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de Mexico (Mexico)]. E-mail: miguel.garcia@inin.gob.mx; Vargas-Garcia, J.R. [ESIQIE-IPN, Mexico D.F. (Mexico

    2009-09-15

    Pt, PtCo and PtNi electrocatalysts were prepared using mechanical alloying and their electrocatalytic activity was investigated for oxygen reduction reaction (ORR) in KOH 0.5 M using cyclic voltametry and rotary disc electrode (RDE) techniques. The electrocatalysts were characterized using x-ray diffraction, sweep electron microscopy, dispersive x-ray transmission and chemical analysis. The physical characterization indicated that all the electrocatalysts are alloys formed by agglomerated particles composed of nanocrystals. The chemical analysis showed the presence of iron in the alloys. For the electrocatalytic evaluation, polarization curves and Koutecky-Levich and Tafel graphs were obtained to determine the kinetic parameters of the electrocatalysts in the study. With the same experimental conditions, the PtCo presented better electrocatalytic performance with a higher exchange current density. [Spanish] Se prepararon electrocatalizadores de Pt, PtCo y PtNi por aleado mecanico y se investigo su actividad electrocatalitica para la reaccion de reduccion de oxigeno (RRO) en KOH 0.5 M utilizando las tecnicas de Voltametria ciclica y Electrodo de Disco Rotatorio. Los electrocatalizadores se caracterizaron por difraccion de rayos X, Microscopia electronica de Barrido, de Transmision y analisis quimico por dispersion de rayos X. La caracterizacion fisica indico que todos los electrocatalizadores son aleaciones formadas de particulas aglomeradas, compuestas de nanocristales. El analisis quimico mostro la presencia de hierro en las aleaciones. Para la evaluacion electrocatalitica se obtuvieron curvas de polarizacion, graficas de Koutecky-Levich y de Tafel para determinar los parametros cineticos de los electrocatalizadores en estudio. En las mismas condiciones experimentales, el PtCo presento el mejor desempeno electrocatalitico con la densidad de corriente de intercambio mas alta.

  16. Thermomechanical behavior of NiTiPdPt high temperature shape memory alloy springs

    Science.gov (United States)

    Nicholson, D. E.; Padula, S. A., II; Noebe, R. D.; Benafan, O.; Vaidyanathan, R.

    2014-12-01

    Transformation strains in high temperature shape memory alloys (HTSMAs) are generally smaller than for conventional NiTi alloys and can be purposefully limited in cases where stability and repeatability at elevated temperatures are desired. Yet such alloys can still be used in actuator applications that require large strokes when used in the form of springs. Thus there is a need to understand the thermomechanical behavior of shape memory alloy spring actuators, particularly those consisting of alternative alloys. In this work, a modular test setup was assembled with the objective of acquiring stroke, stress, temperature, and moment data in real time during joule heating and forced convective cooling of Ni19.5Ti50.5Pd25Pt5 HTSMA springs. The spring actuators were subjected to both monotonic axial loading and thermomechanical cycling. The role of rotational constraints (i.e., by restricting rotation or allowing for free rotation at the ends of the springs) on stroke performance was also assessed. Finally, recognizing that evolution in the material microstructure can result in changes in HTSMA spring geometry, the effect of material microstructural evolution on spring performance was examined. This was done by taking into consideration the changes in geometry that occurred during thermomechanical cycling. This work thus provides insight into designing with HTSMA springs and predicting their thermomechanical performance.

  17. Effect of Annealing Temperature on the Formation of Silicides and the Surface Morphologies of PtSi Films

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effect of annealing temperature on the formation of the PtSi phase, distribution of silicides and the surface morphologies of silicides films is investigated by XPS, AFM. It is shown that the phase sequences of the films change from Pt-Pt2Si-PtSi-Si to Pt+Pt2Si+PtSi-PtSi-Si or Pt+Pt2Si+PtSi-PtSi-Si with an increase of annealing temperature and the reason for the formation of mixed layers is discussed.

  18. CO surface electrochemistry on Pt-nanoparticles: A selective review

    Energy Technology Data Exchange (ETDEWEB)

    Mayrhofer, K.J.J. [Materials Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Arenz, M. [Materials Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Blizanac, B.B. [Materials Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Stamenkovic, V. [Materials Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Ross, P.N. [Materials Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Markovic, N.M. [Materials Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)]. E-mail: nmmarkovic@lbl.gov

    2005-09-05

    Oxidation of CO on platinum nanoparticles ranging in size from 1 to 30 nm has been studied in acid electrolytes. We found that Pt nanoparticles, characterized by transmission electron microscopy, are not perfect cubo-octahedrons and that large particles have 'rougher' surfaces than small particles. The importance of 'defect' sites for the catalytic properties of nanoparticles was probed by using infrared reflection absorption spectroscopy (IRAS) and rotating disk electrode. From IRAS experiments, by monitoring how the vibrational frequency of a-top CO ({nu} {sub CO}) as well as the concomitant development of dissolved CO{sub 2} are affected by the number of defects on Pt nanoparticles, we suggested that defects play a significant role in CO 'clustering' on nanoparticles, causing CO to decrease/increase in local coverage, which results in anomalous redshift/blueshift {nu} {sub CO} frequency deviations from the normal Stark-tuning behavior. The observed {nu} {sub CO} deviations are accompanied by CO{sub 2} production, which increases by increasing the number of defects on the nanoparticles, i.e., 1 {<=} 2 < 5 << 30 nm. We suggest that the catalytic activity for CO adlayer oxidation (CO stripping) is predominantly influenced by the ability of the surface to dissociate water and to form OH{sub ad} on defect sites. We demonstrate that the catalytic activity of Pt nanoparticles for CO oxidation under the condition of continuous CO supply to the surface depends on the pre-history of the electrode. If the surface is precovered by CO, the particle size has a negligible effect on CO oxidation. However, on an oxide-precovered surface CO bulk oxidation increases with decreasing particle size, i.e., with increasing oxophilicity of the particles. We found, if specific sites on the surface are active for OH adsorption, then the electrocatalytic activity for CO oxidation changes as the concentration of these sites changes with particle size.

  19. Surface structure and relaxation during the oxidation of carbon monoxide on Pt Pd bimetallic surfaces

    Science.gov (United States)

    Lucas, C. A.; Markovic, N. M.; Ball, M.; Stamenkovic, V.; Climent, V.; Ross, P. N.

    2001-05-01

    The atomic structure and surface relaxation of Pd monolayer on Pt(1 1 1) has been studied by surface X-ray scattering, in an aqueous environment under electrostatic potential control, during the adsorption and oxidation of carbon monoxide. The results show that the Pd-Pt layer spacing contracts at the onset of CO oxidation before the Pd adlayer forms an oxide structure that is incommensurate with the Pt lattice. Both the oxide formation and the lattice contraction are fully reversible over many cycles of the applied electrode potential.

  20. Mixed-phase Pd-Pt bimetallic alloy on graphene oxide with high activity for electrocatalytic applications

    Science.gov (United States)

    Khan, Majid; Yousaf, Ammar Bin; Chen, Mingming; Wei, Chengsha; Wu, Xibo; Huang, Ningdong; Qi, Zeming; Li, Liangbin

    2015-05-01

    Bimetallic PdPt alloy nanoparticles on graphene oxide (GO) have been prepared by a simple and facile chemical route, in which the reduction of metal precursors is carried out using CO as a reductant. Structural and morphological characterizations of GO/PdPt composites are performed using X-ray diffraction, X-ray photoelectron spectroscopy analysis and transmission electron microscopy. It is found that PdPt bimetallic nanoparticles are successfully synthesized and uniformly attached on the graphene sheets. The electrocatalytic and electrochemical properties of GO/PdPt composites including methanol oxidation reaction (MOR), oxygen reduction reaction (ORR) and methanol tolerant oxygen reduction reaction (MTORR) are studied in HClO4 aqueous solution. A significant improvement in the electrocatalytic activities is observed by increasing the atomic ratio of Pt in PdPt bimetallic alloys compared to the freestanding Pd nanoparticles on GO. The prepared GO/PdPt composites with an (Pd:Pt) atomic ratio of 40:60 exhibits higher methanol oxidation activity, higher specific ORR activity and better tolerance to CO poisoning. The results can be attributed to the collective effects of the PdPt nanoparticles and the enhanced electron transfer of graphene.

  1. Effect of nanoparticle (Pd, Pd/Pt, Ni deposition on high temperature hydrogenation of Ti-V alloys in gaseous flow containing CO

    Directory of Open Access Journals (Sweden)

    S. Suwarno

    2017-02-01

    Full Text Available The hydrogenation properties of Ti-V hydrides coated with nanoparticles have been studied in gaseous mixtures of argon and hydrogen with and without additions of 1% CO. Nanoparticles of Pd, Ni, and co-deposited Pd/Pt with particle sizes of ~30–60 nm were formed by electroless deposition on the hydride surfaces. The alloy resistance to CO could be significantly improved by particle deposition. Large amounts of hydrogen were absorbed in a CO-containing gas when Ni and Pd/Pt deposition had been applied, while pure Pd deposition had no positive effect. Ni was found to have a stronger effect than those of Pd/Pt and Pd, possibly because of the size effect of Ni nanoparticles.

  2. Formation of the BiAg2 surface alloy on lattice-mismatched interfaces

    Science.gov (United States)

    Abd El-Fattah, Z. M.; Lutz, P.; Piquero-Zulaica, I.; Lobo-Checa, J.; Schiller, F.; Bentmann, H.; Ortega, J. E.; Reinert, F.

    2016-10-01

    We report on the growth of a monolayer-thick BiAg2 surface alloy on thin Ag films grown on Pt(111) and Cu(111). Using low energy electron diffraction (LEED), angle resolved photoemission spectroscopy (ARPES), and scanning tunneling microscopy (STM) we show that the surface structure of the 1/3 ML Bi/x -ML Ag/Pt(111) system (x ≥2 ) is strongly affected by the annealing temperature required to form the alloy. As judged from the characteristic (√{3 }×√{3 } )R 30∘ LEED pattern, the BiAg2 alloy is partially formed at room temperature. A gentle, gradual increase in the annealing temperatures successively results in the formation of a pure BiAg2 phase, a combination of that phase with a (2 ×2 ) superstructure, and finally the pure (2 ×2 ) phase, which persists at higher annealing temperatures. These results complement recent work reporting the (2 ×2 ) as a predominant phase, and attributing the absence of BiAg2 alloy to the strained Ag/Pt interface. Likewise, we show that the growth of the BiAg2 alloy on similarly lattice-mismatched 1 and 2 ML Ag-Cu(111) interfaces also requires a low annealing temperature, whilst higher temperatures result in BiAg2 clustering and the formation of a BiCu2 alloy. The demonstration that the BiAg2 alloy can be formed on thin Ag films on different substrates presenting a strained interface has the prospect of serving as bases for technologically relevant systems, such as Rashba alloys interfaced with magnetic and semiconductor substrates.

  3. Surface-induced clustering in vapor deposited Co{sub 1{minus}x}Pt{sub x} and Ni{sub 1{minus}x}Pt{sub x} films (abstract)

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, A.L.; Rooney, P.W.; Tran, M.Q.; Hellman, F. [Department of Physics, University of California--San Diego, La Jolla, California 92093-0350 (United States)

    1997-04-01

    We have depostied (100), (110), and (111) oriented single-crystal and polycrystalline Co{sub 1{minus}x}Pt{sub x} (x=0.65, 0.75, 0.80) and polycrystalline Ni{sub 1{minus}x}Pt{sub x} (x=0.25, 0.50) films over a range of growth temperatures from {minus}50 to 800{degree}C. Previous work on CoPt{sub 3} films had demonstrated the correlation between Co clustering and perpendicular magnetic anisotropy. These observations motivated a model in which Co atoms cluster on the growing surface; this clustering is trapped by succeeding layers for growth temperatures below 400{degree}C, the lower limit of bulk atomic mobility. The (110) oriented samples show clustering and anisotropy identical to the (100) and (11) oriented samples despite the sign change of the surface segregation in the (110) orientation. The Ni{endash}Pt alloy system is similar to Co{endash}Pt in structure, lattice constant, and the polarizability of Pt. We have deposited Ni{sub 3}Pt films; these films have significant clustering of the magnetic species which drops off rapidly after the onset of bulk mobility at 400{degree}C. No perpendicular magnetic anisotropy is found in these films, even though interface magnetic anisotropy values in Ni/Pt multilayers have been reported as having up to 1/4 the value of Co/Pt interfaces. Finally, in order to explore whether surface clustering is a kinetic or equilibrium effect, we have varied the deposition rate of CoPt{sub 3} over three orders of magnitude at temperatures below 400{degree}C. We found no dependence of clustering or anisotropy on the deposition rate, suggesting that the clustering is not kinetically limited but is a surface equilibrium effect. {copyright} {ital 1997 American Institute of Physics.}

  4. Effect of sputtering pressure on stacking fault density and perpendicular magnetic anisotropy of CoPt alloys

    Science.gov (United States)

    Park, Kyung-Woong; Oh, Young-Wan; Kim, Dae-Hoon; Kim, Jai-Young; Park, Byong-Guk

    2016-09-01

    We report the effects of Ar sputtering pressure on perpendicular magnetic anisotropy in disordered CoPt alloys via the modulation of stacking fault density. The coercivity and anisotropy field of CoPt alloys are gradually enlarged with an increase in Ar sputtering pressure from 3 mTorr to 30 mTorr. Structural analyses using transmission electron microscopy, atomic force microscopy and x-ray reflectivity show that the structural properties of the samples, such as roughness or grain size, are not significantly changed by variations in Ar sputtering pressure. On the other hand, in-plane x-ray diffraction measurements reveal that the stacking fault density is reduced in films grown under higher pressure, and instead favors HCP stacking. Our results suggest that perpendicular magnetic anisotropy in CoPt alloys can be enhanced by the growth of the sample under a high Ar sputtering pressure, which decreases stacking fault density.

  5. Formation of Pt-Zn Alloy Nanoparticles by Electron-Beam Irradiation of Wurtzite ZnO in the TEM

    Science.gov (United States)

    Lee, Sung Bo; Park, Jucheol; van Aken, Peter A.

    2016-07-01

    As is well documented, platinum nanoparticles, promising for catalysts for fuel cells, exhibit better catalytic activities, when alloyed with Zn. Pre-existing syntheses of Pt-Zn alloy catalysts are composed of a number of complex steps. In this study, we have demonstrated that nanoparticles of Pt-Zn alloys are simply generated by electron-beam irradiation in a transmission electron microscope of a wurtzite ZnO single-crystal specimen. The initial ZnO specimen is considered to have been contaminated by Pt during specimen preparation by focused ion beam milling. The formation of the nanoparticle is explained within the framework of ionization damage (radiolysis) by electron-beam irradiation and accompanying electrostatic charging.

  6. Alloy ratio effect of Pd/Pt nanoparticles on carbon nanotubes for catalysing methanol-tolerant oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chien-Liang, E-mail: cl_lee@url.com.t [Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Science, Kaohsiung, Taiwan (China); Chiou, Hsueh-Ping; Wu, Shi-Chi; Wu, Chen-Chung [Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Science, Kaohsiung, Taiwan (China)

    2010-12-30

    Pd{sub 1}Pt{sub 3}, Pd{sub 1}Pt{sub 1}, and Pd{sub 3}Pt{sub 1} nanoparticles supported on multi-wall carbon nanotubes (CNTs) were prepared by the self-regulation reduction of sodium n-dodecyl sulphate and used as catalysts in oxygen reduction reactions (ORRs). The crystal properties of these alloy nanoparticles on the CNT were measured by X-ray diffraction spectroscopy (XRD) and high-resolution transmission electron microscopy (HRTEM). The angle shifting of the XRD peak and the lattice spacing of the nanoparticles measured by HRTEM increased with an increase in Pd amount, indicating a regulable Pd-Pt ratio for the alloy nanoparticle composition. Rotating ring-disk electrode (RRDE) measurements indicate that the number of electrons catalysed by the Pd{sub 1}Pt{sub 3}/CNT, Pd{sub 1}Pt{sub 1}/CNT, and Pd{sub 3}Pt{sub 1}/CNT nanocatalysts in the ORRs were 3.98, 3.97, and 3.93, respectively. These results show that these ORRs occur via a 4-electron pathway. Linearly scanned voltammetry in the electrolyte with methanol revealed that Pd{sub 3}Pt{sub 1}/CNT has high methanol tolerance during ORRs.

  7. Abnormal infrared effects of nanometer scale thin film material of PtPd alloy in CO adsorption

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Nanometer scale thin film material of PtPd alloy supported on glassy carbon (nm-PtPd/GC) was prepared by the electrochemical codeposition method under cyclic voltammetric conditions. STM patterns demonstrated that the prepared thin films are composed of layered crystallites in elliptic form. Electrochemical in situ FTIRS studies explored the abnormal infrared effects (AIREs) of nmPtPd/GC for CO adsorption, which are ( i ) the remarkable enhancement of IR absorption, (ii) the inversion of COad band direction, and (iii) notable increase in the full width at half maximum (FWHM) of COad bands. The results demonstrated also that the enhancement factor of IR absorption varies with the thickness of PtPd alloy film and has reached a maximum value of 38.3 under the experimental conditions.

  8. A Novel Surface Treatment for Titanium Alloys

    Science.gov (United States)

    Lowther, S. E.; Park, C.; SaintClair, T. L.

    2004-01-01

    High-speed commercial aircraft require a surface treatment for titanium (Ti) alloy that is both environmentally safe and durable under the conditions of supersonic flight. A number of pretreatment procedures for Ti alloy requiring multi-stages have been developed to produce a stable surface. Among the stages are, degreasing, mechanical abrasion, chemical etching, and electrochemical anodizing. These treatments exhibit significant variations in their long-term stability, and the benefits of each step in these processes still remain unclear. In addition, chromium compounds are often used in many chemical treatments and these materials are detrimental to the environment. Recently, a chromium-free surface treatment for Ti alloy has been reported, though not designed for high temperature applications. In the present study, a simple surface treatment process developed at NASA/LaRC is reported, offering a high performance surface for a variety of applications. This novel surface treatment for Ti alloy is conventionally achieved by forming oxides on the surface with a two-step chemical process without mechanical abrasion. This acid-followed-by-base treatment was designed to be cost effective and relatively safe to use in a commercial application. In addition, it is chromium-free, and has been successfully used with a sol-gel coating to afford a strong adhesive bond after exposure to hot-wet environments. Phenylethynyl containing adhesives were used to evaluate this surface treatment with sol-gel solutions made of novel imide silanes developed at NASA/LaRC. Oxide layers developed by this process were controlled by immersion time and temperature and solution concentration. The morphology and chemical composition of the oxide layers were investigated using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES). Bond strengths made with this new treatment were evaluated using single lap shear tests.

  9. High Temperature Oxidation Behavior of gamma-Ni+gamma'-Ni3Al Alloys and Coatings Modified with Pt and Reactive Elements

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Nan [Iowa State Univ., Ames, IA (United States)

    2007-12-01

    Materials for high-pressure turbine blades must be able to operate in the high-temperature gases (above 1000 C) emerging from the combustion chamber. Accordingly, the development of nickel-based superalloys has been constantly motivated by the need to have improved engine efficiency, reliability and service lifetime under the harsh conditions imposed by the turbine environment. However, the melting point of nickel (1455 C) provides a natural ceiling for the temperature capability of nickel-based superalloys. Thus, surface-engineered turbine components with modified diffusion coatings and overlay coatings are used. Theses coatings are capable of forming a compact and adherent oxide scale, which greatly impedes the further transport of reactants between the high-temperature gases and the underlying metal and thus reducing attack by the atmosphere. Typically, these coatings contain β-NiAl as a principal constituent phase in order to have sufficient aluminum content to form an Al2O3 scale at elevated temperatures. The drawbacks to the currently-used {beta}-based coatings, such as phase instabilities, associated stresses induced by such phase instabilities, and extensive coating/substrate interdiffusion, are major motivations in this study to seek next-generation coatings. The high-temperature oxidation resistance of novel Pt + Hf-modified γ-Ni + γ-Ni3Al-based alloys and coatings were investigated in this study. Both early-stage and 4-days isothermal oxidation behavior of single-phase γ-Ni and γ'-Ni3Al alloys were assessed by examining the weight changes, oxide-scale structures, and elemental concentration profiles through the scales and subsurface alloy regions. It was found that Pt promotes Al2O3 formation by suppressing the NiO growth on both γ-Ni and γ'Ni3Al single-phase alloys. This effect increases with increasing Pt content. Moreover, Pt exhibits this effect even at

  10. A first-principle calculation of sulfur oxidation on metallic Ni(111) and Pt(111), and bimetallic Ni@Pt(111) and Pt@Ni(111) surfaces.

    Science.gov (United States)

    Yeh, Chen-Hao; Ho, Jia-Jen

    2012-09-17

    Sulfur, a pollutant known to poison fuel-cell electrodes, generally comes from S-containing species such as hydrogen sulfide (H(2)S). The S-containing species become adsorbed on a metal electrode and leave atomic S strongly bound to the metal surface. This surface sulfur is completely removed typically by oxidation with O(2) into gaseous SO(2). According to our DFT calculations, the oxidation of sulfur at 0.25 ML surface sulfur coverage on pure Pt(111) and Ni(111) metal surfaces is exothermic. The barriers to the formation of SO(2) are 0.41 and 1.07 eV, respectively. Various metals combined to form bimetallic surfaces are reported to tune the catalytic capabilities toward some reactions. Our results show that it is more difficult to remove surface sulfur from a Ni@Pt(111) surface with reaction barrier 1.86 eV for SO(2) formation than from a Pt@Ni(111) surface (0.13 eV). This result is in good agreement with the statement that bimetallic surfaces could demonstrate more or less activity than to pure metal surfaces by comparing electronic and structural effects. Furthermore, by calculating the reaction free energies we found that the sulfur oxidation reaction on the Pt@Ni(111) surface exhibits the best spontaneity of SO(2) desorption at either room temperature or high temperatures.

  11. Martensitic transformation in Heusler alloys Mn{sub 2}YIn (Y=Ni, Pd and Pt): Theoretical and experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hongzhi, E-mail: luo_hongzhi@163.com [School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Bohua; Xin, Yuepeng; Jia, Pengzhong; Meng, Fanbin [School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Liu, Enke; Wang, Wenhong; Wu, Guangheng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-12-01

    The martensitic transformation and electronic structure of Heusler alloys Mn{sub 2}YIn (Y=Ni, Pd, Pt) have been investigated by both first-principles calculation and experimental investigation. Theoretical calculation reveals that, the energy difference ΔE between the tetragonal martensitic phase and cubic austenitic phase increases with Y varying from Ni to Pt in Mn{sub 2}YIn. Thus a structural transition from cubic to tetragonal is most likely to happen in Heusler alloy Mn{sub 2}PtIn. A single Heusler phase can be obtained in both Mn{sub 2}PtIn and Mn{sub 2}PdIn. A martensitic transformation temperature of 615 K has been identified in Mn{sub 2}PtIn. And in Mn{sub 2}PdIn, the austenitic phase is stable and no martensitic transformation is observed till 5 K. This indicates there may exist a positive relation between ΔE and martensitic transformation temperature. Calculated results show that Mn{sub 2}YIn are all ferrimagnets in both austenitic and martensitic phases. The magnetic properties are mainly determined by the antiparallel aligned Mn spin moments. These findings can help to develop new FSMAs with novel properties. - Highlights: • Positive relation between ΔE and martensitic transformation temperature has been observed. • Heusler alloy Mn{sub 2}PdIn has been synthesized successfully and investigated. • Martensitic transformation in Heusler alloys can be predicted by first -principles calculations.

  12. Fermi surface effects in terbium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Burgardt, P.

    1976-10-01

    Work is reported which was conducted to test of the relation of the generalized susceptibility (and therefore, the ordering properties) for Tb to the Fermi energy of Tb. In order to properly analyze the data a simple theory was developed to account for the effects on band structure which accompany alloying and attendant lattice size changes. Using this simple theory, the alloys of Tb with Mg are understood as a combination of Fermi energy lowering and of lattice contraction. The tendency of Th to promote the ferromagnetic structure in Th is understood as a combination of the Fermi energy being raised and of the lattice being expanded. The theory was also useful in explaining the interesting behavior of the Tb with Yb alloys which upon preliminary analysis did not seem to follow the theoretical predictions. After consideration of the volume effect, indeed the Tb with Yb alloys showed promotion of the helical structure as predicted. The complicated behavior of the Tb with Yb alloys is a case where the volume and valence effects compete. Results show that the magnetic ordering properties of the rare earths are intimately related to the Fermi surface geometry through the generalized susceptibility.

  13. Development and structural characterization of exchange-spring-like nanomagnets in (Fe,Co)-Pt bulk nanocrystalline alloys

    Science.gov (United States)

    Crisan, O.; Crisan, A. D.; Mercioniu, I.; Nicula, R.; Vasiliu, F.

    2016-03-01

    FePt-based alloys are currently under scrutiny for their possible use as materials for perpendicular magnetic recording. Another possible application is in the field of permanent magnets without rare-earths, magnets that may operate at higher temperatures than the classic Nd-Fe-B magnets. Within this study, FeCoPt alloys prepared by rapid solidification from the melt are structurally and magnetically characterized. In the as-cast FeCoPt ribbons, a three-phase structure comprising well-ordered CoFePt and CoPt L10 phases embedded in a disordered fcc FePt matrix was evidenced by XRD, HREM and SAED. Extended transmission electron microscopy analysis demonstrates the incipient formation of ordered L10 phases. X-ray diffraction was used to characterize the phase structure and to obtain the structural parameters of interest for L10 ordering. In the as-cast state, the co-existence of hard magnetic CoFePt and CoPt L10 tetragonal phases with the soft fcc FePt phase is obtained within a refined microstructure made of alternatively disposed grains (grain sizes from 1 to 7 nm). Following a thermal treatment of 1 h at 670 °C, the soft magnetic fcc matrix phase transforms to tetragonal L10 phases (disorder-order transition). The resulting CoPt and CoFePt L10 phases have grains of around 5-20 nm in size. In the as-cast state, magnetic measurements show a quite large remanence (0.75 T), close to the value of the parent L10 FePt phase. Coercive fields of about 200 kA/m at 5 K were obtained, comparable with those reported for some FePt-based bulk alloys. Upon annealing both remanence and coercivity are increased and values of up to 254 kA/m at 300 K are obtained. The polycrystalline structure of the annealed FeCoPt samples, as well as the formation of multiple c-axis domains in different CoPt and CoFePt regions (which leads to a reduction of the magneto-crystalline anisotropy) may account for the observed coercive fields that are lower than in the case of very thin FeCoPt films. A

  14. Chemical oscillation in electrochemical oxidation of methanol on Pt surface

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on dual path reaction mechanism, a nonlinear dynamics model reflecting the potential oscilla- tion in electrooxidation of methanol on Pt surface was established. The model involves three variables, the electrode potential (e), the surface coverage of carbon monoxide (x), and adsorbed water (y). The chemical reactions and electrode potential were coupled together through the rate constant ki = exp(ai(e ? ei)). The analysis to the established model discloses the following: there are different kinetics be- haviors in different ranges of current densities. The chemical oscillation in methanol electrooxidation is assigned to two aspects, one from poison mediate CO of methanol electrooxidation, which is the in- duced factor of the chemical oscillation, and the other from the oxygen-containing species, such as H2Oa. The formation and disappearance of H2Oa deeply depend on the electrode potential, and directly cause the chemical oscillation. The established model makes clear that the potential oscillation in methanol electrooxidation is the result of the feedback of electrode potential e on the reactions in- volving poison mediates CO and oxygen-containing species H2Oa. The numerical analysis of the estab- lished model successfully explains why the potential oscillation in methanol galvanostatic oxidation on a Pt electrode only happens in a certain range of current densities but not at any current density.

  15. Chemical oscillation in electrochemical oxidation of methanol on Pt surface

    Institute of Scientific and Technical Information of China (English)

    LI LanLan; WEI ZiDong; QI XueQiang; SUN CaiXin; YIN GuangZhi

    2008-01-01

    Based on dual path reaction mechanism, a nonlinear dynamics model reflecting the potential oscilla-tion in electrooxidation of methanol on Pt surface was established. The model involves three variables, the electrode potential (e), the surface coverage of carbon monoxide (x), and adsorbed water (y). The chemical reactions and electrode potential were coupled together through the rate constant k1= exp(a e-e1)). The analysis to the established model discloses the following: there are different kinetics be-haviors in different ranges of current densities. The chemical oscillation in methanol electrooxidation is assigned to two aspects, one from poison mediate CO of methanol electrooxidallon, which is the in-duced factor of the chemical oscillation, and the other from the oxygen-containing species, such as H2Oa. The formation and disappearance of H2Oa deeply depend on the electrode potential, and directly cause the chemical oscillation. The established model makes clear that the potential oscillation in methanol electrooxidation is the result of the feedback of electrode potential e on the reactions in-volving poison mediates CO and oxygen-containing species H2Oa. The numerical analysis of the estab-lished model successfully explains why the potential oscillation in methanol galvanostatic oxidation on a Pt electrode only happens in a certain range of current densities but not at any current density.

  16. The Progress on Laser Surface Modification Techniques of Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    LIANG Cheng; PAN Lin; Al Ding-fei; TAO Xi-qi; XIA Chun-huai; SONG Yan

    2004-01-01

    Titanium alloy is widely used in aviation, national defence, automobile, medicine and other fields because of their advantages in lower density, corrosion resistance, and fatigue resistance etc. As titanium alloy is higher friction coefficients, weak wear resistance, bad high temperature oxidation resistance and lower biocompatibility, its applications are restricted. Using laser surface modification techniques can significantly improve the surface properties of titanium alloy. a review is given for progress on laser surface modification techniques of titanium alloy in this paper.

  17. Oxidation Kinetics of a NiPtTi High Temperature Shape Memory Alloy

    Science.gov (United States)

    Smialek, James L.; Humphrey, Donald L.; Noebe, Ronald D.

    2007-01-01

    A high temperature shape memory alloy (HTSMA), Ni30Pt50Ti, with an M(sub s) near 600 C, was isothermally oxidized in air for 100 hr over the temperature range of 500 to 900 C. Parabolic kinetics were confirmed by log-log and parabolic plots and showed no indication of fast transient oxidation. The overall behavior could be best described by the Arrhenius relationship: k(sub p) = 1.64 x 10(exp 12)[(-250 kJ/mole)/RT] mg(sup 2)/cm(sup 4)hr. This is about a factor of 4 reduction compared to values measured here for a binary Ni47Ti commercial SMA. The activation energy agreed with most literature values for TiO2 scale growth measured for elemental Ti and other NiTi alloys. Assuming uniform alloy depletion of a 20 mil (0.5 mm) dia. HTSMA wire, approx. 1 percent Ti reduction is predicted after 20,000 hr oxidation at 500 C, but becomes much more serious at higher temperatures.

  18. PdM (M = Pt, Au) bimetallic alloy nanowires with enhanced electrocatalytic activity for electro-oxidation of small molecules

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Chengzhou; Guo, Shaojun; Dong, Shaojun [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022 (China)

    2012-05-02

    A facile and general method has been developed to synthesize well-defined PdPt and PdAu alloy nanowires, which exhibit significantly enhanced activity towards small molecules, such as ethanol, methanol, and glucose electro-oxidation in an alkaline medium. Considering the important role of one-dimensional alloy nanowires in electrocatalytic systems, the present Pd-based alloy nanostructures could offer a promising new class of advanced electrocatalysts for direct alcohol fuel cells and electrochemical sensors. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Advances of Titanium Alloys and Its Biological Surface Modification

    Institute of Scientific and Technical Information of China (English)

    XU Ke-wei; HUANG Ping

    2004-01-01

    This paper reviews the past, present and future of surface modification of titanium alloy from the point of view of preparation of hard tissue replacement implants. The development of titanium alloy is also described.

  20. Advanced Surface Engineering of Titanium Alloys

    Institute of Scientific and Technical Information of China (English)

    H. Dong

    2000-01-01

    Despite their outstanding combination of properties, titanium and its alloys are very susceptible to severe adhesive wear in rubbing with most engineering surfaces and can exhibit poorcorrosion resistance in some aggressive environments. Surface engineering research centred at the University of Birmingham has been focused on creating designer surfaces for titanium components via surface engineering.Great progress has been made recently through the development of such advanced surface engineering techniques as thermal oxidation, palladium-treated thermal oxidation, oxygen boost diffusion and duplex systems.Such advances thus provide scope for designing titanium components for a diversified range of engineering application, usually as direct replacements for steel components. By way of example, some of the successful steps towards titanium designer surfaces are demonstrated. To data, the potential of these advanced technologies has been realised first in auto-sport and off-shore industrials.

  1. Ground-state properties of ordered, partially ordered, and random Cu-Au and Ni-Pt alloys

    DEFF Research Database (Denmark)

    Ruban, Andrei; Abrikosov, I. A.; Skriver, Hans Lomholt

    1995-01-01

    We have studied the ground-state properties of ordered, partially ordered, and random Cu-Au and Ni-Pt alloys at the stoichiometric 1/4, 1/2, and 3/4 compositions in the framework of the multisublattice single-site (SS) coherent potential approximation (CPA). Charge-transfer effects in the random ...

  2. Enhanced coercivity of HCP Co–Pt alloy thin films on a glass substrate at room temperature for patterned media

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.S. [Department of Chemical Engineering and Materials Science, Yuan-Ze University, Chung-Li 32003, Taiwan (China); Sun, An-Cheng, E-mail: acsun@saturn.yzu.edu.tw [Department of Chemical Engineering and Materials Science, Yuan-Ze University, Chung-Li 32003, Taiwan (China); Lee, H.Y. [National Synchrotron Radiation Research Center (NSRRC), Hsinchu 300, Taiwan (China); Department of Applied Science, National Hsinchu University of Education, Hsinchu 300, Taiwan (China); Lu, Hsi-Chuan; Wang, Sea-Fue [Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan (China); Sharma, Puneet [School of Physics and Materials Science, Thapar University, Patiala (India)

    2015-10-01

    High coercivity (H{sub c}) Co-rich type Co–Pt alloy thin films with a columnar grain structure were deposited at room temperature (RT) by magnetron sputtering. Films with a thickness (t) of up to 10 nm had a FCC structure and exhibited soft magnetic properties. When t>25 nm, the magnetic anisotropy changed from in-plane to isotropic. H{sub c} was also enhanced with increasing t and found to be maximum at t=50 nm. The in-plane and out-of-plane H{sub c} of the film was 2.2 and 2.7 kOe, respectively. Further increasing t led to a slight decrease in H{sub c}. Microstructure and phase structure studies revealed columnar Co–Pt grains with a uniform lateral size grown on a 7 nm initial layer. Films with t>25 nm showed a HCP phase, due to the internal stress and volume effect. The microstructural details responsible for the enhanced RT magnetic properties of the HCP Co–Pt alloy thin films were investigated by TEM. - Highlights: • Deposited Co–Pt alloy thin films on glass substrate at room temperature. • High out-of-plane coercivity of Co-rich type Co–Pt thin film at thinner thickness. • Columnar structure contributed out-of-plane coercivity.

  3. 不饱和有机酸在Pt-Rh合金电极上的吸附动力学%ADSORPTION KINETICS OF SOME UNSATURATED ALIPHATIC ACIDS ON Pt-Rh ALLOY ELECTRODES

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    On Pt-Rh alloy electrodes, the effect of some operational parameters on the adsorption process of several unsaturated aliphatic acids was respectively examined by fast cathodically potentiodynamic polarization. As the experimental results shown, the adsorption rates of acrylic acid , crotonic acid, and maleic acid, obey Rogynski-Zilidowicz equation always in the middle coverage .Comparatively, the maximal values are determined on the pure Pt-electrode, and as the electrode binary composition is varied successively from the pure Pt to Rh , the adsorption rates for these acids are generally decreased, even by 20~30 times. Among the three unsaturated aliphatic acids, acrylic acid is most advantageously adsorbed on the electrode surfaces. The adsorption activity order is acrylic acid >crotonic acid>maleic acid.%采用快速动电位扫描方法,系统地研究了吸附时间、溶液浓度、温度、吸附电位等因素对在不同组成的Pt-Rh电极上不饱和有机酸吸附过程的影响. 研究结果表明,在中等表面覆盖率下,所研究的不饱和有机酸在Pt-Rh合金电极上吸附速率都遵循Rogynski-Zilidowicz方程,Pt电极上吸附速率最大,从Pt电极向Rh电极过渡中,吸附速率下降20~30倍. 温度升高吸附速率加快. 丙烯酸在Pt-Rh电极表面的吸附速率比其他不饱和有机酸高,并按丙烯酸>丁烯酸>顺丁烯二酸顺序递减.

  4. Electronic and structural properties of Fe3Pd-Pt ferromagnetic shape memory alloys

    Science.gov (United States)

    Stern, R. A.; Willoughby, S. D.; Ramirez, A.; MacLaren, J. M.; Cui, J.; Pan, Q.; James, R. D.

    2002-05-01

    Ferromagnetic shape memory (FSM) alloys are scientifically and technologically interesting materials that combine ferromagnetism with a reversible martensitic phase transformation. Fe70Pd30 has recently been shown to display a FSM effect at usable temperatures and low fields. Reported here are results of experimental studies on Fe70Pd30 and electronic structure calculations on Fe70Pd30-xPtx. The calculations show that additions of Pt by 6 at % to Fe70Pd30 can triple the magnetocrystalline anisotropy. There is, however, a large discrepancy between the measured and calculated anisotropy values of Fe70Pd30, suggesting the presence of significant disorder in the measured samples. Other calculated structural and magnetic properties are in close agreement with experimental values.

  5. Electrochemical properties of CO{sub x}/Pt(111) model catalyst surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wadayama, T.; Todoroki, N.; Yoshida, H.; Yamada, Y. [Tohoku Univ., Sendai (Japan). Dept. of Materials Science

    2010-07-01

    Oxygen reduction reaction (ORR) activities for clean Pt(111) and Co-deposited Pt(111) (CO{sub x}/Pt(111)) model catalyst surfaces fabricated by molecular beam epitaxy (MBE) were evaluated. Low-energy electron diffration (LEED) and infrared reflection absorption spectroscopy (IRRAS) was used to investigate the CO{sub x}/Pt(111) surface structures. 1.0-L-carbon monoxide (CO) exposure to the clean Pt(111) at 323 K yielded linear-bonded and bridge-bonded CO-PT bands at 2092 and 1850 cm{sup -1}. 0.3nm-thick-Co deposition onto the clean Pt(111) at 343 K brought about small hexagons of satellites on a LEED pattern and a main IR band ascribable to Co-CO bonds is located at 2000 cm{sup -1}. In contrast, at 823-K-Co deposition, a LEED pattern is almost identical as that for the clean Pt(111): an absorbed CO band at 2080 cm{sup -1} dominated IR spectrum for the 1.0-L-CO exposed surface. The results suggest that the Co deposition at 823 K generates a Pt-enriched outermost surface (Pt-skin) formed through surface segregation of the substrate Pt atoms. A linear-sweep voltammetry (LSV) curve was recorded for the Co/Pt(111)-skin in O{sub 2}-saturated HCIO{sub 4}. Specific ORR activity for the Pt-skin is 10-times higher than that for the clean Pt(111). (orig.)

  6. Processing of Ni30Pt20Ti50 High-Temperature Shape-Memory Alloy Into Thin Rod Demonstrated

    Science.gov (United States)

    Noebe, Ronald D.; Draper, Susan L.; Biles, Tiffany A.; Leonhardt, Todd

    2005-01-01

    High-temperature shape-memory alloys (HTSMAs) based on nickel-titanium (NiTi) with significant ternary additions of palladium (Pd), platinum (Pt), gold (Au), or hafnium (Hf) have been identified as potential high-temperature actuator materials for use up to 500 C. These materials provide an enabling technology for the development of "smart structures" used to control the noise, emissions, or efficiency of gas turbine engines. The demand for these high-temperature versions of conventional shape-memory alloys also has been growing in the automotive, process control, and energy industries. However these materials, including the NiPtTi alloys being developed at the NASA Glenn Research Center, will never find widespread acceptance unless they can be readily processed into useable forms.

  7. Pt Monolayer Electrocatalyst for Oxygen Reduction Reaction on Pd-Cu Alloy: First-Principles Investigation

    Directory of Open Access Journals (Sweden)

    Amra Peles

    2015-07-01

    Full Text Available First principles approach is used to examine geometric and electronic structure of the catalyst concept aimed to improve activity and utilization of precious Pt metal for oxygen reduction reaction in fuel cells. The Pt monolayers on Pd skin and Pd1-xCux inner core for various compositions x were examined by building the appropriate models starting from Pd-Cu solid solution. We provided a detailed description of changes in the descriptors of catalytic behavior, d-band energy and binding energies of reaction intermediates, giving an insight into the underlying mechanism of catalytic activity enhancement based on the first principles density functional theory (DFT calculations. Structural properties of the Pd-Cu bimetallic were determined for bulk and surfaces, including the segregation profile of Cu under different environment on the surface.

  8. Nitrogen: Unraveling the Secret to Stable Carbon-Supported Pt-Alloy Electrocatalysts

    Science.gov (United States)

    2013-10-01

    electrolyte fuel cells, state-of-the-art elec- trocatalysts made from high surface area carbon materials decorated with a precious-metal nanoparticle phase o...carbon-matrix materials utilized in polymer electrolyte fuel cells (PEFCs) and direct methanol fuel cells (DMFCs), including Pt-based cath- odes...the doping of various forms of carbon including but not limited to graphene sheets, highly oriented pyrolytic graphite, carbon nanotubes, carbon

  9. Influence of phase transformation on the permanent-magnetic properties of Fe-Pt based alloys

    Science.gov (United States)

    Brück, E.; Xiao, Q. F.; Thang, P. D.; Toonen, M. J.; de Boer, F. R.; Buschow, K. H. J.

    2001-07-01

    We have studied the effect of the atomic disorder-order transformation on remanence enhancement and coercivity in Fe-Pt-based materials by isothermal annealing at temperatures well below the transformation point. We also investigated the effect of the annealing temperature and the effect of various types of additives. The relative amount of the low-temperature hard-magnetic face-centered-tetragonal (FCT) phase precipitated in the high-temperature magnetically soft face-centered-cubic (FCC) phase was determined by means of X-ray diffraction. As a function of annealing time and annealing temperature, particle size and relative amount of the FCT phase increased at the cost of the FCC phase. These changes were followed by means of magnetic measurements. We observed a continuous increase in coercivity with increasing annealing time, eventually reaching a maximum. The Kneller-Hawig model was used to explain the occurrence of remanence enhancement and the continuously changing degree of exchange coupling between the magnetically soft and hard phase. The suitability of Fe-Pt based alloys in dental applications is discussed.

  10. Synthesis and characterization of magnetically hard Fe-Pt alloy nanoparticles and nano-islands

    Science.gov (United States)

    Hu, Xiaocao

    .7 kOe to 10.7 kOe. Compared with reported high annealing temperatures above 600°C, this fabrication process led to a significantly decreased temperature to achieve the L10 phase FePt by 200°C. A qualitative model was set up to explain the surprising low L10 phase achievement temperature and the influence of annealing temperature on the microstructure and magnetic properties was investigated. Although FePt nanoparticles with high coercivity and small size were successfully obtained by the first fabrication method, agglomeration happened during the washing procedure due to the large inter-particle magnetostatic force caused by their high magnetization. To avoid this agglomeration, exfoliated graphene was introduced in the second preparation method to keep the nanoparticles separated. Different from the traditional solvent-phase reaction to disperse FePt nanoparticles onto the exfoliated graphene, a novel solid-phase reaction was used in this dissertation involving the layered precursor [Fe(H2 O)6]PtCl6 molecule. The [Fe(H2O) 6]PtCl6 water solution was mixed with exfoliated graphene oxide (GO) and then the top solution was removed. Fe2+ and Pt2+ ions were absorbed onto the surface of GO. The remaining product was annealed under a reducing atmosphere of forming gas at different temperatures (500°C to 950°C). During the reduction process, GO was reduced to "graphene" and FePt nanoparticles were formed on the surface of exfoliated graphene. The separation effect by the exfoliated graphene increased the phase transformation temperature to 600°C compared to the first method. However, even at an annealing temperature as high as 750°C, we could still obtained separated, small size FePt nanoparticles with coercivity of 8.3 kOe. The third preparation method used in this dissertation is the traditional magnetron sputtering with very short deposition time (10 s to 25 s) on heated MgO (001) substrate to form separate nano-islands instead of continuous thin films. The ordering

  11. Controlled FCC/on-top binding of H/Pt(111) using surface stress

    Science.gov (United States)

    Shuttleworth, I. G.

    2016-08-01

    The preferred binding site of H/Pt(111) has been shown to be change from the on-top to FCC as the Pt(111) surface goes approximately from a state of compressive to tensile strain. A chemical analysis of the system has shown that for both FCC and on-top bound cases the H ssbnd Pt s and H ssbnd Pt d interactions have a similar importance in determining the preferred binding position. It has been seen that FCC-bound H forms a distinct state below the Pt d-band, whereas the on-top bound H does not.

  12. Enhanced catalytic performance for methane combustion of 3DOM CoFe2O4 by co-loading MnOx and Pd-Pt alloy nanoparticles

    Science.gov (United States)

    Li, Xiangyu; Liu, Yuxi; Deng, Jiguang; Xie, Shaohua; Zhao, Xingtian; Zhang, Yang; Zhang, Kunfeng; Arandiyan, Hamidreza; Guo, Guangsheng; Dai, Hongxing

    2017-05-01

    Three-dimensionally ordered macroporous (3DOM) CoFe2O4, zMnOx/3DOM CoFe2O4 (z = 4.99-12.30 wt%), and yPd-Pt/6.70 wt% MnOx/3DOM CoFe2O4 (y = 0.44-1.81 wt%; Pd/Pt molar ratio = 2.1-2.2) have been prepared using the polymethyl methacrylate microspheres-templating, incipient wetness impregnation, and bubble-assisted polyvinyl alcohol-protected reduction strategies, respectively. All of the samples were characterized by means of various techniques. Catalytic performance of the samples was measured for methane combustion. It is shown that the as-prepared samples exhibited a high-quality 3DOM structure (103 ± 20 nm in pore size) and a surface area of 19-28 m2/g, and the noble metal or alloy nanoparticles (NPs) with a size of 2.2-3.0 nm were uniformly dispersed on the macropore wall surface of 3DOM CoFe2O4. The loading of MnOx on CoFe2O4 gave rise to a slight increase in activity, however, the dispersion of Pd-Pt NPs on 6.70MnOx/3DOM CoFe2O4 significantly enhanced the catalytic performance, with the 1.81Pd2.1Pt/6.70MnOx/3DOM CoFe2O4 sample showing the highest activity (T10% = 255 °C, T50% = 301 °C, and T90% = 372 °C at a space velocity of 20,000 mL/(g h)). We believe that the excellent catalytic activity of 1.81Pd2.1Pt/6.70MnOx/3DOM CoFe2O4 was related to its well-dispersed Pd-Pt alloy NPs, high adsorbed oxygen species concentration, good low-temperature reducibility, and strong interaction between MnOx or Pd-Pt NPs and 3DOM CoFe2O4.

  13. Formation and sintering of Pt nanopartictes on vicinal rutile TiO2 surfaces

    DEFF Research Database (Denmark)

    Rieboldt, Felix; Helveg, S.; Bechstein, Ralf;

    2014-01-01

    By means of scanning tunnelling microscopy (STM) the nucleation, growth and sintering of platinum nanoparticles (Pt NP's) was studied on vicinal and flat rutile titanium dioxide (TiO2) surfaces. Utilising physical vapour deposition, the nucleation of Pt NP's on TiO2 surfaces at room temperature (RT...

  14. Dynamics of Surface Exchange Reactions Between Au and Pt for HER and HOR

    DEFF Research Database (Denmark)

    Abrams, Billie; Vesborg, Peter Christian Kjærgaard; Bonde, Jacob Lindner;

    2009-01-01

    Cyclic voltammetric analysis of the Pt-on-Au system for hydrogen evolution and oxidation reactions (HER/HOR) indicates that dynamic surface exchange reactions occur between Pt and Au. HER/HOR activities depend on the dominant surface species present, which is controllable by the potential applied...

  15. Atomic structure and thermal stability of Pt-Fe bimetallic nanoparticles: from alloy to core/shell architectures.

    Science.gov (United States)

    Huang, Rao; Wen, Yu-Hua; Shao, Gui-Fang; Sun, Shi-Gang

    2016-06-22

    Bimetallic nanoparticles comprising noble metal and non-noble metal have attracted intense interest over the past few decades due to their low cost and significantly enhanced catalytic performances. In this article, we have explored the atomic structure and thermal stability of Pt-Fe alloy and core-shell nanoparticles by molecular dynamics simulations. In Fe-core/Pt-shell nanoparticles, Fe with three different structures, i.e., body-centered cubic (bcc), face-centered cubic (fcc), and amorphous phases, has been considered. Our results show that Pt-Fe alloy is the most stable configuration among the four types of bimetallic nanoparticles. It has been discovered that the amorphous Fe cannot stably exist in the core and preferentially transforms into the fcc phase. The phase transition from bcc to hexagonal close packed (hcp) has also been observed in bcc-Fe-core/Pt-shell nanoparticles. In contrast, Fe with the fcc structure is the most preferred as the core component. These findings are helpful for understanding the structure-property relationships of Pt-Fe bimetallic nanoparticles, and are also of significance to the synthesis and application of noble metal based nanoparticle catalysts.

  16. Surface electrochemistry of CO on Pt(111): Anion Effects

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, N.M.; Lucas, C.A.; Rodes, A.; Stamenkovic, V.; Ross, P.N.

    2001-07-30

    In-situ studies of CO adsorption by surface x-ray scattering (SXS) and Fourier transform infrared (FTIR) spectroscopy techniques are used to create the link between the macroscopic kinetic rates of CO oxidation and the microscopic level of understanding the structure/site occupancy of CO on Pt(111). A remarkable difference in activity was observed between alkaline and acid solutions. In alkaline solution the oxidation of CO proceeds at low overpotential (<0.2 V) by the surface reaction between the adsorbed CO and OH, the latter forming selectively in the hydrogen underpotential potential region at defect sites. In acid solution these sites are blocked by specific adsorption of anions, and consequently in a solution containing Br{sup -} the ignition potential is shifted positively by 0.6 V. Anions of supporting electrolytes also have dramatic effects on both the potential range of stability and the domain size of the p(2x2)-3CO structure which is formed at 0.05 V. The stability/domain size of this structure increases from KOH (ca. 30 {angstrom} between 0.05 < E < 0.3V), to HClO{sub 4} (ca. 140 {angstrom} between 0.05 < E < 0.6V) to HClO{sub 4} + Br{sup -} (ca 350 {angstrom} between 0.05 < E < 0.8V). The larger the ordered domains of the p(2x2)-CO{sub ad} structure are, the less active the surface is towards CO oxidation.

  17. Ultrasonic-electrodeposition of PtPd alloy nanoparticles on ionic liquid-functionalized graphene paper: towards a flexible and versatile nanohybrid electrode

    Science.gov (United States)

    Sun, Yimin; Zheng, Huaming; Wang, Chenxu; Yang, Mengmeng; Zhou, Aijun; Duan, Hongwei

    2016-01-01

    Here we fabricate a new type of flexible and versatile nanohybrid paper electrode by ultrasonic-electrodeposition of PtPd alloy nanoparticles on freestanding ionic liquid (IL)-functionalized graphene paper, and explore its multifunctional applications in electrochemical catalysis and sensing systems. The graphene-based paper materials demonstrate intrinsic flexibility, exceptional mechanical strength and high electrical conductivity, and therefore can serve as an ideal freestanding flexible electrode for electrochemical devices. Furthermore, the functionalization of graphene with IL (i.e., 1-butyl-3-methylimidazolium tetrafluoroborate) not only increases the electroactive surface area of a graphene-based nanohybrid paper electrode, but also improves the adhesion and dispersion of metal nanoparticles on the paper surface. These unique attributes, combined with the merits of an ultrasonic-electrodeposition method, lead to the formation of PtPd alloy nanoparticles on IL-graphene paper with high loading, uniform distribution, controlled morphology and favourable size. Consequently, the resultant nanohybrid paper electrode exhibits remarkable catalytic activity as well as excellent cycle stability and improved anti-poisoning ability towards electrooxidation of fuel molecules such as methanol and ethanol. Furthermore, for nonenzymatic electrochemical sensing of some specific biomarkers such as glucose and reactive oxygen species, the nanohybrid paper electrode shows high selectivity, sensitivity and biocompatibility in these bio-catalytic processes, and can be used for real-time tracking hydrogen peroxide secretion by living human cells. All these features demonstrate its promising application as a versatile nanohybrid electrode material in flexible and lightweight electrochemical energy conversion and biosensing systems such as bendable on-chip power sources, wearable/implantable detectors and in vivo micro-biosensors.Here we fabricate a new type of flexible and

  18. Influence of surface preparation on atomic layer deposition of Pt films

    Institute of Scientific and Technical Information of China (English)

    Ge Liang; Hu Cheng; Zhu Zhiwei; Zhang Wei; Wu Dongping; Zhang Shili

    2012-01-01

    We report Pt deposition on a Si substrate by means of atomic layer deposition (ALD) using (methylcyclopentadienyl) trimethylplatinum (CH3CsH4Pt(CH3)3) and O2.Silicon substrates with both HF-last and oxidelast surface treatments are employed to investigate the influence of surface preparation on Pt-ALD.A significantlylonger incubation time and less homogeneity are observed for Pt growth on the HF-last substrate compared to the oxide-last substrate.An interfacial oxide layer at the Pt-Si interface is found inevitable even with HF treatment of the Si substrate immediately prior to ALD processing.A plausible explanation to the observed difference of Pt-ALD is discussed.

  19. Structural and electronic properties of bulk and low-index surfaces of zincblende PtC

    Science.gov (United States)

    Gokhan Sensoy, Mehmet; Toffoli, Daniele; Ustunel, Hande

    2017-03-01

    Transition metal carbides have been extensively used in diverse applications over the past decade. Their versatility is in part thanks to their unique bonding, which displays a mixture of ionic, metallic and covalent character. While the bulk structure of zincblende (ZB) PtC has been investigated several times, a detailed understanding of the electronic and structural properties of its low-index surfaces is lacking. In this work, we present an ab initio investigation of the properties of five crystallographic ZB PtC surfaces (Pt/C-terminated PtC(1 0 0), PtC(1 1 0) and Pt/C-terminated PtC(1 1 1)). Upon geometry optimization, both polar and nonpolar surfaces undergo a mild interlayer relaxation, without extensive reconstructions. Calculated vacancy formation energies indicate facile C removal on the (1 1 1) surface while Pt-vacancy formation is endothermic. Finally, atomic O adsorption energies on all surfaces reveal a high affinity of the C-terminated surfaces towards this species.

  20. Structure Determination of Au on Pt(111 Surface: LEED, STM and DFT Study

    Directory of Open Access Journals (Sweden)

    Katarzyna Krupski

    2015-05-01

    Full Text Available Low-energy electron diffraction (LEED, scanning tunneling microscopy (STM and density functional theory (DFT calculations have been used to investigate the atomic and electronic structure of gold deposited (between 0.8 and 1.0 monolayer on the Pt(111 face in ultrahigh vacuum at room temperature. The analysis of LEED and STM measurements indicates two-dimensional growth of the first Au monolayer. Change of the measured surface lattice constant equal to 2.80 Å after Au adsorption was not observed. Based on DFT, the distance between the nearest atoms in the case of bare Pt(111 and Au/Pt(111 surface is equal to 2.83 Å, which gives 1% difference in comparison with STM values. The first and second interlayer spacing of the clean Pt(111 surface are expanded by +0.87% and contracted by −0.43%, respectively. The adsorption energy of the Au atom on the Pt(111 surface is dependent on the adsorption position, and there is a preference for a hollow fcc site. For the Au/Pt(111 surface, the top interlayer spacing is expanded by +2.16% with respect to the ideal bulk value. Changes in the electronic properties of the Au/Pt(111 system below the Fermi level connected to the interaction of Au atoms with Pt(111 surface are observed.

  1. Structural and electronic properties of bulk and low-index surfaces of zincblende PtC.

    Science.gov (United States)

    Sensoy, Mehmet Gokhan; Toffoli, Daniele; Ustunel, Hande

    2017-03-29

    Transition metal carbides have been extensively used in diverse applications over the past decade. Their versatility is in part thanks to their unique bonding, which displays a mixture of ionic, metallic and covalent character. While the bulk structure of zincblende (ZB) PtC has been investigated several times, a detailed understanding of the electronic and structural properties of its low-index surfaces is lacking. In this work, we present an ab initio investigation of the properties of five crystallographic ZB PtC surfaces (Pt/C-terminated PtC(1 0 0), PtC(1 1 0) and Pt/C-terminated PtC(1 1 1)). Upon geometry optimization, both polar and nonpolar surfaces undergo a mild interlayer relaxation, without extensive reconstructions. Calculated vacancy formation energies indicate facile C removal on the (1 1 1) surface while Pt-vacancy formation is endothermic. Finally, atomic O adsorption energies on all surfaces reveal a high affinity of the C-terminated surfaces towards this species.

  2. Growth-induced magnetic anisotropy and clustering in vapor-deposited Co-Pt alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, A.L.; Rooney, P.W.; Tran, M.Q.; Hellman, F. [Department of Physics, University of California--San Diego, La Jolla, California 92093 (United States); Ring, K.M.; Kavanagh, K.L. [Department of Electrical and Computer Engineering, University of California--San Diego, La Jolla, California 92093 (United States); Rellinghaus, B.; Weller, D. [IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States)

    1999-11-01

    Polycrystalline and epitaxial (100)-, (110)-, and (111)-oriented CoPt{sub 3} and Co{sub 0.35}Pt{sub 0.65} films were deposited at various growth rates and over a range of growth temperatures from {minus}50 to 800&hthinsp;{degree}C. Films grown at moderate temperatures (200{endash}400&hthinsp;{degree}C) exhibit remarkable growth-induced properties: perpendicular magnetic anisotropy and large coercivity, as well as enhanced Curie temperature and low-temperature saturation magnetization. Magnetic measurements indicate significant Co clustering in these epitaxial fcc films. These properties are independent of crystallographic orientation, increase with increasing growth temperature, and vanish with annealing. We propose that the correlation between magnetic inhomogeneity, magnetic anisotropy, and enhanced moment is explained by clustering of Co into thin platelets in a Pt-rich lattice. This clustering occurs at the growth surface and is trapped into the growing film by low bulk atomic mobility. {copyright} {ital 1999} {ital The American Physical Society}

  3. Application of low-emissivity Pt layer on Ni alloy to high temperature

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Platinum films were sputter-deposited on two groups of nickel alloy substrates,in which the first group was the samples with rough surface,and the other group with polished surface.The platinum thin-films were applied to serve as the low-emissivity layers to reflect thermal radiation.Then,the platinum-coated samples were heated in air at 600℃ for 200 h to explore the effect of high-temperature environment on the emissivity of coated platinum film.After annealing,the average IR emissivity(at the wavelength o...

  4. First-principles studies on the adsorption of S on the Pt skin Pt3 Ni(1 1 1)surface%S在Pt皮肤Pt3 Ni(111)面吸附的第一性原理研究

    Institute of Scientific and Technical Information of China (English)

    张喜林; 殷岩; 李沙沙; 张岩星; 路战胜; 杨宗献

    2014-01-01

    The adsorption properties of S on the Pt skin Pt3Ni(111)surface are studied by first-principles calculations.It is found that S prefer to occupy the fcc site of Pt3Ni(111)surface with a very big adsorp-tion energy (5.49 eV).More importantly,the interaction of the sulfur with Pt surface would reduce up-on the alloy of the Pt and Ni,comparing with that of the pure Pt surface.The electronic structure analy-sis showed that the catalytic effect of Pt-based catalysts reduced is caused by 2p electron of S,and it would be shrinked from the Ni doping.The current results provide a basis for further study the active sites of Pt3Ni(111)surface with adsorbed sulfur.%采用基于密度泛函理论的第一性原理方法,计算并分析了 S原子在 Pt皮肤Pt3 Ni(111)面不同位置的吸附特性.结果表明:S原子在Pt皮肤Pt3 Ni的 fcc位吸附最强,吸附能为5.49 eV;与 S原子在纯净的Pt(111)表面吸附相比较,S原子在Pt皮肤Pt3 Ni(111)面相应吸附位置的吸附能变小,与近邻 Pt原子形成的 S-Pt键变长,表明掺杂的 Ni 会减小相应位点 S 原子的吸附能,降低体系对 S 原子的吸附能力,进而减弱S吸附对体系催化能力的影响;态密度分析发现,S原子的吸附使得Pt基催化剂的催化活性降低,主要是 S的2 p电子引起的;这些结果将为后续研究 Pt基合金电极抗 S中毒效果以及探究 S原子吸附后Pt3 Ni的活性位提供依据.

  5. Enhancement of L10 ordering with the c-axis perpendicular to the substrate in FePt alloy film by using an epitaxial cap-layer

    Science.gov (United States)

    Ohtake, Mitsuru; Nakamura, Masahiro; Futamoto, Masaaki; Kirino, Fumiyoshi; Inaba, Nobuyuki

    2017-05-01

    FePt alloy thin films with cap-layers of MgO or C are prepared on MgO(001) single-crystal substrates by using a two-step method consisting of low-temperature deposition at 200 °C followed by high-temperature annealing at 600 °C. The FePt film thickness is fixed at 10 nm, whereas the cap-layer thickness is varied from 1 to 10 nm. The influences of cap-layer material and cap-layer thickness on the variant structure and the L10 ordering are investigated. Single-crystal FePt(001) films with disordered fcc structure (A1) grow epitaxially on the substrates at 200 °C. Single-crystal MgO(001) cap-layers grow epitaxially on the FePt films, whereas the structure of C cap-layers is amorphous. The phase transformation from A1 to L10 occurs when the films are annealed at 600 °C. The FePt films with MgO cap-layers thicker than 2 nm consist of L10(001) variant with the c-axis perpendicular to the substrate surface, whereas those with C cap-layers involve small volumes of L10(100) and (010) variants with the c-axis lying in the film plane. The in-plane and the out-of-plane lattices are respectively more expanded and contracted in the continuous-lattice MgO/FePt/MgO structure due to accommodations of misfits of FePt film with respect to not only the MgO substrate but also the MgO cap-layer. The lattice deformation promotes phase transformation along the perpendicular direction and L10 ordering. The FePt films consisting of only L10(001) variant show strong perpendicular magnetic anisotropies and low in-plane coercivities. The present study shows that an introduction of epitaxial cap-layer is effective in controlling the c-axis perpendicular to the substrate surface.

  6. Design of Low Pt Concentration Electrocatalyst Surfaces with High Oxygen Reduction Reaction Activity Promoted by Formation of a Heterogeneous Interface between Pt and CeO(x) Nanowire.

    Science.gov (United States)

    Chauhan, Shipra; Mori, Toshiyuki; Masuda, Takuya; Ueda, Shigenori; Richards, Gary J; Hill, Jonathan P; Ariga, Katsuhiko; Isaka, Noriko; Auchterlonie, Graeme; Drennan, John

    2016-04-13

    Pt-CeO(x) nanowire (NW)/C electrocatalysts for the improvement of oxygen reduction reaction (ORR) activity on Pt were prepared by a combined process involving precipitation and coimpregnation. A low, 5 wt % Pt-loaded CeO(x) NW/C electrocatalyst, pretreated by an optimized electrochemical conditioning process, exhibited high ORR activity over a commercially available 20 wt % Pt/C electrocatalyst although the ORR activity observed for a 5 wt % Pt-loaded CeO(x) nanoparticle (NP)/C was similar to that of 20 wt % Pt/C. To investigate the role of a CeO(x) NW promotor on the enhancement of ORR activity on Pt, the Pt-CeO(x) NW interface was characterized by using hard X-ray photoelectron spectroscopy (HXPS), transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS). Microanalytical data obtained by these methods were discussed in relation to atomistic simulation performed on the interface structures. The combined techniques of HXPS, TEM-EELS, and atomistic simulation indicate that the Pt-CeO(x) NW interface in the electrocatalyst contains two different defect clusters: Frenkel defect clusters (i.e., 2Pt(i)(••) - 4O(i)″ - 4V(o)(••) - V(Ce)″″) formed in the surface around the Pt-CeO(x) NW interface and Schottky defect clusters (i.e., (Pt(Ce)″ - 2V(O)(••) - 2Ce(Ce)') and (Pt(Ce)″ - V(O)(••))) which appear in the bulk of the Pt-CeO(x) NW interface similarly to Pt-CeO(x) NP/C. It is concluded that the formation of both Frenkel defect clusters and Schottky defect clusters at the Pt-CeO(x) NW heterointerface contributes to the promotion of ORR activity and permits the use of lower Pt-loadings in these electrocatalysts.

  7. Influence of growth and anneal conditions on the surface roughness of L1{sub 0} Fe{sub 50}Pd{sub x}Pt{sub 50-x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Xin, E-mail: xinjiang@us.ibm.com [Almaden Research Center, IBM Research, 650 Harry Road, San Jose, CA 95120 (United States); Liu Ruisheng; Gao Li; Topuria, Teya; Parkin, Stuart [Almaden Research Center, IBM Research, 650 Harry Road, San Jose, CA 95120 (United States)

    2012-09-15

    We deposit Fe{sub 50}Pd{sub x}Pt{sub 50-x} alloy thin films by magnetron sputtering onto a TiN seed layer. Chemically ordered L1{sub 0} films are obtained which display large perpendicular magnetic anisotropy. We find that the surface roughness of the film depends strongly on the growth and anneal conditions as well as the Pd composition of the film. Smooth films are obtained by deposition above the chemical ordering temperature and by removing Pd from the alloy. - Highlights: Black-Right-Pointing-Pointer FePdPt thin films with strong perpendicular magnetic anisotropy. Black-Right-Pointing-Pointer Strong dependence of surface roughness on Pd composition. Black-Right-Pointing-Pointer FePt roughness strongly influenced by the disorder to order transition process. Black-Right-Pointing-Pointer Reduced FePt film roughness by deposition above the ordering temperature.

  8. New Stainless Steel Alloys for Low Temperature Surface Hardening?

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Dahl, Kristian Vinter; Somers, Marcel A. J.

    2015-01-01

    The present contribution showcases the possibility for developing new surface hardenable stainless steels containing strong nitride/carbide forming elements (SNCFE). Nitriding of the commercial alloys, austenitic A286, and ferritic AISI 409 illustrates the beneficial effect of having SNCFE present...... in the stainless steel alloys. The presented computational approach for alloy design enables “screening” of hundreds of thousands hypothetical alloy systems by use of Thermo-Calc. Promising compositions for new stainless steel alloys can be selected based on imposed criteria, i.e. facilitating easy selection...

  9. Investigation of Pt-Dy co-doping effects on isothermal oxidation behavior of (Co,Ni)-based alloy

    Institute of Scientific and Technical Information of China (English)

    LAN Hao; ZHANG Weigang; YANG Zhigang

    2012-01-01

    A Co32Ni21Cr8A10.6Y (wt.%) alloy with and without doping 3 wt.% platinum,or co-doping 3 wt.% platinum and 0.1 wt.% dysprosium was produced by arc melting.The hardness of both base alloy and composition-modified alloy was measured by using a Vickers hardness tester.Isothermal oxidation tests at 1000 ℃ in static air atmosphere were conducted to assess the isothermal oxidation behavior of the alloys.The microstructure and composition of the tested alloys before and after oxidation were investigated by means of X-ray diffraction (XRD),field emission-scanning electron microscopy (FE-SEM) equipped with energy dispersive spectroscopy (EDS) and back scatter detector.Results showed that platinum had significant influence on microstructure of the tested alloy by the formation of β-(Ni,Pt)Al phase.Addition of 3 wt.% platinum could slightly increase the hardness of the tested alloy.Platinum accelerated phase transformation of alumina from metastable θ-Al2O3 to stable α-Al2O3 and suppressed the consumption of β-phase.Co-doping both 3 wt.% platinum and 0.1 wt.% dysprosium induced the fastest transformation of θ- to α- alumina and the formation of a fine-grained oxide scales.The most effective reduction of oxidation rate was achieved by the Pt-Dy co-doping effects.

  10. Preparation of Pt Ag alloy nanoisland/graphene hybrid composites and its high stability and catalytic activity in methanol electro-oxidation

    Directory of Open Access Journals (Sweden)

    Feng Lili

    2011-01-01

    Full Text Available Abstract In this article, PtAg alloy nanoislands/graphene hybrid composites were prepared based on the self-organization of Au@PtAg nanorods on graphene sheets. Graphite oxides (GO were prepared and separated to individual sheets using Hummer's method. Graphene nano-sheets were prepared by chemical reduction with hydrazine. The prepared PtAg alloy nanomaterial and the hybrid composites with graphene were characterized by SEM, TEM, and zeta potential measurements. It is confirmed that the prepared Au@PtAg alloy nanorods/graphene hybrid composites own good catalytic function for methanol electro-oxidation by cyclic voltammograms measurements, and exhibited higher catalytic activity and more stability than pure Au@Pt nanorods and Au@AgPt alloy nanorods. In conclusion, the prepared PtAg alloy nanoislands/graphene hybrid composites own high stability and catalytic activity in methanol electro-oxidation, so that it is one kind of high-performance catalyst, and has great potential in applications such as methanol fuel cells in near future.

  11. First-principles study on the phase transition, elastic properties and electronic structure of Pt{sub 3}Al alloys under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanjun [Key Laboratory of Oil and Gas Equipment of Ministry of Education, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Huang, Huawei [National Key Laboratory for Nuclear Fuel and Materials, Nuclear Power of China, Chengdu, Sichuan 610041 (China); Pan, Yong, E-mail: yongpanyn@163.com [State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming 650106 (China); Zhao, Guanghui; Liang, Zheng [Key Laboratory of Oil and Gas Equipment of Ministry of Education, Southwest Petroleum University, Chengdu, Sichuan 610500 (China)

    2014-06-01

    Highlights: • The phase transition of Pt{sub 3}Al alloys occurs at 60 GPa. • The elastic modulus of Pt{sub 3}Al alloys increase with increasing pressure. • The cubic structure has good resistance to volume deformation under high pressure. • The pressure enhances the hybridization between Pt atom and Al atom. - Abstract: The phase transition, formation enthalpies, elastic properties and electronic structure of Pt{sub 3}Al alloys are studied using first-principle approach. The calculated results show that the pressure leads to phase transition from tetragonal structure to cubic structure at 60 GPa. With increasing pressure, the elastic constants, bulk modulus and shear modulus of these Pt{sub 3}Al alloys increase linearly and the bond lengths of Pt–Al metallic bonds and the peak at E{sub F} decrease. The cubic Pt{sub 3}Al alloy has excellent resistance to volume deformation under high pressure. We suggest that the phase transition is derived from the hybridization between Pt and Al atoms for cubic structure is stronger than that of tetragonal structure and forms the strong Pt–Al metallic bonds under high pressure.

  12. Energy barrier versus switching field for patterned Co80Pt20 alloy and Co/Pt multilayer films

    NARCIS (Netherlands)

    de Vries, Jeroen; Bolhuis, Thijs; Abelmann, Leon

    2013-01-01

    Two Co/Pt multilayer samples have been fabricated with a difference in the number of bilayers, leading to a total magnetic layer thickness of 3nm and 20nm. From these films, large arrays of magnetic islands have been patterned using laser interference lithography and ion beam etching. We have

  13. Structural and magnetic study of thin films based on anisotropic ternary alloys FeNiPt{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Montsouka, R.V.P. [IPCMS-GEMME, CNRS UMR 7504, 23 rue du Loess, 67037 Strasbourg Cedex (France); Arabski, J. [IPCMS-GEMME, CNRS UMR 7504, 23 rue du Loess, 67037 Strasbourg Cedex (France); Derory, A. [IPCMS-GEMME, CNRS UMR 7504, 23 rue du Loess, 67037 Strasbourg Cedex (France); Faerber, J. [IPCMS-GEMME, CNRS UMR 7504, 23 rue du Loess, 67037 Strasbourg Cedex (France); Schmerber, G. [IPCMS-GEMME, CNRS UMR 7504, 23 rue du Loess, 67037 Strasbourg Cedex (France); Pierron-Bohnes, V. [IPCMS-GEMME, CNRS UMR 7504, 23 rue du Loess, 67037 Strasbourg Cedex (France)]. E-mail: vero@ipcms.u-strasbg.fr

    2006-01-25

    L1 ordered (Fe-Ni){sub 5}Pt{sub 5} alloy films with perpendicular magnetic anisotropy were successfully prepared by interdiffusing FePt(0 0 1) and NiPt(0 0 1) layers co-deposited on MgO(0 0 1) substrates by MBE. The [0 0 1] growth direction corresponds to the epitaxy of the alloy on the substrate and is the interesting growth orientation to get a perpendicular magnetization. The X-ray diffraction shows a high L1 chemical order (S = 0.7 {+-} 0.1). The easy magnetization direction is perpendicular for all samples. The MFM images display highly interconnected stripes corresponding to up and down orientations of the magnetization. Large uniaxial magnetic anisotropy (K {sub u} 9.10{sup 5} J/m{sup 3}) and suitable magnetic transition temperature (T {sub C} = 400 K) are obtained. The addition of Ni changes the spin-orbit interaction in the FePt compound system, hence causes a decrease of anisotropy, saturation magnetization and coercivity.

  14. Correlation effects driven by reduced dimensionality in magnetic surface alloys

    Indian Academy of Sciences (India)

    U Manju

    2015-06-01

    The evolution of electronic properties and correlation effects in manganese-based two-dimensional magnetic surface alloys are discussed. Enhanced correlations resulting from the reduced dimensionality of the surface alloys lead to the modification of the core level and valence band electronic structures resulting in the appearance of distinct satellite features. Apart from this, surface alloying-induced strong modifications in the substrate surface states arising from charge reorganization and electron transfer to the surface states as well as band-gap openings are also discussed.

  15. Hydrogen Adsorption on Pt, Rh and Pt-Rh Electrodes

    Institute of Scientific and Technical Information of China (English)

    贾梦秋; A.M.Meretskyi

    2005-01-01

    The hydrogen adsorption on Pt-Rh alloys in sulfuric acid aqueous solutions was studied by the method of cathode pulses. Hydrogen adsorption on the electrode with all ratio of alloy components (ωRh = 0-100%) is well described by the Temkin logarithmic isotherm. The surface coverage by adsorbed hydrogen at the same potential is decreased with increasing content of rhodium in the system. A linear dependence of adsorption peak potential on the alloy compositions in the case of weakly bonded adsorbed hydrogen is established. Hydrogen adsorption heat as a function of surface coverage for Pt-Rh-electrodes was obtained. The shape of the current-potential curve and position of the weakly bonded hydrogen adsorption on the potential scale are all related to alloy compositions, thus can serve as the basis for the determination surface composition of allovs.

  16. Steam Initiated Surface Modification of Aluminium Alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud

    -friendly alternative processes. In the present work high temperature steam-based process has been investigated as a possible chromate free conversion coating. Investigations in the thesis includes the effect of alloy type, substrate microstructure, surface finish, and various chemistries on the coating formation......, and interface structure of the coatings were analysed using SEM, FIB-SEM,TEM, GI-XRD, FTIR, XPS, AFM, contact angle, and boiling test. Chapter 1 of this thesis provides a background to the work and available literature information. Materials and experimental methods are outlined in chapter 2. The chapters 3...... using autoclave or using spray system, and with or without various chemistries as accelerators. In general, results show the formation of 650 nm – 3000 nm thick conversion coating, where the thickness depend on the treatment parameters and steam chemistry. Further, the formed coating provide good...

  17. Effects of Ag addition on FePt L1{sub 0} ordering transition: A direct observation of ordering transition and Ag segregation in FePtAg alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei; Yu, Youxing, E-mail: yuyouxing@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Gao, Tenghua [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1, Oh-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2015-12-21

    FePt and (FePt){sub 91.2}Ag{sub 8.8} alloy films were deposited by magnetron sputtering. The average coercivity of (FePt){sub 91.2}Ag{sub 8.8} films reaches 8.51 × 10{sup 5} A/m, which is 0.63 × 10{sup 5} A/m higher than that of the corresponding FePt films. Ag addition effectively promotes the FePt L1{sub 0} ordering transition at a relatively low annealing temperature of 400 °C. The promotion mechanism was investigated by using in situ high-resolution transmission electron microscopy (HRTEM) and ex situ X-ray absorption fine structure (XAFS). The concurrence of ordering transition and Ag segregation in FePtAg alloy films was first observed by using in situ heating HRTEM. The time-resolved evolution reveals more details on the role of Ag addition in FePt low-temperature ordering. Ex situ XAFS results further confirm that Ag replaces Fe sites in the as-deposited films and segregates from FePt-Ag solid solution phase through annealing at elevated temperatures. The segregation of Ag atoms leaves vacancies in the grain. The vacancy formation is believed to accelerate the diffusion of Fe and Pt atoms, which is critical for the L1{sub 0} ordering transition.

  18. Adsorption of CO on Co(0001) and Pt Co(0001) surfaces: an experimental and theoretical study

    Science.gov (United States)

    Cabeza, G. F.; Légaré, P.; Castellani, N. J.

    2000-10-01

    CO adsorption on Co(0001) and Pt submonolayer deposits on Co(0001) at room temperature have been investigated by combining the surface techniques of low-energy electron diffraction and X-ray and UV photoelectron spectroscopy. The influence of bimetallic system formation on the CO adsorption was studied. CO is molecularly adsorbed on both surfaces. The saturation coverage under ultrahigh vacuum conditions corresponds to a well-ordered ( 3× 3)R30° structure in the presence of Pt. The CO uptake on Pt-Co(0001) was found to be lowered in comparison with Co(0001) as the platinum coverage increased between 0 to 0.6 ML. However, CO is adsorbed both on the Pt and Co areas. It is shown that CO is located in the top Pt sites, with an adsorption energy reduced by 38% with respect to the pure Pt(111) surface. This result is in good agreement with our theoretical results of CO chemisorption energy on a pseudomorphic Pt overlayer supported by Co(0001). A decreased Pt density of states at the Fermi level and a high binding energy shift of the d-band center in comparison with the pure metal was observed both experimentally and theoretically.

  19. Reforming of oxygenates for H2 production: correlating reactivity of ethylene glycol and ethanol on Pt(111) and Ni/Pt(111) with surface d-band center.

    Science.gov (United States)

    Skoplyak, Orest; Barteau, Mark A; Chen, Jingguang G

    2006-02-02

    The dehydrogenation and decarbonylation of ethylene glycol and ethanol were studied using temperature programmed desorption (TPD) on Pt(111) and Ni/Pt(111) bimetallic surfaces, as probe reactions for the reforming of oxygenates for the production of H2 for fuel cells. Ethylene glycol reacted via dehydrogenation to form CO and H2, corresponding to the desired reforming reaction, and via total decomposition to produce C(ad), O(ad), and H2. Ethanol reacted by three reaction pathways, dehydrogenation, decarbonylation, and total decomposition, producing CO, H2, CH4, C(ad), and O(ad). Surfaces prepared by deposition of a monolayer of Ni on Pt(111) at 300 K, designated Ni-Pt-Pt(111), displayed increased reforming activity compared to Pt(111), subsurface monolayer Pt-Ni-Pt(111), and thick Ni/Pt(111). Reforming activity was correlated with the d-band center of the surfaces and displayed a linear trend for both ethylene glycol and ethanol, with activity increasing as the surface d-band center moved closer to the Fermi level. This trend was opposite to that previously observed for hydrogenation reactions, where increased activity occurred on subsurface monolayers as the d-band center shifted away from the Fermi level. Extrapolation of the correlation between activity and the surface d-band center of bimetallic systems may provide useful predictions for the selection and rational design of bimetallic catalysts for the reforming of oxygenates.

  20. Surface modification by alkali and heat treatments in titanium alloys.

    Science.gov (United States)

    Lee, Baek-Hee; Do Kim, Young; Shin, Ji Hoon; Hwan Lee, Kyu

    2002-09-01

    Pure titanium and titanium alloys are normally used for orthopedic and dental prostheses. Nevertheless, their chemical, biological, and mechanical properties still can be improved by the development of new preparation technologies. This has been the limiting factor for these metals to show low affinity to living bone. The purpose of this study is to improve the bone-bonding ability between titanium alloys and living bone through a chemically activated process and a thermally activated one. Two kinds of titanium alloys, a newly designed Ti-In-Nb-Ta alloy and a commercially available Ti-6Al-4V ELI alloy, were used in this study. In this study, surface modification of the titanium alloys by alkali and heat treatments (AHT), alkali treated in 5.0M NaOH solution, and heat treated in vacuum furnace at 600 degrees C, is reported. After AHT, the effects of the AHT on the bone integration property were evaluated in vitro. Surface morphologies of AHT were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Chemical compositional surface changes were investigated by X-ray diffractometry (XRD), energy dispersive spectroscopy (EDS), and auger electron spectroscopy (AES). Titanium alloys with surface modification by AHT showed improved bioactive behavior, and the Ti-In-Nb-Ta alloy had better bioactivity than the Ti-6Al-4V ELI alloy in vitro.

  1. Surface modification of Ti alloy by electro-explosive alloying and electron-beam treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gromov, Victor, E-mail: gromov@physics.sibsiu.ru; Kobzareva, Tatiana, E-mail: kobzarevatanya@mail.ru; Budovskikh, Evgeniy, E-mail: budovskih-ea@physics.sibsiu.ru; Baschenko, Lyudmila, E-mail: gromov@physics.sibsiu.ru [Siberian State Industrial University, 42, Kirov Str., Novokuznetsk, 654007 (Russian Federation); Ivanov, Yuryi, E-mail: yufi55@mail.ru [Institute of High Current Electronics SB RAS, 4, Akademicheskii Av. Tomsk, 634055 (Russian Federation); National Research Tomsk State University, 30, Lenina Av. Tomsk, 634034 (Russian Federation)

    2016-01-15

    By methods of modern physical metallurgy the analysis of structure phase states of titanium alloy VT6 is carried out after electric explosion alloying with boron carbide and subsequent irradiation by pulsed electron beam. The formation of an electro-explosive alloying zone of a thickness up to 50 µm, having a gradient structure, characterized by decrease in the concentration of carbon and boron with increasing distance to the treatable surface has been revealed. Subsequent electron-beam treatment of alloying zone leads to smoothing of the alloying area surface and is accompanied by the multilayer structure formation at the depth of 30 µm with alternating layers with different alloying degrees having the structure of submicro - and nanoscale level.

  2. Surface modification of Ti alloy by electro-explosive alloying and electron-beam treatment

    Science.gov (United States)

    Gromov, Victor; Kobzareva, Tatiana; Ivanov, Yuryi; Budovskikh, Evgeniy; Baschenko, Lyudmila

    2016-01-01

    By methods of modern physical metallurgy the analysis of structure phase states of titanium alloy VT6 is carried out after electric explosion alloying with boron carbide and subsequent irradiation by pulsed electron beam. The formation of an electro-explosive alloying zone of a thickness up to 50 µm, having a gradient structure, characterized by decrease in the concentration of carbon and boron with increasing distance to the treatable surface has been revealed. Subsequent electron-beam treatment of alloying zone leads to smoothing of the alloying area surface and is accompanied by the multilayer structure formation at the depth of 30 µm with alternating layers with different alloying degrees having the structure of submicro - and nanoscale level.

  3. Electrochemical oxidation of carbon monoxide: from platinum single crystals to low temperature fuel catalysts. Part II: Electrooxidation of H2, CO and H2/CO mixtures on well characterized PtMo alloy

    Directory of Open Access Journals (Sweden)

    PHILIP N. ROSS JR.

    2003-03-01

    Full Text Available The oxidation of hydrogen and hydrogen–carbon monoxide mixture has been investigated on well-characterized metallurgically prepared platinum–molybdenum (PtMo alloys. It was concluded that the optimum surface concentration of molybdenum is near 23 mol.%. Based on experimentally determined parameters and simulations, the mechanism of the oxidation of CO/H2 mixtures is discussed.

  4. CO-Induced Restructuring on Stepped Pt Surfaces: A Molecular Dynamics Study

    CERN Document Server

    Michalka, Joseph R; Gezelter, J Daniel

    2016-01-01

    The effects of plateau width and step edge kinking on carbon monoxide (CO)-induced restructuring of platinum surfaces were explored using molecular dynamics (MD) simulations. Platinum crystals displaying four different vicinal surfaces [(321), (765), (112), and (557)] were constructed and exposed to partial coverages of carbon monoxide. Platinum-CO interactions were fit to recent experimental data and density functional theory (DFT) calculations, providing a classical interaction model that captures the atop binding preference on Pt. The differences in Pt-Pt binding strength between edge atoms on the various facets were found to play a significant role in step edge wandering and reconstruction events. Because the mechanism for step doubling relies on a stochastic meeting of two wandering edges, the widths of the plateaus on the original surfaces was also found to play a role in these reconstructions. On the Pt(321) surfaces, the CO adsorbate was found to assist in reordering the kinked step edges into straigh...

  5. All-proportional solid-solution Rh–Pd–Pt alloy nanoparticles by femtosecond laser irradiation of aqueous solution with surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Md. Samiul Islam, E-mail: samiul-phy@ru.ac.bd; Nakamura, Takahiro; Sato, Shunichi [Tohoku University, Institute of Multidisciplinary Research for Advanced Materials (Japan)

    2015-06-15

    Formation of Rh–Pd–Pt solid-solution alloy nanoparticles (NPs) by femtosecond laser irradiation of aqueous solution in the presence of polyvinylpyrrolidone (PVP) or citrate as a stabilizer was studied. It was found that the addition of surfactant (PVP or citrate) significantly contributed to reduce the mean size of the particles to 3 nm for PVP and 10 nm for citrate, which was much smaller than that of the particles fabricated without any surfactants (20 nm), and improved the dispersion state as well as the colloidal stability. The solid-solution formation of the Rh–Pd–Pt alloy NPs was confirmed by the XRD results that the diffraction pattern was a single peak, which was found between the positions corresponding to each pure Rh, Pd, and Pt NPs. Moreover, all the elements were homogeneously distributed in every particle by STEM-EDS elemental mapping, strongly indicating the formation of homogeneous solid-solution alloy. Although the Rh–Pd–Pt alloy NPs fabricated with PVP was found to be Pt rich by EDS observation, the composition of NPs fabricated with citrate almost exactly preserved the feeding ratio of ions in the mixed solution. To our best knowledge, these results demonstrated for the first time, the formation of all-proportional solid-solution Rh–Pd–Pt alloy NPs with well size control.

  6. Study on microstructure and properties of Mg-alloy surface alloying layer fabricated by EPC

    Directory of Open Access Journals (Sweden)

    Chen Dongfeng

    2010-02-01

    Full Text Available AZ91D surface alloying was investigated through evaporative pattern casting (EPC technology. Aluminum powder (0.074 to 0.104 mm was used as the alloying element in the experiment. An alloying coating with excellent properties was fabricated, which mainly consisted of adhesive, co-solvent, suspending agent and other ingredients according to desired proportion. Mg-alloy melt was poured under certain temperature and the degree of negative pressure. The microstructure of the surface layer was examined by means of scanning electron microscopy. It has been found that a large volume fraction of network new phases were formed on the Mg-alloy surface, the thickness of the alloying surface layer increased with the alloying coating increasing from 0.3 mm to 0.5 mm, and the microstructure became compact. Energy dispersive X-ray (EDX analysis was used to determine the chemical composition of the new phases. It showed that the new phases mainly consist of β-Mg17Al12, in addition to a small quantity of inter-metallic compounds and oxides. A micro-hardness test and a corrosion experiment to simulate the effect of sea water were performed. The result indicated that the highest micro-hardness of the surface reaches three times that of the matrix. The corrosion rate of alloying samples declines to about a fifth of that of the as-cast AZ91D specimen.

  7. Unsupported NiPt alloy metal catalysts prepared by water-in-oil (W/O) microemulsion method for methane cracking

    KAUST Repository

    Zhou, Lu

    2016-05-18

    Unsupported NiPt metal catalyst with Ni/Pt molar ratio of 88/12 is prepared by water-in-oil (W/O) microemulsion method in this study. Compared to monometallic Ni and Pt catalysts, the NiPt catalyst exhibits superior activity and stability for methane cracking. By XRD (X-ray powder diffraction), XPS (X-ray photoelectron spectroscopy) and TEM (Transmission electron microscopy) analyses, the formation of Ni(0)Pt(0) alloy is believed to be the main reason for the reactivity improvement of this catalyst. Carbon nano tube (CNT) with Ni(0)Pt(0) particles anchored on the top of tube are found for the NiPt catalyst. © 2016 Elsevier Ltd.

  8. Characterization of a surface modified carbon cryogel and a carbon supported Pt catalyst

    Directory of Open Access Journals (Sweden)

    BILJANA M. BABIĆ

    2007-08-01

    Full Text Available A carbon cryogel, synthesized by carbonization of a resorcinol/formaldehyde cryogel and oxidized in nitric acid, was used as catalyst support for Pt nano-particles. The Pt/C catalyst was prepared by a modified polyol synthesis method in an ethylene glycol (EG solution. Characterization by nitrogen adsorption showed that the carbon cryogel support and the Pt/C catalyst were mesoporous materials with high specific surface areas (SBET > 400 m2 g-1 and large mesoporous volumes. X-Ray diffraction of the catalyst demonstrated the successful reduction of the Pt precursor to metallic form. TEM Images of the Pt/C catalyst and Pt particle size distribution showed that the mean Pt particle size was about 3.3 nm. Cyclic voltammetry (CV experiments at various scan rates (from 2 to 200 mV s-1 were performed in 0.5 mol dm-3 HClO4 solution. The large capacitance of the oxidized carbon cryogel electrode, which arises from a combination of the double-layer capacitance and pseudocapacitance, associated with the participation of surface redox-type reactions was demonstrated. For the oxidized carbon cryogel, the total specific capacitance determined by 1/C vs. ν0.5 extrapolation method was found to be 386 F g-1. The hydrogen oxidation reaction at the investigated Pt/C catalyst proceeded as an electrochemically reversible, two-electron direct discharge reaction.

  9. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction

    DEFF Research Database (Denmark)

    Escribano, Maria Escudero; Malacrida, Paolo; Hansen, Martin Hangaard

    2016-01-01

    The high platinum loadings required to compensate for the slow kinetics of the oxygen reduction reaction (ORR) impede the widespread uptake of low-temperature fuel cells in automotive vehicles. We have studied the ORR on eight platinum (Pt)–lanthanide and Pt-alkaline earth electrodes, Pt5M, where...

  10. Surface Modification of a MCFC Anode by Electrochemical Alloying

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Considering the properties of the valve metal alloys with specific corrosion resistance and electrocatalytic ac tivity, an investigation was made to examine if nickel-niobium alloy could serve as the anode material for molten carbo nate fuel cell (MCFC). An attempt was made to produce nickel-niobium surface alloy by an electrochemical process in the molten fluorides and to testify its performance required by the MCFC anode. Experimental results indicated that the corrosion resistance as well as polarization performance of the nickel electrode was improved by the surface alloying.As far as the corrosion resistance and polarization performance is concerned, the nickel-niobium surface alloy can be considered as a candidate material for the anode of MCFC.

  11. Liquid phase surface alloying of AZ91D magnesium alloy with Al and Ni powders

    Energy Technology Data Exchange (ETDEWEB)

    Elahi, Mohammad Reza, E-mail: m.r_elahi@alumni.ut.ac.ir [School of Metallurgy and Materials, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Sohi, Mahmoud Heydarzadeh; Safaei, Abdolghayoom [School of Metallurgy and Materials, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2012-05-15

    In this paper, liquid phase surface alloying of AZ91D magnesium alloy was carried out by pre-placing of Al and Ni powder mixture and subsequent tungsten inert gas (TIG) melting process. The effects of TIG processing parameters on both microstructures and resulting hardness were investigated. Microstructures of alloyed layers were studied by optical microscope, and scanning electron microscope equipped with energy dispersive X-ray spectroscopy (EDS) analyzer, and the phases were identified by X-ray diffraction analysis. The microhardness of the surface alloyed layer was also measured. The surface hardness was increased from 80 HV{sub 0.1} for AZ91D magnesium alloy to as high as 162 HV{sub 0.1} for alloyed sample due to the formation of Mg{sub 17}Al{sub 12} and AlNi{sub 3} intermetallic compounds in the alloyed region and structural refinement. Hardness improvement reduced the wear rate of the surface alloyed layer to almost half of that of the untreated substrate.

  12. Electrochemical and surface characterization of a nickel-titanium alloy

    NARCIS (Netherlands)

    Wever, Dirk; Veldhuizen, AG; de Vries, J; Busscher, HJ; Uges, DRA; van Horn, James

    1998-01-01

    For clinical implantation purposes of shape memory metals the nearly equiatomic nickel-titanium (NiTi) alloy is generally used. In this study, the corrosion properties and surface characteristics of this alloy were investigated and compared with two reference controls, AISI 316 LVM stainless steel a

  13. Electrochemical and surface characterization of a nickel-titanium alloy

    NARCIS (Netherlands)

    Wever, Dirk; Veldhuizen, AG; de Vries, J; Busscher, HJ; Uges, DRA; van Horn, James

    1998-01-01

    For clinical implantation purposes of shape memory metals the nearly equiatomic nickel-titanium (NiTi) alloy is generally used. In this study, the corrosion properties and surface characteristics of this alloy were investigated and compared with two reference controls, AISI 316 LVM stainless steel a

  14. Three body abrasion of laser surface alloyed aluminium AA1200

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2012-06-01

    Full Text Available on the composition of the alloying powder mixture. The wear performance of the alloyed surfaces was characterised using an ASTM G65 three body dry abrasion apparatus. A maximum 82% improvement in the wear resistance of the pure aluminium was achieved with a 40 wt% Ni...

  15. Surface Tension of Molten Ni and Ni-Co Alloys

    Institute of Scientific and Technical Information of China (English)

    Feng XIAO; Liang FANG; Kiyoshi NOGI

    2005-01-01

    Surface tension of molten Ni and Ni-Co (5 and 10 mass fraction) alloys was measured at the temperature range of 1773~1873 K using an improved sessile drop method with an alumina substrate in an Ar+3%H2 atmosphere. The error of the data obtained was analyzed. The surface tension of molten Ni and Ni-Co (5 and 10 mass fraction) alloys decreases with increasing temperature. The influence of Co on the surface tension of Ni-Co alloys is little in the studied Co concentration range.

  16. Molecular Precursors-Induced Surface Reconstruction at Graphene/Pt(111) Interfaces

    CERN Document Server

    Wang, Qian; Shi, Xingqiang

    2015-01-01

    Inspired by experimental observations of Pt(111) surfaces reconstruction at the Pt/graphene (Gr) interfaces with ordered vacancy networks in the outermost Pt layer, the mechanism of the surface reconstruction is investigated by van-der-Waals-corrected density functional theory in combination with particle-swarm optimization algorithm and ab initio atomistic thermodynamics. Our global structural search finds a more stable reconstructed (Rec) structure than that was reported before. With correction for vacancy formation energy, we demonstrate that the experimental observed surface reconstruction occurred at the earlier stages of graphene formation: 1) reconstruction occurred when C60 adsorption (before decomposition to form graphene) for C60 as a molecular precursor, or 2) reconstruction occurred when there were (partial) hydrogens retain in the adsorbed carbon structures for C2H4 and C60H30 as precursors. The reason can be attributed to that the energy gain, from the strengthened Pt-C bonding for C of C60 or f...

  17. The synthesis of PdPt/carbon paper via surface limited redox replacement reactions for oxygen reduction reaction

    CSIR Research Space (South Africa)

    Motsoeneng, RG

    2015-09-01

    Full Text Available Surface-limited redox replacement reactions using the electrochemical atomic layer deposition (EC-ALD) technique were used to synthesize PdPt bimetallic electrocatalysts on carbon paper substrate. Electrocatalysts having different Pd:Pt ratio were...

  18. Enhanced coercivity of HCP Co-Pt alloy thin films on a glass substrate at room temperature for patterned media

    Science.gov (United States)

    Chen, Y. S.; Sun, An-Cheng; Lee, H. Y.; Lu, Hsi-Chuan; Wang, Sea-Fue; Sharma, Puneet

    2015-10-01

    High coercivity (Hc) Co-rich type Co-Pt alloy thin films with a columnar grain structure were deposited at room temperature (RT) by magnetron sputtering. Films with a thickness (t) of up to 10 nm had a FCC structure and exhibited soft magnetic properties. When t>25 nm, the magnetic anisotropy changed from in-plane to isotropic. Hc was also enhanced with increasing t and found to be maximum at t=50 nm. The in-plane and out-of-plane Hc of the film was 2.2 and 2.7 kOe, respectively. Further increasing t led to a slight decrease in Hc. Microstructure and phase structure studies revealed columnar Co-Pt grains with a uniform lateral size grown on a 7 nm initial layer. Films with t>25 nm showed a HCP phase, due to the internal stress and volume effect. The microstructural details responsible for the enhanced RT magnetic properties of the HCP Co-Pt alloy thin films were investigated by TEM.

  19. Pt-modified molybdenum carbide for the hydrogen evolution reaction: From model surfaces to powder electrocatalysts

    Science.gov (United States)

    Kelly, Thomas G.; Lee, Kevin X.; Chen, Jingguang G.

    2014-12-01

    This work explores the opportunity to substantially reduce the cost of hydrogen evolution reaction (HER) electrocatalysts by supporting one monolayer (ML) of platinum (Pt) on low-cost molybdenum carbide (Mo2C) substrate. These efforts were primarily directed towards scaling a thin-film catalyst to high surface area particles. Electrochemical experiments investigated single-phase Mo2C thin films modified by different coverages of Pt for the HER. The ML Pt-Mo2C thin film showed Pt-like HER activity while displaying excellent stability under HER conditions. The promising results on thin films were then extended to more practical powder catalysts. Samples of various Pt loadings on Mo2C powders were synthesized using the co-impregnation method and were evaluated for HER activity. The ability to successfully link electrochemical activity on thin films and powder catalysts was thus demonstrated.

  20. Surface composition tuning of Au-Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation.

    Science.gov (United States)

    Suntivich, Jin; Xu, Zhichuan; Carlton, Christopher E; Kim, Junhyung; Han, Binghong; Lee, Seung Woo; Bonnet, Nicéphore; Marzari, Nicola; Allard, Lawrence F; Gasteiger, Hubert A; Hamad-Schifferli, Kimberly; Shao-Horn, Yang

    2013-05-29

    The ability to direct bimetallic nanoparticles to express desirable surface composition is a crucial step toward effective heterogeneous catalysis, sensing, and bionanotechnology applications. Here we report surface composition tuning of bimetallic Au-Pt electrocatalysts for carbon monoxide and methanol oxidation reactions. We establish a direct correlation between the surface composition of Au-Pt nanoparticles and their catalytic activities. We find that the intrinsic activities of Au-Pt nanoparticles with the same bulk composition of Au0.5Pt0.5 can be enhanced by orders of magnitude by simply controlling the surface composition. We attribute this enhancement to the weakened CO binding on Pt in discrete Pt or Pt-rich clusters surrounded by surface Au atoms. Our finding demonstrates the importance of surface composition control at the nanoscale in harnessing the true electrocatalytic potential of bimetallic nanoparticles and opens up strategies for the development of highly active bimetallic nanoparticles for electrochemical energy conversion.

  1. Laser surface treatment of magnesium alloys with aluminium oxide powder

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2009-11-01

    Full Text Available Purpose: The aim of this paper was to improve the magnesium cast alloys surface layer by laser surface treatment and to determine the laser treatment parameters.Design/methodology/approach: The laser treatment of magnesium alloys with alloying Al2O3 powder of the particle about 80μm was carried out using a high power diode laser (HPDL. The resulting microstructure in the modified surface layer was examined using scanning electron microscopy. Phase composition was determined by the X-ray diffraction method using the XPert device. The measurements of microhardness of the modified surface layer were also studied.Findings: The alloyed region has a fine microstructure with hard carbide particles. Microhardness of laser surface alloyed layer was significantly improved as compared to an alloy without laser treatment.Research limitations/implications: The investigations were conducted for cast magnesium alloys MCMgAl12Zn1, MCMgAl9Zn1, MCMgAl6Zn1, MCMgAl3Zn1 and Al2O3 powder of the particle size about 80 μm. One has used laser power in the range from 1.2to 2.0 kW.Practical implications: The results obtained in this investigation were promising comparing with the other conventional processes. High Power Diode Laser can be used as an economical substitute of Nd: YAG and CO2 to improve the surface magnesium alloy by feeding the carbide particles.Originality/value: The value of this paper is to define the influence of laser treatment parameters on quality, microstructure and microhardness of magnesium cast alloys surface layer.

  2. Interaction between alloying and hardening of cast iron surface

    Institute of Scientific and Technical Information of China (English)

    刘政军; 郝雪枫; 傅迎庆; 牟力军

    2002-01-01

    To improve wear resistance of surface will increase the service life of gray cast iron directly. This paper presents that gray cast iron surface coated with alloy powder is locally remelted by TIG arc to increase the wear resistance. The influences of arc current and scanning rate etc on surface properties are found. Under different conditions, the microstructure, hardness and wear resistance of remelted layer are analyzed and measured. The results indicate that the gray cast iron surface can be strengthened by TIG arc local remelting treatment. Especially, surface alloying hardening effect is best and surface properties are improved remarkably.

  3. Laser surface alloying fabricated porous coating on NiTi shape memory alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Song; ZHANG Chun-hua; MAN Hau-chung; LIU Chang-sheng

    2007-01-01

    Laser surface alloying technique was applied to fabricate a metallic porous coating on a solid NiTi shape memory alloy. By laser surface alloying a 40%TiH2-60%NiTi powder mixture on the surface of NiTi alloy using optimized laser process parameters, a porous but crack-free NiTi layer can be fabricated on the NiTi substrate. The porous coating is metallurgically bonded to the substrate NiTi alloy. The pores are uniformly distributed and are interconnected with each other in the coating. An average pore size of less than 10 μm is achieved. The Ni content of the porous layer is much less than that of the original NiTi surface. The existence of the porous coating on the NiTi alloy causes a 37% reduction of the tensile strength and 55% reduction of the strain as compared with the NiTi alloy. Possible biomedical or other applications for this porous surface with good mechanical strength provided by the substrate are prospective.

  4. Plasma surface alloying of titanium alloy for enhancing burn-resistant property

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping-ze; XU Zhong; ZHANG Gao-hui; HE Zhi-yong; YAO Zheng-jun

    2006-01-01

    Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, burn-resistant alloying layers were made on the surface of Ti-6Al-4V and Ti-6.5Al-0.3Mo-1.5Zr-0.25Si titanium alloys by using double glow plasma surface alloying technology (DG Technology). Two typical burn-resistant layers Ti-Cr and Ti-Mo were made by DG plasma chromizing and DG plasma molybdenizing, respectively. Burn-resistant properties were tested by layer ignition method using 2 kW laser machine. Ignition experiments result reveals that the ignition temperature of alloyed layer with Mo and Cr concentration above 10% is about 200℃ higher than ignition temperature of Ti-6Al-4V substrate.

  5. Functional oxide structures on a surface of metals and alloys

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ The investigations of the plasma electrolytic processes in our laboratory are aimed to the development of conditions of formation of oxide layers with determined composition, structure and functional properties on the surface of valve metals (Al, Ti) and their alloys.

  6. Synthesis and evaluation of Pt-alloys supported on MWCNTS as ethylene glycol-tolerant ORR cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Acosta, D.; Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Pedro Escobedo, Queretaro (Mexico); Alvarez-Contreras, L. [Centro de Investigacion en Materiales Avanzados S. C., Chihuahua, Chihuahua (Mexico); Fraire Luna, S.; Rodriguez Varela, F.J. [Cinvestav, Unidad Saltillo, Ramos Arizpe, Coahuila (Mexico)]. E-mail: javier.varela@cinvestav.edu.mx

    2009-09-15

    In this work, a Pt-Co/MWCNT alloy (atomic ratio 70:30) was synthesized and evaluated as oxygen reduction reaction (ORR) cathode for Direct Ethylene Glycol Fuel Cells (DEGFC) applications. The alloy showed good performance for the ORR in acid medium, while in the presence of 0.125M EG (C{sub 2}H{sub 6}O{sub 2}) the MWCNTs-supported electrocatalyst showed a very high selectivity for the cathodic reaction and a high degree of tolerance to the organic fuel, i.e., a very small shift in the onset potential for the ORR, Eonset, and no peak current densities associated to the oxidation of EG, a detrimental effect of organic fuels normally observed in the case of Pt-alone electrocatalysts. [Spanish] En este trabajo, se sintetizo y evaluo una aleacion Pt-Co/NTCMP (razon atomica 70/30) como catodo de reaccion de reduccion de oxigeno (RRO) para aplicaciones de celdas de combustible de glicol de etileno directo (CCGED). La aleacion mostro buen desempeno para la RRO en medio acido, en tanto que la presencia de 0.125M de GE (C{sub 2}H{sub 6}O{sub 2}) del electrocatalizador soportado por NTCMP mostro una muy alta selectividad para la reaccion catodica y un alto grado de tolerancia al combustible organico, es decir, un corrimiento muy pequeno del potencial de inicio para la RRO, Einicio, y no densidades de corriente asociadas a la oxidacion del GE, efecto perjudicial de los combustibles organicos que se observa en el caso del electrocatalizadores solo de Pt.

  7. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion

    OpenAIRE

    Xuming Zhang; Guosong Wu; Xiang Peng; Limin Li; Hongqing Feng; Biao Gao; Kaifu Huo; Chu, Paul K.

    2015-01-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface c...

  8. Surface modification of titanium and titanium alloys by ion implantation.

    Science.gov (United States)

    Rautray, Tapash R; Narayanan, R; Kwon, Tae-Yub; Kim, Kyo-Han

    2010-05-01

    Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, to improve the biological, chemical, and mechanical properties, surface modification is often performed. In view of this, the current review casts new light on surface modification of titanium and titanium alloys by ion beam implantation.

  9. Ab initio study of effect of Co substitution on the magnetic properties of Ni and Pt-based Heusler alloys

    Science.gov (United States)

    Roy, Tufan; Chakrabarti, Aparna

    2017-04-01

    Using density functional theory based calculations, we have carried out in-depth studies of effect of Co substitution on the magnetic properties of Ni and Pt-based shape memory alloys. We show the systematic variation of the total magnetic moment, as a function of Co doping. A detailed analysis of evolution of Heisenberg exchange coupling parameters as a function of Co doping has been presented here. The strength of RKKY type of exchange interaction is found to decay with the increase of Co doping. We calculate and show the trend, how the Curie temperature of the systems vary with the Co doping.

  10. Magnetism of Fe clusters and islands on Pt surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Repetto, D.; Honolka, J.; Enders, A.; Kern, K. [MPI fuer Festkoerperforschung, Stuttgart (Germany); Rusponi, S.; Brune, H. [Institut de Physique des Nanostructures, EPFL, Lausanne (Switzerland)

    2006-01-01

    Clusters and islands of Fe atoms have been prepared by noble gas buffer layer assisted growth as well as by standard molecular beam epitaxy on Pt substrates. Xe buffer layers have been utilized to promote the formation of compact, relaxed Fe clusters with narrow size distribution. Without the Xe buffer, strained Fe islands with a characteristic misfit dislocation network are formed. Magnetization loops obtained by magneto-optical Kerr effect measurements reveal that in-plane easy magnetization axis is only found for the relaxed clusters, pointing out the important role of epitaxial lattice deformations for the magnetic anisotropy. (orig.)

  11. Vibrational properties of the Pt(111)- p(2 × 2)-K surface superstructure

    Science.gov (United States)

    Rusina, G. G.; Eremeev, S. V.; Borisova, S. D.; Chulkov, E. V.

    2008-08-01

    The vibrational spectra of the Pt(111)- p(2 × 2)-K ordered surface superstructure formed on the platinum surface upon adsorption of 0.25 potassium monolayer are calculated using the interatomic interaction potentials obtained within the tight-binding approximation. The surface relaxation, the dispersion of surface phonons, the local density of surface vibrational states, and the polarization of vibrational modes of adatoms and substrate atoms are discussed. The theoretical results are in good agreement with the recently obtained experimental data.

  12. Structure analysis of CoPt alloy film with metastable ordered phases of L11 and Bh formed on Ru(0001 underlayer

    Directory of Open Access Journals (Sweden)

    Ohtake Mitsuru

    2014-07-01

    Full Text Available CoPt alloy films of 40 nm thickness are prepared on MgO(111 substrates with and without Ru(0001 underlayer at 300 °C by radio-frequency magnetron sputtering. CoPt films with the close-packed plane parallel to the substrate surface grow epitaxially on the Ru underlayer as well as on the MgO substrate. Flat surfaces with the arithmetical mean roughness value of 0.2 nm are realized for both films. The crystal structure is determined by considering the atomic stacking sequence of close-packed plane and the order degree. The film formed on MgO substrate consists of an fcc-based L11 ordered crystal, whereas the film grown on Ru underlayer involves an hcp-based Bh ordered crystal in addition to the L11 ordered crystal. The order degrees of films formed on MgO substrate and Ru underlayer are 0.30 and 0.34, respectively. The L11 crystal consists of two variants whose stacking sequences of close-packed plane are ABCABC… and ACBACB…, while the Bh crystal is a single-crystal with the stacking sequence of ABAB… Formation of Bh crystal is promoted on the Ru underlayer. The film formed on Ru underlayer shows a strong perpendicular magnetic anisotropy reflecting the magnetocrystalline anisotropies of L11 and Bh crystals.

  13. Reducing the Ideal Shear Strengths of ZrB2 by High Efficient Alloying Elements (Ag, Au, Pd and Pt)

    Science.gov (United States)

    Dai, Fu-Zhi; Zhou, Yanchun

    2017-02-01

    Activating the plasticity of ZrB2 is a promising approach to improve its key properties for applications in hypersonic vehicles, including high temperature strength and thermal shock resistance. The present work demonstrates that ideal shear strength of ZrB2, which is a good indicator of the critical stress for dislocation nucleation, can be significantly reduced by dissolving of appropriate alloying elements. Analyzing on the bonding nature of ZrB2 reveals that choosing alloying elements with low energy valence electrons will prevent electron transferring from alloying element to the electron deficient B-B π orbits, which will reduce the local stability of the region surrounding the alloying element. Under the criterion, elements with d electrons tending to be full-filled (Ag, Au, Pd and Pt, the full-filled state is associated with low energy level) are selected as promising candidates with their prominent efficiency in reducing ideal shear strengths verified by first-principles calculations. The results provide useful guidelines for further designs of ZrB2 based materials, especially for improving their mechanical properties.

  14. Reducing the Ideal Shear Strengths of ZrB2 by High Efficient Alloying Elements (Ag, Au, Pd and Pt).

    Science.gov (United States)

    Dai, Fu-Zhi; Zhou, Yanchun

    2017-02-24

    Activating the plasticity of ZrB2 is a promising approach to improve its key properties for applications in hypersonic vehicles, including high temperature strength and thermal shock resistance. The present work demonstrates that ideal shear strength of ZrB2, which is a good indicator of the critical stress for dislocation nucleation, can be significantly reduced by dissolving of appropriate alloying elements. Analyzing on the bonding nature of ZrB2 reveals that choosing alloying elements with low energy valence electrons will prevent electron transferring from alloying element to the electron deficient B-B π orbits, which will reduce the local stability of the region surrounding the alloying element. Under the criterion, elements with d electrons tending to be full-filled (Ag, Au, Pd and Pt, the full-filled state is associated with low energy level) are selected as promising candidates with their prominent efficiency in reducing ideal shear strengths verified by first-principles calculations. The results provide useful guidelines for further designs of ZrB2 based materials, especially for improving their mechanical properties.

  15. Surface hardening of titanium alloys by oxygen-diffusion-permeation

    Institute of Scientific and Technical Information of China (English)

    马红岩; 王茂才; 张松; 辛公春; 魏政

    2003-01-01

    The surface oxygen-diffusion-permeation behaviors of Ti based alloys were investigated. MEF4A opticalmicroscopy and HMV-2000 micro-hardness tester were employed to characterize the microstructure and micro-hard-ness of the oxygen-permeated alloys. The results show that the micro-hardness of Ti based alloys are sharply en-hanced by the permeation of oxygen. The microstructure and micro-hardness of oxygen-permeated layer are stronglyrelated to the oxygen-diffusion-permeation techniques. The solid solution of oxygen in α phase can improve thetransformation temperature from α phase to β phase and enlarge the region of α phase so as to improve the micro-hardness of surface layer. Therefore, surface oxygen-diffusion-permeation would be a feasible method to reinforce Tibased alloys based on the solid solution of oxygen in α-Ti. At last, a diffusion-solution model was put forward.

  16. Nanoporous PdZr surface alloy as highly active non-platinum electrocatalyst toward oxygen reduction reaction with unique structure stability and methanol-tolerance

    Science.gov (United States)

    Duan, Huimei; Xu, Caixia

    2016-06-01

    Nanoporous (NP) PdZr alloy with controllable bimetallic ratio is successfully fabricated by a simple dealloying method. By leaching out the more reactive Al from PdZrAl precursor alloy, NP-PdZr alloy with smaller ligament size was generated, characterized by the nanoscaled interconnected network skeleton and hollow channels extending in all three dimensions. Upon voltammetric scan in acid solution, the dissolution of surface Zr atoms generates the highly active Pd-Zr surface alloy with a nearly pure Pd surface and Pd-Zr alloy core. The NP-Pd80Zr20 surface alloy exhibits markedly enhanced specific and mass activities as well as higher catalytic stability toward oxygen reduction reaction (ORR) compared with NP-Pd and the state-of-the-art Pt/C catalysts. In addition, the NP-Pd80Zr20 surface alloy shows a better selectivity for ORR than methanol in the 0.1 M HClO4 and 0.1 M methanol mixed solution. X-ray photoelectron spectroscopy and density functional theory calculations both demonstrate that the weakened Pd-O bond and improved ORR performances in turn depend on the downshifted d-band center of Pd due to the alloying Pd with Zr (20 at.%). The as-made NP-PdZr alloy holds prospective applications as a cathode electrocatalyst in fuel-cell-related technologies with the advantages of superior overall ORR performances, unique structure stability, and easy preparation.

  17. Tunable Architecture of Rhombic Dodecahedral Pt-Ni Nanoframe Electrocatalysts.

    Energy Technology Data Exchange (ETDEWEB)

    Becknell, Nigel; Son, Yoonkook; Kim, Dohyung; Li, Dongguo; Yu, Yi; Niu, Zhiqiang; Lei, Teng; Sneed, Brian T.; More, Karren L.; Markovic, Nenad M.; Stamenkovic, Vojislav R.; Yang, Peidong

    2017-08-30

    Platinum-based alloys are known to demonstrate advanced properties in electrochemical reactions that are relevant for proton exchange membrane fuel cells and electrolyzers. Further development of Pt alloy electrocatalysts relies on the design of architectures with highly active surfaces and optimized utilization of the expensive elpment, Pt. Here, we show that the three-dimensional Pt anisotropy of Pt-Ni rhombic dodecahedra can be tuned by controlling the ratio between Pt and Ni precursors such that either a completely hollow nanoframe or a new architecture, the excavated nanoframe, can be obtained. The excavated nanoframe showed similar to 10 times higher specific and similar to 6 times higher mass activity for the oxygen reduction reaction than Pt/C, and twice the mass activity of the hollow nanoframe. The high activity is attributed to enhanced Ni content in the near-surface region and the extended two-dimensional sheet structure within the nanoframe that minimizes the number of buried Pt sites.

  18. Effect of metal support interaction on surface segregation in Pd Pt nanoparticles

    Science.gov (United States)

    De Sarkar, A.; Menon, Mahesh; Khanra, Badal C.

    2001-10-01

    In this work, we present the results of our Monte Carlo (MC) simulation studies for the segregation behavior of supported, clean and gas-covered Pd-Pt nanoparticles as a function of the metal-support interaction. For preferential Pd-support interaction, the base of the nanoparticle is found to get enriched with Pd atoms; while for preferential interaction of Pt atoms with the support the base gets enriched in Pt. The composition of the rest of the particle changes slightly with the metal-support interaction. The presence of oxygen and hydrogen atoms does not influence the role of the metal-support interaction on the surface composition of Pd-Pt nanoparticles. The simulation results are found to be in total agreement with the known experimental results.

  19. Diffusion and surface alloying of gradient nanostructured metals

    Directory of Open Access Journals (Sweden)

    Zhenbo Wang

    2017-03-01

    Full Text Available Gradient nanostructures (GNSs have been optimized in recent years for desired performance. The diffusion behavior in GNS metals is crucial for understanding the diffusion mechanism and relative characteristics of different interfaces that provide fundamental understanding for advancing the traditional surface alloying processes. In this paper, atomic diffusion, reactive diffusion, and surface alloying processes are reviewed for various metals with a preformed GNS surface layer. We emphasize the promoted atomic diffusion and reactive diffusion in the GNS surface layer that are related to a higher interfacial energy state with respect to those in relaxed coarse-grained samples. Accordingly, different surface alloying processes, such as nitriding and chromizing, have been modified significantly, and some diffusion-related properties have been enhanced. Finally, the perspectives on current research in this field are discussed.

  20. Investigation of surface properties of high temperature nitrided titanium alloys

    Directory of Open Access Journals (Sweden)

    E. Koyuncu

    2009-12-01

    Full Text Available Purpose: The purpose of paper is to investigate surface properties of high temperature nitrided titanium alloys.Design/methodology/approach: In this study, surface modification of Ti6Al4V titanium alloy was made at various temperatures by plasma nitriding process. Plasma nitriding treatment was performed in 80% N2-20% H2 gas mixture, for treatment times of 2-15 h at the temperatures of 700-1000°C. Surface properties of plasma nitrided Ti6Al4V alloy were examined by metallographic inspection, X-Ray diffraction and Vickers hardness.Findings: Two layers were determined by optic inspection on the samples that were called the compound and diffusion layers. Compound layer contain TiN and Ti2N nitrides, XRD results support in this formations. Maximum hardness was obtained at 10h treatment time and 1000°C treatment temperature. Micro hardness tests showed that hardness properties of the nitrided samples depend on treatment time and temperature.Practical implications: Titanium and its alloys have very attractive properties for many industries. But using of titanium and its alloys is of very low in mechanical engineering applications because of poor tribological properties.Originality/value: The nitriding of titanium alloy surfaces using plasma processes has already reached the industrial application stage in the biomedical field.

  1. Pt-Si Bifunctional Surfaces for CO and Methanol Electro-Oxidation

    DEFF Research Database (Denmark)

    Permyakova, Anastasia A.; Han, Binghong; Jensen, Jens Oluf

    2015-01-01

    Bimetallic surfaces offer activity benefits derived from synergistic effects among active sites with uniquely different functions, which is particularly important for the development of highly effective heterogeneous catalysts for specific technological applications, such as energy conversion...... and storage. Here we report on Pt-Si bulk samples prepared by arc-melting, for the first time, with high activities toward the electro-oxidation of CO and methanol. Increasing the Si concentration on the surface was correlated with the shifts of onset oxidation potentials to lower values and higher activities...... for CO and methanol electro-oxidation. It is proposed that the reaction on the Pt-Si catalyst could follow a Langmuir-Hinshelwood type of mechanism, where substantially enhanced catalytic activity is attributed to the fine-tuning of the surface Pt-Si atomic structure....

  2. Break-up of Pt catalyst surfaces by high CO coverage

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Feng; Dag, Sefa; Wang, Lin-Wang; Liu, Zhi; Butcher, Derek; Bluhm, Henrik; Salmeron, Miquel; Somorjai, Gabor

    2009-09-16

    Stepped Platinum surfaces were found to undergo extensive and reversible restructuring when exposed to CO at pressures above 0.1 Torr. This radically new and previously unknown restructuring phenomenon, has important implications for Pt based catalytic reactions. Novel Scanning Tunneling Microscopy and Photoelectron Spectroscopy techniques operating under gaseous environments near ambient pressure and temperature revealed that as the CO surface coverage approaches 100percent, the originally flat terraces of stepped Pt crystals break up into nanometer size clusters. At room temperature the crystal surface reverts to its initial flat morphology after pumping away the gas phase CO. Density Functional Theory energy calculations provide a rationale for the observations whereby the creation of increased concentrations of low coordination Pt sites at the edges of the formed nanoclusters relieves the strong CO-CO repulsion in the highly compressed adsorbate film.

  3. Modification of the titanium alloy surface in electroexplosive alloying with boron carbide and subsequent electron-beam treatment

    Science.gov (United States)

    Gromov, Victor E.; Budovskikh, Evgeniy A.; Ivanov, Yurii F.; Bashchenko, Lyudmila P.; Wang, Xinli; Kobzareva, Tatyana Yu.; Semin, Alexander P.

    2015-10-01

    The modification of the VT6 titanium alloy surface in electroexplosion alloying with plasma being formed in titanium foil with a weighed powder of boron carbide with subsequent irradiation by a pulsed electron beam has been carried out. An electroexplosive alloying zone of a thickness up to 50 μm with a gradient structure is found to form. The subsequent electron-beam treatment of the alloying zone results in smoothing of the alloying surface and is accompanied by the formation of the multilayer structure with alternating layers of various alloying degree at a depth of 30 μm.

  4. Modification of the titanium alloy surface in electroexplosive alloying with boron carbide and subsequent electron-beam treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gromov, Victor E., E-mail: gromov@physics.sibsiu.ru; Budovskikh, Evgeniy A., E-mail: budovskikh-ea@physics.sibsiu.ru; Bashchenko, Lyudmila P., E-mail: gromov@physics.sibsiu.ru; Kobzareva, Tatyana Yu., E-mail: gromov@physics.sibsiu.ru; Semin, Alexander P., E-mail: gromov@physics.sibsiu.ru [Siberian State Industrial University, Novokuznetsk, 654007 (Russian Federation); Ivanov, Yurii F., E-mail: yufi55@mail.ru [Institute of High Current Electronics SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Wang, Xinli, E-mail: wangxl520@hotmail.com [Northeastern University, Liaoning, Shenyang 110819 China (China)

    2015-10-27

    The modification of the VT6 titanium alloy surface in electroexplosion alloying with plasma being formed in titanium foil with a weighed powder of boron carbide with subsequent irradiation by a pulsed electron beam has been carried out. An electroexplosive alloying zone of a thickness up to 50 μm with a gradient structure is found to form. The subsequent electron-beam treatment of the alloying zone results in smoothing of the alloying surface and is accompanied by the formation of the multilayer structure with alternating layers of various alloying degree at a depth of 30 μm.

  5. Pt-Ag alloy nanowires thermodynamic properties of molecular dynamics simulation study%Pt-Ag合金纳米线热力学性质的分子动力学模拟研究

    Institute of Scientific and Technical Information of China (English)

    曾冰; 王新强

    2015-01-01

    The melting behaviors of the polygon structure for Pt0. 95 Ag0. 05 alloynanowires are studied by using em-pirical molecular-dynamicssimulation by Embedded-Atom Method ( EAM) potential. And the results show that the radial size of Pt0. 95 Ag0. 05 alloy nanowire has enormousinfluence on the melting point and minimal impact on its length. We also find that for Pt0. 95 Ag0. 05 alloy nanowires, the melting temperature obtained by introducing Lindemann factor is well consistent with that from the potential and temperature curve;Bylabeling atoms with col-ors, we found that the outerior atoms movetowards inside; The results indicate that melting of Pt0. 95 Ag0. 05 alloy nanowires starts from the outerior layer firstly and then theinterior .%基于原子嵌入势( EAM),采用分子动力学方法,对临界尺寸下的Pt0.95 Ag0.05合金纳米线多边形结构的熔化行为进行了计算模拟.结果表明:径向尺寸对Pt0.95 Ag0.05合金纳米线的熔点影响较为显著,而长度对其影响较小;引入林德曼因子得到的熔点和用势能-温度变化曲线找到的熔点基本一致;合金纳米线的染色原子由外向内运动;综合分析发现Pt0.95 Ag0.05合金纳米线以先外后内的模式进行熔化.

  6. Laser alloying of the plain carbon steel surface layer

    Directory of Open Access Journals (Sweden)

    A. Radziszewska

    2008-07-01

    Full Text Available As an example of the types of features observed after laser alloying, the addition of Ta to mild carbon steel is described. The system is of interest because such alloying is beneficial in improving surface related properties. The paper describes the microstructure and properties (phase and chemical composition, microhardness of the laser alloyed surface layer. In the investigation the optical microscope, the scanning electron microscope (SEM, chemical (EDS microanalysis composition and microhardness testing methods have been used. Specimens of 0,17 %C plain steel were coated with Ta powder layers. The paints containing organic components were used as the binders during deposition of Ta powder layers on the sample surface. The thickness of Ta deposited layers amounted to 0,16 mm. The specimens were then swept through high power (of nominal power 2,5 kW CW CO2 laser radiation at different speeds.The surface alloyed layers varied in microstructure consisted of fiber like Ta2C + γ eutectics, chemical composition and microhardness. The EDS analyses revealed the enrichment of tantalum in the laser alloyed zone (LAZ. The changes of process parameters had an influence on the hardness of alloyed surface layers: by increasing scanning velocity (from 12 mm/s to 20 mm/s and decreasing laser power (from 1,8 kW to 1,35 kW, the hardness diminished. The wear tests were also carried out which showed that laser alloying of plain carbon steel surface layer led to improvement of their wear resistance.

  7. Laser spectroscopy and photochemistry on metal surfaces, pt.1

    CERN Document Server

    Dai, HL

    1995-01-01

    Using lasers to induce and probe surface processes has the advantages of quantum state specificity, species selectivity, surface sensitivity, fast time-resolution, high frequency resolution, and accessibility to full pressure ranges. These advantages make it highly desirable to use light to induce, control, or monitor surface chemical and physical processes. Recent applications of laser based techniques in studying surface processes have stimulated new developments and enabled the understanding of fundamental problems in energy transfer and reactions. This volume will include discussions on sp

  8. Laser spectroscopy and photochemistry on metal surfaces, pt.2

    CERN Document Server

    Dai, HL

    1995-01-01

    Using lasers to induce and probe surface processes has the advantages of quantum state specificity, species selectivity, surface sensitivity, fast time-resolution, high frequency resolution, and accessibility to full pressure ranges. These advantages make it highly desirable to use light to induce, control, or monitor surface chemical and physical processes. Recent applications of laser based techniques in studying surface processes have stimulated new developments and enabled the understanding of fundamental problems in energy transfer and reactions. This volume will include discussions on sp

  9. Low-cost Cr doped Pt3Ni alloy supported on carbon nanofibers composites counter electrode for efficient dye-sensitized solar cells

    Science.gov (United States)

    Xiao, Junying; Cui, Midou; Wang, Mingkun; Sui, Huidong; Yang, Kun; Li, Ling; Zhang, Wenming; Li, Xiaowei; Fu, Guangsheng; Hagfeldt, Anders; Zhang, Yucang

    2016-10-01

    Pt3Ni alloy supported by carbon nanofibers (CNs) composites (Pt3Ni/CNs) synthesized by a simple solvothermal process was introduced into dye-sensitized solar cells (DSCs) as counter electrode (CE) for the first time, and the DSCs based on Pt3Ni/CNs CE obtained a power conversion efficiency (PCE) of 8.34%. To enhance the catalytic activity of Pt3Ni/CNs composites, transition metal chrome (Cr) was doped in Pt3Ni/CNs to synthesize the composites of Cr-Pt3Ni/CNs using the same method. Due to the high electrocatalytic activity and rapid charge transfer ability, the PCE of the DSCs employing Cr-Pt3Ni/CNs as CE increased to 8.76%, which was much higher than that of Pt CE (7.04%) measured in the same condition. The impressive results along with low cost and simple synthesis process demonstrated transition metal doping was a promising method to produce substitutes for Pt to reduce the cost and increase the PCE of DSCs.

  10. Electron beam induced oxidation of Al–Mg alloy surfaces

    NARCIS (Netherlands)

    Palasantzas, G.; Agterveld, D.T.L. van; Hosson, J.Th.M. De

    2002-01-01

    Electron beam currents of a few nanoamperes, currently used in nanometer scale scanning Auger/electron microscopy, induces severe oxidation of Al–Mg alloy surfaces at room temperature. Auger peak-to-peak oxygen curves for Al–Mg surfaces support the hypothesis that the electron beam creates

  11. Ligand and ensemble effects in adsorption on alloy surfaces

    DEFF Research Database (Denmark)

    Liu, Ping; Nørskov, Jens Kehlet

    2001-01-01

    Density functional theory is used to study the adsorption of carbon monoxide, oxygen and nitrogen on various Au/Pd(111) bimetallic alloy surfaces. By varying the Au content in the surface we are able to make a clear separation into geometrical (or ensemble) effects and electronic (or ligand...

  12. Laser alloying of aluminium to improve surface properties - MSSA 2010

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-07-01

    Full Text Available and microstructure of the surface without affecting the bulk properties of the material. The process involves melting the substrate surface and injecting the powder of the alloying material into the melt pool. Process parameters such as laser power, beam spot size...

  13. Electron beam induced oxidation of Al–Mg alloy surfaces

    NARCIS (Netherlands)

    Palasantzas, G.; Agterveld, D.T.L. van; Hosson, J.Th.M. De

    2002-01-01

    Electron beam currents of a few nanoamperes, currently used in nanometer scale scanning Auger/electron microscopy, induces severe oxidation of Al–Mg alloy surfaces at room temperature. Auger peak-to-peak oxygen curves for Al–Mg surfaces support the hypothesis that the electron beam creates additiona

  14. Diode Laser Surface Alloying of Armor Steel with Tungsten Carbide

    Directory of Open Access Journals (Sweden)

    Janicki D.

    2017-06-01

    Full Text Available Metal matrix composite (MMC surface layers reinforced by WC were fabricated on armor steel ARMOX 500T plates via a laser surface alloying process. The microstructure of the layers was assessed by scanning electron microscopy and X-ray diffraction.

  15. Design of a surface alloy catalyst for steam reforming

    DEFF Research Database (Denmark)

    Besenbacher, F.; Chorkendorff, Ib; Clausen, B.S.;

    1998-01-01

    Detailed studies of elementary chemical processes on well-characterized single crystal surfaces have contributed substantially to the understanding of heterogeneous catalysis. insight into the structure of surface alloys combined with an understanding of the relation between the surface composition...... and reactivity is shown to lead directly to new ideas for catalyst design, The feasibility of such an approach is illustrated by the synthesis, characterization, and tests of a high-surface area gold-nickel catalyst for steam reforming....

  16. Oxidation of formic acid on the Pt(111) surface in the gas phase.

    Science.gov (United States)

    Gao, Wang; Keith, John A; Anton, Josef; Jacob, Timo

    2010-09-28

    Formic acid (HCOOH) oxidation on Pt(111) under gas-phase conditions is a benchmark heterogeneous catalysis reaction used to probe electro-catalytic HCOOH conversion in fuel cells, itself an important reaction in energy conversion. We used density functional theory (DFT) calculations to elucidate the fundamental oxidation mechanisms of HCOOH in the gas phase, determining the relative strengths of chemical interactions between HCOOH oxidation intermediates and the Pt(111) surface. We focused on investigating how water and adsorption coverage affects reaction intermediate structures and transition states. Our results show that adsorbed HCOO is a reactive intermediate in gas phase, and co-adsorbed water plays a key role in HCOOH oxidation influencing the structure of reaction intermediates and reaction barriers on Pt(111). The simulations show the preferred catalytic pathway is qualitatively dependent on surface coverage. These results provide a conceptual basis to better interpret its complicated experimental reaction kinetics.

  17. Formation and characterization of Al-Ti-Nb alloys by electron-beam surface alloying

    Science.gov (United States)

    Valkov, S.; Petrov, P.; Lazarova, R.; Bezdushnyi, R.; Dechev, D.

    2016-12-01

    The combination of attractive mechanical properties, light weight and resistance to corrosion makes Ti-Al based alloys applicable in many industrial branches, like aircraft and automotive industries etc. It is known that the incorporation of Nb improves the high temperature performance and mechanical properties. In the present study on Al substrate Ti and Nb layers were deposited by DC (Direct Current) magnetron sputtering, followed by electron-beam alloying with scanning electron beam. It was chosen two speeds of the specimen motion during the alloying process: V1 = 0.5 cm/s and V2 = 1 cm/s. The alloying process was realized in circular sweep mode in order to maintain the melt pool further. The obtained results demonstrate a formation of (Ti,Nb)Al3 fractions randomly distributed in biphasic structure of intermetallic (Ti,Nb)Al3 particles, dispersed in α-Al solid solution. The evaluated (Ti,Nb)Al3 lattice parameters are independent of the speed of the specimen motion and therefore the alloying speed does not affect the lattice parameters and thus, does not form additional residual stresses, strains etc. It was found that lower velocity of the specimen motion during the alloying process develops more homogeneous structures. The metallographic analyses demonstrate a formation of surface alloys with very high hardness. Our results demonstrate maximal values of 775 HV [kg/cm2] and average hardness of 673 HV [kg/cm2].

  18. Electronic effects of surface oxygen on the bonding of NO to Pt(111)

    Energy Technology Data Exchange (ETDEWEB)

    Bartram, M.E.; Koel, B.E. (Univ. of Colorado, Boulder (United States)); Carter, E.A. (Univ. of California, Los Angeles (United States))

    1989-01-01

    Changes in the bonding of NO on Pt(111) induced by the coadsorption of high coverages of oxygen atoms have been studied with temperature programmed desorption (TPD), vibrational spectroscopy using high resolution electron energy loss spectroscopy (HREELS), and ultraviolet photoelectron spectroscopy (UPS). Modification of the electronic structure of surface Pt atoms by the strongly electron-withdrawing adsorbed oxygen atoms alters the relative stabilities of NO adsorption sites and the nature of the Pt-NO bond. Coadsorption of 0.25 ML (monolayers) of O{sub (a)} destabilizes the two-fold bridge site for NO adsorption that is energetically preferred on clean Pt(111) and causes preferential NO adsorption in the atop site initially. For this oxygen coverage, some population of the bridge site occurs at the highest NO coverages, but occupation of this site can be eliminated completely by preadsorption of 0.75 ML of oxygen. This high coverage of coadsorbed oxygen now induces a further change in the nature of the NO chemisorption bond for NO adsorbed in atop sties, forming bent NO rather than the linear NO species formed on clean Pt(111). The saturation coverage of bent NO is 0.15 ML on this 0.75 ML oxygen-precovered surface and the heat of adsorption is only 1-2 kcal/mol less than linear NO adsorbed in atop sites on clean Pt(111). By using the HREELS and UPS data to identify these three chemically distinct forms of NO{sub (a)}, the authors are able rationalize their formation (and subsequent properties) in different electron environments by correlating bonding configurations with the charge-transfer capabilities of the Pt substrate. Finally, they note that despite the presence of large excesses of O{sub (a)}, NO is never oxidized to form NO{sub 2}.

  19. Chemically Synthesised Pt Particles on Surface Oxidized Carbon Nanotubes as an Effective Catalyst for Direct Methanol Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    Mohammad; yari; Sajjad; Sadaghat; Sharehjini

    2007-01-01

    1 Results The synthesis, physical characterization and electrochemical analysis of Pt particles prepared using the surface oxidized carbon nanotubes prepared by chemically anchoring Pt onto the surface of the CNTs with 2.0 mol/L HNO3 by refluxing for 10 h to introduce surface functional groups.The particles of Pt are synthesized by reduction with sodium borohydride of H2PtCl6. The electro-oxidation of liquid methanol of this catalyst as a thin layer on glassy carbon electrode is investigated at room te...

  20. Fabrication and Surface Properties of Composite Films of SAM/Pt/ZnO/SiO 2

    KAUST Repository

    Yao, Ke Xin

    2008-12-16

    Through synthetic architecture and functionalization with self-assembled monolayers (SAMs), complex nanocomposite films of SAM/Pt/ZnO/SiO2 have been facilely prepared in this work. The nanostructured films are highly uniform and porous, showing a wide range of tunable wettabilities from superhydrophilicity to superhydrophobicity (water contact angles: 0° to 170°). Our approach offers synthetic flexibility in controlling film architecture, surface topography, coating texture, crystallite size, and chemical composition of modifiers (e.g., SAMs derived from alkanethiols). For example, wettability properties of the nanocomposite films can be finely tuned with both inorganic phase (i.e., ZnO/SiO2 and Pt/ZnO/SiO2) and organic phase (i.e., SAMs on Pt/ZnO/SiO2). Due to the presence of catalytic components Pt/ZnO within the nanocomposites, surface reactions of the organic modifiers can further take place at room temperature and elevated temperatures, which provides a means for SAM formation and elimination. Because the Pt/ZnO forms an excellent pair of metal-semiconductors for photocatalysis, the anchored SAMs can also be modified or depleted by UV irradiation (i.e., the films possess self-cleaning ability). Potential applications of these nanocomposite films have been addressed. Our durability tests also confirm that the films are thermally stable and structurally robust in modification- regeneration cycles. © 2008 American Chemical Society.

  1. In vitro biocompatibility evaluation of surface-modified titanium alloys.

    Science.gov (United States)

    Treves, Cristina; Martinesi, Maria; Stio, Maria; Gutiérrez, Alejandro; Jiménez, José Antonio; López, María Francisca

    2010-03-15

    The present work is aimed to evaluate the effects of a surface modification process on the biocompatibility of three vanadium-free titanium alloys with biomedical applications interest. Chemical composition of alloys investigated, in weight %, were Ti-7Nb-6Al, Ti-13Nb-13Zr, and Ti-15Zr-4Nb. An easy and economic method intended to improve the biocompatibiblity of these materials consists in a simple thermal treatment at high temperature, 750 degrees C, in air for different times. The significance of modification of the surface properties to the biological response was studied putting in contact both untreated and thermally treated alloys with human cells in culture, Human Umbilical Vein Endothelial Cells (HUVEC) and Human Peripheral Blood Mononuclear Cells (PBMC). The TNF-alpha release data indicate that thermal treatment improves the biological response of the alloys. The notable enhancement of the surface roughness upon oxidation could be related with the observed reduction of the TNF-alpha levels for treated alloys. A different behavior of the two cell lines may be observed, when adhesion molecules (ICAM-1 and VCAM-1 in HUVEC, ICAM-1, and LFA-1 in PBMC) were determined, PBMC being more sensitive than HUVEC to the contact with the samples. The data also distinguish surface composition and corrosion resistance as significant parameters for the biological response.

  2. Molecular N-2 chemisorption-specific adsorption on step defect sites on Pt surfaces

    DEFF Research Database (Denmark)

    Tripa, C. Emil; Zubkov, T.S.; Yates, John T.

    1999-01-01

    Infrared reflection-absorption spectroscopy and density functional theory, within the generalized gradient approximation, were used to investigate both experimentally and theoretically N-2 chemisorption on stepped and smooth Pt surfaces. N-2 chemisorption was observed to occur only on the edge...

  3. Temperature dependent surface electrochemistry on Pt singlecrystals in alkaline electrolyte: Part 3: The oxygen reductionreaction

    Energy Technology Data Exchange (ETDEWEB)

    tom.schmidt@psi.ch

    2002-08-01

    The kinetics of the oxygen reduction reaction (ORR) was studied in alkaline electrolyte at 293-333K on Pt(hkl) surfaces by means of the rotating ring-disk electrode technique with solution phase peroxide detected at the ring electrode. The ORR on Pt(hkl) was found to be highly structure sensitive with activities increasing in the sequence (111) > (100) > (110)(1x2). Very similar apparent activation energies (37-45 {+-} 5 kJmol-1, {eta} = 0.35 V) were found on all three surfaces. Furthermore, at elevated temperature, significantly smaller amounts of peroxide are formed in agreement with enhanced peroxide reduction rates by increasing temperature. We found that the Tafel slopes on all three single crystal surfaces decrease with increasing temperature, indicating that the logi-E relationship is not represented by a classical Butler-Volmer expression. Based on the kinetic analysis of the polarization curves and from simulations of logi-E curves, we propose that the rate of the ORR on Pt(hkl) in alkaline solution is mainly determined by the potential/temperature dependent surface coverage by OH{sub ad}. We propose two modes of action of the OH{sub ad}: (i) OH{sub ad} blocks the adsorption of O{sub 2} on active platinum sites; and (ii) OH{sub ad} alters the adsorption energy of intermediates which are formed during the ORR on Pt sites.

  4. Atomistic Method Applied to Computational Modeling of Surface Alloys

    Science.gov (United States)

    Bozzolo, Guillermo H.; Abel, Phillip B.

    2000-01-01

    The formation of surface alloys is a growing research field that, in terms of the surface structure of multicomponent systems, defines the frontier both for experimental and theoretical techniques. Because of the impact that the formation of surface alloys has on surface properties, researchers need reliable methods to predict new surface alloys and to help interpret unknown structures. The structure of surface alloys and when, and even if, they form are largely unpredictable from the known properties of the participating elements. No unified theory or model to date can infer surface alloy structures from the constituents properties or their bulk alloy characteristics. In spite of these severe limitations, a growing catalogue of such systems has been developed during the last decade, and only recently are global theories being advanced to fully understand the phenomenon. None of the methods used in other areas of surface science can properly model even the already known cases. Aware of these limitations, the Computational Materials Group at the NASA Glenn Research Center at Lewis Field has developed a useful, computationally economical, and physically sound methodology to enable the systematic study of surface alloy formation in metals. This tool has been tested successfully on several known systems for which hard experimental evidence exists and has been used to predict ternary surface alloy formation (results to be published: Garces, J.E.; Bozzolo, G.; and Mosca, H.: Atomistic Modeling of Pd/Cu(100) Surface Alloy Formation. Surf. Sci., 2000 (in press); Mosca, H.; Garces J.E.; and Bozzolo, G.: Surface Ternary Alloys of (Cu,Au)/Ni(110). (Accepted for publication in Surf. Sci., 2000.); and Garces, J.E.; Bozzolo, G.; Mosca, H.; and Abel, P.: A New Approach for Atomistic Modeling of Pd/Cu(110) Surface Alloy Formation. (Submitted to Appl. Surf. Sci.)). Ternary alloy formation is a field yet to be fully explored experimentally. The computational tool, which is based on

  5. Relativistic tight-binding model: Application to Pt surfaces

    Science.gov (United States)

    Tchernatinsky, A.; Halley, J. W.

    2011-05-01

    We report a parametrization of a previous self-consistent tight-binding model, suitable for metals with a high atomic number in which nonscalar-relativistic effects are significant in the electron physics of condensed phases. The method is applied to platinum. The model is fitted to density functional theory band structures and cohesive energies and spectroscopic data on platinum atoms in five oxidation states, and is then shown without further parametrization to correctly reproduce several low index surface structures. We also predict reconstructions of some vicinal surfaces.

  6. Role of Dissolved and Molecular Oxygen on Cu and PtCu Alloy Particle Structure during Laser Ablation Synthesis in Liquids.

    Science.gov (United States)

    Marzun, Galina; Bönnemann, Helmut; Lehmann, Christian; Spliethoff, Bernd; Weidenthaler, Claudia; Barcikowski, Stephan

    2017-05-05

    on alloy synthesis is also crucial. Laser ablation of PtCu3 in air-saturated water led to separated large CuO and Pt-rich spherical nanoparticles, whereas homogeneous PtCu3 alloy nanoparticles were formed in acetone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Sn surface-enriched Pt-Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation

    KAUST Repository

    Zhu, Haibo

    2014-12-01

    A new one pot, surfactant-free, synthetic route based on the surface organometallic chemistry (SOMC) concept has been developed for the synthesis of Sn surface-enriched Pt-Sn nanoparticles. Bu3SnH selectively reacts with [Pt]-H formed in situ at the surface of Pt nanoparticles, Pt NPs, obtained by reduction of K2PtCl4 by LiB(C2H5)3H. Chemical analysis, 1H MAS and 13C CP/MAS solid-state NMR as well as two-dimensional double-quantum (DQ) and triple-quantum (TQ) experiments show that organo-tin moieties Sn(n-C4H9) are chemically linked to the surface of Pt NPs to produce, in fine, after removal of most of the n-butyl fragment, bimetallic Pt-Sn nanoparticles. The Sn(n-CH2CH2CH2CH3) groups remaining at the surface are believed to stabilize the as-synthesized Pt-Sn NPs, enabling the bimetallic NPs to be well dispersed in THF. Additionally, the Pt-Sn nanoparticles can be supported on MgAl2O4 during the synthesis of the nanoparticles. Some of the Pt-Sn/MgAl2O4 catalyst thus prepared exhibits high activity in PROX of CO and an extremely high selectivity and stability in propane dehydrogenation to propylene. The enhanced activity in propane dehydrogenation is associated with the high concentration of inactive Sn at the surface of Pt nanoparticles which ”isolates” the active Pt atoms. This conclusion is confirmed by XRD, NMR, TEM, and XPS analysis.

  8. Ab Initio Construction of Magnetic Phase Diagrams in Alloys: The Case of Fe1 -xMnx Pt

    Science.gov (United States)

    Pujari, B. S.; Larson, P.; Antropov, V. P.; Belashchenko, K. D.

    2015-07-01

    A first-principles approach to the construction of concentration-temperature magnetic phase diagrams of metallic alloys is presented. The method employs self-consistent total energy calculations based on the coherent potential approximation for partially ordered and noncollinear magnetic states and is able to account for competing interactions and multiple magnetic phases. Application to the Fe1 -xMnx Pt "magnetic chameleon" system yields the sequence of magnetic phases at T =0 and the c -T magnetic phase diagram in good agreement with experiment, and a new low-temperature phase is predicted at the Mn-rich end. The importance of non-Heisenberg interactions for the description of the magnetic phase diagram is demonstrated.

  9. Ab Initio Construction of Magnetic Phase Diagrams in Alloys: The Case of Fe(1-x)Mn(x)Pt.

    Science.gov (United States)

    Pujari, B S; Larson, P; Antropov, V P; Belashchenko, K D

    2015-07-31

    A first-principles approach to the construction of concentration-temperature magnetic phase diagrams of metallic alloys is presented. The method employs self-consistent total energy calculations based on the coherent potential approximation for partially ordered and noncollinear magnetic states and is able to account for competing interactions and multiple magnetic phases. Application to the Fe(1-x)Mn(x)Pt "magnetic chameleon" system yields the sequence of magnetic phases at T=0 and the c-T magnetic phase diagram in good agreement with experiment, and a new low-temperature phase is predicted at the Mn-rich end. The importance of non-Heisenberg interactions for the description of the magnetic phase diagram is demonstrated.

  10. Relating Composition and Thermoelectric Stability of Pt-Rh Alloy Thermocouples

    Science.gov (United States)

    Pearce, J. V.; Greenen, A. D.; Smith, A.; Elliott, C. J.

    2017-02-01

    A simple model is presented which relates the electromotive force drift rate of Pt-Rh thermoelements to dS/dc, the sensitivity of the Seebeck coefficient, S, to rhodium mass fraction, c. The model has been tested by repeated measurements of a Pt-Rh thermocouple assembly consisting of five thermoelements, using a Co-C high-temperature fixed point (1324°C) for a total duration of 500 h. By considering various thermocouples from the assembly, it is demonstrated that in this case, remarkably, there is a linear relationship between the measured drift rate and the combined dS/dc, where the combination is determined by addition of the individual values for each wire. Particular emphasis is placed on evaluation of the uncertainties associated with the calculations. This result supports previous findings that the thermoelectric stability of Pt-Rh thermoelements improves as the rhodium mass fraction increases. Within this paradigm, it is shown that for a selected Pt-Rh thermoelement of any given composition, there exists a second thermoelement having a composition that yields a minimum drift when combined with the first to form a thermocouple.

  11. Change in local environment upon quasicrystallization of Zr-Cu glassy alloys by addition of Pd and Pt.

    Science.gov (United States)

    Saida, Junji; Sanada, Takashi; Sato, Shigeo; Imafuku, Muneyuki; Ohnuma, Masato; Ohkubo, Tadakatsu; Hono, Kazuhiro; Matsubara, Eiichiro

    2011-05-04

    The effects of Pd and Pt, which are known quasicrystal (QC)-forming elements, on the local atomic structure in Zr(70)Cu(30) glassy alloys are investigated. A QC phase precipitates from a glassy phase above a certain temperature by a cooperative-like motion of icosahedral clusters. Quasicrystallization is accompanied by a significant change in the local environment around the Zr atoms and a slight change around the noble metal. However, the local environment around the Cu atoms remains almost the same during QC formation. It is suggested that two types of icosahedral polyhedra exist in the glassy state: one has a relatively perfect icosahedral structure formed around the Zr atoms. The other is in a distorted state around the Cu atoms. We speculate that the medium-range order (i.e. QC nucleus) has a Zr-centered icosahedral cluster as its core, and the QC grows via aggregation of possible clusters in the initial stage. Pd or Pt atoms stabilize and/or connect individual Zr-centered icosahedral clusters, facilitating the formation of the nucleus and growth of the QC phase. © 2011 IOP Publishing Ltd

  12. Surface free energy of copper-zinc alloy for energy-saving of boiler

    Institute of Scientific and Technical Information of China (English)

    WANG Man; LIANG Jinsheng; TANG Qingguo; MING Xing; MENG Junping; DING Yan

    2006-01-01

    Cu-Zn, Cu-Zn-Sn, Cu-Zn-Ni alloys were melted by vacuum smelter. The effect factors to the surface free energy of the alloys such as chemical composition, crystal structure and surface crystal lattice distortion etc. were investigated by OCA30 automatic contact angle test instrument, metallography microscope and XRD instrument etc. Results suggests: adding alloy element to Cu may increase its surface free energy, and the more kinds of alloy elements are added, the more surface free energy increases; the alloy element Sn an increase the surface free energy of Cu-Zn alloy; Cu-Zn alloy with fir-tree crystal structure, great phase discrepancy and obvious composition aliquation has greater surface free energy; Cu-Zn alloy with compounds and serious surface crystal lattice distortion has greater surface free energy.

  13. Easy synthesis approach of Pt-nanoparticles on polyaniline surface: an efficient electro-catalyst for methanol oxidation reaction

    Science.gov (United States)

    Mondal, Sanjoy; Malik, Sudip

    2016-10-01

    A facile room temperature and surfactant free synthesis of platinum nanoparticles (Pt-NPs) on benzene tetra-carboxylic acid doped polyaniline (BDP) tube has been successfully demonstrated by solution dipping method. Preparation of Pt-NPs has been done through a red-ox reaction between BDP tubes and Pt-salt, as BDP itself acts as nontoxic reducing agent as well as template cum stabilizer for Pt-NPs. In BDP@Pt composites, ∼2.5 ± 0.5 nm spherical shaped Pt-NPs as observed from TEM studies are nicely decorated on the surface of BDP. The population or the loading density of Pt-NPs on BDP tube is greatly controlled by changing the w/w ratio of BDP to H2PtCl6. Synthesized BDP@Pt composites are subsequently employed as an efficient electro-catalyst for methanol oxidation reaction (MOR) in acidic medium. Furthermore, the observed catalytic activity is consequently ∼12 times higher than that of commercially available Pt/C catalyst. Depending on the loading density of Pt-NPs on BDP tubes, the efficiency and carbon monoxide (CO) tolerance ability of composites have been explored.

  14. Hardfacing of aluminium alloys by means of metal matrix composites produced by laser surface alloying

    CSIR Research Space (South Africa)

    Pityana, SL

    2009-06-01

    Full Text Available Metal matrix composite layers were formed on an aluminium substrate by means of laser surface alloying method. Aluminium 1200 was used as a host material and TiC particles were used as the reinforcement. The microstructure of the modified layer...

  15. Near-surface alloys for hydrogen fuel cell applications

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Mavrikakis, Manos

    2006-01-01

    Near-surface alloys (NSAs) possess a variety of unusual catalytic properties that could make them useful candidates for improved catalysts in a variety of chemical processes. It is known from previous work, for example, that some NSAs bind hydrogen very weakly while, at the same time, permitting ...

  16. Functional oxide structures on a surface of metals and alloys

    Institute of Scientific and Technical Information of China (English)

    Rudnev; V.; S.; Yarovaya; T.; P.; Boguta; D.; L.; Lukiyanchuk; I.; V.; Tyrina; L.; M.; Morozova; V.; P.; Nedozorov; P.; M.; Vasilyeva; M.; S.; Kondrikov; N.; B.

    2005-01-01

    The investigations of the plasma electrolytic processes in our laboratory are aimed to the development of conditions of formation of oxide layers with determined composition, structure and functional properties on the surface of valve metals (Al, Ti) and their alloys.……

  17. Local Chemical Reactivity of a Metal Alloy Surface

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Scheffler, Matthias

    1995-01-01

    The chemical reactivity of a metal alloy surface is studied by density functional theory investigating the interaction of H2 with NiAl(110). The energy barrier for H2 dissociation is largely different over the Al and Ni sites without, however, reflecting the barriers over the single component metal...

  18. Ceramic Defects in Metal-Ceramic Fixed Dental Prostheses Made from Co-Cr and Au-Pt Alloys: A Retrospective Study.

    Science.gov (United States)

    Mikeli, Aikaterini; Boening, Klaus W; Lißke, Benjamin

    2015-01-01

    Ceramic defects in porcelain-fused-to-metal (PFM) restorations may depend on framework alloy type. This study assessed ceramic defects on cobalt-chromium- (Co-Cr-) and gold-platinum- (Au-Pt-) based PFM restorations. In this study, 147 Co-Cr-based and 168 Au-Pt-based PFM restorations inserted between 1998 and 2010 (139 patients) were examined for ceramic defects. Detected defects were assigned to three groups according to clinical defect relevance. Ceramic defect rates (Co-Cr-based: 12.9%; Au-Pt-based: 7.2%) revealed no significant difference but a strong statistical trend (U test, P = .082). Most defects were of little clinical relevance. Co-Cr PFM restorations may be at higher risk for ceramic defects compared to Au-Pt-based restorations.

  19. Surface-Limited Synthesis of Pt Nanocluster Decorated Pd Hierarchical Structures with Enhanced Electrocatalytic Activity toward Oxygen Reduction Reaction.

    Science.gov (United States)

    Yang, Tao; Cao, Guojian; Huang, Qingli; Ma, Yanxia; Wan, Sheng; Zhao, Hong; Li, Na; Sun, Xia; Yin, Fujun

    2015-08-12

    Exploring superior catalysts with high catalytic activity and durability is of significant for the development of an electrochemical device involving the oxygen reduction reaction. This work describes the synthesis of Pt-on-Pd bimetallic heterogeneous nanostructures, and their high electrocatalytic activity toward the oxygen reduction reaction (ORR). Pt nanoclusters with a size of 1-2 nm were generated on Pd nanorods (NRs) through a modified Cu underpotential deposition (UPD) process free of potential control and a subsequent surface-limited redox reaction. The Pt nanocluster decorated Pd nanostructure with a ultralow Pt content of 1.5 wt % exhibited a mass activity of 105.3 mA mg(-1) (Pt-Pd) toward ORR, comparable to that of the commercial Pt/C catalyst but 4 times higher than that of carbon supported Pd NRs. More importantly, the carbon supported Pt-on-Pd catalyst displays relatively small losses of 16% in electrochemical surface area (ECSA) and 32% in mass activity after 10 000 potential sweeps, in contrast to respective losses of 46 and 64% for the commercial Pt/C catalyst counterpart. The results demonstrated that Pt decoration might be an efficient way to improve the electrocatalytic activity of Pd and in turn allow Pd to be a promising substitution for commercial Pt catalyst.

  20. Morphology Control of Pt-Ni Alloy Electrocatalysts Prepared by Potentiostatic Electrodeposition and Application in PEMFC Cathode%恒压电沉积Pt-Ni合金催化剂的形貌控制及其对催化剂性能的影响

    Institute of Scientific and Technical Information of China (English)

    陈泽霖; 张华

    2015-01-01

    ABSTRACT:Objective To artificially control the morphology and electro-catalytic performance of Pt-Ni alloy catalysts in the process of electrodeposition by controlling the parameters of carbon cloth hydrophilicity and electrolyte temperature. Methods Po-tentiostatic electrodeposition was employed to prepare Pt-Ni alloy catalysts with different morphologies. 5 wt% Nafion was used to modify the surface hydrophilicity of the carbon cloth substrates. The electrolyte temperature was subsequently controlled. The phy-sical and electrochemical performances of the electrodeposited catalysts were characterized by X-ray diffraction ( XRD) , scanning electron microscope (SEM), energy dispersive spectrograph (EDS), cyclic voltammetry (CV), and single cell polarization test technique. Results The Pt-Ni alloy particles electrodeposited on the Nafion-modified carbon cloth were fine and homogeneous. Sin-gle cell performance of the electrode with moderate Nafion loading of 0. 8 mg/cm2 was the best. Compared with Pt-Ni alloy with snowflake-like particles fabricated at lower temperature, the Pt-Ni alloy with spherical particles fabricated at higher electrolyte tem-perature had higher electrochemical active surface area ( ECSA) and better electrocatalytic performance. Among them, the Pt-Ni prepared at 50 ℃ had the highest ECSA of 47. 6 m2/(g Pt) and the highest power density of 77. 8 mW/cm2 in single cell. Con-clusion The electrocatalytic performance of Pt-Ni electrodeposited on the Nafion-modified carbon cloth is more superior to that of unmodified samples. Electrolyte temperature has significant impact on the morphology of electrodeposited Pt-Ni alloy catalysts.%目的:通过对电沉积过程中基体亲水性及电解液温度参数的控制,实现对Pt-Ni催化剂的形貌及催化性能的控制。方法采用恒电压沉积技术制备Pt-Ni合金催化剂。利用5%(质量分数) Nafion对多孔碳布基体表面进行亲水修饰,并控制电解液温度,合成具有不

  1. Finite electric field effects in the large perpendicular magnetic anisotropy surface Pt/Fe/Pt(001): a first-principles study.

    Science.gov (United States)

    Tsujikawa, Masahito; Oda, Tatsuki

    2009-06-19

    We investigate crystalline magnetic anisotropy in the electric field (EF) for the FePt surface which has a large perpendicular anisotropy, by means of the first-principles approach. Anisotropy is reduced linearly with respect to the inward EF, associated with the induced spin density around the Fe layer. Although the magnetic anisotropy energy (MAE) density reveals large variation around the atoms, the intrinsic contribution to the MAE is found to mainly come from the Fe layer. The surface without the capping Pt layer also shows similar linear dependence.

  2. A room temperature surface acoustic wave hydrogen sensor with Pt coated ZnO nanorods.

    Science.gov (United States)

    Huang, Fu-Chun; Chen, Yung-Yu; Wu, Tsung-Tsong

    2009-02-11

    A surface acoustic wave (SAW) sensor with Pt coated ZnO nanorods as the selective layer has been investigated for hydrogen detection. The SAW sensor was fabricated based on a 128 degrees YX-LiNbO(3) substrate with a operating frequency of 145 MHz. A dual delay line configuration was adopted to eliminate external environmental fluctuations. The Pt coated ZnO nanorods were chosen as a selective layer due to their high surface-to-volume ratio, large penetration depth, and fast charge diffusion rate. The ZnO nanorods were synthesized by an aqueous solution method and coated with the noble metal Pt as a catalyst. Finally, the SAW sensor responses to humidity and hydrogen were tested. Results show that the sensor is not sensitive to humidity; moreover, the frequency shift for a hydrogen concentration variation of 6000 ppm is 26 kHz while operating at room temperature. It can be concluded that the Pt coated ZnO nanorod based SAW hydrogen sensor exhibits fast response, good sensitivity and short-term repeatability. It is worth noting that not only is the sensor sensitive enough to operate at room temperature, but also it can avoid the influence of humidity.

  3. Fabrication of superhydrophobic nanostructured surface on aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, R.; Farzaneh, M. [Universite du Quebec a Chicoutimi, Chicoutimi, QC (Canada)

    2011-01-15

    A superhydrophobic surface was prepared by consecutive immersion in boiling water and sputtering of polytetrafluoroethylene (PTFE or Teflon registered) on the surface of an aluminum alloy substrate. Immersion in boiling water was used to create a micro-nanostructure on the alloy substrate. Then, the rough surface was coated with RF-sputtered Teflon film. The immersion time in boiling water plays an important role in surface morphology and water repellency of the deposited Teflon coating. Scanning electron microscopy images showed a ''flower-like'' structure in first few minutes of immersion. And as the immersion time lengthened, a ''cornflake'' structure appeared. FTIR analyses of Teflon-like coating deposited on water treated aluminum alloy surfaces showed fluorinated groups, which effectively reduce surface energy. The Teflon-like coating deposited on a rough surface achieved with five-minute immersion in boiling water provided a high static contact angle ({proportional_to}164 ) and low contact angle hysteresis ({proportional_to}4 ). (orig.)

  4. L10 ordered phase formation in FePt, FePd, CoPt, and CoPd alloy thin films epitaxially grown on MgO(001) single-crystal substrates

    Science.gov (United States)

    Ohtake, Mitsuru; Ouchi, Shouhei; Kirino, Fumiyoshi; Futamoto, Masaaki

    2012-04-01

    The FePt, FePd, CoPt, and CoPd epitaxial thin films are prepared on MgO(001) single-crystal substrates by ultrahigh vacuum RF magnetron sputtering. The effects of the magnetic material and the substrate temperature on the film growth, the film structure, and the magnetic properties are investigated. The L10 ordered phase formation is observed for FePt, FePd, and CoPt films prepared at temperatures higher than 200, 400, and 600 °C, respectively, whereas that is not recognized for CoPd films. The L10-FePd(001) single-crystal films with the c-axis normal to the substrate surface are formed, whereas the FePt and CoPt epitaxial films include L10(100) crystals whose c-axis is parallel to the substrate surface, in addition to the L10(001) crystals. Upon increasing the substrate temperature, the ordering degree increases. A higher ordering parameter is observed in the order of FePd > FePt > CoPt. The magnetic properties are influenced by the crystal structure, the crystallographic orientation of the L10 crystal, and the ordering degree.

  5. Electron Induced Surface Reactions of cis-Pt(CO)2Cl2: A Route to Focused Electron Beam Induced Deposition of Pure Pt Nanostructures.

    Science.gov (United States)

    Spencer, Julie A; Wu, Yung-Chien; McElwee-White, Lisa; Fairbrother, D Howard

    2016-07-27

    Using mechanistic data from surface science studies on electron-induced reactions of organometallic precursors, cis-Pt(CO)2Cl2 (1) was designed specifically for use in focused electron beam induced deposition (FEBID) of Pt nanostructures. Electron induced decomposition of adsorbed 1 under ultrahigh vacuum (UHV) conditions proceeds through initial CO loss as determined by in situ X-ray photoelectron spectroscopy and mass spectrometry. Although the Pt-Cl bonds remain intact during the initial decomposition step, larger electron doses induce removal of the residual chloride through an electron-stimulated desorption process. FEBID structures created from cis-Pt(CO)2Cl2 under steady state deposition conditions in an Auger spectrometer were determined to be PtCl2, free of carbon and oxygen. Coupled with the electron stimulated removal of chlorine demonstrated in the UHV experiments, the Auger deposition data establish a route to FEBID of pure Pt. Results from this study demonstrate that structure-activity relationships can be used to design new precursors specifically for FEBID.

  6. Size-Controlled Synthesis of Sub-10 nm PtNi3 Alloy Nanoparticles and their Unusual Volcano-Shaped Size Effect on ORR Electrocatalysis.

    Science.gov (United States)

    Gan, Lin; Rudi, Stefan; Cui, Chunhua; Heggen, Marc; Strasser, Peter

    2016-06-01

    Dealloyed Pt bimetallic core-shell catalysts derived from low-Pt bimetallic alloy nanoparticles (e.g, PtNi3 ) have recently shown unprecedented activity and stability on the cathodic oxygen reduction reaction (ORR) under realistic fuel cell conditions and become today's catalyst of choice for commercialization of automobile fuel cells. A critical step toward this breakthrough is to control their particle size below a critical value (≈10 nm) to suppress nanoporosity formation and hence reduce significant base metal (e.g., Ni) leaching under the corrosive ORR condition. Fine size control of the sub-10 nm PtNi3 nanoparticles and understanding their size dependent ORR electrocatalysis are crucial to further improve their ORR activity and stability yet still remain unexplored. A robust synthetic approach is presented here for size-controlled PtNi3 nanoparticles between 3 and 10 nm while keeping a constant particle composition and their size-selected growth mechanism is studied comprehensively. This enables us to address their size-dependent ORR activities and stabilities for the first time. Contrary to the previously established monotonic increase of ORR specific activity and stability with increasing particle size on Pt and Pt-rich bimetallic nanoparticles, the Pt-poor PtNi3 nanoparticles exhibit an unusual "volcano-shaped" size dependence, showing the highest ORR activity and stability at the particle sizes between 6 and 8 nm due to their highest Ni retention during long-term catalyst aging. The results of this study provide important practical guidelines for the size selection of the low Pt bimetallic ORR electrocatalysts with further improved durably high activity.

  7. Study of Titanizing the Surface of Copper Substrates by the Double Glow Discharge Plasma Surface Alloying Technique

    Institute of Scientific and Technical Information of China (English)

    Zhang Yuefei; Chen Fei; Lü Junxia; Su Yongan; Xu Zhong

    2005-01-01

    This paper discusses a study in which Ti surface alloying has been performed on copper substrates by means of a double glow discharge plasma surface alloying technique. The micro-structure, the phase structure, the micro-hardness and the distribution of Ti concentration of alloying layer were investigated in detail by XRD, SEM and so on. The effect of process parameters on the alloying layer was studied. The experimental results show that a Ti solid solution with the precipitation Cu4Ti alloying layer has been formed on the copper surface. The thickness of the alloying layer is about 120μm and the surface titanium concentration gradually decreases from w (Ti) = 87% to w (Ti) = 4%. The micro-hardness of the alloying layer is between 300 HV ~ 800 HV. Source sputtering, surface absorption, ion bombarding and high temperature diffusion are the major factors that affect the alloying layer.

  8. Albumin adsorption on CoCrMo alloy surfaces

    Science.gov (United States)

    Yan, Yu; Yang, Hongjuan; Su, Yanjing; Qiao, Lijie

    2015-12-01

    Proteins can adsorb on the surface of artificial joints immediately after being implanted. Although research studying protein adsorption on medical material surfaces has been carried out, the mechanism of the proteins’ adsorption which affects the corrosion behaviour of such materials still lacks in situ observation at the micro level. The adsorption of bovine serum albumin (BSA) on CoCrMo alloy surfaces was studied in situ by AFM and SKPFM as a function of pH and the charge of CoCrMo alloy surfaces. Results showed that when the specimens were uncharged, hydrophobic interaction could govern the process of the adsorption rather than electrostatic interaction, and BSA molecules tended to adsorb on the surfaces forming a monolayer in the side-on model. Results also showed that adsorbed BSA molecules could promote the corrosion process for CoCrMo alloys. When the surface was positively charged, the electrostatic interaction played a leading role in the adsorption process. The maximum adsorption occurred at the isoelectric point (pH 4.7) of BSA.

  9. Fracture characteristics of structural aerospace alloys containing deep surface flaws. [aluminum-titanium alloys

    Science.gov (United States)

    Masters, J. N.; Bixler, W. D.; Finger, R. W.

    1973-01-01

    Conditions controlling the growth and fracture of deep surface flaws in aerospace alloys were investigated. Static fracture tests were performed on 7075-T651 and 2219-T87 aluminum, and 6Ai-4V STA titanium . Cyclic flaw growth tests were performed on the two latter alloys, and sustain load tests were performed on the titanium alloy. Both the cyclic and the sustain load tests were performed with and without a prior proof overload cycle to investigate possible growth retardation effects. Variables included in all test series were thickness, flaw depth-to-thickness ratio, and flaw shape. Results were analyzed and compared with previously developed data to determine the limits of applicability of available modified linear elastic fracture solutions.

  10. Surface sensitivity of the spin Seebeck effect in the Pt/YIG system

    Science.gov (United States)

    Aqeel, Aisha; Vera-Marun, Ivan J.; van Wees, Bart J.; Palstra, Thomas T. M.

    2015-03-01

    It is well-known that the surface plays an important role in the spin Seebeck effect (SSE). However the effect of mechanical treatment on the SSE has not been systematically studied yet. Here, we have investigated the influence of the interface quality on the SSE in a bilayer system of platinum and yttrium iron garnet (Pt/YIG). The surfaces of the YIG crystals are modified by different types of mechanical polishing before Pt deposition for different samples. We observed that the magnitude and magnetic field dependence of the SSE is strongly influenced by mechanical treatment of the YIG surface. No definite relation has been found between the SSE response and the sample roughness. However, we observe a direct correlation between the saturation magnetic field (Hsat) of the SSE and the roughness of sample, as the former increases by moving from soft toward coarse particle polishing. The change in the magnitude of Hsat can be attributed to the presence of a perpendicular magnetic anisotropy due to the treatment induced surface strain or shape anisotropy in the Pt/YIG system.

  11. Alloy Design Workbench-Surface Modeling Package Developed

    Science.gov (United States)

    Abel, Phillip B.; Noebe, Ronald D.; Bozzolo, Guillermo H.; Good, Brian S.; Daugherty, Elaine S.

    2003-01-01

    NASA Glenn Research Center's Computational Materials Group has integrated a graphical user interface with in-house-developed surface modeling capabilities, with the goal of using computationally efficient atomistic simulations to aid the development of advanced aerospace materials, through the modeling of alloy surfaces, surface alloys, and segregation. The software is also ideal for modeling nanomaterials, since surface and interfacial effects can dominate material behavior and properties at this level. Through the combination of an accurate atomistic surface modeling methodology and an efficient computational engine, it is now possible to directly model these types of surface phenomenon and metallic nanostructures without a supercomputer. Fulfilling a High Operating Temperature Propulsion Components (HOTPC) project level-I milestone, a graphical user interface was created for a suite of quantum approximate atomistic materials modeling Fortran programs developed at Glenn. The resulting "Alloy Design Workbench-Surface Modeling Package" (ADW-SMP) is the combination of proven quantum approximate Bozzolo-Ferrante-Smith (BFS) algorithms (refs. 1 and 2) with a productivity-enhancing graphical front end. Written in the portable, platform independent Java programming language, the graphical user interface calls on extensively tested Fortran programs running in the background for the detailed computational tasks. Designed to run on desktop computers, the package has been deployed on PC, Mac, and SGI computer systems. The graphical user interface integrates two modes of computational materials exploration. One mode uses Monte Carlo simulations to determine lowest energy equilibrium configurations. The second approach is an interactive "what if" comparison of atomic configuration energies, designed to provide real-time insight into the underlying drivers of alloying processes.

  12. Process control of laser surface alloying

    NARCIS (Netherlands)

    Römer, Gerardus Richardus, Bernardus, Engelina; Meijer, J.; Olde Benneker, Jeroen

    1998-01-01

    In spite of the many advantages of laser surface treatment, such as high production rates and low induced thermal distortion, and its great potential for modifying the surface properties of a wide range of new and existing materials, industrial applications are still limited. This is not only

  13. Pt、Rh及Pt-Rh合金电极上氢的吸附%Hydrogen Adsorption on Pt, Rh and Pt-Rh Electrodes

    Institute of Scientific and Technical Information of China (English)

    贾梦秋; A.M.Meretskyi

    2005-01-01

    The hydrogen adsorption on Pt-Rh alloys in sulfuric acid aqueous solutions was studied by the method of cathode pulses. Hydrogen adsorption on the electrode with all ratio of alloy components (wRh = 0-100%) is well described by the Temkin logarithmic isotherm. The surface coverage by adsorbed hydrogen at the same potential is decreased with increasing content of rhodium in the system. A linear dependence of adsorption peak potential on the alloy compositions in the case of weakly bonded adsorbed hydrogen is established. Hydrogen adsorption heat as a function of surface coverage for Pt-Rh-electrodes was obtained. The shape of the current-potential curve and position of the weakly bonded hydrogen adsorption on the potential scale are all related to alloy compositions, thus can serve as the basis for the determination surface composition of alloys.

  14. Functional link between surface low-coordination sites and the electrochemical durability of Pt nanoparticles

    Science.gov (United States)

    Chung, Dong Young; Shin, Heejong; Yoo, Ji Mun; Lee, Kug-Seung; Lee, Nam-Suk; Kang, Kisuk; Sung, Yung-Eun

    2016-12-01

    A promising strategy for achieving enhanced catalytic activity involves the use of nanoscale electrocatalysts; however, their low stability remains a major challenge. Among the various performance-degradation mechanisms, atomic dissolution is known to cause severe nanoparticle deactivation. To date, the factors influencing these catalysts' durability are not understood. Herein, we assess the role of low-coordination surface sites, focusing on the atomic dissolution of Pt nanoparticles. The density of low-coordination sites was finely controlled, and no significant size change occurred. Based on our findings, we suggest that the initial low-coordination sites trigger metal dissolution, which subsequently accelerates Pt dissolution. We believe that controlling the surface coordination number can open new routes for the design of highly durable nanoscale electrocatalysts.

  15. Preservation of the Pt(100) surface reconstruction after growth of a continuous layer of graphene

    DEFF Research Database (Denmark)

    Nilsson, Louis; Andersen, Mie; Bjerre, Jacob;

    2012-01-01

    Scanning tunneling microscopy shows that a layer of graphene can be grown on the hex-reconstructed Pt(100) surface and that the reconstruction is preserved after growth. A continuous sheet of graphene can be grown across domain boundaries and step edges without loss of periodicity or change...... to accommodation of edge dislocations. The defect formation energy and the induced buckling of the graphene have been characterized by DFT calculations....... in direction. Density functional theory calculations on a simple model system support the observation that the graphene can have different rotation angles relative to the hex-reconstructed Pt surface. The graphene sheet direction can be changed by incorporating pentagon-heptagon defects giving rise...

  16. Optimum surface roughness prediction for titanium alloy by adopting response surface methodology

    Science.gov (United States)

    Yang, Aimin; Han, Yang; Pan, Yuhang; Xing, Hongwei; Li, Jinze

    Titanium alloy has been widely applied in industrial engineering products due to its advantages of great corrosion resistance and high specific strength. This paper investigated the processing parameters for finish turning of titanium alloy TC11. Firstly, a three-factor central composite design of experiment, considering the cutting speed, feed rate and depth of cut, are conducted in titanium alloy TC11 and the corresponding surface roughness are obtained. Then a mathematic model is constructed by the response surface methodology to fit the relationship between the process parameters and the surface roughness. The prediction accuracy was verified by the one-way ANOVA. Finally, the contour line of the surface roughness under different combination of process parameters are obtained and used for the optimum surface roughness prediction. Verification experimental results demonstrated that material removal rate (MRR) at the obtained optimum can be significantly improved without sacrificing the surface roughness.

  17. Surface Plasmon Enhanced Photocatalysis of Au/Pt-decorated TiO2 Nanopillar Arrays

    Science.gov (United States)

    Shuang, Shuang; Lv, Ruitao; Xie, Zheng; Zhang, Zhengjun

    2016-05-01

    The low quantum yields and lack of visible light utilization hinder the practical application of TiO2 in high-performance photocatalysis. Herein, we present a design of TiO2 nanopillar arrays (NPAs) decorated with both Au and Pt nanoparticles (NPs) directly synthesized through successive ion layer adsorption and reaction (SILAR) at room temperature. Au/Pt NPs with sizes of ~4 nm are well-dispersed on the TiO2 NPAs as evidenced by electron microscopic analyses. The present design of Au/Pt co-decoration on the TiO2 NPAs shows much higher visible and ultraviolet (UV) light absorption response, which leads to remarkably enhanced photocatalytic activities on both the dye degradation and photoelectrochemical (PEC) performance. Its photocatalytic reaction efficiency is 21 and 13 times higher than that of pure TiO2 sample under UV-vis and visible light, respectively. This great enhancement can be attributed to the synergy of electron-sink function of Pt and surface plasmon resonance (SPR) of Au NPs, which significantly improves charge separation of photoexcited TiO2. Our studies demonstrate that through rational design of composite nanostructures one can harvest visible light through the SPR effect to enhance the photocatalytic activities initiated by UV-light, and thus realize more effectively utilization of the whole solar spectrum for energy conversion.

  18. Surface Plasmon Enhanced Photocatalysis of Au/Pt-decorated TiO2 Nanopillar Arrays.

    Science.gov (United States)

    Shuang, Shuang; Lv, Ruitao; Xie, Zheng; Zhang, Zhengjun

    2016-05-24

    The low quantum yields and lack of visible light utilization hinder the practical application of TiO2 in high-performance photocatalysis. Herein, we present a design of TiO2 nanopillar arrays (NPAs) decorated with both Au and Pt nanoparticles (NPs) directly synthesized through successive ion layer adsorption and reaction (SILAR) at room temperature. Au/Pt NPs with sizes of ~4 nm are well-dispersed on the TiO2 NPAs as evidenced by electron microscopic analyses. The present design of Au/Pt co-decoration on the TiO2 NPAs shows much higher visible and ultraviolet (UV) light absorption response, which leads to remarkably enhanced photocatalytic activities on both the dye degradation and photoelectrochemical (PEC) performance. Its photocatalytic reaction efficiency is 21 and 13 times higher than that of pure TiO2 sample under UV-vis and visible light, respectively. This great enhancement can be attributed to the synergy of electron-sink function of Pt and surface plasmon resonance (SPR) of Au NPs, which significantly improves charge separation of photoexcited TiO2. Our studies demonstrate that through rational design of composite nanostructures one can harvest visible light through the SPR effect to enhance the photocatalytic activities initiated by UV-light, and thus realize more effectively utilization of the whole solar spectrum for energy conversion.

  19. Surface properties of liquid In-Zn alloys

    Science.gov (United States)

    Pstruś, J.; Moser, Z.; Gąsior, W.

    2011-02-01

    The measurements of surface tension and density of zinc, indium and liquid In-Zn alloys containing 0.9, 0.85, 0.75, 0.70, 0.60, 0.40, 0.25 and 0.10 mole fraction of In were carried out using the method of maximum pressure in gaseous bubbles (MBP) as well as dilatometric technique. The technique of sessile drop was additionally applied in the measurements of surface tension for pure indium and zinc. The measurements were performed at temperature range 474-1151 K. The isotherms of surface tension calculated based on Butler's equation at 700 and 1100 K corresponded well with the experimental values for zinc content lower than 0.6 mole fraction. The surface tension calculated for alloys of higher zinc concentrations (0.6 < XZn < 0.95) had a positive value of the surface tension temperature coefficient (dσ/dT), which did not coincide with the experimental results. The density as well as molar volume of liquid In-Zn alloys showed almost identical behaviour like the ideal solutions. The observed little deviations were contained within assessed experimental errors.

  20. Surface properties of liquid In-Zn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pstrus, J., E-mail: nmpstrus@imim-pan.krakow.pl [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Krakow (Poland); Moser, Z.; Gasior, W. [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Krakow (Poland)

    2011-02-15

    The measurements of surface tension and density of zinc, indium and liquid In-Zn alloys containing 0.9, 0.85, 0.75, 0.70, 0.60, 0.40, 0.25 and 0.10 mole fraction of In were carried out using the method of maximum pressure in gaseous bubbles (MBP) as well as dilatometric technique. The technique of sessile drop was additionally applied in the measurements of surface tension for pure indium and zinc. The measurements were performed at temperature range 474-1151 K. The isotherms of surface tension calculated based on Butler's equation at 700 and 1100 K corresponded well with the experimental values for zinc content lower than 0.6 mole fraction. The surface tension calculated for alloys of higher zinc concentrations (0.6 < X{sub Zn} < 0.95) had a positive value of the surface tension temperature coefficient (d{sigma}/dT), which did not coincide with the experimental results. The density as well as molar volume of liquid In-Zn alloys showed almost identical behaviour like the ideal solutions. The observed little deviations were contained within assessed experimental errors.

  1. Effect of whitening toothpaste on titanium and titanium alloy surfaces.

    Science.gov (United States)

    Faria, Adriana Cláudia Lapria; Bordin, Angelo Rafael de Vito; Pedrazzi, Vinícius; Rodrigues, Renata Cristina Silveira; Ribeiro, Ricardo Faria

    2012-01-01

    Dental implants have increased the use of titanium and titanium alloys in prosthetic applications. Whitening toothpastes with peroxides are available for patients with high aesthetic requirements, but the effect of whitening toothpastes on titanium surfaces is not yet known, although titanium is prone to fluoride ion attack. Thus, the aim of the present study was to compare Ti-5Ta alloy to cp Ti after toothbrushing with whitening and conventional toothpastes. Ti-5Ta (%wt) alloy was melted in an arc melting furnace and compared with cp Ti. Disks and toothbrush heads were embedded in PVC rings to be mounted onto a toothbrushing test apparatus. A total of 260,000 cycles were carried out at 250 cycles/minute under a load of 5 N on samples immersed in toothpaste slurries. Surface roughness and Vickers microhardness were evaluated before and after toothbrushing. One sample of each material/toothpaste was analyzed by Scanning Electron Microscopy (SEM) and compared with a sample that had not been submitted to toothbrushing. Surface roughness increased significantly after toothbrushing, but no differences were noted after toothbrushing with different toothpastes. Toothbrushing did not significantly affect sample microhardness. The results suggest that toothpastes that contain and those that do not contain peroxides in their composition have different effects on cp Ti and Ti-5Ta surfaces. Although no significant difference was noted in the microhardness and roughness of the surfaces brushed with different toothpastes, both toothpastes increased roughness after toothbrushing.

  2. Size dependence of thermoelectric power of Au, Pd, Pt nanoclusters deposited onto HOPG surface

    OpenAIRE

    Borisyuk, P. V.; V. I. Troyan; Lebedinskii, Yu Yu; Vasilyev, O S

    2016-01-01

    The paper presents the study of tunnel current-voltage characteristics of Au, Pd and Pt nanoclusters deposited onto the highly oriented pyrolytic graphite (HOPG) surface by pulsed laser deposition. The analysis of tunnel current-voltage characteristics obtained by scanning tunneling spectroscopy (STS) allowed to recover the thermoelectric power value of nanoclusters. It was found that the value of thermoelectric power of pulsed laser deposited nanoclusters depends on nanocluster material and ...

  3. Laser Surface Alloying of Copper, Manganese, and Magnesium with Pure Aluminum Substrate

    Science.gov (United States)

    Jiru, Woldetinsay G.; Sankar, M. Ravi; Dixit, Uday S.

    2016-03-01

    Laser surface alloying is one of the recent technologies used in the manufacturing sector for improving the surface properties of the metals. Light weight materials like aluminum alloys, titanium alloys, and magnesium alloys are used in the locomotive, aerospace, and structural applications. In the present work, an experimental study was conducted to improve the surface hardness of commercially pure aluminum plate. CO2 laser is used to melt pre-placed powders of pure copper, manganese, and magnesium. Microstructure of alloyed surface was analyzed using optical microscope. The best surface alloying was obtained at the optimum values of laser parameters, viz., laser power, scan speed, and laser beam diameter. In the alloyed region, microhardness increased from 30 HV0.5 to 430 HV0.5, while it was 60 HV0.5 in the heat-affected region. Tensile tests revealed some reduction in the strength and total elongation due to alloying. On the other hand, corrosion resistance improved.

  4. Electro-explosive alloying of VT6 alloy surface by boron carbide powder with the subsequent electron-beam treatment

    Science.gov (United States)

    Romanov, D. A.; Raykov, S. V.; Gromov, V. E.; Ivanov, Yu F.

    2015-11-01

    The formation of electro-explosive alloying zone with the thickness up to 50 μm has been revealed. It has been shown that it has a gradient structure, characterized by the decrease of carbon and boron concentration with the increase of the distance up to the treatment surface. The subsequent electron-beam treatment of alloying zone leads to flattening of alloying surface relief and is accompanied by the formation of a multilevel structure at the depth up to 30 μm, characterized by the interchange of some layers with a different level of alloying, having structure of a submicro- and nanoscale level.

  5. Morphology, stresses, and surface reactivity of nanoporous gold synthesized from nanostructured precursor alloys

    Science.gov (United States)

    Rouya, Eric

    Nanoporous metallic materials (NMMs) are generally synthesized using dealloying, whereby the more reactive component is dissolved from a homogeneous alloy in a suitable electrolyte, and the more noble metal atoms simultaneously diffuse into 3-D clusters, forming a bi-continuous network of interconnected ligaments. Nanoporous gold (NPG) in particular is a well-known NMM; it is inert, bio-compatible, and capable of developing large surface areas with 1--100nm pores. While several studies have demonstrated its potential usefulness in fuel cell and sensing devices, its structural, mechanical, and electrocatalytic properties still require further investigation, particularly if NPG is synthesized from precursor alloy films exhibiting metastable nanostructures. In this dissertation, the electrodeposition (ECD) process, microstrucural characteristics, and metatstability of Au-Ni precursor alloys are investigated. The stresses evolved during Au-Ni alloy nucleation and growth are investigated in situ and correlated with microstructural and electrochemical data in order to identify the various stress-inducing mechanisms. In situ stresses generated during Au-Ni and Au-Ag dealloying were investigated, and additionally correlated with the growth stresses. Finally, the surface area and electrocatalytic properties of NPG are characterized using a variety of electrochemical techniques. Potentiostatically electrodeposited Au1-x-Nix (x: 0--90at%) films form a continuous series of metastable solid solutions and exhibit a nanocrystalline morphology, with ˜10--20 nm grains, the size of which decreases with increasing Ni content. The formation of a metastable structure was interpreted in terms of the limited surface diffusivities of adatoms at the growing interface and atomic volume differences (˜15%). Internal stresses generated during ECD of Ni-rich films can be explained assuming a 3-D Volmer-Weber growth mode, where the stress is initially compressive, then transitions into tension

  6. [INVITED] Laser treatment of Inconel 718 alloy and surface characteristics

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.; Al-Aqeeli, N.; Karatas, C.

    2016-04-01

    Laser surface texturing of Inconel 718 alloy is carried out under the high pressure nitrogen assisting gas. The combination of evaporation and melting at the irradiated surface is achieved by controlling the laser scanning speed and the laser output power. Morphological and metallurgical changes in the treated surface are analyzed using the analytical tools including optical, electron scanning, and atomic force microscopes, energy dispersive spectroscopy, and X-ray diffraction. Microhardnes and friction coefficient of the laser treated surface are measured. Residual stress formed in the surface region is determined from the X-ray diffraction data. Surface hydrophobicity of the laser treated layer is assessed incorporating the sessile drop method. It is found that laser treated surface is free from large size asperities including cracks and the voids. Surface microhardness increases significantly after the laser treatment process, which is attributed to the dense layer formation at the surface under the high cooling rates, dissolution of Laves phase in the surface region, and formation of nitride species at the surface. Residual stress formed is compressive in the laser treated surface and friction coefficient reduces at the surface after the laser treatment process. The combination of evaporation and melting at the irradiated surface results in surface texture composes of micro/nano-poles and pillars, which enhance the surface hydrophobicity.

  7. First principles analysis of hydrogen chemisorption on Pd-Re alloyed overlayers and alloyed surfaces

    DEFF Research Database (Denmark)

    Pallassana, Venkataraman; Neurock, Matthew; Hansen, Lars Bruno;

    2000-01-01

    Gradient corrected periodic density functional theory (DFT-GGA) slab calculations were used to examine the chemisorption of atomic hydrogen on various Pd-Re alloyed overlayers and uniformly alloyed surfaces. Adsorption was examined at 33% surface coverage, where atomic hydrogen preferred the three......-fold fcc sites. The binding energy of atomic hydrogen is observed to vary by as much as 0.7 eV due to Pd-Re interactions. The computed adsorption energies were found to be between -2.35 eV [for monolayer Pd-on-Re, i.e., Pd-ML/Re(0001)] and -3.05 eV [for Pd-33 Re-66/Pd(111)]. A d-band weighting scheme...... was developed to extend the Hammer-Norskov surface reactivity model [Surf. Sci. 343, 211 (1995)] to the analysis of bimetallic Pd-Re alloyed systems. The hydrogen chemisorption energies are correlated linearly to the surface d-band center, which is weighted appropriately by the d-band coupling matrix elements...

  8. Study on surface defects in milling Inconel 718 super alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Liu; Chengzu, Ren; Guofeng, Wang; Yinwei, Yang; Lu, Zhang [Tianjin University, Tianjin (China)

    2015-04-15

    Nickel-based alloys have been extensively used as critical components in aerospace industry, especially in the key section of aero engine. In general, these sections are manufactured by milling process because most of them have complex forms. However, surface defects appear frequently in milling due to periodic impact force, which leads to the deterioration of the fatigue life. We conducted milling experiments under different cutting conditions and found that four kinds of defects, i.e., tear, cavity, build up edge (BUE) and groove, commonly appear on the machined surface. Based on the observed results, the morphology and generation regime of these defects are analyzed and the carbide particle cracking is discussed to explain the appearance of the nickel alloy defects. To study the effect of the cutting parameters on the severity of these surface defects, two qualitative indicators, which are named as average number of the defects per field and average area ratio of the defects per field, are presented and the influence laws are summarized based on the results correspondingly. This study is helpful for understanding the generation mechanism of the surface defects during milling process of nickel based super alloy.

  9. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion

    Science.gov (United States)

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K.

    2015-11-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys.

  10. Observation of high coercive fields in chemically synthesized coated Fe-Pt nanostructures

    Science.gov (United States)

    Dalavi, Shankar B.; Panda, Rabi N.

    2017-04-01

    Nanocrystalline Fe-Pt alloys have been synthesized via chemical reduction route using various capping agents; such as: oleic acid/oleylamine (route-1) and oleic acid/CTAB (route-2). We could able to synthesize Fe50Pt and Fe54Pt alloys via route 1 and 2, respectively. As-prepared Fe-Pt alloys crystallize in disordered fcc phase with crystallite sizes of 2.3 nm and 6 nm for route-1 and route-2, respectively. Disordered Fe-Pt alloys were transformed to ordered fct phase after annealing at 600 °C. SEM studies confirm the spherical shape morphologies of annealed Fe-Pt nanoparticles with SEM particle sizes of 24.4 nm and 21.2 nm for route-1 and route-2, respectively. TEM study confirms the presence of 4.6 nm particles for annealed Fe50Pt alloys with several agglomerating clusters of bigger size and appropriately agrees well with the XRD study. Room temperature magnetization studies of as-prepared Fe-Pt alloys (fcc) show ferromagnetism with negligible coercivities. Average magnetic moments per particle for as-prepared Fe-Pt alloys were estimated to be 753 μB and 814 μB, for route 1 and 2, respectively. Ordered fct Fe-Pt alloys show high values of coercivities of 10,000 Oe and 10,792 Oe for route-1 and route-2, respectively. Observed magnetic properties of the fct Fe-Pt alloys nps were interpreted with the basis of order parameters, size, surface, and composition effects.

  11. Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT

    DEFF Research Database (Denmark)

    Hansen, Heine Anton; Rossmeisl, Jan; Nørskov, Jens Kehlet

    2008-01-01

    (ORR) on the different surface structures and calculate the free energy of the intermediates. We estimate their catalytic activity for ORR by determining the highest potential at which all ORR reaction steps reduce the free energy. We obtain self-consistency in the sense that the surface is stable...... but not in acidic PEM fuel cells. Based on density functional theory calculations we investigate the electrochemically most stable surface structures as a function of pH and electrostatic potential for Pt(111), Ag(111) and Ni(111), and we construct surface Pourbaix diagrams. We study the oxygen reduction reaction...... of the reactive surface. Oxygen absorbed on the surface shifts the reactivity towards the weak binding region, which in turn increases the activity. The oxidation state of the surface and the ORR potential are constant versus the reversible hydrogen electrode (RHE). The dissolution potential in acidic solution...

  12. Surface magnetic anisotropy in amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tejedor, M.; Rubio, H.; Elbaile, L.; Iglesias, R. (Univ. de Oviedo (Spain). Dept. de Fisica)

    1993-11-01

    The total in-plane magnetic anisotropy and the in-plane surface magnetic anisotropy constants have been measured in nearly-zero magnetostrictive amorphous ribbons in as-quenched state. The magnetostatic energy of a two-dimensional square-lattice of parallelepipeds or ellipsoids, whose dimensions are determined by the parameters characterizing the roughness, is evaluated. From the results obtained, they can conclude that the in-plane surface anisotropy can be magnetostatic in origin but it has little influence on the total in-plane magnetic anisotropy of the ribbon.

  13. Surface tension of liquid Au-Bi-Sn alloys

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The surface tension of a promising lead-free solder Au-Bi-Sn alloys was investigated both by the sessile-drop method and calculation. Experimental measurements were carried out for two cross-sections with the constant gold to bismuth ration of 1:1 and 1:2. For all the investigated compositions, decrease of the surface tension is observed with increasing temperature. Meanwhile, the surface tension values were also calculated based on Butler's equation, with using the newest research on thermodynamics data of...

  14. Surface tension of molten Ni-(Cr, Co, W) alloys and segregation of elements

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; LIU Lan-xiao; YANG Ren-hui; ZHAO Hong-kai; FANG Liang; ZHANG Chi

    2008-01-01

    Surface tension of molten Ni-(Cr, Co, W) alloys was measured at the temperature of 1 773-1 873 K in an Ar+3%H2 atmosphere using an improved sessile drop method. The segregation of Cr, Co and W in alloy was calculated and analyzed using Butler's equation. The results show a good agreement between measured and calculated data. The surface tension of molten Ni-(Cr,Co, W) alloys decreases with increasing temperature. In Ni-(Cr, Co, W) alloys, the element with lower surface tension tends to segregate on the surface of molten alloy while that with higher surface tension tends to segregate inside of the molten alloy. The larger the differences in surface tension, atom radius and electron configuration between solvent and solute are, the more significant the segregation is. As a result, Ni segregates onto the surface and Co and W segregate inside the alloys.

  15. Nanostructured Platinum Alloys for Use as Catalyst Materials

    Science.gov (United States)

    Hays, Charles C. (Inventor); Narayan, Sri R. (Inventor)

    2015-01-01

    A series of binary and ternary Pt-alloys, that promote the important reactions for catalysis at an alloy surface; oxygen reduction, hydrogen oxidation, and hydrogen and oxygen evolution. The first two of these reactions are essential when applying the alloy for use in a PEMFC.

  16. In situ scanning FTIR microscopy and IR imaging of Pt electrode surface towards CO adsorption

    Institute of Scientific and Technical Information of China (English)

    孙世刚; 洪双进; 陈声培; 卢国强; 戴鸿平; 肖晓银

    1999-01-01

    In situ scanning FTIR microscopy was built up for the first time in the present work, which consists of an FTIR apparatus, an IR microscope, an X-Y mapping stage, and the specially designed electrochemical IR cell and computer software. It has been demonstrated that this new space-resolvd in situ IR technique can be used to study vibration properties of micro-area, and to perform IR imaging of electrode surface. The chemical image obtained using this technique fur CO adsorption on Pt electrode illustrated, at a space-resolution of 10-2 cm, the inhomogeneity and the distribution of reactivity of micro-area of electrode surface.

  17. Wear and Corrosion Properties of Mo Surface-modiifed Layer in TiNi Alloy Prepared by Plasma Surface Alloying

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hongqian; WANG Zhenxia; YANG Hongyu; SHAN Xiaolin; LIU Xiaoping; YU Shengwang; HE Zhiyong

    2016-01-01

    In order to improve the wear resistance and restrain nickel release of TiNi alloys, the Mo modified layers on TiNi substrates were obtained using the double glow plasma surface alloying technique. Scanning electron microscopy (SEM), glow discharge optical emission spectroscopy (GDOES) and X-ray diffraction (XRD) were employed to investigate the morphology, composition and structure. Microhardness test and scratch test were performed to analyze the microhardness and coating/substrate adhesion. Tribological and electrochemical behaviors of the Mo modified layers on TiNi were tested by the reciprocating wear instrument and electrochemical measurement system. The Ni concentrations in Hanks’ solution where surface electrochemical tests took place were measured by mass spectrometry. The surface-modiifed layer contained a Mo deposition layer and a Mo diffusion layer. The X-ray diffraction analysis revealed that the modiifed layers were composed of Mo, MoTi, MoNi, and Ti2Ni. The microhardnesses of the Mo modiifed layers treated at 900℃and 950℃ were 832.8 HV and 762.4 HV, respectively, which was about 3 times the microhardness of the TiNi substrate. Scratch tests indicated that the modified layers possessed good adhesion with the substrate. Compared with as-received TiNi alloy, the modiifed alloys exhibited signiifcant improvement of wear resistance against Si3N4 with low normal loads during the sliding tests. Mass spectrometry displayed that the Mo alloy layers had successfully inhibited the Ni release into the body.

  18. The effect of growth surface morphology on the crystal structure and magnetic property of L1{sub 0} order PtFe layers deposited by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ding Wanyu, E-mail: dwysd_2000@163.com [Graduate School of Saitama Institute of Technology, Fukaya, Saitama 369-0293 (Japan) and School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028 (China); Ishiguro, Satoshi; Ogatsu, Ryo [Graduate School of Saitama Institute of Technology, Fukaya, Saitama 369-0293 (Japan); Ju, Dongying, E-mail: dyju@sit.ac.jp [Graduate School of Saitama Institute of Technology, Fukaya, Saitama 369-0293 (Japan)

    2012-08-01

    The Fe/Pt/Fe/Pt layers (Pt/Fe multilayer) were deposited on general glass substrate at room temperature by magnetron sputtering technique. Varying the deposition and post-annealing treatment parameters, the PtFe alloy (PtFe) layer with different crystal structures and magnetic properties were obtained at the interface between Fe and Pt layer. The characterization by X-ray diffraction (XRD) showed that the as-deposited Pt/Fe multilayer only contained pure Fe and Pt with body-centered and face-centered cubic structures, respectively. As-deposited Pt layer displayed (2 0 0) preferred orientation, and the columnar grains structure could be observed by the scanning electron microscopy. The PtFe layers with L1{sub 0} face-centered cubic structure could be formed at the interface between Pt and Fe layers by post-annealing the multilayers at 500 Degree-Sign C. In case of Pt/Fe multilayer deposited on smooth substrate, the larger columnar grains in Pt layer resulted in L1{sub 0} PtFe layers without any preferred orientation. While in case of Pt/Fe multilayer deposited on the rough substrate, the thinner columnar grains in Pt layer could induce L1{sub 0} PtFe layers with (2 0 0) preferred orientation. In this case, the vibrating sample magnetometer results indicated that, the magnetic coercivity in plane and out-of-plane model could reach 3.72 and 2.32 kOe, respectively. Based on above results, the L1{sub 0} structure Pt/Fe multilayer with satisfied magnetic properties could be prepared at low temperature by our simple route.

  19. Interface properties and phase formation between surface coated SKD61 and aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    Se-Weon CHOI; Young-Chan KIM; Se-Hun CHANG; Ik-Hyun OH; Joon-Sik PARK; Chang-Seog KANG

    2009-01-01

    The intermediate phase formation and surface protection effects between SKD61 die mold alloys and aluminum alloys were investigated during a simulated die-casting process. The surface coatings of SKD61 alloy were carried out via Si pack cementation coatings at 900 ℃ for 10 h and the e-FeSi phase formed. When the coated SKD61 alloy was dipped in the liquid aluminum alloy (ALDC12), the surface coated SKD61 alloys showed better surface properties compared with uncoated SKD61 alloys, i.e., the intermediate phases (FeSiAl compound) were not produced for the coated SKD61 alloy. The coating layer of e-FeSi served as a diffusion barrier for the formation of FeSiAl compounds.

  20. Stage II recovery behavior of a series of ion-irradiated platinum (gold) alloys as studied by field-ion microscopy. [0. 10, 0. 62, and 4. 0 at. percent Au and pure Pt

    Energy Technology Data Exchange (ETDEWEB)

    Wei, C.Y.; Seidman, D.N.

    1976-11-01

    Direct and visible evidence was obtained for long-range migration of self-interstitial atoms (SIAs) in Stage II of three different ion-irradiated platinum (gold) alloys. Field-ion microscope (FIM) specimens of Pt--0.10, 0.62 and 4.0 at. percent Au alloys were irradiated in-situ with 30-keV W/sup +/ or Pt/sup +/ ions at a tip temperature of 35 to 41 K at 2 x 10/sup -9/ torr. Direct observation of the surfaces of the FIM specimens during isochronal warming experiments to 100 K showed that a flux of SIAs crossed the surfaces of the specimens between 40 to 100 K. The spectrum for each alloy consisted of two recovery peaks (substages II/sub B/ and II/sub C/). The results are explained on the basis of an impurity-delayed diffusion mechanism employing a two-level trapping model. The application of this diffusion model to the isochronal recovery spectra yielded a dissociation enthalpy (DELTAh/sub li-Au//sup diss/) and an effective diffusion coefficient for each substage; for substage II/sub B/ DELTAh/sub li-Au//sup diss/ (II/sub B/) = 0.15 eV and for substage II/sub C/ DELTAh/sub li-Au//sup diss/ (II/sub C/) = 0.24 eV. A series of detailed control experiments was also performed to show that the imaging electric field had not caused the observed long-range migration of SIAs and that the observed effects were not the result of surface artifacts. 14 figures, 6 tables.

  1. Monitorizing nitinol alloy surface reactions for biofouling studies

    Energy Technology Data Exchange (ETDEWEB)

    Dinu, C.Z. [Max Planck Institute of Molecular Cell Biology and Genetics, Photenhauerstrasse 108, Dresden (Germany); Dinca, V.C. [National Institute for Laser, Plasma and Radiation Physics, PO Box MG-16, RO 77125 Bucharest (Romania)]. E-mail: valentina.dinca@inflpr.ro; Soare, S. [UNIBUC-MICROGEN, University of Bucharest, Centre for Research, Education and Consulting in Microbiology, Genetics and Biotechnology (MICROGEN), Splaiul Independentei, 91-95, RO 76201 Bucharest (Romania); Moldovan, A. [Max Planck Institute of Molecular Cell Biology and Genetics, Photenhauerstrasse 108, Dresden (Germany); Smarandache, D. [UNIBUC-MICROGEN, University of Bucharest, Centre for Research, Education and Consulting in Microbiology, Genetics and Biotechnology (MICROGEN), Splaiul Independentei, 91-95, RO 76201 Bucharest (Romania); Scarisoareanu, N. [National Institute for Laser, Plasma and Radiation Physics, PO Box MG-16, RO 77125 Bucharest (Romania); Barbalat, A. [National Institute for Laser, Plasma and Radiation Physics, PO Box MG-16, RO 77125 Bucharest (Romania); Birjega, R. [National Institute for Laser, Plasma and Radiation Physics, PO Box MG-16, RO 77125 Bucharest (Romania); Dinescu, M. [National Institute for Laser, Plasma and Radiation Physics, PO Box MG-16, RO 77125 Bucharest (Romania); DiStefano, V. Ferrari [University of Rome La Sapienza, Department of Electronics, Rome (Italy)

    2007-07-31

    Growth and deposition of unwanted bacteria on implant metal alloys affect their use as biomedical samples. Monitoring any bacterial biofilm accumulation will provide early countermeasures. For a reliable antifouling strategy we prepared nitinol (NiTi) thin films on Ti-derived substrates by using a pulsed laser deposition (PLD) method. As the microstructure of Ti-alloy is dictated by the tensile strength, fatigue and the fracture toughness we tested the use of hydrogen as an alloying element. X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) investigated the crystalline structure, chemical composition and respectively the surface morphology of the nitinol hydrogen and hydrogen-free samples. Moreover, the alloys were integrated and tested using a cellular metric and their responses were systematic evaluated and quantified. Our attractive approach is meant to select the suitable components for an effective and trustworthy anti-fouling strategy. A greater understanding of such processes should lead to novel and effective control methods that would improve in the future implant stability and capabilities.

  2. Monitorizing nitinol alloy surface reactions for biofouling studies

    Science.gov (United States)

    Dinu, C. Z.; Dinca, V. C.; Soare, S.; Moldovan, A.; Smarandache, D.; Scarisoareanu, N.; Barbalat, A.; Birjega, R.; Dinescu, M.; DiStefano, V. Ferrari

    2007-07-01

    Growth and deposition of unwanted bacteria on implant metal alloys affect their use as biomedical samples. Monitoring any bacterial biofilm accumulation will provide early countermeasures. For a reliable antifouling strategy we prepared nitinol (NiTi) thin films on Ti-derived substrates by using a pulsed laser deposition (PLD) method. As the microstructure of Ti-alloy is dictated by the tensile strength, fatigue and the fracture toughness we tested the use of hydrogen as an alloying element. X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) investigated the crystalline structure, chemical composition and respectively the surface morphology of the nitinol hydrogen and hydrogen-free samples. Moreover, the alloys were integrated and tested using a cellular metric and their responses were systematic evaluated and quantified. Our attractive approach is meant to select the suitable components for an effective and trustworthy anti-fouling strategy. A greater understanding of such processes should lead to novel and effective control methods that would improve in the future implant stability and capabilities.

  3. Surface hardness behaviour of Ti–Al–Mo alloys

    Indian Academy of Sciences (India)

    Raja Ram Prasad; Shankar Azad; A K Singh; R K Mandal

    2008-08-01

    The microhardness characteristics of various micro-constituents formed in the Ti–Al–Mo alloys have been investigated. Four alloys having compositions, Ti–40Al–2Mo, Ti–42Al–2Mo, Ti–40Al–6Mo and Ti–42Al–6Mo, have been chosen for this purpose. All of these were heat treated at 1300°C and 1400°C for 1 h and water quenched. All the specimens after above heat treatments have displayed load independent Vickers hardness values (VHN) around 300 g of applied load. The average surface hardness characteristic of the alloys is largely found to be dictated by the phases that are present. The microstructural specific VHN values vary between 600 and 750. The indentation behaviour, however, is governed by the morphologies and length scales of microstructures. The most remarkable finding of the present study pertains to the formation of shear bands around the periphery of the indenter for a finer basket weave microstructure in the Ti–40Al–2Mo. The cluster of finely located slip steps was clearly seen. Such a report is lacking in literature in this class of alloys.

  4. X-ray diffraction study of short-range order and long-range ordered structure in Cu-87.5 at.% Pt alloy

    CERN Document Server

    Saha, D K; Shishido, T; Iwasaki, H

    2003-01-01

    X-ray diffraction study was performed for the atomic arrangements in Pt-rich (87.5 at.%) Cu-Pt alloy with the cubic structure both in the disordered states using single crystal samples. In the disordered state obtained by quenching from temperatures above 800degC, short-range order (SRO) diffuse scattering intensity maxima were observed at X-point (100, 110 and their equivalent positions) and at L-point (1/2 1/2 1/2 and its equivalent positions). The appearance of the two kinds of intensity maxima is as previously observed in alloys with less Pt concentration, but the intensity ratio of the two maxima is different. The Warren-Cowley SRO parameters, alpha sub l sub m sub n , were determined from the observed SRO diffuse scattering intensities and a significant lower value has been found for alpha sub 2 sub 0 sub 0. The short-range ordered structure is interpreted as being formed as a result of competition between the X-point ordering tendency and the L-point ordering tendency in the alloy. At temperatures lowe...

  5. Surface Corrosion Resistance in Turning of Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2015-01-01

    Full Text Available This work addresses the issues associated with implant surface modification. We propose a method to form the oxide film on implant surfaces by dry turning to generate heat and injecting oxygen-rich gas at the turning-tool flank. The morphology, roughness, composition, and thickness of the oxide films in an oxygen-rich atmosphere were characterized using scanning electron microscopy, optical profiling, and Auger electron spectroscopy. Electrochemical methods were used to study the corrosion resistance of the modified surfaces. The corrosion resistance trends, analyzed relative to the oxide film thickness, indicate that the oxide film thickness is the major factor affecting the corrosion resistance of titanium alloys in a simulated body fluid (SBF. Turning in an oxygen-rich atmosphere can form a thick oxide film on the implant surface. The thickness of surface oxide films processed at an oxygen concentration of 80% was improved to 4.6 times that of films processed at an oxygen concentration of 21%; the free corrosion potential shifted positively by 0.357 V, which significantly improved the corrosion resistance of titanium alloys in the SBF. Therefore, the proposed method may (partially replace the subsequent surface oxidation. This method is significant for biomedical development because it shortens the process flow, improves the efficiency, and lowers the cost.

  6. Surface modification of Ni–Ti alloys for stent application after magnetoelectropolishing

    Energy Technology Data Exchange (ETDEWEB)

    Gill, Puneet; Musaramthota, Vishal; Munroe, Norman [Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174 (United States); Datye, Amit [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37916 (United States); Dua, Rupak [Department of Biomedical Engineering, Florida International University, Miami, FL 33174 (United States); Haider, Waseem [Mechanical Engineering, University of Texas-Pan American, TX (United States); McGoron, Anthony [Department of Biomedical Engineering, Florida International University, Miami, FL 33174 (United States); Rokicki, Ryszard [Electrobright, Macungie, PA 18062 (United States)

    2015-05-01

    The constant demand for new implant materials and the multidisciplinary design approaches for stent applications have expanded vastly over the past decade. The biocompatibility of these implant materials is a function of their surface characteristics such as morphology, surface chemistry, roughness, surface charge and wettability. These surface characteristics can directly influence the material's corrosion resistance and biological processes such as endothelialization. Surface morphology affects the thermodynamic stability of passivating oxides, which renders corrosion resistance to passivating alloys. Magnetoelectropolishing (MEP) is known to alter the morphology and composition of surface films, which assist in improving corrosion resistance of Nitinol alloys. This work aims at analyzing the surface characteristics of MEP Nitinol alloys by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The wettability of the alloys was determined by contact angle measurements and the mechanical properties were assessed by Nanoindentation. Improved mechanical properties were observed with the addition of alloying elements. Cyclic potentiodynamic polarization tests were performed to determine the corrosion susceptibility. Further, the alloys were tested for their cytotoxicity and cellular growth with endothelial cells. Improved corrosion resistance and cellular viability were observed with MEP surface treated alloys. - Highlights: • Magnetoelectropolishing (MEP) reduces the surface asperities of Nitinol alloys and formed stable oxides on the surface. • Improved corrosion resistance and reduced Nickel ion leaching were observed for MEP surfaces. • Ni–Ti alloyed with Cr showed improved mechanical properties. • Enhanced endothelial cell proliferation on ternary Nitinol alloys.

  7. Robust biomimetic-structural superhydrophobic surface on aluminum alloy.

    Science.gov (United States)

    Li, Lingjie; Huang, Tao; Lei, Jinglei; He, Jianxin; Qu, Linfeng; Huang, Peiling; Zhou, Wei; Li, Nianbing; Pan, Fusheng

    2015-01-28

    The following facile approach has been developed to prepare a biomimetic-structural superhydrophobic surface with high stabilities and strong resistances on 2024 Al alloy that are robust to harsh environments. First, a simple hydrothermal treatment in a La(NO3)3 aqueous solution was used to fabricate ginkgo-leaf like nanostructures, resulting in a superhydrophilic surface on 2024 Al. Then a low-surface-energy compound, dodecafluoroheptyl-propyl-trimethoxylsilane (Actyflon-G502), was used to modify the superhydrophilic 2024 Al, changing the surface character from superhydrophilicity to superhydrophobicity. The water contact angle (WCA) of such a superhydrophobic surface reaches up to 160°, demonstrating excellent superhydrophobicity. Moreover, the as-prepared superhydrophobic surface shows high stabilities in air-storage, chemical and thermal environments, and has strong resistances to UV irradiation, corrosion, and abrasion. The WCAs of such a surface almost remain unchanged (160°) after storage in air for 80 days, exposure in 250 °C atmosphere for 24 h, and being exposed under UV irradiation for 24 h, are more than 144° whether in acidic or alkali medium, and are more than 150° after 48 h corrosion and after abrasion under 0.98 kPa for 1000 mm length. The remarkable durability of the as-prepared superhydrophobic surface can be attributed to its stable structure and composition, which are due to the existence of lanthanum (hydr)oxides in surface layer. The robustness of the as-prepared superhydrophobic surface to harsh environments will open their much wider applications. The fabricating approach for such robust superhydrophobic surface can be easily extended to other metals and alloys.

  8. Underpotential deposition-induced synthesis of composition-tunable Pt-Cu nanocrystals and their catalytic properties.

    Science.gov (United States)

    Jiang, Yaqi; Jia, Yanyan; Zhang, Jiawei; Zhang, Lei; Huang, Huang; Xie, Zhaoxiong; Zheng, Lansun

    2013-02-25

    Pt-Cu alloy octahedral nanocrystals (NCs) have been synthesized successfully by using N,N-dimethylformamide as both the solvent and the reducing agent in the presence of cetyltrimethylammonium chloride. Cu underpotential deposition (UPD) is found to play a key role in the formation of the Pt-Cu alloy NCs. The composition in the Pt-Cu alloy can be tuned by adjusting the ratio of metal precursors in solution. However, the Cu content in the Pt-Cu alloy NCs cannot exceed 50%. Due to the fact that Cu precursor cannot be reduced to metallic copper and the Cu content cannot exceed 50%, we achieved the formation of the Pt-Cu alloy by using Cu UPD on the Pt surface. In addition, the catalytic activities of Pt-Cu alloy NCs with different composition were investigated in electrocatalytic oxidation of formic acid. The results reveal that the catalytic performance is strongly dependent on Pt-Cu alloy composition. The sample of Pt(50)Cu(50) exhibits excellent activity in electrocatalytic oxidation of formic acid.

  9. RKKY-like contributions to the magnetic anisotropy energy: 3 d adatoms on Pt(111) surface

    Science.gov (United States)

    Bouhassoune, Mohammmed; Dias, Manuel dos Santos; Zimmermann, Bernd; Dederichs, Peter H.; Lounis, Samir

    2016-09-01

    The magnetic anisotropy energy defines the energy barrier that stabilizes a magnetic moment. Utilizing density-functional-theory-based simulations and analytical formulations, we establish that this barrier is strongly modified by long-range contributions very similar to Friedel oscillations and Rudermann-Kittel-Kasuya-Yosida interactions. Thus, oscillations are expected and observed, with different decaying factors and highly anisotropic in realistic materials, which can switch nontrivially the sign of the magnetic anisotropy energy. This behavior is general, and for illustration we address the transition-metal adatoms, Cr, Mn, Fe, and Co deposited on a Pt(111) surface. We explain, in particular, the mechanisms leading to the strong site dependence of the magnetic anisotropy energy observed for Fe adatoms on a Pt(111) surface as revealed previously via first-principles-based simulations and inelastic scanning tunneling spectroscopy [A. A. Khajetoorians et al., Phys. Rev. Lett. 111, 157204 (2013), 10.1103/PhysRevLett.111.157204]. The same mechanisms are probably active for the site dependence of the magnetic anisotropy energy obtained for Fe adatoms on Pd or Rh(111) surfaces and for Co adatoms on a Rh(111) surface [P. Blonski et al., Phys. Rev. B 81, 104426 (2010), 10.1103/PhysRevB.81.104426].

  10. Lignin-derived oxygenate reforming on a bimetallic surface: The reaction of benzaldehyde on Zn/Pt(111)

    Science.gov (United States)

    Shi, Daming; Vohs, John M.

    2016-08-01

    Temperature programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) were used to characterize the adsorption and reaction of benzaldehyde (C6H5CHO) on hydrogen-covered Pt(111) and Zn-modified Pt(111) surfaces. Benzaldehyde was found to interact with Pt(111) via both the phenyl ring and carbonyl of the aldehyde group. This bonding configuration facilitates unselective decomposition of the benzaldehyde to produce CO, H2, and small hydrocarbon fragments at relatively low temperatures. On the other hand, benzaldehyde was found to bond to Zn-decorated Pt(111) surface exclusively via the carbonyl group in an η2(C, O) configuration, with the phenyl ring tilted away from the surface. This configuration weakens Csbnd O bond in the carbonyl facilitating its cleavage and helps prevent hydrogenation of the phenyl ring.

  11. Study on tribological properties of multi-layer surface texture on Babbitt alloys surface

    Science.gov (United States)

    Zhang, Dongya; Zhao, Feifei; Li, Yan; Li, Pengyang; Zeng, Qunfeng; Dong, Guangneng

    2016-12-01

    To improve tribological properties of Babbitt alloys, multi-layer surface texture consisted of the main grooves and secondary micro-dimples are fabricated on the Babbitt substrate through laser pulse ablation. The tribological behaviors of multi-layer surface texture are investigated using a rotating type pin-on-disc tribo-meter under variation sliding speeds, and the film pressure distributions on the textured surfaces are simulated using computational fluid dynamics (CFD) method for elucidating the possible mechanisms. The results suggest that: (i) the multi-layer surface texture can reduce friction coefficient of Babbitt alloy, which has lowest friction coefficient of 0.03, in case of the groove parameter of 300 μm width and 15% of area density; (ii) the improvement effect may be more sensitive to the groove area density and the siding speed, and the textured surface with lower area density has lower friction coefficient under high sliding speed. Based on the reasons of (i) the secondary micro-dimples on Babbitt alloy possesses a hydrophobicity surface and (ii) the CFD analysis indicates that main grooves enhancing hydrodynamic effect, thus the multi-layer surface texture is regarded as dramatically improve the lubricating properties of the Babbitt alloy.

  12. Surface self-diffusion of adatom on Pt cluster with truncated octahedron structure

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jianyu, E-mail: wuliyangjianyu@yahoo.com.c [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China); Hu Wangyu, E-mail: wangyuhu2001@yahoo.com.c [Department of Applied Physics, Hunan University, Changsha 410082 (China); Chen Shuguang [Department of Applied Physics, Hunan University, Changsha 410082 (China)

    2010-05-03

    Surface diffusion of single Pt adatom on Pt cluster with truncated octahedron structure is investigated through a combination of molecular dynamics and nudged elastic band method. Using an embedded atom method to describe the atomic interactions, the minimum energy paths are determined and the energy barriers for adatom diffusion across and along step are evaluated. The diffusion of adatom crossing step edge between {l_brace}111{r_brace} and {l_brace}100{r_brace} facets has a surprisingly low barrier of 0.03 eV, which is 0.12 eV lower than the barrier for adatom diffusion from {l_brace}111{r_brace} to neighboring {l_brace}111{r_brace} facet. Owing to the small barrier of adatom diffusion across the step edge between {l_brace}111{r_brace} and {l_brace}100{r_brace} facets, the diffusion of adatom along the step edge cannot occur. The molecular dynamics simulations at low temperatures also support these results. Our results show that mass transport will prefer step with {l_brace}100{r_brace} microfacet and the Pt clusters can have only {l_brace}111{r_brace} facets in epitaxial growth.

  13. Origin of the complex wetting behavior in Co-Pt alloys

    Science.gov (United States)

    Le Bouar, Y.; Loiseau, A.; Finel, A.

    2003-12-01

    In the Co-Pt system, a simple cooling experiment can drive a sample ordered in the tetragonal L10 structure (CuAu type) close to the two-phase region involving L10 and the cubic L12 (Cu3Au type) structure. Using transmission electron microscopy observations, we show that interfaces in the L10 structure are decorated: orientational domain walls are wetted by a single layer of L12 structure whereas three macroscopic layers (L12/L10/L12) appear at the antiphase boundaries. We then analyze this complex behavior in the framework of the Ising model with interactions limited to first and second nearest neighbors. This approach is generic in the sense that it is the simplest one that reproduces the L10 and L12 ground states, without the specificities of the model with first nearest-neighbor interactions only. The finite-temperature properties of the various L10/L10 interfaces are computed with a low-temperature expansion and cluster variation method calculations in the inhomogeneous tetrahedron-octahedron approximation. The results are in full agreement with our experimental observations concerning the wetting of interfaces.

  14. Printing graphene-carbon nanotube-ionic liquid gel on graphene paper: Towards flexible electrodes with efficient loading of PtAu alloy nanoparticles for electrochemical sensing of blood glucose.

    Science.gov (United States)

    He, Wenshan; Sun, Yimin; Xi, Jiangbo; Abdurhman, Abduraouf Alamer Mohamed; Ren, Jinghua; Duan, Hongwei

    2016-01-15

    The increasing demands for portable, wearable, and implantable sensing devices have stimulated growing interest in innovative electrode materials. In this work, we have demonstrated that printing a conductive ink formulated by blending three-dimensional (3D) porous graphene-carbon nanotube (CNT) assembly with ionic liquid (IL) on two-dimensional (2D) graphene paper (GP), leads to a freestanding GP supported graphene-CNT-IL nanocomposite (graphene-CNT-IL/GP). The incorporation of highly conductive CNTs into graphene assembly effectively increases its surface area and improves its electrical and mechanical properties. The graphene-CNT-IL/GP, as freestanding and flexible substrates, allows for efficient loading of PtAu alloy nanoparticles by means of ultrasonic-electrochemical deposition. Owing to the synergistic effect of PtAu alloy nanoparticles, 3D porous graphene-CNT scaffold, IL binder and 2D flexible GP substrate, the resultant lightweight nanohybrid paper electrode exhibits excellent sensing performances in nonenzymatic electrochemical detection of glucose in terms of sensitivity, selectivity, reproducibility and mechanical properties.

  15. Synthesis and characterization of Pt-Sn-Ni alloys to application as catalysts for direct ethanol fuel cells; Sintese e caracterizacao de ligas de Pt-Sn-Ni para aplicacao como caztalisadores em celulas a combustivel do tipo DEFC

    Energy Technology Data Exchange (ETDEWEB)

    Silva, E.L. da; Correa, P.S.; Oliveira, E.L. de; Takimi, A.S.; Malfatti, C.F., E-mail: celia.malfatti@ufrgs.b [Universidade Federal do Rio Grande do Sul (LAPEC/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica. Lab. de Pesquisa em Corrosao; Radtke, C. [Universidade Federal do Rio Grande do Sul (IQ/UFRGS), Porto Alegre, RS (Brazil). Inst. de Quimica

    2010-07-01

    Direct ethanol fuel cells (DEFCs) have been the focus of recent research due its application in mobile energy sources. In order to obtain the maximum efficiency from these systems, it is necessary the total ethanol oxidation, which implies in C-C bond break. Different catalysts described in literature are employed with this intent. This work consists in studying PtSnNi catalysts supported on carbon Vulcan XC72R, to application in DEFCs. Thus, it was used the impregnation/reduction method, varying the atomic proportion among Pt, Sn and Ni. The alloys were characterized by X-Ray Diffraction, Cyclic Voltammetry and Transmission Microscopy. Preliminary results show that predominant structure on the catalysts is the face centered cubic platinum and the densities currents are dependent on the platinum amount. (author)

  16. Thermodynamics and surface properties of liquid Al-Ga and Al-Ge alloys

    Energy Technology Data Exchange (ETDEWEB)

    Anusionwu, B.C. [Abdus Salam Int. Centre for Theoretical Physics, Trieste (Italy); Federal University of Technology, Department of Physics, Owerri (Nigeria); Adebayo, G.A. [Abdus Salam Int. Centre for Theoretical Physics, Trieste (Italy); University of Agriculture, Department of Physics, Abeokuta (Nigeria); Madu, C.A. [Federal University of Technology, Department of Physics, Owerri (Nigeria)

    2009-11-15

    The surface properties of Al-Ga and Al-Ge liquid alloys have been theoretically investigated at a temperature of 1100 K and 1220 K respectively. For the Al-Ga system, the quasi chemical model for regular alloy and a model for phase segregating alloy systems were applied, while for the Al-Ge system the quasi chemical model for regular and compound forming binary alloys were applied. In the case of Al-Ga, the models for the regular alloys and that for the phase segregating alloys produced the same value of order energy and same values of thermodynamic and surface properties, while for the Al-Ge system, the model for the regular alloy reproduced better the thermodynamic properties of the alloy. The model for the compound forming systems showed a qualitative trend with the measured values of the thermodynamic properties of the Al-Ge alloy and suggests the presence of a weak complex of the form Al{sub 2}Ge{sub 3}. The surface concentrations for the alloys show that Ga manifests some level of surface segregation in Al-Ga liquid alloy while the surface concentration of Ge in Al-Ge liquid alloy showed a near Roultian behavior below 0.8 atomic fraction of Ge. (orig.)

  17. Thermodynamics and surface properties of liquid Al-Ga and Al-Ge alloys

    Science.gov (United States)

    Anusionwu, B. C.; Adebayo, G. A.; Madu, C. A.

    2009-11-01

    The surface properties of Al-Ga and Al-Ge liquid alloys have been theoretically investigated at a temperature of 1100 K and 1220 K respectively. For the Al-Ga system, the quasi chemical model for regular alloy and a model for phase segregating alloy systems were applied, while for the Al-Ge system the quasi chemical model for regular and compound forming binary alloys were applied. In the case of Al-Ga, the models for the regular alloys and that for the phase segregating alloys produced the same value of order energy and same values of thermodynamic and surface properties, while for the Al-Ge system, the model for the regular alloy reproduced better the thermodynamic properties of the alloy. The model for the compound forming systems showed a qualitative trend with the measured values of the thermodynamic properties of the Al-Ge alloy and suggests the presence of a weak complex of the form Al2Ge3. The surface concentrations for the alloys show that Ga manifests some level of surface segregation in Al-Ga liquid alloy while the surface concentration of Ge in Al-Ge liquid alloy showed a near Roultian behavior below 0.8 atomic fraction of Ge.

  18. Current-induced spin polarization on a Pt surface: A new approach using spin-polarized positron annihilation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kawasuso, A., E-mail: kawasuso.atsuo@jaea.go.jp [Advanced Science Research Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Fukaya, Y.; Maekawa, M.; Zhang, H. [Advanced Science Research Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Seki, T.; Yoshino, T.; Saitoh, E.; Takanashi, K. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2013-09-15

    Transversely spin-polarized positrons were injected near Pt and Au surfaces under an applied electric current. The three-photon annihilation of spin-triplet positronium, which was emitted from the surfaces into vacuum, was observed. When the positron spin polarization was perpendicular to the current direction, the maximum asymmetry of the three-photon annihilation intensity was observed upon current reversal for the Pt surfaces, whereas it was significantly reduced for the Au surface. The experimental results suggest that electrons near the Pt surfaces were in-plane and transversely spin-polarized with respect to the direction of the electric current. The maximum electron spin polarization was estimated to be more than 0.01 (1%). - Highlights: • Annihilation probability of positronium emitted from the Pt surface into the vacuum under direct current exhibited asymmetry upon current reversal. • The maximum asymmetry appeared when positron spin polarization and the direct current were perpendicular to each other. • Electrons near the Pt surfaces were in-plane and transversely spin-polarized with respect to the direction of the electric current. • Spin-polarized positronium annihilation provides a unique tool for investigating spin polarization on metal surfaces.

  19. Electronic structure of disordered alloys, surfaces and interfaces

    CERN Document Server

    Turek, Ilja; Kudrnovský, Josef; Šob, Mojmír; Weinberger, Peter

    1997-01-01

    At present, there is an increasing interest in the prediction of properties of classical and new materials such as substitutional alloys, their surfaces, and metallic or semiconductor multilayers. A detailed understanding based on a thus of the utmost importance for fu­ microscopic, parameter-free approach is ture developments in solid state physics and materials science. The interrela­ tion between electronic and structural properties at surfaces plays a key role for a microscopic understanding of phenomena as diverse as catalysis, corrosion, chemisorption and crystal growth. Remarkable progress has been made in the past 10-15 years in the understand­ ing of behavior of ideal crystals and their surfaces by relating their properties to the underlying electronic structure as determined from the first principles. Similar studies of complex systems like imperfect surfaces, interfaces, and mul­ tilayered structures seem to be accessible by now. Conventional band-structure methods, however, are of limited use ...

  20. Atomistic modeling of ternary additions to NiTi and quaternary additions to Ni-Ti-Pd, Ni-Ti-Pt and Ni-Ti-Hf shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mosca, H.O., E-mail: hmosca@cnea.gov.ar [Gcia. Investigacion y Aplicaciones, CNEA, Av. Gral Paz 1499, B1650KNA San Martin (Argentina); GCMM, UTN, FRG Pacheco, Av. H. Yrigoyen 288, Gral. Pacheco (Argentina); Bozzolo, G. [Loyola University Maryland, 4501 N. Charles St., Baltimore, MD 21210 (United States); Grosso, M.F. del [Gcia. Investigacion y Aplicaciones, CNEA, Av. Gral Paz 1499, B1650KNA San Martin (Argentina); GCMM, UTN, FRG Pacheco, Av. H. Yrigoyen 288, Gral. Pacheco (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, CONICET (Argentina)

    2012-08-15

    The behavior of ternary and quaternary additions to NiTi shape memory alloys is investigated using a quantum approximate method for the energetics. Ternary additions X to NiTi and quaternary additions to Ni-Ti-Pd, Ni-Ti-Pt, and Ni-Ti-Hf alloys, for X=Au, Pt, Ir, Os, Re, W, Ta,Ag, Pd, Rh, Ru, Tc, Mo, Nb, Zr, Zn, Cu, Co, Fe, Mn, V, Sc, Si, Al and Mg are considered. Bulk properties such as lattice parameter, energy of formation, and bulk modulus of the B2 alloys are studied for variations due to the presence of one or two simultaneous additives.

  1. Surface passivation of aluminum alloy 6061 with gaseous trichlorosilane: A surface investigation

    Energy Technology Data Exchange (ETDEWEB)

    Ngongang, Rickielle, E-mail: rickielle.ngongang@airliquide.com [Centre de Recherche Claude Delorme, Air Liquide, 1 Chemin de la Porte des Loges Les-Loges en Josas, 78350 Jouy-en-Josas (France); Laboratoire de Réactivité de Surface, UMR CNRS 7197, UPMC (Université Pierre et Marie Curie-Paris 6), site d’Ivry, 3 rue Galilée, 94200 Ivry-sur-Seine (France); Marceau, Eric; Carrier, Xavier; Pradier, Claire-Marie; Methivier, Christophe [Laboratoire de Réactivité de Surface, UMR CNRS 7197, UPMC (Université Pierre et Marie Curie-Paris 6), site d’Ivry, 3 rue Galilée, 94200 Ivry-sur-Seine (France); Blanc, Jean-Luc; Carre, Martine [Centre de Recherche Claude Delorme, Air Liquide, 1 Chemin de la Porte des Loges Les-Loges en Josas, 78350 Jouy-en-Josas (France)

    2014-02-15

    A molecular-scale investigation of the interaction at room temperature between gaseous trichlorosilane (HSiCl{sub 3}), used as a passivating agent, and surfaces of aluminum alloy AA6061 in a polished or hydroxylated state is conducted. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) provide information on the topography and morphology of AA6061 before and after hydroxylation and surface passivation, while surface chemistry has been investigated by Polarization Modulation Infrared Reflection-Absorption Spectroscopy (PM-IRRAS) and X-ray photoelectron spectroscopy (XPS). Oxidation and hydroxylation of the polished alloy surface in boiling water strongly modifies the roughness of the surface, with formation of platelets and needles of oxyhydroxide AlOOH. PM-IRRAS and XPS reveal that, upon adsorption, HSiCl{sub 3} dissociates and mainly forms HSiOH{sub n}(OAl){sub 3−n}, HSi(OSi){sub n}(OAl){sub 3−n} and condensed HSiO{sub x} species, by reaction with -OH groups from the AlOOH surface phase. The amount of deposited Si-containing species is larger on the rough surface of the hydroxylated alloy and this deposit is accompanied by a decrease of the amount of free -OH groups evidenced by PM-IRRAS. These results can find applications in the field of functionalization of aluminum alloys. It is suggested that a homogeneous oxidation of the alloy surface prior to exposure to gaseous HSiCl{sub 3} may enhance the adsorption of the passivating agent.

  2. The surface spin polarization of Co-based Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fetzer, Roman; Wuestenberg, Jan-Peter; Neuschwander, Sabine; Aeschlimann, Martin; Cinchetti, Mirko [University of Kaiserslautern (Germany). Department of Physics and Research Center OPTIMAS; Jourdan, Martin; Herbort, Christian; Vilanova Vidal, Enrique; Jakob, Gerhard [University of Mainz (Germany). Institute of Physics

    2010-07-01

    Co-based Heusler alloys belong mainly to the family of half-metallic ferromagnets (HMFs). The predicted full spin polarization at the Fermi level due to the minority spin band gap makes this class of materials highly interesting for application in the field of spintronics. Thus, the characterization of the surface of Co-based Heusler compounds is extremely relevant for understanding and improving the performance of Heusler-based spintronics devices, like tunnel-magnetoresistance (TMR) junctions. Using Auger electron spectroscopy (AES) and low energy spin polarized electron photoemission, we systematically studied the correlation between chemical composition and spin polarisation of the surface. For various Co-based Heusler alloys, e.g. Co{sub 2}CrAl, Co{sub 2}MnAl and Co{sub 2}FeGa{sub 0.5}Ge{sub 0.5}, we found different degrees of spin-polarization at the very surface region. Reasons for the distinct deviation from the predicted 100% spin polarization and the dependence on the specific surface preparation procedure are discussed.

  3. Surface Characterization of Laser Surface Melted NiTi Shape Memory Alloy in Hanks' Solution

    Institute of Scientific and Technical Information of China (English)

    CUIZhen-duo; ZHUSheng-li; MANHauchung; YANGXian-jin

    2004-01-01

    The surface of Ti-50.8Ni at% shape memory alloy was melted by an Nd-YAG laser. The Ti/Ni and Ti4+/ Tiatomic concentration ratios at the surface were changed significantly. The Ni ion release rate of the laser melted surface was much lower than that of the mechanical polished samples. A calcium-phosphorous layer with high Ca/P ratio was detected after immersion in Hanks' solution.

  4. Surface Characterization of Laser Surface Melted NiTi Shape Memory Alloy in Hanks' Solution

    Institute of Scientific and Technical Information of China (English)

    CUI Zhen-duo; ZHU Sheng-li; MAN Hauchung; YANG Xian-jin

    2004-01-01

    The surface of Ti-50.8Ni at% shape memory alloy was melted by an Nd-YAG laser. The Ti/Ni and Ti4+/Ti atomic concentration ratios at the surface were changed significantly. The Ni ion release rate of the laser melted surface was much lower than that of the mechanical polished samples. A calcium-phosphorous layer with high Ca/P ratio was detected after immersion in Hanks' solution.

  5. 通过Au修饰提高质子交换膜燃料电池PtCo合金催化剂稳定性%Improved Stability of PtCo Alloy Catalysts for Proton Exchange Membrane Fuel Cells by Gold Decoration

    Institute of Scientific and Technical Information of China (English)

    陈磊; 齐意; 木士春

    2015-01-01

    目的:解决质子交换膜燃料电池贵金属催化剂利用率低、电化学稳定性差的问题,从而堆动其产业化进程。方法通过湿化学共沉积法获得低Pt特征的PtCo合金催化剂,采用欠电位沉积方法制备Au修饰的PtCo合金催化剂,应用原子吸收光谱和电化学循环伏安加速测试技术研究Au修饰PtCo合金催化剂的电化学稳定性。结果成功制备了Au修饰的PtCo合金催化剂。 Au修饰后,PtCo合金催化剂的氧还原反应性能几乎没有改变,但Co的溶蚀率得到降低,而且电化学稳定性也得到提高。结论通过采用Au等具有高电化学腐蚀电位的金属修饰Pt合金催化剂,以提高催化剂电化学稳定性的研究思路是可行的。%ABSTRACT:Objective To facilitate the commercialization of proton exchange membrane fuel cells by revolving the key issues in-cluding low utilization and deteriorated stability of noble metal catalysts. Methods After preparation of PtCo alloy catalysts with low Pt loading by a chemical co-deposition method, the gold decorated PtCo alloy catalyst was prepared in terms of an under-potential-deposition method, and then the electrochemical stability of the gold-decorated PtCo alloy catalyst was characterized by atomic ab-sorption spectroscopy and electrochemical accelerated test technique. Results Au-decorated PtCo alloy catalyst was successfully prepared. After decoration of gold, the oxygen reduction reaction activity of PtCo alloy catalysts remained unchanged, and the ero-sion rate of Co element for PtCo alloy catalysts in electrolyte solutions decreased with an improved electrochemical stability. Con-clusion It was feasible to improve the stability of PtCo alloy catalysts by decoration with metals possessing a high corrosion potential such as Au.

  6. Laser surface alloying of aluminum (AA1200) with Ni and SiC Powders

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-12-01

    Full Text Available An Nd:YAG laser was used for surface alloying of aluminum AA1200. The alloying powder was a mixture of Ni and SiC in different ratios. A study of the microstructures obtained after alloying was conducted using optical and scanning electron...

  7. Influences of surface coatings and components of FePt nanoparticles on the suppression of glioma cell proliferation

    Directory of Open Access Journals (Sweden)

    Sun H

    2012-07-01

    Full Text Available Haiming Sun,1,* Xiaohui Chen,2,* Dan Chen,1 Mingyan Dong,1 Xinning Fu,1 Qian Li,1 Xi Liu,1 Qingzhi Wu,1 Tong Qiu,1 Tao Wan,1 Shipu Li11State Key Laboratory of Advanced Technology for Materials Synthesis and Processing and Biomedical Materials and Engineering Center, Wuhan University of Technology, Wuhan, China; 2Department of Prosthetics, School of Stomatology, Wuhan University, Wuhan, China*Both authors contributed equally to this workAbstract: Malignant gliomas are primary brain tumors with high rates of morbidity and mortality; they are the fourth most common cause of cancer death. Novel diagnostic and therapeutic techniques based on nanomaterials provide promising options in the treatment of malignant gliomas. In order to evaluate the potential of FePt nanoparticles (NPs for malignant glioma therapy, FePt NPs with different surface coatings and components were tunably synthesized using oleic acid/oleylamine (OA/OA and cysteines (Cys as the capping agents, respectively. The samples were characterized using X-ray diffraction, transmission electron microscopy (TEM, X-ray photon spectroscopy, Fourier transform infrared spectroscopy, atomic absorption spectrum, and zeta potential. The influence of the surface coatings and components of the FePt NPs on the proliferation of glioma cells was assessed through MTT assay and TEM observation using three typical glioma cell lines (glioma U251 cells, astrocytoma U87 cells, and neuroglioma H4 cells as in vitro models. The results showed that the proliferation of glioma cells was significantly suppressed by lipophilic FePt-OA/OA NPs in a time- and/or dose-dependent manner, while no or low cytotoxic effects were detected in the case of hydrophilic FePt-Cys NPs. The IC50 value of FePt-OA/OA NPs on the three glioma cell lines was approximately 5–10 µg mL-1 after 24 hours’ incubation. Although the cellular uptake of FePt NPs was confirmed regardless of the surface coatings and components of the FePt NPs

  8. Microcanonical unimolecular rate theory at surfaces. I. Dissociative chemisorption of methane on Pt(111)

    Science.gov (United States)

    Bukoski, A.; Blumling, D.; Harrison, I.

    2003-01-01

    A model of gas-surface reactivity is developed based on the ideas that (a) adsorbate chemistry is a local phenomenon, (b) the active system energy of an adsorbed molecule and a few immediately adjacent surface atoms suffices to fix microcanonical rate constants for surface kinetic processes such as desorption and dissociation, and (c) energy exchange between the local adsorbate-surface complexes and the surrounding substrate can be modeled via a Master equation to describe the system/heat reservoir coupling. The resulting microcanonical unimolecular rate theory (MURT) for analyzing and predicting both thermal equilibrium and nonequilibrium kinetics for surface reactions is applied to the dissociative chemisorption of methane on Pt(111). Energy exchange due to phonon-mediated energy transfer between the local adsorbate-surface complexes and the surface is explored and estimated to be insignificant for the reactive experimental conditions investigated here. Simulations of experimental molecular beam data indicate that the apparent threshold energy for CH4 dissociative chemisorption on Pt(111) is E0=0.61 eV (over a C-H stretch reaction coordinate), the local adsorbate-surface complex includes three surface oscillators, and the pooled energy from 16 active degrees of freedom is available to help surmount the dissociation barrier. For nonequilibrium molecular beam experiments, predictions are made for the initial methane dissociative sticking coefficient as a function of isotope, normal translational energy, molecular beam nozzle temperature, and surface temperature. MURT analysis of the thermal programmed desorption of CH4 physisorbed on Pt(111) finds the physisorption well depth is 0.16 eV. Thermal equilibrium dissociative sticking coefficients for methane on Pt(111) are predicted for the temperature range from 250-2000 K. Tolman relations for the activation energy under thermal equilibrium conditions and for a variety of "effective activation energies" under

  9. Density functional theory study of the adsorption of MeOH and EtOH on the surface of Pt-decorated graphene

    Science.gov (United States)

    Rad, Ali Shokuhi

    2016-09-01

    The adsorption energies and orientation of single alcohol molecule (methanol and ethanol) on the surface of Pt-decorated graphene (PtG) were determined from first-principles density functional (DFT) calculations. We found the same adsorption energies as well as connecting distances upon adsorption of MeOH and EtOH on PtG surface, in which at their relaxed structures, the O atom of alcohol is closed to the Pt of PtG surface. We found high adsorption energies, low connecting distances, and high orbital hybridizing upon adsorption of EtOH and MeOH molecules on PtG surface. There are significant shifts in the location of both the HOMO and LUMO, in addition to variation in the charge transfer when the MeOH and EtOH are adsorbed on PtG surface.

  10. Synthesis of Supported NiPt Bimetallic Nanoparticles, Methods for Controlling the Surface Coverage of Ni Nanoparticles With Pt, Methods Of Making NiPt Multilayer Core-Shell Structures and Application of the Supported Catalysts for CO2 Reforming

    KAUST Repository

    Li, Lidong

    2015-06-25

    Embodiments of the present disclosure provide for supported Ni/Pt bimetallic nanoparticles, compositions including supported NiPt nanoparticles, methods of making supported NiPt nanoparticles, methods of using supported NiPt nanoparticles, and the like.

  11. Biodegradable Magnesium Alloys for Orthopaedic Applications: A Review on Corrosion, Biocompatibility and Surface Modifications.

    OpenAIRE

    Agarwal, Sankalp; Curtin, James; Duffy, Brendan; Jaiswal, Swarna

    2016-01-01

    Magnesium (Mg) and its alloys have been extensively explored as potential biodegradable implant materials for orthopaedic applications (e.g. Fracture fixation). However, the rapid corrosion of Mg based alloys in physiological conditions has delayed their introduction for therapeutic applications to date. The present review focuses on corrosion, biocompatibility and surface modifications of biodegradable Mg alloys for orthopaedic applications. Initially, the corrosion behaviour of Mg alloys an...

  12. Research on depositing Ni45 alloy on titanium alloy surface by electrospark deposition

    OpenAIRE

    Su Guiqiao; You Tao; Zhang Chunhui

    2008-01-01

    Taking Ni45 bar as electrode, a strengthened layer of thickness up to 50 μm was built up on BT20 titanium alloy matrix by means of electrospark deposition. Results of phase analysis by using of X-ray diffraction confirmed that the deposition layer was composed mostly of three phases, NiTi, NiTi2 and Ti. The surface microhardness of the deposition layer was up to 910 HV0.05, about 2.7 times as high as that of the matrix. The hardness at the cross-section of the entire deposition layer showed a...

  13. Controllable Catalysis with Nanoparticles: Bimetallic Alloy Systems and Surface Adsorbates

    KAUST Repository

    Chen, Tianyou

    2016-05-16

    Transition metal nanoparticles are privileged materials in catalysis due to their high specific surface areas and abundance of active catalytic sites. While many of these catalysts are quite useful, we are only beginning to understand the underlying catalytic mechanisms. Opening the “black box” of nanoparticle catalysis is essential to achieve the ultimate goal of catalysis by design. In this Perspective we highlight recent work addressing the topic of controlled catalysis with bimetallic alloy and “designer” adsorbate-stabilized metal nanoparticles.

  14. Surface integrity after pickling and anodization of Ti-6Al-4V titanium alloy

    Science.gov (United States)

    Vermesse, Eric; Mabru, Catherine; Arurault, Laurent

    2013-11-01

    The surface integrity of Ti-6Al-4V titanium alloy was studied at different stages of surface treatments, especially pickling and compact anodization, through surface characteristics potentially worsening fatigue resistance.

  15. On the vibrational behaviour of cyanide adsorbed at Pt(1 1 1) and Pt(1 0 0) surfaces in alkaline solutions

    Science.gov (United States)

    Huerta, F.; Montilla, F.; Morallón, E.; Vázquez, J. L.

    2006-03-01

    This communication deals with the vibrational behaviour of cyanide adlayers formed on Pt(1 1 1) and Pt(1 0 0) surfaces in the electrochemical environment. In situ FTIR spectroscopy can be employed to follow the potential dependence of the C-N stretching frequency in acidic electrolytes with quite a low uncertainty. Owing to the stability of the cyanide adlayer in alkaline solutions, experiments performed in NaOH medium are usually perturbed by the significant overlapping of the reference and the sample FTIR spectra. Deconvolution of the spectra was carried out assuming a Lorentz oscillator. The procedure allowed to confirm that two potential regions with different band centre frequency tuning coexist for Pt(1 1 1)-CN in perchloric acid medium. Conversely, in the alkaline electrolyte a single tuning rate for the band position was found for both surfaces studied. The lack of reorientation of the C-N molecular axis together with the occurrence of a certain screening effect of negatively charged hydroxyl anions on the electric field at the interface could be at the origin of the different behaviour displayed in both electrolytic media.

  16. Enhancement of order degree and perpendicular magnetic anisotropy of L10 ordered Fe(Pt,Pd) alloy film by introducing a thin MgO cap-layer

    Science.gov (United States)

    Noguchi, Youhei; Ohtake, Mitsuru; Futamoto, Masaaki; Kirino, Fumiyoshi; Inaba, Nobuyuki

    2016-07-01

    Fe50PtxPd50-x (at%, x=0-50) alloy films of 10 nm thickness with and without 2-nm-thick MgO cap-layers are prepared on MgO(001) single-crystal substrates by employing a two-step method consisting of low-temperature deposition at 200 °C followed by high-temperature annealing at 600 °C. The influences of MgO cap-layer on the structure and the magnetic properties are investigated. Fe50PtxPd50-x films epitaxially grow on the substrates at 200 °C. The Fe50Pd50 and the Fe50Pt12.5Pd37.5 films are respectively composed of (001) single-crystals with disordered fcc-based (A1) and bcc-based (A2) structures. The films with x>25 consist of mixtures of A1 and A2 crystals. The volume ratio of A2 to A1 crystal decreases with increasing the x value from 25 to 50. The in-plane and out-of-plane lattices are respectively expanded and shrunk due to accommodation of lattice mismatch between film and substrate. When the films are annealed at 600 °C, phase transformation to L10 ordered phase takes place. L10 phase transformation of Fe50PtxPd50-x film is promoted for a sample with MgO cap-layer and the order degree is higher than that without cap-layer. Furthermore, L10 ordering with the c-axis perpendicular to the substrate surface is enhanced for the film with cap-layer. The cap-layer is considered to be giving a tension stress to the magnetic film in lateral direction which promotes L10 ordering with the c-axis perpendicular to the substrate. Deposition of cap-layer is shown effective in achieving higher order degree and in enhancing perpendicular magnetic anisotropy with Fe(Pt,Pd) films.

  17. Fabricating a n+-Ge contact with ultralow specific contact resistivity by introducing a PtGe alloy as a contact metal

    Science.gov (United States)

    Hsu, C. C.; Chou, C. H.; Wang, S. Y.; Chi, W. C.; Chien, C. H.; Luo, G. L.

    2015-09-01

    In this study, we developed an Ohmic contact structure to an in situ n+-Ge film that has an ultralow specific contact resistivity of [(6.8 ±2.1 ) ×10-8 Ωṡcm2] . This structure was developed by introducing a PtGe alloy as the contact metal. We observed that Ohmic contact behavior can be achieved with several other metals, and the contact resistance is related to the work function of the metal. A physical model of the band diagram was created for the Schottky tunneling width, which can provide insight into the validation and explanation of work function-dependent specific contact resistivity. Dopant segregation at the interface and increased interface roughness induced by the formation of the alloy are crucial in further reducing the specific contact resistivity. As a result, a stable PtGe alloy and high doping concentration in Ge are critical in pursuing a lower contact resistance for a Ge n-channel device.

  18. Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals

    DEFF Research Database (Denmark)

    Kitchin, J. R.; Nørskov, Jens Kehlet; Barteau, M. A.;

    2004-01-01

    The modification of the electronic and chemical properties of Pt(111) surfaces by subsurface 3d transition metals was studied using density-functional theory. In each case investigated, the Pt surface d-band was broadened and lowered in energy by interactions with the subsurface 3d metals......, resulting in weaker dissociative adsorption energies of hydrogen and oxygen on these surfaces. The magnitude of the decrease in adsorption energy was largest for the early 3d transition metals and smallest for the late 3d transition metals. In some cases, dissociative adsorption was calculated...

  19. Surface-enhanced Raman scattering characteristics of nanogaps formed by a flat Ag substrate and spherical Pt nanoparticles.

    Science.gov (United States)

    Kim, Kwan; Lee, Hyang Bong; Shin, Kuan Soo

    2013-01-01

    We estimated the apparent size of the 'hot site' for surface-enhanced Raman scattering (SERS) located within the gaps between Pt nanoparticles and a flat Ag substrate. Initially, no Raman peaks were detected for 4-aminobenzenethiol (4-ABT) on a flat Ag substrate. Upon attaching 68 nm-sized Pt nanoparticles onto the amine group of 4-ABT (thus denoted as Pt-4-ABT/Ag(flat)), Raman peaks were distinctly observed, not only with the excitation at 488 nm but also with the excitation at 632.8 nm. This means that electromagnetic 'hot site' had formed at the gaps between Pt nanoparticles and a flat Ag substrate. When 4-ABT molecules were adsorbed additionally onto the vacant sites of Pt nanoparticles in Pt-4-ABT/Ag(flat), the Raman signal did not increase further, suggesting that the SERS 'hot site' was very limited and located mostly at the gaps between Pt nanoparticles and a flat Ag substrate, in agreement with the finite-difference time-domain (FDTD) calculation. To a rough estimate, about 1000 molecules residing only within a ~15 nm diameter area of the center of the gap must have contributed most of the measured Raman signal of 4-ABT.

  20. Surface sites on Pt-CeO2 mixed oxide catalysts probed by CO adsorption: a synchrotron radiation photoelectron spectroscopy study.

    Science.gov (United States)

    Neitzel, Armin; Lykhach, Yaroslava; Skála, Tomáš; Tsud, Nataliya; Vorokhta, Mykhailo; Mazur, Daniel; Prince, Kevin C; Matolín, Vladimír; Libuda, Jörg

    2014-12-07

    By means of synchrotron radiation photoemission spectroscopy, we have investigated Pt-CeO2 mixed oxide films prepared on CeO2(111)/Cu(111). Using CO molecules as a probe, we associate the corresponding surface species with specific surface sites. This allows us to identify the changes in the composition and morphology of Pt-CeO2 mixed oxide films caused by annealing in an ultrahigh vacuum. Specifically, two peaks in C 1s spectra at 289.4 and 291.2 eV, associated with tridentate and bidentate carbonate species, are formed on the nanostructured stoichiometric CeO2 film. The peak at 290.5-291.0 eV in the C 1s spectra indicates the onset of restructuring, i.e. coarsening, of the Pt-CeO2 film. This peak is associated with a carbonate species formed near an oxygen vacancy. The onset of cerium oxide reduction is indicated by the peak at 287.8-288.0 eV associated with carbonite species formed near Ce(3+) cations. The development of surface species on the Pt-CeO2 mixed oxides suggests that restructuring of the films occurs above 300 K irrespective of Pt loadings. We do not find any adsorbed CO species associated with Pt(4+) or Pt(2+). The onset of Pt(2+) reduction is indicated by the peak at 286.9 eV in the C 1s spectra due to CO adsorption on metallic Pt particles. The thermal stability of Pt(2+) in Pt-CeO2 mixed oxide depends on Pt loading. We find excellent stability of Pt(2+) for 12% Pt content in the CeO2 film, whereas at a Pt concentration of 25% in the CeO2 film, a large fraction of the Pt(2+) is converted into metallic Pt particles above 300 K.

  1. Improving electromechanical output of IPMC by high surface area Pd-Pt electrodes and tailored ionomer membrane thickness

    Directory of Open Access Journals (Sweden)

    Viljar Palmre

    2014-04-01

    Full Text Available In this study, we attempt to improve the electromechanical performance of ionic polymer–metal composites (IPMCs by developing high surface area Pd-Pt electrodes and tailoring the ionomer membrane thickness. With proper electroless plating techniques, a high dispersion of palladium particles is achieved deep in the ionomer membrane, thereby increasing notably the interfacial surface area of electrodes. The membrane thickness is increased using 0.5 and 1 mm thick ionomer films. For comparison, IPMCs with the same ionomer membranes, but conventional Pt electrodes, are also prepared and studied. The electromechanical, mechanoelectrical, electrochemical and mechanical properties of different IPMCs are characterized and discussed. Scanning electron microscopy-energy dispersive X-ray (SEM-EDS is used to investigate the distribution of deposited electrode metals in the cross section of Pd-Pt IPMCs. Our experiments demonstrate that IPMCs assembled with millimeter thick ionomer membranes and newly developed Pd-Pt electrodes are superior in mechanoelectrical transduction, and show significantly higher blocking force compared to conventional type of IPMCs. The blocking forces of more than 0.3 N were measured at 4V DC input, exceeding the force output of typical Nafion® 117-based Pt IPMCs more than two orders of magnitude. The newly designed Pd-Pt IPMCs can be useful in more demanding applications, e.g., in biomimetic underwater robotics, where high stress and drag forces are encountered.

  2. High-quality graphene grown on polycrystalline PtRh{sub 20} alloy foils by low pressure chemical vapor deposition and its electrical transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Yang, He; Shen, Chengmin, E-mail: cmshen@iphy.ac.cn; Tian, Yuan; Bao, Lihong; Chen, Peng; Yang, Rong; Yang, Tianzhong; Li, Junjie; Gu, Changzhi; Gao, Hong-Jun [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-02-08

    High-quality continuous uniform monolayer graphene was grown on polycrystalline PtRh{sub 20} alloy foils by low pressure chemical vapor deposition. The morphology of graphene was investigated by Raman spectroscopy, scanning electron microscopy, and atomic force microscopy. Analysis results confirm that high quality single-layer graphene was fabricated on PtRh{sub 20} foil at 1050 °C using a lower flux of methane under low pressure. Graphene films were transferred onto the SiO{sub 2}/Si substrate by the bubbling transfer method. The mobility of a test field effect transistor made of the graphene grown on PtRh{sub 20} was measured and reckoned at room temperature, showing that the carrier mobility was about 4000 cm{sup 2} V{sup −1} s{sup −1}. The results indicate that desired quality of single-layer graphene grown on PtRh{sub 20} foils can be obtained by tuning reaction conditions.

  3. Magnetic properties of the alloy system Fe-Pt. Bulk materials and nanoparticles; Magnetische Eigenschaften des Legierungssystems Fe-Pt. Volumenmaterialien und Nanopartikel

    Energy Technology Data Exchange (ETDEWEB)

    Antoniak, C.

    2007-12-14

    Besides the determination of magnetic properties of epitaxial grown Fe{sub x}Pt{sub 1-x} films like e.g. the magnetic anisotropy, effective magnetisation, exchange length and damping as reference data, wet-chemically synthesised spherical Fe{sub x}Pt{sub 1-x} nanoparticles with different sizes, compositions and crystal structures were examined systematically after the reduction of Fe oxides by a hydrogen plasma treatment. Organic ligands surrounding the particles after the synthesis, were removed as well during this procedure. These ligands prevent the agglomeration of the nanoparticles when deposited onto a substrate, but do not have any measurable effect on the oxide formation under air exposure and do not change the magnetic properties of oxidised nanoparticles within experimental error bars. Static and dynamic magnetic properties were determined using the ferromagnetic resonance technique and themeasurement of the x-ray absorption, especially the analysis of the X-ray circular dichroism. The analysis of the element-specific magnetic moments shows that the effective magnetic spin moment ({mu}{sup eff}{sub s}) of the Fe{sub x}Pt{sub 1-x} nanoparticles is reduced by 20.30% with respect to the one of the corresponding Fe{sub x}Pt{sub 1-x} film due to the inhomogeneous composition within the nanoparticles which was found by the analysis of the extended X-ray absorption fine structure. With decreasing particle size, {mu}{sup eff}{sub s} is further decreasing while the ratio of orbital-to-effective-spin magnetic moment ({mu}{sub l}/{mu}{sup eff}{sub s}) increases. Annealing at 600 C of a sample consisting of Fe{sub 0.50}Pt{sub 0.50} nanoparticles with a mean diameter around 6 nm yields a strong increase of the {mu}{sub l}/{mu}{sup eff}{sub s} ratio at the Fe sites: it reaches a value of about 9% and is as large as the value at the Pt sites. This is accompanied by an enhancement of the coercive field from (36{+-}5) mT to (292{+-}8) mT after annealing that can be

  4. Surface analysis, hydrogen adsorption and electrochemical performance of alkali-reduce treated hydrogen storage alloy

    Institute of Scientific and Technical Information of China (English)

    陈卫祥; 徐铸德; 涂江平; 李海洋; 陈石; 袁俊; 鲍世宁

    2002-01-01

    The hydrogen storage alloy powders (MlNi4.0Co0.6Al0.4, Ml=rich-La mischmetal) were treated in a hot 6mol/L KOH+0.02mol/L KBH4 solution, the surface compositions and chemical states of the treated and untreated alloys were analyzed by XPS and EDX, the hydrogen adsorption on the surface of these alloys was evaluated by thermal desorption spectroscopy (TDS), the effects of the surface treatment on the electrochemical performances of the alloy electrodes were investigated. The results show that the hydrogen adsorption is greatly strengthened by the surface modification, and hence leads to marked improvement in the electrocatalytic activity, the treated alloy exhibits higher exchange current density and lower apparent activation energy for the hydrogen electrode reaction than the untreated alloy.

  5. Hydrogen adsorption on bimetallic PdAu(111) surface alloys

    DEFF Research Database (Denmark)

    Takehiro, Naoki; Liu, Ping; Bergbreiter, Andreas

    2014-01-01

    The adsorption of hydrogen on structurally well defined PdAu-Pd(111) monolayer surface alloys was investigated in a combined experimental and theoretical study, aiming at a quantitative understanding of the adsorption and desorption properties of individual PdAu nanostructures. Combining...... the structural information obtained by high resolution scanning tunneling microscopy (STM), in particular on the abundance of specific adsorption ensembles at different Pd surface concentrations, with information on the adsorption properties derived from temperature programmed desorption (TPD) spectroscopy...... and high resolution electron energy loss spectroscopy (HREELS) provides conclusions on the minimum ensemble size for dissociative adsorption of hydrogen and on the adsorption energies on different sites active for adsorption. Density functional theory (DFT) based calculations give detailed insight...

  6. Thermodynamic studies of phosphate adsorption on Pt(1 1 1) electrode surfaces in perchloric acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Mostany, Jorge [Instituto de Electroquimica, Universidad de Alicante, Apdo. 99, E-03080 Alicante (Spain); Departamento de Quimica, Universidad Simon Bolivar, Apdo. 89000, Caracas 1080A (Venezuela, Bolivarian Republic of)], E-mail: jmosta@usb.ve; Martinez, Pedro; Climent, Victor; Herrero, Enrique; Feliu, Juan M. [Instituto de Electroquimica, Universidad de Alicante, Apdo. 99, E-03080 Alicante (Spain)

    2009-10-01

    The thermodynamics of the so-called perfectly polarizable electrode was employed to analyze the total charge densities for a nearly defect-free Pt(1 1 1) electrode in a series of NaH{sub 2}PO{sub 4} solutions with an excess of inert electrolyte (0.1 M HClO{sub 4}) at constant ionic strength and pH. Thermodynamic analysis using both electrode potential and charge density as independent electrical variables is described. The Gibbs excess, Gibbs energy of adsorption and charge numbers both at constant electrode potential and constant chemical potential for anion adsorption at the Pt(1 1 1) surface have been determined. The calculated electrosorption valencies and charge numbers at constant chemical potential are close to two electrons per adsorbed anion, suggesting that in the absence of co-adsorbed species, HPO{sub 4}{sup 2-} is the predominant adsorbed species. The maximum Gibbs excess of adsorbed hydrogenphosphate attains a value of {approx}3.2 x 10{sup 14} ions cm{sup -2} which corresponds to a coverage of {approx}0.22 ML.

  7. The Role of OOH Binding Site and Pt Surface Structure on ORR Activities

    Science.gov (United States)

    Jia, Qingying; Caldwell, Keegan; Ziegelbauer, Joseph M.; Kongkanand, Anusorn; Wagner, Frederick T.; Mukerjee, Sanjeev; Ramaker, David E.

    2015-01-01

    We present experimentally observed molecular adsorbate coverages (e.g., O(H), OOH and HOOH) on real operating dealloyed bimetallic PtMx (M = Ni or Co) catalysts under oxygen reduction reaction (ORR) conditions obtained using X-ray absorption near edge spectroscopy (XANES). The results reveal a complex Sabatier catalysis behavior and indicate the active ORR mechanism changes with Pt–O bond weakening from the O2 dissociative mechanism, to the peroxyl mechanism, and finally to the hydrogen peroxide mechanism. An important rearrangement of the OOH binding site, an intermediate in the ORR, enables facile H addition to OOH and faster O–O bond breaking on 111 faces at optimal Pt–O bonding strength, such as that occurring in dealloyed PtM core-shell nanoparticles. This rearrangement is identified by previous DFT calculations and confirmed from in situ measured OOH adsorption coverages during the ORR. The importance of surface structural effects and 111 ordered faces is confirmed by the higher specific ORR rates on solid core vs porous multi-core nanoparticles. PMID:26190857

  8. Flower like Bi structures on Pt surface facilitating effective cholesterol biosensing.

    Science.gov (United States)

    V C, Soorya; Berchmans, Sheela

    2016-07-01

    This work demonstrates effective biosensing of cholesterol with the help of an efficient inorganic H2O2 transducer based on Pt-Bi combined with the organic enzyme platform. It could be shown that the Bi (bismuth) adatoms modified Pt (platinum) surface displays enhanced catalytic oxidation of H2O2 at neutral pH and the catalytic oxidation of H2O2 occurs at a lower potential of 0.25V vs NCE (normal calomel electrode). The sensing platform is highly sensitive and shows linear response towards [H2O2] in the absence of any redox mediator or enzyme. The H2O2 sensing platform, further modified with cholesterol oxidase led to cholesterol biosensing with a sensitivity of 3.41μAmM(-1)cm(-2). The apparent Michaelis-Menten constant (Km(app)) was calculated to be 0.43mM which indicates high binding affinity with the substrate. The cholesterol biosensor does not suffer from the interferences due to other common electroactive species and is highly stable.

  9. Lifting of the Au(100) surface reconstruction by Pt, Cr, Fe, and Cu adsorption

    Science.gov (United States)

    Tempas, Christopher D.; Skomski, Daniel; Tait, Steven L.

    2016-12-01

    The adsorption and growth of metals on the surfaces of other metals is an important topic for studies of heterogeneous catalysis and bimetallic nanoparticles. The surface structure of these systems impacts nanoparticle growth, catalytic activity, and reaction selectivity. In these experiments, platinum, chromium, iron, or copper were vapor deposited on the reconstructed Au(100) surface. The initial growth of each metal was studied by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). Each of the four metals forms anisotropic rectangular islands oriented in the direction of the gold reconstruction rows. The gradual lifting of the surface reconstruction by increased metal coverage is observed, and the reconstruction is fully lifted after 0.5 ML of Pt, Cr, or Fe, or by 3.3 ML of Cu. After the reconstruction is lifted, the island shape changes from rectangular to square, illustrating the effect of surface structure on growth. Second layer islands begin to form before the completion of the first full layer.

  10. Diffusion properties of Cu(0 0 1)- c(2 × 2)-Pd surface alloys

    Science.gov (United States)

    Eremeev, S. V.; Rusina, G. G.; Chulkov, E. V.

    2007-09-01

    Structural and diffusion properties of a Cu(0 0 1)- c(2 × 2)-Pd surface and sub-surface ordered alloys are studied by using interaction potentials obtained from the embedded-atom method. The calculated diffusion energies are in agreement with observed kinetics of the surface alloy formation and confirm stability of the underlayer alloy. Activation energy of planar diffusion of palladium at the initial stage of the alloy formation as well as the activation energy of the overlayer-underlayer diffusion of the Pd atoms are in good agreement with those obtained by the scanning tunneling microscopy and low energy electron diffraction measurements, respectively.

  11. Combinatorial Density Functional Theory-Based Screening of Surface Alloys for the Oxygen Reduction Reaction

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Nørskov, Jens Kehlet

    2009-01-01

    A density functional theory (DFT)-based, combinatorial search for improved oxygen reduction reaction (ORR) catalysts is presented. A descriptor-based approach to estimate the ORR activity of binary surface alloys, wherein alloying occurs only in the surface layer, is described, and rigorous......, potential-dependent computational tests of the stability of these alloys in aqueous, acidic environments are presented. These activity and stability criteria are applied to a database of DFT calculations on nearly 750 binary transition metal surface alloys; of these, many are predicted to be active...

  12. A general scheme for the estimation of oxygen binding energies on binary transition metal surface alloys

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Nørskov, Jens Kehlet

    2005-01-01

    A simple scheme for the estimation of oxygen binding energies on transition metal surface alloys is presented. It is shown that a d-band center model of the alloy surfaces is a convenient and appropriate basis for this scheme; variations in chemical composition, strain effects, and ligand effects...... for the estimation of oxygen binding energies on a wide variety of transition metal alloys. (c) 2005 Elsevier B.V. All rights reserved....

  13. Atomic-level Pd-Pt alloying and largely enhanced hydrogen-storage capacity in bimetallic nanoparticles reconstructed from core/shell structure by a process of hydrogen absorption/desorption.

    Science.gov (United States)

    Kobayashi, Hirokazu; Yamauchi, Miho; Kitagawa, Hiroshi; Kubota, Yoshiki; Kato, Kenichi; Takata, Masaki

    2010-04-28

    We have achieved the creation of a solid-solution alloy where Pd and Pt are homogeneously mixed at the atomic level, by a process of hydrogen absorption/desorption as a trigger for core (Pd)/shell (Pt) nanoparticles. The structural change from core/shell to solid solution has been confirmed by in situ powder X-ray diffraction, energy dispersive spectra, solid-state (2)H NMR measurement, and hydrogen pressure-composition isotherms. The successfully obtained Pd-Pt solid-solution nanoparticles with a Pt content of 8-21 atom % had a higher hydrogen-storage capacity than Pd nanoparticles. Moreover, the hydrogen-storage capacity of Pd-Pt solid-solution nanoparticles can be tuned by changing the composition of Pd and Pt.

  14. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy.

    Science.gov (United States)

    Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra

    2017-01-01

    Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1min) caused decrease in the surface hydrophilic character, while longer time (10min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning.

  15. Plant Polyphenol-Assisted Green Synthesis of Hollow CoPt Alloy Nanoparticles for Dual-Modality Imaging Guided Photothermal Therapy.

    Science.gov (United States)

    Song, Xiao-Rong; Yu, Shu-Xian; Jin, Gui-Xiao; Wang, Xiaoyong; Chen, Jianzhong; Li, Juan; Liu, Gang; Yang, Huang-Hao

    2016-03-01

    Theranostic nanomedicines that integrate diagnostic and therapeutic moieties into a single nanoscale platform are playing an increasingly important role in fighting cancer. Here, a facile and green synthetic strategy for hollow CoPt alloy nanoparticles (HCPA-NPs) using plant polyphenols as assisted agents is reported for the first time. This novel strategy enables size-controlled synthesis of HCPA-NPs through the control of the molecular sizes of polyphenols. It is also a versatile strategy for synthesizing other hollow alloy nanoparticles with various metal compositions due to the diverse metal-chelating ability of the polyphenols. Further studies show that HCPA-NPs have good biocompatibility and can be successfully implemented for magnetic resonance and photoacoustic dual-modal imaging guided photothermal therapy. This work brings new insights for the green synthesis of hollow nanoparticles and extends these biocompatible nanoparticles for theranostic applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Correlação entre a estrutura atômica superficial e o processo de adsorção-dessorção reversível de hidrogênio em eletrodos monocristalinos Pt(111, Pt(100 e Pt(110 The correlation between the atomic surface structure and the reversible adsorption-desorption of hydrogen on single crystal Pt (111, Pt (100 and Pt (110 electrodes

    Directory of Open Access Journals (Sweden)

    Valderi Pacheco dos Santos

    2001-12-01

    Full Text Available Platinum is widely used as electrode in electrocatalytic processes, however the use of polycrystalline electrodes introduces a series of variables in the electrochemical system due to the aleatory contribution of all the crystallographic orientations with different surface packing of atoms. Single crystal platinum electrodes of low Miller index present surface structure of high regularity and serve as model to establish a correlation among the macroscopic and microscopic properties of the electrochemical interface. Therefore, the main aim of this work is the study of the voltammetric profiles of the reversible adsorption-desorption of hydrogen on Pt(100, Pt(110 and Pt(111, in order to correlate the electrochemical properties of each different orientation with the surface atomic structure.

  17. Highly dispersed Pt-Ni nanoparticles on nitrogen-doped carbon nanotubes for application in direct methanol fuel cells.

    Science.gov (United States)

    Jiang, Shujuan; Ma, Yanwen; Tao, Haisheng; Jian, Guoqiang; Wang, Xizhang; Fan, Yining; Zhu, Jianmin; Hu, Zheng

    2010-06-01

    Binary Pt-Ni alloyed nanoparticles supported on nitrogen-doped carbon nanotubes (NCNTs) have been facilely constructed without pre-modification by making use of the active sites in NCNTs due to the N-participation. So-obtained binary Pt-Ni alloyed nanoparticles have been highly dispersed on the outer surface of the support with the size of about 3-4 nm. The electrochemical properties of the catalysts for methanol oxidation have been systematically evaluated. Binary Pt-Ni alloyed composites with molar ratio (Pt:Ni) of 3:2 and 3:1 present enhanced electrocatalytic activities and improved tolerance to CO poisoning as well as the similar stability, in comparison with the commercial Pt/C catalyst and the monometallic Pt/NCNTs catalysts. These results imply that so-constructed nanocomposite catalysts have the potential for applications in direct methanol fuel cells.

  18. 分子动力学模拟Au-Pd和Ag-Pt合金的热学和力学性质%Thermal and Mechanical Properties of Au-Pd and Ag-Pt Alloy by Molecular Dynamics Simulation

    Institute of Scientific and Technical Information of China (English)

    闫雪松; 齐新; 林平; 杨磊

    2011-01-01

    利用Finnis-Sinclair势,对金属Au、Pd、Ag、Pt和合金Au3Pd、AuPd3、Ag3Pt、AgPt3的热学和力学性质进行了分子动力学模拟.首次计算了不同温度下合金的晶格常数、结合能和弹性常数,并预测了它们的熔点.通过比较发现,Au3Pd、AuPd3和Ag3Pt这3种合金的晶格常数、结合能和弹性常数介于其组分金属之间,而AgPt3的剪切模量和熔点高于其组分hg和Pt.%With the Finnis-Sinclair potential, the thermal and mechanical properties of Au, Pd, Ag, Pt pure metals and their alloys Au3Pd, AuPd3, Ag3Pt, AgPt3 were studied by molecular dynamics simulations. Lattice constants and elastic constants of Au3Pd, AuPd3, Ag3Pt and AgPt3 at different temperatures were predicted for the first time. Melting temperatures of these alloys were calculated too. Furthermore, lattice constants, elastic constants and melting temperature of pure metals Au, Pd, Ag, and Pt were calculated for comparison. It is found that for Au3Pd,AuPd3 and Ag3Pt, lattice constants, elastic constants and melting temperatures lie between those of their two components. For AgPt3, the values of shear modulus and melting temperature are higher than those for both Ag and Pt pure metals.

  19. Exploring the Lanthanide Contraction to Tune the Activity and Stability of Pt

    DEFF Research Database (Denmark)

    Escribano, Maria Escudero; Malacrida, Paolo; Hansen, Martin Hangaard

    2016-01-01

    The high platinum loadings required to compensate for the slow kinetics of the oxygen reduction reaction (ORR) impede the widespread uptake of polymer electrolyte membrane fuel cells. In order to improve the ORR kinetics and reduce the Pt loading, we can tailor the electronic properties of the Pt...... surface atoms by means of alloying Pt with other metals. Researchers have intensively studied alloys of Pt with late transition metals such as Ni and Co during the last decades. However, these compounds typically degrade under fuel cell reaction conditions, due to dealloying. In contrast, alloys of Pt...... and lanthanides present very negative enthalpy of formation [1,2], which should increase their resistance to degradation....

  20. The structure of the chiral Pt531 surface: a combined LEED and DFT study.

    Science.gov (United States)

    Puisto, S R; Held, G; Ranea, V; Jenkins, S J; Mola, E E; King, D A

    2005-12-01

    The structure of the chiral kinked Pt531 surface has been determined by low-energy electron diffraction intensity-versus-energy (LEED-IV) analysis and density functional theory (DFT). Large contractions and expansions of the vertical interlayer distances with respect to the bulk-terminated surface geometry were found for the first six layers (LEED: d12 = 0.44 A, d23 = 0.69 A, d34 = 0.49 A, d45 = 0.95 A, d56 = 0.56 A; DFT: d12 = 0.51 A, d23 = 0.55 A, d34 = 0.74 A, d45 = 0.78 A, d56 = 0.63 A; dbulk = 0.66 A). Energy-dependent cancellations of LEED spots over unusually large energy ranges, up to 100 eV, can be explained by surface roughness and reproduced by applying a model involving 0.25 ML of vacancies and adatoms in the scattering calculations. The agreement between the results from LEED and DFT is not as good as in other cases, which could be due to this roughness of the real surface.

  1. DFT study of hydrogen fluoride and sulfur trioxide interactions on the surface of Pt-decorated graphene

    Science.gov (United States)

    Rad, Ali Shokuhi

    2016-08-01

    In this study, we investigate the adsorption properties of hydrogen florid (HF) and sulfur trioxide (SO3) on the surface of platinum decorated graphene (PtG) using density functional theory. We found one optimized configuration for HF and two ones for SO3 upon adsorption on the surface of PtG. Our result show significant adsorption on PtG with calculated energy adsorption of -73.6 (-54.2 BSSE) kJ/mol for HF at its only position and -172.4 (-144.8 BSSE) and -62.7 (-53.7 BSSE) kJ/mol for SO3 at its two positions; P1 and P2, respectively), whereas there is weak physisorption of these analytes on pristine graphene (PG). Results of charge analyses reveled interesting net charge transfer; while the direction of charge is from HF to PtG, reverse direction is found for SO3 for its two configurations. To deep understand the concept of adsorption properties, we used orbital analyses including density of states for interaction of mentioned analytes on the surface of PtG.

  2. Adsorbate induced surface alloy formation investigated by near ambient pressure X-ray photoelectron spectroscopy

    DEFF Research Database (Denmark)

    Nierhoff, Anders Ulrik Fregerslev; Conradsen, Christian Nagstrup; McCarthy, David Norman

    2014-01-01

    Formation of meta-stable surface-alloys can be used as a way to tune the binding strength of reaction intermediates and could therefore be used as improved catalyst materials for heterogeneous catalysis. Understanding the role of adsorbates on such alloy surfaces can provide new insights for engi...

  3. Effects of Nanowire Length and Surface Roughness on the Electrochemical Sensor Properties of Nafion-Free, Vertically Aligned Pt Nanowire Array Electrodes

    Directory of Open Access Journals (Sweden)

    Zhiyang Li

    2015-09-01

    Full Text Available In this paper, vertically aligned Pt nanowire arrays (PtNWA with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H2O2 detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM−1·cm−2 among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors.

  4. Unconventional Fermi surface spin patterns in the (Bi/Pb/Sb)/Ag(111) surface alloy

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Fabian; Dil, Hugo [Physik Institut Universitaet Zuerich (Switzerland); Swiss Light Source PSI (Switzerland); Petrov, Vladimir [Physics Institute St Petersburg (Russian Federation); Patthey, Luc [Swiss Light Source PSI (Switzerland); Osterwalder, Juerg [Physik Institut Universitaet Zuerich (Switzerland)

    2009-07-01

    By a controllable change in the stoichiometry of the long range ordered mixed surface alloy (Bi/Pb/Sb)/Ag(111) the Rashba and Fermi energy can be tuned over a wide range. We show by spin and angle-resolved photoemission spectroscopy that the spin structure of the individual surface state bands remain unaffected despite the random intermixing of the adatoms. We further report on the observation of unconventional Fermi surface spin textures. These spin textures are found when the Fermi energy lies between the crossing point and the apex of the Rashba type Kramer's pair. The results will be discussed in the context of spin transport.

  5. Surface characterization of titanium alloys sterilized for biomedical applications

    Science.gov (United States)

    Hernández de Gatica, Norma L.; Jones, Gary L.; Gardella, Joseph A.

    1993-05-01

    The high biocompatibility of Ti and Ti-based implants is closely related to the properties of the surface oxide formed during the implant preparation stages. During the machining process, the metal is exposed to the ambient atmosphere and oxidized. This surface oxide layer may be modified during the subsequent implant preparation steps: cleaning and sterilization. In this study, surface elemental and chemical information as well as the thickness of the oxide layer are evaluated for the Ti-6Al-4V alloy before and after different sterilization procedures: UV radiation, steam autoclaving, and radio-frequency glow-discharge (RFGD) treatment in argon atmosphere. The analytical techniques used are: X-ray photoelectron spectroscopy (XPS or ESCA) and the scanning Auger microprobe (SAM). The results of this study indicate that among steam autoclaving, UV radiation and RFGD treatment, the latter yields cleaner surfaces. Also, depth profiles of the specimens treated with RFGD in argon showed an increase in the oxide layer thickness with respect to the values observed for non-sterilized samples.

  6. Gas-phase surface alloying under ''kinetic control'': a novel approach to improving the surface properties of titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, F.; Michal, G.M.; Heuer, A.H. [Dept. of Materials Science and Engineering, Case Western Reserve Univ., Cleveland, OH (United States); Oba, F. [Dept. of Materials Science and Engineering, Case Western Reserve Univ., Cleveland, OH (United States); Kyoto Univ. (Japan). Dept. of Materials Science and Engineering; Liu, L. [Dept. of Materials Science and Engineering, Case Western Reserve Univ., Cleveland, OH (United States); Nanocerox, Inc. Ann Arbor, MI (United States); Blush, J. [Dept. of Materials Science and Engineering, Case Western Reserve Univ., Cleveland, OH (United States); Johns Manville Corp. Littleton (United States)

    2006-05-15

    A novel process, ''nitridation under kinetic control of the nitrogen activity'', has been developed for diffusing substantial amounts ({approx} 10at.%) of interstitially dissolved nitrogen into the surface of Ti alloys (Ti-6Al-4V). By operating with a gas phase providing a very small, controlled nitrogen activity, this process generates a homogeneous Ti-N solid solution, free of detrimental titanium nitride precipitates, in which the nitrogen concentration smoothly decreases from the surface towards the interior. The process is conformal (applicable to workpieces of arbitrary shape) and provides a substantial (about twofold) increase in surface hardness. The hardened surface layer appears to possess adequate ductility for many structural applications. The concept of ''surface alloying under kinetic control'' is very general and may also serve to generate well-controlled surface concentration profiles of carbon or oxygen in Ti-base and other structural alloys. (orig.)

  7. Research on depositing Ni45 alloy on titanium alloy surface by electrospark deposition

    Directory of Open Access Journals (Sweden)

    Su Guiqiao

    2008-11-01

    Full Text Available Taking Ni45 bar as electrode, a strengthened layer of thickness up to 50 μm was built up on BT20 titanium alloy matrix by means of electrospark deposition. Results of phase analysis by using of X-ray diffraction confirmed that the deposition layer was composed mostly of three phases, NiTi, NiTi2 and Ti. The surface microhardness of the deposition layer was up to 910 HV0.05, about 2.7 times as high as that of the matrix. The hardness at the cross-section of the entire deposition layer showed a gradient distribution. The effects of capacitance and deposition time on thickness of deposition layer were also studied, and results showed that with relatively low capacity and short deposition time the deposition layer without cracks can be obtained.

  8. A Nanostructured Bifunctional platform for Sensing of Glucose Biomarker in Artificial Saliva: Synergy in hybrid Pt/Au surfaces.

    Science.gov (United States)

    Raymundo-Pereira, Paulo A; Shimizu, Flávio M; Coelho, Dyovani; Piazzeta, Maria H O; Gobbi, Angelo L; Machado, Sergio A S; Oliveira, Osvaldo N

    2016-12-15

    We report on a bimetallic, bifunctional electrode where a platinum (Pt) surface was patterned with nanostructured gold (Au) fingers with different film thicknesses, which was functionalized with glucose oxidase (GOx) to yield a highly sensitive glucose biosensor. This was achieved by using selective adsorption of a self-assembled monolayer (SAM) onto Au fingers, which allowed GOx immobilization only onto the Au-SAM surface. This modified electrode was termed bifunctional because it allowed to simultaneously immobilize the biomolecule (GOx) on gold to catalyze glucose, and detect hydrogen peroxide on Pt sites. Optimized electrocatalytic activity was reached for the architecture Pt/Au-SAM/GOx with 50nm thickness of Au, where synergy between Pt and Au allowed for detection of hydrogen peroxide (H2O2) at a low applied potential (0V vs. Ag/AgCl). Detection was performed for H2O2 in the range between 4.7 and 102.7 nmol L(-1), with detection limit of 3.4×10(-9) mol L(-1) (3.4 nmol L(-1)) and an apparent Michaelis-Menten rate constant of 3.2×10(-6)molL(-1), which is considerably smaller than similar devices with monometallic electrodes. The methodology was validated by measuring glucose in artificial saliva, including in the presence of interferents. The synergy between Pt and Au was confirmed in electrochemical impedance spectroscopy measurements with an increased electron transfer, compared to bare Pt and Au electrodes. The approach for fabricating the reproducible bimetallic Pt/Au electrodes is entirely generic and may be explored for other types of biosensors and biodevices where advantage can be taken of the combination of the two metals.

  9. Surface Plasmons and Surface Enhanced Raman Spectra of Aggregated and Alloyed Gold-Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Y. Fleger

    2009-01-01

    Full Text Available Effects of size, morphology, and composition of gold and silver nanoparticles on surface plasmon resonance (SPR and surface enhanced Raman spectroscopy (SERS are studied with the purpose of optimizing SERS substrates. Various gold and silver films made by evaporation and subsequent annealing give different morphologies and compositions of nanoparticles and thus different position of the SPR peak. SERS measurements of 4-mercaptobenzoic acid obtained from these films reveal that the proximity of the SPR peak to the exciting laser wavelength is not the only factor leading to the highest Raman enhancement. Silver nanoparticles evaporated on top of larger gold nanoparticles show higher SERS than gold-silver alloyed nanoparticles, in spite of the fact that the SPR peak of alloyed nanoparticles is narrower and closer to the excitation wavelength. The highest Raman enhancement was obtained for substrates with a two-peak particle size distribution for excitation wavelengths close to the SPR.

  10. New Synthesis of Pt-Ru Nanoparticles on Surface Modified Carbon Vulcane XC-72 as an Effective Catalyst for Direct Methanol Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    Ahmad; Nozad; Golikand; Sajjad; Sadaghat; Sharehjini; Mohammad; Yari

    2007-01-01

    1 Results Pt-Ru nanoparticles are synthesised on the surface oxidized carbon Vulcane XC-72 as catalyst support by chemically anchoring Pt and Ru onto the surface of modified carbon vulcane XC-72 (by refluxing in 70% HNO3 at 120 ℃ for 12 h to introduce surface functional groups) .The nanoparticles of Pt and Ru are synthesized by reduction of H2PtCl6 and K4Ru(CN)6 with sodium borohydride in a 5.5 buffer solution of sodium citrate,the complexation of citrate with metal ions is beneficial to the formati...

  11. Correlation of Pt-Re Surface Properties with Reaction Pathways for the Aqueous-Phase Reforming of Glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liang; Karim, Ayman M.; Engelhard, Mark H.; Wei, Zhehao; King, D. L.; Wang, Yong

    2012-01-17

    The surface properties of Pt-Re catalytic nano-particles supported on carbon following exposure to a hydrogen reducing environment and subsequent hydrothermal conditions have been studied using in-situ X-ray photoelectron spectroscopy (XPS) and ammonia temperature programmed desorption (TPD). These properties have been correlated with the catalyst selectivity for the aqueous phase reforming of glycerol. We show that Pt in reduced Pt-Re/C becomes electron deficient, and a fraction of the Re becomes oxidized when the catalyst is subsequently exposed to hydrothermal reaction conditions. Oxidation of Pt-Re generates surface acidity, which drastically affects the reaction pathways. The acid site concentration, but not acid site strength, increases with Re loading. This acidity increase with Re addition favors C-O over C-C cleavage, which results in higher selectivity to liquid products and alkanes at the expense of hydrogen production. We propose a model for the Pt-Re active site and the origin of acidity enhanced by the addition of Re.

  12. Improving tribological properties of Ti-5Zr-3Sn-5Mo-15Nb alloy by double glow plasma surface alloying

    Science.gov (United States)

    Guo, Lili; Qin, Lin; Kong, Fanyou; Yi, Hong; Tang, Bin

    2016-12-01

    Molybdenum, an alloying element, was deposited and diffused on Ti-5Zr-3Sn-5Mo-15Nb (TLM) substrate by double glow plasma surface alloying technology at 900, 950 and 1000 °C. The microstructure, composition distribution and micro-hardness of the Mo modified layers were analyzed. Contact angles on deionized water and wear behaviors of the samples against corundum balls in simulated human body fluids were investigated. Results show that the surface microhardness is significantly enhanced after alloying and increases with treated temperature rising, and the contact angles are lowered to some extent. More importantly, compared to as-received TLM alloy, the Mo modified samples, especially the one treated at 1000 °C, exhibit the significant improvement of tribological properties in reciprocating wear tests, with lower specific wear rate and friction coefficient. To conclude, Mo alloying treatment is an effective approach to obtain excellent comprehensive properties including optimal wear resistance and improved wettability, which ensure the lasting and safety application for titanium alloys as the biomedical implants.

  13. Study of high coverages of atomic oxygen on the Pt(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Parker, D.H.; Bartram, M.E.; Koel, B.E. (Univ. of Colorado, Boulder (United States))

    1989-01-01

    Atomic oxygen coverages of up to 0.75 monolayer (ML) may be adsorbed cleanly on Pt(111) surfaces under UHV conditions by exposure to NO{sub 2} at 400 K. The authors have studied this adsorbed oxygen layer by using AES, LEED, UPS, HREELS, TPD, and work function ({Delta}{phi}) measurements. The (2{times}2)-O structure formed at {theta}{sub o} = 0.25 ML is still apparent at {theta}{sub o} = 0.60 ML and a faint (2{times}2) pattern persists even up to {theta}{sub o} = 0.75 ML.AES and {Delta}{phi} measurements show no evidence for chemically distinct species in the adlayer as a function of oxygen coverage. HREELS spectra clearly rule out the presence of molecular oxygen and oxide species over the range of oxygen coverage studied. UPS also shows no shift in binding energy of the oxygen-derived peak as the coverage is increased. These spectroscopic probes indicate that all oxygen is present as atomic oxygen with no indication of oxide formation or molecular oxygen at any coverage. Multiple O{sub 2} desorption peaks observed in TPD are interpreted as arising largely from kinetic effects rather than a result of multiple, distinctly different chemical species, even though large changes in the Pt-O bond energy are determined from the TPD data. The activation energy for O{sub 2} desorption reflects the sum of the heat of dissociative adsorption of O{sub 2} and the activation energy for O{sub 2} desorption reflects the sum of the heat of dissociative adsorption of O{sub 2} and the activation energy for O{sub 2} dissociation. The structure in the O{sub 2} TPD spectrum is due to large changes in the activation energy for O{sub 2} desorption resulting from increases in the barrier to dissociative O{sub 2} chemisorption and decreases in the Pt-O bond energy.

  14. Electronic stopping of keV nitrogen ions interacting with a Pt(110) (1 x 2) surface - a tool to characterize electronic surfaces

    NARCIS (Netherlands)

    Robin, A; Postnikov, AV; Heiland, W

    2005-01-01

    Ion channeling is used to investigate the electronic density corrugation at surfaces by analysing the electronic stopping behaviour of ions scattering grazingly off a clean single crystalline Pt(110)(1 x 2) surface. We use the fact that under these conditions the elastic contribution can be separate

  15. Electro-Explosive Doping of VT6 Titanium Alloy Surface by Boron Carbide

    Science.gov (United States)

    Kobzareva, T. Yu; Gromov, V. E.; Ivanov, Yu F.; Budovskkh, E. A.; Konovalov, S. V.

    2016-09-01

    The studies carried out in this work target detection of changes in the surface layer of titanium alloy VT6 after electro-explosive alloying (EEA) by boron carbide. EEA of VT6 titanium alloy surface is the plasma alloying formed during the electric explosion of foil with the sample powder of boron carbide. Carbon fibers with weight 140 mg were used as an explosive conductor. Sample powder of boron carbide B4C was placed in the area of explosion on the carbon fibers. It was revealed that EEA of the surface layers of titanium alloy samples VT6 leads to the modification of the layer, thickness of which changes from 10 pm to 50 pm. Heterogeneous distribution of alloying elements was found in the treatment zone by the methods of X-ray microanalysis. A significant difference in their concentration in the identified layers leads to difference in their structural and tribological behaviour. It was revealed that after electro-explosive alloying the microhardness of titanium alloy VT6 significantly increases. Electro-explosive alloying leads to the formation of a structure of submicro- and nano-scale level. It allows strength and tribological properties of the treated surface to be increased.

  16. Pt-based Thin Films as Efficient and Stable Catalysts for Oxygen Electroreduction

    DEFF Research Database (Denmark)

    Zamburlini, Eleonora

    This thesis presents the fabrication and characterization of Pt-based thin film catalysts for Oxygen Reduction Reaction (ORR). Gadolinium and Yttrium have been used as alloying materials, in preparation for the replacement of the traditional but economically disadvantageous pure Pt catalysts...... at the cathode of Polymer Electrolyte Membrane Fuel Cells (PEMFCs). Herein the fabrication method, which consists of co-sputtering of thin films, is presented in detail, explaining the challenges one must face in order to fabricate oxygen-free Pt-lanthanides and Pt-early transition metals alloys...... be due to the different kind of surfaces generated by sputtering. Both the Pt5Gd and Pt3Y films maintain over 80 % of the initial ORR activity when cycled 10000 times between 0.6 and 1.0 V vs. RHE in 0.1 M HClO4, and that is an indicator of the good stability of these catalysts. Investigation...

  17. Heterogeneous Au-Pt nanostructures with enhanced catalytic activity toward oxygen reduction.

    Science.gov (United States)

    Ye, Feng; Liu, Hui; Hu, Weiwei; Zhong, Junyu; Chen, Yingying; Cao, Hongbin; Yang, Jun

    2012-03-14

    Heterogeneous Au-Pt nanostructures have been synthesized using a sacrificial template-based approach. Typically, monodispersed Au nanoparticles are prepared first, followed by Ag coating to form core-shell Au-Ag nanoparticles. Next, the galvanic replacement reaction between Ag shells and an aqueous H(2)PtCl(6) solution, whose chemical reaction can be described as 4Ag + PtCl(6)(2-)→ Pt + 4AgCl + 2Cl(-), is carried out at room temperature. Pure Ag shell is transformed into a shell made of Ag/Pt alloy by galvanic replacement. The AgCl formed simultaneously roughens the surface of alloy Ag-Pt shells, which can be manipulated to create a porous Pt surface for oxygen reduction reaction. Finally, Ag and AgCl are removed from core-shell Au-Ag/Pt nanoparticles using bis(p-sulfonatophenyl)phenylphosphane dihydrate dipotassium salt to produce heterogeneous Au-Pt nanostructures. The heterogeneous Au-Pt nanostructures have displayed superior catalytic activity towards oxygen reduction in direct methanol fuel cells because of the electronic coupling effect between the inner-placed Au core and the Pt shell.

  18. High temperature polymer electrolyte membrane fuel cell performance of Pt xCo y/C cathodes

    Science.gov (United States)

    Rao, Ch. Venkateswara; Parrondo, Javier; Ghatty, Sundara L.; Rambabu, B.

    Carbon-supported Pt-Co alloy nanoparticles of varying Pt:Co atomic ratios of 1:1, 2:1, 3:1 and 4:1 are prepared, characterized and tested in high temperature PEM fuel cell intend to reduce the Pt loading. These electrocatalysts are prepared by borohydride reduction method in the presence of citric acid as stabilizing agent. Face-centered cubic structure of Pt is evident from XRD. The positive shift of Pt diffraction peaks with increasing cobalt content in the Pt xCo y/C catalysts indicated the solubility of Co in Pt lattice. The average crystallite size is found to be 6 nm in all the prepared catalysts. The electrochemical active surface area (EAS) of the catalysts from CO-stripping voltammetry is calculated to be 65.2, 51.4, 47.7, 41.5 and 38.3 m 2 g -1 Pt for Pt/C, Pt-Co(4:1)/C, Pt-Co(3:1)/C, Pt-Co(2:1)/C and Pt-Co(1:1)/C, respectively. These catalysts are used as cathode in the fabrication of polybenzimidazole-based membrane electrode assembly (MEA) and the polarization curves are recorded at 160 and 180 °C. The results indicate the good performance of Pt-Co alloys than that of Pt under the PEM fuel cell conditions. Among the investigated electrocatalysts, Pt-Co(1:1)/C and Pt-Co(2:1)/C exhibited good fuel cell performance. Durability tests also indicated the good stability of Pt-Co(1:1)/C and Pt-Co(2:1)/C compared to Pt/C.

  19. Structural and chemical characteristics of atomically smooth GaN surfaces prepared by abrasive-free polishing with Pt catalyst

    Science.gov (United States)

    Murata, Junji; Sadakuni, Shun; Okamoto, Takeshi; Hattori, Azusa N.; Yagi, Keita; Sano, Yasuhisa; Arima, Kenta; Yamauchi, Kazuto

    2012-06-01

    This paper reports the structural and chemical characteristics of atomically flat gallium nitride (GaN) surfaces prepared by abrasive-free polishing with platinum (Pt) catalyst. Atomic force microscopy revealed regularly alternating wide and narrow terraces with a step height equivalent to that of a single bilayer on the flattened GaN surfaces, which originate from the differences in etching rate of two neighboring terraces. The material removal characteristics of the method for GaN surfaces were investigated in detail. We confirmed that an atomically smooth GaN surface with an extremely small number of surface defects, including pits and scratches, can be achieved, regardless of the growth method, surface polarity, and doping concentration. X-ray photoelectron spectroscopy showed that the flattening method produces clean GaN surfaces with only trace impurities such as Ga oxide and metallic Ga. Contamination with the Pt catalyst was also evaluated using total-reflection X-ray fluorescence analysis. A wet cleaning method with aqua regia is proposed, which markedly eliminates this Pt contamination without affecting the surface morphology.

  20. Effects of WC particle size on the wear resistance of laser surface alloyed medium carbon steel

    Science.gov (United States)

    Tong, Xin; Li, Fu-hai; Kuang, Min; Ma, Wen-you; Chen, Xing-chi; Liu, Min

    2012-01-01

    The CO2 laser surface alloying technique was used to form wear resistance layers on medium carbon steel with a kind of spherical WC powder. The effects of WC particle size on the abrasive wear resistance were thoroughly investigated. The results indicate that the laser alloyed layer is characterized by dendritic primary phase and ledeburite microstructure, consisting of austenite, martensite and carbides of Fe3W3C, W2C and WC. The laser surface alloying with WC powder could improve the abrasive wear resistance of the medium carbon steel by over 63%. The factors such as the hardness, the amount and the distribution of WC particle determined the laser alloyed samples' wear resistance, and the laser alloyed sample with WC powder of 88-100 μm diameter presented the best wear resistance in this study. Furthermore, the wear resistance mechanisms of the laser alloyed layers were also explored.

  1. Energy loss and charge state dependency of swift Nq+ ions scattered off a Pt(110)(1 x 2) surface

    NARCIS (Netherlands)

    Robin, A; Hatke, N; Jensen, J; Plachke, D; Carstanjen, HD; Heiland, W

    2003-01-01

    We present new surface scattering results combining measurements of energy loss and charge state distributions of 0.7-1.4 MeV Nq+ (q = 1, 2) ions. The energy range is still below the bulk stopping power maximum and charge exchange occurs. The projectiles scatter from a Pt(110)(1 x 2) single crystal

  2. Structural and electronic properties of half-Heusler alloys PtXBi (with X=Mn, Fe, Co and Ni) calculated from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wenchao [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Wang, Xiaofang, E-mail: wxiaof66@mail.sitp.ac.cn [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Chen, Xiaoshuang, E-mail: xschen@mail.sitp.ac.cn [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Lu, Wei [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Damewood, L.; Fong, C.Y. [Department of Physics, University of California, Davis, CA 95616-8677 (United States)

    2015-03-01

    First principles calculations with spin polarization based on density functional theory have been performed on half-Heusler alloys PtXBi, with X=Mn, Fe, Co and Ni, in three different atomic configurations (i.e. α, β, and γ phases). For each configuration, their optimized lattice constants are determined. Electronic and magnetic properties are also investigated. The differences reflect the atomic arrangements of the three phases and varied transition metal elements X. Meanwhile, the possibility of having the integer magnetic moment for each phase is explored. PtMnBi in α phase show half-metallic (HM) properties when its lattice constant is reduced from −3.0% to −11.2% with magnetic moment consistent with the values given by the modified Slater–Pauling rule. Additionally, we examined the effects of the spin–orbit (S–O) interaction on half-metal PtMnBi by comparing the relative shifts of the valence bands and the indirect semiconducting gap with respect to the spin polarized results.

  3. Structural and electronic properties of half-Heusler alloys PtXBi (with X=Mn, Fe, Co and Ni) calculated from first principles

    Science.gov (United States)

    Huang, Wenchao; Wang, Xiaofang; Chen, Xiaoshuang; Lu, Wei; Damewood, L.; Fong, C. Y.

    2015-03-01

    First principles calculations with spin polarization based on density functional theory have been performed on half-Heusler alloys PtXBi, with X=Mn, Fe, Co and Ni, in three different atomic configurations (i.e. α, β, and γ phases). For each configuration, their optimized lattice constants are determined. Electronic and magnetic properties are also investigated. The differences reflect the atomic arrangements of the three phases and varied transition metal elements X. Meanwhile, the possibility of having the integer magnetic moment for each phase is explored. PtMnBi in α phase show half-metallic (HM) properties when its lattice constant is reduced from -3.0% to -11.2% with magnetic moment consistent with the values given by the modified Slater-Pauling rule. Additionally, we examined the effects of the spin-orbit (S-O) interaction on half-metal PtMnBi by comparing the relative shifts of the valence bands and the indirect semiconducting gap with respect to the spin polarized results.

  4. Influence of multiple reflection and optical interference on the magneto-optical properties of Co-Pt alloy films investigated by using the characteristic matrix method

    CERN Document Server

    Zou, Z Q; Kim, K W

    2000-01-01

    The magneto-optical Kerr effect (MOKE) of a multilayered system was described by using the characteristic matrix method based on the electromagnetic wave theory. In addition to the multiple reflection and the optical interference, a contribution from the plasma resonance absorption of a metallic layer can be included in the formulation. As an example, we carried out a simulation of the MOKE for Co sub 0 sub . sub 2 sub 5 Pt sub 0 sub . sub 7 sub 5 alloy films with and without a Pt buffer layer. It was found that the Kerr rotation and the read-out figure of merit of a film directly deposited on a glass substrate were enhanced at a thickness below 40 nm owing to the multiple reflection and the optical interference. This enhancement was more remakable at long wavelengths when light was incident on the substrate side. However, the introduction of a Pt buffer layer was not beneficial in improving the Kerr rotation and the figure of merit, although it promoted the perpendicular magnetic anisotropy of the film, as r...

  5. Fundamental Mechanistic Understanding of Electrocatalysis of Oxygen Reduction on Pt and Non-Pt Surfaces: Acid versus Alkaline Media

    Directory of Open Access Journals (Sweden)

    Nagappan Ramaswamy

    2012-01-01

    Full Text Available Complex electrochemical reactions such as Oxygen Reduction Reaction (ORR involving multi-electron transfer is an electrocatalytic inner-sphere electron transfer process that exhibit strong dependence on the nature of the electrode surface. This criterion (along with required stability in acidic electrolytes has largely limited ORR catalysts to the platinum-based surfaces. New evidence in alkaline media, discussed here, throws light on the involvement of surface-independent outer-sphere electron transfer component in the overall electrocatalytic process. This surface non-specificity gives rise to the possibility of using a wide-range of non-noble metal surfaces as electrode materials for ORR in alkaline media. However, this outer-sphere process predominantly leads only to peroxide intermediate as the final product. The importance of promoting the electrocatalytic inner-sphere electron transfer by facilitation of direct adsorption of molecular oxygen on the active site is emphasized by using pyrolyzed metal porphyrins as electrocatalysts. A comparison of ORR reaction mechanisms between acidic and alkaline conditions is elucidated here. The primary advantage of performing ORR in alkaline media is found to be the enhanced activation of the peroxide intermediate on the active site that enables the complete four-electron transfer. ORR reaction schemes involving both outer- and inner-sphere electron transfer mechanisms are proposed.

  6. Kinetic Monte Carlo simulation of surface segregation in Pd–Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Feng [Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University (China); He, Xiang [Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Chen, Zhao-Xu, E-mail: zxchen@nju.edu.cn [Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University (China); Huang, Yu-Gai [Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University (China); JiangSu Second Normal University, Nanjing (China)

    2015-11-05

    The knowledge of surface composition and atomic arrangement is prerequisite for understanding of catalytic properties of an alloy catalyst. Gaining such knowledge is rather difficult, especially for those possessing surface segregation. Pd–Cu alloy is used in many fields and possesses surface segregation. In this paper kinetic Monte Carlo method is used to explore the surface composition and structure and to examine the effects of bulk composition and temperature on the surface segregation of Pd–Cu alloys. It is shown that the segregation basically completes within 900 s at 500 K. Below 900 K and within 20 min the enriched surface Cu atoms mainly come from the top five layers. For the first time we demonstrate that there exists a “bulk-inside flocking” or clustering phenomenon (the same component element congregates in bulk) in Pd–Cu alloys. Our results indicate that for alloys with higher Cu content there are small Pd ensembles like monomers, dimers and trimers with contiguous subsurface Pd atoms. - Highlights: • Kinetic Monte Carlo was first used to study surface segregation of Pd–Cu alloys. • Bulk-inside flocking (the same component element congregates in bulk) was observed. • Small Pd ensembles with contiguous subsurface Pd exist on surfaces of Cu-rich alloys.

  7. The Nature of Surface Oxides on Corrosion-Resistant Nickel Alloy Covered by Alkaline Water

    Directory of Open Access Journals (Sweden)

    Gervasio DF

    2010-01-01

    Full Text Available Abstract A nickel alloy with high chrome and molybdenum content was found to form a highly resistive and passive oxide layer. The donor density and mobility of ions in the oxide layer has been determined as a function of the electrical potential when alkaline water layers are on the alloy surface in order to account for the relative inertness of the nickel alloy in corrosive environments.

  8. Kinetics and thermodynamics of H2O dissociation and CO oxidation on the Pt/WC (0001) surface: A density functional theory study

    Science.gov (United States)

    Liang, Yuanyuan; Chen, Litao; Ma, Chun'an

    2017-02-01

    Adsorptions of H2O and CO on the Pt/WC(0001) [pseudomorphic platinum monolayer on WC(0001)] surface have been studied with periodical slab model by PW91 approach of GGA within the framework of density functional theory (DFT). The reaction pathways and mechanisms of H2O dissociation and CO oxidation are also investigated. For a comparison, similar calculation scheme are performed on the Pt (111) surface as well. The adsorption energies of H2O and CO on both concerned surfaces suggest that H2O binds preferentially on the Pt/WC (0001) surface, while CO prefers the metal surface Pt (111), agreeing well with the experimental observation that the tungsten carbides based material is less susceptible to CO poisoning than platinum. The activation energies for the stepwise H2O dehydrogenation reaction show that the progress of H2O dissociation is similar on the two surfaces; and coincidentally the oxidation of CO by surface hydroxyl is much more likely to occur than that by surface oxygen which comes up with the H2O dissociation. Although the activation barrier of H2O dissociation on the Pt/WC (0001) is similar to that on Pt (111), the key oxidant OH specials which play a key role in turning over surface carbon monoxide to carbon dioxide prefer the Pt/WC(0001) surface, and the improved CO oxidation reaction progress confirms that the Pt/WC surface is more CO-tolerant than the pure Pt. According to the electronic structure analysis we find that the increased CO tolerance is ascribed to the downshift of Pt d-band center because of the charge transfer from WC support to the coating surface.

  9. Geometric And Electronic Structure of Methane Adsorbed on a Pt Surface

    Energy Technology Data Exchange (ETDEWEB)

    Ostrom, H.; Ogasawara, H.; Naslund, L.A.; Andersson, K.; Pettersson, L.G.M.; Nilsson, A.; /Stockholm U. /SLAC, SSRL

    2007-11-21

    The electronic structure of methane adsorbed on Pt(977) is investigated using angle-resolved x-ray absorption spectroscopy (XAS) in combination with density functional theory spectrum calculations. XAS, which probes the unoccupied states atom specifically, shows the appearance of the symmetry-forbidden gas-phase lowest unoccupied molecular orbital due to s-p rehybridization. In addition new adsorption-induced states appear just above the Fermi level. A systematic investigation, where computed XA spectra are compared with the experiment, indicates elongation of the C-H bond pointing toward the surface to 1.18+/-0.05 Angstroms. The bond elongation arises due to mixing between bonding and antibonding C-H orbitals. Computed charge density difference plots show that no covalent chemical bond is formed between the adsorbate and substrate upon adsorption. The changes in electronic structure arise in order to minimize the Pauli repulsion by polarizing charge away from the surface toward the carbon atom of the methane molecule.

  10. Characterization of Ni19.5Ti50.5Pd25Pt5 High-Temperature Shape Memory Alloy Springs and their Potential Application in Aeronautics

    Science.gov (United States)

    Stebner, Aaron; Padula, Santo A.; Noebe, Ronald D.

    2008-01-01

    Shape memory alloys (SMAs) have been used as actuators in many different industries since the discovery of the shape memory effect, but the use of SMAs as actuation devices in aeronautics has been limited due to the temperature constraints of commercially available materials. Consequently, work is being done at NASA's Glenn Research Center to develop new SMAs capable of being used in high temperature environments. One of the more promising high-temperature shape memory alloys (HTSMAs) is Ni19.5Ti50.5Pd25Pt5. Recent work has shown that this material is capable of being used in operating environments of up to 250 C. This material has been shown to have very useful actuation capabilities, demonstrating repeatable strain recoveries up to 2.5% in the presence of an externally applied load. Based on these findings, further work has been initiated to explore potential applications and alternative forms of this alloy, such as springs. Thus, characterization of Ni19.5Ti50.5Pd25Pt5 springs, including their mechanical response and how variations in this response correlate to changes in geometric parameters, are discussed. The effects of loading history, or training, on spring behavior were also investigated. A comparison of the springs with wire actuators is made and the benefits of using one actuator form as opposed to the other discussed. These findings are used to discuss design considerations for a surge-control mechanism that could be used in the centrifugal compressor of a T-700 helicopter engine.

  11. Characterization of Ni19.5Ti50.5Pd25Pt5 High-Temperature Shape Memory Alloy Springs and their Potential Application in Aeronautics

    Science.gov (United States)

    Stebner, Aaron; Padula, Santo A.; Noebe, Ronald D.

    2008-01-01

    Shape memory alloys (SMAs) have been used as actuators in many different industries since the discovery of the shape memory effect, but the use of SMAs as actuation devices in aeronautics has been limited due to the temperature constraints of commercially available materials. Consequently, work is being done at NASA's Glenn Research Center to develop new SMAs capable of being used in high temperature environments. One of the more promising high-temperature shape memory alloys (HTSMAs) is Ni19.5Ti50.5Pd25Pt5. Recent work has shown that this material is capable of being used in operating environments of up to 250 C. This material has been shown to have very useful actuation capabilities, demonstrating repeatable strain recoveries up to 2.5% in the presence of an externally applied load. Based on these findings, further work has been initiated to explore potential applications and alternative forms of this alloy, such as springs. Thus, characterization of Ni19.5Ti50.5Pd25Pt5 springs, including their mechanical response and how variations in this response correlate to changes in geometric parameters, are discussed. The effects of loading history, or training, on spring behavior were also investigated. A comparison of the springs with wire actuators is made and the benefits of using one actuator form as opposed to the other discussed. These findings are used to discuss design considerations for a surge-control mechanism that could be used in the centrifugal compressor of a T-700 helicopter engine.

  12. Alloying Au surface with Pd reduces the intrinsic activity in catalyzing CO oxidation

    KAUST Repository

    Qian, Kun

    2016-03-30

    © 2016. Various Au-Pd/SiO2 catalysts with a fixed Au loading but different Au:Pd molar ratios were prepared via deposition-precipitation method followed by H2 reduction. The structures were characterized and the catalytic activities in CO oxidation were evaluated. The formation of Au-Pd alloy particles was identified. The Au-Pd alloy particles exhibit enhanced dispersions on SiO2 than Au particles. Charge transfer from Pd to Au within Au-Pd alloy particles. Isolated Pd atoms dominate the surface of Au-Pd alloy particles with large Au:Pd molar ratios while contiguous Pd atoms dominate the surface of Au-Pd alloy particles with small Au:Pd molar ratios. Few synergetic effect of Au-Pd alloy occurs on catalyzing CO oxidation under employed reaction conditions. Alloying Au with Pd reduces the intrinsic activity in catalyzing CO oxidation, and contiguous Pd atoms on the Au-Pd alloy particles are capable of catalyzing CO oxidation while isolated Pd atoms are not. These results advance the fundamental understandings of Au-Pd alloy surfaces in catalyzing CO oxidation.

  13. Surface microstructures and antimicrobial properties of copper plasma alloyed stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xiangyu; Huang Xiaobo; Jiang Li; Ma Yong; Fan Ailan [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Tang Bin, E-mail: tangbin@tyut.edu.cn [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2011-12-01

    Bacterial adhesion to stainless steel surfaces is one of the major reason causing the cross-contamination and infection in many practical applications. An approach to solve this problem is to enhance the antibacterial properties on the surface of stainless steel. In this paper, novel antibacterial stainless steel surfaces with different copper content have been prepared by a plasma surface alloying technique at various gas pressures. The microstructure of the alloyed surfaces was investigated using glow discharge optical emission spectroscopy (GDOES) and scanning electron microscopy (SEM). The viability of bacteria attached to the antibacterial surfaces was tested using the spread plate method. The antibacterial mechanism of the alloyed surfaces was studied by X-ray photoelectron spectroscopy (XPS). The results indicate that gas pressure has a great influence on the surface elements concentration and the depth of the alloyed layer. The maximum copper concentration in the alloyed surface obtained at the gas pressure of 60 Pa is about 7.1 wt.%. This alloyed surface exhibited very strong antibacterial ability, and an effective reduction of 98% of Escherichia coli (E. coli) within 1 h was achieved by contact with the alloyed surface. The maximum thickness of the copper alloyed layer obtained at 45 Pa is about 6.5 {mu}m. Although the rate of reduction for E. coli of this alloyed surface was slower than that of the alloyed surface with the copper content about 7.1 wt.% over the first 3 h, few were able to survive more than 12 h and the reduction reached over 99.9%. The XPS analysis results indicated that the copper ions were released when the copper alloyed stainless steel in contact with bacterial solution, which is an important factor for killing bacteria. Based on an overall consideration of bacterial killing rate and durability, the alloyed surface with the copper content of 2.5 wt.% and the thickness of about 6.5 {mu}m obtained at the gas pressure of 45 Pa is

  14. Surface microstructures and antimicrobial properties of copper plasma alloyed stainless steel

    Science.gov (United States)

    Zhang, Xiangyu; Huang, Xiaobo; Jiang, Li; Ma, Yong; Fan, Ailan; Tang, Bin

    2011-12-01

    Bacterial adhesion to stainless steel surfaces is one of the major reason causing the cross-contamination and infection in many practical applications. An approach to solve this problem is to enhance the antibacterial properties on the surface of stainless steel. In this paper, novel antibacterial stainless steel surfaces with different copper content have been prepared by a plasma surface alloying technique at various gas pressures. The microstructure of the alloyed surfaces was investigated using glow discharge optical emission spectroscopy (GDOES) and scanning electron microscopy (SEM). The viability of bacteria attached to the antibacterial surfaces was tested using the spread plate method. The antibacterial mechanism of the alloyed surfaces was studied by X-ray photoelectron spectroscopy (XPS). The results indicate that gas pressure has a great influence on the surface elements concentration and the depth of the alloyed layer. The maximum copper concentration in the alloyed surface obtained at the gas pressure of 60 Pa is about 7.1 wt.%. This alloyed surface exhibited very strong antibacterial ability, and an effective reduction of 98% of Escherichia coli (E. coli) within 1 h was achieved by contact with the alloyed surface. The maximum thickness of the copper alloyed layer obtained at 45 Pa is about 6.5 μm. Although the rate of reduction for E. coli of this alloyed surface was slower than that of the alloyed surface with the copper content about 7.1 wt.% over the first 3 h, few were able to survive more than 12 h and the reduction reached over 99.9%. The XPS analysis results indicated that the copper ions were released when the copper alloyed stainless steel in contact with bacterial solution, which is an important factor for killing bacteria. Based on an overall consideration of bacterial killing rate and durability, the alloyed surface with the copper content of 2.5 wt.% and the thickness of about 6.5 μm obtained at the gas pressure of 45 Pa is expected

  15. Development of Laser Surface Technologies for Anti-Corrosion on Magnesium Alloys: a Review

    Science.gov (United States)

    Sun, Rujian; Guan, Yingchun; Zhu, Ying

    2016-03-01

    Magnesium (Mg) alloys have been increasingly used in industries and biomaterial fields due to low density, high specific strength and biodegradability. However, poor surface-related properties are major factors that limit their practical applications. This paper mainly focuses on laser-based anti-corrosion technologies for Mg alloys, beginning with a brief review of conventional methods, and then demonstrates the feasibility of laser surface technologies including laser surface melting (LSM), laser surface alloying (LSA), laser surface cladding (LSC) and laser shock peening (LSP) in achieving enhancement of corrosion resistance. The mechanism and capability of each technique in corrosion resistance is carefully discussed. Finally, an outlook of the development of laser surface technology for Mg alloy is further concluded, aiming to serve as a guide for further research both in industry applications and biomedical devices.

  16. Study of the Material Transfer Characteristics and Surface Morphology Due to Arc Erosion of PtIr Contact Materials

    Institute of Scientific and Technical Information of China (English)

    WANG Saibei; XIE Ming; YANG Youcai; ZHANG Jiming; CHEN Yongtai; LIU Manmen; YANG Yunfeng; HU Jieqiong; CUI Hao

    2012-01-01

    By means of breaking tests on PtIr contact materials via a JF04C contact material testing machine,it was attempted to elucidate the characterstics of the various surface morphology and material transfer after the arc erosion process caused by break arc.The material transfer characteristics appeared in the experiments were concluded and analyzed.Meanwhile,the morphology of the anode and cathode surface were observed and analyzed by SEM.

  17. Surface alloying of Cu with Ti by double glow discharge process

    Institute of Scientific and Technical Information of China (English)

    袁庆龙; 池成忠; 苏永安; 徐重; 唐宾

    2004-01-01

    The surface of pure copper alloyed with Ti using double glow discharge process was investigated. The morphology, structure and forming mechanism of the Cu-Ti alloying layer were analyzed. The microhardness and wear resistance of the Cu-Ti alloying layer were measured, and compared with those of pure copper. The results indicate that the surface of copper activated by Ar and Ti ions bombardment is favorable to absorption and diffusion of Ti element. In current experimental temperature, as the Ti content increases, the liquid phase occurs between the deposited layer and diffused layer, which makes the Ti ions and atoms easy to dissolve and the thickness of Cu-Ti alloying layer increase rapidly. After cooling, the structure of the alloying layer is composed of CuTi, Cu4 Ti and Cu(Ti) solid solution. The solid solution strengthening and precipitation strengthening effects of Ti result in high surface hardness and wear resistance.