WorldWideScience

Sample records for pt pd ir

  1. Electronic Structure of the fcc Transition Metals Ir, Rh, Pt, and Pd

    DEFF Research Database (Denmark)

    Andersen, O. Krogh

    1970-01-01

    We give a complete description of a relativistic augmented-plane-wave calculation of the band structures of the paramagnetic fcc transition metals Ir, Rh, Pt, and Pd. The width and position of the d band decrease in the sequence Ir, Pt, Rh, Pd; and N(EF)=13.8,23.2,18.7, and 32.7 (states/atom)/Ry,......We give a complete description of a relativistic augmented-plane-wave calculation of the band structures of the paramagnetic fcc transition metals Ir, Rh, Pt, and Pd. The width and position of the d band decrease in the sequence Ir, Pt, Rh, Pd; and N(EF)=13.8,23.2,18.7, and 32.7 (states....../atom)/Ry, respectively. Spin-orbit coupling is important for all four metals and the coupling parameter varies by 30% over the d bandwidth. Detailed comparisons with de Haas—van Alphen Fermi-surface dimensions have previously been presented and the agreement was very good. Comparison with measured electronic specific...

  2. Stability and ordering properties of fcc alloys based on Rh, Ir, Pd, and Pt

    Czech Academy of Sciences Publication Activity Database

    Turchi, P. E. A.; Drchal, Václav; Kudrnovský, Josef

    2006-01-01

    Roč. 74, č. 6 (2006), 064202/1-064202/12 ISSN 1098-0121 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z1010914 Keywords : alloy phase stability * ordering in alloys * fcc alloys of Rh, Ir, Pd, Pt Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.107, year: 2006

  3. Computational modelling of Ti50Pt50-xMx shape memory alloys (M: Ni, Ir or Pd and x = 6.25-43.75 at.%)

    CSIR Research Space (South Africa)

    Modiba, Rosinah M

    2017-09-01

    Full Text Available The ab initio density functional theory approach was employed to study the effect of Ni, Ir or Pd addition to the TiPt shape memory alloy. The supercell approach in VASP was used to substitute Pt with 6.25, 18.75, 25.00, 31.25 and 43.75 at.% Ni, Ir...

  4. A novel IrNi@PdIr/C core-shell electrocatalyst with enhanced activity and durability for the hydrogen oxidation reaction in alkaline anion exchange membrane fuel cells.

    Science.gov (United States)

    Qin, Bowen; Yu, Hongmei; Jia, Jia; Jun, Chi; Gao, Xueqiang; Yao, Dewei; Sun, Xinye; Song, Wei; Yi, Baolian; Shao, Zhigang

    2018-03-08

    Herein, a novel non-platinum core-shell catalyst, namely, IrNi@PdIr/C was prepared via a galvanic replacement reaction; it exhibits enhanced hydrogen oxidation activity and excellent stability under alkaline conditions. Electrochemical experiments demonstrated that the mass and specific activities at 50 mV of IrNi@PdIr/C are 2.1 and 2.2 times that of commercial Pt/C in 0.1 M KOH at 298 K, respectively. Moreover, accelerated degradation tests have shown that the electrochemically active surface area (ECSA) of IrNi@PdIr/C reduces by only 5.1%, which is almost 4 times less than that of commercial Pt/C and the mass activity at 50 mV of IrNi@PdIr/C after 2000 potential cycles is still 1.8 times higher than that of aged Pt/C. XRD and XPS analysis suggest that the enhanced HOR activity is attributed to the weakening of the hydrogen binding to the PdIr overlayers induced by the IrNi core. The better stability to potential cycling can be associated with the PdIr shell, which inhibits oxide formation. These results suggest that IrNi@PdIr/C is a promising non-platinum anode catalyst for alkaline anion exchange membrane fuel cells.

  5. Effect of HCl Concentration on the Oxidation of LIX 63 and the Subsequent Separation of Pd(II), Pt(IV), Ir(IV) and Rh(III) by Solvent Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thi Hong; Lee, Man Seung [Mokpo National University, Jeollanamdo (Korea, Republic of)

    2016-10-15

    During the selective extraction of Pd(II) by LIX 63 from 6 M HCl solutions containing platinum group metals, an oxidation-reduction reaction occurs between the LIX 63 and Ir(IV). Since the reduced Ir(III) cannot be extracted by solvating and amine extractants, the oxidation-reduction reaction has a significant effect on the separation of Pt(IV), Ir(IV) and Rh(III). Therefore, the effect of HCl concentration on the reduction of Ir(IV) during the extraction with LIX 63 was investigated at 3 and 6 M HCl solutions. The extraction behavior of Iridium by Aliquat 336 from the Pd(II) free raffinate showed that the percentage of iridium extraction rapidly decreased when HCl concentration was increased from 3 to 6 M, indicating that more Ir(IV) was reduced to Ir(III). Extraction schemes for the separation of Pt(IV), iridium and Rh(III) by Aliquat 336 from 3 and 6 M HCl solutions were investigated.

  6. Measurement of benzenethiol adsorption to nanostructured Pt, Pd, and PtPd films using Raman spectroelectrochemistry.

    Science.gov (United States)

    Pomfret, Michael B; Pietron, Jeremy J; Owrutsky, Jeffrey C

    2010-05-04

    Raman spectroscopy and electrochemical methods were used to study the behavior of the model adsorbate benzenethiol (BT) on nanostructured Pt, Pd, and PtPd electrodes as a function of applied potential. Benzenethiol adsorbs out of ethanolic solutions as the corresponding thiolate, and voltammetric stripping data reveal that BT is oxidatively removed from all of the nanostructured metals upon repeated oxidative and reductive cycling. Oxidative stripping potentials for BT increase in the order Pt oxidizing potentials via cleavage of the Pt-S bond. In contrast, on nanoscale Pd and PtPd, BT is irreversibly lost due to cleavage of BT C-S bonds at oxidizing potentials, which leaves adsorbed sulfur oxides on Pd and PtPd films and effects the desulfurization of BT. While Pd and PtPd films are less sulfur-resistant than Pt films, palladium oxides, which form at higher potentials than Pt oxides, oxidatively desulfurize BT. In situ spectroelectrochemical Raman spectroscopy provides real-time, chemically specific information that complements the cyclic voltammetric data. The combination of these techniques affords a powerful and convenient method for guiding the development of sulfur-tolerant PEMFC catalysts.

  7. Spatial variation of contaminant elements of roadside dust samples from Budapest (Hungary) and Seoul (Republic of Korea), including Pt, Pd and Ir.

    Science.gov (United States)

    Sager, Manfred; Chon, Hyo-Taek; Marton, Laszlo

    2015-02-01

    Roadside dusts were studied to explain the spatial variation and present levels of contaminant elements including Pt, Pd and Ir in urban environment and around Budapest (Hungary) and Seoul (Republic of Korea). The samples were collected from six sites of high traffic volumes in Seoul metropolitan city and from two control sites within the suburbs of Seoul, for comparison. Similarly, road dust samples were obtained two times from traffic focal points in Budapest, from the large bridges across the River Danube, from Margitsziget (an island in the Danube in the northern part of Budapest, used for recreation) as well as from main roads (no highways) outside Budapest. The samples were analysed for contaminant elements by ICP-AES and for Pt, Pd and Ir by ICP-MS. The highest Pt, Pd and Ir levels in road dusts were found from major roads with high traffic volume, but correlations with other contaminant elements were low, however. This reflects automobile catalytic converter to be an important source. To interpret the obtained multi-element results in short, pollution index, contamination index and geo-accumulation index were calculated. Finally, the obtained data were compared with total concentrations encountered in dust samples from Madrid, Oslo, Tokyo and Muscat (Oman). Dust samples from Seoul reached top level concentrations for Cd-Zn-As-Co-Cr-Cu-Mo-Ni-Sn. Just Pb was rather low because unleaded gasoline was introduced as compulsory in 1993. Concentrations in Budapest dust samples were lower than from Seoul, except for Pb and Mg. Compared with Madrid as another continental site, Budapest was higher in Co-V-Zn. Dust from Oslo, which is not so large, contained more Mn-Na-Sr than dust from other towns, but less other metals.

  8. Transition metal-centered trigonal prisms as building units in RE{sub 14}T{sub 3}In{sub 3} (RE = Y, Ho, Er, Tm, Lu; T = Pd, Ir, Pt) and Y{sub 4}IrIn

    Energy Technology Data Exchange (ETDEWEB)

    Zaremba, R.; Rodewald, U.C.; Poettgen, R. [Inst. fuer Anorganische und Analytische Chemie, Univ. Muenster (Germany)

    2007-12-15

    The indides RE{sub 14}T{sub 3}In{sub 3} (RE = Y, Ho, Er, Tm, Lu; T = Pd, Ir, Pt) and Y{sub 4}IrIn were synthesized from the elements by are-melting and subsequent annealing for crystal growth. Their structures were characterized on the basis of X-ray powder and single crystal data: Lu{sub 14}Co{sub 3}In{sub 3}-type, space group P4{sub 2}/nmc, a = 970.2(1), c = 2340.7(5) pm for Y{sub 13.95}Pd{sub 3}In{sub 3.05}, a = 959.7(1), c = 2309.0(5) pm for Ho{sub 14}Pd{sub 2.95}In{sub 3}, a = 955.5(1), c = 2305.1(5) pm for Er{sub 14}Pd{sub 3}In{sub 3}, a = 950.9(1), c = 2291.6(5) pm for Tm{sub 13.90}Pd{sub 3}In{sub 3.10}, a = 944.4(1), c = 2275.5(5) pm for Lu{sub 13.93}Pd{sub 3}In{sub 3.07}, a = 962.9(1), c = 2343.0(5) pm for Y{sub 13.86}Ir{sub 2.97}In{sub 3.02}, a = 967.6(1), c = 2347.8(5) pm for Y{sub 13.92}Pt{sub 3.05}In{sub 2.91}, and Gd{sub 4}RhIn-type, space group F anti 43m, a = 1368.6(2) pm for Y{sub 4}IrIn. The main structural motifs are transition metal-centered trigonal prisms of the rare Earth elements which are condensed to two-dimensional networks in the RE{sub 14}T{sub 3}In{sub 3} indides and to a three-dimensional one in Y{sub 4}IrIn. The indium atoms in both structure types show segregation in the metal-rich matrix, i.e. In{sub 2} dumbbells in the RE{sub 14}T{sub 3}In{sub 3} indides (309 pm In2-In2 in Y{sub 13.86}Ir{sub 2.97}In{sub 3.02}) and In{sub 4} tetrahedra (322 pm In-In) in Y{sub 4}IrIn. The crystal chemical peculiarities of both structure types are discussed. (orig.)

  9. CO tolerance of PdPt/C and PdPtRu/C anodes for PEMFC

    International Nuclear Information System (INIS)

    Garcia, Amanda C.; Paganin, Valdecir A.; Ticianelli, Edson A.

    2008-01-01

    The performance of H 2 /O 2 proton exchange membrane fuel cells (PEMFCs) fed with CO-contaminated hydrogen was investigated for anodes with PdPt/C and PdPtRu/C electrocatalysts. The physicochemical properties of the catalysts were characterized by energy dispersive X-ray (EDX) analyses, X-ray diffraction (XRD) and 'in situ' X-ray absorption near edge structure (XANES). Experiments were conducted in electrochemical half and single cells by cyclic voltammetry (CV) and I-V polarization measurements, while DEMS was employed to verify the formation of CO 2 at the PEMFC anode outlet. A quite high performance was achieved for the PEMFC fed with H 2 + 100 ppm CO with the PdPt/C and PdPtRu/C anodes containing 0.4 mg metal cm -2 , with the cell presenting potential losses below 200 mV at 1 A cm -2 , with respect to the system fed with pure H 2 . For the PdPt/C catalysts no CO 2 formation was seen at the PEMFC anode outlet, indicating that the CO tolerance is improved due to the existence of more free surface sites for H 2 electrooxidation, probably due to a lower Pd-CO interaction compared to pure Pd or Pt. For PdPtRu/C the CO tolerance may also have a contribution from the bifunctional mechanism, as shown by the presence of CO 2 in the PEMFC anode outlet

  10. Effect of Pt coverage in Pt-deposited Pd nanostructure electrodes on electrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ah-Reum; Lee, Young-Woo; Kwak, Da-Hee; Park, Kyung-Won [Soongsil University, Seoul (Korea, Republic of)

    2015-06-15

    We have fabricated Pt-deposited Pd electrodes via a two-gun sputtering deposition system by separately operating Pd and Pt target as a function of sputtering time of Pt target. For Pt-deposited Pd electrodes (Pd/Pt-X), Pd were first deposited on the substrates at 20 W for 5min, followed by depositing Pt on the Pd-only electrodes as a function of sputtering time (X=1, 3, 5, 7, and 10min) at 20W on the Pt target. As the sputtering time of Pt target increased, the portion of Pt on the Pd electrodes increased, representing an increased coverage of Pt on the Pd electrodes. The Pd/Pt-7 electrode having an optimized Pt coverage exhibits an excellent electrocatalytic activity for methanol oxidation reaction.

  11. Isotope dilution inductively coupled plasma quadrupole mass spectrometry in connection with a chromatographic separation for ultra trace determinations of platinum group elements (Pt, Pd, Ru, Ir) in environmental samples.

    Science.gov (United States)

    Müller, M; Heumann, K G

    2000-09-01

    An isotope dilution inductively coupled plasma quadrupole mass spectrometric (ID-ICP-QMS) method was developed for the simultaneous determination of the platinum group elements Pt, Pd, Ru, and Ir in environmental samples. Spike solutions, enriched with the isotopes 194Pt, 108Pd, 99Ru, and 191Ir, were used for the isotope dilution step. Interfering elements were eliminated by chromatographic separation using an anion-exchange resin. Samples were dissolved with aqua regia in a high pressure asher. Additional dissolution of possible silicate portions by hydrofluoric acid was usually not necessary. Detection limits of 0.15 ng x g(-1), 0.075 ng x g(-1), and 0.015 ng x g(-1) were achieved for Pt, Pd, Ru, and Ir, respectively, using sample weights of only 0.2 g. The reliability of the ID-ICP-QMS method was demonstrated by analyzing a Canadian geological reference material and by participating in an interlaboratory study for the determination of platinum and palladium in a homogenized road dust sample. Surface soil, sampled at different distances from a highway, showed concentrations in the range of 0.1-87 ng x g(-1). An exponential decrease of the platinum and palladium concentration with increasing distance and a small anthropogenic contribution to the natural background concentration of ruthenium and iridium was found in these samples.

  12. On formation mechanism of Pd-Ir bimetallic nanoparticles through thermal decomposition of [Pd(NH3)4][IrCl6

    Science.gov (United States)

    Asanova, Tatyana I.; Asanov, Igor P.; Kim, Min-Gyu; Gerasimov, Evgeny Yu.; Zadesenets, Andrey V.; Plyusnin, Pavel E.; Korenev, Sergey V.

    2013-10-01

    The formation mechanism of Pd-Ir nanoparticles during thermal decomposition of double complex salt [Pd(NH3)4][IrCl6] has been studied by in situ X-ray absorption (XAFS) and photoelectron (XPS) spectroscopies. The changes in the structure of the Pd and Ir closest to the surroundings and chemical states of Pd, Ir, Cl, and N atoms were traced in the range from room temperature to 420 °C in inert atmosphere. It was established that the thermal decomposition process is carried out in 5 steps. The Pd-Ir nanoparticles are formed in pyramidal/rounded Pd-rich (10-200 nm) and dendrite Ir-rich (10-50 nm) solid solutions. A d charge depletion at Ir site and a gain at Pd, as well as the intra-atomic charge redistribution between the outer d and s and p electrons of both Ir and Pd in Pd-Ir nanoparticles, were found to occur.

  13. Monometallic Pd and Pt and Bimetallic Pd-Pt/Al2O3-TiO2 for the HDS of DBT: Effect of the Pd and Pt Incorporation Method

    Directory of Open Access Journals (Sweden)

    Reynaldo Martínez Guerrero

    2014-01-01

    Full Text Available The effect of the preparation method of monometallic Pd and Pt and bimetallic Pd-Pt/Al2O3-TiO2 catalysts on the hydrodesulfurization (HDS of dibenzothiophene (DBT was investigated in this study. The synthesis was accomplished using three methods: (A impregnation, (B metal organic chemical vapor deposition (MOCVD, and (C impregnation-MOCVD. The bimetallic Pd-Pt catalyst prepared by the impregnation-MOCVD method was most active for the HDS of DBT compared to those prepared by the single impregnation or MOCVD method due to the synergetic effect between both noble metals. The greater selectivity toward biphenyl indicated that this bimetallic Pd-Pt catalyst preferentially removes sulfur via the direct desulfurization mechanism. However, the bimetallic Pd-Pt catalyst prepared using the single MOCVD method did not produce any cyclohexylbenzene, which is most likely associated with the hydrogenation/dehydrogenation sites.

  14. Hydrogenation of tetralin in the presence of dibenzothiophene and quinoline on Pt-Pd/SiO{sub 2}-Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, O.Y.; Yu, Y.; Jentys, A.; Lercher, J.A. [Technische Univ. Muenchen, Garching (Germany). Dept. of Chemistry and Catalysis Research Center

    2012-07-01

    Three Pt-Pd catalysts with 0.3 and 0.5 wt.% of Pt and Pd, respectively, were supported on amorphous silica alumina with Al{sub 2}O{sub 3}:SiO{sub 2} wt.% ratios of 20:80, 30:70 and 55:45. The materials were characterized by physisorption of N{sub 2}, TEM, X-ray absorption spectroscopy and adsorption of pyridine and CO followed by IR spectroscopy. The EXAFS fitting and IR characterization showed that bimodal distributions of monometallic Pd and bimetallic Pt-Pd particles. The bimetallic particles in all catalysts have a Pt-rich core and a Pd-rich shell. However, the degree of alloying and proportion of exposed Pt increases with increasing concentration of Lewis acid sites (LAS) in the support, probably because the LAS are good anchoring sites for Pt species. The activity of the catalysts for the hydrogenation of tetralin in the presence of DBT and quinoline, and the corresponding selectivity to cis-decalin increase with the proportion of exposed Pt. Therefore, in the presence of DBT and quinoline the morphology of bimetallic clusters is the parameter determining its hydrogenation performance. (orig.)

  15. On formation mechanism of Pd-Ir bimetallic nanoparticles through thermal decomposition of [Pd(NH{sub 3}){sub 4}][IrCl{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Asanova, Tatyana I., E-mail: nti@niic.nsc.ru; Asanov, Igor P. [Nikolaev Institute of Inorganic Chemistry SB RAS (Russian Federation); Kim, Min-Gyu [Pohang University of Science and Technology, Beamline Research Division (Korea, Republic of); Gerasimov, Evgeny Yu. [Boreskov Institute of Catalysis SB RAS (Russian Federation); Zadesenets, Andrey V.; Plyusnin, Pavel E.; Korenev, Sergey V. [Nikolaev Institute of Inorganic Chemistry SB RAS (Russian Federation)

    2013-10-15

    The formation mechanism of Pd-Ir nanoparticles during thermal decomposition of double complex salt [Pd(NH{sub 3}){sub 4}][IrCl{sub 6}] has been studied by in situ X-ray absorption (XAFS) and photoelectron (XPS) spectroscopies. The changes in the structure of the Pd and Ir closest to the surroundings and chemical states of Pd, Ir, Cl, and N atoms were traced in the range from room temperature to 420 Degree-Sign C in inert atmosphere. It was established that the thermal decomposition process is carried out in 5 steps. The Pd-Ir nanoparticles are formed in pyramidal/rounded Pd-rich (10-200 nm) and dendrite Ir-rich (10-50 nm) solid solutions. A d charge depletion at Ir site and a gain at Pd, as well as the intra-atomic charge redistribution between the outer d and s and p electrons of both Ir and Pd in Pd-Ir nanoparticles, were found to occur.Graphical Abstract.

  16. Magnetic properties of Co/Pt-Pd multilayer thin film media

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, N.; Igarashi, S.; Fujita, F.; Koike, K.; Kato, H. [Faculty of Engineering, Yamagata University, Yonezawa, Yamagata 992-8510 (Japan); Kirino, F. [National University of Fine Arts and Music, Taitou-ku, Tokyo 110-8714 (Japan)

    2007-12-15

    We investigated the dependence of magnetic properties for Co/Pt{sub 100-x}Pd{sub x} multilayer thin films on the concentration in the Pt-Pd alloy layers. Perpendicular magneto anisotropy constant K {sub p} increases with increasing Pt concentration in the Pt-Pd layer, since the interface anisotropy between the Co and the Pt-Pd layers is enhanced by the increase of the Pt concentration. The Curie temperature and the temperature dependence of K{sub p} for the specimens increase with increasing the amount of Pt in the Pt-Pd layer. These results may indicate that the lattice distortion of the Co layer caused by the interface from the Pt-Pd layer becomes larger and the increase of the distortion enhances the interface anisotropy, since the lattice misfit between the Pt-Pd and the Co increases with increasing the Pt concentration. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Copper-based alloys, crystallographic and crystallochemical parameters of alloys in binary systems Cu-Me (Me=Co, Rh, Ir, Cu, Ag, Au, Ni, Pd, Pt)

    Energy Technology Data Exchange (ETDEWEB)

    Porobova, Svetlana, E-mail: porobova.sveta@yandex.ru; Loskutov, Oleg, E-mail: lom58@mail.ru [Tomsk State University of Architecture and Building, Russia, Tomsk, 2 Solyanaya sq, Tomsk, 634003 (Russian Federation); Markova, Tat’jana, E-mail: patriot-rf@mail.ru [Siberian State Industrial University. 42 Kirov St., Novokuznetsk, 654007 (Russian Federation); Klopotov, Vladimir, E-mail: vdklopotov@mail.ru [Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk, 634050 (Russian Federation); Klopotov, Anatoliy, E-mail: klopotovaa@tsuab.ru [Tomsk State University of Architecture and Building, Russia, Tomsk, 2 Solyanaya sq, Tomsk, 634003 (Russian Federation); National Research Tomsk State University, 36, Lenin Ave., Tomsk, 634050 (Russian Federation); Vlasov, Viktor, E-mail: vik@tsuab.ru [Tomsk State University of Architecture and Building, Russia, Tomsk, 2 Solyanaya sq, Tomsk, 634003 (Russian Federation); Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk, 634050 (Russian Federation)

    2016-01-15

    The article presents the results of the analysis of phase equilibrium of ordered phases in binary systems based on copper Cu- Me (where Me - Co, Rh, Ir, Ag, Au, Ni, Pd, Pt) to find correlations of crystallochemical and crystallographic factors. It is established that the packing index in disordered solid solutions in binary systems based on copper is close to the value of 0.74 against the background of an insignificant deviation of atomic volumes from the Zen’s law.

  18. One-pot synthesis of Pd-Pt@Pd core-shell nanocrystals with enhanced electrocatalytic activity for formic acid oxidation

    KAUST Repository

    Yuan, Qiang; Huang, Dabing; Wang, Honghui; Zhou, Zhiyou; Wang, Qingxiao

    2014-01-01

    Well-defined Pd-Pt@Pd core-shell nanocrystals with a Pd-Pt alloy core and a conformal Pd shell of ~2-3 nm were directly synthesized through a one-pot, aqueous solution approach without any preformed Pd or Pt seeds. These Pd-Pt@Pd core

  19. One-pot synthesis of Pd-Pt@Pd core-shell nanocrystals with enhanced electrocatalytic activity for formic acid oxidation

    KAUST Repository

    Yuan, Qiang

    2014-01-01

    Well-defined Pd-Pt@Pd core-shell nanocrystals with a Pd-Pt alloy core and a conformal Pd shell of ~2-3 nm were directly synthesized through a one-pot, aqueous solution approach without any preformed Pd or Pt seeds. These Pd-Pt@Pd core-shell nanocrystals show an enhanced electrocatalytic activity for formic acid oxidation compared with commercial Pd black. This journal is © 2014 The Royal Society of Chemistry.

  20. Synthesis of bimetallic Pt-Pd core-shell nanocrystals and their high electrocatalytic activity modulated by Pd shell thickness

    Science.gov (United States)

    Li, Yujing; Wang, Zhi Wei; Chiu, Chin-Yi; Ruan, Lingyan; Yang, Wenbing; Yang, Yang; Palmer, Richard E.; Huang, Yu

    2012-01-01

    Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more resistant to the CO poisoning than Pt NCs and Pt black. It is also demonstrated that the bimetallic Pt-Pd core-shell NCs can enhance the current density of the methanol oxidation reaction, lowering the over-potential by 35 mV with respect to the Pt core NCs. Further investigation reveals that the Pd/Pt ratio of 1/3, which corresponds to nearly monolayer Pd deposition on Pt core NCs, gives the highest oxidation current density and lowest over-potential. This study shows for the first time the systematic investigation of effects of Pd atomic shells on Pt-Pd bimetallic nanocatalysts, providing valuable guidelines for designing high-performance catalysts for fuel cell applications.Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more

  1. Electrical behaviour of heterobimetallic [MM'(EtCS2)4] (MM'=NiPd, NiPt, PdPt) and MM'X-chain polymers [PtM(EtCS2)4I] (M=Ni, Pd).

    Science.gov (United States)

    Givaja, Gonzalo; Castillo, Oscar; Mateo, Eva; Gallego, Almudena; Gómez-García, Carlos J; Calzolari, Arrigo; di Felice, Rosa; Zamora, Félix

    2012-11-26

    Herein, we report the isolation of new heterobimetallic complexes [Ni(0.6)Pd(1.4)(EtCS(2))(4)] (1), [NiPt(EtCS(2))(4)] (2) and [Pd(0.4)Pt(1.6)(EtCS(2))(4)] (3), which were constructed by using transmetallation procedures. Subsequent oxidation with iodine furnished the MM'X monodimensional chains [Ni(0.6)Pt(1.4)(EtCS(2))(4)I] (4) and [Ni(0.1)Pd(0.3)Pt(1.6)(EtCS(2))(4)I] (5). The physical properties of these systems were investigated and the chain structures 4 and 5 were found to be reminiscent of the parent [Pt(2)(EtCS(2))(4)I] species. However, they were more sensitively dependent on the localised nature of the charge on the Ni ion, which caused spontaneous breaking of the conduction bands. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Mesoporous silica nanoparticle supported PdIr bimetal catalyst for selective hydrogenation, and the significant promotional effect of Ir

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui; Huang, Chao; Yang, Fan [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Yang, Xu [Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Du, Li [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Liao, Shijun, E-mail: chsjliao@scut.edu.cn [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China)

    2015-12-01

    Graphical abstract: A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (N{sub Ir}/N{sub Pd} = 0.1), the activity of PdIr{sub 0.1}/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd–Ir electronic interaction caused by the addition of Ir. - Highlights: • Mesoporous nanoparticles were synthesized and used as support for metal catalyst. • PdIr bimetallic catalyst exhibited significantly improved hydrogenation activity. • The strong promotion of Ir was recognized firstly and investigated intensively. • PdIr exhibits 18 times higher activity than Pd to the hydrogenation of nitrobenzene. - Abstract: A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (N{sub Ir}/N{sub Pd} = 0.1), the activity of PdIr{sub 0.1}/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd–Ir electronic interaction

  3. Synthesis and spectroscopic studies of biologically active tetraazamacrocyclic complexes of Mn(II, Co(II, Ni(II, Pd(II and Pt(II

    Directory of Open Access Journals (Sweden)

    Monika Tyagi

    2014-01-01

    Full Text Available Complexes of Mn(II, Co(II, Ni(II, Pd(II and Pt(II were synthesized with the macrocyclic ligand, i.e., 2,3,9,10-tetraketo-1,4,8,11-tetraazacycoletradecane. The ligand was prepared by the [2 + 2] condensation of diethyloxalate and 1,3-diamino propane and characterized by elemental analysis, mass, IR and 1H NMR spectral studies. All the complexes were characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, IR, electronic and electron paramagnetic resonance spectral studies. The molar conductance measurements of Mn(II, Co(II and Ni(II complexes in DMF correspond to non electrolyte nature, whereas Pd(II and Pt(II complexes are 1:2 electrolyte. On the basis of spectral studies an octahedral geometry has been assigned for Mn(II, Co(II and Ni(II complexes, whereas square planar geometry assigned for Pd(II and Pt(II. In vitro the ligand and its metal complexes were evaluated against plant pathogenic fungi (Fusarium odum, Aspergillus niger and Rhizoctonia bataticola and some compounds found to be more active as commercially available fungicide like Chlorothalonil.

  4. Structural and physical properties of new uranium and transition element ternary stannides (Fe, Co, Ni, Ru, Rh, Pd, Ir, Pt); Proprietes structurales et physiques de nouveaux stannures ternaires a base d'uranium et d'element de transition (Fe, Co, Ni, Rh, Pd, Ir, Pt)

    Energy Technology Data Exchange (ETDEWEB)

    Mirambet, F

    1993-12-15

    This work is dedicated to the study of ternary stannides based on uranium. The author reviews the structural, magnetic and electric properties of different families of stannides. The study of the U{sub 2}M{sub 2}Sn family where M stands for Fe, Co, Ni, Ru, Rh, Pd, Ir and Pt shows that the magnetic behaviour of uranium in these compounds is strongly influenced by the transition element M, which is explained by the hybridization force 5f(U) - nd(M) that depends on the number of electrons on the d shell of the M element. For instance, for the elements whose d shell is low filled (Fe, Ru), the U{sub 2}M{sub 2}Sn stannides show no magnetic order. On the other hand, when the number of d-electrons increases, a magnetic order appears progressively.

  5. A DFT study of Ru, Rh, Pd, Os, Ir, and Pt clusters as catalysts for methane dissociation in a direct methane fuel cell (DMHFC)

    Energy Technology Data Exchange (ETDEWEB)

    Psofogiannakisa, G. [Ottawa Univ., Ottawa, ON (Canada). Dept. of Chemical Engineering; Ottawa, Univ., Ottawa, ON (Canada). Centre for Catalysis Research and Innovation; St-Amant, A. [Ottawa Univ., Ottawa, ON (Canada). Dept. of Chemistry; Ternan, M. [Ottawa Univ., Ottawa, ON (Canada). Centre for Catalysis Research and Innovation; EnPross Inc., Ottawa, ON (Canada)

    2008-07-01

    The rate limiting step in a direct methane hydrocarbon fuel cell (DMHFC) is the dissociative chemisorption of methane. Quantum mechanical computations were used to examine the terrace, kink, and step sites on 6 different clusters of group 8 transition metals, notably Ru, Rh, Pd, Os, Ir, and Pt. The computations involved the anodic reaction of a DMHFC with a polymer electrolyte that operates at atmospheric pressure and temperatures higher than 120 degrees C. The interaction between molecular fragments and a surface (Pt) were described and density functional theory (DFT) calculations were performed using Guassian software. The geometries of 5 different platinum clusters were examined along with their electronic energy barriers. The biggest contribution to the stabilization energy came from the overlap between the sigma bond in methane and unoccupied sd hybrid orbitals in the Pt bonding atom. The study showed that when relaxation was allowed, the displacement of the bonding metal atom was 0.36 to 0.52 A. The electronic energy barrier often increased as d-orbital occupancy increased. For the kink surface sites, the energy barriers were considerably smaller for the 5d transition metals than for the 4d transition metals. 5 refs., 1 tab.

  6. Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Changwei [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Shen, Pei kang [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Liu, Yingliang [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China)

    2007-02-10

    This research aims to investigate Pd-based catalysts as a replacement for Pt-based catalysts for ethanol electrooxidation in alkaline media. The results show that Pd/C has a higher catalytic activity and better steady-state behaviour for ethanol oxidation than that of Pt/C. The effect of the addition of CeO{sub 2} and NiO to the Pt/C and Pd/C electrocatalysts on ethanol oxidation is also studied in alkaline media. The electrocatalysts with a weight ratio of noble metal (Pt, Pd) to CeO{sub 2} of 2:1 and a noble metal to NiO ration 6:1 show the highest catalytic activity for ethanol oxidation. The oxide promoted Pt/C and Pd/C electrocatalysts show a higher activity than the commercial E-TEK PtRu/C electrocatalyst for ethanol oxidation in alkaline media. (author)

  7. Optical characterization of broad plasmon resonances of Pd/Pt nanoparticles

    Science.gov (United States)

    Valizade-Shahmirzadi, N.; Pakizeh, T.

    2018-04-01

    In this paper, optical properties of nanoparticles (nanodisks and nanospheres) composed of photofunctional metals like palladium (Pd) and platinum (Pt) over a large dimension range are investigated using the electromagnetic simulation and quasi-static theory. These characteristics are compared with their counterparts in plasmonic gold (Au) nanoparticles. Pd/Pt-nanodisks with larger dimension have higher absorption and lower scattering efficiencies than Au-nanodisks that accompany with lower extinction efficiencies and broader resonances. Although an increment in the dimension (diameter and height) of Au/Pd/Pt-nanoparticles decreases the absorption-to-scattering ratios, these ratios are less sensitive to the height size in Au-nanodisks, which causes their LSPR spectra become much broader. It is noteworthy that the LSPR quality factor of Pd nanoparticles is improved by considering the radiative damping and depolarization in quasi-static method unlike the Au nanoparticles. The importance of the highly absorptive Pd/Pt nanoparticles can be traced in the photo-functionalized and energy applications.

  8. DNA-Binding Studies of Some Potential Antitumor 2,2'-bipyridine Pt(II)/Pd(II) Complexes of piperidinedithiocarbamate. Their Synthesis, Spectroscopy and Cytotoxicity.

    Science.gov (United States)

    Mansouri-Torshizi, Hassan; Eslami-Moghadam, Mahboube; Divsalar, Adeleh; Saboury, Ali-Akbar

    2011-12-01

    In this study two platinum(II) and palladium(II) complexes of the type [M(bpy)(pip-dtc)]NO3 (where M=Pt(II) or Pd(II), bpy=2,2'-bipyridine, pip-dtc=piperidinedithiocarbamate) were synthesized by reaction between diaquo-2,2'-bipyridine Pt(II)/Pd(II) nitrate and sodium salt of dithiocarbamate. These cationic water soluble complexes were characterized by elemental analysis, molar conductance, IR, electronic and 1H NMR spectroscopic studies. The cyclic dithiocarbamate was found to coordinate as bidentate fasion with Pt(II) or Pd(II) center. Their biological activities were tested against chronic myelogenous leukemia cell line, K562, at micromolar concentration. The obtained cytotoxic concentration (IC50) values were much lower than cisplatin. The interaction of these complexes with highly polymerized calf thymus DNA (ct-DNA) was extensively studied by means of electronic absorption, fluorescence, circular dichroism and other measurements. The experimental results, thermodynamic and binding parameters, suggested that these complexes cooperatively bind to DNA presumably via intercalation. Moreover, the tendency of the Pt(II) complex to interact with DNA was more than that of Pd(II) complex.

  9. On formation mechanism of Pd–Ir bimetallic nanoparticles through thermal decomposition of [Pd(NH3)4][IrCl6

    International Nuclear Information System (INIS)

    Asanova, Tatyana I.; Asanov, Igor P.; Kim, Min-Gyu; Gerasimov, Evgeny Yu.; Zadesenets, Andrey V.; Plyusnin, Pavel E.; Korenev, Sergey V.

    2013-01-01

    The formation mechanism of Pd–Ir nanoparticles during thermal decomposition of double complex salt [Pd(NH 3 ) 4 ][IrCl 6 ] has been studied by in situ X-ray absorption (XAFS) and photoelectron (XPS) spectroscopies. The changes in the structure of the Pd and Ir closest to the surroundings and chemical states of Pd, Ir, Cl, and N atoms were traced in the range from room temperature to 420 °C in inert atmosphere. It was established that the thermal decomposition process is carried out in 5 steps. The Pd–Ir nanoparticles are formed in pyramidal/rounded Pd-rich (10–200 nm) and dendrite Ir-rich (10–50 nm) solid solutions. A d charge depletion at Ir site and a gain at Pd, as well as the intra-atomic charge redistribution between the outer d and s and p electrons of both Ir and Pd in Pd–Ir nanoparticles, were found to occur.Graphical Abstract

  10. First principles study on the interfacial properties of NM/graphdiyne (NM = Pd, Pt, Rh and Ir): The implications for NM growing

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhansheng; Li, Shuo; Lv, Peng [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang 453007 (China); He, Chaozheng, E-mail: hecz2013@nynu.edu.cn [College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061 (China); Ma, Dongwei [School of Physics, Anyang Normal University, Anyang 455000 (China); Yang, Zongxian, E-mail: yzx@henannu.edu.cn [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang 453007 (China); Collaborative Innovation Center of Nano Functional Materials and Applications, Kaifeng (China)

    2016-01-01

    Graphical abstract: - Highlights: • The NM adatoms belong to embedded adsorption in 18C-hexagon of GDY. • The Rh and Ir/GDY can be applied to single metal catalysts or sensors. • A simple linear relationship between E{sub e-ads} and E{sub b} is presented. • The linear relationship can be used in the noble metal modified GDY. - Abstract: Based on the dispersion-corrected density functional calculations (DFT-D), we systematically studied the adsorption of noble metals (NM), Pd, Pt, Rh and Ir, on graphdiyne (GDY). We present a systematic study on the geometry, embedded adsorption energy and electronic structure of four different adatoms adsorbed on the GDY. The strong interaction between the NM adatoms and the GDY substrate is found with the NM embedded in the 18C-hexagon of the GDY. We investigated the mobility of the NM adatoms on the GDY, and found that the mobility barrier energy increases along with the increasing of the embedded adsorption energy. We present the NM adatoms growth of high concentrations on the GDY. Upon the analysis of the electronic structure and the frontier molecular orbitals, Rh and Ir adatoms of low concentrations (about 1.37 at%) on the GDY have the potential to be applied as single metal catalysts or gas molecule sensors.

  11. Ultra-low Pt decorated PdFe Alloy Nanoparticles for Formic Acid Electro-oxidation

    International Nuclear Information System (INIS)

    Zhou, Yawei; Du, Chunyu; Han, Guokang; Gao, Yunzhi; Yin, Geping

    2016-01-01

    Highlights: • A cost-efficient way is used to prepare transition-noble metal alloy nanoparticles. • The Pd 50 Fe 50 /C catalyst shows excellent activity for formic acid oxidation (FAO). • Much activity enhancement of FAO is acquired by ultra-low Pt decorated Pd 50 Fe 50 . • A synergistic mechanism between Pt clusters and PdFe is proposed during the FAO. - Abstract: Palladium (Pd), has demonstrated promising electro-catalytic activity for formic acid oxidation, but suffers from extremely low abundance. Recently alloying with a transition metal has been considered as an effective approach to reducing the loading of Pd and enhancing the activity of Pd-based catalysts simultaneously. Herein, carbon supported PdFe nanoparticles (NPs) are synthesized at room temperature by using sodium borohydride as reducing agent and potassium ferrocyanide as Fe precursor. The Pd 50 Fe 50 alloy sample annealed at 900 °C for 1 h shows the best catalytic activity among Pd x Fe 1-x (x = 0.2, 0.4, 0.5, 0.6, and 0.8) towards formic acid oxidation. To further improve both catalytic activity and stability, the ultra-low Pt (0.09 wt %) decorated Pd 50 Fe 50 NPs (PtPd/PdFe) are prepared via the galvanic replacement reaction. Compared with Pd 50 Fe 50 /C, the PtPd/PdFe/C Exhibits 1.52 times higher catalytic activity and lower onset potential (−0.12 V). The significant enhancements of formic acid oxidation can be attributed to the accelerated dehydrogenation reaction of formic acid by Pt atomic clusters. Moreover, the PtPd/PdFe/C also demonstrates better tolerance to poisons during formic acid oxidation.

  12. Engineering Pt/Pd Interfacial Electronic Structures for Highly Efficient Hydrogen Evolution and Alcohol Oxidation.

    Science.gov (United States)

    Fan, Jinchang; Qi, Kun; Zhang, Lei; Zhang, Haiyan; Yu, Shansheng; Cui, Xiaoqiang

    2017-05-31

    Tailoring the interfacial structure of Pt-based catalysts has emerged as an effective strategy to improve catalytic activity. However, little attention has been focused on investigating the relationship between the interfacial facets and their catalytic activity. Here, we design and implement Pd-Pt interfaces with controlled heterostructure features by epitaxially growing Pt nanoparticles on Pd nanosheets. On the basis of both density functional theory calculation and experimental results, we demonstrate that charge transfer from Pd to Pt is highly dependent on the interfacial facets of Pd substrates. Therefore, the Pd-Pt heterostructure with Pd(100)-Pt interface exhibits excellent activity and long-term stability for hydrogen evolution and methanol/ethanol oxidation reactions in alkaline medium, much better than that with Pd (111)-Pt interface or commercial Pt/C. Interfacial crystal facet-dependent electronic structural modulation sheds a light on the design and investigation of new heterostructures for high-activity catalysts.

  13. In Situ Generation of Pd-Pt Core-Shell Nanoparticles on Reduced Graphene Oxide (Pd@Pt/rGO) Using Microwaves: Applications in Dehalogenation Reactions and Reduction of Olefins.

    Science.gov (United States)

    Goswami, Anandarup; Rathi, Anuj K; Aparicio, Claudia; Tomanec, Ondrej; Petr, Martin; Pocklanova, Radka; Gawande, Manoj B; Varma, Rajender S; Zboril, Radek

    2017-01-25

    Core-shell nanocatalysts are a distinctive class of nanomaterials with varied potential applications in view of their unique structure, composition-dependent physicochemical properties, and promising synergism among the individual components. A one-pot microwave (MW)-assisted approach is described to prepare the reduced graphene oxide (rGO)-supported Pd-Pt core-shell nanoparticles, (Pd@Pt/rGO); spherical core-shell nanomaterials (∼95 nm) with Pd core (∼80 nm) and 15 nm Pt shell were nicely distributed on the rGO matrix in view of the choice of reductant and reaction conditions. The well-characterized composite nanomaterials, endowed with synergism among its components and rGO support, served as catalysts in aromatic dehalogenation reactions and for the reduction of olefins with high yield (>98%), excellent selectivity (>98%) and recyclability (up to 5 times); both Pt/rGO and Pd/rGO and even their physical mixtures showed considerably lower conversions (20 and 57%) in dehalogenation of 3-bromoaniline. Similarly, in the reduction of styrene to ethylbenzene, Pd@Pt core-shell nanoparticles (without rGO support) possess considerably lower conversion (60%) compared to Pd@Pt/rGO. The mechanism of dehalogenation reactions with Pd@Pt/rGO catalyst is discussed with the explicit premise that rGO matrix facilitates the adsorption of the reducing agent, thus enhancing its local concentration and expediting the hydrazine decomposition rate. The versatility of the catalyst has been validated via diverse substrate scope for both reduction and dehalogenation reactions.

  14. Experimental determination of the hydrolysis constants of Pt sup 2+ and Pd sup 2+ at 25C from the solubility of Pt and PD in aqueous hydroxide solutions

    Energy Technology Data Exchange (ETDEWEB)

    Wood, S.A. (McGill Univ., Montreal, Quebec (Canada))

    1991-07-01

    The solubilities of Pt and Pd metal were measured at 25C in 10{sup {minus}4} to 10.0 molal NaOH solutions under a reduced oxygen atmosphere in order to determine the stoichiometry and stability constants for Pt and Pd hydroxide complexes. Equilibration times of over one year were employed. The Pd data are consistent with the existence of Pd(OH){sub 2}{sup 0}(aq) from pH 9 to 12 and Pd(OH){sub 3}{sup {minus}} from pH 12 to 15.5. No conclusive evidence for a Pd(OH){sub 4}{sup 2{minus}} complex was obtained, but the data do not preclude its existence at high pH. For Pt, the data are consistent with a single complex for pH = 9 to 15.5, i.e., Pt(OH){sub 2}{sup 0}(aq). A graphical treatment of the data yields the following cumulative stability constants: log {beta}{sub 2} = 18.9 {plus minus} 1.0 and log {beta}{sub 3} = 20.9 {plus minus} 1.0 for Pd and log {beta}{sub 2} = 29.9 {plus minus} 1.0 for Pt. The stepwise stability constant for Pd(OH){sub 3}{sup {minus}} log K{sub 3} = 2.0 is in relatively good agreement with that derived from data in the literature (log K{sub 3} = 1.8). However, the cumulative stability constants for Pd measured in this work are considerably smaller than those reported in the literature. The log{beta}{sub 2} = 29.9 {plus minus} 1.0 value measured for Pt compares relatively well with a theoretically estimated value of 28.3. The data suggest that the predominant inorganic form of Pt and Pd in freshwaters may be the neutral hydroxide species. In seawater, the hydroxide complex of Pt is also predicted to predominate over the chloride complex, but, in the case of Pd, the hydroxide complex appears to be less stable and it is presently not clear whether the chloride or the hydroxide complex will predominate. In fluids responsible for serpentinization, Pt and Pd may also be mobilized as hydroxide complexes.

  15. Pt@Ag and Pd@Ag core/shell nanoparticles for catalytic degradation of Congo red in aqueous solution

    Science.gov (United States)

    Salem, Mohamed A.; Bakr, Eman A.; El-Attar, Heba G.

    2018-01-01

    Platinum/silver (Pt@Ag) and palladium/silver (Pd@Ag) core/shell NPs have been synthesized in two steps reaction using the citrate method. The progress of nanoparticle formation was followed by the UV/Vis spectroscopy. Transmission electron microscopy revealed spherical shaped core/shell nanoparticles with average particle diameter 32.17 nm for Pt@Ag and 8.8 nm for Pd@Ag. The core/shell NPs were further characterized by FT-IR and XRD. Reductive degradation of the Congo red dye was chosen to demonstrate the excellent catalytic activity of these core/shell nanostructures. The nanocatalysts act as electron mediators for the transfer of electrons from the reducing agent (NaBH4) to the dye molecules. Effect of reaction parameters such as nanocatalyst dose, dye and NaBH4 concentrations on the dye degradation was investigated. A comparison between the catalytic activities of both nanocatalysts was made to realize which of them the best in catalytic performance. Pd@Ag was the higher in catalytic activity over Pt@Ag. Such greater activity is originated from the smaller particle size and larger surface area. Pd@Ag nanocatalyst was catalytically stable through four subsequent reaction runs under the utilized reaction conditions. These findings can thus be considered as possible economical alternative for environmental safety against water pollution by dyes.

  16. Phase diagrams of two dimensional Pd{sub x}Ag{sub 1-x}/Pd(111) and Pt{sub x}Ag{sub 1-x}/Pt(111) surface alloys

    Energy Technology Data Exchange (ETDEWEB)

    Engstfeld, Albert K.; Roetter, Ralf T.; Bergbreiter, Andreas; Hoster, Harry E.; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University (Germany)

    2011-07-01

    The distribution of Ag and Pd or Pt in Ag{sub x}Pd{sub 1-x}/Pd(111) and Ag{sub x}Pt{sub 1-x}/Pt(111) surface alloys was studied by high resolution UHV-STM. The alloys were prepared by evaporating Ag on the respective substrate and subsequent annealing to 800 K. From quantitative 2D atom distributions we can show that AgPt tends towards two dimensional clustering and AgPd towards a 'quasi' random distribution, with small deviations for low and high coverages. From effective pair interactions, we are able to calculate the surface mixing energy and determine 2D phase diagrams. Furthermore we will elucidate whether the size mismatch or the differences in the intermetallic bonding are the dominant factor for the respective distribution in the surface alloy.

  17. Carbon-supported ternary PtSnIr catalysts for direct ethanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, J.; Kokoh, K.B.; Coutanceau, C.; Leger, J.-M. [Equipe Electrocatalyse, UMR 6503 CNRS, Universite de Poitiers, 40 avenue du Recteur Pineau 86022 Poitiers Cedex (France); Dos Anjos, D.M. [Equipe Electrocatalyse, UMR 6503 CNRS, Universite de Poitiers, 40 avenue du Recteur Pineau 86022 Poitiers Cedex (France); Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal 780, 13560-970 Sao Carlos, SP (Brazil); Olivi, P.; De Andrade, A.R. [Departamento de Quimica da Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Av. Bandeirantes, 3900, 14040-901 Ribeirao Preto, SP (Brazil); Tremiliosi-Filho, G. [Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal 780, 13560-970 Sao Carlos, SP (Brazil)

    2007-08-01

    Binary PtIr, PtSn and ternary PtSnIr electrocatalysts were prepared by the Pechini-Adams modified method on carbon Vulcan XC-72, and these materials were characterized by TEM and XRD. The XRD results showed that the electrocatalysts consisted of the Pt displaced phase, suggesting the formation of solid solutions between the metals Pt/Ir and Pt/Sn. However, the increase in Sn loading promoted phase separation, with the formation of peaks typical of cubic Pt{sub 3}Sn. The electrochemical investigation of these different electrode materials was carried out as a function of the electrocatalyst composition, in a 0.5 mol dm{sup -3} H{sub 2}SO{sub 4} solution, with either the presence or the absence of ethanol. Cyclic voltammetric measurements and chronoamperometric results obtained at room temperature showed that PtSn/C and PtSnIr/C displayed better electrocatalytic activity for ethanol electrooxidation compared to PtIr/C and Pt/C, mainly at low potentials. The oxidation process was also investigated by in situ infrared reflectance spectroscopy, to identify the adsorbed species. Linearly adsorbed CO and CO{sub 2} were found, indicating that the cleavage of the C-C bond in the ethanol substrate occurred during the oxidation process. At 90 C, the Pt{sub 89}Sn{sub 11}/C and Pt{sub 68}Sn{sub 9}Ir{sub 23}/C electrocatalysts displayed higher current and power performances as anode materials in a direct ethanol fuel cell (DEFC). (author)

  18. Surface enrichment of Pt in stable Pt-Ir nano-alloy particles on MgAl 2 O 4 spinel in oxidizing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weizhen; Nie, Lei; Chen, Ying; Kovarik, Libor; Liu, Jun; Wang, Yong

    2017-04-01

    With the capability of MgAl2O4 spinel {111} nano-facets in stabilizing small Rh, Ir and Pt particles, bimetallic Ir-Pt catalysts on the same support were investigated, aiming at further lowering the catalyst cost by substituting expensive Pt with cheaper Ir in the bulk. Small Pt-Ir nano-alloy particles (< 2nm) were successfully stabilized on the spinel {111} nano-facets as expected. Interestingly, methanol oxidative dehydrogenation (ODH) rate on the surface Pt atoms increases with oxidizing aging but decreases upon reducing treatment, where Ir is almost inactive under the same reaction conditions. Up to three times enhancement in Pt exposure was achieved when the sample was oxidized at 800 °C in air for 1 week and subsequently reduced by H2 for 2 h, demonstrating successful surface enrichment of Pt on Pt-Ir nano-alloy particles. A dynamic stabilization mechanism involving wetting\

  19. Facile synthesis of octahedral Pt-Pd nanoparticles stabilized by silsesquioxane for the electrooxidation of formic acid

    International Nuclear Information System (INIS)

    Li, Yusong; Hao, Furui; Wang, Yihong; Zhang, Yihong; Ge, Cunwang; Lu, Tianhong

    2014-01-01

    Graphical abstract: The octahedral Pt-Pd alloy nanoparticles (octahedral Pt-Pd NPs) with dominant {111} facets were successfully synthesized through a facile route in the presence of octa(3-aminopropyl) silsesquioxane as the capping agent and complexing agent, methanol as the reductant and solvent. The octahedral Pt-Pd NPs display the significantly enhanced electrocatalytic activity, increased CO tolerance and favourable stability for the electrooxidation of formic acid. - Highlights: • Octa Pt-Pd nanoparticles were synthesized with silsesquioxane as capping agent. • Octa Pt-Pd nanoparticles display uniform morphology and favorable dispersibility. • Octa Pt-Pd nanoparticles have high catalytic activity for formic acid by direct process. - Abstract: The octahedral Pt-Pd alloy nanoparticles (octahedral Pt-Pd NPs) with dominant {111} facets were successfully synthesized through a facile route in the presence of octa(3-aminopropyl) silsesquioxane as the capping agent and complexing agent, methanol as the reductant and solvent. Their morphology, composition and structure were charactered by transmission electron microscopy (TEM), energy dispersive spectrum (EDS) and X-ray diffraction (XRD). The electrocatalytic activity, CO tolerance and stability of the octahedral Pt-Pd NPs for the electrooxidation of formic acid were investigated by cyclic voltammetry, CO stripping voltammetry and chronoamperometry, respectively. Compared with the Pt nanoparticles and commercial Pt black, the octahedral Pt-Pd NPs display a significantly enhanced electrocatalytic activity, increased CO tolerance and favourable stability for the electrooxidation of formic acid. Therefore, the octahedral Pt-Pd NPs might be an alternative candidate for the anode catalyst for the electrooxidation of formic acid in future

  20. Electrochemical and structural characterization of carbon-supported Pt-Pd bimetallic electrocatalysts prepared by electroless deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Masato; Beard, Kevin D.; Ma Shuguo; Blom, Douglas A.; St-Pierre, Jean; Van Zee, John W. [Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Monnier, John R., E-mail: monnier@cec.sc.ed [Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2010-10-01

    Electrochemical and structural characteristics of various Pt-Pd/C bimetallic catalysts prepared by electroless deposition (ED) methods have been investigated. Structural analysis was conducted by X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, scanning transmission electron microscopy, and energy dispersive X-ray spectroscopy (EDS). Monometallic Pt or Pd particles were not detected by EDS, indicating the ED methodology formed only bimetallic particles. The size of the Pt-Pd bimetallic particles was smaller than those of a commercially available Pt/C catalyst. The morphology of the Pt on Pd/C catalysts was identified and corresponded to Pd particles partially encapsulated by Pt. The electrochemical characteristics of the lowest Pd loading catalyst (7.0% Pt on 0.5% Pd/C) for the oxygen reduction reaction (ORR) have been investigated by the rotating ring disk electrode technique. The electrochemical activity was equal or lower than the commercially available Pt/C catalyst; however, the amount of hydrogen peroxide observed at the ring was reduced by the Pd, suggesting that such a catalyst has the potential to decrease ionomer degradation in applications. The Pt on Pd/C catalysts also show a higher tolerance to ripening induced by potential cycling. Therefore, catalyst suitability cannot be judged solely by its initial performance; information related to specific degradation mechanisms is also needed for a more complete assessment.

  1. Evaluation of the behavior of PtPd/MWCNT electrocatalysts as ethylene glycol-tolerant electrodes for oxygen oxidation reaction (ORR); Evaluacion del comportamiento de electrocatalizadores tipo PtPd/MWCNT como electrodos para la reaccion de oxidacion del oxigeno (ORR) tolerantes al etilenglicol

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Acosta, D.; Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Pedro Escobedo, Queretaro (Mexico)]. E-mail: dmorales@cideteq.mx; Alvarez-Contreras, L. [Centro de Investigacion en Materiales Avanzados S. C., Chihuahua, Chihuahua (Mexico); Fraire Luna, S.; Rodriguez Varela, F.J. [Cinvestav, Unidad Saltillo, Ramos Arizpe, Coahuila, (Mexico)

    2009-09-15

    Pt-Pd/MWCNTs (atomic ratio Pt:Pd 43:57) and Pt/MWCNTs electrocatalysts were synthesized and evaluated as cathodes for oxygen reduction reaction (ORR) with the application of direct ethylene glycol fuel cells (DEGFC). A commercial PtC material was also evaluated as a reference. It was found that Pt-Pd/MWCNT has a capability for high tolerance to ethylene glycol (EG) and higher selectivity for ORR compared to a single Pt- cathode. As a result, the change in onset potential of the ORR, Eonset, in Pt-Pd/MWCNTs was considerably less than the change in Pt/MWCNTs or Pt/C. The average particle size (XRD) was 3.5nm and 4nm for Pt/MWCNTs and Pt-Pd/MWCNTs, respectively. A moderate degree of alloying was determined for the material. The application of Pt-Pd electrocatalysts in DEGFCs should be advantageous. [Spanish] Electrocatalizadores Pt-Pd/MWCNTs (relacion atomic Pt:Pd 43:57) y Pt/MWCNTs fueron sintetizados y evaluados como catodos para la reaccion de reduccion del oxigeno (ORR) con aplicacion del celdas de consumo directo de etilenglicol (Direct Ethylene Glycol Fuel Cells, o DEGFC). Como referencia, un material comercial tipo Pt/C fue tambien evaluado. Se encontro que Pt-Pd/MWCNTs tiene una alta capacidad de tolerancia al etilenglicol (EG) y una selectividad mayor hacia la ORR comparado con el catodo basado en Pt-solo. Como resultado, el cambio en potencial de inicio de la ORR, Eonset, en Pt-Pd/MWCNTs fue considerablemente menor que el cambio en Pt/MWCNTs o Pt/C. La talla de particula promedio (de XRD) fue 3.5 nm y 4 nm para Pt/MWCNTs y Pt-Pd/MWCNTs, respectivamente. Un moderado grado de aleacion fue determinado para el material. Una aplicacion ventajosa para electrocatalizadores tipo Pt-Pd debe ser en DEGFCs.

  2. Factors influencing the charge distribution on Pd x Pt y bimetallic nanoparticles

    Directory of Open Access Journals (Sweden)

    Carlos M. Celis-Cornejo

    2013-12-01

    Full Text Available We performed quantum mechanics calculations to elucidate the electronic behavior of Pd-Pt bimetallic nanoparticles, using density functional theory, in response to particle size and stoichiometric composition. Using neutrally charged nanoparticles and the Bader charge analysis, we found that external Pd atoms were positively charged, which agrees with previous XPS observations of supported Pd-Pt nanoparticles. From the calculations, unsupported nanoparticles exhibit an electron transfer from Pd to Pt. This result supports the idea that Pd electron-deficient species are possibly responsible of the hydrogenating function of these catalysts, in the hydrodesulfurization of dibenzothiophene. Additionally, it was found that the particle size does not affect the electronic charge distribution and the stoichiometric composition is the factor that greatly influences this property in nanoparticles.

  3. Effective adsorption/electrocatalytic degradation of perchlorate using Pd/Pt supported on N-doped activated carbon fiber cathode

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Fubing; Zhong, Yu [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Yang, Qi, E-mail: yangqi@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Wang, Dongbo, E-mail: dongbowang@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Chen, Fei; Zhao, Jianwei; Xie, Ting; Jiang, Chen; An, Hongxue; Zeng, Guangming; Li, Xiaoming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China)

    2017-02-05

    Highlights: • Pd/Pt-NACF served as an adsorption/electrocatalysis electrode to reduce perchlorate. • The possible mechanisms involved in the reaction process were explained. • The reusability and stability of Pd/Pt-NACF bifunctional material was evaluated. - Abstract: In this work, Pd/Pt supported on N-doped activated carbon fiber (Pd/Pt-NACF) was employed as the electrode for electrocatalytic degradation of perchlorate through adsorption/electroreduction process. Perchlorate in solution was firstly adsorbed on Pd/Pt-NACF and then reduced to non-toxic chloride by the catalytic function of Pd/Pt at a constant current (20 mA). Compared with Pd/Pt-ACF, the adsorption capacity and electrocatalytic degradation efficiency of Pd/Pt-NACF for perchlorate increased 161% and 28%, respectively. Obviously, positively charged N-functional groups on NACF surface enhanced the adsorption capacity of Pd/Pt-NACF, and the dissociation of hydrogen to atomic H* by the Pd/Pt nanostructures on the cathode might drastically promote the electrocatalytic reduction of perchlorate. The role of atomic H* in the electroreduction process was identified by tertiary butanol inhibition test. Meanwhile, the perchlorate degradation performance was not substantially lower after three successive adsorption/electrocatalytic degradation experiments, demonstrating the electrochemical reusability and stability of the as-prepared electrode. These results showed that Pd/Pt-NACF was effective for electrocatalytic degradation of perchlorate and had great potential in perchlorate removal from water.

  4. Determination of Au, Ir, Os, Pd, Pt, Ru in high-purity metals by neutron activation

    International Nuclear Information System (INIS)

    Samadi, A.A.; Fedoroff, M.

    1978-01-01

    This determination was achieved by thermal neutron activation, chemical separations and radioactivity measurements by γ spectrometry. In order to develop chemical separations, some studies on the distillation and ion exchange of platinum group elements were perfomed. The fixation of these elements on an anion exchange resin in a nitrite medium was studied more particularly. This method enables a fully quantitative fixation. The detection limits in these irradiation conditions ranges from 10 -12 g for Ir to 10 -8 g for Pd [fr

  5. Composition dependence of phase transformation behavior and shape memory effect of Ti(Pt, Ir)

    International Nuclear Information System (INIS)

    Yamabe-Mitarai, Y.; Hara, T.; Kitashima, T.; Miura, S.; Hosoda, H.

    2013-01-01

    Highlights: ► The partial isothemal section at 1523 K was determined in Ti–Pt–Ir. ► The high-temperature shape memory effect of Ti(Pt, Ir) was investigated. ► The shape recovery ratio was 72% in Ti–10Pt–32Ir after deformation at 1123 K. ► Ir addition to TiPt is effective to improve shape memory effect of TiPt. -- Abstract: The phase transformation and high-temperature shape memory effect of Ti(Pt, Ir) were investigated. First, the Ti-rich phase boundary of Ti(Pt, Ir) was investigated by phase composition analysis by secondary electron microscopy (SEM) using an electron probe X-ray micro analyzer (EPMA), X-ray diffraction analysis and transmission electron microscopy (TEM). Then, the three alloys Ti–35Pt–10Ir, Ti–22Pt–22Ir, and Ti–10Pt–32Ir (at%) close to the phase boundary but in the single phase of Ti(Pt, Ir) were prepared by the arc melting method. The shape memory effect and crystal structure were investigated by compression loading–unloading tests and high-temperature X-ray diffraction analysis, respectively

  6. Synthesis and electrochemical study of Pt-based nanoporous materials

    International Nuclear Information System (INIS)

    Wang Jingpeng; Holt-Hindle, Peter; MacDonald, Duncan; Thomas, Dan F.; Chen Aicheng

    2008-01-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells

  7. Synthesis and electrochemical study of Pt-based nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jingpeng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Holt-Hindle, Peter; MacDonald, Duncan [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Thomas, Dan F. [Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Chen Aicheng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada)], E-mail: aicheng.chen@lakeheadu.ca

    2008-10-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells.0.

  8. Synthesis and electrochemical study of Pt-based nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingpeng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Holt-Hindle, Peter; MacDonald, Duncan; Chen, Aicheng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Thomas, Dan F. [Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada)

    2008-10-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells. (author)

  9. Shape-controlled synthesis of Pt-Pd core-shell nanoparticles exhibiting polyhedral morphologies by modified polyol method

    International Nuclear Information System (INIS)

    Long, Nguyen Viet; Asaka, Toru; Matsubara, Takashi; Nogami, Masayuki

    2011-01-01

    Pt-Pd core-shell nanoparticles were synthesized by a simple synthetic method. First, Pt nanoparticles were synthesized in a controlled manner via the reduction of chloroplantinic acid hexahydrate in ethylene glycol (EG) at 160 deg. C in the presence of silver nitrate and the stabilization of polyvinylpyrrolidon. AgNO 3 used acts as a structure-modifying agent to the morphology of the Pt nanoparticles. These Pt nanoparticles function as the seeds for the successive reduction of sodium tetrachloropalladate (II) hydrate in EG under stirring for 15 min at 160 deg. C in order to synthesize Pt-Pd core-shell nanoparticles. To characterize the as-prepared Pt-Pd nanoparticles, transmission electron microscopy (TEM) and high-resolution TEM are used. The high-resolution elemental mappings were carried out using the combination of scanning TEM and X-ray energy-dispersive spectroscopy. The results also demonstrate the homogeneous nucleation and growth of the Pd metal shell on the definite Pt core. The synthesized Pt-Pd core-shell nanoparticles exhibit a sharp and polyhedral morphology. The epitaxial growth of the controlled Pd shells on the Pt cores via a polyol method was observed. It is suggested that Frank-van der Merwe and Stranski-Krastanov growth modes coexisted in the nucleation and growth of Pt-Pd core-shell nanoparticles.

  10. Effects of metal composition and ratio on peptide-templated multimetallic PdPt nanomaterials

    International Nuclear Information System (INIS)

    Merrill, Nicholas A.; Nitka, Tadeusz T.; McKee, Erik M.; Merino, Kyle C.; Drummy, Lawrence F.

    2017-01-01

    It can be difficult to simultaneously control the size, composition, and morphology of metal nanomaterials under benign aqueous conditions. For this, bioinspired approaches have become increasingly popular due to their ability to stabilize a wide array of metal catalysts under ambient conditions. In this regard, we used the R5 peptide as a three-dimensional template for formation of PdPt bimetallic nanomaterials. Monometallic Pd and Pt nanomaterials have been shown to be highly reactive toward a variety of catalytic processes, but by forming bimetallic species, increased catalytic activity may be realized. The optimal metal-to-metal ratio was determined by varying the Pd:Pt ratio to obtain the largest increase in catalytic activity. To better understand the morphology and the local atomic structure of the materials, the bimetallic PdPt nanomaterials were extensively studied by transmission electron microscopy, extended X-ray absorption fine structure spectroscopy, X-ray photoelectron spectroscopy, and pair distribution function analysis. The resulting PdPt materials were determined to form multicomponent nanostructures where the Pt component demonstrated varying degrees of oxidation based upon the Pd:Pt ratio. To test the catalytic reactivity of the materials, olefin hydrogenation was conducted, which indicated a slight catalytic enhancement for the multicomponent materials. Finally, these results suggest a strong correlation between the metal ratio and the stabilizing biotemplate in controlling the final materials morphology, composition, and the interactions between the two metal species.

  11. Effects of Metal Composition and Ratio on Peptide-Templated Multimetallic PdPt Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, Nicholas A.; Nitka, Tadeusz T.; McKee, Erik M.; Merino, Kyle C.; Drummy, Lawrence F.; Lee, Sungsik; Reinhart, Benjamin; Ren, Yang; Munro, Catherine J.; Pylypenko, Svitlana; Frenkel, Anatoly I.; Bedford, Nicholas M.; Knecht, Marc R.

    2017-02-22

    It can be difficult to simultaneously control the size, composition, and morphology of metal nanomaterials under benign aqueous conditions. For this, bio-inspired approaches have become increasing popular due to their ability to stabilize a wide array of metal catalysts under ambient conditions. In this regard, we used the R5 peptide as a 3D template for the formation of PdPt bimetallic nanomaterials. Monometallic Pd and Pt nanomaterials have been shown to be highly reactive towards a variety of catalytic processes, but by forming bimetallic species, increased catalytic activity may be realized. The optimal metal-to-metal ratio was determined by varying the Pd:Pt ratio to obtain the largest increase in catalytic activity. To better understand the morphology and the local atomic structure of the materials, the bimetallic PdPt nanomaterials were extensively studied using transmission electron microscopy, extended X-ray absorption fine structure spectroscopy, X-ray photoelectron spectroscopy, and pair distribution function analysis. The resulting PdPt materials were determined to form multicomponent nanostructures where the Pt component demonstrated varying degrees of oxidation based upon the Pd:Pt ratio. To test the catalytic reactivity of the materials, olefin hydrogenation was conducted which indicated a slight catalytic enhancement for the multicomponent materials. These results suggest a strong correlation between the metal ratio and the stabilizing biotemplate in controlling the final materials morphology, composition, and the interactions between the two metal species.

  12. Rare earth-rich cadmium compounds RE{sub 10}TCd{sub 3} (RE = Y, Tb, Dy, Ho, Er, Tm, Lu; T = Rh, Pd, Ir, Pt) with an ordered Co{sub 2}Al{sub 5}-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Block, Theresa; Klenner, Steffen; Heletta, Lukas; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie

    2018-04-01

    Eighteen new rare earth-rich intermetallic phases RE{sub 10}TCd{sub 3} (RE = Y, Tb, Dy, Ho, Er, Tm, Lu; T = Rh, Pd, Ir, Pt) were obtained by induction melting of the elements in sealed niobium ampoules followed by annealing in muffle furnaces. All samples were characterized by X-ray powder diffraction. The structures of four representatives were refined from single-crystal X-ray diffractometer data: ordered Co{sub 2}Al{sub 5} type, P6{sub 3}/mmc, a = 951.2(1), c = 962.9(2) pm, wR = 0.0460, 595 F{sup 2} values, 20 parameters for Er{sub 10}RhCd{sub 3}; a = 945.17(4), c = 943.33(4), wR = 0.0395, 582 F{sup 2} values, 21 parameters for Lu{sub 9.89}PdCd{sub 3.11}; a = 964.16(6), c = 974.93(6) pm, wR = 0.0463, 614 F{sup 2} values, 21 parameters for Y{sub 10}Ir{sub 1.09}Cd{sub 2.91}; a = 955.33(3), c = 974.56(3) pm, wR = 0.0508, 607 F{sup 2} values, 22 refined parameters for Dy{sub 9.92}IrCd{sub 3.08}. Refinements of the occupancy parameters revealed small homogeneity ranges resulting from RE/Cd, respectively T/Cd mixing. The basic building units of the RE{sub 10}TCd{sub 3} phases are transition metal-centered RE{sub 6} trigonal prisms (TP) that are condensed with double-pairs of empty RE{sub 6} octahedra via common triangular faces. A second type of rods is formed by slightly distorted RE3 rate at Cd{sub 6}RE{sub 6} icosahedra which are condensed via Cd{sub 3} triangular faces. The shortest interatomic distances occur for RE-T, compatible with strong covalent bonding interactions. Temperature dependent magnetic susceptibility measurements were performed for RE{sub 10}RhCd{sub 3} (RE = Dy-Tm, Lu), RE{sub 10}IrCd{sub 3} (RE = Er, Tm, Lu) and RE{sub 10}PtCd{sub 3} (RE = Y, Lu). While Y{sub 10}PtCd{sub 3} and Lu{sub 10}TCd{sub 3} (T = Rh, Ir, Pt) show Pauli paramagnetic behavior, the compounds containing paramagnetic rare earth elements show Curie-Weiss behavior (the experimental magnetic moments indicate stable trivalent RE{sup 3+}) and magnetic ordering at low temperatures

  13. Localized Pd Overgrowth on Cubic Pt Nanocrystals for Enhanced Electrocatalytic Oxidation of Formic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.; Habas, S.E.; Somorjai, G.A.; Yang, P.

    2008-03-20

    Binary Pt/Pd nanoparticles were synthesized by localized overgrowth of Pd on cubic Pt seeds for the investigation of electrocatalytic formic acid oxidation. The binary particles exhibited much less self-poisoning and a lower activation energy relative to Pt nanocubes, consistent with the single crystal study.

  14. One-step synthesis of PtPdAu ternary alloy nanoparticles on graphene with superior methanol electrooxidation activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuzhen; Gu Yonge; Lin Shaoxiong; Wei Jinping; Wang Zaihua [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Wang Chunming, E-mail: wangcm@lzu.edu.cn [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Du Yongling; Ye Weichun [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)

    2011-10-01

    Highlights: > PtPdAu nanoparticles were synthesized on graphene sheets via chemical reduction method. > The prepared PtPdAu nanoparticles were ternary alloy with fcc structure. > The catalyst exhibited superior catalytic activity and stability for MOR in alkaline. - Abstract: Well-dispersed PtPdAu ternary alloy nanoparticles were synthesized on graphene sheets via a simple one-step chemical reduction method in ethylene glycol (EG) and water system, in which EG served as both reductive and dispersing agent. The electrocatalytic activity of PtPdAu/G was tested by methanol oxidation reaction (MOR). The catalyst was further characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), which indicated that the as-synthesized PtPdAu nanoparticles with alloy structures were successfully dispersed on the graphene sheets. Electrocatalytic properties of the catalyst for MOR in alkaline have been investigated by cyclic voltammetry (CV), chronoamperometry and Tafel curves. The electrocatalytic activity and stability of PtPdAu/G were superior to PtPd/G, PtAu/G and Pt/G. In addition, the anodic peak current on PtPdAu/G catalyst was proportional to the concentration of methanol in the range of 0.05-1.00 M. This study implies that the prepared catalyst have great potential applications in fuel cells.

  15. Platinum-group elements fractionation by selective complexing, the Os, Ir, Ru, Rh-arsenide-sulfide systems above 1020 °C

    Science.gov (United States)

    Helmy, Hassan M.; Bragagni, Alessandro

    2017-11-01

    The platinum-group element (PGE) contents in magmatic ores and rocks are normally in the low μg/g (even in the ng/g) level, yet they form discrete platinum-group mineral (PGM) phases. IPGE (Os, Ir, Ru) + Rh form alloys, sulfides, and sulfarsenides while Pt and Pd form arsenides, tellurides, bismuthoids and antimonides. We experimentally investigate the behavior of Os, Ru, Ir and Rh in As-bearing sulfide system between 1300 and 1020 °C and show that the prominent mineralogical difference between IPGE (+Rh) and Pt and Pd reflects different chemical preference in the sulfide melt. At temperatures above 1200 °C, Os shows a tendency to form alloys. Ruthenium forms a sulfide (laurite RuS2) while Ir and Rh form sulfarsenides (irarsite IrAsS and hollingworthite RhAsS, respectively). The chemical preference of PGE is selective: IPGE + Rh form metal-metal, metal-S and metal-AsS complexes while Pt and Pd form semimetal complexes. Selective complexing followed by mechanical separation of IPGE (and Rh)-ligand from Pt- and Pd-ligand associations lead to PGE fractionation.

  16. In vitro degradation and biocompatibility of Fe–Pd and Fe–Pt composites fabricated by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Huang, T. [State Key Laboratory for Turbulence and Complex System, College of Engineering, Peking University, Beijing 100871 (China); Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Cheng, J. [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zheng, Y.F., E-mail: yfzheng@pku.edu.cn [State Key Laboratory for Turbulence and Complex System, College of Engineering, Peking University, Beijing 100871 (China); Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China)

    2014-02-01

    In order to obtain biodegradable Fe-based materials with similar mechanical properties as 316L stainless steel and faster degradation rate than pure iron, Fe-5 wt.%Pd and Fe-5 wt.%Pt composites were prepared by spark plasma sintering with powders of pure Fe and Pd/Pt, respectively. The grain size of Fe-5 wt.%Pd and Fe-5 wt.%Pt composites was much smaller than that of as-cast pure iron. The metallic elements Pd and Pt were uniformly distributed in the matrix and the mechanical properties of these materials were improved. Uniform corrosion of Fe–Pd and Fe–Pt composites was observed in both electrochemical tests and immersion tests, and the degradation rates of Fe–Pd and Fe–Pt composites were much faster than that of pure iron. It was found that viabilities of mouse fibroblast L-929 cells and human umbilical vein endothelial cells (ECV304) cultured in extraction mediums of Fe–Pd and Fe–Pt composites were close to that of pure iron. After 4 days' culture, the viabilities of L-929 and ECV304 cells in extraction medium of experimental materials were about 80%. The result of direct contact cytotoxicity also indicated that experimental materials exhibited no inhibition on vascular endothelial process. Meanwhile, iron ions released from experimental materials could inhibit proliferation of vascular smooth muscle cells (VSMC), which may be beneficial for hindering vascular restenosis. Furthermore, compared with that of as-cast pure iron, the hemolysis rates of Fe–Pd and Fe–Pt composites were slightly higher, but still within the range of 5%, which is the criteria for good blood compatibility. The numbers of platelet adhered on the surface of Fe–Pd and Fe–Pt composites were lower than that of pure iron, and the morphology of platelets kept spherical. To sum up, the Fe-5wt.%Pd and Fe-5wt.%Pt composites exhibited good mechanical properties and degradation behavior, closely approaching the requirements for biodegradable metallic stents. - Highlights:

  17. Electrochemical characterization of Pt-Ru-Pd catalysts for methanol oxidation reaction in direct methanol fuel cells.

    Science.gov (United States)

    Choi, M; Han, C; Kim, I T; An, J C; Lee, J J; Lee, H K; Shim, J

    2011-01-01

    PtRuPd nanoparticles on carbon black were prepared and characterized as electrocatalysts for methanol oxidation reaction in direct methanol fuel cells. Nano-sized Pd (2-4 nm) particles were deposited on Pt/C and PtRu/C (commercial products) by a simple chemical reduction process. The structural and physical information of the PtRuPd/C were confirmed by TEM and XRD, and their electrocatalytic activities were measured by cyclic voltammetry and linear sweep voltammetry. The catalysts containing Pd showed higher electrocatalytic activity for methanol oxidation reaction than the other catalysts. This might be attributed to an increase in the electrochemical surface area of Pt, which is caused by the addition of Pd; this results in increased catalyst utilization.

  18. Phase stability and magnetism in NiPt and NiPd alloys

    International Nuclear Information System (INIS)

    Paudyal, Durga; Mookerjee, Abhijit

    2004-01-01

    We show that the differences in stability of 3d-5d NiPt and 3d-4d NiPd alloys arise mainly due to relativistic corrections. The magnetic properties of disordered NiPd and NiPt alloys also differ due to these corrections, which lead to increase in the separation between the s-d bands of 5d elements in these alloys. For the magnetic case we also analyse the results in terms of splitting of majority and minority spin d band centres of the 3d elements. We further examine the effect of relativistic corrections to the pair energies and order-disorder transition temperatures in these alloys. The magnetic moments and Curie temperatures have also been studied along with the short range ordering/segregation effects in NiPt/NiPd alloys

  19. Critical Factors Controlling Pd and Pt Potential in Porphyry Cu–Au Deposits: Evidence from the Balkan Peninsula

    Directory of Open Access Journals (Sweden)

    Demetrios G. Eliopoulos

    2014-03-01

    Full Text Available Porphyry Cu–Au–Pd±Pt deposits are significant Au resources, but their Pd and Pt potential is still unknown. Elevated Pd, Pt (hundreds of ppb and Au contents are associated with typical stockwork magnetite-bornite-chalcopyrite assemblages, at the central parts of certain porphyry deposits. Unexpected high grade Cu–(Pd+Pt (up to 6 ppm mineralization with high Pd/Pt ratios at the Elatsite porphyry deposit, which is found in a spatial association with the Chelopech epithermal deposit (Bulgaria and the Skouries porphyry deposit, may have formed during late stages of an evolved hydrothermal system. Estimated Pd, Pt and Au potential for porphyry deposits is consistent with literature model calculations demonstrating the capacity of aqueous vapor and brine to scavenge sufficient quantities of Pt and Pd, and could contribute to the global platinum-group element (PGE production. Critical requirements controlling potential of porphyry deposits may be from the metals contained in magma (metasomatized asthenospheric mantle wedge as indicated by significant Cr, Co, Ni and Re contents. The Cr content may be an indicator for the mantle input.

  20. Highly sensitive room temperature ammonia gas sensor based on Ir-doped Pt porous ceramic electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenlong [College of pharmacy and biological engineering, Chengdu University, Chengdu, 610106 (China); Department of chemical and materials engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Liu, Yen-Yu [Department of chemical and materials engineering, Tunghai University, Taichung 407, Taiwan (China); Do, Jing-Shan, E-mail: jsdo@ncut.edu.tw [Department of chemical and materials engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Li, Jing, E-mail: lijing@cdu.edu.cn [College of pharmacy and biological engineering, Chengdu University, Chengdu, 610106 (China)

    2016-12-30

    Highlights: • Water vapors seem to hugely improve the electrochemical activity of the Pt and Pt-Ir porous ceramic electrodes. • The gas sensors based on the Pt and Pt-Ir alloy electrodes possess good sensing performances. • The reaction path of the ammonia on platinum has been discussed. - Abstract: Room temperature NH{sub 3} gas sensors based on Pt and Pt-Ir (Ir doping Pt) porous ceramic electrodes have been fabricated by both electroplating and sputtering methods. The properties of the gaseous ammonia sensors have been examined by polarization and chronoamperometry techniques. The influence of humidity on the features of the resulting sensors in the system has also been discussed, and the working potential was optimized. Water vapors seem to hugely improve the electrochemical activity of the electrode. With increasing the relative humidity, the response of the Pt-Ir(E)/Pt(S)/PCP sensor to NH{sub 3} gas could be enhanced remarkably, and the sensitivity increases from 1.14 to 12.06 μA ppm{sup −1} cm{sup −2} .Then we have also discussed the sensing mechanism of the Pt-Ir sensor and the result has been confirmed by X-ray photoelectron spectroscopy of the electrode surface before and after reaction in the end.

  1. Nano-structured Pd{sub x}Pt{sub 1-x}/Ti anodes prepared by electrodeposition for alcohol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Lu Jinlin; Lu Shanfu; Wang Deli; Yang Meng [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Liu Zili [School of Chemistry and Chemical Engineering, Guangzhou University, No. 601 Huangpudadao, Guangzhou 510006, Guangdong (China); Xu Changwei [School of Chemistry and Chemical Engineering, Guangzhou University, No. 601 Huangpudadao, Guangzhou 510006, Guangdong (China)], E-mail: cwxuneuzsu@126.com; Jiang, S.P. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)], E-mail: mspjiang@ntu.edu.sg

    2009-09-30

    Nano-structured Pd{sub x}Pt{sub 1-x} (x = 0-1) composite catalysts supported on Ti substrate are successfully prepared by electrodeposition method, and the morphology and phase of the catalysts are analyzed by field emission scanning electron microscope (FE-SEM) and X-ray energy dispersion spectroscopy (EDS). The activity and stability of the Pd{sub x}Pt{sub 1-x}/Ti composite catalysts are assessed for the electrooxidation of alcohols (methanol, ethanol and 2-propanol) in alkaline medium using cyclic voltammetry and chronoamperometry techniques. The results show that the Pd and Pt form Pd{sub x}Pt{sub 1-x} nano-structured composite catalysts, uniformly distributed on the Ti substrate. The electrocatalytic activity and stability of the Pd{sub x}Pt{sub 1-x} nanocatalysts depend strongly on the atomic ratios of Pd and Pt. Among the synthesized catalysts, the Pd{sub 0.8}Pt{sub 0.2}/Ti displays the best catalytic activity and stability for the electrooxidation reaction of alcohols investigated in alkaline medium under conditions in this study, and shows the potential as electrocatalysts for direct alcohol fuel cells.

  2. Spin pumping damping and magnetic proximity effect in Pd and Pt spin-sink layers

    Science.gov (United States)

    Caminale, M.; Ghosh, A.; Auffret, S.; Ebels, U.; Ollefs, K.; Wilhelm, F.; Rogalev, A.; Bailey, W. E.

    2016-07-01

    We investigated the spin pumping damping contributed by paramagnetic layers (Pd, Pt) in both direct and indirect contact with ferromagnetic Ni81Fe19 films. We find a nearly linear dependence of the interface-related Gilbert damping enhancement Δ α on the heavy-metal spin-sink layer thicknesses tN in direct-contact Ni81Fe19 /(Pd, Pt) junctions, whereas an exponential dependence is observed when Ni81Fe19 and (Pd, Pt) are separated by 3 nm Cu. We attribute the quasilinear thickness dependence to the presence of induced moments in Pt, Pd near the interface with Ni81Fe19 , quantified using x-ray magnetic circular dichroism measurements. Our results show that the scattering of pure spin current is configuration-dependent in these systems and cannot be described by a single characteristic length.

  3. First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Hansen, Heine Anton; Rossmeisl, Jan

    2015-01-01

    driving force for surface segregation, diffusion to defects or surface self-assembling. On the basis of stability and activity analysis we conclude that the near surface alloy of Pd in Pt and some PdAu binary and PtPdAu ternary thin films with a controlled amount of Au are the best catalysts for oxygen......Further advances in fuel cell technologies are hampered by kinetic limitations associated with the sluggish cathodic oxygen reduction reaction. We have investigated a range of different formulations of binary and ternary Pt, Pd and Au thin films as electrocatalysts for oxygen reduction. The most...... active binary thin films are near-surface alloys of Pt with subsurface Pd and certain PdAu and PtAu thin films with surface and/or subsurface Au. The most active ternary thin films are with pure metal Pt or Pd skins with some degree of Au in the surface and/or subsurface layer and the near-surface alloys...

  4. Exchange bias and perpendicular anisotropy study of ultrathin Pt-Co-Pt-IrMn multilayers sputtered on float glass

    Science.gov (United States)

    Laval, M.; Lüders, U.; Bobo, J. F.

    2007-09-01

    We have prepared ultrathin Pt-Co-Pt-IrMn polycrystalline multilayers on float-glass substrates by DC magnetron sputtering. We have determined the optimal set of thickness for both Pt layers, the Co layer and the IrMn biasing layer so that these samples exhibit at the same time out-of-plane magnetic anisotropy and exchange bias. Kerr microscopy domain structure imaging evidences an increase of nucleation rate accompanied with inhomogeneous magnetic behavior in the case of exchange-biased films compared to Pt-Co-Pt trilayers. Polar hysteresis loops are measured in obliquely applied magnetic field conditions, allowing us to determine both perpendicular anisotropy effective constant Keff and exchange-bias coupling JE, which are significantly different from the ones determined by standard switching field measurements.

  5. Exchange bias and perpendicular anisotropy study of ultrathin Pt-Co-Pt-IrMn multilayers sputtered on float glass

    International Nuclear Information System (INIS)

    Laval, M.; Lueders, U.; Bobo, J.F.

    2007-01-01

    We have prepared ultrathin Pt-Co-Pt-IrMn polycrystalline multilayers on float-glass substrates by DC magnetron sputtering. We have determined the optimal set of thickness for both Pt layers, the Co layer and the IrMn biasing layer so that these samples exhibit at the same time out-of-plane magnetic anisotropy and exchange bias. Kerr microscopy domain structure imaging evidences an increase of nucleation rate accompanied with inhomogeneous magnetic behavior in the case of exchange-biased films compared to Pt-Co-Pt trilayers. Polar hysteresis loops are measured in obliquely applied magnetic field conditions, allowing us to determine both perpendicular anisotropy effective constant K eff and exchange-bias coupling J E , which are significantly different from the ones determined by standard switching field measurements

  6. Synthesis and hydrogenation application of Pt-Pd bimetallic nanocatalysts stabilized by macrocycle-modified dendrimer

    Science.gov (United States)

    Jin, Zhijun; Xiao, Haiyan; Zhou, Wei; Zhang, Dongqiao; Peng, Xiaohong

    2017-12-01

    Different generations of poly(propylene imine) (Gn-PPI) terminated with N-containing 15-membered triolefinic macrocycle (GnM) (n = 2, 3, 4, 5) were prepared. The bimetallic nanoparticle catalysts GnM-(Ptx/Pd10-x) (x = 0, 3, 5, 7, 10) were prepared by the synchronous ligand-exchange reaction between GnM and the complexes of Pt(PPh3)4 and Pd(PPh3)4. The structure and catalytic properties of GnM-(Ptx/Pd10-x) were characterized via Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, energy-dispersive spectroscopy and inductively coupled plasma atomic emission spectroscopy. The novel bimetallic Pd-Pt nanoparticle catalysts stabilized by dendrimers (DSNs) present higher catalytic activities for the hydrogenation of dimeric acid (DA) than that of nitrile butadiene rubber (NBR). It can be concluded that bimetallic Pd-Pt DSNs possess alloying and synergistic electronic effects on account of the hydrogenation degree (HD) of DA and NBR. Furthermore, the HD of DA and NBR shows a remarkable decrease with the incremental generations (n) of GnM-(Pt3/Pd7) (n = 2, 3, 4, 5).

  7. Low Pt content Pt-Ru-Ir-Sn quaternary catalysts for anodic methanol oxidation in DMFC

    Energy Technology Data Exchange (ETDEWEB)

    Neburchilov, Vladimir; Wang, Haijiang; Zhang, Jiujun [Institute for Fuel Cell Innovation, National Research Council (Canada)

    2007-07-15

    In this communication we report our research work on low Pt content Pt-Ru-Ir-Sn quaternary catalysts for use in DMFC anodes. The carbon-supported quaternary metal alloy catalyst was synthesized according to the solution reduction method and was deposited onto a carbon fiber paper or a carbon aerogel nanofoam to form the anode for direct methanol fuel cells. The Pt loading of the electrode is 0.1 mg/cm{sup 2}. The testing results from a three-electrode electrochemical cell show that the simultaneous use of higher Ir (25-35 wt.%) and Sn (10 wt.%) content gives satisfactory stability and higher activity for methanol oxidation than the commercially available E-TEK anode (80%[0.5Pt 0.5Ru]/C on carbon cloth). Energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), scanning electron microscope (SEM), and Bruner-Emmett-Teller method (BET) measurements were carried out to characterize the composition, structure, morphology, and surface area of the developed catalysts. (author)

  8. Pt-Pd nanoelectrocatalyst of ultralow Pt content for the oxidation of ...

    Indian Academy of Sciences (India)

    formic acid oxidation on Pt4Pd96 nanoparticles. Keywords. ..... Choi J H, Jeong K J, Dong Y, Han J, Lim T H, Lee J S ... Rhee C K, Kim B J, Ham C, Kim Y J, Song K and Kwon ... Wang R, Liao S and Ji S 2008 J. Power Sources 180 205. 18.

  9. Large enhancement of Blocking temperature by control of interfacial structures in Pt/NiFe/IrMn/MgO/Pt multilayers

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2015-09-01

    Full Text Available The Blocking temperature (TB of Pt/NiFe/IrMn/MgO/Pt multilayers was greatly enhanced from far below room temperature (RT to above RT by inserting 1 nm thick Mg layer at IrMn/MgO interface. Furthermore, the exchange bias field (Heb was increased as well by the control of interfacial structures. The evidence for a significant fraction of Mn-O bonding at IrMn/MgO interface without Mg insertion layer was provided by X-ray photoelectron spectroscopy. The bonding between Mn and O can decrease the antiferromagnetism of IrMn film, leading to lower value of TB in Pt/NiFe/IrMn/MgO/Pt multilayers. Ultrathin Mg film inserted at IrMn/MgO interface acting as an oxygen sinking layer can suppress the oxidation reactions between Mn and O and reduce the formation of Mn-O bonding greatly. The oxidation suppression results in the recovery of the antiferromagnetism of IrMn film, which can enhance TB and Heb. Furthermore, the high resolution transmission electron microscopy demonstrates that the Mg insertion layer can efficiently promote a high-quality MgO (200 texture. This study will enhance the understanding of physics in antiferromagnet-based spintronic devices.

  10. Atom condensation on an atomically smooth surface: Ir, Re, W, and Pd on Ir(111)

    International Nuclear Information System (INIS)

    Wang, S.C.; Ehrlich, G.

    1991-01-01

    The distribution of condensing metal atoms over the two types of sites present on an atomically smooth Ir(111) has been measured in a field ion microscope. For Ir, Re, W, and Pd from a thermal source, condensing on Ir(111) at ∼20 K, the atoms are randomly distributed, as expected if they condense at the first site struck

  11. Ir catalysts: Preventing CH3COOH formation in ethanol oxidation

    Science.gov (United States)

    Miao, Bei; Wu, Zhipeng; Xu, Han; Zhang, Minhua; Chen, Yifei; Wang, Lichang

    2017-11-01

    Current catalysts used for ethanol oxidation reaction (EOR) cannot effectively prevent CH3COOH formation, and thus become a major hindrance for direct ethanol fuel cell applications. We report an Ir catalyst that shows great promise for a complete EOR based on density functional theory calculations using PBE functional. The reaction barrier on Ir(1 0 0) was found to be 2.10 eV for CH3COOH formation, which is much higher than currently used Pd and Pt, and 0.57 eV for Csbnd C bond cleavage in CHCO species, which are comparable to Pd and Pt. The result suggests future directions for studying optimal complete EOR catalysts.

  12. Exchange bias energy in Co/Pt/IrMn multilayers with perpendicular and in-plane anisotropy

    International Nuclear Information System (INIS)

    Czapkiewicz, M.; Stobiecki, T.; Rak, R.; Zoladz, M.; Dijken, S. van

    2007-01-01

    The magnetization reversal process in perpendicularly biased [Pt/Co] 3 /d Pt Pt/IrMn and in-plane biased Co/d Pt Pt/IrMn multilayers with 0nm= Pt = Pt =0.1nm. In both cases, the existence of large exchange bias fields correlates with a high domain density during magnetization reversal. The interface exchange coupling energy is larger for the in-plane biased films than for the perpendicularly biased multilayers

  13. Crumpled rGO-supported Pt-Ir bifunctional catalyst prepared by spray pyrolysis for unitized regenerative fuel cells

    Science.gov (United States)

    Kim, In Gyeom; Nah, In Wook; Oh, In-Hwan; Park, Sehkyu

    2017-10-01

    Three-dimensional (3D) crumpled reduced graphene oxide supported Pt-Ir alloys that served as bifunctional oxygen catalysts for use in untized regenerative fuel cells were synthesized by a facile spray pyrolysis method. Pt-Ir catalysts supported on rGO (Pt-Ir/rGOs) were physically characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA) to observe change in composition by heat treatment, alloying, and morphological transition of the catalysts. Their catalytic activities and stabilities for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) conditions were electrochemically investigated using cyclic voltammetry (CV), linear sweep voltammetry (LSV), potential cycling and hold tests on the rotating disk electrode (RDE). Pt-Ir/rGO with no post heat-treatment (Pt-Ir/rGO_NP) showed a lower activity for ORR and OER although metal nanoparticles decorated on the support are relatively small. However, Pt-Ir/rGO showed remarkably enhanced activity following heat treatment, depending on temperature. Pt-Ir/rGO heat-treated at 600 °C after spray pyrolysis (Pt-Ir/rGO_P600) exhibited a higher activity and stability than a commercially available Pt/C catalyst kept under the ORR condition, and it also revealed a comparable OER activity and durability versus the commercial unsupported Ir catalyst.

  14. Ni(II, Pd(II and Pt(II complexes with ligand containing thiosemicarbazone and semicarbazone moiety: synthesis, characterization and biological investigation

    Directory of Open Access Journals (Sweden)

    SULEKH CHANDRA

    2008-07-01

    Full Text Available The synthesis of nickel(II, palladium(II and platinum(II complexes with thiosemicarbazone and semicarbazone of p-tolualdehyde are reported. All the new compounds were characterized by elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, 1H-NMR, IR and electronic spectral studies. Based on the molar conductance measurements in DMSO, the complexes may be formulated as [Ni(L2Cl2] and [M(L2]Cl2 (where M = Pd(II and Pt(II due to their non-electrolytic and 1:2 electrolytic nature, respectively. The spectral data are consistent with an octahedral geometry around Ni(II and a square planar geometry for Pd(II and Pt(II, in which the ligands act as bidentate chelating agents, coordinated through the nitrogen and sulphur/oxygen atoms. The ligands and their metal complexes were screened in vitro against fungal species Alternaria alternata, Aspergillus niger and Fusarium odum, using the food poison technique.

  15. Facile synthesis of hierarchical dendritic PtPd nanogarlands supported on reduced graphene oxide with enhanced electrocatalytic properties

    Science.gov (United States)

    Li, Shan-Shan; Zheng, Jie-Ning; Ma, Xiaohong; Hu, Yuan-Yuan; Wang, Ai-Jun; Chen, Jian-Rong; Feng, Jiu-Ju

    2014-05-01

    A simple and facile method is developed for one-pot preparation of hierarchical dendritic PtPd nanogarlands supported on reduced graphene oxide (PtPd/RGO) at room temperature, without using any seed, organic solvent, or complex apparatus. It is found that octylphenoxypolyethoxyethanol (NP-40) as a soft template and its amount are critical to the formation of PtPd garlands. The as-prepared nanocomposites are further applied to methanol and ethanol oxidation with significantly enhanced electrocatalytic activity and better stability in alkaline media.A simple and facile method is developed for one-pot preparation of hierarchical dendritic PtPd nanogarlands supported on reduced graphene oxide (PtPd/RGO) at room temperature, without using any seed, organic solvent, or complex apparatus. It is found that octylphenoxypolyethoxyethanol (NP-40) as a soft template and its amount are critical to the formation of PtPd garlands. The as-prepared nanocomposites are further applied to methanol and ethanol oxidation with significantly enhanced electrocatalytic activity and better stability in alkaline media. Electronic supplementary information (ESI) available: Experimental section, Fig. S1-S12 and Tables S1 and S2. See DOI: 10.1039/c3nr06808k

  16. Hollow Au@Pd and Au@Pt core-shell nanoparticles as electrocatalysts for ethanol oxidation reactions

    KAUST Repository

    Song, Hyon Min

    2012-09-27

    Hybrid alloys among gold, palladium and platinum become a new category of catalysts primarily due to their enhanced catalytic effects. Enhancement means not only their effectiveness, but also their uniqueness as catalysts for the reactions that individual metals may not catalyze. Here, preparation of hollow Au@Pd and Au@Pt core-shell nanoparticles (NPs) and their use as electrocatalysts are reported. Galvanic displacement with Ag NPs is used to obtain hollow NPs, and higher reduction potential of Au compared to Ag, Pd, and Pt helps to produce hollow Au cores first, followed by Pd or Pt shell growth. Continuous and highly crystalline shell growth was observed in Au@Pd core-shell NPs, but the sporadic and porous-like structure was observed in Au@Pt core-shell NPs. Along with hollow core-shell NPs, hollow porous Pt and hollow Au NPs are also prepared from Ag seed NPs. Twin boundaries which are typically observed in large size (>20 nm) Au NPs were not observed in hollow Au NPs. This absence is believed to be due to the role of the hollows, which significantly reduce the strain energy of edges where the two lattice planes meet. In ethanol oxidation reactions in alkaline medium, hollow Au@Pd core-shell NPs show highest current density in forward scan. Hollow Au@Pt core-shell NPs maintain better catalytic activities than metallic Pt, which is thought to be due to the better crystallinity of Pt shells as well as the alloy effect of Au cores. © 2012 The Royal Society of Chemistry.

  17. Communication: Enhanced oxygen reduction reaction and its underlying mechanism in Pd-Ir-Co trimetallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Hyung Chul; Hwang, Gyeong S., E-mail: gshwang@che.utexas.edu [Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Manogaran, Dhivya [Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712 (United States); Lee, Kang Hee; Jin, Seon-ah; You, Dae Jong; Pak, Chanho [Energy Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon (Korea, Republic of); Kwon, Kyungjung [Department of Energy and Mineral Resources Engineering, Sejong University, Seoul 143-747 (Korea, Republic of)

    2013-11-28

    Based on a combined density functional theory and experimental study, we present that the electrochemical activity of Pd{sub 3}Co alloy catalysts toward oxygen reduction reaction (ORR) can be enhanced by adding a small amount of Ir. While Ir tends to favorably exist in the subsurface layers, the underlying Ir atoms are found to cause a substantial modification in the surface electronic structure. As a consequence, we find that the activation barriers of O/OH hydrogenation reactions are noticeably lowered, which would be mainly responsible for the enhanced ORR activity. Furthermore, our study suggests that the presence of Ir in the near-surface region can suppress Co out-diffusion from the Pd{sub 3}Co substrate, thereby improving the durability of Pd-Ir-Co catalysts. We also discuss the relative roles played by Ir and Co in enhancing the ORR activity relative to monometallic Pd catalysts.

  18. Communication: Enhanced oxygen reduction reaction and its underlying mechanism in Pd-Ir-Co trimetallic alloys

    International Nuclear Information System (INIS)

    Ham, Hyung Chul; Hwang, Gyeong S.; Manogaran, Dhivya; Lee, Kang Hee; Jin, Seon-ah; You, Dae Jong; Pak, Chanho; Kwon, Kyungjung

    2013-01-01

    Based on a combined density functional theory and experimental study, we present that the electrochemical activity of Pd 3 Co alloy catalysts toward oxygen reduction reaction (ORR) can be enhanced by adding a small amount of Ir. While Ir tends to favorably exist in the subsurface layers, the underlying Ir atoms are found to cause a substantial modification in the surface electronic structure. As a consequence, we find that the activation barriers of O/OH hydrogenation reactions are noticeably lowered, which would be mainly responsible for the enhanced ORR activity. Furthermore, our study suggests that the presence of Ir in the near-surface region can suppress Co out-diffusion from the Pd 3 Co substrate, thereby improving the durability of Pd-Ir-Co catalysts. We also discuss the relative roles played by Ir and Co in enhancing the ORR activity relative to monometallic Pd catalysts

  19. Enhanced Activity and Durability of Nanosized Pt-SnO2/IrO2/CNTs Catalyst for Methanol Electrooxidation.

    Science.gov (United States)

    Wang, Hongjuan; Wang, Xiaohui; Zheng, Jiadao; Peng, Feng; Yu, Hao

    2015-05-01

    Pt-SnO2/IrO2/CNTs anode catalyst for direct methanol fuel cell was designed and prepared with IrO2/CNTs as support for the subsequent immobilization of Pt and SnO2 at the same time. The structure of the catalysts and their catalytic performance in methanol electrooxidation were investigated and the roles of IrO2 and SnO2 in methanol electrooxidation were discussed as well. Results show that Pt-SnO2/IrO2/CNTs catalyst exhibits the best activity and durability for methanol electrooxidation when compared with Pt/CNTs, Pt/IrO2/CNTs and Pt-SnO2/CNTs. According to the results of electrochemical tests and physicochemical characterizations, the enhancements of Pt-SnO2/IrO2/CNTs were attributed to the special properties of IrO2 and SnO2, in which IrO2 mainly increases the methanol oxidation activity and SnO2 mainly improves the CO oxidation ability and durability. Therefore, Pt-SnO2/IrO2/CNTs exhibits excellent performance for methanol oxidation with higher electrocatalytic activity (I(f) of 1054 A g(Pt(-1)) and powerful anti-poisoning ability (the onset potential for CO oxidation of 0.3 V) and outstanding durability (the sustained time t in CP of 617 s), revealing a suitable anode catalyst for DMFCs.

  20. Optimization of Pt-Ir on carbon fiber paper for the electro-oxidation of ammonia in alkaline media

    International Nuclear Information System (INIS)

    Boggs, Bryan K.; Botte, Gerardine G.

    2010-01-01

    Plating bath concentrations of Pt(IV) and Ir(III) have been optimized as well as the total catalytic loading of bimetallic Pt-Ir alloy for the electro-oxidation of ammonia in alkaline media at standard conditions. This was accomplished using cyclic voltammetry, scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and statistical optimization tools. Concentrations of Pt(IV) and Ir(III) of the plating bath strongly influence electrode surface atomic compositions of the Pt-Ir alloy directly affecting the electro-oxidation behavior of ammonia. Several anode materials were studied using cyclic voltammetry, which demonstrated that Pt-Ir was the most active catalyst for the electro-oxidation of ammonia. Criteria for optimization were minimizing the climatic oxidation overpotential for ammonia and maximizing the exchange current density. Optimized bath composition was found to be 8.844 ± 0.001 g L -1 Pt(IV) and 4.112 ± 0.001 g L -1 Ir(III) based on electrochemical techniques. Physical characterization of the electrodes by SEM indicates that the plating bath concentrations of Pt and Ir influence the growth and deposition behavior of the alloy.

  1. Dual-functional Pt-on-Pd supported on reduced graphene oxide hybrids: peroxidase-mimic activity and an enhanced electrocatalytic oxidation characteristic.

    Science.gov (United States)

    Zhang, Xiahong; Wu, Genghuang; Cai, Zhixiong; Chen, Xi

    2015-03-01

    In this study, a facile hydrothermal method was developed to synthesize Pt-on-Pd supported on reduced graphene oxide (Pt-on-Pd/RGO) hybrids. Because of the synergistic effect between Pt-on-Pd and RGO, the obtained Pt-on-Pd/RGO had superior peroxidase-mimic activities in H2O2 reduction and TMB oxidation. The reaction medium was optimized and a sensing approach for H2O2 was developed with a linear range from 0.98 to 130.7 μM of H2O2. In addition, the characteristic of electrocatalytic oxidation of methanol was investigated. The peak current density value, j(f), for the Pt-on-Pd/RGO hybrid (328 mA mg(Pt)(-1)) was about 1.85 fold higher than that of commercial Pt black (177 mA mg(Pt)(-1)) and, also, more durable electrocatalytic activity could be obtained. For the first time, the dual-functional Pt-on-Pd/RGO with peroxidase-mimic activity and an enhanced electrocatalytic oxidation characteristic was reported. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Pt-Pd bimetallic nanoparticles on MWCNTs: catalyst for hydrogen peroxide electrosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Felix-Navarro, R. M., E-mail: moi6salazar@hotmail.com; Beltran-Gastelum, M.; Salazar-Gastelum, M. I.; Silva-Carrillo, C.; Reynoso-Soto, E. A.; Perez-Sicairos, S.; Lin, S. W. [Centro de Graduados e Investigacion, Instituto Tecnologico de Tijuana (Mexico); Paraguay-Delgado, F. [Centro de Investigacion en Materiales Avanzados (Mexico); Alonso-Nunez, G. [Centro de Nanociencias y Nanotecnologia (Mexico)

    2013-08-15

    Bimetallic nanoparticles of Pt-Pd were deposited by the microemulsion method on a multiwall carbon nanotube (MWCNTs) to obtain a Pt-Pd/MWCNTs for electrocatalytic reduction of O{sub 2} to H{sub 2}O{sub 2}. The activity and selectivity of the catalyst was determined qualitatively by the rotating disk electrode method in acidic medium. The catalyst was spray-coated onto a reticulated vitreous carbon substrate and quantitatively was tested in bulk electrolysis for 20 min under potentiostatic conditions (0.5 V vs Ag/AgCl) in a 0.5 M H{sub 2}SO{sub 4} electrolyte using dissolved O{sub 2}. The bulk electrolysis experiments show that the Pt-Pd/MWCNTs catalyst is more efficient for H{sub 2}O{sub 2} electrogeneration than a MWCNTs catalyst. Nitrobenzene degradation by electrogenerated H{sub 2}O{sub 2} alone and Electro-Fenton process were also tested. Our results show that both processes decompose nitrobenzene, but the Electro-Fenton process does it more efficiently. The prepared nanoparticulated catalyst shows a great potential in environmental applications.

  3. First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Hansen, Heine Anton; Rossmeisl, Jan

    2015-01-01

    Further advances in fuel cell technologies are hampered by kinetic limitations associated with the sluggish cathodic oxygen reduction reaction. We have investigated a range of different formulations of binary and ternary Pt, Pd and Au thin films as electrocatalysts for oxygen reduction. The most...... active binary thin films are near-surface alloys of Pt with subsurface Pd and certain PdAu and PtAu thin films with surface and/or subsurface Au. The most active ternary thin films are with pure metal Pt or Pd skins with some degree of Au in the surface and/or subsurface layer and the near-surface alloys...

  4. Speeding up nanomagnetic logic by DMI enhanced Pt/Co/Ir films

    Science.gov (United States)

    Ziemys, Grazvydas; Ahrens, Valentin; Mendisch, Simon; Csaba, Gyorgy; Becherer, Markus

    2018-05-01

    We investigated a new type of multilayer film for Nanomagnetic Logic with perpendicular anisotropy (pNML) enhanced by the Dzyaloshinskii-Moriya interaction (DMI). The DMI effect provides an additional energy term and widens the design space for pNML film optimization. In this work we added an Ir layer between Co and Pt to our standard pNML multilayer (ML) film stack - [Co/Pt]x4. Multilayer stacks of films with and w/o Ir were sputtered and patterned to nanowires of 400 nm width by means of focused ion beam lithography (FIB). For comparability of the films they were tuned to show identical anisotropy for multilayer stacks with and w/o Ir. The field-driven domain wall (DW) velocity in the nanowires was measured by using wide-field MOKE microscopy. We found a strong impact of Ir on the DW velocity being up to 2 times higher compared to the standard [Co/Pt]x4 ML films. Moreover, the maximum velocity is reached at much lower magnetic field, which is beneficial for pNML operation. These results pave the way for pNML with higher clocking rates and at the same time allow a further reduce power consumption.

  5. Characterization of Pt-Pd/C Electrocatalyst for Methanol Oxidation in Alkaline Medium

    Directory of Open Access Journals (Sweden)

    S. S. Mahapatra

    2011-01-01

    Full Text Available The Pt-Pd/C electrocatalyst was synthesized on graphite substrate by the electrochemical codeposition technique. The physicochemical characterization of the catalyst was done by SEM, XRD, and EDX. The electrochemical characterization of the Pt-Pd/C catalyst for methanol electro-oxidation was studied over a range of NaOH and methanol concentrations using cyclic voltammetry, quasisteady-state polarization, chronoamperometry, and electrochemical impedance spectroscopy. The activity of methanol oxidation increased with pH due to better OH species coverage on the electrode surface. At methanol concentration (>1.0 M, there is no change in the oxidation peak current density because of excess methanol at the electrode surface and/or depletion of OH− at the electrode surface. The Pt-Pd/C catalyst shows good stability and the low value of Tafel slope and charge transfer resistance. The enhanced electrocatalytic activity of the electrodes is ascribed to the synergistic effect of higher electrochemical surface area, preferred OH− adsorption, and ad-atom contribution on the alloyed surface.

  6. Synthesis of Pd@Pt Core-shell Nanoparticles based on Photochemical Seed Growth Method and Co-reduction Method and the Electrocatalytic Performance

    Directory of Open Access Journals (Sweden)

    Li Shanshan

    2016-01-01

    Full Text Available A series of Pd@Pt nanoparticles were synthesized based on electrochemical seed growth method and co-reduction method in polyethylene-glycol and acetone solution system. The TEM/HR-TEM and XPS characterization proved that the prepared composite nanoparticles present core-shell structure and analyzed the chemical state of the particles. The electrocatalytic performance of Pd@Pt particles was studied by using the electrochemical workstation. The results showed that the Pd@Pt/C catalyst of different molar ratios of Pd to Pt exhibited preferable catalytic activity and stability for the methanol catalytic oxidation reaction. Among which, the Pd@Pt nanoparticles (Pd:Pt=1:1 prepared by co-reduction method, presented highest catalytic activity, which is 2 times higher than that of Pt/C catalyst. The high catalytic activity produced by the core-shell structure was briefly discussed.

  7. CO Sensing Performance of a Micro Thermoelectric Gas Sensor with AuPtPd/SnO₂ Catalyst and Effects of a Double Catalyst Structure with Pt/α-Al₂O₃.

    Science.gov (United States)

    Goto, Tomoyo; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2015-12-15

    The CO sensing properties of a micro thermoelectric gas sensor (micro-TGS) with a double AuPtPd/SnO₂ and Pt/α-Al₂O₃ catalyst were investigated. While several nanometer sized Pt and Pd particles were uniformly dispersed on SnO₂, the Au particles were aggregated as particles measuring >10 nm in diameter. In situ diffuse reflectance Fourier transform Infrared spectroscopy (DRIFT) analysis of the catalyst showed a CO adsorption peak on Pt and Pd, but no clear peak corresponding to the interaction between CO and Au was detected. Up to 200 °C, CO combustion was more temperature dependent than that of H₂, while H₂ combustion was activated by repeated exposure to H₂ gas during the periodic gas test. Selective CO sensing of the micro-TGS against H₂ was attempted using a double catalyst structure with 0.3-30 wt% Pt/α-Al₂O₃ as a counterpart combustion catalyst. The sensor output of the micro-TGS decreased with increasing Pt content in the Pt/α-Al₂O₃ catalyst, by cancelling out the combustion heat from the AuPtPd/SnO₂ catalyst. In addition, the AuPtPd/SnO₂ and 0.3 wt% Pt/α-Al₂O₃ double catalyst sensor showed good and selective CO detection. We therefore demonstrated that our micro-TGS with double catalyst structure is useful for controlling the gas selectivity of CO against H₂.

  8. Potential of zero free charge of Pd overlayers on Pt(1 1 1)

    International Nuclear Information System (INIS)

    El-Aziz, A.M.; Hoyer, R.; Kibler, L.A.; Kolb, D.M.

    2006-01-01

    Differential capacitance measurements of Pd overlayers on a Pt(1 1 1) electrode in dilute aqueous NaF solutions have been performed as a function of film thickness in order to determine the potential of zero free charge (pzfc). The pzfc of the first, pseudomorphic Pd monolayer on Pt(1 1 1) is -0.21 V versus SCE. By increasing the amount of deposited Pd, a clear shift of the pzfc to more positive values is observed. After deposition of an equivalent of 10 monolayers, the value approaches that of a massive Pd(1 1 1) electrode (-0.12 V versus SCE). The pzfc's for the various Pd coverages are correlated with surface structure information, derived from STM images (R. Hoyer, L.A. Kibler, D.M. Kolb, Electrochim. Acta 49 (2003) 63). Variations in the pzfc are discussed in the context of an electronic modification by the underlying substrate and are compared with corresponding data for Pd overlayers on Au(1 1 1)

  9. Use of Pd-Pt loaded graphene aerogel on nickel foam in direct ethanol fuel cell

    Science.gov (United States)

    Tsang, Chi Him A.; Leung, D. Y. C.

    2018-01-01

    A size customized binder-free bimetallic Pd-Pt loaded graphene aerogel deposited on nickel foam plate (Pd-Pt/GA/NFP) was prepared and used as an electrode for an alkaline direct ethanol fuel cell (DEFC) under room temperature. The effect of fuel concentration and metal composition on the output power density of the DEFC was systematically investigated. Under the optimum fuel concentration, the cell could achieve a value of 3.6 mW cm-2 at room temperature for the graphene electrode with Pd/Pt ratio approaching 1:1. Such results demonstrated the possibility of producing a size customized metal loaded GA/NFP electrode for fuel cell with high performance.

  10. Effect of spin structure transition in IrMn on the CoPd/IrMn perpendicular exchange biased system

    Energy Technology Data Exchange (ETDEWEB)

    Janjua, Muhammad Bilal; Guentherodt, Gernot [II. Physikalisches Institut A, RWTH Aachen University, Aachen (Germany)

    2011-07-01

    The exchange bias (EB) phenomenon is studied in MBE grown Pd(10 nm)/CoPd(x=8,16,30 nm)/IrMn(15 nm)/Pd(4 nm) samples, which exhibit a perpendicular anisotropy of Co22Pd78. These samples are field cooled along the out-of-plane direction and hysteresis loops are measured along both the out-of-plane and in-plane directions. It is observed that there is a transition temperature where the out-of-plane EB becomes greater than the in-plane EB. This behavior of EB is an evidence of the change in the spin structure of the given system, which is also revealed by the magnetization versus temperature measurements of the exchange biased and of the sole IrMn samples. It is found that with increasing temperature there is a spin structure transition in Ir25Mn75 (15nm) related to the 2Q to 3Q transition in the bulk, which is responsible for the increase in out-of-plane EB. A vertical shift in the hysteresis loop is also observed in these exchange biased samples at low temperatures (T<50 K).

  11. Synthesis and structure of Sr{sub 2}Pd{sub 2}In and Sr{sub 2}Pt{sub 2}In

    Energy Technology Data Exchange (ETDEWEB)

    Muts, I. [Inst. fuer Anorganische und Analytische Chemie, Univ. Muenster (Germany); Inorganic Chemistry Dept., Ivan Franko National Univ. of Lviv (Ukraine); Nilges, T.; Rodewald, U.C.; Poettgen, R. [Inst. fuer Anorganische und Analytische Chemie, Univ. Muenster (Germany); Zaremba, V.I. [Inorganic Chemistry Dept., Ivan Franko National Univ. of Lviv (Ukraine)

    2007-12-15

    The new intermetallic compounds Sr{sub 2}Pd{sub 2}In and Sr{sub 2}Pt{sub 2}In were synthesized from the elements in sealed tantalum tubes in a water-cooled sample chamber of an induction furnace. Both indides crystallize with the HT-Pr{sub 2}Co{sub 2}Al-type structure: C2/c, a = 1048.7(2), b = 603.5(2), c = 830.6(1) pm. {beta} = 103.68(2) , wR2 = 0.0492, 743 F{sup 2} values for Sr{sub 2}Pd{sub 2}In; a = 1026.8(2), b = 599.0(1), c = 830.3(2) pm, {beta} = 103.17(1) , wR2 = 0.0666, 885 F{sup 2} values for Sr{sub 2}Pt{sub 2}In with 25 variables per refinement. The shortest interatomic distances occur for the Pd-In (Pt-In) and Pd-Pd (Pt-Pt) contacts. The strontium atoms are embedded in complex three-dimensional polyanionic networks of compositions [Pd{sub 2}In] and [Pt{sub 2}In]. (orig.)

  12. Investigation of the electrochemical behaviour of thermally prepared Pt-IrO2 electrodes

    Directory of Open Access Journals (Sweden)

    Konan Honoré Kondro

    2008-04-01

    Full Text Available Different IrO2 electrodes in which the molar percentage of platinum (Pt varies from 0 %mol Pt to 100 %mol Pt were prepared on titanium (Ti substrate by thermal decomposition techniques. The electrodes were characterized physically (SEM, XPS and electrochemically and then applied to methanol oxidation. The SEM micrographs indicated that the electrodes present different morphologies depending on the amount of platinum in the deposit and the cracks observed on the 0 %mol Pt electrode diminish in size tending to a compact and rough surface for 70 %mol Pt electrode. XPS results indicate good quality of the coating layer deposited on the titanium substrate. The voltammetric investigations in the supporting electrolyte indicate that the electrodes with low amount of platinum (less than 10 %mol Pt behave as pure IrO2. But in the case of electrodes containing more than 40 %mol Pt, the voltammograms are like that of platinum. Electrocatalytic activity towards methanol oxidation was observed with the electrodes containing high amount of platinum. Its oxidation begins at a potential of about 210 mV lower on such electrodes than the pure platinum electrode (100 %mol Pt. But for electrode containing low quantity of Pt, the surface of the coating is essentially composed of IrO2 and methanol oxidation occurs in the domain of water decomposition solely. The increase of the electrocatalytic behaviour of the electrodes containing high amount of Pt towards methanol oxidation is due to the bifunctional behaviour of the electrodes.

  13. Extraction behaviour and mechanism of Pt(iv) and Pd(ii) by liquid-liquid extraction with an ionic liquid [HBBIm]Br.

    Science.gov (United States)

    Liu, Wenhui; Wang, Qi; Zheng, Yan; Wang, Shubin; Yan, Yan; Yang, Yanzhao

    2017-06-06

    In this study, a method of one-step separation and recycling of high purity Pd(ii) and Pt(iv) using an ionic liquid, 1-butyl-3-benzimidazolium bromate ([HBBIm]Br), was investigated. The effects of [HBBIm]Br concentration, initial metal concentration, and loading capacity of [HBBIm]Br were examined in detail. It was observed that [HBBIm]Br was a very effective extractant for selectively extracting Pd(ii) and precipitating Pt(iv). Through selectively extracting Pd(ii) and precipitating Pt(iv), each metal with high purity was separately obtained from mixed Pd(ii) and Pt(iv) multi-metal solution. The method of one-step separation of Pd(ii) and Pt(iv) is simple and convenient. The anion exchange mechanism between [HBBIm]Br and Pt(iv) was proven through Job's method and FTIR and 1 H NMR spectroscopies. The coordination mechanism between [HBBIm]Br and Pd(ii) was demonstrated via single X-ray diffraction and was found to be robust and distinct, as supported by the ab initio quantum-chemical studies. The crystals of the [PdBr 2 ·2BBIm] complex were formed first. Moreover, the influence of the concentrations of hydrochloric acid, sodium chloride, and sodium nitrate on the precipitation of Pt(iv) and extraction of Pd(ii) was studied herein. It was found that only the concentration of H + could inhibit the separation of Pt(iv) because H + could attract the anion PtCl 6 2- ; thus, the exchange (anion exchange mechanism) between the anions PtCl 6 2- and Br - was prevented. However, both the concentration of H + and Cl - can obviously inhibit the extraction of Pd(ii) because H + and Cl - are the reaction products and increasing their concentration can inhibit the progress of the reaction (coordination mechanism).

  14. Synthesis and Spectroscopic Studies of Mixed Ligand Complexes of Pt(II and Pd(II with Ethyl-α-Isonitrosoacetoacetate and Dienes

    Directory of Open Access Journals (Sweden)

    Anita Krishankant Taksande

    2015-12-01

    Full Text Available The mixed ligand complexes of the kind [M(L1 (L2] where M= Pt(II, Pd(II.L1 = primary ligand ethyl-α-isonitrosoacetoacetate derived from reaction between ethyl acetoacetate, acetic acid and sodium nitrite and L2=secondary ligand para-phenyldiamine (PPD are synthesized. All the prepared complexes were identified and confirmed by elemental analysis, molar conductance measurements, and infrared electronic absorption. Their complexes has been made based on elemental analysis, molar conductivity, UV-Vis, FT-IR and 1HNMR spectroscopy and magnetic moment measurements as well as thermal analysis (TGA and DTA. The elemental analysis information recommends that the stoichiometry of the complexes to be 1:2:1. The molar conductance measurements of the complexes indicate their non-electrolytic nature. The infrared spectral information showed the coordination sites of the free ligand with the central metal particle. The electronic absorption spectral information disclosed the existence of an octahedral geometry for Pt(II and Pd(II complexes. DOI: http://dx.doi.org/10.17807/orbital.v7i4.633 

  15. The Effect of PtRuIr Nanoparticle Crystallinity in Electrocatalytic Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Vladimir Linkov

    2013-04-01

    Full Text Available Two structural forms of a ternary alloy PtRuIr/C catalyst, one amorphous and one highly crystalline, were synthesized and compared to determine the effect of their respective structures on their activity and stability as anodic catalysts in methanol oxidation. Characterization techniques included TEM, XRD, and EDX. Electrochemical analysis using a glassy carbon disk electrode for cyclic voltammogram and chronoamperometry were tested in a solution of 0.5 mol L−1 CH3OH and 0.5 mol L−1 H2SO4. Amorphous PtRuIr/C catalyst was found to have a larger electrochemical surface area, while the crystalline PtRuIr/C catalyst had both a higher activity in methanol oxidation and increased CO poisoning rate. Crystallinity of the active alloy nanoparticles has a big impact on both methanol oxidation activity and in the CO poisoning rate.

  16. The synthesis of PdPt/carbon paper via surface limited redox replacement reactions for oxygen reduction reaction

    CSIR Research Space (South Africa)

    Motsoeneng, RG

    2015-09-01

    Full Text Available Surface-limited redox replacement reactions using the electrochemical atomic layer deposition (EC-ALD) technique were used to synthesize PdPt bimetallic electrocatalysts on carbon paper substrate. Electrocatalysts having different Pd:Pt ratio were...

  17. Synthesis of ultrathin face-centered-cubic Au@Pt and Au@Pd core-shell nanoplates from hexagonal-close-packed Au square sheets

    KAUST Repository

    Fan, Zhanxi

    2015-03-17

    The synthesis of ultrathin face-centered-cubic (fcc) Au@Pt rhombic nanoplates is reported through the epitaxial growth of Pt on hexagonal-close-packed (hcp) Au square sheets (AuSSs). The Pt-layer growth results in a hcp-to-fcc phase transformation of the AuSSs under ambient conditions. Interestingly, the obtained fcc Au@Pt rhombic nanoplates demonstrate a unique (101)f orientation with the same atomic arrangement extending from the Au core to the Pt shell. Importantly, this method can be extended to the epitaxial growth of Pd on hcp AuSSs, resulting in the unprecedented formation of fcc Au@Pd rhombic nanoplates with (101)f orientation. Additionally, a small amount of fcc (100)f-oriented Au@Pt and Au@Pd square nanoplates are obtained with the Au@Pt and Au@Pd rhombic nanoplates, respectively. We believe that these findings will shed new light on the synthesis of novel noble bimetallic nanostructures. Phase change: Ultrathin Au@Pt and Au@Pd core-shell nanoplates were prepared from Au square sheets. A phase transformation from hexagonal close-packed (hcp) to face-centered cubic (fcc) is observed upon coating the hcp Au square sheets with Pt or Pd under ambient conditions. The prepared fcc Au@Pt and Au@Pd rhombic nanoplates demonstrate unique (101)f orientation (picture shows a typical fcc Au@Pt rhombic nanoplate). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Facile synthesis of porous Pt-Pd nanospheres supported on reduced graphene oxide nanosheets for enhanced methanol electrooxidation

    Science.gov (United States)

    Li, Shan-Shan; Lv, Jing-Jing; Hu, Yuan-Yuan; Zheng, Jie-Ning; Chen, Jian-Rong; Wang, Ai-Jun; Feng, Jiu-Ju

    2014-02-01

    In this study, a simple, facile, and effective wet-chemical strategy was developed in the synthesis of uniform porous Pt-Pd nanospheres (Pt-Pd NSs) supported on reduced graphene oxide nanosheets (RGOs) under ambient temperature, where octylphenoxypolye thoxyethanol (NP-40) is used as a soft template, without any seed, organic solvent or special instruments. The as-prepared nanocomposites display enhanced electrocatalytic activity and good stability toward methanol oxidation, compared with commercial Pd/C and Pt/C catalysts. This strategy may open a new route to design and prepare advanced electrocatalysts for fuel cells.

  19. Effective-medium calculations for hydrogen in Ni, Pd, and Pt

    DEFF Research Database (Denmark)

    Christensen, Ole Bøssing; Stoltze, Per; Jacobsen, Karsten Wedel

    1990-01-01

    The effective-medium theory is applied to a study of the energetics of the hydrides of Ni, Pd, and Pt, stressing the properties of PdHθ for 0≤θ≤1. The calculated heat of solution and the heat of hydride formation for the three systems agree very well with experiment. We determine the favored...... structure for PdHθ by calculating the total energy and lattice expansion of different configurations. Vibrational frequencies and diffusion barriers of H in Pd are also treated. A simple and transparent physical picture of the hydrogen-metal interaction is developed. From the calculated energetics we make...... a model calculation of the phase diagram of hydrogen in palladium in qualitative agreement with experiment. On this basis we propose a new explanation of the peculiarities of the Pd-H system....

  20. A microwave assisted one-pot route synthesis of bimetallic PtPd alloy cubic nanocomposites and their catalytic reduction for 4-nitrophenol

    Science.gov (United States)

    Zhang, Jian; Gan, Wei; Fu, Xucheng; Hao, Hequn

    2017-10-01

    We herein report a simple, rapid, and eco-friendly chemical route to the one-pot synthesis of bimetallic PtPd alloy cubic nanocomposites under microwave irradiation. During this process, water was employed as an environmentally benign solvent, while dimethylformamide served as a mild reducing agent, and polyvinylpyrrolidone was used as both a dispersant and a stabilizer. The structure, morphology, and composition of the resulting alloy nanocomposites were examined by x-ray diffraction, transmission electron microscopy, and energy dispersive x-ray spectroscopy. A detailed study was then carried out into the catalytic activity of the PtPd nanocomposites with a Pt:Pd molar ratio of 50:50 in the reduction of 4-nitrophenol (4-NP) by sodium borohydride as a model reaction. Compared with pristine Pt and Pd monometallic nanoparticles (PtNPs and PdNPs), the bimetallic PtPd alloy nanocomposites exhibited enhanced catalytic activities and were readily recyclable in the reduction of 4-NP due to synergistic effects.

  1. Exchange bias energy in Co/Pt/IrMn multilayers with perpendicular and in-plane anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Czapkiewicz, M. [Department of Electronics, AGH University of Science and Technology, 30-059 Cracow (Poland)]. E-mail: czapkiew@agh.edu.pl; Stobiecki, T. [Department of Electronics, AGH University of Science and Technology, 30-059 Cracow (Poland); Rak, R. [Department of Electronics, AGH University of Science and Technology, 30-059 Cracow (Poland); Zoladz, M. [Department of Electronics, AGH University of Science and Technology, 30-059 Cracow (Poland); Dijken, S. van [CRANN and School of Physics, Trinity College, Dublin 2 (Ireland)

    2007-09-15

    The magnetization reversal process in perpendicularly biased [Pt/Co]{sub 3}/d{sub Pt} Pt/IrMn and in-plane biased Co/d{sub Pt} Pt/IrMn multilayers with 0nm=Pt}=<1.2nm was investigated using Kerr magnetometry and Kerr microscopy. For the system with in-plane magnetic anisotropy, the exchange bias field decreases monotonically with Pt insertion layer thickness, while its coercivity remains constant. The samples with perpendicular magnetic anisotropy, on the other hand, exhibit maximum exchange bias and minimum coercivity for d{sub Pt}=0.1nm. In both cases, the existence of large exchange bias fields correlates with a high domain density during magnetization reversal. The interface exchange coupling energy is larger for the in-plane biased films than for the perpendicularly biased multilayers.

  2. Green synthesis of Pt-on-Pd bimetallic nanodendrites on graphene via in situ reduction, and their enhanced electrocatalytic activity for methanol oxidation

    International Nuclear Information System (INIS)

    Cai, Zhi-xiong; Liu, Cong-cong; Wu, Geng-huang; Chen, Xiao-mei; Chen, Xi

    2014-01-01

    Graphical abstract: - Highlights: • Porous 3D dendrite-like structure of Pt-on-Pd bimetallic nanostructures supported on graphene were prepared. • The surface of nanostructures was very “clean” because of the surfactant-free formation process and the use of green reagent. • The hetero-nanostructures showed excellent electrocatalytic performance in methanol oxidation. - Abstract: A green synthesis of Pt-on-Pd bimetallic nanodendrites supported on graphene (GPtPdNDs) with a Pd interior and a dendrite-like Pt exterior was achieved using a two-step preparation, mixing graphene and PdCl 4 2− first, then adding PtCl 4 2− and ethanol without any other solvent. The morphology, structure and composition of the thus-prepared GPtPdNDs were characterized by transmission electron microscopy (TEM), high resolution TEM, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. Because no halide ions (refer in particular to Br - , I − ) or surfactant was involved in the synthesis, the prepared GPtPdNDs were directly modified onto a glassy carbon electrode and showed excellent electrocatalytic performance in methanol oxidation without any pretreatments. Moreover, with the special structure of PtPdNDs and the synergetic effects of Pt and Pd and the enhanced electron transfer by graphene, the GPtPdNDs composites exhibited higher electrocatalytic activity and better tolerance to Pt nanoparticles supported on graphene (GPtNPs) and Pt/C for methanol oxidation

  3. Formic Acid Oxidation over Hierarchical Porous Carbon Containing PtPd Catalysts

    Directory of Open Access Journals (Sweden)

    Elena Pastor

    2013-10-01

    Full Text Available The use of high surface monolithic carbon as support for catalysts offers important advantage, such as elimination of the ohmic drop originated in the interparticle contact and improved mass transport by ad-hoc pore design. Moreover, the approach discussed here has the advantage that it allows the synthesis of materials having a multimodal porous size distribution, with each pore size contributing to the desired properties. On the other hand, the monolithic nature of the porous support also imposes new challenges for metal loading. In this work, the use of Hierarchical Porous Carbon (HPC as support for PtPd nanoparticles was explored. Three hierarchical porous carbon samples (denoted as HPC-300, HPC-400 and HPC-500 with main pore size around 300, 400 and 500 nm respectively, are used as porous support. PtPd nanoparticles were loaded by impregnation and subsequent chemical reduction with NaBH4. The resulting material was characterized by EDX, XRD and conventional electrochemical techniques. The catalytic activity toward formic acid and methanol electrooxidation was evaluated by electrochemical methods, and the results compared with commercial carbon supported PtPd. The Hierarchical Porous Carbon support discussed here seems to be promising for use in DFAFC anodes.

  4. Barrier height and interface effect of Pt-n-GaN and Pd-n-GaN Schottky diodes

    International Nuclear Information System (INIS)

    Khan, M.R.H.; Saha, S.L.; Sawaki, N.

    1999-01-01

    Schottky barriers on n-type GaN films by Pt and Pd are fabricated and characterized. A thin Pt or Pd layer is deposited on n-GaN layers to form Schottky contacts in a vacuum below 1x10/sup -6/ Torr. The area of all diodes is 3.46 x 10-4 cm/sup 2/. Several samples of Pt-n GaN and Pd-n GaN were studied. The ideality factor of Pt-n-GaN diode is 1.26 and of Pd-n-GaN is 1.17. The breakdown voltage of Pt-n-GaN and Pd-n-GaN diodes is 21 V and 26 V respectively. In both the cases the leakage current varies between 1x10-9 A and 5x 10-9 A. The Schottky barrier heights (phi/sub B/ ) of Pt-GaN diode is been determined to be 1.02 eV by current voltage (I-V) and 1.07 eV by capacitance (C-V) measurements Also, phi/sub B/ of Pd-GaN diode is determined to be 0.91 eV by I-V and 0.98 eV, by C-V measurements. The departure of the values of the ideality factor is considered to be due to spatial inhomogeneities at the meal semiconductor interface. The difference in the values of phi/sub B/ determined by I-V and C-V measurements is attributed to the deformation of the spatial barrier distribution. (author)

  5. Synthesis and characterization of Pd@M(x)Cu(1-x) (M = Au, Pd, and Pt) nanocages with porous walls and a yolk-shell structure through galvanic replacement reactions.

    Science.gov (United States)

    Xie, Shuifen; Jin, Mingshang; Tao, Jing; Wang, Yucai; Xie, Zhaoxiong; Zhu, Yimei; Xia, Younan

    2012-11-19

    This paper describes the synthesis of Pd@M(x)Cu(1-x) (M = Au, Pd, and Pt) nanocages with a yolk-shell structure through galvanic replacement reactions that involve Pd@Cu core-shell nanocubes as sacrificial templates and ethylene glycol as the solvent. Compared with the most commonly used templates based on Ag, Cu offers a much lower reduction potential (0.34 versus 0.80 V), making the galvanic reaction more easily to conduct, even at room temperature. Our structural and compositional characterizations indicated that the products were hollow inside, and each one of them contained porous M-Cu alloy walls and a Pd cube in the interior. For the Pd@Au(x)Cu(1-x) yolk-shell nanocages, they displayed broad extinction peaks extending from the visible to the near-IR region. Our mechanistic study revealed that the dissolution of the Cu shell preferred to start from the slightly truncated corners and then progressed toward the interior, because the Cu {100} side faces were protected by a surface capping layer of hexadecylamine. This galvanic approach can also be extended to generating other hollow metal nanostructures by using different combinations of Cu nanostructures and salt precursors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The Sticking Probability for Hydrogen on Ni, Pd, and Pt at a Hydrogen pressure of 1 bar

    DEFF Research Database (Denmark)

    Johansson, Martin; Lytken, Ole; Chorkendorff, Ib

    2007-01-01

    A technique for measurements of the sticking probability of hydrogen on metal surfaces at high (ambient) pressure is described. As an example, measurements for Ni, Pd and Pt at a hydrogen pressure of 1 bar and temperatures between 40 and 200 degrees C are presented. The sticking probabilities are......, Pt. The transition between beta- and alpha-phase in the H-Pd system has a significant effect on the activity for Pd....

  7. Facile and Rapid Synthesis of Ultrafine PtPd Bimetallic Nanoparticles and Their High Performance toward Methanol Electrooxidation

    Directory of Open Access Journals (Sweden)

    Tiantian Xia

    2014-01-01

    Full Text Available Uniform and sub-10 nm size bimetallic PtPd nanoparticles (NPs have been synthesized via a simple and facile method without using any surfactants at an ambient temperature. As a green and clean reductive agent, ascorbic acid (AA was employed for the coreduction of K2PtCl4 and K2PdCl4 in aqueous solution. The morphology, composition, and structure of PtPd NPs had been characterized by transmission electron microscopy (TEM, field emission high resolution transmission electron microscopy (FE-HRTEM, energy dispersive spectroscopy (EDS, X-ray diffraction (XRD, and X-ray photoelectron spectroscope (XPS. Comparing with both the monometallic Pt and Pd, the as-prepared alloy nanoparticles show superior electrocatalytic activity and better tolerance against poisoning by intermediates generated during methanol electrooxidation, which makes them a promising electrocatalysts for direct methanol fuel cells (DMFCs. Meanwhile, the green and simple approach could be easily extended to the manufacture of bimetallic or trimetallic alloy nanomaterials.

  8. The Electrochemical Atomic Layer Deposition of Pt and Pd nanoparticles on Ni foam for the electrooxidation of alcohols

    CSIR Research Space (South Africa)

    Modibedi, RM

    2012-10-01

    Full Text Available Electrodeposition of Pt and Pd metal by surface limited redox replacement reactions was performed using the electrochemical atomic layer deposition. Carbon paper and Ni foam were used as substrates for metal deposition. Supported Pt and Pd...

  9. Nonenzymatic sensing of glucose at neutral pH values using a glassy carbon electrode modified with graphene nanosheets and Pt-Pd bimetallic nanocubes

    International Nuclear Information System (INIS)

    Chen, Xiaomei; Tian, Xiaotian; Zhao, Limin; Huang, Zhiyong; Oyama, Munetaka

    2014-01-01

    We report on a nonenzymatic method for the determination of glucose using an electrode covered with graphene nanosheets (GNs) modified with Pt-Pd nanocubes (PtPdNCs). The latter were prepared on GNs by using N,N-dimethylformamide as a bifunctional solvent for the reduction of both metallic precursors and graphene oxide, and for confining the growth of PtPdNCs on the surface. The modified electrode displays strong and sensitive current response to the electrooxidation of glucose, notably at pH 7. The sensitivities increase in the order of Pt 1 Pd 5 NCs< Pt 1 Pd 3 NCs< Pt 5 Pd 1 NCs< Pt 3 Pd 1 NCs< Pt 1 Pd 1 NCs. At an applied potential of +0.25 V, the electrode responds linearly (R = 0.9987) to glucose in up to 24.5 mM concentration, with a sensitivity of 1.4 μA cm −2 M −1 . The sensor is not poisoned by chloride, and not interfered by ascorbic acid, uric acid and p-acetamidophenol under normal physiological conditions. The modified electrode also displays a wide linear range, good stability and fast amperometric response, thereby indicating the potential of the bimetallic materials for nonenzymatic sensing of glucose. (author)

  10. Energy conversion using Pt-Pd/C anode catalyst in direct 2-propanol fuel cell

    Directory of Open Access Journals (Sweden)

    S. S. Mahapatra

    2016-06-01

    Full Text Available The Pt-Pd/C electrocatalyst was synthesized on graphite substrate by the electrochemical codeposition technique. The Physico-chemical characterization of the catalyst was done by SEM, XRD and EDX. The electrochemical characterization of the Pt-Pd/C catalyst for 2-propanol electro-oxidation was studied over a range of 2-propanol concentrations in alkaline medium using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. The activity of 2-propanol oxidation increased with the increase of 2-propanol concentration, at 2-propanol concentration greater than 1.0 M, no change in the oxidation peak current density is because of excess 2-propanol at the electrode surface and/or depletion of OH− at the electrode surface. The Pt-Pd/C catalyst shows good stability and the low value of charge transfer resistance. The enhanced electrocatalytic activity of the electrodes is ascribed to the synergistic effect of higher electrochemical surface area, preferred OH− adsorption and ad-atom contribution on the alloyed surface.

  11. Ternary indides Eu{sub 2}Pd{sub 2}In and Eu{sub 2}Pt{sub 2}In

    Energy Technology Data Exchange (ETDEWEB)

    Muts, Ihor [Inorganic Chemistry Department, Ivan Franko National University of Lviv (Ukraine); Institut fuer Anorganische und Analytische Chemie, Westfaelische Wilhelms-Universitaet Muenster (Germany); Zaremba, Vasyl I. [Inorganic Chemistry Department, Ivan Franko National University of Lviv (Ukraine); Poettgen, Rainer [Institut fuer Anorganische und Analytische Chemie, Westfaelische Wilhelms-Universitaet Muenster (Germany)

    2012-01-15

    The indides Eu{sub 2}Pd{sub 2}In and Eu{sub 2}Pt{sub 2}In were synthesized from the elements in sealed tantalum tubes in an induction furnace. The samples were characterized by powder X-ray diffraction. The structures were refined on the basis of single-crystal X-ray diffractometer data: HT-Pr{sub 2}Co{sub 2}Al type, C2/c, a = 1035.7(2), b = 592.9(1), c = 823.6(2) pm, β = 104.26(1) , wR2 = 0.026, 1075 F{sup 2} values, 25 variables for Eu{sub 2}Pd{sub 2}In and a = 1017.2(2), b = 588.7(1), c = 826.5(1) pm, β = 103.76(1) , wR2 = 0.062, 706 F{sup 2} values, 25 variables for Eu{sub 2}Pt{sub 2}In. The indium atoms have four platinum (palladium) neighbors in strongly distorted tetrahedral coordination at Pt-In and Pd-In distances ranging from 273 to 275 pm. These InPd{sub 4/2} and InPt{sub 4/2} units are condensed via common edges to infinite InPd{sub 2} and InPt{sub 2} chains, which are surrounded by the europium atoms. The chains form the motif of hexagonal rod packing. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Pd@Pt Core–Shell Nanoparticles with Branched Dandelion-like Morphology as Highly Efficient Catalysts for Olefin Reduction

    Science.gov (United States)

    A facile synthesis based on the addition of ascorbic acid to a mixture of Na2PdCl4, K2PtCl6, and Pluronic P123 results in highly branched core–shell nanoparticles (NPs) with a micro–mesoporous dandelion-like morphology comprising Pd core and Pt shell. The slow reduction kinetics ...

  13. Preparation of a Pd-Pt alloy on alumina and its application for a gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Minsoo [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong, Daejeon 305-353 (Korea, Republic of)]. E-mail: minm@kaeri.re.kr; Paek, Seungwoo [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong, Daejeon 305-353 (Korea, Republic of); Ahn, Do-Hee [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong, Daejeon 305-353 (Korea, Republic of); Kim, Kwang-Rag [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong, Daejeon 305-353 (Korea, Republic of); Yim, Sung-Paal [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong, Daejeon 305-353 (Korea, Republic of); Chung, Hongsuk [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong, Daejeon 305-353 (Korea, Republic of)

    2007-08-30

    In this study we attempted to obtain a Pd-Pt alloy on alumina (PPA) by using an impregnation and alcohol reduction method for the purpose of a hydrogen isotopes separation, in which {alpha}-alumina powder was impregnated into an ethanol water (1/1, w/w) solution containing PdCl{sub 2}, PtCl{sub 2}, and polyvinylpyrrolidone (PVP, MW = 10,000). The sample was dried, reduced by hydrogen, and thermally treated at 1073 K. Thus, two kinds of PPA (Pd content 17 and 29 wt%) were achieved. The produced PPA showed a good crystallinity from the XRD analysis and it exhibited an adequate hydrogen desorption isotherm as a packing material for the separation of hydrogen isotopes. GC columns packed with PPA and Cu powder were used for the separation of a 29.2% D{sub 2}-H{sub 2} gas mixture at 303 and 343 K. The experimental result showed a good separation efficiency of the hydrogen isotopes for the GC process. Consequently, the suggested technique for the production of a Pd-Pt alloy on alumina was proven to be successful.

  14. Simple preparations of Pd6Cl12, Pt6Cl12, and Qn[Pt2Cl8+n], n=1, 2 (Q=TBA+, PPN+) and structural characterization of [TBA][Pt2Cl9] and [PPN]2[Pt2Cl10].C7H8.

    Science.gov (United States)

    Dell'Amico, Daniela Belli; Calderazzo, Fausto; Marchetti, Fabio; Ramello, Stefano; Samaritani, Simona

    2008-02-04

    The hexanuclear Pd6Cl12, i.e., the crystal phase classified as beta-PdCl2, was obtained by reacting [TBA]2[Pd2Cl6] with AlCl3 (or FeCl3) in CH2Cl2. The action of AlCl3 on PtCl42-, followed by digestion of the resulting solid in 1,2-C2H4Cl2 (DCE), CHCl3, or benzene, produced Pt6Cl12.DCE, Pt6Cl12.CHCl3, or Pt6Cl12.C6H6, respectively. Treating [TBA]2[PtCl6] with a slight excess of AlCl3 afforded [TBA][Pt2Cl9], whose anion was established crystallographically to be constituted by two "PtCl6" octahedra sharing a face. Dehydration of H2PtCl6.nH2O with SOCl2 gave an amorphous compound closely analyzing as PtCl4, reactive with [Q]Cl in SOCl2 to yield [Q][Pt2Cl9] or [Q]2[Pt2Cl10], depending on the [Q]Cl/Pt molar ratio (Q=TBA+, PPN+). A single-crystal X-ray diffraction study has shown [PPN]2[Pt2Cl10].C7H8 to contain dinuclear anions formed by two edge-sharing PtCl6 octahedra.

  15. Comparison between the Oxygen Reduction Reaction Activity of Pd5Ce and Pt5Ce

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Zheng, Jian; Rizzi, Gian Andrea

    2015-01-01

    A set of electrochemical and X-ray spectroscopy measurements have been used conjointly with density functional theory (DFT) simulations to study the activity and stability of Pd5Ce for the oxygen reduction reaction. A polycrystalline Pd5Ce rod has been selected as a model catalyst to test if resu......-Pd5Ce is more facile, requires less atom rearrangement, than transformation from Pt5Ce to Pt3Ce, which might explain the kinetic stability of Pt5Ce at low temperatures....

  16. Phase relations in the metal-rich portions of the phase system Pt-Ir-Fe-S at 1000 degrees C and 1100 degrees C

    DEFF Research Database (Denmark)

    Makovicky, E.; Karup-Møller, Sven

    2000-01-01

    Phase relations in the S-poor portions of the dry condensed Pt-Ir-Fe-S system were determined at 1000 degrees and 1100 degreesC with a particular emphasis on delineation of the solid solubility fields of the Pt-Ir-Fe alloys. At both temperatures, a broad field of gamma (Ir,Fe,Pt) alloy coexists...... with gamma-(Pt,Fe), Pt3Fe and PtFe which dissolve respectively at least 5.1, 29.3 and 24.0 at.% Ir at 1100 degreesC (2.2, 23.6 and less than or equal to 17.2 at.% Ir at 1000 degreesC). Gaps between the nearly Ir-free Pt-Fe alloys gamma (Pt,Fe), Pt3Fe s.s., PtFe s.s. and gamma (Fe,Pt) were estimated as 20......-23 at.%, 40-42 at.% and 54.2-similar to 57 at.% Fe at 1100 degreesC (18-23, 39.5-42.5 and 59-62 at.% Fe at 1000 degreesC). The first gap agrees with data from natural phases by Cabri et ni. (1996). The Fe-rich sulphide melt dissolves only traces of Pt and Ir; Fe1-xS dissolves up to 5.8 at.% Ir at 1100...

  17. Improving electromechanical output of IPMC by high surface area Pd-Pt electrodes and tailored ionomer membrane thickness

    Directory of Open Access Journals (Sweden)

    Viljar Palmre

    2014-04-01

    Full Text Available In this study, we attempt to improve the electromechanical performance of ionic polymer–metal composites (IPMCs by developing high surface area Pd-Pt electrodes and tailoring the ionomer membrane thickness. With proper electroless plating techniques, a high dispersion of palladium particles is achieved deep in the ionomer membrane, thereby increasing notably the interfacial surface area of electrodes. The membrane thickness is increased using 0.5 and 1 mm thick ionomer films. For comparison, IPMCs with the same ionomer membranes, but conventional Pt electrodes, are also prepared and studied. The electromechanical, mechanoelectrical, electrochemical and mechanical properties of different IPMCs are characterized and discussed. Scanning electron microscopy-energy dispersive X-ray (SEM-EDS is used to investigate the distribution of deposited electrode metals in the cross section of Pd-Pt IPMCs. Our experiments demonstrate that IPMCs assembled with millimeter thick ionomer membranes and newly developed Pd-Pt electrodes are superior in mechanoelectrical transduction, and show significantly higher blocking force compared to conventional type of IPMCs. The blocking forces of more than 0.3 N were measured at 4V DC input, exceeding the force output of typical Nafion® 117-based Pt IPMCs more than two orders of magnitude. The newly designed Pd-Pt IPMCs can be useful in more demanding applications, e.g., in biomimetic underwater robotics, where high stress and drag forces are encountered.

  18. CO Sensing Performance of a Micro Thermoelectric Gas Sensor with AuPtPd/SnO2 Catalyst and Effects of a Double Catalyst Structure with Pt/α-Al2O3

    Science.gov (United States)

    Goto, Tomoyo; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2015-01-01

    The CO sensing properties of a micro thermoelectric gas sensor (micro-TGS) with a double AuPtPd/SnO2 and Pt/α-Al2O3 catalyst were investigated. While several nanometer sized Pt and Pd particles were uniformly dispersed on SnO2, the Au particles were aggregated as particles measuring >10 nm in diameter. In situ diffuse reflectance Fourier transform Infrared spectroscopy (DRIFT) analysis of the catalyst showed a CO adsorption peak on Pt and Pd, but no clear peak corresponding to the interaction between CO and Au was detected. Up to 200 °C, CO combustion was more temperature dependent than that of H2, while H2 combustion was activated by repeated exposure to H2 gas during the periodic gas test. Selective CO sensing of the micro-TGS against H2 was attempted using a double catalyst structure with 0.3–30 wt% Pt/α-Al2O3 as a counterpart combustion catalyst. The sensor output of the micro-TGS decreased with increasing Pt content in the Pt/α-Al2O3 catalyst, by cancelling out the combustion heat from the AuPtPd/SnO2 catalyst. In addition, the AuPtPd/SnO2 and 0.3 wt% Pt/α-Al2O3 double catalyst sensor showed good and selective CO detection. We therefore demonstrated that our micro-TGS with double catalyst structure is useful for controlling the gas selectivity of CO against H2. PMID:26694397

  19. Pd-Pt loaded graphene aerogel on nickel foam composite as binder-free anode for a direct glucose fuel cell unit

    Science.gov (United States)

    Tsang, Chi Him A.; Leung, D. Y. C.

    2017-09-01

    Fabrication of electrocatalyst for direct glucose fuel cell (DGFC) operation involves destructive preparation methods with the use of stabilizer like binder, which may cause activity depreciation. Binder-free electrocatalytic electrode becomes a possible solution to the above problem. Binder-free bimetallic Pd-Pt loaded graphene aerogel on nickel foam plates with different Pd/Pt ratios (1:2.32, 1:1.62, and 1:0.98) are successfully fabricated through a green one-step mild reduction process producing a Pd-Pt/GO/nickel form plate (NFP) composite. Anode with the binder-free electrocatalysts exhibit a strong activity in a batch type DGFC unit under room temperature. The effects of glucose and KOH concentrations, and the Pd/Pt ratios of the electrocatalyst on the DGFC performance are also studied. Maximum power density output of 1.25 mW cm-2 is recorded with 0.5 M glucose/3 M KOH as the anodic fuel, and Pd1Pt0.98/GA/NFP as catalyst, which is the highest obtained so far among other types of electrocatalyst.

  20. Synthesis and characterization of Pd-on-Pt and Au-on-Pt bimetallic nanosheaths on multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Wang Shuangyin; Jiang, San Ping; Wang Xin

    2011-01-01

    The authors have successfully synthesized Pd-on-Pt (thickness: 12 nm) and Au-on-Pt bimetallic nanosheaths on multiwalled carbon nanotubes (MWCNTs) via a seed-mediated growth approach. Pt nanoparticles as seeds were pre-deposited on MWCNTs with uniform distribution followed by the successive seed-mediated growth of metal atoms reduced by a weak reducing agent, ascorbic acid. The essential role of pre-deposited nanoseed particles on MWCNTs was demonstrated. The as-prepared materials were characterization by transition electron microscopy, energy-dispersive X-ray spectroscopy, and element mapping tools. The current strategy extends the classical seed-mediated growth method to prepare bimetallic nanosheath on MWCNT support.

  1. Iridium-decorated palladium-platinum core-shell catalysts for oxygen reduction reaction in proton exchange membrane fuel cell.

    Science.gov (United States)

    Wang, Chen-Hao; Hsu, Hsin-Cheng; Wang, Kai-Ching

    2014-08-01

    Carbon-supported Pt, Pd, Pd-Pt core-shell (Pt(shell)-Pd(core)/C) and Ir-decorated Pd-Pt core-shell (Ir-decorated Pt(shell)-Pd(core)/C) catalysts were synthesized, and their physical properties, electrochemical behaviors, oxygen reduction reaction (ORR) characteristics and proton exchange membrane fuel cell (PEMFC) performances were investigated herein. From the XRD patterns and TEM images, Ir-decorated Pt(shell)-Pd(core)/C has been confirmed that Pt was deposited on the Pd nanoparticle which had the core-shell structure. Ir-decorated Pt(shell)-Pd(core)/C has more positive OH reduction peak than Pt/C, which is beneficial to weaken the binding energy of Pt-OH during the ORR. Thus, Ir-decorated Pt(shell)-Pd(core)/C has higher ORR activity than Pt/C. The maximum power density of H2-O2 PEMFC using Ir-decorated Pt(shell)-Pd(core)/C is 792.2 mW cm(-2) at 70°C, which is 24% higher than that using Pt/C. The single-cell accelerated degradation test of PEMFC using Ir-decorated Pt(shell)-Pd(core)/C shows good durability by the potential cycling of 40,000 cycles. This study concludes that Ir-decorated Pt(shell)-Pd(core)/C has the low Pt content, but it can facilitate the low-cost and high-efficient PEMFC. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Formation of hard magnetic L1{sub 0}-FePt/FePd monolayers from elemental multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Nam Hoon

    2007-06-18

    In this thesis, ordered L1{sub 0}-FePt and FePd films of different nominal compositions are prepared from Fe/Pt and Fe/Pd multilayers by annealing. In case of the L1{sub 0}-FePt films the composition of the films is modified by changing the individual elemental layer thicknesses in the multilayer precursors. This simple variation of the composition is the great advantage of the multilayer approach compared to sputtering single alloy layer from an alloy target. The formation mechanism of the fct phase from the multilayers and the microstructural properties are investigated. The characteristics of the hysteresis loop (coercivity {mu}{sub 0}H{sub c}, remanence J{sub r}) and of the intrinsic magnetic properties (anisotropy constant K{sub l}, spontaneous polarization J{sub s}, exchange constant A) of the ordered L1{sub 0}-FePt and FePd films are studied. The effects of the composition of the L1{sub 0}-FePt films on the microstructural and magnetic properties are investigated. The microstructure of these ordered L1{sub 0}-FePt films are then correlated to the magnetic properties with microstructural parameters by investigating the temperature dependence of the coercivity. (orig.)

  3. Chemonuclear studies for identification for new production routes for the therapeutically useful radionuclides {sup 140}Nd, {sup 192}Ir, {sup 191}Pt, {sup 193m}Pt, und {sup 195m}Pt; Kernchemische Studien zur Entwicklung neuerer Produktionsverfahren fuer die therapierelevanten Radionuklide {sup 140}Nd, {sup 192}Ir, {sup 191}Pt, {sup 193m}Pt, und {sup 195m}Pt

    Energy Technology Data Exchange (ETDEWEB)

    Hilgers, K.

    2005-12-15

    New production routes for the therapeutically useful radionuclides {sup 140}Nd, {sup 192}Ir, {sup 191}Pt, {sup 193m}Pt and {sup 195m}Pt were investigated. Cross section data were measured using the stacked-foil technique and compared with theoretical calculations. A production method for the platinum nuclides was developed. The {sup 141}Pr(p, 2n){sup 140}Nd and {sup nat}Ce({sup 3}He, xn){sup 140}Nd reactions were investigated for production of {sup 140}Nd. Cross section data of nuclear reactions leading to the side products {sup 141}Nd, {sup 139}Nd and {sup 139}Ce could also be achieved. The experimental data were compared with theoretical calculations using the code ALICE-IPPE. A comparison of the calculated thick target yields showed that the {sup 141}Pr(p, 2n){sup 140}Nd reaction gives a higher yield. The {sup 192}Os(p, n){sup 192}Ir reaction was examined in the context of the production of {sup 192}Ir. Cross section data were determined and compared with theoretical calculations using the codes ALICE-IPPE and EMPIRE II. The yield of this reaction was compared with the yield of the reactor production of this nuclide. The reactor production seems to be more suitable because of a higher purity and yield. Cross section data were measured for the {sup 192}Os({alpha}, n){sup 195m}Pt, {sup 192}Os({alpha}, 3n){sup 193m}Pt and {sup 192}Os({sup 3}He, 4n){sup 191}Pt reactions. The activity of {sup 193m}Pt and {sup 195m}Pt was determined by X-ray spectroscopy after a chemical separation procedure. The ALICE-IPPE code was found to be inappropriate to reproduce the experimental values. The calculated yields were compared with the yields of other reactions, especially the reactor production of {sup 195m}Pt. The yield of the {sup 192}Os({alpha}, n){sup 195m}Pt reaction is lower compared to the yield of the reactor production, but offers lower target costs and higher specific activity. A production method for {sup 193m}Pt and {sup 195m}Pt was developed. Batch yields of 0.9 MBq

  4. Bimetallic magnetic PtPd-nanoparticles as efficient catalyst for PAH removal from liquid media

    Science.gov (United States)

    Zanato, A. F. S.; Silva, V. C.; Lima, D. A.; Jacinto, M. J.

    2017-11-01

    Monometallic Pd- and bimetallic PtPd-nanoparticles supported on a mesoporous magnetic magnetite@silica matrix resembling a core-shell structure (Fe3O4@mSiO2) have been fabricated. The material was characterized by transmission electron microscope (TEM), high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM), X-ray photoelectron spectra (XPS), energy dispersive spectroscopy (EDS) and inductively coupled plasma mass spectrometry (ICP-MS). The catalysts were applied in the removal of anthracene from liquid phase via catalytic hydrogenation. It was found that anthracene as a model compound could be completely converted into the partially hydrogenated species by the monometallic and bimetallic solids. However, during the recycling study the bimetallic material (Fe3O4@mSiO2PtPd-) showed an enhanced activity towards anthracene removal compared with the monometallic materials. A single portion of the PtPd-based catalyst can be used up to 11 times in the hydrogenation of anthracene under mild conditions (6 atm of H2, 75 °C, 20 min). Thanks to the presence of a dense magnetic core, the catalysts were capable of responding to an applied external magnetic field and once the reaction was completed, catalyst/product separation was straightforward.

  5. Recent advances in platinum monolayer electrocatalysts for oxygen reduction reaction: Scale-up synthesis, structure and activity of Pt shells on Pd cores

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, K., E-mail: ksasaki@bnl.go [Brookhaven National Laboratory, Chemistry Department, Upton, NY 11973 (United States); Wang, J.X. [Brookhaven National Laboratory, Chemistry Department, Upton, NY 11973 (United States); Naohara, H. [Toyota Motor Corporation, Susono 410-1193 (Japan); Marinkovic, N. [University of Delaware, Department of Chemical Engineering, Newark, DE 19716 (United States); More, K. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Inada, H. [Hitachi High Technologies America, Pleasanton, CA 94588 (United States); Adzic, R.R., E-mail: adzic@bnl.go [Brookhaven National Laboratory, Chemistry Department, Upton, NY 11973 (United States)

    2010-03-01

    We have established a scale-up synthesis method to produce gram-quantities of Pt monolayer electrocatalysts. The core-shell structure of the Pt/Pd/C electrocatalyst has been verified using the HAADF-STEM Z-contrast images, STEM/EELS, and STEM/EDS line profile analysis. The atomic structure of this electrocatalyst and formation of a Pt monolayer on Pd nanoparticle surfaces were examined using in situ EXAFS. The Pt mass activity of the Pt/Pd/C electrocatalyst for ORR is considerably higher than that of commercial Pt/C electrocatalysts. The results with Pt monolayer electrocatalysts may significantly impact science of electrocatalysis and fuel-cell technology, as they have demonstrated an exceptionally effective way of using Pt that can resolve problems of other approaches, including electrocatalysts' inadequate activity and high Pt content.

  6. Recent advances in platinum monolayer electrocatalysts for oxygen reduction reaction: Scale-up synthesis, structure and activity of Pt shells on Pd cores

    International Nuclear Information System (INIS)

    Sasaki, K.; Wang, J.X.; Naohara, H.; Marinkovic, N.; More, K.; Inada, H.; Adzic, R.R.

    2010-01-01

    We have established a scale-up synthesis method to produce gram-quantities of Pt monolayer electrocatalysts. The core-shell structure of the Pt/Pd/C electrocatalyst has been verified using the HAADF-STEM Z-contrast images, STEM/EELS, and STEM/EDS line profile analysis. The atomic structure of this electrocatalyst and formation of a Pt monolayer on Pd nanoparticle surfaces were examined using in situ EXAFS. The Pt mass activity of the Pt/Pd/C electrocatalyst for ORR is considerably higher than that of commercial Pt/C electrocatalysts. The results with Pt monolayer electrocatalysts may significantly impact science of electrocatalysis and fuel-cell technology, as they have demonstrated an exceptionally effective way of using Pt that can resolve problems of other approaches, including electrocatalysts' inadequate activity and high Pt content.

  7. Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Changwei; Cheng, Liqiang; Liu, Yingliang [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Shen, Peikang [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2007-05-15

    Noble metal (Pt, Pd) electrocatalysts supported on carbon microspheres (CMS) are used for methanol and ethanol oxidation in alkaline media. The results show that noble metal electrocatalysts supported on carbon microspheres give better performance than that supported on carbon black. It is well known that palladium is not a good electrocatalyst for methanol oxidation, but it shows excellently higher activity and better steady-state electrolysis than Pt for ethanol electrooxidation in alkaline media. The results show a synergistic effect by the interaction between Pd and carbon microspheres. The Pd supported on carbon microspheres in this paper possesses excellent electrocatalytic properties and may be of great potential in direct ethanol fuel cells. (author)

  8. Exploring the metal coordination properties of the pyrimidine part of purine nucleobases: isomerization reactions in heteronuclear Pt(II)/Pd(II) of 9-methyladenine.

    Science.gov (United States)

    Ibáñez, Susana; Albertí, Francisca M; Sanz Miguel, Pablo J; Lippert, Bernhard

    2011-10-17

    The synthesis and characterization of three heteronuclear Pt(2)Pd(2) (4, 5) and PtPd(2) (6) complexes of the model nucleobase 9-methyladenine (9-MeA) is reported. The compounds were prepared by reacting [Pt(NH(3))(3)(9-MeA-N7)](ClO(4))(2) (1) with [Pd(en)(H(2)O)(2)](ClO(4))(2) at different ratios r between Pt and Pd, with the goal to probe Pd(II) binding to any of the three available nitrogen atoms, N1, N3, N6 or combinations thereof. Pd(II) coordination occurs at N1 and at the deprotonated N6 positions, yet not at N3. 4 and 5 are isomers of [{(en)Pd}(2){N1,N6-9-MeA(-)-N7)Pt(NH(3))(3)}(2)](ClO(4))(6)·nH(2)O, with a head-head orientation of the two bridging 9-MeA(-) ligands in 4 and a head-tail orientation in 5. 6 is [{(en)Pd}(2)(OH)(N1,N6-9MeA(-)-N7)Pt(NH(3))(3)](ClO(4))(4)·4H(2)O, hence a condensation product between [Pt(NH(3))(3)(9-MeA-N7)](2+) and a μ-OH bridged dinuclear (en)Pd-OH-Pd(en) unit, which connects the N1 and N6 positions of 9-MeA(-) in an intramolecular fashion. 4 and 5, which slowly interconvert in aqueous solution, display distinct structural differences such as significantly different intramolecular Pd···Pd contacts (3.124 0(16) Å in 4; 2.986 6(14) Å in 5), among others. Binding of (en)Pd(II) to the exocyclic N6 atom in 4 and 5 is accompanied by a large movement of Pd(II) out of the 9-MeA(-) plane and a trend to a further shortening of the C6-N6 bond as compared to free 9-MeA. The packing patterns of 4 and 5 reveal substantial anion-π interactions.

  9. Significance of β-dehydrogenation in ethanol electro-oxidation on platinum doped with Ru, Rh, Pd, Os and Ir.

    Science.gov (United States)

    Sheng, Tian; Lin, Wen-Feng; Hardacre, Christopher; Hu, P

    2014-07-14

    In the exploration of highly efficient direct ethanol fuel cells (DEFCs), how to promote the CO2 selectivity is a key issue which remains to be solved. Some advances have been made, for example, using bimetallic electrocatalysts, Rh has been found to be an efficient additive to platinum to obtain high CO2 selectivity experimentally. In this work, the mechanism of ethanol electrooxidation is investigated using the first principles method. It is found that CH3CHOH* is the key intermediate during ethanol electrooxidation and the activity of β-dehydrogenation is the rate determining factor that affects the completeness of ethanol oxidation. In addition, a series of transition metals (Ru, Rh, Pd, Os and Ir) are alloyed on the top layer of Pt(111) in order to analyze their effects. The elementary steps, α-, β-C-H bond and C-C bond dissociations, are calculated on these bimetallic M/Pt(111) surfaces and the formation potential of OH* from water dissociation is also calculated. We find that the active metals increase the activity of β-dehydrogenation but lower the OH* formation potential resulting in the active site being blocked. By considering both β-dehydrogenation and OH* formation, Ru, Os and Ir are identified to be unsuitable for the promotion of CO2 selectivity and only Rh is able to increase the selectivity of CO2 in DEFCs.

  10. Rapid, general synthesis of PdPt bimetallic alloy nanosponges and their enhanced catalytic performance for ethanol/methanol electrooxidation in an alkaline medium.

    Science.gov (United States)

    Zhu, Chengzhou; Guo, Shaojun; Dong, Shaojun

    2013-01-14

    We have demonstrated a rapid and general strategy to synthesize novel three-dimensional PdPt bimetallic alloy nanosponges in the absence of a capping agent. Significantly, the as-prepared PdPt bimetallic alloy nanosponges exhibited greatly enhanced activity and stability towards ethanol/methanol electrooxidation in an alkaline medium, which demonstrates the potential of applying these PdPt bimetallic alloy nanosponges as effective electrocatalysts for direct alcohol fuel cells. In addition, this simple method has also been applied for the synthesis of AuPt, AuPd bimetallic, and AuPtPd trimetallic alloy nanosponges. The as-synthesized three-dimensional bimetallic/trimetallic alloy nanosponges, because of their convenient preparation, well-defined sponge-like network, large-scale production, and high electrocatalytic performance for ethanol/methanol electrooxidation, may find promising potential applications in various fields, such as formic acid oxidation or oxygen reduction reactions, electrochemical sensors, and hydrogen-gas sensors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Martensitic transformation in Heusler alloys Mn2YIn (Y=Ni, Pd and Pt): Theoretical and experimental investigation

    International Nuclear Information System (INIS)

    Luo, Hongzhi; Liu, Bohua; Xin, Yuepeng; Jia, Pengzhong; Meng, Fanbin; Liu, Enke; Wang, Wenhong; Wu, Guangheng

    2015-01-01

    The martensitic transformation and electronic structure of Heusler alloys Mn 2 YIn (Y=Ni, Pd, Pt) have been investigated by both first-principles calculation and experimental investigation. Theoretical calculation reveals that, the energy difference ΔE between the tetragonal martensitic phase and cubic austenitic phase increases with Y varying from Ni to Pt in Mn 2 YIn. Thus a structural transition from cubic to tetragonal is most likely to happen in Heusler alloy Mn 2 PtIn. A single Heusler phase can be obtained in both Mn 2 PtIn and Mn 2 PdIn. A martensitic transformation temperature of 615 K has been identified in Mn 2 PtIn. And in Mn 2 PdIn, the austenitic phase is stable and no martensitic transformation is observed till 5 K. This indicates there may exist a positive relation between ΔE and martensitic transformation temperature. Calculated results show that Mn 2 YIn are all ferrimagnets in both austenitic and martensitic phases. The magnetic properties are mainly determined by the antiparallel aligned Mn spin moments. These findings can help to develop new FSMAs with novel properties. - Highlights: • Positive relation between ΔE and martensitic transformation temperature has been observed. • Heusler alloy Mn 2 PdIn has been synthesized successfully and investigated. • Martensitic transformation in Heusler alloys can be predicted by first -principles calculations

  12. Efficiency of bimetallic PtPd on polydopamine modified on various carbon supports for alcohol oxidations

    Science.gov (United States)

    Pinithchaisakula, A.; Ounnunkad, K.; Themsirimongkon, S.; Promsawan, N.; Waenkaew, P.; Saipanya, S.

    2017-02-01

    In this work, the preparation, characterization, and electrocatalytic analysis of the catalysts on various carbon substrates for direct alcohol fuel cells were studied. Selected carbons were modified with/without polydopamine (labelled as PDA-C and C) and further metal electrodeposited incorporated onto the glassy carbon (labelled as 5Pt1Pd/PDA-C and 5Pt1Pd/C). Four various carbon materials were used e.g. graphite (G), carbon nanotube (CNT), graphene (GP) and graphene oxide (GO) and the carbons were modified with PDA denoted as PDA-G, PDA-CNT, PDA-GP and PDA-GO, respectively. The transmission electron microscopy (TEM) and scanning electron microscopy (SEM) experimental observation showed narrow size distribution of metal anchored on the PDA-C and C materials. Chemical compositions and oxidation states of the catalysts were determined by X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX). The catalytic performances for small organic electro-oxidation (e.g. methanol and ethanol) were measured by cyclic voltammetry (CV). Among different PDA-C and C catalysts, monometallic Pt showed less activity than the bimetallic catalysts. Among catalysts with PDA, the 5Pt1Pd/PDA-GO catalyst facilitated methanol and ethanol oxidations with high oxidation currents and If/Ib value and stability with low potentials while among catalysts without PDA, the 5Pt1Pd/CNT provides highest activity and stability. It was found that the catalysts with PDA provided high activity and stability than the catalysts without PDA. The improved catalytic performance of the prepared catalysts could be related to the higher active surface area from polymer modification and bimetallic catalyst system in the catalyst composites.

  13. Sintering of oxide-supported Pt and Pd nanoparticles in air studied by in situ TEM

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose

    This thesis presents a fundamental study of the sintering of supported nanoparticles in relation to diesel oxidation catalysts. The sintering of supported nanoparticles is an important challenge in relation to this catalyst, as well as many other catalyst systems, and a fundamental understanding...... of Pt, Pd and bimetallic Pt-Pd nanoparticles supported on a flat and homogeneous Al2O3 or SiO2 surface. By using in situ TEM on the planar model catalysts it was possible to directly monitor the detailed dynamical changes of the individual nanoparticles during exposure to oxidizing conditions...

  14. Variations of color with alloying elements in Pd-free Au-Pt-based high noble dental alloys

    International Nuclear Information System (INIS)

    Shiraishi, Takanobu; Takuma, Yasuko; Miura, Eri; Fujita, Takeshi; Hisatsune, Kunihiro

    2007-01-01

    The effects of alloying addition of a small amount of base metals (In, Sn, Fe, Zn) on color variations in Pd-free Au-Pt-based high noble dental alloys were investigated in terms of rectilinear and polar color coordinates. The ternary Au-Pt-X (X = In, Sn, Fe, Zn) and quaternary Au-Pt-In-Y (Y = Sn, Fe, Zn) alloys were prepared from high purity component metals. The amount of alloying base metals, X and Y, were restricted up to 2 at.%. The alloying addition of a small amount of Fe, In, Sn, to a binary Au-10 at.% Pt alloy (referred to as AP10) effectively increased chroma, C *. On the other hand, the addition of Zn to the parent alloy AP10 did not change color coordinates greatly. The increase in chroma in the present Au-Pt-based high noble alloys was attributed to the increase in the slope of spectral reflectance curve at its absorption edge near 515 nm. It was found that the addition of a small amount of Fe to the parent alloy AP10 markedly increased lightness, L *, and the addition of Sn gave a very light tint of red to the parent alloy. Although red-green chromaticity index a * contributed to chroma to some extent, contribution of yellow-blue chromaticity index b * was much greater in determining chroma in this Pd-free Au-Pt-based multi-component alloys. The present results are expected to be valuable in case color is to be taken into account in designing Pd-free Au-Pt-based high noble dental alloys

  15. Variations of color with alloying elements in Pd-free Au-Pt-based high noble dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, Takanobu [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan)]. E-mail: siraisi@nagasaki-u.ac.jp; Takuma, Yasuko [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan); Miura, Eri [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan); Fujita, Takeshi [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan); Hisatsune, Kunihiro [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan)

    2007-06-15

    The effects of alloying addition of a small amount of base metals (In, Sn, Fe, Zn) on color variations in Pd-free Au-Pt-based high noble dental alloys were investigated in terms of rectilinear and polar color coordinates. The ternary Au-Pt-X (X = In, Sn, Fe, Zn) and quaternary Au-Pt-In-Y (Y = Sn, Fe, Zn) alloys were prepared from high purity component metals. The amount of alloying base metals, X and Y, were restricted up to 2 at.%. The alloying addition of a small amount of Fe, In, Sn, to a binary Au-10 at.% Pt alloy (referred to as AP10) effectively increased chroma, C *. On the other hand, the addition of Zn to the parent alloy AP10 did not change color coordinates greatly. The increase in chroma in the present Au-Pt-based high noble alloys was attributed to the increase in the slope of spectral reflectance curve at its absorption edge near 515 nm. It was found that the addition of a small amount of Fe to the parent alloy AP10 markedly increased lightness, L *, and the addition of Sn gave a very light tint of red to the parent alloy. Although red-green chromaticity index a * contributed to chroma to some extent, contribution of yellow-blue chromaticity index b * was much greater in determining chroma in this Pd-free Au-Pt-based multi-component alloys. The present results are expected to be valuable in case color is to be taken into account in designing Pd-free Au-Pt-based high noble dental alloys.

  16. Magnetization dynamics of perpendicular exchange-biased (Pt/Co)-Pt-IrMn multilayers studied by MOKE microscopy and magnetometry

    Energy Technology Data Exchange (ETDEWEB)

    Czapkiewicz, M.; Stobiecki, T.; Rak, R.; Zoladz, M.; Mietniowski, P. [Department of Electronics, AGH University of Science and Technology, 30-059 Krakow (Poland); Dijken, S. van [SFI Trinity Nanoscience Laboratory, Physics Department, Trinity College, Dublin 2 (Ireland)

    2006-01-01

    In this paper the dynamics of the magnetization reversal process in perpendicularly biased [20 Aa Pt/5 Aa Co]{sub 3}/t Aa Pt/100 Aa IrMn/20 Aa Pt multilayers with different Pt insertion layer thickness (0 Aa{<=}t{<=}12 Aa) is studied. The insertion of 1 Aa thick Pt enhances the exchange bias field (H{sub ex}) and for t>3 Aa H{sub ex} decreases exponentially with increasing Pt layer thickness. We show by magnetization relaxation measurements and direct observation of magnetic domains that magnetization reversal takes place by the nucleation of isolated cylindrical domains with a different nucleation site density in the forward and backward branches of the hysteresis loop. All the results were quantitatively analyzed using the Fatuzzo model for the dynamics of domain reversal processes. The activation energies for magnetization reversal by domain nucleation and domain propagation were determined. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Carbon supported Pd-Co-Mo alloy as an alternative to Pt for oxygen reduction in direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Ch. Venkateswara [National Centre for Catalysis Research, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, TN (India); Viswanathan, B., E-mail: bvnathan@acer.iitm.ernet.i [National Centre for Catalysis Research, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, TN (India)

    2010-03-01

    Carbon black (CDX975) supported Pd and Pd-Co-Mo alloy nanoparticles are prepared by the reduction of metal precursors with hydrazine in reverse microemulsion of water/Triton-X-100/propanol-2/cyclohexane. The as-synthesized Pd-Co-Mo/CDX975 is heat treated at 973, 1073 and 1173 K to promote alloy formation. The prepared materials are characterized by powder XRD and EDX. Face-centred cubic structure of Pd is evident from XRD. The chemical composition of the respective elements in the catalysts is evaluated from the EDX analysis and observed that it is in good agreement with initial metal precursor concentrations. Oxygen reduction measurements performed by linear sweep voltammetry indicate the good catalytic activity of Pd-Co-Mo alloys compared to Pd. This is due to the suppression of (hydr)oxy species on Pd surface by the presence of alloying elements, Co and Mo. Among the investigated catalysts, heat-treated Pd-Co-Mo/CDX975 at 973 K exhibited good ORR activity compared to the catalysts heat treated at 1073 and 1173 K. This is due to the small crystallite size and high surface area. Rotating disk electrode (RDE) measurements indicated the comparable ORR activity of heat-treated Pd-Co-Mo/CDX975 at 973 K with that of commercial Pt/C. Kinetic analysis reveals that the ORR on Pd-Co-Mo/CDX975 follows the four-electron pathway leading to water. Moreover, Pd-Co-Mo/CDX975 exhibited substantially higher ethanol tolerance during the ORR than Pt/C. Good dispersion of metallic nanoparticles on the carbon support is observed from HRTEM images. Single-cell direct ethanol fuel cell tests indicated the comparable performance of Pd-Co-Mo/CDX975 with that of commercial Pt/C. Stability under DEFC operating conditions for 50 h indicated the good stability of Pd-Co-Mo/CDX975 compared with that of Pt/C.

  18. Fabrication of catalytically active Au/Pt/Pd trimetallic nanoparticles by rapid injection of NaBH4

    International Nuclear Information System (INIS)

    Zhang, Haijun; Lu, Lilin; Cao, Yingnan; Du, Shuang; Cheng, Zhong; Zhang, Shaowei

    2014-01-01

    Graphical abstract: The synthesis and characterization of 2.0 nm-diameter Au/Pt/Pd nanoparticles are reported. The catalytic activity for glucose oxidation of the nanoparticles is several times higher than that of Au nanoparticles with nearly same size. - Highlights: • PVP-protected Au/Pt/Pd trimetallic nanoparticles (TNPs) of 2.0 nm in diameter were prepared. • The catalytic activity of TNPs is several times higher than that of Au nanoparticles. • Negatively charged Au atoms in the TNPs were confirmed by DFT calculation. - Abstract: Au/Pt/Pd trimetallic nanoparticles (TNPs) with an alloyed structure and an average diameter of about 2.0 nm were prepared via reducing the corresponding ions with rapidly injected NaBH 4 , and characterized by UV–vis, TEM and HR-TEM. The catalytic activity of as-prepared TNPs for the aerobic glucose oxidation is several times higher than that of Au monometallic nanoparticles with about the same average size, which could be attributed to the catalytically active sites provided by the negatively charged Au atoms as a result of the electron donation from the neighboring Pd atoms. This was well supported by the electron density calculations based on the density functional theory

  19. Adsorption of HCN molecules on Ni, Pd and Pt-doped (7, 0) boron nitride nanotube: a DFT study

    Science.gov (United States)

    Habibi-Yangjeh, Aziz; Basharnavaz, Hadi

    2018-05-01

    We studied affinity of pure and Ni, Pd and Pt-doped (7, 0) boron nitride nanotubes (BNNTs) to toxic HCN molecules using density functional theory calculations. The results indicated that the pure (7, 0) BNNTs can weakly adsorb HCN molecules with adsorption energy of -0.2474 eV. Upon adsorption of HCN molecules on this nanotube, the band gap energy was decreased from 3.320 to 2.960 eV. The more negative adsorption energy between these transition metal-doped (7, 0) BNNTs and HCN molecules indicated that doping of (7, 0) BNNTs with Ni, Pd and Pt elements can significantly improve the affinity of BNNTs toward this gas. Additionally, it was found that the interaction energy between HCN molecules and Pt-doped BNNTs is more negative than those of the Ni and Pd-doped BNNTs. These observations suggested that the Pt-doped (7, 0) BNNTs are strongly sensitive to HCN molecules and therefore it may be used in gas sensor devices for detecting this toxic gas.

  20. Platinum(iv) prodrug conjugated Pd@Au nanoplates for chemotherapy and photothermal therapy

    Science.gov (United States)

    Shi, Saige; Chen, Xiaolan; Wei, Jingping; Huang, Yizhuan; Weng, Jian; Zheng, Nanfeng

    2016-03-01

    prepared Pd@Au-PEG-Pt nanocomposite showed excellent stability in physiological solutions and efficient Pt(iv) prodrug loading. Once injected into biological tissue, the Pt(iv) prodrug was easily reduced by physiological reductants (e.g. ascorbic acid or glutathione) into its cytotoxic and hydrophilic Pt(ii) form and released from the original nanocomposite, and the NIR laser irradiation could accelerate the release of Pt(ii) species. More importantly, Pd@Au-PEG-Pt has high tumor accumulation (29%ID per g), which makes excellent therapeutic efficiency at relatively low power density possible. The in vivo results suggested that, compared with single therapy the combined thermo-chemotherapy treatment with Pd@Au-PEG-Pt resulted in complete destruction of the tumor tissue without recurrence, while chemotherapy using Pd@Au-PEG-Pt without irradiation or photothermal treatment using Pd@Au-PEG alone did not. Our work highlights the prospects of a feasible drug delivery strategy of the Pt prodrug by using 2D Pd@Au nanoplates as drug delivery carriers for multimode cancer treatment. Electronic supplementary information (ESI) available: Synthesis process of Pt(iv) prodrug, mass data and FT-IR spectra of the intermediate product and Pt(iv) prodrug, TEM images of Pd@Au and Au NPs, thermal gravimetric analysis of nanoparticles, dispersion stability of Pd@Au-PEG-Pt NSs in different solutions, chemical reduction of Pt(ii) in a water bath, viability of different cell lines incubated with different concentrations of materials, uptake of different drugs by HeLa cells, size distribution of nanoparticles, tissue distribution by measuring the Pt amounts and zeta potential information of prodrug function nanomaterials. See DOI: 10.1039/c5nr09120a

  1. Understanding of the structure activity relationship of PtPd bimetallic catalysts prepared by surface organometallic chemistry and ion exchange during the reaction of iso-butane with hydrogen

    KAUST Repository

    Al-Shareef, Reem A.; Harb, Moussab; Saih, Youssef; Ould-Chikh, Samy; Roldan, Manuel A.; Anjum, Dalaver H.; Guyonnet, Elodie Bile; Candy, Jean-Pierre; Jan, Deng-Yang; Abdo, Suheil F.; Aguilar-Tapia, Antonio; Proux, Olivier; Hazemann, Jean-Louis; Basset, Jean-Marie

    2018-01-01

    Well-defined silica supported bimetallic catalysts Pt100-x Pdx were prepared by Surface Organometallic Chemistry (SOMC) and Ionic-Exchange (IE) methods. For all investigated catalysts, iso-butane reaction with hydrogen under differential conditions led to the formation of methane and propane, n-butane, and traces of iso-butylene. The total reaction rate decreased with increasing the Pd loading for both catalysts series as a result of decreasing turnover rate of both isomerization and hydrogenolysis. In the case of Pt100-x Pdx(SOMC) catalysts, the experimental results in combination with DFT calculations suggested a selective coverage of Pt (1 0 0) surface by agglomerated Pd atoms like “islands”, assuming that each metal roughly keeps its intrinsic catalytic properties with relatively small electron transfer from Pt to Pd in the case of Pt-rich sample and from Pd to Pt in the case of Pd-rich sample. For the PtPd catalysts prepared by IE, the catalytic behavior could be explained by the formation of a surface alloy between Pt and Pd in the case of Pd-rich sample and by the segregation of a small amount of Pd on the surface in the case of Pt-rich sample, as demonstrated by TEM, EXAFS and DFT. The catalytic results were explained by a structure activity relationship based on the proposed mechanism of CH bond and CC bond activation and cleavage for iso-butane hydrogenolysis, isomerization, cracking and dehydrogenation.

  2. Understanding of the structure activity relationship of PtPd bimetallic catalysts prepared by surface organometallic chemistry and ion exchange during the reaction of iso-butane with hydrogen

    KAUST Repository

    Alshareef, Reem Abdul aziz Hamed

    2018-04-25

    Well-defined silica supported bimetallic catalysts Pt100-x Pdx were prepared by Surface Organometallic Chemistry (SOMC) and Ionic-Exchange (IE) methods. For all investigated catalysts, iso-butane reaction with hydrogen under differential conditions led to the formation of methane and propane, n-butane, and traces of iso-butylene. The total reaction rate decreased with increasing the Pd loading for both catalysts series as a result of decreasing turnover rate of both isomerization and hydrogenolysis. In the case of Pt100-x Pdx(SOMC) catalysts, the experimental results in combination with DFT calculations suggested a selective coverage of Pt (1 0 0) surface by agglomerated Pd atoms like “islands”, assuming that each metal roughly keeps its intrinsic catalytic properties with relatively small electron transfer from Pt to Pd in the case of Pt-rich sample and from Pd to Pt in the case of Pd-rich sample. For the PtPd catalysts prepared by IE, the catalytic behavior could be explained by the formation of a surface alloy between Pt and Pd in the case of Pd-rich sample and by the segregation of a small amount of Pd on the surface in the case of Pt-rich sample, as demonstrated by TEM, EXAFS and DFT. The catalytic results were explained by a structure activity relationship based on the proposed mechanism of CH bond and CC bond activation and cleavage for iso-butane hydrogenolysis, isomerization, cracking and dehydrogenation.

  3. Modifications of Poly(o-phenylenediamine Permselective Layer on Pt-Ir for Biosensor Application in Neurochemical Monitoring

    Directory of Open Access Journals (Sweden)

    Robert D. O’Neill

    2007-04-01

    Full Text Available Reports that globular proteins could enhance the interference blocking ability ofthe PPD (poly(o-phenylenediamine layer used as a permselective barrier in biosensordesign, prompted this study where a variety of modifying agents were incorporated into PPDduring its electrosynthesis on Pt-Ir electrodes. Trapped molecules, including fibrous proteinsand β-cyclodextrin, altered the polymer/modifier composite selectivity by affecting thesensitivity to both H2O2 (signal molecule in many enzyme-based biosensors and thearchetypal interference species, ascorbic acid. A comparison of electrochemical properties ofPt and a Pt-Ir alloy suggests that the benefits of the latter, more rigid, metal can be exploitedin PPD-based biosensor design without significant loss of backward compatibility withstudies involving pure Pt.

  4. A dual-type responsive electrochemical immunosensor for quantitative detection of PCSK9 based on n-C60-PdPt/N-GNRs and Pt-poly (methylene blue) nanocomposites.

    Science.gov (United States)

    Li, Yan; He, Junlin; Chen, Jun; Niu, Yazhen; Zhao, Yilin; Zhang, Yuchan; Yu, Chao

    2018-03-15

    In this study, a dual-type responsive electrochemical immunosensor was developed for the quantitative detection of proprotein convertase subtilisin/kexin type 9 (PCSK9), a potential biomarker of cardiovascular disease in serum. N-doped graphene nanoribbons (N-GNRs) with good conductivity were used as the sensing matrix modifying the glassy carbon electrode. Palladium platinum alloy (PdPt) nanoparticles with high catalytic performance toward the reduction of hydrogen peroxide (H 2 O 2 ) were reduced onto amino-functionalized fullerene (n-C 60 -PdPt) and significantly amplified the electrochemical signal recorded by the amperometric i-t curve. Furthermore, staphylococcus protein A (SPA) with antibody orientation function was introduced to improve the immunoreaction efficiency. Accordingly, a label-free immunosensor was fabricated based on n-C 60 -PdPt/N-GNRs for the quick detection of PCSK9. Meanwhile, to realize ultrasensitive detection of PCSK9, Pt-poly (methylene blue) (Pt-PMB) nanocomposites synthesized by a one-pot method for the first time were used as a novel signal label, which exhibited uniform morphology as well as good conductivity and produced an electrochemical signal recorded by differential pulse voltammetry (DPV). Herein, a novel sandwich-type immunosensor was designed using n-C 60 -PdPt/N-GNRs as the sensing matrix and Pt-PMB as the signal label for sensitive detection of PCSK9. Under optimal conditions, the label-free immunosensor showed a linear range of 10pgmL -1 to 100ngmL -1 with a detection limit of 3.33pgmL -1 (S/N=3), and the sandwich-type immunosensor exhibited a linear range of 100 fg mL -1 to 100ngmL -1 with a detection limit of 0.033pgmL -1 (S/N=3) for PCSK9 detection, indicating its potential application in clinical bioassay analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Direct imaging of thermally-activated grain-boundary diffusion in Cu/Co/IrMn/Pt exchange-bias structures using atom-probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Letellier, F.; Lardé, R.; Le Breton, J.-M., E-mail: jean-marie.lebreton@univ-rouen.fr [Groupe de Physique des Matériaux, UMR 6634 CNRS/Université et INSA de Rouen, F-76801 Saint Etienne du Rouvray (France); Lechevallier, L. [Groupe de Physique des Matériaux, UMR 6634 CNRS/Université et INSA de Rouen, F-76801 Saint Etienne du Rouvray (France); Département de GEII, Université de Cergy-Pontoise, F-95031 Cergy-Pontoise (France); Akmaldinov, K. [SPINTEC, Univ. Grenoble-Alpes/CNRS/INAC-CEA, F-38000 Grenoble (France); CROCUS Technology, F-38025 Grenoble (France); Auffret, S.; Dieny, B.; Baltz, V., E-mail: vincent.baltz@cea.fr [SPINTEC, Univ. Grenoble-Alpes/CNRS/INAC-CEA, F-38000 Grenoble (France)

    2014-11-28

    Magnetic devices are often subject to thermal processing steps, such as field cooling to set exchange bias and annealing to crystallize amorphous magnetic electrodes. These processing steps may result in interdiffusion and the subsequent deterioration of magnetic properties. In this study, we investigated thermally-activated diffusion in Cu/Co/IrMn/Pt exchange biased polycrystalline thin-film structures using atom probe tomography. Images taken after annealing at 400 °C for 60 min revealed Mn diffusion into Co grains at the Co/IrMn interface and along Pt grain boundaries for the IrMn/Pt stack, i.e., a Harrison type C regime. Annealing at 500 °C showed further Mn diffusion into Co grains. At the IrMn/Pt interface, annealing at 500 °C led to a type B behavior since Mn diffusion was detected both along Pt grain boundaries and also into Pt grains. The deterioration of the films' exchange bias properties upon annealing was correlated to the observed diffusion. In particular, the topmost Pt capping layer thickness turned out to be crucial since a faster deterioration of the exchange bias properties for thicker caps was observed. This is consistent with the idea that Pt acts as a getter for Mn, drawing Mn out of the IrMn layer.

  6. Nano-assemblies consisting of Pd/Pt nanodendrites and poly (diallyldimethylammonium chloride)-coated reduced graphene oxide on glassy carbon electrode for hydrogen peroxide sensors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanyan; Zhang, Cong; Zhang, Di; Ma, Min; Wang, Weizhen; Chen, Qiang, E-mail: qiangchen@nankai.edu.cn

    2016-01-01

    Non-enzymatic hydrogen peroxide (H{sub 2}O{sub 2}) sensors were fabricated on the basis of glassy carbon (GC) electrode modified with palladium (Pd) core-platinum (Pt) nanodendrites (Pt-NDs) and poly (diallyldimethylammonium chloride) (PDDA)-coated reduced graphene oxide (rGO). A facile wet-chemical method was developed for preparing Pd core-Pt nanodendrites. In this approach, the growth of Pt NDs was directed by Pd nanocrystal which could be regarded as seed. The PDDA-coated rGO could form uniform film on the surface of GC electrode, which provided a support for Pd core- Pt NDs adsorption by self-assembly. The morphologies of the nanocomposites were characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction (spectrum). Electrocatalytic ability of the nanocomposites was evaluated by cyclic voltammetry and chronoamperometric methods. The sensor fabricated by Pd core-Pt NDs/PDDA-rGO/GCE exhibited high sensitivity (672.753 μA mM{sup −1} cm{sup −2}), low detection limit (0.027 μM), wider linear range (0.005–0.5 mM) and rapid response time (within 5 s). Besides, it also exhibited superior reproducibility, excellent anti-interference performance and long-term stability. The present work could afford a viable method and efficient platform for fabricating all kinds of amperometric sensors and biosensors. - Highlights: • A facial wet-chemical method was developed for preparing Pd core-Pt nanodendrites. • The morphologies of graphene and Pd core-Pt nanodendrites were characterized. • A novel H{sub 2}O{sub 2} sensor was fabricated by nano-assembly. • The performance of H{sub 2}O{sub 2} sensor was evaluated by cyclic voltammetry and chronoamperometric methods.

  7. Pt monolayer shell on hollow Pd core electrocatalysts: Scale up synthesis, structure, and activity for the oxygen reduction reaction

    Directory of Open Access Journals (Sweden)

    Vukmirovic Miomir B.

    2013-01-01

    Full Text Available We report on synthesis, characterization and the oxygen reduction reaction (ORR kinetics of Pt monolayer shell on Pd(hollow, or Pd-Au(hollow core electrocatalysts. Comparison between the ORR catalytic activity of the electrocatalysts with hollow cores and those of Pt solid and Pt hollow nanoparticles has been obtained using the rotating disk electrode technique. Hollow nanoparticles were made using Ni or Cu nanoparticles as sacrificial templates. The Pt ORR specific and mass activities of the electrocatalysts with hollow cores were found considerably higher than those of the electrocatalysts with the solid cores. We attribute this enhanced Pt activity to the smooth surface morphology and hollow-induced lattice contraction, in addition to the mass-saving geometry of hollow particles.

  8. Crystal structure and physical properties of new Ca{sub 2}TGe{sub 3} (T = Pd and Pt) germanides

    Energy Technology Data Exchange (ETDEWEB)

    Klimczuk, T., E-mail: tomasz.klimczuk@pg.gda.pl [Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80–233 Gdansk (Poland); Xie, Weiwei [Department of Chemistry, Princeton University, Princeton, NJ 08544 (United States); Winiarski, M.J.; Kozioł, R.; Litzbarski, L.S. [Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80–233 Gdansk (Poland); Luo, Huixia; Cava, R.J. [Department of Chemistry, Princeton University, Princeton, NJ 08544 (United States)

    2016-11-15

    The crystallographic, electronic transport and thermal properties of Ca{sub 2}PdGe{sub 3} and Ca{sub 2}PtGe{sub 3} are reported. The compounds crystalize in an ordered variant of the AlB{sub 2} crystal structure, in space group P6/mmm, with the lattice parameters a = 8.4876(4) Å/8.4503(5) Å and c = 4.1911(3) Å/4.2302(3) Å for Ca{sub 2}PdGe{sub 3} and Ca{sub 2}PtGe{sub 3}, respectively. The resistivity data exhibit metallic behavior with residual-resistivity-ratios (RRR) of 13 for Ca{sub 2}PdGe{sub 3} and 6.5 for Ca{sub 2}PtGe{sub 3}. No superconducting transition is observed down to 0.4 K. Specific heat studies reveal similar values of the Debye temperatures and Sommerfeld coefficients: Θ{sub D} = 298 K, γ = 4.1 mJ mol{sup −1} K{sup −2} and Θ{sub D} = 305 K, γ = 3.2 mJ mol{sup −1} K{sup −2} for Ca{sub 2}PdGe{sub 3} and Ca{sub 2}PtGe{sub 3}, respectively. The low value of γ is in agreement with the electronic structure calculations.

  9. Fabrication of catalytically active Au/Pt/Pd trimetallic nanoparticles by rapid injection of NaBH{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haijun, E-mail: zhanghaijun@wust.edu.cn [College of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081 (China); State Key Laboratory Breeding Base of Refractories and Ceramics, Wuhan University of Science and Technology, Wuhan 430081 (China); Lu, Lilin [College of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan 430081 (China); Cao, Yingnan; Du, Shuang [College of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081 (China); State Key Laboratory Breeding Base of Refractories and Ceramics, Wuhan University of Science and Technology, Wuhan 430081 (China); Cheng, Zhong [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Zhang, Shaowei [State Key Laboratory Breeding Base of Refractories and Ceramics, Wuhan University of Science and Technology, Wuhan 430081 (China)

    2014-01-01

    Graphical abstract: The synthesis and characterization of 2.0 nm-diameter Au/Pt/Pd nanoparticles are reported. The catalytic activity for glucose oxidation of the nanoparticles is several times higher than that of Au nanoparticles with nearly same size. - Highlights: • PVP-protected Au/Pt/Pd trimetallic nanoparticles (TNPs) of 2.0 nm in diameter were prepared. • The catalytic activity of TNPs is several times higher than that of Au nanoparticles. • Negatively charged Au atoms in the TNPs were confirmed by DFT calculation. - Abstract: Au/Pt/Pd trimetallic nanoparticles (TNPs) with an alloyed structure and an average diameter of about 2.0 nm were prepared via reducing the corresponding ions with rapidly injected NaBH{sub 4}, and characterized by UV–vis, TEM and HR-TEM. The catalytic activity of as-prepared TNPs for the aerobic glucose oxidation is several times higher than that of Au monometallic nanoparticles with about the same average size, which could be attributed to the catalytically active sites provided by the negatively charged Au atoms as a result of the electron donation from the neighboring Pd atoms. This was well supported by the electron density calculations based on the density functional theory.

  10. IrPd nanoalloys: simulations, from surface segregation to local electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Andriamiharintsoa, T. H. [Institut de Physique et Chimie des Matériaux de Strasbourg CNRS-UDS UMR 7504 (France); Rakotomahevitra, A. [Institut pour la Maîtrise de l’Énergie, Faculté des sciences d’Antananarivo (Madagascar); Piccolo, L. [Institut de Recherches sur la Catalyse et l’Environnement de Lyon IRCELYON, UMR 5256 CNRS and Université Lyon 1 (France); Goyhenex, C., E-mail: christine.goyhenex@ipcms.unistra.fr [Institut de Physique et Chimie des Matériaux de Strasbourg CNRS-UDS UMR 7504 (France)

    2015-05-15

    Using semi-empirical modeling, namely tight-binding at different levels of accuracy, the chemical, crystallographic, and electronic structures of bimetallic IrPd nanoparticles are characterized. For the purpose, model cuboctahedral particles containing 561 atoms are considered. Atomistic simulations show that core–shell nanoparticles are highly stable, with a strong surface segregation of Pd, at least for one atomic shell thickness. Within self-consistent tight-binding calculations founded on the density functional theory, an accurate insight is given into the electronic structure of these materials which have a high potential as catalysts.

  11. Estudo eletroquímico e termoanalítico dos sistemas Ir/Hg e Pt - (30%) Ir/Hg

    OpenAIRE

    Milaré, Edilson [UNESP

    2004-01-01

    Eletrodos laminares de Ir ou Pt-Ir(30%) foram empregados como substratos para deposição eletroquímica de Hg, a partir de soluções contendo íons Hg(I), e remoção deste Hg por meio de voltametria cíclica (VC) ou térmica (termogravimetria / termogravimetria derivada - TG/DTG e calorimetria exploratória diferencial - DSC). A superfície dos eletrodos foi caracterizada empregando-se as técnicas complementares de análise: microscopia eletrônica de varredura (imagens SEM, microanálise por EDX e mapas...

  12. Spectroscopic, electrochemical and photovoltaic properties of Pt(ii) and Pd(ii) complexes of a chelating 1,10-phenanthroline appended perylene diimide.

    Science.gov (United States)

    Işık Büyükekşi, Sebile; Şengül, Abdurrahman; Erdönmez, Seda; Altındal, Ahmet; Orman, Efe Baturhan; Özkaya, Ali Rıza

    2018-02-20

    In this study, a bis-chelating bridging perylene diimide ditopic ligand, namely N,N'-di(1,10-phenanthroline)-1,6,7,12-tetrakis-(4-methoxyphenoxy)perylene tetracarboxylic acid diimide (1), was synthesized and characterized. Further reactions of 1 with d 8 metal ions such as Pt(ii) and Pd(ii) having preferential square-planar geometry afforded the novel triads [(Cl 2 )M(ii)-(1)-M(ii)(Cl 2 )] where M(ii) = Pt(ii) (2), and Pd(ii) (3), respectively. The isolated triads and the key precursor were fully characterized by FT-IR, 1D-NMR ( 1 H NMR and 13 C DEPT NMR), 2D-NMR ( 1 H- 1 H COSY, 1 H- 13 C HSQC, 1 H- 13 C HMBC), MALDI-TOF mass and UV/Vis spectroscopy. The electrochemical properties of 1, 2 and 3 were investigated by cyclic voltammetry as well as in situ spectroelectrochemistry and also in situ electrocolorimetric measurements. These compounds were shown to exhibit net colour changes suitable for electrochromic applications. The compounds exhibited remarkably narrow HOMO-LUMO gaps, leading to their ease of reduction at low negative potentials. More importantly, dye-sensitized solar cells (DSSCs) were also fabricated using 1-3 to clarify the potential use of these complexes as a sensitizer. Analysis of the experimental data indicated that 2 has good potential as a sensitizer material for DSSCs.

  13. Solvent-free Hydrodeoxygenation of Bio-oil Model Compounds Cyclopentanone and Acetophenone over Flame-made Bimetallic Pt-Pd/ZrO2 Catalysts

    Science.gov (United States)

    Jiang, Yijiao; Büchel, Robert; Huang, Jun; Krumeich, Frank; Pratsinis, Sotiris E.; Baiker, Alfons

    2013-01-01

    Bimetallic Pt-Pd/ZrO2 catalysts with different Pt/Pd atomic ratio and homogeneous dispersion of the metal nanoparticles were prepared in a single step by flame-spray pyrolysis. The catalysts show high activity and tuneable product selectivity for the solvent-free hydrodeoxygenation of the bio-oil model compounds cyclopentanone and acetophenone. PMID:22674738

  14. O{sub 2} adsorption and dissociation on the Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and 13) tri-metallic nanoparticles: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Li, Sha; Yang, Yongpeng; Huang, Shiping, E-mail: huangsp@mail.buct.edu.cn

    2017-07-15

    Highlights: • O{sub 2} adsorption and dissociation on Pd{sub 13-n}Ni{sub n}@Pt{sub 42} NPs are performed by DFT. • Adsorption energies of O{sub 2} and O are strongly affected by the coordination number. • Adsorption energy and d-band center displays the opposite change tendency. • Ni{sub 13}@Pt{sub 42} is the most active catalyst among Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and 13) NPs. - Abstract: Density functional theory calculations are performed to investigate O{sub 2} adsorption and dissociation on the icosahedral Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and 13) tri-metallic nanoparticles. The parallel adsorption of O{sub 2} on Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and 13) is stronger than the vertical adsorption. The adsorption of O{sub 2} on the bridge site (B1) is favorable in the Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and 13) nanoparticles, while the adsorption of O atom on the hollow site (H1) is preferred. The adsorption energies of O{sub 2} and O are strongly affected by the coordination number. Low coordination site shows strong adsorption of O{sub 2} and O on the Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and 13) nanoparticles. The adsorption energies of O{sub 2} and O atoms are found to be correlated well with the d-band center of surface Pt. For the Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and13) nanoparticles catalysts, the ORR activity follows the order of Ni{sub 13}@Pt{sub 42} > Pd{sub 13}@Pt{sub 42} > Pd{sub 12}Ni{sub 1}@Pt{sub 42} > Pd{sub 1}Ni{sub 12}@Pt{sub 42}, illustrating that the Ni{sub 13}@Pt{sub 42} is the strongest ORR activity among the Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and13) nanoparticles catalysts. Our results have important significance to understand the mechanism of O{sub 2} dissociation on the Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and 13) tri-metallic nanoparticles.

  15. Porous platinum nanoparticles and PdPt nanocages for use in an ultrasensitive immunoelectrode for the simultaneous determination of the tumor markers CEA and AFP

    International Nuclear Information System (INIS)

    Liu, Na; Feng, Feng; Liu, Zhimin; Ma, Zhanfang

    2015-01-01

    We describe the use of porous platinum nanoparticles (pPt NPs) and PdPt nanocages (PdPt NCs) in an electrochemical immunoassay for two tumor markers (CEA and AFP) directly in serum and with enhanced detection performance. The pPt NPs possess a high specific surface area and electrical conductivity, while the PdPt NCs display excellent catalytic property and high loading capacity. The PdPt NCs were labeled with anti-CEA and thionine, and the PdPt NCs were labeled with anti-AFP and ferrocene. The resulting electrode displayed a large decrease of the anodic peak current and an increase of cathodic peak current for hydrogen peroxide (H 2 O 2 ). The dual square wave voltammetric immunoassay was performed at −0.1 V (for CEA) and +0.6 V (for AFP) after exposure to a sample containing CEA and AFP and in the presence of H 2 O 2 . CEA can be detected in the 0.05 to 200 ng mL −1 concentration range and AFP between 0.03 and 100 ng mL −1 . The limits of detection are 1.4 pg mL −1 for CEA and 1 pg mL −1 for AFP (at an SNR of 3). The sensitivity of the method (expressed as slope vs. concentration) is better by a factor of 4.6 to 100 compared to conventional electrochemical immunoassays. Analytical data obtained with diluted serum samples were in good agreement with reference values obtained via a standard ELISA. Negligible cross-reactivity is found between CEA and AFP. In our opinion, this approach paves the way for developing other kinds of electrochemical immunosensors based on the use of pPt NPs and PdPt NCs as materials for designing new electrode interfaces. (author)

  16. Fabrication and characterization of implantable and flexible nerve cuff electrodes with Pt, Ir and IrOx films deposited by RF sputtering

    International Nuclear Information System (INIS)

    Lee, Soo Hyun; Jung, Jung Hwan; Chae, Youn Mee; Kang, Ji Yoon; Suh, Jun-Kyo Francis

    2010-01-01

    This paper presents the fabrication and characterization of implantable and flexible nerve cuff electrodes for neural interfaces using the conventional BioMEMS technique. In order to fabricate a flexible nerve electrode, polyimide (PI) was chosen as the substrate material. Then, nerve electrodes were thermally re-formed in a cuff shape so as to increase the area in which the charges were transferred to the nerve. Platinum (Pt), iridium (Ir) and iridium oxide (IrO x ) films, which were to serve as conducting materials for the nerve electrodes, were deposited at different working pressures by RF magnetron sputtering. The electrochemical properties of the deposited films were characterized by electrochemical impedance spectroscopy (EIS). The charge delivery capacities of the films were recorded and calculated by cyclic voltammetry (CV). The deposited films of Pt, Ir and IrO x have strong differences in electrochemical properties, which depend on the working pressure of sputter. Each film deposited at 30 mTorr of working pressure shows the highest value of charge delivery capacity (CDC). For the IrO x films, the electrochemical properties were strongly affected by the working pressure as well as the Ar:O 2 gas ratio. The IrO x film deposited with an Ar:O 2 gas ratio of 8:1 showed the highest CDC of 59.5 mC cm −2 , which was about five times higher than that of films deposited with a 1:1 gas ratio.

  17. Bifunctional electrodes with ir and Ru oxide mixtures and pt for unified regenerative cells; Electrodos bifuncionales basados en mezclas de oxidos de Ir y Ru con Pt para celdas regenerativas unificadas

    Energy Technology Data Exchange (ETDEWEB)

    Duron-Torres, S.M.; Escalante-Garcia, I.L. [Universidad Autonoma de Zacatecas, Zacatecas (Mexico); Cruz, J. C.; Arriaga-Hurtado; L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Pedro Escobedo, Queretaro (Mexico)]. E-mail: duronsm@prodigy.net.mx

    2009-09-15

    Unified regenerative fuel cells (URFC) represent an attractive option to obtain hydrogen and generate energy using a compact device. Nevertheless, the fusion of a fuel cell (PEMFC) and a water electrolyzer continue to be a challenge because of the wide range of conditions to which this type of device is subject. Because of its kinetic characteristics, oxygen reduction reaction (ORR) in PEMFC and oxygen evolution reaction (OER) in PEMWE are the limiting stages of the URFC depending on the mode of operation. The primary focus of research related to URFC is the obtainment of bifunctional electrocatalysts that satisfactorily perform in both oxygen reactions and support the different working conditions found in a fuel cell and an electrolyzer. The present work contributes to the research on bifunctional electrocatalysts and shows some preliminary results from the electrochemical study of different Pt gcc, IrO{sub 2} and RuO{sub 2} mixtures supported in Ebonex® as oxygen electrodes. The electrochemical characterization with cyclic voltamperometry (CV), linear voltamperometry (LV) and electrochemical impedance spectroscopy (EIS) in H{sub 2}SO{sub 4} 0.5 M, in the absence and present of oxygen shows that Ebonex®-supported bifunctional electrodes IrO{sub 2}-Pt and RuO{sub 2}-Pt present reasonable electrocatalytic properties for oxygen evolution and reduction reactions and present the possibility of their use in an URFC. The Ir- based oxide electrodes show greater stability than ruthenium-oxide electrodes. [Spanish] Las celdas de combustible regenerativas unificadas (URFC) representan una atractiva opcion para la obtencion de hidrogeno y generacion de energia en un dispositivo compacto. Sin embargo, la fusion de una celda de combustible (PEMFC) y un electrolizador de agua (PEMWE) sigue siendo un reto por la amplia gama de condiciones a que se sujeta un dispositivo de este tipo. Por sus caracteristicas cineticas, la reaccion de reduccion de oxigeno (ORR) en la PEMFC y la

  18. Geometric structures of thin film: Pt on Pd(110) and NiO on Ni(100)

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Oden L. [Iowa State Univ., Ames, IA (United States)

    1993-07-01

    This thesis is divided into 3 papers: dynamical low-energy electron- diffraction investigation of lateral displacements in topmost layer of Pd(110); determination of (1x1) and (1x2) structures of Pt thin films on Pd(110) by dynamical low-energy electron-diffraction analysis; and structural determination of a NiO(111) film on Ni(100) by dynamical low-energy electron-diffraction analysis.

  19. Roadside Accumulation of Pt, Pd, Rh and Other Trace Elements From Automobiles: Catalytic Converter Attrition and Platinum-Group Element Mobility in the Roadside Environment.

    Science.gov (United States)

    Ely, J. C.; Dahlheimer, S. R.; Neal, C. R.

    2003-12-01

    Elemental abundances of Pt, Pd and Rh have been documented across the industrialized world in roadside environments due to attrition of automotive catalytic converters (Zereini and Alt, 2000, Anthropogenic PGE Emissions, Springer, 308pp; Ely et al., 2001, EnvSci&Tech, 35:3816-3822; Whiteley and Murray, 2003, SciTotEnv, in press). In our ongoing study, the highest reported roadside Pt abundance 1.8 ppm has been found immediately adjacent to the road at a field site in South Bend, IN, USA. Furthermore, initial studies show positive correlations of Pt, Pd and Rh with some trace elements (Ni, Cu, Zn and Pb), which has been confirmed by further analysis for these and other elements (Ce, Cr). It has been demonstrated that elements such as Ce are present in catalytic converters at concentrations of 100's ppm to 3-wt.%. These elements are also being attrited with Pt, Pd and Rh and aerially transported and deposited. Our field site was established next to US-933 adjacent to the Notre Dame campus. Areas were cleared of the top 2-4 cm of soil (removing surficial Pt, Pd and Rh) at 1, 5, 10 and 50 meters from the roadside. Within 3 months the 1-meter site contained 67% of the initial Rh and Pt concentrations and 100% of the initial Pd concentration. The sites at 5, 10 and 50 meters showed similar results, in some cases exceeding the initial concentrations. After 6 months the concentrations of Pt, Pd and Rh were all within error of the initial concentrations, indicating steady state abundances had probably been reached. Grass samples from each site showed that washed vs. unwashed samples were within error of each other, and there may be a slight enrichment (approx. 1 ppb) in the grasses of Pd and Pt, but this enrichment was independent of distance from the road. The steady-state situation suggests that the PGEs are being removed from the immediate roadside environment, which requires that the metals are being oxidized and/or complexed in such a way to facilitate transport. The

  20. The Study on the Performance of Carbon Supported PtSnM (M = W, Pd, and Ni) Ternary Electro-Catalysts for Ethanol Electro-Oxidation Reaction.

    Science.gov (United States)

    Noh, Chang Soo; Heo, Dong Hyun; Lee, Ki Rak; Jeon, Min Ku; Sohn, Jung Min

    2016-05-01

    PtSn/C and Pt5Sn4M/C (M = W, Pd, Ni) electrocatalysts were prepared by impregnation method using NaBH4 as a reducing agent. Chemical composition, crystalline size, and alloy formation were determined by EDX, XRD and TEM. The average particle sizes of the synthesized catalysts were approximately 3.64-4.95 nm. The electro-chemical properties were measured by CO stripping, cyclic voltammetry, linear sweep voltammetry, and chronoamperometry. The maximum specific activity of the electro-catalysts for ethanol electro-oxidation was 406.08 mA m(-2) in Pt5Sn4Pd/C. The poisoning rate of the Pt5Sn4Pd/C (0.0017% s(-1)) was 4.5 times lower than that of the PtSn/C (0.0076% s(-1)).

  1. Surface noble metal modified PdM/C (M = Ru, Pt, Au) as anode catalysts for direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Mao, Han; Huang, Tao; Yu, Aishui

    2016-01-01

    In this article, we studied the surface noble metal modification on Pd nanoparticles, other than the homogeneous or core-shell structure. The surface modification will lead to the uneven constitution within the nanoparticles and thus more obvious optimization effect toward the catalyst brought by the lattice deformation. The surface of the as-prepared Pd nanoparticles was modified with Ru, Pt or Au by a moderate and green approach, respectively. XPS results confirm the interactive electron effects between Pd and the modified noble metal. Electrochemical measurements show that the surface noble metal modified catalysts not only show higher catalytic activity, but also better stability and durability. The PdM/C catalysts all exhibit good dispersion and very little agglomeration after long-term potential cycles toward ethanol oxidation. With only 10% metallic atomic ratio of Au, PdAu/C catalyst shows extraordinary catalytic activity and stability, the peak current reaches 1700 mA mg"−"1 Pd, about 2.5 times that of Pd/C. Moreover, the PdAu/C maintains 40% of the catalytic activity after 4500 potential cycles. - Highlights: • Pd-based catalysts with complicated exposed facets. • Much enhanced electrocatalytic activity and stability with about 10% noble metal M (M = Ru, Pt, Au) on Pd nanoparticles. • The outstanding electrocatalytic performance of PdAu/C towards ethanol oxidation after the Au modification.

  2. Surface noble metal modified PdM/C (M = Ru, Pt, Au) as anode catalysts for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Han; Huang, Tao, E-mail: huangt@fudan.edu.cn; Yu, Aishui, E-mail: asyu@fudan.edu.cn

    2016-08-15

    In this article, we studied the surface noble metal modification on Pd nanoparticles, other than the homogeneous or core-shell structure. The surface modification will lead to the uneven constitution within the nanoparticles and thus more obvious optimization effect toward the catalyst brought by the lattice deformation. The surface of the as-prepared Pd nanoparticles was modified with Ru, Pt or Au by a moderate and green approach, respectively. XPS results confirm the interactive electron effects between Pd and the modified noble metal. Electrochemical measurements show that the surface noble metal modified catalysts not only show higher catalytic activity, but also better stability and durability. The PdM/C catalysts all exhibit good dispersion and very little agglomeration after long-term potential cycles toward ethanol oxidation. With only 10% metallic atomic ratio of Au, PdAu/C catalyst shows extraordinary catalytic activity and stability, the peak current reaches 1700 mA mg{sup −1} Pd, about 2.5 times that of Pd/C. Moreover, the PdAu/C maintains 40% of the catalytic activity after 4500 potential cycles. - Highlights: • Pd-based catalysts with complicated exposed facets. • Much enhanced electrocatalytic activity and stability with about 10% noble metal M (M = Ru, Pt, Au) on Pd nanoparticles. • The outstanding electrocatalytic performance of PdAu/C towards ethanol oxidation after the Au modification.

  3. Fluid inclusion and oxygen-isotope evidence for low-temperature Au-Pt-Pd (± U) mineralization at Corronation Hill, NT

    International Nuclear Information System (INIS)

    Mernagh, T.

    1992-01-01

    The fluid inclusion and isotope data have been used to constrain the ore genesis models for the Au-Pt-Pd-U mineralization at Coronation Hill. The fluid inclusions demonstrate that the ore fluid was strongly saline with an unusually high CaCl 2 content, and that the mineralisation was probably formed from a boiling fluid at around 140 deg C. Furthermore, the fluids were highly oxidised and the replacement of earlier chlorite by hematite is common throughout the deposit. It is concluded that both U-rich and U-poor Au-Pt-Pd mineralisation were formed by descending, low-temperature, highly oxidised, very saline, meteoric fluids. The segregation of U was controlled by fluid-rock interaction in the feldspathic or carbonate rocks. Interaction with carbonaceous or chloritic rocks resulted in a reduction in fO 2 , and consequent precipitation of U, Au, Pt and Pd. The other two types of metal associations can be explained by further reaction of the mineralizing fluids. 3 figs

  4. Atomic layer deposition of Pd and Pt nanoparticles for catalysis: on the mechanisms of nanoparticle formation

    International Nuclear Information System (INIS)

    Mackus, Adriaan J M; Weber, Matthieu J; Thissen, Nick F W; Garcia-Alonso, Diana; Vervuurt, René H J; Assali, Simone; Bol, Ageeth A; Verheijen, Marcel A; Kessels, Wilhelmus M M

    2016-01-01

    The deposition of Pd and Pt nanoparticles by atomic layer deposition (ALD) has been studied extensively in recent years for the synthesis of nanoparticles for catalysis. For these applications, it is essential to synthesize nanoparticles with well-defined sizes and a high density on large-surface-area supports. Although the potential of ALD for synthesizing active nanocatalysts for various chemical reactions has been demonstrated, insight into how to control the nanoparticle properties (i.e. size, composition) by choosing suitable processing conditions is lacking. Furthermore, there is little understanding of the reaction mechanisms during the nucleation stage of metal ALD. In this work, nanoparticles synthesized with four different ALD processes (two for Pd and two for Pt) were extensively studied by transmission electron spectroscopy. Using these datasets as a starting point, the growth characteristics and reaction mechanisms of Pd and Pt ALD relevant for the synthesis of nanoparticles are discussed. The results reveal that ALD allows for the preparation of particles with control of the particle size, although it is also shown that the particle size distribution is strongly dependent on the processing conditions. Moreover, this paper discusses the opportunities and limitations of the use of ALD in the synthesis of nanocatalysts. (paper)

  5. Investigation of palladium-103 production and IR07-103Pd brachytherapy seed preparation

    International Nuclear Information System (INIS)

    Saidi, Pooneh; Sadeghi, Mahdi; Enferadi, Milad; Aslani, Gholamreza

    2011-01-01

    Highlights: → We report the cyclotron production of 103-palladium via 103 Rh(p,n) 103 Pd reaction. → 103 Pd was absorbed on resin beads for brachytherapy seed preparation. → The optimum absorption of 103 Pd in resin was achieved at 0.5 M HCl. → Version 5 of MCNP code was employed to model a new 103 Pd brachytherapy seed. - Abstract: In this study, design and fabrication of 103 Pd brachytherapy seed was investigated. The excitation functions of 103 Rh(p,n) 103 Pd and 103 Rh(d,2n) 103 Pd reactions were calculated using EMPIRE (version 3.1 Rivoli), ALICE/ASH and TALYS-1.2 codes, the TENDL-2010 database and compared with the published data. Production of 103 Pd was done via 103 Rh(p,n) 103 Pd nuclear reaction. The target was bombarded with 18 MeV protons at 200 μA beam current for 15 h. After irradiation and radiochemical separation of the electroplated rhodium target, the optimum condition for absorption of 103 Pd into Amberlite (registered) IR-93 resin was achieved at 0.5 M HCl. Version 5 of the (MCNP) Monte Carlo radiation transport code was employed to calculate the dosimetric parameters around the 103 Pd brachytherapy seed. Finally the calculated results were compared with published results for other commercial sources.

  6. Atomistic simulations of the structures of Pd-Pt bimetallic nanoparticles and nanowires

    OpenAIRE

    Yun, Kayoung; Cha, Pil-Ryung; Lee, Jaegab; Kim, Jiyoung; Nam, Ho-Seok

    2015-01-01

    Bimetallic nanoalloys such as nanoparticles and nanowires are attracting significant attention due to their vast potential applications such as in catalysis and nanoelectronics. Notably, Pd-Pt nanoparticles/nanowires are being widely recognized as catalysts and hydrogen sensors. Compared to unary systems, alloys present more structural complexity with various compositional configurations. Therefore, it is important to understand energetically preferred atomic structures of bimetallic nanoallo...

  7. Practical chemical analysis of Pt and Pd based heterogeneous catalysts with hard X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, H., E-mail: YOSHIKAWA.Hideki@nims.go.jp [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Matolínová, I.; Matolín, V. [Charles University in Prague, Faculty of Mathematics and Physics, V Holešovičkách 2, 18000 Prague 8 (Czech Republic)

    2013-10-15

    Highlights: •Hard X-ray photoelectron spectroscopy (HAXPES) enables interface analysis of catalyst. •HAXPES enables overall analysis of porous film of Pt-doped CeO{sub 2} and related catalyst. •HAXPES enables analysis of trace elements for Pd and Pt{sub 3}Ni nanoparticle catalysts. -- Abstract: Interfacial properties including configuration, porosity, chemical states, and atomic diffusion greatly affect the performance of supported heterogeneous catalysts. Hard X-ray photoelectron spectroscopy (HAXPES) can be used to analyze the interfaces of heterogeneous catalysts because of its large information depth of more than 20 nm. We use HAXPES to examine Pt-doped CeO{sub 2} and related thin film catalysts evaporated on Si, carbon, and carbon nanotube substrates, because Pt-doped CeO{sub 2} has great potential as a noble metal-based heterogeneous catalyst for fuel cells. The HAXPES measurements clarify that the dopant material, substrate material, and surface pretreatment of substrate are important parameters that affect the interfacial properties of Pt-doped CeO{sub 2} and related thin film catalysts. Another advantage of HAXPES measurement of heterogeneous catalysts is that it can be used for chemical analysis of trace elements by detecting photoelectrons from deep core levels, which have large photoionization cross-sections in the hard X-ray region. We use HAXPES for chemical analysis of trace elements in Pd nanoparticle catalysts immobilized on sulfur-terminated substrates and Pt{sub 3}Ni nanoparticle catalysts enveloped by dendrimer molecules.

  8. Surface studies on graphite furnace platforms covered with Pd, Rh and Ir as modifiers in graphite furnace atomic absorption spectrometry of tellurium

    Energy Technology Data Exchange (ETDEWEB)

    Pedro, Juana [Area de Química Analítica, Departamento de Química, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829 (S3000GL.N), Santa Fe (Argentina); Stripekis, Jorge [Laboratorio de Análisis de Trazas, Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (1428), Buenos Aires (Argentina); Departamento de Ingeniería Química, Instituto Tecnológico de Buenos Aires, Av. Eduardo Madero 399 (1106), Buenos Aires (Argentina); Bonivardi, Adrian [Area de Química Analítica, Departamento de Química, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829 (S3000GL.N), Santa Fe (Argentina); Tudino, Mabel, E-mail: tudino@qi.fcen.uba.ar [Laboratorio de Análisis de Trazas, Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (1428), Buenos Aires (Argentina)

    2015-05-01

    The main objective of this work is the study of correlations between the efficiency of the distribution of the permanent platinum group modifiers Pd, Rh and Ir over the graphite surface with the aim of improving analytical signal of tellurium. Modifier solution was deposited onto the platform and pyrolysed after drying. In the case of Pd, the physical vaporization/deposition technique was also tested. In order to analyze the differences amongst coverings (morphology, topology and distribution), the graphite surfaces were studied with scanning electron microscopy and energy dispersive X-ray microscopy. Micrographs for physical vaporization and pyrolytic deposition of Pd were also analyzed in order to explain the lack of signal obtained for tellurium with the first alternative. Similar micrographs were obtained for pyrolytic deposition of Ir and Rh and then, compared to those of Pd. Ir showed the most homogeneous distribution on the graphite surface and the tallest and sharpest transient. With the aim of improving the analytical signal of tellurium, the correlation between the surface studies and the tellurium transient signal (height, area and shape) is discussed. - Highlights: • Distribution of Rh, Pd and Ir onto graphite furnaces is evaluated by SEM and EDX • Micrographs and spectra showed that surface distribution could influence Te signal. • Ir showed the best signal together with the most homogeneous surface distribution. • Pd-PVD micrographs revealed the absence of graphite and no signal for Te.

  9. High-field magnetization studies of U2T2Sn (T=Co, Ir, Pt) compounds

    International Nuclear Information System (INIS)

    Prokes, K.; Nakotte, H.; de Boer, F.R.

    1995-01-01

    High-field magnetization measurements at 4.2 K on U 2 T 2 Sn (T = Co, Ir and Pt) compounds have been performed on free and fixed powders up to 57 T. An antiferromagnetic ground state of U 2 Pt 2 Sn is corroborated by a metamagnetic transition at 22 T with very small hysteresis going up and down with field. U 2 Co 2 Sn and U 2 Ir 2 Sn show no metamagnetic transition up to 57 T which is in agreement with the non-magnetic ground state of these compounds. In all cases, the maximum applied field is not sufficient to achieve saturation. The short-pulse measurements presented here are compared with previous results obtained in quasi-static fields up to 35 T

  10. Spin Crossover in Fe(II)-M(II) Cyanoheterobimetallic Frameworks (M = Ni, Pd, Pt) with 2-Substituted Pyrazines.

    Science.gov (United States)

    Kucheriv, Olesia I; Shylin, Sergii I; Ksenofontov, Vadim; Dechert, Sebastian; Haukka, Matti; Fritsky, Igor O; Gural'skiy, Il'ya A

    2016-05-16

    Discovery of spin-crossover (SCO) behavior in the family of Fe(II)-based Hofmann clathrates has led to a "new rush" in the field of bistable molecular materials. To date this class of SCO complexes is represented by several dozens of individual compounds, and areas of their potential application steadily increase. Starting from Fe(2+), square planar tetracyanometalates M(II)(CN)4(2-) (M(II) = Ni, Pd, Pt) and 2-substituted pyrazines Xpz (X = Cl, Me, I) as coligands we obtained a series of nine new Hofmann clathrate-like coordination frameworks. X-ray diffraction reveals that in these complexes Fe(II) ion has a pseudo-octahedral coordination environment supported by four μ4-tetracyanometallates forming its equatorial coordination environment. Depending on the nature of X and M, axial positions are occupied by two 2X-pyrazines (X = Cl and M(II) = Ni (1), Pd (2), Pt (3); X = Me and M(II) = Ni (4), Pd (5)) or one 2X-pyrazine and one water molecule (X = I and M(II) = Ni (7), Pd (8), Pt (9)), or, alternatively, two distinct Fe(II) positions with either two pyrazines or two water molecules (X = Me and M(II) = Pt (6)) are observed. Temperature behavior of magnetic susceptibility indicates that all compounds bearing FeN6 units (1-6) display cooperative spin transition, while Fe(II) ions in N5O or N4O2 surrounding are high spin (HS). Structural changes in the nearest Fe(II) environment upon low-spin (LS) to HS transition, which include ca. 10% Fe-N distance increase, lead to the cell expansion. Mössbauer spectroscopy is used to characterize the spin state of all HS, LS, and intermediate phases of 1-9 (see abstract figure). Effects of a pyrazine substituent and M(II) nature on the hyperfine parameters in both spin states are established.

  11. Green synthesis of noble nanometals (Au, Pt, Pd) using glycerol under microwave irradiation conditions

    Science.gov (United States)

    A newer application of glycerol in the field of nanomaterials synthesis has been developed from both the economic and environmental points of view. Glycerol can act as a reducing agent for the fabrication of noble nanometals, such as Au, Pt, and Pd, under microwave irradiation. T...

  12. HZSM-5 CATALYST FOR CRACKING PALM OIL TO BIODIESEL: A COMPARATIVE STUDY WITH AND WITHOUT PT AND PD IMPREGNATION

    Directory of Open Access Journals (Sweden)

    Agus Budianto

    2014-05-01

    Full Text Available The Needs of healthy environment and green energy poses a great demand for alternative energy. Biofuel is one of the alternative energy products that are environmentally friendly. Biofuel can be made from plant oils, especially palm oil. Cracking of palm oil into biofuel is constrained by the availability of catalysts. Moreover the available catalyst still gives a low yield. This research aims to study the effect of Pt and Pd impregnation into HZSM-5 catalyst on the catalytic properties. Another aim is to obtain the operating conditions of the catalytic cracking process of palm oil into biofuel which gives the highest yield and selectivity, especially for biodiesel and biogasoline fractions. Catalytic cracking process was carried out in a micro fixed bed reactor with diameter of 1 cm and length of 16 cm. The reactor was filled with a catalyst. The results of the study successfully prove that Pt and Pd impregnated into HZSM-5 catalyst can increase the yield and selectivity of biodiesel. Pd and Pt are highly recommended to increase the yield and selectivity of biodiesel.

  13. Structure of doubly-odd nucleus 184Ir from the decay of 184Pt

    International Nuclear Information System (INIS)

    Ben Braham, A.; Bourgeois, C.; Kilcher, P.; Roussiere, B.; Sauvage, J.; Kreiner, A.J.; Porquet, M.G.

    1987-01-01

    States of 184 Ir populated through the β + /EC decay of 184 Pt, were studied using mass-separated sources and on-line γ-ray and e - spectroscopy techniques. A rather complete low-spin level scheme is established. Negative and positive parity structures are interpreted within the two-quasiparticle-plus-rotor model

  14. Spin-orbit driven phenomena in the isoelectronic L 10 -Fe(Pd,Pt) alloys from first principles

    Science.gov (United States)

    Kudrnovský, J.; Drchal, V.; Turek, I.

    2017-12-01

    The anomalous Hall effect (AHE) and the Gilbert damping (GD) are studied theoretically for the partially ordered L 10 -Fe(Pd,Pt) alloys. The varying alloy order and the spin-orbit coupling, which are due to the change in the Pd/Pt composition, allow for a chemical tuning of both phenomena which play an important role in the spintronic applications. The impact of the antisite disorder on the residual resistivity, AHE, and GD is studied from first principles using recently developed methods employing the Kubo-Bastin approach and the nonlocal torque operator method. The most interesting result is a different behavior of samples with low and high chemical orders. Good agreement between calculated and measured concentration trends is obtained for all quantities studied, while the absolute GD values are underestimated.

  15. Multi-center vs. two-center bonding within the hetero-polyanion in Eu{sub 2}GaPt{sub 2} and its prototype Ca{sub 2}SiIr{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Poettgen, Rainer [Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster (Germany); Borrmann, Horst; Grin, Yuri [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Dresden (Germany)

    2017-11-17

    The compound Eu{sub 2}GaPt{sub 2} was synthesized from the elements in a sealed tantalum tube. Its Ca{sub 2}SiIr{sub 2}-type crystal structure was refined from single-crystal X-ray diffraction data: space group C2/c, a = 9.8775(6), b = 5.8621(6), c = 7.9677(5) Aa, β = 102.257(4) , R{sub F} = 0.039, 1344 observed reflections, and 25 variable parameters. The platinum (iridium) atoms in Eu{sub 2}GaPt{sub 2} and Ca{sub 2}SiIr{sub 2} form linear chains of dumbbells [2c(Pt-Pt) or 2c(Ir-Ir) bonds, respectively]. These chains are interconnected to 2D polyanions in Eu{sub 2}GaPt{sub 2} by the gallium atoms forming 4c(Ga-Pt-Ga-Pt) or by silicon atoms forming 2c(Si-Ir) bonds in Ca{sub 2}SiIr{sub 2}. The polyanion bonds to the europium (calcium) matrix via the pseudo lone-pairs at the gallium (silicon) atoms. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Hollow Au@Pd and Au@Pt core-shell nanoparticles as electrocatalysts for ethanol oxidation reactions

    KAUST Repository

    Song, Hyon Min; Anjum, Dalaver H.; Sougrat, Rachid; Hedhili, Mohamed N.; Khashab, Niveen M.

    2012-01-01

    that individual metals may not catalyze. Here, preparation of hollow Au@Pd and Au@Pt core-shell nanoparticles (NPs) and their use as electrocatalysts are reported. Galvanic displacement with Ag NPs is used to obtain hollow NPs, and higher reduction potential of Au

  17. Ultrasonic-electrodeposition of PtPd alloy nanoparticles on ionic liquid-functionalized graphene paper: towards a flexible and versatile nanohybrid electrode

    Science.gov (United States)

    Sun, Yimin; Zheng, Huaming; Wang, Chenxu; Yang, Mengmeng; Zhou, Aijun; Duan, Hongwei

    2016-01-01

    Here we fabricate a new type of flexible and versatile nanohybrid paper electrode by ultrasonic-electrodeposition of PtPd alloy nanoparticles on freestanding ionic liquid (IL)-functionalized graphene paper, and explore its multifunctional applications in electrochemical catalysis and sensing systems. The graphene-based paper materials demonstrate intrinsic flexibility, exceptional mechanical strength and high electrical conductivity, and therefore can serve as an ideal freestanding flexible electrode for electrochemical devices. Furthermore, the functionalization of graphene with IL (i.e., 1-butyl-3-methylimidazolium tetrafluoroborate) not only increases the electroactive surface area of a graphene-based nanohybrid paper electrode, but also improves the adhesion and dispersion of metal nanoparticles on the paper surface. These unique attributes, combined with the merits of an ultrasonic-electrodeposition method, lead to the formation of PtPd alloy nanoparticles on IL-graphene paper with high loading, uniform distribution, controlled morphology and favourable size. Consequently, the resultant nanohybrid paper electrode exhibits remarkable catalytic activity as well as excellent cycle stability and improved anti-poisoning ability towards electrooxidation of fuel molecules such as methanol and ethanol. Furthermore, for nonenzymatic electrochemical sensing of some specific biomarkers such as glucose and reactive oxygen species, the nanohybrid paper electrode shows high selectivity, sensitivity and biocompatibility in these bio-catalytic processes, and can be used for real-time tracking hydrogen peroxide secretion by living human cells. All these features demonstrate its promising application as a versatile nanohybrid electrode material in flexible and lightweight electrochemical energy conversion and biosensing systems such as bendable on-chip power sources, wearable/implantable detectors and in vivo micro-biosensors.Here we fabricate a new type of flexible and

  18. Efficient electrochemical reduction of nitrate to nitrogen using Ti/IrO2-Pt anode and different cathodes

    International Nuclear Information System (INIS)

    Li Miao; Feng Chuanping; Zhang Zhenya; Sugiura, Norio

    2009-01-01

    Electrochemical reduction of nitrate using Fe, Cu, and Ti as cathodes and Ti/IrO 2 -Pt as anode in an undivided and unbuffered cell was studied. In the presence of appropriate amount of NaCl, both cathodic reduction of nitrate and anodic oxidation of the by-products of ammonia and nitrite were achieved by all cathodes under a proper condition. Both in the absence and presence of NaCl, the order of nitrate removal rate was Fe > Cu > Ti. The nitrate removal was 87% and selectivity to nitrogen was 100% in 3 h with Fe cathode in the presence of NaCl. Ti/IrO 2 -Pt anode played an important role during nitrate reduction, especially in the presence of NaCl, at which by-products could efficiently be oxidized. Moreover, atomic force microscopy (AFM) investigation shown Ti/IrO 2 -Pt anode was suitable for nitration reduction and the surface roughness of all cathodes increased. The concentrations of Fe, Cu, and Ti in the electrolyte were less than 0.15, 0.12 and 0.09 mg/L after 3 h electrolysis, respectively.

  19. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances.

    Science.gov (United States)

    Kuai, Long; Geng, Baoyou; Wang, Shaozhen; Sang, Yan

    2012-07-23

    In this work, we utilize the galvanic displacement synthesis and make it a general and efficient method for the preparation of Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells, which consist of multilayer nanoparticles. The method is generally applicable to the preparation of Au-Au, Au-Pd, and Au-Pt core-shell nanostructures with typical porous shells. Moreover, the Au-Au isomeric core-shell nanostructure is reported for the first time. The lower oxidation states of Au(I), Pd(II), and Pt(II) are supposed to contribute to the formation of porous core-shell nanostructures instead of yolk-shell nanostructures. The electrocatalytic ethanol oxidation and oxygen reduction reaction (ORR) performance of porous Au-Pd core-shell nanostructures are assessed as a typical example for the investigation of the advantages of the obtained core-shell nanostructures. As expected, the Au-Pd core-shell nanostructure indeed exhibits a significantly reduced overpotential (the peak potential is shifted in the positive direction by 44 mV and 32 mV), a much improved CO tolerance (I(f)/I(b) is 3.6 and 1.63 times higher), and an enhanced catalytic stability in comparison with Pd nanoparticles and Pt/C catalysts. Thus, porous Au-M (M = Au, Pd, and Pt) core-shell nanostructures may provide many opportunities in the fields of organic catalysis, direct alcohol fuel cells, surface-enhanced Raman scattering, and so forth. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Synthesis of ultrathin face-centered-cubic Au@Pt and Au@Pd core-shell nanoplates from hexagonal-close-packed Au square sheets

    KAUST Repository

    Fan, Zhanxi; Zhu, Yihan; Huang, Xiao; Han, Yu; Wang, Qingxiao; Liu, Qing; Huang, Ying; Gan, Chee Lip; Zhang, Hua

    2015-01-01

    @Pd rhombic nanoplates, respectively. We believe that these findings will shed new light on the synthesis of novel noble bimetallic nanostructures. Phase change: Ultrathin Au@Pt and Au@Pd core-shell nanoplates were prepared from Au square sheets. A phase

  1. Magnetic properties of Co and Fe on Pt(111), Rh(111) and Pd(111): From single atoms to ultrathin films

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Anne; Rusponi, Stefano; Etzkorn, Markus; Moulas, Geraud; Brune, Harald [IPN, EPF-Lausanne (Switzerland); Gambardella, Pietro [CREA, Catalan Institute of Nanotechnology (Spain); Bencok, Peter [ESRF, Grenoble (France)

    2009-07-01

    Single atoms of Co on Pt(111) are known to have a giant magnetic anisotropy energy (MAE) of 9.3 meV/atom. This is due to the reduced coordination and the strong spin-orbit coupling of the Pt 5d-states. In order to study the contribution of a highly polarizable substrate to the MAE, we investigated single Co atoms on Pd(111) and Rh(111) using X-ray magnetic circular dichroism (XMCD). We find a decreasing MAE moving from a 5d-substrate (Pt) to 4d-substrates (Pd and Rh). Co has a large orbital moment L of about 0.7 independent of the substrate. The easy axis is out-of-plane for Pt(111) and Pd(111) whereas it is in-plane for Co/Rh(111). Fe has on all substrates an out-of-plane easy axis, a very small anisotropy energy, and a L/S ratio of about 0.1. With increasing coverage the coordination number of the adatom increases and generally leads to a reduced MAE and orbital moment compared to the single atom. We measure one monolayer of Co and Fe on Pt(111) and Rh(111) and find MAE values <0.5 meV/atom. For 1 ML Co we find a substantial decrease in the L/S ratio to 0.19. However, the L/S ratio for 1 ML Fe on both substrates does not change much compared with the Fe single atom.

  2. Structure determination of chitosan-stabilized Pt and Pd based bimetallic nanoparticles by X-ray photoelectron spectroscopy and transmission electron microscopy

    International Nuclear Information System (INIS)

    Wu, Lihua; Shafii, Salimah; Nordin, Mohd Ridzuan; Liew, Kong Yong; Li, Jinlin

    2012-01-01

    Chitosan (CTS)-stabilized bimetallic nanoparticles were prepared at room temperature (rt.) in aqueous solution. Palladium (Pd) and platinum (Pt) were selected as the first metals while iron (Fe) and nickel (Ni) functioned as the second metals. In order to obtain the noble metal core-transition metal shell structures, bimetallic nanoparticles were prepared in a two-step process: the preparation of mono noble metallic (Pd or Pt) nanoparticles and the deposition of transition metals (Fe or Ni) on the surface of the monometallic nanoparticles. The structures of the nanoparticles were studied using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The XPS results show that Pd and Pt exist mainly in zero valences. The presence of Fe and Ni in the bimetallic nanoparticles affects the binding energy of Pd and Pt. Moreover, the studies of O 1s spectra indicate the presence of Fe or Ni shells. The analyses of TEM micrographs give the particle size and size distributions while the high-resolution TEM (HRTEM) micrographs show the existence of noble metal core lattices. The results confirm the formation of noble metal core-transition metal shell structures. -- Highlights: ► Chitosan-stabilized bimetallic nanoparticles were prepared at room temperature in aqueous solution. ► The presence of Fe or Ni shells was proven by XPS study. ► The existence of noble metal cores covered by amorphous shells was indicated by TEM study. ► The formation of noble metal core-transition metal shell structures was confirmed.

  3. PdM (M = Pt, Au) bimetallic alloy nanowires with enhanced electrocatalytic activity for electro-oxidation of small molecules.

    Science.gov (United States)

    Zhu, Chengzhou; Guo, Shaojun; Dong, Shaojun

    2012-05-02

    A facile and general method has been developed to synthesize well-defined PdPt and PdAu alloy nanowires, which exhibit significantly enhanced activity towards small molecules, such as ethanol, methanol, and glucose electro-oxidation in an alkaline medium. Considering the important role of one-dimensional alloy nanowires in electrocatalytic systems, the present Pd-based alloy nanostructures could offer a promising new class of advanced electrocatalysts for direct alcohol fuel cells and electrochemical sensors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Deformation properties of even-even Os, Pt, Hg nuclei and spectroscopic properties of odd Re, Os, Ir, Pt, Au, Hg nuclei from self-consistent calculations

    CERN Document Server

    Desthuilliers-Porquet, M G; Quentin, P; Sauvage-Letessier, J

    1981-01-01

    Static properties of even-even Os, Pt, Hg nuclei have been obtained from HF+BCS calculations. Single-particle wave functions which come from these self-consistent calculations have been used to calculate some spectroscopic properties of odd Re, Os, Ir, Pt, Au, and Hg nuclei, within the rotor-quasiparticle coupling model. The authors' calculations are able to give a good description of most of available experimental data. (12 refs).

  5. Photonics of a conjugated organometallic Pt-Ir polymer and its model compounds exhibiting hybrid CT excited states.

    Science.gov (United States)

    Soliman, Ahmed M; Fortin, Daniel; Zysman-Colman, Eli; Harvey, Pierre D

    2012-04-13

    Trans- dichlorobis(tri-n-butylphosphine)platinum(II) reacts with bis(2- phenylpyridinato)-(5,5'-diethynyl-2,2'-bipyridine)iridium(III) hexafluorophosphate to form the luminescent conjugated polymer poly[trans-[(5,5'-ethynyl-2,2'-bipyridine)bis(2- phenylpyridinato)-iridium(III)]bis(tri-n-butylphosphine)platinum(II)] hexafluorophosphate ([Pt]-[Ir])n. Gel permeation chromatography indicates a degree of polymerization of 9 inferring the presence of an oligomer. Comparison of the absorption and emission band positions and their temperature dependence, emission quantum yields, and lifetimes with those for models containing only the [Pt] or the [Ir] units indicates hybrid excited states including features from both chromophores. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Surface morphology of scale on FeCrAl (Pd, Pt, Y) alloys

    International Nuclear Information System (INIS)

    Amano, T.; Takezawa, Y.; Shiino, A.; Shishido, T.

    2008-01-01

    The high temperature oxidation behavior of Fe-20Cr-4Al, floating zone refined (FZ) Fe-20Cr-4Al, Fe-20Cr-4Al-0.5Pd, Fe-20Cr-4Al-0.5Pt and Fe-20Cr-4Al-(0.01, 0.02, 0.05, 0.1, 0.2, 0.5)Y alloys was studied in oxygen for 0.6-18 ks at 1273-1673 K by mass gain measurements, X-ray diffraction and scanning electron microscopy. The mass gains of FeCrAl, FZ FeCrAl, FeCrAlPd and FeCrAlPt alloys showed almost the same values. Those of FeCrAl-(0.01, 0.02, 0.05, 0.1, 0.2, 0.5)Y alloys decreased with increasing yttrium of up to 0.1% followed by an increase with the yttrium content after oxidation for 18 ks at 1473 K. Needle-like oxide particles were partially observed on FeCrAl alloy after oxidation for 7.2 ks at 1273 K. These oxide particles decreased in size with increasing oxidation time of more than 7.2 ks at 1473 K, and then disappeared after oxidation for 7.2 ks at 1573 K. It is suggested that a new oxide develops at the oxygen/scale interface. The scale surface of FeCrAl alloy showed a wavy morphology after oxidation for 7.2 ks at 1273 K which then changed to planar morphology after an oxidation time of more than 7.2 ks at 1573 K. On the other hand, the scale surfaces of other alloys were planar after all oxidation conditions in this study. The scale surfaces of FeCrAl, FZ FeCrAl, FeCrAlPd and FeCrAlPt alloys were rough, however, those of FeCrAl-(0.1, 0.2, 0.5)Y alloys were smooth. The oxide scales formed on FeCrAl-(0.1, 0.2, 0.5)Y alloys were found to be α-Al 2 O 3 with small amounts of Y 3 Al 5 O 12 , and those of the other alloys were only α-Al 2 O 3

  7. A first-principles study on the interaction of biogas with noble metal (Rh, Pt, Pd) decorated nitrogen doped graphene as a gas sensor: A DFT study

    Science.gov (United States)

    Zhao, Chunjiang; Wu, Huarui

    2018-03-01

    Density functional theory calculations are carried out to investigate the adsorption characteristics of methane (CH4), carbon dioxide (CO2), hydrogen (H2), hydrogen sulfide (H2S), nitrogen (N2), and oxygen (O2) on the surface of pyridine-like nitrogen doped graphene (PNG) as well as noble metal (Rh, Pt, Pd) decorated PNG to elaborate their potentials as gas sensors. The adsorption intensities of biogas on noble metal (Rh, Pt, Pd) decorated PNG are in the order of O2> H2S> N2> CH4> CO2> H2, which are corresponded to the order of their sensitivity on surface. Compared with biogas adsorption on pristine PNG, there exist higher adsorption ability, higher charge transfer and higher orbital hybridization upon adsorption on noble metal (Rh, Pt, Pd) decorated PNG. Consequently, the noble metal (Rh, Pt, Pd) decorated PNG can transform the existence of CH4, CO2, H2, H2S, N2, and O2 molecules into electrical signal and they could potentially be used as ideal sensors for detection of biogas in ambient situation.

  8. Temperature effect on the electrode kinetics of ethanol oxidation on Pd modified Pt electrodes and the estimation of intermediates formed in alkali medium

    International Nuclear Information System (INIS)

    Mahapatra, S.S.; Dutta, A.; Datta, J.

    2010-01-01

    Ethanol has been recognized as the ideal fuel for direct alcohol fuel cell (DAFC) systems due to its high energy density, non-toxicity and its bio-generation. However the complete conversion of ethanol to CO 2 is still met with challenges, due to dearth of suitable catalysts for the electro-oxidation. In the present work the effect of temperature on the catalytic oxidation of ethanol in alkaline medium over electrodeposited Pt and Pt-Pd alloyed nano particles on carbon support and also on the product formation during the course of reaction have been studied within the temperature range of 20-80 o C. The information on surface morphology, structural characteristics and bulk composition of the catalyst was obtained using SEM, XRD and EDX. BET surface area and pore widths of the catalyst particles were calculated by applying the BET equation to the adsorption isotherms. The electrochemical techniques like cyclic voltammetry, chronoamperometry and impedance spectroscopy were employed to investigate the electrochemical parameters related to electro-oxidation of ethanol in alkaline pH on the catalyst surfaces under the influence of temperature. The results show that the oxidation kinetics of ethanol on the alloyed Pt-Pd/C catalysts is significantly improved compared to that on Pt alone. The observations were interpreted in terms of the synergistic effect of higher electrochemical surface area, preferred OH - adsorption on the surface and the ad-atom contribution of the alloyed matrix. A pronounced influence of temperature on the reaction kinetics was manifested in the diminution of charge transfer resistance and activation energy of the ethanol oxidation with Pd incorporation into the Pt matrix, ensuring greater tolerance of the alloyed catalyst towards ethanolic residues. The higher yield of the reaction products like acetate and CO 3 -2 on the alloyed catalyst compared to Pt alone in alkaline medium, as estimated by ion chromatography, further substantiates the

  9. Temperature effect on the electrode kinetics of ethanol oxidation on Pd modified Pt electrodes and the estimation of intermediates formed in alkali medium

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, S.S.; Dutta, A. [Department of Chemistry, Bengal Engineering and Science University, PO-B. Garden, Shibpur, Howrah 711 103, West Bengal (India); Datta, J., E-mail: jayati_datta@rediffmail.co [Department of Chemistry, Bengal Engineering and Science University, PO-B. Garden, Shibpur, Howrah 711 103, West Bengal (India)

    2010-12-01

    Ethanol has been recognized as the ideal fuel for direct alcohol fuel cell (DAFC) systems due to its high energy density, non-toxicity and its bio-generation. However the complete conversion of ethanol to CO{sub 2} is still met with challenges, due to dearth of suitable catalysts for the electro-oxidation. In the present work the effect of temperature on the catalytic oxidation of ethanol in alkaline medium over electrodeposited Pt and Pt-Pd alloyed nano particles on carbon support and also on the product formation during the course of reaction have been studied within the temperature range of 20-80 {sup o}C. The information on surface morphology, structural characteristics and bulk composition of the catalyst was obtained using SEM, XRD and EDX. BET surface area and pore widths of the catalyst particles were calculated by applying the BET equation to the adsorption isotherms. The electrochemical techniques like cyclic voltammetry, chronoamperometry and impedance spectroscopy were employed to investigate the electrochemical parameters related to electro-oxidation of ethanol in alkaline pH on the catalyst surfaces under the influence of temperature. The results show that the oxidation kinetics of ethanol on the alloyed Pt-Pd/C catalysts is significantly improved compared to that on Pt alone. The observations were interpreted in terms of the synergistic effect of higher electrochemical surface area, preferred OH{sup -} adsorption on the surface and the ad-atom contribution of the alloyed matrix. A pronounced influence of temperature on the reaction kinetics was manifested in the diminution of charge transfer resistance and activation energy of the ethanol oxidation with Pd incorporation into the Pt matrix, ensuring greater tolerance of the alloyed catalyst towards ethanolic residues. The higher yield of the reaction products like acetate and CO{sub 3}{sup -2} on the alloyed catalyst compared to Pt alone in alkaline medium, as estimated by ion chromatography, further

  10. The electrochemical atomic layer deposition of Pt and Pd nanoparticles on Ni foam for the electro oxidation of alcohols

    CSIR Research Space (South Africa)

    Modibedi, RM

    2013-01-01

    Full Text Available procedure The chemicals used in the preparation were Platinum solution (1mM H2PtCl6 pH = 1, SA Precious Metals), Pd solution (1mM PdCl2 pH = 1, SA Precious Metals), (copper sulphate solution (1mM CuSO4.5H2O pH = 1, Merck) were prepared in perchloric...

  11. First-principle calculations for electronic properties of PuX3 (X=Rh, Pd, Pt)

    International Nuclear Information System (INIS)

    Tatetsu, Yasutomi; Maehira, Takahiro

    2012-01-01

    Energy band structures of PuX 3 (X=Rh, Pd, and Pt) are investigated by a relativistic linear augmented-plane-wave method with the exchange-correlation potential in a local density approximation. It is found in common that the energy bands in the vicinity of the Fermi level are mainly due to the hybridization between Pu 5f and X d electrons.

  12. Tuning the Composition and Nanostructure of Pt/Ir Films via Anodized Aluminum Oxide Templated Atomic Layer Deposition

    Science.gov (United States)

    2010-01-01

    12 ] to dictate fi lm morphology. Such templated deposition is typically con- ducted by either electrodeposition or elec- troless deposition, with...non-enzymatic glucose sensing. [ 34–36 ] In particular, the syn- thesis of such nanostructured fi lms is delineated with a focus on the precise...deposited using alternating exposures to trimethylaluminum and H 2 O to provide a uniform nucleation layer for Pt and Ir fi lms. Nanostructured Pt fi

  13. Synthesis, spectral and theoretical studies of Ni(II), Pd(II) and Pt(II) complexes of 5-mercapto-1,2,4-triazole-3-imine-2'-hydroxynaphthaline.

    Science.gov (United States)

    Gaber, Mohamed; El-Ghamry, Hoda; Atlam, Faten; Fathalla, Shaimaa

    2015-02-25

    Ni(II), Pd(II) and Pt(II) complexes of 5-mercapto-1,2,4-triazole-3-imine-2'-hydroxynaphthaline have been isolated and characterized by elemental analysis, IR, (1)H NMR, EI-mass, UV-vis, molar conductance, magnetic moment measurements and thermogravimetric analysis. The molar conductance values indicated that the complexes are non-electrolytes. The magnetic moment values of the complexes displayed diamagnetic behavior for Pd(II) and Pt(II) complexes and tetrahedral geometrical structure for Ni(II) complex. From the bioinorganic applications point of view, the interaction of the ligand and its metal complexes with CT-DNA was investigated using absorption and viscosity titration techniques. The Schiff-base ligand and its metal complexes have also been screened for their antimicrobial and antitumor activities. Also, theoretical investigation of molecular and electronic structures of the studied ligand and its metal complexes has been carried out. Molecular orbital calculations were performed using DFT (density functional theory) at B3LYP level with standard 6-31G(d,p) and LANL2DZ basis sets to access reliable results to the experimental values. The calculations were performed to obtain the optimized molecular geometry, charge density distribution, extent of distortion from regular geometry, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), Mulliken atomic charges, reactivity index (ΔE), dipole moment (D), global hardness (η), softness (σ), electrophilicity index (ω), chemical potential and Mulliken electronegativity (χ). Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Phase Transformation and Shape Memory Effect of Ti-Pd-Pt-Zr High-Temperature Shape Memory Alloys

    Science.gov (United States)

    Yamabe-Mitarai, Yoko; Takebe, Wataru; Shimojo, Masayuki

    2017-12-01

    To understand the potential of high-temperature shape memory alloys, we have investigated the phase transformation and shape memory effect of Ti-(50 - x)Pt- xPd-5Zr alloys ( x = 0, 5, and 15 at.%), which present the B2 structure in the austenite phase and B19 structure in the martensite phase. Their phase transformation temperatures are very high; A f and M f of Ti-50Pt are 1066 and 1012 °C, respectively. By adding Zr and Pd, the phase transition temperatures decrease, ranging between 804 and 994 °C for A f and 590 and 865 °C for M f. Even at the high phase transformation temperature, a maximum recovery ratio of 70% was obtained for one cycle in a thermal cyclic test. A work output of 1.2 J/cm3 was also obtained. The recovery ratio obtained by the thermal cyclic test was less than 70% because the recovery strain was training effect was also investigated.

  15. Iridium Interfacial Stack - IrIS

    Science.gov (United States)

    Spry, David

    2012-01-01

    Iridium Interfacial Stack (IrIS) is the sputter deposition of high-purity tantalum silicide (TaSi2-400 nm)/platinum (Pt-200 nm)/iridium (Ir-200 nm)/platinum (Pt-200 nm) in an ultra-high vacuum system followed by a 600 C anneal in nitrogen for 30 minutes. IrIS simultaneously acts as both a bond metal and a diffusion barrier. This bondable metallization that also acts as a diffusion barrier can prevent oxygen from air and gold from the wire-bond from infiltrating silicon carbide (SiC) monolithically integrated circuits (ICs) operating above 500 C in air for over 1,000 hours. This TaSi2/Pt/Ir/Pt metallization is easily bonded for electrical connection to off-chip circuitry and does not require extra anneals or masking steps. There are two ways that IrIS can be used in SiC ICs for applications above 500 C: it can be put directly on a SiC ohmic contact metal, such as Ti, or be used as a bond metal residing on top of an interconnect metal. For simplicity, only the use as a bond metal is discussed. The layer thickness ratio of TaSi2 to the first Pt layer deposited thereon should be 2:1. This will allow Si from the TaSi2 to react with the Pt to form Pt2Si during the 600 C anneal carried out after all layers have been deposited. The Ir layer does not readily form a silicide at 600 C, and thereby prevents the Si from migrating into the top-most Pt layer during future anneals and high-temperature IC operation. The second (i.e., top-most) deposited Pt layer needs to be about 200 nm to enable easy wire bonding. The thickness of 200 nm for Ir was chosen for initial experiments; further optimization of the Ir layer thickness may be possible via further experimentation. Ir itself is not easily wire-bonded because of its hardness and much higher melting point than Pt. Below the iridium layer, the TaSi2 and Pt react and form desired Pt2Si during the post-deposition anneal while above the iridium layer remains pure Pt as desired to facilitate easy and strong wire-bonding to the Si

  16. Highly Active, Carbon-supported, PdSn Nano-core, Partially ...

    African Journals Online (AJOL)

    Carbon-supported, Pt partially covered, PdSn alloy nanoparticles (Pt-PdSn/C) were synthesized via a metathetical reaction of PdSn alloy nanoparticles, and a platinum precursor. The electrochemical activity was evaluated by methanol oxidation. The Pt-PdSn/C catalysts were characterized by transmission electron ...

  17. Electrocatalytic oxidation of methanol on (Pb) lead modified by Pt, Pt-Ru and Pt-Sn microparticles dispersed into poly(o-phenylenediamine) film

    Energy Technology Data Exchange (ETDEWEB)

    Golikand, Ahmad Nozad; Maragheh, Mohammad Ghannadi; Irannejad, Leila [Jaber Ibn Hayan Research Lab., Atomic Energy Organization of Iran (AEOI), Tehran (Iran); Golabi, Seyed Mehdi [Electroanalytical Chemistry Lab., Faculty of Chemistry, University of Tabriz, Tabriz (Iran)

    2005-08-18

    The electrocatalytic oxidation of methanol at a (Pb) lead electrode modified by Pt, Pt-Ru and Pt-Sn microparticles dispersed into poly(o-phenylenediamine) (PoPD) film has been investigated using cyclic voltammetry as analytical technique and 0.5M sulfuric acid as supporting electrolyte. It has been shown that the presence of PoPD film increases considerably the efficiency of deposited Pt and Pt alloys microparticles toward the electrocatalytic oxidation of methanol. The catalytic activity of Pt particles is further enhanced when Ru and especially Sn, is co-deposited in the polymer film. The effects of various parameters such as concentration of methanol, medium temperature as well as the long term stability of modified electrodes have also been investigated. (author)

  18. A genosensor for detection of consensus DNA sequence of Dengue virus using ZnO/Pt-Pd nanocomposites.

    Science.gov (United States)

    Singhal, Chaitali; Pundir, C S; Narang, Jagriti

    2017-11-15

    An electrochemical genosensor based on Zinc oxide/platinum-palladium (ZnO/Pt-Pd) modified fluorine doped tin oxide (FTO) glass plate was fabricated for detection of consensus DNA sequence of Dengue virus (DENV) using methylene blue (MB) as an intercalating agent. To achieve it, probe DNA (PDNA) was immobilized on the surface of ZnO/Pt-Pd nanocomposites modified FTO electrode. The synthesized nano-composites were characterized by high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM), scanning electron microscopy (SEM), UV-Vis spectroscopy, X-ray diffraction (XRD) analysis and Fourier transform infra-red (FTIR) spectroscopy. This PDNA modified electrode (PDNA/ZnO/Pt-Pd/FTO) served as a signal amplification platform for the detection of the target hybridized DNA (TDNA). The hybridization between PDNA and TDNA was detected by reduction in current, generated by interaction of anionic mediator, i.e., methylene blue (MB) with free guanine (3'G) of ssDNA. The sensor showed a dynamic linear range of 1 × 10 -6 M to 100 × 10 -6 M with LOD as 4.3 × 10 -5 M and LOQ as 9.5 × 10 -5 M. Till date, majorly serotype specific biosensors for dengue detection have been developed. The genosensor reported here eliminates the possibility of false result as in case of serotype specific DNA sensor. This is the report where conserved sequences present in all the serotypes of Dengue virus has been employed for fabrication of a genosensor. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Synthesis, spectral and theoretical studies of Ni(II), Pd(II) and Pt(II) complexes of 5-mercapto-1,2,4-triazole-3-imine-2‧-hydroxynaphyhaline

    Science.gov (United States)

    Gaber, Mohamed; El-Ghamry, Hoda; Atlam, Faten; Fathalla, Shaimaa

    2015-02-01

    Ni(II), Pd(II) and Pt(II) complexes of 5-mercapto-1,2,4-triazole-3-imine-2‧-hydroxynaphthaline have been isolated and characterized by elemental analysis, IR, 1H NMR, EI-mass, UV-vis, molar conductance, magnetic moment measurements and thermogravimetric analysis. The molar conductance values indicated that the complexes are non-electrolytes. The magnetic moment values of the complexes displayed diamagnetic behavior for Pd(II) and Pt(II) complexes and tetrahedral geometrical structure for Ni(II) complex. From the bioinorganic applications point of view, the interaction of the ligand and its metal complexes with CT-DNA was investigated using absorption and viscosity titration techniques. The Schiff-base ligand and its metal complexes have also been screened for their antimicrobial and antitumor activities. Also, theoretical investigation of molecular and electronic structures of the studied ligand and its metal complexes has been carried out. Molecular orbital calculations were performed using DFT (density functional theory) at B3LYP level with standard 6-31G(d,p) and LANL2DZ basis sets to access reliable results to the experimental values. The calculations were performed to obtain the optimized molecular geometry, charge density distribution, extent of distortion from regular geometry, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), Mulliken atomic charges, reactivity index (ΔE), dipole moment (D), global hardness (η), softness (σ), electrophilicity index (ω), chemical potential and Mulliken electronegativity (χ).

  20. Recent Advances on Electro-Oxidation of Ethanol on Pt- and Pd-Based Catalysts: From Reaction Mechanisms to Catalytic Materials

    Directory of Open Access Journals (Sweden)

    Ye Wang

    2015-09-01

    Full Text Available The ethanol oxidation reaction (EOR has drawn increasing interest in electrocatalysis and fuel cells by considering that ethanol as a biomass fuel has advantages of low toxicity, renewability, and a high theoretical energy density compared to methanol. Since EOR is a complex multiple-electron process involving various intermediates and products, the mechanistic investigation as well as the rational design of electrocatalysts are challenging yet essential for the desired complete oxidation to CO2. This mini review is aimed at presenting an overview of the advances in the study of reaction mechanisms and electrocatalytic materials for EOR over the past two decades with a focus on Pt- and Pd-based catalysts. We start with discussion on the mechanistic understanding of EOR on Pt and Pd surfaces using selected publications as examples. Consensuses from the mechanistic studies are that sufficient active surface sites to facilitate the cleavage of the C–C bond and the adsorption of water or its residue are critical for obtaining a higher electro-oxidation activity. We then show how this understanding has been applied to achieve improved performance on various Pt- and Pd-based catalysts through optimizing electronic and bifunctional effects, as well as by tuning their surface composition and structure. Finally we point out the remaining key problems in the development of anode electrocatalysts for EOR.

  1. Lipid solubility of the platinum group metals Pt, Pd and Rh in dependence on the presence of complexing agents

    International Nuclear Information System (INIS)

    Zimmermann, Sonja; Menzel, Christoph M.; Stueben, Doris; Taraschewski, Horst; Sures, Bernd

    2003-01-01

    All complexing agents had a significant influence on octanol solubility of PGM. - Investigations on the bioaccumulation of the platinum group metals (PGM) Pt, Pd and Rh in aquatic organisms are of growing interest in environmental research due to the increasing emission of these metals by motor vehicles with catalytic converters. Until now, nothing is known about the possible influence of complexing agents on the bioaccumulation capacity of these precious metals. According to the partition coefficient between 1-octanol and water (P OW ) as a measure of bioaccumulation, in this study a simple shaking method was performed in order to investigate the effects of different complexing agents (L-methionine, thio urea, EDTA, humic substances, bile compounds) on the octanol solubility of the PGM. The results demonstrated a significant influence of all agents used. L-Methionine and thio urea decreased the lipid solubility. In contrast, the presence of EDTA, humic substances and especially bile caused a higher transfer of metals in the octanol phase. For most complexing agents tested, the transfer of Pd to the lipid phase was significantly higher compared with Rh and Pt, except for bile acid where the highest octanol solubility was found for Pt. Recent experimental results on PGM accumulation in zebra mussels confirm a high bioaccumulation of Pd which could be predicted from the lipid solubility

  2. Lipid solubility of the platinum group metals Pt, Pd and Rh in dependence on the presence of complexing agents

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Sonja; Menzel, Christoph M.; Stueben, Doris; Taraschewski, Horst; Sures, Bernd

    2003-07-01

    All complexing agents had a significant influence on octanol solubility of PGM. - Investigations on the bioaccumulation of the platinum group metals (PGM) Pt, Pd and Rh in aquatic organisms are of growing interest in environmental research due to the increasing emission of these metals by motor vehicles with catalytic converters. Until now, nothing is known about the possible influence of complexing agents on the bioaccumulation capacity of these precious metals. According to the partition coefficient between 1-octanol and water (P{sub OW}) as a measure of bioaccumulation, in this study a simple shaking method was performed in order to investigate the effects of different complexing agents (L-methionine, thio urea, EDTA, humic substances, bile compounds) on the octanol solubility of the PGM. The results demonstrated a significant influence of all agents used. L-Methionine and thio urea decreased the lipid solubility. In contrast, the presence of EDTA, humic substances and especially bile caused a higher transfer of metals in the octanol phase. For most complexing agents tested, the transfer of Pd to the lipid phase was significantly higher compared with Rh and Pt, except for bile acid where the highest octanol solubility was found for Pt. Recent experimental results on PGM accumulation in zebra mussels confirm a high bioaccumulation of Pd which could be predicted from the lipid solubility.

  3. A Platinum Monolayer Core-Shell Catalyst with a Ternary Alloy Nanoparticle Core and Enhanced Stability for the Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Haoxiong Nan

    2015-01-01

    Full Text Available We synthesize a platinum monolayer core-shell catalyst with a ternary alloy nanoparticle core of Pd, Ir, and Ni. A Pt monolayer is deposited on carbon-supported PdIrNi nanoparticles using an underpotential deposition method, in which a copper monolayer is applied to the ternary nanoparticles; this is followed by the galvanic displacement of Cu with Pt to generate a Pt monolayer on the surface of the core. The core-shell Pd1Ir1Ni2@Pt/C catalyst exhibits excellent oxygen reduction reaction activity, yielding a mass activity significantly higher than that of Pt monolayer catalysts containing PdIr or PdNi nanoparticles as cores and four times higher than that of a commercial Pt/C electrocatalyst. In 0.1 M HClO4, the half-wave potential reaches 0.91 V, about 30 mV higher than that of Pt/C. We verify the structure and composition of the carbon-supported PdIrNi nanoparticles using X-ray powder diffraction, X-ray photoelectron spectroscopy, thermogravimetry, transmission electron microscopy, and energy dispersive X-ray spectrometry, and we perform a stability test that confirms the excellent stability of our core-shell catalyst. We suggest that the porous structure resulting from the dissolution of Ni in the alloy nanoparticles may be the main reason for the catalyst’s enhanced performance.

  4. Graphene blended with SnO2 and Pd-Pt nanocages for sensitive non-enzymatic electrochemical detection of H2O2 released from living cells.

    Science.gov (United States)

    Fu, Yamin; Huang, Di; Li, Congming; Zou, Lina; Ye, Baoxian

    2018-07-19

    This paper described a novel, facile and nonenzymatic electrochemical biosensor to detect hydrogen peroxide (H 2 O 2 ). The sensor was fabricated based on Pd-Pt nanocages and SnO 2 /graphene nanosheets modified electrode (PdPt NCs@SGN/GCE). The electrochemical behavior of PdPt NCs@SGN/GCE exhibited excellent catalytic activity toward H 2 O 2 with fast response, high selectivity, superior sensitivity, low detection limit of 0.3 μM and large linear range from 1 μM to 300 μM. Under these obvious advantages, the constructed biosensor provided to be reliable for determination of H 2 O 2 secreted from human cervical cancer cells (Hela cells). Hence, the proposed biosensor is a promising candidate for detection of H 2 O 2 in situ released from living cells in clinical diagnostics. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Toward hybrid Au nanorods @ M (Au, Ag, Pd and Pt) core-shell heterostructures for ultrasensitive SERS probes

    Science.gov (United States)

    Xie, Xiaobin; Gao, Guanhui; Kang, Shendong; Lei, Yanhua; Pan, Zhengyin; Shibayama, Tamaki; Cai, Lintao

    2017-06-01

    Being able to precisely control the morphologies of noble metallic nanostructures is of essential significance for promoting the surface-enhanced Raman scattering (SERS) effect. Herein, we demonstrate an overgrowth strategy for synthesizing Au @ M (M = Au, Ag, Pd, Pt) core-shell heterogeneous nanocrystals with an orientated structural evolution and highly improved properties by using Au nanorods as seeds. With the same reaction condition system applied, we obtain four well-designed heterostructures with diverse shapes, including Au concave nanocuboids (Au CNs), Au @ Ag crystalizing face central cube nanopeanuts, Au @ Pd porous nanocuboids and Au @ Pt nanotrepangs. Subsequently, the exact overgrowth mechanism of the above heterostructural building blocks is further analysed via the systematic optimiziation of a series of fabrications. Remarkably, the well-defined Au CNs and Au @ Ag nanopeanuts both exhibit highly promoted SERS activity. We expect to be able to supply a facile strategy for the fabrication of multimetallic heterogeneous nanostructures, exploring the high SERS effect and catalytic activities.

  6. Photoinduced Glycerol Oxidation over Plasmonic Au and AuM (M = Pt, Pd and Bi) Nanoparticle-Decorated TiO2 Photocatalysts

    Science.gov (United States)

    Jedsukontorn, Trin; Saito, Nagahiro; Hunsom, Mali

    2018-01-01

    In this study, sol-immobilization was used to prepare gold nanoparticle (Au NP)-decorated titanium dioxide (TiO2) photocatalysts at different Au weight % (wt. %) loading (Aux/TiO2, where x is the Au wt. %) and Au–M NP-decorated TiO2 photocatalysts (Au3M3/TiO2), where M is bismuth (Bi), platinum (Pt) or palladium (Pd) at 3 wt. %. The Aux/TiO2 photocatalysts exhibited a stronger visible light absorption than the parent TiO2 due to the localized surface plasmon resonance effect. Increasing the Au content from 1 wt. % to 7 wt. % led to increased visible light absorption due to the increasing presence of defective structures that were capable of enhancing the photocatalytic activity of the as-prepared catalyst. The addition of Pt and Pd coupled with the Au3/TiO2 to form Au3M3/TiO2 improved the photocatalytic activity of the Au3/TiO2 photocatalyst by maximizing their light-absorption property. The Au3/TiO2, Au3Pt3/TiO2 and Au3Pd3/TiO2 photocatalysts promoted the formation of glyceraldehyde from glycerol as the principle product, while Au3Bi3/TiO2 facilitated glycolaldehyde formation as the major product. Among all the prepared photocatalysts, Au3Pd3/TiO2 exhibited the highest photocatalytic activity with a 98.75% glycerol conversion at 24 h of reaction time. PMID:29690645

  7. In situ attenuated total reflection infrared (ATR-IR) study of the adsorption of NO2-, NH2OH, and NH4+ on Pd/Al2O3 and Pt/Al2O3.

    NARCIS (Netherlands)

    Ebbesen, S.D.; Mojet, Barbara; Lefferts, Leonardus

    2008-01-01

    In relation to the heterogeneous hydrogenation of nitrite, adsorption of NO2-, NH4+, and NH2OH from the aqueous phase was examined on Pt/Al2O3, Pd/Al2O3, and Al2O3. None of the investigated inorganic nitrogen compounds adsorb on alumina at conditions presented in this study. NO2-(aq) and NH4+(aq) on

  8. H electro-insertion into Pd/Pt(1 1 1) nanofilms: an original method for isotherm measurement coupled to in situ surface X-ray diffraction structural study

    International Nuclear Information System (INIS)

    Soldo-Olivier, Y.; Sibert, E.; Previdello, B.; Lafouresse, M.C.; Maillard, F.; De Santis, M.

    2013-01-01

    In order to get a thorough comprehension of the mechanisms governing hydrogen insertion into nanometric metallic films, we have studied ultra-thin Pd/Pt(1 1 1) layers. In this paper we propose an original method allowing the measurement of hydrogen insertion electrochemical isotherms. The use of a hanging meniscus rotating disc electrode and a new calculation approach permit to remove the contributions to the insertion charge of both hydrogen evolution and hydrogen oxidation reactions. Indeed, compared to hydrogen insertion such terms become non-negligible in the case of nanometric deposits, due to their large surface/bulk atom ratio. We have measured hydrogen insertion isotherms for Pd/Pt(1 1 1) films from 14 ML down to 4 ML. Independently from the film thickness, the maximum hydrogen insertion rate (H/Pd) max is smaller than that of bulk Pd. The so-called two-phase region is still present, but contrarily to bulk Pd it is characterized by a slope. Both hydrogen solubility and the two-phase domain width diminish with the decrease of the film thickness. In the present work the behaviour of hydrogen electrochemical insertion isotherms is interpreted in the light of the Pd nanofilms structure obtained with in situ surface X-ray diffraction. The lattice constraints induced by the substrate result in a lower insertion rate in the Pd deposit close to the Pt–Pd interface. Only the outermost region of the film is relaxed and behaves like bulk Pd. This description quantitatively accounts for the experimental behaviour of (H/Pd) max as a function of the film thickness. The obtained Pd/Pt(1 1 1) films structure also corresponds to the presence of non-equivalent hydrogen insertion sites, surely contributing to the slope observed in the two-phase domain

  9. Efficient Synthesis of MCu (M = Pd, Pt, and Au) Aerogels with Accelerated Gelation Kinetics and their High Electrocatalytic Activity.

    Science.gov (United States)

    Zhu, Chengzhou; Shi, Qiurong; Fu, Shaofang; Song, Junhua; Xia, Haibing; Du, Dan; Lin, Yuehe

    2016-10-01

    To accelerate hydrogel formation and further simplify the synthetic procedure, a series of MCu (M = Pd, Pt, and Au) bimetallic aerogels is synthesized from the in situ reduction of metal precursors through enhancement of the gelation kinetics at elevated temperature. Moreover, the resultant PdCu aerogel with ultrathin nanowire networks exhibits excellent electrocatalytic performance toward ethanol oxidation, holding promise in fuel-cell applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Role of Bi promotion and solvent in platinum-catalyzed alcohol oxidation probed by in situ X-ray absorption and ATR-IR spectroscopy

    DEFF Research Database (Denmark)

    Mondelli, C.; Grunwaldt, Jan-Dierk; Ferri, D.

    2010-01-01

    the catalysts under working conditions using in situ X-ray absorption spectroscopy (XAS) and attenuated total reflection infrared spectroscopy (ATR-IR), aiming at uncovering the roles of the metal promoter and the reaction medium. XAS confirms that Bi is oxidized more easily than Pt, maintaining the catalytic...... surfaces than on step or kink sites. Side products, CO and benzoate species, appearing during the reaction reveal that the geometric suppression of undesired reactions does not occur to the same extent on Pt-based catalysts as on Pd, suggesting that decarbonylation of the produced aldehyde on Pt may occur...

  11. Electrochemical gene sensor for Mycoplasma pneumoniae DNA using dual signal amplification via a Pt-Pd nanowire and horse radish peroxidase

    International Nuclear Information System (INIS)

    Liu, Linlin; Xiang, Guiming; Jiang, Dongneng; Du, Chunlan; Liu, Chang; Huang, Weiwei; Pu, Xiaoyun

    2016-01-01

    A dually amplified DNA biosensor was constructed for the determination of the DNA of Mycoplasma pneumoniae (M. pneu). A gold electrode was modified with 3,4,9,10-perylenetetracarboxylic acid dianhydride (PTCDA; a π-stacking perylene semiconductor dye with outstanding electronic and optical properties), a layer of gold nanoparticles (nano-Au), and capture DNA. Pt-Pd nanowires served as carriers for the co immobilization of complementary probe (CP2) and the mediator thionine (Thi). Horseradish peroxidase (HRP) acted as a blocking reagent and signal enhancer. Following base pairing, the modified Pt-Pd nanowires were captured on the surface of the gold electrode. After addition of H 2 O 2 , the Pt-Pd nanowires and HRP both catalyzed the reduction of H 2 O 2 and promoted the electron transfer via the mediator Thi, resulting in an amplified electrochemical signal. The electrical signal, best measured at a working voltage of −200 mV (vs a SCE), is logarithmically related to the concentration of the M. pneu DNA in the 0.1 pM to 20 nM concentration range, and the detection limit (at an S/N ratio of 3) is 0.03 pM. The assay is robust, sensitive and specific. Conceivably, it is a cost-effective alternative to the established PCR method for the detection of M. pneu in clinical samples. (author)

  12. Electronic structure, superconductivity, and spin fluctuations in the A15 compounds A3B: A = V, Nb; B = Ir,Pt,Au

    International Nuclear Information System (INIS)

    Jarlborg, T.; Junod, A.; Peter, M.

    1983-01-01

    The electronic structure of six A15 compounds V 3 Ir, V 3 Pt, V 3 Au, Nb 3 Ir, Nb 3 Pt, and Nb 3 Au has been determined by means of self-consistent semirelativistic linear muffin-tin orbital band calculations. Parameters related to superconductivity such as electron-phonon coupling, transition temperature, electronic specific heat, and magnetic exchange enhancement are derived from the electronic-structure results. Generally the results obtained agree well with experimental values, with the exception of Nb 3 Pt and V 3 Au. In the former compound the density of states (DOS) has a sharp increase at E/sub F/ making the exact DOS value uncertain. In V 3 Au the high calculated T/sub c/ and the Stoner factor indicate that spin fluctuations may be limiting the T/sub c/. .AE

  13. Voltage Oscillations in a Polymer Electrolyte Membrane Fuel Cell with Pd-Pt/C and Pd/C Anodes.

    Science.gov (United States)

    Nogueira, Jéssica Alves; Varela, Hamilton

    2017-10-01

    Polymer electrolyte membrane fuel cells (PEMFC) fed with H 2 contaminated with CO may exhibit oscillatory behavior when operated galvanostatically. The self-organization of the anodic overpotential is interesting because it can be accompanied by an increase in the average performance. Herein we report experimental studies of voltage oscillations that emerge in a PEMFC equipped with a Pd/C or PdPt/C anode and fed with H 2 contaminated with CO (100 ppm). We used on-line mass spectrometry to investigate how the mass fragments associated with CO 2 and CO ( m / z 44 and 28, respectively) varied with the voltage oscillations. Overall, we observed that oscillations in the anodic overpotential are in phase with that of the CO and CO 2 signals. This fact is consistent with an autonomous adsorption-oxidation cyclic process. For both anodes, it has been observed that, in general, an increase in current density implies an increase in oscillatory frequency. By using CO stripping, we also discuss how the onset of CO oxidation is related to the maximum overpotential reached during a cycle, whereas the minimum overpotential can be associated with the catalytic activity of the electrode for H 2 oxidation.

  14. NO reduction by CO over noble-metal catalysts under cycled feedstreams

    International Nuclear Information System (INIS)

    Muraki, H.; Fujitani, Y.

    1986-01-01

    The reduction of NO with CO was studied over α-Al/sub 2/O/sub 3/-supported Pt, Pd, Rh, Ru, and Ir catalysts. The activities were measured by using cycled feeds and steady noncycled feed. The activity sequence of the catalysts tested was Rh > Ru > Ir > Pd > Pt. The activities of Pt and Pd catalysts were increased under the cycled feed. The periodic operation effect on the Pt catalyst was more predominant than that on the Pd catalyst. The order of periodic operation effect corresponded to the order of their susceptibility to CO self-poisoning

  15. Dispersion of Pt, Pd and Rh produced by catalytic converters into the roadside and urban environment. Element speciation study; Dispersion dans l'environnement routier et urbain de Pt, Pd, et Rh emis par les pots d'echappement catalytiques. Etude de la speciation des elements

    Energy Technology Data Exchange (ETDEWEB)

    Amosse, J.; Delbos, V. [Centre National de la Recherche Scientifique (CNRS), Lab. de Geodynamique des Chaines Alpines, LGCA, UMR 5025, 38 - Grenoble (France)

    2002-09-01

    This study highlights the dispersion into the French urban environment of platinum group elements (PGEs) used in catalytic converters. Differences were observed between Pt and Rh on the one hand, and Pd on the other one. One experiment, consisting in passing the corrosive gas emissions from engines over the metals heated to 1000 deg. C, showed that Pd was severely corroded by nitrogen oxides. It was concluded that Pd is emitted in nitrate form. Hydrolysis of this nitrate form leads to the formation of soluble species. In situ pH and E{sub h} measurements in the soils concerned confirm this theory when the results are compared with the Pd species predominance diagram. (authors)

  16. Electric-field effects on magnetic anisotropy in Pd/Fe/Pd(0 0 1) surface

    International Nuclear Information System (INIS)

    Haraguchi, Shinya; Tsujikawa, Masahito; Gotou, Junpei; Oda, Tatsuki

    2011-01-01

    Electric-field (EF) effects have been studied on magnetic anisotropy in the metallic surfaces Pt/Fe/Pt(0 0 1) and Pd/Fe/Pd(0 0 1) by means of the first-principles electronic structure calculation which employs the generalized gradient approximation. The variation of anisotropy energy with respect to the EF is found to be opposite to each other. The modulus rate of the variation is larger by a few factors in the Pt substrate than in the Pd one. These results agree qualitatively well with the available experimental data. The electronic structures are presented and the origins in EF effects are discussed along a line of the second perturbative fashion.

  17. Immune-Related Adverse Events Associated with Anti-PD-1/PD-L1 Treatment for Malignancies: A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Peng-Fei Wang

    2017-10-01

    Full Text Available Background: Treatment of cancers with programmed cell death protein 1 (PD-1 pathway inhibitors can lead to immune-related adverse events (irAEs, which could be serious and even fetal. Therefore, clinicians should be aware of the characteristics of irAEs associated with the use of such drugs.Methods: The MEDLINE, EMBASE, and Cochrane databases were searched to find potential studies using the following strategies: anti-PD-1/PD-L1 treatment; irAEs; and cancer. R© package Meta was used to pool incidence.Results: Forty-six studies representing 12,808 oncologic patients treated with anti-PD-1/PD-L1 agents were included in the meta-analysis. The anti-PD-1/PD-L1 agents included nivolumab, pembrolizumab, atezolizumab, durvalumab, avelumab, and BMS-936559. The tumor types were melanomas, Hodgkin lymphomas, urothelial carcinomas, breast cancers, non-small cell lung cancers, renal cell carcinomas (RCC, colorectal cancers, and others. We described irAEs according to organ systems, namely, the skin (pruritus, rash, maculopapular rash, vitiligo, and dermatitis, endocrine system (hypothyroidism, hyperthyroidism, hypophysitis, thyroiditis, and adrenal insufficiency, digestive system (colitis, diarrhea, pancreatitis, and increased AST/ALT/bilirubin, respiratory system (pneumonitis, lung infiltration, and interstitial lung disease, and urinary system (increased creatinine, nephritis, and renal failure. In patients treated with the PD-1 signaling inhibitors, the overall incidence of irAEs was 26.82% (95% CI, 21.73–32.61; I2, 92.80 in any grade and 6.10% (95% CI, 4.85–7.64; I2, 52.00 in severe grade, respectively. The development of irAEs was unrelated to the dose of anti-PD-1/PD-L1 agents. The incidence of particular irAEs varied when different cancers were treated with different drugs. The incidence of death due to irAEs was around 0.17%.Conclusion: The occurrence of irAEs was organ-specific and related to drug and tumor types.

  18. Radial dose functions for 103Pd, 125I, 169Yb and 192Ir brachytherapy sources: an EGS4 Monte Carlo study

    International Nuclear Information System (INIS)

    Mainegra, E.

    2000-01-01

    Radial dose functions g(r) in water around 103 Pd, 125 I, 169 Yb and 192 Ir brachytherapy sources were estimated by means of the EGS4 simulation system and extensively compared with experimental as well as with theoretical results. The DLC-136/PHOTX cross section library, water molecular form factors, bound Compton scattering and Doppler broadening of the Compton-scattered photon energy were considered in the calculations. Use of the point source approach produces reasonably accurate values of the radial dose function only at distances beyond 0.5 cm for 103 Pd sources. It is shown that binding corrections for Compton scattering have a negligible effect on radial dose function for 169 Yb and 192 Ir seeds and for 103 Pd seeds under 5.0 cm from the source centre and for the 125 I seed model 6702 under 8.0 cm. Beyond those limits there is an increasing influence of binding corrections on radial dose function for 103 Pd and 125 I sources. Results in solid water medium underestimate radial dose function for low-energy sources by as much as 6% for 103 Pd and 2.5% for 125 I already at 2 cm from source centre resulting in a direct underestimation of absolute dose rate values. It was found necessary to consider medium boundaries when comparing results for the radial dose function of 169 Yb and 192 Ir sources to avoid discrepancies due to the backscattering contribution in the phantom medium. Values of g(r) for all source types studied are presented. Uncertainties lie under 1% within one standard deviation. (author)

  19. An investigation of the mimetic enzyme activity of two-dimensional Pd-based nanostructures

    Science.gov (United States)

    Wei, Jingping; Chen, Xiaolan; Shi, Saige; Mo, Shiguang; Zheng, Nanfeng

    2015-11-01

    In this work, we investigated the mimetic enzyme activity of two-dimensional (2D) Pd-based nanostructures (e.g. Pd nanosheets, Pd@Au and Pd@Pt nanoplates) and found that they possess intrinsic peroxidase-, oxidase- and catalase-like activities. These nanostructures were able to activate hydrogen peroxide or dissolved oxygen for catalyzing the oxidation of organic substrates, and decompose hydrogen peroxide to generate oxygen. More systematic investigations revealed that the peroxidase-like activities of these Pd-based nanomaterials were highly structure- and composition-dependent. Among them, Pd@Pt nanoplates displayed the highest peroxidase-like activity. Based on these findings, Pd-based nanostructures were applied for the colorimetric detection of H2O2 and glucose, and also the electro-catalytic reduction of H2O2. This work offers a promising prospect for the application of 2D noble metal nanostructures in biocatalysis.In this work, we investigated the mimetic enzyme activity of two-dimensional (2D) Pd-based nanostructures (e.g. Pd nanosheets, Pd@Au and Pd@Pt nanoplates) and found that they possess intrinsic peroxidase-, oxidase- and catalase-like activities. These nanostructures were able to activate hydrogen peroxide or dissolved oxygen for catalyzing the oxidation of organic substrates, and decompose hydrogen peroxide to generate oxygen. More systematic investigations revealed that the peroxidase-like activities of these Pd-based nanomaterials were highly structure- and composition-dependent. Among them, Pd@Pt nanoplates displayed the highest peroxidase-like activity. Based on these findings, Pd-based nanostructures were applied for the colorimetric detection of H2O2 and glucose, and also the electro-catalytic reduction of H2O2. This work offers a promising prospect for the application of 2D noble metal nanostructures in biocatalysis. Electronic supplementary information (ESI) available: TEM images, EDX and dispersion stability of Pd-based nanomaterials

  20. Electronic Absorption and MCD Spectra for Pd(AuPPh(3))(8)(2+), Pt(AuPPh(3))(8)(2+), and Related Platinum-Centered Gold Cluster Complexes.

    Science.gov (United States)

    Adrowski, Michael J.; Mason, W. Roy

    1997-03-26

    Electronic absorption and 7.0 T magnetic circular dichroism (MCD) spectra in the UV-vis region, 1.6 to approximately 4.0 &mgr;m(-)(1) (1 &mgr;m(-)(1) = 10(4) cm(-)(1)) are reported for [Pd(AuPPh(3))(8)](NO(3))(2) and [Pt(AuPPh(3))(8)](NO(3))(2) in acetonitrile solutions at room temperature. The MCD spectra are better resolved than the absorption spectra and consist of both A and B terms. The spectra are interpreted in terms of D(4)(d)() skeletal geometry and MO's that are approximated by 5s and 6s orbitals for Pd and Pt/Au atoms, respectively. The lowest energy excited configurations and states are attributed to intraframework (IF) Au(8)(2+) transitions. Evidence is also presented for Pt 5d --> Au 6s transitions in the MCD spectra for Pt(AuPPh(3))(8)(2+). Acetonitrile solution absorption and MCD spectra for the related Pt-centered cluster complexes [Pt(CO)(AuPPh(3))(8)](NO(3))(2), [Pt(AuP(p-tolyl)(3))(8)](NO(3))(2), [Pt(CuCl)(AuPPh(3))(8)](NO(3))(2), [Pt(AgNO(3))(AuPPh(3))(8)](NO(3))(2), [Pt(Hg)(2)(AuPPh(3))(8)](NO(3))(2), [Pt(HgCl)(2)(AuPPh(3))(8)](BF(4))(2), and [Pt(HgNO(3))(2)(AuPPh(3))(8)](BF(4))(2) are also reported and interpreted within the context of the model developed for the M(AuPPh(3))(8)(2+) complexes.

  1. Effect of flattened surface morphology of anodized aluminum oxide templates on the magnetic properties of nanoporous Co/Pt and Co/Pd thin multilayered films

    Science.gov (United States)

    Nguyen, T. N. Anh; Fedotova, J.; Kasiuk, J.; Bayev, V.; Kupreeva, O.; Lazarouk, S.; Manh, D. H.; Vu, D. L.; Chung, S.; Åkerman, J.; Altynov, V.; Maximenko, A.

    2018-01-01

    For the first time, nanoporous Al2O3 templates with smoothed surface relief characterized by flattened interpore areas were used in the fabrication of Co/Pd and Co/Pt multilayers (MLs) with strong perpendicular magnetic anisotropy (PMA). Alternating gradient magnetometry (AGM) revealed perfectly conserved PMA in the Co/Pd and Co/Pt porous MLs (antidot arrays) with a ratio of remanent magnetization (Mr) to saturation magnetization (MS) of about 0.99, anisotropy fields (Ha) of up to 2.6 kOe, and a small deviation angle of 8° between the easy magnetization axis and the normal to the film surface. The sufficient magnetic hardening of the porous MLs with enhanced coercive field HC of up to ∼1.9 kOe for Co/Pd and ∼1.5 kOe for Co/Pt MLs, as compared to the continuous reference samples (∼1.5-2 times), is associated with the pinning of the magnetic moments on the nanopore edges. Application of the Stoner-Wohlfarth model for fitting the experimental M/MS(H) curves yielded clear evidence of the predominantly coherent rotation mechanism of magnetization reversal in the porous films.

  2. Photodetachment of free hexahalogenometallate doubly charged anions in the gas phase: [ML6]2-, (M=Re, Os, Ir, Pt; L=Cl and Br)

    International Nuclear Information System (INIS)

    Wang, X.; Wang, L.

    1999-01-01

    We report the first observation and photodetachment photoelectron spectroscopic study of a series of hexahalogenometallates dianions MCl 6 2- (M=Re, Os, Ir, and Pt) and MBr 6 2- (M=Re, Ir, and Pt) in the gas phase. All of these species were found to be stable as free gaseous doubly charged anions. Photoelectron spectra of all the dianions were obtained at several detachment photon energies. The photon-energy-dependent spectra clearly revealed the dianion nature of these species and allowed the repulsive Coulomb barriers to be estimated. The binding energies of the second excess electron in MCl 6 2- (M=Re, Os, Ir, Pt) were determined to be 0.46 (5), 0.46 (5), 0.82 (5), and 1.58 (5) eV, respectively, and those in MBr 6 2- (M=Re, Ir, Pt) to be 0.76 (6), 0.96 (6), and 1.52 (6) eV, respectively. A wealth of electronic structure information about these metal complexes were obtained and low-lying and highly-excited electronic states of the corresponding singly charged anions were observed. Detachment from metal d orbitals or ligand orbitals were observed and could be clearly distinguished; detachments from the metal d-orbitals all occur at low binding energies whereas those from the ligand-dominated orbitals all take place at rather high binding energies. We also found a remarkable correlation between electron affinities measured in vacuo and the redox potentials obtained in the solution phase of these species. copyright 1999 American Institute of Physics

  3. Temperature dependence of the electric field gradient in AgPd and AgPt alloys

    International Nuclear Information System (INIS)

    Krolas, K.

    1977-07-01

    The measurements of temperature dependence of the electric field gradient (EFG) on 111 Cd nuclei in AgPd and AgPt alloys were performed using the time dependent perturbed angular correlation method. The EFG caused by impurities distributed in further coordination shells decrease stronaer with increasing temperature than the EFG due to single impurity being the nearest neighbour of the probe atom. These results were explained assuming different modes of thermal vibrations of single impurity atoms and impurity complexes in silver host lattice. (author)

  4. Adsorption and oxidation of acetaldehyde on carbon supported Pt, PtSn and PtSn-based trimetallic catalysts by in situ Fourier transform infrared spectroscopy

    Science.gov (United States)

    Beyhan, Seden; Léger, Jean-Michel; Kadırgan, Figen

    2013-11-01

    The adsorption and oxidation of acetaldehyde on carbon supported Pt, Pt90Sn10 and Pt80Sn10M10 (M = Ni, Co, Rh, Pd) catalysts have been investigated by using in situ Fourier transform infrared (FTIR) spectroscopy. The result revealed that Pt90Sn10/C catalyst is not very efficient for the conversion of acetaldehyde to CO2 due to the weak adsorption of acetaldehyde in the presence of Sn. However, the addition of a third metal to Pt--Sn facilitates the C-C bond cleavage of acetaldehyde. It seems that acetaldehyde is adsorbed dissociatively on the surface of Pt80Sn10Ni10/C, Pt80Sn10Co10/C, Pt80Sn10Rh10/C catalysts, producing CH3 and CHO adsorbate species, which can be further oxidized to CO2. However, the pathway forming CO2 for Pt80Sn10Pd10/C catalyst mainly originates from the oxidation of CH3CO species. Thus, the presence of third metal in the PtSn catalyst has a strong impact upon the acetaldehyde adsorption behaviour and its reaction products.

  5. Pd-Pt alloys nanowires as support-less electrocatalyst with high synergistic enhancement in efficiency for methanol oxidation in acidic medium.

    Science.gov (United States)

    Rana, Moumita; Patil, Pramod K; Chhetri, Manjeet; Dileep, K; Datta, Ranjan; Gautam, Ujjal K

    2016-02-01

    In a facile approach, Pd73Pt27 alloy nanowires (NWs) with large aspect ratios were synthesized in high yield by using sacrificial templates. Unlike majority of processes, our synthesis was carried out in aqueous solution with no intermittent separating stages for the products, while maintaining the NW morphology up to ∼30% of Pt. Upon evaporation of their dispersion, the NWs transform into a stable porous membrane due to self-entanglement and can be directly lifted and employed for electrocatalytic applications without external catalyst supports. We show that the NW membranes exhibit efficient electrocatalytic performance for methanol oxidation reaction (MOR) with 10 times higher mass activity and 4.4 times higher specific activity in acidic media as compared to commercial Pt catalysts. The membrane electrocatalysts is robust and exhibited very good stability with retention of ∼70% mass-activity after 4000 potential cycles. Since Pd was found to be inert towards MOR in acidic medium, our investigation provides a direct estimate of synergistic enhancement of efficiency. Over 10 times increment of mass activity appears to be significantly higher than previous investigations in various other reaction media. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Determination of Pt, Pd and Rh in Brassica Napus using solid sampling electrothermal vaporization inductively coupled plasma optical emission spectrometry

    International Nuclear Information System (INIS)

    Nischkauer, Winfried; Herincs, Esther; Puschenreiter, Markus; Wenzel, Walter; Limbeck, Andreas

    2013-01-01

    Conventional approaches for the analysis of platinum group elements (PGEs) in plant material suffer from sample digestion which results in sample dilution and therefore requires high sample intakes to maintain the sensitivity. The presented solid-sampling method avoids sample digestion while improving sensitivity when compared to digestion-based inductively coupled plasma optical emission spectrometry (ICP-OES) methods and allows the analysis of sample masses of 5 mg or less. Detection limits of 0.38 μg g −1 , 0.14 μg g −1 and 0.13 μg g −1 were obtained for Pt, Pd and Rh, respectively using a sample intake of 5 mg. The reproducibility of the procedure ranged between 4.7% (Pd) relative standard deviation (RSD, n = 7) and 7.1% (Rh) RSD for 25 ng analytes. For quantification, aqueous standards were applied on paper filter strips and dried. Only the dried filters were introduced into the electrothermal vaporization unit. This approach successfully removed memory-effects observed during analysis of platinum which occurred only if liquid standards came into contact with the graphite material of the furnace. The presented method for overcoming the Pt-memory-effects may be of further interest for the analysis of other carbide-forming analytes as it does not require any technical modification of the graphite furnace (e.g., metal inlays, pyrolytic coating). Owing to lack of suitable certified reference materials, the proposed method was compared with conventional ICP-OES analysis of digested samples and a good agreement was obtained. As a result of the low sample consumption, it was possible to determine the spatial distribution of PGEs within a single plant. Significant differences in PGE concentrations were observed between the shoots (stem, leaves) and the roots. Pd was mainly found in the roots, whereas Pt and Rh were also found in higher concentrations in the shoots. - Highlights: • The uptake of Pt, Pd and Rh by hydroponically grown plants was investigated

  7. Determination of Pt, Pd and Rh in Brassica Napus using solid sampling electrothermal vaporization inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Nischkauer, Winfried [Vienna University of Technology, Institute of Chemical Technologies and Analytics, Division of Instrumental Analytical Chemistry, Getreidemarkt 9/164-IAC, A-1060 Vienna (Austria); Herincs, Esther [Vienna University of Technology, Institute of Chemical Technologies and Analytics, Division of Instrumental Analytical Chemistry, Getreidemarkt 9/164-IAC, A-1060 Vienna (Austria); University of Natural Resources and Life Sciences, Department of Forest and Soil Sciences, Institute of Soil Research, Konrad Lorenz Straße 24, A-3430 Tulln (Austria); Puschenreiter, Markus; Wenzel, Walter [University of Natural Resources and Life Sciences, Department of Forest and Soil Sciences, Institute of Soil Research, Konrad Lorenz Straße 24, A-3430 Tulln (Austria); Limbeck, Andreas, E-mail: A.Limbeck@tuwien.ac.at [Vienna University of Technology, Institute of Chemical Technologies and Analytics, Division of Instrumental Analytical Chemistry, Getreidemarkt 9/164-IAC, A-1060 Vienna (Austria)

    2013-11-01

    Conventional approaches for the analysis of platinum group elements (PGEs) in plant material suffer from sample digestion which results in sample dilution and therefore requires high sample intakes to maintain the sensitivity. The presented solid-sampling method avoids sample digestion while improving sensitivity when compared to digestion-based inductively coupled plasma optical emission spectrometry (ICP-OES) methods and allows the analysis of sample masses of 5 mg or less. Detection limits of 0.38 μg g{sup −1}, 0.14 μg g{sup −1} and 0.13 μg g{sup −1} were obtained for Pt, Pd and Rh, respectively using a sample intake of 5 mg. The reproducibility of the procedure ranged between 4.7% (Pd) relative standard deviation (RSD, n = 7) and 7.1% (Rh) RSD for 25 ng analytes. For quantification, aqueous standards were applied on paper filter strips and dried. Only the dried filters were introduced into the electrothermal vaporization unit. This approach successfully removed memory-effects observed during analysis of platinum which occurred only if liquid standards came into contact with the graphite material of the furnace. The presented method for overcoming the Pt-memory-effects may be of further interest for the analysis of other carbide-forming analytes as it does not require any technical modification of the graphite furnace (e.g., metal inlays, pyrolytic coating). Owing to lack of suitable certified reference materials, the proposed method was compared with conventional ICP-OES analysis of digested samples and a good agreement was obtained. As a result of the low sample consumption, it was possible to determine the spatial distribution of PGEs within a single plant. Significant differences in PGE concentrations were observed between the shoots (stem, leaves) and the roots. Pd was mainly found in the roots, whereas Pt and Rh were also found in higher concentrations in the shoots. - Highlights: • The uptake of Pt, Pd and Rh by hydroponically grown plants was

  8. Magnetic properties, domain-wall creep motion, and the Dzyaloshinskii-Moriya interaction in Pt/Co/Ir thin films

    Science.gov (United States)

    Shepley, Philippa M.; Tunnicliffe, Harry; Shahbazi, Kowsar; Burnell, Gavin; Moore, Thomas A.

    2018-04-01

    We study the magnetic properties of perpendicularly magnetized Pt/Co/Ir thin films and investigate the domain-wall creep method of determining the interfacial Dzyaloshinskii-Moriya (DM) interaction in ultrathin films. Measurements of the Co layer thickness dependence of saturation magnetization, perpendicular magnetic anisotropy, and symmetric and antisymmetric (i.e., DM) exchange energies in Pt/Co/Ir thin films have been made to determine the relationship between these properties. We discuss the measurement of the DM interaction by the expansion of a reverse domain in the domain-wall creep regime. We show how the creep parameters behave as a function of in-plane bias field and discuss the effects of domain-wall roughness on the measurement of the DM interaction by domain expansion. Whereas modifications to the creep law with DM field and in-plane bias fields have taken into account changes in the energy barrier scaling parameter α , we find that both α and the velocity scaling parameter v0 change as a function of in-plane bias field.

  9. Pt{sub X}Ru{sub Y}Ir{sub Z} as a bifunctional electrocatalyst for oxygen reduction reaction in a PEM fuel cell; Pt{sub X}Ru{sub Y}Ir{sub Z} como electrocatalizador bifuncional para la reaccion redox del oxigeno en una celda tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Morales, L.; Fernandez, A.M. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Temixco, Morelos (Mexico)]. E-mail: limos@cie.unam.mx; Cano, U. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2009-09-15

    This work presents the synthesis and characterization of the ternary material Pt{sub X}Ru{sub Y}Ir{sub Z}, obtained by chemical reduction with NaBH{sub 4}. Two different atomic compositions were developed (sample A and B) in order to observe the kinetic effect, as suggested by the combinatorial libraries. The main objective of this synthesis is to study the oxygen reduction reaction (ORR and OER) and its potential use in the construction of a bifunctional catalyst. In addition, each of the metals are synthesized separately using the same technique in order to make the corresponding comparison. The compounds obtained were characterized by sweep electron microscopy, x-ray diffraction and composition using fluorescence and energy-dispersive x-ray spectroscopy. The results showed a displacement of the x-ray diffraction peaks for Ir and Pt in sample A, and displacement in sample B for Ru and Ir peaks. These changes suggest the possible formation of a solid solution substitution. Separate cyclic and linear voltamperometry studies were performed for the oxygen reduction and release reactions. The electrochemical analysis showed improved kinetic behavior when combining the three metals according to the composition of sample B. [Spanish] En este trabajo se presenta la sintesis y caracterizacion del material ternario Pt{sub X}Ru{sub Y}Ir{sub Z}, elaborado por la tecnica de Reduccion Quimica utilizando al NaBH{sub 4}. Se elaboraron dos composiciones atomicas diferentes (Muestra A y B) con el fin de observar el efecto cinetico, como lo sugieren las librerias combinatorias. El objetivo principal de esta sintesis es para el estudio de la Reaccion Redox del Oxigeno (RRO y REO) y su potencial uso para la construccion de un catalizador bifuncional. Asi mismo, se realiza la sintesis de cada uno de los metales por separado empleando la misma tecnica, con el proposito de realizar la comparacion correspondiente. Los compuestos obtenidos se caracterizaron por Microscopia Electronica de

  10. Tetraammineplatinum(II) aquapentachloroiridate(III) dihydrate, [Pt(NH3)4][IrCl5(H2O)

    International Nuclear Information System (INIS)

    Garnier, E.; Bele, M.

    1994-01-01

    The crystal is built up from planar Pt(NH 3 ) 4 2+ cations, octahedral IrCl 5 (H 2 O) 2- anions and two H 2 O molecules. The coordination of these ions is 6/6, thus leading to a NaCl crystal structure. Electrostatic interactions and N..Cl, N..O and N..N short contacts (possible hydrogen bonds) take part in the packing of the structure and form a three-dimensional network. (orig.)

  11. Effect of PW12–GPK on the acid characteristics of Ni-, Pd- and Pt- catalysts deposited onto pillared Al montmorillonite

    Directory of Open Access Journals (Sweden)

    D. Zhumadullaev

    2012-03-01

    Full Text Available Acid characteristics of Ni-, Pd-, Pt- catalyzers , deposited to Al pillared CaH montmorillonite modified by heteropolyacid H3PW12O40·xH2O (PW12 by ammonia thermoadsorbtion method has been studied.

  12. Stray field signatures of Néel textured skyrmions in Ir/Fe/Co/Pt multilayer films

    Science.gov (United States)

    Yagil, A.; Almoalem, A.; Soumyanarayanan, Anjan; Tan, Anthony K. C.; Raju, M.; Panagopoulos, C.; Auslaender, O. M.

    2018-05-01

    Skyrmions are nanoscale spin configurations with topological properties that hold great promise for spintronic devices. Here, we establish their Néel texture, helicity, and size in Ir/Fe/Co/Pt multilayer films by constructing a multipole expansion to model their stray field signatures and applying it to magnetic force microscopy images. Furthermore, the demonstrated sensitivity to inhomogeneity in skyrmion properties, coupled with a unique capability to estimate the pinning force governing dynamics, portend broad applicability in the burgeoning field of topological spin textures.

  13. X-ray fluorescence determination of Au, Pd and Pt from chloride solutions after preconcentration on cellulose filters

    International Nuclear Information System (INIS)

    Gordeeva, V.P.; Glazkova, S.V.; Tsysin, G.I.; Ivanov, V.M.; Zolotov, Yu. A.

    2003-01-01

    The aim of this work was synthesis of new sorption cellulose filters for dynamic preconcentration of Au, Pd and Pt from chloride solutions and subsequent XRF determination of these elements on the filters. New filters were prepared by impregnation of a filter paper with solution of tri-n-octylamine and paraffin in hexane (TOA-filters). The effect of paraffin and TOA concentration in hexane on a content of nitrogen in a filter was studied. It was found that Au(III), Pd(II) and Pt(IV) were quantitatively recovered on the TOA-filters (filtering surface diameter of 23 mm, thickness of 0.15 mm) from 0.5 - 1 M HCl at a flow rates of 2-5 ml min-1 from 10-100 ml of solution. The mathematical model of sorption dynamics was offered for the estimation of potential possibilities of new impregnated sorbents and for the evaluation of optimum dynamic conditions allowing to achieve of maximum concentration efficiency (CE max ). The elements were determined directly on the filters by XRF spectrometer. Palladium was also determined on the TOA-filters after formation of coloured compounds of metal with 4-(2-pyridylazo)resorcinol (PAR) by diffuse reflectance spectroscopy with the calculation of calorimetric characteristics and using test-scale. (authors)

  14. Approaching the Type-II Dirac Point and Concomitant Superconductivity in Pt-doping Stabilized Metastable 1T-phase IrTe2

    OpenAIRE

    Fei, Fucong; Bo, Xiangyan; Wang, Pengdong; Ying, Jianghua; Chen, Bo; Liu, Qianqian; Zhang, Yong; Sun, Zhe; Qu, Fanming; Zhang, Yi; Li, Jian; Song, Fengqi; Wan, Xiangang; Wang, Baigeng; Wang, Guanghou

    2017-01-01

    Topological semimetal is a topic of general interest in material science. Recently, a new kind of topological semimetal called type-II Dirac semimetal with tilted Dirac cones is discovered in PtSe2 family. However, the further investigation is hindered due to the huge energy difference from Dirac points to Fermi level and the irrelevant conducting pockets at Fermi surface. Here we characterize the optimized type-II Dirac dispersions in a metastable 1T phase of IrTe2. Our strategy of Pt doping...

  15. The sticking probability for H-2 on some transition metals at a hydrogen pressure of 1 bar

    DEFF Research Database (Denmark)

    Johansson, Martin; Lytken, Ole; Chorkendorff, Ib

    2008-01-01

    The sticking probability for hydrogen on films of Co, Ni, Cu, Ru, Rh, Pd, Ir, and Pt supported on graphite has been measured at a hydrogen pressure of 1 bar in the temperature range 40–200 °C. The sticking probability is found to increase in the order Ni, Co, Ir, Pd, Pt, Rh, and Ru at temperature...

  16. 640 X 480 MOS PtSi IR sensor

    Science.gov (United States)

    Sauer, Donald J.; Shallcross, Frank V.; Hseuh, Fu-Lung; Meray, Grazyna M.; Levine, Peter A.; Gilmartin, Harvey R.; Villani, Thomas S.; Esposito, Benjamin J.; Tower, John R.

    1991-12-01

    The design of a 1st and 2nd generation 640(H) X 480(V) element PtSi Schottky-barrier infrared image sensor employing a low-noise MOS X-Y addressable readout multiplexer and on-chip low-noise output amplifier is described. Measured performance characteristics for Gen 1 devices are presented along with calculated performance for the Gen 2 design. A multiplexed horizontal/vertical input address port and on-chip decoding is used to load scan data into CMOS horizontal and vertical scanning registers. This allows random access to any sub-frame in the 640 X 480 element focal plane array. By changing the digital pattern applied to the vertical scan register, the FPA can be operated in either an interlaced or non- interlaced format, and the integration time may be varied over a wide range (60 microsecond(s) to > 30 ms, for RS170 operation) resulting in a form of 'electronic shutter,' or variable exposure control. The pixel size of 24-micrometers X 24-micrometers results in a fill factor of 38% for 1.5-micrometers process design rules. The overall die size for the IR imager is 13.7 mm X 17.2 mm. All digital inputs to the chip are TTL compatible and include ESD protection.

  17. Atomic resolution structural insights into PdPt nanoparticle–carbon interactions for the design of highly active and stable electrocatalysts

    International Nuclear Information System (INIS)

    Slanac, Daniel A.; Li Lin; Mayoral, Alvaro; Yacaman, Miguel José; Manthiram, Arumugam; Stevenson, Keith J.; Johnston, Keith P.

    2012-01-01

    Graphical abstract: - Abstract: Interfacial interactions between sub-4 nm metal alloy nanoparticles and carbon supports, although not well understood at the atomic level, may be expected to have a profound influence on catalytic properties. Pd 3 Pt 2 alloy particles comprised of a disordered surface layer over a corrugated crystalline core are shown to exhibit strong interfacial interactions with a ∼20–50 nm spherical carbon support, as characterized by probe aberration corrected scanning transmission electron microscopy (pcSTEM). The disordered shells were formed from defects introduced by Pd during arrested growth synthesis of the alloy nanoparticles. The chemical and morphological changes in the catalyst, before and after cyclic stability testing (1000 cycles, 0.5–1.2 V), were probed with cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and pcSTEM. The strong metal–support interaction, along with the uniform alloy structure raised the mass activity by a factor of 1.8 versus pure Pt. The metal–support interactions also mitigated nanoparticle coalescence, dissolution, and ripening, resulting in only a 20% loss in mass activity (versus 60% for pure Pt on carbon) after the cyclic stability test. The design of alloy structure, guided by insight from atomic scale pcSTEM, for enhanced catalytic activity and stability, resulting from strong wetting with a deformable disordered shell, has the potential to be a general paradigm for improving catalytic performance.

  18. Sum Frequency Generation Vibrational Spectroscopy of 1,3-Butadiene Hydrogenation on 4 nm Pt@SiO 2 , Pd@SiO 2 , and Rh@SiO 2 Core–Shell Catalysts

    KAUST Repository

    Krier, James M.

    2015-01-14

    © 2014 American Chemical Society. 1,3-Butadiene (1,3-BD) hydrogenation was performed on 4 nm Pt, Pd, and Rh nanoparticles (NPs) encapsulated in SiO2 shells at 20, 60, and 100 °C. The core-shells were grown around polyvinylpyrrolidone (PVP) coated NPs (Stöber encapsulation) prepared by colloidal synthesis. Sum frequency generation (SFG) vibrational spectroscopy was performed to correlate surface intermediates observed in situ with reaction selectivity. It is shown that calcination is effective in removing PVP, and the SFG signal can be generated from the metal surface. Using SFG, it is possible to compare the surface vibrational spectrum of Pt@SiO2 (1,3-BD is hydrogenated through multiple paths and produces butane, 1-butene, and cis/trans-2-butene) to Pd@SiO2 (1,3-BD favors one path and produces 1-butene and cis/trans-2-butene). In contrast to Pt@SiO2 and Pd@SiO2, SFG and kinetic experiments of Rh@SiO2 show a permanent accumulation of organic material.

  19. Aromatization of n-octane over Pd/C catalysts

    KAUST Repository

    Yin, Mengchen; Natelson, Robert H.; Campos, Andrew A.; Kolar, Praveen; Roberts, William L.

    2013-01-01

    Gas-phase aromatization of n-octane was investigated using Pd/C catalyst. The objectives were to: (1) determine the effects of temperature (400-600 °C), weight hourly space velocity (WHSV) (0.8-∞), and hydrogen to hydrocarbon molar ratio (MR) (0-6) on conversion, selectivity, and yield (2) compare the activity of Pd/C with Pt/C and Pt/KL catalysts and (3) test the suitability of Pd/C for aromatization of different alkanes including n-hexane, n-heptane, and n-octane. Pd/C exhibited the best aromatization performance, including 54.4% conversion and 31.5% aromatics yield at 500 °C, WHSV = 2 h-1, and a MR of 2. The Pd/C catalyst had higher selectivity towards the preferred aromatics including ethylbenzene and xylenes, whereas Pt/KL had higher selectivity towards benzene and toluene. The results were somewhat consistent with adsorbed n-octane cyclization proceeding mainly through the six-membered ring closure mechanism. In addition, Pd/C was also capable of catalyzing aromatization of n-hexane and n-heptane. © 2012 Elsevier Ltd. All rights reserved.

  20. Improvement of energy conversion efficiency and power generation in direct borohydride-hydrogen peroxide fuel cell: The effect of Ni-M core-shell nanoparticles (M = Pt, Pd, Ru)/Multiwalled Carbon Nanotubes on the cell performance

    Science.gov (United States)

    Hosseini, M. G.; Mahmoodi, R.

    2017-12-01

    In this study, core@shell nanoparticles with Ni as a core material and Pt, Pd and Ru as shell materials are synthesized on multiwalled carbon nanotube (MWCNT) as catalyst support using the sequence reduction method. The influence of Ni@Pt, Ni@Pd and Ni@Ru core@shell nanoparticles on MWCNT toward borohydride oxidation in alkaline solution is investigated by various three-electrode electrochemical techniques. Also, the impact of these anodic electrocatalysts on the performance of direct borohydride-hydrogen peroxide fuel cell (DBHPFC) is evaluated. The structural and morphological properties of electrocatalysts are studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). The results of three electrode investigations show that Ni@Pd/MWCNT has excellent catalytic activity since borohydride oxidation current density on Ni@Pd/MWCNT (34773.27 A g-1) is 1.37 and 9.19 times higher than those of Ni@Pt/MWCNT (25347.27 A g-1) and Ni@Ru/MWCNT (3782.83 A g-1), respectively. Also, the energy conversion efficiency and power density of DBHPFC with Ni@Pd/MWCNT (246.82 mW cm-2) increase to 34.27% and 51.53% respect to Ni@Pt/MWCNT (162.24 mW cm-2) and Ni@Ru/MWCNT (119.62 mW cm-2), respectively. This study reveals that Ni@Pd/MWCNT has highest activity toward borohydride oxidation and stability in fuel cell.

  1. Contact interaction of the Bi12GeO20, Bi12SiO20, and Bi4Ge3O12 melts with noble metals

    Science.gov (United States)

    Denisov, V. M.; Podkopaev, O. I.; Denisova, L. T.; Kuchumova, O. V.; Istomin, S. A.; Pastukhov, E. A.

    2014-02-01

    The sessile drop method is used to study the contact interaction of Ag, Au, Pd, Pt, and Ir with the Bi2O3-GeO2 and Bi2O3-SiO2 melts. These melts spread over Ag and Pd and, in some cases, over Au and Pt at a rather high speed and form equilibrium contact angles on Ir.

  2. PALLADIUM, PLATINUM, RHODIUM, RUTHENIUM AND IRIDIUM IN PERIDOTITES AND CHROMITITES FROM OPHIOLITE COMPLEXES IN NEWFOUNDLAND.

    Science.gov (United States)

    Page, Norman J; Talkington, Raymond W.

    1984-01-01

    Samples of spinel lherzolite, harzburgite, dunite, and chromitite from the Bay of Islands, Lewis Hills, Table Mountain, Advocate, North Arm Mountain, White Hills Periodite Point Rousse, Great Bend and Betts Cove ophiolite complexes in Newfoundland were analyzed for the platinum-group elements (PGE) Pd, Pt, Rh, Ru and Ir. The ranges of concentration (in ppb) observed for all rocks are: less than 0. 5 to 77 (Pd), less than 1 to 120 (Pt), less than 0. 5 to 20 (Rh), less than 100 to 250 (Ru) and less than 20 to 83 (Ir). Chondrite-normalized PGE ratios suggest differences between rock types and between complexes. Samples of chromitite and dunite show relative enrichment in Ru and Ir and relative depletion in Pt and Pd.

  3. Strength of FePd/MgO and FePt/MgO interfaces from first principles

    Science.gov (United States)

    Černý, M.

    2018-04-01

    Cleavage characteristics such as the cleavage energy and the cleavage stress of FePd/MgO and FePt/MgO interfaces are computed from first principles. Considering several possible cleavage planes, the weakest link in these systems is found as the plane with the lowest cleavage stress. This weakest plane is identified in both systems with the interface plane, where the cohesion is reduced by 30% compared to the MgO bulk. Two distinct models of tensile test are employed to verify the results and convergence of computed values with respect to size of the simulation cell is discussed.

  4. Dose rate constants for 125I, 103Pd, 192Ir and 169Yb brachytherapy sources: an EGS4 Monte Carlo study

    International Nuclear Information System (INIS)

    Mainegra, Ernesto; Capote, Roberto; Lopez, Ernesto

    1998-01-01

    An exhaustive revision of dosimetry data for 192 Ir, 125 I, 103 Pd and 169 Yb brachytherapy sources has been performed by means of the EGS4 simulation system. The DLC-136/PHOTX cross section library, water molecular form factors, bound Compton scattering and Doppler broadening of the Compton-scattered photon energy were considered in the calculations. The absorbed dose rate per unit contained activity in a medium at 1 cm in water and air-kerma strength per unit contained activity for each seed model were calculated, allowing the dose rate constant (DRC) Λ to be estimated. The influence of the calibration procedure on source strength for low-energy brachytherapy seeds is discussed. Conversion factors for 125 I and 103 Pd seeds to obtain the dose rate in liquid water from the dose rate measured in a solid water phantom with a detector calibrated for dose to water were calculated. A theoretical estimate of the DRC for a 103 Pd model 200 seed equal to 0.669±0.002 cGy h -1 U -1 is obtained. Comparison of obtained DRCs with measured and calculated published results shows agreement within 1.5% for 192 Ir, 169 Yb and 125 I sources. (author)

  5. 3D-macroporous chitosan-based scaffolds with in situ formed Pd and Pt nanoparticles for nitrophenol reduction.

    Science.gov (United States)

    Berillo, Dmitriy; Cundy, Andrew

    2018-07-15

    3D-macroporous chitosan-based scaffolds (cryogels) were produced via growth of metal-polymer coordinated complexes and electrostatic interactions between oppositely charged groups of chitosan and metal ions under subzero temperatures. A mechanism of reduction of noble metal complexes inside the cryogel walls by glutaraldehyde is proposed, which produces discrete and dispersed noble metal nanoparticles. 3D-macroporous scaffolds prepared under different conditions were characterised using TGA, FTIR, nitrogen adsorption, SEM, EDX and TEM, and the distribution of platinum nanoparticles (PtNPs) and palladium nanoparticles (PdNPs) in the material assessed. The catalytic activity of the in situ synthesised PdNPs, at 2.6, 12.5 and 21.0 μg total mass, respectively, was studied utilising a model system of 4-nitrophenol reduction. The kinetics of the reaction under different conditions (temperature, concentration of catalyst) were examined, and a decrease of catalytic activity was not observed over 17 treatment cycles. Increasing the temperature of the catalytic reaction from 10 to 22 and 35 °C by PdNPs supported within the cryogel increased the kinetic rate by 44 and 126%, respectively. Turnover number and turnover frequency of the PdNPs catalysts at room temperature were in the range 0.20-0.53 h -1 . The conversion degree of 4-nitrophenol at room temperature reached 98.9% (21.0 μg PdNPs). Significantly less mass of palladium nanoparticles (by 30-40 times) was needed compared to published data to obtain comparable rates of reduction of 4-nitrophenol. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Hydrogen poisoning of the CO oxidation reaction on Pt and Pd under ultrahigh vacuum conditions

    International Nuclear Information System (INIS)

    Strozier, J.A.

    1977-01-01

    The poisoning by hydrogen of the catalyzed oxidation of CO on Pt and Pd under ultrahigh vacuum conditions was investigated. ac pulsing techniques are used in which the pressure of the reactant CO in the reaction chamber is modulated periodically by means of a fast piezoelectric ultrahigh vacuum valve, and the ac component of the product CO 2 is recorded mass spectroscopically by phase-sensitive techniques. The ac CO 2 production rate is measured as a function of hydrogen pressure (1 - 10 x 10 -9 toor) at constant CO and O 2 pressures (approximately equal to 5 x 10 -8 torr), and constant temperature (approximately equal to 700 K). Exact theoretical calculations of CO 2 production rates were carried out employing several models, i.e., oxygen burn-off by hydrogen, incorporating both the Eley-Rideal and Langmuir-Hinshelwood mechanisms. From a comparison with the experimental results, the probable reaction is of the Langmuir-Hinshelwood type and the relevant rate constant is also determined. These results are compared with other results in the literature on hydrogen oxidation on the surface of Pt

  7. Growth of carbon structured over Pd, Pt and Ni: A comparative DFT study

    Science.gov (United States)

    Quiroga, Matías Abel

    2013-03-01

    To elucidate the graphene-like structures mechanisms growth over the M(1 1 1) surface (M = Pd, Pt and Ni) we performed ab initio calculus in the frame of density functional theory with the exchange-correlation functional treated according to the Generalized Gradient Approximation (GGA). In order to avoid the problem that represent the complex interaction between the well formed graphene layer and the metallic surface, we recreate the carbon rings formation initial steps, by adding one by one carbon atoms over M(1 1 1) surface. With this strategy, the chemical bonding is always present until the graphene layer is well formed, in which case the GGA neglects van der Waals dispersive forces. We investigate the electronic properties by studying the band structure and the density of states.

  8. Developing an aqueous approach for synthesizing Au and M@Au (M = Pd, CuPt) hybrid nanostars with plasmonic properties

    OpenAIRE

    Du, Jingshan; Yu, Junjie; Xiong, Yalin; Lin, Zhuoqing; Zhang, Hui; Yang, Deren

    2014-01-01

    Anisotropic Au nanoparticles show unique localized surface plasmon resonance (LSPR) properties, which make it attractive in optical, sensing, and biomedical applications. In this contribution, we report a general and facile strategy towards aqueous synthesis of Au and M@Au (M = Pd, CuPt) hybrid nanostars by reducing HAuCl4 with ethanolamine in the presence of cetyltrimethylammonium bromide (CTAB). According to electron microscopic observation and spectral monitoring, we found that the layered...

  9. Spin-orbit driven phenomena in the isoelectronic L1.sub.0./sub.-Fe(Pd,Pt) alloys from first principles

    Czech Academy of Sciences Publication Activity Database

    Kudrnovský, Josef; Drchal, Václav; Turek, Ilja

    2017-01-01

    Roč. 96, č. 21 (2017), s. 1-7, č. článku 214437. ISSN 2469-9950 R&D Projects: GA ČR GA15-13436S Institutional support: RVO:68378271 ; RVO:68081723 Keywords : anomalous Hall effect * Gilbert damping * partial order * first-principles * Fe(Pd,Pt) alloys Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016

  10. Measurements of electric quadrupole moments of neutron-deficient Au, Pt, and Ir nuclei with NMR-ON in hcp-Co

    CERN Multimedia

    Smolic, E; Hagn, E; Zech, E; Seewald, G

    2002-01-01

    The aim of the experiments is the measurement of $\\,$i) nuclear magnetic moments and electric quadrupole moments of neutron-deficient isotopes in the region Os-Ir-Pt-Au with the methods of quadrupole-interaction-resolved NMR on oriented nuclei " QI-NMR-ON " and modulated adiabatic passage on oriented nuclei " MAPON " and $\\,$ii) the magnetic hyperfine field, electric field gradient (EFG), and spin-lattice relaxation of 5d elements in ferromagnetic Fe, Ni, fcc-Co and hcp-Co.\\\\ The measurements on Au isotopes have been finished successfully. The quadrupole moments of $^{186}$Au, $^{193m}$Au, $^{195}$Au, $^{195m}$Au, $^{197m}$Au, $^{198}$Au and $^{199}$Au were determined with high precision.\\\\ For neutron-deficient Ir isotopes QI-NMR-ON measurements were performed after implantation of Hg precursors. The EFG of Ir in hcp-Co has been calibrated. Thus precise values for the spectroscopic quadrupole mo...

  11. Contribution to the study of Pt197 and Au197 excited states

    International Nuclear Information System (INIS)

    Alves, S.M.C.

    1971-01-01

    The gamma transitions of the Ir 197β- → Pt 197β- → Au 197 decay chain were investigated using three Ge(Li) detectors of high resolution and spectroscopy techniques with one, two and three via of analysis. For the Ir 197β- →Pt 197 decay, four new gamma transitions with energy of 877.6; 938.7; 1049.6 and 1341.8 Kev were observed, presupposing to be energy levels in 877.6; 938.7; 1049.6 and 1347.8 Kev in the Ir 197 population by β- decay of Ir 197 . By the first time, the 299.5 Kev transition was observed, in the Pt 197 m (80min) decay, interpreted as a direct desexcitation of the 299.5Kev level in Pt 197 . A new scheme of Ir 197 β- → Au 197 decay based on the obtained results, is proposed. (M.C.K.) [pt

  12. Particle swarm optimization of the stable structure of tetrahexahedral Pt-based bimetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tun-Dong; Fan, Tian-E [Center for Cloud Computing and Big Data, Department of Automation, Xiamen University, Xiamen 361005 (China); Shao, Gui-Fang, E-mail: gfshao@xmu.edu.cn [Center for Cloud Computing and Big Data, Department of Automation, Xiamen University, Xiamen 361005 (China); Zheng, Ji-Wen [Center for Cloud Computing and Big Data, Department of Automation, Xiamen University, Xiamen 361005 (China); Wen, Yu-Hua [Institute of Theoretical Physics and Astrophysics, Department of Physics, Xiamen University, Xiamen 361005 (China)

    2014-08-14

    Bimetallic nanoparticles, enclosed by high-index facets, have great catalytic activity and selectivity owing to the synergy effects of high-index facets and the electronic structures of alloy. In this paper, a discrete particle swarm optimization algorithm was employed to systematically investigate the structural stability and features of tetrahexahedral Pt-based bimetallic nanoparticles with high-index facets. Different Pt/Ag, Pt/Cu, Pt/Pd atom ratios and particle sizes were considered in this work. The simulation results reveal that these alloy nanoparticles exhibit considerably different structural characteristics. Pt–Ag nanoparticles tend to form Pt–Ag core–shell structure. Pt–Cu nanoparticles are preferred to take multi-shell structure with Cu on the outer surface while Pt–Pd nanoparticles present a mixing structure in the interior and Pd-dominated surface. Atomic distribution and bonding characteristics were applied to further characterize the structural features of Pt-based nanoparticles. This study provides an important insight into the structural stability and features of Pt-based nanoparticles with different alloys. - Highlights: • We explore the structural stability of Pt-based alloy NPs by a discrete PSO. • Our study discovers the different structural characteristics for Pt-based NPs. • Alloy composition and size have important effects on the surface segregation. • Our work shows strong phase separation for Pt–Ag NPs while weak for Pt–Pd NPs.

  13. Particle swarm optimization of the stable structure of tetrahexahedral Pt-based bimetallic nanoparticles

    International Nuclear Information System (INIS)

    Liu, Tun-Dong; Fan, Tian-E; Shao, Gui-Fang; Zheng, Ji-Wen; Wen, Yu-Hua

    2014-01-01

    Bimetallic nanoparticles, enclosed by high-index facets, have great catalytic activity and selectivity owing to the synergy effects of high-index facets and the electronic structures of alloy. In this paper, a discrete particle swarm optimization algorithm was employed to systematically investigate the structural stability and features of tetrahexahedral Pt-based bimetallic nanoparticles with high-index facets. Different Pt/Ag, Pt/Cu, Pt/Pd atom ratios and particle sizes were considered in this work. The simulation results reveal that these alloy nanoparticles exhibit considerably different structural characteristics. Pt–Ag nanoparticles tend to form Pt–Ag core–shell structure. Pt–Cu nanoparticles are preferred to take multi-shell structure with Cu on the outer surface while Pt–Pd nanoparticles present a mixing structure in the interior and Pd-dominated surface. Atomic distribution and bonding characteristics were applied to further characterize the structural features of Pt-based nanoparticles. This study provides an important insight into the structural stability and features of Pt-based nanoparticles with different alloys. - Highlights: • We explore the structural stability of Pt-based alloy NPs by a discrete PSO. • Our study discovers the different structural characteristics for Pt-based NPs. • Alloy composition and size have important effects on the surface segregation. • Our work shows strong phase separation for Pt–Ag NPs while weak for Pt–Pd NPs

  14. Platinum-group element contents of Karelian kimberlites: Implications for the PGE budget of the sub-continental lithospheric mantle

    Science.gov (United States)

    Maier, W. D.; O'Brien, H.; Peltonen, P.; Barnes, Sarah-Jane

    2017-11-01

    We present high-precision isotope dilution data for Os, Ir, Ru, Pt, Pd and Re in Group I and Group II kimberlites from the Karelian craton, as well as 2 samples of the Premier Group I kimberlite pipe from the Kaapvaal craton. The samples have, on average, 1.38 ppb Pt and 1.33 ppb Pd, with Pt/Pd around unity. These PGE levels are markedly lower, by as much as 80%, than those reported previously for kimberlites from South Africa, Brazil and India, but overlap with PGE results reported recently from Canadian kimberlites. Primitive-mantle-normalised chalcophile element patterns are relatively flat from Os to Pt, but Cu, Ni and, somewhat less so, Au are enriched relative to the PGE (e.g., Cu/Pd > 25.000). Pd/Ir ratios are 3,6 on average, lower than in most other mantle melts. The PGE systematics can be largely explained by two components, (i) harzburgite/lherzolite detritus of the SCLM with relatively high IPGE (Os-Ir-Ru)/PPGE (Rh-Pt-Pd) ratios, and (ii) a melt component that has high PPGE/IPGE ratios. By using the concentrations of iridium in the kimberlites as a proxy for the proportion of mantle detritus in the magma, we estimate that the analysed kimberlites contain 3-27% entrained and partially dissolved detritus from the sub-continental lithospheric mantle, consistent with previous estimates of kimberlites elsewhere (Tappe S. et al., 2016, Chem. Geol. 10.1016/j.chemgeo.2016.08.019).

  15. Investigation of the (p,p'), (p,d) and (p,t) reactions on some light Sn isotopes

    International Nuclear Information System (INIS)

    Blankert, P.J.

    1979-01-01

    The results are presented of the 112 Sn(p,p') 112 Sn reaction. Apart from the usual distorted-wave analysis the excitation of some states is described in the coupled-channels formalism. The results of the 112 Sn(p,d) 111 Sn and the 112 Sn(p,t) 110 Sn reactions are also reported. From the (p,d) reaction quasi-particle energies and occupation numbers are determined. Two-step DWBA calculations are performed for some states that are assumed to result from the coupling of a quasiparticle to the 2 + 1 or 3 - 1 state of the even core. In the gross structure above 3 MeV of excitation, pickup strength from deeply-bound hole states is observed. The (p,t) reaction provided spin and parity of a number of levels in 110 Sn. A two-step DWBA analysis of the excitation of the ground state and first excited 2 + state shows the importance of second-order processes. The combined results of the (p,t) reactions on 112 Sn, 114 Sn and 116 Sn are given with some emphasis on the systematic features. The derivation is given of some expressions for spectroscopic amplitudes necessary in the two-step DWBA calculations for the (p,t) reactions. For all reactions a comparison is made with other existing data and with the results of model calculations. (Auth.)

  16. Characterization of electroless Au, Pt and Pd contacts on CdTe and ZnTe by RBS and SIMS techniques

    Energy Technology Data Exchange (ETDEWEB)

    Roumie, M. E-mail: mroumie@cnrs.edu.lb; Hageali, M.; Zahraman, K.; Nsouli, B.; Younes, G

    2004-06-01

    Rutherford backscattering spectrometry (RBS) was applied to characterize Au, Pt and Pd contacts on II-VI semiconductor materials, CdTe and ZnTe, used as nuclear detectors. Electroless thin film depositions were prepared by changing the concentration of the reaction solution. Contrary to the deposition reaction time, it was observed that the amount of solution dilution degree had a considerable effect on increasing the thickness of the metal layer. Furthermore, PICTS electrical measurements confirmed the depth profile analysis performed by RBS and SIMS.

  17. Steady-State Spectroscopic Analysis of Proton-Dependent Electron Transfer on Pyrazine-Appended Metal Dithiolenes [Ni(pdt)2], [Pd(pdt)2], and [Pt(pdt)2] (pdt = 2,3-Pyrazinedithiol).

    Science.gov (United States)

    Kennedy, Steven R; Kozar, Morgan N; Yennawar, Hemant P; Lear, Benjamin J

    2016-09-06

    We report the structural, electronic, and acid/base properties of a series of ML2 metal dithiolene complexes, where M = Ni, Pd, Pt and L = 2,3-pyrazinedithiol. These complexes are non-innocent and possess strong electronic coupling between ligands across the metal center. The electronic coupling can be readily quantified in the monoanionic mixed valence state using Marcus-Hush theory. Analysis of the intervalence charge transfer (IVCT) band reveals that that electronic coupling in the mixed valence state is 5800, 4500, and 5700 cm(-1) for the Ni, Pd, and Pt complexes, respectively. We then focus on their response to acid titration in the mixed valence state, which generates the asymmetrically protonated mixed valence mixed protonated state. For all three complexes, protonation results in severe attenuation of the electronic coupling, as measured by the IVCT band. We find nearly 5-fold decreases in electronic coupling for both Ni and Pt, while, for the Pd complex, the electronic coupling is reduced to the point that the IVCT band is no longer observable. We ascribe the reduction in electronic coupling to charge pinning induced by asymmetric protonation. The more severe reduction in coupling for the Pd complex is a result of greater energetic mismatch between ligand and metal orbitals, reflected in the smaller electronic coupling for the pure mixed valence state. This work demonstrates that the bridging metal center can be used to tune the electronic coupling in both the mixed valence and mixed valence mixed protonated states, as well as the magnitude of change of the electronic coupling that accompanies changes in protonation state.

  18. Durable Clinical Benefit in Metastatic Renal Cell Carcinoma Patients Who Discontinue PD-1/PD-L1 Therapy for Immune-Related Adverse Events.

    Science.gov (United States)

    Martini, Dylan J; Hamieh, Lana; McKay, Rana R; Harshman, Lauren C; Brandao, Raphael; Norton, Craig K; Steinharter, John A; Krajewski, Katherine M; Gao, Xin; Schutz, Fabio A; McGregor, Bradley; Bossé, Dominick; Lalani, Aly-Khan A; De Velasco, Guillermo; Michaelson, M Dror; McDermott, David F; Choueiri, Toni K

    2018-04-01

    The current standard of care for treatment of metastatic renal cell carcinoma (mRCC) patients is PD-1/PD-L1 inhibitors until progression or toxicity. Here, we characterize the clinical outcomes for 19 mRCC patients who experienced an initial clinical response (any degree of tumor shrinkage), but after immune-related adverse events (irAE) discontinued all systemic therapy. Clinical baseline characteristics, outcomes, and survival data were collected. The primary endpoint was time to progression from the date of treatment cessation (TTP). Most patients had clear cell histology and received anti-PD-1/PD-L1 therapy as second-line or later treatment. Median time on PD-1/PD-L1 therapy was 5.5 months (range, 0.7-46.5) and median TTP was 18.4 months (95% CI, 4.7-54.3) per Kaplan-Meier estimation. The irAEs included arthropathies, ophthalmopathies, myositis, pneumonitis, and diarrhea. We demonstrate that 68.4% of patients ( n = 13) experienced durable clinical benefit off treatment (TTP of at least 6 months), with 36% ( n = 7) of patients remaining off subsequent treatment for over a year after their last dose of anti-PD-1/PD-L1. Three patients with tumor growth found in a follow-up visit, underwent subsequent surgical intervention, and remain off systemic treatment. Nine patients (47.4%) have ongoing irAEs. Our results show that patients who benefitted clinically from anti-PD-1/PD-L1 therapy can experience sustained beneficial responses, not needing further therapies after the initial discontinuation of treatment due to irAEs. Investigation of biomarkers indicating sustained benefit to checkpoint blockers are needed. Cancer Immunol Res; 6(4); 402-8. ©2018 AACR . ©2018 American Association for Cancer Research.

  19. Oxygen reduction reaction (orr) on bimetallic AuPt and AuPd(1 0 0)-electrodes: Effects of the heteroatomic junction on the reaction paths

    Science.gov (United States)

    Schulte, E.; Belletti, G.; Arce, M.; Quaino, P.

    2018-05-01

    The seek for materials to enhance the oxygen reduction reaction (orr) rate is a highly relevant topic due to its implication in fuel cell devices. Herein, the orr on bimetallic electrocatalysts based on Au-M (M = Pt, Pd) has been studied computationally, by performing density functional theory calculations. Bimetallic (1 0 0) electrode surfaces with two different Au:M ratios were proposed, and two possible pathways, associative and dissociative, were considered for the orr. Changes in the electronic properties of these materials with respect to the pure metals were acknowledged to gain understanding in the overall reactivity trend. The effect of the bimetallic junction on the stability of the intermediates O2 and OOH was also evaluated by means of geometrical and energetic parameters; being the intermediates preferably adsorbed on Pt/Pd atoms, but presenting in some cases higher adsorption energies compared with bare metals. Finally, the kinetics of the Osbnd O bond breaking in O2∗ and OOH∗ adsorbed intermediates in the bimetallic materials and the influence of the Au-M junction were studied by means of the nudge elastic-band method. A barrierless process for the scission of O2∗ was found in Au-M for the higher M ratios. Surprisingly, for Au-M with lower M ratios, the barriers were much lower than for pure Au surfaces, suggesting a highly reactive surface towards the orr. The Osbnd O scission of the OOH∗ was found to be a barrierless process in Ausbnd Pt systems and nearly barrierless in all Ausbnd Pd systems, implying that the reduction ofO2 in these systems proceeds via the full reduction of O2 to H2O , avoiding H2O2 formation.

  20. Synthesis and characterization of supported Pt and Pt alloys nanoparticles used for the catalytic oxidation of sulfur dioxide

    DEFF Research Database (Denmark)

    Koutsopoulos, Sotiris; Eriksen, Kim Michael; Fehrmann, Rasmus

    2006-01-01

    pressure in the temperature range of 250–700 °C. The effect of doping the active metal with rhodium and palladium was also studied. The catalytic activities of the supported catalysts were found to follow the order Pt–Pd/CPG > Pt–Rh/CPG > Pt/CPG. A significant synergistic effect of the Pt–Pd alloy...

  1. LEED crystallography studies of the structure of clean and adsorbate-covered Ir, Pt and Rh crystal surfaces

    International Nuclear Information System (INIS)

    Koestner, R.J.

    1982-08-01

    There have only been a few Low Energy Electron Diffraction (LEED) intensity analyses carried out to determine the structure of molecules adsorbed on metal surfaces; most surface crystallography studies concentrated on the structure of clean unreconstructed or atomic adsorbate-covered transition metal faces. The few molecular adsorption systems already investigated by dynamical LEED are CO on Ni(100), Cu(100) and Pd(100) as well as C 2 H 2 and C 2 H 4 adsorbed on Pt(111). The emphasis of this thesis research has been to extend the applicability of LEED crystallography to the more complicated unit cells found in molecular overlayers on transition metals or in there constructed surfaces of clean transition metals

  2. Highly active carbon supported ternary PdSnPtx (x=0.1-0.7) catalysts for ethanol electro-oxidation in alkaline and acid media.

    Science.gov (United States)

    Wang, Xiaoguang; Zhu, Fuchun; He, Yongwei; Wang, Mei; Zhang, Zhonghua; Ma, Zizai; Li, Ruixue

    2016-04-15

    A series of trimetallic PdSnPtx (x=0.1-0.7)/C catalysts with varied Pt content have been synthesized by co-reduction method using NaBH4 as a reducing agent. These catalysts were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and chronoamperometry (CA). The electrochemical results show that, after adding a minor amount of Pt dopant, the resultant PdSnPtx/C demonstrated more superior catalytic performance toward ethanol oxidation as compared with that of mono-/bi-metallic Pd/C or PdSn/C in alkaline solution and the PdSnPt0.2/C with optimal molar ratio reached the best. In acid solution, the PdSnPt0.2/C also depicted a superior catalytic activity relative to the commercial Pt/C catalyst. The possible enhanced synergistic effect between Pd, Sn/Sn(O) and Pt in an alloyed state should be responsible for the as-revealed superior ethanol electro-oxidation performance based upon the beneficial electronic effect and bi-functional mechanism. It implies the trimetallic PdSnPt0.2/C with a low Pt content has a promising prospect as anodic electrocatalyst in fields of alkali- and acid-type direct ethanol fuel cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. High-pressure synthesis and structural, physical properties of CaIr1-xPtxO3 and CaIr1-xRhxO3

    Science.gov (United States)

    Hirai, S.; Bromiley, G. D.; Klemme, S.; Irifune, T.; Ohfuji, H.; Attfield, P.; Nishiyama, N.

    2010-12-01

    Since the discovery of the perovskite to post-perovskite transition in MgSiO3 in a laser-heated DAC, wide attention has been focussed on the post-perovskite phase of MgSiO3. This is because the post-perovskite phase is likely to play a key role in Earth’s lowermost mantle, and because the perovskite to post-perovskite transition can explain many features of the D” seismic discontinuity. While it is meaningful to conduct further studies of MgSiO3, the post-perovskite phase of MgSiO3 cannot be quenched to ambient pressure/temperature conditions. Thus, further studies must be conducted using analogue compounds of MgSiO3 post-perovskite, which are quenchable to ambient pressure/temperature conditions. The post-perovskite phase of MgSiO3 crystallizes in a layered structure with CaIrO3-structure. Therefore, it is useful to investigate compounds with CaIrO3-structure. There are only four quenchable oxides with CaIrO3-structure reported to date: CaIrO3, CaPtO3, CaRhO3 and CaRuO3. CaIrO3 can be synthesized at ambient pressure, whilst the other three oxides can only be obtained at high pressure/temperature conditions using a multi-anvil apparatus. Further studies on these materials have revealed structural phase transitions at high P-T and a metal-insulator transition by hole doping. In the case of CaIrO3, The post-perovskite phase of CaIrO3 synthesized at 2GPa, 1373K transforms into a perovskite phase at 2GPa, 1673K. In other words, the perovskite phase can be synthesized at temperatures higher than those needed for synthesizing the post-perovskite phase. This is also the case for CaRhO3 (6GPa, 1873K) and CaRuO3 (23GPa, 1343K), while CaPtO3 remained post-perovskite at higher temperatures. We have succeeded in synthesizing solid solutions between CaIrO3, CaPtO3 and CaRhO3. We have found the systematic change in structural and physical properties of post-perovskite oxides, with composition and P-T, which broadens the future opportunity for studying post-perovskite systems

  4. Au-Pt-Pd-U mineralization in the Coronation Hill-El Sherana region, NT

    International Nuclear Information System (INIS)

    Wyborn, L.

    1992-01-01

    In 1990 BMR's Minerals and Land Use program conducted an geochemical and geophysical survey to provide the best possible basis for estimating the resource potential of the Kakadu Conservation Zone. Combining the old and new data, an integrated model for the deposit types has been developed. Although differing in metal content, all mines and prospects of the Coronation Hill region share similar timing and structural controls, suggesting that they are related to one geochemical system. The presence or absence of U in the Au-Pt-Pd mineralisation appears related to geological differences, primarily in host-rock composition. U-bearing deposits are hosted mainly in carbonaceous shales, although some U is associated with chloritic zones. Deposits lacking U, best developed at Coronation Hill, occur in a broad range of host rocks, including quartz-feldspar porphyry, green tuffaceous shale, diorite, dolomite, and sedimentary breccias. Although seemingly diverse rock types, the common components of these U-poor host units are feldspar and/or carbonate. 1 tab., 3 figs

  5. Asymmetric magnetization reversal in exchange-biased Co/Pt multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Dijken, Sebastiaan van [SFI Trintiy Nanoscience Laboratory, Physics Department, Trinity College, Dublin 2 (Ireland); Czapkiewicz, M.; Zoladz, M.; Stobiecki, T. [Department of Electronics, AGH University of Science and Technology, Krakow 30-059 (Poland)

    2006-01-01

    A detailed study of the magnetization reversal process in [20 Aa Pt/t Aa Co]{sub 3}/100 Aa IrMn/20 Aa Pt multilayers with 4 Aa{<=}t{<=}9 Aa is presented. The hysteresis of as-deposited films with t{>=} 5Aa is found to be asymmetric. This asymmetry is explained by a lateral variation in the perpendicular exchange bias direction due to the growth of IrMn onto multi-domain Co/Pt multilayers. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. LEED crystallography studies of the structure of clean and adsorbate-covered Ir, Pt and Rh crystal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Koestner, R.J.

    1982-08-01

    There have only been a few Low Energy Electron Diffraction (LEED) intensity analyses carried out to determine the structure of molecules adsorbed on metal surfaces; most surface crystallography studies concentrated on the structure of clean unreconstructed or atomic adsorbate-covered transition metal faces. The few molecular adsorption systems already investigated by dynamical LEED are CO on Ni(100), Cu(100) and Pd(100) as well as C/sub 2/H/sub 2/ and C/sub 2/H/sub 4/ adsorbed on Pt(111). The emphasis of this thesis research has been to extend the applicability of LEED crystallography to the more complicated unit cells found in molecular overlayers on transition metals or in there constructed surfaces of clean transition metals.

  7. Facile synthesis of Pt–Pd bimetallic nanoparticles by plasma discharge in liquid and their electrocatalytic activity toward methanol oxidation in alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Min; Lee, Yu-Jin [Center for Surface Technology and Applications, Korea Aerospace University, Gyeonggi-do, 412-791 (Korea, Republic of); Department of Materials Engineering, Korea Aerospace University, Gyeonggi-do, 412-791 (Korea, Republic of); Kim, Jung-Wan [Center for Surface Technology and Applications, Korea Aerospace University, Gyeonggi-do, 412-791 (Korea, Republic of); Division of Bioengineering, InCheon National University, Incheon, 406-772 (Korea, Republic of); Lee, Sang-Yul, E-mail: sylee@kau.ac.kr [Center for Surface Technology and Applications, Korea Aerospace University, Gyeonggi-do, 412-791 (Korea, Republic of); Department of Materials Engineering, Korea Aerospace University, Gyeonggi-do, 412-791 (Korea, Republic of)

    2014-12-01

    The Pt–Pd bimetallic nanoparticles for direct methanol fuel cell applications were successfully prepared by plasma discharge in aqueous solution. The obtained nanoparticles were characterized by energy dispersive X-ray spectroscopy, X-ray diffraction spectroscopy, and transmission electron microscopy. During plasma discharge, the nanoparticles were produced from the erosion of electrodes. It was noted that the erosion amount of anode electrodes was much greater than that of cathode electrodes so that the composition of Pt–Pd bimetallic nanoparticles could be changed with different power types and electrode configurations. Diffraction patterns fitted from Gaussian devolution indicated that the crystalline phase of Pt{sub 40}Pd{sub 60} products was composed of pure Pt, pure Pd and Pt–Pd alloy phases. The morphology of synthesized nanoparticles showed that nanowires connected with quasi-spherical nanoparticles with 2–3 nm in diameter were observed and large spherical particles with > 50 nm in diameter were also detected intermittently. The cyclic voltammetric measurement and continuous potential scan demonstrated that Pt{sub 40}Pd{sub 60} had much higher catalytic activity and better resistance to CO poisoning than Pt{sub 94}Pd{sub 6} and Pt{sub 1}Pd{sub 99} for methanol oxidation. These results indicate that the Pt{sub 40}Pd{sub 60} could be an excellent candidate for the direct methanol fuel cell applications.

  8. Salt-induced phase separation for the determination of metals as their diethyldithiocarbamate complexes by high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Mueller, B.J.; Lovett, R.J.

    1987-01-01

    Reversed-phase high-performance liquid chromatography with ultraviolet detection can be used to determine trace levels of Pt(II), Pd(II), Rh(III), Co(III), Ru(III), and Ir in aqueous solution following complexation with diethyldithiocarbamate. The metal complexes are extracted into acetonitrile from aqueous solution by the addition of a saturated salt solution. Quantitative metal recovery from aqueous solution is achievable for most metals for a wide solution pH range. Detection limits for the metals are <3 ng of metal/mL of original aqueous sample. Analyses of real samples are highly reproducible and sensitive. Ir an interfere in the determination of Pt(II) and Rh(III). A general protocol for chromatographic separation and determination of Pt(II), Pd(II), Rh(III), Ru(III), and Ir in aqueous solution is presented

  9. Application of poly(aniline) as an ion exchanger for the separation of palladium, iridium, platinum and gold prior to their determination by neutron activation analysis

    International Nuclear Information System (INIS)

    Kumar, S.; Verma, R.; Gangadharan, S.

    1993-01-01

    The distribution coefficients of Pd II , Ir IV , Pt IV and Au III on poly(aniline) in 0.1-10 mol 1 -1 HCl were determined. They are strongly adsorbed at low acidities and the extent of adsorption decreases with increase in acidity, except for Au III , Palladium, Pt and Au are quantitatively eluted with 5% thiourea in 0.05 mol -1 HCl whereas the recovery of Ir is > 90% with 1% ascorbic acid followed by 10 mol -1 HCl. It was found that Cr, Fe, Co, Ni, Zn, Ga and Ge are not retained on poly(aniline) at low acidities. This separation procedure was applied prior to the determination of Pd, Ir, Pt and Au in iron meteorite and PCC-1 standard rock by neutron activation analysis. (author)

  10. Ternary electrocatalysts for oxidizing ethanol to carbon dioxide: making ir capable of splitting C-C bond.

    Science.gov (United States)

    Li, Meng; Cullen, David A; Sasaki, Kotaro; Marinkovic, Nebojsa S; More, Karren; Adzic, Radoslav R

    2013-01-09

    Splitting the C-C bond is the main obstacle to electrooxidation of ethanol (EOR) to CO(2). We recently demonstrated that the ternary PtRhSnO(2) electrocatalyst can accomplish that reaction at room temperature with Rh having a unique capability to split the C-C bond. In this article, we report the finding that Ir can be induced to split the C-C bond as a component of the ternary catalyst. We characterized and compared the properties of several carbon-supported nanoparticle (NP) electrocatalysts comprising a SnO(2) NP core decorated with multimetallic nanoislands (MM' = PtIr, PtRh, IrRh, PtIrRh) prepared using a seeded growth approach. An array of characterization techniques were employed to establish the composition and architecture of the synthesized MM'/SnO(2) NPs, while electrochemical and in situ infrared reflection absorption spectroscopy studies elucidated trends in activity and the nature of the reaction intermediates and products. Both EOR reactivity and selectivity toward CO(2) formation of several of these MM'/SnO(2)/C electrocatalysts are significantly higher compared to conventional Pt/C and Pt/SnO(2)/C catalysts. We demonstrate that the PtIr/SnO(2)/C catalyst with high Ir content shows outstanding catalytic properties with the most negative EOR onset potential and reasonably good selectivity toward ethanol complete oxidation to CO(2).

  11. Chemical synthesis, phase transformation and magnetic proprieties of FePt and FePd nanoparticles

    International Nuclear Information System (INIS)

    Delattre, Anastasia

    2010-01-01

    This work aims at understanding the chemical synthesis of FePt and FePd nanoparticles (NPs), and at exploring how to implement the phase transformation from the chemically disordered to the L10 phase, without coalescence. Using hexadecanenitrile instead of oleylamine, we obtain NPs with a more homogenous internal composition, instead of core-shell NPs. Through a systematic study (designed experiment relying on Taguchi tables), we developed the FePd synthesis, while evidencing the role of each ligand and of the reductor. To induce the crystalline phase transformation while avoiding coalescence, we explored two ways. In the first one, atomic vacancies are introduced in the NPs through light ion irradiation, atomic mobility being ensured by annealing at moderate temperature (300 C). As a result, the blocking temperature is multiplied by 4, due to anisotropy enhancement. However, strong chemical ordering in the L10 phase cannot be achieved. The second approach relies on the dispersion of the NPs in a salt (NaCl) matrix, prior to annealing at 700 C: high chemical ordering is achieved, and the blocking temperature is beyond 400 C. We then developed a single-step process to remove the salt by dissolution in water and to re-disperse NPs in stable aqueous or organics solutions. These high magnetic anisotropy NPs are then readily available for further chemical or manipulation steps, with applied perspectives in areas such as data storage, or biology. (author)

  12. High pressure stability of the monosilicides of cobalt and the platinum group elements

    International Nuclear Information System (INIS)

    Hernandez, J.A.; Vočadlo, L.; Wood, I.G.

    2015-01-01

    Highlights: • We model the high-pressure phases of cobalt- and platinum-group-monosilicides. • CoSi, RuSi, OsSi transform with pressure from the ε-FeSi to the CsCl structure. • RhSi and IrSi transform with pressure from the MnP structure to the ε-FeSi structure. • PdSi and PtSi transform with pressure from the MnP structure to the CuTi structure. - Abstract: The high pressure stability of CoSi, RuSi, RhSi, PdSi, OsSi, IrSi and PtSi was investigated by static first-principles calculations up to 300 GPa at 0 K. As found experimentally, at atmospheric pressure, CoSi, RuSi and OsSi were found to adopt the cubic ε-FeSi structure (P2 1 3) whereas RhSi, PdSi, IrSi and PtSi were found to adopt the orthorhombic MnP (Pnma) structure. At high pressure, CoSi, RuSi and OsSi show a phase transition to the CsCl structure (Pm3 ¯ m) structure at 270 GPa, 7 GPa and 6 GPa respectively. RhSi and IrSi were found to transform to an ε-FeSi structure at 10 GPa and 25 GPa. For PdSi and PtSi, a transformation from the MnP structure to the tetragonal CuTi structure (P4/nmm) occurs at 13 GPa and 20 GPa. The pressure dependence of the electronic density of states reveals that RuSi and OsSi are semiconductors in the ε-FeSi structure and become metallic in the CsCl structure. RhSi and IrSi are metals in the MnP structure and become semimetals in their high pressure ε-FeSi form. CoSi in the ε-FeSi configuration is a semimetal. PdSi and PtSi remain metallic throughout up to 300 GPa

  13. Platinum monolayer electrocatalysts for oxygen reduction: effect of substrates, and long-term stability

    Directory of Open Access Journals (Sweden)

    J. ZHANG

    2005-03-01

    Full Text Available We describe a novel concept for a Ptmonolayer electrocatalyst and present the results of our electrochemical, X-ray absorption spectroscopy, and scanning tunneling microscopy studies. The electrocatalysts were prepared by a new method for depositing Pt monolayers involving the galvanic displacement by Pt of an underpotentially deposited Cu monolayer on substrates of Au (111, Ir(111, Pd(111, Rh(111 and Ru(0001 single crylstals, and Pd nanoparticles. The kinetics of O2 reduction showed significant enhancement with Pt monolayers on Pd(111 and Pd nanoparticle surfaces in comparisonwith the reaction on Pt(111 and Pt nanoparticles, respectively. This increase in catalytic activity is attributed partly to the decreased formation of PtOH, as shown by in situ X-ray absorption spectroscopy. The results illustrate that placing a Pt monolayer on a suitable substrate of metal nanoparticles is an attractive way of designing better O2 reduction electrocatalysts with very low Pt contents.

  14. Effects of Stoichiometry on Transformation Temperatures and Actuator-Type Performance of NiTiPd and NiTiPdX High-Temperature Shape Memory Alloys

    Science.gov (United States)

    Bigelow, Glen S.; Gaydosh, Darrell; Garg, Anita; Padula, Santo A., II; Noebe, Ronald D.

    2007-01-01

    High-temperature shape memory NiTiPd and NiTiPdX (X=Au, Pt, Hf) alloys were produced with titanium equivalent (Ti+Hf) compositions of 50.5, 50.0, 49.5, and 49.0 at.%. Thermo-mechanical testing in compression was used to evaluate the transformation temperatures, transformation strain, work output, and permanent deformation behavior of each alloy to study the effects of quaternary alloying and stoichiometry on high-temperature shape memory alloy behavior. Microstructural evaluation showed the presence of second phases for all alloy compositions. No load transformation temperatures in the stoichiometric alloys were relatively unchanged by Au and Pt substitutions, while the substitution of Hf for Ti causes a drop in transformation temperatures. The NiTiPd, NiTiPdAu and NiTiPdHf alloys exhibited transformation temperatures that were highest in the Ti-rich compositions, slightly lower at stoichiometry, and significantly reduced when the Ti equivalent composition was less than 50 at.%. For the NiTiPdPt alloy, transformation temperatures were highest for the Ti-rich compositions, lowest at stoichiometry, and slightly higher in the Ni-rich composition. When thermally cycled under constant stresses of up to 300 MPa, all of the alloys had transformation strains, and therefore work outputs, which increased with increasing stress. In each series of alloys, the transformation strain and thus work output was highest for stoichiometric or Ti-rich compositions while permanent strain associated with the constant-load thermal cycling was lowest for alloys with Ni-equivalent-rich compositions. Based on these results, basic rules for optimizing the composition of NiTiPd alloys for actuator performance will be discussed.

  15. Structural, Electronic and Elastic Properties of Heavy Fermion YbTM2 (TM= Ir and Pt) Laves Phase Compounds

    Science.gov (United States)

    Pawar, H.; Shugani, M.; Aynyas, M.; Sanyal, S. P.

    2018-02-01

    The structural, electronic and elastic properties of YbTM2 (TM = Ir and Pt) Laves phase intermetallic compounds which crystallize in cubic (MgCu2-type) structure, have been investigated using ab-initio full potential linearized augmented plane wave (FP-LAPW) method with LDA and LDA+U approximation. The calculated ground state properties such as lattice parameter (a0), bulk modulus (B) and its pressure derivative (B‧) are in good agreement with available experimental and theoretical data. The electronic properties are analyzed from band structures and density of states. Elastic constants are predicted first time for these compounds which obey the stability criteria for cubic system.

  16. Effect of Ni and noble metals (Ru, Pd and Pt) on performance of bifunctional MoP/SiO2 for hydroconversion of methyl laurate

    Science.gov (United States)

    Nie, Ziyang; Zhang, Zhena; Chen, Jixiang

    2017-10-01

    SiO2 supported bifunctional MoP catalysts modified with different metal promoters (Ni, Ru, Pd, Pt), where Mo/Ni and Mo/M(M = Ru, Pd and Pt) atomic ratios was respectively 10 and 40, were prepared by TPR method from the phosphate precursors. It was found that the introduction of metal promoters facilitated the reduction of phosphate precursor and enhanced the dispersion of MoP. However, the MoP catalyst acidity was scarcely influenced by the small amount of metal promoters. In the hydroconversion of methyl laurate, the promoters enhanced the MoP catalyst activity for conversion of methyl laurate and hydrogenation of alkenes (intermediate), but reduced isomerization ability. Among the promoters, Ru was an optimum to decrease selectivity to alkenes while maintain high selectivity to iso-alkanes, and Mo40RuP showed better stability than MoP. At 380 °C and 3.0 MPa, the conversion of methyl laurate, the total selectivity to C11 and C12 hydrocarbons and the selectivity to iso-alkanes maintained at 100%, ∼94% and ∼30% on Mo40RuP during 102 h, respectively. The good stability of Mo40RuP is ascribed to that the presence of Ru prevented the sintering of MoP particles and suppressed carbon deposition.

  17. Lattice thermal conductivity of disordered NiPd and NiPt alloys

    International Nuclear Information System (INIS)

    Alam, Aftab; Mookerjee, Abhijit

    2006-01-01

    Numerical calculations of lattice thermal conductivity are reported for the binary alloys NiPd and NiPt. The present work is a continuation of an earlier paper by us (Alam and Mookerjee 2005 Phys. Rev. B 72 214207), which developed a theoretical framework for the calculation of configuration-averaged lattice thermal conductivity and thermal diffusivity in disordered alloys. The formulation was based on the augmented space theorem (Mookerjee 1973 J. Phys. C: Solid State Phys. 6 L205) combined with a scattering diagram technique. In this paper we shall show the dependence of the lattice thermal conductivity on a series of variables like phonon frequency, temperature and alloy composition. The temperature dependence of κ(T) and its relation to the measured thermal conductivity is discussed. The concentration dependence of κ appears to justify the notion of a minimum thermal conductivity as discussed by Kittel, Slack and others (Kittel 1948 Phys. Rev. 75 972, Brich and Clark 1940 Am. J. Sci. 238 613; Slack 1979 Solid State Physics vol 34, ed H Ehrenreich, F Seitz and D Turnbull (New York: Academic) p 1). We also study the frequency and composition dependence of the thermal diffusivity averaged over modes. A numerical estimate of this quantity gives an idea about the location of the mobility edge and the fraction of states in the frequency spectrum which is delocalized

  18. Design of Pd/PANI/Pd sandwich-structured nanotube array catalysts with special shape effects and synergistic effects for ethanol electrooxidation.

    Science.gov (United States)

    Wang, An-Liang; Xu, Han; Feng, Jin-Xian; Ding, Liang-Xin; Tong, Ye-Xiang; Li, Gao-Ren

    2013-07-24

    Low cost, high activity, and long-term durability are the main requirements for commercializing fuel cell electrocatalysts. Despite tremendous efforts, developing non-Pt anode electrocatalysts with high activity and long-term durability at low cost remains a significant technical challenge. Here we report a new type of hybrid Pd/PANI/Pd sandwich-structured nanotube array (SNTA) to exploit shape effects and synergistic effects of Pd-PANI composites for the oxidation of small organic molecules for direct alcohol fuel cells. These synthesized Pd/PANI/Pd SNTAs exhibit significantly improved electrocatalytic activity and durability compared with Pd NTAs and commercial Pd/C catalysts. The unique SNTAs provide fast transport and short diffusion paths for electroactive species and high utilization rate of catalysts. Besides the merits of nanotube arrays, the improved electrocatalytic activity and durability are especially attributed to the special Pd/PANI/Pd sandwich-like nanostructures, which results in electron delocalization between Pd d orbitals and PANI π-conjugated ligands and in electron transfer from Pd to PANI.

  19. Pd-Pt Catalysts on Mesoporous SiO2-Al2O3 with Superior Activity for HDS of 4,6-Dimethyldibenzothiophene: Effect of Metal Loading and Support Composition

    Czech Academy of Sciences Publication Activity Database

    Vít, Zdeněk; Gulková, Daniela; Kaluža, Luděk; Kupčík, Jaroslav

    2015-01-01

    Roč. 179, DEC 2015 (2015), s. 44-53 ISSN 0926-3373 R&D Projects: GA ČR GAP106/11/0902 Institutional support: RVO:67985858 ; RVO:61388980 Keywords : Pd-Pt catalyst * mesoporous silica-alumina * 4,6-DMDBT Subject RIV: CF - Physical ; Theoretical Chemistry ; CA - Inorganic Chemistry (UACH-T) Impact factor: 8.328, year: 2015

  20. Platinum group element enrichments and possible chondritic Ru:Ir across the Frasnian-Famennian boundary, western New York State.

    Science.gov (United States)

    Over, D J; Conaway, C A; Katz, D J; Goodfellow, W D; Gregoire, D C

    1997-08-01

    The Frasnian-Famennian boundary is recognized as the culmination of a global mass extinction in the Late Devonian. In western New York State the boundary is a distinct horizon within a pyritic black shale bed of the upper Hanover Shale defined by the first occurrence of Palmatolepis triangularis in the absence of Frasnian conodonts. The boundary is characterized by a minor disconformity marked by a lag concentration of conodonts. Iridium at the boundary is 0.11-0.24 ng/g, two to five times background levels of <0.05 ng/g; other Ir enrichments of 0.38 ng/g and 0.49 ng/g occur within 50 cm of the conodont-constrained boundary. Numerous Ir enrichments in the boundary interval suggest extraterrestrial accretion and platinum group element (PGE) concentration at disconformities, or mobilization and concentration in organic-rich/pyritic-rich laminations from cosmic or terrestrial sources. PGE ratios of Pt/Pd and Ku/Ir at the boundary horizon approximate chondritic ratios and are suggestive of an unaltered extraterrestrial source. These values do not conclusively establish a single extraterrestrial impact as the ultimate cause of the Frasnian-Famennian mass extinction, especially given the presence of similar Ir enrichments elsewhere in the section and the absence at the boundary of microtektites and shocked mineral grains.

  1. Highly ordered FEPT and FePd magnetic nano-structures: Correlated structural and magnetic studies

    International Nuclear Information System (INIS)

    Lukaszew, Rosa Alejandra; Cebollada, Alfonso; Clavero, Cesar; Garcia-Martin, Jose Miguel

    2006-01-01

    The micro-structure of epitaxial FePt and FePd films grown on MgO (0 0 1) substrates is correlated to their magnetic behavior. The FePd films exhibit high chemical ordering and perpendicular magnetic anisotropy. On the other hand FePt films exhibit low chemical ordering, with nano-grains oriented in two orthogonal directions, forcing the magnetization to remain in the plane of the films

  2. Magnetic feature and near-infrared absorption of a [Pt(mnt)2]-based H-bond supramolecular crystal

    International Nuclear Information System (INIS)

    Li, Cui-Ping; Nie, Li; Pei, Wen-Bo; Li, Li; Tian, Zheng-Fang; Liu, Jian-Lan; Gao, Xu-Sheng; Ren, Xiao-Ming

    2016-01-01

    A new salt [H 2 DABCO][Pt(mnt) 2 ] 2 (1) (mnt 2- =maleonitriledithiolate and H 2 DABCO 2+ is diprotonated 1,4-diazabicyclo[2.2.2]octane) has been synthesized; its crystal structure, magnetic and near-IR absorption properties have been investigated. Two different [Pt(mnt) 2 ] - anions form the strong π-dimers, labeled as Pt(1)-dimer and Pt(2)-dimer, with quite shorter Pt…Pt and S…S distances and molecular plane-to-plane distance (<3.5 Å) within a dimer. The [Pt(mnt) 2 ] 2 2- π-dimers are connected through the cations in the strong H-bond manner to form three-dimensional H-bond supramolecular crystal. The salt shows weak paramagnetism in 1.99–300 K and this is due to the existence of strong antiferromagnetic coupling within a π-dimer. In addition, a small thermal hysteresis loop is observed at ca. 120 K, indicating that a phase transition probably occurs that is further confirmed by variable-temperature IR spectra. Another fascinating functionality of 1 is the intense near-IR absorption in the region of 750–2500 nm, and this near-IR absorption feature makes it to be a promising optical material. - Graphical abstract: A H-bond supramolecular crystal of [H 2 DABCO][Pt(mnt) 2 ] 2 shows a magnetic phase transition at ca. 120 K with sizable thermal hysteresis loop and intense near-IR absorption in the region of 750–2500 nm.

  3. Lifetime limitations of ohmic, contacting RF MEMS switches with Au, Pt and Ir contact materials due to accumulation of ‘friction polymer’ on the contacts

    International Nuclear Information System (INIS)

    Czaplewski, David A; Nordquist, Christopher D; Dyck, Christopher W; Patrizi, Gary A; Kraus, Garth M; Cowan, William D

    2012-01-01

    We present lifetime limitations and failure analysis of many packaged RF MEMS ohmic contacting switches with Au–Au, Au–Ir, and Au–Pt contact materials operating with 100 µN of contact force per contact in hermetically sealed glass wall packages. All metals were tested using the same switch design in a controlled environment to provide a comparison between the performance of the different materials and their corresponding failure mechanisms. The switch lifetimes of the different contact materials varied from several hundred cycles to 200 million cycles with different mechanisms causing failures for different contact materials. Switches with Au–Au contacts failed due to adhesion when thoroughly cleaned while switches with dissimilar metal contacts (Au–Ir and Au–Pt) operated without adhesion failures but failed due to carbon accumulation on the contacts even in a clean, packaged environment as a result of the catalytic behavior of the contact materials. Switch lifetimes correlated inversely with catalytic behavior of the contact metals. The data suggests the path to increase switch lifetime is to use favorable catalytic materials as contacts, design switches with higher contact forces to break through any residual contamination, and use cleaner, probably smaller, packages. (paper)

  4. Microdosimetric evaluation of relative biological effectiveness for 103PD, 125I, 241AM, and 192IR brachytherapy sources

    International Nuclear Information System (INIS)

    Wuu, C.S.; Kliauga, P.; Zaider, M.; Amols, H.I.

    1996-01-01

    Purpose: To determine the microdosimetric-derived relative biological effectiveness (RBE) of 103 Pd, 125 I, 241 Am, and 192 Ir brachytherapy sources at low doses and/or low dose rates. Methods and Materials: The Theory of Dual Radiation Action can be used to predict expected RBE values based on the spatial distribution of energy deposition at microscopic levels from these sources. Single-event lineal energy spectra for these isotopes have been obtained both experimentally and theoretically. A grid-defined wall-less proportional counter was used to measure the lineal energy distributions. Unlike conventional Rossi proportional counters, the counter used in these measurements has a conducting nylon fiber as the central collecting anode and has no metal parts. Thus, the Z-dependence of the photoelectric effect is eliminated as a source of measurement error. Single-event spectra for these brachytherapy sources have been also calculated by: (a) the Monte Carlo code MCNP to generate the electron slowing down spectrum, (b) transport of monoenergetic electron tracks, event by event, with our Monte Carlo code DELTA, (c) using the concept of associated volume to obtain the lineal energy distribution f(y) for each monoenergetic electron, and (d) obtaining the composite lineal energy spectrum for a given brachytherapy source based on the electron spectrum calculated at step (a). Results: Relative to 60 Co, the RBE values obtained from this study are: 2.3 for 103 Pd, 2.1 for 125 I, 2.1 for 241 Am, and 1.3 for 192 Ir. Conclusions: These values are consistent with available data from in vitro cell survival experiments. We suggest that, at least for these brachytherapy sources, microdosimetry may be used as a credible alternative to time-consuming (and often uncertain) radiobiological experiments to obtain information on radition quality and make reliable predictions of RBE in low dose rate brachytherapy

  5. IR spectroscopy at the ITO-organic interface

    Energy Technology Data Exchange (ETDEWEB)

    Alt, Milan [Karlsruher Institut fuer Technologie, Karlsruhe (Germany); Shazada, Ahmad [Max-Planck Institut fuer Polymerforschung, Mainz (Germany); Tamanai, Akemi; Trollmann, Jens; Glaser, Tobias; Beck, Sebastian; Tengeler, Sven; Pucci, Annemarie [Kirchhoff-Institut fuer Physik, Heidelberg (Germany)

    2012-07-01

    Thin films of P3HT have been prepared by spin coating and electrooxidative polymerization on platinum- and ITO-coated substrates. Additionally, P3HT-films on silicon substrates have been prepared by spin coating only. The measured IR spectra of the spin coated films allowed for an elaboration of a detailed optical model for P3HT, which has been used to simulate IR reflection-absorption spectra on ITO and Pt substrates. Comparison of simulated spectra with measurements revealed no substrate influence on the IR spectra for the spincoated films. In case of spincoated P3HT-films on ITO-substrate, the obtained IR spectra correspond to simulation data very well up to 6000 wavenumbers. In the electropolymerized P3HT films we have identified residuals of the electrolyte ionic liquid, acting as dopand for P3HT. While IR spectra of the electropolymerized P3HT films on Pt substrate could be explained reasonably well as a superposition of chemically doped P3HT and the ionic electrolyte, the IR spectra of electropolymerized P3HT films on ITO substrates showed strongly deposition-time dependent deviations. These were most likely related to varying properties of the ITO surface between reference and sample measurement due to an interaction of ITO and the electrolyte at the film-substrate interface.

  6. Gibbs Free Energy of Formation for Selected Platinum Group Minerals (PGM

    Directory of Open Access Journals (Sweden)

    Spiros Olivotos

    2016-01-01

    Full Text Available Thermodynamic data for platinum group (Os, Ir, Ru, Rh, Pd and Pt minerals are very limited. The present study is focused on the calculation of the Gibbs free energy of formation (ΔfG° for selected PGM occurring in layered intrusions and ophiolite complexes worldwide, applying available experimental data on their constituent elements at their standard state (ΔG = G(species − ΔG(elements, using the computer program HSC Chemistry software 6.0. The evaluation of the accuracy of the calculation method was made by the calculation of (ΔGf of rhodium sulfide phases. The calculated values were found to be ingood agreement with those measured in the binary system (Rh + S as a function of temperature by previous authors (Jacob and Gupta (2014. The calculated Gibbs free energy (ΔfG° followed the order RuS2 < (Ir,OsS2 < (Pt, PdS < (Pd, PtTe2, increasing from compatible to incompatible noble metals and from sulfides to tellurides.

  7. Magnesium and cadmium in covalently-bonded Lonsdaleite networks: Synthesis, structure, and conding of AETMg{sub 2} and SrTCd{sub 2} (AE = Ca, Sr; T = Pd, Ag, Pt, Au)

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, Marcel; Johnscher, Michael; Poettgen, Rainer [Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster, Corrensstrasse 30, 48149 Muenster (Germany); Matar, Samir F. [Universite Bordeaux, ICMCB, UPR 9048, 33600 Pessac (France)

    2013-04-15

    The alkaline earth metal compounds AETMg{sub 2} and AETCd{sub 2} (AE = Ca, Sr; T = Pd, Ag, Pt, Au) were synthesized by induction-melting (or in muffle furnaces) of the elements in sealed niobium ampoules. The new phases were characterized by powder X-ray diffraction. The structures of SrPdMg{sub 2} and SrPdCd{sub 2} were investigated by X-ray diffraction on single crystals: MgCuAl{sub 2} type, Cmcm, a = 436.42(4), b = 1130.1(1), c = 820.54(7) pm, wR{sub 2} = 0.0115, 511 F{sup 2} values for SrPdMg{sub 2} and a = 443.5(2), b = 1063.0(2), c = 810.2(2) pm, wR{sub 2} = 0.0296, 386 F{sup 2} values for SrPdCd{sub 2} with 16 variables for each refinement. The magnesium and cadmium atoms build up [TMg{sub 2}] and [TCd{sub 2}] polyanionic networks, which leave cavities for the calcium and strontium atoms. The bonding variations within the polyanions, which are mainly influenced by the length of the b axis are discussed. Ab initio calculations of electronic structure, charge densities, and chemical bonding, characterize SrPdMg{sub 2} with a larger cohesive energy than SrPdCd{sub 2}. This is illustrated by larger bonding Pd-Mg interactions, opposite to compensating Pd-Cd between bonding and antibonding states. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Synthesis and hydrogenation application of Pt–Pd bimetallic nanocatalysts stabilized by macrocycle-modified dendrimer

    Science.gov (United States)

    Xiao, Haiyan; Zhou, Wei; Zhang, Dongqiao; Peng, Xiaohong

    2017-01-01

    Different generations of poly(propylene imine) (Gn-PPI) terminated with N-containing 15-membered triolefinic macrocycle (GnM) (n = 2, 3, 4, 5) were prepared. The bimetallic nanoparticle catalysts GnM-(Ptx/Pd10−x) (x = 0, 3, 5, 7, 10) were prepared by the synchronous ligand-exchange reaction between GnM and the complexes of Pt(PPh3)4 and Pd(PPh3)4. The structure and catalytic properties of GnM-(Ptx/Pd10−x) were characterized via Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, energy-dispersive spectroscopy and inductively coupled plasma atomic emission spectroscopy. The novel bimetallic Pd–Pt nanoparticle catalysts stabilized by dendrimers (DSNs) present higher catalytic activities for the hydrogenation of dimeric acid (DA) than that of nitrile butadiene rubber (NBR). It can be concluded that bimetallic Pd–Pt DSNs possess alloying and synergistic electronic effects on account of the hydrogenation degree (HD) of DA and NBR. Furthermore, the HD of DA and NBR shows a remarkable decrease with the incremental generations (n) of GnM-(Pt3/Pd7) (n = 2, 3, 4, 5). PMID:29308263

  9. Evaluation of colloidal Ag and Ag-alloys as anode electrocatalysts for direct borohydride fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Atwan, Mohammed H.; Northwood, Derek O. [Mechanical, Auto, and Materials Engineering, University of Windsor, Windsor, N9B 3P4 (Canada); Gyenge, Elod L. [Chemical and Biological Engineering, The University of British Colombia, Vancouver, BC, V6T 1Z4 (Canada)

    2007-10-15

    In this study, colloidal silver and silver-alloys (Ag-Pt, Ag-Au, Ag-Ir, and Ag-Pd) prepared by the Boenneman technique were evaluated as anode catalysts for sodium borohydride oxidation using cyclic voltammetry (CV), chronoamperometry (CA), chronopotentiometry (CP) and rotating disk electrode (RDE) voltammetry. The CV results show that the colloidal Ag-alloys were electrochemically active towards borohydride oxidation with oxidation potentials ranging between -0.7 and 0.4 V vs. Hg/HgO (MOE). The most negative oxidation potential was recorded on Ag-Pt. CA results show that the steady state current density was highest on Ag-Pt, followed by Ag-Ir, Ag-Au, and Ag-Pd. The lowest overpotential was recorded on Ag-Ir for a current step change of 10mAcm{sup -2}. A significant temperature effect and a small rotation speed effect were found in the rotating disc voltammetry for all the investigated colloids. The highest peak current was recorded on Ag-Au, while the most negative peak potential was recorded on Ag-Ir. (author)

  10. Phase transformations in the Cu.6 Pd.4 alloy

    International Nuclear Information System (INIS)

    Imakuma, K.

    1977-01-01

    Order-disorder and structural transformations in the Cu-Pd 60-40% (Cu. 6 Pd. 4 ) alloy by means of a temperature and time dependent treatment are studied. The structural transformations by x-rays diffraction are also studied, where the bcc, fcc and tetragonal phases were observed. A qualitative analyze of the resistivity kinetics are made [pt

  11. Investigations of Pd-Cu electrocatalyst for oxygen reduction reaction in acidic media with RDE method

    Energy Technology Data Exchange (ETDEWEB)

    Fouda-Onana, F.; Bah, S.; Savadogo, O. [Ecole Polytechnique de Montreal, Montreal, PQ (Canada). Laboratoire de nouveaux materiaux pour l' energie et l' electrochimie

    2008-07-01

    The kinetics of the oxygen reduction reaction (ORR) has been studied extensively with different platinum bi-metallic alloys such as Pt-Fe, Pt-Ni, Pt-Co. However, palladium-based bi-metallic alloys are being considered as a substitute for platinum in electrocatalysts. This paper reported on a study that investigated the ORR on bi-metallic Pd-Cu electrocatalyst. Different contents in Cu were analyzed and an optimal Cu composition leading to the highest ORR activity was found. A mechanism of the ORR kinetics for this catalyst was introduced based on the value of the Tafel slope. A smooth increase in surface area up to 50 per cent Cu was observed to a constant value of 23 cm{sup 2}. Such behaviour was due to the high dispersion of Pd as Cu increased and segregated. A volcano-shape was found between the kinetic current, activation energy and the Cu composition. The maximum exchange current density and the lowest activation energy were found for Pd50Cu50, which corresponded to the highest surface area. All Pd-Cu alloys presented a higher kinetic current than Pd alone. 3 refs., 1 tab., 3 figs.

  12. Titania Supported Pt and Pt/Pd Nano-particle Catalysts for the Oxidation of Sulfur Dioxide

    DEFF Research Database (Denmark)

    Koutsopoulos, Sotiris; Johannessen, Tue; Eriksen, Kim Michael

    2006-01-01

    Several types of titania (anatase) were used as supports for pure platinum and Pt–Pd bimetallic alloy catalysts. The preparation methods, normal wet impregnation technique and flame aerosol synthesis, obtained metal loadings of 2% by weight. The prepared catalysts were tested for SO2 oxidation...... activity at atmospheric pressure in the temperature range 250–600 °C. The SO2 to SO3 conversion efficiency of the Pt–Pd alloy was significantly higher than that of the individual metals. The effects of the preparation method and the titania type used on the properties and activity of the resulting catalyst...

  13. Pt, Re and Pt-Re incorporation in sulfated zirconia as catalysts for n-pentane isomerization

    International Nuclear Information System (INIS)

    Aboul-Gheit, A.K.; El-Desouki, D.S.; Abdel-Hamid, S.M.; Ghoneim, S.A.; Ibrahim, A.H.; Gad, F.K.; Abdel-Aleem, G.M.

    2010-01-01

    Two groups of modified Sulfated Zirconia (S Z) catalysts were prepared by the sol-gel method. The first group was modified by four different concentrations of Pt metal (0.15, 0.30, 0.45 and 0.60 wt %), whereas the second group contained Pt-Re combinations on SZ. All the prepared catalysts were characterized by XRD, TPR, TEM, TGA, IR spectroscopy as well as surface properties using the BET method. The catalytic activity of the catalysts was examined for the hydro isomerization of n-pentane to iso-pentane. The catalytic activity was found to increase with increasing Pt concentration in the mono metallic catalysts. The combination of Re ion with Pt on SZ results in significant changes in the characters and activities of the catalysts. The 0.45 wt % Pt + 0.15 wt % Re/SZ catalyst exhibited the highest selective compared to other metal ratios investigated

  14. Performance of the PdNi and PdNiSe as cathodes in PEM fuel cells; Desempeno de PdNi y PdNiSe como catodos en celdas de combustible tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Santana, A.; Ramos-Sanchez, G.; Vazquez, G.; Solorza-Feria, O. [Centro de Investigaciones y de Estudios Avanzados del IPN, Mexico D.F. (Mexico)]. E-mail: gramos@cinvestav.mx

    2009-09-15

    The search for new materials capable of catalyzing oxygen reactions in low temperature fuel cells continues to be one of the key issues in the development of a hydrogen economy. Electrochemical and physical characterization studies have demonstrated that the PdNi and PdNiSe catalysts have adequate properties for use as cathodes in fuel cells. Nevertheless, the performance of the materials in proton exchange membrane (PEM) fuel cells depends not only on the catalytic properties but also on the adequate preparation of the electrocatalyst membrane interface (EMI). This work presents the results of the search for optimal conditions to prepare the EMIs with PdNi and PdNiSe cathodes. There are many variables for handling the preparation of the interfaces, nevertheless our search focuses on two: catalyst ratio/Vulcan Carbon® and the catalyst amount. Interfaces were prepared with an active area of 5 cm{sup 2} with PdNi and PdNiSe cathodes and carbon fabric anode with Pt E-tek®. These interfaces were tested with an ElectroChem model under different gas pressure and temperature conditions. The optimization method was carried out using a simplex method with the variables mentioned above and power density per unit mass and catalyst area as response variables. [Spanish] La busqueda de nuevos materiales capaces de catalizar la Reaccion de Oxigeno (RRO) en celdas de combustible de baja temperatura, sigue siendo uno de los temas clave para el desarrollo de una Economia del Hidrogeno. Estudios electroquimicos y de caracterizacion fisica han demostrado que los catalizadores PdNi y PdNiSe, tienen las propiedades adecuadas para poder ser utilizados como catodos en celdas de combustible; sin embargo el desempeno de los materiales en celdas de combustible de membrana de intercambio protonico (PEM), no solo depende de las propiedades del catalizador, sino tambien de la preparacion adecuada del Ensamble Membrana Electrocatalizador (EME). En este trabajo se presentan los resultados de la

  15. Near infrared photoimmunotherapy with avelumab, an anti-programmed death-ligand 1 (PD-L1) antibody.

    Science.gov (United States)

    Nagaya, Tadanobu; Nakamura, Yuko; Sato, Kazuhide; Harada, Toshiko; Choyke, Peter L; Hodge, James W; Schlom, Jeffrey; Kobayashi, Hisataka

    2017-01-31

    Near Infrared-Photoimmunotherapy (NIR-PIT) is a highly selective tumor treatment that employs an antibody-photo-absorber conjugate (APC). Programmed cell death protein-1 ligand (PD-L1) is emerging as a molecular target. Here, we describe the efficacy of NIR-PIT, using fully human IgG1 anti-PD-L1 monoclonal antibody (mAb), avelumab, conjugated to the photo-absorber, IR700DX, in a PD-L1 expressing H441 cell line, papillary adenocarcinoma of lung. Avelumab-IR700 showed specific binding and cell-specific killing was observed after exposure of the cells to NIR in vitro. In the in vivo study, avelumab-IR700 showed high tumor accumulation and high tumor-background ratio. Tumor-bearing mice were separated into 4 groups: (1) no treatment; (2) 100 μg of avelumab-IR700 i.v.; (3) NIR light exposure only, NIR light was administered; (4) 100 μg of avelumab-IR700 i.v., NIR light was administered. Tumor growth was significantly inhibited by NIR-PIT treatment compared with the other groups (p avelumab, is suitable as an APC for NIR-PIT. Furthermore, NIR-PIT with avelumab-IR700 is a promising candidate of the treatment of PD-L1-expressing tumors that could be readily translated to humans.

  16. Modification of the sulphur resistance of platinum by addition of metals for aromatics hydrogenation; Modification de la thioresistance du platine par ajouts d'elements metalliques pour l'hydrogenation d'aromatiques

    Energy Technology Data Exchange (ETDEWEB)

    Guillon, E

    1999-09-15

    The aim of this study is based on the understanding of sulphur resistance of platinum catalytic systems. In this work, bimetallic systems (Pt-Ge, Pt-Au and Pt-Pd) supported on {gamma}-alumina have been studied. Preparation methods have been chosen to give the best control of the physicochemical properties of final system. Electronic and geometrical properties of the metallic phase were characterised by various techniques (TPR, infrared spectroscopy of adsorbed CO (IR(CO)), EXAFS, LEIS). Ortho-xylene hydrogenation in presence of 100 ppm of sulphur was used as model catalytic test in order to study the sulphur resistance of the catalysts. It has been shown that germanium and palladium act as electro-acceptors toward platinum. The ranking of catalytic activity in presence of sulphur is as followed: Pt-Pd > Pt-Au {approx_equal} Pt >> Pt-Ge {approx_equal} 0. The best sulphur resistance for Pt-Pd was obtained for the composition Pt{sub 20}Pd{sub 80} (Pd/Pt=4). An eggshell PdS structure with Pt (sulfur free) core is proposed. These works show that the sulphur resistance of platinum is not only linked with its electronic properties. They allow us to propose an original concept of sulphur resistant catalyst taking into account each catalytic parameters such as chemical bonding of S and aromatic compounds on the metallic site, physico-chemical characteristics of the bimetallic aggregates (particle size, structure, surface composition) and electronic modification of surface atoms in bimetallic catalysts. (author)

  17. Modification of the sulphur resistance of platinum by addition of metals for aromatics hydrogenation; Modification de la thioresistance du platine par ajouts d'elements metalliques pour l'hydrogenation d'aromatiques

    Energy Technology Data Exchange (ETDEWEB)

    Guillon, E.

    1999-09-15

    The aim of this study is based on the understanding of sulphur resistance of platinum catalytic systems. In this work, bimetallic systems (Pt-Ge, Pt-Au and Pt-Pd) supported on {gamma}-alumina have been studied. Preparation methods have been chosen to give the best control of the physicochemical properties of final system. Electronic and geometrical properties of the metallic phase were characterised by various techniques (TPR, infrared spectroscopy of adsorbed CO (IR(CO)), EXAFS, LEIS). Ortho-xylene hydrogenation in presence of 100 ppm of sulphur was used as model catalytic test in order to study the sulphur resistance of the catalysts. It has been shown that germanium and palladium act as electro-acceptors toward platinum. The ranking of catalytic activity in presence of sulphur is as followed: Pt-Pd > Pt-Au {approx_equal} Pt >> Pt-Ge {approx_equal} 0. The best sulphur resistance for Pt-Pd was obtained for the composition Pt{sub 20}Pd{sub 80} (Pd/Pt=4). An eggshell PdS structure with Pt (sulfur free) core is proposed. These works show that the sulphur resistance of platinum is not only linked with its electronic properties. They allow us to propose an original concept of sulphur resistant catalyst taking into account each catalytic parameters such as chemical bonding of S and aromatic compounds on the metallic site, physico-chemical characteristics of the bimetallic aggregates (particle size, structure, surface composition) and electronic modification of surface atoms in bimetallic catalysts. (author)

  18. Carbon-Supported Pd and PdFe Alloy Catalysts for Direct Methanol Fuel Cell Cathodes

    Directory of Open Access Journals (Sweden)

    Luis M. Rivera Gavidia

    2017-05-01

    Full Text Available Direct methanol fuel cells (DMFCs are electrochemical devices that efficiently produce electricity and are characterized by a large flexibility for portable applications and high energy density. Methanol crossover is one of the main obstacles for DMFC commercialization, forcing the search for highly electro-active and methanol tolerant cathodes. In the present work, carbon-supported Pd and PdFe catalysts were synthesized using a sodium borohydride reduction method and physico-chemically characterized using transmission electron microscopy (TEM and X-ray techniques such as photoelectron spectroscopy (XPS, diffraction (XRD and energy dispersive spectroscopy (EDX. The catalysts were investigated as DMFC cathodes operating at different methanol concentrations (up to 10 M and temperatures (60 °C and 90 °C. The cell based on PdFe/C cathode presented the best performance, achieving a maximum power density of 37.5 mW·cm−2 at 90 °C with 10 M methanol, higher than supported Pd and Pt commercial catalysts, demonstrating that Fe addition yields structural changes to Pd crystal lattice that reduce the crossover effects in DMFC operation.

  19. Anti-PD-L1 Treatment Induced Central Diabetes Insipidus.

    Science.gov (United States)

    Zhao, Chen; Tella, Sri Harsha; Del Rivero, Jaydira; Kommalapati, Anuhya; Ebenuwa, Ifechukwude; Gulley, James; Strauss, Julius; Brownell, Isaac

    2018-02-01

    Immune checkpoint inhibitors, including anti-programmed cell death protein 1 (PD-1), anti-programmed cell death protein ligand 1 (PD-L1), and anti-cytotoxic T-lymphocyte antigen 4 (anti-CTLA4) monoclonal antibodies, have been widely used in cancer treatment. They are known to cause immune-related adverse events (irAEs), which resemble autoimmune diseases. Anterior pituitary hypophysitis with secondary hypopituitarism is a frequently reported irAE, especially in patients receiving anti-CTLA4 treatment. In contrast, posterior pituitary involvement, such as central diabetes insipidus (DI), is relatively rare and is unreported in patients undergoing PD-1/PD-L1 blockade. We describe a case of a 73-year-old man with Merkel cell carcinoma who received the anti-PD-L1 monoclonal antibody avelumab and achieved partial response. The patient developed nocturia, polydipsia, and polyuria 3 months after starting avelumab. Further laboratory testing revealed central DI. Avelumab was held and he received desmopressin for the management of central DI. Within 6 weeks after discontinuation of avelumab, the patient's symptoms resolved and he was eventually taken off desmopressin. The patient remained off avelumab and there were no signs or symptoms of DI 2 months after the discontinuation of desmopressin. To our knowledge, this is the first report of central DI associated with anti-PD-L1 immunotherapy. The patient's endocrinopathy was successfully managed by holding treatment with the immune checkpoint inhibitor. This case highlights the importance of early screening and appropriate management of hormonal irAEs in subjects undergoing treatment with immune checkpoint inhibitors to minimize morbidity and mortality. Copyright © 2017 Endocrine Society

  20. Evaluation of colloidal Pd and Pd-alloys as anode electrocatalysts for direct borohydride fuel cells applications

    Energy Technology Data Exchange (ETDEWEB)

    Atwan, M.H. [General Motors R and D Technical Center, Warren, MI (United States); Gyenge, E.L. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering; Northwood, D.O. [Windsor Univ., ON (Canada). Dept. of Mechanical, Automotive and Materials Engineering

    2010-07-01

    An evaluation was conducted to assess the use of colloidal palladium (Pd) and Pd alloys as anode electrocatalysts for direct borohydride fuel cell applications. A modified Bonneman method was used to investigate borohydride oxidation on supported Pd and Pd-alloy nano-electrocatalysts. Cyclic voltammetry (CV), rotating disk electrode (RDE) voltammetry, and single fuel cell test stations were used to determine Tafel slopes, exchange current densities, oxidation peak potentials, and fuel cell performance. The study also investigated the influence of temperature and oxidant flow and fuel flow rates on fuel cell performance. The study showed that the current density of the fuel cell increased with increases in temperature for all the investigated Pd electrocatalysts. However, the increase in current density was not as high as expected when fuel flow rates were increased. A current density of 50 mA cm{sup -2} was observed at 298 K with a Pd-Ir anode catalyst operating at a cell voltage of 0.5 V. 28 refs., 1 tab., 15 figs.

  1. Magnetism of a Co monolayer on Pt(111) capped by overlayers of 5 d elements: A spin-model study

    Science.gov (United States)

    Simon, E.; Rózsa, L.; Palotás, K.; Szunyogh, L.

    2018-04-01

    Using first-principles calculations, we study the magnetic properties of a Co monolayer on a Pt(111) surface with a capping monolayer of selected 5 d elements (Re, Os, Ir, Pt, and Au). First we determine the tensorial exchange interactions and magnetic anisotropies characterizing the Co monolayer for all considered systems. We find a close relationship between the magnetic moment of the Co atoms and the nearest-neighbor isotropic exchange interaction, which is attributed to the electronic hybridization between the Co and the capping layers, in the spirit of the Stoner picture of ferromagnetism. The Dzyaloshinskii-Moriya interaction is decreased for all overlayers compared to the uncapped Co/Pt(111) system, while even the sign of the Dzyaloshinskii-Moriya interaction changes in the case of the Ir overlayer. We conclude that the variation of the Dzyaloshinskii-Moriya interaction is well correlated with the change of the magnetic anisotropy energy and of the orbital moment anisotropy. The unique influence of the Ir overlayer on the Dzyaloshinskii-Moriya interaction is traced by scaling the strength of the spin-orbit coupling of the Ir atoms in Ir/Co/Pt(111) and by changing the Ir concentration in the Au1 -xIrx /Co/Pt(111) system. Our spin dynamics simulations indicate that the magnetic ground state of Re/Co/Pt(111) thin film is a spin spiral with a tilted normal vector, while the other systems are ferromagnetic.

  2. Pd nanowire arrays as electrocatalysts for ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong; Cheng, Faliang [Dongguan University of Technology, Dongguan 523106 (China); Xu, Changwei; Jiang, Sanping [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2007-05-15

    Highly ordered Pd nanowire arrays were prepared by template-electrodeposition method using anodic aluminum oxide template. The Pd nanowire arrays, in this paper, have high electrochemical active surface and show excellent catalytic properties for ethanol electrooxidation in alkaline media. The activity of Pd nanowire arrays for ethanol oxidation is not only higher that of Pd film, but also higher than that of commercial E-TEK PtRu(2:1 by weight)/C. The micrometer sized pores and channels in nanowire arrays act as structure units. They make liquid fuel diffuse into and products diffuse out of the catalysts layer much easier, therefore, the utilization efficiency of catalysts gets higher. Pd nanowire arrays are stable catalysts for ethanol oxidation. The nanowire arrays may be a great potential in direct ethanol fuel cells and ethanol sensors. (author)

  3. CoPd x oxygen reduction electrocatalysts for polymer electrolyte membrane and direct methanol fuel cells

    International Nuclear Information System (INIS)

    Mustain, William E.; Kepler, Keith; Prakash, Jai

    2007-01-01

    The electrochemical activity of carbon-supported cobalt-palladium alloy electrocatalysts of various compositions have been investigated for the oxygen reduction reaction in a 5 cm 2 single cell polymer electrolyte membrane fuel cell. The polarization experiments have been conducted at various temperatures between 30 and 60 deg. C and the reduction performance compared with data from a commercial Pt catalyst under identical conditions. Investigation of the catalytic activity of the CoPd x PEMFC system with varying composition reveals that a nominal cobalt-palladium atomic ratio of 1:3, CoPd 3 , exhibits the best performance of all studied catalysts, exhibiting a catalytic activity comparable to the commercial Pt catalyst. The ORR on CoPd 3 has a low activation energy, 52 kJ/mol, and a Tafel slope of approximately 60 mV/decade, indicating that the rate-determining step is a chemical step following the first electron transfer step and may involve the breaking of the oxygen bond. The CoPd 3 catalyst also exhibits excellent chemical stability, with the open circuit cell voltage decreasing by only 3% and the observed current decreasing by only 10% at 0.8 V over 25 h. The CoPd 3 catalyst also exhibits superior tolerance to methanol crossover poisoning than Pt

  4. Structural, mechanical, and electronic properties of TaB2, TaB, IrB2, and IrB: First-principle calculations

    International Nuclear Information System (INIS)

    Zhao Wenjie; Wang Yuanxu

    2009-01-01

    First-principle calculations were performed to investigate the structural, elastic, and electronic properties of TaB 2 , TaB, IrB 2 , and IrB. The calculated equilibrium structural parameters, shear modulus, and Young's modulus of TaB 2 are well consistent with the available experimental data, and TaB 2 with P6/mmm space group has stronger directional bonding between ions than WB 2 , OsB 2 , IrN 2 , and PtN 2 . For TaB 2 , the hexagonal P6/mmm structure is more stable than the orthorhombic Pmmn one, while for IrB 2 the orthorhombic Pmmn structure is the most stable one. The high shear modulus of P6/mmm phase TaB 2 is mainly due to the strong covalent π-bonding of B-hexagon in the (0001) plane. Such a B-hexagon network can strongly resist against an applied [112-bar0] (0001) shear deformation. Correlation between the hardness and the elastic constants of TaB 2 was discussed. The band structure shows that P6/mmm phase TaB 2 and Pmmn phase IrB 2 are both metallic. The calculations show that both TaB and IrB are elastically stable with the hexagonal P6 3 /mmc structure. - Elastic constant c 44 of TaB 2 is calculated to be 235 GPa. This value is exceptionally high, exceeding those of WB 2 , OsB 2 , WB 4 , OsN 2 , IrN 2 , and PtN 2 .

  5. Equilibrium, kinetics and mechanism of Au3+, Pd2+ and Ag+ ions adsorption from aqueous solutions by graphene oxide functionalized persimmon tannin.

    Science.gov (United States)

    Wang, Zhongmin; Li, Xiaojuan; Liang, Haijun; Ning, Jingliang; Zhou, Zhide; Li, Guiyin

    2017-10-01

    In this study, a novel bio-adsorbent (PT-GO) was prepared by functionalization persimmon tannin (PT) with graphene oxide (GO) and the effective adsorption behaviors of Au 3+ , Pd 2+ and Ag + ions from aqueous solution was investigated. The PT-GO was characterized by Fourier transform infrared spectrometer (FTIR), scanning electronic microscope (SEM), thermogravimetric analysis (TGA) and Zeta potential. Many influence factors such as pH value, bio-adsorbent dosage, initial concentration of metal ions and contact time were optimized. The maximum adsorption capacity for Au 3+ , Pd 2+ and Ag + was 1325.09mg/g, 797.66mg/g and 421.01mg/g, respectively. The equilibrium isotherm for the adsorption of Au 3+ and Ag + on PT-GO were found to obey the Langmuir model, while the Freundlich model fitted better for Pd 2+ . The adsorption process of Au 3+ , Pd 2+ presented relatively fast adsorption kinetics with pseudo-second-order equation as the best fitting model, while the pseudo-first-order kinetic model was suitable for describing the adsorption of Ag + . Combination of ion exchange, electrostatic interaction and physical adsorption was the mechanism for adsorption of Au 3+ , Pd 2+ and Ag + onto PT-GO bio-adsorbent. Therefore, the PT-GO bio-adsorbent would be an ideal adsorbent for removal of precious metal ions and broaden the potential applications of persimmon tannin in environmental research. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Platinum Activated IrO2/SnO2 Nanocatalysts and Their Electrode Structures for High Performance Proton Exchange Membrane Water Electrolysis

    DEFF Research Database (Denmark)

    Xu, Junyuan; Li, Qingfeng; Christensen, Erik

    2013-01-01

    of the introduction of Pt on the properties of the composites was explored by X-ray diffraction (XRD) and electrochemical test. Interaction between the introduced Pt nanoparticles and the bulk IrO2/SnO2 was evidenced in XRD. Electrochemical characterization showed the enhanced activitiy for the Pt activated IrO2/SnO2...

  7. Study of the (p,pd), (p,pt) and (p,p3He) reactions on 12C and 16O at 75MeV

    International Nuclear Information System (INIS)

    Grossiord, J.Y.; Bedjidian, M.; Guichard, A.; Gusakow, M.; Pizzi, J.R.

    1975-01-01

    The (p,pd), (p,pt) and (p,p 3 He) quasi-free scattering reactions have been studied on 12 C and 16 O targets at 75MeV. The low lying excitation levels of the residual nuclei have been observed. The appearance of T=1 states in 10 B and 14 N and of positive parity states in 13 N and 13 C can only be explained by reaction mechanisms more complex than a simple quasi-free scattering. A comparison of relative values of experimental spectroscopic factors with theoretical calculations has been made in the case of the most populated states [fr

  8. Near infrared photoimmunotherapy with avelumab, an anti-programmed death-ligand 1 (PD-L1) antibody

    OpenAIRE

    Nagaya, Tadanobu; Nakamura, Yuko; Sato, Kazuhide; Harada, Toshiko; Choyke, Peter L.; Hodge, James W.; Schlom, Jeffrey; Kobayashi, Hisataka

    2016-01-01

    Near Infrared-Photoimmunotherapy (NIR-PIT) is a highly selective tumor treatment that employs an antibody-photo-absorber conjugate (APC). Programmed cell death protein-1 ligand (PD-L1) is emerging as a molecular target. Here, we describe the efficacy of NIR-PIT, using fully human IgG1 anti-PD-L1 monoclonal antibody (mAb), avelumab, conjugated to the photo-absorber, IR700DX, in a PD-L1 expressing H441 cell line, papillary adenocarcinoma of lung. Avelumab-IR700 showed specific binding and cell-...

  9. Small-sized PdCu nanocapsules on 3D graphene for high-performance ethanol oxidation

    Science.gov (United States)

    HuThese Authors Contributed Equally To This Work., Chuangang; Zhai, Xiangquan; Zhao, Yang; Bian, Ke; Zhang, Jing; Qu, Liangti; Zhang, Huimin; Luo, Hongxia

    2014-02-01

    A one-pot solvothermal process has been developed for direct preparation of PdCu nanocapsules (with a size of ca. 10 nm) on three-dimensional (3D) graphene. Due to the 3D pore-rich network of graphene and the unique hollow structure of PdCu nanocapsules with a wall thickness of ca. 3 nm, the newly-prepared PdCu/3D graphene hybrids activated electrochemically have great electrocatalytic activity towards ethanol oxidation in alkaline media, much better than single-phase Pd and commercial E-TEK 20% Pt/C catalysts promising for application in direct ethanol fuel cells.A one-pot solvothermal process has been developed for direct preparation of PdCu nanocapsules (with a size of ca. 10 nm) on three-dimensional (3D) graphene. Due to the 3D pore-rich network of graphene and the unique hollow structure of PdCu nanocapsules with a wall thickness of ca. 3 nm, the newly-prepared PdCu/3D graphene hybrids activated electrochemically have great electrocatalytic activity towards ethanol oxidation in alkaline media, much better than single-phase Pd and commercial E-TEK 20% Pt/C catalysts promising for application in direct ethanol fuel cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05722d

  10. Neutral Guest Capture via Lewis Acid/Base Molecular Square Receptors. X-ray Crystal Structure of {Cyclobis[(cis-(dppp)Pt(4-ethynylpyridyl)(2))(cis- (PEt(3))(2)Pt)]Ag(2)}(+6)(phenazine)- ((-)OSO(2)CF(3))(6).

    Science.gov (United States)

    Whiteford, Jeffery A.; Stang, Peter J.; Huang, Songping D.

    1998-10-19

    Interaction of {cyclobis[(cis-(dppp)Pt(4-ethynylpyridyl)(2))(cis-(L)M)]Ag(2)}(+6)((-)OSO(2)CF(3))(6), where M = Pt(II) or Pd(II) and L = dppp or 2PEt(3), with pyridine, pyrazine, phenazine, or 4,4'-dipyridyl ketone results in coordination Lewis acid/base host-guest assemblies via the "pi-tweezer effect" and mono or bis neutral guest coordination. All host-guest complexes are air stable microcrystalline solids with decomposition points greater than 170 degrees C. The homometallic Pt(II) receptors are more stable than the heteroaromatic Pt(II)-Pd(II) receptors toward heteratom-containing aromatic guests. The X-ray crystal structure of the host-guest complex {cyclobis[(cis-(dppp)Pt(4-ethynylpyridyl)(2))(cis-(PEt(3))(2)Pt)]Ag(2)}(+6)(phenazine)((-)OSO(2)CF(3))(6) is reported. The crystals with the empirical formula C(62)H(68)AgF(9)N(3)O(9)P(4)Pt(2)S(3) are triclinic P&onemacr; with a = 12.3919(8) Å, b = 17.160(1) Å, c = 18.932(1) Å, alpha = 90.892(1) degrees, beta = 97.127(1) degrees, gamma = 89.969(1) degrees, and Z = 2.

  11. PZ, PT and PZT formation from metal citrates

    International Nuclear Information System (INIS)

    Bastos, C.M.R.; Zaghette, M.A.; Jafelicci Junior, M.; Varela, J.A.

    1990-01-01

    Lead zirconate, lead titanate and lead titanate-zirconate were obtained by mechanical mixing of lead, titanium and zirconium citrates in ether and by calcination. The process was analyzed by DTA, TGA, IR, pore size distribution and surface area measurements. The results indicate that the decomposition reaction and formation of PZ, PT occur simultaneaously without formation of intermediate compounds. PZT was formed from 500 0 C. (author) [pt

  12. Extremely large magnetoresistance and Kohler's rule in PdSn4: A complete study of thermodynamic, transport, and band-structure properties

    Science.gov (United States)

    Jo, Na Hyun; Wu, Yun; Wang, Lin-Lin; Orth, Peter P.; Downing, Savannah S.; Manni, Soham; Mou, Dixiang; Johnson, Duane D.; Kaminski, Adam; Bud'ko, Sergey L.; Canfield, Paul C.

    2017-10-01

    The recently discovered material PtSn4 is known to exhibit extremely large magnetoresistance (XMR) that also manifests Dirac arc nodes on the surface. PdSn4 is isostructural to PtSn4 with the same electron count. We report on the physical properties of high-quality single crystals of PdSn4 including specific heat, temperature- and magnetic-field-dependent resistivity and magnetization, and electronic band-structure properties obtained from angle-resolved photoemission spectroscopy (ARPES). We observe that PdSn4 has physical properties that are qualitatively similar to those of PtSn4, but find also pronounced differences. Importantly, the Dirac arc node surface state of PtSn4 is gapped out for PdSn4. By comparing these similar compounds, we address the origin of the extremely large magnetoresistance in PdSn4 and PtSn4; based on detailed analysis of the magnetoresistivity ρ (H ,T ) , we conclude that neither the carrier compensation nor the Dirac arc node surface state are the primary reason for the extremely large magnetoresistance. On the other hand, we find that, surprisingly, Kohler's rule scaling of the magnetoresistance, which describes a self-similarity of the field-induced orbital electronic motion across different length scales and is derived for a simple electronic response of metals to an applied magnetic field is obeyed over the full range of temperatures and field strengths that we explore.

  13. Cluster pattern analysis of energy deposition sites for the brachytherapy sources 103Pd, 125I, 192Ir, 137Cs, and 60Co.

    Science.gov (United States)

    Villegas, Fernanda; Tilly, Nina; Bäckström, Gloria; Ahnesjö, Anders

    2014-09-21

    Analysing the pattern of energy depositions may help elucidate differences in the severity of radiation-induced DNA strand breakage for different radiation qualities. It is often claimed that energy deposition (ED) sites from photon radiation form a uniform random pattern, but there is indication of differences in RBE values among different photon sources used in brachytherapy. The aim of this work is to analyse the spatial patterns of EDs from 103Pd, 125I, 192Ir, 137Cs sources commonly used in brachytherapy and a 60Co source as a reference radiation. The results suggest that there is both a non-uniform and a uniform random component to the frequency distribution of distances to the nearest neighbour ED. The closest neighbouring EDs show high spatial correlation for all investigated radiation qualities, whilst the uniform random component dominates for neighbours with longer distances for the three higher mean photon energy sources (192Ir, 137Cs, and 60Co). The two lower energy photon emitters (103Pd and 125I) present a very small uniform random component. The ratio of frequencies of clusters with respect to 60Co differs up to 15% for the lower energy sources and less than 2% for the higher energy sources when the maximum distance between each pair of EDs is 2 nm. At distances relevant to DNA damage, cluster patterns can be differentiated between the lower and higher energy sources. This may be part of the explanation to the reported difference in RBE values with initial DSB yields as an endpoint for these brachytherapy sources.

  14. Lithography-Free Fabrication of Large Area Subwavelength Antireflection Structures Using Thermally Dewetted Pt/Pd Alloy Etch Mask

    Directory of Open Access Journals (Sweden)

    Kang Jeong-Jin

    2009-01-01

    Full Text Available Abstract We have demonstrated lithography-free, simple, and large area fabrication method for subwavelength antireflection structures (SAS to achieve low reflectance of silicon (Si surface. Thin film of Pt/Pd alloy on a Si substrate is melted and agglomerated into hemispheric nanodots by thermal dewetting process, and the array of the nanodots is used as etch mask for reactive ion etching (RIE to form SAS on the Si surface. Two critical parameters, the temperature of thermal dewetting processes and the duration of RIE, have been experimentally studied to achieve very low reflectance from SAS. All the SAS have well-tapered shapes that the refractive index may be changed continuously and monotonously in the direction of incident light. In the wavelength range from 350 to 1800 nm, the measured reflectance of the fabricated SAS averages out to 5%. Especially in the wavelength range from 550 to 650 nm, which falls within visible light, the measured reflectance is under 0.01%.

  15. Size-dependent effects in supported highly dispersed Fe2O3 catalysts, doped with Pt and Pd

    International Nuclear Information System (INIS)

    Cherkezova-Zheleva, Zara; Shopska, Maya; Mitov, Ivan; Kadinov, Georgi

    2010-01-01

    Series of Fe and Fe–Me (Me = Pt or Pd) catalyst supported on γ-Al 2 O 3 , TiO 2 (anatase) or diatomite were prepared by the incipient wetness impregnation method. The metal loading was 8 wt.% Fe and 0.7 wt.% noble metal. The preparation and pretreatment conditions of all studied samples were kept to be the same. X-ray diffraction, Moessbauer spectroscopy, X-ray photoelectron spectroscopy and temperature-programmed reduction are used for characterization of the supports and the samples at different steps during their treatment and catalytic tests. The catalytic activity of the samples was tested in the reaction of total benzene oxidation. The physicochemical and catalytic properties of the obtained materials are compared with respect of the different chemical composition, dispersion of used carriers and of the supported phases. Samples with the same composition prepared by mechanical mixing are studied as catalysts for comparison and for clearing up the presence of size-dependent effect, also.

  16. Contribution to the structure study of mercury isotopes with the (p,d) reaction

    International Nuclear Information System (INIS)

    Grafeuille, S.

    1985-10-01

    The mercury isotopes were studied by means of the two pick-up reactions (p,d) and (p,t). Enriched targets of 204 Hg, 202 Hg, 201 Hg, 200 Hg, 199 Hg, 198 Hg and 196 Hg were bombarded by a 25 MeV proton beam from the Orsay MP tandem accelerator. Emitted particles were analyzed by a split-pole magnetic spectrometer. We present all the results (nearly 150 states) of the analysis of the (p,d) reactions. Our (p,d) and (p,t) study show new discontinuities around 200 Hg in systematics of mercury isotopes. Part of the results are compared to the U(5) limits of Interacting Bosons (and Fermions) Models. The light nuclei can be considered reasonably described but this could be somewhat fortuitous. (71 refs) [fr

  17. Concentrations of Platinum Group Elements (Pt, Pd, Rh) in Airborne Particulate Matter (PM2.5 and PM10-2.5) Collected at Selected Canadian Urban Sites: a Case Study

    OpenAIRE

    Celo V.; Zhao J. J.; Dabek-Zlotorzynska E.

    2013-01-01

    Increasing environmental concentrations of platinum group elements (PGEs), in particular platinum (Pt), palladium (Pd) and rhodium (Rh), from catalytic converters has been reported worldwide. Initially it was believed that the emitted PGEs remain in the roadside environment, but recent studies have shown that fine PGE-containing particles can be transported and distributed at regional and long-range levels. Therefore, the monitoring of PGEs in airborne particulate matter (PM) is important for...

  18. Thermomechanical behavior of NiTiPdPt high temperature shape memory alloy springs

    International Nuclear Information System (INIS)

    Nicholson, D E; Vaidyanathan, R; Padula II, S A; Noebe, R D; Benafan, O

    2014-01-01

    Transformation strains in high temperature shape memory alloys (HTSMAs) are generally smaller than for conventional NiTi alloys and can be purposefully limited in cases where stability and repeatability at elevated temperatures are desired. Yet such alloys can still be used in actuator applications that require large strokes when used in the form of springs. Thus there is a need to understand the thermomechanical behavior of shape memory alloy spring actuators, particularly those consisting of alternative alloys. In this work, a modular test setup was assembled with the objective of acquiring stroke, stress, temperature, and moment data in real time during joule heating and forced convective cooling of Ni 19.5 Ti 50.5 Pd 25 Pt 5 HTSMA springs. The spring actuators were subjected to both monotonic axial loading and thermomechanical cycling. The role of rotational constraints (i.e., by restricting rotation or allowing for free rotation at the ends of the springs) on stroke performance was also assessed. Finally, recognizing that evolution in the material microstructure can result in changes in HTSMA spring geometry, the effect of material microstructural evolution on spring performance was examined. This was done by taking into consideration the changes in geometry that occurred during thermomechanical cycling. This work thus provides insight into designing with HTSMA springs and predicting their thermomechanical performance. (paper)

  19. Geochemical behaviour of palladium in soils and Pd/PdO model substances in the presence of the organic complexing agents L-methionine and citric acid.

    Science.gov (United States)

    Zereini, Fathi; Wiseman, Clare L S; Vang, My; Albers, Peter; Schneider, Wolfgang; Schindl, Roland; Leopold, Kerstin

    2016-01-01

    Risk assessments of platinum group metal (PGE) emissions, notably those of platinum (Pt), palladium (Pd) and rhodium (Rh), have been mostly based on data regarding the metallic forms used in vehicular exhaust converters, known to be virtually biologically inert and immobile. To adequately assess the potential impacts of PGE, however, data on the chemical behaviour of these metals under ambient conditions post-emission is needed. Complexing agents with a high affinity for metals in the environment are hypothesized to contribute to an increased bioaccessibility of PGE. The purpose of this study is to examine the modulating effects of the organic complexing agents, L-methionine and citric acid, on the geochemical behavior of Pd in soils and model substances (Pd black and PdO). Batch experimental tests were conducted with soils and model substances to examine the impacts of the concentration of complexing agents, pH and length of extraction period on Pd solubility and its chemical transformation. Particle surface chemistry was examined using X-ray photoelectron spectroscopy (XPS) on samples treated with solutions under various conditions, including low and high O2 levels. Pd was observed to be more soluble in the presence of organic complexing agents, compared to Pt and Rh. Pd in soils was more readily solubilized with organic complexing agents compared to the model substances. After 7 days of extraction, L-methionine (0.1 M) treated soil and Pd black samples, for instance, had mean soluble Pd fractions of 12.4 ± 5.9% and 0.554 ± 0.024%, respectively. Surface chemistry analyses (XPS) confirmed the oxidation of metallic Pd surfaces when treated with organic complexing agents. The type of organic complexing agent used for experimental purposes was observed to be the most important factor influencing solubility, followed by solution pH and time of extraction. The results demonstrate that metallic Pd can be transformed into more bioaccessible species in the presence of

  20. Superconductivity in U-T alloys (T = Mo, Pt, Pd, Nb, Zr stabilized in the cubic γ-U structure by splat-cooling technique

    Directory of Open Access Journals (Sweden)

    N.-T.H. Kim-Ngan

    2016-06-01

    Full Text Available We succeed to retain the high-temperature (cubic γ-U phase down to low temperatures in U-T alloys with less required T alloying concentration (T = Mo, Pt, Pd, Nb, Zr by means of splat-cooling technique with a cooling rate better than 106 K/s. All splat-cooled U-T alloys become superconducting with the critical temperature Tc in the range of 0.61 K–2.11 K. U-15 at.% Mo splat consisting of the γ-U phase with an ideal bcc A2 structure is a BCS superconductor having the highest critical temperature (2.11 K.

  1. Functional toxicity and tolerance patterns of bioavailable Pd(II), Pt(II), and Rh(III) on suspended Saccharomyces cerevisiae cells assayed in tandem by a respirometric biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Frazzoli, Chiara; Mantovani, Alberto [Istituto Superiore di Sanita, Department of Food Safety and Veterinary Public Health and WHO/FAO Collaborating Centre for Veterinary Public Health, Rome (Italy); Dragone, Roberto [Consiglio Nazionale delle Ricerche, Institute for Complex Systems, Rome (Italy); Massimi, Cristiana [Istituto Superiore di Sanita, Department of Food Safety and Veterinary Public Health and WHO/FAO Collaborating Centre for Veterinary Public Health, Rome (Italy); University ' La Sapienza' , Department of Chemistry, Rome (Italy); Campanella, Luigi [University ' La Sapienza' , Department of Chemistry, Rome (Italy)

    2007-12-15

    Toxicological implications of exposure to bioavailable platinum group metals, here Pd, Pt, and Rh, are still to be clarified. This study obtained by a biosensor-based method preliminary information on potential effects on cellular metabolism as well as on possible tolerance mechanisms. Aerobic respiration was taken as the toxicological end point to perform tandem tests, namely functional toxicity test and tolerance test. Cells were suspended in the absence of essential constituents for growth. The dose-response curves obtained by exposure (2 h) to the metals (nanogram per gram range) suggested the same mechanisms of action, with Rh showing the greatest curve steepness and the lowest EC{sub 50} value. Conservative (95% lower confidence interval) EC{sub 10} values were 187, 85 and 51 ng g{sup -1} for Pt, Pd, and Rh respectively. Tolerance patterns were tested during the same runs. The full tolerance obtained after 12 h of exposure to each metal suggested mitochondrial inhibition of aerobic respiration as a target effect. The hazard rating of the metals in the tolerance test changed in the Rh EC{sub 50} range, where Rh showed the lowest toxicity. The observed tolerance might suggest a protective mechanism such as metallothionein induction at concentrations around the EC{sub 50} values. The performance of the bioassay was satisfactory, in terms of the limit of detection, repeatability, reproducibility, roboustness, sensibility, and stability; the method's critical uncertainty sources were identified for improvements. (orig.)

  2. Investigation of Supported Pd-Based Electrocatalysts for the Oxygen Reduction Reaction: Performance, Durability and Methanol Tolerance

    Directory of Open Access Journals (Sweden)

    Carmelo Lo Vecchio

    2015-11-01

    Full Text Available Next generation cathode catalysts for direct methanol fuel cells (DMFCs must have high catalytic activity for the oxygen reduction reaction (ORR, a lower cost than benchmark Pt catalysts, and high stability and high tolerance to permeated methanol. In this study, palladium catalysts supported on titanium suboxides (Pd/TinO2n–1 were prepared by the sulphite complex route. The aim was to improve methanol tolerance and lower the cost associated with the noble metal while enhancing the stability through the use of titanium-based support; 30% Pd/Ketjenblack (Pd/KB and 30% Pd/Vulcan (Pd/Vul were also synthesized for comparison, using the same methodology. The catalysts were ex-situ characterized by physico-chemical analysis and investigated for the ORR to evaluate their activity, stability, and methanol tolerance properties. The Pd/KB catalyst showed the highest activity towards the ORR in perchloric acid solution. All Pd-based catalysts showed suitable tolerance to methanol poisoning, leading to higher ORR activity than a benchmark Pt/C catalyst in the presence of low methanol concentration. Among them, the Pd/TinO2n–1 catalyst showed a very promising stability compared to carbon-supported Pd samples in an accelerated degradation test of 1000 potential cycles. These results indicate good perspectives for the application of Pd/TinO2n–1 catalysts in DMFC cathodes.

  3. Extremely large magnetoresistance and Kohler's rule in PdSn4 : A complete study of thermodynamic, transport, and band-structure properties

    International Nuclear Information System (INIS)

    Jo, Na Hyun; Wu, Yun; Wang, Lin-Lin; Orth, Peter P.; Downing, Savannah S.

    2017-01-01

    The recently discovered material PtSn 4 is known to exhibit extremely large magnetoresistance (XMR) that also manifests Dirac arc nodes on the surface. PdSn 4 is isostructural to PtSn 4 with the same electron count. Here, we report on the physical properties of high-quality single crystals of PdSn 4 including specific heat, temperature- and magnetic-field-dependent resistivity and magnetization, and electronic band-structure properties obtained from angle-resolved photoemission spectroscopy (ARPES). We observe that PdSn 4 has physical properties that are qualitatively similar to those of PtSn 4 , but find also pronounced differences. Importantly, the Dirac arc node surface state of PtSn 4 is gapped out for PdSn 4 . By comparing these similar compounds, we address the origin of the extremely large magnetoresistance in PdSn 4 and PtSn 4 ; based on detailed analysis of the magnetoresistivity ρ (H , T) , we conclude that neither the carrier compensation nor the Dirac arc node surface state are the primary reason for the extremely large magnetoresistance. On the other hand, we also find that, surprisingly, Kohler's rule scaling of the magnetoresistance, which describes a self-similarity of the field-induced orbital electronic motion across different length scales and is derived for a simple electronic response of metals to an applied magnetic field is obeyed over the full range of temperatures and field strengths that we explore.

  4. Synthesis of Pt–Pd Bimetallic Porous Nanostructures as Electrocatalysts for the Methanol Oxidation Reaction

    Directory of Open Access Journals (Sweden)

    Yong Yang

    2018-03-01

    Full Text Available Pt-based bimetallic nanostructures have attracted a great deal of attention due to their unique nanostructures and excellent catalytic properties. In this study, we prepared porous Pt–Pd nanoparticles using an efficient, one-pot co-reduction process without using any templates or toxic reactants. In this process, Pt–Pd nanoparticles with different nanostructures were obtained by adjusting the temperature and ratio of the two precursors; and their catalytic properties for the oxidation of methanol were studied. The porous Pt–Pd nanostructures showed better electrocatalytic activity for the oxidation of methanol with a higher current density (0.67 mA/cm2, compared with the commercial Pt/C catalyst (0.31 mA/cm2. This method provides one easy pathway to economically prepare different alloy nanostructures for various applications.

  5. Characterization of Pb(Zr, Ti)O3 thin films fabricated by plasma enhanced chemical vapor deposition on Ir-based electrodes

    International Nuclear Information System (INIS)

    Lee, Hee-Chul; Lee, Won-Jong

    2002-01-01

    Structural and electrical characteristics of Pb(Zr, Ti)O 3 (PZT) ferroelectric thin films deposited on various Ir-based electrodes (Ir, IrO 2 , and Pt/IrO 2 ) using electron cyclotron resonance plasma enhanced chemical vapor deposition were investigated. On the Ir electrode, stoichiometric PZT films with pure perovskite phase could be obtained over a very wide range of processing conditions. However, PZT films prepared on the IrO 2 electrode contain a large amount of PbO x phases and exhibited high Pb-excess composition. The deposition characteristics were dependent on the behavior of PbO molecules on the electrode surface. The PZT thin film capacitors prepared on the Ir bottom electrode showed different electrical properties depending on top electrode materials. The PZT capacitors with Ir, IrO 2 , and Pt top electrodes showed good leakage current characteristics, whereas those with the Ru top electrode showed a very high leakage current density. The PZT capacitor exhibited the best fatigue endurance with an IrO 2 top electrode. An Ir top electrode provided better fatigue endurance than a Pt top electrode. The PZT capacitor with an Ir-based electrode is thought to be attractive for the application to ferroelectric random access memory devices because of its wide processing window for a high-quality ferroelectric film and good polarization, fatigue, and leakage current characteristics

  6. Effect of magnetism and light sp-dopants on chain creation in Ir and Pt break junctions

    International Nuclear Information System (INIS)

    Di Napoli, S; Thiess, A; Blügel, S; Mokrousov, Y

    2014-01-01

    Applying the generalization of the model for chain formation in break-junctions (Di Napoli et al 2012 J. Phys.: Condens. Matter 24 135501), we study the effect of light impurities on the energetics and elongation properties of Pt and Ir chains. Our model enables us to develop a tool ideal for detailed analysis of impurity-assisted chain formation, in which zigzag bonds play an important role. In particular we focus on H (s-like) and O (p-like) impurities and assume, for simplicity, that the presence of impurity atoms in experiments results in a ..M-X-M-X-... (M: metal, X: impurity) chain structure in between the metallic leads. Feeding our model with material-specific parameters from systematic full-potential first-principles calculations, we find that the presence of such impurities strongly affects the binding properties of the chains. We find that, while both types of impurities enhance the probability of chains being elongated, the s-like impurities lower the chain's stability. We also analyze the effect of magnetism and spin-orbit interaction on the growth properties of the chains. (paper)

  7. Formation of pyroxenite layers in the Totalp ultramafic massif (Swiss Alps) - Insights from highly siderophile elements and Os isotopes

    Science.gov (United States)

    van Acken, David; Becker, Harry; Walker, Richard J.; McDonough, William F.; Wombacher, Frank; Ash, Richard D.; Piccoli, Phil M.

    2010-01-01

    Pyroxenitic layers are a minor constituent of ultramafic mantle massifs, but are considered important for basalt generation and mantle refertilization. Mafic spinel websterite and garnet-spinel clinopyroxenite layers within Jurassic ocean floor peridotites from the Totalp ultramafic massif (eastern Swiss Alps) were analyzed for their highly siderophile element (HSE) and Os isotope composition. Aluminum-poor pyroxenites (websterites) display chondritic to suprachondritic initial γOs (160 Ma) of -2 to +27. Osmium, Ir and Ru abundances are depleted in websterites relative to the associated peridotites and to mantle lherzolites worldwide, but relative abundances (Os/Ir, Ru/Ir) are similar. Conversely, Pt/Ir, Pd/Ir and Re/Ir are elevated. Aluminum-rich pyroxenites (clinopyroxenites) are characterized by highly radiogenic 187Os/ 188Os with initial γOs (160 Ma) between +20 and +1700. Their HSE composition is similar to that of basalts, as they are more depleted in Os, Ir and Ru compared to Totalp websterites, along with even higher Pt/Ir, Pd/Ir and Re/Ir. The data are most consistent with multiple episodes of reaction of mafic pyroxenite precursor melts with surrounding peridotites, with the highest degree of interaction recorded in the websterites, which typically occur in direct contact to peridotites. Clinopyroxenites, in contrast, represent melt-dominated systems, which retained the precursor melt characteristics to a large extent. The melts may have been derived from a sublithospheric mantle source with high Pd/Ir, Pt/Ir and Re/Os, coupled with highly radiogenic 187Os/ 188Os compositions. Modeling indicates that partial melting of subducted, old oceanic crust in the asthenosphere could be a possible source for such melts. Pentlandite and godlevskite are identified in both types of pyroxenites as the predominant sulfide minerals and HSE carriers. Heterogeneous HSE abundances within these sulfide grains likely reflect subsolidus processes. In contrast, large grain

  8. Pt based anode catalysts for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Weijiang; Zhou, Zhenhua; Song, Shuqin; Li, Wenzhen; Sun, Gongquan; Xin, Qin [Direct Alcohol Fuel Cell Laboratory, Dalian Institute of Chemical Physics, CAS, P.O. Box 110, Dalian 116023 (China); Tsiakaras, Panagiotis [Department of Mechanical and Industrial Engineering, University of Thessalia, Pedion Areos, GR 38334 Volos (Greece) 7

    2003-11-10

    In the present work several Pt-based anode catalysts supported on carbon XC-72R were prepared with a novel method and characterized by means of XRD, TEM and XPS analysis. It was found that all these catalysts are consisted of uniform nanosized particles with sharp distribution and Pt lattice parameter decreases with the addition of Ru or Pd and increases with the addition of Sn or W. Cyclic voltammetry (CV) measurements and single direct ethanol fuel cell (DEFC) tests jointly showed that the presence of Sn, Ru and W enhances the activity of Pt towards ethanol electro-oxidation in the following order: Pt{sub 1}Sn{sub 1}/C>Pt{sub 1}Ru{sub 1}/C>Pt{sub 1}W{sub 1}/C>Pt{sub 1}Pd{sub 1}/C>Pt/C. Moreover, Pt{sub 1}Ru{sub 1}/C further modified by W and Mo showed improved ethanol electro-oxidation activity, but its DEFC performance was found to be inferior to that measured for Pt{sub 1}Sn{sub 1}/C. Under this respect, several PtSn/C catalysts with different Pt/Sn atomic ratio were also identically prepared and characterized and their direct ethanol fuel cell performances were evaluated. It was found that the single direct ethanol fuel cell having Pt{sub 1}Sn{sub 1}/C or Pt{sub 3}Sn{sub 2}/C or Pt{sub 2}Sn{sub 1}/C as anode catalyst showed better performances than those with Pt{sub 3}Sn{sub 1}/C or Pt{sub 4}Sn{sub 1}/C. It was also found that the latter two cells exhibited higher performances than the single cell using Pt{sub 1}Ru{sub 1}/C, which is exclusively used in PEMFC as anode catalyst for both methanol electro-oxidation and CO-tolerance. This distinct difference in DEFC performance between the catalysts examined here would be attributed to the so-called bifunctional mechanism and to the electronic interaction between Pt and additives. It is thought that an amount of -OH{sub ads}, an amount of surface Pt active sites and the conductivity effect of PtSn/C catalysts would determine the activity of PtSn/C with different Pt/Sn ratios. At lower temperature values or at low

  9. Nanostructured carbon-supported Pd electrocatalysts for ethanol oxidation: synthesis and characterization

    Science.gov (United States)

    Gacutan, E. M.; Climaco, M. I.; Telan, G. J.; Malijan, F.; Hsu, H. Y.; Garcia, J.; Fulo, H.; Tongol, B. J.

    2012-12-01

    The need to lower the construction cost of fuel cells calls for the development of non-Pt based electrocatalysts. Among others, Pd has emerged as a promising alternative to Pt for fuel cell catalysis. This research aims to investigate the synthesis and characterization of nanostructured Pd-based catalysts dispersed on carbon support as anode materials in direct ethanol fuel cells. For the preparation of the first Pd-based electrocatalyst, palladium nanoparticles (NPs) were synthesized via oleylamine (OAm)-mediated synthesis and precursor method with a mean particle size of 3.63 ± 0.59 nm as revealed by transmission electron microscopy (TEM). Carbon black was used as a supporting matrix for the OAm-capped Pd NPs. Thermal annealing and acetic acid washing were used to remove the OAm capping agent. To evaluate the electrocatalytic activity of the prepared electrocatalyst towards ethanol oxidation, cyclic voltammetry (CV) studies were performed using 1.0 M ethanol in basic medium. The CV data revealed the highest peak current density of 11.05 mA cm-2 for the acetic acid-washed Pd/C electrocatalyst. Meanwhile, the fabrication of the second Pd-based electrocatalyst was done by functionalization of the carbon black support using 3:1 (v/v) H2SO4:HNO3. The metal oxide, NiO, was deposited using precipitation method while polyol method was used for the deposition of Pd NPs. X-ray diffraction (XRD) analysis revealed that the estimated particle size of the synthesized catalysts was at around 9.0-15.0 nm. CV results demonstrated a 36.7% increase in the catalytic activity of Pd-NiO/C (functionalized) catalyst towards ethanol oxidation compared to the non-functionalized catalyst.

  10. Cutaneous, gastrointestinal, hepatic, endocrine, and renal side-effects of anti-PD-1 therapy.

    Science.gov (United States)

    Hofmann, Lars; Forschner, Andrea; Loquai, Carmen; Goldinger, Simone M; Zimmer, Lisa; Ugurel, Selma; Schmidgen, Maria I; Gutzmer, Ralf; Utikal, Jochen S; Göppner, Daniela; Hassel, Jessica C; Meier, Friedegund; Tietze, Julia K; Thomas, Ioannis; Weishaupt, Carsten; Leverkus, Martin; Wahl, Renate; Dietrich, Ursula; Garbe, Claus; Kirchberger, Michael C; Eigentler, Thomas; Berking, Carola; Gesierich, Anja; Krackhardt, Angela M; Schadendorf, Dirk; Schuler, Gerold; Dummer, Reinhard; Heinzerling, Lucie M

    2016-06-01

    Anti-programmed cell death receptor-1 (PD-1) antibodies represent an effective treatment option for metastatic melanoma as well as for other cancer entities. They act via blockade of the PD-1 receptor, an inhibitor of the T-cell effector mechanisms that limit immune responses against tumours. As reported for ipilimumab, the anti-PD-1 antibodies pembrolizumab and nivolumab can induce immune-related adverse events (irAEs). These side-effects affect skin, gastrointestinal tract, liver, endocrine system and other organ systems. Since life-threatening and fatal irAEs have been reported, adequate diagnosis and management are essential. In total, 496 patients with metastatic melanoma from 15 skin cancer centers were treated with pembrolizumab or nivolumab; 242 side-effects were described in 138 patients. In 116 of the 138 patients, side-effects affected the skin, gastrointestinal tract, liver, endocrine, and renal system. Rare side-effects included diabetes mellitus, lichen planus, and pancreas insufficiency due to pancreatitis. Anti-PD1 antibodies can induce a plethora of irAEs. The knowledge of them will allow prompt diagnosis and improve the management resulting in decreased morbidity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. High temperature electrochemistry related to light water reactor corrosion

    International Nuclear Information System (INIS)

    Nagy, Gabor; Kerner, Zsolt; Balog, Janos; Schiller, Robert

    2004-01-01

    The present work deals with corrosion problems related to conditions which prevail in a WWER primary circuit. We had a two-fold aim: (A) electrochemical methods were applied to characterise the hydrothermally produced oxides of the cladding material (Zr-1%Nb) of nuclear fuel elements used in Russian made power reactors of WWER type, and (B) a number of possible reference electrodes were investigated with a view to high temperature applications. (A) Test specimens made of the cladding material, Zr-1%Nb, were immersed into an autoclave, filled with an aqueous solution typical to a WWER primary circuit, and were treated for different periods of time up to 28 weeks. The electrode potentials were measured and electrochemical impedance spectra (EIS) were taken regularly both as a function of oxidation time and temperature. This rendered information on the overall kinetics of oxide growth. By combining in situ and ex situ impedance measurements, with a particular view of the temperature dependence of EIS, we concluded that the high frequency region of impedance spectra is relevant to the presence of oxide layer on the alloy. This part of the spectra was treated in terms of a parallel CPE||R ox equivalent circuit (CPE denoting constant phase element, R ox ohmic resistor). The CPE element was understood as a dispersive resistance in terms of the continuous time random walk theory by Scher and Lax. This enabled us to tell apart electrical conductance and oxide growth with a model of charge transfer and recombination within the oxide layer as rate determining steps. (B) Three types of reference electrodes were tested within the framework of the LIRES EU5 project: (i) external Ag/AgCl, (ii) Pt/Ir alloy and (iii) Pd(Pt) double polarised active electrode. The most stable of the electrodes was found to be the Pt/Ir one. The Ag/AgCl electrode showed good stability after an initial period of some days, while substantial drifts were found for the Pd(Pt) electrode. EIS spectra of the

  12. Labour Market in Lithuania: Gender Situation Darbo rinka Lietuvoje: moterų ir vyrų padėtis

    Directory of Open Access Journals (Sweden)

    Jūratė Guščinskienė

    2011-02-01

    Full Text Available

    pt;">pt;">The article analyses the situation of men and women in the labour market in the globalization and economic integration into the European Union conditions and demonstrates that gender equality under the current conditions and social life, politics and economy is becoming a political priority. The aim of the paper is: to analyze the situation of men and women in the labour market and its regulation; to study the respondents’ view on the situation of men and women in the labour market. Empirical study showed that 42% of women and 26% of men have never lost their jobs and the people who have, have men-tioned several reasons for this. Respondents, both women and men, generally lose work because of inadequate working conditions and the company’s bankruptcy. Meanwhile, the response of men’s and women’s opinion on the inequality/discrimination experience is different. According to women, involved in the study, in Lithuania they mostly experienced discrimination based on sex and age, while men consider to be most discriminated on grounds of sex, disability and age. Almost one fifth of the respondents have personally experienced discrimination themselves in the labour market because of sex.

    pt;">pt;">Keywords: labour market, equal opportunities, discrimination, employment, entrepre-neurship.

    pt; mso-layout-grid-align: none;">pt;">Reguliuojant Europos Sąjungos (ES plėtros tolesnę ekonominę politiką daugiausia dėmesio skiriama darbo rinkai ir pirmiausia – moterų ir vyrų lygioms galimyb

  13. Synthesis and characterization of PdAg as a catalyst for oxygen reduction reaction in acid medium; Sintesis y caracterizacion de PdAg como catalizador para la reaccion de reduccion de oxigeno en medio acido

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Casillas, D. C.; Vazquez-Huerta, G.; Solorza-Feria, O. [Centro de Investigacion y de Estudios Avanzados del IPN, Mexico D.F. (Mexico)]. E-mail: dcmartinez@cinvestav.mx

    2009-09-15

    This work presents the synthesis of the binary compound PdAg and the electrochemical characterization for oxygen reduction reaction (ORR) in acid medium. The catalyst is obtained from the reduction of Pd(NO{sub 3}){sub 2}·2H{sub 2}O and AgNO{sub 3} with NaBH{sub 4} in THF. The synthesized compound was physically characterized with transmission electron microscopy (TEM), sweep electron microscopy (SEM) and x-ray diffraction (XRD) of powder. Electrochemical studies were conducted to determine the catalytic activity and intrinsic properties of the PdAg material for the ORR in acid medium using cyclic voltamperometry (CV), rotary disc electrode (RDE) and electrochemical impedance spectroscopy (EIS) in a solution of H{sub 2}SO{sub 4} 0.5 M at 25 degrees Celsius. The electrochemical current-potential responses were compared to those of palladium and platinum. The kinetic results showed an increase in the performance of the bimetallic electrocatalyst containing Ag as compared to pure Pd, but less than that obtained with nanometric Pt. The Tafel slopes obtained are roughly120 mV dec-1, similar to that reported for Pt and Pd and for other Ru-based electrocatalysts. [Spanish] En este trabajo se presentan la sintesis del compuesto binario PdAg y su caracterizacion electroquimica para la reaccion de reduccion de oxigeno (RRO) en medio acido. El catalizador se obtuvo a partir de la reduccion de Pd(NO{sub 3}){sub 2}·2H{sub 2}O y AgNO{sub 3} con NaBH{sub 4} en THF. El compuesto sintetizado se caracterizo fisicamente por microscopia electronica de transmision (MET), microscopia electronica de barrido (MEB) y difraccion de rayos X (DRX) de polvos. Se realizaron estudios electroquimicos para determinar la actividad catalitica y las propiedades intrinsecas del material de PdAg para la reaccion de reduccion de oxigeno (RRO) en medio acido, utilizando las tecnicas de voltamperometria ciclica (VC), electrodo disco rotatorio (EDR) y espectroscopia de impedancia electroquimica (EIE), en

  14. Intracellular surface-enhanced Raman scattering (SERS) with thermally stable gold nanoflowers grown from Pt and Pd seeds

    KAUST Repository

    Song, Hyon Min

    2013-01-01

    SERS provides great sensitivity at low concentrations of analytes. SERS combined with near infrared (NIR)-resonant gold nanomaterials are important candidates for theranostic agents due to their combined extinction properties and sensing abilities stemming from the deep penetration of laser light in the NIR region. Here, highly branched gold nanoflowers (GNFs) grown from Pd and Pt seeds are prepared and their SERS properties are studied. The growth was performed at 80°C without stirring, and this high temperature growth method is assumed to provide great shape stability of sharp tips in GNFs. We found that seed size must be large enough (>30 nm in diameter) to induce the growth of those SERS-active and thermally stable GNFs. We also found that the addition of silver nitrate (AgNO3) is important to induce sharp tip growth and shape stability. Incubation with Hela cells indicates that GNFs are taken up and reside in the cytoplasm. SERS was observed in those cells incubated with 1,10-phenanthroline (Phen)-loaded GNFs. This journal is © 2013 The Royal Society of Chemistry.

  15. Intracellular surface-enhanced Raman scattering (SERS) with thermally stable gold nanoflowers grown from Pt and Pd seeds.

    Science.gov (United States)

    Song, Hyon Min; Deng, Lin; Khashab, Niveen M

    2013-05-21

    SERS provides great sensitivity at low concentrations of analytes. SERS combined with near infrared (NIR)-resonant gold nanomaterials are important candidates for theranostic agents due to their combined extinction properties and sensing abilities stemming from the deep penetration of laser light in the NIR region. Here, highly branched gold nanoflowers (GNFs) grown from Pd and Pt seeds are prepared and their SERS properties are studied. The growth was performed at 80 °C without stirring, and this high temperature growth method is assumed to provide great shape stability of sharp tips in GNFs. We found that seed size must be large enough (>30 nm in diameter) to induce the growth of those SERS-active and thermally stable GNFs. We also found that the addition of silver nitrate (AgNO3) is important to induce sharp tip growth and shape stability. Incubation with Hela cells indicates that GNFs are taken up and reside in the cytoplasm. SERS was observed in those cells incubated with 1,10-phenanthroline (Phen)-loaded GNFs.

  16. ANODE CATALYST MATERIALS FOR USE IN FUEL CELLS

    DEFF Research Database (Denmark)

    2002-01-01

    Catalyst materials having a surface comprising a composition M¿x?/Pt¿3?/Sub; wherein M is selected from the group of elements Fe, Co, Rh and Ir; or wherein M represent two different elements selected from the group comprising Fe, CO, Rh, Ir, Ni, Pd, CU, Ag, Au and Sn; and wherein Sub represents...

  17. Highly ordered Pd nanowire arrays as effective electrocatalysts for ethanol oxidation in direct alcohol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu, C.W. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Wang, H. [Departement of Applied Chemistry, Dongguan University of Technology, Dongguan 523106 (China); Shen, P.K. [School of Physics and Engineering, Sun Yet-Sen University, Guangzhou 510275 (China); Jiang, S.P.

    2007-12-03

    Pd nanowire arrays (NWAs) with high electrochemically active surface area are successfully fabricated using anodized aluminum oxide electrodeposition. The electrocatalytic activity and stability of the Pd NWAs for ethanol electrooxidation are not only significantly higher that of conventional Pd film electrodes, but also higher than that of well-established commercial PtRu/C electrocatalysts. The Pd NWAs show great potential as electrocatalysts for ethanol electrooxidation in alkaline media in direct ethanol fuel cells. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  18. Ophthalmologic Baseline Characteristics and 2-Year Ophthalmologic Safety Profile of Pramipexole IR Compared with Ropinirole IR in Patients with Early Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    William Seiple

    2016-01-01

    Full Text Available Background. Parkinson’s disease (PD progressively affects dopaminergic neurotransmission and may affect retinal dopaminergic functions and structures. Objective. This 2-year randomized, open-label, parallel-group, flexible-dose study, NCT00144300, evaluated ophthalmologic safety profiles of immediate-release (IR pramipexole and ropinirole in patients with early idiopathic PD with ≤6 months’ prior dopamine agonist exposure and without preexisting major eye disorders. Methods. Patients received labeled IR regimens of pramipexole (n=121 or ropinirole (n=125 for 2 years. Comprehensive ophthalmologic assessments (COA included corrected acuity, Roth 28-color test, slit-lamp biomicroscopy, intraocular pressure, computerized visual field test, fundus photography, and electroretinography. Results. At baseline, we observed retinal pigmentary epithelium (RPE hypopigmentation not previously reported in PD patients. The estimated relative risk of 2-year COA worsening with pramipexole versus ropinirole was 1.07 (95% CI: 0.71–1.60. Mean changes from baseline in Unified Parkinson’s Disease Rating System parts II+III total scores (pramipexole: 1 year, −4.1±8.9, and 2 years, −0.7±10.1, and ropinirole: 1 year, −3.7±8.2, and 2 years, −1.7±10.5 and Hoehn–Yahr stage distribution showed therapeutic effects on PD symptoms. Safety profiles were consistent with labeling. Conclusions. The risk of retinal deterioration did not differ in early idiopathic PD patients receiving pramipexole versus ropinirole. RPE hypopigmentation at baseline was not previously reported in this population. This trial is registered with NCT00144300.

  19. Product analysis from D sub 2 O electrolysis with Pd and Ti cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Brillas, E.; Esteve, J.; Sardin, G. (Barcelona Univ. (Spain)); Casado, J.; Domenech, X.; Sanchez-Cabeza, J.A. (Universidad Autonoma de Barcelona (Spain))

    1991-02-01

    The enrichment of tritium in the electrolyte and incorporation of T, Li and Pt in cathodes during the electrolysis of 0.1 M LiOD solutions with Pd and Ti cathodes in open cells have been studied. All electrolytes show an increase in their tritium activity which is explained by considering values for the T-D separation factor of all cathodes lower than 1. Accumulation of small amounts of T in the Pd bulk, proceeding from the absorption of the species pre-existing in the electrolyte, has been detected by electrolytic transfer of accumulated tritium to a 0.1 M LiOH solution, as well as by extraction of gases absorbed in the cathode, which were identified by mass spectrometry. Small quantities of Li and Pt are also incorporated in Pd and Ti cathodes, which increase by raising the current density. SIMS analysis of both cathodes show a preferential accumulation of Li and H in their surface layers and confirms the absence of T in Ti. (author).

  20. Size-dependent effects in supported highly dispersed Fe{sub 2}O{sub 3} catalysts, doped with Pt and Pd

    Energy Technology Data Exchange (ETDEWEB)

    Cherkezova-Zheleva, Zara; Shopska, Maya, E-mail: shopska@ic.bas.bg; Mitov, Ivan; Kadinov, Georgi [Bulgarian Academy of Sciences, Institute of Catalysis (Bulgaria)

    2010-06-15

    Series of Fe and Fe-Me (Me = Pt or Pd) catalyst supported on {gamma}-Al{sub 2}O{sub 3}, TiO{sub 2} (anatase) or diatomite were prepared by the incipient wetness impregnation method. The metal loading was 8 wt.% Fe and 0.7 wt.% noble metal. The preparation and pretreatment conditions of all studied samples were kept to be the same. X-ray diffraction, Moessbauer spectroscopy, X-ray photoelectron spectroscopy and temperature-programmed reduction are used for characterization of the supports and the samples at different steps during their treatment and catalytic tests. The catalytic activity of the samples was tested in the reaction of total benzene oxidation. The physicochemical and catalytic properties of the obtained materials are compared with respect of the different chemical composition, dispersion of used carriers and of the supported phases. Samples with the same composition prepared by mechanical mixing are studied as catalysts for comparison and for clearing up the presence of size-dependent effect, also.

  1. Synthesis and electrochemical characterization of highly tolerant Pd electrocatalysts as cathodes in direct ethylene glycol fuel cells (DEGFC)

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Varela, F.J.; Fraire Luna, S. [Cinvestav, Unidad Saltillo, Ramos Arizpe, Coahuila (Mexico)] e-mail: javier.varela@cinvestav.edu.mx; Savadogo, O. [Laboratoire d' Electrochimie et de Materiaux Energetiques, Ecole Polytechnique de Montreal, Montreal, QC (Canada)

    2009-09-15

    Highly selective Pd electrocatalysts were synthesized by the formic acid method and evaluated as cathodes for DEGFC applications. In rotating disc measurements in acid medium, the Pd/C cathode showed important catalytic activity for the Oxygen Reduction Reaction (ORR). In the presence of ethylene glycol (EG, C{sub 2}H{sub 6}O{sub 2}), Pd/C exhibited an excellent electrochemical behavior and full tolerance to the organic molecule. No current density peaks associated to the EG oxidation reaction emerged and the shift in onset potential for the ORR (Eonset) toward more negative potentials was negligible on this cathode. Moreover, the evaluation of Pd/C in a DEGFC operating at 80 degrees Celsius demonstrated its high performance as cathode. As a comparison, commercial Pt/C was tested under the same conditions showing a limited selectivity for the ORR. The detrimental effect of EG on the Pt electrocatalysts resulted in high intensity current density peaks due to the oxidation of EG and a significant shift in Eonset. Given these results, it is expected that highly efficient Pd-based cathodes can find application in DEGFCs. [Spanish] Se sintetizaron electrocatalizadores altamente selectivos mediante el metodo de acido formico y se evaluaron como catodos en aplicaciones de CCGED. En mediciones de disco rotatorio en medio acido, el catodo Pd/C mostro importante actividad catalitica en la reaccion de reduccion de oxigeno (RRO). En la presencia de glicol de etileno (GE, C{sub 2}H{sub 6}O{sub 2}), Pd/C exhibio un excelente comportamiento electromecanico y tolerancia total a la molecula organica. No surgieron picos de densidad de corriente asociados con la reaccion de oxidacion de GE y el corrimiento en el potencial de inicio para la RRO (Einicio) hacia potenciales mas negativos fue despreciable en este catodo. Como comparacion, se probo un Pt/C bajo las mismas condiciones y se observo una selectividad limitada para el RRO. El efecto perjudicial de GE en el electrocatalizador

  2. ESR studies of electron irradiated K3Ir(CN)6 in KCl single crystals

    International Nuclear Information System (INIS)

    Vugman, N.V.; Pinhal, N.M.

    1983-01-01

    ESR studies of KCl single crystals doped with small amounts of K 3 Ir(CN) 6 and submitted to a prolongued 2 MeV electron irradiation at room temperature reveal the presence of the [IR(CN) 5 Cl] 4- and [Ir(CN) 4 Cl 2 ] 4- new molecular species. Ligand spin densities and ligand field parameters are calculated from the experimental hyperfine and superhyperfine interactions and compared to previous data on the [Ir(CN) 5 ] 4- species. (Author) [pt

  3. Structurally simple supported platinum clusters prepared from [Pt15(CO)30]2- on magnesium oxide

    NARCIS (Netherlands)

    Chang, J.R.; Koningsberger, D.C.; Gates, B.C.

    1992-01-01

    A G. Longoni-P. Chini (1976) cluster, [Pt15(CO)30]2-, was prepd. on MgO powder by a surface-mediated synthesis from Na2PtCl6 in the presence of CO. The formation of [Pt15(CO)30]2- and its decarbonylation at 120 Deg under vacuum were characterized by IR and x-ray spectra. The decarbonylated cluster

  4. Small-sized PdCu nanocapsules on 3D graphene for high-performance ethanol oxidation.

    Science.gov (United States)

    Hu, Chuangang; Zhai, Xiangquan; Zhao, Yang; Bian, Ke; Zhang, Jing; Qu, Liangti; Zhang, Huimin; Luo, Hongxia

    2014-03-07

    A one-pot solvothermal process has been developed for direct preparation of PdCu nanocapsules (with a size of ca. 10 nm) on three-dimensional (3D) graphene. Due to the 3D pore-rich network of graphene and the unique hollow structure of PdCu nanocapsules with a wall thickness of ca. 3 nm, the newly-prepared PdCu/3D graphene hybrids activated electrochemically have great electrocatalytic activity towards ethanol oxidation in alkaline media, much better than single-phase Pd and commercial E-TEK 20% Pt/C catalysts promising for application in direct ethanol fuel cells.

  5. Graphene-cobaltite-Pd hybrid materials for use as efficient bifunctional electrocatalysts in alkaline direct methanol fuel cells.

    Science.gov (United States)

    Sharma, Chandra Shekhar; Awasthi, Rahul; Singh, Ravindra Nath; Sinha, Akhoury Sudhir Kumar

    2013-12-14

    Hybrid materials comprising of Pd, MCo2O4 (where M = Mn, Co or Ni) and graphene have been prepared for use as efficient bifunctional electrocatalysts in alkaline direct methanol fuel cells. Structural and electrochemical characterizations were carried out using X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, chronoamperometry and cyclic, CO stripping, and linear sweep voltammetries. The study revealed that all the three hybrid materials are active for both methanol oxidation (MOR) and oxygen reduction (ORR) reactions in 1 M KOH. However, the Pd-MnCo2O4/GNS hybrid electrode exhibited the greatest MOR and ORR activities. This active hybrid electrode has also outstanding stability under both MOR and ORR conditions, while Pt- and other Pd-based catalysts undergo degradation under similar experimental conditions. The Pd-MnCo2O4/GNS hybrid catalyst exhibited superior ORR activity and stability compared to even Pt in alkaline solutions.

  6. Nanostructured carbon-supported Pd electrocatalysts for ethanol oxidation: synthesis and characterization

    International Nuclear Information System (INIS)

    Gacutan, E M; Tongol, B J; Climaco, M I; Telan, G J; Malijan, F; Hsu, H Y; Garcia, J; Fulo, H

    2012-01-01

    The need to lower the construction cost of fuel cells calls for the development of non-Pt based electrocatalysts. Among others, Pd has emerged as a promising alternative to Pt for fuel cell catalysis. This research aims to investigate the synthesis and characterization of nanostructured Pd-based catalysts dispersed on carbon support as anode materials in direct ethanol fuel cells. For the preparation of the first Pd-based electrocatalyst, palladium nanoparticles (NPs) were synthesized via oleylamine (OAm)-mediated synthesis and precursor method with a mean particle size of 3.63 ± 0.59 nm as revealed by transmission electron microscopy (TEM). Carbon black was used as a supporting matrix for the OAm-capped Pd NPs. Thermal annealing and acetic acid washing were used to remove the OAm capping agent. To evaluate the electrocatalytic activity of the prepared electrocatalyst towards ethanol oxidation, cyclic voltammetry (CV) studies were performed using 1.0 M ethanol in basic medium. The CV data revealed the highest peak current density of 11.05 mA cm −2 for the acetic acid-washed Pd/C electrocatalyst. Meanwhile, the fabrication of the second Pd-based electrocatalyst was done by functionalization of the carbon black support using 3:1 (v/v) H 2 SO 4 :HNO 3 . The metal oxide, NiO, was deposited using precipitation method while polyol method was used for the deposition of Pd NPs. X-ray diffraction (XRD) analysis revealed that the estimated particle size of the synthesized catalysts was at around 9.0–15.0 nm. CV results demonstrated a 36.7% increase in the catalytic activity of Pd–NiO/C (functionalized) catalyst towards ethanol oxidation compared to the non-functionalized catalyst. (paper)

  7. Design of Pd-Based Bimetallic Catalysts for ORR: A DFT Calculation Study

    Directory of Open Access Journals (Sweden)

    Lihui Ou

    2015-01-01

    Full Text Available Developing Pd-lean catalysts for oxygen reduction reaction (ORR is the key for large-scale application of proton exchange membrane fuel cells (PEMFCs. In the present paper, we have proposed a multiple-descriptor strategy for designing efficient and durable ORR Pd-based alloy catalysts. We demonstrated that an ideal Pd-based bimetallic alloy catalyst for ORR should possess simultaneously negative alloy formation energy, negative surface segregation energy of Pd, and a lower oxygen binding ability than pure Pt. By performing detailed DFT calculations on the thermodynamics, surface chemistry and electronic properties of Pd-M alloys, Pd-V, Pd-Fe, Pd-Zn, Pd-Nb, and Pd-Ta, are identified theoretically to have stable Pd segregated surface and improved ORR activity. Factors affecting these properties are analyzed. The alloy formation energy of Pd with transition metals M can be mainly determined by their electron interaction. This may be the origin of the negative alloy formation energy for Pd-M alloys. The surface segregation energy of Pd is primarily determined by the surface energy and the atomic radius of M. The metals M which have smaller atomic radius and higher surface energy would tend to favor the surface segregation of Pd in corresponding Pd-M alloys.

  8. Low dose rate Ir-192 interstitial brachytherapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Oki, Yosuke; Dokiya, Takushi; Yorozu, Atsunori; Suzuki, Takayuki; Saito, Shiro; Monma, Tetsuo; Ohki, Takahiro [National Tokyo Medical Center (Japan); Murai, Masaru; Kubo, Atsushi

    2000-04-01

    From December 1997 through January 1999, fifteen prostatic cancer patients were treated with low dose rate Ir-192 interstitial brachytherapy using TRUS and perineal template guidance without external radiotherapy. Up to now, as no apparent side effects were found, the safety of this treatment is suggested. In the future, in order to treat prostatic cancer patients with interstitial brachytherapy using I-125 or Pd-103, more investigation for this low dose rate Ir-192 interstitial brachytherapy is needed. (author)

  9. Concentrations of Platinum Group Elements (Pt, Pd, Rh in Airborne Particulate Matter (PM2.5 and PM10-2.5 Collected at Selected Canadian Urban Sites: a Case Study

    Directory of Open Access Journals (Sweden)

    Celo V.

    2013-04-01

    Full Text Available Increasing environmental concentrations of platinum group elements (PGEs, in particular platinum (Pt, palladium (Pd and rhodium (Rh, from catalytic converters has been reported worldwide. Initially it was believed that the emitted PGEs remain in the roadside environment, but recent studies have shown that fine PGE-containing particles can be transported and distributed at regional and long-range levels. Therefore, the monitoring of PGEs in airborne particulate matter (PM is important for the estimation of potential risks to human health and to the ecosystem. The aim of this study is to present the first results from an analysis on the concentration and distribution of Pt, Pd and Rh in PM collected on Teflon filters at two selected urban sites (Toronto, Ontario; Edmonton, Alberta collected within the Canadian National Air Pollution Surveillance (NAPS network. In this work, a quadruple inductively coupled plasma mass spectrometry (ICP-MS, combined with microwave assisted acid digestion using aqua regia was used. A cation exchange separation was used to alleviate the matrix-induced spectral and nonspectral interferences prior to ICP-MS analysis. To obtain sufficient material needed for PGEs analysis, fine PM (particles with aerodynamic diameter less than 2.5 mm; PM2.5 and coarse PM (with aerodynamic diameter between 2.5 and 10 mm; PM10-2.5 samples were combined into composite samples on a seasonal basis. The obtained results will be discussed and compared with literature data.

  10. Antibacterial activity of Pd(II) complexes with salicylaldehyde-amino acids Schiff bases ligands.

    Science.gov (United States)

    Rîmbu, Cristina; Danac, Ramona; Pui, Aurel

    2014-01-01

    Palladium(II) complexes with Schiff bases ligands derived from salicylaldehyde and amino acids (Ala, Gly, Met, Ser, Val) have been synthesized and characterized by Fourier transform (FT)-IR, UV-Vis and (1)H-NMR spectroscopy. The electrospray mass spectrometry (ES-MS) spectrometry confirms the formation of palladium(II) complexes in 1/2 (M/L) molar ratio. All the Pd(II) complexes 1, [Pd(SalAla)2]Cl2; 2, [Pd(SalGly)2]Cl2; 3, [Pd(SalMet)2]Cl2; 4, [Pd(SalSer)2]Cl2; 5, [Pd(SalVal)2]Cl2; have shown antibacterial activity against Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria Escherichia coli.

  11. Exohedral M–C{sub 60} and M{sub 2}–C{sub 60} (M = Pt, Pd) systems as tunable-gap building blocks for nanoarchitecture and nanocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Özdamar, Burak; Boero, Mauro, E-mail: mauro.boero@ipcms.unistra.fr; Massobrio, Carlo; Felder-Flesch, Delphine; Le Roux, Sébastien, E-mail: sebastien.leroux@ipcms.unistra.fr [Institut de Physique et Chimie des Matériaux de Strasbourg, University of Strasbourg and CNRS, UMR 7504, 23 Rue du Loess, BP43, F-67034 Strasbourg (France)

    2015-09-21

    Transition metal–fullerenes complexes with metal atoms bound on the external surface of C{sub 60} are promising building blocks for next-generation fuel cells and catalysts. Yet, at variance with endohedral M@C{sub 60}, they have received a limited attention. By resorting to first principles simulations, we elucidate structural and electronic properties for the Pd–C{sub 60}, Pt–C{sub 60}, PtPd–C{sub 60}, Pd{sub 2}–C{sub 60}, and Pt{sub 2}–C{sub 60} complexes. The most stable structures feature the metal atom located above a high electron density site, namely, the π bond between two adjacent hexagons (π-66 bond). When two metal atoms are added, the most stable configuration is those in which metal atoms still stand on π-66 bonds but tends to clusterize. The electronic structure, rationalized in terms of localized Wannier functions, provides a clear picture of the underlying interactions responsible for the stability or instability of the complexes, showing a strict relationship between structure and electronic gap.

  12. Effect of Ce on performance and physicochemical properties of Pt-containing automotive emission control catalysts

    International Nuclear Information System (INIS)

    Nunan, J.G.; Silver, R.G.; Bradley, S.A.

    1992-01-01

    Present-day automotive emission control catalysts contain noble metals such as Pt, Pd and Rh all on an alumina support with a variety of promoters. Ce is one of the most important promoters. In this paper, the interaction between Pt and Ce is studied using TPR and STEM on a variety of catalysts. The degree of Pt/Ce interaction is increased by decreasing CeO 2 crystallite size, and to a lesser extent by increasing CeO 2 loading. Direct Pt/Ce interaction leads to a synergistic reduction of both Pt and surface Ce. This reduction qualitatively correlates with catalyst performance after activation in a reducing gas. It is proposed that this synergistic reduction of Pt and Ce is associated with observed improvements in catalyst performance using a non-oscillating exhaust gas

  13. Finite Size Effects in Submonolayer Catalysts Investigated by CO Electrosorption on PtsML/Pd(100).

    Science.gov (United States)

    Yuan, Qiuyi; Doan, Hieu A; Grabow, Lars C; Brankovic, Stanko R

    2017-10-04

    A combination of scanning tunneling microscopy, subtractively normalized interfacial Fourier transform infrared spectroscopy (SNIFTIRS), and density functional theory (DFT) is used to quantify the local strain in 2D Pt clusters on the 100 facet of Pd and its effect on CO chemisorption. Good agreement between SNIFTIRS experiments and DFT simulations provide strong evidence that, in the absence of coherent strain between Pt and Pd, finite size effects introduce local compressive strain, which alters the chemisorption properties of the surface. Though this effect has been widely neglected in prior studies, our results suggest that accurate control over cluster sizes in submonolayer catalyst systems can be an effective approach to fine-tune their catalytic properties.

  14. Carbon-supported PdM (M = Au and Sn) nanocatalysts for the electrooxidation of ethanol in high pH media

    Science.gov (United States)

    He, Qinggang; Chen, Wei; Mukerjee, Sanjeev; Chen, Shaowei; Laufek, František

    Carbon-supported Pd 4Au- and Pd 2.5Sn-alloyed nanoparticles were prepared by a chemical reduction method, and characterized by a wide array of experimental techniques including mass spectrometry, transmission electron microscopy, and X-ray diffraction spectroscopy. Ethanol electrooxidation on the as-synthesized catalysts and commercial Pt/C was then investigated and compared in alkaline media by cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy studies at room temperature. Voltammetric and chronoamperometric measurements showed higher current density and longer term stability in ethanol oxidation with the palladium alloy nanocatalysts than with the commercial one. Electrochemical impedance spectroscopy and Tafel plots were employed to examine the charge-transfer kinetics of ethanol electrooxidation. The results suggest that whereas the reaction kinetics might be somewhat more sluggish on the Pd-based alloy catalysts than on commercial Pt/C, the former appeared to have a higher tolerance to surface poisoning. Overall, the Pd-based alloy catalysts represent promising candidates for the electrocatalytic oxidation of ethanol, and Pd 4Au/C displays the best catalytic activity among the series for the ethanol oxidation in alkaline media.

  15. Determination of geochemical distribution of platinum elements in chromites and related minerals using neutron activation analysis technique

    International Nuclear Information System (INIS)

    Agiorgitis, G.

    1978-08-01

    Results of Pt, Pd, Ir, Os and Ru determination in various rocks and minerals using radiochemical neutron activation method are presented and geochemical correlations of the platinum elements studied. The method of analysis was described in detail in 4 progress reports

  16. 1D cyanide complexes with 2-pyridinemethanol: Synthesis, crystal structures and spectroscopic properties

    Science.gov (United States)

    Sayın, Elvan; Kürkçüoğlu, Güneş Süheyla; Yeşilel, Okan Zafer; Hökelek, Tuncer

    2015-12-01

    Two new one-dimensional coordination polymers, [Cu(hmpH)2Pd(μ-CN)2(CN)2]n (1) and [Cu(hmpH)2Pt(μ-CN)2(CN)2]n (2), (hmpH = 2-pyridinemethanol), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. Single crystal X-ray diffraction analysis indicates that complexes 1 and 2 are isomorphous and isostructural, and crystallize in the triclinic system and P-1 space group. The Pd(II) or Pt(II) ions are four coordinated with four cyanide-carbon atoms in a square planar geometry. Cu(II) ion displays a distorted octahedral coordination by two N-atoms and two O-atoms of hmpH ligands, two bridging cyanide groups. In one dimensional structure of the complexes, [M(CN)4]2- (M = Pd(II) or Pt(II)) anions and [Cu(hmpH)2]2+ cations are linked via bridging cyanide ligands. In the complexes, the presence of intramolecular C-H⋯M (M = Pd(II) or Pt(II)) interactions with distance values of 3.00-2.95 Å are established, respectively.

  17. Ab initio random structure search for 13-atom clusters of fcc elements

    International Nuclear Information System (INIS)

    Chou, J P; Hsing, C R; Wei, C M; Cheng, C; Chang, C M

    2013-01-01

    The 13-atom metal clusters of fcc elements (Al, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au) were studied by density functional theory calculations. The global minima were searched for by the ab initio random structure searching method. In addition to some new lowest-energy structures for Pd 13 and Au 13 , we found that the effective coordination numbers of the lowest-energy clusters would increase with the ratio of the dimer-to-bulk bond length. This correlation, together with the electronic structures of the lowest-energy clusters, divides the 13-atom clusters of these fcc elements into two groups (except for Au 13 , which prefers a two-dimensional structure due to the relativistic effect). Compact-like clusters that are composed exclusively of triangular motifs are preferred for elements without d-electrons (Al) or with (nearly) filled d-band electrons (Ni, Pd, Cu, Ag). Non-compact clusters composed mainly of square motifs connected by some triangular motifs (Rh, Ir, Pt) are favored for elements with unfilled d-band electrons. (paper)

  18. Experimental investigation of the nature of the magnetoresistance effects in Pd-YIG hybrid structures.

    Science.gov (United States)

    Lin, Tao; Tang, Chi; Alyahayaei, Hamad M; Shi, Jing

    2014-07-18

    In bilayers consisting of Pd and yttrium iron garnet (Y(3)Fe(5)O(12) or YIG), we observe vanishingly small room-temperature conventional anisotropic magnetoresistance but large new magnetoresistance that is similar to the spin Hall magnetoresistance previously reported in Pt-YIG bilayers. We report a temperature dependence study of the two magnetoresistance effects in Pt-YIG bilayers. As the temperature is decreased, the new magnetoresistance shows a peak, whereas the anisotropic magnetoresistance effect starts to appear and increases monotonically. We find that the magnetoresistance peak shifts to lower temperatures in thicker Pd samples, a feature characteristic of the spin current effect. The distinct temperature dependence reveals fundamentally different mechanisms responsible for the two effects in such hybrid structures.

  19. Screening the best catalyst with group 9, 10 and 11 metals monolayer loading on NbC(001) from first-principles study

    Science.gov (United States)

    Kan, Dongxiao; Zhang, Xilin; Zhang, Yanxing; Yang, Zongxian

    2018-02-01

    The supported catalysts have received great attentions due to their high catalytic activity, low cost and good stability. Here we report the stability, wetting ability, corrosion resistance and catalytic activity of the supported catalysts with group 9, 10 and 11 metals (M = Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au) monolayers (ML) deposited on NbC(001), denoted as MML/NbC(001). The PdML/NbC(001) and PtML/NbC(001) are testified as the most stable and active ones with the former even better on the whole. The catalytic activities toward oxygen reduction reactions (ORR) are clarified by the dissociation and the change in Gibbs free energies for the elementary reaction steps of O2 on PdML/NbC(001).

  20. Thermal Measurement during Electrolysis of Pd-Ni Thin-film -Cathodes in Li2SO4/H2O Solution

    Science.gov (United States)

    Castano, C. H.; Lipson, A. G.; S-O, Kim; Miley, G. H.

    2002-03-01

    Using LENR - open type calorimeters, measurements of excess heat production were carried out during electrolysis in Li_2SO_4/H_2O solution with a Pt-anode and Pd-Ni thin film cathodes (2000-8000 Åthick) sputtered on the different dielectric substrates. In order to accurately evaluate actual performance during electrolysis runs in the open-type calorimeter used, considering effects of heat convection, bubbling and possible H_2+O2 recombination, smooth Pt sheets were used as cathodes. Pt provides a reference since it does not produce excess heat in the light water electrolyte. To increase the accuracy of measurements the water dissociation potential was determined for each cathode taking into account its individual over-voltage value. It is found that this design for the Pd-Ni cathodes resulted in the excess heat production of ~ 20-25 % of input power, equivalent to ~300 mW. In cases of the Pd/Ni- film fracture (or detachment from substrate) no excess heat was detected, providing an added reference point. These experiments plus use of optimized films will be presented.

  1. Developing an aqueous approach for synthesizing Au and M@Au (M = Pd, CuPt) hybrid nanostars with plasmonic properties

    Science.gov (United States)

    Du, Jingshan; Yu, Junjie; Xiong, Yalin; Lin, Zhuoqing; Zhang, Hui; Yang, Deren

    Anisotropic Au nanoparticles show unique localized surface plasmon resonance (LSPR) properties, which make it attractive in optical, sensing, and biomedical applications. In this contribution, we report a general and facile strategy towards aqueous synthesis of Au and M@Au (M = Pd, CuPt) hybrid nanostars by reducing HAuCl4 with ethanolamine in the presence of cetyltrimethylammonium bromide (CTAB). According to electron microscopic observation and spectral monitoring, we found that the layered epitaxial growth mode (i.e., Frank-van der Merwe mechanism) contributes to the enlargement of the core, while, the random attachment of Au nanoclusters onto the cores accounts for the formation of the branches. Both of them are indispensable for the formation of the nanostars. The LSPR properties of the Au nanoparticles have been well investigated with morphology control via precursor amount and growth temperature. The Au nanostars showed improved surface-enhanced Raman spectroscopy (SERS) performance for rhodamine 6G due to their sharp edges and tips, which were therefore confirmed as good SERS substrate to detect trace amount of molecules.

  2. Synthesis of Pd₃Co₁@Pt/C core-shell catalysts for methanol-tolerant cathodes of direct methanol fuel cells.

    Science.gov (United States)

    Aricò, Antonino S; Stassi, Alessandro; D'Urso, Claudia; Sebastián, David; Baglio, Vincenzo

    2014-08-18

    A composite Pd-based electrocatalyst consisting of a surface layer of Pt (5 wt.%) supported on a core Pd3Co1 alloy (95 wt.%) and dispersed as nanoparticles on a carbon black support (50 wt.% metal content) was prepared by using a sulphite-complex route. The structure, composition, morphology, and surface properties of the catalyst were investigated by XRD, XRF, TEM, XPS and low-energy ion scattering spectroscopy (LE-ISS). The catalyst showed an enrichment of Pt on the surface and a smaller content of Co in the outermost layers. These characteristics allow a decrease the Pt content in direct methanol fuel cell cathode electrodes (from 1 to 0.06 mg cm(-2)) without significant decay in performance, due also to a better tolerance to methanol permeated through the polymer electrolyte membrane. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Electrocatalytic properties of Ti/Pt–IrO2 anode for oxygen evolution in PEM water electrolysis

    DEFF Research Database (Denmark)

    Ye, Feng; Li, Jianling; Wang, Xindong

    2010-01-01

    A novel Pt–IrO2 electrocatalyst was prepared using the dip-coating/calcinations method on titanium substrates. Titanium electrodes coated with oxides were investigated for oxygen evolution. Experimental results showed that Ti/Pt–IrO2 electrode containing 30mol% Pt in the coating exhibited signifi...

  4. Radiochemical separations of target-like reaction products from Au-, Pt-, and Th-targets after irradiation with GeV protons

    International Nuclear Information System (INIS)

    Szweryn, B.; Bruechle, W.; Schausten, B.; Schaedel, M.

    1988-08-01

    Chemical separation procedures for separations of reaction products after spallation reactions with 2.6 GeV protons and heavy element targets are presented. To determine independent cross sections of individual isotopes the elements Au, Pt, Ir, Os, Re, W, Ta, Hf, (Lu, Yb, Tm, Er), (Gd, Eu, Sm), were separated from gold targets, Pt, Ir, Os, W, Ta, Hf, (Lu, Yb, Tm, Er), (Gd, Eu, Sm) from a platinum target and Au, Tl from a thorium target. (orig.)

  5. Palladium, platinum, rhodium, ruthenium, and iridium in chromitites from the Massif du Sud and Tiebaghi massif, New Caledonia.

    Science.gov (United States)

    Page, N.J.; Cassard, D.; Haffty, J.

    1982-01-01

    The massive and disseminated podiform chromitites from 43 mines and other occurrences in the area contain up to (in ppb) Pd 9, Pt 45, Rh 31, Ir 410 and Ru 1300. The possble origins of the chromitites are discussed. -K.A.R.

  6. Interpreting intensities in vibrational sum frequency generation (SFG) spectroscopy: CO adsorption on Pd surfaces

    Science.gov (United States)

    Morkel, M.; Unterhalt, H.; Klüner, T.; Rupprechter, G.; Freund, H.-J.

    2005-07-01

    The lineshape and intensity of SFG signals of CO adsorbed on supported Pd nanoparticles and Pd(1 1 1) are analyzed. For CO/Pd(1 1 1) nearly symmetric lorentzian lineshapes were observed. Applying two different visible wavelengths for excitation, asymmetric lineshapes observed for the CO/Pd/Al 2O 3/NiAl(1 1 0) system are explained by a lower resonant and a higher non-resonant SFG signal and a change in the phase between resonant and non-resonant signals, most likely originating from an interband transition in the NiAl substrate. The relative intensity of different CO species (hollow, bridge, on-top) was modeled by DFT calculations of IR transition moments and Raman activities. While the (experimental) sensitivity of SFG towards different CO species strongly varies, the calculated IR and Raman activities are rather similar. The inability to exactly reproduce experimental SFG intensities suggests a strong coverage dependence of Raman activities or that non-linear effects occur that can currently not be properly accounted for.

  7. Stability, elastic and magnetostrictive properties of γ-Fe{sub 4}C and its derivatives from first principles theory

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yun; Wang, Zhe [Department of Physics, Xiangtan University, Xiangtan, 411105 Hunan (China); Cao, Juexian, E-mail: jxcao@xtu.edu.cn [Department of Physics, Xiangtan University, Xiangtan, 411105 Hunan (China); Beijing Computational Science Reasearch Center, 100084 Beijing (China)

    2014-11-15

    Using the first-principles full-potential linearized augmented plane-wave method, we investigated the stability, elastic and magnetostrictive properties of γ-Fe{sub 4}C and its derivatives. From the formation energy, we show that the most preferable configuration for MFe{sub 3}C (M=Pd, Pt, Rh, Ir) is that the M atom occupies the corner 1a position rather than 3c position. These derivatives are ductile due to high B/G values except for IrFe{sub 3}C. The calculated tetragonal magnetostrictive coefficient λ{sub 001} value for γ-Fe{sub 4}C is −380 ppm, which is larger than the value of Fe{sub 83}Ga{sub 17} (+207 ppm). Due to the strong SOC coupling strength constant (ξ) of Pt, the calculated λ{sub 001} of PtFe{sub 3}C is −691 ppm, which is increased by 80% compared to that of γ-Fe{sub 4}C. We demonstrate the origin of giant magnetostriction coefficient in terms of electronic structures and their responses to the tetragonal lattice distortion. - Highlights: • The most preferable site for M atom of MFe{sub 3}C (M=Pd, Pt, Rh, Ir) is the corner position. • The magnetostrictive coefficient for γ-Fe{sub 4}C is −380 ppm, larger than the value of Fe{sub 83}Ga{sub 17}. • The calculated λ{sub 001} of PtFe{sub 3}C is −691 ppm, which is increased by 80% compared to that of γ-Fe{sub 4}C.

  8. Adsorption of platinum(IV) and palladium(II) from aqueous solution by thiourea-modified chitosan microspheres

    International Nuclear Information System (INIS)

    Zhou Limin; Liu Jinhui; Liu Zhirong

    2009-01-01

    The chitosan microparticles were prepared using the inverse phase emulsion dispersion method and modified with thiourea (TCS). TCS was characterized by scanning electron microscope (SEM), the Fourier transform infrared (FT-IR) spectra, sulfur elemental analysis, specific surface area and pore diameter. The effects of various parameters, such as pH, contact time, initial concentration and temperature, on the adsorption of Pt(IV) and Pd(II) by TCS were investigated. The results showed that the maximum adsorption capacity was found at pH 2.0 for both Pt(IV) and Pd(II). TCS can selectively adsorb Pt(IV) and Pd(II) from binary mixtures with Cu(II), Pb(II), Cd(II), Zn(II), Ca(II), and Mg(II). The adsorption reaction followed the pseudo-second-order kinetics, indicating the main adsorption mechanism of chemical adsorption. The isotherm adsorption equilibrium was well described by Langmuir isotherms with the maximum adsorption capacity of 129.9 mg/g for Pt(IV) and 112.4 mg/g for Pd(II). The adsorption capacity of both Pt(IV) and Pd(II) decreased with temperature increasing. The negative values of enthalpy (ΔH o ) and Gibbs free energy (ΔG o ) indicate that the adsorption process is exothermic and spontaneous in nature. The adsorbent was stable without loss of the adsorption capacity up to at least 5 cycles and the desorption efficiencies were above 95% when 0.5 M EDTA-0.5 M H 2 SO 4 eluent was used. The results also showed that the preconcentration factor for Pt(IV) and Pd(II) was 196 and 172, respectively, and the recovery was found to be more than 97% for both precious metal ions.

  9. Preparation and characterization of electrocatalysts based on palladium for electro-oxidation of alcohols in alkaline medium; Preparacao e caracterizacao de eletrocatalisadores a base de paladio para oxidacao eletroquimica de alcoois em meio alcalino

    Energy Technology Data Exchange (ETDEWEB)

    Brandalise, Michele

    2012-07-01

    In this study Pd/C, Au/C, PdAu/C, PdAuPt/C, PdAuBi/C and PdAuIr/C electrocatalysts were prepared by the sodium borohydride reduction method for the electrochemical oxidation of methanol, ethanol and ethylene glycol. This methodology consists in mix an alkaline solution of sodium borohydride to a mixture containing water/isopropyl alcohol, metallic precursors and the Vulcan XC 72 carbon support. The electrocatalysts were characterized by energy dispersive X-ray (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and cyclic voltammetry. The electrochemical oxidation of the alcohols was studied by chronoamperometry using a thin porous coating technique. The mechanism of ethanol electro-oxidation was studied by Fourier Transformed Infrared (FTIR) in situ. The most effective electrocatalysts were tested in alkaline single cells directly fed with methanol, ethanol or ethylene glycol. Preliminary studies showed that the most suitable atomic composition for preparing the ternary catalysts is 50:45:05. Electrochemical data in alkaline medium show that the electrocatalysts PdAuPt/C (50:45:05) showed the better activity for methanol electro oxidation, while PdAuIr/C was the most active for ethanol oxidation and PdAuBi/C (50:45:05) was the most effective for ethylene glycol oxidation in alkaline medium. These results show that the addition of gold in the composition of electrocatalysts increases their catalytic activities. The spectroelectrochemical FTIR in situ data permitted to conclude that C-C bond is not broken and the acetate is formed. (author)

  10. Preparation and characterization of electrocatalysts based on palladium for electro-oxidation of alcohols in alkaline medium

    International Nuclear Information System (INIS)

    Brandalise, Michele

    2012-01-01

    In this study Pd/C, Au/C, PdAu/C, PdAuPt/C, PdAuBi/C and PdAuIr/C electrocatalysts were prepared by the sodium borohydride reduction method for the electrochemical oxidation of methanol, ethanol and ethylene glycol. This methodology consists in mix an alkaline solution of sodium borohydride to a mixture containing water/isopropyl alcohol, metallic precursors and the Vulcan XC 72 carbon support. The electrocatalysts were characterized by energy dispersive X-ray (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and cyclic voltammetry. The electrochemical oxidation of the alcohols was studied by chronoamperometry using a thin porous coating technique. The mechanism of ethanol electro-oxidation was studied by Fourier Transformed Infrared (FTIR) in situ. The most effective electrocatalysts were tested in alkaline single cells directly fed with methanol, ethanol or ethylene glycol. Preliminary studies showed that the most suitable atomic composition for preparing the ternary catalysts is 50:45:05. Electrochemical data in alkaline medium show that the electrocatalysts PdAuPt/C (50:45:05) showed the better activity for methanol electro oxidation, while PdAuIr/C was the most active for ethanol oxidation and PdAuBi/C (50:45:05) was the most effective for ethylene glycol oxidation in alkaline medium. These results show that the addition of gold in the composition of electrocatalysts increases their catalytic activities. The spectroelectrochemical FTIR in situ data permitted to conclude that C-C bond is not broken and the acetate is formed. (author)

  11. Electro-catalytic activity of multiwall carbon nanotube-metal (Pt or Pd) nanohybrid materials synthesized using microwave-induced reactions and their possible use in fuel cells

    Science.gov (United States)

    V, Lakshman Kumar; Ntim, Susana Addo; Sae-Khow, Ornthida; Janardhana, Chelli; Lakshminarayanan, V.; Mitra, Somenath

    2012-01-01

    Microwave induced reactions for immobilizing platinum and palladium nanoparticles on multiwall carbon nanotubes are presented. The resulting hybrid materials were used as catalysts for direct methanol, ethanol and formic acid oxidation in acidic as well as alkaline media. The electrodes are formed by simply mixing the hybrids with graphite paste, thus using a relatively small quantity of the precious metal. We report Tafel slopes and apparent activation energies at different potentials and temperatures. Ethanol electro-oxidation with the palladium hybrid showed an activation energy of 7.64 kJmol−1 which is lower than those observed for other systems. This system is economically attractive because Pd is significantly less expensive than Pt and ethanol is fast evolving as a commercial biofuel. PMID:23118490

  12. Electro-catalytic activity of multiwall carbon nanotube-metal (Pt or Pd) nanohybrid materials synthesized using microwave-induced reactions and their possible use in fuel cells.

    Science.gov (United States)

    V, Lakshman Kumar; Ntim, Susana Addo; Sae-Khow, Ornthida; Janardhana, Chelli; Lakshminarayanan, V; Mitra, Somenath

    2012-11-30

    Microwave induced reactions for immobilizing platinum and palladium nanoparticles on multiwall carbon nanotubes are presented. The resulting hybrid materials were used as catalysts for direct methanol, ethanol and formic acid oxidation in acidic as well as alkaline media. The electrodes are formed by simply mixing the hybrids with graphite paste, thus using a relatively small quantity of the precious metal. We report Tafel slopes and apparent activation energies at different potentials and temperatures. Ethanol electro-oxidation with the palladium hybrid showed an activation energy of 7.64 kJmol(-1) which is lower than those observed for other systems. This system is economically attractive because Pd is significantly less expensive than Pt and ethanol is fast evolving as a commercial biofuel.

  13. Platinum-Group Elements in Soils and Street Dust of the Southeastern Administrative District of Moscow

    Science.gov (United States)

    Ladonin, D. V.

    2018-03-01

    The contents of five platinum-group metals (Ru, Rh, Pd, Ir, and Pt) in soils and street dust of the Southeastern administrative district (SEAD) of Moscow have been determined. The contents of these elements in soils may considerably exceed their natural abundances in the lithosphere and are characterized by considerable variability and asymmetric frequency distribution. A close correlation between Rh, Pd, and Pt contents in soils and street dust has been shown. The data on the contents of the elements and the ratios between them suggest that motor vehicles are the major source of pollution of soils and street dust in the studied district.

  14. Electrochemical characterization of nano-sized Pd-based catalysts as cathode materials in direct methanol fuel cells.

    Science.gov (United States)

    Choi, M; Han, C; Kim, I T; An, J C; Lee, J J; Lee, H K; Shim, J

    2011-01-01

    To improve the catalytic activity of palladium (Pd) as a cathode catalyst in direct methanol fuel cells (DMFCs), we prepared palladium-titanium oxide (Pd-TiO2) catalysts which the Pd and TiO2 nanoparticles were simultaneously impregnated on carbon. We selected Pd and TiO2 as catalytic materials because of their electrochemical stability in acid solution. The crystal structure and the loading amount of Pd and TiO2 on carbon were characterized by X-ray diffraction (XRD) and energy dispersive X-ray microanalysis (EDX). The electrochemical characterization of Pd-TiO2/C catalysts for the oxygen reduction reaction was carried out in half and single cell systems. The catalytic activities of the Pd-TiO2 catalysts were strongly influenced by the TiO2 content. In the single cell test, the Pd-TiO2 catalysts showed very comparable performance to the Pt catalyst.

  15. Carbon-supported PdM (M = Au and Sn) nanocatalysts for the electrooxidation of ethanol in high pH media

    Energy Technology Data Exchange (ETDEWEB)

    He, Qinggang; Mukerjee, Sanjeev [Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115 (United States); Chen, Wei; Chen, Shaowei [Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Laufek, Frantisek [Czech Geological Survey (Czech Republic)

    2009-02-15

    Carbon-supported Pd{sub 4}Au- and Pd{sub 2.5}Sn-alloyed nanoparticles were prepared by a chemical reduction method, and characterized by a wide array of experimental techniques including mass spectrometry, transmission electron microscopy, and X-ray diffraction spectroscopy. Ethanol electrooxidation on the as-synthesized catalysts and commercial Pt/C was then investigated and compared in alkaline media by cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy studies at room temperature. Voltammetric and chronoamperometric measurements showed higher current density and longer term stability in ethanol oxidation with the palladium alloy nanocatalysts than with the commercial one. Electrochemical impedance spectroscopy and Tafel plots were employed to examine the charge-transfer kinetics of ethanol electrooxidation. The results suggest that whereas the reaction kinetics might be somewhat more sluggish on the Pd-based alloy catalysts than on commercial Pt/C, the former appeared to have a higher tolerance to surface poisoning. Overall, the Pd-based alloy catalysts represent promising candidates for the electrocatalytic oxidation of ethanol, and Pd{sub 4}Au/C displays the best catalytic activity among the series for the ethanol oxidation in alkaline media. (author)

  16. Synthesis of Alkanethiolate-Capped Metal Nanoparticles Using Alkyl Thiosulfate Ligand Precursors: A Method to Generate Promising Reagents for Selective Catalysis

    Directory of Open Access Journals (Sweden)

    Khin Aye San

    2018-05-01

    Full Text Available Evaluation of metal nanoparticle catalysts functionalized with well-defined thiolate ligands can be potentially important because such systems can provide a spatial control in the reactivity and selectivity of catalysts. A synthetic method utilizing Bunte salts (sodium S-alkylthiosulfates allows the formation of metal nanoparticles (Au, Ag, Pd, Pt, and Ir capped with alkanethiolate ligands. The catalysis studies on Pd nanoparticles show a strong correlation between the surface ligand structure/composition and the catalytic activity and selectivity for the hydrogenation/isomerization of alkenes, dienes, trienes, and allylic alcohols. The high selectivity of Pd nanoparticles is driven by the controlled electronic properties of the Pd surface limiting the formation of Pd–alkene adducts (or intermediates necessary for (additional hydrogenation. The synthesis of water soluble Pd nanoparticles using ω-carboxylate-S-alkanethiosulfate salts is successfully achieved and these Pd nanoparticles are examined for the hydrogenation of various unsaturated compounds in both homogeneous and heterogeneous environments. Alkanethiolate-capped Pt nanoparticles are also successfully synthesized and further investigated for the hydrogenation of various alkynes to understand their geometric and electronic surface properties. The high catalytic activity of activated terminal alkynes, but the significantly low activity of internal alkynes and unactivated terminal alkynes, are observed for Pt nanoparticles.

  17. Reação de bis-inserção de 1,2-difenilacetileno na ligação Pd-C de ciclometalados Bis insertion reaction of 1,2-diphenylacetilene into Pd-C bond of cyclometallated species

    Directory of Open Access Journals (Sweden)

    Sandra Regina Ananias

    2003-01-01

    Full Text Available The present paper deals with the bis-insertion reactions of 1,2-diphenylacetylene into Pd-C bond of the cyclopalladated complexes [Pd(dmba(µ-NCO]2 (1 and [Pd(dmba(MeCN2](NO3 (2 (dmba = N,N-dimethylbenzylamine, MeCN = acetonitrile. Two new complexes [Pd{PhC=CPh-CPh=CPhC6H4CH2N(CH 32}(NCO] (3 and [Pd{PhC=CPh-CPh=CPhC6H4CH2N(CH 32}(NO3 ] (4 were obtained and characterized by IR and NMR spectroscopy and elemental analysis.

  18. Test of supersymmetry in the 193Ir→194Pt proton stripping reactions

    International Nuclear Information System (INIS)

    Vergnes, M.; Rotbard, G.; Kalifa, J.; Berrier-Ronsin, G.; Vernotte, J.; Seltz, R.; Burke, D.G.

    1980-01-01

    A breakdown of the selection rules of the supersymmetry model is observed for the population of the 0 2 + and 2 2 + levels of 194 Pt in the 193 Ir → 194 Pt proton stripping reactions performed using the Orsay and Mc Master University tandem accelerators. The existence of other violations in the neighbouring nuclei leads to believe that we are seeing the limitations of the supersymmetry scheme itself, at least for particle transfer reactions

  19. Theoretical studies of the work functions of Pd-based bimetallic surfaces

    International Nuclear Information System (INIS)

    Ding, Zhao-Bin; Wu, Feng; Wang, Yue-Chao; Jiang, Hong

    2015-01-01

    Work functions of Pd-based bimetallic surfaces, including mainly M/Pd(111), Pd/M, and Pd/M/Pd(111) (M = 4d transition metals, Cu, Au, and Pt), are studied using density functional theory. We find that the work function of these bimetallic surfaces is significantly different from that of parent metals. Careful analysis based on Bader charges and electron density difference indicates that the variation of the work function in bimetallic surfaces can be mainly attributed to two factors: (1) charge transfer between the two different metals as a result of their different intrinsic electronegativity, and (2) the charge redistribution induced by chemical bonding between the top two layers. The first factor can be related to the contact potential, i.e., the work function difference between two metals in direct contact, and the second factor can be well characterized by the change in the charge spilling out into vacuum. We also find that the variation in the work functions of Pd/M/Pd(111) surfaces correlates very well with the variation of the d-band center of the surface Pd atom. The findings in this work can be used to provide general guidelines to design new bimetallic surfaces with desired electronic properties

  20. Auger electron spectroscopy of alloys

    International Nuclear Information System (INIS)

    Kuijers, F.J.

    1978-01-01

    This thesis describes how the surface compositions of some alloys can be determined by Auger Electron Spectroscopy (AES). The motivation for this research and the reasons for the choice of alloy systems studied are formulated. The theoretical background of AES is briefly discussed and the apparatus used and the experimental procedures applied are described. Four alloy systems have been investigated in this thesis - Ni-Cu and Pd - Ag (consisting of a component active in most cataytic reactions - Ni and Pd; and a component which is almost inactive for a number of reactions - Cu and Ag) and Pt - Pd and Pt-Ir (consisting of two active components). Knowledge of the surface composition of the various alloy systems is shown to be essential for the interpretation of catalytic results. (Auth./C.F.)

  1. Improvement of sulfur resistance of Pd/Ce-Zr-Al-O catalysts for CO oxidation

    Science.gov (United States)

    Shin, Haebin; Baek, Minsung; Ro, Youngsoo; Song, Changyeol; Lee, Kwan-Young; Song, In Kyu

    2018-01-01

    Two kinds of mesoporous ceria-zirconia-alumina supports were prepared by a single-step epoxide-driven sol-gel method (SGCZA) and by a co-precipitation method (PCZA). Palladium catalysts supported on these materials were then prepared by a wet impregnation method (Pd/SGCZA and Pd/PCZA). The prepared catalysts were applied to the CO oxidation reaction before and after sulfur aging. XRD and N2 adsorption-desorption analyses revealed that these two catalysts retained different physicochemical properties. Pd/SGCZA had higher surface area and larger pore volume than Pd/PCZA before and after sulfur aging. TPR (Temperature-programmed reduction), CO chemisorption, FT-IR, and XPS analyses showed that the catalysts were differently influenced by sulfur species. Pd/SGCZA formed less sulfate and retained higher palladium dispersion than Pd/PCZA after sulfur aging. In the CO oxidation, Pd/PCZA showed better activity than Pd/SGCZA before sulfur aging. However, Pd/SGCZA showed higher CO conversion than Pd/PCZA after sulfur aging. We concluded that Pd/SGCZA was less poisoned by sulfur species than Pd/PCZA.

  2. 2D Ultrathin Core-shell Pd@Ptmonolayer Nanosheets: Defect-Mediated Thin Film Growth and Enhanced Oxygen Reduction Performance

    KAUST Repository

    Wang, Wenxin

    2015-06-16

    An operational strategy for the synthesis of atomically smooth Pt skin by a defect-mediated thin film growth method is reported. Extended ultrathin core-shell structured Pd@Ptmonolayer nanosheets (thickness below 5 nm) exhibit a seven-fold enhancement in mass-activity and surprisingly good durability toward oxygen reduction reaction as compared with the commercial Pt/C catalyst.

  3. 2D Ultrathin Core-shell Pd@Ptmonolayer Nanosheets: Defect-Mediated Thin Film Growth and Enhanced Oxygen Reduction Performance

    KAUST Repository

    Wang, Wenxin; Zhao, Yunfeng; Ding, Yi

    2015-01-01

    An operational strategy for the synthesis of atomically smooth Pt skin by a defect-mediated thin film growth method is reported. Extended ultrathin core-shell structured Pd@Ptmonolayer nanosheets (thickness below 5 nm) exhibit a seven-fold enhancement in mass-activity and surprisingly good durability toward oxygen reduction reaction as compared with the commercial Pt/C catalyst.

  4. Crystal structures, stability, electronic and elastic properties of 4d and 5d transition metal monoborides: First-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Chen, W. [International Center for New-Structured Materials (ICNSM), Zhejiang University, and Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Chen, X.; Liu, H.Y. [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Ding, Z.H.; Ma, Y.M. [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012 (China); Wang, X.D.; Cao, Q.P. [International Center for New-Structured Materials (ICNSM), Zhejiang University, and Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Jiang, J.Z., E-mail: jiangjz@zju.edu.cn [International Center for New-Structured Materials (ICNSM), Zhejiang University, and Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Changes from NaCl-, WC- to anti-NiAs-type structures are for 4d and 5d metal monoborides. Black-Right-Pointing-Pointer Vickers hardnesses of monoborides are relatively low. Black-Right-Pointing-Pointer B-vacancies cause the difference in lattice parameters for IrB and PtB. Black-Right-Pointing-Pointer Nonstoichiometric IrB and PtB phases synthesized. - Abstract: The crystal structures, stability, electronic and elastic properties of 4d and 5d transition metal monoborides have been studied by first principles calculations. It is found that NaCl-type ZrB, NbB, MoB, HfB, TaB and WB, WC-type TcB, RuB, ReB, OsB and IrB, and anti-NiAs-type RhB and PdB are thermodynamically stable at zero pressure. They all are metallic. The Vickers hardnesses of these monoborides are relatively low as compared with monocarbides and mononitrides. It is clarified that the presence of B-vacancies is the origin for the difference of lattice parameters between theoretical and experimental results for WC-type IrB and anti-NiAs-type PtB while IrB and PtB with stoichiometry from calculations are revealed to be mechanically unstable and dynamically unstable, respectively.

  5. Crystal structures, stability, electronic and elastic properties of 4d and 5d transition metal monoborides: First-principles calculations

    International Nuclear Information System (INIS)

    Wang, Y.; Chen, W.; Chen, X.; Liu, H.Y.; Ding, Z.H.; Ma, Y.M.; Wang, X.D.; Cao, Q.P.; Jiang, J.Z.

    2012-01-01

    Highlights: ► Changes from NaCl-, WC- to anti-NiAs-type structures are for 4d and 5d metal monoborides. ► Vickers hardnesses of monoborides are relatively low. ► B-vacancies cause the difference in lattice parameters for IrB and PtB. ► Nonstoichiometric IrB and PtB phases synthesized. - Abstract: The crystal structures, stability, electronic and elastic properties of 4d and 5d transition metal monoborides have been studied by first principles calculations. It is found that NaCl-type ZrB, NbB, MoB, HfB, TaB and WB, WC-type TcB, RuB, ReB, OsB and IrB, and anti-NiAs-type RhB and PdB are thermodynamically stable at zero pressure. They all are metallic. The Vickers hardnesses of these monoborides are relatively low as compared with monocarbides and mononitrides. It is clarified that the presence of B-vacancies is the origin for the difference of lattice parameters between theoretical and experimental results for WC-type IrB and anti-NiAs-type PtB while IrB and PtB with stoichiometry from calculations are revealed to be mechanically unstable and dynamically unstable, respectively.

  6. Fuel cells based on the use of Pd foils

    Energy Technology Data Exchange (ETDEWEB)

    Cabot, P. L.; Guezala, E. [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Barcelona (Spain); Casado, J. [Departamento de Investigacion, Carburos Metalicos, Barcelona (Spain)

    1999-10-01

    Fuel cells with hydrogen diffusion lead anodes are of particular interest because the ability of lead to filter hydrogen with 100 per cent selectively, thus making it possible to take impure hydrogen from industrial flue gases and use it as feedstock to produce clean energy. In this investigation an alkaline fuel cell with a Pd-based hydrogen diffusion anode combined with a carbon-PFTE oxygen diffusion cathode was built up and tested at low temperatures. The fuel cell was operated by feeding pure hydrogen and pure oxygen at atmospheric pressures and closing the circuit by means of different external loads. Quasi-stationary currents were obtained for each load when the Pd foils were assembled using elastic joints to allow the anode creasing. Experiments with different sections indicated that the anode was the limiting electrode. Results showed that the slowest reactions in the overall anodic process depend on the anode preparation. When Pd black was present only at the Pd/electrolyte interface, the slowest reaction occurred on the gas/Pd interface. For anodes with Pd black on both sides of the foil, the maximum anode power densities were 11 and 18 mW cm{sup 2} at 25 and 50 degrees C, respectively; the corresponding anode current densities were 30 and 65 mA cm{sup 2}. Significant improvements in the anode current and power densities were achieved via surface modification by cathodically charging Pd pieces with atomic hydrogen, and Pd foils with electrodeposited Pd+Pt blacks, obtaining roughly double the power and current density. 31 refs., 9 figs.

  7. Investigation of the process of extraction chromatography concentration and radioactivation determination of gold, platinum, palladium and iridium

    International Nuclear Information System (INIS)

    Mamadaliev, N.; Ganiev, A.G.; Rakhimov, Kh.R.; Karimkulov, D.U.

    1994-01-01

    Extraction of Au, Pt, Pd and Ir from HCI and HNO3 has been studied as a function of TBF concentration and on the basis of the results obtained a radiochemical method has been developed for their content determination in ores and minerals. (author). 6 refs

  8. Novel Metal Nanomaterials and Their Catalytic Applications

    Directory of Open Access Journals (Sweden)

    Jiaqing Wang

    2015-09-01

    Full Text Available In the rapidly developing areas of nanotechnology, nano-scale materials as heterogeneous catalysts in the synthesis of organic molecules have gotten more and more attention. In this review, we will summarize the synthesis of several new types of noble metal nanostructures (FePt@Cu nanowires, Pt@Fe2O3 nanowires and bimetallic Pt@Ir nanocomplexes; Pt-Au heterostructures, Au-Pt bimetallic nanocomplexes and Pt/Pd bimetallic nanodendrites; Au nanowires, CuO@Ag nanowires and a series of Pd nanocatalysts and their new catalytic applications in our group, to establish heterogeneous catalytic system in “green” environments. Further study shows that these materials have a higher catalytic activity and selectivity than previously reported nanocrystal catalysts in organic reactions, or show a superior electro-catalytic activity for the oxidation of methanol. The whole process might have a great impact to resolve the energy crisis and the environmental crisis that were caused by traditional chemical engineering. Furthermore, we hope that this article will provide a reference point for the noble metal nanomaterials’ development that leads to new opportunities in nanocatalysis.

  9. Photoelectrocatalytic Glucose Oxidation to Promote Hydrogen Production over Periodically Ordered TiO2 Nanotube Arrays Assembled of Pd Quantum Dots

    International Nuclear Information System (INIS)

    Zhang, Yajun; Zhao, Guohua; Shi, Huijie; Zhang, Ya-nan; Huang, Wenna; Huang, Xiaofeng; Wu, Zhongyi

    2015-01-01

    Highlights: • Solar-driven PEC glucose oxidation to promote hydrogen production was presented. • The excellent PEC activity of Pd QDs@TNTAs was investigated. • The rate of hydrogen production from glucose was about 15 times than water. • A low-cost and efficient method in renewables-to-hydrogen conversion was put forward. - Abstract: The development of highly efficient and low-cost approaches for catalytic hydrogen production from renewable energy is of tremendous importance for a truly sustainable hydrogen-based energy carrier in future life. Herein, the probability of utilizing solar light to product hydrogen from biomass derivative, glucose, was systematically demonstrated by using the periodically ordered TiO 2 nanotube arrays (TNTAs) assembled of Palladium quantum dots (Pd QDs), i.e. Pd QDs@ TNTAs as photoanode. The results showed that remarkably increased photocurrent density was obtained in the glucose solution compared to the pure KOH electrolyte over as-prepared photoelectrode, which indicated that the glucose could be faster oxidized than water oxidation, and thus could promote the hydrogen production on Pt cathode. The yield of hydrogen production from glucose oxidation reached as high as 164.8 μmol cm −1 over Pd QDs@TNTAs photoanode and Pt cathode system (denoted as Pd QDs@TNTAs/Pt) under the solar light irradiation for 6 h, which was about 15 times higher than that from pure water splitting. The superior hydrogen production performance could be attributed to the less endergonic process of the glucose oxidation than water, as well as the efficient synergistic photoelectrocatalytic (PEC) glucose oxidation over Pd QDs@TNTAs photoanode which possesses excellent photoelectrochemical performance and structure characteristics. Moreover, a probable mechanism for the PEC hydrogen production from biomass derivatives oxidation was proposed and discussed

  10. Mechanisms for the reactions of group 10 transition metal complexes with metal-group 14 element bonds, Bbt(Br)E═M(PCy3)2 (E = C, Si, Ge, Sn, Pb; M = Pd and Pt).

    Science.gov (United States)

    Liao, Wei-Hung; Ho, Pei-Yun; Su, Ming-Der

    2013-02-04

    The electronic structures of the Bbt(Br)E═M(PCy(3))(2) (E = C, Si, Ge, Sn, Pb and M = Pt, Pd) complexes and their potential energy surfaces for the formation and water addition reactions were studied using density functional theory (B3LYP/LANL2DZ). The theoretical evidence suggests that the bonding character of the E═M double bond between the six valence-electron Bbt(Br)E: species and the 14 valence-electron (PCy(3))(2)M complexes has a predominantly high s-character. That is, on the basis of the NBO, this theoretical study indicates that the σ-donation from the E element to the M atom prevails. Also, theoretical computations suggest that the relative reactivity decreases in the order: Bbt(Br)C═M(PCy(3))(2) > Bbt(Br)Si═M(PCy(3))(2) > Bbt(Br)Ge═M(PCy(3))(2) > Bbt(Br)Sn═M(PCy(3))(2) > Bbt(Br)Pb═M(PCy(3))(2), irrespective of whether M = Pt or M = Pd is chosen. Namely, the greater the atomic weight of the group 14 atom (E), the larger is the atomic radius of E and the more stable is its Bbt(Br)E═M(PCy(3))(2) doubly bonded species toward chemical reactions. The computational results show good agreement with the available experimental observations. The theoretical results obtained in this work allow a number of predictions to be made.

  11. Molecular orbital calculations of the unpaired electron distribution and electric field gradients in divalent paramagnetic Ir complexes

    International Nuclear Information System (INIS)

    Nogueira, S.R.; Vugman, N.V.; Guenzburger, D.

    1988-01-01

    Semi-empirical Molecular Orbital calculations were performed for the paramagnetic complex ions [Ir(CN) 5 ] 3- , [Ir(CN) 5 Cl] 4- and [Ir(CN) 4 Cl 2 ] 4- . Energy levels schemes and Mulliken-type populations were obtained. The distribution of the unpaired spin over the atoms in the complexes was derived, and compared to data obtained from Electron Paramagnetic Resonance spectra with the aid of a Ligand Field model. The electric field gradients at the Ir nucleus were calculated and compared to experiment. The results are discussed in terms of the chemical bonds formed by Ir and the ligands. (author) [pt

  12. Understanding the structural properties and thermal stabilities of Au–Pd–Pt trimetallic clusters

    International Nuclear Information System (INIS)

    Zhao, Zheng; Li, Mingjiang; Cheng, Daojian; Zhu, Jiqin

    2014-01-01

    Highlights: • Structural properties of Au–Pd–Pt clusters are studied by Monte Carlo simulation. • Melting of Au–Pd–Pt clusters is studied by molecular dynamics simulation. • Au atoms are systematically segregated on the surface of the Au–Pd–Pt clusters. • Linear decrease in cluster melting point with the inverse cluster diameter. - Abstract: In this work, surface segregation phenomena of Au–Pd–Pt trimetallic clusters are investigated by using semi-grand Monte Carlo simulations based on the Gupta potential. It is found that Au atoms are systematically segregated on the surface of the Au–Pd–Pt clusters (6–24 at.% higher than the overall Au concentration), due to the competition among the surface energies of Au, Pd, and Pt. The melting properties of Au–Pd–Pt trimetallic clusters with different composition and size are investigated by using molecular dynamics simulations, based on the same Gupta potential. It is found that the Au–Pd–Pt trimetallic cluster with the highest melting point corresponds to the one with the most stable structure. In addition, linear decrease in cluster melting point with the inverse cluster diameter is predicted for both pure and trimetallic clusters, which is well-known as the Pawlow’s law

  13. Single Pd Atoms on θ-Al2O3 (010) Surface do not Catalyze NO Oxidation.

    Science.gov (United States)

    Narula, Chaitanya K; Allard, Lawrence F; Moses-DeBusk, Melanie; Stocks, G Malcom; Wu, Zili

    2017-04-03

    New convenient wet-chemistry synthetic routes have made it possible to explore catalytic activities of a variety of single supported atoms, however, the single supported atoms on inert substrates (e.g. alumina) are limited to adatoms and cations of Pt, Pd, and Ru. Previously, we have found that single supported Pt atoms are remarkable NO oxidation catalysts. In contrast, we report that Pd single atoms are completely inactive for NO oxidation. The diffuse reflectance infra-red spectroscopy (DRIFTS) results show the absence of nitrate formation on catalyst. To explain these results, we explored modified Langmuir-Hinshelwood type pathways that have been proposed for oxidation reactions on single supported atom. In the first pathway, we find that there is energy barrier for the release of NO 2 which prevent NO oxidation. In the second pathway, our results show that there is no driving force for the formation of O=N-O-O intermediate or nitrate on single supported Pd atoms. The decomposition of nitrate, if formed, is an endothermic event.

  14. Multicenter Evaluation of the Tolerability of Combined Treatment With PD-1 and CTLA-4 Immune Checkpoint Inhibitors and Palliative Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Andrew [Department of Radiation Oncology, Brigham and Women' s Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Division of Radiation Oncology, University of Ottawa, Ottawa, Ontario (Canada); Wilhite, Tyler J. [Harvard Medical School, Boston, Massachusetts (United States); Pike, Luke R.G. [Harvard Radiation Oncology Program, Brigham and Women' s Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Cagney, Daniel N.; Aizer, Ayal A.; Taylor, Allison; Spektor, Alexander; Krishnan, Monica [Department of Radiation Oncology, Brigham and Women' s Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Ott, Patrick A. [Department of Medical Oncology and Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Balboni, Tracy A. [Department of Radiation Oncology, Brigham and Women' s Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Hodi, F. Stephen [Department of Medical Oncology and Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Schoenfeld, Jonathan D., E-mail: jdschoenfeld@partners.org [Department of Radiation Oncology, Brigham and Women' s Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts (United States)

    2017-06-01

    Purpose: To analyze immune-related adverse events (ir-AEs) in patients treated with radiation and immune checkpoint blockade. Methods and Materials: We retrospectively reviewed records from patients with metastatic non-small cell lung cancer, melanoma, or renal cell cancer who received at least 1 cycle of a CTLA-4 or PD-1 inhibitor and radiation. Immune-related adverse events, defined using Common Terminology Criteria for Adverse Events version 4.0, were tabulated in relation to treatment variables, and associations with sequencing and timing were assessed. Results: We identified 133 patients, of whom 28 received a CTLA-4 inhibitor alone, 88 received a PD-1 inhibitor alone, and 17 received both classes of inhibitors either sequentially (n=13) or concurrently (n=4). Fifty-six patients received radiation within 14 days of an immune checkpoint inhibitor. Forty-six patients experienced at least 1 ir-AE (34.6%). Patients receiving both CTLA-4 and PD-1 inhibitors experienced more any-grade ir-AEs as compared with either individually (71% vs 29%, P=.0008). Any-grade ir-AEs occurred in 39% of patients in whom radiation was administered within 14 days of immunotherapy, compared with 23% of other patients (P=.06) and more often in patients who received higher equivalent dose in 2-Gy fractions (EQD2) EQD2 (P=.01). However, most toxicities were mild. There were no associations between site irradiated and specific ir-AEs. Conclusions: Our data suggest the combination of focal palliative radiation and CTLA-4 and/or PD-1 inhibitors is well tolerated, with manageable ir-AEs that did not seem to be associated with the particular site irradiated. Although conclusions are limited by the heterogeneity of patients and treatments, and future confirmatory studies are needed, this information can help guide clinical practice for patients receiving immune checkpoint therapy who require palliative radiation therapy.

  15. Ropes eye plaque brachytherapy dosimetry for two models of 103Pd seeds

    International Nuclear Information System (INIS)

    Saidi, P.; Sadeghi, M.; Shirazi, A.; Tenreiro, C.

    2011-01-01

    Full text: Brachytherapy dose distributions are calculated for I5 m m ROPES eye plaque loaded with model Theragenics200 and IR06-103Pd seeds. The effects of stainless steel backing and Acrylic insert on dose distribution along the central axis of the eye plaque and at critical ocular structure are investigated. Monte Carlo simulation was carried out with the Version 5 of the MCNP. The dose at critical ocular structure by considering the eye composition was calculated. Results are compared with the calculated data for CaMS eye plaque loaded with Theragenics200 palladium-103 seeds and model 6711 iodine-125 seed. The air kerma strength of the IR06- 103Pd seed to deliver 85 Gy in apex of tumor in water medium was calculated to be 4.10 U/seed. Along the central axis of stainless steel plaque loaded with new 103Pd seeds in Acrylic insert, the dose reduction relative to water is 6.9% at 5 mm (apex). Removal of the Acrylic insert from the plaque (replacing with water) did not make significantly difference in dose reduction results (O.2%). The presence of the stainless steel backing results in dose enhancement near the plaque relative to water. Doses at points of interest are higher for ROPES eye plaque when compared to CaMS eye plaque. The dosimetric parameters calculated in this work for the new palladium seed, showed that in dosimetry point of view, the IR06-103Pd seed is suitable for use in brachytherapy. The effect of Acrylic insert on dose distribution is negligible and the main effect on dose reduction is due to the presence of stainless steel plaque backing. (author)

  16. Increased Expression and Modulated Regulatory Activity of Coinhibitory Receptors PD-1, TIGIT, and TIM-3 in Lymphocytes From Patients With Systemic Sclerosis.

    Science.gov (United States)

    Fleury, Michelle; Belkina, Anna C; Proctor, Elizabeth A; Zammitti, Christopher; Simms, Robert W; Lauffenburger, Douglas A; Snyder-Cappione, Jennifer E; Lafyatis, Robert; Dooms, Hans

    2018-04-01

    Immune dysfunction is an important component of the disease process underlying systemic sclerosis (SSc), but the mechanisms contributing to altered immune cell function in SSc remain poorly defined. This study was undertaken to measure the expression and function of the coinhibitory receptors (co-IRs) programmed cell death 1 (PD-1), T cell immunoglobulin and ITIM domain (TIGIT), T cell immunoglobulin and mucin domain 3 (TIM-3), and lymphocyte activation gene 3 (LAG-3) in lymphocyte subsets from the peripheral blood of patients with SSc. Co-IR expression levels on subsets of immune cells were analyzed using a 16-color flow cytometry panel. The functional role of co-IRs was determined by measuring cytokine production after in vitro stimulation of SSc and healthy control peripheral blood mononuclear cells (PBMCs) in the presence of co-IR-blocking antibodies. Supernatants from cultures of stimulated PBMCs were added to SSc fibroblasts, and their impact on fibroblast gene expression was measured. Mathematical modeling was used to reveal differences between co-IR functions in SSc patients and healthy controls. Levels of the co-IRs PD-1 and TIGIT were increased, and each was coexpressed, in distinct T cell subsets from SSc patients compared to healthy controls. Levels of TIM-3 were increased in SSc natural killer cells. PD-1, TIGIT, and TIM-3 antibody blockade revealed patient-specific roles of each of these co-IRs in modulating activation-induced T cell cytokine production. In contrast to healthy subjects, blockade of TIGIT and TIM-3, but not PD-1, failed to reverse inhibited cytokine production in SSc patients, indicating that enhanced T cell exhaustion is present in SSc. Finally, cytokines secreted in anti-TIM-3-treated PBMC cultures distinctly changed the gene expression profile in SSc fibroblasts. The altered expression and regulatory capacity of co-IRs in SSc lymphocytes may contribute to disease pathophysiology by modulating the cytokine-mediated cross-talk of

  17. Activation of charcoal made from japanese cypress as oxygen electrode in fuel cell by deposition of Pd-metal/Heteropolyacids of the micropores; Kinzokuparajiumu-heteroporisan no bunsan tanzi niyoru hinoki mokutan no nenryo denchisansokyoku to shiteno kinouka

    Energy Technology Data Exchange (ETDEWEB)

    Yumine, Takuya.; Kominami, Hiroshi.; Kera, Yoshiya. [Kinki University, osaka (Japan); Abe, Ikuo. [Osaka Municipal Technology Research Institute, Osaka (Japan)

    1998-12-31

    Pd- and Pt-metal were observed by TEM to be highly disperdsed on charcoal prepared from Japanese Cypress [Hinoki] at 900degreeC (Pd, Pt/H2). Nafion-sheet was hot-pressed with Pd/H2 and Pt/H2 disc-pellets placed in the other sides to make a fuel cell-electrode unit. The 1-V curve in the H{sub 2}-O{sub 2} fuel were measured : The voltage certainly grew with increase in the amount of Pd-metal (1{yields}13wt%) and with a mixing of [Nafion] powder (11wt%). The discharge character was greatly improved with the addition of heteropolyacid (H{sub 3}PMo{sub 11}VO{sub 42};PVMo{sub 11}). When a charcoal prepared from Hinoki at 2400degreeC (HG) was used, the inner resistivity was about 10-times lower than the case of H2 used, although the dispersed states of Pd-metal became considerably poor on HG rather than H2. The actuvuty also increased further with the addition of Nafion and PVMo{sub 11}. (author)

  18. Synthesis, characterization and evaluation of green catalytic activity of nano Ag–Pt doped silicate

    International Nuclear Information System (INIS)

    Murugavelu, M.; Karthikeyan, B.

    2013-01-01

    Highlights: ► Nanosized Ag–Pt loaded SiO 2 was prepared by sol–gel method. ► This catalyst has been characterized by different techniques. ► Catalyst induces the reaction of condensation of indole and aldehyde in lesser time. ► The coupled product is confirmed by spectral and DFT theoretical methods. - Abstract: In order to get materials with enhanced adsorption and organic transformation performance, nanosized Ag–Pt nanoparticles loaded SiO 2 was prepared by sol–gel method. This catalyst has been characterized by Fourier transform infrared (FT-IR) spectra, diffuse reflectance spectra (DRS), fluorescence, high-resolution scanning electron microscopy (HR-SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Ag–Pt/SiO 2 catalyst induces the reaction of condensation of indole and aldehyde to give bis(indolyl)methanes in striking lesser time under microwave (MW) irradiation and it has been examined with different substituted benzaldehydes. The coupled product is confirmed by FT-IR, 1 H, 13 C NMR and DFT theoretical methods.

  19. 18FDG-PET predicts pharmacodynamic response to OSI-906, a dual IGF-1R/IR inhibitor, in preclinical mouse models of lung cancer.

    Science.gov (United States)

    McKinley, Eliot T; Bugaj, Joseph E; Zhao, Ping; Guleryuz, Saffet; Mantis, Christine; Gokhale, Prafulla C; Wild, Robert; Manning, H Charles

    2011-05-15

    To evaluate 2-deoxy-2-[(18)F]fluoro-d-glucose positron emission tomography imaging ((18)FDG-PET) as a predictive, noninvasive, pharmacodynamic (PD) biomarker of response following administration of a small-molecule insulin-like growth factor-1 receptor and insulin receptor (IGF-1R/IR) inhibitor, OSI-906. In vitro uptake studies of (3)H-2-deoxy glucose following OSI-906 exposure were conducted evaluating correlation of dose with inhibition of IGF-1R/IR as well as markers of downstream pathways and glucose metabolism. Similarly, in vivo PD effects were evaluated in human tumor cell line xenografts propagated in athymic nude mice by (18)FDG-PET at 2, 4, and 24 hours following a single treatment of OSI-906 for the correlation of inhibition of receptor targets and downstream markers. Uptake of (3)H-2-deoxy glucose and (18)FDG was significantly diminished following OSI-906 exposure in sensitive tumor cells and subcutaneous xenografts (NCI-H292) but not in an insensitive model lacking IGF-1R expression (NCI-H441). Diminished PD (18)FDG-PET, collected immediately following the initial treatment agreed with inhibition of pIGF-1R/pIR, reduced PI3K (phosphoinositide 3-kinase) and MAPK (mitogen activated protein kinase) pathway activity, and predicted tumor growth arrest as measured by high-resolution ultrasound imaging. (18)FDG-PET seems to serve as a rapid, noninvasive PD marker of IGF-1R/IR inhibition following a single dose of OSI-906 and should be explored clinically as a predictive clinical biomarker in patients undergoing IGF-1R/IR-directed cancer therapy. ©2011 AACR.

  20. Perpendicular magnetic anisotropy in granular multilayers of CoPd alloyed nanoparticles

    Science.gov (United States)

    Vivas, L. G.; Rubín, J.; Figueroa, A. I.; Bartolomé, F.; García, L. M.; Deranlot, C.; Petroff, F.; Ruiz, L.; González-Calbet, J. M.; Pascarelli, S.; Brookes, N. B.; Wilhelm, F.; Chorro, M.; Rogalev, A.; Bartolomé, J.

    2016-05-01

    Co-Pd multilayers obtained by Pd capping of pre-deposited Co nanoparticles on amorphous alumina are systematically studied by means of high-resolution transmission electron microscopy, x-ray diffraction, extended x-ray absorption fine structure, SQUID-based magnetometry, and x-ray magnetic circular dichroism. The films are formed by CoPd alloyed nanoparticles self-organized across the layers, with the interspace between the nanoparticles filled by the non-alloyed Pd metal. The nanoparticles show atomic arrangements compatible with short-range chemical order of L 10 strucure type. The collective magnetic behavior is that of ferromagnetically coupled particles with perpendicular magnetic anisotropy, irrespective of the amount of deposited Pd. For increasing temperature three magnetic phases are identified: hard ferromagnetic with strong coercive field, soft-ferromagnetic as in an amorphous asperomagnet, and superparamagnetic. Increasing the amount of Pd in the system leads to both magnetic hardness increment and higher transition temperatures. Magnetic total moments of 1.77(4) μB and 0.45(4) μB are found at Co and Pd sites, respectively, where the orbital moment of Co, 0.40(2) μB, is high, while that of Pd is negligible. The effective magnetic anisotropy is the largest in the capping metal series (Pd, Pt, W, Cu, Ag, Au), which is attributed to the interparticle interaction between de nanoparticles, in addition to the intraparticle anisotropy arising from hybridization between the 3 d -4 d bands associated to the Co and Pd chemical arrangement in a L 10 structure type.

  1. Application of the TRAC-PD2 code to the simulation of the CANON experiment

    International Nuclear Information System (INIS)

    Neves Conti, T. das; Freitas, R.L.

    1985-01-01

    A comparison between the TRAC -PD2 code calculations and results from the CANON experiment is presented. The CANON experiment simulates the loss of coolant accident through the depressurization of a horizontal tube containing water at different temperatures. The experiment consist of the instantaneous rupture at one end of the tubing and the corresponding pressure and void fraction measurements during the transient. The comparison shows that the TRAC-PD2 code predicts satisfactorily the pressure and void fraction evolution in the CANON experiment. (F.C.) [pt

  2. Electronic structure of transition metal dichalcogenides PdTe2 and Cu0.05PdTe2 superconductors obtained by angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Liu Yan; Zhao Jian-Zhou; Yu Li; Hu Cheng; Liu De-Fa; Peng Ying-Ying; Xie Zhuo-Jin; He Jun-Feng; Chen Chao-Yu; Feng Ya; Yi He-Mian; Liu Xu; Zhao Lin; He Shao-Long; Liu Guo-Dong; Dong Xiao-Li; Zhang Jun; Lin Cheng-Tian; Chen Chuang-Tian; Xu Zu-Yan

    2015-01-01

    The layered transition metal chalcogenides have been a fertile land in solid state physics for many decades. Various MX 2 -type transition metal dichalcogenides, such as WTe 2 , IrTe 2 , and MoS 2 , have triggered great attention recently, either for the discovery of novel phenomena or some extreme or exotic physical properties, or for their potential applications. PdTe 2 is a superconductor in the class of transition metal dichalcogenides, and superconductivity is enhanced in its Cu-intercalated form, Cu 0.05 PdTe 2 . It is important to study the electronic structures of PdTe 2 and its intercalated form in order to explore for new phenomena and physical properties and understand the related superconductivity enhancement mechanism. Here we report systematic high resolution angle-resolved photoemission (ARPES) studies on PdTe 2 and Cu 0.05 PdTe 2 single crystals, combined with the band structure calculations. We present in detail for the first time the complex multi-band Fermi surface topology and densely-arranged band structure of these compounds. By carefully examining the electronic structures of the two systems, we find that Cu-intercalation in PdTe 2 results in electron-doping, which causes the band structure to shift downwards by nearly 16 meV in Cu 0.05 PdTe 2 . Our results lay a foundation for further exploration and investigation on PdTe 2 and related superconductors. (rapid communication)

  3. Infrared and Raman Spectra of and Isotopomers: A DFT-PT2 Anharmonic Study

    Directory of Open Access Journals (Sweden)

    Andrea Alparone

    2013-01-01

    Full Text Available IR and Raman spectra of selenophene and of its perdeuterated isotopomer have been obtained in gas phase through density-functional theory (DFT computations. Vibrational wavenumbers have been calculated using harmonic and anharmonic second-order perturbation theory (PT2 procedures with the B3LYP method and the 6-311 basis set. Anharmonic overtones have been determined by means of the PT2 method. The introduction of anharmonic terms decreases the harmonic wavenumbers, giving a significantly better agreement with the experimental data. The most significant anharmonic effects occur for the C–H and C–D stretching modes, the observed H/D isotopic wavenumber redshifts being satisfactorily reproduced by the PT2 computations within 6–20 cm−1 (1–3%. In the spectral region between 500 cm−1 and 1500 cm−1, the IR spectra are dominated by the out-of-plane C–H (C–D bending transition, whereas the Raman spectra are mainly characterized by a strong peak mainly attributed to the C=C + C–C bonds stretching vibration with the contribution of the in-plane C–H (C–D bending deformation. The current results confirm that the PT2 approach combined with the B3LYP/6-311 level of calculation is a satisfactory choice for predicting vibrational spectra of cyclic molecules.

  4. Cu-capped surface alloys of Pt/Cu left brace 100 right brace

    CERN Document Server

    Alshamaileh, E; Wander, A

    2003-01-01

    The room-temperature deposition of 0.5 monolayer (ML) Pt on Cu left brace 100 right brace followed by annealing to 525 K results in a sharp c(2 x 2) low-energy electron diffraction (LEED) pattern. The structure of this surface alloy is investigated by means of symmetrized automated tensor low-energy electron diffraction (SATLEED) analysis and ab initio plane wave density functional calculations. The results are then compared with those for the similar system 0.5 ML Pd/Cu left brace 100 right brace. SATLEED results for the Pt/Cu left brace 100 right brace show that it consists of an ordered c(2 x 2) Cu-Pt second layer alloy capped with a pure Cu first layer. The first and second interlayer spacings are found to be expanded by +5.1 +- 1.7 and +3.5 +- 1.7% respectively (relative to the bulk Cu interlayer spacing of 1.807 A) due to the insertion of the 8% larger Pt atoms into the second layer. The ordered mixed layer is found to be rippled by 0.08 +- 0.06 A with Pt atoms rippled outwards towards the solid-vacuum ...

  5. Evaluation of V, Ir, Ru, V-Ir, V-Ru, and W-V as permanent chemical modifiers for the determination of cadmium, lead, and zinc in botanic and biological slurries by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Acar, Orhan

    2005-01-01

    Permanent modifiers (V, Ir, Ru, V-Ir, V-Ru, and W-V) thermally coated on to platforms of pyrolytic graphite tubes were employed for the determination of Cd, Pb, and Zn in botanic and biological slurries by electrothermal atomic absorption spectrometry (ETAAS). Conventional Pd + Mg(NO 3 ) 2 modifier mixture was also used for the determination of analytes in slurries and digested samples. Optimum masses and mass ratios of permanent modifiers for Cd, Pb, and Zn in slurry sample solutions were investigated. The 280 μg of V, 280 μg of V + 200 μg of Ir, 280 μg of V + 200 μg of Ru or 240 μg of W + 280 μg of V in 0.2% (v/v) Triton X-100 plus 0.5% (v/v) HNO 3 mixture was found as efficient as 5 μg of Pd + 3 μg of Mg(NO 3 ) 2 modifier mixture for obtaining thermal stabilization, and for obtaining best recoveries. Optimization conditions of analytes, such as pyrolysis and atomization temperature, characteristic masses and detection limits, and atomization and background peak profiles were studied with permanent and 5 μg of Pd + 3 μg of Mg(NO 3 ) 2 conventional modifiers and compared with each other. The permanent V-Ir, V-Ru, and W-V modifiers remained stable for approximately 250-300 firings when 20 μl of slurries and digested samples were delivered into the atomizer. In addition, the mixed permanent modifiers increase the tube lifetime by 50-95% when compared with untreated platforms. The characteristic masses and detection limits of analytes (dilution factor of 125 ml g -1 ) obtained with V-Ir based on integrated absorbance as example for 0.8% (m/v) slurries were 1.0 pg and 3 ng g -1 for Cd, 18 pg and 17 ng g -1 for Pb, and 0.7 pg and 4 ng g -1 for Zn, respectively. The results of analytes obtained by employing V-Ir, V-Ru, and W-V permanent modifier mixtures in botanic and biological certified and standard reference materials were in agreement with the certified values of reference materials

  6. PdRu/C catalysts for ethanol oxidation in anion-exchange membrane direct ethanol fuel cells

    Science.gov (United States)

    Ma, Liang; He, Hui; Hsu, Andrew; Chen, Rongrong

    2013-11-01

    Carbon supported PdRu catalysts with various Pd:Ru atomic ratios were synthesized by impregnation method, and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), electrochemical half-cell tests, and the anion-exchange membrane direct ethanol fuel cell (AEM-DEFC) tests. XRD results suggest that the PdRu metal exists on carbon support in an alloy form. TEM study shows that the bimetallic PdRu/C catalysts have slightly smaller average particle size than the single metal Pd/C catalyst. Lower onset potential and peak potential and much higher steady state current for ethanol oxidation in alkaline media were observed on the bimetallic catalysts (PdxRuy/C) than on the Pd/C, while the activity for ethanol oxidation on the pure Ru/C was not noticeable. By using Pd/C anode catalysts and MnO2 cathode catalysts, AEM-DEFCs free from the expensive Pt catalyst were assembled. The AEM DEFC using the bimetallic Pd3Ru/C anode catalyst showed a peak power density as high as 176 mW cm-2 at 80 °C, about 1.8 times higher than that using the single metal Pd/C catalyst. The role of Ru for enhancing the EOR activity of Pd/C catalysts is discussed.

  7. Inversion symmetry breaking induced triply degenerate points in orderly arranged PtSeTe family materials

    Science.gov (United States)

    Xiao, R. C.; Cheung, C. H.; Gong, P. L.; Lu, W. J.; Si, J. G.; Sun, Y. P.

    2018-06-01

    k paths exactly with symmetry allow to find triply degenerate points (TDPs) in band structures. The paths that host the type-II Dirac points in PtSe2 family materials also have the spatial symmetry. However, due to Kramers degeneracy (the systems have both inversion symmetry and time reversal symmetry), the crossing points in them are Dirac ones. In this work, based on symmetry analysis, first-principles calculations, and method, we predict that PtSe2 family materials should undergo topological transitions if the inversion symmetry is broken, i.e. the Dirac fermions in PtSe2 family materials split into TDPs in PtSeTe family materials (PtSSe, PtSeTe, and PdSeTe) with orderly arranged S/Se (Se/Te). It is different from the case in high-energy physics that breaking inversion symmetry I leads to the splitting of Dirac fermion into Weyl fermions. We also address a possible method to achieve the orderly arranged in PtSeTe family materials in experiments. Our study provides a real example that Dirac points transform into TDPs, and is helpful to investigate the topological transition between Dirac fermions and TDP fermions.

  8. NO Reactions Over Ir-Based Catalysts in the Presence of O2

    Directory of Open Access Journals (Sweden)

    Mingxin Guo

    2011-01-01

    Full Text Available The behaviour of a series of Ir-based catalysts supported on SiO2, ZSM-5 and γ-Al2O3 with various Ir loadings prepared by impregnation method was conducted by temperature programmed reaction (TPR technique. The result implies that NO is oxidized to NO2 while simultaneously being reduced to N2 or N2O in the NO reactions over iridium catalysts. The surface active phase over iridium catalysts that promote the NO reactions is IrO2. The catalytic activity increases with the increase of the Ir loading and support materials have a little effect on the catalytic activity. When the loading is less than 0.1%, the catalytic activity was found to be dependent on the nature of support materials and in order: Ir/ZSM-5>Ir/γ-Al2O3>Ir/SiO2. When the loading is higher than 0.1%, the catalytic activity for NO oxidation is in order: Ir/ZSM-5>Ir/SiO2>Ir/γ -Al2O3, which is correlated with Ir dispersion on the surface of support materials and the catalytic activity for NO reduction is in sequence: Ir/γ -Al2O3>Ir/SiO2>Ir/ZSM-5, which is attributed to the adsorbed-dissociation of NO2. Compared to Pt/γ-Al2O3, Ir/γ-Al2O3 catalyst is more benefit for the NO reduction.

  9. The effect of potassium addition to Pt supported on YSZ on steam reforming of mixtures of methane and ethane

    NARCIS (Netherlands)

    Graf, P.O.; Mojet, Barbara; Lefferts, Leonardus

    2009-01-01

    The influence of potassium addition on Pt supported on yttrium-stabilized zirconia (YSZ) was studied with FT-IR CO adsorption and CO-FT-IR-TPD, in order to understand the effect of potassium on the performance of the catalyst in reforming of mixtures of methane and ethane. Potassium modification of

  10. Catalytic Hydrogenation and Hydrodeoxygenation of Furfural over Pt(111): A Model System for the Rational Design and Operation of Practical Biomass Conversion Catalysts.

    Science.gov (United States)

    Taylor, Martin J; Jiang, Li; Reichert, Joachim; Papageorgiou, Anthoula C; Beaumont, Simon K; Wilson, Karen; Lee, Adam F; Barth, Johannes V; Kyriakou, Georgios

    2017-04-20

    Furfural is a key bioderived platform chemical whose reactivity under hydrogen atmospheres affords diverse chemical intermediates. Here, temperature-programmed reaction spectrometry and complementary scanning tunneling microscopy (STM) are employed to investigate furfural adsorption and reactivity over a Pt(111) model catalyst. Furfural decarbonylation to furan is highly sensitive to reaction conditions, in particular, surface crowding and associated changes in the adsorption geometry: furfural adopts a planar geometry on clean Pt(111) at low coverage, tilting at higher coverage to form a densely packed furfural adlayer. This switch in adsorption geometry strongly influences product selectivity. STM reveals the formation of hydrogen-bonded networks for planar furfural, which favor decarbonylation on clean Pt(111) and hydrogenolysis in the presence of coadsorbed hydrogen. Preadsorbed hydrogen promotes furfural hydrogenation to furfuryl alcohol and its subsequent hydrogenolysis to methyl furan, while suppressing residual surface carbon. Furfural chemistry over Pt is markedly different from that over Pd, with weaker adsorption over the former affording a simpler product distribution than the latter; Pd catalyzes a wider range of chemistry, including ring-opening to form propene. Insight into the role of molecular orientation in controlling product selectivity will guide the design and operation of more selective and stable Pt catalysts for furfural hydrogenation.

  11. Hollow raspberry-like PdAg alloy nanospheres: High electrocatalytic activity for ethanol oxidation in alkaline media

    Science.gov (United States)

    Peng, Cheng; Hu, Yongli; Liu, Mingrui; Zheng, Yixiong

    2015-03-01

    Palladium-silver (PdAg) alloy nanospheres with unique structure were prepared using a one-pot procedure based on the galvanic replacement reaction. Their electrocatalytic activity for ethanol oxidation in alkaline media was evaluated. The morphology and crystal structure of the samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Electrochemical characterization techniques, including cyclic voltammetry (CV) and chronoamperometry (CA) measurements were used to analyze the electrochemical performance of the PdAg alloy nanospheres. The SEM and TEM images showed that the PdAg alloy nanospheres exhibit a hierarchical nanostructure with hollow interiors and porous walls. Compared to the commercial Pd/C catalyst, the as-prepared PdAg alloy nanospheres exhibit superior electrocatalytic activity and stability towards ethanol electro-oxidation in alkaline media, showing its potential as a new non-Pt electro-catalyst for direct alcohol fuel cells (DAFCs).

  12. Synthesis and spectral studies of Pd(II) complexes with 2, 3-disubstituted quinazolin-(3H)-4-ones

    International Nuclear Information System (INIS)

    Prabhakar, B.; Lingaiah, P.; Laxima Reddy, K.

    1991-01-01

    A number of palladium(II) complexes of bidentate O-O and O-N donors, 2,3-disubstituted quinazoline-(3H)-4-ones, have been synthesized and characterized based on analytical, conductivity, magnetic, thermal, IR, electronic and PMR spectral data. The complexes of Pd(II) with ligands such as 2-(R)-3-(X)-substituted quinazoline-(3H)-4-ones, where R=methyl/phenyl and X=2'-hydroxybenzalimino (MHBQ/PHBQ), carboxymethyl (MCMQ/PCMQ), furfuralimino (MFQ/PFQ), acetamino (MAQ/PAQ), uramino (MUQ/PUQ) and thiouramino (MTUQ/PTUQ), yielded the complexes of the type [Pd(O-N) 2 ]Cl 2 and [Pd(O-O) 2 ]. The IR and PMR spectral data of the metal complexes indicate that MHQB, PHQB, MCMQ, and PCMQ act as uninegative bidentate ligands whereas MFQ, PFQ, MAQ, PAQ, MUQ, PUQ, MTUQ and PTUQ act as neutral bidentate ligands. The electronic spectral studies of these complexes indicate that they were square-planar geometry. (author). 23 refs., 2 tabs

  13. The platinum group elements and gold: analysis by radiochemical and instrumental neutron activation analysis and relevance to geological exploration and related problems

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, S; Plimer, I R [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    This paper presents an overview of research conducted with the support of the Australian Institute of Nuclear Science and Engineering, at the University of Melbourne, School of Earth Sciences, Radiochemical Neutron Activation Laboratory. The primary objective of this research is to realize the high potential of the platinum group elements (PGE) and gold to the solution of petrogenetic problems, the study of magma generation and magmatic processes in mafic/ultramafic rock suites, as tracers in hydrothermal ore formation. The PGEs (Os, Ru, Ir, Pt, Pd and Rh) are among the least abundant of all elements on earth with unique properties such as high melting points, high electrical and thermal conductivity, high density, strength and toughness as alloys. They exhibit both siderophile and chalcophile characteristics and are valuable tools in providing information about magmatic processes, in particular S-saturation, as well as crystal fractionation trends. Two distinct groups of PGEs are discerned; the IPGEs (Ru, Os, Ir) and the PPGEs (Pt, Pd, Rh, Au) on the basis of their behaviour during fractionation processes. Using chondrite normalized PGE patterns it is possible to distinguish between sulphides that segregated from primitive magmas, such as komatiites, and sulphides which segregated from more fractionated magmas, such as tholeiites. It is critical to the understanding of these processes to be able to analyse key elements, such as the PGE and gold, in the parts per billion to parts per trillion range. Platinum group elements and Au were determined by radiochemical neutron activation analysis using a modified NiS fire-assay preconcentration technique, adapted from procedures first used by Robert, R.V. D. and van Wyk, E. (1975) . Detection limits are generally 0.005-0.01 ppb (Au and Ir), 0.1-0.2 ppb (Pd and Pt), and 0.1-0.5 ppb for Ru. 9 refs.

  14. The platinum group elements and gold: analysis by radiochemical and instrumental neutron activation analysis and relevance to geological exploration and related problems

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, S.; Plimer, I. R. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    This paper presents an overview of research conducted with the support of the Australian Institute of Nuclear Science and Engineering, at the University of Melbourne, School of Earth Sciences, Radiochemical Neutron Activation Laboratory. The primary objective of this research is to realize the high potential of the platinum group elements (PGE) and gold to the solution of petrogenetic problems, the study of magma generation and magmatic processes in mafic/ultramafic rock suites, as tracers in hydrothermal ore formation. The PGEs (Os, Ru, Ir, Pt, Pd and Rh) are among the least abundant of all elements on earth with unique properties such as high melting points, high electrical and thermal conductivity, high density, strength and toughness as alloys. They exhibit both siderophile and chalcophile characteristics and are valuable tools in providing information about magmatic processes, in particular S-saturation, as well as crystal fractionation trends. Two distinct groups of PGEs are discerned; the IPGEs (Ru, Os, Ir) and the PPGEs (Pt, Pd, Rh, Au) on the basis of their behaviour during fractionation processes. Using chondrite normalized PGE patterns it is possible to distinguish between sulphides that segregated from primitive magmas, such as komatiites, and sulphides which segregated from more fractionated magmas, such as tholeiites. It is critical to the understanding of these processes to be able to analyse key elements, such as the PGE and gold, in the parts per billion to parts per trillion range. Platinum group elements and Au were determined by radiochemical neutron activation analysis using a modified NiS fire-assay preconcentration technique, adapted from procedures first used by Robert, R.V. D. and van Wyk, E. (1975) . Detection limits are generally 0.005-0.01 ppb (Au and Ir), 0.1-0.2 ppb (Pd and Pt), and 0.1-0.5 ppb for Ru. 9 refs.

  15. The platinum group elements and gold: analysis by radiochemical and instrumental neutron activation analysis and relevance to geological exploration and related problems

    International Nuclear Information System (INIS)

    Reeves, S.; Plimer, I. R.

    1996-01-01

    This paper presents an overview of research conducted with the support of the Australian Institute of Nuclear Science and Engineering, at the University of Melbourne, School of Earth Sciences, Radiochemical Neutron Activation Laboratory. The primary objective of this research is to realize the high potential of the platinum group elements (PGE) and gold to the solution of petrogenetic problems, the study of magma generation and magmatic processes in mafic/ultramafic rock suites, as tracers in hydrothermal ore formation. The PGEs (Os, Ru, Ir, Pt, Pd and Rh) are among the least abundant of all elements on earth with unique properties such as high melting points, high electrical and thermal conductivity, high density, strength and toughness as alloys. They exhibit both siderophile and chalcophile characteristics and are valuable tools in providing information about magmatic processes, in particular S-saturation, as well as crystal fractionation trends. Two distinct groups of PGEs are discerned; the IPGEs (Ru, Os, Ir) and the PPGEs (Pt, Pd, Rh, Au) on the basis of their behaviour during fractionation processes. Using chondrite normalized PGE patterns it is possible to distinguish between sulphides that segregated from primitive magmas, such as komatiites, and sulphides which segregated from more fractionated magmas, such as tholeiites. It is critical to the understanding of these processes to be able to analyse key elements, such as the PGE and gold, in the parts per billion to parts per trillion range. Platinum group elements and Au were determined by radiochemical neutron activation analysis using a modified NiS fire-assay preconcentration technique, adapted from procedures first used by Robert, R.V. D. and van Wyk, E. (1975) . Detection limits are generally 0.005-0.01 ppb (Au and Ir), 0.1-0.2 ppb (Pd and Pt), and 0.1-0.5 ppb for Ru. 9 refs

  16. High spin states in 181Ir and backbending phenomena in the Os-Pt region

    Science.gov (United States)

    Kaczarowski, R.; Garg, U.; Funk, E. G.; Mihelich, J. W.

    1992-01-01

    The 169Tm(16O,4n)181Ir reaction has been employed to investigate the high spin states of 181Ir using in-beam γ spectroscopy. A well-developed system of levels built on the h9/2 subshell was identified up to a maximum spin of (41/2-). Two rotational bands built on the isomeric states with τ1/2=0.33 μs (Ex=289.2 keV) and 0.13 μs (Ex=366.2 keV), respectively, were observed. The deduced gK values of 1.19+/-0.11 and 1.50+/-0.12 indicate Nilsson assignments of 9/2-[514] and 5/2+[402], respectively, for the bandheads of these bands. A high spin (I>=19/2) isomer with τ1/2=22 ns was found at an excitation energy above 1.96 MeV. The experimental results are discussed in terms of rotational models including Coriolis coupling and providing for a stable triaxial shape of the 181Ir nucleus.

  17. Influence of plasma treatment of carbon blacks on electrochemical activity of Pt/carbon blacks catalysts for DMFCs

    Science.gov (United States)

    Kim, Seok; Cho, Mi-Hwa; Lee, Jae-Rock; Park, Soo-Jin

    In this work, in order to improve the dispersion of platinum catalysts deposited on carbon materials, the effects of surface plasma treatment of carbon blacks (CBs) were investigated. The surface characteristics of the CBs were determined by fourier transformed-infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), and Boehm's titration method. The electrochemical properties of the plasma-treated CBs-supported Pt (Pt/CBs) catalysts were analyzed by linear sweep voltammetry (LSV) experiments. From the results of FT-IR and acid-base values, N 2-plasma treatment of the CBs at 300 W intensity led to a formation of a free radical on the CBs. The peak intensity increased with increase of the treatment time, due to the formation of new basic functional groups (such as C-N, C dbnd N, -NH 3 +, -NH, and dbnd NH) by the free radical on the CBs. Accordingly, the basic values were enhanced by the basic functional groups. However, after a specific reaction time, N 2-plasma treatment could hardly influence on change of the surface functional groups of CBs, due to the disappearance of free radical. Consequently, it was found that optimal treatment time was 30 s for the best electro activity of Pt/CBs catalysts and the N 2-plasma treated Pt/CBs possessed the better electrochemical properties than the pristine Pt/CBs.

  18. Fractionation of the platinum-group elments and Re during crystallization of basalt in Kilauea Iki Lava Lake, Hawaii

    Science.gov (United States)

    Pitcher, L.; Helz, R.T.; Walker, R.J.; Piccoli, P.

    2009-01-01

    Kilauea Iki lava lake formed during the 1959 summit eruption of Kilauea Volcano, then crystallized and differentiated over a period of 35??years. It offers an opportunity to evaluate the fractionation behavior of trace elements in a uniquely well-documented basaltic system. A suite of 14 core samples recovered from 1967 to 1981 has been analyzed for 5 platinum-group elements (PGE: Ir, Os, Ru, Pt, Pd), plus Re. These samples have MgO ranging from 2.4 to 26.9??wt.%, with temperatures prior to quench ranging from 1140????C to ambient (110????C). Five eruption samples were also analyzed. Osmium and Ru concentrations vary by nearly four orders of magnitude (0.0006-1.40??ppb for Os and 0.0006-2.01??ppb for Ru) and are positively correlated with MgO content. These elements behaved compatibly during crystallization, mostly likely being concentrated in trace phases (alloy or sulfide) present in olivine phenocrysts or included chromite. Iridium also correlates positively with MgO, although less strongly than Os and Ru. The somewhat poorer correlation for Ir, compared with Os and Ru, may reflect variable loss of Ir as volatile IrF6 in some of the most magnesian samples. Rhenium is negatively correlated with MgO, behaving as an incompatible trace element. Its behavior in the lava lake is complicated by apparent volatile loss of Re, as suggested by a decrease in Re concentration with time of quenching for lake samples vs. eruption samples. Platinum and Pd concentrations are negatively, albeit weakly, correlated with MgO, so these elements were modestly incompatible during crystallization of the major silicate phases. Palladium contents peaked before precipitation of immiscible sulfide liquid, however, and decline sharply in the most differentiated samples. In contrast, Pt appears to have been unaffected by sulfide precipitation. Microprobe data confirm that Pd entered the sulfide liquid before Re, and that Pt is not strongly chalcophile in this system. Occasional high Pt values

  19. Separation of Platinum from Palladium and Iridium in Iron Meteorites and Accurate High-Precision Determination of Platinum Isotopes by Multi-Collector ICP-MS.

    Science.gov (United States)

    Hunt, Alison C; Ek, Mattias; Schönbächler, Maria

    2017-12-01

    This study presents a new measurement procedure for the isolation of Pt from iron meteorite samples. The method also allows for the separation of Pd from the same sample aliquot. The separation entails a two-stage anion-exchange procedure. In the first stage, Pt and Pd are separated from each other and from major matrix constituents including Fe and Ni. In the second stage, Ir is reduced with ascorbic acid and eluted from the column before Pt collection. Platinum yields for the total procedure were typically 50-70%. After purification, high-precision Pt isotope determinations were performed by multi-collector ICP-MS. The precision of the new method was assessed using the IIAB iron meteorite North Chile. Replicate analyses of multiple digestions of this material yielded an intermediate precision for the measurement results of 0.73 for ε 192 Pt, 0.15 for ε 194 Pt and 0.09 for ε 196 Pt (2 standard deviations). The NIST SRM 3140 Pt solution reference material was passed through the measurement procedure and yielded an isotopic composition that is identical to the unprocessed Pt reference material. This indicates that the new technique is unbiased within the limit of the estimated uncertainties. Data for three iron meteorites support that Pt isotope variations in these samples are due to exposure to galactic cosmic rays in space.

  20. Synthesis and reactivity towards diiodine of palladium(II) and platinum(II) complexes with non-cyclic and cyclic ligands (C6H3{CH=NR1R2}2-2,6)-. End-on diiodine-platinum(II) bonding in macrocyclic [PtI(C6H3{CH2NMe(CH2)7MeNCH2}-2,6)(h1-I2)

    NARCIS (Netherlands)

    Koten, G. van; Beek, J.A.M. van; Dekker, G.P.C.M.; Wissing, E.; Zoutberg, M.C.; Stam, C.H.

    1990-01-01

    Several new organo-platinum(II) and -palladium(II) complexes [MX(C{6}H{3}{CH{2}NR}1{R}2{}{2}-2, 6)] (X = halide, M = Pt, Pd; R}1{ = R}2{ = Et; R}2{ = Me, R}1{ = }t{Bu, M = Pt: R}2{ = Me, R}1{ = Ph) have been synthesized from [PtCl{2}(SEt{2}){2}] or [PdCl{2}(COD)] (COD = 1, 5-cyclooctadiene) by

  1. Pt/SnO2-based CO-oxidation catalysts for long-life closed-cycle CO2 lasers

    Science.gov (United States)

    Schryer, David R.; Upchurch, Billy T.; Hess, Robert V.; Wood, George M.; Sidney, Barry D.; Miller, Irvin M.; Brown, Kenneth G.; Vannorman, John D.; Schryer, Jacqueline; Brown, David R.

    1990-01-01

    Noble-metal/tin-oxide based catalysts such as Pt/SnO2 have been shown to be good catalysts for the efficient oxidation of CO at or near room temperature. These catalysts require a reductive pretreatment and traces of hydrogen or water to exhibit their full activity. Addition of Palladium enhances the activity of these catalysts with about 15 to 20 percent Pt, 4 percent Pd, and the balance SnO2 being an optimum composition. Unfortunately, these catalysts presently exhibit significant decay due in part to CO2 retention, probably as a bicarbonate. Research on minimizing the decay in activity of these catalysts is currently in progress. A proposed mechanism of CO oxidation on Pt/SnO2-based catalysts has been developed and is discussed.

  2. Synthesis and characterization of Pd-Ni nanoalloy electrocatalysts for oxygen reduction reaction in fuel cells

    International Nuclear Information System (INIS)

    Zhao, Juan; Sarkar, Arindam; Manthiram, Arumugam

    2010-01-01

    Carbon-supported Pd-Ni nanoalloy electrocatalysts with different Pd/Ni atomic ratios have been synthesized by a modified polyol method, followed by heat treatment in a reducing atmosphere at 500-900 deg. C. The samples have been characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), rotating disk electrode (RDE) measurements, and single-cell proton exchange membrane fuel cell (PEMFC) tests for oxygen reduction reaction (ORR). XRD and TEM data reveal an increase in the degree of alloying and particle size with increasing heat-treatment temperature. XPS data indicate surface segregation with Pd enrichment on the surface of Pd 80 Ni 20 after heat treatment at ≥500 deg. C, suggesting possible lattice strains in the outermost layers. Electrochemical data based on CV, RDE, and single-cell PEMFC measurement show that Pd 80 Ni 20 heated at 500 deg. C has the highest mass catalytic activity for ORR among the Pd-Ni samples investigated, with stability and catalytic activity significantly higher than that found with Pd. With a lower cost, the Pd-Ni catalysts exhibit higher tolerance to methanol than Pt, offering an added advantage in direct methanol fuel cells (DMFC).

  3. Activity of bimetallic catalysts (Pt + Me)/A12030 in butane hydrogenolysis and benzene hydrogenation

    International Nuclear Information System (INIS)

    Zharkov, B.B.; Rubinov, A.Z.

    1986-01-01

    The authors evaluate the decomposing and hydrogenating activity of some Me/Al 2 0 3 0 and (Pt + Me)/Al 203 catalysis for the reactions of butane hydrogenolysis and conversion of benzene to cyclohexane. The temperature was 180-300 C for butane transformation and 150 C for benzene hydrogenation. During both reactions some initial decrease of catalytic activity which stabilized over 2-3 h was observed. The results show that roasting Re-containing reforming catalysts at fairly high temperatures (500-550 C) balances maximum hydrogenating and average splitting activities, thus guaranteeing high resistance to coke deposition while preserving the necessary selectivity. The decreased hydrogenating capacity of Ir/A1 2 0 3 0 and (Pt + Ir)/A1 23 0 catalysts after roasting at 500 C indicates insufficient thermal stability, which can be why renewing the initial activity of iridium containing forming catalysts by oxidating regeneration is difficult

  4. Rapid evaluation of the electrooxidation of fuel compounds with a multiple-electrode setup for direct polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Naoko; Siroma, Zyun; Ioroi, Tsutomu; Yasuda, Kazuaki [Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan)

    2007-02-10

    Electrochemical oxidation of fuel compounds in acidic media was examined on eight electrodes (Pt, Ru, PtRu, Rh, Ir, Pd, Au, and glassy carbon) simultaneously by multiple cyclic voltammetry (CV) with an electrochemical cell equipped with an eight-electrode configuration. Direct-type polymer electrolyte fuel cells (PEFCs), in which aqueous solutions of the fuel compounds are directly supplied to the anode, were also evaluated. The performances of direct PEFCs with various anode catalysts could be roughly estimated from the results obtained with multiple CV. This multiple evaluation may be useful for identifying novel fuels or electrocatalysts. Methanol, ethanol, ethylene glycol, 2-propanol, and D-glucose were oxidized selectively on Pt or PtRu, as reported previously. However, several compounds that are often used as reducing agents show electrochemical oxidation with unique characteristics. Large current was obtained for the oxidation of formic acid, hypophosphorous acid, and phosphorous acid on a Pd electrode. L-Ascorbic acid and sulfurous acid were oxidized on all of the electrodes used in the present study. (author)

  5. Green synthesis of Pd NPs from Pimpinella tirupatiensis plant extract and their application in photocatalytic activity dye degradation

    Science.gov (United States)

    Narasaiah, Palajonna; Mandal, Badal Kumar; Sarada, N. C.

    2017-11-01

    The present report the synthesis of palladium nanoparticles through the green method route offers few advantages over the common chemical and physical procedures, as it is an easy and fast, eco-friendly and does not involve any costly chemicals as well as hazardous chemicals. In this study, we reported synthesis of Pd NPs by using the Pimpinella tirupatiensis plant Extract (PTPE). The synthesized Pd NPs was characterization using different technique such as UV-Visible for the formation of Pd NPs. FT-IR spectroscopy was performed to detect the bio-active molecules liable for reduction and capping of biogenic Pd NPs. Crystallinity of Pd NPs conformed by powder - XRD. In the present study performed photo catalytic activity of synthesized Pd NPs using organic dye such as Congo red (CR). Hence, this study concludes the PTPE aqueous extract produced Pd NPs can be act as promising material for the degradation of organic pollutants.

  6. E-Health Services and Their Requirements Evaluation Elektroninės sveikatos paslaugos ir jų poreikio vertinimas

    Directory of Open Access Journals (Sweden)

    Rimantas Stašys

    2011-02-01

    healthy lifestyle, as well as utilize registration to a specialist feature. Most of the respondents surveyed also indicated that there should be more information about health care services and their prices, institution’s medical equipment and devices as well as their methods of treatment. The best practice for the e-Health website is classifying it into four groups: information on the health care institution, information relating to the services provided, information on the medical staff working in the office, other information. 48 % of the respondents were not familiar with the online registration possibility, and 74 % of survey participants would like to use the feature. Only 13 % of the respondents knew that they could fill prescription online and only 10 % were aware of the electronic medical record. All of this leads to the conclusion that Lithuanian consumers lack information about the e-health.

    pt;">pt;">Keywords: e-health, health care, services.

    pt; mso-layout-grid-align: none;">pt; mso-fareast-language: EN-US;">Praėjusio amžiaus pabaigoje vienos iš sparčiausiai besivystančių technologijų buvo susijusios su informacijos rinkimu, saugojimu ir sklaida. Šių technologijų plėtrai ir taikomumui didžiausią įtaką turėjo internetas. Nors ekonomistai skelbia, kad informacinė visuomenė Lietuvoje ir pasaulyje susiformavo jau praėjusio amžiaus pabaigoje, informacinių technologijų taikymas kai kuriose srityse, tokiose kaip sveikatos priežiūra, pradėtas ne taip jau ir seniai. Sveikatos priežiūra internete yra kur kas mažiau išplėtota nei tradicinė, kurios raida vyko pastaruosius kelis amžius. Sveikatos priežiūros internete plėtros atžvilgiu buvo pareikšta daug

  7. Alkaline Ionic Liquid Modified Pd/C Catalyst as an Efficient Catalyst for Oxidation of 5-Hydroxymethylfurfural

    Directory of Open Access Journals (Sweden)

    Zou Bin

    2018-01-01

    Full Text Available Conversion of HMF into FDCA was carried out by a simple and green process based on alkaline ionic liquid (IL modified Pd/C catalyst (Pd/C-OH−. Alkaline ionic liquids were chosen to optimize Pd/C catalyst for special hydrophilicity and hydrophobicity, redox stability, and unique dissolving abilities for polar compounds. The Pd/C-OH− catalyst was successfully prepared and characterized by SEM, XRD, TG, FT-IR, and CO2-TPD technologies. Loading of alkaline ionic liquid on the surface of Pd/C was 2.54 mmol·g−1. The catalyst showed excellent catalytic activity in the HMF oxidation after optimization of reaction temperature, reaction time, catalyst amount, and solvent. Supported alkaline ionic liquid (IL could be a substitute and promotion for homogeneous base (NaOH. Under optimal reaction conditions, high HMF conversion of 100% and FDCA yield of 82.39% were achieved over Pd/C-OH− catalyst in water at 373 K for 24 h.

  8. Fermiology and Superconductivity of Topological Surface States in PdTe2

    Science.gov (United States)

    Clark, O. J.; Neat, M. J.; Okawa, K.; Bawden, L.; Marković, I.; Mazzola, F.; Feng, J.; Sunko, V.; Riley, J. M.; Meevasana, W.; Fujii, J.; Vobornik, I.; Kim, T. K.; Hoesch, M.; Sasagawa, T.; Wahl, P.; Bahramy, M. S.; King, P. D. C.

    2018-04-01

    We study the low-energy surface electronic structure of the transition-metal dichalcogenide superconductor PdTe2 by spin- and angle-resolved photoemission, scanning tunneling microscopy, and density-functional theory-based supercell calculations. Comparing PdTe2 with its sister compound PtSe2 , we demonstrate how enhanced interlayer hopping in the Te-based material drives a band inversion within the antibonding p -orbital manifold well above the Fermi level. We show how this mediates spin-polarized topological surface states which form rich multivalley Fermi surfaces with complex spin textures. Scanning tunneling spectroscopy reveals type-II superconductivity at the surface, and moreover shows no evidence for an unconventional component of its superconducting order parameter, despite the presence of topological surface states.

  9. Inert anode containing base metal and noble metal useful for the electrolytic production of aluminum

    Science.gov (United States)

    Ray, Siba P.; Liu, Xinghua

    2000-01-01

    An inert anode for production of metals such as aluminum is disclosed. The inert anode comprises a base metal selected from Cu and Ag, and at least one noble metal selected from Ag, Pd, Pt, Au, Rh, Ru, Ir and Os. The inert anode may optionally be formed of sintered particles having interior portions containing more base metal than noble metal and exterior portions containing more noble metal than base metal. In a preferred embodiment, the base metal comprises Cu, and the noble metal comprises Ag, Pd or a combination thereof.

  10. Cerebellum neurotransmission during postnatal development: [Pt(O,O'-acac)(γ-acac)(DMS)] vs cisplatin and neurotoxicity.

    Science.gov (United States)

    Piccolini, Valeria Maria; Esposito, Alessandra; Dal Bo, Veronica; Insolia, Violetta; Bottone, Maria Grazia; De Pascali, Sandra Angelica; Fanizzi, Francesco Paolo; Bernocchi, Graziella

    2015-02-01

    Several chemotherapeutic drugs are known to cause neurotoxicity. Platinum-based agents in use or in clinical trials display neurotoxic potential accompanied by neurological complications; recent studies have identified a large number of behavioural issues in paediatric oncology patients. To understand the toxicity of platinum drugs at the molecular and cellular levels, this study compares the possible cytotoxic effects of an older platinum compound, cisplatin and a new platinum compound, [Pt(O,O'-acac)(γ-acac)(DMS)], on the CNS of postnatally developing rats, which is much more vulnerable to injury than the CNS of adult rats. Since several drugs interact with neurotransmitters during neuronal maturation, we performed immunostainings with antibodies raised against markers of glutamate and GABA, the major neurotransmitters in the cerebellum. After a single injection of cisplatin at postnatal day 10 (PD10), the labelling of Purkinje cells with the neurotransmitter markers evidenced alterations between PD11 and PD30, i.e. atrophy of the dendrite tree, changes in the distribution of synaptic contacts of parallel and climbing fibres, delay in the elimination of transient synapses on cell soma and severely impaired pinceau formation at the axon hillock. After treatment with [Pt(O,O'-acac)(γ-acac)(DMS)], the sole relevant change concerned the timing of climbing fibres elimination; the transient synapses disappearance on the Purkinje cell soma was delayed in some cells; instead, the growth of Purkinje cell dendrite tree was normal as was the formation of inhibitory synaptic contacts on these neurons. These findings add new evidence not only on the lower neurotoxicity of [Pt(O,O'-acac)(γ-acac)(DMS)] vs cisplatin but also on the involvement of neurotransmitters and relative synaptic connections in the maturation of central nerve tissue. Copyright © 2014 ISDN. Published by Elsevier Ltd. All rights reserved.

  11. Hydrogen generation from decomposition of hydrous hydrazine over Ni-Ir/CeO2 catalyst

    Directory of Open Access Journals (Sweden)

    Hongbin Dai

    2017-02-01

    Full Text Available The synthesis of highly active and selective catalysts is the central issue in the development of hydrous hydrazine (N2H4·H2O as a viable hydrogen carrier. Herein, we report the synthesis of bimetallic Ni-Ir nanocatalyts supported on CeO2 using a one-pot coprecipitation method. A combination of XRD, HRTEM and XPS analyses indicate that the Ni-Ir/CeO2 catalyst is composed of tiny Ni-Ir alloy nanoparticles with an average size of around 4 nm and crystalline CeO2 matrix. The Ni-Ir/CeO2 catalyst exhibits high catalytic activity and excellent selectivity towards hydrogen generation from N2H4·H2O at mild temperatures. Furthermore, in contrast to previously reported Ni-Pt catalysts, the Ni-Ir/CeO2 catalyst shows an alleviated requirement on alkali promoter to achieve its optimal catalytic performance.

  12. Ag Isotopic Evolution of the Mantle During Accretion: New Constraints from Pd and Ag Metal-Silicate Partitioning

    Science.gov (United States)

    Righter, K.; Schonbachler, M.

    2018-01-01

    Decay of (sup 107) Pd to (sup 107) Ag has a half-life of 6.5 times 10 (sup 6) mega-annums. Because these elements are siderophile but also volatile, they offer potential constraints on the timing of core formation as well as volatile addition. Initial modelling has shown that the Ag isotopic composition of the bulk silicate Earth (BSE) can be explained if accretion occurs with late volatile addition. These arguments were tested for sensitivity for pre-cursor Pd/Ag contents, and for a fixed Pd/Ag ratio of the BSE of 0.1. New Ag and Pd partitioning data has allowed a better understanding of the partitioning behavior of Pd and Ag during core formation. The effects of S, C and Si, and the effect of high temperature and pressure has been evaluated. We can now calculate D(Ag) and D(Pd) over the wide range of PT conditions and variable metallic liquid compositions that are known during accretion. We then use this new partitioning information to revisit the Ag isotopic composition of the BSE during accretion.

  13. Pt, Co–Pt and Fe–Pt alloy nanoclusters encapsulated in virus capsids

    International Nuclear Information System (INIS)

    Okuda, M; Eloi, J-C; Jones, S E Ward; Schwarzacher, W; Verwegen, M; Cornelissen, J J L M

    2016-01-01

    Nanostructured Pt-based alloys show great promise, not only for catalysis but also in medical and magnetic applications. To extend the properties of this class of materials, we have developed a means of synthesizing Pt and Pt-based alloy nanoclusters in the capsid of a virus. Pure Pt and Pt-alloy nanoclusters are formed through the chemical reduction of [PtCl 4 ] − by NaBH 4 with/without additional metal ions (Co or Fe). The opening and closing of the ion channels in the virus capsid were controlled by changing the pH and ionic strength of the solution. The size of the nanoclusters is limited to 18 nm by the internal diameter of the capsid. Their magnetic properties suggest potential applications in hyperthermia for the Co–Pt and Fe–Pt magnetic alloy nanoclusters. This study introduces a new way to fabricate size-restricted nanoclusters using virus capsid. (paper)

  14. Characterization of azo dyes on Pt and Pt/polyaniline/dispersed Pt electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Molina, J.; Fernandez, J.; Rio, A.I. del; Bonastre, J. [Departamento de Ingenieria Textil y Papelera, EPS de Alcoy, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy (Spain); Cases, F., E-mail: fjcases@txp.upv.es [Departamento de Ingenieria Textil y Papelera, EPS de Alcoy, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy (Spain)

    2012-06-15

    The electrochemical characterization of two organic dyes (amaranth and procion orange MX-2R) has been performed on Pt electrodes and Pt electrodes coated with polyaniline and dispersed Pt. Electrodes with different Pt loads have been synthesized and characterized obtaining that a load of 300 {mu}g cm{sup -2} was the optimum one. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was employed to observe the distribution and morphology of the Pt nanoparticles. The electroactivity of the electrodes has also been characterized by means of scanning electrochemical microscopy (SECM). The chemical characterization of Pt dispersed Pani coated Pt electrodes (Pt-Pani-Pt) was performed by means of X-ray photoelectron spectroscopy (XPS). The electrochemical characterization of the dyes has been performed by means of cyclic voltammetry. Voltammograms have shown that the presence of the dyes diminishes characteristic Pt oxidation and reduction peaks. However, redox processes due to the dyes, appeared in the voltammograms. The different species responsible of these redox processes were generated in the vicinity of the electrode and were not adsorbed on the electrode surface since after stirring, the different redox processes disappeared. Characterization with different scan rates showed that redox processes of both dyes were controlled by diffusion.

  15. Broader energy distribution of CO adsorbed at polycrystalline Pt electrode in comparison with that at Pt(111) electrode in H_2SO_4 solution confirmed by potential dependent IR/visible double resonance sum frequency generation spectroscopy

    International Nuclear Information System (INIS)

    Yang, Shuo; Noguchi, Hidenori; Uosaki, Kohei

    2017-01-01

    Highlights: • Electrochemical SFG spectroscopy is an efficient in situ probe of electronic structure at electrochemical interface. • Electrooxidation performances of CO adsorbed on polycrystalline Pt and Pt(111) electrodes were compared. • The enhanced SFG signal of CO on Pt electrodes was observed due to a vibrational-electronic double resonance effect. • The broader energy distribution of 5sa state of CO on polycrystalline Pt than on Pt(111) is proved by SFG results. - Abstract: Electrochemical cyclic voltammetry and potential dependent double resonance sum frequency generation (DR-SFG) spectroscopy were performed on CO adsorbed on polycrystalline Pt and Pt(111) electrodes in H_2SO_4 solution to examine the effect of substrate on the electronic structure of CO. The dependence of SFG intensity on potential and visible energy for atop CO band was observed on both polycrystalline and single crystalline Pt electrodes. Enhancement of the SFG intensity was determined to be a direct result of a surface electronic resonance of the visible/SF light with the electronic transition from Fermi level of Pt to the 5σ_a anti-bonding state of adsorbed CO, in agreement with previous results. Interestingly, when compared to the Pt(111) electrode, the distribution width of the intensity enhancement region on polycrystalline Pt is broader than on Pt(111). This suggests that the energy distribution of the 5σ_a state of CO on polycrystalline Pt surface is broader than that on Pt(111) due to the complex surface structure of the polycrystalline Pt electrode.

  16. Metal Carbon Eutectics to Extend the Use of the Fixed-Point Technique in Precision IR Thermometry

    Science.gov (United States)

    Battuello, M.; Girard, F.; Florio, M.

    2008-06-01

    The high-temperature extension of the fixed-point technique for primary calibration of precision infrared (IR) thermometers was investigated both through mathematical simulations and laboratory investigations. Simulations were performed with Co C (1,324°C) and Pd C (1, 492°C) eutectic fixed points, and a precision IR thermometer was calibrated from the In point (156.5985°C) up to the Co C point. Mathematical simulations suggested the possibility of directly deriving the transition temperature of the Co C and Pd C points by extrapolating the calibration derived from fixed-point measurements from In to the Cu point. Both temperatures, as a result of the low uncertainty associated with the In Cu calibration and the high number of fixed points involved in the calibration process, can be derived with an uncertainty of 0.11°C for Co C and 0.18°C for Pd C. A transition temperature of 1,324.3°C for Co C was determined from the experimental verification, a value higher than, but compatible with, the one proposed by the thermometry community for inclusion as a secondary reference point for ITS-90 dissemination, i.e., 1,324.0°C.

  17. Development and validation of an ICP-OES method for quantitation of elemental impurities in tablets according to coming US pharmacopeia chapters

    DEFF Research Database (Denmark)

    Jensen, Celina Støving; Jensen, Henrik; Gammelgaard, Bente

    2013-01-01

    for quantitation of As, Cd, Cu, Cr, Fe, Hg, Ir, Mn, Mo, Ni, Os, Pb, Pd, Pt, Rh, Ru, V and Zn in tablets according to the new USP chapters was developed. Sample preparation was performed by microwave-assisted acid digestion using a mixture of 65% HNO3 and 37% HCl (3:1, v/v). Limits of detection and quantitation...

  18. Stability and Reactivity of Cyclometallated Naphthylamine Complexes in Pd-C Bond Insertion Reactions with Coordinated Alkynylphosphanes

    KAUST Repository

    Chen, Shuli

    2013-09-17

    Phenylbis(phenylethynyl)phosphane PhP(C≡CPh)2 coordinates regiospecifically to the α-methyl-chiral ortho-platinated and -palladated naphthylamine units at the positions trans to the nitrogen donors. The P→Pt coordination bond is kinetically inert, whereas the P→Pd bond is labile. Upon heating of these phosphane complexes at 70 °C, one of the C≡C bonds in the coordinated PhP(C≡CPh)2 was activated towards an intermolecular Pd-C bond insertion reaction with an external ortho-palladated naphthylamine ring. No intramolecular insertion reaction occurred. In contrast to its palladium analogue, the ortho-platinated ring is not reactive towards coordinated PhP(C≡CPh)2, although it can promote the Pd-C bond insertion reaction. However, despite the high kinetic stability of the P→Pt coordination, the organoplatinum unit is a noticeably weaker activator than its organopalladium counterpart. The chirality of the reacting ortho-metallated naphthylamine ligand exhibited high stereochemical influence on the formation of the new stereogenic phosphorus center during the course of these C-C bond-formation reactions. The coordination chemistry and the absolute stereochemistry of the dimetallic products were determined by single-crystal X-ray crystallographic analysis. The asymmetric monoinsertion of PhP(C≡CPh)2 coordinated to a cyclometallated N,N-dimethyl naphthyl/benzylamine template into the Pd-C bonds of N,N-dimethylnaphthylamine palladacycles has been demonstrated for the synthesis of a variety of new P-stereogenic homo- or heterodimetallic complexes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Highly-efficient photocatalytic degradation of methylene blue by PoPD-modified TiO 2 nanocomposites due to photosensitization-synergetic effect of TiO2 with PoPD.

    Science.gov (United States)

    Yang, Chuanxi; Dong, Wenping; Cui, Guanwei; Zhao, Yingqiang; Shi, Xifeng; Xia, Xinyuan; Tang, Bo; Wang, Weiliang

    2017-06-21

    Poly-o-phenylenediamine modified TiO 2 nanocomposites were successfully synthesized via an 'in situ' oxidative polymerization method. The modified nanocomposites were characterized by BET, XRD, TEM, FT-IR, TGA, XPS, EA and UV-Vis DRS. The photocatalytic degradation of methylene blue was chosen as a model reaction to evaluate the photocatalytic activities of TiO 2 and PoPD/TiO 2 . The results indicated that PoPD/TiO 2 nanocomposites exhibited good photocatalytic activity and stability. The photocatalytic activity of PoPD/TiO 2 increased as the initial pH increased because of electrostatic adsorption between the photocatalyst and MB as well as the generation of ·OH, whereas it exhibited an earlier increasing and later decreasing trend as the concentration of the photocatalyst increased owing to the absorption of visible light. The photocatalytic stability of the PoPD/TiO 2 nanocomposite was dependent on the stability of its structure. Based on radical trapping experiments and ESR measurements, the origin of oxidizing ability of PoPD/TiO 2 nanocomposites on photocatalytic degradation of MB was proposed, which taking into account of ·OH and ·O 2 - were the first and second important ROS, respectively. The possible photocatalytic mechanism and photocatalytic activity enhanced mechanism has been proposed, taking into account the photosensitization effect and synergetic effect of TiO 2 with PoPD.

  20. Magnetic and electronic properties in CeTSi3 and CeTGe3 (T: transition metal)

    International Nuclear Information System (INIS)

    Shimoda, T.; Okuda, Y.; Takeda, Y.; Ida, Y.; Miyauchi, Y.; Kawai, T.; Fujie, T.; Sugitani, I.; Thamizhavel, A.; Matsuda, T.D.; Haga, Y.; Takeuchi, T.; Nakashima, M.; Settai, R.; Onuki, Y.

    2007-01-01

    We investigated the magnetic properties of CeTSi 3 (T: Ru, Os, Co, Rh, Ir, Pd and Pt) and CeTGe 3 (T: Co, Rh and Ir) by measuring their electrical resistivity and magnetic susceptibility. CeRuSi 3 , CeOsSi 3 and CeCoSi 3 do not order magnetically, with a large Kondo temperature of about 200K. The other compounds order antiferromagnetically, and are very similar to each other in their magnetic and electronic properties, which is related to a large crystalline electric field (CEF) splitting energy of the 4f electron, about 500K in CeIrSi 3

  1. Bimetallic catalysts for HI decomposition in the iodine-sulfur thermochemical cycle

    International Nuclear Information System (INIS)

    Wang Laijun; Hu Songzhi; Xu Lufei; Li Daocai; Han Qi; Chen Songzhe; Zhang Ping; Xu Jingming

    2014-01-01

    Among the different kinds of thermochemical water-splitting cycles, the iodine-sulfur (IS) cycle has attracted more and more interest because it is one of the promising candidates for economical and massive hydrogen production. However, there still exist some science and technical problems to be solved before industrialization of the IS process. One such problem is the catalytic decomposition of hydrogen iodide. Although the active carbon supported platinum has been verified to present the excellent performance for HI decomposition, it is very expensive and easy to agglomerate under the harsh condition. In order to decrease the cost and increase the stability of the catalysts for HI decomposition, a series of bimetallic catalysts were prepared and studied at INET. This paper summarized our present research advances on the bimetallic catalysts (Pt-Pd, Pd-Ir and Pt-Ir) for HI decomposition. In the course of the study, the physical properties, structure, and morphology of the catalysts were characterized by specific surface area, X-ray diffractometer; and transmission electron microscopy, respectively. The catalytic activity for HI decomposition was investigated in a fixed bed reactor under atmospheric pressure. The results show that due to the higher activity and better stability, the active carbon supported bimetallic catalyst is more potential candidate than mono metallic Pt catalyst for HI decomposition in the IS thermochemical cycle. (author)

  2. Detection of trace explosives on relevant substrates using a mobile platform for photothermal infrared imaging spectroscopy (PT-IRIS)

    Science.gov (United States)

    Kendziora, Christopher A.; Furstenberg, Robert; Papantonakis, Michael; Nguyen, Viet; Byers, Jeff; McGill, R. Andrew

    2015-05-01

    This manuscript describes the results of recent tests regarding standoff detection of trace explosives on relevant substrates using a mobile platform. We are developing a technology for detection based on photo-thermal infrared (IR) imaging spectroscopy (PT-IRIS). This approach leverages one or more microfabricated IR quantum cascade lasers, tuned to strong absorption bands in the analytes and directed to illuminate an area on a surface of interest. An IR focal plane array is used to image the surface thermal emission upon laser illumination. The PT-IRIS signal is processed as a hyperspectral image cube comprised of spatial, spectral and temporal dimensions as vectors within a detection algorithm. Increased sensitivity to explosives and selectivity between different analyte types is achieved by narrow bandpass IR filters in the collection path. We have previously demonstrated the technique at several meters of stand-off distance indoors and in field tests, while operating the lasers below the infrared eye-safe intensity limit (100 mW/cm2). Sensitivity to explosive traces as small as a single 10 μm diameter particle (~1 ng) has been demonstrated. Analytes tested here include RDX, TNT, ammonium nitrate and sucrose. The substrates tested in this current work include metal, plastics, glass and painted car panels.

  3. The molecular, electronic, bonding, and photophysical features of the [(c-Pt3)Tl(c-Pt3)]+ inorganic metallocenes.

    Science.gov (United States)

    Tsipis, Athanassios C; Gkekas, George N

    2013-06-21

    The molecular, electronic, bonding and photophysical properties of a series of inorganic metallocenes with the general formula {[Pt3(μ2-L)3(L')3]2(μ6-Tl)}(+) (L = CO, CH3CN, PH2, C6F5, or SO2 and L' = CO, PH3, CH3CN, C6F5) have been studied by means of DFT electronic structure calculations. The estimated Tl-cd distances between Tl(+) cations and the centroids (cd) of the trimetallic Pt3(μ2-L)3(L')3 {3 : 3 : 3} decks were found in the range 2.932-3.397 Å. The predicted bond dissociation energy, D0, of the (c-Pt3)···Tl(+) bonds was found to lie within the range -31.5 up to -77.5 kcal mol(-1) at the B3LYP/LANL2TZ(f)(Pt) ∪ 6-31G(d,p)(E) ∪ SRLC(Tl) level of theory. Most of the [(c-Pt3)Tl(c-Pt3)](+) inorganic metallocenes adopt a bend titanocene-like structure. The Localized Orbital Locator (LOL) contour maps along with the 3D contour plots of the Reduced Gradient Density (RDG) mirror the composite nature of the interaction of Tl(+) with the triangular Pt3 metallic ring cores consisting of electrostatic, covalent and dispersion interaction components. The Pt3···Tl(+)···Pt3 bonding mode was further validated by Energy Decomposition Analysis (EDA) calculations which demonstrated that the electrostatic and covalent components of the interaction contribute almost equally to the bonding interactions. Furthermore, Charge Decomposition Analysis (CDA) and Natural Bond Orbital Analysis (NBO) calculations indicated that charge transfer from the Tl(+) cation to the Pt3(0) {3 : 3 : 3} decks also occurs. The {[Pt3(μ2-L)3(L')3]2(μ6-Tl)}(+) sandwiches absorb in the UV-Vis region (300-500 nm) and emit in the visible-near IR region (600-1000 nm). The absorption bands are mainly of MLCT/MC character while phosphorescence is predicted to occur via the first triplet excited state, T1, since the spin density of this excited state could be described as a SOMO - 1/SOMO combination. Generally, no significant distortions occur upon excitation of these systems

  4. Pt(II) porphyrin modified TiO{sub 2} composites as photocatalysts for efficient 4-NP degradation

    Energy Technology Data Exchange (ETDEWEB)

    Mingyue, Duan [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian, Shaanxi 710069 (China); Li Jun, E-mail: junli@nwu.edu.cn [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian, Shaanxi 710069 (China); Min, Li [Datang Wujiang Gas Turbine Power Limited Liability Company, Jiangsu 215214 (China); Zengqi, Zhang; Chen, Wang [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian, Shaanxi 710069 (China)

    2012-05-01

    Three Pt(II) porphyrins 5,10,15,20-tetra-[2 or 3 or 4-(3-phenoxy)propoxy]phenyl porphyrin]platinum(II) (1-3) were synthesized and characterized spectroscopically. The corresponding Pt(II) porphyrins-TiO{sub 2} composites were then prepared and characterized by means of FT-IR and diffused reflectance spectra, X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of Pt(II) porphyrins-TiO{sub 2} catalyst was investigated by testing the photodegradation of 4-nitrophenol (4-NP) in aqueous solution under irradiation with Xenon lamp. The results indicated that Pt(II) porphyrins greatly enhanced the photocatalytic efficiency of bare TiO{sub 2} in photodegrading the 4-NP, and the distinct space tropisms of peripheral substituents in meso-sites of porphyrin ring led to different results.

  5. Electrochemical CO2 and CO reduction on metal-functionalized porphyrin-like graphene

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Vanin, Marco; Karamad, Mohammedreza

    2013-01-01

    Porphyrin-like metal-functionalized graphene structures have been investigated as possible catalysts for CO2 and CO reduction to methane or methanol. The late transition metals (Cu, Ag, Au, Ni, Pd, Pt, Co, Rh, Ir, Fe, Ru, Os) and some p (B, Al, Ga) and s (Mg) metals comprised the center of the po......Porphyrin-like metal-functionalized graphene structures have been investigated as possible catalysts for CO2 and CO reduction to methane or methanol. The late transition metals (Cu, Ag, Au, Ni, Pd, Pt, Co, Rh, Ir, Fe, Ru, Os) and some p (B, Al, Ga) and s (Mg) metals comprised the center...... instead of CO2. Volcano plots were constructed on the basis of scaling relations of reaction intermediates, and from these plots the reaction steps with the highest overpotentials were deduced. The Rh-porphyrin-like functionalized graphene was identified as the most active catalyst for producing methanol...... from CO, featuring an overpotential of 0.22 V. Additionally, we have also examined the hydrogen evolution and oxidation reaction, and in their case, too, Rh-porphyrin turned out to be the best catalyst with an overpotential of 0.15 V. © 2013 American Chemical Society....

  6. High-throughput screening of small-molecule adsorption in MOF-74

    Science.gov (United States)

    Thonhauser, T.; Canepa, P.

    2014-03-01

    Using high-throughput screening coupled with state-of-the-art van der Waals density functional theory, we investigate the adsorption properties of four important molecules, H2, CO2, CH4, and H2O in MOF-74-  with  = Be, Mg, Al, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Zr, Nb, Ru, Rh, Pd, La, W, Os, Ir, and Pt. We show that high-throughput techniques can aid in speeding up the development and refinement of effective materials for hydrogen storage, carbon capture, and gas separation. The exploration of the configurational adsorption space allows us to extract crucial information concerning, for example, the competition of water with CO2 for the adsorption binding sites. We find that only a few noble metals--Rh, Pd, Os, Ir, and Pt--favor the adsorption of CO2 and hence are potential candidates for effective carbon-capture materials. Our findings further reveal significant differences in the binding characteristics of H2, CO2, CH4, and H2O within the MOF structure, indicating that molecular blends can be successfully separated by these nano-porous materials. Supported by DOE DE-FG02-08ER46491.

  7. Large-format platinum silicide microwave kinetic inductance detectors for optical to near-IR astronomy.

    Science.gov (United States)

    Szypryt, P; Meeker, S R; Coiffard, G; Fruitwala, N; Bumble, B; Ulbricht, G; Walter, A B; Daal, M; Bockstiegel, C; Collura, G; Zobrist, N; Lipartito, I; Mazin, B A

    2017-10-16

    We have fabricated and characterized 10,000 and 20,440 pixel Microwave Kinetic Inductance Detector (MKID) arrays for the Dark-speckle Near-IR Energy-resolved Superconducting Spectrophotometer (DARKNESS) and the MKID Exoplanet Camera (MEC). These instruments are designed to sit behind adaptive optics systems with the goal of directly imaging exoplanets in a 800-1400 nm band. Previous large optical and near-IR MKID arrays were fabricated using substoichiometric titanium nitride (TiN) on a silicon substrate. These arrays, however, suffered from severe non-uniformities in the TiN critical temperature, causing resonances to shift away from their designed values and lowering usable detector yield. We have begun fabricating DARKNESS and MEC arrays using platinum silicide (PtSi) on sapphire instead of TiN. Not only do these arrays have much higher uniformity than the TiN arrays, resulting in higher pixel yields, they have demonstrated better spectral resolution than TiN MKIDs of similar design. PtSi MKIDs also do not display the hot pixel effects seen when illuminating TiN on silicon MKIDs with photons with wavelengths shorter than 1 µm.

  8. PdNi- and Pd-coated electrodes prepared by electrodeposition from ionic liquid for nonenzymatic electrochemical determination of ethanol and glucose in alkaline media.

    Science.gov (United States)

    Huang, Hsin-Yi; Chen, Po-Yu

    2010-12-15

    Nonenzymatic electrochemical determination of ethanol and glucose was respectively achieved using PdNi- and Pd-coated electrodes prepared by electrodeposition from the novel metal-free ionic liquid (IL); N-butyl-N-methylpyrrolidinium dicyanamide (BMP-DCA). BMP-DCA provided an excellent environment and wide cathodic limit for electrodeposition of metals and alloys because many metal chlorides could dissolve in this IL where the reduction potentials of Pd(II) and Ni(II) indeed overlapped, leading to the convenience of potentiostatic codeposition. In aqueous solutions, the reduction potentials of Pd(II) and Ni(II) are considerably separated. The bimetallic PdNi coatings with atomic ratios of ∼ 80/20 showed the highest current for ethanol oxidation reaction (EOR). Ethanol was detected by either cyclic voltammetry (CV) or hydrodynamic amperometry (HA). Using CV, the dependence of EOR peak current on concentration was linear from 4.92 to 962 μM with a detection limit of 2.26 μM (σ=3), and a linearity was observed from 4.92 to 988 μM using HA (detection limit 0.83 μM (σ=3)). The Pd-coated electrodes prepared by electrodeposition from BMP-DCA showed electrocatalytic activity to glucose oxidation and CV, HA, and square-wave voltammetry (SWV) were employed to determine glucose. SWV showed the best sensitivity and linearity was observed from 2.86 μM to 107 μM, and from 2.99 mM to 10.88 mM with detection limits of 0.78 μM and 25.9 μM (σ=3), respectively. For glucose detection, the interference produced from ascorbic acid, uric acid, and acetaminophen was significantly suppressed, compared with a regular Pt disk electrode. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. A Pd/C-CeO2 Anode Catalyst for High-Performance Platinum-Free Anion Exchange Membrane Fuel Cells.

    Science.gov (United States)

    Miller, Hamish A; Lavacchi, Alessandro; Vizza, Francesco; Marelli, Marcello; Di Benedetto, Francesco; D'Acapito, Francesco; Paska, Yair; Page, Miles; Dekel, Dario R

    2016-05-10

    One of the biggest obstacles to the dissemination of fuel cells is their cost, a large part of which is due to platinum (Pt) electrocatalysts. Complete removal of Pt is a difficult if not impossible task for proton exchange membrane fuel cells (PEM-FCs). The anion exchange membrane fuel cell (AEM-FC) has long been proposed as a solution as non-Pt metals may be employed. Despite this, few examples of Pt-free AEM-FCs have been demonstrated with modest power output. The main obstacle preventing the realization of a high power density Pt-free AEM-FC is sluggish hydrogen oxidation (HOR) kinetics of the anode catalyst. Here we describe a Pt-free AEM-FC that employs a mixed carbon-CeO2 supported palladium (Pd) anode catalyst that exhibits enhanced kinetics for the HOR. AEM-FC tests run on dry H2 and pure air show peak power densities of more than 500 mW cm(-2) . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Electronic structure and chemical bonding in LaIrSi-type intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Matar, Samir F. [Bordeaux Univ., Pessac (France). CNRS; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Nakhl, Michel [Univ. Libanaise, Fanar (Lebanon). Ecole Doctorale Sciences et Technologies

    2017-05-01

    The cubic LaIrSi type has 23 representatives in aluminides, gallides, silicides, germanides, phosphides, and arsenides, all with a valence electron count of 16 or 17. The striking structural motif is a three-dimensional network of the transition metal (T) and p element (X) atoms with TX{sub 3/3} respectively XT{sub 3/3} coordination. Alkaline earth or rare earth atoms fill cavities within the polyanionic [TX]{sup δ-} networks. The present work presents a detailed theoretical study of chemical bonding in LaIrSi-type representatives, exemplarily for CaPtSi, BaIrP, BaAuGa, LaIrSi, CeRhSi, and CeIrSi. DFT-GGA-based electronic structure calculations show weakly metallic compounds with itinerant small magnitude DOSs at E{sub F} except for CeRhSi whose large Ce DOS at E{sub F} leads to a finite magnetization on Ce (0.73 μ{sub B}) and induced small moments of opposite sign on Rh and Si in a ferromagnetic ground state. The chemical bonding analyses show dominant bonding within the [TX]{sup δ-} polyanionic networks. Charge transfer magnitudes were found in accordance with the course of the electronegativites of the chemical constituents.

  11. Green synthesis and characterization of Au@Pt core-shell bimetallic nanoparticles using gallic acid

    Science.gov (United States)

    Zhang, Guojun; Zheng, Hongmei; Shen, Ming; Wang, Lei; Wang, Xiaosan

    2015-06-01

    In this study, we developed a facile and benign green synthesis approach for the successful fabrication of well-dispersed urchin-like Au@Pt core-shell nanoparticles (NPs) using gallic acid (GA) as both a reducing and protecting agent. The proposed one-step synthesis exploits the differences in the reduction potentials of AuCl4- and PtCl62-, where the AuCl4- ions are preferentially reduced to Au cores and the PtCl62- ions are then deposited continuously onto the Au core surface as a Pt shell. The as-prepared Au@Pt NPs were characterized by transmission electron microscope (TEM); high-resolution transmission electron microscope (HR-TEM); scanning electron microscope (SEM); UV-vis absorption spectra (UV-vis); X-ray diffraction (XRD); Fourier transmission infrared spectra (FT-IR). We systematically investigated the effects of some experimental parameters on the formation of the Au@Pt NPs, i.e., the reaction temperature, the molar ratios of HAuCl4/H2PtCl6, and the amount of GA. When polyvinylpyrrolidone K-30 (PVP) was used as a protecting agent, the Au@Pt core-shell NPs obtained using this green synthesis method were better dispersed and smaller in size. The as-prepared Au@Pt NPs exhibited better catalytic activity in the reaction where NaBH4 reduced p-nitrophenol to p-aminophenol. However, the results showed that the Au@Pt bimetallic NPs had a lower catalytic activity than the pure Au NPs obtained by the same method, which confirmed the formation of Au@Pt core-shell nanostructures because the active sites on the surfaces of the Au NPs were covered with a Pt shell.

  12. Relationship between the catalytic activity of Pt/alumina and the relaxation process of the photoexcited electrons

    International Nuclear Information System (INIS)

    Ito, Junji; Hanaki, Yasunari; Shen, Qing; Toyoda, Taro

    2012-01-01

    Highlights: ► We determined the decay time of photoexcited electrons of Pt/Al 2 O 3 . ► Faster decay of excited electrons in Pt/Al 2 O 3 leads to its faster oxidation rate. ► Decreasing excited electron lifetime in Pt/Al 2 O 3 may decrease Pt consumption in catalytic convertors. - Abstract: In order to decrease the consumption of precious metals used in the catalytic converters used in automobiles, we studied the relationship between the catalytic activity of Pt/alumina (Pt/Al 2 O 3 ) and the relaxation process of photoexcited electrons. Firstly, we studied the relationship between the size of the Pt particles in Pt/Al 2 O 3 and catalytic performance. Secondly, the relationship between the size of the Pt particles in Pt/Al 2 O 3 and the decay time of the excited electrons was studied using an improved transient grating (TG) technique. The results showed that faster decay of the excited electrons leads to greater oxidation rates. The decay time obtained with the improved TG technique gives an indication of the time that the exited electrons take to return to the ground state. According to studies utilizing FT-IR, one of the processes necessary for quickly generating CO 2 with Pt is that the electron in the Pt-O bond moves to the Pt side and that the Pt + becomes Pt metal. Thus, the decay time obtained with the improved TG technique corresponds to the process whereby Pt + returns to Pt metal. Thus, we found that the consumption of precious metals can be reduced by increasing the speed of the decay of the excited electrons.

  13. Synthesis, characterization and thermal decomposition of [Pd2 (C2-dmba (µ-SO4 (SO22

    Directory of Open Access Journals (Sweden)

    Caires Antonio Carlos Fávero

    1998-01-01

    Full Text Available The bridged sulphate complex [Pd2 (C²,dmba (µ-SO4 (SO22] has been obtained by reacting a saturated solution of SO2 in methanol and the cyclometallated compound [Pd(C²,N-dmba(µ-N3] 2; (dmba = N,N-dimethylbenzylamine, at room temperature for 24 h. Reaction product was characterized by elemental analysis, NMR comprising 13C{¹H} and ¹H nuclei and I.R. spectrum's measurements. Thermal behavior has been investigated and residual products identified by X-ray powder diffraction.

  14. A method for the quantitative analysis of heavy elements by X-ray fluorescence

    International Nuclear Information System (INIS)

    Souza Caillaux, Z. de

    1981-01-01

    A study of quantitative analysis methodology by X-ray fluorescence analysis is presented. With no damage to precision it makes possible an analysis of heavy elements in samples with the form and texture as they present themselves. Some binary alloys were examined such as: FeCo; CuNi; CuZn; AgCd; AgPd; AuPt e PtIr. The possibility of application of this method is based on the compromise solutIon of wave lengths and the intensity of the homologous emission and absorption edges of constituents with the quantic efficiency of the detector, the dispersion and the wave lenght resolution of crystal analyser, and the uniformity of the excitation intensity. (Author) [pt

  15. PGE mineralization and melt composition of chromitites in Proterozoic ophiolite complexes of Eastern Sayan, Southern Siberia

    Directory of Open Access Journals (Sweden)

    O. Kiseleva

    2017-07-01

    Full Text Available The Ospino-Kitoi and Kharanur ultrabasic massifs represent the northern and southern ophiolite branches respectively of the Upper Onot ophiolitic nappe and they are located in the southeastern part of the Eastern Sayan (SEPES ophiolites. Podiform chromitites with PGE mineralization occur as lensoid pods within dunites and rarely in harzburgites or serpentinized peridotites. The chromitites are classified into type I and type II based on their Cr#. Type I (Cr# = 59–85 occurs in both northern and southern branches, whereas type II (Cr# = 76–90 occurs only in the northern branch. PGE contents range from ∑PGE 88–1189 ppb, Pt/Ir 0.04–0.42 to ∑PGE 250–1700 ppb, Pt/Ir 0.03–0.25 for type I chromitites of the northern and southern branches respectively. The type II chromitites of the northern branch have ∑PGE contents higher than that of type I (468–8617 ppb, Pt/Ir 0.1–0.33. Parental melt compositions, in equilibrium with podiform chromitites, are in the range of boninitic melts and vary in Al2O3, TiO2 and FeO/MgO contents from those of type I and type II chromitites. Calculated melt compositions for type I chromitites are (Al2O3melt = 10.6–13.5 wt.%, (TiO2melt = 0.01–0.44 wt.%, (Fe/Mgmelt = 0.42–1.81; those for type II chromitites are: (Al2O3melt = 7.8–10.5 wt.%, (TiO2melt = 0.01–0.25 wt.%, (Fe/Mgmelt = 0.5–2.4. Chromitites are further divided into Os-Ir-Ru (I and Pt-Pd (II based on their PGE patterns. The type I chromitites show only the Os-Ir-Ru pattern whereas type II shows both Os-Ir-Ru and Pt-Pd patterns. PGE mineralization in type I chromitites is represented by the Os-Ir-Ru system, whereas in type II it is represented by the Os-Ir-Ru-Rh-Pt system. These results indicate that chromitites and PGE mineralization in the northern branch formed in a suprasubduction setting from a fluid-rich boninitic melt during active subduction. However, the chromitites and PGE mineralization of the southern

  16. Correlation between Mechanical Behavior and Actuator-type Performance of Ni-Ti-Pd High-temperature Shape Memory Alloys

    Science.gov (United States)

    Bigelow, Glen S.; Padula, Santo A., II; Garg, Anita; Noebe, Ronald D.

    2007-01-01

    High-temperature shape memory alloys in the NiTiPd system are being investigated as lower cost alternatives to NiTiPt alloys for use in compact solid-state actuators for the aerospace, automotive, and power generation industries. A range of ternary NiTiPd alloys containing 15 to 46 at.% Pd has been processed and actuator mimicking tests (thermal cycling under load) were used to measure transformation temperatures, work behavior, and dimensional stability. With increasing Pd content, the work output of the material decreased, while the amount of permanent strain resulting from each load-biased thermal cycle increased. Monotonic isothermal tension testing of the high-temperature austenite and low temperature martensite phases was used to partially explain these behaviors, where a mismatch in yield strength between the austenite and martensite phases was observed at high Pd levels. Moreover, to further understand the source of the permanent strain at lower Pd levels, strain recovery tests were conducted to determine the onset of plastic deformation in the martensite phase. Consequently, the work behavior and dimensional stability during thermal cycling under load of the various NiTiPd alloys is discussed in relation to the deformation behavior of the materials as revealed by the strain recovery and monotonic tension tests.

  17. Single crystal study of the heavy-fermion antiferromagnet CePt2In7

    International Nuclear Information System (INIS)

    Tobash, Paul H; Ronning, F; Thompson, J D; Scott, B L; Bauer, E D; Moll, P J W; Batlogg, B

    2012-01-01

    We report the synthesis, structure, and physical properties of single crystals of CePt 2 In 7 . Single crystal x-ray diffraction analysis confirms the tetragonal I4/mmm structure of CePt 2 In 7 with unit cell parameters a = 4.5886(6) Å, c = 21.530(6) Å and V = 453.32(14) Å 3 . The magnetic susceptibility, heat capacity, Hall effect and electrical resistivity measurements are all consistent with CePt 2 In 7 undergoing an antiferromagnetic order transition at T N = 5.5 K, which is field independent up to 9 T. Above T N , the Sommerfeld coefficient of specific heat is γ ≈ 300 mJ mol -1 K -2 , which is characteristic of an enhanced effective mass of itinerant charge carriers. The electrical resistivity is typical of heavy-fermion behavior and gives a residual resistivity ρ 0 ∼ 0.2 µΩ cm, indicating good crystal quality. CePt 2 In 7 also shows moderate anisotropy of the physical properties that is comparable to structurally related CeMIn 5 (M = Co, Rh, Ir) heavy-fermion superconductors. (paper)

  18. Histopathological alterations and induction of hsp70 in ramshorn snail (Marisa cornuarietis) and zebrafish (Danio rerio) embryos after exposure to PtCl(2).

    Science.gov (United States)

    Osterauer, Raphaela; Köhler, Heinz-R; Triebskorn, Rita

    2010-08-01

    The platinum group metals (PGMs) platinum (Pt), palladium (Pd), and rhodium (Rh) are used in automobile catalytic converters, from which they have been emitted into the environment to an increasing degree during the last 20 years. Despite the bioavailability of these metals to plants and animals, studies determining the effects of PGMs on organisms are extremely rare. In the present study, effects of various concentrations of PtCl(2) (0.1, 1, 10, 50 and 100 microg/L) were investigated with respect to the induction of hsp70 and histopathological alterations in the zebrafish, Danio rerio and the ramshorn snail, Marisa cornuarietis. Histopathological investigations revealed effects of Pt on both species, which varied between slight and strong cellular reactions, depending on the PtCl(2) concentration. The hsp70 level in M. cornuarietis did not show an increase following Pt exposure whereas it was significantly elevated at 100 micorg/L PtCl(2) in D. rerio. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Phase stabilities of pyrite-related MTCh compounds (M=Ni, Pd, Pt; T=Si, Ge, Sn, Pb; Ch=S, Se, Te): A systematic DFT study

    International Nuclear Information System (INIS)

    Bachhuber, Frederik; Krach, Alexander; Furtner, Andrea; Söhnel, Tilo; Peter, Philipp; Rothballer, Jan; Weihrich, Richard

    2015-01-01

    Pyrite-type and related systems appear for a wide range of binary and ternary combinations of transition metals and main group elements that form Zintl type dumbbell anion units. Those representatives with 20 valence electrons exhibit an extraordinary structural flexibility and interesting properties as low-gap semiconductors or thermoelectric and electrode materials. This work is devoted to the systematic exploration of novel compounds within the class of MTCh compounds (M=Ni, Pd, Pt; T=Si, Ge, Sn, Pb; Ch=S, Se, Te) by means of density functional calculations. Their preferred structures are predicted from an extended scheme of colored pyrites and marcasites. To determine their stabilities, competing binary MT 2 and MCh 2 boundary phases are taken into account as well as ternary M 3 T 2 Ch 2 and M 2 T 3 Ch 3 systems. Recently established stability diagrams are presented to account for MTCh ordering phenomena with a focus on a not-yet-reported ordering variant of the NiAs 2 type. Due to the good agreement with experimental data available for several PtTCh systems, the predictions for the residual systems are considered sufficiently accurate. - Graphical abstract: Compositional and structural stability of MTCh compounds is investigated from first principle calculations. A conceptional approach is presented to study and predict novel stable and metastable compounds and structures of low gap semiconductors with TCh dumbbell units that are isoelectronic and structurally related to pyrite (FeS 2 ). - Highlights: • Study of compositional stability of MTCh vs. M 3 T 2 Ch 2 and M 2 T 3 Ch 3 compounds. • Study of structural stability of known and novel MTCh compounds. • Prediction of novel stable and metastable structures and compounds isoelectronic to pyrite, FeS 2

  20. Infrared and swelling study of wet-spun films of DNA\\cdot[(bipy)Pt(en)]^2+ as a function of hydration

    Science.gov (United States)

    Kuebler, A.; Whitson, K. B.; Marlowe, R. L.; Lee, S. A.; Rupprecht, A.

    1997-11-01

    A ladder-like conformation of DNA has been induced by the binding of bipyridyl-Pt(II)-ethylenediamine (denoted as [(bipy)Pt(en)]^2+) at a relative humidity (RH) of 75%.(Arnott et al.,) Nature 287, (1980) 561. We report the first study of oriented films of this complex as a function of hydration by using Fourier transform infrared (IR) spectroscopy and optical microscopy. Vibrational modes between 800 and 1000 cm-1 are localized in the phosphodiester backbone and are sensitive to changes in the geometry of the molecule. The IR spectrum of this region is substantially different at 59% RH than at higher humidities, implying that a conformational change occurs as the RH is lowered below 75%. Optical microscopy measurements of small pieces of films of the complex also show changes at low RH. These trends are consistent with an order-disorder transition occurring as the RH is lowered The measurements also show that the DNA\\cdot[(bipy)Pt(en)]^2+) are very stable at the highest humidities.

  1. Electronic structures of PtCu, PtAg, and PtAu molecules: a Dirac four-component relativistic study

    International Nuclear Information System (INIS)

    Abe, Minori; Mori, Sayaka; Nakajima, Takahito; Hirao, Kimihiko

    2005-01-01

    Relativistic four-component calculations at several correlated levels have been performed for diatomic PtCu, PtAg, and PtAu molecules. The ground state spectroscopic constants of PtCu were calculated using the four-component MP2 method, and show good agreement with experiment. We also performed calculations on the experimentally unknown species, PtAg and PtAu, and the mono-cationic systems, PtCu + , PtAg + , and PtAu + . The low-lying excited states of these diatomic molecules were also investigated using the four-component multi-reference CI method

  2. Shape-controlled synthesis of Pd polyhedron supported on polyethyleneimine-reduced graphene oxide for enhancing the efficiency of hydrogen evolution reaction

    Science.gov (United States)

    Li, Jing; Zhou, Panpan; Li, Feng; Ma, Jianxin; Liu, Yang; Zhang, Xueyao; Huo, Hongfei; Jin, Jun; Ma, Jiantai

    2016-01-01

    The catalytic activity of noble-metal nanoparticles (NPs) often has closely connection with their sizes and geometric shape. In the work, polyhedral NPs of palladium (Pd) with controlled sizes, shapes, and different proportions of {100} to {111} facets on the surface were prepared by a seed-mediated approach. Electrochemical experiment demonstrates that the catalytic performance of the Pd nanocubes (NCs) enclosed by {100} facets is more active than Pd octahedrons enclosed by {111} facets for the hydrogen evolution reaction (HER), which is consistent with density functional theory (DFT) calculation results. Meanwhile, with the assistance of a polyethyleneimine-reduced graphene oxide (PEI-rGO) support, the examined Pd cube/PEI-rGO50:1 (10 wt. %) electrocatalyst presents outstanding HER activity comparable with that of commercial Pt/C catalyst. This correlation between the HER catalytic activity and surface structure will contribute to the reasonable design of Pd catalysts for HER with high efficiency and low metal loading.

  3. Relationship between the catalytic activity of Pt/alumina and the relaxation process of the photoexcited electrons

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Junji, E-mail: j-itou@mail.nissan.co.jp [Advanced Materials Laboratory, Nissan Research Center, NISSAN MOTOR CO., LTD., 1 Natsushima-cho, Yokosuka-shi, Kanagawa 237-8523 (Japan); Department of Applied Physics and Chemistry, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); Hanaki, Yasunari [Advanced Materials Laboratory, Nissan Research Center, NISSAN MOTOR CO., LTD., 1 Natsushima-cho, Yokosuka-shi, Kanagawa 237-8523 (Japan); Shen, Qing [Department of Applied Physics and Chemistry, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Toyoda, Taro [Department of Applied Physics and Chemistry, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer We determined the decay time of photoexcited electrons of Pt/Al{sub 2}O{sub 3}. Black-Right-Pointing-Pointer Faster decay of excited electrons in Pt/Al{sub 2}O{sub 3} leads to its faster oxidation rate. Black-Right-Pointing-Pointer Decreasing excited electron lifetime in Pt/Al{sub 2}O{sub 3} may decrease Pt consumption in catalytic convertors. - Abstract: In order to decrease the consumption of precious metals used in the catalytic converters used in automobiles, we studied the relationship between the catalytic activity of Pt/alumina (Pt/Al{sub 2}O{sub 3}) and the relaxation process of photoexcited electrons. Firstly, we studied the relationship between the size of the Pt particles in Pt/Al{sub 2}O{sub 3} and catalytic performance. Secondly, the relationship between the size of the Pt particles in Pt/Al{sub 2}O{sub 3} and the decay time of the excited electrons was studied using an improved transient grating (TG) technique. The results showed that faster decay of the excited electrons leads to greater oxidation rates. The decay time obtained with the improved TG technique gives an indication of the time that the exited electrons take to return to the ground state. According to studies utilizing FT-IR, one of the processes necessary for quickly generating CO{sub 2} with Pt is that the electron in the Pt-O bond moves to the Pt side and that the Pt{sup +} becomes Pt metal. Thus, the decay time obtained with the improved TG technique corresponds to the process whereby Pt{sup +} returns to Pt metal. Thus, we found that the consumption of precious metals can be reduced by increasing the speed of the decay of the excited electrons.

  4. Tuning magnetic properties of non-collinear magnetization configuration in Pt/[Pt/Co]{sub 6}/Pt/Co/Pt multilayer structure

    Energy Technology Data Exchange (ETDEWEB)

    Kalaycı, Taner, E-mail: taner.kalayci@marmara.edu.tr [Department of Physics, Marmara University, 34722, Kadıköy, Istanbul (Turkey); Deger, Caner [Department of Physics, Marmara University, 34722, Kadıköy, Istanbul (Turkey); Akbulut, Salih [Department of Physics, Gebze Technical University, 41400, Gebze, Kocaeli (Turkey); Yildiz, Fikret, E-mail: fyildiz@gtu.edu.tr [Department of Physics, Gebze Technical University, 41400, Gebze, Kocaeli (Turkey)

    2017-08-15

    Highlights: • Effects of Pt spacer and reference layers thickness are investigated by MOKE and FMR. • Controlling of non-collinear states in multilayered thin film systems is studied. • Micromagnetic approach is used for modeling of magnetic multilayered structure. • Magnetic parameters are determined by a simulation based on metropolis algorithm. - Abstract: In this study, effects of Pt spacer and Co reference layers thickness in [Co/Pt]{sub 6}/Pt/Co multilayer have been revealed to tailor magnetization directions in non-collinear configuration. Magneto-optic Kerr effect and ferromagnetic resonance techniques were employed to investigate magnetic properties. Bilinear coupling between [Co/Pt]{sub 6} and Co layers and anisotropy constants were determined by a micromagnetic simulation based on metropolis algorithm. 3 nm spacer causes ferromagnetic coupling while the samples have 4 and 5 nm spacer are coupled anti-ferromagneticaly. Also, tuning magnetic anisotropy of [Co/Pt]{sub 6} layer was accomplished by Co reference layer. It is revealed that controlling of non-collinear states in such systems is possible by variation of thickness of spacer and reference layers and [Co/Pt]{sub 6}/t{sub Pt}/t{sub Co} trilayer system can be used in multilayered magnetic systems.

  5. Fusion of 110Pd with 110Pd

    International Nuclear Information System (INIS)

    Morawek, W.

    1991-07-01

    In the framework of this thesis the excitation functions of the systems 110 Pd + 110 Pd and 110 Pd + 104 Ru could be measured. The evaporation-residual-nucleus cross sections is deviating from lighter systems dominated by channels, which arise from evaporation of α particles. In the reaction 110 Pd + 110 Pd no xn channels were observed. In comparison to other reactions qualitatively a strong fusion hindrance of this system is shown. (orig./HSI) [de

  6. Simple one-pot synthesis of platinum-palladium nanoflowers with enhanced catalytic activity and methanol-tolerance for oxygen reduction in acid media

    International Nuclear Information System (INIS)

    Zheng, Jie-Ning; He, Li-Li; Chen, Fang-Yi; Wang, Ai-Jun; Xue, Meng-Wei; Feng, Jiu-Ju

    2014-01-01

    Graphical abstract: PtPd nanoflowers were fabricated by one-pot solvothermal co-reduction method in oleylamine system, which exhibited the improved electrocatalytic activity and higher methanol tolerance for oxygen reduction, compared with commercial Pt and Pd black catalysts. - Highlights: • Bimetallic alloyed PtPd nanoflowers are prepared by a simple one-pot solvothermal co-reduction method. • PtPd nanoflowers display high catalytic performance for ORR dominated by a four-electron pathway. • PtPd nanoflowers show good methanol tolerance for ORR. - Abstract: In this work, bimetallic alloyed platinum-palladium (PtPd) nanoflowers are fabricated by one-pot solvothermal co-reduction of Pt (II) acetylacetonate and Pd (II) acetylacetonate in oleylamine system. The as-prepared nanostructures show the enhanced electrocatalytic activity for oxygen reduction reaction (ORR), dominated by a four-electron pathway based on the Koutecky-Levich plots, mainly owing to the inhibition of the formation of Pt–OH ad via the downshift of d-band center for Pt. Meanwhile, PtPd nanoflowers display good methanol tolerance and improved stability for ORR. The chronoamperometry test reveals that the current of PtPd nanoflowers remains 45.9% of its original value within 6000 s, much higher than those of commercial Pt (36.7%) and Pd (32.2%) black catalysts. Therefore, PtPd nanoflowers with unique interconnected structures can be used as a promising cathode catalyst in direct methanol fuel cells

  7. Recovery of Ir-192 sources during emergency situations

    International Nuclear Information System (INIS)

    Quadros, C.L.; Conceicao, M.A. da

    1988-01-01

    During operations for the carrying out of services through the utilization of Ir-192 radio sources in radiographic tests of equipment, emergency situations may occur due to various causes and which bring radiologic accidents with doses exceeding the maximum alloewd. This work has the purpose to submit and analyze the major types of radiological accidents and its consequences for the installations and the procedures for the recuperation of sources during such situations. Another aspect to be mentioned shall be the interruption of services - such as production - and which is to be the lowest possible during the emergency. (author) [pt

  8. Dielectric and magnetic characterizations of capacitor structures with an ionic liquid/MgO barrier and a ferromagnetic Pt electrode

    Directory of Open Access Journals (Sweden)

    D. Hayakawa

    2016-11-01

    Full Text Available The dielectric and magnetic properties of electric double layer (EDL capacitor structures with a perpendicularly magnetized Pt/Co/Pt electrode and an insulating cap layer (MgO are investigated. An electric field is applied through a mixed ionic liquid/MgO barrier to the surface of the top Pt layer, at which the magnetic moment is induced by the ferromagnetic proximity effect. The basic dielectric properties of the EDL capacitor are studied by varying the thickness of the MgO cap layer. The results indicate that the capacitance, i.e., the accumulated charge density at the Pt surface, is reduced with increasing the MgO thickness. From the MgO thickness dependence of the capacitance value, the effective dielectric constant of the ionic liquid is evaluated. Almost no electric field effect on the magnetic moment, the coercivity, or the Curie temperature is confirmed in the top Pt layer with the thickness of 1.3 nm, regardless of the presence or absence of the MgO cap layer, whereas the a clear change in the magnetic moment is observed when the top Pt layer is replaced by a Pd layer of 1.7 nm.

  9. Metallic behavior and periodical valence ordering in a MMX chain compound, Pt(2)(EtCS(2))(4)I.

    Science.gov (United States)

    Mitsumi, M; Murase, T; Kishida, H; Yoshinari, T; Ozawa, Y; Toriumi, K; Sonoyama, T; Kitagawa, H; Mitani, T

    2001-11-14

    A new one-dimensional (1-D) halogen-bridged mixed-valence diplatinum(II,III) compound, Pt(2)(EtCS(2))(4)I (3), has been successfully synthesized from [Pt(2)(EtCS(2))(4)] (1) and [Pt(2)(EtCS(2))(4)I(2)] (2). These three compounds have been examined using UV-visible-near-IR, IR, polarized Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and X-ray crystal structure analyses (except for 1). Compound 3 was further characterized through electrical transport measurements, determination of the temperature dependence of lattice parameters, X-ray diffuse scattering, and SQUID magnetometry. 3 crystallizes in the monoclinic space group C2/c and exhibits a crystal structure consisting of neutral 1-D chains with a repeating -Pt-Pt-I- unit lying on the crystallographic 2-fold axis parallel to the b axis. The Pt-Pt distance at 293 K is 2.684 (1) A in the dinuclear unit, while the Pt-I distances are essentially equal (2.982 (1) and 2.978 (1) A). 3 shows relatively high electrical conductivity (5-30 S cm(-1)) at room temperature and undergoes a metal-semiconductor transition at T(M-S) = 205 K. The XPS spectrum in the metallic state reveals a Pt(2+) and Pt(3+) mixed-valence state on the time scale of XPS spectroscopy ( approximately 10(-17) s). In accordance with the metal-semiconductor transition, anomalies are observed in the temperature dependence of the crystal structure, lattice parameters, X-ray diffuse scattering, and polarized Raman spectra near T(M-S). In variable-temperature crystal structure analyses, a sudden and drastic increase in the Pt-I distance near the transition temperature is observed. Furthermore, a steep increase in U(22) of iodine atoms in the 1-D chain direction has been observed. The lattice parameters exhibit significant temperature dependence with drastic change in slope at about 205-240 K. This was especially evident in the unit cell parameter b (1-D chain direction) as it was found to lengthen rapidly with increasing temperature. X

  10. Spectroscopic and biological approach in the characterization of a novel 14-membered [N4] macrocyclic ligand and its Palladium(II), Platinum(II), Ruthenium(III) and Iridium(III) complexes

    Science.gov (United States)

    Rani, Soni; Kumar, Sumit; Chandra, Sulekh

    2014-01-01

    A novel, tetradentate nitrogen donor [N4] macrocyclic ligand, i.e. 3,5,14,16-tetramethyl-2,6,13,17-tetraazatricyclo[12,0,07-12] cosa-1(22),2,5,7,9,11,13,16,18,20-decaene(L), has been synthesized and characterized by elemental analyses, IR, Mass, and 1H NMR spectral studies. Complexes of Pd(II), Pt(II), Ru(III) and Ir(III) have been prepared and characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, Mass, electronic spectral and thermal studies. On the basis of molar conductance the complexes may be formulated as [PdL]Cl2, [PtL]Cl2, [Ru(L)Cl2]Cl and [Ir(L)Cl2]Cl. The complexes are insoluble in most common solvents, including water, ethanol, carbon tetrachloride and acetonitrile, but soluble in DMF/DMSO. The value of magnetic moment indicates that all the complexes are diamagnetic except Ru(III) complex which shows magnetic moment corresponding to one unpaired electron. The magnetic moment of Ru(III) complex is 1.73 B.M. at room temperature. The antimicrobial activities of ligand and its complexes have been screened in vitro, as growth inhibiting agents. The antifungal and antibacterial screening were carried out using Food Poison and Disc Diffusion Method against plant pathogenic fungi and bacteria Alternaria porri, Fusarium oxysporum, Xanthomonas compestris and Pseudomonas aeruginosa respectively. The compounds were dissolved in DMSO to get the required solutions. The required medium used for these activities was PDA and nutrient agar.

  11. Spectroscopic and biological approach in the characterization of a novel 14-membered [N4] macrocyclic ligand and its palladium(II), platinum(II), ruthenium(III) and iridium(III) complexes.

    Science.gov (United States)

    Rani, Soni; Kumar, Sumit; Chandra, Sulekh

    2014-01-24

    A novel, tetradentate nitrogen donor [N4] macrocyclic ligand, i.e. 3,5,14,16-tetramethyl-2,6,13,17-tetraazatricyclo[12,0,0(7-12)] cosa-1(22),2,5,7,9,11,13,16,18,20-decaene(L), has been synthesized and characterized by elemental analyses, IR, Mass, and (1)H NMR spectral studies. Complexes of Pd(II), Pt(II), Ru(III) and Ir(III) have been prepared and characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, Mass, electronic spectral and thermal studies. On the basis of molar conductance the complexes may be formulated as [PdL]Cl2, [PtL]Cl2, [Ru(L)Cl2]Cl and [Ir(L)Cl2]Cl. The complexes are insoluble in most common solvents, including water, ethanol, carbon tetrachloride and acetonitrile, but soluble in DMF/DMSO. The value of magnetic moment indicates that all the complexes are diamagnetic except Ru(III) complex which shows magnetic moment corresponding to one unpaired electron. The magnetic moment of Ru(III) complex is 1.73 B.M. at room temperature. The antimicrobial activities of ligand and its complexes have been screened in vitro, as growth inhibiting agents. The antifungal and antibacterial screening were carried out using Food Poison and Disc Diffusion Method against plant pathogenic fungi and bacteria Alternaria porri, Fusarium oxysporum, Xanthomonas compestris and Pseudomonas aeruginosa respectively. The compounds were dissolved in DMSO to get the required solutions. The required medium used for these activities was PDA and nutrient agar. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Spectroelectrochemical study of polyphenylene by in situ external reflection FT-IR spectroscopy. Pt. 2

    International Nuclear Information System (INIS)

    Kvarnstroem, C.; Ivaska, A.

    1994-01-01

    In situ external reflection FT-IR measurements are performed during cyclic voltammetric scans on electrochemically polymerized polyphenylene films. The films are polymerized either in 0.1 or 0.8 M biphenyl in 0.1 M TBABF 4 in acetonitrile. Changes in the IR spectrum of films of different thicknesses are studied when the films are potentially cycled from the neutral to the oxidized states of the polymer. No differences between films made in high or low dimer concentration can be observed in the spectra. The potential-dependent insertion and expulsion of solvent, residual water, anions and cations in and out of the film have different behaviour in films of different thicknesses. Changes in the structure of the segments in the film, from the benzenoid form into the quinoid form, can be followed. Differences between the first and subsequent cyclic potential scans are observed. (orig.)

  13. Native gold from the Inagli Pt-Au placer deposit (the Aldan Shield, Russia): geochemical characteristics and implications for possible bedrock sources

    Science.gov (United States)

    Svetlitskaya, Tatyana V.; Nevolko, Peter A.; Kolpakov, Vladislav V.; Tolstykh, Nadezhda D.

    2018-03-01

    The Inagli alluvial Pt-Au placer deposit in the Republic of Sakha (Yakutia), Russia, is linked to the Inagli massif, one of the several Uralian-Alaskan-type alkaline-ultrabasic complexes in the Aldan Shield. Gold from the placer is heterogeneous in composition and is represented by three types. Type 1 gold is the most abundant and is characterized by simple Au-Ag alloys with 4-34 wt% Ag, low Cu (up to 0.08 wt%) and negligible Hg, Pt, and Pd contents, and silver-tellurium sulfosalts (Ag-Cu-Te-S-As compounds) in the inclusion suite. Silicate inclusions are biotite, K-feldspar, Fe-Mg amphibole, chlorite, plagioclase, Fe-Mg pyroxene, zircon, and titanite. Distinctive features of this gold type are most similar to those derived from low-sulfidation systems linked to iron oxide copper-gold or iron skarn types of mineralization. The bedrock source of type 1 gold could be related with monzonite to syenite intrusions surrounding the Inagli massif. Distinctive features of type 2 gold include a wide discontinuous range of Ag content (1-18 wt%), elevated Cu (up to 0.5 wt%), and occasional Pd (up to 0.3 wt%) levels, non-detectable Pt and Hg contents, and rare inclusions of simple sulfides (digenite, pyrrhotite) and Na amphibole. Type 3 gold is distinguished by a narrow range in Ag content (5-8 wt%), elevated Hg (0.5-1 wt%) contents, negligible Cu, Pt and Pd levels, and Au-Pb compounds + K-feldspar inclusions. Microchemical characteristics of type 2 and type 3 gold are interpreted as suggestive of an alkaline-magmatic-related fluid. Based on the grain morphology and microchemical signatures, potential bedrock sources for both gold types could be related to the numerous alkaline veins and potassic alteration zones within the dunite core. A comparison of the Inagli and the Kondyor placer gold allows to generate distinctive generic signatures for gold from Uralian-Alaskan-type alkaline-ultrabasic complexes in the Aldan Shield.

  14. Preparation of PtSn/C, PtRu/C, PtRh/C, PtRuRh/C and PtSnRh/C electrocatalysts using an alcohol-reduction process for methanol and ethanol oxidation; Preparacao e caracterizacao de eletrocatalisadores PtRu, PtSn, PtRh, PtRuRh e PtSnRh para oxidacao direta de alcoois em celulas a combustivel tipo PEM utilizando a metodologia da reducao por alcool

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Ricardo Rodrigues

    2009-07-01

    In this work, Pt/C, PtRh (90:10), PtRh/C (50:50), PtSn/C (50:50), PtRu (50:50)/C, PtRuRh/C (50:40:10) and PtSnRh/C (50:40:10) were prepared by an alcohol-reduction process with metal loading of 20 wt.% using H{sub 2}PtCl{sub 6}.6H{sub 2}O (Aldrich), SnCl{sub 2}.2H{sub 2}O (Aldrich),and RhCl{sub 2}.XH{sub 2}O (Aldrich) as metals sources and Vulcan XC72 as support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry (CV). The electro-oxidation of ethanol was studied by CV, chronoamperomety at room temperature in acid medium and tests at 100 deg C on a single cell of a direct methanol or ethanol fuel cell. The EDX analysis showed that the metal atomic ratios of the obtained electrocatalysts were similar to the nominal atomic ratios used in the preparation. The diffractograms of electrocatalysts prepared showed four peaks at approximately 2{theta} =40 deg, 47 deg, 67 deg and 82 deg, which are associated with the (111), (200), (220) and (311) planes, respectively, of a face cubic-centered (fcc) structure characteristic of platinum and platinum alloys. The average crystallite sizes using the Scherrer equation and the calculated values were in the range of 2-3 nm. For Pt Sn/C and PtSnRh/C two additional peaks were observed at 2 = 34 deg and 52 deg that were identified as a SnO{sub 2} phase. Pt Sn/C (50:50) and PtSnRh/C (50:40:10) electro catalyst showed the best performance for ethanol oxidation at room temperature. For methanol oxidation at room temperature Pt Ru/C, Pt Sn/C and PtRuRh/C electrocatalysts showed the best performance. Tests at 100 deg C on a single cell of a direct ethanol fuel cell PtSnRh/C showed the best performance, for methanol oxidation PtRuRh/C showed the best performance. (author)

  15. Preparation and charaterization of Pt/functionalized graphene and its electrocatalysis for methanol oxidation

    International Nuclear Information System (INIS)

    Liang, Qingsheng; Zhang, Li; Cai, Maolin; Li, Yong; Jiang, Kun; Zhang, Xin; Shen, Pei Kang

    2013-01-01

    Water-dispersible 8-hydroxy-1,3,6-pyrene trisulfonic acid trisodium salt (PyS)-functionalized graphene (PyS-graphene) sheets were prepared by a π–π interaction method, in which the aromatic organic molecules of PyS were reacted with graphene. The PyS-graphene sheets were used as Pt nanoparticle support to prepare a Pt/PyS-graphene catalyst for direct methanol fuel cells. The prepared materials were characterized by ultraviolet spectrometry (UV–vis), Fourier transform infrared spectrometry (FT-IR), atomic force microscopy (AFM), X-ray diffraction (XRD), Raman spectroscopy (SERS), and transmission electron microscopy (TEM). The electrocatalytic properties of the catalysts for methanol oxidation were evaluated by cyclic voltammetry (CV). The Pt/PyS-graphene catalysts were found to have higher electrocatalytic activity for methanol oxidation than Pt/graphene catalyst. This finding can be attributed to the introduction of negative sulfonic (SO 3 − ) groups to the graphene sheet surface, which makes the graphene sheets dispersible in water. Consequently, the Pt nanoparticles were uniformly and securely deposited onto the graphene sheet surface. These results suggested that the sulfonic group-modified water-dispersible graphene sheets can be used to improve the electrocatalytic activity of catalysts for fuel cells

  16. Graphene decorated with Pd nanoparticles via electrostatic self-assembly: A highly active alcohol oxidation electrocatalyst

    International Nuclear Information System (INIS)

    Guo, Shujing; Li, Shuwen; Hu, Tengyue; Gou, Galian; Ren, Ren; Huang, Jingwei; Xie, Miao; Jin, Jun; Ma, Jiantai

    2013-01-01

    Graphical abstract: Novel perylene-connected ionic liquids (PTCDI-ILs) have been successfully synthesized in a convenient approach and used as linkers for three-component Pd/PTCDI-ILs/GS heterostructure when non-covalently attached on graphene. The obtained nano-hybrids represented high electrochemical surface area and enhanced electrocatalytic activity for DAFCs in alkaline media. -- Highlights: • A novel preparation of three-component Pd/ionic liquids/graphene heterostructure has been constructed. • The Pd-based nano-catalysts have relatively low price and higher resistance to CO poisoning when compared with Pt-based catalysts. • The nano-catalysts represent high electrochemical surface area and enhanced electrocatalytic activity for DAFCs in alkaline media. -- Abstract: Graphene nanosheets (GS) are non-covalently functionalized with novel N,N-bis-(n-butylimidazolium bromide salt)-3,4,9,10-perylene tetracarboxylic acid diimide (PTCDI-ILs) via the π–π stacking, and then employed as the support of Pd nanoparticles. The negatively charged Pd precursors are adsorbed on positively charged imidazolium ring moiety of PTCDI-ILs wrapping GS surface via electrostatic self-assembly and then in situ reduced by NaBH 4 . X-ray diffraction and transmission electron microscope images reveal that Pd nanoparticles with an average size of 2.7 nm are uniformly dispersed on GS surface. The Pd/PTCDI-ILs/GS exhibits unexpectedly high activity toward alcohol oxidation reaction, which can be attributed to the large electrochemical surface area of Pd nanoparticles. It also shows enhanced electrochemical stability due to the structural integrity of PTCDI-ILs/GS. This provides a facile approach to synthesize GS-based nanoelectrocatalysts

  17. Preparation and characterization of Pt-Sn/C and Pt-Ir/C catalysts for the electrochemical oxidation of ethanol in polymer electrolyte membrane fuel cell

    CSIR Research Space (South Africa)

    Masombuka, T

    2007-11-01

    Full Text Available oxidation is still low. Development of new active catalysts able to break C-C bond and complete oxidation of ethanol into CO 2 is of fundamental importance. Generally, a third metal is added to the best binary Pt-Sn catalyst to improve CO tolerance...

  18. Effect of the nanosized TiO2 particles in Pd/C catalysts as cathode materials in direct methanol fuel cells.

    Science.gov (United States)

    Choi, Mahnsoo; Han, Choonsoo; Kim, In-Tae; Lee, Ji-Jung; Lee, Hong-Ki; Shim, Joongpyo

    2011-07-01

    Pd-TiO2/C catalysts were prepared by impregnating titanium dioxide (TiO2) on carbon-supported Pd (Pd/C) for use as the catalyst for the oxygen reduction reaction (ORR) in direct methanol fuel cells (DMFCs). Transmission electron microscope (TEM), scanning electron microscope (SEM) and X-ray diffraction (XRD) analyses were carried to confirm the distribution, morphology and structure of Pd and TiO2 on the carbon support. In fuel cell test, we confirmed that the addition of TiO2 nanoparticles make the improved catalytic activity of oxygen reduction. The electrochemical characterization of the Pd-TiO2/C catalyst for the ORR was carried out by cyclic voltammetry (CV) in the voltage window of 0.04 V to 1.2 V with scan rate of 25 mV/s. With the increase in the crystallite size of TiO2, the peak potential for OH(ads) desorption on the surface of Pd particle shifted to higher potential. This implies that TiO2 might affect the adsorption and desorption of oxygen molecules on Pd catalyst. The performance of Pd-TiO2/C as a cathode material was found to be similar to or better performance than that of Pt/C.

  19. Preparation of PtSn/C, PtRu/C, PtRh/C, PtRuRh/C and PtSnRh/C electrocatalysts using an alcohol-reduction process for methanol and ethanol oxidation; Preparacao e caracterizacao de eletrocatalisadores PtRu, PtSn, PtRh, PtRuRh e PtSnRh para oxidacao direta de alcoois em celulas a combustivel tipo PEM utilizando a metodologia da reducao por alcool

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Ricardo Rodrigues

    2009-07-01

    In this work, Pt/C, PtRh (90:10), PtRh/C (50:50), PtSn/C (50:50), PtRu (50:50)/C, PtRuRh/C (50:40:10) and PtSnRh/C (50:40:10) were prepared by an alcohol-reduction process with metal loading of 20 wt.% using H{sub 2}PtCl{sub 6}.6H{sub 2}O (Aldrich), SnCl{sub 2}.2H{sub 2}O (Aldrich),and RhCl{sub 2}.XH{sub 2}O (Aldrich) as metals sources and Vulcan XC72 as support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry (CV). The electro-oxidation of ethanol was studied by CV, chronoamperomety at room temperature in acid medium and tests at 100 deg C on a single cell of a direct methanol or ethanol fuel cell. The EDX analysis showed that the metal atomic ratios of the obtained electrocatalysts were similar to the nominal atomic ratios used in the preparation. The diffractograms of electrocatalysts prepared showed four peaks at approximately 2θ = 40{sup 0}, 47{sup 0}, 67{sup 0} and 82{sup 0}, which are associated with the (111), (200), (220) and (311) planes, respectively, of a face cubic-centered (fcc) structure characteristic of platinum and platinum alloys. The average crystallite sizes using the Scherrer equation and the calculated values were in the range of 2–3 nm. For PtSn/C and PtSnRh/C two additional peaks were observed at 2θ = 34{sup 0} and 52{sup 0} that were identified as a SnO{sub 2} phase. PtSn/C (50:50) and PtSnRh/C (50:40:10) electrocatalyst showed the best performance for ethanol oxidation at room temperature. For methanol oxidation at room temperature PtRu/C, PtSn/C and PtRuRh/C electrocatalysts showed the best performance. Tests at 100 deg C on a single cell of a direct ethanol fuel cell PtSnRh/C showed the best performance, for methanol oxidation PtRuRh/C showed the best performance. (author)

  20. Palladium, platinum, rhodium, iridium and ruthenium in chromite- rich rocks from the Samail ophiolite, Oman.

    Science.gov (United States)

    Page, N.J.; Pallister, J.S.; Brown, M.A.; Smewing, J.D.; Haffty, J.

    1982-01-01

    30 samples of chromitite and chromite-rich rocks from two stratigraphic sections, 250 km apart, through the basal ultramafic member of the Samail ophiolite were spectrographically analysed for platinum-group elements (PGE) and for Co, Cu, Ni and V. These data are reported as are Cr/(Cr + Al), Mg/(Mg + Fe) and wt.% TiO2 for most samples. The chromitite occurs as pods or lenses in rocks of mantle origin or as discontinuous layers at the base of the overlying cumulus sequence. PGE abundances in both sections are similar, with average contents in chromite-rich rocks: Pd 8 ppb, Pt 14 ppb, Rh 6 ppb, Ir 48 ppb and Ru 135 ppb. The PGE data, combined with major-element and petrographic data on the chromitite, suggest: 1) relatively larger Ir and Ru contents and highest total PGE in the middle part of each section; 2) PGE concentrations and ratios do not correlate with coexisting silicate and chromite abundances or chromite compositions; 3) Pd/PGE, on average, increases upward in each section; 4) Samail PGE concentrations, particularly Rh, Pt and Pd, are lower than the average values for chromite-rich rocks in stratiform intrusions. 2) suggests that PGEs occur in discrete alloy or sulphide phases rather than in the major oxides or silicates, and 4) suggests that chromite-rich rocks from the oceanic upper mantle are depleted in PGE with respect to chondrites. L.C.C.

  1. Co-C and Pd-C Eutectic Fixed Points for Radiation Thermometry and Thermocouple Thermometry

    Science.gov (United States)

    Wang, L.

    2017-12-01

    Two Co-C and Pd-C eutectic fixed point cells for both radiation thermometry and thermocouple thermometry were constructed at NMC. This paper describes details of the cell design, materials used, and fabrication of the cells. The melting curves of the Co-C and Pd-C cells were measured with a reference radiation thermometer realized in both a single-zone furnace and a three-zone furnace in order to investigate furnace effect. The transition temperatures in terms of ITS-90 were determined to be 1324.18 {°}C and 1491.61 {°}C with the corresponding combined standard uncertainty of 0.44 {°}C and 0.31 {°}C for Co-C and Pd-C, respectively, taking into account of the differences of two different types of furnaces used. The determined ITS-90 temperatures are also compared with that of INRIM cells obtained using the same reference radiation thermometer and the same furnaces with the same settings during a previous bilateral comparison exercise (Battuello et al. in Int J Thermophys 35:535-546, 2014). The agreements are within k=1 uncertainty for Co-C cell and k = 2 uncertainty for Pd-C cell. Shapes of the plateaus of NMC cells and INRIM cells are compared too and furnace effects are analyzed as well. The melting curves of the Co-C and Pd-C cells realized in the single-zone furnace are also measured by a Pt/Pd thermocouple, and the preliminary results are presented as well.

  2. Kinetics and mechanism of oxygen reduction reaction at CoPd system synthesized on XC72

    International Nuclear Information System (INIS)

    Tarasevich, M.R.; Chalykh, A.E.; Bogdanovskaya, V.A.; Kuznetsova, L.N.; Kapustina, N.A.; Efremov, B.N.; Ehrenburg, M.R.; Reznikova, L.A.

    2006-01-01

    Studies are presented of the kinetics and mechanism of oxygen electroreduction reaction on CoPd catalysts synthesized on carbon black XC72. As shown both in model conditions and in the tests within the cathodes of hydrogen-oxygen fuel cells with proton conducting electrolyte, CoPd/C system features a higher activity, as compared to Co/C. The highest activity in the oxygen reduction reaction is demonstrated by the catalysts with the Pd:Co atomic ratio being 7:3 and 4:1. The structural studies (XPS and XRD, and also the data of CO desorption measurements) evidence the CoPd alloy formation, which is reflected in the negative shift of the bonding energy maximum as compared to Pd/C and in the appearance of the additional CO desorption maximums on the voltammograms. It is found by means of structural research that CoPd alloy is formed in the course of the catalyst synthesis which features a higher catalytic activity of the binary systems. Besides, CoPd/C catalyst is more stable in respect to corrosion than Pd supported on carbon black. The measurements on the rotating disc electrode and rotating ring-disc electrode evidence that CoPd/C system provides the predominant oxygen reduction to water in the practically important range of potentials (E > 0.7 V). The proximity of kinetic parameters of the oxygen reduction reaction on CoPd/C and Pt/C catalysts points to the similar reaction mechanism. The slow step of the reaction is the addition of the first electron to the adsorbed and previously protonated O 2 molecule. The assumptions are offered about the reasons causing the higher activity and selectivity of the binary catalyst towards oxygen reduction to water, as compared to Co/C. The studies of the most active catalysts within the fuel cell cathodes are performed

  3. Effect of an in-plane ligand on the electronic structures of bromo-bridged nano-wire Ni-Pd mixed-metal complexes, [Ni(1-x)Pd(x)(bn)2Br]Br2 (bn = 2S,3S-diaminobutane).

    Science.gov (United States)

    Sasaki, Mari; Wu, Hashen; Kawakami, Daisuke; Takaishi, Shinya; Kajiwara, Takashi; Miyasaka, Hitoshi; Breedlove, Brian K; Yamashita, Masahiro; Kishida, Hideo; Matsuzaki, Hiroyuki; Okamoto, Hiroshi; Tanaka, Hisaaki; Kuroda, Shinichi

    2009-08-03

    Single crystals of quasi-one-dimensional bromo-bridged Ni-Pd mixed-metal complexes with 2S,3S-diaminobutane (bn) as an in-plane ligand, [Ni(1-x)Pd(x)(bn)(2)Br]Br(2), were obtained by using an electrochemical oxidation method involving mixed methanol/2-propanol (1:1) solutions containing different ratios of [Ni(II)(bn)(2)]Br(2) and [Pd(II)(bn)(2)]Br(2). To investigate the competition between the electron-correlation of the Ni(III) states, or Mott-Hubbard states (MH), and the electron-phonon interaction of the Pd(II)-Pd(IV) mixed valence states, or charge-density-wave states (CDW), in the Ni-Pd mixed-metal compounds, X-ray structure analyses, X-ray oscillation photograph, and Raman, IR, ESR, and single-crystal reflectance spectra were analyzed. In addition, the local electronic structures of Ni-Pd mixed-metal single crystals were directly investigated by using scanning tunneling microscopy (STM) at room temperature and ambient pressure. The oxidation states of [Ni(1-x)Pd(x)(bn)(2)Br]Br(2) changed from a M(II)-M(IV) mixed valence state to a M(III) MH state at a critical mixing ratio (x(c)) of approximately 0.8, which is lower than that of [Ni(1-x)Pd(x)(chxn)(2)Br]Br(2) (chxn = 1R,2R-diaminocyclohexane) (x(c) approximately 0.9) reported previously. The lower value of x(c) for [Ni(1-x)Pd(x)(bn)(2)Br]Br(2) can be explained by the difference in their CDW dimensionalities because the three-dimensional CDW ordering in [Pd(bn)(2)Br]Br(2) observed by using X-ray diffuse scattering stabilizes the Pd(II)-Pd(IV) mixed valence state more than two-dimensional CDW ordering in [Pd(chxn)(2)Br]Br(2) does, which has been reported previously.

  4. Analyzing powers for (p,t) transitions to the first-excited 2+ states of medium-mass nuclei and nuclear collective motions

    International Nuclear Information System (INIS)

    Nagano, K.; Aoki, Y.; Kishimoto, T.; Yagi, K.

    1983-01-01

    Vector analyzing powers A(theta) and differential cross sections σ(theta) have been measured, with the use of a polarized proton beam of 22.0 MeV and a magnetic spectrograph, for (p,t) reactions leading to the first-excited 2 + (2 1 + ) states of the following eighteen nuclei of N = 50 - 82: sup(92,94,96)Mo, sup(98,100,102)Ru, sup(102,104,106,108)Pd, sup(110,112,114)Cd, 116 Sn, sup(120,126,128)Te, and 136 Ba. In addition A(theta) and σ(theta) for sup(104,110)Pd(p,t) sup(102,108) Pd(0sub(g) + ,2 1 + ) transitions have been measured at Esub(p) = 52.2 MeV. The experimental results are analyzed in terms of the first- and second-order DWBA including both inelastic two-step processes and sequential transfer (p,d)(d,t) two-step processes. Inter-ference effect between the direct and the two-step processes is found to play an essential role in the (p,t) reactions. A sum-rule method for calculating the (p,d)(d,t) spectroscopic amplitudes has been developed so as to take into account the ground-state correlation in odd-A nuclei. The nuclear-structure wave functions are constructed under the boson expansion method and the quasiparticle random phase approximation (qp RPA) method by using the monopole-pairing, quadrupole-pairing, and QQ forces. The characteristic features of the experimental A(theta) and σ(theta) are better explained in terms of the boson expansion method than in terms of the qp RPA. Dependence of the (p,t) analyzing powers on the static electric quadrupole moment of the 2 1 + state is found to be strong because of the reorientation (anharmonic) effect in the 2 1 + yiedls 2 1 + transfer process. (J.P.N.)

  5. Preparation of PtSn/C, PtRu/C, PtRh/C, PtRuRh/C and PtSnRh/C electrocatalysts using an alcohol-reduction process for methanol and ethanol oxidation

    International Nuclear Information System (INIS)

    Dias, Ricardo Rodrigues

    2009-01-01

    In this work, Pt/C, PtRh (90:10), PtRh/C (50:50), PtSn/C (50:50), PtRu (50:50)/C, PtRuRh/C (50:40:10) and PtSnRh/C (50:40:10) were prepared by an alcohol-reduction process with metal loading of 20 wt.% using H 2 PtCl 6 .6H 2 O (Aldrich), SnCl 2 .2H 2 O (Aldrich),and RhCl 2 .XH 2 O (Aldrich) as metals sources and Vulcan XC72 as support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry (CV). The electro-oxidation of ethanol was studied by CV, chronoamperomety at room temperature in acid medium and tests at 100 deg C on a single cell of a direct methanol or ethanol fuel cell. The EDX analysis showed that the metal atomic ratios of the obtained electrocatalysts were similar to the nominal atomic ratios used in the preparation. The diffractograms of electrocatalysts prepared showed four peaks at approximately 2θ = 40 0 , 47 0 , 67 0 and 82 0 , which are associated with the (111), (200), (220) and (311) planes, respectively, of a face cubic-centered (fcc) structure characteristic of platinum and platinum alloys. The average crystallite sizes using the Scherrer equation and the calculated values were in the range of 2–3 nm. For PtSn/C and PtSnRh/C two additional peaks were observed at 2θ = 34 0 and 52 0 that were identified as a SnO 2 phase. PtSn/C (50:50) and PtSnRh/C (50:40:10) electrocatalyst showed the best performance for ethanol oxidation at room temperature. For methanol oxidation at room temperature PtRu/C, PtSn/C and PtRuRh/C electrocatalysts showed the best performance. Tests at 100 deg C on a single cell of a direct ethanol fuel cell PtSnRh/C showed the best performance, for methanol oxidation PtRuRh/C showed the best performance. (author)

  6. Current Diagnosis and Management of Immune Related Adverse Events (irAEs Induced by Immune Checkpoint Inhibitor Therapy

    Directory of Open Access Journals (Sweden)

    Vivek Kumar

    2017-02-01

    Full Text Available The indications of immune checkpoint inhibitors (ICIs are set to rise further with the approval of newer agent like atezolimumab for use in patients with advanced stage urothelial carcinoma. More frequent use of ICIs has improved our understanding of their unique side effects, which are known as immune-related adverse events (irAEs. The spectrum of irAEs has expanded beyond more common manifestations such as dermatological, gastrointestinal and endocrine effects to rarer presentations involving nervous, hematopoietic and urinary systems. There are new safety data accumulating on ICIs in patients with previously diagnosed autoimmune conditions. It is challenging for clinicians to continuously update their working knowledge to diagnose and manage these events successfully. If diagnosed timely, the majority of events are completely reversible, and temporary immunosuppression with glucocorticoids, infliximab or other agents is warranted only in the most severe grade illnesses. The same principles of management will possibly apply as newer anti- cytotoxic T lymphocytes-associated antigen 4 (CTLA-4 and programmed cell death protein 1 (PD-1/PD-L1 antibodies are introduced. The current focus of research is for prophylaxis and for biomarkers to predict the onset of these toxicities. In this review we summarize the irAEs of ICIs and emphasize their growing spectrum and their management algorithms, to update oncology practitioners.

  7. Synthesis of thiadiazolobenzamide via cyclization of thioxothiourea and its Ni and Pd complexes

    Directory of Open Access Journals (Sweden)

    Adhami Forogh

    2012-01-01

    Full Text Available In this study, the new compound, N-(3-methyl-4- oxo[1,3,4]thiadiazolo[2,3-c][1,2,4]triazin-7-yl benzamide, could be obtained via two different reactions: 1 reaction of 4-amino-6-Methyl-3- (Methylsulfanyl-1,2,4-triazin-5-one with benzoyl isothiocyanate under removal of methylmercaptane, 2 reaction of 4-amino-6-Methyl-3-thioxo- 1,2,4-triazin-5-one with benzoyl isothiocyanate under elimination of hydrogen sulfide. In both reactions a new bond between sulfur and nitrogen atoms was formed and a five-membered ring was created. The oxo thiadiazolo benzamide was characterized by IR-, 1HNMR- and 13CNMR spectroscopy as well as by Mass spectrometry. X-ray crystallography was used to shed light on the structure of this new compound. Two new complexes could be generated by coordination of oxo thiadiazolo benzamide to Pd(II and Ni(II ions. These complexes have been analyzed by IR-, 1HNMR- and 13CNMR spectroscopy, conductometry and Thermal gravimetry (TGA. Theoretical QM Calculation GIAO has also been applied to predict the structure of the Pd complex.

  8. High-spin states and coexisting states in the Pt-Au transition region

    International Nuclear Information System (INIS)

    Riedinger, L.L.; Carpenter, M.P.; Courtney, L.H.; Janzen, V.P.; Schmitz, W.

    1986-01-01

    High-spin states in the N = 104 to 108 region have been studied by in-beam spectroscopy techniques in a number of Ir, Pt, and Au nuclei. These measurements have been performed at tandem Van de Graaff facilities at the Oak Ridge National Laboratory and at McMaster University. Through comparison of band crossings in a variety of odd-A and even-A nuclei, we are able to assign the first neutron and first proton alignment processes, which are nearly degenerate for 184 Pt. These measurements yield the trend of these crossing frequencies with N and Z in this region. Knowledge of this trend is important, since these crossing frequencies can give an estimate of how the shape parameters vary across this transitional region. 22 refs., 7 figs., 1 tab

  9. Interfacial properties of stanene-metal contacts

    Science.gov (United States)

    Guo, Ying; Pan, Feng; Ye, Meng; Wang, Yangyang; Pan, Yuanyuan; Zhang, Xiuying; Li, Jingzhen; Zhang, Han; Lu, Jing

    2016-09-01

    Recently, two-dimensional buckled honeycomb stanene has been manufactured by molecular beam epitaxy growth. Free-standing stanene is predicted to have a sizable opened band gap of 100 meV at the Dirac point due to spin-orbit coupling (SOC), resulting in many fascinating properties such as quantum spin Hall effect, quantum anomalous Hall effect, and quantum valley Hall effect. In the first time, we systematically study the interfacial properties of stanene-metal interfaces (metals = Ag, Au, Cu, Al, Pd, Pt, Ir, and Ni) by using ab initio electronic structure calculations considering the SOC effects. The honeycomb structure of stanene is preserved on the metal supports, but the buckling height is changed. The buckling of stanene on the Au, Al, Ag, and Cu metal supports is higher than that of free-standing stanene. By contrast, a planar graphene-like structure is stabilized for stanene on the Ir, Pd, Pt, and Ni metal supports. The band structure of stanene is destroyed on all the metal supports, accompanied by a metallization of stanene because the covalent bonds between stanene and the metal supports are formed and the structure of stanene is distorted. Besides, no tunneling barrier exists between stanene and the metal supports. Therefore, stanene and the eight metals form a good vertical Ohmic contact.

  10. CO-induced Pd segregation and the effect of subsurface Pd on CO adsorption on CuPd surfaces

    International Nuclear Information System (INIS)

    Padama, A A B; Villaos, R A B; Albia, J R; Diño, W A; Nakanishi, H; Kasai, H

    2017-01-01

    We report results of our study on the adsorption of CO on CuPd surfaces with bulk stoichiometric and nonstoichiometric layers using density functional theory (DFT). We found that the presence of Pd atoms in the subsurface layer promotes the adsorption of CO. We also observed CO-induced Pd segregation on the CuPd surface and we attribute this to the strong CO–Pd interaction. Lastly, we showed that the adsorption of CO promotes Pd–Pd interaction as compared to the pristine surface which promotes strong Cu–Pd interaction. These results indicate that CO adsorption on CuPd surfaces can be tuned by taking advantage of the CO-induced segregation and by considering the role of subsurface Pd atoms. (paper)

  11. Basal cell carcinoma: PD-L1/PD-1 checkpoint expression and tumor regression after PD-1 blockade.

    Science.gov (United States)

    Lipson, Evan J; Lilo, Mohammed T; Ogurtsova, Aleksandra; Esandrio, Jessica; Xu, Haiying; Brothers, Patricia; Schollenberger, Megan; Sharfman, William H; Taube, Janis M

    2017-01-01

    Monoclonal antibodies that block immune regulatory proteins such as programmed death-1 (PD-1) have demonstrated remarkable efficacy in controlling the growth of multiple tumor types. Unresectable or metastatic basal cell carcinoma, however, has largely gone untested. Because PD-Ligand-1 (PD-L1) expression in other tumor types has been associated with response to anti-PD-1, we investigated the expression of PD-L1 and its association with PD-1 expression in the basal cell carcinoma tumor microenvironment. Among 40 basal cell carcinoma specimens, 9/40 (22%) demonstrated PD-L1 expression on tumor cells, and 33/40 (82%) demonstrated PD-L1 expression on tumor-infiltrating lymphocytes and associated macrophages. PD-L1 was observed in close geographic association to PD-1+ tumor infiltrating lymphocytes. Additionally, we present, here, the first report of an objective anti-tumor response to pembrolizumab (anti-PD-1) in a patient with metastatic PD-L1 (+) basal cell carcinoma, whose disease had previously progressed through hedgehog pathway-directed therapy. The patient remains in a partial response 14 months after initiation of therapy. Taken together, our findings provide a rationale for testing anti-PD-1 therapy in patients with advanced basal cell carcinoma, either as initial treatment or after acquired resistance to hedgehog pathway inhibition.

  12. Selective Hydrogenation of Acrolein Over Pd Model Catalysts: Temperature and Particle-Size Effects.

    Science.gov (United States)

    O'Brien, Casey P; Dostert, Karl-Heinz; Schauermann, Swetlana; Freund, Hans-Joachim

    2016-10-24

    The selectivity in the hydrogenation of acrolein over Fe 3 O 4 -supported Pd nanoparticles has been investigated as a function of nanoparticle size in the 220-270 K temperature range. While Pd(111) shows nearly 100 % selectivity towards the desired hydrogenation of the C=O bond to produce propenol, Pd nanoparticles were found to be much less selective towards this product. In situ detection of surface species by using IR-reflection absorption spectroscopy shows that the selectivity towards propenol critically depends on the formation of an oxopropyl spectator species. While an overlayer of oxopropyl species is effectively formed on Pd(111) turning the surface highly selective for propenol formation, this process is strongly hindered on Pd nanoparticles by acrolein decomposition resulting in CO formation. We show that the extent of acrolein decomposition can be tuned by varying the particle size and the reaction temperature. As a result, significant production of propenol is observed over 12 nm Pd nanoparticles at 250 K, while smaller (4 and 7 nm) nanoparticles did not produce propenol at any of the temperatures investigated. The possible origin of particle-size dependence of propenol formation is discussed. This work demonstrates that the selectivity in the hydrogenation of acrolein is controlled by the relative rates of acrolein partial hydrogenation to oxopropyl surface species and of acrolein decomposition, which has significant implications for rational catalyst design. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Further studies on hydration of alkynes by the PtCl4-CO catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Israelsohn, Osnat; Vollhardt, K. Peter C.; Blum, Jochanan

    2002-01-18

    Under CO atmosphere, between 80 and 120 C, a glyme solution of PtCl{sub 4} forms a carbonyl compound that promotes hydration of internal as well as terminal alkynes to give aldehyde-free ketones. The catalytic process depends strongly on the electronic and steric nature of the substrates. Part of the carbonyl functions of the catalyst can be replaced by phosphine ligands. Chiral DIOP reacts with the PtCl{sub 4}-CO compound to give a catalyst that promotes partial kinetic resolution of a racemic alkyne. Replacement of part of the CO by polystyrene-bound diphenylphosphine enables to attach the catalyst to the polymeric support. Upon entrapment of the platinum compound in a silica sol-gel matrix, it reacts as a partially recyclable catalyst. A reformulated mechanism for the PdCl{sub 4}-CO catalyzed hydration is suggested on the basis of the present study.

  14. Impaired Insulin Signaling is Associated with Hepatic Mitochondrial Dysfunction in IR+/−-IRS-1+/− Double Heterozygous (IR-IRS1dh Mice

    Directory of Open Access Journals (Sweden)

    Andras Franko

    2017-05-01

    Full Text Available Mitochondria play a pivotal role in energy metabolism, but whether insulin signaling per se could regulate mitochondrial function has not been identified yet. To investigate whether mitochondrial function is regulated by insulin signaling, we analyzed muscle and liver of insulin receptor (IR+/−-insulin receptor substrate-1 (IRS-1+/− double heterozygous (IR-IRS1dh mice, a well described model for insulin resistance. IR-IRS1dh mice were studied at the age of 6 and 12 months and glucose metabolism was determined by glucose and insulin tolerance tests. Mitochondrial enzyme activities, oxygen consumption, and membrane potential were assessed using spectrophotometric, respirometric, and proton motive force analysis, respectively. IR-IRS1dh mice showed elevated serum insulin levels. Hepatic mitochondrial oxygen consumption was reduced in IR-IRS1dh animals at 12 months of age. Furthermore, 6-month-old IR-IRS1dh mice demonstrated enhanced mitochondrial respiration in skeletal muscle, but a tendency of impaired glucose tolerance. On the other hand, 12-month-old IR-IRS1dh mice showed improved glucose tolerance, but normal muscle mitochondrial function. Our data revealed that deficiency in IR/IRS-1 resulted in normal or even elevated skeletal muscle, but impaired hepatic mitochondrial function, suggesting a direct cross-talk between insulin signaling and mitochondria in the liver.

  15. High Coke-Resistance Pt/Mg1-xNixO Catalyst for Dry Reforming of Methane.

    Directory of Open Access Journals (Sweden)

    Faris A J Al-Doghachi

    Full Text Available A highly active and stable nano structured Pt/Mg1-xNixO catalysts was developed by a simple co-precipitation method. The obtained Pt/Mg1-xNixO catalyst exhibited cubic structure nanocatalyst with a size of 50-80 nm and realized CH4 and CO2 conversions as high as 98% at 900°C with excellent stability in the dry reforming of methane. The characterization of catalyst was performed using various kinds of analytical techniques including XRD, BET, XRF, TPR-H2, TGA, TEM, FESEM, FT-IR, and XPS analyses. Characterization of spent catalyst further confirms that Pt/Mg1-xNixO catalyst has high coke-resistance for dry reforming. Thus, the catalyst demonstrated in this study, offers a promising catalyst for resolving the dilemma between dispersion and reducibility of supported metal, as well as activity and stability during high temperature reactions.

  16. Molecular mechanism of PD-1/PD-L1 blockade via anti-PD-L1 antibodies atezolizumab and durvalumab.

    Science.gov (United States)

    Lee, Hyun Tae; Lee, Ju Yeon; Lim, Heejin; Lee, Sang Hyung; Moon, Yu Jeong; Pyo, Hyo Jeong; Ryu, Seong Eon; Shin, Woori; Heo, Yong-Seok

    2017-07-17

    In 2016 and 2017, monoclonal antibodies targeting PD-L1, including atezolizumab, durvalumab, and avelumab, were approved by the FDA for the treatment of multiple advanced cancers. And many other anti-PD-L1 antibodies are under clinical trials. Recently, the crystal structures of PD-L1 in complex with BMS-936559 and avelumab have been determined, revealing details of the antigen-antibody interactions. However, it is still unknown how atezolizumab and durvalumab specifically recognize PD-L1, although this is important for investigating novel binding sites on PD-L1 targeted by other therapeutic antibodies for the design and improvement of anti-PD-L1 agents. Here, we report the crystal structures of PD-L1 in complex with atezolizumab and durvalumab to elucidate the precise epitopes involved and the structural basis for PD-1/PD-L1 blockade by these antibodies. A comprehensive comparison of PD-L1 interactions with anti-PD-L1 antibodies provides a better understanding of the mechanism of PD-L1 blockade as well as new insights into the rational design of improved anti-PD-L1 therapeutics.

  17. Optimal level of Au nanoparticles on Pd nanostructures providing remarkable electro-catalysis in direct ethanol fuel cell

    Science.gov (United States)

    Dutta, Abhijit; Mondal, Achintya; Broekmann, Peter; Datta, Jayati

    2017-09-01

    The designing and fabrication of economically viable electro-catalysts for ethanol oxidation reaction (EOR) in direct ethanol fuel cell (DEFC) has been one of the challenging issues over the decades. The present work deals with controlled synthesis of Pd coupled Au nano structure, as the non Pt group of catalysts for DEFC. The catalytic proficiency of bimetallic NPs (2-10 nm) are found to be strongly dependent on the Pd:Au ratio. The over voltage of EOR is considerably reduced by ∼260 mV with 33% of Au content in PdAu composition compared to Pd alone, demonstrating the beneficial role of Au and/or its surface oxides providing oxygen species at much lower potentials compared to Pd. The catalysts are further subjected to electrochemical analysis through voltammetry along with the temperature study on activation parameters. The quantitative determination of EOR products during the electrolysis is carried out by ion chromatographic analysis; vis-a-vis the coulombic efficiency of the product yield were derived from each of the compositions. Furthermore, a strong correlation among catalytic performances and bimetallic composition is established by screening the catalysts in an in-house fabricated direct ethanol anion exchange membrane fuel cell, DE(AEM)FC. The performance testing demonstrates outstanding increase of peak power density (∼40 mWcm-2, 93%) for the best accomplishment Au (33%) covered Pd (67%) catalyst in comparison with the monometallic Pd.

  18. Solvent-Mediated Eco-Friendly Synthesis and Characterization of Monodispersed Bimetallic Ag/Pd Nano composites for Sensing and Raman Scattering Applications

    International Nuclear Information System (INIS)

    Sathiyadevi, G.; Loganathan, B.; Karthikeyan, B.; Karthikeyan, B.

    2014-01-01

    The solvent-mediated eco-friendly monodispersed Ag/Pd bimetallic nano composites (BNCs) having thick core and thin shell have been prepared through novel green chemical solvent reduction method. Reducing solvent, dimethyl formamide (DMF) is employed for the controlled green synthesis. Characterization of the synthesized Ag/Pd BNCs has been done by x-ray diffraction (XRD) studies, high-resolution scanning electron microscopy (HR-SEM), energy-dispersive X-ray analysis (EDX), and high-resolution transmission electron microscopy (HR-TEM) with selected area electron diffraction (SAED) pattern. The nature of the interaction of L-cysteine with Ag/Pd BNCs has been studied by using surface plasmon spectroscopy, Fourier transform-infrared spectroscopy (FT-IR), cyclic voltammetry (CV), and theoretical methods.

  19. All-proportional solid-solution Rh–Pd–Pt alloy nanoparticles by femtosecond laser irradiation of aqueous solution with surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Md. Samiul Islam, E-mail: samiul-phy@ru.ac.bd; Nakamura, Takahiro; Sato, Shunichi [Tohoku University, Institute of Multidisciplinary Research for Advanced Materials (Japan)

    2015-06-15

    Formation of Rh–Pd–Pt solid-solution alloy nanoparticles (NPs) by femtosecond laser irradiation of aqueous solution in the presence of polyvinylpyrrolidone (PVP) or citrate as a stabilizer was studied. It was found that the addition of surfactant (PVP or citrate) significantly contributed to reduce the mean size of the particles to 3 nm for PVP and 10 nm for citrate, which was much smaller than that of the particles fabricated without any surfactants (20 nm), and improved the dispersion state as well as the colloidal stability. The solid-solution formation of the Rh–Pd–Pt alloy NPs was confirmed by the XRD results that the diffraction pattern was a single peak, which was found between the positions corresponding to each pure Rh, Pd, and Pt NPs. Moreover, all the elements were homogeneously distributed in every particle by STEM-EDS elemental mapping, strongly indicating the formation of homogeneous solid-solution alloy. Although the Rh–Pd–Pt alloy NPs fabricated with PVP was found to be Pt rich by EDS observation, the composition of NPs fabricated with citrate almost exactly preserved the feeding ratio of ions in the mixed solution. To our best knowledge, these results demonstrated for the first time, the formation of all-proportional solid-solution Rh–Pd–Pt alloy NPs with well size control.

  20. Processing of Ni30Pt20Ti50 High-Temperature Shape-Memory Alloy Into Thin Rod Demonstrated

    Science.gov (United States)

    Noebe, Ronald D.; Draper, Susan L.; Biles, Tiffany A.; Leonhardt, Todd

    2005-01-01

    High-temperature shape-memory alloys (HTSMAs) based on nickel-titanium (NiTi) with significant ternary additions of palladium (Pd), platinum (Pt), gold (Au), or hafnium (Hf) have been identified as potential high-temperature actuator materials for use up to 500 C. These materials provide an enabling technology for the development of "smart structures" used to control the noise, emissions, or efficiency of gas turbine engines. The demand for these high-temperature versions of conventional shape-memory alloys also has been growing in the automotive, process control, and energy industries. However these materials, including the NiPtTi alloys being developed at the NASA Glenn Research Center, will never find widespread acceptance unless they can be readily processed into useable forms.